
beams

2015

Ecole polytechnique de Bruxelles

Automated modeling and implementation of
power converters on a real-time FPGA-based emulator

Thèse présentée
par KEVIN DE CUYPER
en vue de l’obtention du grade

de docteur en science de l’ingénieur

et technologie

Promoteur : FREDERIC ROBERT
Co-Promoteur : PIERRE MATHYS

Abstract

Designing a new power electronic conversion system is a multi-step process that requires
the R&D team(s) to go through an extended prototyping phase whose goal is to validate
the design in its nominal state, as well as to test its behavior when it is subjected to
abnormal conditions. To properly and safely validate all devices that are external to the
power stage itself, such as the controllers and the protection systems, one of the best-
suited device is a real-time emulator of the converter circuit, a platform that obeys the
same mathematical laws and produces the same signals as the original device without
actually realizing the power conversion.
Unfortunately, these models are often based on analog solvers which are difficult to build,
must be redesigned for each modification and are subject to drift and aging. While mul-
tiple digital real-time emulators have appeared on the market in the last decades, they
typically require powerful and expensive computing platforms to perform their calcula-
tions or are not generic enough to emulate the more complex power circuits.
In this work, we present a new framework that allows the rapid prototyping of a wide
range of power converters by translating a power converter schematic drawn on a com-
puter to a real-time equivalent set of equations which is processed by an FPGA with an
emulation time-step of less than one microsecond. Contrary to the previously published
works, our tools enable the use of entry-level FPGAs even for the emulation circuits com-
posed of twenty switches or more.
This framework takes the form of a tool-chain that starts by extracting the necessary
information and a standard description from the initial circuit. However, due to the in-
tricate ways in which the switches and diodes can change their state, this raw information
is too complex to be processed and emulated directly. Our first major contribution to the
state of the art is a way to automatically analyze these changes in order to reduce the
complexity of the problem as much as possible while keeping all the necessary informa-
tion intact. In this thesis, we develop two tools that are able to find all possible changes
in the state of the switches that may appear in the immediate future, thereby reducing
the quantity of information required to emulate the circuit. Thanks to the global opti-
mization provided by our tools, simulating a typical AC-to-DC converter composed of 12
switches could require 80% less resources when compared to existing emulators.
To enable the emulation or large power converters, we have created a partitioning method
which divides the circuit in multiple sub-circuits which are analyzed and optimized sep-
arately. The performances of this partitioning are demonstrated by the emulation of a
three-phase three-level converter with a relative error of a less that 5% on the signals.
To handle our new framework, a dedicated digital platform has been developed. In order
to provide the best results even on small FPGAs, particular attention is given to the low
resources usage and the low latency of our design.
Through multiple examples, we show that this inexpensive real-time emulation platform
is able to accurately emulate many circuits in open- or closed-loop operation with a
sampling rate higher than 1 MHz.

Contents

1 Introduction 4
1.1 Context . 4
1.2 Why this work . 6
1.3 Structure of the work . 7
1.4 Problem analysis and Requirements . 8

2 Circuit modeling 9
2.1 Introduction . 9
2.2 Linear circuits . 9

2.2.1 Introduction . 9
2.2.2 The (Modified) Nodal Analysis 10
2.2.3 The state-space analysis . 14

2.3 Power Converter Modeling . 20
2.3.1 Introduction . 20
2.3.2 The binary switch . 21
2.3.3 The open/short circuit model . 22
2.3.4 The bi-valued resistor . 25
2.3.5 The controlled source switch . 25
2.3.6 Comparison and algorithm selection 27

2.4 Advanced device modeling . 30
2.4.1 Diode models . 30
2.4.2 MOS transistor models . 32
2.4.3 Bipolar transistors and IGBT models 34
2.4.4 Thyristor models . 34
2.4.5 Magnetically coupled circuits . 35
2.4.6 Electromechanical devices . 38

2.5 Transitional model of power converters using hybrid automata 41
2.5.1 Hybrid automata definition . 41
2.5.2 Circuit without discrete inputs 42
2.5.3 Circuit with discrete inputs . 44

2.6 Simulating the power converter . 46
2.6.1 Introduction . 46
2.6.2 Structure selection . 47
2.6.3 The natural switching module . 51
2.6.4 Forced switching module . 54
2.6.5 Where to go next . 59

1

2.7 Conclusions . 59

3 Automated circuit analysis and reduction 61
3.1 Introduction . 61

3.1.1 The need for automated tools . 61
3.1.2 Real-time/Offline separation . 62

3.2 Hybrid automaton derivation . 63
3.2.1 Graph separation . 63
3.2.2 Drawing the transition graphs . 64

3.3 Automated Natural switching exploration and optimization 66
3.3.1 The need for an automated analysis tool 66
3.3.2 The reachability problem . 68
3.3.3 A method for detecting unstable topologies 69
3.3.4 Unreachable topologies . 76
3.3.5 Graph exploration and simplification 77
3.3.6 Writing the results in tables . 88

3.4 Automated Forced switching exploration and optimization 90
3.4.1 Introduction . 90
3.4.2 Analysis . 92
3.4.3 Writing the results in tables . 100

3.5 Test Cases . 103
3.5.1 Introduction . 103
3.5.2 The ideal boost converter . 104
3.5.3 More detailed boost converter implementation 108
3.5.4 The two-stage AC/DC converter 114
3.5.5 Practical implementation of the two-stage AC/DC converter . . . 117
3.5.6 The diode clamped single phase, three-level inverter 119
3.5.7 The Three-phase NPC converter 121
3.5.8 Comparison with solvers based on nodal analysis 121

3.6 Known limitations . 126
3.6.1 Limitations on the size of the data set 126
3.6.2 Limitations on the size of the output 127

3.7 Possible improvements and future works 128
3.8 Conclusions . 129

4 Modeling larger circuits by circuit partitioning 130
4.1 Introduction . 130
4.2 Converters operating in discontinuous conduction mode 135

4.2.1 Using topology-dependent sources 142
4.3 Generalizing the results to any converter 150

4.3.1 Choosing the partitions . 153
4.3.2 Analyzing the partitioned circuit 156

4.4 Test cases . 157
4.4.1 Introduction . 157
4.4.2 Parallel boost converters . 158
4.4.3 Three-phase inverter . 160

2

4.4.4 Current source inverter . 165
4.4.5 Three-Phases Neutral Point Clamped Inverter 168
4.4.6 Other circuits . 175

4.5 Perspectives and conclusions . 176

5 Real-Time platform development 178
5.1 Introduction . 178

5.1.1 Goals and requirements . 178
5.1.2 Structure of the platform . 180
5.1.3 Selection of the processing unit 181
5.1.4 Challenges . 183

5.2 Emulation procedure . 184
5.2.1 Structure comparison . 184

5.3 Fundamental modules . 187
5.3.1 Data representation . 187
5.3.2 Dot products . 189
5.3.3 Multipliers optimization . 198
5.3.4 Selection tables . 199

5.4 High level modules . 203
5.4.1 Introduction . 203
5.4.2 Linear Solver and output solver 204
5.4.3 Natural Switching module . 205
5.4.4 Forced Switching Module . 208
5.4.5 Outputs interfacing . 212
5.4.6 Input Interfacing . 214
5.4.7 Source code generation . 215

5.5 Tests and validations . 215
5.5.1 Validation procedure . 215
5.5.2 Platform description . 216
5.5.3 Algorithm validation : the boost converter used in open loop . . . 217
5.5.4 Boost converter in closed loop . 223
5.5.5 Implementation of a two-stage, three-phase AC-DC-AC converter 227
5.5.6 Results analysis . 239
5.5.7 Conclusions . 240

5.6 Possible improvements . 241
5.6.1 Performance and accuracy improvement 241
5.6.2 Additional features . 243

5.7 Conclusions on the real-time platform . 246

6 Conclusions 248

A Schematics of the Digital-to-analog board 264

3

Chapter 1

Introduction

1.1 Context

Imagine the following situation: as an engineer, you are in charge of the design of the
power conversion system for a revolutionary electric car. After drawing your new circuit
and performing the initial computations, you start making simulations on your computer
to refine and optimize the structure and the components. After a few weeks, you have pro-
totypes of the power converter and of all of its auxiliary modules, such as the controllers
and protection subsystems, at your disposal. You are finally ready for the prototype run,
everything runs smoothly . . . until the system fails. At this stage, it is not obvious where
the fault comes from and the designers have to go back up to the simulation stage to
understand what happened and wait for new prototypes to be built, costing you weeks
in development. Because of the constant pressure on the development teams to deliver
the final product as early as possible, this could mean missing you deadline.
This unwanted and expensive error could have been partially avoided by reducing the
time to develop the prototypes, hence ensuring a much shorter development cycle. Be-
fore providing a more complete answer to this problem, let us first reintroduce the main
steps required to develop a power converter.
The traditional design flow is presented in Figure 1.1. Based upon the specifications,
the second step consists in designing and validating the converter and its auxiliaries
(controller, protections. . .) by paperwork and simulations, in normal and accidental
conditions. The next step is the building of prototypes for the converter itself and for
electronic controller. Most of the time those prototypes are built separately, by different
teams, or even sub-contractors.
One of the most delicate parts is the integration of the two prototypes. Mistakes could
have been made on both sides, and putting all things together, even carefully, can lead
to bad surprises like in the previous example. The best response to this problem is to
perform the most exhaustive tests possible on both prototypes before joining them. How-
ever, such tests require an accurate model of the devices connected to the unit under test
(UUT). When this UUT is the circuit controller or the protection systems, we have to
provide a real-time emulator of the converter circuit, i.e. a platform that obeys the same
mathematical laws and produces the same signals as the original device without actually
realizing the power conversion. By connecting the UUT to the emulator, we can easily
and quickly tune the controller loop or assess the performance of the protections without

4

1. Initial technical specifications

2. Electrical de-
sign and simulation

3a. Prototyping
of the converter

3b. Prototyping
of the controller

4. Final device

5. Production

Figure 1.1: The traditional steps required to design a power converter. The proto-
typing of the controller step is the main focus of this work

facing any risks that could be engendered by an error not detected during the simulation
stage or by a flaw in the UUT itself.
This thesis aims at helping the designer of the controller to produce a fully functional
prototype without having the real power converter at his disposal. More precisely, our
goal is to design a platform able to emulate in real-time a wide range of power converters
and to provide the tools needed to quickly and conveniently implement any circuit on
this platform, which significantly reduces the duration of the prototyping. With such a
platform, we can indeed easily change some of the parameters of the system and view
their impact on the emulated device without having to wait until all parts of the actual
device are ready to be used.
Proposing an equivalent platform to a given power conversion circuit is not a novel idea.
Indeed, analog circuit emulators based on operational amplifiers, multipliers and con-
trolled switches have been around for decades and are still used today for the emulation
of power electronics [1–3]. However, these circuits have the same downsides as the full-
size converters: for each new converter, or even for each redesign and correction of errors,
a new emulation platform must be rebuilt, sometimes from scratch. When the analog
components of the platform get older, their electrical properties change, introducing an
error between the simulator and the target power converter. These problems are avoided
by the use of a digital real-time platform instead.
Using a computer to simulate electrical circuits is also a decades-long concept. Seminal
works have been made in the sixties and seventies [4–7], introducing crucial methods for
translating electrical circuits into algebraic or differential equation systems that could
then be solved using any numerical method [8–10]. The application of digital simulation
to power converters appeared in the eighties as a natural extension, just as the world

5

was beginning the transition from linear converters to switched-mode power conversion
systems [11–14].
Today, many commercial solutions are available for the offline computer simulation of
power circuits such as the very popular SPICE [15] and the power-oriented PLECS [16]
and Saber.
In the topic of this thesis, the last two decades have seen the rise of commercial real-time
simulators dedicated to power electronics, with RTDS [17] and OPAL-RT eMegaSim [18]
acting as the front runners. Thanks to their powerful hardware, these platforms are able
to emulate a wide range of converters with time-steps as low as a few micro-seconds.
Recent FPGA implementations have authorized sub-microsecond time-steps (see, for ex-
ample, [19–22], other examples will be introduced further on).
Note: the works cited in this section are far from being a complete state of the art. A
myriad of circuit simulators are available, commercially or not, and are characterized by
their own forces and weaknesses. Instead of presenting all these works now, we have cho-
sen to introduce them at various points in this thesis depending on where they provide a
better illustration.

1.2 Why this work

Since digital prototyping solutions already exists, why have we chosen to explore this
path any further? We shall answer this with the following two points:

• Most systems use traditional computers based upon microprocessor platforms and
hence are limited to time-steps of a few microseconds or more. This restricts their
use to the simulation of circuits characterized by switching frequencies of 10kHz-
20kHz or lower

• They use the available hardware rather inefficiently. This is partially due to the
use of the nodal analysis for solving the circuit, which is known for not providing
equations close to the minimal representation circuit (this assertion will be studied
with many more details in chapter 2). Combined with a lack of global study and
optimization of the circuit, this leads to severe requirements for the processing
power. The higher number of computations also typically leads to a higher latency,
and hence forces us to use a larger time-step than needed, which in turn reduces
the accuracy of the solution.

While FPGA implementations allow to overcome the first point, the second one typically
remains a problem. Solutions have appeared very recently [23, 24] to get around this
second limitation by splitting the circuit into smaller parts. While this idea is certainly
interesting, it does not solve the core of the problem, which is that each part is suboptimal.
In this thesis, we provide a global solution to this problem by proposing a series of methods
to improve the performance of the real-time platform. Thanks to this, we will show that
we are able to emulate large power converters with sub-microsecond computing time-
steps, even on low-cost entry-level hardware platforms.
The purpose of the proposed algorithms is to reduce the representation of the system
thanks to a deep study of its dynamics before implementing it on the real-time platform.
Hence, a global optimization is provided.

6

1.3 Structure of the work

This thesis is articulated around four main chapters. The first chapter introduces the
problem of the simulation of power converters and provides the main requirements that
will have to be met by our solution.

In Chapter 2, we introduce the different methods at our disposal to put electrical
circuits into equations. The discussion will first be made for purely linear circuits before
adventuring into the models for power-converters. This chapter provides the following
points:

• introduction and comparison of the two main solving methods : the nodal analysis
and the state-space analysis

• study of the models for the power switches

• introduction of the hybrid automaton paradigm, used to model the dynamics of the
converter

Our first major contribution is presented in chapter 3. We introduce an automated
offline method to reduce the complexity of the hybrid automaton. This study is based on
the exploration of all possible transitions in the system, which can be due to the natural
evolution of the signals or to a change in the command of the transistors. Thanks to
our methods, we are able to only keep the transitions that are actually feasible by the
circuits.
The provided solution also guarantees constant computation latency for each time-step,
even when multiple diodes should be switched in sequence (which would typically lead
to a recursive algorithm or to a transient extending over multiple time-steps), and avoids
the use of compensation circuits in the model of the switches.
The performances, but also the limitations of the size of converters that can be handled
by this tool are illustrated by a series of examples.

A solution to these limitations is provided in chapter 4, which introduces a novel way
to partition larger converters using variable Thevenin/Norton sources. This partitioning
further reduce the complexity of the system at the cost of some degradation of the ac-
curacy of the simulation, and it will be shown to perform well in many different situations.

Finally, in chapter 5, the mathematical models provided by those methods are im-
plemented on a custom-made real-time platform. This custom-made platform makes
extensive use of the resources provided by the FPGA, since each part of the solver is
studied and optimized. In this chapter, we demonstrate the performance of the simulator
and of our extensive pre-processing by presenting the results of the real-time simulation
of a medium size AC to DC to three-phase AC converter with a time step of 650ns. We
show that, thanks to the implemented analysis methods, the emulation of this converter
only requires a fraction of the resources of an entry-level FPGA while the relative error
on the output signals, compared to a reference off-line simulator, is limited to about 1%.

7

−
E

+

iL1
L1

d1

d2 d4

d3

+
vC1

−
C1

d5

d6

d7

d8

s5

s6

s7

s8

iL2
L2

+
vC2

−
C2 R

Figure 1.2: A typical power converter composed of a rectifying stage followed by a
full bridge inverter

1.4 Problem analysis and Requirements

A typical power converter is represented in Figure 1.2. This circuit is composed of linear
components (RLC passive components, sources), transistors and diodes. Depending on
the application, these semiconductor devices can be controlled very quickly; in switched-
mode power supplies, switching frequencies above 100kHz are quite common. If we want
to accurately represent these signals, we must build a real-time emulator whose time-step
is much lower than 10µs. At the beginning of this thesis, the following objectives have
been set for the real-time platform:

• a time-step of 1µs or less must be met. This value allows for a wide variety of
power converters. This is also a requirement for the fastest control loops (such
as sliding-mode control) which operate substantially faster than their controlled
signals .

• the relative error, defined here as the ratio between the absolute error and the aver-
age value of the signal, must be kept under a few percents (typically 1%, maximum
5%). If we ever want to accurately represent the small variations in the signals and
implement fast hysteresis current loops, such a requirement is unavoidable. The
peak-to-peak variation of the signals must also present a similar error.

• there must be no limitation on the range of converters that can be represented by
our solution. This implies that we must be able to emulate any existing topology
by solving their equations in real-time. Of course larger converters might requires
more powerful platforms.

• in line with the previous points, scalability and portability must be kept in mind.
This means that the analysis and simulation portions of the work must be able to
handle any circuit, and that the real-time solver must be usable with any future
FPGAs without requiring major modifications.

8

Chapter 2

Circuit modeling

2.1 Introduction

Before developing a simulator of electronic power converters, we first have to answer the
question of how to obtain a mathematical representation of these circuits. Obviously, the
science of systematic circuit analysis is not a new subject, and our goal is not to develop
a new representation but to study the existing methods and select the one that is most
adapted to our usage.
Before studying power converters, we first take a look in section 2.2 at the two main
representations of linear circuits: the nodal analysis and the state-space analysis. Since
most power converters are, at their core, linear circuits used in combination with binary
switches (diodes, transistors, . . .), it makes sense to look first at the influence of the
method on the complexity of the equations and the simplicity of the method itself. Since
the equations will have to be ported on a digital computing platform, we will also take a
look at how these equations behave when they are handled by a discrete-time solver.
The discussion is taken further into the subject of power converters in section 2.3. We
compare the multiple ways of integrating the power switches into the equations, and also
look at how to control these switches when the conditions inside the circuit change. To
completely represent the dynamics resulting from mixing the linear components and the
binary switches, we introduce the hybrid automaton paradigm in section 2.5, and a first
simulation algorithm is presented in section 2.6.

2.2 Linear circuits

2.2.1 Introduction

Before simulating complete power converters, we first need to study how to simulate
linear circuits (without any semiconductor device).
Therefore, we will first describe and compare two of the most used representations : the
modified nodal analysis and the state-variable analysis. These two methods are used to
obtain a set of equations describing the behavior of the circuit in response to its inputs,
which is then simulated by a linear solver.

9

0©

I1

1© G1

G4

I2

3©

G2

2©

G3

Figure 2.1: A simple resistive circuit to illustrate the nodal analysis method. The
encircled numbers represent the circuit nodes. The 0 node corresponds to the
reference (i.e. to the ground node).

2.2.2 The (Modified) Nodal Analysis

The nodal analysis

The original nodal analysis was one of the first systematic methods to obtain a mathe-
matical model of an electric network [9]. The goal of this method is to write equations
of the form

Y (s)V (s) = J(s) (2.1)

where V and J are vectors containing respectively all node voltages and all current
sources, Y is the nodal admittance matrix of the circuit, and s is the Laplace operator.
If the circuit only contains resistors, the same equation can be used in the time domain.
These equations are obtained through the use of graph analysis and of Kirchhoff’s current
law. To better illustrate this concept, we will put the circuit of figure 2.1 into equations
of the form (2.1). First, we write the three nodal current equations :

Node 1 :(v1 − v2)G1 = I1

Node 2 :(v2 − v1)G1 + (v2 − v3)G2 + v2G3 + v2G4 = 0

Node 3 :(v3 − v2)G2 = I2

(2.2)

Or, in matrix form : G1 −G1 0
−G1 G1 +G2 +G3 +G4 −G3

0 −G3 G3

v1

v2

v3

 =

I1

0
I2

 (2.3)

Finally, the value of the node voltages is obtained by computing the inverse of the ad-
mittance matrix :

V (s) = Y −1(s)J(s) (2.4)

The nodal analysis is very efficient at modeling circuits with current sources. However,
with the basic form given by (2.1), it does not allow the use of voltage sources or any
other voltage controlled elements such as amplifiers, inductors or ideal transformers. A
solution to these problems lies in the modified nodal analysis.

10

The modified nodal analysis

The Modified Nodal Analysis (MNA) was first introduced during the seventies in [6] as
a solution to the shortcomings of the classical nodal analysis, and has since been widely
used by many offline simulators including the ever-popular SPICE [25]. It has also been
ported on many off-the-shelf real-time simulators [17, 26,27].
The increase in versatility comes from additional elements in the matrices defined in (2.1).
The MNA matrices are defined as[

Y B
C D

] [
V
I

]
= H

[
V
I

]
=

[
J
F

]
(2.5)

The additional I in the unknown vector

[
V
I

]
represents branch currents, whose constitu-

tive relations are defined by the C and D matrices. These branch currents are typically
inductor currents or currents circulating through voltage sources. The B matrix repre-
sents the effect of these added variables on the node voltages. The F vector contains all
additional excitations in the circuit. In the most basic form of the MNA, F contains the
voltage sources. The newly introduced branch equations may also be used to compute
any current as part of the unknown vector, which is not possible with the nodal analysis
paradigm [6].
The different matrices and vectors of (2.5) can be obtained by a powerful method called
stamping : the effect of each circuit element is obtained separately and their contributions
are summed together to obtain the final result. Each component (resistor, inductor, . . .)
has a different effect on the matrices. Some of them are presented in [6] and [28].

Discrete-time MNA simulation

The MNA equations in (2.5) may not be directly used for discrete-time transient analysis,
and we first need a discrete-time model of the circuit. To obtain this model, the circuit
must be time-sampled before the equations are obtained, which requires the conversion of
all reactive components to a discrete form. For a capacitor, the voltage after a sampling
period T may be obtained by:

ic(t) = C
dvc
dt
⇔ vc(kT) = vc((k − 1)T) +

1

C

∫ kT

(k−1)T

ic(t)dt (2.6)

The discrete-time version is obtained by approximating the integral term (or the differ-
ential term), and is dependent on the discrete solver method method. For the backward
Euler method:

ic(t) ≈ ic(kT)

ic(kT) =
C

T
[vc(kT)− vc((k − 1)T)] = Gcvc(kT)− Jc(kT)

(2.7)

The term JC(kT) corresponds to the history of the signal and is introduced as a current
source in parallel with a conductance Gc of value C

T
. The equivalent circuit is shown on

11

iC C

+vC−
(a)

iC

Jc

Gc

(b)

Figure 2.2: A capacitor and its discrete time approximation. The value of the
current source and of the conductance depend on the discretization method

figure 2.2b. The approximation for the trapezoidal method yields

GC =
2C

T

JC(kT) =
2C

T
vC((k − 1)T) + iC((k − 1)T)

(2.8)

Inductors are discretized using a similar method :

GL =
T

L
JL(kT) = iL((k − 1)T)

(2.9)

Once the circuit is converted back to a purely resistive network, we apply the standard
MNA procedure to write the equations in the form of (2.5). To simulate the circuit, we
now have to repeatedly call the following computation for each new solving step (note
that T will not be written anymore) :[

V (k)
I(k)

]
= H−1

[
J(k)
E(k)

]
(2.10)

where H−1 denotes the matrix inverse of HBefore computing a new step, the controlled
current sources must be updated according to the rules defined previously in (2.7) and
(2.9).

Example 1. As an example, let us consider the circuit of figure 2.3a. Using the backward
Euler method, we obtain the discretized circuit of figure 2.3b. The system matrix H may
be written using the stamping method, leading to

H


v1(k)
v2(k)
v3(k)
iE(k)
iL(k)

 =


G1 −G1 0 1 0
−G1 G1 +GC −GC 0 1

0 −GC GC +G2 0 −1
1 0 0 0 0
0 GL −GL 0 −1



v1(k)
v2(k)
v3(k)
iE(k)
iL(k)

 =


0

C
T
vC(k − 1)

−C
T
vC(k − 1)

E
−iL(k − 1)

 (2.11)

Finally, the evolution law is obtained by inverting the relation:
v1(k)
v2(k)
v3(k)
iE(k)
iL(k)

 = H−1


0

C
T
vC(k − 1)

−C
T
vC(k − 1)

E
−iL(k − 1)

 (2.12)

12

−
E

+ iE

1© G1 2©
LiL
C

+
vC−

3©

G2

(a)

−
E

+ iE(k)

1© G1 2©
iL(k) GL

iL(k − 1)

GC

+vC(k)−

GCvC(k − 1)

3©

G2

(b)

Figure 2.3: A simple circuit and its discrete-time equivalent using the backward
Euler approximation

To present H−1 in a reduced form, we can eliminate its first column since the multi-
plier (the first coefficient of the excitation vector) is equal to zero. Since we only need
v2(k), v3(k) and iL(k) to compute the value of the sources that will be used in the follow-
ing step, we keep the corresponding rows while the others are also eliminated from the
matrix. The final result is

H−1
R =

1

∆

G2 +GC +GL GC +GL G1(G2 +GC +GL) G2

GC +GL G2 +GC +GL G1(GC +GL) −G1

G2GL −G1GL G1G2GL −G1(G2 +GC)−G2GC


v2(k)
v3(k)
iL(k)

 = H−1
R


C
T
vC(k − 1)

−C
T
vC(k − 1)

E
−iL(k − 1)


(2.13)

where ∆ is the determinant of H. This equation, along with the definition of the current
sources, contains the recurrence law that must be applied at each new computation step.

Advantages and shortcomings of the MNA

While the Modified Nodal Analysis is very powerful and streamlined, it shows several
shortcomings. The most crucial of these is that the circuit representation is not minimal
[24]. Indeed, it seems unlikely that a matrix as large as the one described in (2.13) is
required to represent the small circuit of figure 2.3. Considering that this large amount
of operations must be applied to compute the new value of the signals at each new

13

simulation step, this complexity has a direct impact on the performance of any simulator.
The additional overhead needed to update the controlled current sources must also be
taken into account.
A minor problem lies in the discretization of the circuit. Since the reactive components
must be converted to their discrete counterpart before the analysis, we can not use this
method for variable-step simulations unless we compute H and its inverse each time. We
might be tempted to use more complex approximations such has the trapezoidal method
like we did in (2.8). This should be done cautiously because it adds even more terms in
the computed vector (iC is now explicitly computed) and in the expression of the current
source.

2.2.3 The state-space analysis

Introduction

The state-space analysis (SSA) was developed in the early 60’s to represent dynamic
systems in an universal and compact form [29], and is based on the analysis of differential
equations. The SSA is often used in control system design, and is the starting point of
the so-called Modern Control Theory.
Given a linear, time-invariant, proper system, we can write a set of differential-algebraic
equations called state-space equations describing its behavior:

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.14)

The different terms appearing in these equations are as follow:

• u(t) is a vector containing all independent excitations (sources)

• y(t) is a vector containing all outputs (observations) of the system

• x(t) is called the state vector, and contains the states of the system

• (A,B,C,D) are constant matrices linking the vectors

The notion of state is somewhat nebulous, though it way be defined as the minimal
amount of information that, along with the excitations, is needed to infer the behavior at
any point in the future [5]. A state is typically the representation of an energy storage:
for an electrical network, the state-vector generally contains all capacitor voltages and
all inductor currents. Note that while the output signals are represented in (2.14), they
are not needed to describe the behavior of the system : y(t) is normally used to model
sensors and other subsystems which allow to observe the system from an external point
of view. The first equation of (2.14) is also called the state equation, while the second is
the output equation.

14

SSA and electrical networks

While this method originates from the field of mechanics, it was later applied to electrical
engineering by Kuh and Rohrer in their seminal article called The state-variable approach
to network analysis [4].
Just like the matrices and vectors used for the MNA, the matrices in (2.14) are obtained
thanks to Kirchhoff’s equations and the constitutive relations describing the elements of
the circuit. Looking again at the network presented on figure 2.3a, we may write the
following equations for the reactive components :

C
dvC(t)

dt
= iC(t) =

E − vC(t)

R1 +R2

− iL(t)

L
diL(t)

dt
= vL(t) = vC(t)

(2.15)

The state-space equations are inferred by writing (2.15) in matrix form:

d

dt

[
iL(t)
vC(t)

]
=

[
0 1

L

− 1
C
− 1

(R1+R2)C

] [
iL(t)
vC(t)

]
+

[
0
1

(R1+R2)C

]
E (2.16)

This constitutes the minimal set of variables that may be used to infer all voltages and
currents at a given time. If the state variables are also the observed variables (which is
often the case), then the analysis is complete. If, for instance, we also want to observe
the voltage at node 3 then the output equation is written as

y(t) =

 iL(t)
vC(t)
v3(t)

 =

1 0
0 1
0 − R2

R1+R2

[iL(t)
vC(t)

]
+

 0
0
R2

R1+R2

E (2.17)

The form of C and D is thus highly dependent on the measured variables, while the A
and B matrices depend only on the circuit structure.
A few observations can be made from these equations. First, it is noticeable that the
circuit topology does not appear explicitly : only the capacitor voltage and the inductor
current are relevant to the analysis. Second, it is immediately evident that the state
equation (2.16) is more compact than the equation obtained with the MNA for the same
circuit in (2.13). Finally, another difference with the MNA is that the equations were
obtained without discretizing the reactive elements. We are free to select the discretiza-
tion method at any point in the future while the current model may still be used for
continuous-time analysis (or with numerical tools that accept a continuous representa-
tion of differential equations, such as Matlab).

The steps used to obtain (2.16) were intuitive, but they do not constitute a general
method for writing the state-space description. A generalized method based upon the
graph theory was published in [4], and requires a lot of computations and network ma-
trix manipulation. Alternative methods that use MNA as a starting point are presented
in [30, 31], while [16] presents an algorithm that starts by writing the circuit equation
using Kirchhoff’s laws before eliminating and reordering the variables. While the last
method is used with good performance in the offline simulator PLECS, the complexity of

15

iL

(a)

+
vC−

(b)

−
E

+
R

C1 C2

+
vC−

(c)

−
E2

+ L2iL2

−
E1

+ L1iL1

−
E3

+ L3iL3

(d)

Figure 2.4: Examples of circuits containing forced states

the Gauss-Jordan elimination used to reorder the variables prohibits its use in real-time.
As a direct consequence, we have to compute the state matrices before the real-time
simulation. Since existing tools allow the user to obtain the state matrices for a given
network, the development of such a tool falls outside of the scope of this thesis.

Forced states

The number of states is typically equal to the amount of reactive components in the
circuit, but it not always the case. A reduction of the number of states can occur when
any of these statements are true :

• a loop containing only capacitors (and voltages sources) is present

• a cut-set containing only inductors (and current sources) is present

When a state reduction is performed, the eliminated states are characterized as forced
states. Their value may be obtained by algebraic equations instead of differential equa-
tions.
The circuits of figure 2.4 all lead to state reduction:
For circuit (a) and (b), the state is respectively forced to zero because of the open-circuit
or of the short-circuit: [

iL
vC

]
=

[
0
0

]
d

dt

[
iL
vC

]
=

[
0
0

] (2.18)

The two capacitors of circuit (c) act as a single larger one, and the dynamics of their
voltage vC is described by

dvC
dt

= − 1

R(C1 + C2)
vC + E (2.19)

16

Unless the individual currents of the capacitors must be known, this equation is sufficient
to describe the circuit. For circuit (d), any of the three currents can be eliminated and
written as a linear combination of the others. Assuming iL3 is eliminated, we write it
as a combination of the two other currents. This combination occurs either in the state
equations

d

dt

iL1

iL2

iL3

 =
1

k

L2 + L3 −L3 −L2

−L3 L1 + L3 −L1

−L2 −L1 L1 + L2

E1

E2

E3


k = L1L2 + L1L3 + L2L3

(2.20)

or in the output equation

d

dt

[
iL1

iL2

]
=

1

k

[
L2 + L3 −L3 −L2

−L3 L1 + L3 −L1

]E1

E2

E3


k = L1L2 + L1L3 + L2L3

iL3 = −iL1 − iL2

(2.21)

Any of the two methods may be used to compute iL3, but the second one is preferred to
avoid any drift due to the integration of the rounding error.
A more general formulation is obtained by attempting to write the state vector as an
output:

x(t) = Cxx(t) +Dxu(t) (2.22)

In normal operation, the unique solution to this equation is to set Cx as the identity
matrix and to fill Dx with zeroes. But, if some of the states are forced, they may also be
computed using the unforced signals. By splitting the state vector x(t) in its unforced
part xu(t) and its forced part xf (t), we write

x(t) =

[
xu(t)
xf (t)

]
=

[
I 0

Cxf (t) 0

] [
xu(t)
xf (t)

]
+

[
0

Dxf (t)

]
u(t) (2.23)

Where Cxf and Dxf are the submatrices of Cx and Dx related to the forced states. Note
that, using this formulation, a forced state does not depend on other forced states.

Discrete-time SSA

In contrast with the nodal analysis, the state-space method generates a set of equation
that may be used for the continuous-time simulation of circuit transients. Furthermore,
the form of the equations is a very generic linear differential and algebraic system. Solving
differential equations numerically is a well-known problem, and many authors have pre-
sented multiple methods that range from the very simple Euler integration to the Runge-
Kutta used in modern computing toolboxes [32–34]. The purpose of the discretization
methods is to provide a numerical model of the form of a recurrence equation

xd(k) = Adxd(k − 1) +Bdud(k) (2.24)

The Ad and Bd matrices depend on the discretization algorithm, xd(k) is the estimated
value of x(kT) obtained by the chosen method and ud(k) = u(kT). Among the properties
found in the many existing numerical solvers for ordinary differential equations (ODEs),
these are the more crucial:

17

• Precision : the solver must converge to a value very close to the one found in the
real system. Higher order solvers are typically more precise. A solver of convergence
order n has an error proportional to T n, where T is the sampling period.

• Computing Effort : since all computations must be made in real-time, we cannot
afford too many calculations if we aim at a low sampling period. This is in di-
rect contradiction with the first point since higher order solvers are typically more
complex.

• Stability : the method must not be unstable or present unwanted oscillations if the
base system is stable

A few methods that may be used in real-time are described in the remainder of this
section. Before going further, let us note that exact value of x(kT) can be obtained by
inverting (2.14)

x(kT) = x((k − 1)T) +

∫ kT

(k−1)T

(Ax(t) +Bu(t))dt (2.25)

The presented methods aim to find the best estimate of the integral in (2.25). To simplify
all further developments, we shall assume that ud(k) ≈ ud(k − 1). This approximation
is fair because the sampling period is often much smaller than the time constants shown
by the input signals (which are typically DC or low frequency AC signals). The simplest
method is the backward Euler approximation (BEA), defined as

x(t) ≈ x(kT) for t in [(k − 1)T, kT]

xd(k) = xd(k − 1) + T (Axd(k) +Bu(k))

xd(k) = (I − TA)−1(xd(k − 1) + TBu(k))

(2.26)

where I is the identity matrix. The discrete-time state matrices are obtained by identi-
fication:

Ad,BE = (I − TA)−1;Bd,BE = (I − TA)−1TB (2.27)

The BEA is very stable : if (and only if) the continuous time system in (2.14) is stable,
then the sampled-time system is guaranteed to be stable. This property is known as
A-Stability. The method has a convergence order of 1.
Another very popular method is the trapezoidal rule for integration, which estimates the
integral in (2.25) with the approximation

x(t) ≈ x(kT) + x((k − 1)T)

2
for t in [(k − 1)T, kT] (2.28)

Which allows us to write the recurrence

xd(k) = xd(k − 1) +
T

2
(A(xd(k) + xd(k − 1)) +B(ud(k) + ud(k − 1)

xd(k) = (I − T

2
A)−1((I +

T

2
A)xd(k − 1) +

T

2
Bud(k))

Ad,trap = (I − T

2
A)−1(I +

T

2
A)

Bd,trap = (I − T

2
A)−1T

2
B

(2.29)

18

Like the BEA, the trapezoidal integration is A-Stable. However, the output may show
oscillations that are not present in the continuous-time output [32], which is not the case
for the BEA (the trapezoidal approximation is qualified as not L-Stable). The method
has a convergence order of 2, which make it more accurate than the backward Euler.
Moreover, a limit called the second Dahlquist barrier proves that no A-Stable method is
more precise than the trapezoidal integration [33]. This property is the main reason of
its widespread use. For example, SPICE uses the trapezoidal method as the default for
its computations.
Finally, we also present the two-pass midpoint method, also called improved Euler ap-
proximation (IEA):

x∗(k) = xd(k − 1) + T (Axd(k − 1) +Bud(k))

xd(k) = xd(k − 1) + TA
xd(k − 1) + x∗(k)

2
+ TBu(k)

(2.30)

The IEA is part of a larger class of solvers called predictor-corrector. A first rough value
of xd(k) is computed first (using the simple forward Euler method), then corrected using
a variant of the trapezoidal method. In contrast with the previous methods, the improved
Euler is not A-Stable. Furthermore, it must be computed in two passes instead of one.
Despite these problems, it also presents two interesting characteristics. First, it is easily
adapted to variable-step discretization: the only modification is to multiply A and B by
the variable T before realizing the matrix products, whereas the other methods require
an on-line matrix inversion. By not inverting any matrix, we also preserve the structure
of the continuous-time system : if the A matrix was mostly empty (ie. the circuit has a
ladder structure), the number of elements in the matrix products is significantly reduced.

Any of these three algorithms is suitable for real-time simulation. In the remainder of
this work, we will use the trapezoidal integration unless specified otherwise in the text.

Advantages and shortcomings of the SSA

The main advantage of the SSA over the MNA lies in the size of the discrete matrices
in (2.24) compared to those in (2.10). This is due to the independence of the equations
from the topology of the circuit, whereas the MNA requires the calculation of all node
voltages. As explained previously, the state vector is the minimal amount of information
required to know the exact behavior of the circuit, and it makes sense that this leads to
a lower number of computations. The differential-algebraic form of the equations allows
us to use the results from the numerical analysis of differential equations, and we may
freely choose a method which is either more precise (trapezoidal), more robust (backward
Euler) or allowing to easily implement a variable step with minimal overhead (improved
Euler).
This being said, the MNA is easier to use when dealing with non-linear circuits : in
many cases, the non-linearity may be represented as a controlled source, just like we did
with the reactive components (the source is then controlled by the non-linear law). The
simulation algorithm then becomes

• perform a single-step simulation the circuit using a linear method

19

iD D

+vD−
(a)

G
S

D

(b)

Figure 2.5: Definition if the signals used to describe the diode and the MOS tran-
sistor

• modify the source

• loop until convergence

The SSA does not implement controlled sources in the representations, which means that
the whole matrices must be modified. This could lead to serious overhead even if the
matrices are small.
At this point, the SSA seems a better fit for our problem, assuming we find a effective
algorithm to modify the matrices on-the-fly. The next section, dealing with the modeling
of power converters, will confirm this choice.

2.3 Power Converter Modeling

2.3.1 Introduction

One of the defining characteristics of power converters is their extensive use of semicon-
ductor devices as electronic switches in order to control the power flow inside the circuit.
These devices are generally described by a non-linear equation, which makes them im-
practical to use as-is in simulators. For example, the current-voltage characteristic of
typical semiconductor diode is described by the Schockley equation

iD = Is(e
vD/vT − 1) (2.31)

where iD and vD are the diode current and voltage defined in figure 2.5a, vT is the
thermal voltage (a parameter that depends on the temperature) and Is is the diode
specific saturation current. Similarly, a MOSFET transistor as shown in figure 2.5b is
described by simplified equations that also include the gate voltage [35]:

iD =


0 if vGS ≤ vth

K((vGS − vth)vDS − v2DS

2
) if vGS > vth, vDS ≤ (vGS − vth)

K
2

(vGS − vth)2 if vGS > vth, vDS > (vGS − vth)
(2.32)

where K and vth are intrinsic properties of the transistor, vGS is the applied gate control
voltage and vDS is the drain-to-source voltage. In power electronics, only the first two
regions are exploited (the third one, called active region, is mainly used in analog am-
plification) and the behavior may be expressed as a function of a binary control signal
u:

iD =

{
0 if u = 0

K((vGS − vth)vDS − v2DS

2
) if u = 1

(2.33)

20

Linear Solver

Switching Engine

Output signals

Control signals

Source signals

Non-Linear Solver

Figure 2.6: Generic piecewise-linear solver, composed of a linear solver and a non-
linear feedback that modifies the equations

As explained in 2.2.3, the solving procedure is much more difficult if the circuit exhibits
non-linear behavior (specially for the state-space analysis). While non real-time solvers
such as Spice use iterative methods to find the precise value of the signals [25], we won’t
have the processing power required for such methods. To model the behavior of the
switches in real-time, some simplifications have to be made. A popular method is the
so-called piecewise-linear approximation, which follows these steps :

1. decompose the switch behavior into a set of linear models with their own validity
domain

2. find the rules that control the transitions between these models

3. rewrite the circuit equations for each model

This process is described in the next sections, beginning with the different ways to
model a generic binary switch before studying more complex power semiconductors. On
the real-time platform, the procedure is implemented as shown in figure 2.6. At the core
of the system, a linear solver computes the evolution of the signals by using the equations
defined by the MNA or by the SSA. The non-linear part of the device is controlled by
a second subsystem, called the switching engine, that modifies the linear description (by
means of a change in the current sources of the MNA, or in the matrices of the SSA)
according to the value of a subset of the output vector and/or additional control signals.
The interaction of these two subsystems constitutes the non-linear solver.
Finding the right model for a simple binary switch is one of the most crucial steps in the
design of our simulator. A badly chosen model may lead to added complexity, unwanted
oscillations in the signals or hamper the convergence.

2.3.2 The binary switch

A binary switch is a dipole whose current-voltage law is modified according to a binary
control signal. When a switch is in the on-state (also called conducting state), it offers
little to no resistance to the current (the equivalent impedance is close to zero). Con-
versely, a switch in the off-state (or blocking state) presents a high equivalent impedance.

21

We will also use the term configuration (instead of state) of a switch whenever there is
is a risk of confusion with the state variables. The exact representation of the switch has
a deep impact on the general equation system of the circuit.

Types of binary switches

Among other characteristics, switches may be described by the way they are controlled.
A switch is said to be active or user-controlled if its state is exclusively a function of an
external stimulus. The best known example of an active switch is the transistor used as
a switching device, whose state is given by the voltage or current applied to the input
terminal (gate terminal for the MOS and the IGBT, base terminal for the BJT). An ideal
(lossless) active switch is described by

vD = 0 if u = 1

iD = 0 if u = 0
(2.34)

where u is the binary control signal which is typically generated by the control system
outside the circuit. With this model, a switch in the on-state is modeled as a short-
circuit, while a switch on the off-state is represented by an open circuit At the opposite
side of the spectrum, a passive or circuit-controlled switch is only controlled by currents
and voltages inside the power converter and may not be directly set to either of its states
by the user. The diode is by far the best-known example of a passive switch. Idealized
piecewise-linear characteristics are derived from (2.31), and correspond to two different
model levels. The first model is called the ideal diode, and is described by the following
equations:

vD = 0 if iD > 0

iD = 0 if vD ≤ 0
(2.35)

The half-line defined by the first equation-inequation pair corresponds to the diode in
the on-state, and the second one to the off-state. The diode will remain in its current
state until the circuit signals evolve to a point where the corresponding inequality is not
verified anymore. At this point, the state of the diode changes and the circuit continues
to evolve.
More complex semi-conductors may be modeled using these two ideal devices and addi-
tional elements, as will be shown in section 2.4.
We will now compare multiple methods that allow the use of ideal switches with a zero
equivalent resistance in the on-state and an infinite resistance in the off-state, and select
the most promising for our platform.

2.3.3 The open/short circuit model

This model is the simplest one, but also one of the most difficult to implement properly.
Using this paradigm, the switch is modeled as a short circuit when in the on-state,
and as an open circuit in the off-state. Once the state of all the switches, also called
the configuration of the switches is known, the power circuit is reduced to an equivalent
linear circuit called topology. A topology’s equations may be written using the algorithms
discussed in section 2.2.

22

−
E

+

iL L

+
vC− C Ru

(a)

(b) (c) (d) (e)

Figure 2.7: Boost Converter and its four equivalent topologies

As an example, let us look at the boost converter of figure 2.7a: this circuit contains
two switches - one diode and one controlled switch (ie. a transistor) - and possesses four
topologies as shown on figures 2.7b to 2.7e. Each of these topologies may be described
by its state-space equations as follows : iL(t) = 0

d

dt
vC(t) = − 1

RC
vC(t)

when both switches are off (2.36)


d

dt
iL(t) =

1

L
(E − vC(t))

d

dt
vC(t) =

1

C
iL(t)− 1

RC
vC(t)

when the transistor is off and the diode is on (2.37)


d

dt
iL(t) =

1

L
E

d

dt
vC(t) = − 1

RC
vC(t)

when the transistor is on and the diode is off (2.38)


d

dt
iL(t) =

1

L
E

vC(t) = 0
when both switches are on (2.39)

only one of these description is used at a given time, depending on the current config-
uration of the two switches. An inspection of these formulas reveals that some on the
topologies lead to dead states as explained in section 2.2.3.
A circuit containing n switches possesses a base number of 2n independent topologies
described by their own equations. Without any further simplification, this high number
could quickly lead to complicated algorithms not only to find the correct topology, but
also to store and change the equation sets without causing too much overhead. A basic
example of simplification comes from noting that the fourth topology of Figure 2.7 never
occurs in practice. Indeed, solving this circuit leads to a zero current across the conduct-
ing diode, which is incompatible with its constitutive law (2.35). Removing the topology
from the list of available combinations further reduces the complexity of the selection
algorithms.

23

−
E

+

iL L

+
vC− C Ru

(a)

−
E

+

iL L

+
vC− C Ru

(b)

−
E

+

iL L

+
vC− C Ru

(c)

Figure 2.8: Illustration of the state continuity problem. When the transistor
switches from the on-state (a) to the off-state (b), the diode must be switched
on (c) to allow iL to flow

Topology changes and state continuity

The open/short circuit model leads to a set of very simple circuits, but has one crucial
problem: there is no easy method to track how and when the circuit switches from one
topology to another. To be more precise, we have to write how the diodes will react to
changes in

• the value of the states

• the control signals of the active switches

The first of these items is relatively intuitive : if the internal signals evolve in such a way
that the inequalities defined in (2.35) are not respected anymore, then we have to change
the state of the diode(s) accordingly. If, for instance, the current in the diode of the
circuit 2.7a becomes negative, the diode is switched to the blocking state. The equations
of the diodes’ current and voltage, and hence the form of the inequalities to evaluate, is
governed by the current topology.
The second item is a result of a property called state continuity that may be written as
the following rule: the value of a state may never change instantaneously, even when the
topology of the circuit is modified. This statement is a direct consequence of (2.14): if a
state was allowed to change its value suddenly, it would generate Dirac pulses across the
circuit, leading to the probable destruction of all components in its path. This property is
the reason why freewheeling diodes are placed in circuits, as shown on the boost converter
of figure 2.8. When the transistor is opened, the diode is forced to switch to the on-state
to allow the inductor current to flow freely.
To find out how the diode reacts to changes, some algorithms actually simulate the
effects of the Dirac pulses and interprets the results [36–38]. A variant of this method is
implemented in the PLECS simulator [16].

24

Ron

Roff

Figure 2.9: A diode modeled as a bi-valued resistor thanks to an ideal diode and
two resistors

Interaction with the linear solver

The non-linear part of the solver controls which topology is currently in use, following the
rules defined in 2.3.3. Once the topology is chosen, the coefficients are passed to the linear
solver for the next solving step. While this technique can be used by both the Modified
Nodal Analysis and the State-Space Analysis, it is much more efficient when coupled
with the latter one. The first advantage comes from the memory requirements: as we
have shown in section 2.2.3, the simulation matrices obtained by the SSA contain fewer
non-zero elements. This compactness allows us to design matrix selection algorithms that
are both lighter and faster.
The second advantage comes from state continuity. Since not all states appear explicitly
in MNA (2.10), we first have to compute them in addition to the node voltages and
branch currents. While this additional overhead is not prohibitive, it leads to additional
computations, and hence a reduced global performance.

2.3.4 The bi-valued resistor

With this model, the switch is modeled by a resistor whose value is a function of its state:
the switch presents a resistance Ron when in the on-state, and a resistance Roff when in
the off-state. These two resistances model the switch imperfections, with Ron � Roff .
The main advantage of this method is that the structure of the matrices stays the same
for all topologies: the only effect is that some of the coefficients are modified by the
value of the resistances. This guarantees state continuity, as we always provide a path for
the currents, which simplifies the switching engine. However, we now have to deal with
matrix coefficients with widely different values. Depending on the number representation
in the processing platform, and especially when using fixed-point representation, we could
observe matrices that are badly conditioned due to rounding. This method has also been
shown to generate parasitic oscillations that may be partially compensated by adding a
capacitor in parallel to the switch, such capacitors exist physically, but normally they
should only be used for simulators aimed at accurate commutation waveforms, which is
not our case [22].

Since this representation is actually a subcase of the on/off model (see figure 2.9), we
will not use it explicitly in this work.

2.3.5 The controlled source switch

The popular controlled source model for ideal switch was first introduced to avoid chang-
ing the state matrices when the configuration of the switches is changed [12], and has

25

is + vs −
(a)

is Gs

+ vs −

Js

(b)

Figure 2.10: An ideal switch and its controlled current source model

−
E

+ iE(k)

1© iL(k)

GL

iL(k − 1)

2©
is1(k)

Gs Js1(k)

is2(k)

Gs

Js2(k − 1)

3©

GC GCvC(k − 1)
R

Figure 2.11: The boost converter of figure 2.7a, with switches modeled by controlled
current sources and reactive components replaced by their discrete-time equivalents

since then been reimplemented in many MNA-based real-time power converter simula-
tors [20, 39–43]. The procedure starts by replacing all switches by a variable gain con-
trolled current source Js in parallel with a constant conductance Gs, as shown on figure
2.10b. To obtain the ideal switch law (2.34) or (2.35), the value of the current source is
defined as

Js(t) =

{
−is(t) if the switch is in the on-mode

Gsvs(t) if the switch is in the off-mode
(2.40)

To translate this source to its discrete counterpart Js(k), we again have to choose the
discretization method. If we assume that the signals evolve slowly compared to the
sampling period, we write

is(k + 1) ≈ is(k), vs(k + 1) ≈ vs(k) (2.41)

Js(k + 1) =

{
−is(k) if the switch is in the on-mode

Gsvs(k) if the switch is in the off-mode
(2.42)

More complex forms obtained by identifying the switch as an L−C component are given
in [12]. This comparison provides an interesting point: with this model, the switch is
represented as a small inductance when in the on-mode, and as a capacitor when in
the off-state. This in turn implies that these parasitic elements may provoke additional
oscillations in the signals that may degrade the performance if not properly damped by
carefully choosing the value of Gs.
To give a better comparison with the open/short circuit model, we will again study the
boost converter of figure 2.7a. We first translate the switches using (2.42) and the reactive
components using the backward Euler approximation to obtain the circuit shown in figure

26

2.11. The modified nodal analysis of this circuit yields

0 0 0 −1 1 0 0
0 0 0 0 −1 1 1
0 0 1

R
+GC 0 0 0 −1

1 0 0 0 0 0 0
GL −GL 0 0 −1 0 0

0 Gs 0 0 0 −1 0
0 Gs −Gs 0 0 0 −1





v1(k)
v2(k)
v3(k)
iE(k)
iL(k)
is1(k)
is2(k)


=



0
0

GCv3(k − 1)
E

−iL(k − 1)
Js1(k − 1)
Js2(k − 1)


(2.43)

The complete evolution law is written by inverting the system matrix H. By removing
the elements corresponding to v1 and iE (which are not needed to solve the circuit) and
those multiplied by the zero elements of the source vector, we obtain

v2(k)
v3(k)
iL(k)
is1(k)
is2(k)

 = H−1
R


GCv3(k − 1)

E
−iL(k − 1)
Js1(k − 1)
Js2(k − 1)


Js1(k) =

{
−is1(k − 1) if the transistor is in the on-mode

Gsv2(k − 1) if the transistor is in the off-mode

Js2(k) =

{
−is2(k − 1) if the diode is in the on-mode

Gs(v2(k − 1)− v3(k − 1)) if the diode is in the off-mode

(2.44)

where H−1
R is the 5 × 5 reduced inverse matrix. A study of this matrix shows that all

elements are non-zero. Absent from (2.44) is the law controlling the state of the diode,
which may be written as

new state is =



{
on if is2 > 0

off if is2 ≤ 0
if previously on{

on if (v2 − v3) > 0

off if (v2 − v3) ≤ 0
if previously off

(2.45)

Interaction with the linear solver

Before computing a new linear step, the solver first evaluates the new configuration of
the switches using (2.45) and computes the new value of the controlled sources. The new
values are then passed to the linear solver for the new step.
Since the SSA does not implement controlled sources, the additional elements in the
circuits are equivalent to new state variables requiring additional computations, limiting
the use of this method to MNA only.

2.3.6 Comparison and algorithm selection

At this point, it becomes crucial to choose which of the two methods will be used in
the real-time platform. Both methods have been used in many emulators with varying

27

degrees of success, and both have a number of shortcomings that may sometimes be
avoided. The transfer matrix H used in the controlled-source model does not depend on
the switch configuration, and only the sources need to be modified to take into account
the state of the switches. This is a big advantage over the open/short circuit since fewer
variables have to be adjusted, leading to a reduced memory usage as well as a smaller
number of operations. The laws controlling the switches are also static and do not have
to be modified when the topology changes, and all the variables needed to find the con-
figuration of the switches are computed as part of the MNA process.
The biggest disadvantage of this method is the very high amount of computing resources
required by the solver: more than 25 multiplications and 20 additions are needed to
compute (2.44), while the open/short circuit method solves the same step with five mul-
tiplications and three additions.
For larger converters, the exact number of computations is a function of the number of
elements in the circuit and of the circuit itself. In general, a MNA solver requires

• one equation and one source for each inductor current

• two equations and one source for each capacitor differential voltage

• three equations (one current and a differential voltage) and one source for each
switch

Assuming a circuit composed of c capacitors, l inductors, t active switches, d diodes and
e independent sources, we have an unknown vector of n1 = (l + 2c + 3(t + d)) elements,
a source vector of n2 = (e+ l+ c+ t+ d) elements and a transition matrix of n = n1 ∗ n2

coefficients. This is obviously a worst-case computation, since voltage nodes may be
shared by multiple circuit components (as was the case of node 3 shared by the diode
and the capacitor in the boost), but it gives a good first idea of the complexity.
For the state-space analysis, the state matrices A and B contain respectively (l+c)∗(l+c)
and (l+c)∗e elements. This number is generally much lower than what we obtained with
the MNA but does not include the additional equations required to control the diodes.
The signal yd (current OR voltage, depending on the active topology) controlling each
diode may be seen as measure and added to the output vector y(k) of (2.14) :yd1(k)

...
ydn(k)

 = Cdx(k) +Ddu(k) (2.46)

Assuming one equation per diode as a base number, this adds d∗(l+c+e) multiplications
for a total of m = (l + c + d) ∗ (l + c + e). Again, this is a upper bound that is seldom
found in practice because the linear series-parallel structure of the power circuits tends
to decouple the state variables, leading to matrices that are mostly empty.

Example : AC/DC Converter

To put the previous developments into perspective, let us take a look at the two-stage
AC/DC converter represented in figure 2.12. This circuit contains two inductors, two
capacitors and twelve switches (reduced to eight by fusing each of the diode-transistor

28

−
E
+
iL1

d1

d2 d4

d3

+
vC1−

d5s5

d6s6 d8

d7iL2
+

vC2−
s8

s7

Figure 2.12: Two stage AC/DC converter, illustrating state-decoupling

pairs into a single switch). The modified nodal analysis requires the computation of 6
voltage nodes and 10 branch currents using a full 16-by-13 system matrix:

v1(k)
...

v6(k)
iL1(k)
iL2(k)
is1(k)

...
is8(k)


= H−1

R



E(k)
−iL1(k − 1)
−iL2(k − 1)

GC1vC1(k − 1)
GC2vC2(k − 1)

Js1(k)
...

Js8(k)


(2.47)

Each of the solver steps requires 13∗16 = 208 multiplications and 12∗16 = 192 additions
to perform the dot products, and around 10 multiplications to compute the new value of
the sources.

On the other hand, the state equations may be written as

d

dt


iL1(t)
vC1(t)
iL2(t)
vC2(t)

 =


0 −k1/L1 0 0

k1/C1 0 −k2/C1 0
0 k2/L2 0 −k3/C2

0 0 1/C2 −1/R2C2



iL1(t)
vC1(t)
iL2(t)
vC2(t)

+


k4/L1

0
0
0

E(t) (2.48)

where k1, k2 ∈ [−1, 0, 1] and k3, k4 ∈ [0, 1] are coefficients that depend on the active
topology. The front inductor L1 effectively separates the input voltage from the decou-
pling capacitor C1 while L1 is independent from L2 thanks to C1, lowering the number of
non-zero elements to less than half of the maximum. This zero/non-zero structure is kept
when using the Improved Euler approximation, but not when using implicit solvers that
force a matrix inversion, which tends to fill all the coefficients of A and B with non-zero
values.
Even then, the maximum number of computations is limited to 4 ∗ (4 + 1) = 20 multipli-
cations and 16 additions for the state equation. To compute the diode controlling signals,
a theoritical maximum of 6 ∗ (4 + 1) = 30 multiplications are needed. Again, thanks to
the decoupling provided by the reactive components, the majority of these coefficients
will be equal to zero.
The results, rewritten on Table 2.1, show that using the state-space analysis instead of
the MNA leads to a significant reduction of mathematical operations.

29

Table 2.1: Comparison of the approximate amount of resources needed by the MNA
and the SSA

MNA SSA
Multiplications 220 50

Additions 200 40

Selection

While modern digital platforms integrate powerful hardware units able to perform high-
speed multiplications, low-cost FPGAs are still limited in their computational power
while integrating a lot of high-speed general purpose logic [44]. This is the reason why we
chose to use a state-space solver in our platform. However, this also forces us to develop
highly optimized algorithms to quickly switch between the many topologies. To the best
of our knowledge, no complete study of this subject has already been done.
Before developing any algorithm, we will first introduce a transitional model on the
converter that includes both continuous changes and topology transitions: the hybrid
automaton. This representation, described in section 2.5, will be used as a basis for the
automated analysis and optimization algorithms presented in chapter 3.

2.4 Advanced device modeling

Many electronic switches are used in electronic circuits, from the simple diode to the
IGBT and the thyristor. These devices may be modeled on the basis of the ideal on/off
switch, by adding conductive losses or voltage thresholds. These imperfections may, in
some cases, make the simulation more relevant to the test case. For example, adding
imperfections to a transistor allow to simulate a cross conduction in a leg of an inverter.

2.4.1 Diode models

Piecewise approximation of a practical diode

The diode model introduced up to now is actually a lossless diode without any threshold
or resistive behavior. These two parameters can easily be taken into account by adding
components to the circuit (figure 2.14a). In this model the characteristic of the diode
is linearized, transforming the exponential expression iD = Is(e

vD/vT − 1) into a straight
line taken between the threshold point and the nominal point, as shown in Figure 2.13.
By definition, the slope of this line is equal to 1

Ron
, where Ron in the on-state resistance

An even more complex model is obtained by adding the off-state resistance Roff in
parallel with the diode, and the reverse breakdown can be modeled by adding a second
diode in anti-parallel, along with a source representing the breakdown voltage (Figure
2.14b). Since the typical value of Roff lies between an hundred kilo-ohms and hundreds
of mega-ohm (and both extremes can be measured on a single diode, depending on the
temperature [45]), its effect is negligible and the resistance is not added to the circuit.

30

0 0.2 0.4 0.6 0.8 1

0

20

40

60

vth

nominal

1
Ron

voltage vD

cu
rr

en
t
i D

Figure 2.13: piecewise linear approximation of a diode, with threshold voltage and
on-state resistance

A iD Ron +
vth−K

vD

(a)

A iD

Roff

Ron +
vth−

K

−
vbr
+

(b)

Figure 2.14: Diode models with imperfections (a) with on-state resistance Ron and
threshold voltage vth (b) with breakdown state added

Reverse recovery

If the diode is placed in a switching circuit, a phenomenon known as reverse recovery
may occur. When the diode is switched to the off-mode, a reverse current appears for a
short time while the excess carrier charges are swept out of the device [46, 47], as shown

in Figure 2.15a. The amplitude Irr and the duration trr of this effect depends on the
di

dt
forced across the diode and on the quantity of charge Qrr, which itself depends on the
diode structure and on the current before the turn-off. So-called fast recovery diodes have
a recovery time of a few tens of nanoseconds [48], while slower diodes may exhibit this
behavior for a few microseconds. The underlying dynamics are not trivial, and multiple
authors have demonstrated modeling methods for this effect [49–51]. One of the simplest,

taken from [51], uses an inductor (to model the
di

dt
dependence) and a controlled current

source (Figure 2.15b). This effect, while impressive, is generally not taken into account
when performing system-level simulation since we expect the designer to choose diodes
with a recovery time much smaller than the characteristic times (time constants and
switching periods) of the circuit. Moreover, the reverse recovery can only be modeled

31

(a)

A
R

L
+ vL −

K

KvL

(b)

Figure 2.15: Diode reverse recovery (a) evolution of iD (taken from [46]) (b) Ex-
ample of equivalent circuit, where R,L,K are parameters that depend on the diode
and on the slope of the current

when the fundamental time-step of the solver is short compared to the recovery time,
which means the solver itself must very fast when modeling fast recovery diodes.

2.4.2 MOS transistor models

Basic first quadrant model

Since its creation in the 1970’s, the MOS transistor (Figure 2.16a) has become the device
of choice for switched-mode power supplies [52]. The main advantages of this transistor
are its very high switching frequency capabilities and its low switching losses. Combined
with the fact that the device is easily adapted to bidirectional operation, it is easy to see
the reasons of its widespread use.
The transistor is controlled by its source-to-gate voltage vGS, and measuring the output
characteristics iD = f(vDS) for different values of the gate voltage produces the well
known curves of Figure 2.17.
When vGS is below a (device-dependent) threshold, no current flows across the transistor.
This corresponds to the off-state of the device, also called cutoff region. If the gate voltage
voltage is high enough and the drain current is low enough, the transistor is placed in
the on-mode, also called ohmic region: the characteristics may be approximated by a
straight line whose slope depends on the gate voltage. The on-state resistance RDSON is
defined as the inverse of the slope of the linear approximation, and corresponds to the
resistance of the semiconductor channel inside the transistor (plus the resistance of the
electrical contacts). The third region, called active region, is generally not used in power
converters (but see Transistor desaturation in the following sections).
Assuming that the transistor operates either in cutoff region or in ohmic region, it can
be modeled by an ideal controlled binary switch placed in series with a resistance whose
value is equal to RDSON (Figure 2.16c). Note that, in many cases, the resistance is very
small when compared to the other impedances of the circuit and may be neglected, as in
Figure 2.16b.

