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Abstract—Satellite communications systems designers are
continuously struggling to improve the link capacity. A
critical challenge comes from the limited power available
aboard the satellite. To ensure a sufficient signal-to-noise
power ratio (SNR) at the terrestrial receiving side, the
amplifier aboard the satellite is usually operated close to the
amplifier saturation point which adds non-linear distortions
to the communication channel. Several algorithms have
been proposed to equalize the non-linear satellite channel.
The Echo State Network (ESN) algorithm, coming from
the field of artificial neural networks, has been shown to
perform well in this task: it can achieve a similar bit error
rate (BER) as the state-of-the-art Volterra equalizer. In the
present paper we show that with an appropriate design, the
complexity of the ESN can be significantly lower than that
of the Volterra equalizer, while conserving the low BER.

Index Terms—Satellite communications, Non-linear com-
munication channel, Equalization, Volterra, Echo State
Network

I. INTRODUCTION

In most of the satellite communications systems, the
satellite works as a relay between two terrestrial points:
the satellite receives a signal transmitted from a first
terrestrial location, amplifies it and retransmits it without
digital signal processing to a second terrestrial location.
This is for example the case in the DVB-S2 (Digital Video
Broadcasting - Satellite - Second Generation) systems
[1]. Communicating over the satellite channel is very
challenging because of the constraints on the equipments
aboard the satellite. The limited bandwidth of the fil-
ters aboard the satellite creates significant inter-symbol
interferences (ISI) when the communication bandwidth
is increased. To ensure a sufficiently high output power,
the power amplifier generally works close to its saturation
point. This operating point improves efficiency but also
adds important non-linear distortions in the communica-
tion channel that further degrade the system reliability.

The resulting satellite non-linear communication chan-
nel with memory can fortunately be partially compensated
at the ground stations with digital signal processing. The
main contributions in the literature propose to use a
baseband Volterra structure for the equalization of the
satellite channel [2] [3] [4].

Other approaches based on artificial recurrent neural
network (RNN) structures have been investigated. These
solutions are however very complex to implement in
practice due to the important number of parameters to be
optimized before the RNN can work (training period). A
paradigm, called Reservoir Computer, has been proposed
to cope with this drawback [5]. One of its simplest forms
is referred to as the Echo State Network (ESN) [6]. The
main difference with classical RNNs is that an important
part of the parameters of the ESN are randomly generated
and fixed afterwards. Only a specific part of the RNN, the
output layer, needs to be optimized which considerably
reduces the training duration. Because of its structure, the
ESN has also the advantage that it could potentially be
implemented with analog components. High performance
experimental implementations have been reported on op-
toelectronic [7] [8] and all-optical [9] [10] circuits.

Several papers have evaluated the performance of dig-
ital ESNs for the equalization of a non-linear communi-
cation channel. The comparison was however only made
with a linear filter [11], or assuming a theoretical unre-
alistic channel model [12]. In [13], we applied the ESN
to the satellite communication channel and compared its
performance with the baseband Volterra equalizer. We
demonstrated that the ESN is capable of performing
equally well while incurring a similar computational
complexity.

An important feature of the considered ESN is that
some parameters are chosen randomly, meaning that their
exact values have a small impact on the final performance.
In this paper, we propose to select these parameters so



as to reduce the complexity of the digital implementation
without degrading the performance. Note that [14] pro-
poses to modify the connections between the neurons in
order to reduce the number of operations required by the
ESN, but the other parameters of the ESN have not been
investigated. We demonstrate that these parameters can
also be chosen in order to reduce the overall complexity
with a negligible impact on the performances. We mainly
reduce the number of multiplications which is the most
complex operation in digital implementations. This shows
that ESN becomes a competitive solution for the equaliza-
tion of the non-linear satellite communication channel in
comparison to the baseband Volterra equalizer. Although
the present work is restricted to the satellite channel, it
can be anticipated that the conclusions are of wider appli-
cability, and that the ESN will be a competitive solution
for many other non linear communication channels.

The outline of this paper is the following. The system
model of the satellite communication channel is described
in section 2. The ESN is introduced in section 3. The
different solutions to reduce the algorithm complexity are
studied in section 4. The section 5 numerically compares
the bit error rate (BER), the convergence speed, and the
digital complexity of the ESN and the baseband Volterra
equalizer.

