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Abstract

This article extends linear quantile regression to an elliptical multiple-output

regression setup. The definition of the proposed concept leads to a convex

optimization problem. Its elementary properties, and the consistency of its

sample counterpart, are investigated. An empirical application is provided.
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1. Introduction1

Due to their close relation to location and scatter, and their central role2

in the geometry of Gaussian and elliptical distributions, ellipsoids and the re-3

lated Mahalanobis distances are quite logical tools for the statistical analysis4

of multivariate data. Quite naturally, thus, ellipsoids have been considered5

in the definition of multivariate quantiles and related concepts.6
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A definition of elliptical multivariate quantiles has been proposed by Hlu-7

binka and Šiman (2013), which leads to a convex optimization problem, hence8

to a unique solution. That concept essentially deals with location, although9

its weighted version, based on covariate-driven weights, allows, in the pres-10

ence of covariates, for a local constant regression extension. In the location11

case (when no covariates are available), Hlubinka and Šiman (2015) consider12

a more general nonlinear definition, leading to non-convex optimization. The13

uniqueness of the resulting quantile, therefore, is problematic.14

This paper, inspired by Koenker and Bassett (1978), presents a linear15

multiple-output quantile regression extension of Hlubinka and Šiman (2013)16

and shows that it leads to a convex optimization problem with a uniquely de-17

fined solution for all multivariate continuous distributions with finite second-18

order moments and connected support, including those with multimodal den-19

sities that often arise in the context of mixtures (see, e.g., Došlá (2009)).20

Section 2 presents the new concept, Sections 3 and 4 investigate its main21

properties in the population case and in the sample case, and Section 5 briefly22

illustrates it with a real data application.23

2. Definition24

Let τ ∈ (0, 1) and consider an m-dimensional response vector Y associ-25

ated with a (p+ 1)-dimensional vector of regressors (1,Z ′)′. Throughout, it26

is assumed that the joint distribution of (Y ′,Z ′)′ is absolutely continuous,27

with connected support and finite second-order moments.28

In the location case (when p = 0), Hlubinka and Šiman (2013) define the
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multivariate (location) elliptical τ -quantile as the ellipsoid

εloc
τ = εloc

τ (Y ) := {y ∈ Rm : y′Aτy + y′bτ − cτ = 0},

where Aτ ∈ Rm×m, bτ ∈ Rm×1, and cτ > 0 minimize, subject to A being

symmetric and positive semidefinite with determinant one (A is thus a shape

matrix in the sense of Paindaveine (2008)), the objective function

Ψloc
τ (A, b, c) := E ρτ (Y

′AY + Y ′b− c)

with the usual check function ρτ (x) := x(τ − I(x < 0)) = max{(τ − 1)x, τx}.29

The positive semidefiniteness of A and the condition on its determinant30

ensure that εloc
τ is indeed an ellipsoid, centered at sτ := −A−1

τ bτ/2, with31

equation (y − sτ )′Aτ (y − sτ ) = κτ , where κτ := cτ + b′τA−1
τ bτ/4. The condi-32

tion det(A) = 1 can be viewed as an identification constraint: for any K > 0,33

the triples (A, b, c) and (KA, Kb, Kc) indeed define the same ellipsoid.34

The same definition can be reformulated as a convex optimization prob-35

lem by relaxing the constraint det(A) = 1 into (det(A))1/m ≥ 1: the func-36

tion A 7→ (det(A))1/m, unlike A 7→ det(A), is concave on the cone of sym-37

metric positive semidefinite matrices (see, e.g., Šilhavý (2015)), and the fact38

that Ψloc
τ (KA, Kb, Kc) = KΨloc

τ (A, b, c) for any K > 0 implies that the39

optimal Aτ is such that (det(Aτ ))
1/m = det(Aτ ) = 1 (see Section 2 of Hlu-40

binka and Šiman (2013), where alternative identification constraints are also41

discussed).42

In the presence of covariates (that is, when p ≥ 1), the traditional ho-

moscedastic multiple-output linear regression model suggests, for an elliptical

multiple-output regression τ -quantile, a simple equation of the form

(y − β − Bz)′Aτ (y − β − Bz)− γ = 0
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with some A ∈ Rm×m, β ∈ Rm×1, B ∈ Rm×p, and γ > 0. The trouble is that