32

G
S

D

(a)

D
iD

S

u

(b)

D
iD

RDSON

S

u

(c)

D
iD

Isat

RDSON

S

u

(d)

D
iD

S

u

(e)

D
iD

RDSON vth

S

u

(f)

Figure 2.16: Various models for the MOS transistor (a) Symbol of the MOS (b)
ideal lossless MOS (c) with on-state resistance (d) with saturation current (e) ideal
MOS with body diode (f) with body diode and on-state resistance

Third quadrant operation

The characteristics of the transistor are symmetrical with regards to the origin: the
approximation iD = vDS

RDSON
still holds for negative values of VDS. However, thanks to

their fabrication process, power MOSFETs include a body (parasitic) diode between the
source and the drain. This diode is often used as a freewheeling device, allowing the
designer to use fewer components in the circuit.
The diode is easily added to the model of the transistor, either in an idealized version
(Figure 2.16e) or by taking losses into account (Figure 2.16f).

Transistor desaturation

If, for a given vGS, the current in the transistor becomes too high, the device switches from
the ohmic region to the active region. In this region, the transistor behaves as a current
sources whose value is imposed by the characteristics. This effect, known as transistor
desaturation 1, can be taken into account by adding a current source in parallel with
a diode to our model 2.16d. Note that, during normal operation, the transistor should
stay in the ohmic region and not enter this state. There is no need to add this effect to
the model, unless we want to simulate the limitation of accidental over currents by the
MOSFET itself.

1The term desaturation may seem like as an odd choice at first, since the active region of a MOSFET
is also known as the saturation region. This term actually originates from bipolar transistors, where the
saturation corresponds to the on-state region

33

0 2 4 6 8 10 12

0

50

100

150

200

vGS = 0V

vGS = 2V

vGS = 3V

vGS = 4V

1
RDSon

O
h
m

ic
R

eg
io

n

Active Region

Cut-off Region

vDS

i D

Figure 2.17: Output characteristics of a typical MOS transistor for various values
of vGS, and its piecewise linear approximation for vGS = 4V

2.4.3 Bipolar transistors and IGBT models

Since the development of the MOSFET and IGBT, power bipolar transistors have lost
the major part of their market share; they (Figure 2.18a) are still used in applications
requiring higher voltages and/or currents [46]. The typical bipolar transistor model in
represented on Figure 2.18c, where a voltage source VCEsat is added in series with the
ideal controlled switch to model the saturation voltage [35]. This model does not add
any major difficulty to the simulation.
The Insulated Gate Bipolar Transistor (IGBT) is a very popular device combining the
use of control of the MOSFET and the higher current density of the bipolar transistor.
Since we do not model the control side of the switches (only the power ports are put
into equations), the model for this device is the same as the one used for the bipolar
transistor.

2.4.4 Thyristor models

Thyristors where one of the first (semi-) controlled devices, adding the ability to prevent
a diode from switching-on until a positive current is applied to its gate terminal (Fig-
ure2.19). Hence, its on-off model is the same as the diode. Meanwhile, the conditions
from switching the device to the on-state are:

• a positive cathode-to-anode voltage and

• a direct gate-cathode current

All the advanced models studied in section 2.4.1 can be used with the thyristor.

34

u ≡ B

E

C

(a)

u ≡ G

E

C

(b)

−
vCEsat

+

u

E

C

(c)

Figure 2.18: (a) bipolar transistor (b) Insulated Gate Bipolar Transistor (c) simple
model for both transistors with the saturation voltage VCEsat

GA K

Figure 2.19: A thyristor and its three terminals. The device acts as a diode whose
off-to-on switching can be triggered by the gate (G) current

2.4.5 Magnetically coupled circuits

Mutual inductors

−
v1

+

i1

−
v2

+

i2

L1 L2

M

Figure 2.20: Coupled inductors, with self-inductances L1, L2 and mutual inductance
M . The currents correspond to the traditional convention : if a positive current
enters the inductor according to the defined convention, it induces a positive voltage
across the other coil.

Multiple coils are said to be coupled when the magnetic flux generated by one of the
coils is, at least partially, perceived by the others. Translated into an electrical circuit, this
gives rise to the concept of mutual inductances, where the back emf of a coil is influenced
by the current across coils. Let us take the basic two-winding mutual inductance of Figure

35

2.20: the equations governing the voltages and the currents are written asv1

v2

 =

L1 M

M L2




di1
dt
di2
dt

 (2.49)

where L1 and L2 are the self-inductance of the primary and secondary sides, and M is
the mutual inductance linking the two windings (a higher M increases the effect of the
current in a winding on the voltage the other winding). Inverting (2.49) allows us to
obtain the state-space equations of the inductor:

di1
dt
di2
dt

 =
1

L1L2 −M2

 L2 −M

−M L1


v1

v2

 (2.50)

This form assumes L1L2 −M2 6= 0. The coupling factor k is defined as

M2 = k2L1L2 (2.51)

and represents the efficiency of the magnetic coupling. For practical purposes, we have
0 ≤ k < 1, with k = 0 corresponding to the absence of coupling between the two windings.
The concept of mutual inductance can be expanded to include circuits with three or more
coupled inductors, leading to the more general formv1

...
vn

 =

L11 . . . L1n
...

...
...

Ln1 . . . Lnn




di1
dt
...

din
dt

 (2.52)

Ideal transformers

−
v1

+

i1

−
v2

+

i2

n = i2
i1

Figure 2.21: An ideal transformer, with a transformation ratio n = n1
n2

= i2
i1

where
n1 and n2 are the number of turns at the primary and secondary windings

An ideal transformer, as shown on Figure 2.21, is a special case of mutually coupled
inductances with k = 1. It establish to following identities:

i2 = ni1

v2 =
v1

n

(2.53)

36

where n is the transformer ratio equal to n = n1

n2
where n1 and n2 are the number of turns

at the primary and secondary windings. This definition, while useful, introduces multiple
problems. First, the fact that this equation is only true for non-continuous signals is
completely hidden. Secondly, it raises the question of how to introduce the equations
into the state-space system. Should we represent the effect on one winding to the other
as a current source or as a voltage source?
In practice, the answer depends on the circuit : if one winding is placed in series with a
current source or an inductor, then we have to select the voltage source representation,
while a current source representation is required when a voltage source or a capacitor is
connected in parallel with a winding.
Because of these problems, we recommend the use of a model based on a practical trans-
former instead

Practical transformers

−
v1

+

Ll1i1

Lm

nLl2 i2/n

+

nv2

− −
v2

+

i2

n

Figure 2.22: Equivalent circuit of a non-ideal transformer without Joule losses seen
from its primary side, with a transformation ratio n = i2

i1
, leakage inductances Ll1, Ll2

and magnetization inductance Lm

The classical representation of a non-ideal two-windings transformer is shown in Figure
2.22. This circuit includes all impedances as seen from the primary side, and contains an
ideal transformer with a transformation ration n

• Ll1 and Ll2 are the leakage inductances, representing the flux generated from one
winding and not seen by the others.

• Lm is the magnetizing inductance, representing the couplings

The values of these inductances are, along with the transformation ratio, the main pa-
rameters describing the transformer and are typically found in the datasheets. To solve
this circuit, let us apply Kirchhoff’s laws to both sides :

v1 = Ll1
di1
dt

+ Lm
di1 + i2

n

dt
nv2 = nLl2

di2
dt

+ Lm
di1 + i2

n

dt
(2.54)

After rearranging the terms:v1

v2

 =

Lm + Ll1
Lm

n

Lm

n
Ll2 + Lm

n2




di1
dt
di2
dt

 (2.55)

37

−
v1

+

r1 Ll1i1

Lm

im
Rm

nLl2 i2/n nr2

+

nv2

− −
v2

+

i2

n

vm

Figure 2.23: Equivalent circuit of a non-ideal transformer seen from its primary
side, with added resistors r1, r2 representing the resistance of the windings, and Rm
symbolizing losses due to eddy currents

which is equivalent to the self- and mutual inductances described by (2.49). We may also
introduce the equivalent resistances of the windings, as shown in Figure 2.23. To solve
that circuit, we have to introduce im as a third state variable (since i1 + i2 = im is not
true anymore). Defining vm as the voltage of the magnetizing branch, we have

v1 = Ll1
di1
dt

+ r1ii + vm

nv2 = nLl2
di2
dt

+ nr2i2 + vm

vm = Lm
dim
dt

= Rm(i1 +
i2
n
− im)

(2.56)

Which is put into state-space form by isolating the time differentials of the currents:

d

dt


i1

i2

im

 =


− r1+Rm

Ll1
− Rm

nLl1

Rm

Ll1

− Rm

nLl2
−Rm+n2r2

n2Ll1

Rm

nLl2

Rm

Lm

Rm

nLm
−Rm

Lm




i1

i2

im

+


1
Ll1

0

0 1
Ll2

0 0


v1

v2

 (2.57)

Bigger transformers (three phases or more) can be put into state-space equations in a
similar fashion. In [53], the authors put a three-phase transformer into equations by
converting its magnetic structure to an electrical circuit.

2.4.6 Electromechanical devices

Introduction

Electrical motors and generators are an important part of power electronics. Indeed, due
to their presence in electric cars, trains and other means of transportation, they are one
of the typical electrical loads connected to the power conversion system. Hence, it seems
logical to try to emulate their behavior as well. The biggest problem we will face is their
non-linear behavior, due to the magnetic coupling between their windings, introducing
the angle between the windings as an additional variable.

DC motors and generators

The direct current drive does not contain non-linear terms when we use its most simple
model. Hence, they may be modeled using the same sets of equations as the circuit itself.

38

The electrical (primary) port of the motor is described by

v1 = L1
di1
dt

+ r1i1 + E (2.58)

where E is the back emf due to the rotation of the motor. If the excitation current of the
motor is constant, or in the case of a permanent magnet motor, we have

E = kωω (2.59)

where kω is the speed constant of the motor. The mechanical side of the motor is described
by the movement equation

J
dω

dt
= Tem − Tr = kωi1 − Tr (2.60)

where J is the rotational inertia of the motor and its mechanical load, Tem is the elec-
tromechanical torque proportional to the armature current i1 and Tr is the resistive
torque. The simplest model for Tr is a torque linearly dependent of ω, leading to

J
dω

dt
= kωi1 − krω (2.61)

The complete drive may be modeled using controlled voltage sources and RL circuits

−
vin

+

R

i1

L1

−
E = kωω

+

−
Tem = kii1

+
ω

J

kr

Figure 2.24: Equivalent circuit of a DC drive, modeling the mechanical behavior
as an electrical circuit

as shown in Figure 2.24. If the drive is used as a generator, Tr can be modeled using a
voltage source instead, symbolizing the applied torque.

AC drives

Three-phases AC motors are widely used thank to their higher power density when com-
pared to DC drives. Thus, it makes sense to write the equations controlling these drives
for real-time emulation purposes.
Before writing the dynamical equations governing the AC drive state-space according to
its internal structure, we first introduce the following variables:

• is =

iaib
ic

 and ir =

iAiB
iC

 are respectively the stator and rotor currents

• vs =

vavb
vc

 =

v+
a − v−a
v+
b − v−b
v+
c − v−c

 are the input voltages at the terminals of each of the three

stator phases. If the phases are delta connected, we have v+
a = v−b , v+

b = v−c and
v+
c = v−a

39

• vr =

vAvB
vC

 are the voltages measured at the terminals of the rotor phases.

• Φs =

Φa

Φb

Φc

 and Φr =

ΦA

ΦB

ΦC

 are the fluxes linkages of the stator and rotor windings

We also assume that the machine is properly balanced (i.e. all three stator phases have the
same electrical behavior, same for the the three rotor phases) and the magnetic materials
are linear (i.e. no saturation). Under these assumptions, the equations can be written as
follows [54]:
We first write the equations linking the current and the fluxes:

Φs = Lsis +Mrsir

Φr = Msris + Lrir
(2.62)

In these equations, Ls and Lr and the stator and rotor inductance matrices, defined as

Ls =

Ls Ms Ms

Ms Ls Ms

Ms Ms Ls


Lr =

Lr Mr Mr

Mr Lr Mr

Mr Mr Lr

 (2.63)

while Msr = MT
rs represents the magnetic coupling between the stator and the rotor

Msr = Mo

 cos(θ) cos(θ + 2π
3
) cos(θ − 2π

3
)

cos(θ − 2π
3
) cos(θ) cos(θ + 2π

3
)

cos(θ + 2π
3
) cos(θ − 2π

3
) cos(θ)

 (2.64)

where θ is the electrical phase shift between the static frame and the rotating frame.
This matrix is the main source of non-linearity in the system, as it introduces trigono-
metric relations in the state-space. The fluxes are then eliminated by writing the voltage
equations for the stator and the rotor

vs = Rsis +
dΦs

dt

vr = Rrir +
dΦr

dt

(2.65)

where Rs and Rr are diagonal matrices containing the total resistance of the windings
and the associated electrical connections. Assuming that the drive is fed electrically from
the stator only, we have vr = 0.
The electromechanical torque Tem is given by

Tem = iTs
dMsr

dθ
ir (2.66)

40

Again, this equation is clearly non-linear. Finally, we have the load inertia equations

dθm
dt

= ωm

J
dωm
dt

= Tem − Tr
(2.67)

where

• θm is the mechanical angle, related to the electrical angle by the relation θ = nθm,
where n is the number of pole pairs of the machine

• ωm is the angular speed of the rotor

• J is the rotating load inertia

• Tr is the resistive torque of the load

To properly implement these equations, a non-linear module must be developed. In the
current state of this work, we have chosen to avoid the implementation of non-linear
systems.
However, this aspect could clearly be studied in the future. Since the signals inside
electromechanical devices are relatively slow when compared to signals measured in the
power conversion system (i.e. the mechanical time-constants are typically much larger
than the electrical time-constants) , this non-linear module could be operated in parallel
with the main solver at a lower refresh rate.

2.5 Transitional model of power converters using hy-

brid automata

2.5.1 Hybrid automata definition

At this point, it becomes clear that there are two types of dynamics inside a power circuit

• continuous dynamics, modeled by the state equations, describing the time-based
evolution of the currents and voltages once the configuration of the switches (the
state of all switches) is set

• discrete dynamics describe the sudden changes of topology according to the internal
or external control laws of the switches

These two evolutions were kept separate until now, but we need to fuse them to provide an
unified model of the converter. With this model, we obtain a mathematical representation
that may be analyzed and compiled for the real-time platform.
The hybrid system paradigm is a very convenient approach, and was developed to model
systems with continuously varying variables whose evolution laws depend on a number of
discrete conditions [55,56]. In the past, multiple authors have suggested the use of hybrid
systems to model power converters for the purpose of designing switched-mode controllers
[57–60]. More crucially, a team from the Massachusetts Institute of Technology has also

41

explicitly used hybrid systems systems in a real-time simulator of power converters [61,62],
but the definition of an hybrid system is very generic and many emulator systems use
a representation that is similar in every way, except for the name. An hybrid system is
aptly described by a directed graph : the hybrid automaton representation. In this graph,
each node (or vertex) corresponds to a given topology of the circuit, while the edges are
the discrete transitions between the topologies due to a switch changing its state.

2.5.2 Circuit without discrete inputs

Mathematically, a hybrid automaton is defined by a collection H = (S, x, f,D,E,G).
The continuous state variables are represented by the x = (x1, . . . , xm) = Rm vector
and the continuous independent inputs (ie. the sources) by u = (u1, . . . , un) = Rn.
Meanwhile, S = (s1, . . . , sn) is a set of discrete variables describing the current topology
of the system. These variables correspond to the binary state of the switches: each si
represents the state of a single switch (ie. si = 1 if the ith switch is currently on). Each
combination (or configuration) of the switches defines a topology, and is represented by
a node on the graph.
All these variables are linked by f : S×x×u→ x, a vector field describing the evolution
of the state variables as a function of their current value, of the configuration of the
switches and of the independent inputs:

dx

dt
= f(s, x, u, t) (2.68)

For a given topology (i.e. for a given value of s), this equation corresponds to the state
equation of the associated linear system. The validity domain of (2.68) for a given
configuration of the switches is described by D : S → P (x), which corresponds to the
conditions on the diodes, repeated here for convenience

iD > 0 if in the on-mode

vD ≤ 0 if in the off-mode
(2.69)

A crucial corollary of this formula is that the point (vD, iD) = (0, 0) has been chosen to be
part of the off-state. Each of the modes receives its own set on inequalities D(si) ⊂ Rm

describing its domain as a polytope 2.
The links between the topologies are represented by E ⊆ S×S, which is an 2n by 2n array
that indicates if there is a possible direct transition from a given topology to another one.
In the associated graph, each transition is represented by a directed edge between the
nodes corresponding to the two topologies, and G assigns a guard to each transition. This
guard correspond to a condition that must be validated before crossing the transition.
When the system is in a given topology, it evolves according to its linear evolution laws
until the state vector goes outside of the validity domain. At this point, the transition
whose guard is validated is taken and the system jumps to a new topology with new
dynamics.

2A polytope is a generalization of the concept of polygons and polyhedrons to an n dimensional space.
The convex polytope P ⊂ Rn is mathematically defined by the intersection of a number m of half-spaces
P = {x ∈ Rn : Ax ≤ b}, where b ∈ Rm and A ∈ Rn+m

42

−
V1

+

iL L D1

+
vC− C R1

D2 R2

+

V2

−

Figure 2.25: Example circuit containing two diodes

S00 S01

S10 S11

D2 off, D1 off D2 off, D1 on

D2 on, D1 off D2 on, D1 on

V1 − vC > 0

V
2
−
v C

>
0

iL −
vC
R2

+
V2
R2
≤ 0

−
i L
≤

0

V
2
−
V
1
>

0

R2iL − vC + V2 > 0
V
2

R
2
−
v C R

2
≤

0

iL ≤ 0

Figure 2.26: Topology graph for the example circuit of figure 2.25

Example 2. To illustrate these concepts, we will use the circuit of figure 2.25. This
circuit contains two diodes, and hence four different topologies with their own dynamics
and validity domain: S = (d1, d2) = {(0, 0), (0, 1), (1, 0), (1, 1)} where (d1, d2) contains the
current state of each of the two diodes. The two state variables iL and vC are described
by :

d

dt

[
iL(t)
vC(t)

]
= A(d1,d2)

[
iL(t)
vC(t)

]
+B(d1,d2)

[
V1(t)
V2(t)

]
(2.70)

where (A(d1,d2), B(d1,d2)) = f(d1, d2) controls the dynamics of the circuit depending on the
topology. The validity domain of each topology is obtained by the calculation of (2.69) :

D(0, 0) = vd1 ≤ 0 ∩ vd2 ≤ 0 = (E1 − vC ≤ 0) ∩ (E2 − E1 ≤ 0)

D(1, 0) = id1 > 0 ∩ vd2 ≤ 0 = (iL > 0) ∩ (E2 − vC ≤ 0)

D(0, 1) = vd1 ≤ 0 ∩ id2 > 0 = (E2 −R2iL − vC ≤ 0) ∩ (−iL > 0)

D(1, 1) = id1 > 0 ∩ id2 > 0 = (iL −
E2 − vC
R2

> 0) ∩ (
vC − E2

R2

> 0)

(2.71)

The graph corresponding to the hybrid automaton is constructed by representing each
topology as a node, as shown in figure 2.26 where S01 is the topology corresponding to
(d1, d2) = (0, 1). Each transition (i.e. each edge connecting two nodes) corresponds to
the change of state of a single diode. The conditions (guard) attached to the edges are
obtained by inverting the inequality imposed by the corresponding diode in (2.71). For

43

Linear Solver Natural Switching

Forced Switching
Control signals

Output signals

Slow solver

Fast solver

Figure 2.27: Separation of the study of the two types of transitions, which allows
for two different sampling times

instance the transition going from S00 to S01 is taken when the system goes outside of
the boundary defined by (V2 − V1 ≤ 0), hence the associated condition is (V2 − V1 > 0).

Describing a power converter by an hybrid system not only provides us with a formal
mathematical model which is easily ported to a computer program, but also allow us to
benefit from the studies that have been made on this subject in the past. With these
tools in hand, we can study how to build the automaton and what kind of information
can be extracted from it.

2.5.3 Circuit with discrete inputs

A limitation of this model is that, under the chosen definition, only topology changes
due to the continuous evolution of the state variables are tracked (ie. the guards are a
function of the states and/or of the inputs). A more general description allows discrete
input signals, such as those used to control the transistors and the other active switches,
to be included in the domain definition and the guards condition [63]. The transitions
are now classified either as

• natural if they correspond to a change in the continuous signals

• forced if they correspond to a change in a discrete control signal

The way these two types are handled depends on the chosen simulation procedure. Almost
all real-time solvers based on the hybrid system approach evaluate both types at the same
time [21, 61, 62, 64] and find the correct topology in a single step. Instead, we propose
the usage of two different modules as shown on figure 2.27. This separation allows the
individual exploration and optimization of the two phenomena, which may (hopefully)
reduce the overall resource usage. Furthermore, different sampling times may be used for
the two parts. This second point is particularly interesting for circuits whose switches are
driven by high-frequency control signals (ie. signals whose frequency is not significantly
lower than the sampling rate). For instance, let us consider a circuit sampled at 1MHz
and controlled by a 100kHz PWM. If the control signals are sampled at 1MHz, we only
have a precision of 10% on the duty cycle. On the other hand, sampling the control signals
at a higher rate provides a much better resolution and a more accurate representation of
the input.

44

−
E

+

iL L D

+
vC− C RuT

(a)

S00 S01

S10 S11

T off, D off T off, D on

T on, D off T on, D on

E − vC > 0&u = 0

iL ≤ 0&u = 0

u
=

1

u
=

0

u
=

1

(b)

Figure 2.28: Boost converter and its full transition graph. The bold arrows corre-
spond to forced transitions and the thinner arrows to natural transitions

A more precise study will be carried in section 5.4.6, during the design of the real-time
platform.

Example 3. The graph of figure 2.28b represents the boost converter. Each topology
is a node of the graph noted Sud, where u is the state of the transistor and d the state
of the diode. The forced transitions (i.e. the edges of the graph), represented by bold
arrows, carry a guard condition that only includes the switch control signal u. Both
natural transitions carry a guard composed of a condition on the state variables and on
the value of the control signal (u = 0). This graph may be described in a more explicit
manner :

• if the controlled switch is closed, the automaton goes to topology S10

• if the controlled switch is opened, the automaton goes to topology S01

• while the controlled switch remains open, the system is controlled by the natural
transitions

The topology S11 is not reached by any transition and hence is said to be unreachable.
This is to be expected since the transition from S10 to S11 would have a condition vC < 0,

which is impossible since the capacitor voltage is described by C
dvC
dt

= iD−vC/R, where

the diode current iD ∈ R+. In the event where iD = 0, the voltage voltage will converge
exponentially to zero without taking a negative value. Furthermore the diode current is

45

equal to zero when in S11, which means that diode would immediately be switched off
again.

This example, while not complete, illustrates the separation property mentioned previ-
ously: the two types of transitions are independent and may be evaluated by two separate
entities.
As a conclusion, we have shown that the hybrid system description is very useful to
translate the circuit into a mathematical object, and we will use it extensively in the
next chapters.

2.6 Simulating the power converter

2.6.1 Introduction

The concepts introduced in section 2.5 provide us with a powerful description of the
power converter dynamics. Using this tool, we can track how the circuit reacts to the
evolution of the internal signals or to changes in the control signals of the switches. If we
write these rules as a program, we obtain a simulator of the circuit.
The framework provided by automata gives us a natural separation between

• the linear subsystem, simulating the evolution of the circuit while it stays in the
same topology

• the switching module that controls the topology-to-topology evolution (and hence
the state matrices) according to a set of rules based on the diode voltages and
currents as well as the control signals of the active switches

The role of the linear subsystem is to solve the state-space equations

dx(t)

dt
= Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.72)

using the chosen discrete-time solver. While the system stays in its current node, the
state matrices are constant and allow us to simulate both the states and the outputs.
These two equations may be written in the serial form

x(k + 1) = f(x(k), u(k))

y(k + 1) = Cx(k + 1) +Du(k)
(2.73)

or in the parallel form
x(k + 1) = f(x(k), u(k))

y(k + 1) = Cx(k) +Du(k)
(2.74)

where f(x, u) is a linear function that depends on the solver and on the state matrices.
These two forms are represented in Figure 2.29a and 2.29b, where z−1 is the unit delay
(i.e. a memory whose output is equal to the input present during the previous time-
step). The parallel solver introduces a lag of one time step between the update of a state
and its effect on the outputs, but on the other hand provides a means to compute both

46

state solver

output solver

z−1

x(k + 1)

x(k)

y(k + 1)

u(k)

(a)

state solver output solverz−1

x(k + 1)

x(k)

y(k + 1)

u(k)

(b)

Figure 2.29: Two versions of the linear solver (a) Serial solver (b) Parallel solver

sets of signals at the same time using parallel computing methods, reducing the total
computation time.
The switching module uses the states and inputs signals to control the diodes and to
select the new state matrices to be used in the next iteration. As described in 2.5.3, the
circuit will move from the current node of the automaton to another one when the diodes
or the transistors change their configuration. To verify if a diode must be switched or not,
the switching module must evaluate a set of diode currents and voltages. These signals
are written in the same form as the output variables[

iD(t)
vD(t)

]
= Ex(t) + Fu(t) (2.75)

Again, the E and F matrices depend on the current topology. The switching module is
also able to control the diode in reaction to a change in the state of an active switches
(eg. to allow an inductive current to flow).

2.6.2 Structure selection

The sub-modules may be arranged in many configurations to obtain the global structure
of the real-time simulator. Each of the configuration must include

• the state variable solver

47

• the output variable solver

• the switching module, which may be separated in its two sub-modules:

– the natural switching module, which controls the diodes according to the evo-
lution of the linear signals

– the forced switching module, which controls the diodes according to the evo-
lution of the active switches

Split structure

A first example of structure is provided on Figure 2.30a. At the start of each step the
state solver uses the previous states x(k) and sources u(k) to compute the new states
x(k + 1). Once x(k + 1) is known, it is fed to the output solver and to the switching
engine. Since these modules are independent, they are easily run in parallel to reduce
the total latency. Alternatively, the outputs may be computed in parallel with the states
if we use their previous value instead of the current one, as shown in Figure (b).
This latter structure is clearly the simplest one, and allows a rather high degree of paral-
lelism. However, it may lead to incoherent signal values. Let us show it using the simple
boost converter of figure 2.28a, with the diode in the on-state while the transistor is in
the off-state. Let us assume that the inductor current becomes negative, according the
state solver. In reaction, the switching module will force the diode into the off-mode,
the boost operates in discontinuous conduction-mode. Unfortunately only the matrices
A,B,C,D are updated by the switching module for the next step; the states x(k+1) and
the outputs y(k + 1) remain the same hence the current will stay negative, which may
disrupt the switching engine or the external circuits connected to the outputs signals.

Interleaved structure

This problem is alleviated by the interleaved structure represented in Figure 2.31. The
first difference with the previous structure consists in splitting the switching module in
two steps (forced switching and natural switching) interleaved with the state solver. The
second difference is the addition of a state adjustment in the output solver, according
to the new topology. This allows, for example, to clamp the inductor current to zero
should it become negative. Assuming the state solver now computes a temporary value
xT (k + 1), we adjust the state value x(k + 1) using

x(k + 1) = CxxT (k + 1) +Dxu(k) (2.76)

If the states must not be adjusted, then Cx is the identity matrix while Dx is filled with
zeros. Otherwise, these matrices contain the updated coefficients allowing to recompute
the states using the other signals as reference. The states modified by this operation are
effectively forced states, as described in section 2.2.3 and the Cx and Dx matrices were
already introduced in (2.23). Since we need to compute (2.76) using this system, it makes
sense to run the output solver in parallel to keep the latency as low as possible.
This process effectively uses the state solver of the previous topology while using the
output solver of the new one. The performance of the two methods will be assessed in
section 5.2, dedicated to the real-time platform implementation. We will now take a
closer look at the switching modules, and study their internal structure.

48

state solver

output solver

z−1

Switching module
x(k + 1)

x(k)

y(k + 1)

u(k)

u(k)

Control signals

A,B

C,D

(a)

state solver output solverz−1

Switching module

x(k + 1)

x(k)

y(k + 1)

u(k)
Control signals

A,B C,D

(b)

Figure 2.30: Solver with split structure, where the switching module takes effect
on the new time step (a) Serial computation of outputs (b) Parallel computation
of the outputs

49

linear state solver

natural switching

output solver and
state adjustment

forced switching

z−1

xT (k + 1)

xT (k + 1)

u(k)

u(k)

u(k)

u(k) C,D

x(k + 1)

x(k)

A,B

Control signals

y(k + 1)

Figure 2.31: Solver with interleaved structure, where the changes are taken into
account during the same time step. The natural switching module (in bold) is
shown in details on Figure 2.32

50

2.6.3 The natural switching module

Linear state solver

Computation of iD, vD

Transition check

Diode switching

xT (k + 1)

x(k), u(k)

(a)

Linear state solver

Computation of iD, vD

Transition check

Diode switching

Convergence ?

xT (k + 1)

yes

no

x(k), u(k)

(b)

Figure 2.32: Examples of simulation procedures for the natural switching step of
Figure 2.31

The switching modules are the most important contributors to the total latency of
the system. Indeed, we not only need to compute a set of conditions to verify if a guard
leading out of the current node is active using (2.75), but we also have to infer the new
state of the diodes based on the evaluation. Hence, it makes sense to optimize these
modules first. A basic algorithm for the natural switching module is represented on
figure 2.32a and contains four successive operations that are performed once at each time
step:

1. the linear state solver computes the new value of the currents and voltages

2. the diode currents and voltages are computed

3. a test is made to check if any transition leading out of the current topology is active

4. if a transition is taken, the corresponding diode is switched

Once these operations are performed, the system then waits for the next time step. Since
a transition corresponds to a single diode (see section 2.5), this algorithm will detect only

51

−+1V

4µH

iL

D1

2Ω

D2

2Ω

D3

2Ω

+

Vout
−

(a)

5 10 15 20 25 30

·10−6

0.2

0.4

0.6

0.8

1

t(s)

Vout(V)

Single-pass switching
Continuous time simulation

(b)

Figure 2.33: (a) Example circuit with multiple diodes switching in series (b) sim-
ulation of the circuit using the basic diode switching algorithm of Figure 2.32a,
highlighting the high error in the first few time steps

52

one switching event during each time step. If n diodes should switch at the same time,
the final topology will only be reached after n time steps. In some cases, this lag could
seriously reduce the quality of the waveform and reduce the perceived performance of the
control loop by introducing errors between the expected waveform and the result of the
emulation.
This is better illustrated using the circuit of figure 2.33a, which contains three diodes in
series. Assuming the inductor current in initially equal to zero, it will take three time
steps for all diodes to switch on. The resulting effects on the evolution of the output
voltage Vout is shown on figure 2.33b. The first cause of degradation results from the fact
that the voltage is equal to zero until the third diode is switched on even if the current iL
is rising, and the second from the equivalent resistance perceived by the inductor which
is equal to Req = 2Ω

number of on-state diodes
instead of 2Ω

3
. This equivalent resistance eventually

converges to the correct value, but in the mean time the value computed by the solver is
prone to errors, especially when the circuit reacts quickly (i.e. when the time constants
are not significantly larger than the solver time step).
For instance, very fast circuits such as discontinuous conduction-mode flyback converters
with time constants under 10µs have been reported [65, 66]. Circuits may also exhibit
very fast transients when some power switches are dysfunctional and short a capacitor
with a low impedance path.
To avoid this effect, a multiple-pass switching algorithm may be used instead, as shown
in figure 2.32b. In this version, the switching algorithm is called repeatedly until a stable
topology is found. The correct state of all diodes will be found in the current time-step,
but more time is spent in the natural switching module, which could unfortunately lead
to increasing the time step. Furthermore, the time spent to obtain the topology is not
constant since the number of executions inside the loop depends on the previous topology
(though a worst case can be estimated), which results in a non-constant loop delay that
could reduce the phase margin of the controllers.
Therefore, we propose a new procedure, shown in figure 2.34. The main difference lies

in the insertion of an additional Conditions selection step during which we decide which
conditions must be evaluated: instead of selecting the diode currents and voltages of the
current topology, we evaluate simultaneously all transitions of the graph that are part
of a path starting from the current topology. By evaluating all these transitions at the
same time, we are able to select the correct solution in a single step.

Example 4. Let us use the example circuit of figure 2.25 as an example of our algorithm.
Starting from the complete transition graph of figure 2.26, we select for each topology the
shortest path (or paths in the case of identical lengths) leading to all other topologies.
The resulting sub-graph obtained when starting from topologies S00 and S10 are shown on
figure 2.35. The reason why we keep only the shortest path is to prevent the creation of
loops in the reduced graph, which would correspond to a single diode switching multiple
times.
Once the graph has been reduced, it is easily translated to a table linking the result of the

evaluation to the final topology. When starting from S00, the result is Table 2.2, where
a ’1’ implies the condition has been evaluated as true, a ’0’ that it has been evaluated as
false, and a ’-’ means that the evaluation has no impact on the final result.

On first examination, this procedure seems to add a lot of computations to the switch-

53

Linear state solver

Condition selection

Condition evaluation

Diode switching

x(k + 1)

x(k), u(k)

Figure 2.34: Simulation procedure with optimized condition selection

S00 S01

S10 S11

d1 off, d2 off d1 off, d2 on

d1 on, d2 off d1 on, d2 on

V1 − vC > 0

V
2 −

v
C
>

0

V
2 −

V
1
>

0

R2iL − vC + V2 > 0

(a)

S00 S01

S10 S11

d1 off, d2 off d1 off, d2 on

d1 on, d2 off d1 on, d2 on

V1 − vC > 0

−
iL

≤
0

R2iL − vC + V2 > 0

V
2

R
2
−

v
C

R
2
≤

0

(b)

Figure 2.35: Simplified transition graph when starting from topology (a) S00 and
(b) S10

ing module. It may be shown that this is not the case, and a deeper analysis carried out
in section 3.3 will introduce multiple methods to reduce the graph to a minimum, hence
reducing the load on the real-time platform.

2.6.4 Forced switching module

The goal of the forced switching analysis is to envisage all possible changes in the circuit
when the state of an active switch is modified. At first glance, this seems to be easy:

54

Table 2.2: Natural commutation table for the graph of figure 2.35a

V1 − vC > 0 V2 − vC > 0 V2 − V1 > 0 R2iL − vC + V2 > 0 Topology
1 0 - - S01

1 1 - - S11

0 - 1 0 S10

0 - 1 1 S11

0 - 0 - S00

−
E

+

iL L

+
vC− C Ru

(a)

−
E

+

iL L

+
vC− C Ru

(b)

−
E

+

iL L

+
vC− C Ru

(c)

Figure 2.36: Illustration of the state continuity problem. When the transistor
switches from the on-state (a) to the off-state (b), the diode must be switched on
(c) to allow iL to flow

change the topology according to the new state of the active switches, and proceed with
the simulator as it was described in the previous chapters. Unfortunately, the behavior of
the circuit is not that simple. Let us take a look at the boost converter and assume that
the ideal active switch is on while the diode is in blocking mode, as shown of figure 2.36a.
The positive voltage on L makes the current iL rise, which accumulates energy in the
inductor. Let us now assume that the active switch is suddenly forced to its off state. If
we keep the diode in its previous configuration, the system should end in topology 2.36b
where the current iL is instantaneously reduced to zero (assuming ideal semiconductors).
Of course, in the real-world, the diode naturally switches on (topology 2.36c) to keep
the current flowing freely. The main problem faced by the forced switching module is to
efficiently and correctly identify which diodes have to be switched when the state of the
active switches is changed.
This problem is due to our use of ideal switches. If, for example, the diode is modeled
by a bi-valued resistor or by a resistor in parallel with a source (see section 2.3.2), a path
for the current always exists. Unfortunately this resistor introduces its own problems, as
we will show now.

Example 5. Let us consider the boost converter of figure 2.37a, showing the resistor Rd

55

−
E

+

iL L

Rd

+
vC− C RuK

(a)

−2 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

·10−5

5

10

15

t(s)

iL(A)

Continuous time
Discrete time, with forced switching

Discrete time, without forced switching

(b)

Figure 2.37: Boost converter with an additional resistance, and its simulation with
and without the forced switching module. A noticeable drop occurs when no forced
switching module is implemented (red line) and the transistor is switched off (at
t = 50µs, t = 150µs and t = 250µs)

in parallel with the diode. The evolution of the states variables is described by

d

dt

[
iL
vC

]
= A

[
iL
vC

]
+Bu

A =



[
0 0

0 −R+Rd

RRdC

]
diode off, transistor on[

0 − 1
L

1
C
− 1
RC

]
diode on, transistor off[

Rd

L
− 1
L

1
C
− 1
RC

]
diode off, transistor off

B =

[
1
L

0

]
(2.77)

We shall now compare the continuous-time signals with their discrete-time counterparts.
We first assume a solver able to perform forced diode control (i.e. able to change the

56

state of the diode according to a change in the control signal of the active switch) and
based on a backward Euler solver. The solver will go through the following steps after
each sampling period:

1. Control the diode according to these rules:

• If the transistor is closed, the diode is switched off

• If the transistor is opened, the diode is switched on

2. Select the state matrices according to the state of the switches

3. Perform a linear step using (2.27)

4. Control the diode according to these rules:

• If the diode is on and iL ≤ 0, the diode is switched off

• If the diode is off and the transistor is off and RdiL > 0, the diode is switched
on

The evolution of iL is shown in figure 2.37b for the following parameters :

• L = 20mH, C = 100µF , R = 10Ω, Rd = 10kΩ, E = 100V

• sampling period T = 1µs

• discretization method : backward Euler

• transistor control signal: 10kHz, 0.5 duty cycle PWM

• circuit operating in continuous conduction mode

When the transistor is active, the current iL increases according to L
diL
dt

= E. When the

transistor is switched off, the diode starts immediately to conduct, changing the control

law to L
diL
dt

= E−vC . Since the simulation of Figure 2.37b corresponds to the start-up of

the circuit, the output voltage vC is still low; implying that iL continues to increase even
when the transistor is off. To provide an accurate representation of the continuous-time
evolution of the current, we use the offline simulator Plecs with a time-step of 10ns. The
signal obtained by this simulation is represented on the figure (in black), while the signal
obtained our emulation procedure is plotted is green. Clearly, both plots are very close
to each other. Let us now consider a solver without forced diode control, and based on
the following steps :

1. Select the state matrices according to the configuration of the switches

2. Perform a linear step using (2.27)

3. Control the diode according to these rules:

• If the diode is on and iL ≤ 0, the diode is switched off

57

−
V1

+

iL L D1

+
vC− C R1

D2 R2

+

V2

−
uK

Figure 2.38: Modified boost circuit used to illustrate state discontinuity

• If the diode is off and the transistor is off and RdiL > 0, the diode is switched
on

During a single time step, both switches are in the off state. While this may seem
insignificant, the effects on the signals are profound. With the designated values for the
components, the discrete state matrices for the topology are

Ad = (I − TA)−1 =

[
0.17 −1× 10−4

17× 10−4 1

]
Bd = (I − TA)−1TB =

[
0.83× 10−4

0.83× 10−6

] (2.78)

The first coefficient of Ad is the most crucial here, as it implies that iL is reduced to 17% of
its value in a single step (neglecting the effects of all other signals). This drop heavily dis-
turbs the signals, as shown by the dashed red plot on figure 2.37b for t = 50µs, t = 150µs
and t = 250µs. Due to the drop, the emulated current cannot be considered as an accu-
rate representation of the real behavior of the circuit. If we had used the forward Euler
or the improved Euler (defined by (2.30)) approximation instead, the system would have
become unstable. This effect can be partially counteracted by using a smaller time step or
a more precise solver (i.e. the trapezoidal solver), but cannot be completely suppressed.
During normal operation, this topology is used when the circuit is in discontinuous con-
duction mode.

This simple example shows that a module able to modify the state of the diodes as
soon as the active switches are changed is absolutely required to keep a high precision,
no matter which solver is used. When using ideal switches, this module is mandatory,
otherwise the circuit could end in a topology that would force sudden changes in the
signals, such as dropping a current to zero instead of switching a diode, or even in a
topology whose equations cannot be written (shorting a voltage source, for example).
More precisely, this module must be able to select the correct state of the diode taking
into account

• the current topology of the switches

• the new state of the active switches

• the current value of the states and inputs

58

This dependance is easily shown using the circuit of figure 2.38. We first assume that the
active switch is closed, allowing the inductor current to increase or decrease depending on
the sign of Vin. When the transistor is switched off, one of the two diodes will be forced
to conduct depending on the value of iL. Similarly, D1 must be switched off whenever K
is closed to avoid any discontinuity in vC .
The selection of the conditions that must be evaluated in real-time is a complex problem,
studied in detail in section 3.4.

2.6.5 Where to go next

This section introduced the basic modules of the real-time platform, as well as their
interactions. We gave a broad view of the switching modules without going into details.
In chapter 3, we shall perform a much deeper study of the circuit dynamics in order to
extract all signals that we need to evaluate to control the diodes correctly.

2.7 Conclusions

In this chapter, we have studied the multiple options at our disposal to represent a power
converter and made choices based on the expected performance on the real-time platform.
We have first studied how to describe a circuit controlled by linear laws by means of the
Modified Nodal Analysis (MNA) and the State Space Analysis (SSA). The comparison
shows that while the MNA is easier to obtain and provides an easy framework to integrate
non-linear laws, the equations obtained by the SSA are much more compact and do not
depend on the algorithm used to convert the differential equation to a discrete-time
system.
The choice of the SSA has been confirmed later, when we studied different means of
representing the non-linear behavior introduced by the switches (diodes and transistors).
We have shown that the most popular method, which uses MNA and controlled current
sources to model the switches, gives a set of laws that are very easy to implement but
makes the system much larger that it should be. In contrast, the alternative of using
SSA and switches modeled by open/short circuits yields matrix products that are much
smaller at the cost of more complex laws to control the diodes. Finally, we opted to use
the SSA because of its lighter burden on the real-time platform, forcing us to develop
new algorithms to automate the analysis of the circuit in order to obtain and optimize
these diode control laws.
A further step in this basic modeling has been reached thanks to the introduction of
hybrid automata in section 2.5. Thanks to a powerful graph-based representation, this
tool allows to easily track how the circuit reacts to external stimuli and to the evolution
of the state variables. Once implemented as a program, an hybrid automaton becomes a
convenient high level simulator, as illustrated in section 2.6. We have compared different
implementation of the simulator and introduced the natural and forced switching modules
whose job is to control the diodes.
Until now, all the calculations and analyses were done by hand. For larger circuits, this
process is tedious and prone to error. For this reason, the next chapter will be focused
on the systematic analysis of the circuit in order to automatically derive all information

59

needed to infer the hybrid automaton associated with the target power converter, as well
as various tools to infer the rules governing the switching modules.

60

Chapter 3

Automated circuit analysis and
reduction

3.1 Introduction

3.1.1 The need for automated tools

The traditional design flow for embedded digital systems is composed of four main steps,
represented on figure 3.1

1. Design entry: high-level description of the application (in this case, a topological
description of the circuit)

2. Analysis: conversion of the human-readable design to a mathematical/algorithmic
representation of the real-time system

3. Compilation: conversion of the algorithm to a machine-readable binary format

4. Application: the design is ported on the embedded system and is ready for practical
use

While a better design entry tool has a general impact on user experience thanks to
better ergonomics, the analysis and compilation steps have a profound effect on the final
performance of the design. A better analysis method leads to simpler, more compact
algorithms while state-of-the-art compilers use their knowledge of the processing platform
to provide binary code that use the platform capabilities to their best. The analysis
step will be the main focus of this chapter, as we will propose a method that allows a
seamless transition from a circuit drawn in a computer-aided design (CAD) program to
the programming files required by the compiler.
In section 2.3, we explained how to model a power converter and its different topologies,
depending on the state of the switches. We also introduced basic concepts about how the
transitions between the topologies are handled by looking at the currents and voltages
across the diodes. For the small circuits used in the examples of section 2.3.6, a simple
study of the structure allows a trained engineer to write the equations controlling the
diodes quite easily. As the number of elements increases, such a study may be not be
possible without spending a lot of time writing equations for all topologies and all possible

61

Design Entry

Analysis

Compilation

Application

Circuit topologies

Source Files

Binary bitstream

Figure 3.1: Four-step design flow. The Analysis step is the focus of this chapter

transitions between these topologies.
In section 2.3.6, we compared different simulation algorithms before settling on a state-
space solver whose matrices are controlled in real-time by a non-linear switching engine,
and the hybrid automaton paradigm introduced in section 2.5 provides a straightforward
representation of the dynamics due to the discrete changes of the power switches. We
introduced the basic rules of diode control in section 2.6, showing how to switch the
diodes in reaction to a change in the state variables or in the switch control signals.
At this point, we have defined all the basic elements that will be used to provide the user
with an automated analysis tool able to draw the hybrid automaton transition graph.
More over, we will also propose methods to optimize and simplify the resulting switching
algorithm. We first introduce in section 3.2 a method to draw the transition graph
based on the individual equations of each topology and eliminate topologies that will
never be used. Afterward, we will propose in sections 3.3 and 3.4 a new set of tools
to automatically derive all rules governing topology changes and optimize the results to
minimize the computational impact on the real-time platform.
It should be noted that we first presented these methods in two conference articles. While
the analysis presented in [67] corresponds to a rough first draft of the complete method
presented here, the algorithm is present in a near-final state in [68].

3.1.2 Real-time/Offline separation

At this point, it seems useful to remind the reader that any automated real-time tool also
contains an offline part dedicated to the preparation of the information before porting the
design on the real-time processing unit. This offline section takes the raw information
provided by the user (eg. the electronic circuit in netlist or graphical form), converts
it to a format readable by the platform and compiles it to a binary file which is used
to program or configure the platform. Depending on the offline tools used, additional
computing can be provided to optimize the results in multiple ways in order to reduce
the load on the platform at the cost of additional preparation time. This is generally not

62

a problem, since this task can be run on powerful decentralized servers. If done correctly,
these optimization steps allow to use fewer of the limited resources provided by the real-
time platform and raises the operating frequency of the platform.
To select whether the offline or the real-time part should execute a given operation, the
basic rule is that no new information should be discovered during the real-time execution
and that the platform should be as simple as possible. Keeping this simple rule in mind,
we choose to force the entirety of the circuit analysis on the offline program in order to
reduce the real-time unit to a set of linear solvers and a list of if-then-else statements
to allow topology changes. This is in stark contrast with offline, computer-based power
electronics simulator that can afford to take a few milliseconds to establish the equations
of a newly reached topology that had not been used before or to build the transition
graph during the execution.
The off-hand study we did for the boost converter may be applied to any converter.
However, as the number of switching elements rises, it becomes exponentially more com-
plex to draw the transition graph and extract the necessary information to compute the
guards. While obtaining the transition graph is a relatively easy task, properly parsing
it while simplifying and optimizing the output is much more difficult. At this point in
time and to the best of our knowledge, no study has been published on the matter. In
the remainder of this chapter we will introduce and develop a new original set of tools to
automate the study and the optimization of power converter circuits (or, more generally,
any piecewise linear circuit).

3.2 Hybrid automaton derivation

3.2.1 Graph separation

The hybrid automaton paradigm introduced in section 2.5.1 is represented as a directed
graph where each node corresponds to a particular configuration of the switches called
topology. A topology is defined by

• a switch configuration S

• state equations controlling the internal dynamics, by way of the state matrices
A,B,C,D

• a definition domain described by a set of conditions, each written in one of these
two forms corresponding respectively to a condition on the diode current of the
diode voltage

id(k) = Ex(k) + Fu(k) > 0

vd(k) = Ex(k) + Fu(k) ≤ 0
(3.1)

As explained in section 2.5.3, the transitions between the nodes may correspond to the
natural commutation of a diode or the forced commutation due to a change in the control
signal of an active switch. We also suggested the use of separated switching module
in the real-time platform. Because of this, the transition graph may be separated in
multiple independent parts (subgraphs), where each subgraph corresponds to a particular
configuration of the active switches. In a given subgraph, the transitions correspond to

63

−
E

+
u1

u2

Figure 3.2: Half-bridge converter : the case where both u1 and u2 are active leads
to an impossibility to write the equations and must be rejected

the diodes switching in reaction to the circuit reaching a state outside of the definition
domain of its current topology. In the remainder of this section, we will show how each
subgraph is derived by studying the topologies individually. Since the method to obtain
the conditions required to jump between two discrete subgraphs is completely different
from the one used to describe the jumps inside a given subgraph, these will be studied
separately in section 3.4.

3.2.2 Drawing the transition graphs

Obtaining the transition graph for the natural switching events is quite straightforward.
The first step is obtaining a list of the nodes of the graph. For a circuit containing
nd diodes, we may define 2nd individual configurations for the state of the diodes. In
practice, the amount of topologies that may be physically reached by the circuit may be
much lower than that. Some of the switch configurations may lead to equations where
Kirchhoff’s laws cannot be applied without having an infinite current or voltage. These
topologies are against the base principles of physics and are eliminated from the list. This
is the case with the half-bridge configuration of figure 3.2 when both transistors are in the
on-state: if both switches are ideal, the voltage source is shorted, resulting in an infinite
current and in the impossibility of writing the equations. These topologies are qualified
as being unreachable. By removing all unreachable topologies from the list, we ensure
that that platform will not end in an unknown state. However, since the control signals
come from an external source, a remapping must be made to select another topology
when both control signals are active.
Normally, this event is prevented by the controller and the transistor drivers [69,70], but
this is typically a case where we might want a cross conduction to occur in order to test
a protection system. In that case, the addition of a small resistor or inductor in series
or in parallel with the switches ensures the compatibility with the Kirchhoff’s equation
for all topologies. If the converter is based on MOSFETS, the equivalent resistance may
correspond to the RDSON of the transistor.
To draw the transitions corresponding to natural commutations, we will first make two
assumptions:

• the state of the active switches does not change between the two connected topolo-
gies

• a transition always corresponds to the change of state of a single diode

64

Under these assumptions, obtaining the transitions becomes straightforward. The follow-
ing steps are executed for each admissible topology of the graph :

1. select the first diode

2. invert the state of the diode : the endpoint of the transition is the topology with
the corresponding modified switch configuration unless this topology was proven to
be unreachable during the initial enumeration of all topologies, in which case the
transition is not added to the graph

3. obtain the current condition id(k) > 0 or the voltage condition vd(k) ≤ 0 on the
diode in the initial topology by derivating its state-space equations and by isolating
the corresponding signal in the output equation y(k) = Cx(k) +Du(k)

4. the guard on the transition is the opposite of this relationship : if the diode was
conducting in the starting topology, then the guard is id(k) ≤ 0 (and vd(k) > 0 if
it was blocking)

5. select the next diode, and return to the second step

As an example, let us take the circuit represented in Figure 2.25 and assume that we
are studying the transitions leading out of the topology S00 with both diodes off. If we
change the state of the first diode, we end up in topology S10 and, since this topology
in reachable, we add the transition to the graph. To write the guard associated with the
transition, we first obtain the diode voltage vd1 in the initial topology

vd1 = V1 − vC (3.2)

The circuit will remain in S00 until vd1 > 0, at which point the newly defined transition
will be taken. Since the state of the na active switches does not change, we obtain 2na

disjoint graphs. The circuit cannot jump naturally from one of the graphs to another,
and a forced transition must be taken. These transitions are not as easy to obtain, and
will be computed in section 3.4 thanks to the introduction of a new tool.
The second assumption begets the question : what if multiple transitions are validated at
the same time? As it turns out, we can evaluate the diodes in any order and the circuit
will always end in the correct topology. This stems from the fact that, in a real circuit
operating in continuous time, the probability of two switching events happening at the
exact same time is zero, and a diode will always switch right before the other. However,
the end result is the same and both diodes will have switched after the two events have
passed. In discrete time, this means that no matter which path is taken, the correct state
will eventually be reached. This important result also means that we can study each
diode separately while assuming the other diodes stay in their current state.

Example 6. To illustrate this, let us take the graph of figure 2.26, corresponding to the
circuit of figure 2.25, and let us suppose the circuits starts in configuration S00. After
a new linear step is made, we assume that both outbound guards V1 − vC > 0 and
V2 − V1 > 0 are validated, meaning that both diodes should switch and that the circuit
should end up in S11. It may easily be shown that asserting either of these transitions
first will result in the correct transition:

65

• if V1 − vC > 0 is asserted first

– the circuit jumps to S01

– since V1 − vC > 0 and V2 − V1 > 0, then V2 − vC > 0 is validated

– the circuit jumps to S11

• if V2 − V1 > 0 is asserted first

– the circuit jumps to S10

– since V1 − vC > 0 and V2 − V1 > 0 and iL = 0 in the starting topology,
R2iL − vC + V2 > 0 is validated

– the circuit jumps to S11

This procedure actually covers more cases, since V1 > V2 > vC and V2 > vC > V1 also
lead to S11 (as they should).

Once the base graph is obtained, our new tool allows us to simplify the transitions by
removing as many unneeded transitions as possible.

3.3 Automated Natural switching exploration and

optimization

3.3.1 The need for an automated analysis tool

In section 2.6.3, we introduced a new natural switching method to avoid a delay of
multiple time steps when many diodes are switched in sequence. This method is based on
the extraction of a subgraph linking the current node to each other available node using
only the shortest path. For example, the circuit of figure 3.3a leads to the transition
graph 3.3b; which is then simplified to the subgraphs of figures 3.3c and 3.3d when
starting respectively from node S00 and S10. The evaluation of all conditions present in
the subgraph allow us to pinpoint the correct topology in a single step, at the price of
additional computations. While this may add a lot of unneccessary evaluations, we will
show that this is not neccessarily the case. For example, the following cases lead to a
reduction of the graph, reducing the total load:

• the guard linked to a transition may be repeated in multiple point of the circuit, in
which case only one evaluation is made

• a guard may be prevented from being active by other guards

• a guard may be always active

The remainder of this section will consist in a deep study of the transition graphs and the
development of optimization techniques that will allow us to remove as many unneeded
transitions and nodes as possible. We will start by first defining the reachable set of
nodes. Afterward, we will describe two types of nodes, unreachable and unstable nodes,

66

−
V1

+

iL L D1

+
vC− C R1

D2 R2

+

V2

−
(a)

S00 S01

S10 S11

d1 off, d2 off d1 off, d2 on

d1 on, d2 off d1 on, d2 on

V1 − vC > 0

V
2 −

v
C
>

0

iL − vC
R2

+
V2

R2
≤ 0

−
iL

≤
0

V
2 −

V
1
>

0

R2iL − vC + V2 > 0

V
2

R
2
−

v
C

R
2
≤

0

iL ≤ 0

(b)

S00 S01

S10 S11

d1 off, d2 off d1 off, d2 on

d1 on, d2 off d1 on, d2 on

V1 − vC > 0

V
2 −

v
C
>

0

V
2 −

V
1
>

0

R2iL − vC + V2 > 0

(c)

S00 S01

S10 S11

d1 off, d2 off d1 off, d2 on

d1 on, d2 off d1 on, d2 on

V1 − vC > 0

−
iL

≤
0

R2iL − vC + V2 > 0

V
2

R
2
−

v
C

R
2
≤

0

(d)

Figure 3.3: Example circuit and its simplified transition graphs when starting from
topology (c) S00 and (d) S10

67

−
E
+
iL1

d1

d2 d4

d3

+
vC1−

d5s5

d6s6 d8

d7iL2
+

vC2−
s8

s7

Figure 3.4: Two stage AC/DC converter

whose properties allow a reduction of the graph. Finally, we introduce a procedure to
extract all logic conditions necessary to evaluate the new state of the circuit and link the
result of the evaluation to the corresponding topology.

3.3.2 The reachability problem

To extract the list of conditions that we need to evaluate when the system starts from a
given node, we must know all nodes that may be reached in a finite time starting from
x(k). This property, known as reachability, is often studied when dealing with system
safety, to ensure that the system stays away from an unsafe state [71]. When dealing
with hybrid systems, two different types of reachability may be defined:

• the state-to-state reachability defines the set of all reachable state points x(k) start-
ing from the current state

• the node-to-node reachability defines the set of all reachable nodes in the transition
graph, starting from the current node

Among those two, the second one is obviously the more interesting for our application.
Unfortunately, this problem has been proven to be undecidable for systems with more
than two state variables, which means that the set of reachable nodes cannot be formally
computed [63,72]. To ensure safety, the reachable set is generally over-estimated by prop-
agating an approximation over successive time-steps [71, 73]. In our case, this procedure
is not as useful since it does not guarantee a minimal set of conditions to be evaluated.

Example : AC/DC Converter

The circuit of figure 3.4 provides a clear example of this problem. Let us assume that
all switches and diodes are in the off state: d5, d8 should become conducting as soon as
vC1 < vC2. However, we know that vC1 will not change its value as long as the diodes
stay in the off state and that vC2 will keep on decreasing as the capacitor is discharged
by the resistor. The switching condition will never be true, and the same reasoning can
be made for the d6, d7 pair. This rule is easy to infer using a simple reasoning, but is
very difficult to translate into an algorithm. While we could have studied the derivative
of both variables, this method is far from being universal and should be avoided.
The circuit of figure 3.4 provides a clear example of this problem. Let us assume that
all switches and diodes are in the off state: d5, d8 should become conducting as soon as
vC1 < vC2. However, we know that vC1 will not change its value as long as the diodes
stays in the off state and that vC2 will keep on decreasing as the capacitor is discharged

68

d1

d4

d2

d5

d3

d6

Figure 3.5: Three phase rectifier: the topology where only (d1, d2, d3) are on and
(d4, d5, d6) are off is unstable since the sum of their current is equal to zero

by the resistor. The switching condition will never be true, and the same reasoning can
be made for the d6, d7 pair. This rule is easy to infer using a simple reasoning, but is
very difficult to translate into an algorithm. While we could have studied the derivative
of both variables, this method is far from being universal and should be avoided.
Instead, we propose the use of a new algorithm that we build specifically to simplify
graphs corresponding to power converters based on topological and electrical rules. Our
goal is to reduce the amount of admissible nodes to a minimum, which should limit the
amount of calculations needed to select the correct node as the circuit evolves.

Unreachable and unstable nodes

Not every switch configuration is admissible as a node in the graph: some of the topolo-
gies must be rejected based on electrical rules. The rejected nodes may be put in one
of two categories. We already introduced unreachable nodes in example 3. These nodes
correspond to topologies whose state equations cannot be written because of electrical
inaccuracies, and may be safely removed from the graph.
A second class of inadmissible nodes are unstable topologies. In opposition with unreach-
able topologies, the state equations of these topologies may be written using the classical
procedure. However, they will never be observed during actual use of the converter be-
cause their definition domain is reduced to the null set. This means that when a transition
leads to an unstable topology, another transition leading out of it must be active at the
same time. These topologies are kept in the graph as transient points between two stable
topologies, but are removed from the list of possible endpoints. These special types of
topologies are studied in the next two sections

3.3.3 A method for detecting unstable topologies

Unstable nodes are detected by studying if their definition domain is reduced to the null
set. The circuit of figure 2.33a that we used to illustrate the disadvantages of a single
pass switching engine is a simple example of circuit containing unstable topologies. If we
take the topology where D1 is in the on-state while D2 and D3 are in the off-state, the
domain is defined by

iD1 = iL > 0

vD2 = RiL ≤ 0

vD3 = 0 ≤ 0

(3.3)

The first two inequalities are mutually exclusive, hence this topology is unstable.
Topology instability also happens when there are incompatibilities between two or more

69

diode currents. This is easily shown on the three-phase rectifier of figure 3.5 : assuming
the three upper diodes are in the on-state while the lower three are in the off-state, the
domain is defined by id(1,2,3) > 0, vd(4,5,6) ≤ 0. By applying Kirchhoff’s current law at the
cathode of d(1,2,3), we obtain

id1 + id2 + id3 = 0 (3.4)

At least one of the three diode currents must be negative for this equality to hold, making
this topology unstable.

We will now propose a general method to detect unstable topologies. For a topology
to be stable, all of its diode signals must remain in their definition domain. Assuming the
conditions are separated into a diode current set Ti = {id0, . . . , idni

} and a diode voltage
set Tv = {vd0, . . . , vdnv}, then any positive linear combinations of the elements of these
sets must respect the following laws

idx +

ni∑
j=0

kjidj > 0∀idx ∈ Ti

nv∑
i=0

livdi ≤ 0

−idx +

nj∑
j=0

kjidj +
nv∑
j=0

ljvdj > 0∀idx ∈ Ti

ki ≥ 0∀i
li ≥ 0∀i

(3.5)

A topology is unstable if we are able to prove that at least one of these inequalities is not
respected. To this end, we will establish an algorithm to verify if any diode current idx
may be written in the form

nj∑
j=0

kjidj −
nv∑
j=0

ljvdj = −idx (3.6)

If it is the case, then the strict inequality on the diode currents in equation (3.5) cannot
be respected for every element of Ti, and the topology is qualified as being unstable.
Since the diode signals are part of the circuit, they may be expressed in terms of states
and inputs: 

id0
...
idni

vd0
...

vdnv


= Ex+ Fu =

[
EI FI
EV FV

] [
x
u

]
(3.7)

where [EI FI] and [EV FV] are the submatrices of E and F containing only the lines
corresponding to diodes currents and voltages respectively. Since (3.6) must be true for

70

every x and u, it may be restated as finding equalities of the form

[
ET
I,0 . . . ET

I,ni
−ET

V,0 . . . −ET
V,nv

F T
I,0 . . . F T

I,ni
−F T

V,0 . . . −F T
V,nv

]


k0
...
kni

l0
...
lnv


=

[
−ET

I,x

−F T
I,x

]

ki ≥ 0∀i
li ≥ 0∀i

(3.8)

where ET is the transpose vector of E. To solve this problem, we suggest the use of the
method described in the following section. This method is based on a classical system
solver combined with a linear programming approach.

Solving a positive linear combination problem

At many points in this chapter, we will be faced with a similar problem : is a constant
vector b = (b1, . . . , bm) a positive linear combination of constant vectors contained in a
set T = (y1, . . . , yn) ? In mathematical terms, the goal is to find a set of coefficients
k = (k1, . . . , kn) such that

n∑
i=1

kiyi = b (3.9)

ki ≥ 0 ∀i (3.10)

Or, in matrix form:
Y k = by1,1 · · · y1,m

...
...

...
yn,1 · · · yn,m


k1

...
kn

 =

 b1
...
bm


ki ≥ 0 ∀i

(3.11)

Equation (3.9) is called the unconstrained problem (i.e., we do not impose any limitations
on ki), which is later bounded by (3.10) to form the constrained problem. Depending on
the b and y vectors, the unconstrained problem may have

• a single solution

• no solution at all

• an infinite amount of solutions

If the solution is unique, and if all elements of k are characterized by ki ≥ 0, then a
positive linear dependency is found between x and the elements of T . If at least one
coefficient is strictly negative, x cannot be written as a positive linear combination. The

71

second case happens when the system is inconsistent (ex

[
1
0

]
k =

[
1
1

]
), and also results in

the impossibility of writing a positive linear dependence. These two cases are studied by
solving the equation system corresponding to the unconstrained problem. This is done
using well known linear algebra methods such as Gauss-Jordan elimination [74].
At this point, the only remaining problem is the situation where the linear system is
under-constrained, leading to an infinite number of solutions for k. In this case, (3.11)
defines a convex polytope in Rm. If the definition domain of this polytope includes any
point where k ≥ 0, then a positive linear dependence exists. Note that we do not need to
know the exact value of k: the knowledge that such a solution exists (or does not exist)
is enough.
To this end, we suggest the use of a method based on Danzig’s simplex algorithm. The
simplex algorithm is a well known linear programming method used to optimize (ie.
minimize or maximize) a linear cost function

f(x1, . . . , xn) =
n∑
i=1

cixi (3.12)

Under a set of linear constraints

Ax = ba1,1 . . . a1,n
...