II. SYSTEM MODEL

A block diagram of the baseband DVB-S2 communi-
cation channel is provided in Fig. 1 [1]. The non-linear
behaviour of the channel comes from the power amplifier
aboard the satellite. It is defined by a baseband model
which describes the amplitude fPA(.) and phase gPA(.)
distortion as a function of the amplitude of the input
signal. If this signal is defined by y(n), the output of
the amplifier z(n) is:

z(n) = fPA(|y(n)|)ej(̸ y(n)+gPA(|y(n)|)), (1)

where |y(n)| is the modulus and ̸ y(n) is the phase of
y(n). We use the power amplifier model proposed in [1].

The operating point is defined by the output back off
(OBO) defined as:

OBO = 20 log10
Aout

Asat
, (2)

where Aout is the Root Mean Square (RMS) value of
z(n) and Asat is the saturation amplitude of the amplifier.
An OBO close to 0 dB improves the efficiency of the
power amplifier but also introduces important non-linear
distortions.

The memory of the channel comes from the different
filters in the satellite and on the ground stations. We have
two half-root Nyquist filters, one at the transmitter side
and one at the receiver side. The satellite contains an imux
and an omux filter which are low-pass filters that can be
modelled using a Butterworth model. As we have a line-
of-sight propagation channel between the satellite and the
ground stations and because of the important directivity of
the antennas, the propagation channel can be considered
as memoryless [2].

The sequence of transmitted symbols s(n) is shaped
with a half-root Nyquist filter and transmitted to the
satellite. At the satellite, the signal is convolved with the
imux filter, amplified, and convolved with the omux filter
before it is transmitted back to the earth. At the receiver,
the signal is filtered by the complementary half-root
Nyquist filter and sampled at the symbol rate. Additive
white Gaussian noise corrupts the received signal.

In a linear communication channel, the clouds of points
which define the received samples are centred on the
transmitted constellation. It is not the case in a non-linear
channel because of the compression due to the non-linear
power amplifier. We can observe a displacement of the
center of the cloud of points, called centroids [15] (see
Fig. 2).

III. ECHO STATE NETWORKS

The ESN is one of the simplest forms of Reservoir
Computer which is a paradigm that has been proposed to
reduce the complexity of the learning task of RNNs. An
example of ESN is illustrated on Fig. 3. The algorithm
is composed by N neurons connected to each other. The
structure of these connections is defined by a N × N
matrix W = (wij). The neurons are connected to the
input signal through an input mask defined by a 1 × N
vector W in = (win

i ). In the first papers on ESN, W

and W in were generated randomly [6] [12]. Only the
output weights (output mask W out = (wout

i )) are trained
to equalize the non-linear channel. In this way, the
number of connections to adapt is strongly reduced which
accelerates the learning task.

The estimated symbols ŝ(n) are found at the output of
the ESN described by the three following equations [6]:

ai(n) =
N∑
j=1

wijxj(n− 1) + win
i r(n), (3)

xi(n) = fNL(ai(n)), (4)

ŝ(n+D) =
N∑
i=1

wout
i xi(n). (5)



Fig. 1. Block diagram of a satellite communication channel.

Fig. 2. 16-QAM constellation before and after a noiseless satellite
communication channel with the parameters defined in section 5
(OBO: −2 dB, roll-off factor of the half-root Nyquist filters: 0.25).

The terms wij create the memory of the structure.
The non-linear behaviour of the ESN comes from the
activation function fNL(.). In general, the input weights
win
i have a uniform distribution in amplitude [5] [6]

[13]. The coefficients wout
i are evaluated with a linear

regression. The parameter D creates a delay between the
received signal r(n) and the output of the ESN to take
into account the delay introduced by the channel.

The ESN requires the echo state property which speci-
fies that the value of each neuron only depends on the past
history of the input signal. In this way, the initial state
of the ESN tends to be forgotten and will not affect the
output signal ŝ(n). This property is respected if the prod-
uct of the spectral radius of the interconnection matrix
and the Lipschitz constant of the function fNL(.) (which
has to be Lipschitz continuous) is lower than 1 [16] [17].
In this way, the network has a fading memory. In the
other case, we could observe an exponential increase of
the dependence of the past history corresponding to an
unstable ESN.

Fig. 3. Structure of the Echo State Network with a ring structure

In this paper, the interconnection matrix W is defined
by the circular matrix proposed in [14]:

W = α


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 , (6)

where α is the feedback gain. The result is a ring
structure as illustrated on Fig. 3. It has been shown in
[14] that this matrix can offer the same performances as
the initially proposed random matrix. It has the advantage
to reduce number of operations by reducing the number
of connections. The matrix has also been used in [13] to
equalize the DVB-S2 communication channel.