the corresponding objective function

E ρτ
(
(Y − β − BZ)′A(Y − β − BZ)− γ

)
is not convex in β and B, so that its minimization with respect to A, β,43

B, and γ is not a convex optimization problem. And the same could be said44

even if γ were an affine linear function of z.45

In order to restore convexity, consider instead the more general definition

εreg
τ :={(y′, z′)′ ∈ Rm+p : (y−βτ−Bτz)′Aτ (y−βτ−Bτz)−(γτ+c

′
τz+z′Cz) = 0}

(1)

of an elliptical regression quantile εreg
τ = εreg

τ (Y ,Z), where a quadratic form

of covariate-driven scale is allowed, and Aτ ,βτ ,Bτ , γτ , cτ , and Cτ jointly

minimize

Ψreg
τ := E ρτ

(
(y − β − Bz)′A(y − β − Bz)− (γ + c′z + z′Cz)

)
under the constraint that C ∈ Rp×p is symmetric and A ∈ Rm×m is symmetric46

positive semidefinite with det(A) = 1. This minimization, however, still does47

not take the form of a convex optimization problem.48

Let therefore M := (M1, . . . , M6), with M1 := A ∈ Rm×m symmetric pos-49

itive semidefinite, M2 := B′AB−C ∈ Rp×p symmetric, M3 := −2B′A ∈ Rp×m,50

M4 :=−2β′A ∈ R1×m, M5 := 2β′AB − c′ ∈ R1×p, and M6 :=β′Aβ− γ ∈ R.51

The correspondence between M and (A, β, B, γ, c, C) is one-to-one, with52

A = M1, β = −1
2
M1−1M4′, B = −1

2
M1−1M3′, γ = 1

4
M4M1−1M4′ − M6,53

c = 1
2
M3M1−1M4′−M5′, and C = 1

4
M3M1−1M3′ −M2: M thus provides a54

reparametrization of the problem.55
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In this new parametrization, the elliptical regression quantile εreg
τ can be

expressed as

εreg
τ = {(y′, z′)′ ∈ Rm+p : r(y, z,Mτ ) = 0}

where56

r(y, z,M) := y′M1y + z′M2z + z′M3y + M4y + M5z + M6

= (y − β − Bz)′A(y − β − Bz)− (γ + c′z + z′Cz),

and Mτ := (M1
τ , . . . ,M6

τ ) jointly minimize

Ψreg
τ = Ψreg

τ (M) := Ψreg
τ (M1, . . . ,M6) = E ρτ

(
r(Y ,Z,M)

)
,

subject to (det(M1))1/m ≥ 1. As in the location case, positive homogeneity57

of Ψreg
τ (M1, . . . ,M6) implies det(Mτ ) = 1. The considerable advantage of58

the parametrization in terms of M is that it leads to a convex optimization59

problem, hence to a unique minimum under the assumptions made.60

In principle, one might place further convex constraints on the parame-61

ters M1, . . . , M6 in order to simplify the model, such as62

M3 = 0 ⇐⇒ B = 0,

M2 = 0 and M3 = 0 ⇐⇒ B = 0 and C = 0,

M3 = 0 and M5 = 0 ⇐⇒ B = 0 and c = 0,

M2 = 0, M3 = 0, and M5 = 0 ⇐⇒ B = 0, C = 0, and c = 0;

the resulting optimization problems still are convex, hence also lead to uniquely63

defined elliptical regression quantiles. In particular, the last set of constraints64

corresponds to the location elliptical quantiles of Hlubinka and Šiman (2013)65

which, therefore, are included as a special case. Other natural constraints66
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such as C = 0 and c = 0, however, cannot be expressed by means of convex67