...
...

am,1 . . . am,n


x1

...
xn

 =

 b1
...
bm


x1 . . . xn ≥ 0

(3.13)

The algorithm works by starting from an initial value of x that respects all constraints
but does not provide the optimal value for f , and then moving along the polytope defined
by (3.13) until the optimum is reached.
Comparing (3.11) and (3.13), we remark that our problem of searching positive values
for the elements of the k and l vectors is similar to the search of the starting point of the
associated simplex. If such a point exists, then it is necessarily satisfies all constraints
defined by (3.11) and proves the existence of a positive linear dependence. In linear
optimization, this starting point is knows as the initial basic feasible solution, and is
found using one of the multiple algorithms developed to solve the problem. Among these
algorithms, the dual phase simplex is one of the easiest to implement.
To use the dual phase simplex, we first introduce a vector k′ =

[
k′1, . . . , k

′
m

]
of artificial

variables such that

Y k + k′ = xy1,1 · · · y1,n
...

...
...

ym,1 · · · ym,n


k1

...
kn

+

k
′
1
...
k′m

 =

 b1
...
bm


ki ≥ 0∀i
k′i ≥ 0∀i

(3.14)

72

Without loss of generality, we assume bi ≥ 0 ∀i. This is not a problem since we can
multiply any line by −1 beforehand. We also introduce the cost function

f(k′) =
m∑
i=1

k′i (3.15)

The introduction of these variables allows us to clearly identify k′ = b as an initial feasible
solution. The traditional simplex algorithm is then used to minimize f(k′). If we are
able to reduce the value of this function to f(k′) = 0, implying that k′i = 0∀i, then
the corresponding k ≥ 0 is also a solution to the starting problem and a positive linear
dependency exists between T and b.

Example 7. As an example, we want to assert if the current id = −2iL1 + 2iL2 is a
positive linear combination of the members of the set T = {id1, id2, id3} where

id1 = iL1

id2 = iL2

id3 = −2iL1 + iL2

(3.16)

which maps to the system [
1 0 −2
0 1 1

]k1

k2

k3

 =

[
−2
2

]
(3.17)

This system in under-constrained and admits an infinite number of solutions for k. To
verify if any of the solutions is admissible, we first multiply the first line by −1 and
introduce the artificial vector k′ = [k′1, k

′
2] in order to setup the linear programming

problem [
−1 0 2
0 1 1

]k1

k2

k3

+

[
k′1
k′2

]
=

[
2
2

]
k1, k2, k3, k

′
1, k
′
2 ≥ 0

min k′1 + k′2

(3.18)

The simplex may now be started, using k′ = [2, 2] as the initial feasible solution. After a
few iterations, the algorithm converges to

k1

k2

k3

k′1
k′2

 =


0
1
1
0
0

 (3.19)

Since k′ = 0, the coefficients of k are also a solution to the original system and show
a positive linear dependency between T and id. Note that there are multiple solutions
to this problem, and the exact value depends on the order in which the variables are
eliminated by the simplex. More precisely, any triplet such that

k1 = −2 + 2k3

k2 = 1− k3

−1 ≤ k3 ≤ 1

(3.20)

73

is a feasible solution.
We will now apply the same procedure to the following system

[
−1 0 −2
0 1 1

]k1

k2

k3

+

[
k′1
k′2

]
=

[
2
2

]
k1, k2, k3, k

′
1, k
′
2 ≥ 0

min k′1 + k′2

(3.21)

The simplex converges to 
k1

k2

k3

k′1
k′2

 =


0
2
0
2
0

 (3.22)

The minimal value obtained by the simplex is greater than zero, hence no positive linear
dependence exists.

Example 8. Let us return to the three-phase circuit of figure 3.5. To study the presence
of linear dependence, we first need to write the measurement equation 3.7 for the diode
signals. For the topology where (d1, d2, d3) are on and (d4, d5, d6) are off, these are


id1

id2

id3

vd4

vd5

vd6

 =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 −1 0 0 0
0 0 0 −1 0 0 0





iL1

iL2

iL3

vC
E1

E2

E3


=


1 0 0
0 1 0
−1 −1 0

0 0 −1
0 0 −1
0 0 −1


iL1

iL2

vC

 = H

iL1

iL2

vC

 (3.23)

The second equality is obtained by noting that iL1+iL3+iL3 = 0, and by deleting columns
without non-zero elements. To assert if the topology is unstable, we write the problem
in the form of (3.11) with id1 at the right hand side of the equations:

0 −1 0 0 0
1 −1 0 0 0
0 0 1 1 1



k1

k2

l1
l2
l3

 =

−1
0
0

 (3.24)

solving the system leads to k1 = k2 = 1 and l1 + l2 + l3 = 0. The second equation is
solved using the simplex [

1 1 1
] l1l2
l3

 = 1

li ≥ 0

min l1 + l2 + l3

(3.25)

74

S000 S100 S110 S111

S010 S101

S001 S011

E > 0 RiL > 0
R
2 iL > 0

R
3 iL ≤ 0R

2 iL ≤ 0RiL ≤ 0

R
3 iL ≤

0

R
3 i

L ≤
0

0
≤
0

0 ≤
0

0 ≤
0

0
≤
0

0
≤
0

0 ≤ 0

R
2 i
L ≤

0

Figure 3.6: Transition graph of the circuit of figure 2.33a, where dashed nodes are
unstable. Transition guards of the form 0 > 0 have been removed for clarity.

which has an immediate solution in l1 = l2 = l3 = 0. A positive linear dependence is
established between −i1 and the other vectors, and the topology is unstable. The result
would have been the same if we had taken i2 or i3 as the right hand side variable.

Example 9. A second example of unstable topologies may be shown using the circuit of
figure 2.33a. This circuit was used previously to show the impact of the diode switching
module on the system, and we will now show that deleting unstable topologies allows us
to find the correct node in one step without adding any complexity. We will first show
that any topology where one or two of the diodes are in the on-state is unstable.
For the topology where (d1, d2, d3) = (1, 0, 0), the diode signals arevd2

vd3
id1

 =

R 0
0 0
1 0

[iL
E

]
= H

[
iL
E

]
(3.26)

Selecting id1 as the tested variable, we obtain the system[
−R 0
0 0

] [
l1
l2

]
=

[
−1
0

]
(3.27)

which is easily solved and results in l1 = 1/R, l2 = 0. Again, the corresponding topology
in unstable The topology (d1, d2, d3) = (1, 1, 0) in unstable for the same reason; and all
topologies where d1 is off while either d2 or d3 is on is unstable because the current across
the diode is equal to zero, ie. the system[

id2

−vd1

] [
k1

l1

]
= −id3 (3.28)

is solved for k1 = l1 = 0. The transition graph of this circuit is drawn in figure 3.6,
where the unstable topologies are represented by dashed nodes. A crucial information to
take away from this graph is that almost all topologies are unstable, which means that

75

Table 3.1: Natural commutation table for the graph of figure 3.6

Starting Topology E > 0 iL ≤ 0 New Topology
S000 1 - S111

S000 0 - S000

S111 - 1 S000

S111 - 0 S111

−
E

+
u1

u2

(a)

J

u

(b)

Figure 3.7: Examples of circuits containing at least one unreachable topology

it may be greatly simplified. If we start in S000 and the input voltage becomes negative,
we should switch to S100. But, since this topology is unstable, it will instantly switch to
S110 and then to S111. Similarly, if we start in topology S111 and the inductor current
becomes positive, the chain of unstable topologies will ultimately lead to S000.
Thus, the whole graph may be simplified to Table 3.1. At any time, the evaluation of a
single transition gives the final result in one step. This simple graph could be simplified
just by looking at it, but bigger circuits may lead to large graphs that necessitate the
help of a computer to be parsed.

The study of unstable topologies allows us to reduce the system complexity by re-
moving the unnecessary transitions from the graph, leading to fewer signals to compute
in real-time. In some cases, like the circuit studied in the second example, the reduction
removes the majority of the available topologies and reduces the graph to a single if-else
statement.

3.3.4 Unreachable topologies

The detection of unreachable topologies happens early in the compilation process, when
the equations for each switch combination are extracted. When faced with a situation
where Kirchhoff’s equations cannot be written, the topology is marked as unreachable
before even drawing the transition graph. The most common cause is the shorting of a
voltage source like in figure 3.7a with both transistors on or putting a current source in
series with an open circuit like in figure 3.7b with both the transistors and the diode off.
Those topologies are unreachable because the switches annd the sources are ideal. This
behavior may be avoided by modeling the switches by their non-ideal form, or by adding
stray inductors and resistors.
Note that shorting a capacitor or opening an inductive branch does not generate an

76

d1

d2

(a)

ds

(b)

Figure 3.8: Examples of circuits with conditional unreachability. (a) Only the
topologies where d1 and d2 are in the same state are kept (b) The topology with s
and d on is marked as unreachable

unreachable topology, but rather forces the associated state variable to zero. This happens
when a converter is used in discontinuous conduction mode.

Conditional unreachability

The previous section dealt with topologies that were intrinsically unreachable, meaning
that they were rejected because of their own equations. We will now study topologies
that are unreachable because they are always superseded by another one. Let us start
with the example of the two-diodes circuit of figure 3.8a. If a single diode is in the on
state, it carries a current equal to I while the other one perceives a zero voltage. If, on the
other hand, the two diodes are conducting they both carry a current equal to I

2
. These

three topologies are equivalent for all purposes, and we are free to select of them while
marking the other two as unreachable. The most natural choice is to keep the topology
were both diodes are conducting, since it corresponds to the behavior the would be seen
on the real circuit equivalent.
A second example of conditional unreachability is illustrated by the circuit of figure 3.8b
containing an ideal controlled switch in parallel with a diode, which could be seen as an
idealized MOS transistor. If the controlled switch is put in the on state and the diode is
blocking, the voltage across the diode is again equal to zero, meaning that it will never
switch to the on state. Thus, the topology where both switches are active may be safely
marked as unreachable, even if it was technically stable.

3.3.5 Graph exploration and simplification

Removing all unreachable nodes from the graph provides us with a reduced (but valid)
representation of the circuit behavior. We may now parse it in order to extract the
transitions that must be evaluated and the link between the result of the evaluation and
the final topology while removing all unneeded computations.
This process consists in three main steps that are repeated for each starting topology:
first, we find the graph that contains the shortest path from the starting topology to
each other stable node. Then, this graph is parsed a first time to remove all unstable
nodes and associated transitions. Finally, we remove all unneeded transitions and build
the final logic equations linking the nodes.
These steps are described individually in the next sections, starting with the extraction
of the minimal graph from the complete system.

77

Drawing the reduced graph

As was shown in example 4, each starting topology possesses its own switching graph,
extracted from the main transition graph. This subgraph is obtained by keeping the
shortest path (or paths) leading from the starting topology to each of the other stable
topologies in the graph. The reasoning behind this is that a single diode should not
switch twice in response to a single event. At this point, the graph may still contain
unstable nodes as intermediary topologies along the path.
This process is implemented using a variation of Dijkstra’s algorithm for finding the
shortest path between two nodes of a directed graph [75]. While this algorithm is neither
the fastest nor the most memory-efficient compared to other pathfinding approaches like
the Bellman-Ford algorithm [76] or Yen algorithm [77], it is very easy to implement
and customize to our needs. Furthermore, the graphs are very small compared to the
computer networks, that may contain tens of thousands of nodes, found in the classical
use of these algorithms. Before explaining our approach, we first define the weight of a
node as the amount of discrete transitions needed to go from the starting node (called
the root) to this node. The reduced graph is then built using an iterative approach.

1. The current minimal graph is set to contain the root only.

2. The weight of each node not in the minimal graph is set to an arbitrarily large value
(any number larger than the number of nodes) .

3. For each transition leading out of the nodes contained in the current minimal graph,
we compute the weight of the node at the other extremity. Transitions between two
nodes of the minimal graph are kept only if the computed weight is equal to the
previous weight (corresponding to different minimal paths between two nodes).

4. The node with the minimal weight is selected. If this weight is equal to the pre-
viously set large value (ie. no new transition may be added), then the end of the
algorithm is reached. If this is not the case then both the node and the correspond-
ing transition are added to the minimal graph, and the algorithm returns to the
second step.

The output of this algorithm is the incidence matrix A whose elements are defined by as
Aij = 1 if a transition from node i to node j is found in the reduced graph, otherwise
Aij = 0.

Example 10. Our algorithm will now be used to parse the graph of figure 3.9a, with
node S0 as the root. The figures 3.9b through 3.9f show the step by step progress of the
pathfinding algorithm. There are two independent paths of equal length leading to S2,
and both are kept by the shortest path algorithm. The corresponding incidence matrix
is

A =


0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 (3.29)

The subgraph is now ready. The next section will introduce a set of properties asso-
ciated with the transition, before using these results to further reduce the graph.

78

S0 S1

S2 S3

S4

0 ∞

∞ ∞

∞

t01

t
1
3

t32

t
2
0 t 0

2

t23

t
3
1 t34

t 4
3

t10

(a)

S0 S1

S2 S3

S4

0 1

∞ ∞

∞

t01

t 1
3

t32

t
2
0 t 0

2

t23

t
3
1 t34

t 4
3

t10

(b)

S0 S1

S2 S3

S4

0 1

1 ∞

∞

t01

t 1
3

t32

t
2
0

t
0
2

t23

t
3
1 t34

t 4
3

t10

(c)

S0 S1

S2 S3

S4

0 1

1 2

∞

t01

t
1
3

t32

t
2
0

t
0
2

t23

t
3
1 t34

t 4
3

t10

(d)

S0 S1

S2 S3

S4

0 1

1 2

∞

t01

t
1
3

t32

t
2
0

t
0
2

t23

t
3
1 t34

t 4
3

t10

(e)

S0 S1

S2 S3

S4

0 1

1 2

3

t01

t
1
3

t32

t
2
0

t
0
2

t23

t
3
1 t34

t 4
3

t10

(f)

Figure 3.9: Usage of the pathfinding algorithm, where the bold items are part of
the reduced graph

79

Some properties of the transitions

The nodes of the graph are linked by the transitions, each associated to a guard carrying
a condition. These conditions are naturally the exact opposite of those used to define the
definition domain of the node at the origin of the transition. A transition is validated if
the corresponding condition is True, otherwise it is invalid. If, for instance, the transition
corresponds to a diode switching from the on state to the off state, the guard carries
a condition based on a current. More precisely, it corresponds to the diode current
becoming negative, and hence the condition is of the form

id =
[
E F

] [x
u

]
≤ 0 (3.30)

On the other hand, a transition corresponding to a diode switching to the on state will
carry a condition based on a voltage of the form

vd =
[
E F

] [x
u

]
> 0 (3.31)

The various transitions are separated into four sets :

• TI is the set of valid transitions whose condition is based on a current

• T ′I is the set of invalid transitions whose condition is based on a current

• TV is the set of valid transitions whose condition is based on a voltage

• T ′V is the set of invalid transitions whose condition is based on a voltage

The study of these sets provides us with interesting properties. Let us take TI =
{id1, . . . , idn} as an example. Each element of the set must obey (3.30). The same is
true for any positive linear combination of the included diode currents :

n∑
j=1

kjidj ≤ 0

kj ≥ 0∀j
(3.32)

Since this condition must be true for all values of x and u, we can also write

[
ET

1 . . . ET
n

F T
1 . . . F T

n

]k1
...
kn

 ≤
0

...
0

 (3.33)

where ET
j is the transpose of the E vector of the jth current of the set. The vector

inequality means that each row, taken individually, is equal to or less than zero.
The same reasoning may be applied for the currents included in the T ′I set. Since these
currents are supposed to be strictly positive, we may write∑

idj∈T ′I

k′jidj > 0

k′j ≥ 0∀j
(3.34)

80

with the additional constraint that at least one of the k′j must be strictly positive. This
leads to [

ET
1 . . . ET

n

F T
1 . . . F T

n

]k
′
1
...
k′n

 >
0

...
0

 (3.35)

By repeating the same process to the two other sets, we obtain :∑
idj∈TI

kjidj ≤ 0

∑
idj∈T ′I

k′jidj > 0

∑
vdj∈TV

ljvdj > 0

∑
vdj∈T ′V

l′jvdj ≤ 0

kj, k
′
j, lj, l

′
j ≥ 0∀j

(3.36)

Furthermore, we may also combine the two valid sets TI and TV to write∑
idj∈TI

kjidj −
∑
vdj∈TV

ljvdj ≤ 0

kj, lj ≥ 0∀j
(3.37)

and, of course ∑
vdj∈T ′V

l′jvdj −
∑
idj∈T ′I

k′jidj ≤ 0

k′j, l
′
j ≥ 0∀j

(3.38)

These relations will prove to be very helpful when attempting to reduce the graph.

Parsing of the graph

The next section will introduce reduction techniques based on the knowledge of the valid
sets TV , TI and the invalid sets T ′V , T

′
I . These sets are completed during the parsing of

the graph using the following recursive algorithm :

1. All sets are assumed to be empty, and the current node Sx is set to the root node

2. For each transition leading out of Sx, repeat these steps :

(a) The transition is added to the valid set TV or TI

(b) Change Sx to the node at the end of the transition and return to step 2 with
the new node

(c) When the algorithm returns, remove the transition from the valid set and add
it to the corresponding invalid set T ′V or T ′I

81

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(a) Sx = S0

TV = ∅, TI = ∅
T ′V = ∅, T ′I = ∅

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(b) Sx = S1

TV = {t01}, TI = ∅
T ′V = ∅, T ′I = ∅

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(c) Sx = S2

TV = {t01}, TI = {t12}
T ′V = ∅, T ′I = ∅

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(d) Sx = S3

TV = {t01}, TI = {t13}
T ′V = ∅, T ′I = {t12}

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(e) Sx = S1

TV = {t01}, TI = ∅
T ′V = ∅, T ′I = ∅

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(f) Sx = S0

TV = ∅, TI = ∅
T ′V = ∅, T ′I = ∅

Figure 3.10: Example of parsing a graph, showing how the various sets are com-
pleted and depleted as the algorithm progresses

3. remove all transitions leading out of Sx from the valid and invalid sets

4. If the current node is the root node, the parsing is complete. Else, return to the
previous node

This algorithm is illustrated by the steps shown on figure 3.10. We first assume that
we start in topology S0 with all the T sets initially empty. The first step is to use the
transition t01 to change from S0 to S1. By doing so, we add t01 to TV since the guard
associated to the transition corresponds to a voltage. If we were to study the stability
or the reachability of topology S1 (see next sections), we would use the current value of
the T sets. This process is repeated to go from S1 to S2 : the transition t12 is added
to TI since it carries a current-based condition while TV in unchaged. These new sets
would be used if topology S2 was studied. Since S2 is the end of the path, we return to
S1 to study the second branch. Before going from S1 to S3 , we first add t12 to T ′I since

82

S0 S1 S2 S3

S4

t01 ≡ v1 > 0 t12

t23 ≡ v1 > 0

t24

(a)

S0 S1 S3

t01 ≡ v1 > 0 t12

(b)

Figure 3.11: Example of a path with an conditionally unstable node (S2 in (a)) :
the graph may be reduced to the one shown in (b)

this transition corresponds to a path which was already studied. Then, we add t13 to TI
and move to S3. Since the TV , TI , T

′
I , T

′
V set are now obtained for all the topologies, the

parsing is complete.
While this parsing does not modify the graph by itself (and indeed, the first and last
steps of Figure 3.10 are exactly the same), this method provides us with a standard way
to recursively study the graph. The reduction methods introduced in the next sections
will call various functions at each step of the parsing to eliminate of fuse some of the
transitions based on the T sets of the current topology.

Conditional instability

The first step taken to reduce the complexity the graph is to detect all transitions that are
always validated when the system starts from a given node. The identification of these
transitions allows us to bypass some nodes completely and to remove many transitions
along the way.
The graph presented in figure 3.11 provides a simple example : both t01 and t23 carry the

condition v1 > 0. If the process jumps from S0 to S1 and then to S2, which means that
both t01 and t12 are valid, we are certain that t23 will be validated as well. In response,
S2 may be treated as an unstable node. Furthermore, all other transitions leading out of
S2 are removed since the system is guaranteed to take the transition t23. This behavior
is called conditional instability.
To detect conditionally unstable nodes, we use an algorithm similar to the one used to
detect unstable nodes in section 3.3.3. As a reminder, the transitions correspond to a
single diode changing its state either because the current becomes negative, or because
the voltage becomes strictly positive.
The transitions contained in the path leading from the root node to the current node Sx
are, by definition, already validated. It follows that the sets TV and TI are composed
of the conditions corresponding to these transitions. We now use the relations defined
in (3.36) and (3.37). We assume the valid sets are defined as TV = {vd1, . . . , vdnv} and
TI = {id1, . . . , idni

}. Let us examine first the case of a current-based transition idx leading

83

out of the node Sx. We verify if we can write an identity of the form∑
idj∈Ti

kjidj −
∑
vdj∈Tv

ljvdj = idx

kj, lj ≥ 0∀j
(3.39)

Since the left side of this equation is always less or equal to zero, this identity implies
that the transition will always be valid. At that point, Sx is considered as conditionally
unstable: the system cannot remain in this node and will jump to another node using
the studied transition.
All the transitions correspond to diode signals, which we write in state-space form :[

id
vd

]
=

[
EI FI
EV FV

] [
x
u

]
idx =

[
EI,x FI,x

] [x
u

]
(3.40)

Since (3.39) must hold for all x and u, the problem is restated as finding positive kj, lj
coefficients such that[

ET
I,1 . . . ET

I,ni
−ET

V,1 . . . −ET
V,nv

F T
I,1 . . . F T

I,ni
−F T

V,1 . . . −F T
V,nv

] [
kT

lT

]
=

[
ET
I,x

F T
I,x

]
kj, lj ≥ 0∀j

(3.41)

This problem is solved using the simplex procedure described in section 3.3.3. If a set
of positive coefficients is found, the graph is simplified as shown in figure 3.11b : the
node at the origin of the studied transition is completely bypassed since we know that
the transition will be valid. Furthermore, we do not need to keep the transition in the
graph anymore.
The same reasoning is made if the guard carries a voltage-based condition vdx > 0: we
try to find an identity of the form ∑

vdj∈Tv
ljvdj = vdx

lj ≥ 0∀j
(3.42)

The left side is strictly positive, and this relation insures it is the same for vdx. As
an additional constraint, at least one of the coefficients must be strictly positive (ie.

vdx 6=
[
0 0

] [x
u

]
). This is equivalent to solving the following problem :

[
ET
V,1 . . . −ET

V,nv

F T
V,1 . . . −F T

V,nv

] l1...
lnv

 =

[
ET
V,x

F T
V,x

]
lj ≥ 0∀j

(3.43)

The result is the same : if we are able to find a set of positive coefficients, the topology
is bypassed.

84

S0 S1 S2 S3

S4

t01 ≡ v1 > 0 t12

t23 ≡ 0 > 0

t24

(a)

S0 S1 S2 S3

S4

t01 ≡ v1 > 0 t12 ≡ v2 > 0

t23 ≡ −v1 − v2 > 0

t24

(b)

Figure 3.12: Examples of paths with conditionally unreachable nodes (S3 in this
case)

Conditional unreachability

In contrast with the previous section, we will now study transitions that are never vali-
dated. Since these transitions are never crossed they are simply removed from the graph.
Two basic examples are given in figure 3.12. In the case of Figure 3.12a, the transition
t23 has the guard 0 > 0, which cannot be validated. In figure 3.12b, the transition t23

will never be valid because its guard is in direct contradiction with t01 and t12 that are
earlier in the path and are supposed true when the path reaches S2. In both cases, the
node S3 may be removed from the path.
This behavior, known as conditional unreachability, is identified by comparing a transi-
tion and all its predecessors currently in the path. The predecessors must obey (3.36),
and these rules will be used to test the compatibility of the studied transition. Assum-
ing a transition corresponding to a diode voltage and carrying a condition of the form
vdx > 0, we try to find k =

[
k1, . . . , knv

]
and l =

[
l1, . . . , lni

]
such that∑

vdj∈TV
kjvdj −

∑
idj∈TI

ljidj = −vdx

kj, lj ≥ 0∀j
(3.44)

According to (3.37), vdx ≤ 0 and the transition will never be validated. This is equivalent
to verifying if the following system possesses a valid solution[

ET
V,1 . . . ET

V,nv
−ET

I,1 . . . −ET
I,ni

F T
V,1 . . . F T

V,nv
−F T

I,1 . . . −F T
I,ni

] [
kT

lT

]
=

[
−ET

V,x

−F T
V,x

]
kj, lj ≥ 0∀j

(3.45)

The figure 3.13 shows another cause for the conditional unreachability of a transition.
During the parsing of the graph, we will have at one point T ′I = {t12, t13} while studying

85

S0 S1 S3

S2

S4

t01 ≡ v1 > 0

t12
≡ i2 ≤

0

t13 ≡ i3 ≤ 0

t14 ≡ i2 + i3 ≤ 0

Figure 3.13: Another example where S4 is conditionally unreachable, this time
because of the invalid set

t14. Using (3.36), we obtain
i2 + i3 ≤ 0 (3.46)

which means that the condition associated with t14 will never be true and the transition
may be safely removed from the graph.
Again, this study is easily put into more general terms, as any guard that may be written
as a positive linear combination of transition guards included in T ′V or T ′I will never be
validated. If the transition carries a condition based on a voltage vdx > 0, we try to find
positive coefficients such that ∑

vdj∈T ′V

l′jvdj −
∑
idj∈T ′I

k′jidj = vdx

k′j, l
′
j ≥ 0∀j

(3.47)

According to (3.38), the left side is negative, which means that the condition is never
true and the transition is removed. A transition based on a current idx ≤ 0 results in
solving ∑

idj∈T ′I

k′jidj = idx

k′j ≥ 0∀j
(3.48)

The results of this method are highly dependent on the order in which the transitions
are studied. If we had studied t14 first, then t13 and finally t12 in 3.13, we would not
have detected any identity of the form defined by (3.48) and no transition would have
been removed. This issue is easily solved by slightly modifying the parsing algorithm :
for each transition leading out of Sx, do the following :

1. add all other transitions leading out of Sx to the invalid sets T ′V or T ′I

2. attempt to find an identity of the form (3.47) or (3.48)

3. if an identity is found, we modify the parsing order so that the transition is now
studied last. It will then be removed by the normal process

86

S0 S1 S2

t01 t12

(a)

S0 S1

t01

(b)

S0 S1 S2

t01 t12

(c)

S0 S2

t01

(d)

Figure 3.14: Basic example of removal of an unstable node if the graph

S0 S1 S3

S2 S4

t01

t12

t13

t24

(a)

S0 S2 S3

S4

t01 t13

t24

(b)

Figure 3.15: Removal of an unstable node with multiple choices : S1 is replaced by
S2 and the transition t12 is removed

Unstable nodes removal

The final simplification step consists in the removal of unstable topologies from the graph.
The core principle of this process is that if an active transition leads to an unstable topol-
ogy, there must be at least one active transition leading out of it. We use this fact to our
advantage to reduce the number of evaluations, as we will show with a couple examples.
The first case is represented in figure 3.14a, with an unstable topology placed at the end
of the path. This is the easiest case to deal with, and the topology is removed from the
graph along with the corresponding transition, obtaining the graph of figure 3.14b.
For the second case, let us assume that the transition graph for the topology S0 is repre-
sented on figure 3.14c: the path leading out from S0, assumed to be the starting topology,
first goes to the unstable node S1 before reaching S2. If S1 was stable, we would have
to evaluate both t01 and t12 and select the correct topology accordingly. However, since
S1 in unstable, there is no need to evaluate t12 : if t01 is validated, the circuit jumps to
topology S1, and next instantly to S2. This effectively means that S2 is put in place of
S1, as shown in figure 3.14d. A similar reasoning is made for the graph of figure 3.15a:
assuming t01 is validated, we know that either t12 or t23 is valid. This means that we
only need to evaluate one of these conditions to know whether the graph jumps to S2 or
S3. Again, this is represented by putting one of these nodes in place of S1, removing a
transition in the process. The result is shown in figure 3.15b, where we chose to move
S2. With this change, we were able to remove t12.
This modification is performed during a parsing of the graph. Assuming that a path
leads from a stable topology Sx to an unstable topology Sy using the transition txy, the

87

following steps are followed: if Sy has no outbound transition, remove txy from the graph.
If Sy possesses outbound transitions, perform the following:

1. select the first transition, assumed to lead to node Sz

2. remove this transition from the graph

3. modify the graph so that txy leads to Sz instead

4. add all other transitions leading out of Sy to Sz

The graph is now fully optimized, and is ready for its implementation.

3.3.6 Writing the results in tables

Once the steps described in the previous section are performed, the reduced subgraph is
finally ready to be converted to two tables describing the behavior of the system:

• the first table Tcond links the current topology to the list of guard conditions to be
evaluated

• the second table Ttopo links the result of the evaluation to the final topology

These two tables are easily obtained during a final parsing of the graph. Each root
topology Si (and hence each subgraph) is represented by its own entries Tcond,i, Ttopo,i in
the tables. The procedure from section 3.3.5 is rewritten here in its completed version;
the new steps are highlighted in bold.

1. All sets are assumed are empty, and the current node Sx is set to Si

2. Initialize Tcond,i, Ttopo,i to an empty set, and start parsing the graph nor-
mally

3. For each transition leading out of Sx, repeat these steps :

(a) The transition is added to the valid set TV or TI

(b) Add the transition to Tcond,i

(c) Change Sx to the node at the end of the transition and return to step 2 with
the new node

(d) When the algorithm returns, remove the current transition from the valid set
and add it to the corresponding invalid set T ′V or T ′I

4. create an entry in Ttopo,i of the form [valid, invalid, Sx] where valid and
invalid are respectively the list of transitions in the valid and the invalid
sets at the moment

5. remove all transitions leading out of Sx from the valid and invalid sets

6. If the current node is the root node, the parsing is complete. Else, return to the
previous node

88

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(a) Sx = S0

Tcond,0 = ∅
Ttopo,0 = ∅

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(b) Sx = S1

Tcond,0 = {t01}
Ttopo,0 = ∅

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(c) Sx = S2

Tcond,0 = {t01, t12}
Ttopo,0 = {(t01 ∧ t12,∅, S2)}

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(d) Sx = S3

Tcond,0 = {t01, t12, t13}
Ttopo,0 = {(t01 ∧ t12,∅, S2),

(t01 ∧ t13, t12, S3)}

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(e) Sx = S1

Tcond,0 = {t01, t12, t13}
Ttopo,0 = {(t01 ∧ t12,∅, S2),

(t01 ∧ t13, t12, S3)
(t01, t12 ∧ t13, S1)}

S0 S1 S2

S3

t01

vd1 > 0

t12

id2 ≤ 0
t13id3 ≤
0

(f) Sx = S0

Tcond,0 = {t01, t12, t13}
Ttopo,0 = {(t01 ∧ t12,∅, S2),

(t01 ∧ t13, t12, S3)
(t01, t12 ∧ t13, S1),

(∅, t01, S0)}

Figure 3.16: Writing the switching tables for the graph of Figure 3.10. The ∧
operator is the logical and, ∅ is the null set. The bold arrows represent the evolution
of the parsing of the graph

89

Table 3.2: Binary commutation table for the graph of figure 3.16, starting from S0

t01 t12 t13 New Topology
1 1 - S2

1 0 1 S3

1 0 0 S1

0 - - S0

The steps are illustrated in figure 3.16, showing how the graph of figure 3.10 is converted
to the two tables Tcond,0 and Ttopo,0. The table Ttopo,0 starts to be filled during step (d).
When the design is ported on the real-time platform, the result of the evaluation of the
conditions is directly linked to the new topology using the entries [valid, invalid, Sx] : if
all conditions in the valid are evaluated as true and all conditions in invalid are evaluated
as false, Sx is selected as the new topology. For example the entry (t01∧t13, t12, S3) means
that S3 is selected when the transitions t01 and t13 are validated and t12 is not validated.

These results are easily translated to a binary table, as shown on Figure 3.2 where ′−′
corresponds to a don’t care, which means that the result of the evaluation of the transition
has no impact on the selection. On the platform, we will have to assign 1 if a condition
is evaluated as true, and 0 otherwise. By comparing the resulting binary vector with the
table, we are able to select the correct topology.

The two tables conclude the natural switching analysis. Additional processing is
needed to properly convert the tables to a format understood by the real-time platform.
These steps are described in section 5.3.4.

3.4 Automated Forced switching exploration and op-

timization

3.4.1 Introduction

In section 2.6.4, we introduced the forced switching module and gave a brief explanation
of its inner workings. When the state of an active switch is changed, we must control all
diodes to ensure that the circuit lies in a topology whose diode signals are within their
specified bounds. This means that we have to test all topologies whose active switches
are in the correct state to verify if the current value of the state and input variables lies
in the definition domain, and select the topology for which this test is verified. Moreover,
this topology must guarantee the continuity of all state variables.
The selection process is similar to the one used for the natural switching module: we
select the set of conditions that have to be evaluated, depending on the current topology
as well as on the new state of the active switches. The state of the diodes is then deduced
from the result of the evaluation.

Example 11. We shall provide a simple example, using the circuit of figure 3.17. Let
us assume that the active switch K commutates from on to off : D1 and/or D2 will have

90

−
V1

+

iL L D1

+
vC− C R1

D2 R2

+

V2

−
uK

Figure 3.17: Modified boost circuit used to illustrate the topology selection process

to be switched, leading to a new topology whose diode voltages and/or currents are all
within their bounds. The case where both diodes are off is ignored, since this would
force the inductor current iL to zero. The definition domain of the other topologies are:

• for D1 on, D2 off:
iD1 = iL > 0

vD2 = V2 − vC ≤ 0
(3.49)

• for D1 off, D2 on:
vD1 = V2 +R2iL − vC ≤ 0

iD2 = −iL > 0
(3.50)

• for D1 on, D2 on:

iD1 = iL +
V2 − vC
R2

> 0

iD2 =
V2 − vC
R2

> 0

(3.51)

The correct topology is then selected based on the evaluation of the conditions. Since
the value of the signals change over time, this test must be made in real-time.

The next section will introduce a method to automatically find the set of conditions
to evaluate. Furthermore, and just like we did during the natural switching analysis, we
will show that this set may be largely reduced (in some cases to nothing) thanks to some
interesting properties described in section 3.4.2.
Let us give an example by assuming that the circuit of Figure 3.17 starts in the topology
(K,D1, D2) = (on, off, off) and that the switch K is suddenly turned off. The definition
domain of the starting topology is

vC ≥ 0

V2 ≤ 0
(3.52)

Hence, the second condition of (3.51) can not be true and the corresponding topology
does not have to be considered as an acceptable choice of topology. Furthermore, the
second condition of (3.49) is always true and must not be evaluated. The same reasoning
is made for (3.50) : assuming −iL < 0, the condition on vD1 is also verified. As a
consequence, the evaluation of vD1 is not necessary. After these optimizations, only two
conditions remain: iL > 0 and −iL > 0.

91

3.4.2 Analysis

General principles

When the state of an active switch is changed, the system goes from one subgraph to
another, and our goal is to find which node is the correct one in the new subgraph. The
graph parsing algorithm introduced in section 3.3 cannot be used directly, since it requires
the knowledge of a starting node inside the new subgraph. As discussed previously, we
cannot simply change the value of the active switches and use the resulting topology as
the starting node since it might be unreachable, meaning that its equations cannot be
written. Even if the topology is reachable, an incorrect choice could well lead to incoherent
signals in the circuit. Indeed, any instantaneous modification of the states would lead to
virtual Dirac pulses across the circuit according the state evolution equation

dx

dt
= Ax+Bu⇒ Ax+Bu = δ(t) (3.53)

These pulses do not bear any physical meaning and do not happen in the real circuit.
They may however be used as a tool to converge to the correct topology, as described in
multiple articles (to cite a few: [16, 36, 38, 78]). Let us look at the circuit of figure 3.17.
We assume that the active switch K is suddenly opened at time t0− . We have to find the
correct configuration of the diodes. One of the choices is the topology with all switches
off. For this topology, we write

vd1 = V1 − vL − vC
vd2 = −V1 + vL + V2

(3.54)

Opening all switches does not leave any path for the inductor current, forcing the creation
of Dirac pulses in the circuit:

vd1 = V1 + LiL(t0−)δ − vC
vd2 = −V1 − LiL(t0−)δ + V2

(3.55)

Since Dirac pulses are supposed to have an infinite value, we only need to keep the impul-
sive part of these equations. The voltage vd1 becomes infinitely positive (for an infinitely
small period of time), forcing d1 to switch to the on state.
This method effectively implements the forced switching module using an approach sim-
ilar to the natural switching module, jumping from node to node until all diode signals
are within their designated limits. Its biggest difficulty lies in writing of (3.55), relying
on a modified state-space of the form

y(t) = Cx(t) +Du(t) + E
dx

dt
(3.56)

This form is not compatible with the other parts of our system, and requires a modification
of the state-space solver. Furthermore, it does not solve the problem of starting from an
unreachable topology. That is why we have developed another method.
An alternative lies in the systematic study of all topologies whose active switches are
in the correct state. The correct topology is the one whose diode currents and voltages
are all within their limits, which implies that the current state of the system is inside

92

−
E

+
iL2

L2 R2

iL1

L1 R1

+
vC− C RuK

Figure 3.18: Circuit where the state iL2 is not forced to a constant, but to an
expression iL2 = −iL1

the definition domain of the topology. Assuming a circuit with nd diode, we have to
evaluate at most the nd conditions of each of the 2nd independent topologies. This
number grows quickly (eg. 6 ∗ 26 = 384 conditions for a circuit containing 6 diodes)
and becomes impractical unless we develop reduction algorithms to minimize the set of
reachable topologies.
The study of Dirac pulses carried out previously may be interpreted in another way: since
changing the value of the states during the transition induces unphysical signals in the
system, we only need look at topologies that preserve the value of the state variables.
Or, otherwise said, we can eliminate any topology that would introduce a discontinuity
in the states.
These discontinuities only happen if the state becomes a forced state (see section 2.2.3)
whose value is no longer controlled by a differential equation, but may be computed using
the instantaneous value of the other states and inputs. Mathematically, a state x∗(t) is
forced if

x∗i (t) =
∑
j 6=i

cjxj(t) +
∑
j

djuj(t) (3.57)

where cj, dj are constant coefficients.
The boost converter provides a simple example of forced states. If both switches are open,
the inductor current iL(t) is forced to zero, and is no longer controlled by a differential
equation. Similarly, vC(t) is forced to zero when both switches are closed. Since the
states were not forced before the topology change, we do not keep these two topologies in
our list of available choices. Note however that when a state variable becomes unforced
(i.e. x∗i = xi), this event neither changes its value, nor creates a Dirac pulse.

In the boost circuit, the signals were forced to a zero value. This is not always the case,
as illustrated by the circuit of figure 3.18. Assuming the transistor starts in the on state,
the two currents are controlled individually by their respective state space equations

d

dt

[
iL1

iL2

]
=

[−R1

L1
0

0 −R2

L2

] [
iL1

iL2

]
+

[1
L1
1
L2

]
E (3.58)

When both switches are open, the states are linked through Kirchhoff’s current law.
Selecting iL1 as the independent variable, we obtain

diL1

dt
= −R1 +R2

L1 + L2

iL1

iL2 = −iL1

(3.59)

93

If the transistor is switched off, keeping the diode in the off state would force iL2 to change
its value. The only remaining choice is to switch on the diode to allow both states iLi to
be controlled separately; i.e.

d

dt

iL1

iL2

 =

−R1+R3

L1
−R2

L1

−R3

L2
−R2+R3

L2

iL1

iL2

+

 1
L1

1
L2

E (3.60)

Since the states and the inputs must keep their value after the topology change, we deduce
the following corollary : the current system state is part of the definition domain of both
the starting and the ending topology, and all conditions defined by the diode signals of the
starting topology should still be verified. This very important result will be used during
the reduction steps carried out in the next sections.
The analysis tool works by performing the following step for each stable starting topology
and for each available configuration of active switches:

1. build a list of all reachable topologies according to the current configuration of the
active switches. As a reminder, a topology is reachable if its state equations can
be written (which is not the case if, for instance, a voltage source is shorted by a
switch, see Section 3.3.2)

2. remove all topologies that would modify a state to a forced value

3. remove all topologies that are incompatible with the starting topology

4. simplify the conditions of the remaining elements in the list

Forced states detection

While the evolution of a forced state is given by the associated differential equation, its
instantaneous value may also be computed using the other states as well as the input
signals. We repeat here the equation first encountered in section 2.2.3:

x(t) = Cxx(t) +Dxu(t) (3.61)

If none of the states are forced then this equation has got a unique solution: Cx is the
identity matrix I while Dx is filled with zeros. Any other value means that the value of
a state is forced by the other signals.
With this form, detecting if a state is forced is an immediate task: we only have to look
at the corresponding line in the Cx and Dx matrices. These matrices are obtained by
adding the states to the output vector (i.e. by measuring the states) before performing
the state-matrices extraction. If we use Plecs, this is be done by adding ampere-meters
in series with inductors and voltmeters in parallel with the capacitors. If the states are
forced to a set value, this value is computed as part of the Gauss elimination performed
during the circuit compilation [16].
This same procedure allows to detect if a state jumps from a forced value to another
forced value.

94

Incompatible topologies

The first major step of our search algorithm is to remove all topologies whose definition
domain is incompatible with the definition domain of the starting topology S0. Since the
system lied in the definition domain of the starting topology, all of its stability conditions
are respected

vdj ≤ 0 ∀vdj ∈ D(S0)

idh > 0 ∀idh ∈ D(S0)
(3.62)

where D(S0) is the domain of S0, as defined in section 2.5.1. The first line corresponds to
the voltage of the diodes in the off-state while the second line corresponds to the current
across the diodes in the on-state. This is also true for any positive linear combination of
these signals ∑

vdj∈D(S0)

kjvdj ≤ 0

∑
idh∈D(S0)

lhidh > 0

kj, lh ≥ 0∀j, h

(3.63)

where at least one lh is strictly positive. Finally, we can combine these two expressions
into ∑

vdj∈D(S0)

kjvdj −
∑

idh∈D(S0)

lhidh ≤ 0 (3.64)

Meanwhile, a topology Sx is compatible with the starting topology if there exists some
combination of states and inputs such that

v′dj ≤ 0∀v′dj ∈ D(Sx)

i′dh > 0∀i′dh ∈ D(Sx)
(3.65)

Looking at (3.64) and (3.65), we notice that Sx will be incompatible with S0 if we are
able to find a diode current i′dx ∈ D(Sx) respecting the following condition∑

vdj∈D(S0)

kjvdj −
∑

idh∈D(S0)

lhidh = i′dx

kj, lh ≥ 0∀j, h
(3.66)

In this case, (3.65) will never be true and Sx is safely removed from the list of candidates.
To write this in matrix form, we first write the diode currents and voltages as[

id
vd

]
=

[
EI FI
EV FV

] [
x
u

]
(3.67)

This form, that we already introduced in section 3.3.5, uses the following variables

• vd =

 vd1
...

vdnoff

 is a column vector containing the voltages of all diodes in the off-state

95

• id =

 id1
...

idnon

 is a column vector containing the currents of all diodes in the on-state

• EV , EI , FI , FV are the state matrices linking x and u to the diode signals

Similarly, we write i′dx using its output equation:

i′dx =
[
Ei′dx Fi′dx

] [x
u

]
(3.68)

where Ei′dx and Fi′dx are the lines of E ′I and F ′I (the output matrices for topology Sx)
corresponding to i′dx With these notations, and by stating that (3.66) must be true for
all x and u, we restate the problem as finding k, l to satisfy

ET
V −ET

I

F T
V −F T

I

k
l

 =

ET
V,1 . . . ET

V,noff
−ET

I,1 . . . −ET
I,non

F T
V,1 . . . F T

V,noff
−F T

I,1 . . . −F T
I,non





k1

...

knoff

l1
...

lnon


=

ET
i′dx

F T
i′dx



kj, lh ≥ 0∀j, h
(3.69)

where ET
I is the transpose of EI .

A similar condition exists on the diode voltages:∑
idh∈D(S0)

lhidh = v′dx

lh ≥ 0∀h
(3.70)

where at least one coefficient is different from zero (i.e. v′dx is not the null vector). In
matrix form: ET

I

F T
I

[l] =

ET
I,1 . . . ET

I,non

F T
I,1 . . . F T

I,non



l1
...

lnon

 =

ET
v′dx

F T
v′dx


lh ≥ 0∀h

(3.71)

To find these identities, we apply the two-step simplex algorithm (see section 3.3.3) to
each diode voltage and current of all potential target topologies.

Example 12. We will use the circuit of figure 3.19 to illustrate the procedure which we
have just described. We assume the circuit starts with K,D1, D2 on and D3, D4 off.
When K is switched off, we have to select the correct state for the four diodes. It is easy
to see that D1 and D2 must remain in the on-state to allow iL1 and iL2 to keep their value.

96

−
V1

+ iL2

D2

iL1

D1

K

D3 R3

+
vC−

D4 R4

−
V2

+

Figure 3.19: Circuit used to illustrate incompatible topologies in the hard switching
module

For the same reason, we eliminate the topology with D3 and D4 in the off-state, leaving
us only with (D1, D2, D3, D4) = (1, 1, 0, 1), (1, 1, 1, 0), (1, 1, 1, 1) as the only remaining
choices. We now apply our procedure, starting with the domain of the starting topology
S0: the diode signals are given by


iD1

iD2

vD3

vD4

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0



iL1

iL2

vC
V1

V2

 (3.72)

While the diode signals for (D1, D2, D3, D4) = (1, 1, 0, 1) are


i′D1

i′D2

v′D3

i′D4

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
−1 −1 0 0 0



iL1

iL2

vC
V1

V2

 (3.73)

We will try to find a combination of the form (3.66) or (3.70). For diode current i′D4, we
attempt to find (k, l) such that

[
−iD1 −iD2 vD3 vD4

] 
l1
l2
k3

k4

 = i′D4

l1, l2, k3, k4 ≥ 0

(3.74)

Using (3.72) and (3.73), and by stating that this equality must be true for all values of
the states and inputs: 

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 0 1



l1
l2
k3

k4

 =


−1
−1

0
0
0


l1, l2, k3, k4 ≥ 0

(3.75)

97

One of the possible solutions is (l1, l2, k3, k4) = (1, 1, 0, 0). Since all coefficients are posi-
tive, this topology is incompatible with the previous one. If we apply the same procedure
to (D1, D2, D3, D4) = (1, 1, 1, 1), we obtain


i′D1

i′D2

i′D3

i′D4

 =


1 0 0 0 0

0 1 0 0 0

R4

R3+R4

R4

R3+R4
− 1
R3+R4

0 1
R3+R4

− R3

R3+R4
− R3

R3+R4
− 1
R3+R4

0 1
R3+R4





iL1

iL2

vC

V1

V2


(3.76)

Writing (3.66) for i′D4: 

−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 0

0 0 0 1




l1

l2

k3

k4

 =



− R3

R3+R4

− R3

R3+R4

− 1
R3+R4

0

1
R3+R4


l1, l2, k3, k4 ≥ 0

(3.77)

This system is solved for (l1, l2, k3, k4) =
(

R3

R3+R4
, R3

R3+R4
, 1
R3+R4

, 1
R3+R4

)
. Again, the coef-

ficients are positive and the topology is incompatible.
Finally, we write the diode signals for (D1, D2, D3, D4) = (1, 1, 1, 0)

i′D1

i′D2

i′D3

v′D4

 =


1 0 0 0 0
0 1 0 0 0
1 1 0 0 0

R3 R3 1 0 −1



iL1

iL2

vC
V1

V2

 (3.78)

Clearly, the signals for i′D1, i′D2 and i′D3 are compatible with the previous topology. If we
look at v′D4, we write the 

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0
0 0 0 1



l1
l2
k3

k4

 =


R3

R3

1
0
−1


l1, l2, k3, k4 ≥ 0

(3.79)

which is solved for (l1, l2, k3, k4) = (−R3,−R3,−1,−1). This time, the coefficients are
negative and the topology is compatible.

Once the topologies are eliminated, we proceed to the next step : the elimination of
useless conditions.

98

Condition elimination

While some of the conditions may preclude a topology from being selected because it is
incompatible with the starting topology, another group of conditions may be automat-
ically true because of their relation with the conditions of the starting topology. From
(3.64) and (3.65), we notice that if we are able to write one of the diode signals of a
topology in one of the forms∑

vdj∈D(S0)

kjvdj −
∑

idj∈D(S0)

ljidj = v′dx∑
idj∈D(S0)

ljidj = i′dxkj, lj ≥ 0∀j
(3.80)

then the associated condition defined by (3.65) is automatically verified. Hence, there is
no need to evaluate the condition. The elimination process leads to a reduction of the
logic behind the forced switching module.
A subtle variant consists in adding the signals from the topology Sx except i′dx or v′dx to
(3.80): ∑

vdj∈D(S0)

kjvdj −
∑

idj∈D(S0)

ljidj +
∑

v′dj∈D(Sx)\v′dx

k′jv
′
dj −

∑
i′dj∈D(Sx)

l′ji
′
dj = v′dx∑

idj∈D(S0)

ljidj +
∑

i′dj∈D(Sx)\i′dx

l′ji
′
dj = i′dx

kj, lj, k
′
j, l
′
j ≥ 0∀j

(3.81)

−
V1

+ iL2

K

D2

iL1

D1 D3

R

Figure 3.20: Circuit showing the use of (3.81)

Example 13. This second variant is not used much, and only appears in some circuits.
As an example, let us look to the circuit of figure 3.20, and let us assume that the starting
switch configuration is (K, d1, d2, d3) = (on, on, off, on). The domain of this topology is
defined by

id1 = iL1 > 0

vd2 = −RiL1 ≤ 0

id3 = iL1 > 0

(3.82)

We now assume that the transistor is switched off. We want to write the conditions
leading to the selection of (K, d1, d2, d3) = (off, on, on, on) as the new topology. The

99

definition domain is
i′d1 = iL1 > 0

i′d2 = iL2 > 0

i′d3 = iL1 + iL2 > 0

(3.83)

In this case, we easily see that i′d3 = id1 + i′d2, and there is no need the evaluate i′d3 to
select the correct topology. Furthermore, there is also no need to look at i′d1 since it is
equal to id1, which means that the condition i′d1 > 0 is true by virtue of (3.82).

The algorithm used to detect signals that can be written in the form of (3.81) is the
same as the one used to detect incompatible topologies, and will not be detailed further.
If, at any point, all conditions of a topology Sx are detected as being always true, there is
no need to look any further: this topology will always be selected when the circuit starts
in the correct topology and the active switches are modified to the configuration of Sx.
An immediate corollary is that the diodes are never modified unless the configuration
of the active switches changes. This process is repeated for all combinations of starting
topologies and configuration of active switches.
Once the elimination is complete, the last step is to establish a correspondence between
the result of the evaluations and the correct topology.

3.4.3 Writing the results in tables

Like we did for the natural switching module in section 3.3.6, the final part of the forced
switching exploration is the creation of tables to match the results to the new configura-
tion of the diode. The first table, called the condition table hereafter, takes the current
topology and the new configuration of the active switches as its input and outputs the
list of conditions to evaluate.
A second table, the switching table, uses the result of the evaluation to find the new state
of the diodes. Assuming a circuit with na active switches and nd diodes, we have a con-
dition table containing at most 2na+nd2na entries (since there are 2na+nd possible starting
topologies, and 2na new configurations of transistors. Each entry leads to a switching
table containing at most 2nd ∗nd entries, since we have to select among 2nd configurations
of diodes, each possessing up to nd conditions.
Note that that the actual size of the tables is likely to be much smaller, because all our
previous operations have removed topologies and conditions for the lists. Furthermore,
we do not study topologies that are unstable or unreachable, because the circuit cannot
start or end in any of these configurations.
Since the exploration algorithm is much simpler than the one we used for the natural
switching module, the tables are much easier to compile. For each starting configuration,
we do the following for all configurations of diodes that were not marked as incompatible:

1. add all conditions corresponding to the domain of the configuration and that were
not eliminated during a previous step to the current entry of the condition table.
Conditions already in the table are discarded

2. add an entry to the switching table, with the expected result of the evaluation of
the conditions as the input, and the diode configuration as the output

100

Example 14. We will use the circuit of figure 3.17 as an example. The circuit con-
tains 8 different topologies, 2 of which are unstable and hence ignored in this analysis:
(K,D1, D2) = (on, on, off) and (K,D1, D2) = (on, on, on). Indeed, they lead to iD1 = 0
which is incompatible with D1 on. The condition table is written in Table 3.3, where

K D1 D2 K ′ Conditions

off off off off ∅

on off off on ∅

off on off off ∅

off off on off ∅

on off on on ∅

off on on off ∅

off off off on V2 ≤ 0,
V2

R2

> 0

on off off off iL > 0, −iL > 0

off on off on V2 ≤ 0,
V2

R2

> 0

off off on on V2 ≤ 0,
V2

R2

> 0

on off on off (3.49)(3.50)(3.51)

off on on on V2 ≤ 0,
V2

R2

> 0

on on off − unstable

on on on − unstable

Table 3.3: Condition Table for the circuit of Figure 3.17

K,D1, D2 is the configuration of the switches in the previous topology and K ′ is the
new state of the active switch. As expected, we only need to evaluate some conditions if
K ′ 6= K : the diodes may only change if at least one active switch is modified. When the
transistor is switched on, the conditions are always the same and correspond to the test
of vD2 and iD2.

The study of (K,D1, D2, K
′) = (on, off, off, off) was carried in section 3.4.1. A

similar process was applied to (K,D1, D2, K
′) = (on, off, on, off). Each of these combi-

nations also possesses its own switching table to interpret the results of the evaluation of

101

V2 ≤ 0
V2

R2

> 0 D1 D2

1 - off off
0 1 off on

Table 3.4: Switching Table for (K,K ′) = (off, on)

iL > 0 −iL > 0 D1 D2

1 - on off
0 1 off on

Table 3.5: Switching Table for (K,D1, D2,K
′) = (on, off, off, off)

the condition (Table 3.4 to 3.6). These tables show that if all conditions associated with
a topology are met (a ’1’ in the corresponding column), then this topology is selected.
We arbitrarily selected a preference order for the topologies, this order is not crucial.
Once the tables are known, the diodes are controlled in real-time by following these steps:

1. Select the conditions to evaluate using the condition table

2. Compute the signals and compare the result to zero

3. Control the diodes according to the comparison and to the switching table

Improvements

A few enhancements can be made to further reduce the amount of conditions to evaluate.

Since we must select one of the n topologies from the switching table, it follows that we
only need to evaluate the conditions associated with n− 1 topologies. If the result of the
comparison yields that none of these topologies should be selected, then the last one is
selected. The conditions associated with the excluded topology are eliminated, effectively
removing a column from the table. For example, the switching table 3.6 becomes table 3.7
once the last column is eliminated and the columns are expanded to show the individual
conditions.
Another improvement is made by finding conditions that are mutually exclusive, in which
case one of the two may be eliminated. For example, Table 3.7 is further reduced to 3.8

by noting that
V 2− vC
R2

> 0 and V2 − vC ≤ 0 are mutually exclusive.

The creation of the tables concludes the forced switching exploration. We have now
extracted all the information needed by the real-time platform, which will be designed in
the next chapter. In the next section, we will apply the complete offline tool to a number
of test cases, allowing us to better show the advantages and limitations of our system.

102

V 2− vC
R2

> 0 and iL > 0 and −iL > 0 and

iL +
V 2− vC
R2

> 0 V2 − vC ≤ 0 V2 +R2iL − vC ≤ 0 D1 D2

1 - - on on

0 1 - on off

0 0 1 off on

Table 3.6: Switching Table for (K,D1, D2,K
′) = (on, off, on, off)

iL +
V 2− vC
R2

> 0
V 2− vC
R2

> 0 iL > 0 V2 − vC ≤ 0 D1 D2

1 1 - - on on

0 - 1 1 on off

- 0 1 1 on off

All other combinations off on

Table 3.7: Switching Table for (K,D1, D2,K
′) = (on, off, on, off), modified by remov-

ing the conditions associated with the last topology. The columns from Table 3.6
are expanded to show the individual conditions.

3.5 Test Cases

3.5.1 Introduction

In this section, we will apply our offline algorithms to a wide range on power converters.
The results of these analyses, implemented in Python, will be interpreted in order to
highlight the strengths and the shortcoming of our methodology. We will also assess the
accuracy of the waveforms obtained using the simulation algorithm described in section
2.6 by comparing them to their continuous-time equivalents obtained by using the offline
simulator PLECS R© with a time step of 50ns. The accuracy will be judged by evaluating
the relative error, defined here as the instantaneous difference between the emulated and
its expected value, divided by the typical (i.e. the average) value of the signal. We have
selected to use the interleaved algorithm to ensure that the diode currents and voltages
stay within their bounds.
At this point, the simulations are not made on the real-time platform but on a computer:
the only goal is to judge the accuracy and not the computing performance. The results
on the real-time platform should be very similar as long as there are enough resources
to hold the design on the platform and the total duration of the computations is shorter
that the selected time-step.
Unless stated otherwise, the discrete time-step for the simulations is equal to 1µs and
the solver is based on the Trapezoidal integration.

103

iL +
V 2− vC
R2

> 0
V 2− vC
R2

> 0 iL > 0 D1 D2

1 1 - on on

- 0 1 on off

All other combinations off on

Table 3.8: switching table obtained after removing conditions that are mutually
exclusive from Table 3.7

3.5.2 The ideal boost converter

Circuit description

−
E

+

iL L D

+
vC− C RK

(a)

S00 S01

S10 S11

K off, D off K off, D on

K on, D off K on, D on

vD = E − vC > 0

iD = iL ≤ 0

vD = −vC > 0

iD = 0 ≤ 0

(b)

Figure 3.21: Boost converter and its transition graph, separated in two subgraphs
according to the state of the active switch

The boost converter (Figure 3.21a) is, along with the buck and the buck-boost con-
verters, one of the best known power electronics circuits. Indeed, this DC-to-DC converter
is able to raise a DC voltage with a high efficiency (90% or more depending on the power
rating and the quality of the components) [46] which is very useful when operating from
low voltages like a single cell battery. The size is another advantage of this converter,
and it is easily integrated in small circuits such as battery chargers. Since this circuit is
so ubiquitous, it is a natural target for simulators. In this section, we will study the ideal
(lossless) boost converter.

Topological study and automaton extraction

The boost converter is composed of

104

• two independent reactive components (L and C)

• one voltage source E

• one active switch K, assumed ideal and bidirectional

• one diode D, assumed as ideal

The 2 switches lead to a maximum of 22=4 topologies, each of which described by a
2-by-2 A matrix and a 2-by-1 B matrix. Among those four topologies, only three are
stable and reachable. Indeed, the topology were both switches are in the on-state leads
to vC = 0 and, in turn, iD = 0 which means that D cannot be on. This topology is thus
unstable according to the definitions stated in section 3.3.3.
In order to draw the automaton, the topologies are separated in two subgraphs – one for
each configuration of K – as represented in Figure 3.21b. The transitions between two
nodes of the same subgraph correspond to the natural commutation of the diode. The
condition associated with the transition is obtained by computing the diode voltage or
current according to the method described in section 3.2.

Natural switching analysis

The natural switching analysis of the automaton is very simple and straightforward. The
analysis, described in section 3.3, is applied to each subgraph of Figure 3.21b. When
K is off, the circuit may switch back and forth between the nodes of the upper graph.
The path linking the two nodes contains a single transition, whose guard depends on

the current state of the diode (note: the inductor voltage vL = L
diL
dt

is equal to zero

when the diode is off, hence the diode voltage is equal to E − vC). The analysis is even
simpler when K is on, since there is only one available transition (i.e. the only path
out of topology (K,D) = (on, off) leads to an unstable topology). As such, we do not
need to evaluate any signal to control the diode. A placeholder condition of the form
0 ≤ 0 is added instead to insure that all topologies have the same number of conditions
to evaluate.

K D Signal to evaluate
off off c ≡ E − vC > 0
off on c ≡ iL ≤ 0
on off c ≡ 0 ≤ 0

Table 3.9: Condition table for the natural switching module of the ideal boost
converter

These results are written in Table 3.9, indicating the condition to evaluate, and on table
3.10 allowing us to find the new state of the diode according to the previous topology
and to the result of the evaluation of the condition.

Forced switching analysis

The simplicity of the circuit translates into a very short forced switching analysis. When
K is switched on, then the circuit must jump to the topology (K,D) = (on, off). It

105

K D c new D
off off E − vC ≤ 0 off
off off E − vC > 0 on
off on iL ≤ 0 off
off on iL > 0 on
on off − off

Table 3.10: Switching Table for the natural switching module of the ideal boost
converter

remains in this configuration until K is switched off. When this change occurs, we have
to select the correct topology among the two upper nodes of Figure 3.21b. Looking at
the states matrices of topology (K,D) = (off, off), we write the state variables in the
form of (2.22) : [

vC(t)
iL(t)

]
=

[
1 0
0 0

] [
vC(t)
iL(t)

]
+

[
0
0

]
E (3.84)

This topology defines iL(t) as a forced state, while it is not the case when K is on. This
leads us to remove this topology from the list of available choices, leaving (K,D) =
(off, on) as the only remaining configuration.

K D K ′ new D
− − off on
− − on off

Table 3.11: Switching Table for the forced switching module of the ideal boost
converter

In both cases, the selection of the correct topology is made without computing any
condition whatsoever. The (very simple) switching table is represented on Table 3.11.

Simulations

To assess the performance of the simulation, we select the following parameters for the
elements of the circuit

L = 10µH

C = 10µF

R = 10Ω

E = 10V

(3.85)

These values correspond to a relatively fast circuit. For instance, the output RC circuit
is characterized by a time-constant of RC = 100µs while the resonant frequency of the
LC is fc = 1

2π
√
LC
≈ 16kHz. The transistor is controlled with a 100kHz, 30% duty

cycle PWM. This frequency allows us to verify how well the simulator performs when the
switching period is only equal to ten time steps.
The results, shown on Figure 3.22, are promising. Looking at the global waveforms of
the current iL (Figure 3.22a)and the voltage vC (Figure 3.22b), it is almost impossible
to dissociate the simulation from the continuous-time plot. The only way to show any

106

0 100 200 300 400 500 600

·10−6

0

5

10

15

t(s)

iL(A)

Continuous time
Discrete time simulation

(a)

0 100 200 300 400 500 600

·10−6

0

5

10

15

20

25

t(s)

vC(V)

Continuous time
Discrete time simulation

(b)

95 100 105 110 115 120 125 130 135 140 145 150 155 160 165

·10−6

0

1

2

3

t(s)

iL(A)

Continuous time
Discrete time simulation

(c)

Figure 3.22: Simulation of the boost converter of Figure 3.21a with the parameters
stated in (3.85). The transistor is controlled with a 100kHz, 30% duty cycle PWM.

