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ABSTRACT: Biotin[6]uril hexaesters represent a new
class of anionophores which operate solely through C
H···anion interactions. The use of soft H-bond donors
favors the transport of less hydrophilic anions (e.g., Cl−,
NO3

−) over hard, stongly hydrated anions (e.g., HCO3
−

and SO4
2−). Especially relevant is the selectivity between

chloride and bicarbonate, the major inorganic anions in
biological systems.

Transmembrane anion transport by synthetic agents
presents new opportunities for biology and medicine.1

By analogy with cation transporters (cationophores),2 aniono-
phores could be valuable as research tools and might find
therapeutic applications. For example, there is evidence that
some anionophores possess anti-cancer activity.1d,3 In addition
there is hope that synthetic transporters might be used to
replace the activity of endogenous anion channels which are
missing or defective.4,1b Such deficiencies underlie a number of
conditions including the widespread genetic disease cystic
fibrosis.
Recent research has yielded various structures which can

transport anions through channel,5 relay,6 or mobile carrier
mechanisms.3,7 High activities have been achieved in some
cases,7e,f but the control of anion selectivity is still under-
explored.8 From a biological perspective the most relevant issue
is the distinction between chloride and bicarbonate, the
dominant inorganic anions in living systems.9 Chloride/
bicarbonate selectivity may not be required for all applica-
tions,10 but for others it may be critical. Selective anionophores
would be valuable as research tools, with potential to elicit new
and specific biological effects.
Whatever their mechanism of action, anionophores must

recognize their substrates through non-covalent interactions.
The interaction most commonly applied is hydrogen bonding
between anions and conventional donors (OH, NH). However,
this may not be ideal for achieving Cl−/HCO3

− selectivity.
Although bicarbonate is more strongly hydrated, it also binds
well to O/NH in receptors. Thus, in studies of anion carriers
employing NH···anion H-bonding, we and others have
commonly observed transport of both substrates.7b,c,f,11 A
promising alternative is the CH···anion hydrogen bond.12 In
contrast to OH and NH, CH is recognized as a soft H-bond
donor.13 It might therefore favor binding to softer, more
polarizable anions (e.g., Cl−) over hard anions such as HCO3

−.

We now report the first anionophores which rely exclusively on
CH···X− interactions, without any contribution from conven-
tional H-bonds or electrostatic interactions.14 As predicted, we
find that this system is effective for chloride transport but shows
minimal activity for bicarbonate, demonstrating the potential of
CH···anion interactions for moderating anionophore selectivity.
The design of the new anionophores is based on biotin[6]-

uril 1 (Scheme 1), a receptor for halide anions in water recently

described by the Copenhagen group.15 Macrocycle 1 is
prepared in a single step from biotin and formaldehyde in
aqueous hydrochloric acid. The hexameric product consists of
six biotin monomers in alternating orientation, connected
through methylene bridges. Each biotin unit has two hydrogens
on the convex face, pointing toward the center of the
macrocycle. This creates a cavity bounded by 12 CH groups,
positioned to bind spherical anions by CH···X− interactions
(Figure 1). In aqueous solution 1 binds halides with affinities
(Ka) ranging from ∼2000 M−1 for I− to ∼60 M−1 for Cl−. The
mode of binding has been confirmed by an X-ray crystal
structure of the 1·iodide complex.15a
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Scheme 1. Synthetic Pathway to Biotin[6]Uril Hexaesters 2−
4a

aEsterification of biotin[6]uril 1 to biotin[6]uril hexamethyl ester 2,
hexaethyl ester 3, and hexabutyl ester 4 is catalyzed by HCl.
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To create hydrophobic analogues for transport studies,
receptor 1 was treated with methanol, ethanol or butanol, with
catalytic HCl, to yield hexaesters 2−4. The binding of the
hexaesters to Cl−, NO3

−, HCO3
−, and SO4

2− in an organic
medium (CD3CN) was first studied using 1H NMR spectros-
copy. As shown in Table 1, the affinities for chloride were

higher than those for nitrate and bicarbonate by roughly 2
orders of magnitude. No interaction with SO4

2− could be
detected. The selectivity for chloride vs nitrate contrasts with
the results for 1 in water, where the two anions were bound
with similar Ka.

15 This solvent effect is not too surprising, as
chloride is more hydrophilic than nitrate.16 More notable,
however, are the almost identical Ka values for NO3

− and
HCO3

−. The latter is by far the more basic, and therefore the
better acceptor for conventional H-bonds. The similar affinities
observed here, for similarly shaped anions, confirms the
difference between conventional H-bonds and CH···anion
binding.13 The result supported our expectation that 2−4
would not transport bicarbonate. If affinities were low in a non-
competitive medium, the prospects for extracting hydrophilic
HCO3

− from water seemed very poor indeed.
Affinities for chloride were also measured by isothermal

titration calorimetry (ITC) (Table 1). The binding interactions
were all shown to be enthalpically and entropically favorable.
This is different from the trend observed for the biotin[6]uril

hexaacid (1) in water where the entropy change is
unfavorable.15

Anion transport by esters 2−4 was studied in large
unilamellar vesicles with a mean diameter of 200 nm,
employing the previously reported “lucigenin assay” (Figure
2).17 The vesicles were prepared from 1-palmitoyl-2-oleoyl-sn-

glycero-phosphocholine (POPC) and cholesterol in a 7:3 ratio,
with the biotin[6]uril hexaesters pre-incorporated at receptor:
lipid ratios from 1:250 to 1:25 000. The vesicles enclosed
NaNO3 (225 mM) with the halide-sensitive dye lucigenin (0.8
mM), and were suspended in NaNO3 (225 mM). After
addition of sodium chloride (24 mM), the decay in lucigenin
fluorescence caused by chloride influx was monitored. Traces
from experiments at receptor:lipid = 1:1000 are shown in
Figure 2c. All three hexaesters showed activity, but with
substantial differences depending on the length of side chain (4
≫ 3 > 2). As with some other systems,18 it seems that
lipophilicity promotes anionophore effectiveness. This result
might simply reflect different distributions between membrane
and aqueous phases. However, leaching tests19 confirmed that
all carriers were exclusively located in the membrane (see

Figure 1. Macrocyclic core of biotin[6]urils 1−4, with side chains
replaced by Me groups, modeled binding Cl−. CH···Cl− distances
range from 2.9 to 3.2 Å. For details of the calculation, see SI.