It has been shown in [13] that the performances of
the ESN can be improved, if it is trained to recover a
constellation defined by the new centroids instead of the
transmitted ones. In the case of a 16-QAM constellation,
we have 16 centroids in the transmitted constellation
defined by (Xi)

16
i=1. We can evaluate the position of the

new centroids Xi by averaging the Ti received symbols
corresponding to Xi over a finite learning sequence sT (n)
of length T [15]:

Xi =
1

Ti

T−1∑
j=0

r(j|sT (j) = Xi), (7)



where

r(j|sT (j) = Xi) =

{
0, sT (j) ̸= Xi

r(j), sT (j) = Xi
. (8)

A new training sequence scT (n) can be defined with a
look-up-table which replaces the symbols of sT (n) de-
fined on Xi by the new symbols defined on Xi. The ESN
and the Volterra equalizer will be trained to minimize the
mean square error between the estimated sequence and
scT (n).

IV. COMPLEXITY REDUCTION

The most complex operation in the digital ESN algo-
rithm are the multiplications. As we work with binary
digits however, its complexity can significantly be re-
duced for numbers which are a power of 2. If we work
with fixed point precision, this operation is equivalent to
perform a shift in the register where the number is stored.
In this paper, we will consider that the complex numbers
are stored in Cartesian form. So each multiplication by a
power of 2 requires two translations: one for the real part
and one for the imaginary part.

In a first step, we will modify the parameters of the
ESN in order to replace most of the multiplications by
a translation in a register. We will start with the ESN
proposed in [13]. In this paper, we proposed to use the
following activation function instead of the hyperbolic
tangent used in most of the papers [11] [12] [14]:

fNL(a) = a.(c1 + c3|a|2), (9)

where the values c1 = 0.716 and c3 = −0.0478 have
been considered in [13]. If we also use the interconnection
matrix (6), the evolution of the ESN becomes:

ai(n) = αxi−1(n− 1) + win
i r(n), (10)

xi(n) = ai(n)(c1 + c3|ai(n)|2), (11)

ŝ(n+D) =
N∑
i=1

wout
i xi(n). (12)

This algorithm needs 13N multiplications and 8N − 2
summations.

We can reduce the number of multiplications if we use
the following parameters:

• α = 2−1

• c1 = 0.75
• c3 = −2−4

• win
i = ±2m where m is a random integer lying

between −1 and 3.
It means that the multiplications with the feedback gain α,
the input mask win

i and the coefficient c3 become simple
translations in a register .

The coefficients win
i are still random numbers, in order

to reduce the correlation between the neurons, but their
values are now limited to powers of 2. The value of α
has been found by simulation to give a sufficient memory
to the ESN. The values of c1 and c3 have been chosen
by simulations to maximize the performance of the ESN.

As the ESN is non-linear, its behaviour depends on
the amplitude of the received signal r(n). We consider
that, for a practical implementation, the gain controlled
amplifier and/or the analog-to-digital converter of the
receiver are able to deliver a digital signal r(n) with a
RMS value of 6. All these values have been found by
simulations.

In summary, after the first step in complexity reduction,
the ESN only needs 8N multiplications, 8N − 2 summa-
tions and 5N shifts. These parameters are independents
from the channel so they can be implemented in hardware
on the chip.

The second step in the complexity reduction concerns
the activation function (see eq. (11)). This is an important
source of complexity as the evaluation of the activation
function requires 4 multiplications, 2 summations and
1 shift. In the literature, we can see that, for a non-
linear ESN, all the neurons have an activation function
[6] [13] [14]. This offers interesting performances but
it also increases the complexity of the algorithm. In the
present work we propose a modification of the ESN in
which all the neurons do not have an activation function.
More precisely, for NL neurons, we remove the activation
function. That is, for NL indices i, eqs. (10) and (11) are
replaced by

xi(n) = αxi−1(n− 1) + win
i r(n). (13)

We denote by NA = N −NL the number of neurons that
have an activation function. With this simplification, the
algorithm will require 8N − 4NL multiplications, 8N −
2NL − 2 summations and 5N −NL register shifts.

V. NUMERICAL RESULTS

We consider the 16-QAM modulation. The imux and
omux filters have a 36 MHz bandwidth. The roll-off factor
of the half-root Nyquist shaping filters on the ground
stations is fixed at 0.25. The symbol rate is 30 MHz.