107

−
E

+

iL1
L1

+
vC1− C1

Dr
Vth1

iL L

Rdson

Dmos

D
Vth2

+
vC− C R

K

K ′

Figure 3.23: More detailed implementation of a boost converter, with added el-
ements at the input and a switch in parallel of D to emulate a failure mode by
shorting the diode

difference is to zoom very closely on the current iL (Figure 3.22c): since we do not use
any form of zero crossing, the we do not detect the exact moment at which the current
reaches zero. However, thanks to the use of the output solver, the value of the current
is forced to zero on the next time-step when the circuit switches to the topology where
both switches are open and hence enters in discontinuous conduction mode.

Interpretation of the results

The computing power needed to implement the natural switching module on a real-time
platform is very small : an adder is enough to compute the condition, and the tables are
easily implemented using a few conditional statements. The forced switching module is
even simpler, and needs only a single if statement to control the diode. It makes sense
that this circuit could be simulated with a very small time step, allowing a very precise
representation of the signals. The simulations have proved the validity of our solving
algorithm, which can now be used for more complex circuits.

3.5.3 More detailed boost converter implementation

Circuit description

The circuit drawn on Figure 3.23 represents a more detailed implementation of a boost
converter, with added elements to better emulate the real behavior of the switching
elements. The diode Dr is inserted at the input and acts as a reverse polarity protection.
To better represent the imperfections of the switches, we add the forward voltage of the
diode and the RDS resistance of the MOS transistor. The anti-parallel diode Dmos of K
is also represented; a controlled switch K ′ allows us to simulate the short-circuit failure
of D. The failure detection can be made by supervising the current flowing through D.

Topological study and automaton extraction

Since we did not add any reactive component, the amount of state variables in the
modified circuit is still equal to two. Meanwhile, the threshold voltages of the diodes
act as independent voltage sources, increasing the number of inputs to 3. Because of the

108

added switches, the circuit now contains 25 = 32 topologies, each described by a 2× 2 A
matrix and a 2× 3 B matrix .
To write the topologies in a compact form, we use the following notation : TKK′,DDrDmos .
For instance, the topology with D and K ′ in the on-state and all other switches in the off-
state is written as T01,100. The systematic study of the circuits reveals that the major part
of the topologies are unstable. For instance, seventeen topologies have a diode current
equal to zero. In the end, only ten topologies are kept. Among them, the subgraph
corresponding to K = 1, K ′ = 0 is the one containing the largest amount of stable nodes
(i.e. four). Its subgraph is represented in Figure 3.24c: T10,000, T10,010 , T10,100 and T10,110

are stable, while T10,001, T10,011, T10,101 andT10,111 are unstable.

Natural switching analysis

The study of the graphs reveals that at most four conditions are needed to find the correct
topology. These conditions correspond to the reduced version of 3.24, when the circuit
starts from the topology T10, 000. The final graph is represented on Figure 3.25. Note
that the transitions linking T000 to T100 and T010 to T110 should be the same since we start
from a topology where iL = 0. However, this kind of simplification is not performed in
the natural switching algorithm for the moment. Integrating these additional constraints
could lead to even fewer conditions to evaluate and an additional increase in performance.

Forced switching analysis

Is most cases, there is no need to evaluate any conditions because only a single choice
remains for the diodes after a change in the configuration of the active switches. Only
three changes lead to the evaluation of a single condition:

• when the circuit starts from TKK′,DDrDmos = T00,110 and K is switched on

• when the circuit starts from T01,010 and both switches are changed at the same time

• when the circuit starts from T11,010 and K ′ is switched off

In all three cases, the evaluation of the condition RDSiL − vC − vth2 ≤ 0 allows to select
the state of the diode D.
Another important result is that if, starting from T00,000 (ie. all switches off), we switch
on K, the current iL will not start to flow immediately since we need an additional time-
step to switch on Dr. If K does not stay on for a long time (when compared to the time
step), this could lead to distortions in the signal, as we will show in the next section.

109

T10,000 T10,001

T10,010 T10,011

Dr off, Dmos off Dr off, Dmos on

Dr on, Dmos off Dr on, Dmos on

0 > 0

0
>

0

−iL ≤ 0

i L
≤

0

E
−
v t

h
1
>

0

−iLRDS > 0

i L
≤

0

0 ≤ 0

(a)

T10,100 T10,101

T10,110 T10,111

Dr off, Dmos off Dr off, Dmos on

Dr on, Dmos off Dr on, Dmos on

−vC − vth2 > 0

E
−

v t
h
1
>

0

−iL ≤ 0

i L
≤

0

E
−
v C

−
v t

h
1
−

v t
h
2
>

0

−vC − vth2 > 0

i L
≤

0

0 ≤ 0

(b)

T10,100 T10,001

T10,110 T10,011

T10,000 T10,101

T10,010 T10,111

vC+Vth2

RDS
≤ 0

−vC − Vth2 > 0 −vC − Vth2 > 0

0 ≤ 0

iL − vC
RDS

− vth2

RDS
≤ 0

RDSiL − vC − vth2 < 0 −vC − Vth2 > 0

0 ≤ 0

(c)

Figure 3.24: Switching graph of the practical boost from Figure 3.23 with K = 1
and K ′ = 0. The graph is divided in three parts for easier reading (a) d off (b) d on
(c) links between the two.

110

T000 T100

T010 T110

−vC − vth2 > 0

E
−
v C

−
v t

h
1
−
v t

h
2
>

0

E
−

v t
h
1
>

0

iLRDS − vC − vth2 > 0

Figure 3.25: Reduced version of the graph of Figure 3.24 after the natural switching
analysis is performed

Simulations

To test the accuracy of the simulation, we select the following parameters

L = 50µH

C = 10µF

R = 10Ω

E = 10V

vth1 = vth2 = 0.5V

RDS = 100mΩ

(3.86)

These are mostly the same as those used for the ideal boost converter, except that we
selected a bigger inductance for L, for reasons that will be explained shortly. The value of
RDS is typical for low current (up to 5A) MOS transistors. The simulation of the circuit
with K ′ left open and K controlled with a 50kHZ, 30% duty cycle PWM is represented
in Figure 3.26.
While the long term (500µs) simulated waveforms seem to correspond to their continuous-
time counterpart, the zoom of figure 3.26c shows a local distortion when K is switched
on. As explained previously, this is due to the fact that an additional time step is needed
to switch Dr on, and is unavoidable with our present forced switching analysis. Still, the
signals quickly converge to their correct value once iL stays positive and Dr stays in the
on-state
A more complex analysis could follow the present version with a modified natural switch-
ing analysis to allow the switching of the diode. This additional step could make use of
our knowledge on the previous topology to reduce the graphs.
Another interesting test is to switch on K ′ at some point during the simulation to emu-
late a short-circuit in the diode. When K is switched on during the normal PWM cycle,
the output capacitor should discharge quickly across RDS before being recharged by the
current iL when K is switched off. Since the time-constant RDSC = 1µs is equal to the
time step during the discharge, this poses a nice challenge for our algorithm since we must

111

0 100 200 300 400 500

·10−6

0

2

4

6

t(s)

iL(A)

Continuous time
Discrete time simulation

(a)

0 100 200 300 400 500

·10−6

0

5

10

15

20

t(s)

vC(V)

Continuous time
Discrete time simulation

(b)

130 140 150 160 170 180 190 200 210 220

·10−6

0

0.5

1

1.5

2

t(s)

iL(A)

Continuous time
Discrete time simulation

(c)

Figure 3.26: Simulation of the boost converter of Figure 3.23 with the parameters
stated in (3.86). The transistor is controlled with a 50kHz, 30% duty cycle PWM

112

950 1,000 1,050 1,100

·10−6

2

4

6

8

10

12

t(s)

iL(A)

Continuous time
Discrete time simulation

(a)

950 1,000 1,050 1,100

·10−6

0

2

4

6

8

10

12

14

t(s)

vC(V)

(b)

1,004 1,006 1,008 1,010 1,012 1,014 1,016 1,018 1,020

·10−6

0

2

4

6

8

10

12

14

t(s)

vC(V)

Continuous time
Discrete time simulation

(c)

Figure 3.27: Simulation of a short-circuit across D, showing the accuracy of the
simulator even for signals with short time-constants : the capacitor C is quickly
discharged across K during the on time of the PWM period, and is recharged by
iL during the off time

113

−
E

+

iL1
L1

d1

d2 d4

d3

+
vC1

−
C1

d5

d6

d7

d8

s5

s6

s7

s8

iL2
L2

+
vC2

−
C2 R

Figure 3.28: Two stage AC/DC converter

be able to track signals that change very quickly. As shown on Figure 3.27, these short
time-constants do not pose any problem to our algorithm, which is very encouraging.

Interpretation of the results

As shown in the previous section, adding these elements makes the analysis more compli-
cated, because the base number of topologies is multiplied by eight (due to the addition
of the three switches). However, we were able to keep the total amount of calculations
low by removing many nodes from the graph.
The simulations have shown very accurate results (the error is inferior to 1%) as long as
the circuit stays in continuous-conduction mode. When the circuit enters discontinuous
conduction, the delay between the commutation of the active switches and the commu-
tation of Dr could pose problems if the control signals are not bigger than the sampling
period by a factor of 10. In our case, the error between the two signals is equal to around
1 % of the nominal value of the current.
This problem could be alleviated by reducing the time step, which is certainly possible
for such a small circuit, but could be more challenging for larger converters. Another way
to eliminate this delay would be to develop a more complete forced switching algorithm,
which integrates a simplified natural switching to change the state of the diodes.

3.5.4 The two-stage AC/DC converter

Circuit description

The circuit shown in Figure 3.28 is an example of two-stage AC-to-DC power converter.
The AC input is first connected to the main DC bus through a passive full-wave rectifier.
The input inductance is placed to model the impedance of the connections. A four-
quadrant step-down converter (also called full bridge or H-bridge) connects the DC bus
to the load. The load is represented by a resistor, but it could be any load including a
DC motor.

114

Topological study and automaton extraction

The complete circuit contains 12 switches, leading to a base number of 4096 topologies.
Applying the switching algorithms directly to the circuit would lead to a lot of useless
computations and very large switching graphs (in the case of the natural switching mod-
ule). Thankfully, only 102 of these topologies are stable, which greatly simplifies the
process. During normal operation, only a smaller number of configurations are really
used, but these simplifications are not detected by our current algorithm (for example,
the fact that the capacitor voltages cannot be negative is not detected).

Natural switching analysis

The four active switches give 24 = 16 subgraphs and each of them contains 28 = 256
topologies of 8 diodes; fortunately only a few of these topologies are stable. The maximum
number of stable nodes found in a single subgraph is equal to 9.
The complete parsing of the graphs reveals that the maximum number of conditions is
equal to seven, and is reached when the circuit starts from the following configurations:

• d6, d7 on, and s5, s8 on

• d5, d8 on, and s6, s7 on

• d1 to d4 on, and s5, s8 on

• d1 to d4 on, and s6, s7 on

In all of these case, the voltage on the DC bus is equal to zero while power is transmitted
to the load, which should not happen in practice. However, these topologies cannot be
considered as unstable, since they possess a non-null definition domain. If for example, we
look at the first of these possibilities, we have the following diode voltages and currents:

vd1, vd2, vd3, vd4 = 0 ≤ 0

Vd5, vd8 = 0 ≤ 0

id6, id7 = iL2 > 0

(3.87)

These conditions can be respected if we select appropriate values of the inductor currents
(as initial value, for example). It is also interesting to look at what happens when we
start from the topology S0 for which all active switches and diodes are off, as represented
on figure 3.29. All nodes correspond to the topologies where the active switches are
kept off and the legend indicates which diodes are on: we see that the transition to
S2 corresponds to an output voltage higher that the DC bus voltage. Again, this case
should never happen in practice, unless the C2 possesses an initial voltage and C1 is
initially discharged.
Nevertheless, the maximum number of conditions is lower than the number of signals that
we would have to evaluate if we had used a non-iterative single-step natural switching
module of an engine based on the modified nodal analysis (in which case, we would have
to compute eight signals).

115

S0 S1

S5

S6

S2

S4

S3

S7

S8

E − vC1 > 0

vC2 − vC1 > 0

−E − vC1 > 0

−vC2 − vC1 > 0

v
C2 −

v
C1 >

0

−vC
2
− vC1

>
0

vC2
− vC1

>
0

−v
C2 −

v
C1 >

0

Figure 3.29: Reduced switching graph for the circuit of figure 3.28, when starting
from the topology with all switches in the off state (S0), with the other nodes corre-
sponding to the following diodes in the on-state S1 : (d1, d4), S2 : (d5, d8), S3 : (d6, d7),
S4 : (d2, d3), S5 : (d1, d4, d5, d8), S6 : (d1, d4, d6, d7), S7 : (d2, d3, d5, d8), S8 : (d2, d3, d6, d7)

Forced switching analysis

Despite the large number of elements in the circuit, the forced switching analysis reveals
that only one needs to be evaluated at most to find the correct topology after any change
in the configuration of the switches. This is expected since, when any of the switches
is opened, one of the diodes in its leg will be switched on to allow iL2 to flow. If, for
instance, s5 is opened, then d6 will be switched on if iL2 > 0, and d5 otherwise.
Another important result is that, thanks to the decoupling capacitor C1, modifying the
state of the switches has no impact on the diodes of the passive rectifier.

Interpretation of the results

We have shown that our algorithm is able to greatly simplify the problem of simulating a
circuit of increased size. Indeed, the natural switching module only need seven conditions
to completely parse the switching graph, while a single condition is enough for the forced
switching module. This study has shown that the topologies that lead to the largest
number of conditions to evaluate correspond to modes that are not found in practice,
unless we deliberately put inconsistent starting values for the state variables. We can
partially solve this problem by explicitly limiting the range of some of the states by
adding diodes in the circuit. For example, we can add a diode in parallel with C1, as
shown in Figure 3.30, to explicitly prevent a negative DC bus voltage. This reduces to
five the number of conditions to evaluate during the natural switching analysis.
The adopted model for the converter is very useful to test the behavior of the controller,
but is not able to properly simulate any failure. For example, we cannot assess the quality
of the protection circuits when both transistors of a leg are erroneously switched on at
the same time: this accident would result in the instantaneous discharge of C1 and in
an infinite current across the transistors. The system must be modified in order to be

116

−
E

+

iL1
L1

d1

d2 d4

d3

+
vC1

−
C1

d5

d6

d7

d8

s5

s6

s7

s8

iL2
L2

+
vC2

−
C2 R

Figure 3.30: Adding a diode in parallel with C1 gives an explicit limit on the DC
bus voltage

compatible with failure mode analysis, which we shall present in the next section.

3.5.5 Practical implementation of the two-stage AC/DC con-
verter

Circuit description

The modified circuit drawn in Figure 3.31 is able to emulate failure modes thanks to the
addition of resistor Rmos. This resistance, which can be of very low value (1mΩ for low
voltage, high current MOSFET transistors [79]), represents effective on-state resistance
of the switches as well as the resistance of the connections. Another option to model
these failure modes is to add an inductance instead, modeling the transients in the wires
and connections. Thanks to this added impedance, we are now able to evaluate the very
fast transients due to the discharge of the capacitor across the two transistors of a leg
when both are on.
A switch connecting the output to an additional resistor is also added. This resistor
can either model a sudden load change to test the response of the controller, or a low-
impedance short-circuit at the output to verify if the protections are able to shutdown
the system quickly enough. Note however that some drivers for the active switches are
internally equipped with active protection systems which provide status bits indicating
if the circuit is shorted or if the transistor could not switch. These bits can be easily
modeled using external logic.

Topological study and automaton extraction

Thanks to Rmos, seven more topologies are available. These topologies correspond the
various way we can short-circuit the active inverter. This number is doubled by the
addition of the load switch: since the output resistors are decoupled from the power
stage by the LC filter, changing the state of sL has absolutely no impact on the diodes.

117

−
E

+

iL1
L1

d1

d2 d4

d3

+
vC1

−
C1

Rmos

d5

d6

d7

d8

s5

s6

s7

s8

iL2
L2

+
vC2

−
C2 R

sL

RL

Figure 3.31: The two-stage AC/DC circuit, with Rmos added to allow failure modes,
and an additional switch to simulate load changes

Natural switching analysis

The total number of conditions to evaluate is now equal to eight, one more than the result
of the analysis for the converter without Rmos. This number is reached for all topologies
where all the transistors of the inverter are off and both bridges are conducting (thanks to
d1, d4 or d2, d3 for the rectifier, and to d5, d8 or d6, d7 for the inverter). The graph drawn
in Figure 3.32 represents a part of the switching path starting from the topology with
d1, d4, d6, d7 on. The transition linking S1 to S2 is associated with the condition vC1 < 0
which, as explained previously, should never be true during normal circuit operation, but
could happen if vC2 is initialized with a negative value.

Forced switching analysis

Since the topologies for which a leg of the inverting stage is short-circuited are now
allowed, additional choices are offered each time a transistor is commutated. This leads
to the computation of two conditions at most (instead of one).

Results interpretation

The overhead associated with the addition of a resistor allowing the emulation of failure
mode has been shown to be relatively small: each of the commutation module needs to
compute an additional condition, increasing the total amount of conditions to ten instead
of eight.
Furthermore, it has been shown that, if sufficient decoupling is provided between the
converter and the load, any change in the characteristics of the load (using a load switch
for example) has absolutely no impact on the complexity of the switching modules. The
largely used LC filter is one of the simplest ways to decouple two parts of a circuit.

118

S0 S1

S2S3S4 S5

S6S7S8 S9 S8

d1, d4, d6, d7

∅d2, d3d2, d3, d5, d8 d5, d8

d1, d2, d3, d4d2, d3d2, d3, d5, d8 d1, d2, d3, d4, d5, d8 d2, d3, d5, d8

d1, d4
iL2 ≤ 0

iL1 ≤ 0

−E − vC1 > 0−vC2 + vC1 > 0 −vC2 + vC1 > 0

−vC1 > 0

iL1 ≤ 0−vC2 + vC1 > 0 vC2 > 0 iL1 + iL2 < 0

Figure 3.32: Partial switching graph when the circuit starts in the topology with all
transistors off and d1, d4, d6, d7 on. The dx next to the nodes indicates which diodes
are conducting

Vin

Vin

s1

s2

s3

s4 d4

d3

d2

d1

d5

d6

LiL

+
vC−C R

Figure 3.33: Single Phase 3-level Neutral Point Clamped (NPC) Inverter

3.5.6 The diode clamped single phase, three-level inverter

Circuit description

As a final test, we will illustrate the use of our algorithm on a more complex voltage-
source inverter, known as the three-level neutral point clamped (NPC) inverter of Figure
3.33. The purpose of this leg is to drive the output to 0V , Vin or −Vin depending on the
configuration of the switches (hence the three-level denomination). With proper control,
the use of this circuit reduces the amplitude of the harmonics in the output signals when
compared to the classical two-level inverter. Furthermore, only half of the full scale
voltage is perceived by the switching elements, which reduces the losses and allows the
use of smaller, faster devices [80].
The main bridge configurations are :

• To drive the output to Vin

– Switch on s1 and s2

119

– Switch off s3 and s4

• To drive the output to −Vin
– Switch on s3 and s4

– Switch off s1 and s2

• To drive the output to 0V

– Switch on s2 and s3

– Switch off s1 and s4

– Either d5 or d6 will be turned on depending on the sign of the current iL

These commands represent the final state of each switch. To properly switch the output
voltage from one value to another, the controller must avoid any risk of cross-conduction
by performing the on-to-off changes before the off-to-on changes.
The global PWM modulation can use very complex sequences of those 3 topologies. The
actual sequence depends on the application and on the working point and can be aimed
at reducing some harmonics or at maximizing the efficiency [81].

Topological study and automaton extraction

This single-phase NPC contains four active switches and six diodes, leading to a base
number of 210 = 1024 topologies. Of course, the amount of topologies used in practice
will be much lower than that. For example, any configuration leading to a short-circuit
between any two of the three input voltages (Vin, −Vin and the ground) is eliminated.
This single remark allows us to discard more than three-quarters of the topologies. Other
eliminated topologies include those that lead to a conducting diode in series with an open
circuit. In the end, only 56 topologies remain, which is about 5% of the initial number.
The automaton containing the largest amount of nodes corresponds to the graph obtained
for s2 and s3 on, containing five stable topologies (with (d1, d2), (d3, d4), d5 or d6 on, or
with all diodes off).

Natural switching analysis

The analysis of the subgraphs leads to a maximum of four conditions to evaluate, which
are obtained for multiple topologies.

Forced switching analysis

Only a single condition is necessary to find the correct topology after any change in the
state of the switches. For example, let us suppose that the circuit starts with s3 and
s4 in the active state while all other switches are open, and that we suddenly open s3.
Only three of the reachable topologies do not lead to the loss of the state variable iL with
either (d1, d2), (d3, d4) or d6 in the on-state. The first one requires iL < 0, Vin ≤ 0, the
second iL > 0 and the third iL < 0. Since the conditions for (d1, d2) are a super-set of
the condition for d6, we can safely eliminate the first choice. The conditions for the last
remaining topologies are merged in a single if-else : (d3, d4) is selected if iL < 0 , and d6

otherwise.

120

Simulations

To test the circuit, we must first choose a control scheme. One of the classical uses of
this circuit is to generate a sinusoidal vC thanks to a PWM control signal. We choose
a frequency of 500Hz for the sine wave, while the frequency of the PWM is equal to
10kHz. There are several more or less sophisticated ways to produce the 3-level control
signals [81]. To demonstrate that the NPC can be emulated by our platform, a very
simple 3-level PWM modulator can be built by comparing a sinusoidal reference signal to
a sawtooth signal at the PWM frequency (Figure 3.34). Depending on the comparison,
we select one of the three output voltages. The following values have been chosen for the
components:

L = 100µH

C = 100µF

R = 10Ω

Vin = 50V

(3.88)

The cut-off frequency of the output LC filter is selected to lie between the sine frequency
and the PWM frequency, a small value has been purposefully chosen for L to accentuate
the ripple. The plots of Figure 3.35 show the evolution of iL and vC , and the signals
obtained with our simulator are clearly almost indistinguishable from their continuous-
time counterparts.

Interpretation of the results

The switching modules are relatively simple, since the natural switching module only
requires four conditions while the forced switching module requires a single condition.

3.5.7 The Three-phase NPC converter

The NPC is most used in its three-phase version, represented in Figure 3.36. Unfortu-
nately, this circuit cannot be simulated directly with our platform, since its 30 switches
lead to more than a billion topologies and switching graphs containing a huge amount of
nodes. This large number leads to vast overload in memory usage and a prohibitive time
to analyze the transitions, and the tool itself crashed under the weight of the temporary
data.
This problem, due to the exponential rise of the size of the data set, is analyzed in section
3.6.2 and a solution is given in the form of circuit partitioning in chapter 4

3.5.8 Comparison with solvers based on nodal analysis

At this point, it seems crucial to compare the outputs of our emulator with those obtained
using a solver based on the very popular modified nodal analysis (MNA, see section 2.2.2).
Indeed, this method is implemented in many circuit solvers, both offline and operating
in real-time, and provides accurate results for a wide range of converters.
The major difference between the two methods is how the changes in the topologies are
tracked. When using MNA, each switch is modeled by a current source in parallel with
a resistor. By measuring the voltage and the current going through this dipole, it is for

121

−2 0 2 4 6 8 10 12 14 16 18 20 22

·10−4

−1

−0.5

0

0.5

1

t(s)

PWM carrier
Reference sine

(a)

−2 0 2 4 6 8 10 12 14 16 18 20 22

·10−4

−200

−100

0

100

200

t(s)

Vo(V)

(b)

Figure 3.34: 3-level sinusoidal PWM modulation, based on a sawtooth PWM car-
rier

122

0.000 0.002 0.004 0.006 0.008 0.010 0.012
40

30

20

10

0

10

20

30

40

iL, Continuous-time

iL, Discrete-time simulation

(a)

0.000 0.002 0.004 0.006 0.008 0.010 0.012
80

60

40

20

0

20

40

60

80

vC , Continuous-time

vC , Discrete-time simulation

(b)

Figure 3.35: Simulation of the single-phase NPC, with the parameters given by
(3.88) and using a 10kHz sawtooth PWM (a) inductor current (b) capacitor voltage

123

Vin

Vin

s11

s12

s13

s14 d14

d13

d12

d11

d15

d16
L

iL1

R

s21

s22

s23

s24 d24

d23

d22

d21

d26

d25

L

iL2

R

s31

s32

s33

s34 d34

d33

d32

d31

d36

d35

L

iL3

R

Figure 3.36: 3-level 3-Phase Neutral Point Clamped (NPC) Inverter

−
E

+ iE(k)

1© iL(k)

GL

iL(k − 1)

2©
is1(k)

Gs Js1(k)

is2(k)

Gs

Js2(k − 1)

3©

GC GCvC(k − 1)
R

Figure 3.37: Discrete-time model of the boost converter using MNA

example possible to switch the diode if the current becomes negative, of if the voltage
becomes positive. As such, there is no need to make a pre-analysis of the circuit since
the structure of the circuit stays the same at all time, and only the current sources are
modified depending on the state of the switch. Furthermore, all currents and voltages
are computed as part of the solver step, making the whole algorithm easy to implement.
While this could lead to think that the MNA solver is more convenient, we also have to
compare the impact on the real-time platform (i.e. to find how many calculations have to
be done). Indeed, the MNA solvers are also known for adding unneeded computations,
as the representation of the circuit is not minimal. Furthermore, hidden in the solver is
the fact that the sources have to be updated using the equivalent of a (simplified) dot
product, increasing the overall complexity of the solver.
We shall compare the results of our algorithm applied to some of the circuits that were
previously studied in this section with those obtained using the MNA solver. Note that
comparing the waveforms is not really needed, since both methods have been shown to
provide accurate results (and this error can be decreased by lowering the time-step).
Instead, we will only look at the computing requirements, which could dictate the choice
of the simulating platform, since a more compact design will typically use a lower time-
step and allows to implement larger converters for a given platform.

124

Ideal boost converter

This basic converter is actually studied in the original scientific article describing the
use of MNA for switching converters [12], making the comparison immediate. The MNA
solver uses five inputs (the main voltage source, the inductor current, the capacitor voltage
and the current sources of the two switches) and five outputs (the currents across the
inductor and the switches, and the voltage of the nodes connected to the switches and the
capacitor), as shown in Figure 3.37. This leads to a 5-by-5 transition matrix to describe
the whole system.
Meanwhile, all of the solvers of our algorithm only use three inputs (the voltage source,
and the two states). For example, the state solver is represented by a 2-by-3 matrix
computing the new value of the states; they take the form[

iL(k)
vC(k)

]
= H

 iL(k − 1)
vC(k − 1)
E(k)

 (3.89)

This form is much more compact than the equation obtained using the MNA. Addi-
tionally, the natural switching module requires one condition, which is equivalent to dot
product of the form

yD =
[
k1 k2 k3

]  iL(k − 1)
vC(k − 1)
E(k)

 (3.90)

The forced state solver does not require any condition, since the new topology is only a
function of the old topology and of the new configuration of the transistors. In total, this
brings us to the equivalent of a 3-by-3 matrix, less than half of what is required by the
MNA. Furthermore, is has been shown that the kj coefficients are either equal to ±1 or
to 0, which means that it is possible to avoid the multiplications altogether. This is not
possible using the MNA, for which all coefficients depend on the time-step.
While the boost converter is very simple and could be emulated in real-time by a wide
range of computing platform including very small micro-controllers, this comparison
shows the two algorithms behave for small converters, and, in this case, our analysis
clearly leads to a much more compact design (only 9 products instead of 25, i.e. a 64%
reduction in resource utilization).

Two-stage AC/DC

The two stage converter was studied in section 3.5.4, and the analysis revealed that five
conditions were needed for the natural switching module, and a single condition for the
forced switching module. Each condition takes the source and all four states as input,
which means that computing the conditions is equivalent to a 6-by-5 matrix. Updating
the states requires a 4-by-5 matrix.
To use the MNA, we need to compute the current across each diode (eight independent
variables), as well as the voltage of each node connected to a diode (five nodes). Updating
the states adds two currents and one voltage (the output node) to the list, for a total of
16 variables. To compute these signals, the following inputs are needed:

• the input voltage

125

• the two currents corresponding to the previous value of the inductor currents

• the old value of the voltage of the four nodes connected to a capacitor

• the eight current sources modeling the switches

which means that the complete system requires a 16-by-15 matrix, corresponding to
240 elements. Again, the 10 ∗ 5 = 50 elements needed by our solver only require a
fraction of the computing power needed by the MNA solver, without mentioning that
many of the conditions can be written as a sum of states and inputs without requiring
any multiplication, and do not need all five inputs to be computed.
Of course, these results do not take the switching tables into account. While these
tables certainly require additional resources to select the correct conditions and modify
the diodes, they are based on look-up tables and can be implemented using very basic
elements such as multiplexers and RAM. As will be shows in section 5.3 devoted to the
development of the platform, these tables can be optimized to avoid consuming too many
clock cycles.

3.6 Known limitations

3.6.1 Limitations on the size of the data set

The most important limitation of our algorithm lies in the actual size of the data set,
and more precisely in the risk of memory overflow in the computer running the offline
analysis. For each reachable topology, we need to save

• the state matrices A,B,C,D,Cx, Dx, whose size depend on the number of states
and independent sources

• the list of conditions and the switching table of the natural switching module

• the list of conditions and the switching table for each combination of transistors of
the forced switching module

Each list of conditions is equivalent to a set of C,D matrices whose amount of rows
depends on the output of the automated analysis. Since the number of topologies is
equal to 2amount of switches, all the conditions are met for a combinatorial explosion to
occur should the number of switches grow. Assuming a circuit with six diodes and six
transistors (eg. a three-phase inverter, which is a medium-sized circuit), we are facing
4096 topologies. For each topology, we have to store up to 256 lists of conditions in
memory and 256 switching tables for the hard switching module alone. This can still
be managed by a normal PC but, should this number rise to higher levels, the storage
needed to keep all data in memory will rise exponentially and will eventually use all of
the space available in RAM. This overflow will lead to the resort to virtual memory on
disk, with lots of swaps, slowing the process to a crawl.
Of course, thanks to the reduction of the amount of reachable topologies by our algorithm,
the effective size will probably be much lower than that. For many circuits, the number
of reachable topologies can be reduced by a factor of ten or more, which greatly simplifies

126

the problem and the amount of lines in the tables. Additional procedures may lead to a
reduction of the memory footprint:

1. the A,B matrices are never used during the course of our algorithm. They can be
stored separately on the hard drive until the final port on the real-time platform.

2. at any time during our algorithm, we only need to load all topologies whose tran-
sistors are in the correct configuration. By doing a partial loading of the data set,
the effect of the RAM is limited

3. for the unstable topologies, only the CD and DD matrices are needed to draw the
graph during the soft switching analysis. All other information of the topology can
be discarded

Nevertheless, these tricks might not be enough if the amount of switches rises. The
test cases used in section 3.5 were small enough to be studied easily, but circuits with
more than 15 to 20 switches have been impossible to study without dedicating days to
the analysis. A more permanent solution is to split the circuit into smaller parts which
are studied independently. This concept, known as circuit partitioning, is the subject of
chapter 4.

3.6.2 Limitations on the size of the output

The amount of data to store also has an impact on the size of the output and on the per-
formance of the real-time platform. Indeed we have to remember that each state variable,
output variable and condition must be evaluated using a dot product. Depending on the
implementation, each partial product requires a multiplication and an addition. Multi-
pliers and multipliers-adders are limited resources on FPGAs (fortunately the amount
of such units is quickly rising at each new generation), and too many simultaneous dot
products will saturate the chip completely. The tables seem relatively straightforward
in their implementation, as they are basically large multiplexers. However, due to their
size, they may consume a large amount of logic slices in the FPGA, even if these tables
have been reduced to a minimum.
As an added problem, using more resources reduces the maximum speed, since it becomes
more difficult for the HDL synthesizer of find the optimal placement and routing inside
the chip, which lowers maximum clock frequency.
To reduce the impact, we will need to carefully select the implementation of the functional
modules to avoid using too many logical units. But, no matter which tricks are used,
we will always reach a limit for a given number of switches. Let us also recall that the
traditional implementation of real-time solvers based upon the modified nodal analysis
would require more resources: while the platform does not need to store the switching
tables, the amount of dot products is typically much larger than the total amount of dot
products required by the linear solver and by the two switching modules. Moreover, the
dot products linked to conditions obtained using our method generally contain a large
amount of (−1, 0, 1) coefficients which may be removed or simplified during the transla-
tion to the HDL code, so that no hardware multiplier will be recruited in the FPGA for
this product. Since the amount of mathematical units inside a FPGA is typically much

127

lower than the number of logical slices, we expect to be able to implement larger con-
verters on our platform. These considerations are studied with more precision in sections
5.3.2, 5.3.3 and 5.3.4.

3.7 Possible improvements and future works

The parsing algorithm works under the assumption that the user may want to test the
circuit in absolutely all of its functioning mode. This includes considering cases that
should never happen in practice if the circuit is correctly controlled. More often than
not, these corner cases lead to complex interaction between the topologies and force us to
compute many conditions to correctly track the state of the circuit. Many of those cases
are normally part of the Failure Mode Effects and Critical Analysis, which are generally
handled by off-line simulation, while our real-time platform should only emulate the
failure modes that have to be handled by the controller under design.
Hence, we could want to explicitly remove some of the cases by entering user’s constraints.
For instance, we can limit an input voltage to positive values to avoid analyzing a large
part of the graph. Another reason to explicitly limit the range of some variables is that
this range cannot be defined automatically when the order of the system is higher than
two. This concept, known as reachability, was introduced in section 3.3.2. Because of
this, some transitions that might never be true could be found in the graphs or in the
conditions of the forced switching module even after all the simplifications described in
the previous sections.
However, as expert users, we are generally able to tell the range of all variables through
intuition or after extensive testing. Passing these restriction to the offline tool could
greatly accelerate the analysis and reduce the size of the graphs, or mark more topologies
as unreachable. As it stands, the most pertinent way to introduce these constraints is in
the form of additional inequalities using the same formula as the constraints, i.e.

y1(t) = Cx(t) +Du(t) ≤ 0

y2(t) = Cx(t) +Du(t) > 0
(3.91)

These constraints can then be integrated in the automated tools. For example, let us
write user’s constraints of the form

y1 =
[
1 0

] [x1

x2

]
≥ 0

y2 =
[
0 1

] [x1

x2

]
≥ 0

(3.92)

and let us suppose that we are studying a topology whose definition domain contains the
following condition:

vD =
[
1 1

] [x1

x2

]
≤ 0 (3.93)

By virtue of the additional constraints, this signal will never become negative. Hence,
the transition corresponding to this diode can be removed from the transition graph.
Proper integration requires the use of the simplex algorithm to test if the condition can
be written as a linear combination of the user’s constraints.

128

3.8 Conclusions

In this chapter, we have developed a set of tools able to automatically study a power
converter and extract all pertinent information before porting the design to the selected
real-time platform. First, we have described in section 3.2 an iterative method based on
Dijkstra algorithm to draw the hybrid automata associated with the converter.
Then, in section 3.3, we have introduced a new tool able to parse the automata in order to
extract the minimal set of signals that must be computed to properly control the diodes
in reaction to changes in the value of the state variables. On the real-time platform, these
signals are evaluated by the natural switching module (see section 2.6.3). The reduction
of the graphs is based on the study of the definition domain of the topologies connected by
the graph, including a systematic research of the links between the transitions. We have
developed multiple methods to find transitions that automatically validate or invalidate
each other.
This analysis allows us to find the correct state of the diodes in a single pass, even if
multiple diodes must be switched in sequence. Hence, the overhead introduced by the
switching module and the associated computing power are kept to a minimum, and the
minimization of the signals reduces the required processing power.
A similar analysis has been made in section 3.4 for the signals needed to control the
diodes after any change in the configuration of the active switches. Again, we introduced
methods to systematically predict how the power converter will react to the changes, and
extract the minimum number of signals which have to be computed in order to pinpoint
the correct transition. For this purpose, we make an intensive use of the supposed conti-
nuity of the states during any instantaneous change in the configuration of the switches.
The various test cases of section 3.5 allowed us to illustrate how these algorithms work.
We carried out simulations to better highlight the performance as well as the limitations
of our current method. We have shown that the results were very accurate is most cases,
with a relative error, defined as the difference between the simulated and expected signals
divided by the average value of the signal, of less that 1%. Only the simulation of Figure
3.26 presents a larger error, due to a time step which is too large when compared to the
internal dynamics of the circuit.
The two automated exploration methods provide a set of tables linking the current topol-
ogy to the signals that must be evaluated, as well as another set of tables connecting the
result of the evaluation to the correct configuration of the switches. This information will
be used by the real-time platform, as will be described in chapter 5.
The crucial problem associated with this methodology lies in the combinatorial explosion
linked to the size of the data set. We have shown that, as the circuit grows, the tables
become exponentially larger, which leads to very long compilation time and to memory
issues if the circuit contains more than fifteen to twenty switches. Since these circuits are
widely used, propose a solution based upon circuit partitioning in the next chapter.

129

Chapter 4

Modeling larger circuits by circuit
partitioning

4.1 Introduction

The suite of algorithms introduced in chapter 3 performs well for small- and medium-
sized circuits (up to twenty switches), but tends to be inefficient or even unusable for
larger converters. Indeed, the exponential growth of the size of the graphs and tables
leads to a high memory usage, while the amount of combinations results in a very long
off line processing. As an example, it takes more that 10 hours on a modern computer
based on an Intel i7 processor and 8GB of RAM to completely parse a circuit composed
of twenty switches and four state variables. While this limitation is acceptable for a
large range of circuits, it prevents us from studying complex circuit such as the three-
level, three phase, neutral-point clamped (NPC) inverter of Figure 4.1 composed of 30
switches. Such circuits are widely used, hence it is necessary to provide a solution to this
problem.
Since the size of the tables is typically proportional to 2ns , where ns is the total amount
of switches in the circuit, a solution is to split the circuit into multiple sub-circuits, each
containing a reduced amount of switching elements. For example, this separation could

Vin

Vin

s11

s12

s13

s14 d14

d13

d12

d11

d15

d16
L

iL1

R

s21

s22

s23

s24 d24

d23

d22

d21

d26

d25

L

iL2

R

s31

s32

s33

s34 d34

d33

d32

d31

d36

d35

L

iL3

R

Figure 4.1: 3-Level 3-Phase Neutral Point Clamped (NPC) Converter

130

−
E
+

d1

d2 d4

d3

1© iL1 L1 2©

+
vC− C

3©
d5

d6

d7

d8

s5

s6

s7

s8

iL2L2

R

(a)

−
E
+

d1

d2 d4

d3

iL1 L1

+
EC
−

(b)

+
vC− CJL

d5

d6

d7

d8

s5

s6

s7

s8

iL2L2

R

(c)

Figure 4.2: Two-stage converter composed of a rectifier and an inverter (a) Com-
plete circuit (b)(c) Partitioned circuit

transform the 3-phase NPC inverter into three manageable circuits of 10 switches. Each
sub-circuit is then studied separately, and additional steps are taken to link the sub-
circuits.
This process, known as circuit partitioning, enables the study of a much larger range
of circuits. Unfortunately we can foresee a degradation in the performances of the real-
time implementation. Indeed, since each sub-circuit is studied independently, the analysis
tools no longer have a global view of the system which reduces the range of optimizations,
such as the removal of equivalent conditions across two or more parts of the converter.
To properly integrate circuit partitioning in our analysis system, we have to answer the
following questions:

• Where should we split the circuit? Are there any limitations?

• How can we recombine the different parts?

• What is the impact on the accuracy of the simulation?

These questions are intrinsically linked, and the answer could vary depending on the
structure of the studied circuit. We shall start with a simple example to illustrate the
basic principles.

Example 15. Let us take a look at the two-stage circuit of Figure 4.2, and let us try to
split it into two sub-circuits. It seems natural to perform the partitioning between the
rectifier and the inverter, since these two sub-circuits are controlled by different signals.
Furthermore, this would allow us to easily mix-and-match the two modules: we could for

131

example easily add a second inverter in parallel with the first one by slightly modifying
the connections.
Still, this leaves us with multiple choices: we could split the circuit in any of three points
(marked 1 to 3 on the schematics), or even use more than two sub-circuits. For the
sake of simplicity, and because this is again the most natural choice, we will first split
the circuit at point 2© between the inductor and the capacitor (appropriately named
decoupling capacitor), resulting in the two sub-circuits of Figures 4.2b and 4.2c. Each
of these modules can be analyzed separately, and will get its own set of tables for the
natural and forced switching modules, as well as its own state equations. However, one
question remains: how can the behavior of each sub-circuit have an effect on the other
one? To answer this, we first write the continuous-time state equations for the complete
circuit:

d

dt

iL1(t)
vC(t)
iL2(t)

 =

a11 a12 0
a21 a22 a23

0 a32 a33

iL1(t)
vC(t)
iL2(t)

+

b1

0
0

E(t) (4.1)

where the a, b coefficients depend on the topology. From these equations, it appears
that vc is the only state variable influenced by both converters. After introducing two
auxilary controlled sources JL(t)=iL1(t) and EC(t)=vC(t), we may equivalently write
these equations as

d

dt

iL1(t)
vC(t)
iL2(t)

 =

a11 0 0
0 a22 a23

0 a32 a33

iL1(t)
vC(t)
iL2(t)

+

b1 0 a12

0 a21 0
0 0 0

 E(t)
JL(t)
EC(t)


[
JL(t)
EC(t)

]
=

[
1 0 0
0 1 0

]iL1(t)
vC(t)
iL2(t)

 (4.2)

These sources allow us to virtually connect the two parts of the circuits, as shown in
Figures 4.2b and 4.2c: each sub-circuit evolves according to its own state equations

d

dt

[
iL1

]
=
[
a11

] [
iL1(t)

]
+
[
b1 a12

] [E(t)
EC(t)

]
d

dt

[
vC(t)
iL2(t)

]
=

[
a22 a23

a32 a33

] [
vC(t)
iL2(t)

]
+

[
a21

0

] [
JL(t)

] (4.3)

while the communication between the sub-circuits is made through the update of the new
controlled sources: [

JL(t)
]

=
[
1
] [
iL1(t)

]
+
[
0 0

] [E(t)
EC(t)

]
[
EC(t)

]
=
[
1 0

] [vC(t)
iL2(t)

]
+
[
0
] [
JL(t)

] (4.4)

The partitioning has absolutely no impact on the waveforms as long as we perform a
continuous-time study. Of course, we now have to adapt the discrete-time simulation to
take this into account. As shown in figure 4.3, this is done by inserting an additional
module named ”sources update” before the state solver. Because the two partitions are
no longer linked directly, any change on a state variables will only be perceived by the

132

state solver

sources update

natural switching

output solver and
state adjustment

forced switching

z−1

xT (k + 1)

xT (k + 1)

u(k)

u(k)

u(k)

u(k)

u(k) C,D

x(k + 1)

x(k)

A,B

Control signals

y(k + 1)

Figure 4.3: Adding the update of the controlled sources to the interleaved discrete
solver

133

other sub-circuit a single time-step later, which leads to an additional error whose value
will depend on the chosen solver.
To illustrate this, we will apply the partitioning to the following linear system:

d

dt

[
x1(t)
x2(t)

]
=

[
a11 a12

a21 a22

] [
x1(t)
x2(t)

]
+

[
b1

0

]
u(t) = A1

[
x1(t)
x2(t)

]
+B1u(t) (4.5)

We split the system between the two state variables by introducing the auxiliary variables
y1(t) = x1(t) and y2(t) = x2(t) :

d

dt

[
x1(t)
x2(t)

]
=

[
a11 0
0 a22

] [
x1(t)
x2(t)

]
+

[
b1 0 a12

0 a21 0

]u(t)
y1(t)
y2(t)

 = A2

[
x1(t)
x2(t)

]
+B2u(t) (4.6)

Some elements that were in the A matrix in the first system are now in the B matrix.
We will now apply the backward Euler approximation (BEA, see section 2.2.3) to the
two systems and compare the results. As a reminder, this method corresponds to the
following approximation :

dx(t)

dt
= Ax(t) +Bu(t)⇒ x(k) ≈ (I − TA)−1x(k − 1) + (I − TA)−1TBu(k) (4.7)

Applying the BEA to the unique system (4.5) yields[
x1(k)
x2(k)

]
=

1

∆

[
1− Ta22 Ta12

Ta21 1− Ta11

] [
x1(k − 1)
x2(k − 1)

]
+

1

∆

[
−T (Ta22 − 1)b1

T 2a21b1

]
u(k) (4.8)

where ∆ = −T ∗ a11 − T ∗ a22 + T 2 ∗ a11 ∗ a22 − T 2 ∗ a12 ∗ a21 + 1 is the determinant of
I + TA1 Applying the BEA to the partitioned system yields:[

x′1(k)
x′2(k)

]
=

[−1
Ta11−1

0

0 −1
Ta22−1

] [
x1(k − 1)
x2(k − 1)

]
+

1

∆

[−Tb1
Ta11−1

0 −Ta12
Ta11−1

0 −Ta21
Ta22−1

0

]u(k)
y1(k)
y2(k)

 (4.9)

Replacing the auxiliary variables by their value:[
x′1(k)
x′2(k)

]
=

[−1
Ta11−1

−Ta12
Ta11−1

−Ta21
Ta22−1

−1
Ta22−1

] [
x1(k − 1)
x2(k − 1)

]
+

1

∆

[−Tb1
Ta11−1

0

] [
u(k)

]
(4.10)

The local error (ie. the error due to a single approximation step) is given by[
x1(k)
x2(k)

]
−
[
x′1(k)
x′2(k)

]
(4.11)

which converges to zero as the time step T gets smaller (i.e., all elements of the matrices
are O(T n) , with n ≥ 1).
To assess if the simulation still provides accurate results after the partitioning, we will
now make a series of comparative tests on the circuit of Figure 4.2a. We assume the
following parameters:

• E is a 10 volts, 500Hz sinusoidal source

134

• L1 = 200µH

• C = 10µF

• L2 = 500µF

• R = 2Ω

A 500Hz source is used instead of the more traditional 50Hz to reduce the length of the
simulation and allowing us to better zoom on the combined effects of the input source and
of the switching process. The converter is simulated with the interleaved solver presented
in Figure 4.3, and the circuits are discretized using the trapezoidal approximation.
We first simulate the circuit with a time-step T of 1µs. Transistors T1, T4 are controlled
by a 20kHz, 50% duty-cycle PWM while T2, T3 are always off. Figures 4.4a to 4.4f show
the results of the simulation of the full circuit, as well as of the partitioned version. These
results show that the signals obtained are very close to each other. From Figure 4.4b, we
see that iL1 is the only signal showing a significant difference, which is however limited
to about 1% of its maximum value. Changing the PWM frequency to 100kHz results
in the plots of Figure 4.5. The relative error (again defined as the ratio of the absolute
error divided by the maximum value of the emulated signal) on the DC bus voltage is
greater than before, but is still kept below 1%. Again, the output current is virtually
the same in both cases. The error increases again when the frequency of the sinusoidal
voltage source is changed to 5kHz, as shown in Figure 4.6. From this example, we can
infer the first partitioning rule: we should always split the circuit on a point where the
signal evolve slowly when compared to the sampling period.

4.2 Converters operating in discontinuous conduc-

tion mode

Discontinuous-conduction mode (DCM) is a behavior that appears in some circuits con-
taining an inductor placed in series with one or more diode. When the current flowing
through the inductor and the diode becomes negative, the diode turns off, forcing the
current to zero (or, more generally, to a value controlled by an algebraic equation instead
of a differential equation). When the circuit is not partitioned, the value of the current
is forced by the output solver of the simulation algorithm (see section 2.6).
Difficulties arise when the circuit is partitioned, as we could have to force a current that
does not belong to the current partition to zero. In some cases, this does not lead to any
major change. For example, the inductor L1 of the circuit of Figure 4.2a can enter DCM,
but it did not prevent us from partitioning at its right-hand node. This is explained by
noting that L1 is included within the rectifier stage, which also contains the diodes that
could force the inductor current to zero.
Let us now study what happens when the inductor is separated from the diodes that could
lead to DCM: let us split the inverter of Figure 4.7a. We could take the left switching
branch combined with the central branch as the first partition (in black on the circuit),
while the second partition (drawn in gray) only contains the other branch.
To virtually connect the partitions, we will first try to use the same auxiliary current

135

0.5 1 1.5 2

·10−3−0.2

0.2

0.4

0.6

0.8

t(s)

iL1(A)

Without partitioning
With partitioning

(a)

1.4 1.45 1.5 1.55 1.6 1.65 1.7

·10−3

2

4

6

8

10

·10−2

t(s)

iL1(A)

Without partitioning
With partitioning

(b)

0.5 1 1.5 2

·10−3

2

4

6

8

10

12

t(s)

vC(V)

Without partitioning
With partitioning

(c)

0.5 0.55 0.6 0.65 0.7 0.75 0.8

·10−3

10.2

10.4

10.6

10.8

11

11.2

11.4

t(s)

vC(V)

Without partitioning
With partitioning

(d)

0.5 1 1.5 2

·10−3

0.2

0.4

t(s)

iL2(A)

Without partitioning
With partitioning

(e)

6.23 6.24 6.25 6.26 6.27

·10−4

0.47

0.48

0.49

0.5

0.51

0.52

t(s)

iL2(A)

Without partitioning
With partitioning

(f)

Figure 4.4: Simulation of the circuit of Figure 4.2a, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 50µs. The plots on the right are zooms of the
left plots on the circled region

136

0.2 0.4 0.6 0.8 1

·10−3

0.2

0.4

0.6

0.8

t(s)

iL1(A)

Without partitioning
With partitioning

(a)

5 · 10−2 0.1 0.15

·10−3

20

40

60

·10−2

t(s)

iL1(A)

Without partitioning
With partitioning

(b)

0.2 0.4 0.6 0.8 1

·10−3

2

4

6

8

10

12

t(s)

vC(V)

Without partitioning
With partitioning

(c)

0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

·10−3

7.9

8

8.1

8.2

8.3

t(s)

vC(V)

Without partitioning
With partitioning

(d)

0.2 0.4 0.6 0.8 1

·10−3

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

t(s)

iL2(A)

Without partitioning
With partitioning

(e)

2.44 2.44 2.45 2.45 2.46

·10−4

6.5

7

7.5

8

·10−2

t(s)

iL2(A)

Without partitioning
With partitioning

(f)

Figure 4.5: Simulation of the circuit of Figure 4.2a, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 10µs. The plots on the right side are zoomed
versions of the left plots

137

0.5 1 1.5 2

·10−4

0.5

1

1.5

2

t(s)

iL1(A)

Without partitioning
With partitioning

(a)

0.5 1 1.5 2

·10−4

6

8

10

12

t(s)

vC(V)

Without partitioning
With partitioning

(b)

Figure 4.6: Simulation of the circuit of Figure 4.2a, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 10µs and input frequency increased to 5kHz

Vin

d1

d2

d3

d4

s1

s2

s3

s4

iL L
E

+ − Vo2Vo1

(a)

Vin

d1

d2

s1

s2

iL L +
E −

+

Es = Vo2

−

Vo1

(b)

Vin

d3

d4

s3

s4
Js = iL

Vo2

(c)

Figure 4.7: Partitioning of a full bridge converter (a) Complete circuit, with the two
partitions in black and gray (b)(c) Partitioned circuit, with the controlled sources
used to virtually reconnect the two sub-circuits. The law controlling the sources
are Es(k) = Vo2(k − 1) and Js(k) = iL(k − 1)

.

138

and voltage sources as in the previous example, as shown in Figures 4.7b and 4.7c. Un-
fortunately, this method only works here if both branches have a switch in the on-state,
which allows the currents il and thus Js = iL to flow freely. When DCM occurs and all
switches are off, the update of the auxiliary sources is impossible and the link between
the two sub-circuits is broken, as it will be explained in the next section.

To illustrate this problem, let us now assume that the current flows through d1 and

T0T1 T2

d1, d2, d3, d4 offd1, d4 on, d2, d3 off d2, d3 on, d1, d4 off

E − Vin > 0

−iL ≤ 0 −E − Vin > 0

iL ≤ 0

Figure 4.8: Topology graph for the full bridge circuit of Figure 4.7a when all active
switches are off

d4 (ie. iL is negative) and that Vin > E > 0. The inductor is discharging, its current
will cross zero and reach a small positive value at some time step; in the left sub-circuit
d1 will be switched off and the inductor current forced to 0. At the next time step, Js
will be updated to 0, which will switch off d4. If we look at the switching graph of the
complete inverter in Figure 4.8, we see that the state has evolved from T1 to T0; we
should stay in T0 until the transistors are switched on or until E > |Vin|. Let us sup-
pose that E evolves so that this last condition becomes true. In the full circuit, d1 and
d4 will become forward-biased and be switched on again; the state changes back to T1.
In the partitioned circuit, since Js=0, d3 and d4 are blocked in the off state and Vo2 is
undefined because the node is floating. In the left sub-circuit, the condition to reach T1
(E +Es) > Vin ≡ (E + Vo2) > Vin is impossible to evaluate and we cannot get out of this
topology.

To avoid this problem, a first solution is to add polarizing resistors R, as shown in
Figures 4.9a and 4.9b, which always provide a path for the current and ensures that all
voltages are always defined. To avoid modifying the general behavior of the circuit, we
select a value of 100kΩ for these resistances so that their current adopts a value close to
the leakage current of the diodes.
We will now analyze the effect of these resistances on the switching behavior and on

Vin

d1

d2

s1

s2

iL L +
E −

+

Es = Vo2

−

Vo1

R

R

(a)

Vin

d3

d4

s3

s4
Js = iL

Vo2

R

R

(b)

Figure 4.9: Adding polarizing resistors allows us to compute Vo1 and Vo2, which are
needed to control the diodes

139

the waveforms. Let us assume that iL ≤ 0 flows through d1 and d4; the current evolves
following the law

iL(k) = iL(k − 1) +
T

L
(Vin(k)− E(k)− Es(k)) (4.12)

where Es(k) = Vo2(k) = 0V since d4 was in the on-state during the previous step. This
law is the same as the one used to simulate the whole circuit at once. The current in the
diodes is given by

id1(k) = −Vin
R
− iL(k)

id4(k) = −Vin
R
− Js(k) = −Vin

R
− iL(k − 1)

(4.13)

These equations already show the effects of the partitioning: first, the current across the
diodes (and hence the input current of the converter) is offset by −Vin/R. This effect
can degrade the accuracy of the simulation if this offset is not significantly lower than
the real value of the current. Secondly, since the new value of the current is only seen on
the next step by the second branch, d4 will not be switched off simultaneously with d1.
As explained in the previous section, this delay introduces errors if the dynamics are not
much slower than the time-step.
The graphs presented in Figure 4.10 show the simulation of the partitioned circuit, along
with the results of the simulation of the whole circuit at once. To better understand
these results, we also need the switching graphs of the two partitions : these are drawn in
Figure 4.11. With this in mind, the oscillations are easily explained. When the current
iL goes from negative to positive, the following events happen:

1. the natural switching module first switches d1 off

2. since −R
2
iL is positive, d2 is switched on

3. on the next clock cycle, Js is updated to the positive value, which blocks d4 and
turns d3 on

4. since a negative voltage is forced across the inductor, the current decreases

5. the current becomes negative and the process is repeated

This oscillation between the different topologies has an effect on the voltage at the output
of the branches: instead of having a constant value of Vin

2
± E

2
, the voltage goes back and

forth between 0V and Vin. The ripples present in the inductor current degrade the
accuracy of the simulation, and the effect is more present when the circuit is driven by a
high-speed PWM signal. Assuming E = 0V , the amplitude of this noise is easily obtained
by discretizing the inductor on a single sampling period :

L
diL
dt

= Vin − 0V ⇒ ∆iL,noise = Vin
T

L
(4.14)

We now assume that s1 and s4 are driven by a PWM signal characterized by a period
TPWM and a duty-cycle δ while s2 and s4 are left open. The circuit should go through
the following modes:

140

0 0.5 1 1.5 2 2.5 3

·10−5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0.5 1 1.5 2 2.5 3

·10−5

10

20

30

40

50

t(s)

vo1

Without partitioning
With partitioning

(b)

0.5 1 1.5 2 2.5 3

·10−5

10

20

30

40

50

t(s)

vo2

Without partitioning
With partitioning

(c)

Figure 4.10: Simulation of the circuit of Figure 4.7, when all active switches are kept
in the off-state and the inductor current iL starts with a negative value. The two
voltages go back and forth instead of converging towards Vo1 = Vin+E

2 and Vo2 = Vin−E
2

.

141

T0T1 T2

d1, d2 offd1 on, d2 off d2 on, d1 off

−Vin

2 − R
2 iL > 0

−Vin

R − iL ≤ 0 −Vin

2 + R
2 iL > 0

−Vin

R + iL ≤ 0

(a)

T0T1 T2

d3, d4 offd4 on, d3 off d3 on, d4 off

−Vin

2 − R
2 Js > 0

−Vin

R − Js ≤ 0 −Vin

2 + R
2 Js > 0

−Vin

R + Js ≤ 0

(b)

Figure 4.11: Topology graphs for the two partitions (a) Left branch (b) Right
branch.

1. when the controlled switches are closed, all diodes are open and the inductor current
increases.

2. when the controlled switches are turned off, d2 and d3 turn on to keep the current
flowing. The current decreases, since the voltage on the inductor is now negative.

3. when the current becomes negative, all diodes should turn off until s1 and s4 are
closed again.

As explained previously, the circuit will not stay in the third topology, but instead oscillate
between the topology where (d2, d3) are closed and the topology where (d1, d4) are closed.
The ripple on the current due to the PWM control is equal to

∆iL,PWM = Vin
δTPWM

L
(4.15)

And we can define the signal-to-noise ratio (SNR) of the simulation using the formula

SNR =
∆iL,PWM

∆iL,noise
=
δTPWM

T
(4.16)

Assuming T = 1µs, TPWM = 20µs and δ = 0.3, we only have a 6 : 1 ratio between the
ripples due to the PWM and those due to the additional commutations in the system, as
shown on the graphs of Figure 4.12. Furthermore, the current does not rise as high as it
should.
This result is not accurate enough for our needs, and we have to develop another method
to keep the errors as low as possible

4.2.1 Using topology-dependent sources

Since keeping the same controlled sources for interconnecting all topologies does not
yield acceptable results, we need to change this form along with the topology of each
partition. To avoid falling back into the combinatorial explosion problem, we impose

142

0 1 2 3 4 5 6 7

·10−5

0

0.1

0.2

0.3

t(s)

iL(A)

Without partitioning
With partitioning

(a)

1 2 3 4 5 6 7

·10−5

20

40

t(s)

vo1

Without partitioning
With partitioning

(b)

1 2 3 4 5 6 7

·10−5

20

40

t(s)

vo2

Without partitioning
With partitioning

(c)

Figure 4.12: Simulation of the circuit of Figure 4.7, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 20µs, 30% duty cycle

143

Vin

d1

d2

s1

s2

io1

Js1

Vo1

R

R

(a)

−
Es1

+
Rs

iL L

Rs
+

Es2
−

Vm1 Vm2

(b)

Vin

d3

d4

s3

s4

io2

Js2

Vo2

R

R

(c)

Figure 4.13: Partitioning the circuit in three with full Thevenin equivalent for the
interconnection circuit

that the equation controlling each of the sources can only depend on the topology taken
by a single partition. Furthermore, we want to be able to implement basic modules, such
as a single branch of a converter, independently of the rest of the circuit. These modules
should then be connected using an interconnection circuit composed exclusively of linear
elements that are easily simulated using well-known techniques.
A method based on the study of linear reactive interconnection elements is proposed
in [82] and refined in [42,83]. This method detects and discretizes the connection elements
using the forward Euler method. Those elements are simulated alongside the circuits, and
their effects are transmitted from one partition to another using controlled sources.
However, this method is used in association with the nodal analysis, which does not
require to change the equations when the topology is modified. Similar methods are
presented in [84] and [85, 86], again for solvers based on the modified nodal analysis.
Another method [24] uses a state-space solver for each partition while modeling the
connections using the modified nodal analysis. However, this method is used for circuits
without forced states, avoiding the problem that arises only when the converter can
no longer be considered as a voltage source (or as a current source for current-based
converters). In light of these results, it seems evident that we have to develop our own
method, compatible with the rest of the work presented in this thesis. Using the previous
simulation of the full bridge as a baseline, one of the criteria to avoid unwanted oscillations
is to somehow force the inductor current to drop to zero as quickly as possible when one
of the branches switches off. For this purpose, we propose to split the circuit into three
parts, as drawn in Figure 4.13: each of the branches constitutes its own partition. The
interconnection (i.e. the inductor and the voltage source E in our case) constitutes the
third partition. Instead of using ideal sources to control the inductor, we now use a full
Thevenin equivalent with a controlled source Es1,s2 and a resistance Rs. This resistance
ensures us that the current will drop to zero with a time constant τ = L

2Rs
if the voltage

sources are kept constant. We now have to write the control laws for the source to ensure
that the circuit converges to the correct behavior, i.e.

• For the switching branches

– when any of the switches of the left branch is closed (i.e. the branch is active),
the current io1 flowing through by this branch must be equal to iL. Similarly,

144

the current io2 must be equal to −iL when a switch of the right branch is
closed.

– when all switches of a branch are off (i.e. the branch is inactive), the voltages
Vo1,2 can be computed using standard state-space equations.

• For the interconnection network

– when a branch is active, its output voltage must be present and measurable
at the corresponding inductor terminal.

– when at least one branch is inactive, the current must decay to zero as quickly
as possible.

– when a branch is inactive, the voltage measured at the corresponding inductor
terminal Vm1,2 must be equal to the voltage measured at the same point in the
real circuit.