Table 1. Cl−, NO3
−, and HCO3

− Binding Affinities (1H NMR
and ITC) in Acetonitrile

log(Ka)

biotin[6]uril ester Cl− NO3
− HCO3

−

methyl estera (2) 4.3b, 4.5c 2.3c 2.1c

ethyl estera (3) 4.6b 2.4c −d

butyl estera(4) 4.5b −d −d
aJob’s method and ITC indicated 1:1 binding stoichiometries for both
Et4N

+Cl− and Bu4N
+NO3

−. All data obtained had less than 11% error.
bKa obtained from ITC in CH3CN at 25 °C. cKa obtained by

1H NMR
titration in CD3CN at 25 °C. dNot measured.

Figure 2. (a) Schematic representation of the vesicles used in this
study. The transport activity is monitored using the lucigenin assay.
Biotin[6]uril hexaesters promote transport of Cl− into the vesicles and
NO3

− out of the vesicle. This process is observed as the quenching of
lucigenin fluorescence caused by the increasing amount of chloride
inside the vesicle. (b) Part of the vesicle membrane illustrating the
carrier mechanism employed by the biotin[6]uril hexaesters. (c)
Chloride/nitrate exchange by 2, 3, and 4 at a transporter-to-lipid ratio
of 1:1000.
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Supporting Information (SI)). It thus seems that increased
lipophilicity enhances the intrinsic rate of anion transport.20

The most active transporter 4 promotes chloride influx with t1/2
= 180 s at transporter:lipid = 1:2500 (see SI). This rate is ∼100
times lower than the highest reported,7e but compares well with
many published systems and is remarkable for a transporter
which relies solely on CH···anion interactions.
Ion transport in vesicles can only take place if electro-

neutrality is maintained, either by counter-transport of an ion of
similar charge (antiport) or co-transport of a counterion
(symport). As implied by Figure 2a, the esters 2−4 were
expected to act as antiporters, exchanging chloride for
intravesicular nitrate. To confirm this hypothesis, the lucignenin
assay on 4 was performed with nitrate replaced by hydrophilic
sulfate. As shown in Figure 3, the rate of fluorescence decay was

negligible after an initial small drop. The result implies that the
inward flow of charge cannot be balanced under these
conditions, and quickly stops due to the developing electrical
potential. In common with many other anion carriers, it thus
seems that 4 transports both chloride and nitrate, but neither
sulfate nor Na+.
We next tested for bicarbonate transport by repeating the

lucigenin assay with HCO3
− as the background anion, available

for counter-transport. In similar experiments with anionophores
employing conventional H-bonds, we have previously observed
two types of result. In some cases fluorescence decay profiles
are similar to those for Cl−/NO3

− exchange, implying that
HCO3

− is freely transported. One such example is the bis-urea
5 (see Figure 3).7c In other cases, results for bicarbonate
antiport have been intermediate between those for nitrate and
sulfate, suggesting that bicarbonate is transported but only
slowly.7b,d The result for biotin[6]uril 4 is shown in Figure 3
(blue solid line). The trace is almost indistiguishable from that

for sulfate counter-transport (green solid line), implying that
the membrane is impermeable to HCO3

−. As expected, it thus
seems that 4 shows very high selectivity for chloride vs
bicarbonate.
Finally, we performed experiments to confirm that transport

was occurring via the “mobile carrier” mechanism (Figure 2b),
and not by self-assembly into channels.21 The lucigenin assay
(Cl−/NO3

− exchange) was applied to 4 using vesicles prepared
with different levels of cholesterol. The increase of cholesterol
in a membrane decreases the fluidity, and thereby hampers the
movement of carriers. In contrast, channels should be
unaffected.22 As expected, the transport rate fell dramatically
when the proportion of cholesterol was raised to 40% (see SI).
Assays were also conducted in vesicles composed of
dipalmitoylphosphatidylcholine (DPPC), which exists as a gel
phase at room temperature and a liquid crystalline (fluid) phase
above 41 °C.23 Transport was only observed at 45 °C and not
at 25 °C, supporting the carrier mechanism. Further support
was obtained from the dependence of transport rates on
anionophore loading. The data suggested that aggregation was
counter-productive, the opposite of that expected for self-
assembling channels.
In conclusion, we have shown that receptors 2−4, employing

only CH···X− interactions, can serve as transmembrane anion
carriers with remarkable Cl−/HCO3

− selectivity. We propose
that this selectivity results from the “soft” nature of CH as a
hydrogen bond donor, which should favor the polarizable, more
hydrophobic anions (e.g., Cl−, NO3

−) over harder, more basic
anions (e.g., HCO3

−).13 The exploitation of CH···anion
interactions in anionophores has further advantages: donor
CH groups are not hydrophilic, nor inclined to provoke
aggregation. Thus, we believe this motif can make useful
contributions to anionophore design, especially where chloride
selectivity is a priority.
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Brooks, S. J.; Light, M. E.; Herniman, J.; Langley, G. J.; Soto-Cerrato,
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