constraints on M1, . . . , M6. More general yet natural parametric forms of68

heteroskedasticity, also involving covariate-driven shape matrices, unfortu-69

nately, seem impossible within the convex optimization framework.70

Finally, it is worth pointing out that M1
τ , . . . ,M6

τ , Aτ , βτ , Bτ , γτ , cτ , Cτ ,71

and Ψreg
τ (Mτ ), but also the Lagrange multipliers associated with possible ad-72

ditional constraints, are potentially useful for statistical inference, especially73

when considered as τ -indexed processes.74

3. Main properties: population case75

As in Hlubinka and Šiman (2013), the (Karush-)Kuhn-Tucker necessary76

and sufficient conditions characterizing the elliptical regression τ -quantile77

translate to78

1 = det(M1
τ ), (2)

0 =P(r < 0)− τ, (3)

0 =
1

1− τ
E[Y I[r≥0]]−

1

τ
E
[
Y I[r<0]

]
, (4)

0 =
1

1− τ
E[Z I[r≥0]]−

1

τ
E
[
Z I[r<0]

]
, (5)

0 =
1

1− τ
E[ZY ′ I[r≥0]]−

1

τ
E
[
ZY ′ I[r<0]

]
, (6)

0 =
1

1− τ
E[ZZ ′ I[r≥0]]−

1

τ
E
[
ZZ ′ I[r<0]

]
, (7)

79

and

Lτ
mτ(1− τ)

det(M1
τ )

1/mM1
τ
−1

=
1

1− τ
E[Y Y ′ I[r≥0]]−

1

τ
E
[
Y Y ′ I[r<0]

]
, (8)

where r = r(Y ,Z,Mτ ) and Lτ is the Lagrange multiplier associated with the80

determinant-based constraint (det(M1))1/m ≥ 1 (recall that M1 is assumed81
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symmetric positive semidefinite and M2 symmetric). Proceeding along the82

same line as in Hlubinka and Šiman (2013), one easily obtains that Lτ > 083

(which is why (2) states det(M1
τ ) = 1) and Lτ = Ψreg

τ (Mτ ). Therefore, the84

Lagrange multiplier Lτ does not only measure the impact of the determinant-85

based constraint, but also equals the minimal value achieved by the objective86

function.87

Conditions (2)–(8) are easy to interpret: (2) only scales the problem; (3)

provides εreg
τ with a clear probability interpretation, namely, that its proba-

bility content is τ ; (4) and (5) further imply that

E[(Y ′,Z ′)′|r ≥ 0] = E[(Y ′,Z ′)′|r < 0],

so that the probability mass centers of the interior of εreg
τ and the exterior

of εreg
τ coincide; conditions (6)–(8) yield Lτ

1
mτ(1−τ)M

1
τ
−1

0

0 0

 = var
(
(Y ′,Z ′)′|r ≥ 0

)
− var

(
(Y ′,Z ′)′|r < 0

)
,

which relates (M1
τ )
−1 to the difference between the “inner” and “outer” (con-88

ditional) variances. Due to an unfortunate typo, the same formula for the89

location case is repeatedly stated without the τ(1−τ) factor in Hlubinka and90

Šiman (2013), namely in Part [4] of Theorem 2 and in the text preceding it.91

It is easy to see that the elliptical regression quantiles εreg
τ are both92

regression-equivariant and fully affine-equivariant: if f ∈ Rm×1, F ∈ Rm×m,93

G ∈ Rm×p, H ∈ Rp×p, d = det(F), and εreg
τ (Y ,Z) of (1) leads to quantile94

coefficients Aτ , βτ , Bτ , γτ , cτ , and Cτ , then εreg
τ (Y +f+GZ,Z) leads to Aτ ,95

βτ +f , Bτ +G, γτ , cτ , and Cτ , and εreg
τ (f+FY ,HZ) leads to d2(F−1)′AτF−1,96