The operating point of the power amplifier is defined
by a −2 dB OBO. The functions fPA(.) and gPA(.) are
described using a Ghorbani model [18]:

fPA(y(n)) =
q1|y(n)|q2

1 + q3|y(n)|q2
+ q4|y(n)|, (14)

gPA(y(n)) =
q5|y(n)|q6

1 + q7|y(n)|q6
, (15)



Fig. 4. Impact of the number of activation functions for an ESN
composed of 50 neurons with α = 2−1, c1 = 0.75, c3 = −2−4 and
an input mask composed by powers of 2, as a function of the number
NA of neurons with activation function.

where the following values are considered: q1 = 6, q2 =
1.3, q3 = 3.3, q4 = −0.4, q5 = 1.8, q6 = 1.8, q7 = 1.4.

We used an ESN composed by 50 neurons. As basis
for comparison we used the ESN of [13] with a feedback
gain α of 0.35 (denoted in the figures by ESN Bauduin-
VTC15). The value α = 0.35 was found by simulation
to minimize the BER. We compare this with the ESN
obtained after step 1 (denoted by ESN Step 1), and with
the fully optimised ESN (denoted ESN Optimised). In
the optimized ESN, only ten neurons have an activation
function, i.e. NA = 10 and NL = 40.

The ESN equalizers are compared with a Volterra
equalizer. The Volterra equalizer has a linear memory
L1 equal to 10 and an order 3 non-linear memory L3

equal to 5. So the Volterra equalizer is composed of 85
kernels (10 of order 1 and 75 of order 3) [2]. It requires
4L1+12L2

3(L3+1)
2 multiplications and 4L1+8L2

3(L3+1)
2 −4

summations.
The coefficients of the Volterra equalizer and of the

ESN have been evaluated to minimize the MSE between
the estimated sequence and the training sequence sTc (n)
defined on the new centroids. In all cases, we used a
training sequence composed of 3000 symbols.

The simulations show us that the new input mask
creates no visible degradation on BER curves. We can
see in Fig.4 that using only ten neurons with activation
function is a good compromise between performances
and complexity. By simulations, we have seen that a
uniform repartition of the non-linear neurons was the most
efficient configuration.

Fig. 5. Complexity comparison in term of number of operations
(multiplications, additions, shifts) for an ESN with 50 neurons and
a Volterra equalizer composed by 85 kernels.

We observe in Fig. 5 that the number of multiplications
of the ESN has been reduced by a factor approximatively
equal to 1.5 when the multiplications can be implemented
with a shift in the register (ESN Step 1). Furthermore, we
observe that reducing the number of activation signals
gives us a gain equal to 3 compared to the ESN proposed
in [13].

Fig. 6 shows that the performance degradation is neg-
ligible while the complexity gain is significant. It is also
interesting to observe that the convergence speed is not
affected as shown on Fig. 7.

If we compare our new ESN with the Volterra equal-
izer, we can see that the number of multiplications is
reduced by a factor close to 5. The cost to pay is a
loss of approximately 0.5 dB for a BER of 10−5. The
convergence speed of the ESN is much higher than the
convergence speed of the Volterra equalizer. This result
was expected as we have 85 weights to train for Volterra
and only 50 for the ESN. We can see that the Volterra
equalizer needs more that 1000 symbols to converge to the
asymptotic BER. It is interesting to see that, for a training
sequence lower than 1000 symbols, the ESN offers a
better BER than the Volterra equalizer.

VI. CONCLUSION

We have shown how to reduce significantly the com-
plexity of an ESN. To this end we used a ring topology,
we chose the coefficients of the ESN in such that they
could be implemented with simple shift registers, and we
limited the number of neurons that have an activation
function. In fact, after these simplifications, most of the
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Fig. 6. Performances of the different solutions in terms of BER for
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Fig. 7. Performance each solutions as a function of training sequence
length with a SNR of 22 dB

complexity of the ESN lies in the output layer, eq. (12).
We demonstrated that this reduction in complexity is ac-
companied by negligible performance degradation for the
problem of equalisation of a non linear satellite channel.
We compared these ESNs with a Volterra equalizer. The
Volterra equalizer has a slightly better BER for high
SNR. But the Volterra equalizer requires a longer training
sequence, and because it does not contain multiplication
by constants, it is not possible to reduce its complexity.

We expect that the complexity reduction presented here
could find applications for the equalization of other non
linear channels, and for other applications of ESNs.
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