Let us start with the case where both branches are active: the real inductor current is
controlled by the law

L
diL(t)

dt
= Vo1(t)− E(t)− Vo2(t) (4.17)

where Vo1 and Vo2 are equal to 0V or Vin depending on which switch is active. Using the
forward Euler approximation (FEA) on this equation leads to

iL(k) = iL(k − 1) +
T

L
(Vo1 − E − Vo2) (4.18)

Meanwhile, the differential equation controlling the interconnection branch is

L
diL(t)

dt
= Es1(t)− 2RsiL(t)− Es2(t) (4.19)

which is discretized using the FEA:

iL(k) = iL(k − 1) +
T

L
(Es1(k)− 2RsiL(k − 1)− Es2(k)) (4.20)

The law defined by (4.18) will be equal to (4.20) if

Es1(k)− 2RsiL(k − 1)− Es2(k) = Vo1 − E − Vo2 (4.21)

Furthermore, imposing that the voltage Vm1,2 measured at the inductor terminals is equal
to Vo1,2 leads to

Es1 = Vo1 +RsiL(k − 1)

Es2 = Vo2 −RsiL(k − 1)
(4.22)

Let us now take a look at the controlled current source present in the left converter
branch (Figure 4.13a). On the equivalent ideal (without the added resistors) converter,
the output current io1 is equal to the inductor current iL, while io2 = −iL. Meanwhile,
the same currents in the partitioned branches are equal to

io1 = Js1 +
2Vo1 − Vin

R

io2 = Js2 +
2Vo1 − Vin

R

(4.23)

145

which allows us to find the law controlling the current source while the branches are
active

Js1(k) = iL(k − 1) +
Vin(k)− 2Vo1(k)

R
Js2(k) = −iL(k − 1) +

Vin(k)− 2Vo1(k)

R
(4.24)

These results can be used as-is while the branches remain in an active state. When a
branch is inactive, the current io1 or io2 must be equal to zero, i.e. the law controlling
the current source is changed to

Js1,2(k) =
Vin − 2Vo1

R
(4.25)

Furthermore, Vo1,2 is not given by the current partition, but must be measured on the
interconnection circuit. In this case, we have

Vo1(k) = Vm1(k − 1) = Es1(k − 1)−RsiL(k − 1)

Vo2(k) = Vm2(k − 1) = Es2(k − 1) +RsiL(k − 1)
(4.26)

The law controlling the voltage sources Es1 and Es2 must also be changed. Assuming ik
converges to zero, we have

Vm1(k) = Es1(k)

Vm2(k) = Es2(k)
(4.27)

And, since this voltage must be equal to the voltage measured at the output of the
branches, we have

Es1(k) = Vo1(k − 1) = Es1(k − 2)−RiL(k − 2)

Es2(k) = Vo2(k − 1) = Es2(k − 2) +RiL(k − 2)
(4.28)

We shall now study the interconnection circuit more carefully in order to select the
appropriate value for Rs. We convert (4.20) and (4.28) to a first-order recurrence system
by introducing the following variables

y1(k) = Es1(k − 1)

y2(k) = Es2(k − 1)

yI(k) = iL(k − 1)

(4.29)

The system is now written as
i(k)

Es1(k)
Es2(k)
y1(k)
y2(k)
yI(k)

 = A


i(k − 1)

Es1(k − 1)
Es2(k − 1)
y1(k − 1)
y2(k − 1)
yI(k − 1)

 =



1− 2RT
L

0 0 T
L
−T
L
−2RT

L

0 0 0 1 0 −R
0 0 0 0 1 R
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0




i(k − 1)

Es1(k − 1)
Es2(k − 1)
y1(k − 1)
y2(k − 1)
yI(k − 1)

 (4.30)

The stability and the convergence speed of this system depend on the eigenvalues of A,
obtained by solving det(A−λI) = 0 for λ. As a reminder, an eigenvalue |λ| > 1 will lead
to an unstable system, and the system will converge faster when the eigenvalues are close

146

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

−1

−0.5

0

0.5

1

1.5

k

λ

λ1
λ2
λ3
λ4
λ5
λ6

Figure 4.14: Evolution of the eigenvalues of (4.30) as a function of k = T Rs
L

to the origin [87]. To give a better perspective of the impact of the resistance, we first
write

Rs = k
L

T
(4.31)

The evolution of the modulus of the eigenvalues as a function of k is plotted in Figure
4.14. A first observation is that selecting k > 0.75 will lead to an unstable system,
which must absolutely be avoided. On the other hand, choosing k = 0.5 will result in
eigenvalues placed in λ = 0, which means that the system will converge in a single time
step. This choice corresponds to equating the time constant τ = L

2Rs
to the time step T .

The graphs of Figure 4.15 show the results of a simulation similar to the one performed
in Figure 4.10: the inductor current is initialized with a negative value, and d1, d4 are

conducting, allowing the current to evolve following the law L
diL
dt

= Vin − E. For this

test, we have chosen R = 100kΩ for the polarizing resistors, and a value of 10V is chosen
for E. The results are much better this time, with the current quickly converging to
zero after the initial overshoot while the output voltages stabilize at the correct value in
two clock cycles. The results are less than ideal when the value of E is decreased to 2V
or even to negative values: in this case, the current oscillates for many periods until it
finally converges to zero (Figure 4.16). The explanation for this is simple: when the sign
of the current is changed, the diode is first switched off. Then, we test if

Js
R

2
+
Vin
2
> ±Vin (4.32)

The sign of the right hand sign depends on the previous topology. If this test is true, then
the other diode of the bridge is switched on in turn, leading to an oscillating behavior
similar to the one obtained with the previous method.
The performance is greatly enhanced by reducing the value of the polarizing resistances

147

0 0.5 1 1.5 2 2.5 3

·10−5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0.5 1 1.5 2 2.5 3

·10−5

10

20

30

40

50

t(s)

vo1

Without partitioning
With partitioning

(b)

0.5 1 1.5 2 2.5 3

·10−5

10

20

30

40

50

t(s)

vo2

Without partitioning
With partitioning

(c)

Figure 4.15: Simulation of the circuit of Figure 4.7, when all active switches kept
off and the inductor current iL starts with a negative value.

148

0 1 2 3 4 5

·10−5

−0.4

−0.2

0

0.2

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0 1 2 3 4 5

·10−5

−0.4

−0.2

0

0.2

t(s)

iL(A)

Without partitioning
With partitioning

(b)

Figure 4.16: Simulation of the circuit of Figure 4.7, with R = 100kΩ and (a) E = 5V
(b) E = −10V

so that (4.32) will never be true after a sign change. The highest value of the current
after a sign change is

imax = Vin − E
T

L
(4.33)

The minimal value of E that allows the circuit to stay in discontinuous-conduction mode
is E = −Vin, leading to

imax = 2Vin
T

L
(4.34)

Putting this value into the equation for Js (defined by (4.24)) allows us to write the
condition on R to ensure that the diodes will stay off (written here for the case where
the current goes from negative to positive values):

Js
R

2
+
Vin
2
≤ Vin ⇒ R ≤ L

T
(4.35)

If the resistance is any higher, the circuit will oscillate until the new value of the current
is low enough for (4.32) to be false. This is what happens on Figure 4.16b The graph
presented in Figure 4.17b shows that the current converges even for negative values of
E when R = 1kΩ. This method improves the convergence of the circuit, but draws
an additional current from the input source. It is thus limited to the cases where this
additional current is negligible when compared to the typical currents of the application.
The plots of Figure 4.18 show the behavior of the circuit during PWM control. Again,
a slight overshoot is observed when the current converges to zero, but the results show
a real improvement compared to those obtained using the previous method (shown on
Figure 4.12).

149

0 0.5 1 1.5 2

·10−5

−0.4

−0.2

0

0.2

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0 0.5 1 1.5 2

·10−5

−0.4

−0.2

0

0.2

t(s)

iL(A)

Without partitioning
With partitioning

(b)

Figure 4.17: Simulation of the circuit of Figure 4.7, with R = 1kΩ and (a) E = 5V
(b) E = −50V

Finally, we will show the impact of the resistance placed in series with the inductance.
Let us make the same test as the one performed on Figure 4.17, but this time we keep
s1 in the on state. The current originally flows through d4, and converges to zero, at
which point all the diodes of the right branch go into blocking state. The results, drawn
on Figures 4.19a and 4.19b for E = 20V , show that the current and the output voltage
oscillate while converging to a constant value. Since the left bridge stays in conducting
mode, the corresponding Rs is compensated by the source Es1. As a result, the inductor
only sees Rs instead of 2Rs and the eigenvalues are not placed at the origin, which in this
case introduces an oscillatory behavior.
The same test is repeated for E = 0V on Figures 4.19c and 4.19d. This time, the diode
d3 is turned on when the sign of the current is changed and cannot be turned off since
the current across the inductor does not decrease (the voltage is equal to Vin on both
sides of the inductor).
This section has proven that it is possible to partition a circuit operating in DCM in a
way that keeps the inductor outside of the partition which causes the discontinuity, as
long as proper adjustments are made to the circuit.

4.3 Generalizing the results to any converter

In this section, we shall integrate all the concepts previously studied to deduce a general
method for partitioning any circuit. We will start by introducing some definitions before
describing the steps and applying the methodology to a few examples. A typical power
converter (or partition thereof) may be represented as shown in Figure 4.20. The power

150

0 1 2 3 4 5 6 7

·10−5

0

0.1

0.2

0.3

t(s)

iL(A)

Without partitioning
With partitioning

(a)

1 2 3 4 5 6 7

·10−5

20

40

t(s)

vo1

Without partitioning
With partitioning

(b)

1 2 3 4 5 6 7

·10−5

20

40

t(s)

vo2

Without partitioning
With partitioning

(c)

Figure 4.18: Simulation of the circuit of Figure 4.7, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 20µs, 30% duty cycle

151

0 2 4 6 8 10

·10−5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0 2 4 6 8 10

·10−5

0

10

20

30

40

t(s)

Vo2(V)

Without partitioning
With partitioning

(b)

0 2 4 6 8 10

·10−5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

t(s)

iL(A)

Without partitioning
With partitioning

(c)

0 2 4 6 8 10

·10−5

0

10

20

30

40

50

t(s)

Vo2(V)

Without partitioning
With partitioning

(d)

Figure 4.19: Simulation of the circuit of Figure 4.7, with R = 1kΩ, s1 is kept on and
(a)(b) E = 20V (c)(d) E = 0V

152

converter
−

v1

+

−
vn
+

Jn

i1

im

−
Em
+

Voltage ports Current ports

Figure 4.20: Generic converter surrounded by its voltage and current input ports

−
u(t)

+

iL(t) L

+
vC(t)−C

(a)

−
u(t)

+

iL(t)L

+

E(t)

−
(b)

J
+
vC−C

(c)

Figure 4.21: Partitioning the circuit in three with full Thevenin equivalent for the
interconnection circuit

converter is connected to the outside world through voltage sources (called voltage ports)
and current sources (current ports). These (controlled) sources may represent actual
sources, but more generally correspond to any device that can be represented by its
Thevenin or Norton equivalent. When a circuit is split into multiple partitions, these
sources are the means by which the sub-circuits see each other.

4.3.1 Choosing the partitions

A given circuit may be partitioned in many different ways, some of which leading to
better results than the others. As such, it would be useful to have some guidelines about
the selection process. We already mentioned the first rule, which is to split the circuit in
a point controlled by time constants much larger than the sampling period. The reason
is that replacing a partition by a controlled source is equivalent to using the forward
Euler approximation (FEA), which is prone to instabilities and less accurate than the
backward Euler approximation (BEA) or the trapezoidal approximation [33] when the
time constants of the system are in the same order of magnitude as the sampling period.
Let us illustrate this by observing the LC circuit of figure 4.21a. The continuous-time

153

differential equation governing the state variables are

d

dt

[
iL(t)
vC(t)

]
=

[
0 − 1

L
1
C

0

] [
iL(t)
vC(t)

]
+

[
1
L

0

]
u(t) (4.36)

The FEA corresponding to this equation, obtained for a sampling period T , is[
iL(k)
vC(k)

]
=

[
iL(k − 1)
vC(k − 1)

]
+ T

[
0 − 1

L
1
C

0

] [
iL(k − 1)
vC(k − 1)

]
+ T

[
1
L

0

]
u(k) (4.37)

Let us now split the circuit between the inductor and the capacitor and replace each of
the missing part by a controlled source, as shown -n Figure 4.21b and 4.21c. This circuit
is now described by

d

dt

[
iL(t)
vC(t)

]
=

[
0 0
0 0

] [
iL(t)
vC(t)

]
+

[
1
L
− 1
L

0
0 0 1

C

]u(t)
E(t)
J(t)

 (4.38)

Since the coupled effects are now replaced by sources, using any single-step integration
method on this system will always lead to the same recurrence equation:

[
iL(k)
vC(k)

]
=

[
iL(k − 1)
vC(k − 1)

]
+ T

[
1
L
− 1
L

0
0 0 1

C

]u(k)
E(k)
J(k)

 (4.39)

The equations of the sources are

J(k) = iL(k − 1)

E(k) = vC(k − 1)
(4.40)

Replacing into (4.39):[
iL(k)
vC(k)

]
=

[
iL(k − 1)
vC(k − 1)

]
+ T

[
0 − 1

L
1
C

0

] [
iL(k − 1)
vC(k − 1)

]
+ T

[
1
L

0

]
u(k) (4.41)

Which is exactly the same as (4.37), obtained from the complete circuit with the FEA.

As explained in section 4.2, circuits operating in discontinuous-conduction mode
(DCM) must be handled with care. As a rule, we should always try to keep the in-
ductor in the same partition as the diodes that may force it to enter DCM, the reason
being that the current is then properly controlled and forced by the output equations of
the partition. If separating the inductor from the diodes is unavoidable, then we must
use a more complex control scheme for the sources, similar to the process that we used
in section 4.2. As explained previously, the reason for this is that using sources with a
constant form do not always allow the current to properly converge to zero, which can
introduce unwanted oscillations and commutations.
If the inductor can be forced into DCM because of diodes present in two (or more) par-
titions, then it should be kept outside of all of these partitions. Indeed, the modified
procedure studied in section 4.2 advocates the use of additional resistors to allow the

154

−
u1

+ iL

L

−
u2

+

(a)

−
E1

+

Rs

iL

L Rs

−
E2

+

u1 u2

(b)

Figure 4.22: (a) Definition of the inductor signals (b) Inductor with added conver-
gence resistors

measurement of the voltage on both sides of the inductors. These resistors are compen-
sated by adding a ±Ri term to the sources E1,2 while the circuit operates in continuous
conduction mode. Omitting this additional term allows the current to converge to zero
when the inductor should operate in DCM. However, this compensation is only realized
when using the FEA as the discretization method. Let us take a look at the inductor on
Figure 4.22a: the differential equation is simply

diL(t)

dt
=

1

L
(u1(t)− u2(t)) (4.42)

The circuit with the added resistors (Figure 4.22b) in described by

E1(t) = u1(t) +RsiL(t)

E2(t) = u2(t)−RsiL(t)

diL(t)

dt
= −2Rs

L
iL(t) +

1

L
(E1(t)− E2(t))

(4.43)

These equations are of course equivalent as long as the circuit is studied in continuous
time. Discretizing (4.43) with the FEA leads to

E1(k) = u1(k) +RsiL(k − 1)

E2(k) = u2(k)−RsiL(k − 1)

iL(k) = iL(k − 1)− T 2Rs

L
iL(k − 1) +

T

L
(E1(k)− E2(k))

= iL(k − 1) +
T

L
(u1(k)− u2(k))

(4.44)

which is exactly the same as (4.42) discretized with the FEA, showing that the effect of the
resistors is properly compensated. Assuming we apply the backward Euler approximation
to (4.43) instead, the discrete system is now

E1(k) = u1(k) +RsiL(k − 1)

E2(k) = u2(k)−RsiL(k − 1)

iL(k) =
1

1 + T 2Rs

L

iL(k − 1) +
1

1 + T 2Rs

L

T

L
(E1(k)− E2(k))

(4.45)

155

The resistors are not compensated anymore and appear in the equations, resulting in a
system that converges to iL = 0 with a time constant τ = L

2Rs

As a consequence, the partition containing the inductor must be discretized using the
FEA. Again, this method is far less accurate and stable than some of the other solvers,
and we should reduce its usage to a minimum. Therefore, we should keep the inductor
in its own partition.
When partitioning this way, it is crucial to remember that the current is indirectly forced
to zero, which leads to longer convergence time and additional transients during a few
clock cycles. Combined, these effects can significantly modify the behavior of the circuit
when in presence of DCM.

4.3.2 Analyzing the partitioned circuit

Once the partitions are chosen, the next step is to perform the analysis of the complete
circuit according to the methods introduced in chapter 3. This is done by following these
steps

1. Split the circuit into partitions

2. For each partition

• Add voltage sources at each voltage port, and current sources at each current
port

• Add a measurement of the input current at each voltage port, and a measure-
ment of the voltage at each current port. These are used to update the sources
of the connected partitions

• Carry the automated natural and forced switching analysis

3. Establish the laws controlling the sources

• If the circuit cannot enter DCM, simply use the measurements taken at the
ports of the partitions

• If the circuit can enter DCM, write laws based on the example of (4.24) and
(4.25). The goal of this controlling scheme is to ensure that the correct current
is measured at the output of the converter while keeping the correct output
voltage

The main difficulty of this procedure is to find if the circuit can operate in DCM and how
exactly it modifies the equations. And unfortunately, we have not found any completely
generic method at this time.
However, we are able to define whole classes of converters that obey the same laws. For
example, any switching branch based on an ideal voltage source (also called voltage source
converter) and connected to an inductor will have a controlled current source whose laws
are governed by (4.24) and (4.25), and the partition containing the inductor will have
equations similar to (4.22). Since inductors are often present at the output of converters
to filter the current (or they represent the equivalent inductance of a transformer or of a
motor), these equations will be found in applications.

156

−
E

+

iLinLin

+
vCin− Cin

iL2 L2

s2

d2

iL1 L1

s1

d1

iL3 L3

s3

d3

+
vC− C R

(a)

−
E

+

iLinLin

+
vCin− Cin JL1 JL2 JL3

(b)

−
ECin

+

iLi Li

si

di

+

ECout

−

(c)

Jd1 Jd2 Jd3
+

vC− C R

(d)

Figure 4.23: Multiple parallel boosts, and the three selected partitions

In the next section, we will apply the partitioning methodology to a range of circuits to
show how universal it really is and what are the practical limitations

4.4 Test cases

4.4.1 Introduction

In this section, we will perform an analysis similar to the one we did in section 3.5. The
goal is to study the partitioned circuits not only in terms of accuracy, but also in terms
of complexity of the tables and quantity of conditions to evaluate.

157

4.4.2 Parallel boost converters

Our first example will be the circuit of Figure 4.23. This circuit is composed of three boost
converters placed in parallel. Compared to the standard boost architecture, this variant
provides redundancy and allows us to use components which are rated for lower currents
1. By shifting the PWM signals by a fraction of the period, the switching frequency is
virtually multiplied by three, which allows us to select smaller reactive components.
To partition this circuit, we choose to dissociate the boost converters from the input and
output capacitors. Since the inductors L1, L2, L3 can enter DCM, they are best kept
inside the boosts. This leads to the circuit of Figures 4.23b to 4.23d. Note that the
boost circuit itself is used three times (but represented only once at 4.23b with an index
i = 1, 2, 3), showing how this method enables us to easily reuse pre-existing modules.
The simulation of Figure 4.24 show the behavior of the partitioned circuit compared to
the behavior of the unpartioned one for the following values:

Cin = 1mF

Cout = 100µF

Li = 500µH

R = 10Ω

TPWM = 30µs

duty cycle = 20%

(4.46)

The input and output voltages are almost exactly the same in both versions, while a
small error (around 0.3% of the maximum value) is present on the waveform of iL1. This
error is very small and should not hamper any real-world application of the emulator.
Unfortunately, the performance is significantly degraded when the input capacitor Cin
is reduced to 100µF , Figure 4.25 clearly shows that the oscillations are not correctly
damped. This result confirms the limitations of the partitioning method, since faster
circuits will lead to less accurate waveforms. As mentioned previously, this effect is
partially due to the fact the splitting the circuit is similar to using the forward Euler
approximation, which is far less accurate than the trapezoidal approximation used inside
the partitions.
However, in this particular case, we would expect the circuit to have a large input capac-
itor so the effect should be limited in practice. Moreover, simulating the circuit with a
smaller time step also reduces the error due to the update delay of the sources.
Let us now look at the performance of the automated parsing algorithms, starting with
the study of the topologies. Each of the boost converters has three stables topologies
(see section 3.5.2 for the complete analysis), and the total number of topologies for the
complete circuit is equal to 3 ∗ 3 ∗ 3 = 27, the same as we would have by studying the
complete circuit at once. This result makes sense since the internal configuration of the
boost converters does not depend on the other partitions. For the same reasons, the total
amount of conditions to evaluate for the natural and forced switching module is also the
same:

• Each modules needs the test of iLi ≤ 0 or ECin − ECout > 0 to switch its diode

1Especially if a MOS transistor is used to implement the switch, since the power dissipation is given
by P = RDSON × i2

158

60 65 70 75 80 85 90

·10−4

60

80

100

120

140

t(s)

VCin(V)

Without partitioning
With partitioning

(a)

60 65 70 75 80 85 90

·10−4

60

80

100

120

140

160

180

t(s)

VCout(V)

Without partitioning
With partitioning

(b)

60 65 70 75 80 85 90

·10−4

0

5

10

15

t(s)

iL1(A)

Without partitioning
With partitioning

(c)

90.290.490.690.8 91 91.291.491.6

·10−4

12

12.5

13

13.5

t(s)

VCout(V)

Without partitioning
With partitioning

(d)

Figure 4.24: Simulation of the parallel boost converter, with the parameters given
in (4.46)

159

0.005 0.010 0.015 0.020
t(s)

0

2

4

6

8

10

12

i L
1(
A

)
With partitioning
Without partitioning

Figure 4.25: Simulation of the parallel boost converter, with Cin = 100µF . All other
parameters are defined in (4.46)

• The forced switching module does not require any condition, as switching si forces
di to change its state

These results show that splitting the circuit does not always lead to an increase in resource
usage, since the tables of the whole converter would have been the concatenation of the
local tables. The only real impact of the separation lies in the accuracy of the simulation,
which is degraded because of the delays between the modification of a state variable and
its effect on the rest of the circuit.

4.4.3 Three-phase inverter

As an example, we will try to generalize the results obtained with the full bridge to the
three-phase circuit of Figure 4.26a. This circuit contains three switching branches which
are modeled using the circuit of Figure 4.26b, and an interconnection circuit containing
three inductors and three voltage sources, representing the load. The convergence resis-
tors are added to the interconnection circuit, as shown on Figure 4.26c.
Since the switching branches are exactly the same as the ones we used in the full bridge,
their current source is controlled by (4.24) and (4.25), and we can use our pre-studied
modules without any modifications. The inductor current iL in the equations is replaced
by iL1, iL2 or iL3 depending on the studied branch.
To select the value of the convergence resistors Rs, we first assume that the voltage sources
Es1 to Es3 are constants. The total inductance and resistance seen by each source are
equal to Ltot = L+ L‖L = 3

2
L and Rtot = 3

2
R. The value of R is chosen such that

τ =
Ltot
Rtot

=
L

R
= T ⇒ R =

L

T
(4.47)

160

Vin

d11

d12

d21

d22

d31

d32

Vo2

Vo1

Vo3

s11

s12

s21

s22

s31

s32

LiL1 +
E1 −

LiL2 +
E2 −

LiL3 +
E3 −

(a)

Vin

di1

di2

si1

si2
Jsi

Voi

R

R

(b)

−Es1
+ Rs L iL1 +

E1 −

−Es2
+ Rs L iL2 +

E2 −

−Es3
+ Rs L iL3 +

E3 −

Vm1

Vm2

Vm3

(c)

Figure 4.26: Partitioning the circuit in three with full Thevenin equivalent for the
interconnection circuit. On (b), i ∈ (1, 2, 3) corresponds to the ith branch

161

Partitioned circuit Non partitioned circuit
Per branch Global

Topologies 7 73 = 343 232
Conditions (forced) 4 4 ∗ 3 = 12 9
Conditions (natural) 3 3 ∗ 3 = 9 22

Table 4.1: Ressources needed to simulate the three-phase circuit, for the partitioned
and non-partitioned versions

The plots of Figure 4.27 allow us to compare the results of the simulation of the parti-
tioned circuit with the signals measured on the original circuit when the circuit operates
in discontinuous conduction mode, and using the following parameters

Vin = 50V

L1 = L2 = L3 = 1mH

iL1(0) = 1A, iL2(0) = −0.7A, iL3(0) = −0.3A

E1 = 10V,E2 = −10V,E3 = 0V

(4.48)

The currents of the partitioned circuit follow accurately the model until they hit zero. At
this point, small oscillations are present until they all converge after a few clock cycles.
The output voltages of the branches also present oscillations and never converge to the
correct value, but instead oscillate around it. As it was the case previously, these results
are perfectly fine as long as the very short term (between one to ten time steps) behavior
of the circuit is not crucial. To test if the few time-steps required for the convergence
of the currents have an impact on the global waveforms, we feed the switches s11, s21

and s32 with a 20kHZ, 60% duty cycle PWM signal. As shown of Figure 4.28b, the
current iL1 enters DCM, leading to a transient until it finally converges to zero. While
the transient disturbs the current locally, the global waveforms are almost not disturbed.
The effect is much more pronounced if we do not let the current converge to zero by
increasing the PWM frequency to 40kHz. As shown in Figure 4.29, the waveform of
the emulated current is certainly not accurate enough. This imposes a maximum on
the PWM frequency, as we need to let the current reach zero before switching on the
transistors again.
Since the partitions are not intrinsically decoupled, forcing the separation leads to a larger
amount of conditions to evaluate. One of the reasons is that the optimization tool has no
longer a global view on the circuit, and is unable to eliminate some topologies that would
have deemed unstable. For example, the topology where d11, d21 and d31 are on should
be unstable, since the sum of the diode currents is equal to zero (see section 3.3.3). Since
each branch is studied separately, this kind of simplification is no longer done. The net
result is that, while the study of each part leads to a reduced local complexity for the
forced and natural switching modules, simulating the global circuit will probably require
more resources. Interestingly, this is not really the case in this example. As shown on
Table 4.1, while the total amount of conditions required by the forced switching module
is larger when the circuit is partitioned, the natural switching module requires less than
half the conditions needed when the circuit is kept in one piece. The reason for this is
that the branches cannot directly influence each other, reducing the size of the graphs.

162

0 1 2 3 4 5 6 7 8

·10−5

−0.5

0

0.5

1

t(s)

iLi(A)

iL1, without partitioning
iL2, without partitioning
iL3, without partitioning
iL1, with partitioning
iL2, with partitioning
iL3, with partitioning

(a)

0 1 2 3 4 5 6 7 8

·10−5

0

10

20

30

40

50

t(s)

Vo(V)

Vo1, without partitioning
Vo2, without partitioning
Vo3, without partitioning
Vo1, with partitioning
Vo2, with partitioning
Vo3, with partitioning

(b)

Figure 4.27: Simulation of the three-phase circuit of Figure 4.26a when the circuit
operates in natural conduction mode with all active switches left open, with the
parameters defined by (4.48)

163

−5 0 5 10 15 20 25 30 35 40 45 50 55

·10−5

−6

−4

−2

0

2

4

6

t(s)

iL(A)

iL1, without partitioning
iL2, without partitioning
iL3, without partitioning
iL1, with partitioning
iL2, with partitioning
iL3, with partitioning

(a)

4 6 8 10 12 14 16 18 20

·10−5

−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

t(s)

iL1

Without partitioning
With partitioning

(b)

Figure 4.28: Simulation of the three-phase circuit of Figure 4.26a in PWM mode
with Vin = 50V,L = 1µH,E1 = 10V,E2 = −10V,E3 = 0V and 60% duty cycle for the
switches s11, s21 and s32 (b) Zoom on iL1, showing the transients as the first branch
enters DCM

164

4 6 8 10 12 14 16 18 20

·10−5

−5 · 10−2

0

5 · 10−2

0.1

t(s)

Vo(V)

iL1, without partitioning
iL1, with partitioning

Figure 4.29: Simulation of the three-phase circuit of Figure 4.26a, with the PWM
frequencyincreased to 40kHz

Of course, this is also the reason why the simulation is less accurate to begin with.
This reduction in the amount of conditions is far from being a general result. For example,
a two-phase bridge would require one condition for the forced switching module, and three
conditions for the natural switching module, while a partitioned circuit would respectively
require 4 ∗ 2 = 8 and 3 ∗ 2 = 6 conditions. But then again, a simple full bridge does
normally not need to be partitioned.
This example shows once more the limitations of splitting a circuit operating in DCM.
Because of the delay between the detection of the negative currents (made by measuring
the diode currents) and the convergence of the inductor currents, the circuit is not able
to react correctly to fast changing signals.

4.4.4 Current source inverter

The three-phase circuit studied in the previous section acts as a voltage-to-current con-
verter, converting a single voltage source to three different currents. The next example
acts in the opposite way, and converts a current source into a controlled voltage. The
circuit is represented in Figure 4.30a: the inductor current is selectively sent to one (and
only one) of the output branches by switching the correct transistors, or to none of the
phases by closing the two switches of a single branch.
The first question is how to split the circuit. Since the inductor can enter DCM, and
since we will partition the bridge itself, it makes sense to keep it apart from the rest of the
circuit, just like we did during the study of the full bridge. The next problem is how to
split the converter itself. While separating the branches vertically seems to most logical
choice, the connections between the partitions are relatively complex. For instance, let us
study the inductor partition. Let us try to find the correct configuration for the sources
which represent the branches. There must be a parallel connection between both, as the

165

Vin

iL L
d1
s1

s2
d2

d3
s3

s2
d2

+
vc−C R

Vo2

Vo1

(a)

Vin

iL L

+
V1H
−

+
V1L
−

+
V2H
−

+
V2L
−

(b)

Figure 4.30: Current source inverter (a) Full circuit (b)Inductor partition corre-
sponding to a vertical split of the converter

166

Vin

iL L RL +V1−

RL +V2−

(a)

JC1 JC2 C
+
vC− R

(b)

JL1

d1
s1

d3
s3

−
Vo

+
io1

Rs Rs

Vo2Vo1

Vi1

(c)

J2

d2

s2
d4

s4

−
Vo

+
io2

Rs Rs

Vo2Vo1

Vi2

(d)

Figure 4.31: Horizontal partitioning of the current source inverter (a) Inductor
partition (b) Capacitor partition (c) High side of the bridge (d) Low side of the
bridge

circuit will only enter DCM if both branches are switched off. Furthermore, each branch
must be represented by two sources, as they may be connected to the high side or the low
side of the inductor. This leads to the circuit of Figure 4.30b, which is rather complex.
While adding all these elements seems to provide an acceptable partitioning of the circuit,
there are a lot of additional components for a circuit that should not be more complex
than a simple full bridge. Let us partition the bridge horizontally instead of vertically.
The two partitions are now represented by the circuits of Figures 4.31c and 4.31d. These
circuits, which look like maximum/minimum selectors, also contain the two polarization
resistors Rs. The other circuits, drawn in Figures 4.31a and 4.31b, are much simpler and
provide a good comparison point with the full bridge. Indeed the circuits in Figures 4.31a,
4.31c and 4.31d are almost exactly the same partitions as those drawn in Figure 4.13,
which helps us to write the equations controlling the sources. This way, current source
converters (CSCs) show a duality with the voltage source converters (VSCs): whereas
the VSC is split vertically to separate the branches, it is more efficient to split a CSC
horizontally to isolate the parts fed by the same current source.
The connections between the two half-bridge partitions and the output partition are
straightforward:

Vo(k) = vC(k − 1)

JC1(k) = io1(k − 1)

JC2(k) = io1(k − 1)

(4.49)

Since the inductor can go into DCM, the equations depend on the topology. If at least
one diode of the upper half is conducting, the connections between this partition and the
inductor are

JL1(k) = iL(k − 1) +
2Vi1 − Vo(k − 1)

Rs

V1(k) = −RLiL(k − 1) + Vi1(k − 1)

(4.50)

167

If both diodes are off, then the terms proportional to iL are dropped from the equations.
By symmetry, we also have

JL2(k) = iL(k − 1)− 2Vi2(k − 1)− Vo(k − 1)

Rs

V2(k) = RLiL(k − 1) + Vi2(k − 1)

(4.51)

To test the accuracy of the simulation, we first assume the following parameters

Vin = 10V

L = 100µH

C = 1mF

R = 1Ω

(4.52)

The control signals are: s1 and s4 are switched on and s2 and s3 are switched off during
80% of the PWM period, fixed to 50µs. Then, for the remainder of the PWM period,
the commands are inverted. With these parameters, the circuit stays in continuous
conduction mode, as shown on the plot of Figure 4.32. Under these constraints, the
circuit converges rather quickly with an error of about 1% on the voltage and 4% on the
current. This error is essentially due to the lag of two time steps between the modification
of vC and its effect on the current (one time step to update Vo and another one to update
V1 and V2). While this error is a bit higher than usual, the simulation remains perfectly
usable for most applications. Again, the performances are reduced when the circuit enters
discontinuous conduction mode. To illustrate this, we change R to 10Ω, and change the
control signals so that s1 remains in the on-state all the time, s2 stays in the on-state for
30% of TPWM and s4 is switched on for the remained of the PWM period. Under these
conditions, the circuit can be assimilated to a boost converter with additional diodes
placed in series with the inductor, which is a case similar to the circuit studied in section
3.5.3. And, just like in this circuit, a full time step is required to switch the diodes,
reducing the effective duty cycle and disturbing the signals when the circuit starts with
its diodes off. Because of the partitioning, an additional transient of a time-step appears
when the current starts to rise. These effects can be seen in Figure 4.33c.
Together, these time-steps reduce the effective duty cycle by more than 10%, which has
a visible effect on the plots of Figure 4.33. This limits the application of the partitioning
when the circuit is used in DCM, and solving this problem should be one of the major
points of future works.

4.4.5 Three-Phases Neutral Point Clamped Inverter

Finally, we shall study the three-phase, three-level, neutral-point-clamped inverter (NPC)
of Figure 4.34. This circuit contains 30 switches (18 diodes and 12 transistors), and is
able to drive each of its three outputs to 0V , Vin or −Vin, depending on the configuration
of the transistors and the diodes. In this particular case, each phase of the converter is
loaded by an inductor L placed in series with a resistor RL, and the three load branches
are star-connected.
While the single phase NPC was successfully emulated in section 3.5.6, let us recall that
the three-phase variant cannot be studied as a single circuit using our algorithm. Indeed,

168

0 5 10 15 20 25 30

·10−4

0

10

20

30

40

50

60

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0 5 10 15 20 25 30

·10−4

0

5

10

15

20

25

t(s)

vC(V)

Without partitioning
With partitioning

(b)

22 24 26 28 30

·10−4

15

20

25

30

t(s)

iL(A)

Without partitioning
With partitioning

(c)

12 14 16 18 20 22

·10−4

20

21

22

23

24

t(s)

vC(V)

Without partitioning
With partitioning

(d)

Figure 4.32: Simulation of the current source inverter, with the parameters given
by (4.52)

169

0 5 10 15 20 25 30

·10−4

0

5

10

15

t(s)

iL(A)

Without partitioning
With partitioning

(a)

0 5 10 15 20 25 30

·10−4

0

5

10

15

20

25

t(s)

vC(V)

Without partitioning
With partitioning

(b)

8.2 8.4 8.6 8.8 9 9.2 9.4 9.6

·10−4

0

0.5

1

1.5

t(s)

iL(A)

Without partitioning
With partitioning

(c)

5 10 15 20 25 30

·10−4

12

14

16

18

20

22

t(s)

vC(V)

Without partitioning
With partitioning

(d)

Figure 4.33: Effect of DCM on the signals

170

Vin

Vin

s11

s12

s13

s14 d14

d13

d12

d11

d15

d16
L

iL1

R

s21

s22

s23

s24 d24

d23

d22

d21

d26

d25

L

iL2

R

s31

s32

s33

s34 d34

d33

d32

d31

d36

d35

L

iL3

R

Figure 4.34: 3-Phase Neutral Point Clamped (NPC) Inverter

Vin

Vin

sj1

sj2

sj3

sj4 dj4

dj3

dj2

dj1

dj5

dj6 Jj

Rp

Rp

Voj

(a)

−
V1

+ Rc L iL1 R

−
V2

+ Rc L iL2 R

−
V3

+ Rc L iL3 R

Vm1

Vm2

Vm3

(b)

Figure 4.35: Partitions of the three-phases NPC converter

the large amount of switches leads to more than a billion topologies (230 ≈ 109) and ex-
tremely large graphs. Even though our algorithm could in theory study this circuit, this
task would require an unaffordable amount of time (and computer memory). Thus, being
able to properly partition and emulate the circuit is of capital importance. Fortunately,
partitioning this circuit is very similar to some of the previous cases. We will study each
of the three branches separately, and leave the inductor branches it its own partition, as
shown in Figure 4.35. As usual, the polarizing resistors Rp are added to the branches and
the convergence resistors Rc are added in series with the inductors to ensure the correct
behavior when the output of a branch is disconnected from all the voltage sources.
This structure is very similar to the partitions of the three-phase inverter studied previ-
ously, and confirms that many converters may be split in similar ways. The law governing
the voltage sources V1 to V3 is actually independent of the structure of the branches and
is exactly the same as the one used for the full-bridge and the three-phase converter: if
the output of the branch j is connected to one of its input voltages, this law is

Vj(k) = Voj(k − 1) +RciLj(k − 1) (4.53)

171

which correctly cancels the voltage drop on Rc. If the branch is disconnected, we must
force the current iLj to converge towards zero, i.e.

Vj(k) = Voj(k − 1) (4.54)

The equations governing the current sources Jj are obtained using the same reasoning
that lead us to write (4.24): we first write the Kirchhoff’s current law at the output node
of the branch:

Jj = ioj +
Vin − Voj

Rp

+
−Vin − Voj

Rp

= ioj −
2Voj
Rp

(4.55)

If the branch is active, we have ioj = iLj, leading to

Jj(k) = iLj(k − 1)− 2Voj(k − 1)

Rp

(4.56)

in practice, Voj will be equal to 0V , Vin or −Vin depending on the topology. If the branch
is inactive, we have ioj = 0. Furthermore, Voj is now measured on the interconnection
partition, and is equal to Vmj. The current source is thus equal to

Jj(k) = −2Vmj(k − 1)

Rp

(4.57)

Since each of the branch partitions only contains ten switches, they are easily studied
using the traditional algorithm. To simulate the circuit, we first select the following
parameters:

Vin = 200V

L = 1mH

RL = 1Ω

(4.58)

The output circuit has a time constant equal to L/R = 1ms. We control the switches
of each bridges so that the currents are sinusoidal and phase shifted by 2π/3 from each
other. The frequency of the sines is 500Hz, while the frequency of the PWM is equal to
10kHz. The control signals are obtained by comparing a sinusoidal reference signal to a
sawtooth signal at the PWM frequency (Figure 4.36). Depending on the comparison, we
either switch

• The two upper transistors to force Vin at the output

• The two lower transistors to force −Vin at the output

• The two central transistors, which forces 0V at the output as soon as one of the
two clamping diodes is switched on

With the chosen parameters, the circuit stays in CCM. The plots of Figure 4.37 repre-
sent the simulation of the circuit with the three inductor currents, along with the plots
obtained from a continuous-time simulation. The simulation is very close to the theoret-
ical value, which is an encouraging result since, as a reminder, this circuit could not be
simulated in one piece.
With these results in mind, let us look at the performance of the automated parsing pro-
cedures. In theory, each of the branches requires 13 conditions for the natural switching

172

−2 0 2 4 6 8 10 12 14 16 18 20 22

·10−4

−1

−0.5

0

0.5

1

t(s)

PWM carrier
Reference sine

−2 0 2 4 6 8 10 12 14 16 18 20 22

·10−4

−200

−100

0

100

200

t(s)

Vo(V)

Figure 4.36: Sinusoidal PWM modulation, based on a sawtooth PWM carrier

173

0.000 0.002 0.004 0.006 0.008 0.010
80

60

40

20

0

20

40

60

80

100

i1, without partitioning

i2, without partitioning

i3, without partitioning

i1, with partitioning

i2, with partitioning

i3, with partitioning

(a)

0.0045 0.0050 0.0055 0.0060 0.0065

50

55

60

65

70
i1, without partitioning

i2, without partitioning

i3, without partitioning

i1, with partitioning

i2, with partitioning

i3, with partitioning

(b)

Figure 4.37: Simulation of the three-phase NPC, with the parameters given by
(4.58) and using a 10kHz sawtooth PWM (b) zoom to show the differences between
the continuous-time plot and the simulation

174

Figure 4.38: Typical multilevel current source inverter (taken from [88])

module and 5 conditions for the forced switching module. This high amount is mainly due
to topologies that are reachable in theory, but are completely uninteresting in practice
since they correspond to negative values for the input voltages. If we further specify that
these voltages must be positive, the amount of conditions drops to 5 and 3 respectively,
for a grand total of 15 conditions for the natural switching module of the complete circuit,
and 9 conditions for the forced switching module.

4.4.6 Other circuits

The studies carried in the last few sections should allow us to properly simulate a large
range of power circuits based on the same principles. One of the key conclusions is that
the splitting algorithm tends to work better if the partitions of the converter follow a one
current-many voltages paradigm, meaning that the converter is fed by a single current
source, while multiple voltage sources can be connected. This is especially true if the
current corresponds to an inductor current that can enter DCM, since these requires
particular attention to ensure their convergence, and connecting the current to many
partitions lead to additional resistors in the circuit.
For voltage source inverters, such as the full bridge, the three-phase bridge or the NPC,
this paradigm corresponds to split the circuit by isolating each of its phases (branches).
This partition is also the most natural one, because the converter is effectively composed
of multiple identical converters placed in parallel. Since the complexity of the branches
typically depends on the amount of different output voltages (as illustrated by the NPC
converter), a circuit with more levels will lead to larger partitions. On the other hand,
the number of phases in the circuit has no impact on the complexity of the branches.
The opposite is true for current source inverters, as it is better to connect the current to
each of its output phases (represented by a voltage source) to easily detect discontinuous
conduction. This means that the number of partitions will grow if we add more phases
to the circuit. Meanwhile, a multiple level current source inverter is generally made of
multiple identical bridges connected to the outputs voltages [88,89]. A typical multilevel
current source is represented on Figure 4.38. The current injections to the same node
are effectively decoupled thanks to the sharing inductors. Note that each of the branches
(contained inside the dotted line on the figure) can again be split in two partitions like

175

we did during the study of the single phase current source inverter.

4.5 Perspectives and conclusions

The simulations carried out in this section have shown that the introduced partitioning
method is a viable technique to separate a large circuit into multiple sub-modules which
are studied separately before being recombined in a later phase. If the circuit does
not operate in discontinuous conduction mode (DCM), or if the inductors that operate
in DCM are completely contained in a single partition, the partitioning procedure is
extremely simple and provides sufficient accuracy for the control application for which it
is designed. Some circuits containing many switches are very difficult to analyze due to
their intrinsic exponential complexity, and breaking them in multiple partitions greatly
simplifies the analysis.
We have also developed a more advanced partitioning method in section 4.2, which is used
when DCM involves several partitions. This method is based on controlled current and
voltage sources whose control laws depend on the topology of the partitions. Additional
resistors must be placed in the circuit to ensure that the currents will converge to zero as
quickly as possible, and the value of these resistors must be carefully selected to avoid long
transients or unwanted oscillations. We have shown through multiples examples that this
method leads to acceptable results as long as the time constants and switching periods
are noticeably larger than the time-step of the solver. It should be noted however that
each source depends only on the topology of a single partition, avoiding the combinatorial
explosion that lead us to develop this partitioning methodology. At this point, no other
alternative has been found in the literature, and the usefulness of this method will still
improve in the future.
Another advantage of the partitioning methodology is that it allows to define a library of
circuits in the form of pre-compiled partitions. Since many converters are based on the
same core components, the future designs are simplified because we only need to redefine
a part of the circuit2 instead of the whole converter.
Through the examples, we have tried to show the limitations of this system and to infer its
validity domain. One of the most critical point is that signals that are coupled through
fast dynamics (compared to the time-step) should not be separated, the reason being
that replacing a partition by a source is roughly equivalent to using the less accurate
forward Euler approximation, and splitting the circuit can lead to a divergence between
the emulated signals and their real value. Of course, this effect is highly dependent on
the time-step, and is reduced by using modern computing platforms able to refresh the
signals at a higher rate. It also means that a circuit that cannot be properly partitioned
today could well be used in a few years when new, faster components are available.
The fact that this algorithm is not completely automated can also be seen as a limitation
of the system in its current state. While we have defined guidelines helping the designer
to split the circuit it the best possible way, the algorithm is not complete. Indeed we have
not developed automated methods able to generate and recombine all the tables needed
by the switching modules, and all simulations were made by entering manually the laws

2Typically, the only parts that must be redefined are the output circuits representing the application,
and the input circuits representing the sources

176

corresponding to the interconnections between the partitions. This is particularly crucial
for the sources whose control law varies, because it means that we have to generate more
tables that modify the transfer laws as a function of the partial topologies. In order to
propose a complete turn-key solution, these points will have to be solved as part of a
future project.

177

Chapter 5

Real-Time platform development

5.1 Introduction

5.1.1 Goals and requirements

Before going into the development of the real-time platform, it is a good idea to restate
our goals and to reintroduce the workflow of our toolchain. The steps required to go from
an offline simulation performed on a computer using a tool like Plecs R© or Spice to a fully
real-time digital equivalent are represented on Figure 5.1. Some of these steps were the
subject of the previous chapter.
More precisely, in chapter 2, we have compared the multiple ways a power circuit can
be emulated. After reviewing how to simulate a linear circuit in section 2.2 and how to
model ideal and non-ideal switches in section 2.3, we have selected a simulation procedure
based on the state-space representation of the linear elements. The equations governing
the state-space system are dependent on the configuration of the switches, which are
represented either as an open-circuit or as a short circuit. In practice, the extraction of
the state matrices necessary to perform any kind of advanced analysis is performed using
Matlab R©, taking circuits drawn in Plecs R© as a starting point.
We have also introduced linear automata as a mathematical tool allowing us to conve-
niently represent the transition between the topologies of the power circuit. This allowed
us to define a few high-level simulation procedures in section 2.6.
The procedures were refined in chapter 3 where we introduced multiple steps that signif-
icantly reduce the complexity of the system by studying all possible transitions between
the topologies. Once this automated offline study is done, we obtain four sets of tables:

• two sets (one for the forced switching module, and one for the natural switching
module) providing the list of conditions (diode currents or voltages) required to
select the next topology, based on the current configuration of the switches

• two sets that connect the result of the evaluation to the correct topology

In its current state, the analysis algorithms are implemented in Python, and produce .dat
binary files that will be used downstream.
Since the selection of the topologies happens in real-time, the tables must be implemented
on the emulation platform in a way that is both memory- and time-efficient. Indeed, a

178

1.Offline circuit design
and simulation (Plecs)

2.State matrices ex-
traction (Matlab)

3.Natural/Forced switch-
ing analysis (Python)

4.Assembling and source
code generation (Python)

5.Platform source code

6.Binary code generation
and transfer to the platform

Figure 5.1: The complete design flow of the rapid prototyping procedure. Steps 1
and 2 are described in chapter 2 while step 3 is described in chapters 3 and 4. The
remaining steps are the subject of this chapter

wrong representation of these wide selectors could lead to a large overhead in memory,
which in turn would limit the speed of the platform.
The exponential growth of the tables lead us in section 4 to introduce a modified rep-
resentation of the circuit in order to split the system in multiple sub-circuits, each one
being simulated thanks to the previously defined procedure; the connections between the
sub-circuits are realized in the nodal approach. While the platform must be adapted to
take this change into account, the main steps are still the same: each of the sub-circuits
defines its own tables leading to a set on conditions to evaluate, and the results from
all parts are aggregated to obtain the global result. The most important change is that
we have to introduce a feedback through the modification of the sources instead of the
states: any topology change inside a sub-circuit has an incidence on the controlled sources
of the other parts. The assembling of the partitions, i.e. the generation of the state-space
equations and switching conditions corresponding to the complete circuit, is again done
in Python.
This discussion allows us to define the main requirements for the real-time platform.
First, the architecture must be scalable, in order to adapt itself to many circuits of vary-
ing size. This implies that the design of the different parts must be properly separated

179

Processing unit
Digital-to-
analog convert-
ers

Analog-to-
digital convert-
ers

Process under
test (controller,
protections,. . .)

Digital communication channel

Analog outputs

Binary control signals

Analog inputs

Real time platform

Figure 5.2: Physical structure of the real-time platform, composed of a main pro-
cessing unit and data converters. The process under test typically uses the analog
output signals as its own inputs and provides the binary control signals used to
select the state of the active switches

in sub-modules to enhance the parallel processing capabilities of the procedure. Thanks
to the proper application of pipe-lining techniques, we expect to obtain a design whose
speed is largely independent from the size of the emulated circuit.
Since many parts of the simulation algorithm hang on matrix products (for example, the
evolution of the state variables and the conditions are based on a series of dot products),
it makes sense to optimize this part of the algorithm to avoid overusing the resources of
the platform, while keeping an high computation speed. Finally, in order for our plat-
form to be as user friendly as possible, we must provide multiple modules to simplify
the implementation of the emulator. This includes the automatic creation of the sources,
interfacing the platform to the outside world and provide additional capabilities such as
the representation of sensor defects and measurement noise.
This chapter is divided in multiple sections in which we shall describe the parts contained
in our platform. In section 5.2, we compare the different emulation procedures in order to
select the best choice for our application. The implementations of the low level modules
(notably, the dot products and the selection tables) are studied and compared in section
5.3 before being used in the higher level modules such as the switching modules in section
5.4.

5.1.2 Structure of the platform

The physical structure of the real-time platform (RTP) is represented in Figure 5.2. The
processing unit is the central element of the platform, and implements the emulator as

180

well as all communication protocols allowing the emulator to interact with the outside
world. Multiple inputs and outputs are provided to use the platform in its intended way
(i.e. in closed-loop control). The signals controlling the active switches are the main
inputs. Since these signals are intrinsically binary (the switches are either on or off),
they are easily connected to the digital inputs of the processing unit using a single wire
(assuming compatible logic levels). In closed loop applications, the control signals are
provided by the process under test. For instance, the tested controller might use the
feedback from the analog output signals coming from the emulated converter to generate
the PWM control signals
To represent the measurements that would be taken on the real circuit, we have to trans-
late the digital signals computed by the platform into a measurable voltage (or current)
using a digital-to-analog converter (DAC). These devices are typically placed outside of
the processing unit and are connected either through a parallel bus, or through a serial
protocol such as SPI or I2C if the sampling rate is less than a few mega samples per
second. Analog-to-digital converters can also be added to provide analog inputs allowing
to externally modify the value of the sources.
Additional communication channels may provide advanced capabilities not directly con-
sidered in this thesis. An example would be a high-speed channel allowing to modify the
state matrices on-the-fly or to send the computed values of the signals to a computer
without using an analog channel.

5.1.3 Selection of the processing unit

While computers and micro-controllers are often used in embedded control systems, they
are not the best choice for our application. Indeed, these systems are intrinsically sequen-
tial, which means that the time needed to execute all the instructions included in a time
step is greatly impacted by the size of the emulated circuit. For instance, multiplying a
m−by−n matrix by a n−by−1 vector requires the sequential computation of m×n par-
tial products, leading to a long computational delay when the circuit grows in complexity.
Hence, larger circuits have to be simulated with a larger time-step. Some parallelism can
be obtained in multi-core processors, but computing tens of partial products in parallel
remains difficult to achieve.
Field Programmable Gate Arrays (FPGAs) are another type of digital devices, which put
an emphasis on massive parallel processing. Internally, an FPGA is composed of a high
number of small cells (or slices) providing basic operations [44]:

• Logic slices are composed of a small (4bit or 6bit) RAM acting as a look-up table and
allowing the implementation of basic logic functions, multiplexers and additional
general purpose logic such as latching elements. These slices constitute what is
known as the FPGA fabric.

• Multiplying slices implement high speed multipliers in high speed dedicated logic,
providing better performance that a multiplier implemented in general purpose
logic. Modern FPGAs provide DSP units instead able to perform a multiplication
and/or an addition in the same slice

• Block RAMs are memories of a few kilobits able to contain small tables.

181

• High speed IO slices allow the use of modern communication protocols such as PCI
.

Figure 5.3: Architecture of an FPGA (taken from [90])

All these elements are interconnected thanks to a large configurable network of wires
across the device, as represented on figure 5.3. Since the slices are mostly independent,
we are allowed to use the functions of many slices at the same time, providing a very
high degree of parallel processing. This means that we could, for example, compute all
partial products of a matrix product simultaneously, while updating the DACs with the
new value of the signals and reading the new value of the controlling signals at the same
time. It also means that the emulation of a larger circuit will require a larger amount
of resources, but will not necessarily need more time to perform the operations. Hence,
we are provided with a more precise knowledge of the minimum time step, and this time
step is mostly independent of the emulated converter. On large FPGAs containing many
slices, we can compute hundreds of operations simultaneously, leading to high data rates
that cannot be reached by most processors.
For the current version of the platform, we have chosen to use FPGAs manufactured by
Xilinx R© because of our familiarity with their products. However, the basic concepts are
the same for the devices built by other vendors, and their lineups are mostly equivalent.
One of the biggest challenges when designing an application for FPGAs is to ensure what
is known as the timing closure. To explain this concept, we first define a path as a chain
of logic operations that must be done during a single clock cycle. The path is bounded
on both ends by memory elements that are updated at each clock cycle and acting as
buffers allowing to spread complex operations over multiple clock cycles. The path will
be within the timing parameters of the design if the data is guaranteed to reach the end
of the path before the next clock cycle. This imposes a limit on the number of operations
that can be performed in a single clock cycle, as each slice adds a propagation delay.
Furthermore, the time needed to propagate the signals across the interconnection cannot
be neglected, and may constitute the major part of the total delay when connecting slices

182

Logic function Logic function

clock

Interconnection

Synchronous
buffer

Synchronous
buffer

Synchronous
buffer

Synchronous
buffer

Figure 5.4: The double buffering isolates the interconnections from the modules

placed far apart on the chip.
The maximum allowed clock frequency is limited by the critical path, which is the longest
sequence of operations that must be performed during a single clock cycle. The critical
path is reduced by adding intermediary buffers in the design, effectively spreading (or
pipe-lining) the operations on several consecutive clock cycles.

The FPGA workflow

A FPGA is not programmed like a processor, we do not load a memory with a list of in-
structions that are executed by a central unit. Instead, we configure the function of each
slice as well as the interconnections between the slices during the compilation. However,
we can still draw parallels between the two workflows transforming a high-level descrip-
tion of the application into an executable file.
In both cases, a first step converts a file written in a high-level language (C/JAVA/Python...
for a computer, VHDL/Verilog for a FPGA) into a low-level description that corresponds
to the chosen platform. For a computer, this step is performed by the compiler, while
the synthesizer converts an application written in VHDL or Verilog into low-level logic
functions (multiplexers, registers, multipliers,...). These functions are then mapped to
the basic functions provided by the slices of the specific FPGA target.
The different parts of the application are then connected to provide the complete design.
This is known as the link step when compiling a program for a computer. For a FPGA
design, this step is called place and route, and consists in physically selecting which slices
will be used for the different modules of the design, and in configuring the interconnection
network to provide the correct electrical path.

5.1.4 Challenges

From a technological standpoint, the difficulties in designing the platform arise from
the need to ensure timing closure. Hence, each module must be tested and validated
separately against the timing requirements. However, this does not guarantee that the
module will still meet the closure when used as part of the complete system. Indeed,
the synthetiser may decide to place two successive modules far from each other during
the place and route step, and the resulting additional propagation delay may cause the
design to fail. This effect is reduced by placing buffers at the beginning and at the end of
each major module. With this double buffering, the communication between the modules
is separated from the logic operations, and is allowed to take up to a full clock cycle to
transmit the signals (Figure 5.4).
Reducing the global utilization of logic cells is another goal of this design, because a

183

reduced logic circuit will more easily meet the timing requirements and can be imple-
mented on a smaller FPGA. The reduction of the automaton representing the circuit was
developed in chapter 3: by limiting the number of conditions we need to evaluate, we
kept the resource usage to a minimum. Of course, additional optimizations can be made
at the implementation level to avoid using too many unnecessary slices. These reductions
will be introduced in this chapter.
Since we do not expect the user of the platform to be an expert in FPGA design, we have
to design the platform to be as user-friendly as possible. This means that the platform
must be internally universal, and should be configured thanks to configuration files that
depend on the FPGA and on the emulated circuit. An optimal design flow should require
as few interventions as possible from the user between the initial design of the circuit in
Simulink and the implementation on the FPGA, which means that me must automati-
cally convert the tables established during the offline analysis to a format understood by
the design.
Finally, we have to remember that the main goal of this thesis is to emulate circuits with
fast transients and high switching frequencies. As an immediate implication, all modules
must be optimized to take as few clock cycles as possible while allowing a high clock rate.
This means that all computations must be kept to a minimum, and that we must avoid
developing pipelines that are unnecessary long. We must also ensure that the behavior of
the design in closed loop (i.e., when the output signals are used by an external apparatus
such as a controller to modify the value of the input signals) does not lead to unrealistic
signals 1.

5.2 Emulation procedure

5.2.1 Structure comparison

We already introduced multiple high-level procedures for the real-time platform in section
2.6, and only the main results will be repeated here. Each of the possibilities have the
same base properties, which are the implementation of the state solver, the output solver
and the switching modules. The two main possibilities are drawn in Figure 5.5. The first
structure, represented in Figure 5.5a, shows a split solver with the parallel computation
of the states x(k + 1) and of the outputs y(k + 1). This method allows for a high
degree of parallelism, since more signals may be computed at the same time. In turn,
this reduces the total latency of the solver. The main disadvantage of this structure is
that the outputs are computed using the states and inputs of the previous cycle (i.e.
y(k) = f(x(k − 1), u(k − 1)), which introduces a delay equal to a single time-step and
may degrade the performance of the controls if the time constants are not significantly
larger that the fundamental time step of the solver due to the implied reduction of the
phase margin.
In contrast, the interleaved structure of Figure 5.5b allows to update the outputs as soon
as the new value of the states is known (y(k) = f(x(k), u(k))). Furthermore, inserting
the natural switching module between the state solver and the output solver adds the
possibility of adjusting the value of a state if it becomes forced after a topology change.

1Since we are using a discrete solver, some distortion in unavoidable due to the lags in the signals.

184

state solver output solverz−1

Switching module

x(k + 1)

x(k)

y(k + 1)

u(k)
Control signals

A,B C,D

(a)

state solver

natural switching

output solver and
state adjustment

forced switching

z−1

xT (k + 1)

xT (k + 1)

u(k)

u(k)

u(k)

u(k) C,D

x(k + 1)

x(k)

A,B

Control signals

y(k + 1)

(b)

Figure 5.5: The two main structures (a) Split structure with parallel computation
of the states and outputs (b) Interleaved structure

185

state solver

natural switching

Controlled
sources update

output solver and
state adjustment

forced switching

z−1

xT (k + 1)

xT (k + 1)

u(k)

u(k)

u(k)

u(k)

u(k)

C,D

x(k + 1)

x(k)

A,B

A,B

Control signals

y(k + 1)

Js

Figure 5.6: Solver with interleaved structure, modified to allow the use of the
partitioning thanks to the inclusion of the controlled sources update module

Since the modules are computed in a serial manner, the total latency of the system is
larger. Hence, if we succeed to keep the same time step for both structures, the interleaved
variant will provide the outputs sooner than the parallel structure. As the circuits we
hope to simulate can include state variables with very short time constants (notably,
the discharge of a decoupling capacitor across a leg of a converter could be described
by a time-constant of around 1 microsecond or less, as was shown in section 3.5.3), we
selected the interleaved structure for our platform. If we use circuit partitioning, we have
to take the adjustment of the controlled sources into account. As shown in chapter 4,
the sources are computed before the states, leading to the structure of Figure 5.6. This
method lengthens the simulation procedure, as more computations must be performed in
series. Unfortunately, this structure is also required to avoid a lag between a change in
a state variable and its effect on the other partitions, and to keep a high fidelity in the
emulated signals. This is even more true if the partitioning leads to the separation of an
inductor from a partition that can force it to enter discontinuous-conduction mode, as
these circuits are more sensitive to the lag (this effect was shown in section 4.2). Again,
this effect is less pronounced when the sampling rate increases.

186

5.3 Fundamental modules

5.3.1 Data representation

In the previous chapters, all computations have been performed in Matlab R© and Python,
which use by default double precision floating-point numbers. These floating-point num-
bers are composed of:

• a sign bit

• a mantissa, containing the most significant digits of the number (23 bits for the
IEEE-754 in 32-bit format, 52 bits for the 64-bit representation)

• an exponent, or scaling factor, which multiplies the mantissa by 2exponent (8 bits for
the 32-bit representation, 11 bits for the 64-bit representation)

The main advantage of floating-point numbers is their very wide dynamic range, indi-
cating that we can represent very small numbers and very large numbers with the same
precision. If we take the IEEE-754 representation as an example, the full 23 bits of the
mantissa (equivalent to about seven decimal digits) are available for the complete range
of exponents (-127 to 127).
Computations using floating-point numbers tend to take a lot of clock cycles. For exam-
ple, computing the product of two 32-bit floating-point numbers require the multiplication
of the two mantissas, the normalization of the exponent and the insertion of the sign bit
in sequence and may take up to 14 clock cycles for a signed product [91]. Floating-point
adders require even more steps, and can require more time that the floating-point prod-
uct [92]. Integrated floating-point units are typically not present in FPGAs, and these
operations must be partially performed in the slower general purpose slices of the device.
FPGAs with integrated high speed floating-point DSP slices appeared on the market
recently [93], but were not available when our platform was developed. When these de-
vices become more common, switching the platform to floating-point calculations could
provide a more customizable design able to emulate a wider range of signals.
During this thesis, we had to choose a fixed-point representation for our numbers. With
this paradigm, all numbers are integers scaled by an implicit factor. As an example, let
us take the Q15 fixed-point representation, meaning that all numbers are multiplied by
215 before being encoded. We can write the following;

• 1 is encoded as 1× 215 = 32768

• 123 is encoded as 4030464

• 0.05 is encoded as 1638 (rounded down from 0.05× 215 = 1638.4)

Hence, numbers with a fractional part may be represented using an integer with a preci-
sion of 2−15. This comes at the expense of the maximum value that can be encoded with
this representation. For example, the maximum value of a signed 32-bit Q15 number is
(231− 1)/215 ≈ 65536 and corresponds to the binary number 0111 . . . 1 (the left-most bit
is reserved for the sign). In conclusion, the number is composed of:

• a sign bit

187

• 16 bits for the integer part

• 15 bits for the fractional part

The biggest advantage of this representation lies in its computational efficiency. Since all
numbers are integers, we can use the dedicated integer DSP units available in the FPGA
to their full power. The only additional step required by this method is to properly rescale
the values after applying any arithmetical operation. Let us assume two real numbers a
and b, encoded in the fixed-point numbers A and B with their respective representation
Qm and Qn. We have

A = a× 2m

B = b× 2n
(5.1)

If we want the compute the product of a and b, and encode the result in X, defined as a
Qk fixed-point number, we first perform the integer multiplication

AB = ab× 2m+n (5.2)

The final representation of X is obtained by scaling the output

X = AB × 2k−(m+n) (5.3)

Multiplying (or dividing) an integer in two’s-complement representation by a power of
two is equivalent to performing a binary shift. This operation is very fast when the
amount of bits by which we must shift the signals is constant, and takes at most one
clock cycle 2.
We now have to select the exact representation that will be used in our platform. A first
immediate idea is to use numbers of a traditional length such as 16, 32 or 64 bits; these
numbers are indeed heavily used on computers and micro-controllers. However, using
these representation do not allow us to use the full precision of the integrated hardware
multipliers of the FPGA, which are generally 18 × 18 bits 3. Hence, we studied the use
of the 18-bit and 36-bit representation.
To select the final representation, we must first find the needed range and precision. Let
us take a look at the following first-order dynamical system:

dx

dt
= ax(t) + bu(t)

y(t) = cx(t)
(5.4)

For the sake of simplicity, we assume that this system is sampled and solved using the
Forward Euler Method and a time step T , leading to

x(k + 1) = (1 + aT)x(k) + bTu(k)

y(k) = cx(k)
(5.5)

2Shifting a number by a variable amount of bits requires a barrel shifter, which is a more complex
device that is also much slower (i.e. it either requires more clock cycles, or a single much longer clock
cycle). This is one of the reasons why floating point calculations take so much time

3The origin of the 18 bits representation lies in the fact FPGA memories are typically 9-bit wide in
order to provide a parity bit along with the 8 bit data. If we do not use the parity bit, we can freely use
the ninth bit as a basis for our numbers, leading to 9- , 18- and 36-bit representations

188

the values (1+aT), bT and c must be encoded in the system as 18- or 36-bit integers. The
aT term can be rewritten as T

τ
; τ = 1/a is the time constant of the system. As explained

in section 2.2, it makes sense to use a time step smaller than the time-constant. For
slow systems, the time-constant can be as high as one second or even more. For a short
time-step equal to 1µs, aT is equal to 10−6. As a result, the encoding of 1 + aT requires
at least 21 bits 4, which excludes the use of the 18 bits representation.
Hence, we have selected 36-bit integers. Meanwhile, we chose to allot 18 bits to the
fractional part, two fewer bits than the 20 bits computed previously. This format allows
us to represent numbers ranging from −218 to 218 (i.e. from −262144 to 262144) with
a resolution of 2−18. This symmetrical choice allows us to represent both x and 1/x
at the same time for x ≤ 218, which is useful for circuits that include resistances (i.e.
the resistance R will be at the numerator for current-to-voltage relations and at the
denominator for voltage-to-current relations). Note however that changing the format
only requires to recompute the matrices and the scaling factor.
In practice, 35-bit numbers are used. The reason for this is that the product of two 18-bit
signed numbers (containing 17 significant bits and the sign bit) is a number composed of
a sign bit and 2× 17 = 34 number bits, hence a 35-bits number.