βτ + f , BτH−1, d2γτ , d
2(H−1)′cτ , and d2(H−1)′CτH−1.97
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In certain cases, the quantile cuts εreg
τ (Y , z0), z0 ∈ Rp, coincide with the98

conditional quantiles or at least preserve the center, axes, and hyperplanes of99

symmetry of the conditional distribution. The details will be provided and100

proved in a more general context elsewhere.101

4. Main properties: sample case102

In the sample case with n observations (Y ′i,Z
′
i)
′ , i = 1, . . . , n, empiri-

cal versions εreg
τ ;n of the elliptical regression quantiles εreg

τ can be defined by

considering expectations with respect to empirical distributions. It makes

sense, however, to consider here a slightly more general weighted setup with

a positive weight wi associated with the ith observation, i = 1, . . . , n. Those

weights can be useful for implementing bootstrap or for handling ties. The

weighted optimization problem may then be rewritten as

min
M1, ..., M6, r+, r−

Ψreg
τ ;n(M) :=

n∑
i=1

τwir
+
i +

n∑
i=1

(1− τ)wir
−
i

subject to the (differentiable) feasibility constraints

− det(M1)1/m + 1 ≤ 0, −r+
i ≤ 0 and − r−i ≤ 0, i = 1, . . . , n, (9)

r(Y i,Zi,M)− r+
i + r−i = 0, i = 1, . . . , n, (10)

M1 is a symmetric positive semidefinite matrix, (11)

M2 is a symmetric matrix, (12)

where r+
i and r−i are the positive and negative parts of the residual ri =103

r+
i − r−i := r(Y i,Zi,M), i = 1, . . . , n.104

As in Hlubinka and Šiman (2013), one can invoke the theory of convex105

optimization as exposed in Boyd and Vandenberghe (2004), check the re-106

fined Slater’s constraint qualification, and apply the (Karush-)Kuhn-Tucker107
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conditions. The matrices M1
τ ;n, . . . ,M6

τ ;n thus solve the sample elliptical τ -108

quantile optimization problem if and only if there exist r+
i ≥ 0 and r−i ≥ 0,109

i = 1, . . . , n, and dual variables L ≥ 0, λ+
i ≥ 0, λ−i ≥ 0, and νi, i = 1, . . . , n,110

such that111

the constraints (9)–(12) are satisfied for M1
τ ;n, . . . ,M6

τ ;n, (13)

L(− det(M1
τ ;n)1/m + 1) = 0, (14)

λ+
i r

+
i = 0 and λ−i r

−
i = 0, i = 1, . . . , n, (15)

wiτ − λ+
i − νi = 0 and wi(1− τ)− λ−i + νi = 0, i = 1, . . . , n, (16)

n∑
i=1

νi = 0,
n∑
i=1

νiZi = 0, and
n∑
i=1

νiY i = 0, (17)

n∑
i=1

νiZiY
′
i = 0,

n∑
i=1

νiZiZ
′
i = 0, and (18)

n∑
i=1

νiY iY
′
i =

L

m
det(M1

τ ;n)1/m(M1
τ ;n)

−1
. (19)

This implies λ+
i = 0 and νi = wiτ for r+

i > 0, λ−i = 0 and νi = wi(τ − 1)

for r−i > 0, and wi(τ − 1) ≤ νi ≤ wiτ for ri = 0. Furthermore,

n∑
i=1

wi I[ri<0] ≤ nτ ≤
n∑
i=1

wi I[ri≤0] .

Up to the small deviations caused by the data points with zero residuals, the112

necessary and sufficient conditions (13)–(19) roughly can be interpreted as113

the sample counterparts of the population conditions (2)–(8).114

The strong duality theorem for convex optimization implies that, for the
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optimal solution Mτ ;n := (M1
τ ;n, . . . ,M6

τ ;n),

Ψreg
τ ;n(Mτ ;n) =τ

∑
wir

+
i + (1− τ)

∑
wir

−
i +

∑
λi(−r+

i ) +
∑

λi(−r−i )

+ L(− det(M1
τ ;n)1/m + 1) +

∑
νi(r(Y i,Zi,Mτ ;n)− r+

i + r−i )