5.3.2 Dot products

The dot products are present in multiple places in our algorithm. Indeed, we have the
state equations that use any of those forms depending on chosen solver (as described in
section 2.2.3)

xT (k) = (I − TA)−1(x(k − 1) + TBu(k)) Backward Euler approximation

xT (k) = (I − T

2
A)−1((I +

T

2
A)x(k − 1) +

T

2
Bu(k)) Trapezoidal approximation

x∗(k) = x(k − 1) + T (Ax(k − 1) +Bu(k))

xT (k) = x(k − 1) + TA
x(k − 1) + x∗(k)

2
+ TBu(k) Improved Euler approximation

(5.6)
The output equation, augmented by the modified value of the states (see section 2.6), is
defined by [

y(k)
x(k)

]
=

[
C
Cx

]
xT (k) +

[
D
Dx

]
u(k) (5.7)

The switching modules are based on the computation of a set of conditions that depend
on the current topology. These conditions are of the form

yD = Ex(k) + Fu(k) (5.8)

where yD either represents a diode current or a diode voltage. Finally, the value of the
controlled current sources that appear when using circuit decoupling is updated using

Js = CJx(k) +DJu(k) (5.9)

4To encode any number ranging from 0 to 1, with a precision of 10−6, we must have at least 106

different values at our disposal. The minimal n such that 2n ≥ 106 is 20. An additional bit is required
to encode the sign

189

Figure 5.7: Steps of a 35-by-35 product using a 18-by-18 multiplier (taken from [94])

Each of these matrix products is trivially split into a series of dot products of the form

zi =
∑
j

aijxj +
∑
j

bijuj (5.10)

The calculation of the dot products involves computing the partial products aijxj and
bijuj before summing the results. The implementation depends on the exact goal pursued
(size vs latency vs throughput), as we shall show now.

Computing the partial products

Multiplying two signals seems straightforward at first glance, but the implementation
still requires a bit of thought. Indeed, since we have chosen to represent the signals as
35-bit variables, we cannot simply use an internal 18-by-18 multiplier. We can, however,
find a succession of operations that allow us to perform the 35-by-35 product. To better
describe our possibilities, we shall assume that we want to compute the product of the
variables A and B, each 35-bit wide, and write the result in P , which is a 70-bit variable.
We will furthermore assume that the input variables are decomposed into A =

[
AU AL

]
and B =

[
BU BL

]
where AL, BL are the 18 least significant bits while AU , BU are the 17

most significant bits. The product is then decomposed into four partial products, which
are then shifted and summed as shown in Figure 5.7. We will now review different im-
plementations of this product, and select the most appropriate for our application. The
canonical implementation is to use four DSP units connected to perform the products,
the shifting and the summation in dedicated high-speed logic, as shown in Figure 5.8
(where the z−1 block is a single clock delay). This version has the advantage of being
fully pipe-lined, which means that a new product is computed at each clock cycle (albeit
with a latency of four clock cycles). The biggest drawback of the pipe-lined implemen-
tation is that it requires four DSP slices per 70-bit product. In older FPGAs like the
Spartan 6 series, the shift had to be done in fabric (generic logic), which leads to a longer
data path and hence a lower maximal clock rate [96] (this effect can be counteracted by
using a longer pipe-line, which allows a higher frequency in exchange of a longer latency).
A first single-slice variant is shown in Figure 5.9. Here, the same slice is used four

190

Figure 5.8: Pipe-lined implementation of a 35-by-35 product using four 18-by-18
multipliers (taken from [94]). At each stage, a DSP slice includes the logic needed
to perform the multiplication, the addition and the internal buffering. Additional
buffers are added in front of the slices and at the output in order to synchronize
the data paths (i.e. the inputs of the second stage must appear one clock later than
the inputs of the first state

191

Figure 5.9: Implementation of a 35-by-35 product using the 18-by-18 multiplier
and the adder of a single DSP slice (taken from [95]): the four partial products are
computed in succession, and are accumulated using the adder

192

AL

AH

1,3

2,4

cycle

BL

BH

1,2

3,4

∗ +

z−1

output

reset

Figure 5.10: Implementation of a 35-by-35 product using the 18-by-18 multiplier
and an accumulator

times with different inputs, successively implementing the four slices of the pipe-lined
version [95]. While this could work for lower clock frequencies, this design is limited by
the feedback from the output to the adder input. Indeed, there are two ways to imple-
ment the selective shifting required by the product. First, the shift may be realized in
fabric, limiting the speed for the reasons described previously. On newer platforms, the
slices can be configured to shift the adder input before performing the addition, which
provides a more compact solution 5. While this solution uses less logic, the slices are not
built to support high frequency mode changes, limiting the clock frequency to about 200
MHz [44]. To eliminate this problem, we suggest a modified implementation, represented
in Figure 5.10. Here, the DSP slice is used as a basic 18-by-18 multiplier, outputting in
sequence each of the partial products, which are then summed using an accumulator
placed downstream. The accumulator is controlled thanks to a multiplexer, allowing to
selectively shift the signal or reset the accumulator before performing the product. Since
the shifter is placed in series with the multiplier, it adds a single clock cycle to the op-
eration. The steps required by this design are described on table 5.1. This pipe-lining
allows the design to perform at higher clock frequencies.
To further compare the methods, we implemented the algorithms on two devices (in-
cluding a second variant of the fully pipe-lined with added buffer stages, leading to a
deeper pipe-lining) and wrote their performances based on the maximal clock rate and
the amount of LUT (look-up tables, which are the base logical units of the FPGA). The
first device is a Spartan 6 FPGA, which is a low-cost family typically used is smaller
boards and is part of the 2008 lineup of devices. The second device tested is part of the
Artix 7 family of FPGAs (sold since 2011) which are much more powerful while being
the smallest and the cheapest of the new Xilinx chips. The results are written in Table
5.2, with the following remarks:

• To ensure proper decoupling with the rest of the design, buffers (D flip-flops) were

5These slices implement many more modes, including the possibility to perform a subtraction instead
of an addition, carrying a logical operation (OR,AND), building a three-way adder,...

193

Cycle Multiplier Adder
Input Output Input u(k) Output y(k)

1 AL,BL AL ×BL 0 y(1) = 0
2 AH ,BL AH ×BL 0 y(2) = y(1) + u(2) = 0

3 AL,BH AL ×BH AL ×BL

y(3) = y(2) + u(3)

= AL ×BL

4 AH ,BH AH ×BH (AH ×BL)<<17
y(4) = y(3) + u(4)

= AL ×BL + (AH ×BL)<<17

5 0,0 0 (AL ×BH)<<17
y(5) = y(4) + u(5)

= AL ×BL + (AH ×BL + AL ×BH)<<17

6 0,0 0 (AH ×BH)<<34

y(6) = y(5) + u(6)

= AL ×BL + (AH ×BL + AL ×BH)<<17

+ (AH ×BH)<<34

= A×B

Table 5.1: Steps of the single slice 35-by-35 multiplier of Figure 5.10. The <<n
operation represent a n bits arithmetical left shift. The delay between the output
of the multiplier and the input of the accumulator is due to the shifter, which
requires a single clock cycle

Method DSP—Latency Spartan 6 Artix 7
slices (cycles) LUT Frequency LUT Frequency

Fully pipelined 4 4 212 160 MHz 212 330 MHz
Fully pipelined 4 8 300 280 MHz 212 435 MHz

Single slice, first version 1 5 220 210 MHz 230 250 MHz
Single slice, second version 1 5 225 230 MHz 215 280 MHz

Table 5.2: Speed and resource usage of the multipliers

194

sign bit integer part (16 bits) fractional part (18 bits)

(a)

sign bit integer part (33 bits) fractional part (36 bits)

int. part (16 bits) frac. part (18 bits)sign

(b)

Figure 5.11: Slicing the output of the 70-bit multiplier (a) operands in Q18 format
(b) 70-bit output in Q36 format and extraction of a new Q18 number

added before and after the module, and the LUT numbers takes them into account.
Since the multipliers would be buffered in the platform anyway, the numbers reflect
the correct real-world logic utilization.

• The maximum frequencies were assessed by compiling the Hardware Description
Language (HDL) files, and running the Trace tool integrated with the Xilinx in-
tegrated software environment, which automatically generates the timings of all
logical paths including the propagation delays (which could be larger than the logic
delays if the design uses modules far apart from each other).

Multiple observations may be done from these tests. First, it seems clear that implement-
ing pipe-lined multipliers on the less powerful Spartan 6 will either require a slower clock
rate or a longer internal pipe-line to separate the product into more basic operations. In
general, keeping a high clock frequency is more important since it allows a global acceler-
ation of the whole design, while a shorter latency only accelerates the current module. In
general, the pipe-lined design can handle higher clock rates, which makes sense since we
use fast dedicated blocks while the single slice designs use more fabric logic. Secondly, it
seems clear that a big jump in performance has been made between the previous low-cost
family and the newer one. In particular, the maximum allowed frequency of the four-
stages pipe-lined implementation has been doubled.
In light of these tests, it seems clear that computing the products quickly while keeping
a high clock rate is perfectly possible using both platforms, and that the pipe-lined and
the single-slice implementations are both viable. Among the two single-slice implemen-
tation, the second version allows a higher clock frequency, and will be preferred. Note
that the speed of the single-slice design is essentially limited by the accumulator, which
is implemented in generic logic. The output of the multiplier is coded on a 70-bit signed
number. Since all signals are coded on 35 bits, we have to extract the correct range of
bits corresponding to the chosen fixed-point representation. As an example, let us take
the product of a state variable by a coefficient of the A matrix. Since the values are
coded in the Q18 format (see section 5.3.1), the output will be coded in the Q36 format
(just as the product of two decimal numbers with one fractional digit leads to a number
with two decimal digits at most). Since the output also corresponds to a state, we drop
the 18 least significant bits and the 18 most significant bits (Figure 5.11). Of course,
this technique assumes that the signals are properly scaled so that their value will never

195

DSP1

∗ +

DSP2

∗ +

DSP3

∗ +

DSP4

∗ +

z−1

z−2

z−3

a0

x0

a1

x1

a2

x2

a3

x3

output

Figure 5.12: Cascaded implementation of a dot product. The computations of the
partial products are synchronized by the z−n blocks, and added together to produce
the output

exceed the 17-bit integer part. If this rule is respected, the value of all bits at the left of
the 17-bit integer is equal to the sign bit (this is due to the sign extension principle).

Dot product structure

Multiple choices are offered to implement fixed-point dot product, all of which having
to do with the order and timing of the addition of the partial products. To provide a
comparison, we first define n as the length of the vectors and Tmul and Tadd as the number
of clock cycles needed to respectively perform a multiplication and an addition.
A first implementation, called the cascade adder or systolic adder, is shown in Figure
5.12. Here, the partial products are arranged as follows:

z = a0x0 + (a1x1 + (a2x2 + . . .)) (5.11)

The result of a multiplier is added with the partial sum of all previous products. This
method is very often used in DSP applications due to its high level of pipe-lining and the
use of the integrated adder of the DSP slices. In our case however, this adder is already
used as part of the computation of the products, resulting in the utilization of generic
logic (or of an additional DSP slice) to perform the addition instead. The total latency of
this implementation is equal to Tmul +(n−1)Tadd. The number of stages may be reduced
by implementing an adder tree instead, as shown in Figure 5.13 with 2-way adders. The
partial products are now arranged as:

z = ((a0x0 + a1x1) + (a2x2 + a3x3)) + (. . .) (5.12)

196

∗

∗

∗

∗

∗ z−1

+

+

z−1

+

+

a0

x0

a1

x1

a2

x2

a3

x3

a4

x4

output

Figure 5.13: Adder tree implementation of a dot product

Thanks to this arrangement, the total latency is reduced to Tmul + Tadddlog2 (n)e. If the
FPGA is fast enough, we can use adders with more inputs to further reduce the latency
to

latencydot = Tmul + Tadddlogk (n)e (5.13)

where k is the amount of inputs of the adders. Again, this latency does not include the
buffers that are typically added to reduce the critical path.

Method Latency DSP Spartan 6 Artix 7
(cycles) slices LUT Frequency LUT Frequency

Pipelined multipliers 9 20 1200 225 MHz 1100 345 MHz
Single slice multipliers 12 4 2300 266 MHz 1900 310 MHz

Table 5.3: Speed and resource usage of a dot-product of vectors with five elements,
using 4-way adders

In practice, the use of 4-way adders seems to be a good compromise. The result of the
implementation of a dot product of two vectors of five elements is shown in Table 5.3 for
the two FPGAs and the two styles of multipliers. The tradeoff between the usage of DSP
slices and generic LUTs is apparent, as the single-slice implementation uses around twice
as much LUTs as its pipe-lined equivalent.
A curious result is that the speed of the single-slice implementation is actually faster in
the case of the Spartan 6. This is easily explained by the fact the limit comes from the
connections between the multipliers, and not from the adder tree. By implementing the
multiplier in a single multiplier followed by a buffer, we reduce the critical path and keep
a higher clock rate. Adding two additional pipe-lining stages in the implementation raises

197

the clock rate to 280MHz.
The results are clearly in favor of the Artix 7, since the pipe-lined version is faster, needs
fewer clock cycles and consumes fewer generic resources.

5.3.3 Multipliers optimization

The resource utilization of the multipliers can, under certain conditions, be drastically
reduced. For example, we can completely remove a multiplier if we know that one of the
operands is always equal to zero, and replace its output by a constant zero. The number
of elements in the dot product is reduced, limiting the amount of stages in the adder tree.
Likewise,

• if one of the operands is always equal to 1, the multiplier is replaced by a buffer

• if one of the operands is always equal to−1, the multiplier is replaced by an inverting
buffer

• if one of the operands is always equal to a power of two, the multiplier is replaced
by a shifter

These cases can be combined into the simplified multiplier of Figure 5.14 when ai ∈[
−1, 0, 1

]
: a multiplexer allows to output xi,−xi or 0 depending on the sign of ai, where

sign(ai) is defined as

sign(a) =


1 if a > 0

−1 if a < 0

0 if a = 0

(5.14)

For some circuits, this optimization leads to a very large reduction in the number of used

xi

Sel

0

1

-1

sign(ai)

output

0

Figure 5.14: Simplified multiplier used when ai ∈ [−1, 0, 1], where sign(ai) is defined
by (5.14)

DSP slices.

Example 16. Let us study the equations the circuit of Figure 5.15. Since it contains four
state variables (2 inductors and 2 capacitors) and one source E, we have a base number
of 4 ∗ (4 + 1) = 20 elements in the A,B matrices. However, it can be shown easily that
these matrices are of the form

d

dt


iL1

vC1

iL2

vC2

 =


0 x 0 0
x x x 0
0 x x x
0 0 x x



iL1

vC1

iL2

vC2

+


x
0
0
0

E (5.15)

198

−
E

+

iL1
L1

d1

d2 d4

d3

+
vC1

−
C1

Rmos

d5

d6

d7

d8

s5

s6

s7

s8

iL2
L2

+
vC2

−
C2 R

sL

RL

Figure 5.15: In this circuit, most elements are equal to zero

where x is a non-zero value fixed by the topology. Only half of the coefficients have
to be computed, which divides the number of used slices by two and reduces the size
of the vectors in the dot products from five to three. Note however that this is only
true if we use a discrete solver that keeps the form factor of the matrices intact, such
as the Improved Euler Method described in section 2.2.3: all other methods disrupt the
structure by inverting the state matrices. The reduction on the state-output matrices
CX , DX is even more impressive. The matrices are written as

iL1

vC1

iL2

vC2

 =


0|1 0 0 0
0 1 0 0
0 0 0|1 0
0 0 0 1



iL1,T

vC1,T

iL2,T

vC2,T

+


0
0
0
0

E (5.16)

Only four coefficients are not equal to zero, and all the remaining products can be com-
puted using a simplified multiplier.

5.3.4 Selection tables

The selection tables are used to select

• the conditions to evaluate using the current topology (and the new state of the
transistors in the case of the active switching module)

• the new state of the diodes using the result of the evaluation of the conditions

In both cases, the problem is stated as finding the best implementation of a n − to − 1
selector, translating the input vector into the correct answer. The ideal implementation
should be fast and memory-wise efficient. It should also have a low latency and allow a
fast clock rate.

199

RAM-based implementation

iL +
V 2− vC
R2

> 0
V 2− vC
R2

> 0 iL > 0 V2 − vC ≤ 0 D1 D2

1 1 - - on on

0 - 1 1 on off

- 0 1 1 on off

All other combinations off on

Table 5.4: Example of switching table

One of the most straightforward implementations is to use a RAM-based table. With
this method, the input is used as an index allowing to easily find the correct value using

value = Table[input] (5.17)

The most important drawback of this implementation is the memory required to hold all
the values, even if most of them are not useful. For example, let us take a look at the
switching Table 5.4 (obtained in Section 3.4.3) containing four address bits corresponding
to each of the four conditions. To hold all the values, we first need to expand the don’t
cares to obtain all sixteen values. Then, each line is mapped to an element of the table
using the result of the evaluations as the binary address. Thus, instead of only having the
four lines of the original table, we use four times as much memory. Since the same process
must be repeated for all available combinations of switches, we could end with a large
amount of data to store in memory. For this reason, we encourage a multiplexer-based
solution, as presented in the next section

Muxtiplexers-based implementation

Looking back at the same table, a multiplexer (mux) is another natural solution to our
problem. A multiplexer is a logic construction which allows one (and only one) of its
inputs to be connected to the output, based on the value of a set of control signals. It
corresponds to the switch or case statement present in many programming languages.
For example, Table 5.4 is written in C code as:

switch (address)
{

case (11−−):
out = 11 ;
break ;

case (0−11):
out = 10 ;
break ;

case (−011):
out = 10 ;

200

break ;
default :

out = 01 ;
}
The implementation of a mux on a FPGA is similarly straightforward. The logic blocks
contain basic multiplexers with two inputs, which are connected to form larger modules.
Unfortunately, the tables cannot be implemented as-is because they may contain equiv-
alent lines. For example, both the second and third line of Table 5.4 will react if the
input is equal to 0011. While this does not seem to be a problem since the outputs are
the same, it is difficult to know how the internal logic of the FPGA will behave when
dealing with this case. This problem is avoided by expanding the don’t cares (written as
−− in the table), which leads to the same problem as the RAM-based implementation.
Another limitation is due to the VHDL language used to program the FPGA. While this
language supports the creation of multiplexers using the case statement, this construct
do not accept any − in the list of inputs, which completely voids its application to our
case since it again means that we would have to expand the don’t cares 6.

Priority Encoder

The multiple selection problem is avoided by introducing a priority mechanism that tests
the entries one by one until a correspondence is found. This mechanism, known as a
priority encoder, corresponds to the following C code:

i f (address == 11−−)
out = 11 ;
else i f (address == 0−11)

out = 10 ;
else i f (address == −011)

out = 10 ;
else

out = 01 ;

The most important disadvantage of this method is that all the if statements have to be
evaluated in sequence until a match is found, leading to a non-constant evaluation time.
The critical path is a function of the number of comparison stages, which can limit its
usage for larger tables. Nevertheless, this method seems to be the best match for our
application due tot he fact that we do not need to expand the don’t care statements, and
that the priority order is respected. The equivalent logic circuit for FPGA is presented
in Figure 5.16: the first stage makes all comparisons in parallel, and the second selects
the output by activating the correct buffer.
The design is accelerated by first combining all inputs leading to the same output, which
corresponds to the following code:

6While the possibility of using don’t cares was added in the 2007 version of the VHDL language, it is
not yet understood by the systhesis tools.

201

== 11-- ?

== 0-11 ?

== -011 ?

11

10

10

01

Address out

Figure 5.16: Logic circuit of a priority encoder

== 11-- ?

== 0-11 ?

== -011 ?

11

10

01

Address out

Figure 5.17: Logic circuit of a priority encoder with combined inputs

i f (address == 11−−)
out = 11 ;
else i f (address == 0−11 | | address == −011)

out = 10 ;
else

out = 01 ;

and leads to the circuit of Figure 5.17, where the equivalent inputs are combined using
an OR gate. The final circuit has now three sequential stages:

1. all comparisons are made simultaneously during the first stage

2. the results of the the comparisons leading to the same output are combined (i.e.
OR-ed together)

3. the priority encoder properly enables the correct output

Since the tables can include hundreds of lines, we have decided to add buffering gates
between each stage. This procedure reduces the critical path, allowing higher clock
frequencies at the cost of two additional clock cycles.

202

Matrix product

Matrix selector
Matrix

input vector

switches and diodes

output vector

Figure 5.18: Structure of the solvers

Table reduction

In some cases, multiple lines corresponding to the same output can be combined into
a single one using logic reduction. For example, if the inputs 1000 and 0000 lead to
the same output, these two lines can be combined into −000. Normally, this reduction
is made automatically by the HDL compiler during the synthesis of the logic circuit.
However, making such a reduction ourselves allow us to select the best evaluation order
for the lines and, most importantly, to select which value we should assign to the others7

entry of the table (see Table5.4).
To reduce the logic, a practical choice for the last line is to select the output with the
largest amount of corresponding inputs. The reasoning behind this choice is that the
last line is not explicitly evaluated (i.e. is selected only when all other comparisons have
failed), and the comparison and combination logic is not generated.
Many automated reduction algorithms exist, each with their strengths and weaknesses.
For example, the Quine-Mc Cluskey algorithm guarantees that the result is the minimal
representation of the system, but its execution time is O2n, where n is the number of
inputs to the function [97]. In comparison, heuristic reducers find an almost optimal
result, but do so in much less time. The Espresso Logic Minimizer algorithm, originally
developed by IBM, is the de-facto standard and is implemented in one form or another
in almost all HDL synthesizers [98].

5.4 High level modules

5.4.1 Introduction

The modules presented in section 5.3 are the basic bricks that will allow us to build the
more complex parts of the simulator. In this section, we will study each of the parts
individually and show the modules can be sued to optimize the design.

203

5.4.2 Linear Solver and output solver

Internal structure

The internal configuration of the two linear solvers is quite simple, as shown in Figure
5.18. Both modules are based on the same sub-functions. First, the value of the state
matrices (A,B for the state solver, C,D for the output solver) is obtained using a selection
table that takes the current configuration of the switches as its input. Then, each of the
outputs are computed in parallel using its own dedicated dot product.

Selection tables

Instead of writing a single selection table for the complete matrix, each of the elements
of the matrices is obtained using a dedicated multiplexer. This way, we avoid generating
extra logic modules if only some of the elements need a wide selection table while some
others have fewer values (or are constant).

Example 17. Let us take a circuit with two switches, leading to four topologies. We
have four A matrices:

A00 =

[
0 0
0 0

]
, A01 =

[
1 0
0 0

]
A10 =

[
0 0
0 1

]
, A11 =

[
1 0
0 1

] (5.18)

Furthermore, we assume that the selection table, written in C, is the following

i f (sw i t che s == 00)
A = A00 ;
else i f (sw i t che s == 01)

A = A01 ;
else i f (sw i t che s == 10)

A = A10 ;
else

A = A11 ;

Four lines are needed while each coefficient has at most two different values. If we separate
the elements of the matrix, we end up with four independent selectors:

7The others entry of the select VHDL instruction corresponds to the default entry of the switch
instruction present in many programming languages.

204

// S e l e c t o r f o r e lement (0 ,0)
i f (sw i t che s == −1)

A [0] [0] = 1 ;
else

A[0] [0] = 0 ;

// S e l e c t o r f o r e lement (0 ,1)
A[0] [1] = 0

// S e l e c t o r f o r e lement (1 ,0)
A[1] [0] = 0 ;

// S e l e c t o r f o r e lement (1 ,1)
i f (sw i t che s == 0−)

A [1] [1] = 1 ;
else

A[1] [1] = 0 ;

Only two elements require proper selection modules: the two other ones are assigned a
constant value. Furthermore, the remaining individual selectors are much simpler than
before (they only require the value of a single bit).

Matrix product

The individual dot products are computed in parallel using the modules presented in
section 5.3.2. Since the solvers are only used once for every time-step, there is no need
to use a pipe-lined design, and the non-pipe-lined version of the multipliers (shown in
Figure 5.10) is generated to reduce usage of the DSP slices. The optimizations presented
in section 5.3.3 are used to eliminate partial products with a constant zero coefficient or
equal to ±1. With this modification, the different dot products do not contain the same
amount of partial products and adder stages, and additional buffers are added to equalize
the length of the paths, as shown in Figure 5.19.

5.4.3 Natural Switching module

The structure on the natural switching module is similar to the linear solvers:

1. A matrix multiplexer selects the conditions to evaluate according to the current
configuration of the switches. These conditions are the outputs of the natural
switching analysis carried out in section 3.3

2. The conditions are evaluated by performing a matrix product

3. We test if the conditions (of the form iD > 0 or vD ≤ 0) are verified or not

4. A second multiplexer selects the new configuration of the diodes based on the
previous configuration and on the result of the evaluation

205

∗

∗

∗

∗

∗ z−1

+

+

+

z−1

a00

x0

a01

x1

a10

x0

a11

x1

a12

x2

output 1

output 2

Figure 5.19: The length of the paths corresponding to the individual dot products
are equalized by inserting extra buffers

The first two modules are the same as those present in the linear solvers, and do not need
additional information. Since the natural switching analysis is only carried out once for
each time-step 8, the non-pipelined variant of the multipliers is again used.
Testing the validity of the condition can be done by evaluating a single bit if we rewrite
the tests in a slightly different way. Let us assume that we rewrite the conditions to be
of the form y ≥ 0. The test can be performed by looking at the sign bit, which is always
equal to zero for a positive number, including zero. Hence

• Instead of testing vD ≤ 0, we test −vD ≥ 0

• Instead of testing iD > 0, we test −iD ≥ 0 and invert the result of the evaluation

These changes do not add any complexity to the design, as long as the tables are accord-
ingly modified during the offline analysis. First, we change the sign of all the coefficients
written in the matrix selector, which means we will compute −iD or −vD. Then, if the
condition corresponds to a current, we invert the True/False values in the selection ta-
bles. The two tables of Table 5.5 provide an example of modification
Finally, the second table which selects the state of the diodes is implemented using a
single priority encoder.

8as a reminder, a natural switching event is a change in a diode in reaction to a modification of the
value of a state or an input, which can only happen during the computation of the new time-step.

206

E − vC ≤ 0 iL > 0 D1 D2

1 - on off
0 1 off on

(a)

−E + vC ≥ 0 −iL ≥ 0 D1 D2

1 - on off
0 0 off on

(b)

Table 5.5: Modifying the conditions to allow for a faster evaluation of their validity
(a) Before modification (b) After modification

diode (k)

gate (k)

thyristor (k)

Z-1thyristor (k - 1)

Figure 5.20: The thyristor control circuit, where the conduction state of the thyris-
tor depends on its state at the previous iteration, the state of the diode given by
the selection tables, and by the gate control signal

Thyristor control

Until now, we have not explicitly talked about implementing hybrid switching devices,
such as the thyristors, in the platform. This can actually be performed with a small
addition to the natural switching module, as we shall show now.
As a reminder, the thyristor is a device that acts as a diode with an added enabling
pin called the gate. The device can only switch to the on-state if the cathode to anode
voltage becomes positive (like a diode) and a direct current is injected in the gate-cathode
junction. Once turned-on, the device will remain in this state until the current drops to
zero, at which point it turns off. Hence, an ideal thyristor can be modeled as a simple
diode, which allows us to use all of our algorithms seamlessly.

An additional module is placed after the second selection table, and allows us to force
the mode of the diode to a particular value. This module is a simple combination of
an OR-gate and an AND-gate, as shown in Figure 5.20: the feedback allows us to lock
the device in the on-state until the current becomes negative, even if the gate voltage
disappears.

207

−
E

+

iL L

+
vC− C Ru

Figure 5.21: Boost Converter used to show the effect of inter sample-time switching
events

5.4.4 Forced Switching Module

Structure

At first sight, the structure of the forced switching module is exactly the same as the
natural switching module. Indeed, this selector is also composed of a matrix selector
followed by a matrix product between the provided and the states and inputs. Again,
the outputs of this products represent the diode currents and voltages, which are then
compared to zero to select the new configuration of the diodes.
The only difference between the forced switching module and the natural switching mod-
ule is that the former reacts to a change in the switch control signals. This is the reason
why the selector takes both the old configuration of the switches and the new value of
the control signals as its input.
The control signals are not synchronous with the time-step and may change at any time
during this period. This leads to the apparition of Inter Sample-time Switching Events
(ISSE), whose effects will be analyzed now

Managing Inter Sample-time switching events

The control signals of the active switches can be modified (by the controller or by the
protection systems among others) at any point during the time-step. How we manage
these events can have a profound effect on the accuracy of the waveforms, as will be
shown shortly.
The simplest way to deal with these events is to simply sample the value of the control
signals at the beginning of the time step. With this method, the forced switching engine
is called once at every time-step, and is placed directly in series with the rest of the
modules. The problem with this approach is that the resolution on the timing of the
switching events is equal to the time-step, which degrades the quality of the emulation
when the control signals change rapidly.
As an example, let us take a 100kHz PWM control signal and a time step of 1µs. With
this configuration, the resolution on the duty cycle is equal to 1µs

10µs
= 10%. To analyze

the effect of this loss of precision, let us take the boost converter of Figure 5.21 with the
following parameters

E = 100V

L = 2mH

C = 100µF

R = 10Ω

(5.19)

Let us further assume that the switch is driven by a 100kHz PWM characterized by a

208

0 50 100 150 200 250 300

·10−6

0

2

4

t(s)

iL(A)

Continuous-time
Discrete-time, T = 1µs

Figure 5.22: Simulation of the boost converter when the control signal of a switch
occurs during the time step and is sampled only once per simulation time step :
the simulation diverges quickly from the expected result

0µs 1µs 2µs 3µs 4µs 5µs 6µs 7µs 8µs 9µs 10µs 11µs

Real signal

Sampled signal

Figure 5.23: Effect of the sampling on the control signal, the effective duty-cycle is
modified from 75% to 80% and the commutations are delayed

209

duty-cycle of 0.75 and a simulation time-step equal to 1µs. The simulation of Figure 5.22
compares the result of the emulated waveforms with the ideal result. Obviously, the effect
on the outputs are significant. This is to be expected, since the emulated duty-cycle δ
will either be equal to 0.7 or to 0.8 depending on the time-shift between the PWM and
the start of the time steps (Figure 5.23). More precisely, the current system assumes that
the sampled value of the control signal stayed the same for the whole duration of the
time-step. Once the inductor and the capacitor have reached their nominal charge, the
steady-state average value at the output of the boost is given by

vC =
1

1− δE (5.20)

Because of the sampling, the average output voltage will become 1
1−0.8

E = 5E instead of
1

1−0.75
E = 4E, i.e. an error of 25%.

This behavior is unacceptable, and a new way of dealing with ISSE must be developed.
Multiple methods have been introduced to modify the outputs when a switching event
occurs between two time-steps. Some of them are presented in [99]. Let us assume that
the switching event happens at some point during the time-step from kT to kT + T , and
that the exact switching moment is kT + τ . We also assume that τ is known exactly by
sampling the input signals with a sampling period much shorter than the time-step. This
is not a problem, as reading a binary signal from an input pin can be done at the full
clock frequency of the FPGA (250MHz or more). Most correction methods are based on
those steps:

1. compute x(k + 1) normally

2. if a switching event has occurred at time kT+τ , interpolate linearly to find x(kT+τ)

x(kT + τ) ≈ x(kT) +
τ

T
(x((k + 1)T)− x(kT)) (5.21)

3. apply a correction to x((k + 1)T) using x(kT + τ)

Another method is to iteratively solve the circuit for each time event. For our example,
it means we would first use the linear solver to find x(kT + τ)

x(kT + τ) = Ad1x(kT) +Bd1u(kT) (5.22)

where Ad1, Bd2 depend on the chosen integration method. Then, we use a second linear
step to find x((k + 1)T)

x((k + 1)T) = Ad2x(kT + τ) +Bd2u(kT) (5.23)

The second method is more accurate, and is effectively equivalent to a variable time-step
solver. However, both solutions have the same problem: since the number of iterations
is not known at synthesis time (i.e. multiple switching event may occur during a single
time-step), we cannot ensure that the computations will take less than a single time-
step. Depending on the chosen discrete-time approximation, the second method may
also require the online inversion of the state matrices (for example, the Backward Euler

210

Approximation forces us to compute (I − τA)−1) which a long procedure that requires a
lot of resources.
Instead, we suggest a procedure based on the averaged state-space approximation, which
has been used for decades in offline simulators to quickly obtain the long-term behavior
of power circuits. As implied by its name, this approximation avoids the computation of
fast transients by averaging the state-matrices along the time-step 9. For our example, it
means we could directly compute x((k + 1)T) using

x((k + 1)T) = (
τ

T
Ad1 +

T − τ
T

Ad2)x(kT) + (
τ

T
Bd1 +

T − τ
T

Bd2)u(kT) (5.24)

With this approximation, the solver remains a single-step method, and the latency re-
mains the same even if multiple switching events occur. If we know the switch con-
figuration at all time, we can infer A(t), B(t) and the averaged state-space is written
as

x((k + 1)T) =

(
1

T

∫ (k+1)T

kT

A(t)dt

)
x(kT) +

(
1

T

∫ (k+1)T

kT

B(t)dt

)
u(kT) (5.25)

To compute the integral, multiple changes must be made to our algorithm. First, we
have to sample the control signal at a higher sampling rate. This is not a problem since,
as already mentionned, reading a binary signal from an input pin can be done at the full
clock frequency of the FPGA (250MHz or more).
Since we must know the switch configuration at each clock cycle, the forced switching
module is modified to use the pipe-lined version of the multipliers. This way, their output
is refreshed at each clock cycle, allowing us to know the current value of the A and B
matrices.
Finally, the integration is performed by accumulating the value of the matrices during
the time-step. We first define n as the ratio between the sample period and the FPGA
clock cycle TFPGA

n =
T

TFPGA
(5.26)

We then compute the integral using

1

T

∫ (k+1)T

kT

A(t)dt ≈
n∑
j=0

1

n
A(jTFPGA) (5.27)

When a new time-step starts, the accumulated values are sent to the state-solver while
the accumulators are reset to zero. With these modifications, the selection of the state
matrices is moved from the state solver to the forced switching engine, which now operates
at the FPGA clock rate instead of the sampling rate.
The final problem lies in the division present in (5.27). To avoid the use of a classical
divider, which requires at least one clock cycle per bit, we select a factor n equal to a
power of two (n = 2h). This way, the division can be replaced by an arithmetical right
shift of h bits. This operation is easily implemented in the generic slices of the FPGA

9Originally, this method was used to avoid the simulation of the switching effects, representing only
the average effects of the PWM control

211

0 50 100 150 200 250 300

·10−6

0

2

4

t(s)

iL(A)

Continuous-time
Discrete-time, T = 1µs

Figure 5.24: Simulation of the boost converter with switching events during the
time step. The control signals are sampled at 100MHz

and is performed in a single clock cycle. Since n is constant, we could also pre-compute
1
n

and multiply by this factor instead. However, this alternative requires an additional
pipe-lined multiplier per coefficient. The results for the simulation of the boost converter
with a time-step of 1µs and a sampling period of 10ns for the control signals is presented
in Figure 5.24. This time, the two plots are almost perfectly aligned thanks to the
oversampling of the PWM signal.

5.4.5 Outputs interfacing

The results obtained with our platform are meaningless if we are not able to somehow
output their value to the outside world. Since the main goal of our platform is to emulate
the signals obtained by the voltage and current sensors, it make sense to recreate the
analog voltages corresponding to the measurements. Hence, digital-to-analog converters
(DACs) must be added to the platform, and the communication protocol must be imple-
mented.
To avoid designing complex circuit boards based on fast (10 megasamples per second or
more) DACs with a parallel interface, we have selected the much smaller AD5453 chip
manufactured by Analog Designs. This integrated circuit is characterized by

• a serial interface using the SPI protocol

• a maximum sample rate of 2.7 mega samples per second

• a resolution of 14 bits

Physically connecting these circuits to our FPGA only requires three signals (the clock
signal, the data signal and a chip select signal), which simplifies the design.
The main disadvantage of using serial DACs is the increased lag in the control loop.
Indeed, sending an output to the DAC requires sixteen SPI clock cycles (which is slower

212

than the FPGA clock), leading to an added lag of about 350ns. Taking the time to
develop a front-end based on faster converters would be a way to reduce the loop lag.

Output signal scaling

To make full use of the output range of the DACs, we have to properly scale the signals
beforehand. To better understand the concepts introduced in this section, we first need
to remember how a DAC works. An unipolar, voltage-based DAC transforms a binary
number N composed on n bits (n being equal to the resolution of the converter) into a
voltage vo using a simple rule of thirds :

vo =
N

2n − 1
Vfs (5.28)

where Vfs is the full-scale voltage of the converter. To use the converter to the best of its
abilities, we must ensure that we use the whole range of values for N . Let us assume that
the signals are scaled in a way that the maximum value sent to a 14-bit DAC is equal
to 1000, which can be coded on 10 bits only. Not only do we have a lower resolution,
meaning that fewer different values can be sent to the converter, but we barely use 1/16 of
the voltage range. This reduced voltage is more sensitive to electromagnetic interferences,
hence the signal-to-noise ration will be worse, which may degrade the performance of the
control loop. We have thus to carefully select the representation of the output signals.
The output equation, augmented by the modified value of the states (see section 2.6), is
defined by [

y(k)
x(k)

]
=

[
C
Cx

]
xT (k) +

[
D
Dx

]
u(k) (5.29)

The y(k) vector corresponds to the measurements that will be sent to the converters,
while x(k) is an internal vector containing the state variables. The format of the state
vector is fixed to 18 fractional bits to remain consistent with the rest of the signals.
Meanwhile, we are free to chose the best scaling for y(k).
Let us first look at what would have happened if we had kept the Q18 format for y(k).
The maximum value for this signal is equal to 214 = 16384. If the actual value of x(k)
the does not go higher than 100 during the simulation, we use less than ten percent of
the scale and the four most significant bits are lost. Thus, sending the 14 most significant
bits to the converter is very inefficient in this case.
A better choice is to select a full scale value for each of the outputs (for example, 100
volts or 10 amperes), and normalize the signals by dividing by this value. Let us first
assume that y(k) is scalar (i.e. there is only one output), and that we select a maximum
value of ymax for this signal. The equation for the normalized signal yn(k) is

yn(k) =
1

ymax
CxT (k) +

1

ymax
Cu(k) (5.30)

Since the maximum value of normalized signal is equal to 1, all 34 data bits are now part
of the fractional part: y(k) is now expressed in the Q34 format (it codes the per unit value
of the signal), with 100 . . . 0 corresponding to −1×ymax and 011 . . . 1 to (1−2−34)×ymax.
This choice brings multiple advantages. First, it allows us to make a direct comparison
with the sensors that would have been used on the real converter: all we have to do is

213

select ymax equal to the full range value of the sensor.
For our goals, the biggest advantage is that we are now sure that all the most significant
bits are used, and we can simply take the fourteen most significant bits and send them to
the converter, whereas a badly scaled signal would have many unused bits, which reduces
the effective resolution of the converter.

5.4.6 Input Interfacing

The main inputs of our platform are split between the binary control signals of the
switches and the independent sources of the design. Due to the differences in their
nature, these two types of inputs are addressed separately in the next sections.

Switch controls

The control signals of the switches are, by nature, binary values. These signals can be
generated externally by a controller or a PWM modulator, or internally by an additional
module. In the current version of the platform, only externally generated signals are
supported. Interfacing external binary signals to the platform is easily done by connecting
the binary control signal to the correct IO pin, after ensuring that the input is electrically
compatible with the board.

Electrical sources modeling

The electrical sources can be of two types. Independent sources correspond to external
signals whose values do no depend on the evolution of the system, while controlled sources
are used to interconnect the partitions of a single circuit.
The two main kinds of sources found in electrical devices are constant value sources
and sinusoidal sources. While the first kind is trivial to generate, we must handle the
sinusoidal sources carefully, as a bad implementation could lead to offsets or drifts in the
signal. Let us study the simple integrating system

dx

dt
= bu(t) (5.31)

where u(t) = sin(ωt) is an AC source. The discrete version of this equation is

x(k + 1) = x(k) + Tsbu(k) = x(k) + Tsb sin(ωkTs) (5.32)

Assuming ωTs = n ∈ N (i.e., the period of the signal is a multiple of the time-step), we
have

x(k + n) = x(k) +
n−1∑
i=0

sin(ni) (5.33)

To ensure that x(k) is periodic and does not present any drift, we must verify that the
following is true

n−1∑
i=0

sin(ni) = 0 (5.34)

214

In other words, we have to ensure that the sum of all the values taken by the source over
one period is equal to zero. This is easily done using a table based implementation of
the sine over a half-period. Assuming a period of n points, we first generate a sawtooth
signal z(k) with increases from 0 to n − 1 at each new time step before rolling back to
zero. Then, assuming n even, we simply encode the following

u(k) =

{
sin(z(k)

n
) if 0 ≤ z(k) ≤ n/2− 1

− sin(z(k)
n

) if n/2 ≤ z(k) ≤ n
(5.35)

This implementation ensures that the opposite of each positive value will appear in the
sequence, guaranteeing that the average of u(k) over a period is equal to zero.
Note than this table-based implementation of the sine/cosine is not the only one. Another
popular variant is the Cordic algorithm [100], which provide similar results. Controlled
sources are handled very differently. Indeed, as explained in section 5.2, the value of
these sources is recalculated at the beginning of each step as a linear combination of the
previous value of the sources and measurements.

5.4.7 Source code generation

The analysis performed in chapters 3 and 4 results in the creation of data files containing

• the correspondence between the topology and the state matrices

• the conditions that must be evaluated at each time step

• the correspondence between the result of this evaluation and the new topology

The results lead to the implementation of the selection tables as seen in section 5.3.4.
In practice, the VHDL code corresponding to the selectors is completely generated by a
Python script. This is due to the fact that these selectors are completely specific to a
particular circuit. These are the only modules of the real-time platform that are directly
generated during the rapid prototyping process.
In contrast, the dot products used in the solvers only need a few pieces of information
to be configured. More precisely, each dot product only needs to know which elements
of its input vectors must be multiplied together (i.e. which partial products will not
always result in a zero value), and which partial partial products can be replaced by a
simplified multiplier as described in section 5.3.3. Hence, we decided to code a static
generic dot-product VHDL module which is configured during the synthesis step using
the data produced during the compilation of the results of the analysis step (see the
design workflow on Figure 5.1).

5.5 Tests and validations

5.5.1 Validation procedure

In this section, we will perform various tests in order to assess the actual performance
or our platform. These tests will be slightly different from those carried in sections

215

3 and 4, and their purpose is not the same. The previous tests were made to prove
that our algorithm was a correct representation of the dynamics of the emulated circuit.
Our goal in this section is to prove that the signals obtained with the real-time platform
(RTP) are the same as those that were obtained in simulation, even with the quantization
introduced by the fixed-point representation of the signals, and the limited precision of
the multipliers. Furthermore, we need to quantify performances that have no impact on
the offline simulation, such as the loop latency or the resources usage.
The assessment can be made at different points during the compilation of the HDL files.
Since the ultimate purpose of this section is to look at the quality of the signals present at
the output of the DACs, this test requires us to go through the (rather long) mapping and
place/route steps. Furthermore, this test does not allow us to easily access the internal
signals of the FPGA, and the results are impacted by the quality of the DACs and the
measuring devices, which are not crucial parts of this thesis.
To circumvent this limitation, we will mostly perform tests at the functional level of the
platform. This is an offline simulation performed using the program ModelSim which
allows us to verify if the logical equations correspond exactly to what we wanted. Since
this simulation is accurate at the clock-cycle level, we shall also use it to exactly measure
the latency in terms of clock cycles. By adding stimulus files (emulating the outside
world, such as a PWM or a controller) to the simulation, we have a good idea of the
performance of the platform without actually having to synthesize the HDL files.
The two main missing pieces of information, the timing-closure and the resources usage,
are obtained by performing the full synthesis of the logical circuit. If the design respects
the timing parameters and performs the correct logical function, it is almost guaranteed
that the real-time platform will behave as expected 10.

5.5.2 Platform description

Before performing the tests, let us first quickly introduce the hardware used for the vali-
dation. The target processor is a Spartan 6 SLX 150 FPGA. This is the most powerful
chip of the SPARTAN family, i.e. the low-end range of the 2009 Xilinx catalog. This
choice allows us to see what kind of circuit we can hope to emulate on a low-cost plat-
form, as developer boards based on this chip can be bought for less that 100 euros. In
this case, we used a TE0630 FPGA board from Trenz Electronics, fitted on a TE0303
carrier board that includes all power management integrated circuits as well as clock
generators, and provides easy access to most FPGA pins. An external board containing
eight AD5453 digital-to-analog converters was designed in-house, and is connected to the
TE0303 using a ribbon cable, which carries the individual SPI channels. Both boards
are represented on the picture of Figure 5.25. The complete schematics of the external
board are presented in Appendix A.
The FPGA is controlled by a 125MHz external clock, which is converted to a 200MHz
signal inside the chip by a dedicated clock manager. As explained in section 5.4.4, we
need to select a sampling period equal to the clock period multiplied by a power of two.
In this case, we have chosen a time step of 128 clock cycles, i.e. 640ns.

10A second simulation can be performed at the electrical level after the place and route step. However
this simulation is extremely slow due the representation of all the electrical properties of the FPGA,
down to the transmission-line models of the interconnections, and is only used to track precise bugs.

216

Figure 5.25: Real-time platform used for the tests, with the TE0630 FPGA board
plugged into its TE0303 carrier board on the left, and the custom-made DAC
board on the right. A ribbon cable carrying the eight SPI channels connects the
two board.

−
10V

+

iL
500µH

D

10µF
+
vC−

iR

10Ω

Figure 5.26: Boost converter used to test the real-time algorithm

5.5.3 Algorithm validation : the boost converter used in open
loop

Introduction

Before testing larger converters containing many switches and components, we will first
try to simulate in real-time the simple boost circuit of Figure 5.26. The reason for this is
twofold. First, the simple waveforms allow us to easily verify the correct behavior of each
sub-module individually. Secondly, it provides us with as estimation of the highest speed
reachable by our design, since the boost is one of the simplest and smallest converter
(along with the buck converter, which is composed of the same electrical components).
While we have designed the solver to be as independent of the size of the circuit as
possible, a larger converter will probably need more adder stages in the dot products or
limit the clock rate if the logic functions become too complex.

217

Offline Tests

The goal of the tests in this section is to verify if the platform performs the correct
function. These tests are made offline using ModelSim, which gives us access to all
internal signals such as the state variables and the signals evaluated by the switching
engines.

The first test consists in controlling the circuit with a 100kHz PWM with 50% duty
cycle, which corresponds to the higher limit of our requirements. As mentioned, the sam-
pling period is fixed to 128

200
µs = 640ns, resulting in about 15 computations for each PWM

period. The ModelSim simulation is performed by adding a stimulus file which controls
the inputs of the platform (here, these inputs consists in the clock and the PWM signal).
The results are presented on the graphs of Figure 5.27. The plots of Figures 5.27a and
5.27b show the starting transient. The emulated signal matches the continuous time
simulation obtained using Matlab with a good accuracy. The plots of Figure 5.27c and
5.27d, showing a zoom on the ripple of the inductor current and capacitor voltage, are
even more interesting since they allow us to show how close the emulated signals are to
the continuous-time results. We are able to closely track a high-frequency signal with a
peak-to-peak amplitude equal to 2% of its average value.
The error on the amplitude of the ripple itself is equal to 3% in the worst case, as illus-
trated in the black box of Figure 5.27c. However, this error is mainly due to the fact that
the highest point of the ripple is reached between two time-steps. The next value is very
close to what it should be thanks to the averaging of the PWM signal along the period (
as described in section 5.4.6).
The delay between the continuous-time plot and the emulated plot correspond to the la-
tency due to the computations performed at each time-step, and is effectively the smallest
reachable time-step for this circuit. This delay is equal to 200ns, which means that the
design could run faster to produce more accurate results 11.

Module Time (ns)
State solver 60

Natural switching module : solver 25
Natural switching module : selectors 40

Selection of the (C,D) matrices 30
Output solver 25

Table 5.6: Latencies of the modules for the emulation of the converter of Figure
5.26

Table 5.6 provides the breakdown of the latencies of the individual blocks. Almost one
third of the delay is due to the state solver, while other dot products take fewer time.
The reason for this is that, for this particular design, the state solver is the only module
which requires full multipliers while the other product only need the simplified multipli-
ers described in section 5.3.3. Indeed, as we previously said during the offline analysis
performed in section 3.5.2, all the coefficients in the dot products are equal to 1, −1 or 0.

11Again, we are limited by the sampling rate of the chosen DACs, and accelerating the design would
require faster converters with more complex interfaces

218

0 2 4 6 8 10

·10−4

0

1

2

3

4

t(s)

iL(A)

Continuous time
Discrete time

(a)

0 2 4 6 8 10

·10−4

0

5

10

15

20

t(s)

vC(V)

Continuous time
Discrete time

(b)

9.45 9.5 9.55 9.6 9.65 9.7 9.75 9.8 9.85 9.9 9.95 10 10.05

·10−4

3.94

3.96

3.98

4

4.02

4.04

t(s)

iL(A)

Continuous time
Discrete time

(c)

9.45 9.5 9.55 9.6 9.65 9.7 9.75 9.8 9.85 9.9 9.95 10 10.05

·10−4

19.6

19.8

20

20.2

20.4

20.6

t(s)

vc(V)

Continuous time
Discrete time

(d)

Figure 5.27: Open-loop simulation of the circuit of Figure 5.26, with a 100kHz,
50% pwm input

219

To obtain accurate numbers in terms of timing closure and resources occupation, we have
run the complete synthesis process on the design (this step also generates the binary files
that are used to program the platform).

Module Slices DSP48
State solver 572 6

Natural switching module Solver 89 0
Output solver 77 0

Forced switching module solver 16 0
Averaging of the state matrices 120 0

All modules 1070 6
Available on FPGA 23000 180

Table 5.7: Resources occupation of the largest modules for the emulation of the
converter of Figure 5.26

Let us first look at the resources usage, with the individual contribution of each sub-
module presented on Table 5.7. As expected, a circuit as small as a boost converter only
requires a small part of the resources of the FPGA: only 1000 of the 23000 available
slices are used, while the state solver only requires 6 of the 180 DSP multiplying slices
to perform its function. Again, the fact that all other modules use simplified multipliers
largely reduces the usage of this particular resources.
This is also why the state solver also requires the most generic slices. Most of these slices
(502 out of 572) are used as buffers for the signal during the multiplication itself.
Let us now look at the timing closure results. In contrast with the resources usage, the
compiler does not provide us with a precise rundown for each module, but only outputs
the most critical paths (i.e. the paths that require the most time between two clock
edges). For this design, the critical path only needs 4.3ns (out of a target clock cycle of
5ns). It should be noted however that this does not mean that this is the absolute best
performance for the design, since the synthesizer does not try to find a better result once
a design that respects the timing closure has been found. Still, we are left with a design
that matches the requirements with a relatively large margin. Since the design has been
developed with scalability in mind, we expect that these results should hold true for a
large number of converters. We should also remind the reader that these results were
obtained on a low-end (by 2014 standards) FPGA, and a more modern device should
handle faster clock rates with ease.

Implementation on the physical platform

Since the design passes the timing requirements, it can be implemented on the actual
Spartan 6 platform described in section 5.5.2. This is done by generating the bytecode
corresponding to the complete design obtained after the place and route step.
A 100kHz PWM is connected to a digital input, and the outputs (iL(t) and vC(t)) are
measured at the outputs of the digital-to-analog converters (DACs) using a four-channels
Teledyne LeCroy WJ314A oscilloscope. These converters translate the 14 most significant
bits of the outputs signals into a voltage ranging from 0V to 10V, with 5V corresponding
to a digital value of 0. Due to the multiple conversion factors in the platform, we have

220

0

2

4

6

i L
(A

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

6

7

8

9

10

t(s)

Vmes(V)

Computer simulation
Real-time measurements

(a)

0

5

10

15

20

25

v C
(V

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−3

6

7

8

9

10

t(s)

Vmes(V)

Computer simulation
Real-time measurements

(b)

Figure 5.28: Analog measurements at the outputs of the digital-to-analog convert-
ers of the real-time platform for the circuit of Figure 5.26, with a 100kHz, 50%
pwm input : initial transient of the circuit when starting from iL = 0A and vC = 0V .
The measured voltage is translated into the actual value of the outputs by using
(5.36).

221

3.8

3.9

4

4.1

i L
(A

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·10−5

8

8.1

8.2

8.3

t(s)

Vmes(V)

Computer simulation
Real-time measurements

PWM input signal

(a)

0.96 0.97 0.97 0.98 0.98 0.99 0.99 1 1 1.01

·10−3

18

19

20

21

t(s)

i L
(A

)

8.6

8.8

9

9.2 Vmes(V)

Computer simulation
Real-time measurements

PWM input signal

(b)

Figure 5.29: Analog measurements at the outputs of the digital-to-analog convert-
ers of the real-time platform for the circuit of Figure 5.26, with a 100kHz, 50% pwm
input : zoom on the commutations due to the PWM input signal. The measured
voltage is translated into the actual value of the outputs by using (5.36).

222

the following relations between the measured voltage Vmes and the actual values of the
output signals :

iL(t) = (Vmes(t)− 5V)× 1.25
A

V

vC(t) = (Vmes(t)− 5V)× 5
V

V

(5.36)

The start-up of the circuit is shown in Figure 5.28. As expected, the obtained wave-
forms are close to their theoretical values obtained using a computer simulation, even
if a small offset appears at the tail end of the waveforms. Since the digital waveforms
obtained in Figure 5.27 were more accurate and closer to the theoretical values than their
analog counterparts, we can attribute this offset to

• a gain error in the analog chain

• a phase shift between the PWM signal used in the digital simulation and in the
real-time process

• a loss of accuracy due to the fact that the 21 least significant bits are discarded

A zoom on the commutations events is plotted in Figure 5.29 12. On these plots, the
offset between the analog signals and their expected values is clearly visible. The peak-
to-peak amplitude of the signals show a much better accuracy, and are usable for most
applications. The time-delay between the PWM signal and its effect on the analog outputs
correspond to the total latency of the real-platform. This latency is composed of

• The latency of the simulator itself : 200 ns (see Table 5.6)

• The delay between a change in the PWM signal and the start of a new time-step :
anywhere between 0ns and 640ns

• The time needed to transmit the data to the DACs : 350ns

• The settling time of the converters : 20ns

These results show that the communication delay between the platform and the DACs
cannot be neglected. Indeed, this lag is equal to almost twice the latency of the simulator
itself. To reduce this effect, we can use a DAC with a higher sampling rate (which can
be expected to have a high-speed communication channel) or a DAC with a parallel
interface, which avoids the need of sending the bits in series at the expense of a more
complex interface.

5.5.4 Boost converter in closed loop

The effects of latency and time-discretization

When a digital platform is used to model the behavior of a continuous-time process, it
invariably adds delays between a change in any of the inputs and the measured effects at
the output when compared to the original plant. Examples of delays are

12Note : the plots corresponding to the computed simulations have been slightly time-shifted (when
compared to 5.27) in order to synchronize them with the PWM input signals

223

−
10V

+

iL
750µH

D

10µF

iR

10Ω

−
+ iref

iL

Figure 5.30: Boost converter with a current mode control loop : the comparator
controls the switch thanks to its internal hysteresis

imax

imin

iL

Transistor off Transistor on

Figure 5.31: Current mode control with hysteresis : the transistor is switched off
when iL reaches imax and is switched on again when iL goes below imin

• the computing time of the loop itself

• the transmission time needed to send the signals to the digital-to-analog converters

• the DAC’s conversion time

These delays are unavoidable, and can have major effects on the system when the platform
is used in a closed-loop operation where a controller uses the measured signals to modify
the inputs of the emulator. In practice, this delay introduces a phase shift in the signal,
which degrades the phase margin of the closed loop system.
It should be noted that transmission delays also appear on the real converter, mainly due
to the opto-coupler used to isolate the power-stage from the controlling system and the
filtering of the switching noise. Even if the system did not present any computation
delay, it would still be influenced by the discrete sampling time. We illustrate this point
by using the circuit depicted in Figure 5.30. Here, a sliding-mode current controller
ensures that the inductor current iL stays inside a defined hysteresis band by switching
the transistor whenever the current goes above the upper limit or below the lower limit
of the hysteresis band (Figure 5.31). This simple control loop is often used in power
electronics because it is very simple to implement and insures that the current will not
increase above safety levels.

If the power converter is emulated using a platform with a fixed time-step, we cannot
guarantee that the current will remain inside the defined zone, as illustrated by Figure
5.32a where the current goes beyond both limits. The difference between the actual peak

224

0.99 1 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11

·10−3

1.98

2

2.02

t(s)

iL(A)

Discrete time, Ts = 1µs
Continuous time

(a)

0.5 1 1.5 2 2.5 3 3.5

·105

2

4

6

8

·10−3

f(Hz)

iL1(A)

Discrete time, Ts = 1µs
Continuous time

(b)

Figure 5.32: Effects of the sampling on the closed-loop accuracy of the sliding-mode
control of iL in the circuit of Figure 5.30, with a hysteresis band going from 1.98A
to 2.02A (a) Measure of the current (b) Fourier transform of iL

225

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

·10−3

1.8

1.9

2

2.1

2.2

t(s)

iL(A)

Discrete time, Ts = 1µs
Continuous time

Figure 5.33: Effects of the sampling on the accuracy of the sliding-mode control of
iL in the circuit of Figure 5.30, with a hysteresis defined from 1.8A to 2.2A

value of the current and the expected upper limit iM , in this case, equal to

∆i(k + 1) = iL(k + 1)− iM =
δTs
L
E (5.37)

where δTs is the fraction of the sampling period corresponding the overshoot. On average,
this fraction will be equal to Ts

2
.

Since the time spent in the same topology is increased, the equivalent switching frequency
of the system is lower than on the real converter. Let us assume that, during each period,
the converter spends αTs with the transistor in the on-mode, and βTs with the transistor
in the off-mode. The equivalent switching frequency of this device is

fsw =
1

(α + β)Ts
(5.38)

Because of the discrete time, the time spent in the two modes is now equal to (α+ δα)Ts
and (β + δβ)Ts, and the switching frequency is lowered to

f ′sw =
1

(α + β + δα + δβ)Ts
(5.39)

Since δα and δβ can be assumed as random, the switching frequency will vary, leading to
additional frequencies in the current spectrum, as shown in Figure 5.32b. Notice that the
main frequency is 75kHz in the sampled system instead of 100kHz. Of course, this effect
is reduced when the time-step becomes much smaller than the switching period. Using a
hysteresis band which is 10 times larger reduces the relative effect of the discrete-time as
shown in Figure 5.33. Naturally, a faster design helps reaching higher switching speeds.
As a final remark, it should be noted that this effect is much less pronounced when using
a controller that does not directly control the digital inputs. A widely-used example is a
controller that modifies the duty-cycle of a constant-frequency PWM modulator using a
filtered (using a low-pass filter) form of the converter outputs. Since these controllers have
a much lower bandwidth than sliding-mode controllers, the error between the simulated
signal and its real-world equivalent is similarly lower.

226

−
Vin

+

LoiLo

Co−
vo
+

d5

d6

d7

d8

d9

d10

Vo2

Vo1

Vo3

s5

s6

s7

s8

s9

s10

LiL1 R +
E1 −

LiL2 R +
E2 −

LiL3 R +
E3 −

Figure 5.34: A circuit composed of a passive rectifier followed by a three-phase
inverter

5.5.5 Implementation of a two-stage, three-phase AC-DC-AC
converter

Introduction

While the boost converter used in section 5.5.3 was a good verification circuit, it is by
no means a demonstration of the power of the emulation platform. Therefore, we will
now show the results of the much larger converter circuit of Figure 5.34. This converter
contains two stages : a passive AC to DC rectifier followed by a three-phase two-level
inverter.
A total of ten diodes and six transistors are used, and we decided to use the partitioning
algorithm to avoid the use of large switching tables. A first separation is performed by
splitting the circuit between the decoupling capacitor Co and the inverter.
Our small FPGA cannot handle a three-phase inverter in a single piece, so we also split
the second stage into its three branches and its load circuit, for a grand total of five
partitions (Figure 5.35). The offline study of the inverter, along with the reasoning
behind the choice of the partitions, is carried in section 4.4.3. Since the output inductors
can go into discontinuous conduction mode, the law governing the controlled sources is
topology-dependent, as explained in section 4.2.
The circuit is rather complex, and we will first study the implementation of the inverter
alone without the rectifier. This will provide us with a validation of our simulation
algorithm in presence of multiple partitions interconnected by variable sources. Once
the inverter is validated, we will proceed with the emulation and the validation of the
complete circuit.

Implementation of the inverter

The inverter has been split into the three switching legs and the interconnection circuit
using the partitioning method described in section 4.4.3. Let us first study the legs. They
are easily connected to the first power stage by representing the DC voltage Vin using

227

−
Vin

+

LoiLo

Co−
vo
+

Jo

(a)

Vin

ibi

d1i

d2i

s1i

s2i
Jsi

Voi

Rp

Rp

(b)

−
Es1

+ Rs L iL1 R +
E1 −

−
Es2

+ Rs L iL2 R +
E2 −

−
Es3

+ Rs L iL3 R +
E3 −

Vm1

Vm2

Vm3

(c)

Figure 5.35: The partitions corresponding to the circuit of Figure 5.34: (a) Input
rectifier (b) Each of the three individual branches, where i = 1, 2, 3 (c) Load and its
interconnection circuit

228

a controlled voltage source equal to vC . A measure of the input currents is needed to
represent their effect on the capacitor. The connection with the interconnection circuit
is more complex, since the output current can go in discontinuous current mode (DCM).
Hence, we use sources with a variable control law: if at least one switch is in the on-state,
this law is

Jsi(k) = iLi(k − 1) +
Vin(k − 1)− 2Voi(k − 1)

Rp

(5.40)

If the leg is completely switched off, the law is changed to

Js(k) =
Vin(k − 1)− 2VMi(k − 1)

Rp

(5.41)

Meanwhile, the voltage sources Es1, Es2, Es3 are equal to

Esi = Voi(k − 1) +RsiLi(k − 1) (5.42)

as long as the corresponding branch is active. This law is reduced to

Esi = Voi(k − 1) (5.43)

when the branch is inactive. As explained previously, these relations have to be created
manually for the time being.

To analyze the performance of the design, we will first emulate the inverter by forcing
the input voltage source to a constant value of 1V 13.The other parameters are

Ts = 640ns

Vin = 1V

Rp = 1kΩ

R = 2Ω

L = 1mH

Rs = 1560Ω

E1 = −0.2V

E2 = 0.2V

E3 = 0V

(5.44)

The value of Rs is chosen so that the time constant of each branch is equal to the time-
step, i.e.

Ts =
L

R +Rs

(5.45)

As usual, the resulting outputs will be compared to a high resolution offline simulation
performed in Plecs. First, we drive s5, s8 and s9 with a 20kHz PWM characterized by
a 80% duty cycle, while the other switches are kept in the off-mode. The evolution of
the output currents is represented on Figure 5.36a, showing that the long term behavior

13A value of 1V is normally much too low for power electronics applications. In this case, it can be
seen as a normalized value of 1 per-unit. Since the equations are linear with regard to the inputs, this
value has no impact of the waveform other than adding a scaling

229

−2 0 2 4 6 8 10 12 14 16 18 20 22

·10−4

−0.3

−0.2

−0.1

0

0.1

0.2

t(s)

iL(A)

iL1 Continuous time
iL2 Continuous time
iL3 Continuous time
iL1 Discrete time
iL2 Discrete time
iL3 Discrete time

(a)

12.9 13 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14 14.1

·10−4

182

184

186

188

190

192

·10−3

t(s)

iL(A)

iL1 Continuous time
iL1 Discrete time

(b)

Figure 5.36: Simulation of the three-phase inverter operating in continuous con-
duction mode

230

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·10−4

−2

−1

0

1

·10−2

t(s)

iL(A) iL1 Continuous time
iL2 Continuous time
iL3 Continuous time
iL1 Discrete time
iL2 Discrete time
iL3 Discrete time

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·10−4

0

0.2

0.4

0.6

0.8

1

t(s)

Vo(V)
Vo1 Continuous time
Vo2 Continuous time
Vo3 Continuous time
Vo1 Discrete time
Vo2 Discrete time
Vo3 Discrete time

(b)

Figure 5.37: Simulation of the three-phases inverter operating in DCM. (a) inductor
currents (b) leg voltages

231

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

·10−4

−1

0

1

·10−2

t(s)

iL(A) iL1 Continuous time
iL2 Continuous time
iL3 Continuous time
iL1 Discrete time
iL2 Discrete time
iL3 Discrete time

(a)

0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

·10−4

0

0.2

0.4

0.6

0.8

1

t(s)

Vo(V)
Vo1 Continuous time
Vo2 Continuous time
Vo3 Continuous time
Vo1 Discrete time
Vo2 Discrete time
Vo3 Discrete time

(b)

Figure 5.38: Zoom on the simulation of Figure 5.37. (a) inductor currents (b)
branch voltages

232

of the emulated signals is a close approximation of the real behavior. This is confirmed
by the plots of Figure 5.36b, showing the output current iL1. The plot shows a constant
offset between the emulated signal and its expected value, but this offset is equal to 0.5%,
which is negligible for most applications. It should also be noted that the amplitude of
the peak-to-peak is also very close to the expected value, which means that the DC and
the AC parts of the signal are represented accurately.
To assess the performance of the emulation when the circuit operates in discontinuous
conduction mode, we decrease the switching frequency to 10kHz and the duty cycle to
20%. The results are shown in Figure 5.37a and 5.37b, showing the output currents and
the voltages at the output of the branches. The error at the start of the simulation is
due to a bad initialization of the sources, which could be corrected in a future evolution
of the platform. Nevertheless, these results are promising, as confirmed by the zooms
of Figures 5.38a and 5.38b. Just like the offline simulations made in section 4.4, errors
occur when a branch switches off: the output voltage takes a few clock cycles to converge,
which induces a distortion in the current waveforms.
Since the emulation works as expected, we can now analyze the timing performance
and the required resources. As shown in Table 5.8, the total time needed to solve a
single step is equal to 250ns. This result highlights one of the key advantages of our
FPGA implementation : the discrete step-time is almost independent of the size of the
circuit. Indeed, the computation time for the much smaller boost converter was previously
measured equal to 200ns. Meanwhile, the resource occupation is shown in Table 5.9.

Module Time (ns)
State solver 65

Natural switching module : solver 60
Natural switching module : selectors 35

Selection of the CD matrices 30
Output solver 60

Selection of the sources matrices 30
Computing the sources 60

Complete Loop 340

Table 5.8: Latencies of the modules for the emulation of the three-phase inverter

About a third of the LUTs and DSP slices are used by our design, confirming that the
platform can theoretically handle larger designs. This design passes the place-and route
step with a small margin (4.9ns out of the maximum of 5ns). Note that our tests have
shown that this particular FPGA could not handle the non-partitioned version of the
inverter due to large transmission delays in the design.

Implementation of the complete circuit

Now that the inverter is validated, we are able to simulate the complete circuit 14. Thanks
to the partitioning algorithm, we only have to adapt the laws governing the sources. The

14Since the rectifying stage is only composed of a few elements, it will not be studied here.

233

Module Slices DSP48
State solver 1200 12

Natural switching module Solver 1000 6
Output solver 1400 11

Forced switching module solver 500 24
Sources computation 1600 12

Averaging of the state matrices 250 0
All modules 7000 60

Available on FPGA 23000 180

Table 5.9: Resources occupation of the biggest modules for the emulation of the
three-phase inverter

input voltage Vin of the branches is equal to the capacitor voltage:

Vin(k) = vo(k − 1) (5.46)

The influence of the branches on the capacitor voltage is modeled by the current drawn
by the rectifier

Jo(k) = ib1(k − 1) + ib2(k − 1) + ib3(k − 1) (5.47)

These sources are computed at each iteration. Unlike the internal controlled sources of
the inverter, these control laws are static and have a very small footprint on the resource
usage.
To simulate the whole circuit, we have selected the following parameters:

Ts = 640ns

Vin = 1V sin(ωt)

ω = 2π500

Lo = 1mH

Co = 1mF

Rp = 1kΩ

R = 2Ω

L = 1mH

Rs = 1560Ω

E1 = −0.2V

E2 = 0.2V

E3 = 0V

(5.48)

The inverter is controlled by a 20kHz PWM on the switches s6, s7, s10. The duty-cycle
is equal to 80%. The first 20ms of the starting transient are represented in Figure 5.39,
with zooms in Figure 5.40. These zooms are taken at the points where the relative error
between the value computed by the FPGA and the expected value obtained using Plecs
is the largest. As expected, the simulation is close to the expected value for most signals,
with a relative error (corresponding to the absolute error divided by the maximum value
of the signals) typically less than 2%. Unexpectedly, the largest error is found on the

234

(a) (b)

(c) (d)

(e)

Figure 5.39: Real-time simulation of the three-phase AC to AC circuit of Figure
5.34, with the parameters given by (5.48) and using a 20kHz sawtooth PWM to
control the switches s2, s3 and s6. The plots show the signals obtained by the
FPGA and an offline high resolution simulation.

235

(a) (b)

(c) (d)

(e)

Figure 5.40: Zooms on the plots of Figure 5.39, taken at the points with the max-
imum error between the FPGA signals and their expected value. The maximum
error for the output currents is between 1% and 2.5%, while the error on iLo reaches
5%.

236

(a)

(b)

Figure 5.41: Simulation of the two-stages circuit with a PWM frequency of 100kHz.
The lack of averaging on the controlled sources introduces an additional periodic
distortion

input current iLo, where it can reach 5%. This is partially due to the large delay between
the modification of a state variable and its effect on a signal placed at the other partition
of the circuit. This is particularly true when a switch is commutated: to perceive the
effect on iLo, we need to compute the following signals in sequence: Es123, iL123, Js123,
Jo and finally iLo, for a total lag of four time steps. Nevertheless, these results should
be good enough for most applications, even for high-frequency control. Indeed, while
the signals may present an error of a few percents, the peak-to-peak variations of the
signals due to the PWM switching are almost the same for the FPGA signals and their
expected counterparts. In fact, these variations also present an error of around 1%.
Let us now assume that the switching frequency is raised to 100kHz instead of 20kHz.
The evolution of the current i1(t) is shown on Figure 5.41a, with a zoom available on
Figure 5.41b. While the long term evolution remains very good, an interesting side-effect
can be observed by looking at the current ripples. Indeed, there is now a visible periodic
distortion on the current. This effect is explained by the fact that while the state matrices
are averaged along the time-step to better represent the signals, the controlled sources are

237

not. If a switch is changed right before the start of the new time step, only the new value
will be taken into account even though its effect should have been minimal. Averaging
the sources is certainly possible, and would be a welcome improvement to the platform.
Nevertheless, we expect that the current results will be sufficient for most applications.
Now that the functional performance has been validated, the last remaining step is to
take a look at the timing performance and the spatial occupation on the FPGA.
Let us start by looking at the amount of time required by each module. The partial

Module Time (ns)
State solver 65

Natural switching module : solver 65
Natural switching module : selectors 35

Selection of the CD matrices 30
Output solver 65

Complete Loop (without the sources) 260
Selection of the sources matrices 30

Computing the sources 65
Total 365

Table 5.10: Latencies of the modules for the emulation of the complete circuit

results are written in Table 5.10. These numbers are almost the same as those obtained
for the inverter partition alone, showing again that our simulator is mostly independent
of the size of the circuit.

Module Slices DSP48
State solver 2500 20

Natural switching module Solver 2600 11
Output solver 2200 16

Forced switching module solver 800 24
Sources computation 2100 13

Averaging of the state matrices 400 0
All modules 12000 84

Available on FPGA 23000 180

Table 5.11: Resources occupation of the largest modules for the emulation of the
three-phases inverter : around 50% of the resources are needed

The same conclusion cannot be drawn for the utilization of the resources, as each partition
requires its own selectors and dot products. The total resource usage should be close to
the sum of the resources required by each partition, except for the more complex laws
governing the controlled sources 15. This is illustrated by the results of Table 5.11.
The emulation of the complete circuit requires a bit less than 50% of the slices and
multipliers. This design passes all timing tests, which means that it can be implemented
on the platform and work as expected.

15Another source of variation is the HDL synthesizer itself. Indeed, this tool can decide to copy a
single logical block multiple times to reduce the length of the data path.

238

While this means that even bigger circuits can be emulated with the platform, we must
still be careful as larger designs also lead to complex logical circuits characterized by long
propagation delays between its nodes. This event can be mitigated by adding buffers in
the data paths, which is possible since the total computation time of the loop (365 ns) is
lower than the time-step (640 ns). Of course, another solution is to simply use a faster
FPGA.

5.5.6 Results analysis

The results obtained in the previous tests have shown that we are able to correctly em-
ulate the behavior of two very different circuits. We will now analyze these results as a
whole.
Let us first take a look at the precision of the emulated signals. We have shown that
a relative error of less than 1% is perfectly reachable for circuits composed of a single
partition, thanks to the use of the trapezoidal solver in combination with our switching
algorithms. While the precision is lowered when multiple partitions must be intercon-
nected using controlled sources, the error never went higher than 5%. Since the relative
tolerance on many power components can be as high as 20% (especially for high-value
capacitors and inductors), the error should be acceptable for most applications.
Some very interesting conclusions can be drawn from the comparison of the Tables 5.6
and 5.10, showing the latencies of each submodule contained in the main solver 16. A first
observation is the latency of the loop itself (without the computation of the sources) does
not depend much on the circuit complexity and is only increased from 200ns to 260ns as
we go from the boost converter to the AC-to-AC circuit. This is a direct consequence of
the high parallelism developed for our algorithm. Indeed, thanks to the parallel compu-
tation of many operations and the high amount of buffering between the main modules,
the time taken to compute (for example) all partial products of the dot products is in-
dependent of their amount. The summation of the partial product, made using an adder
tree, is the only part of the algorithm impacted by the complexity of the converter. Even
then, the use of four-way adders leads to a delay of log4 n clock cycles for the summation
of n partial products. The reason why the output solvers and the natural switching solver
take more time for the AC-AC than for the boost is that, in the boost, all multipliers
could be replaced by a simplified version (as studied in section 5.3.3), resulting in a lower
latency.
The use of many partitions forces us to additionally compute the controlled sources,
which takes about 100ns more. In the current version of the simulator, these sources are
computed before the start of each cycle, adding to the latency. However, it seems possible
to modify the algorithm to compute these sources in parallel with the state matrices (i.e.
in parallel with the same solver), which would solve this issue.
Nevertheless, this result is promising and shows that our algorithm is in theory able to
handle larger circuits. The total latency could also be decreased by using a faster FPGA.
For instance, we have shown in Table 5.2 that the multipliers can run between 30% and
100% faster when implemented on a FPGA belonging to the Artix 7 family. A discussion
about the benefits of resorting to a high-performance FPGA is given in section 5.6.1. If

16Since the forced switching module runs in parallel with the solver, its latency does not count toward
the total delay incurred by the system

239

we assume that all logic modules follow this pattern, the simple fact of using a faster
platform would drastically improve the maximum sample rate.
The resources occupation of both circuits is shown of Tables 5.7 and 5.11. If the circuit
contains a single partition, the complexity of the equations (and hence the resource us-
age) grows quadratically with the amount of states and sources (corresponding to the
size of the matrix products), while the complexity of the selectors grows exponentially
with the amount of switches (i.e. a circuit containing n switches possesses 2n topologies
before reduction). However, the use of the partitioning essentially reduces this to the
sum of the partial occupations of each partition, as well as the computation of the inter-
connection sources. If all partitions have roughly the same resource occupation, the total
requirements are a linear function of the amount of partitions in the system. Notably,
this means that going from a three-phase inverter to a five-phase inverter or to multiple
parallel inverters fed by the same DC bus would not lead to a a drastic augmentation
of resource usage. We should note however that very large circuits could require most
of the resources of the FPGA, which complicates the place and routing process. In the
worst case, it could even be impossible to route the FPGA. In that case, adding buffers
in key places should be sufficient to properly reduce the routing delays.

5.5.7 Conclusions

In this section, we have successfully demonstrated the emulation of the two-stage con-
verter of Figure 5.34. Because of its complexity, we have chosen to split it in five partitions
(sub-circuits) which are simulated in parallel. We have shown that the emulated signals
are very close to their expected value (obtained using an offline simulation). In many
tests, the relative error is inferior to 1%, with the notable exception of the inductor cur-
rent iLo in Figure 5.40 presenting an error of 5% at times. Furthermore, we also have
shown that the error on the amplitude of the ripples due to the PWM control is also very
small for a switching frequency of 20kHz. A test with a frequency of 100kHz provides
correct results but the lack of averaging on the controlled sources leads to additional
distortion.
This is a crucial result which enables the use of control systems that directly drive the
switches by measuring instantaneous (i.e. which are not filtered or averaged) values of
signals) like sliding-mode controllers. An example was provided in section 5.5.3 with the
sliding-mode (hysteresis) control of the input current of a boost converter.
This test highlighted one of the limitations of the digital emulation of any circuit: be-
cause of the discrete time-step, we are unable to find the exact time at which the current
crosses the hysteresis threshold, and an over(under)shoot outside of the specified limits
may appear. This implies that the closed-loop control of the circuit will not be an exact
representation of the system. This distortion is not a result of our specific algorithm,
and is present in any emulator characterized by a discrete time step. Similar effects
can be observed on a real converter when opto-couplers, which also add a delay in the
measurement, are used to insulate the power circuit from its control system.

240

Vin

ibi

d1i

d2i

s1i

s2i
Jsi

Voi

Rp

Rp

(a)

−
Es

+

Rs iL

R

(b)

Figure 5.42: A single-phase inverter partitioned into two sub-circuits. Because
of the law controlling Es, this source can increase to 1000V even if Vin = 10V and
iL = 1A

5.6 Possible improvements

The results provided in this chapter show that the real-time platform is a useful tool.
Nevertheless, there are a number of improvements that could be brought to enhance its
performance and/or its features.

5.6.1 Performance and accuracy improvement

Floating point arithmetic

In its current version, the real-time platform uses fixed-point arithmetic to compute and
store all signals. This procedure has the advantage of being fully compatible with the
DSP slices of most FPGAs, and only requires an additional clock cycle to shift the result
by the correct amount of bits (see section 5.3.1). However, it also introduces a number
of limitations in the system.
The most severe limitation is the reduced range of values for the internal signals. Because
the amount of bits assigned to the fractional and integer part of the signals is constant,
we cannot have a high resolution and high values stored for the same signal.
If we want to make the best use of the 35 bits, we have to know their range beforehand,
which means that the Q-factor must be recalculated when the application is changed. For
some signals, this range is not evident when looking at the circuit. For instance, let us
look at the partitioned circuit of Figure 5.42. As a reminder, the resistance Rs is added
to ensure a fast decay of the current when the switching branches turn off (see section 4
for the complete partitioning theory), and is chosen to verify the following equality:

Ts =
L

Rs +R
(5.49)

where Ts is the system time-step. This choice ensures the fastest possible convergence.
When either switch of the the branch is on, the effect of the resistance is counteracted
by applying the following law for the controlled source Es

Es(k) = Vo(k − 1) +RsiL(k − 1) (5.50)

241

Assuming L = 1mH and Ts = 1µs, we have Rs = 990Ω. Let us further assume that
Vin = 10V and iL(k− 1) = 1A. According to (5.50), a value of 1000V is expected for Es.
This high value must be taken into account when selecting the Q factor of the signals.
For these reasons, transforming all computations to their floating-point equivalent would
lead to a better compatibility without requiring to compute the range of the signals and
matrix coefficients. As explained in section 5.3.1, the downside of this representation
lies in the additional clock cycles and resources required to perform the additions and
multiplications. If sacrificing these extra clock cycles is a viable option (i.e. if we have
a sufficient amount of time between the end of the computation of a time-step and the
beginning of the next step), converting to floating-point should not have any negative
impact on the latency.
It should also be noted that FPGAs with integrated hardware floating-point units have
started to appear on the market in 2014 [93], and should be standard in a few years.
Hence, converting the design to floating-point will allow us to quickly use these new
devices to the best of their capacity.

Using a faster device

Of course, the easiest way to have faster design is to use a high-end up-to-date FPGA
instead of the Spartan 6 FPGA used in this chapter. We benchmarked the performance
of the multiplier implementation for the Spartan 6 and more recent Artix 7 FPGA in
section 5.3.2, with the results available on Table 5.2. A speedup of up more than 50%
is observed when using a fully pipe-lined design. This result means that we are able to
use a faster clock to feed the device, which in turn reduces the total time required to
compute a single step, even if the amount of clock cycles remains the same.
These devices also typically integrate a larger amount of logic and DSP slices, which in
theory allow us to emulate larger circuits. For example, the largest Artix 7 devices hold
up to 215.000 slices, nine time as many as those present in the Spartan 6 [44]. And we
should also remember that the Artix line is actually at the low-end of the current line-up
proposed by the multiple FPGA vendors. While the maximum theoretical speed of the
components is the same for both the Artix 7 and the top-of-the line Virtex 7 family (540
MHz for the DSP slices, 530 MHz for the IO and RAM slices and 1.8GHz for the LUT),
the higher density and the faster inteconnection network of the Virtex family means that
the delays due to the communication between the modules are reduced. In practice, we
can expect to reduce the latency by 25% to 50% by switching to a high-end FPGA.
Another feature proposed by modern devices is the integration of a microprocessor in
the same chip as the FPGA. The addition of a generic purpose processing unit (typically
based on a ARM controller) would enable us to add many nice-to-have features, such
as complex source generators, time-based triggers or an on-board memory controller (to
save the waveforms on a SD card for example) in far less time that we would have needed
to implement them in HDL.

Averaging the controlled sources

In section 5.4.4, we introduced the averaging of the state matrices as a solution to avoid
the loss of precision due to the occurrence of switching events inside a time-step. We have
shown that this additional step allow us to correctly model the effects of high frequency

242

(i.e. up to about one tenth of the sampling frequency) switching at the cost of additional
logic to perform the averaging.
In principle, the same algorithm could be used to obtain a better representation of the
controlled sources that are used to model the dependencies between the partitions of the
circuit (see chapter 4). For the moment, no additional treatment is performed beyond
selecting the correct control law according to the current mode of the switches.
As shown during the emulation of the three-phase AC/AC circuit in section 5.5.5, and
more particularly in Figure 5.41, this lack of averaging induces a distortion in the signals.
The effects become more pronounced when the switching frequency becomes higher.
Adding an averaging step during the evaluation of the sources should prevent this error,
or at least reduce its effects.

Extended parallelism

The biggest strength of the FGPAs lies in their extensive capabilities as parallel-computing
platforms. Indeed, there are basically no limitations on the amount of slices that can op-
erate at the same time beyond the need of ensuring that all the processing is done before
the start of a new clock cycle.
Since the number of computations required for the time-step is fixed, it makes sense that
performing all operations in parallel reduces the total latency, and consequently allows
for a shorter time-step. We have already discussed this point when we introduced the two
different software architectures in section 5.2, but a deeper analysis should be performed
to analyze the effects of the two structures on

• the total latency

• the resource usage

• the quality of the waveforms

The disadvantage of performing additional steps in parallel (for instance, computing the
outputs in parallel with the states) is that we have we do not have access to the most
value of the signals, and have to use their previous value instead. Since the state of the
diodes partially depend on the outputs of the system, this lag could introduce distortions
in the signals since there is a possibility that the new value of the states is computed
for an incorrect topology. Again, this effect should be reduced when the time-step is
decreased, which is fortunately helped by the use of a higher degree of parallelism.

5.6.2 Additional features

Handling non-linear equations

In this thesis, we have worked under the assumption that the converters may be rep-
resented by piecewise-linear equations. For these systems, we can effectively split their
dynamics into different modes linked by the hybrid automaton introduced in 2.5.
However, some elements cannot be put in this form. One example is the AC drive studied
in section 2.4.5, which introduces trigonometrical variables in the state-space equations.
Since these variables must be evaluated in real-time, we have to introduce a non-linear

243

(a)

(b)

Figure 5.43: A saturable inductor transformed into a piecewise-linear model. (a)
Flux-current relationship (b) electrical equivalent (taken from [101])

solver if we ever want to emulate the dynamics of the AC machines. These kinds of
solvers are much more complex than linear ones, and often have convergence and stabil-
ity problems. They also typically require multiple passes at each time step in order to
converge.
Some non-linear components can be modeled using piecewise-linear relations. For exam-

ple, the relationship between the current and the flux inside a saturable inductor may be
represented by the piecewise-linear function described in Figure 5.43a. Since the voltage

on an inductor is given by v(t) =
dΨ

dt
= L

di

dt
, this relation also defines the effective induc-

tance of the component. The saturable inductor can be transformed into an equivalent
circuit, as depicted by Figure 5.43b.

Modifying the components at run-time

One of the limitations of our system is that the value of the components have to be fixed
before the analysis and the compilation of the circuit, and cannot be changed afterward.
This means that changing the value of a single resistor implies that we have to go through

244

the whole design flow again. Giving the user the possibility of changing the value of the
electrical components after the synthesis, or better yet during the simulation, would pro-
vide a faster feedback loop allowing him or her to perform more tests in any given time.
Of course, adding this capability is probably easier said that done since changing any
component has a good chance of having an impact on all parts of the emulator (i.e. its
value intervenes in most of the system matrices). Hence, adding the on-line modification
of the circuit would require an updating mechanism able to refresh all the matrix multi-
plexers at once 17.
A more difficult problem to solve is that the coefficients, which were previously constants,
must now be considered as variable signals. When a signal is constant, the synthesizer
will typically directly assign each of its signals to a fixed one or zero, according to its
binary value. Such an assignation is made locally and as close as possible to the slices
where the signal is used, which means that there is virtually no transmission delay to
propagate its value.
However, storing a variable signal requires the use of a register or a memory. Additionally,
some of the registers could be duplicated at multiple places by the synthesizer to reduce
the length of the transmission paths, which means that, at the end, we might have to
change multiple signals in various places of the design. These added registers could also
have an impact of the global performance of the circuit, since more signals will have to
be routed across the FPGA.
Still, adding the capability to easily change the configuration of the circuit would provide
a very useful enhancement to the platform, and should be one of the main paths to follow.

High-speed data link

As a corollary of the previous point, a good way to enhance the integration of the platform
would be to provide some sort of high-speed transmission channel between the FPGA and
the outside world. As discussed previously, this data link could provide a way to modify
some of the parameters on the fly, but many applications could be developed. A first
example would be to provide a digital oscilloscope or data-logger by sending the signals
to a computer. While these values are already available at the analog outputs through
the digital-to-analog converters, this provides a much easier way to store the data for
later usage (debug, access to intermediate values, post-processing, black-box,. . .).
Another way to use this data link would be to interconnect multiple FPGAs, each of
them emulating one partition of a larger circuit. This concept can be seen as a natural
evolution of the partitioning algorithm accross multiple boards. If we are able to compute
and send the signals in a single clock cycle, the results would be exactly the same as the
traditional partitioning.
This way, we could store each partition on a different board, and interconnect them when
needed.

17However, we could probably require that such a change would only be effective after a restart of the
system, which solves some of the synchronization issues

245

5.7 Conclusions on the real-time platform

In this chapter, we have exposed the different facets of the real-time platform built in
the frame of this thesis. Throughout the design, we have used the extensive parallelism
proposed by FPGAs in order to reduce the latency (i.e. the minimal solver time-step)
of the system as much as possible. We have also shown that using the parallelism in all
parts of the design results in a latency that is only marginally dependent on the size of
the circuit as long as the synthesis tools are able to reach timing closure, which means
that the output rate can be sustained even for circuits containing many elements and
switches.
We have presented the optimizations performed at each step to reduce the resource usage.
In section 5.3.2, we have shown that even a simple multiplier can be significantly opti-
mized depending on the situation, and different implementations of the selection tables
have been studied in section 5.3.4.
To improve the accuracy of the simulation when the switching frequency is not signifi-
cantly lower than the sampling rate, we have introduced in section 5.4.4 the oversampling
of control signals and the time-averaging of the state matrices to take into account switch-
ing events occurring inside the time step. The improvement is significant: a 10/1 ratio
can be reached between the computing frequency (i.e. the inverse of the time-step) and
the switching frequency, and results have been shown for a switching frequency of 100kHz
Finally, we have validated our platform through multiple tests in section 5.5. These tests
have allowed us to evaluate the performance of the emulator in open-loop as well as in
closed-loop. In open-loop, we have validated the system by first using the simple boost
converter in section 5.5.3, then by implementing a much more complex three-phase AC-
to-AC converter 5.5.5. This circuit was built using the partitioning algorithm introduced
in chapter 4, and we have shown that even a low-cost FPGA can emulate a relatively
large circuit with a typical relative error (defined as the the absolute error divided by the
maximum value of the signal) of 1% to 2% provided the ratio between the sampling fre-
quency and the switching frequency does not drop below 10 for a non-partitioned circuit,
or below 30 for a partitioned circuit operating in continuous-conduction mode. The ripple
due to PWM switching is quite similar to what can be obtained with off-line simulators
dedicated to power converters. The benefits of our optimizations were also made manifest
during the same test, since the test circuit requires less than one half of the resources
provided by the FPGA. We can infer that much larger circuits can be emulated on the
more modern lines of FPGAs, which typically integrates ten times as many resources.
The current system still has its limitations, as the error increases for frequencies of 100kHz
when using the partitioning algorithm. Because most of the loss in accuracy happens
when we split the power converter in multiple partitions, optimizing this part of the algo-
rithm (for instance, by also averaging the controlled sourced) would be an improvement.
Thanks to the analysis of the results performed in section 5.5.6, we have shown that the
total latency of the system does not vary much with the size of the emulated circuit.
Hence, we can reasonably expect that the emulator will be able to emulate many circuits
with the same sample rate. However, the size of the circuit has a much more direct
impact on the amount of required FPGA resources with, which is fortunately reduced by
the partitioning procedure to a sum of the individual contributions of each partition.
While there are many ways to improve the platform, which have been highlighted in

246

section 5.6, we can confidently conclude that our current design can be used to emulate a
wide range of power converters with a resolution of 1 mega-samples per seconds or more
and with relative error of few percents on the emulated signals. This important result
will now allow us to proceed to the global conclusions of this thesis.

247

Chapter 6

Conclusions

Throughout this work, we have developed a new framework that allows the rapid proto-
typing of a wide range of power converters by translating a circuit drawn on a computer
to a real-time equivalent set of equations and conditions which is processed by an FPGA.
This framework takes the form of a tool-chain (see Figure 6.1) that successively

• Extracts the basic information (state matrices, types of switches and sources, . . .)
from the initial circuit drawn in a typical electronics simulation program. Currently,
the framework uses the offline circuit simulator Plecs R© for these first operations.

• Analyzes and simplifies the dynamic changes that may appear in the power circuit
when the internal signals and the inputs and/or modified

• Compiles the result into VHDL source code

• Makes the synthesis of the FPGA and transfers the binary code to the real-time
platform

Each of these steps will be reintroduced and concluded on in the following sections.

The simulation of electronic circuits is not a new subject, and many works have paved
the way before us. This allowed us to envisage multiple ways to put a circuit into equations
in chapter 2. During this study, we extensively compared the two main mathematical
representations of linear circuits, the modified nodal analysis (MNA) and the state-space
analysis (SSA). Since power converters typically include diodes, transistors and other
binary switches leading to sudden changes in their topology, we also made a survey of the
different ways of improving the linear representation in order to take these transitions
into account. The conclusion was that both methods had a number of advantages and
drawbacks:

• The modified nodal analysis, augmented by the current source model for the switches,
provides a very simple framework since any topological change is performed by
simply changing the control law of the source while keeping the system matrices
constant. On the other hand, we have also shown that this representation is far
from a minimal model of the system, an intrinsic drawback of the MNA which is
even aggravated by the fact that each switch is essentially modeled by a capacitor

248

Offline circuit design
and simulation (Plecs)

State matrices extrac-
tion (Matlab m-code)

Natural/Forced switch-
ing analysis (Python)

Assembling and VHDL
code generation (Python)

Platform source code (VHDL)

Binary code generation and
transfer to the platform
(FPGA Synthesis tools)

Figure 6.1: The complete design flow of the quick prototyping procedure. Steps
1 and 2 are described in chapter 2 while step 3 is the result of chapters 3 and 4.
Finally, steps 4 and 5 were the main subject of chapter 5

or an inductor depending on its state (on or off). Hence, even moderately large
circuits will require a large amount of resources (multipliers, memory elements, . . .)
to properly emulate its behavior.

• The state-space analysis allows us to use ideal on/off switches in the circuit, which
drastically reduces the complexity of the underlying equations. Furthermore, the
inherent compactness of the SSA leads to a reduced set of equations which are
easier to compute. The addition of the hybrid automaton concept to the SSA
provides an elegant framework to accurately track the dynamics of the circuit in
response to both continuous changes (i.e. induced by the state equations) and
discrete ones (due to a change in the control signal of the switches). On the other
hand, this representation is penalized by the exponential growth of its complexity
as a function of the amount of switches in the circuit. While storing all these
variations and selecting the correct one in real-time is certainly feasible for smaller
circuits, it becomes quickly impossible to handle when the circuit grows in size.

A solution had to be chosen and we estimated that the advantages SSA made it more-
suited for a real-time implementation. Our objective then became to optimize it as much

249

as possible, to identify its limits and try to overcome them. This lead us to our first
major contribution to the state of the art: a way to automatically analyze the hybrid
automaton associated to the circuit in order to reduce its complexity as much as possible
while keeping all the necessary information intact (see chapter 3).
We introduced two tools, based on similar principles, to study

• the natural changes in the state of the diodes due to the evolution of the continuous
signals (for example, a diode switching off when its current becomes negative)

• the forced changes that happen in reaction to the commutation of a controlled
switch such as a MOS transistor. A frequent example is the free-wheeling diodes,
which have to switch on to provide a path for an inductive current.

The aim of both tools is to answer the same question : Knowing the current state of
the system, what are the different possible topologies reachable in the immediate future ?
This question, known as a reachability problem, has no universal resolution, hence the
introduction of our own solution.
The first or our two tools, the natural switching module, parses the transition graph of
the automaton and finds all the topologies that can be reached when the system starts
from a given topology. Since the original graph can be relatively large, we also introduced
multiple ways to reduce the number of acceptable branches by studying the conditions
(or guards) associated with each transition. By eliminating all the changes whose guard
cannot be physically verified, of by fusing together equivalent branches, we have shown
that we can drastically reduce the amount of nodes and transitions that are available
for each current topology. Many of these simplifications are based on the solution of a
positive linear combination of equation, solved thanks to the introduction of the two-step
Simplex algorithm.
After performing this study for each acceptable starting topology, remains only the min-
imal amount of information needed to pinpoint the new topology taken by the circuit
according to a defined set of laws. This information takes the form of a set of inequalities
corresponding to some diode currents and voltages (but not necessarily corresponding to
all diodes and not always found in the same topology) that must be evaluated in real-time.
These sets are specific to a single topology. A big advantage of this method is that the
new state is found in a single step, even if multiple diodes must be switched in sequence
due to a chain reaction of events. In our state of the art, we found that simulators based
on the nodal analysis and most tools based on the state-space analysis are not be able to
properly analyze these cascade of events and only switch a subset of the diodes, leading
to unwanted transient effects in the simulation.
The second analysis method, called forced switching module, is designed to study the
transitions that occur due to changes in the control signals of the switches; it obeys sim-
ilar rules. More precisely, it is based on the observation that the value of state variables
cannot change instantaneously. This principle allows our tool to eliminate all topologies
that would lead to any brutal change in a state variable. A last step is performed to
further reduce the quantity of information required to select the correct topology among
the remaining ones. Again, this novel analysis tool allows us to find the correct state
of the system in a single step and without the need of analyzing the circuit during the
real-time emulation.

250

Through numerous examples, we have shown that both tools lead to a vast reduction
of the amount of calculations required at run time, compared to the standard hybrid
automaton and to the traditional MNA-based systems. Notably, we have shown that,
thanks to the global optimization provided by our tools, simulating a typical AC-to-DC
converter composed of 12 switches could require 80% less resources when compared to the
MNA solver 1. This significant result means that large power converters can be emulated
on low-power digital devices.

Since our optimization tools work by systematically analyzing all possible paths, they
are still susceptible to the combinatorial explosion of the number of topologies and tran-
sitions, making them impracticable for the study of large circuits such as three-phase,
three-level neutral point clamped (NPC) inverters. While using powerful platforms opti-
mized for number crunching can be a solution in some cases, there will always be a limit
to the memory and power of these computing platform, limiting their usage.
Instead, we introduced a solution by partitioning the converter in multiple sub-circuits.
Since each part can be analyzed separately, the time needed to completely study the
circuit is vastly reduced. The interconnection between the partitions is modeled using
controlled voltage or current sources.
While most circuits can be sliced in parts that are relatively independent, basic parti-
tioning methods will fail if the state of a switch is directly controlled by a signal created
in another partition. An example of this would be a branch composed of a diode in series
with an inductor, while these components do not belong to the same partition. To solve
this problem, we introduced a novel way of interconnecting the partitions using sources
whose law depends on the topology of the circuit. By using variable Thevenin equivalents
for the sources instead of pure current/voltage sources, we are able to force the correct
behavior in all partitions at once. These sources are updated at the beginning of each
time-step, using the outputs computed during the previous step.
We have shown that, by properly calibrating the sources, we are able to emulate even the
largest circuits by solving each partition separately.
The multiple test-circuits studied in section 4.4 have allowed us to conclude that the
partitioning framework performs well for those examples. A slight degradation of the
emulated signals is present, but the error remains inferior to a few percent when the par-
titions are completely decoupled. The signals resulting of the simulation of circuits with
coupled partitions present distortions when the incriminated elements are switched on or
off, reducing the accuracy of the emulation. However, these distortions are mostly present
in a subset of the signals (typically those directly impacted by the switching behavior of
the diodes) and the others are less disturbed.
Still, this degree of performance will be acceptable in most cases. It will keep on improving
in the future since the distortions, essentially due to the delays between the calculation
of a signal and its effects on other partitions, will be reduced because the performances
of the digital devices used to implement the emulator are growing at a high rate.

The implementation of the real-time algorithm required the development of a dedi-
cated digital platform, which we presented in chapter 5. This platform had to be able

1In this context, the resource usage corresponds to the amount of mathematical operations required
at each time-step

251

to handle high clock rates and provide a low computation time for the solver. For this
purpose, we compared the many ways of implementing the key elements of the solvers
(matrix products, selection tables, . . .), and proposed an efficient solution for each case.
In particular, our goal was to reduce the resource usage as much as possible, leading
to smaller designs, a faster routing process and higher speed. From these fundamental
modules, we have shown how to develop the main components of the solver.
While the original solver only sampled the external signals controlling the transistors once
per time-step, we have shown that this basic procedure could lead to quick divergence
between the emulated signal and its expected value. Hence we introduced a new way to
handle the control signals by oversampling them and by averaging the state matrices over
the emulation time-step. This improvement has provided very good results, completely
removing the divergence.
We have tested our platform by running the analysis process on two different circuits, a
boost converter and a three-phases AC to AC converter, and implemented the resulting
modules on the FPGA. From this tests, we were able to conclude that the system, in its
current state, is able to handle these two circuits easily. In open-loop, we have shown
that the waveforms obtained in real-time are almost exactly the same that were obtained
during the offline simulations. This good performance was of course expected, since there
is functionally no difference between computing the signals in the FPGA or on a com-
puter as long as all timing criteria are respected. In particular, the AC-AC converter
was simulated with a time step of 640ns without any problem. Furthermore, since the
actual latency was closer to 400ns, this system could easily go faster if fitted with better
digital-to-analog converters. While the signals were slightly degraded when the emulator
is used in closed-loop control with a sliding-mode controller operating at 100kHz, this is
not due to a limitation of our system but rather to a side-effect of the sampling of the
signals.
Another remarkable result is that the latency is mostly independent of the size of the
circuit, meaning that these speeds can be reached for a wide variety of converters. Thus,
we are very confident that our solver will scale well as better FPGAs become available
on the market. We have shown that a speed improvement of up to 50% could already be
obtained today simply by switching to an entry-level FPGA from the newest generation.

There is, obviously, still room for improvements, both from the analysis side and the
solver side, and we highlighted some of them in section 5.6. The partitioning algorithm
can certainly be improved to ensure a better stability of the system, and to avoid the
distortions that happen when the partitions can go in discontinuous conduction mode.
If such an improvement is made, this algorithm could truly allow our solver to work for
almost all applications. Another weakness of this process is its current lack of automa-
tion, requiring the user to write him- or herself the laws ruling the values of the sources
used to interconnect the partitions. Developing an interface allowing the user to quickly
give directives as how the partitions are connected would certainly be nice in terms of
productivity an ergonomy.
As for the platform itself, many side-features could be added to improve its usability. We
mentioned, among other things, the addition of a data channel between the FPGA and
a computer.

252

Looking at the whole picture, it seems clear that we have met our main objectives,
which were to propose a complete and cost-effective system able to process as many power
converter as possible and translate them into a real-time model. We have shown that
this procedure is certainly possible, and that our framework is able to handle circuits
composed of twenty switches without any problems. Furthermore, the addition of the
partitioning has allowed us to completely circumvent the complexity limitation inherent in
our method, and is perfectly integrated into our custom-made real-time platform. Thanks
to its great scalability and its high performance, we are confident that it could be used
in a variety of cases and help many engineers develop their power systems. Didactical
applications where student could study the control without any risks could also be quite
useful.

253

List of Figures

1.1 The traditional steps required to design a power converter. The prototyping
of the controller step is the main focus of this work 5

1.2 A typical power converter composed of a rectifying stage followed by a full
bridge inverter . 8

2.1 A simple resistive circuit to illustrate the nodal analysis method. The
encircled numbers represent the circuit nodes. The 0 node corresponds to
the reference (i.e. to the ground node). 10

2.2 A capacitor and its discrete time approximation. The value of the current
source and of the conductance depend on the discretization method . . . 12

2.3 A simple circuit and its discrete-time equivalent using the backward Euler
approximation . 13

2.4 Examples of circuits containing forced states 16
2.5 Definition if the signals used to describe the diode and the MOS transistor 20
2.6 Generic piecewise-linear solver, composed of a linear solver and a non-linear

feedback that modifies the equations . 21
2.7 Boost Converter and its four equivalent topologies 23
2.8 Illustration of the state continuity problem. When the transistor switches

from the on-state (a) to the off-state (b), the diode must be switched on
(c) to allow iL to flow . 24

2.9 A diode modeled as a bi-valued resistor thanks to an ideal diode and two
resistors . 25

2.10 An ideal switch and its controlled current source model 26
2.11 The boost converter of figure 2.7a, with switches modeled by controlled

current sources and reactive components replaced by their discrete-time
equivalents . 26

2.12 Two stage AC/DC converter, illustrating state-decoupling 29
2.13 piecewise linear approximation of a diode, with threshold voltage and on-

state resistance . 31
2.14 Diode models with imperfections (a) with on-state resistance Ron and

threshold voltage vth (b) with breakdown state added 31
2.15 Diode reverse recovery (a) evolution of iD (taken from [46]) (b) Example of

equivalent circuit, where R,L,K are parameters that depend on the diode
and on the slope of the current . 32

2.16 Various models for the MOS transistor (a) Symbol of the MOS (b) ideal
lossless MOS (c) with on-state resistance (d) with saturation current (e)
ideal MOS with body diode (f) with body diode and on-state resistance . 33

254

2.17 Output characteristics of a typical MOS transistor for various values of
vGS, and its piecewise linear approximation for vGS = 4V 34

2.18 (a) bipolar transistor (b) Insulated Gate Bipolar Transistor (c) simple
model for both transistors with the saturation voltage VCEsat 35

2.19 A thyristor and its three terminals. The device acts as a diode whose
off-to-on switching can be triggered by the gate (G) current 35

2.20 Coupled inductors, with self-inductances L1, L2 and mutual inductance
M . The currents correspond to the traditional convention : if a positive
current enters the inductor according to the defined convention, it induces
a positive voltage across the other coil. 35

2.21 An ideal transformer, with a transformation ratio n = n1

n2
= i2

i1
where n1

and n2 are the number of turns at the primary and secondary windings . 36
2.22 Equivalent circuit of a non-ideal transformer without Joule losses seen from

its primary side, with a transformation ratio n = i2
i1

, leakage inductances
Ll1, Ll2 and magnetization inductance Lm 37

2.23 Equivalent circuit of a non-ideal transformer seen from its primary side,
with added resistors r1, r2 representing the resistance of the windings, and
Rm symbolizing losses due to eddy currents 38

2.24 Equivalent circuit of a DC drive, modeling the mechanical behavior as an
electrical circuit . 39

2.25 Example circuit containing two diodes 43
2.26 Topology graph for the example circuit of figure 2.25 43
2.27 Separation of the study of the two types of transitions, which allows for

two different sampling times . 44
2.28 Boost converter and its full transition graph. The bold arrows correspond

to forced transitions and the thinner arrows to natural transitions 45
2.29 Two versions of the linear solver (a) Serial solver (b) Parallel solver . . . 47
2.30 Solver with split structure, where the switching module takes effect on the

new time step (a) Serial computation of outputs (b) Parallel computation
of the outputs . 49

2.31 Solver with interleaved structure, where the changes are taken into account
during the same time step. The natural switching module (in bold) is
shown in details on Figure 2.32 . 50

2.32 Examples of simulation procedures for the natural switching step of Figure
2.31 . 51

2.33 (a) Example circuit with multiple diodes switching in series (b) simulation
of the circuit using the basic diode switching algorithm of Figure 2.32a,
highlighting the high error in the first few time steps 52

2.34 Simulation procedure with optimized condition selection 54
2.35 Simplified transition graph when starting from topology (a) S00 and (b) S10 54
2.36 Illustration of the state continuity problem. When the transistor switches

from the on-state (a) to the off-state (b), the diode must be switched on
(c) to allow iL to flow . 55

255

2.37 Boost converter with an additional resistance, and its simulation with and
without the forced switching module. A noticeable drop occurs when no
forced switching module is implemented (red line) and the transistor is
switched off (at t = 50µs, t = 150µs and t = 250µs) 56

2.38 Modified boost circuit used to illustrate state discontinuity 58

3.1 Four-step design flow. The Analysis step is the focus of this chapter . . . 62
3.2 Half-bridge converter : the case where both u1 and u2 are active leads to

an impossibility to write the equations and must be rejected 64
3.3 Example circuit and its simplified transition graphs when starting from

topology (c) S00 and (d) S10 . 67
3.4 Two stage AC/DC converter . 68
3.5 Three phase rectifier: the topology where only (d1, d2, d3) are on and

(d4, d5, d6) are off is unstable since the sum of their current is equal to
zero . 69

3.6 Transition graph of the circuit of figure 2.33a, where dashed nodes are
unstable. Transition guards of the form 0 > 0 have been removed for clarity. 75

3.7 Examples of circuits containing at least one unreachable topology 76
3.8 Examples of circuits with conditional unreachability. (a) Only the topolo-

gies where d1 and d2 are in the same state are kept (b) The topology with
s and d on is marked as unreachable . 77

3.9 Usage of the pathfinding algorithm, where the bold items are part of the
reduced graph . 79

3.10 Example of parsing a graph, showing how the various sets are completed
and depleted as the algorithm progresses 82

3.11 Example of a path with an conditionally unstable node (S2 in (a)) : the
graph may be reduced to the one shown in (b) 83

3.12 Examples of paths with conditionally unreachable nodes (S3 in this case) 85
3.13 Another example where S4 is conditionally unreachable, this time because

of the invalid set . 86
3.14 Basic example of removal of an unstable node if the graph 87
3.15 Removal of an unstable node with multiple choices : S1 is replaced by S2

and the transition t12 is removed . 87
3.16 Writing the switching tables for the graph of Figure 3.10. The ∧ operator

is the logical and, ∅ is the null set. The bold arrows represent the evolution
of the parsing of the graph . 89

3.17 Modified boost circuit used to illustrate the topology selection process . . 91
3.18 Circuit where the state iL2 is not forced to a constant, but to an expression

iL2 = −iL1 . 93
3.19 Circuit used to illustrate incompatible topologies in the hard switching

module . 97
3.20 Circuit showing the use of (3.81) . 99
3.21 Boost converter and its transition graph, separated in two subgraphs ac-

cording to the state of the active switch 104

256

3.22 Simulation of the boost converter of Figure 3.21a with the parameters
stated in (3.85). The transistor is controlled with a 100kHz, 30% duty
cycle PWM. 107

3.23 More detailed implementation of a boost converter, with added elements
at the input and a switch in parallel of D to emulate a failure mode by
shorting the diode . 108

3.24 Switching graph of the practical boost from Figure 3.23 with K = 1 and
K ′ = 0. The graph is divided in three parts for easier reading (a) d off (b)
d on (c) links between the two. 110

3.25 Reduced version of the graph of Figure 3.24 after the natural switching
analysis is performed . 111

3.26 Simulation of the boost converter of Figure 3.23 with the parameters stated
in (3.86). The transistor is controlled with a 50kHz, 30% duty cycle PWM 112

3.27 Simulation of a short-circuit across D, showing the accuracy of the sim-
ulator even for signals with short time-constants : the capacitor C is
quickly discharged across K during the on time of the PWM period, and
is recharged by iL during the off time . 113

3.28 Two stage AC/DC converter . 114
3.29 Reduced switching graph for the circuit of figure 3.28, when starting from

the topology with all switches in the off state (S0), with the other nodes
corresponding to the following diodes in the on-state S1 : (d1, d4), S2 :
(d5, d8), S3 : (d6, d7), S4 : (d2, d3), S5 : (d1, d4, d5, d8), S6 : (d1, d4, d6, d7),
S7 : (d2, d3, d5, d8), S8 : (d2, d3, d6, d7) . 116

3.30 Adding a diode in parallel with C1 gives an explicit limit on the DC bus
voltage . 117

3.31 The two-stage AC/DC circuit, with Rmos added to allow failure modes,
and an additional switch to simulate load changes 118

3.32 Partial switching graph when the circuit starts in the topology with all
transistors off and d1, d4, d6, d7 on. The dx next to the nodes indicates
which diodes are conducting . 119

3.33 Single Phase 3-level Neutral Point Clamped (NPC) Inverter 119
3.34 3-level sinusoidal PWM modulation, based on a sawtooth PWM carrier . 122
3.35 Simulation of the single-phase NPC, with the parameters given by (3.88)

and using a 10kHz sawtooth PWM (a) inductor current (b) capacitor voltage123
3.36 3-level 3-Phase Neutral Point Clamped (NPC) Inverter 124
3.37 Discrete-time model of the boost converter using MNA 124

4.1 3-Level 3-Phase Neutral Point Clamped (NPC) Converter 130
4.2 Two-stage converter composed of a rectifier and an inverter (a) Complete

circuit (b)(c) Partitioned circuit . 131
4.3 Adding the update of the controlled sources to the interleaved discrete solver133
4.4 Simulation of the circuit of Figure 4.2a, for the partitioned and non-

partitioned versions, T = 1µs, TPWM = 50µs. The plots on the right
are zooms of the left plots on the circled region 136

257

4.5 Simulation of the circuit of Figure 4.2a, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 10µs. The plots on the right
side are zoomed versions of the left plots 137

4.6 Simulation of the circuit of Figure 4.2a, for the partitioned and non-
partitioned versions, T = 1µs, TPWM = 10µs and input frequency in-
creased to 5kHz . 138

4.7 Partitioning of a full bridge converter (a) Complete circuit, with the two
partitions in black and gray (b)(c) Partitioned circuit, with the controlled
sources used to virtually reconnect the two sub-circuits. The law control-
ling the sources are Es(k) = Vo2(k − 1) and Js(k) = iL(k − 1) 138

4.8 Topology graph for the full bridge circuit of Figure 4.7a when all active
switches are off . 139

4.9 Adding polarizing resistors allows us to compute Vo1 and Vo2, which are
needed to control the diodes . 139

4.10 Simulation of the circuit of Figure 4.7, when all active switches are kept in
the off-state and the inductor current iL starts with a negative value. The
two voltages go back and forth instead of converging towards Vo1 = Vin+E

2

and Vo2 = Vin−E
2

. 141
4.11 Topology graphs for the two partitions (a) Left branch (b) Right branch. 142
4.12 Simulation of the circuit of Figure 4.7, for the partitioned and non-partitioned

versions, T = 1µs, TPWM = 20µs, 30% duty cycle 143
4.13 Partitioning the circuit in three with full Thevenin equivalent for the in-

terconnection circuit . 144
4.14 Evolution of the eigenvalues of (4.30) as a function of k = T Rs

L
. 147

4.15 Simulation of the circuit of Figure 4.7, when all active switches kept off
and the inductor current iL starts with a negative value. 148

4.16 Simulation of the circuit of Figure 4.7, with R = 100kΩ and (a) E = 5V
(b) E = −10V . 149

4.17 Simulation of the circuit of Figure 4.7, with R = 1kΩ and (a) E = 5V (b)
E = −50V . 150

4.18 Simulation of the circuit of Figure 4.7, for the partitioned and non-partitioned
versions, T = 1µs, TPWM = 20µs, 30% duty cycle 151

4.19 Simulation of the circuit of Figure 4.7, with R = 1kΩ, s1 is kept on and
(a)(b) E = 20V (c)(d) E = 0V . 152

4.20 Generic converter surrounded by its voltage and current input ports . . . 153
4.21 Partitioning the circuit in three with full Thevenin equivalent for the in-

terconnection circuit . 153
4.22 (a) Definition of the inductor signals (b) Inductor with added convergence

resistors . 155
4.23 Multiple parallel boosts, and the three selected partitions 157
4.24 Simulation of the parallel boost converter, with the parameters given in

(4.46) . 159
4.25 Simulation of the parallel boost converter, with Cin = 100µF . All other

parameters are defined in (4.46) . 160
4.26 Partitioning the circuit in three with full Thevenin equivalent for the in-

terconnection circuit. On (b), i ∈ (1, 2, 3) corresponds to the ith branch . 161

258

4.27 Simulation of the three-phase circuit of Figure 4.26a when the circuit op-
erates in natural conduction mode with all active switches left open, with
the parameters defined by (4.48) . 163

4.28 Simulation of the three-phase circuit of Figure 4.26a in PWM mode with
Vin = 50V, L = 1µH,E1 = 10V,E2 = −10V,E3 = 0V and 60% duty cycle
for the switches s11, s21 and s32 (b) Zoom on iL1, showing the transients
as the first branch enters DCM . 164

4.29 Simulation of the three-phase circuit of Figure 4.26a, with the PWM fre-
quencyincreased to 40kHz . 165

4.30 Current source inverter (a) Full circuit (b)Inductor partition corresponding
to a vertical split of the converter . 166

4.31 Horizontal partitioning of the current source inverter (a) Inductor partition
(b) Capacitor partition (c) High side of the bridge (d) Low side of the bridge167

4.32 Simulation of the current source inverter, with the parameters given by
(4.52) . 169

4.33 Effect of DCM on the signals . 170
4.34 3-Phase Neutral Point Clamped (NPC) Inverter 171
4.35 Partitions of the three-phases NPC converter 171
4.36 Sinusoidal PWM modulation, based on a sawtooth PWM carrier 173
4.37 Simulation of the three-phase NPC, with the parameters given by (4.58)

and using a 10kHz sawtooth PWM (b) zoom to show the differences be-
tween the continuous-time plot and the simulation 174

4.38 Typical multilevel current source inverter (taken from [88]) 175

5.1 The complete design flow of the rapid prototyping procedure. Steps 1 and
2 are described in chapter 2 while step 3 is described in chapters 3 and 4.
The remaining steps are the subject of this chapter 179

5.2 Physical structure of the real-time platform, composed of a main processing
unit and data converters. The process under test typically uses the analog
output signals as its own inputs and provides the binary control signals
used to select the state of the active switches 180

5.3 Architecture of an FPGA (taken from [90]) 182
5.4 The double buffering isolates the interconnections from the modules . . . 183
5.5 The two main structures (a) Split structure with parallel computation of

the states and outputs (b) Interleaved structure 185
5.6 Solver with interleaved structure, modified to allow the use of the parti-

tioning thanks to the inclusion of the controlled sources update module . 186
5.7 Steps of a 35-by-35 product using a 18-by-18 multiplier (taken from [94]) 190
5.8 Pipe-lined implementation of a 35-by-35 product using four 18-by-18 mul-

tipliers (taken from [94]). At each stage, a DSP slice includes the logic
needed to perform the multiplication, the addition and the internal buffer-
ing. Additional buffers are added in front of the slices and at the output
in order to synchronize the data paths (i.e. the inputs of the second stage
must appear one clock later than the inputs of the first state 191

259

5.9 Implementation of a 35-by-35 product using the 18-by-18 multiplier and
the adder of a single DSP slice (taken from [95]): the four partial products
are computed in succession, and are accumulated using the adder 192

5.10 Implementation of a 35-by-35 product using the 18-by-18 multiplier and
an accumulator . 193

5.11 Slicing the output of the 70-bit multiplier (a) operands in Q18 format (b)
70-bit output in Q36 format and extraction of a new Q18 number 195

5.12 Cascaded implementation of a dot product. The computations of the par-
tial products are synchronized by the z−n blocks, and added together to
produce the output . 196

5.13 Adder tree implementation of a dot product 197
5.14 Simplified multiplier used when ai ∈ [−1, 0, 1], where sign(ai) is defined

by (5.14) . 198
5.15 In this circuit, most elements are equal to zero 199
5.16 Logic circuit of a priority encoder . 202
5.17 Logic circuit of a priority encoder with combined inputs 202
5.18 Structure of the solvers . 203
5.19 The length of the paths corresponding to the individual dot products are

equalized by inserting extra buffers . 206
5.20 The thyristor control circuit, where the conduction state of the thyristor

depends on its state at the previous iteration, the state of the diode given
by the selection tables, and by the gate control signal 207

5.21 Boost Converter used to show the effect of inter sample-time switching
events . 208

5.22 Simulation of the boost converter when the control signal of a switch occurs
during the time step and is sampled only once per simulation time step :
the simulation diverges quickly from the expected result 209

5.23 Effect of the sampling on the control signal, the effective duty-cycle is
modified from 75% to 80% and the commutations are delayed 209

5.24 Simulation of the boost converter with switching events during the time
step. The control signals are sampled at 100MHz 212

5.25 Real-time platform used for the tests, with the TE0630 FPGA board
plugged into its TE0303 carrier board on the left, and the custom-made
DAC board on the right. A ribbon cable carrying the eight SPI channels
connects the two board. 217

5.26 Boost converter used to test the real-time algorithm 217
5.27 Open-loop simulation of the circuit of Figure 5.26, with a 100kHz, 50%

pwm input . 219
5.28 Analog measurements at the outputs of the digital-to-analog converters of

the real-time platform for the circuit of Figure 5.26, with a 100kHz, 50%
pwm input : initial transient of the circuit when starting from iL = 0A
and vC = 0V . The measured voltage is translated into the actual value of
the outputs by using (5.36). 221

260

5.29 Analog measurements at the outputs of the digital-to-analog converters of
the real-time platform for the circuit of Figure 5.26, with a 100kHz, 50%
pwm input : zoom on the commutations due to the PWM input signal.
The measured voltage is translated into the actual value of the outputs by
using (5.36). 222

5.30 Boost converter with a current mode control loop : the comparator controls
the switch thanks to its internal hysteresis 224

5.31 Current mode control with hysteresis : the transistor is switched off when
iL reaches imax and is switched on again when iL goes below imin 224

5.32 Effects of the sampling on the closed-loop accuracy of the sliding-mode
control of iL in the circuit of Figure 5.30, with a hysteresis band going
from 1.98A to 2.02A (a) Measure of the current (b) Fourier transform of iL 225

5.33 Effects of the sampling on the accuracy of the sliding-mode control of iL
in the circuit of Figure 5.30, with a hysteresis defined from 1.8A to 2.2A 226

5.34 A circuit composed of a passive rectifier followed by a three-phase inverter 227
5.35 The partitions corresponding to the circuit of Figure 5.34: (a) Input rec-

tifier (b) Each of the three individual branches, where i = 1, 2, 3 (c) Load
and its interconnection circuit . 228

5.36 Simulation of the three-phase inverter operating in continuous conduction
mode . 230

5.37 Simulation of the three-phases inverter operating in DCM. (a) inductor
currents (b) leg voltages . 231

5.38 Zoom on the simulation of Figure 5.37. (a) inductor currents (b) branch
voltages . 232

5.39 Real-time simulation of the three-phase AC to AC circuit of Figure 5.34,
with the parameters given by (5.48) and using a 20kHz sawtooth PWM to
control the switches s2, s3 and s6. The plots show the signals obtained by
the FPGA and an offline high resolution simulation. 235

5.40 Zooms on the plots of Figure 5.39, taken at the points with the maximum
error between the FPGA signals and their expected value. The maximum
error for the output currents is between 1% and 2.5%, while the error on
iLo reaches 5%. 236

5.41 Simulation of the two-stages circuit with a PWM frequency of 100kHz.
The lack of averaging on the controlled sources introduces an additional
periodic distortion . 237

5.42 A single-phase inverter partitioned into two sub-circuits. Because of the
law controlling Es, this source can increase to 1000V even if Vin = 10V
and iL = 1A . 241

5.43 A saturable inductor transformed into a piecewise-linear model. (a) Flux-
current relationship (b) electrical equivalent (taken from [101]) 244

6.1 The complete design flow of the quick prototyping procedure. Steps 1 and
2 are described in chapter 2 while step 3 is the result of chapters 3 and 4.
Finally, steps 4 and 5 were the main subject of chapter 5 249

261

List of Tables

2.1 Comparison of the approximate amount of resources needed by the MNA
and the SSA . 30

2.2 Natural commutation table for the graph of figure 2.35a 55

3.1 Natural commutation table for the graph of figure 3.6 76
3.2 Binary commutation table for the graph of figure 3.16, starting from S0 . 90
3.3 Condition Table for the circuit of Figure 3.17 101
3.4 Switching Table for (K,K ′) = (off, on) 102
3.5 Switching Table for (K,D1, D2, K

′) = (on, off, off, off) 102
3.6 Switching Table for (K,D1, D2, K

′) = (on, off, on, off) 103
3.7 Switching Table for (K,D1, D2, K

′) = (on, off, on, off), modified by re-
moving the conditions associated with the last topology. The columns from
Table 3.6 are expanded to show the individual conditions. 103

3.8 switching table obtained after removing conditions that are mutually ex-
clusive from Table 3.7 . 104

3.9 Condition table for the natural switching module of the ideal boost converter105
3.10 Switching Table for the natural switching module of the ideal boost converter106
3.11 Switching Table for the forced switching module of the ideal boost converter106

4.1 Ressources needed to simulate the three-phase circuit, for the partitioned
and non-partitioned versions . 162

5.1 Steps of the single slice 35-by-35 multiplier of Figure 5.10. The <<n op-
eration represent a n bits arithmetical left shift. The delay between the
output of the multiplier and the input of the accumulator is due to the
shifter, which requires a single clock cycle 194

5.2 Speed and resource usage of the multipliers 194
5.3 Speed and resource usage of a dot-product of vectors with five elements,

using 4-way adders . 197
5.4 Example of switching table . 200
5.5 Modifying the conditions to allow for a faster evaluation of their validity

(a) Before modification (b) After modification 207
5.6 Latencies of the modules for the emulation of the converter of Figure 5.26 218
5.7 Resources occupation of the largest modules for the emulation of the con-

verter of Figure 5.26 . 220
5.8 Latencies of the modules for the emulation of the three-phase inverter . . 233
5.9 Resources occupation of the biggest modules for the emulation of the three-

phase inverter . 234

262

5.10 Latencies of the modules for the emulation of the complete circuit 238
5.11 Resources occupation of the largest modules for the emulation of the three-

phases inverter : around 50% of the resources are needed 238

263

Appendix A

Schematics of the Digital-to-analog
board

The next pages present the schematics of the custom-made board connected to the
TE0303 FPGA main board. This board contains the eight digital-to-analog convert-
ers which provide the analog measurements.