=
∑

r+
i (wiτ − λi − νi) +

∑
r−i (wi(1− τ)− λi + νi) + 0

+ M6
τ ;n(
∑

νi) + M5
τ ;n(
∑

νiZi) + M4
τ ;n(
∑

νiY i)

+ tr(M3
τ ;n

∑
νiY iZ

′
i) + tr(M2

τ ;n

∑
νiZiZ

′
i) + tr(M1

τ ;n

∑
νiY iY

′
i)

=L det(M1
τ ;n)1/m tr(M1

τ ;nM1
τ ;n
−1

)/m = L det(M1
τ ;n)1/m,

where all sums run from i = 1 to n. If Ψreg
τ ;n = Ψreg

τ ;n(M1
τ ;n, . . . ,M6

τ ;n) > 0,

then L > 0, det(M1
τ ;n) = 1, and Ψreg

τ ;n = L. If Ψreg
τ ;n = 0, then necessarily L = 0.

In both cases,

Ψreg
τ ;n(M1

τ ;n, . . . ,M6
τ ;n) = L,

and the optimal value of the objective function again equals that of the115

Lagrange multiplier associated with the determinant-based constraint.116

All statements so far in this section are valid without any assumption117

at all. There are typically p(p + 1)/2 + pm + p + m + 1 zero residuals118

for all but a finite number of τ values if n is sufficiently large, except for119

some very special data configurations that can be ruled out almost surely120

under the absolute continuity assumption on the underlying population dis-121

tribution. Consequently, the number of distinct sample elliptical regression122

τ -quantiles, τ ∈ (0, 1), is finite and, for low n and large p, relatively small.123

If wi := w(Y i,Zi), where w is a square-integrable density positive on

the same domain as the population density of (Y ′,Z ′)′, then Theorem 5.14

of van der Vaart (1998) guarantees basic convergence, for n → ∞, of the
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(weighted) sample elliptical regression quantile coefficient vector

mτ ;n := (vec(M1
τ ;n)′, vec(M2

τ ;n)′, vec(M3
τ ;n)′,M4

τ ;n,M5
τ ;n,M6

τ ;n)′

to its (uniquely defined) population counterpart

mτ := (vec(M1
τ )
′, vec(M2

τ )
′, vec(M3

τ )
′,M4

τ ,M5
τ ,M6

τ )
′,

in the sense that

P
(
{‖mτ ;n −mτ‖ > ε} and {mτ ;n ∈ K}

)
−→n→∞ 0

for any ε > 0 and any compact set K of the right dimension. The location124

version of this result for unit weights in Theorem 3 of Hlubinka and Šiman125

(2013) is stated incorrectly with the 6∈ symbol instead of ∈.126

The optimization (semidefinite programming) behind the sample weighted127

elliptical regression quantiles can be done, e.g., with the CVX toolbox (Grant128

and Boyd, 2008, 2009) for MATLAB (The MathWorks, Inc., 2013), that can129

handle relatively large and multi-dimensional datasets.130

5. A real-data example131

The theory shows that elliptical regression quantiles are particularly suit-132

able for large datasets without outliers. In this section, they are computed133

for body girth measurements data (Heinz et al., 2003) that are often used134

for illustrating various statistical methods, despite the fact that they do not135

constitute a random sample from any well-defined population.136

In this example, n = 260 observations of calf maximum girth Y1 (cm)137

and thigh maximum girth Y2 (cm) of physically active women are modeled138
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with the aid of a single regressor Z representing either their body mass index139

(BMI) or their age. Figure 1 displays the sample version of εreg
τ ((Y ′1,Y

′
2)
′, z0)140

for τ ≈ 0.032, 0.560, and 0.9331 at some empirical quantiles (of orders 0.1,141

0.3, 0.5, 0.7, and 0.9) of the regressor Z. The figure clearly reveals different142

but meaningful trends and heteroskedasticity patterns for different quantile143

levels. Interested readers may compare these results with those obtained for144

the same data by the competing methods of Hallin et al. (2010, 2015).145
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