264

1

1

2

2

3

3

4

4

D D

C C

B B

A A

1 1

Interface DAC pour Spartan 6
KDC 1.0

28/03/2014 13:51:36
D:\Altium projects\Recherche\SerialDacs\main.SchDoc

Title

Size: Drawn by:

Date:
File:

Revision:

Sheet ofTime:
A4

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J2

S
T
IF

T
LE

IS
T
E
2

.5
4

 O
G

 2
R

-4
0

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J3

S
T
IF

T
LE

IS
T
E
2

.5
4

 O
G

 2
R

-4
0

B2B_B1_L61_PB2B_B1_L61_N
B2B_B1_L9_P
B2B_B1_L21_N

B2B_B1_L9_N
B2B_B1_L21_P
B2B_B1_L10_NB2B_B1_L10_P

B2B_B0_L66_PB2B_B0_L66_N

B2B_B0_L7_P

B2B_B0_L33_P

B2B_B0_L36_P

B2B_B0_L62_N B2B_B0_L62_P

B2B_B0_L49_P

B2B_B0_L7_N

B2B_B0_L33_N

B2B_B0_L36_N

B2B_B0_L49_N

B2B_B1_L20_N B2B_B1_L20_P
B2B_B1_L19_N B2B_B1_L19_P

B2B_B0_L3_P
B2B_B0_L32_P

B2B_B3_L59_P

B2B_B3_L60_P

B2B_B0_L32_N
B2B_B0_L3_N

B2B_B3_L59_N

B2B_B3_L60_N

B2B_B1_L59

B2B_B0_L1

B2B_B0_L2_NB2B_B0_L2_P

B2B_B3_L9_P B2B_B3_L9_N

B2B_B0_L4_N B2B_B0_L4_P

B2B_B0_L5_N B2B_B0_L5_P
B2B_B0_L6_N B2B_B0_L6_P

B2B_B0_L8_PB2B_B0_L8_N

B2B_B0_L34_N B2B_B0_L34_P

B2B_B0_L65_NB2B_B0_L65_P
B2B_B0_L64_NB2B_B0_L64_P

B2B_B0_L63_NB2B_B0_L63_P
B2B_B0_L51_NB2B_B0_L51_P
B2B_B0_L50_NB2B_B0_L50_P
B2B_B0_L38_NB2B_B0_L38_P

B2B_B0_L37_N B2B_B0_L37_P

B2B_B0_L35_N B2B_B0_L35_P

/MR PFI
HSWAPENB2B_PROGB

REPEAT(SCLK)

REPEAT(SDIN)

REPEAT(SYNC)

REPEAT(DAC,1,8)
DAC.SchDoc

B2B_B3_L59_P

B2B_B3_L9_P

B2B_B0_L2_P

B2B_B0_L2_N

B2B_B0_L4_N

B2B_B0_L5_N

B2B_B0_L5_P

B2B_B0_L6_N

B2B_B0_L32_P

B2B_B0_L32_N

B2B_B0_L33_N

B2B_B0_L34_N

B2B_B0_L34_P

B2B_B0_L37_N

B2B_B0_L38_P

B2B_B0_L38_N

B2B_B0_L50_P

B2B_B0_L63_P

B2B_B0_L63_N

B2B_B0_L49_N

B2B_B1_L10_P

B2B_B1_L10_N

B2B_B1_L21_N

On/Off

-Vin

+Vin

+Vout

-Vout

COMMON

1772192

T1

TEN 8WI

+15V

-15V

ALIM_GND

ALIM_VIN

1854512

V+

CONNECT

GND

J4

POWER JACK 12V 5A

1
2
3

P1

MC1,5/3-G-3,81

2
3

1

1607954

S1

SW-SPDT

10k
RPD1

10uF
C18

10uF
C19

10uF
C17

SCLK

SDIN

SYNC

SCLK[1..8]

SYNC[1..8]

SDIN[1..8]

3.3V

SCLK1B2B_B3_L59_N
SCLK2
SCLK3
SCLK4
SCLK5
SCLK6
SCLK7
SCLK8

SDIN1
SDIN2
SDIN3
SDIN4
SDIN5
SDIN6
SDIN7
SDIN8

SYNC1
SYNC2
SYNC3
SYNC4
SYNC5
SYNC6
SYNC7
SYNC8

DGND

AGND
DGND

+15V

-15V

3.3V

DGND AGND

PIC1701

PIC1702
COC17

PIC1801

PIC1802 COC18

PIC1901

PIC1902
COC19

PIJ201 PIJ202

PIJ203 PIJ204

PIJ205 PIJ206

PIJ207 PIJ208

PIJ209 PIJ2010

PIJ2011 PIJ2012

PIJ2013 PIJ2014

PIJ2015 PIJ2016

PIJ2017 PIJ2018
PIJ2019 PIJ2020

PIJ2021 PIJ2022

PIJ2023 PIJ2024

PIJ2025 PIJ2026

PIJ2027 PIJ2028

PIJ2029 PIJ2030

PIJ2031 PIJ2032

PIJ2033 PIJ2034

PIJ2035 PIJ2036

PIJ2037 PIJ2038

PIJ2039 PIJ2040

COJ2

PIJ301 PIJ302
PIJ303 PIJ304

PIJ305 PIJ306

PIJ307 PIJ308

PIJ309 PIJ3010

PIJ3011 PIJ3012

PIJ3013 PIJ3014

PIJ3015 PIJ3016

PIJ3017 PIJ3018

PIJ3019 PIJ3020

PIJ3021 PIJ3022

PIJ3023 PIJ3024

PIJ3025 PIJ3026

PIJ3027 PIJ3028

PIJ3029 PIJ3030

PIJ3031 PIJ3032

PIJ3033 PIJ3034

PIJ3035 PIJ3036

PIJ3037 PIJ3038

PIJ3039 PIJ3040

COJ3

PIJ401

PIJ402

PIJ403

COJ4 PIP101

PIP102

PIP103

COP1PIRPD101

PIRPD102
CORPD1

PIS101

PIS102

PIS103
COS1

PIT101

PIT102 PIT109

PIT1011

PIT1014

PIT1022

COT1 PIC1802
PIP103PIT1014 NL015V

PIC1901
PIP101PIT1011 NL015V

PIJ205
NL0MR

PIC1702

PIJ202

PIC1701

PIC1801
PIC1902

PIJ208

PIJ2019 PIJ2020

PIJ2031 PIJ2032

PIJ3011 PIJ3012

PIJ3022

PIJ3031 PIJ3032

PIP102

PIT109

PIJ403

PIS101

PIT102

NLALIM0GND

PIJ401

PIRPD102

PIT1022NLALIM0VIN

PIJ207
NLB2B0B00L1

PIJ2026
NLB2B0B00L30N

PIJ2025
NLB2B0B00L30P

PIJ2018
NLB2B0B00L40P

PIJ2024
NLB2B0B00L60P

PIJ3039NLB2B0B00L70N PIJ3040 NLB2B0B00L70P

PIJ2037
NLB2B0B00L80N

PIJ2038
NLB2B0B00L80P

PIJ2030
NLB2B0B00L330P

PIJ2039
NLB2B0B00L350N

PIJ2040
NLB2B0B00L350P

PIJ3038 NLB2B0B00L360NPIJ3037NLB2B0B00L360P

PIJ2036
NLB2B0B00L370P

PIJ3010
NLB2B0B00L490P

PIJ304
NLB2B0B00L500N

PIJ306
NLB2B0B00L510N

PIJ305
NLB2B0B00L510P

PIJ3029
NLB2B0B00L620N

PIJ3030
NLB2B0B00L620P

PIJ3036 NLB2B0B00L640NPIJ3035NLB2B0B00L640P
PIJ3034 NLB2B0B00L650NPIJ3033NLB2B0B00L650P

PIJ3027
NLB2B0B00L660N

PIJ3028
NLB2B0B00L660P

PIJ3018
NLB2B0B10L90N

PIJ3017
NLB2B0B10L90P

PIJ3025
NLB2B0B10L190N

PIJ3026
NLB2B0B10L190P

PIJ3023
NLB2B0B10L200N

PIJ3024
NLB2B0B10L200P

PIJ3016
NLB2B0B10L210P

PIJ3021
NLB2B0B10L59

PIJ3019
NLB2B0B10L610N

PIJ3020
NLB2B0B10L610P

PIJ2012 NLB2B0B30L90N

PIJ2014 NLB2B0B30L600NPIJ2013NLB2B0B30L600P

PIJ203
NLB2B0PROGB

PIJ204
NLHSWAPEN

PIT1023

PIT1016

PIT103

PIJ201

PIJ402

PIRPD101
PIS102 PIT101

PIS103

PIJ206
NLPFI

265

1

1

2

2

3

3

4

4

D D

C C

B B

A A

1 1

Canal DAC pour Spartan 6
KDC 1.0

28/03/2014 13:51:37
D:\Altium projects\Recherche\SerialDacs\DAC.SchDoc

Title

Size: Drawn by:

Date:
File:

Revision:

Sheet ofTime:
A4

1 1

Canal DAC pour Spartan 6
KDC 1.0

28/03/2014 13:51:37
D:\Altium projects\Recherche\SerialDacs\DAC.SchDoc

Title

Size: Drawn by:

Date:
File:

Revision:

Sheet ofTime:
A4

IOUT1 1

GND 2

SCLK3
SDIN4

SYNC5

VDD6

VREF 7

RFB 8

U3

AD5453YRMZ

1

8
2

3

4

5

6

7

1097460

U2
INA133U

TEMP1

GND2 Vin3

Vout 4

TRIM 5

U1

ADR01

-

+

6
2

3

4
7

5
8

1212441

U4
OPA227UA

1295980

PINA3 V
-

4
V

+
11

NC7 7SENSEB10

SENSEA12

REFB8

REFA14

NC1 1

OUTB 9

MINB6

OUTA 13

MINA2

PINB5

U6

INA2133U

+10V

-10V

-10V

+10V
+Vout

+Vout

+Vout
-Vout

-Vout

GND1

Vin2 Vout 3

NC 4NC 5

2075417

U5

TLV70433

REF_3.3V

100nF
C8

100nF
C10

100nF
C4

100nF
C3

100nF
C1

100nF
C2

100nF
C9

100nF
C11

2uF
C12

2uF
C13

100nF
C7

J1

35RASMT4BHNTRX

VCC 14

A12

GND7

OE11

Y1 3

A25

Y4 11

OE24

OE413

Y2 6

A412 A39 Y3 8

OE310

U7

SN74AHC125D

SCLK
SDIN
SYNC

100nF
C14

SCLKOUT

SCLKOUT

SDINOUT

SDINOUT

SYNCOUT

SYNCOUT

10uF
C6

100nF
C5

3.3V

DGND

+15V

-15V

+15V

+15V

-15V

DGND

-15V

+15V

+15V
-15V

+15V

-15V

+15V

-15V

+15V

+15V -15V

1
2
3

P1

Header 3

+Vout

-Vout

AGND
AGND

AGND

AGND

AGND AGND

AGND

AGND

AGND

AGND AGND

AGND

AGND

PIC101

PIC102 COC1

PIC201

PIC202
COC2

PIC301

PIC302 COC3

PIC401

PIC402
COC4

PIC501

PIC502 COC5

PIC601

PIC602
COC6

PIC701

PIC702
COC7

PIC801

PIC802 COC8

PIC901

PIC902 COC9

PIC1001

PIC1002
COC10

PIC1101

PIC1102
COC11

PIC1201

PIC1202
COC12

PIC1301

PIC1302 COC13
PIC1401

PIC1402 COC14

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

COJ1

PIP101

PIP102

PIP103

COP1

PIU101

PIU102

PIU103

PIU104

PIU105

COU1

PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207
PIU208

COU2

PIU301

PIU302

PIU303

PIU304

PIU305

PIU306

PIU307

PIU308

COU3

PIU402

PIU403

PIU404 PIU405
PIU406

PIU407 PIU408 COU4

PIU501

PIU502 PIU503

PIU504

PIU505

COU5

PIU601

PIU602

PIU603

PIU604

PIU605

PIU606

PIU607

PIU608 PIU609

PIU6010

PIU6011

PIU6012

PIU6013

PIU6014

COU6

PIU701

PIU702 PIU703

PIU704

PIU705 PIU706

PIU707

PIU708PIU709

PIU7010

PIU7011PIU7012

PIU7013

PIU7014

COU7

PIC302PIU104

PIU202

PIU602
NL010V

PIC102

PIC402

PIC802

PIC902

PIC1302

PIU103

PIU207

PIU407

PIU502

PIU6011

PIJ103

PIP101

PIU606

PIU6012

PIU6013

NL0Vout

PIC502

PIU205

PIU206

PIU307
NL010V

PIC201

PIC1001

PIC1101

PIC1201

PIU204

PIU404

PIU604

PIJ102

PIP103

PIU609

PIU6010

NL0Vout

PIC1402PIU7014

PIC101
PIC202

PIC301

PIC401
PIC501

PIC601 PIC701

PIC801

PIC901

PIC1002

PIC1102

PIC1202
PIC1301

PIJ101

PIP102

PIU102

PIU201

PIU203

PIU302

PIU403

PIU501

PIU605

PIU608

PIC1401

PIU701

PIU704

PIU707

PIU7010

PIU7012

PIU7013

PIJ104

PIJ105

PIU101

PIU105

PIU208

PIU301 PIU402

PIU308

PIU406

PIU603

PIU6014

PIU405

PIU408

PIU504

PIU505

PIU601

PIU607

PIU702POSYNC
PIU705POSDIN
PIU709POSCLK

PIU7011

PIC602 PIC702 PIU306PIU503
NLREF0303V

PIU303

PIU708

NLSCLKOUT

PIU304

PIU706

NLSDINOUT

PIU305

PIU703

NLSYNCOUT

POSCLK
POSDIN
POSYNC

266

PAC101

PAC102

COC1

PAC10201

PAC10202 COC102

PAC10301

PAC10302 COC103

PAC10401

PAC10402 COC104

PAC10501

PAC10502 COC105

PAC10601

PAC10602 COC106

PAC10701

PAC10702 COC107

PAC10801

PAC10802 COC108

PAC201

PAC202

COC2

PAC20201

PAC20202 COC202

PAC20301

PAC20302 COC203

PAC20401

PAC20402 COC204

PAC20501

PAC20502 COC205

PAC20601

PAC20602 COC206

PAC20701

PAC20702 COC207

PAC20801

PAC20802 COC208

PAC302

PAC301

COC3

PAC30201

PAC30202

COC302

PAC30301

PAC30302

COC303

PAC30401

PAC30402

COC304

PAC30501

PAC30502

COC305

PAC30601

PAC30602

COC306

PAC30701

PAC30702

COC307

PAC30801

PAC30802

COC308

PAC402 PAC401 COC4

PAC40201PAC40202

COC402

PAC40301PAC40302

COC403

PAC40401PAC40402

COC404

PAC40501PAC40502

COC405

PAC40601PAC40602

COC406

PAC40701PAC40702

COC407

PAC40801PAC40802

COC408

PAC502

PAC501

COC5

PAC50201

PAC50202

COC502

PAC50301

PAC50302

COC503

PAC50401

PAC50402

COC504

PAC50501

PAC50502

COC505

PAC50601

PAC50602

COC506

PAC50701

PAC50702

COC507

PAC50801

PAC50802

COC508

PAC601 PAC602COC6

PAC60201 PAC60202COC602

PAC60301 PAC60302COC603

PAC60401 PAC60402COC604

PAC60501 PAC60502COC605

PAC60601 PAC60602COC606

PAC60701 PAC60702COC607

PAC60801 PAC60802COC608

PAC702

PAC701COC7

PAC70201

PAC70202

COC702

PAC70301

PAC70302

COC703

PAC70401

PAC70402

COC704

PAC70501

PAC70502

COC705

PAC70601

PAC70602

COC706

PAC70701

PAC70702

COC707

PAC70801

PAC70802

COC708

PAC802

PAC801

COC8

PAC80201

PAC80202

COC802

PAC80301

PAC80302

COC803

PAC80401

PAC80402

COC804

PAC80501

PAC80502

COC805

PAC80601

PAC80602

COC806

PAC80701

PAC80702

COC807

PAC80801

PAC80802

COC808

PAC901PAC902COC9

PAC90201PAC90202COC902

PAC90301PAC90302COC903

PAC90401PAC90402COC904

PAC90501PAC90502COC905

PAC90601PAC90602COC906

PAC90701PAC90702COC907

PAC90801PAC90802COC908

PAC1002

PAC1001

COC10

PAC100201

PAC100202

COC1002

PAC100301

PAC100302

COC1003

PAC100401

PAC100402

COC1004

PAC100501

PAC100502

COC1005

PAC100601

PAC100602

COC1006

PAC100701

PAC100702

COC1007

PAC100801

PAC100802

COC1008

PAC1101

PAC1102

COC11

PAC110201

PAC110202

COC1102

PAC110301

PAC110302

COC1103

PAC110401

PAC110402

COC1104

PAC110501

PAC110502

COC1105

PAC110601

PAC110602

COC1106

PAC110701

PAC110702

COC1107

PAC110801

PAC110802

COC1108

PAC1201

PAC1202

COC12

PAC120201

PAC120202

COC1202

PAC120301
PAC120302

COC1203

PAC120401
PAC120402

COC1204

PAC120501

PAC120502

COC1205

PAC120601

PAC120602

COC1206

PAC120701
PAC120702

COC1207

PAC120801
PAC120802

COC1208

PAC1301PAC1302
COC13

PAC130201PAC130202

COC1302

PAC130301PAC130302

COC1303

PAC130401PAC130402

COC1304

PAC130501PAC130502
COC1305

PAC130601PAC130602

COC1306

PAC130701PAC130702

COC1307

PAC130801PAC130802

COC1308

PAC1402

PAC1401

COC14

PAC140201

PAC140202

COC1402

PAC140301

PAC140302

COC1403

PAC140401

PAC140402

COC1404

PAC140501

PAC140502

COC1405

PAC140601

PAC140602

COC1406

PAC140701

PAC140702

COC1407

PAC140801

PAC140802

COC1408

PAC1701

PAC1702

COC17

PAJ105

PAJ103

PAJ102 PAJ104

PAJ101

PAJ10
COJ1

PAJ10205

PAJ10203

PAJ10202 PAJ10204

PAJ10201

PAJ1020

COJ102

PAJ10305

PAJ10303

PAJ10302 PAJ10304

PAJ10301

PAJ1030

COJ103

PAJ10405

PAJ10403

PAJ10402 PAJ10404

PAJ10401

PAJ1040

COJ104

PAJ10505

PAJ10503

PAJ10502 PAJ10504

PAJ10501

PAJ1050

COJ105

PAJ10605

PAJ10603

PAJ10602 PAJ10604

PAJ10601

PAJ1060

COJ106

PAJ10705

PAJ10703

PAJ10702 PAJ10704

PAJ10701

PAJ1070

COJ107

PAJ10805

PAJ10803

PAJ10802 PAJ10804

PAJ10801

PAJ1080

COJ108

PAJ201 PAJ202

PAJ203 PAJ204

PAJ205 PAJ206

PAJ207 PAJ208

PAJ209 PAJ2010

PAJ2011 PAJ2012

PAJ2013 PAJ2014

PAJ2015 PAJ2016

PAJ2017 PAJ2018

PAJ2019 PAJ2020

PAJ2021 PAJ2022

PAJ2023 PAJ2024

PAJ2025 PAJ2026

PAJ2027 PAJ2028

PAJ2029 PAJ2030

PAJ2031 PAJ2032

PAJ2033 PAJ2034

PAJ2035 PAJ2036

PAJ2037 PAJ2038

PAJ2039 PAJ2040

COJ2

PAJ301 PAJ302

PAJ303 PAJ304

PAJ305 PAJ306

PAJ307 PAJ308

PAJ309 PAJ3010

PAJ3011 PAJ3012

PAJ3013 PAJ3014

PAJ3015 PAJ3016

PAJ3017 PAJ3018

PAJ3019 PAJ3020

PAJ3021 PAJ3022

PAJ3023 PAJ3024

PAJ3025 PAJ3026

PAJ3027 PAJ3028

PAJ3029 PAJ3030

PAJ3031 PAJ3032

PAJ3033 PAJ3034

PAJ3035 PAJ3036

PAJ3037 PAJ3038

PAJ3039 PAJ3040

COJ3

PAJ401

PAJ402

PAJ403

COJ4

PAP103

PAP102

PAP101

COP1

PAP103 PAP102 PAP101

PAP10203 PAP10202 PAP10201

COP102

PAP10303 PAP10302 PAP10301

COP103

PAP10403 PAP10402 PAP10401

COP104

PAP10503 PAP10502 PAP10501

COP105

PAP10603 PAP10602 PAP10601

COP106

PAP10703 PAP10702 PAP10701

COP107

PAP10803 PAP10802 PAP10801

COP108

PARPD102PARPD101

CORPD1

PAS103PAS102PAS101

COS1

PAT1014 PAT1016 PAT1022 PAT1023

PAT1011 PAT109 PAT103 PAT102 PAT101

COT1

PAU101PAU102PAU103

PAU104 PAU105
COU1

PAU10201PAU10202PAU10203

PAU10204 PAU10205

COU102

PAU10301PAU10302PAU10303

PAU10304 PAU10305

COU103

PAU10401PAU10402PAU10403

PAU10404 PAU10405

COU104

PAU10501PAU10502PAU10503

PAU10504 PAU10505

COU105

PAU10601PAU10602PAU10603

PAU10604 PAU10605

COU106

PAU10701PAU10702PAU10703

PAU10704 PAU10705

COU107

PAU10801PAU10802PAU10803

PAU10804 PAU10805

COU108

PAU201 PAU202 PAU203 PAU204

PAU208 PAU207 PAU206 PAU205

COU2

PAU20201 PAU20202 PAU20203 PAU20204

PAU20208 PAU20207 PAU20206 PAU20205
COU202

PAU20301 PAU20302 PAU20303 PAU20304

PAU20308 PAU20307 PAU20306 PAU20305
COU203

PAU20401 PAU20402 PAU20403 PAU20404

PAU20408 PAU20407 PAU20406 PAU20405
COU204

PAU20501 PAU20502 PAU20503 PAU20504

PAU20508 PAU20507 PAU20506 PAU20505
COU205

PAU20601 PAU20602 PAU20603 PAU20604

PAU20608 PAU20607 PAU20606 PAU20605
COU206

PAU20701 PAU20702 PAU20703 PAU20704

PAU20708 PAU20707 PAU20706 PAU20705
COU207

PAU20801 PAU20802 PAU20803 PAU20804

PAU20808 PAU20807 PAU20806 PAU20805
COU208

PAU305 PAU306 PAU307PAU308

PAU304 PAU303 PAU302PAU301
COU3

PAU30205 PAU30206 PAU30207PAU30208

PAU30204 PAU30203 PAU30202PAU30201

COU302

PAU30305 PAU30306 PAU30307PAU30308

PAU30304 PAU30303 PAU30302PAU30301
COU303

PAU30405 PAU30406 PAU30407PAU30408

PAU30404 PAU30403 PAU30402PAU30401

COU304

PAU30505 PAU30506 PAU30507PAU30508

PAU30504 PAU30503 PAU30502PAU30501

COU305

PAU30605 PAU30606 PAU30607PAU30608

PAU30604 PAU30603 PAU30602PAU30601

COU306

PAU30705 PAU30706 PAU30707PAU30708

PAU30704 PAU30703 PAU30702PAU30701
COU307

PAU30805 PAU30806 PAU30807PAU30808

PAU30804 PAU30803 PAU30802PAU30801

COU308

PAU401PAU402PAU403PAU404

PAU408PAU407PAU406PAU405

COU4

PAU40201PAU40202PAU40203PAU40204

PAU40208PAU40207PAU40206PAU40205

COU402

PAU40301PAU40302PAU40303PAU40304

PAU40308PAU40307PAU40306PAU40305

COU403

PAU40401PAU40402PAU40403PAU40404

PAU40408PAU40407PAU40406PAU40405

COU404

PAU40501PAU40502PAU40503PAU40504

PAU40508PAU40507PAU40506PAU40505

COU405

PAU40601PAU40602PAU40603PAU40604

PAU40608PAU40607PAU40606PAU40605

COU406

PAU40701PAU40702PAU40703PAU40704

PAU40708PAU40707PAU40706PAU40705

COU407

PAU40801PAU40802PAU40803PAU40804

PAU40808PAU40807PAU40806PAU40805

COU408

PAU501

PAU502
PAU503PAU504

PAU505
COU5

PAU50201

PAU50202

PAU50203PAU50204

PAU50205COU502

PAU50301
PAU50302

PAU50303PAU50304

PAU50305COU503

PAU50401
PAU50402

PAU50403PAU50404

PAU50405COU504

PAU50501

PAU50502
PAU50503PAU50504

PAU50505COU505

PAU50601

PAU50602
PAU50603PAU50604

PAU50605COU506

PAU50701
PAU50702

PAU50703PAU50704

PAU50705COU507

PAU50801
PAU50802

PAU50803PAU50804

PAU50805COU508

PAU601

PAU602

PAU603

PAU604

PAU605

PAU606

PAU607

PAU6014

PAU6013

PAU6012

PAU6011

PAU6010

PAU609

PAU608

COU6

PAU60201

PAU60202

PAU60203

PAU60204

PAU60205

PAU60206

PAU60207

PAU602014

PAU602013

PAU602012

PAU602011

PAU602010

PAU60209

PAU60208

COU602

PAU60301

PAU60302

PAU60303

PAU60304

PAU60305

PAU60306

PAU60307

PAU603014

PAU603013

PAU603012

PAU603011

PAU603010

PAU60309

PAU60308

COU603

PAU60401

PAU60402

PAU60403

PAU60404

PAU60405

PAU60406

PAU60407

PAU604014

PAU604013

PAU604012

PAU604011

PAU604010

PAU60409

PAU60408

COU604

PAU60501

PAU60502

PAU60503

PAU60504

PAU60505

PAU60506

PAU60507

PAU605014

PAU605013

PAU605012

PAU605011

PAU605010

PAU60509

PAU60508

COU605

PAU60601

PAU60602

PAU60603

PAU60604

PAU60605

PAU60606

PAU60607

PAU606014

PAU606013

PAU606012

PAU606011

PAU606010

PAU60609

PAU60608

COU606

PAU60701

PAU60702

PAU60703

PAU60704

PAU60705

PAU60706

PAU60707

PAU607014

PAU607013

PAU607012

PAU607011

PAU607010

PAU60709

PAU60708

COU607

PAU60801

PAU60802

PAU60803

PAU60804

PAU60805

PAU60806

PAU60807

PAU608014

PAU608013

PAU608012

PAU608011

PAU608010

PAU60809

PAU60808

COU608

PAU701

PAU702

PAU703

PAU704

PAU705

PAU706

PAU707

PAU7014

PAU7013

PAU7012

PAU7011

PAU7010

PAU709

PAU708

COU7

PAU70201

PAU70202

PAU70203

PAU70204

PAU70205

PAU70206

PAU70207

PAU702014

PAU702013

PAU702012

PAU702011

PAU702010

PAU70209

PAU70208

COU702

PAU70301

PAU70302

PAU70303

PAU70304

PAU70305

PAU70306

PAU70307

PAU703014

PAU703013

PAU703012

PAU703011

PAU703010

PAU70309

PAU70308

COU703

PAU70401

PAU70402

PAU70403

PAU70404

PAU70405

PAU70406

PAU70407

PAU704014

PAU704013

PAU704012

PAU704011

PAU704010

PAU70409

PAU70408

COU704

PAU70501

PAU70502

PAU70503

PAU70504

PAU70505

PAU70506

PAU70507

PAU705014

PAU705013

PAU705012

PAU705011

PAU705010

PAU70509

PAU70508

COU705

PAU70601

PAU70602

PAU70603

PAU70604

PAU70605

PAU70606

PAU70607

PAU706014

PAU706013

PAU706012

PAU706011

PAU706010

PAU70609

PAU70608

COU706

PAU70701

PAU70702

PAU70703

PAU70704

PAU70705

PAU70706

PAU70707

PAU707014

PAU707013

PAU707012

PAU707011

PAU707010

PAU70709

PAU70708

COU707

PAU70801

PAU70802

PAU70803

PAU70804

PAU70805

PAU70806

PAU70807

PAU708014

PAU708013

PAU708012

PAU708011

PAU708010

PAU70809

PAU70808

COU708

PAC302 PAU104
PAU202

PAU602

PAC30202 PAU10204
PAU20202

PAU60202

PAC30302 PAU10304
PAU20302

PAU60302

PAC30402 PAU10404
PAU20402

PAU60402

PAC30502 PAU10504
PAU20502

PAU60502

PAC30602 PAU10604
PAU20602

PAU60602

PAC30702 PAU10704
PAU20702

PAU60702

PAC30802 PAU10804
PAU20802

PAU60802

PAC102

PAC10202

PAC10302

PAC10402

PAC10502

PAC10602

PAC10702

PAC10802

PAC402

PAC40202

PAC40302

PAC40402

PAC40502

PAC40602

PAC40702

PAC40802

PAC802

PAC80202

PAC80302

PAC80402

PAC80502

PAC80602

PAC80702

PAC80802

PAC902

PAC90202

PAC90302

PAC90402

PAC90502

PAC90602

PAC90702

PAC90802

PAC1302

PAC130202

PAC130302

PAC130402

PAC130502

PAC130602

PAC130702

PAC130802

PAP103

PAT1014

PAU103

PAU10203

PAU10303

PAU10403

PAU10503

PAU10603

PAU10703

PAU10803

PAU207

PAU20207

PAU20307

PAU20407

PAU20507

PAU20607

PAU20707

PAU20807

PAU407

PAU40207

PAU40307

PAU40407

PAU40507

PAU40607

PAU40707

PAU40807

PAU502

PAU50202

PAU50302

PAU50402

PAU50502

PAU50602

PAU50702

PAU50802

PAU6011

PAU602011

PAU603011

PAU604011

PAU605011

PAU606011

PAU607011

PAU608011

PAJ103

PAP101

PAU606

PAU6012

PAU6013

PAJ10203

PAP10201

PAU60206

PAU602012

PAU602013

PAJ10303

PAP10301

PAU60306

PAU603012

PAU603013

PAJ10403

PAP10401

PAU60406

PAU604012

PAU604013

PAJ10503

PAP10501

PAU60506

PAU605012

PAU605013

PAJ10603

PAP10601

PAU60606

PAU606012

PAU606013

PAJ10703

PAP10701

PAU60706

PAU607012

PAU607013

PAJ10803

PAP10801

PAU60806

PAU608012

PAU608013

PAC502PAU205PAU206

PAU307

PAC50202PAU20205PAU20206

PAU30207

PAC50302PAU20305PAU20306

PAU30307

PAC50402PAU20405PAU20406

PAU30407

PAC50502PAU20505PAU20506

PAU30507

PAC50602PAU20605PAU20606

PAU30607

PAC50702PAU20705PAU20706

PAU30707

PAC50802PAU20805PAU20806

PAU30807

PAC201

PAC20201

PAC20301

PAC20401

PAC20501

PAC20601

PAC20701

PAC20801

PAC1001

PAC100201

PAC100301

PAC100401

PAC100501

PAC100601

PAC100701

PAC100801

PAC1101

PAC110201

PAC110301

PAC110401

PAC110501

PAC110601

PAC110701

PAC110801

PAC1201

PAC120201

PAC120301

PAC120401

PAC120501

PAC120601

PAC120701

PAC120801

PAP101

PAT1011

PAU204

PAU20204

PAU20304

PAU20404

PAU20504

PAU20604

PAU20704

PAU20804

PAU404

PAU40204

PAU40304

PAU40404

PAU40504

PAU40604

PAU40704

PAU40804

PAU604

PAU60204

PAU60304

PAU60404

PAU60504

PAU60604

PAU60704

PAU60804

PAJ102

PAP103

PAU609

PAU6010

PAJ10202

PAP10203

PAU60209

PAU602010

PAJ10302

PAP10303

PAU60309

PAU603010

PAJ10402

PAP10403

PAU60409

PAU604010

PAJ10502

PAP10503

PAU60509

PAU605010

PAJ10602

PAP10603

PAU60609

PAU606010

PAJ10702

PAP10703

PAU60709

PAU607010

PAJ10802

PAP10803

PAU60809

PAU608010

PAJ205

PAT103

PAC1402

PAC140202

PAC140302

PAC140402

PAC140502

PAC140602

PAC140702

PAC140802

PAC1702

PAJ202

PAU7014

PAU702014

PAU703014

PAU704014

PAU705014

PAU706014

PAU707014

PAU708014

PAT1016 PAT1023

PAC101

PAC10201

PAC10301

PAC10401

PAC10501

PAC10601

PAC10701

PAC10801

PAC202

PAC20202

PAC20302

PAC20402

PAC20502

PAC20602

PAC20702

PAC20802

PAC301

PAC30201

PAC30301

PAC30401

PAC30501

PAC30601

PAC30701

PAC30801

PAC401

PAC40201

PAC40301

PAC40401

PAC40501

PAC40601

PAC40701

PAC40801

PAC501

PAC50201

PAC50301

PAC50401

PAC50501

PAC50601

PAC50701

PAC50801

PAC601

PAC60201

PAC60301

PAC60401

PAC60501

PAC60601

PAC60701

PAC60801

PAC701

PAC70201

PAC70301

PAC70401

PAC70501

PAC70601

PAC70701

PAC70801

PAC801

PAC80201

PAC80301

PAC80401

PAC80501

PAC80601

PAC80701

PAC80801

PAC901

PAC90201

PAC90301

PAC90401

PAC90501

PAC90601

PAC90701

PAC90801

PAC1002

PAC100202

PAC100302

PAC100402

PAC100502

PAC100602

PAC100702

PAC100802

PAC1102

PAC110202

PAC110302

PAC110402

PAC110502

PAC110602

PAC110702

PAC110802

PAC1202

PAC120202

PAC120302

PAC120402

PAC120502

PAC120602

PAC120702

PAC120802

PAC1301

PAC130201

PAC130301

PAC130401

PAC130501

PAC130601

PAC130701

PAC130801

PAC1401

PAC140201

PAC140301

PAC140401

PAC140501

PAC140601

PAC140701

PAC140801

PAC1701

PAJ101

PAJ10201

PAJ10301

PAJ10401

PAJ10501

PAJ10601

PAJ10701

PAJ10801

PAJ208

PAJ2019 PAJ2020

PAJ2031 PAJ2032

PAJ3011 PAJ3012

PAJ3022

PAJ3031 PAJ3032

PAP102

PAP10202

PAP10302

PAP10402

PAP10502

PAP10602

PAP10702

PAP10802

PAT109

PAU102

PAU10202

PAU10302

PAU10402

PAU10502

PAU10602

PAU10702

PAU10802

PAU201 PAU203

PAU20201 PAU20203

PAU20301 PAU20303

PAU20401 PAU20403

PAU20501 PAU20503

PAU20601 PAU20603

PAU20701 PAU20703

PAU20801 PAU20803

PAU302

PAU30202

PAU30302

PAU30402

PAU30502

PAU30602

PAU30702

PAU30802

PAU403

PAU40203

PAU40303

PAU40403

PAU40503

PAU40603

PAU40703

PAU40803

PAU501

PAU50201

PAU50301

PAU50401

PAU50501

PAU50601

PAU50701

PAU50801

PAU605

PAU608

PAU60205

PAU60208

PAU60305

PAU60308

PAU60405

PAU60408

PAU60505

PAU60508

PAU60605

PAU60608

PAU60705

PAU60708

PAU60805

PAU60808

PAU701

PAU704

PAU707

PAU7010

PAU7012

PAU7013

PAU70201

PAU70204

PAU70207

PAU702010

PAU702012

PAU702013

PAU70301

PAU70304

PAU70307

PAU703010

PAU703012

PAU703013

PAU70401

PAU70404

PAU70407

PAU704010

PAU704012

PAU704013

PAU70501

PAU70504

PAU70507

PAU705010

PAU705012

PAU705013

PAU70601

PAU70604

PAU70607

PAU706010

PAU706012

PAU706013

PAU70701

PAU70704

PAU70707

PAU707010

PAU707012

PAU707013

PAU70801

PAU70804

PAU70807

PAU708010

PAU708012

PAU708013

PAJ403

PAS101

PAT102 PAJ401PARPD102

PAT1022

PAJ207

PAJ2026PAJ2025

PAJ2018

PAJ2024

PAJ3039 PAJ3040

PAJ2037 PAJ2038

PAJ2030

PAJ2039 PAJ2040

PAJ3038PAJ3037

PAJ2036

PAJ3010

PAJ304

PAJ306PAJ305

PAJ3029 PAJ3030

PAJ3036PAJ3035

PAJ3034PAJ3033

PAJ3027 PAJ3028

PAJ3018PAJ3017

PAJ3025 PAJ3026

PAJ3023 PAJ3024

PAJ3016

PAJ3021

PAJ3019 PAJ3020

PAJ2012

PAJ2014PAJ2013

PAJ203 PAJ204

PARPD101

PAS102

PAT101

PAU301 PAU402

PAU308 PAU406

PAU603

PAU6014

PAU30201 PAU40202

PAU30208 PAU40206
PAU60203

PAU602014

PAU30301 PAU40302

PAU30308 PAU40306
PAU60303

PAU603014

PAU30401 PAU40402

PAU30408 PAU40406
PAU60403

PAU604014

PAU30501 PAU40502

PAU30508 PAU40506

PAU60503

PAU605014

PAU30601 PAU40602

PAU30608 PAU40606
PAU60603

PAU606014

PAU30701 PAU40702

PAU30708 PAU40706
PAU60703

PAU607014

PAU30801 PAU40802

PAU30808 PAU40806
PAU60803

PAU608014

PAJ206

PAC602

PAC702
PAU306

PAU503

PAC60202

PAC70202

PAU30206

PAU50203

PAC60302

PAC70302

PAU30306

PAU50303

PAC60402

PAC70402

PAU30406

PAU50403

PAC60502

PAC70502

PAU30506

PAU50503

PAC60602

PAC70602

PAU30606

PAU50603

PAC60702

PAC70702

PAU30706

PAU50703

PAC60802

PAC70802

PAU30806

PAU50803

PAJ209

PAU709

PAJ2015

PAU70209

PAJ2021

PAU70309

PAJ2027

PAU70409

PAJ2033

PAU70509

PAJ301

PAU70609

PAJ307

PAU70709

PAJ3013

PAU70809

PAU303

PAU708

PAU30203

PAU70208

PAU30303

PAU70308

PAU30403

PAU70408

PAU30503

PAU70508

PAU30603

PAU70608

PAU30703
PAU70708

PAU30803

PAU70808

PAJ2010

PAU705

PAJ2016

PAU70205

PAJ2022

PAU70305

PAJ2028

PAU70405

PAJ2034

PAU70505

PAJ302

PAU70605

PAJ308

PAU70705

PAJ3014

PAU70805

PAU304
PAU706

PAU30204
PAU70206

PAU30304
PAU70306

PAU30404
PAU70406

PAU30504
PAU70506

PAU30604
PAU70606

PAU30704
PAU70706

PAU30804
PAU70806

PAJ2011

PAU702

PAJ2017

PAU70202

PAJ2023

PAU70302

PAJ2029

PAU70402

PAJ2035

PAU70502

PAJ303

PAU70602

PAJ309

PAU70702

PAJ3015

PAU70802

PAU305
PAU703

PAU30205
PAU70203

PAU30305
PAU70303

PAU30405
PAU70403

PAU30505
PAU70503

PAU30605
PAU70603

PAU30705
PAU70703

PAU30805
PAU70803

267

PAC1801

PAC1802 COC18

PAC1901PAC1902

COC19

PAC1802

PAC1901

PAC1801

PAC1902

268

Bibliography

[1] H. Doi, M. Goto, T. Kawai, S. Yokokawa, and T. Suzuki, “Advanced power system
analogue simulator,” Power Systems, IEEE Transactions on, vol. 5, no. 3, pp. 962–
968, Aug 1990.

[2] G. Nimmersjo, O. Werner-Erichsen, B. Hillstrom, and G. Rockefeller, “A digitally-
controlled, real-time, analog power-system simulator for closed-loop protective re-
laying testing,” Power Delivery, IEEE Transactions on, vol. 3, no. 1, pp. 138–152,
Jan 1988.

[3] M. Kayal, R. Cherkaoui, I. Nagel, L. Fabre, F. Emery, and B. Rey, “Toward a power
system emulation using analog microelectronics solid state circuits,” in Power Tech,
2007 IEEE Lausanne. IEEE, 2007, pp. 726–730.

[4] E. Kuh and R. Rohrer, “The state-variable approach to network analysis,” Pro-
ceedings of the IEEE, vol. 53, no. 7, pp. 672 – 686, July 1965.

[5] R. Newcomb, Network Theory: the State-space Approach, ser. Network Theory: the
State-space Approach. Librarie universitaire, 1968.

[6] C.-W. Ho, A. E. Ruehli, and P. A. Brennan, “The modified nodal approach to
network analysis,” Circuits and Systems, IEEE Transactions on, vol. 22, no. 6, pp.
504–509, 1975.

[7] A. Willson, I. Circuits, and S. Society, Nonlinear Networks: Theory and Analysis,
ser. IEEE Press selected reprint series. IEEE Press, 1975. [Online]. Available:
https://books.google.be/books?id=kuceAQAAIAAJ

[8] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design. Van
Nostrand Reinhold Company Inc., 1983.

[9] J. Choma, Electrical networks: theory and analysis, ser. A Wiley Interscience
publication. Wiley, 1985. [Online]. Available: http://books.google.be/books?id=
LuZSAAAAMAAJ

[10] L. O. Chua, C. A. Desoer, and E. S. Kuh, Linear and Nonlinear Circuits. McGraw-
Hill Companies, 1987.

[11] G. C. Verghese, M. E. Elbuluk, and J. G. Kassakian, “A general approach to
sampled-data modeling for power electronic circuits,” Power Electronics, IEEE
Transactions on, no. 2, pp. 76–89, 1986.

269

https://books.google.be/books?id=kuceAQAAIAAJ
http://books.google.be/books?id=LuZSAAAAMAAJ
http://books.google.be/books?id=LuZSAAAAMAAJ

[12] P. Pejovic and D. Maksimovic, “A method for fast time-domain simulation of net-
works with switches,” Power Electronics, IEEE Transactions on, vol. 9, no. 4, pp.
449–456, 1994.

[13] C. Hsiao, R. Ridley, H. Naitoh, and F. Lee, “Circuit-oriented discrete-time mod-
eling and simulation for switching converters,” in PESC’87-Annual IEEE Power
Electronics Specialists Conference, vol. 1, 1987, pp. 167–176.

[14] P. O. Lauritzen, “Simulation and modeling for power electronics,” in Computers in
Power Electronics, 1988., IEEE Workshop on. IEEE, 1988, pp. 37–42.

[15] L. W. Nagel and D. Pederson, “Spice (simulation program with integrated circuit
emphasis),” EECS Department, University of California, Berkeley, Tech. Rep.
UCB/ERL M382, Apr 1973. [Online]. Available: http://www.eecs.berkeley.edu/
Pubs/TechRpts/1973/22871.html

[16] J. H. Allmeling and W. P. Hammer, “Plecs - piece-wise linear electrical circuit sim-
ulation for simulink,” in IEEE 1999 International Conference on Power Electronics
and Drive Systems. PEDS, 1999.

[17] R. Kuffel, J. Giesbrecht, T. Maguire, R. Wierckx, and P. McLaren, “Rtds-a fully
digital power system simulator operating in real time,” in WESCANEX 95. Com-
munications, Power, and Computing. Conference Proceedings., IEEE, vol. 2, 1995,
pp. 300–305 vol.2.

[18] J. B. Simon Abourida, Christian Dufour, “Real-time and hardware-in-the-loop sim-
ulation of electric drives and power electronics: Process, problems and solutions,”
in The 2005 Power Electronics Conference, 2005.

[19] C. Dufour, S. Cense, and J. Belanger, “Fpga-based switched reluctance motor drive
and dc-dc converter models for high-bandwidth hil real-time simulator,” in Power
Electronics and Applications (EPE), 2013 15th European Conference on, Sept 2013,
pp. 1–8.

[20] M. Matar and R. Iravani, “Fpga implementation of the power electronic con-
verter model for real-time simulation of electromagnetic transients,” Power De-
livery, IEEE Transactions on, vol. 25, no. 2, pp. 852 –860, 4 2010.

[21] A. Myaing and V. Dinavahi, “Fpga-based real-time emulation of power electronic
systems with detailed representation of device characteristics,” in Power and Energy
Society General Meeting, 2011 IEEE, 2011, pp. 1–11.

[22] H. Blanchette, T. Ould-Bachir, and J.-P. David, “A state-space modeling approach
for the fpga-based real-time simulation of high switching frequency power convert-
ers,” Industrial Electronics, IEEE Transactions on, vol. 59, no. 12, pp. 4555–4567,
2012.

[23] T. OuldBachir, H. Blanchette, and K. Al-Haddad, “A network tearing technique for
fpga-based real-time simulation of power converters,” Industrial Electronics, IEEE
Transactions on, vol. 62, no. 99, pp. 1–1, 2014.

270

http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1973/22871.html

[24] C. Dufour, J. Mahseredjian, and J. Belanger, “A combined state-space nodal
method for the simulation of power system transients,” Power Delivery, IEEE
Transactions on, vol. 26, no. 2, pp. 928–935, 2011.

[25] SIMetrix, “How spice works,” SIMetrix, Tech. Rep., 2003.

[26] Electromagnetic Transient Program (EMTP) Rule Book.

[27] D. Par, G. Turmel, J.-C. Soumagne, V. Q. Do, S. Casorie, M. Bissonnette, B. Mar-
coux, and D. McNabb, “Validation tests of the hypersim digital real time simulator
with a large ac-dc network,” in International Conference on Power Systems Tran-
sients - IPST 2003 in New Orleans, USA, 2003.

[28] A. I. Zecevic, “Fundamentals of computer-aided circuit simulation,” lecture Notes.

[29] L. Zadeh and C. Desoer, Linear system theory: the state space approach, ser.
McGraw-Hill series in system science. McGraw-Hill, 1963.

[30] S. Natarajan, “A systematic method for obtaining state equations using mna,”
Circuits, Devices and Systems, IEE Proceedings G, vol. 138, no. 3, pp. 341–346,
1991.

[31] Y. Kang, “Systematic method for obtaining state-space representation of nonlinear
dynamic circuits using mna,” Electronics Letters, vol. 28, no. 21, pp. 2028–2030,
1992.

[32] E. Hairer, S. P. Nrsett, and G. Wanner, Solving Ordinary Differential Equations I:
Nonstiff Problems, 2nd ed., ser. Springer series in computational mathematics 8,
14. Berlin ; New York: Springer-Verlag, 1993, 93007847 E. Hairer, S.P. Nrsett,
G. Wanner. ill. ; 25 cm. Vol. 2 by E. Hairer, G. Wanner. Includes bibliographical
references and indexes. 1. Nonstiff problems – 2. Stiff and differential-algebraic
problems.

[33] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems (Springer Series in Computational Mathematics).
Springer, 2004.

[34] L. T. Biegler, “Differential-algebraic equations (daes),” lecture Notes.

[35] A. Sedra and K. Smith, Microelectronic Circuits, ser. Microelectronic Circuits. Ox-
ford University Press, 1998, no. vol. 1.

[36] D. Bedrosian and J. Vlach, “Time-domain analysis of networks with internally con-
trolled switches,” Circuits and Systems I: Fundamental Theory and Applications,
IEEE Transactions on, vol. 39, no. 3, pp. 199 –212, mar 1992.

[37] A. Massarini and U. Reggiani, “Computer-aided time-domain large-signal analysis
of networks with switches,” in Industrial Electronics, 1996. ISIE ’96., Proceedings
of the IEEE International Symposium on, vol. 2, jun 1996, pp. 567 –572 vol.2.

271

[38] A. Massarini, U. Reggiani, and M. Kazimierczuk, “Analysis of networks with ideal
switches by state equations,” Circuits and Systems I: Fundamental Theory and
Applications, IEEE Transactions on, vol. 44, pp. 692 – 697, 1997.

[39] P. Pejovic and D. Maksimovic, “A new algorithm for simulation of power electronic
systems using piecewise-linear device models,” Power Electronics, IEEE Transac-
tions on, vol. 10, no. 3, pp. 340–348, 1995.

[40] D. Majstorovic, I. Celanovic, N. Teslic, N. Celanovic, and V. Katic, “Ultralow-
latency hardware-in-the-loop platform for rapid validation of power electronics de-
signs,” Industrial Electronics, IEEE Transactions on, vol. 58, no. 10, pp. 4708–4716,
2011.

[41] M. Matar and R. Iravani, “The reconfigurable-hardware real-time and faster-than-
real-time simulator for the analysis of electromagnetic transients in power systems,”
Power Delivery, IEEE Transactions on, vol. PP, no. 99, p. 1, 2012.

[42] T. Kato, K. Inoue, T. Fukutani, and Y. Kanda, “Multirate analysis method for a
power electronic system by circuit partitioning,” Power Electronics, IEEE Trans-
actions on, vol. 24, no. 12, pp. 2791–2802, 2009.

[43] M. Dagbagi, L. Idkhajine, E. Monmasson, and I. Slama-Belkhodja, “Fpga imple-
mentation of power electronic converter real-time model,” in Power Electronics,
Electrical Drives, Automation and Motion (SPEEDAM), 2012 International Sym-
posium on, 2012, pp. 658–663.

[44] Xilinx, “7 series fpgas overview,” July 2013.

[45] G. semiconductors, S300Y thru S300YR Silicon Standard Recovery Diode, Genesic
semiconductors.

[46] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters,
Applications, and Design. Wiley, 2002.

[47] R. Burkel and T. Schneider, Fast Recovery Epitaxial Diodes (FRED) Characteristics
- Applications - Examples, Ixys, 1999, iXAN0044.

[48] NXP, Ultrafast power diode, NXP Semiconductors, 1 2014.

[49] P. O. Lauritzen and C. Ma, “A simple diode model with reverse recovery,” Power
Electronics, IEEE Transactions on, vol. 6, no. 2, pp. 188–191, Apr 1991.

[50] N. Krihely and S. Ben-Yaakov, “Modeling and evaluation of diode reverse recovery
in discrete-transition simulators,” in Energy Conversion Congress and Exposition
(ECCE), 2010 IEEE, Sept 2010, pp. 4514–4520.

[51] A. Dastfan, “A new macro-model for power diodes reverse recovery,” in Proceedings
of the 7th WSEAS International Conference on Power Systems, 2007.

[52] C. Blake and C. Bull, IGBT or MOSFET: Choose Wisely, International Rectifier.

272

[53] F. de Leon and J. Martinez, “Dual three-winding transformer equivalent circuit
matching leakage measurements,” Power Delivery, IEEE Transactions on, vol. 24,
no. 1, pp. 160–168, Jan 2009.

[54] E. Delaleau, J.-P. Louis, and R. Ortega, “Modeling and control of induction mo-
tors,” 2001.

[55] J. Lygeros, “Lecture notes on hybrid systems,” department of Electrical and Com-
puter Engineering.

[56] G. Samad, T. ; Balas, Software-Enabled Control:Information Technology for Dy-
namical Systems. Wiley-IEEE Press, 2003, ch. Hybrid Systems: Review and
Recent Progress, pp. 273 – 298.

[57] M. Senesky, G. Eirea, and T. Koo, “Hybrid modelling and control of
power electronics,” in Hybrid Systems: Computation and Control, ser.
Lecture Notes in Computer Science, O. Maler and A. Pnueli, Eds. Springer
Berlin Heidelberg, 2003, vol. 2623, pp. 450–465. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-36580-X 33

[58] T. Geyer, G. Papafotiou, and M. Morari, “Model predictive control in power elec-
tronics: A hybrid systems approach,” in Decision and Control, 2005 and 2005 Eu-
ropean Control Conference. CDC-ECC ’05. 44th IEEE Conference on, Dec 2005,
pp. 5606–5611.

[59] M. Mirzaei and A. A. Afzalian, “Hybrid modelling and control of a synchronous
dc-dc converter,” International Journal of Power Electronics, vol. 1, no. 4, pp.
414–433, 2009.

[60] S. Mariethoz, S. Almer, M. Baja, A. Beccuti, D. Patino, A. Wernrud, J. Buisson,
H. Cormerais, T. Geyer, H. Fujioka, U. Jonsson, C.-Y. Kao, M. Morari, G. Papafo-
tiou, A. Rantzer, and P. Riedinger, “Comparison of hybrid control techniques for
buck and boost dc-dc converters,” Control Systems Technology, IEEE Transactions
on, vol. 18, no. 5, pp. 1126–1145, Sept 2010.

[61] M. Kinsy, O. Khan, I. Celanovic, D. Majstorovic, N. Celanovic, and S. Devadas,
“Time-predictable computer architecture for cyber-physical systems: Digital em-
ulation of power electronics systems,” in Real-Time Systems Symposium (RTSS),
2011 IEEE 32nd, 29 2011-dec. 2 2011, pp. 305 –316.

[62] M. A. Kinsy, I. Celanovic, O. Khan, and S. Devadas, “Martha: Architecture for
control and emulation of power electronics and smart grid systems,” in Design,
Automation Test in Europe Conference Exhibition (DATE), 2013, March 2013, pp.
519–524.

[63] J. Lygeros, C. Tomlin, and S. Sastry, “Hybrid systems: Modeling, analysis and
control,” December 2008, draft.

273

http://dx.doi.org/10.1007/3-540-36580-X_33
http://dx.doi.org/10.1007/3-540-36580-X_33

[64] M. Vekic, S. Grabic, D. Majstorovic, I. Celanovic, N. Celanovic, and V. Katic,
“Ultralow latency hil platform for rapid development of complex power electronics
systems,” Power Electronics, IEEE Transactions on, vol. 27, no. 11, pp. 4436–4444,
2012.

[65] P. Raoji, D. Reilly, and R. Adair, “Design review: 150 watt current-mode flyback,”
tech Report by Unitrode.

[66] D. Murthy-Bellur and M. K. Kazimierczuk, “Two-switch flyback pwm dcdc
converter in discontinuous-conduction mode,” International Journal of Circuit
Theory and Applications, vol. 39, no. 8, pp. 849–864, 2011. [Online]. Available:
http://dx.doi.org/10.1002/cta.672

[67] K. De Cuyper, M. Osee, F. Robert, and P. Mathys, “A digital platform for real-time
simulation of power converters with high switching frequency,” in Power Electronics
and Applications (EPE 2011), Proceedings of the 2011-14th European Conference
on, 30 2011-sept. 1 2011, pp. 1 –10.

[68] ——, “A fast, state-graph-based diode switching algorithm for real-time power
converter emulators,” in Control and Modeling for Power Electronics (COMPEL),
2012 IEEE 13th Workshop on, 2012, pp. 1–7.

[69] A. D. Pathak, “mosfet/igbt drivers theory and applications,” IXYS, Tech. Rep.,
2001.

[70] B. Neidorff, “New integrated circuit produces robust, noise immune system for
brushless dc motors,” Unitrode, Tech. Rep., 2008.

[71] P. Santesso and M. Valcher, “Reachability properties of discrete-time positive
switched systems,” in Decision and Control, 2006 45th IEEE Conference on, Dec
2006, pp. 4087–4092.

[72] C. Le Guernic, “Calcul datteignabilite des systemes hybrides a partie continue
lineaire,” Ph.D. dissertation, Universit Joseph Fourier, 2009.

[73] S. Vestal, “A new linear hybrid automata reachability procedure.”

[74] J. Hefferon, Linear Algebra, ser. VCU mathematics textbook series. Department
of Mathematics & Applied Mathematics/Virginia Commonwealth University, 2009.
[Online]. Available: http://books.google.be/books?id=UtdGPwAACAAJ

[75] E. Dijkstra, “A note on two problems in connexion with graphs,” Numerische
Mathematik, vol. 1, no. 1, pp. 269–271, 1959. [Online]. Available: http:
//dx.doi.org/10.1007/BF01386390

[76] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, ser.
Springer Monographs in Mathematics. Springer, 2009.

[77] J. Y. Yen, “An algorithm for finding shortest routes from all source nodes to a given
destination in general networks,” Quart. Applied Math, vol. 27, pp. 526–530, 1970.

274

http://dx.doi.org/10.1002/cta.672
http://books.google.be/books?id=UtdGPwAACAAJ
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1007/BF01386390

[78] N. Femia and M. Vitelli, “Time-domain analysis of switching converters based
on a discrete-time transition model of the spectral coefficients of state variables,”
Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions
on, vol. 50, no. 11, pp. 1447–1460, Nov 2003.

[79] I. Rectifier, IRFH8303PbF - HEXFET Power MOSFET, International Rectifier, 10
2013.

[80] M. Frisch, Advantages of NPC Inverter Topologies with Power Modules, Vincotech,
July 2009.

[81] B. Velaerts, P. Mathys, E. Tatakis, and G. Bingen, “A novel approach to the
generation and optimization of three-level pwm wave forms for induction motor
inverters,” in Power Electronics Specialists Conference, 1988. PESC ’88 Record.,
19th Annual IEEE, April 1988, pp. 1255–1262 vol.2.

[82] T. Kato, “Multi-rate transient analysis of power electronic circuits by the envelope-
following method with sensitivities of switch timings,” in Power Electronics Special-
ists Conference, PESC ’94 Record., 25th Annual IEEE, Jun 1994, pp. 1277–1281
vol.2.

[83] T. Kato, K. Inoue, Y. Kotani, and T. Ogawa, “Generalization of parallel analysis
for a power electronic system by circuit partitioning,” in Control and Modeling for
Power Electronics (COMPEL), 2013 IEEE 14th Workshop on, June 2013, pp. 1–7.

[84] H.-J. Wu and W.-S. Feng, “Efficient simulation of switched networks using reduced
unification matrix,” Power Electronics, IEEE Transactions on, vol. 14, no. 3, pp.
481–494, May 1999.

[85] S. Hui, K. K. Fung, and C. Christopoulos, “Decoupled simulation of dc-linked
power electronic systems using transmission-line links,” Power Electronics, IEEE
Transactions on, vol. 9, no. 1, pp. 85–91, Jan 1994.

[86] S. Hui and K. K. Fung, “Fast decoupled simulation of large power electronic systems
using new two-port companion link models,” Power Electronics, IEEE Transactions
on, vol. 12, no. 3, pp. 462–473, May 1997.

[87] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of Dynamic Sys-
tems, 3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1997.

[88] M. Aguirre, L. Calvino, and M. Valla, “Multilevel current-source inverter with fpga
control,” Industrial Electronics, IEEE Transactions on, vol. 60, no. 1, pp. 3–10,
Jan 2013.

[89] J. Liang, A. Nami, F. Dijkhuizen, P. Tenca, and J. Sastry, “Current source modular
multilevel converter for hvdc and facts,” in Power Electronics and Applications
(EPE), 2013 15th European Conference on, Sept 2013, pp. 1–10.

[90] N. Intruments, “Fpga fundamentals,” 2003.

275

[91] Xilinx, Floating-Point Operator v5.0, 2009.

[92] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna, “Analysis of high-performance
floating-point arithmetic on fpgas,” in Parallel and Distributed Processing Sympo-
sium, 2004. Proceedings. 18th International. IEEE, 2004, p. 149.

[93] Altera. (2014, 08) The industrys first floating-point fpga.

[94] Xilinx, Xilinx UG389 Spartan-6 FPGA DSP48A1 Slice, User Guide, 2009.

[95] ——, XtremeDSP for Virtex-4 FPGAs, may 2008.

[96] ——, Xilinx DS717 Multiply Adder v2.0, 2009.

[97] J. Hayes, Introduction to Digital Logic Design. Addison-Wesley, 1993.

[98] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and G. D. Hachtel,
Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA, USA: Kluwer
Academic Publishers, 1984.

[99] M. Faruque, V. Dinavahi, and W. Xu, “Algorithms for the accounting of multiple
switching events in digital simulation of power-electronic systems,” Power Delivery,
IEEE Transactions on, vol. 20, no. 2, pp. 1157–1167, 2005.

[100] J. E. Volder, “The cordic trigonometric computing technique,” Electronic Comput-
ers, IRE Transactions on, vol. EC-8, no. 3, pp. 330–334, Sept 1959.

[101] Plecs, PLECS user manual, 3rd ed., Plecs gmbh, 2014.

276

	Introduction
	Context
	Why this work
	Structure of the work
	Problem analysis and Requirements

	Circuit modeling
	Introduction
	Linear circuits
	Introduction
	The (Modified) Nodal Analysis
	The state-space analysis

	Power Converter Modeling
	Introduction
	The binary switch
	The open/short circuit model
	The bi-valued resistor
	The controlled source switch
	Comparison and algorithm selection

	Advanced device modeling
	Diode models
	MOS transistor models
	Bipolar transistors and IGBT models
	Thyristor models
	Magnetically coupled circuits
	Electromechanical devices

	Transitional model of power converters using hybrid automata
	Hybrid automata definition
	Circuit without discrete inputs
	Circuit with discrete inputs

	Simulating the power converter
	Introduction
	Structure selection
	The natural switching module
	Forced switching module
	Where to go next

	Conclusions

	Automated circuit analysis and reduction
	Introduction
	The need for automated tools
	Real-time/Offline separation

	Hybrid automaton derivation
	Graph separation
	Drawing the transition graphs

	Automated Natural switching exploration and optimization
	The need for an automated analysis tool
	The reachability problem
	A method for detecting unstable topologies
	Unreachable topologies
	Graph exploration and simplification
	Writing the results in tables

	Automated Forced switching exploration and optimization
	Introduction
	Analysis
	Writing the results in tables

	Test Cases
	Introduction
	The ideal boost converter
	More detailed boost converter implementation
	The two-stage AC/DC converter
	Practical implementation of the two-stage AC/DC converter
	The diode clamped single phase, three-level inverter
	The Three-phase NPC converter
	Comparison with solvers based on nodal analysis

	Known limitations
	Limitations on the size of the data set
	Limitations on the size of the output

	Possible improvements and future works
	Conclusions

	Modeling larger circuits by circuit partitioning
	Introduction
	Converters operating in discontinuous conduction mode
	Using topology-dependent sources

	Generalizing the results to any converter
	Choosing the partitions
	Analyzing the partitioned circuit

	Test cases
	Introduction
	Parallel boost converters
	Three-phase inverter
	Current source inverter
	Three-Phases Neutral Point Clamped Inverter
	Other circuits

	Perspectives and conclusions

	Real-Time platform development
	Introduction
	Goals and requirements
	Structure of the platform
	Selection of the processing unit
	Challenges

	Emulation procedure
	Structure comparison

	Fundamental modules
	Data representation
	Dot products
	Multipliers optimization
	Selection tables

	High level modules
	Introduction
	Linear Solver and output solver
	Natural Switching module
	Forced Switching Module
	Outputs interfacing
	Input Interfacing
	Source code generation

	Tests and validations
	Validation procedure
	Platform description
	Algorithm validation : the boost converter used in open loop
	Boost converter in closed loop
	Implementation of a two-stage, three-phase AC-DC-AC converter
	Results analysis
	Conclusions

	Possible improvements
	Performance and accuracy improvement
	Additional features

	Conclusions on the real-time platform

	Conclusions
	Schematics of the Digital-to-analog board

