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We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with
rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been
performed for energies between 0.001 and 300 cm−1. We focus on collisions in which NH3 is
initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in
an experimental context as it can be trapped electrostatically and Stark-decelerated. We discuss the
presence of resonances in the elastic and inelastic cross sections, as well as the trends in the inelastic
cross sections along the rare gas series and the differences between NH3 and ND3 as a colliding
partner. We also demonstrate the importance of explicitly taking into account the umbrella (inversion)
motion of NH3 in order to obtain accurate scattering cross sections at low collision energy. Finally, we
investigate the possibility of sympathetic cooling of ammonia using cold or ultracold rare gas atoms.
We show that some systems exhibit a large ratio of elastic to inelastic cross sections in the cold
regime, which is promising for sympathetic cooling experiments. The close-coupling calculations are
based on previously reported ab initio potential energy surfaces for NH3–He and NH3–Ar, as well
as on new, four-dimensional, potential energy surfaces for the interaction of ammonia with Ne, Kr,
and Xe, which were computed using the coupled-cluster method and large basis sets. We compare
the properties of the potential energy surfaces corresponding to the interaction of ammonia with the
various rare gas atoms. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935259]

I. INTRODUCTION

The theoretical study of ammonia-rare gas (NH3–Rg)
complexes has historically been motivated by the study of
rotational energy transfer as well as by the large amount
of experimental data on the microwave and infrared spectra.
In this context, the most studied systems are NH3–He and
NH3–Ar. Collisions of NH3 or ND3 with helium are of impor-
tance in the modeling of various astrophysical environments
such as the interstellar medium and have thus been investigated
both theoretically1–3 and experimentally.4,5 On the other hand,
the NH3–Ar complex has been the subject of numerous
studies that focused either on its spectra6–9 or on the collision
dynamics through the measurement and analysis of integral
and differential cross sections.10–15 Although the literature
is less extensive regarding the other NH3–Rg complexes,
these systems have also been studied experimentally in
spectroscopic16–19 or molecular beam experiments.20,21

Recent advances on the manipulation and control
of molecular beams have renewed interest in these
systems. Measurements of rotationally inelastic, quantum-
state resolved, differential cross sections were realized using
a hexapole-focused beam of ND3 molecules colliding with
various rare gases (Rg’s) or molecular hydrogen.20,22–24

In these crossed beam scattering experiments, velocity
map imaging (VMI) with resonance enhanced multi-photon

a)Electronic mail: jloreau@ulb.ac.be
b)Electronic mail: A.vanderAvoird@theochem.ru.nl

ionization (REMPI) detection is used to obtain state-to-
state differential cross sections (DCSs) that can be directly
compared to theoretical predictions based on accurate
potential energy surfaces and quantum-mechanical scattering
calculations. This provides a good check of the quality of
the potential energy surface (PES) due to the sensitivity of
the DCSs to the interaction potential. The same techniques,
combined with a Stark-decelerated beam of NH3 or ND3,
will allow the measurement of integral and differential state-
to-state cross sections at low collision energies, where the
cross sections are dominated by resonances. The low energy
(E < 100 cm−1) scattering of NH3 or ND3 colliding with He
and H2 has recently been explored theoretically25,26 with a
particular emphasis on the resonance structure of the cross
section as a function of the collision energy. Moreover, this
type of experiment has an excellent energy resolution,27 which
allows a detailed comparison with the theory and provides a
stringent test for ab initio methods. In an experiment realized
with a Stark-decelerated or hexapole-selected beam, only the
low-field seeking states are focused.28 This provides a beam
of molecules in a single quantum state, which for ammonia
is the upper level of the inversion doublet of ground state
para-ammonia, i.e., the 11− state.

Elastic and inelastic collisions of NH3 with He and Ne are
also of interest in the context of buffer gas cooling.29 In order
to understand the thermalization of a beam of molecules such
as ammonia in a buffer gas cell, as well as the final distribution
of the rotational states, detailed knowledge of the scattering
cross sections is required. For example, the rotational cooling

0021-9606/2015/143(18)/184303/11/$30.00 143, 184303-1 © 2015 AIP Publishing LLC
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of ammonia seeded into a helium supersonic jet was recently
modeled by taking into account rotationally inelastic NH3–He
collisions.30

The recent report of the experimental trapping of cold
ground state argon atoms31 also suggests that the sympathetic
cooling of molecules such as ammonia might be realized
by thermalizing collisions with rare gases. The possibility of
sympathetically cooling NH3 using laser-cooled alkali atoms
has been investigated previously32 but the potential energy
surfaces for these systems were deemed too anisotropic. To
examine whether this would be feasible using rare gases
requires a detailed knowledge of elastic and inelastic cross
sections at low collision energy.

The cornerstone of the theoretical study of collision
dynamics is an accurate PES. PESs for the interaction of
NH3 with helium25 and argon33 that include a dependence on
the inversion coordinate of NH3 have recently been reported.
While a few ab initio studies have been performed on the
interaction of ammonia with the other rare gases,16,18,32,34,35

they did not include a description of the long-range potential
that is required for low-energy scattering.

In this paper, we report new four-dimensional PESs for
the interaction of NH3 with Ne, Kr, and Xe obtained with
similar ab initio methods as the recently reported PESs for
NH3–He and NH3–Ar. In Sec. II, we discuss the methods
employed and we discuss the main features of the PESs as
well as the trends along the rare gas series. In Sec. III, we
employ these PESs to investigate the scattering of NH3 and
ND3 with rare gas atoms. We focus on the initial state 11−
of ammonia, which can be trapped electrostatically and Stark
decelerated. We compute elastic and inelastic cross sections
at energies in the range 0.001–300 cm−1 by means of the
quantum-mechanical close-coupling method. We discuss the
trends in the cross sections for the various rare gas atoms, and
we show the importance of taking the full inversion (umbrella)
motion NH3 into account at low energy. Finally, we investigate
the possibility of sympathetic cooling NH3 using rare gas
atoms.

II. POTENTIAL ENERGY SURFACES

A. Ab initio calculations

Several ab initio and semi-empirical PESs for the
interaction of ammonia with rare gas atoms have been
presented in the literature. Four-dimensional PESs for the
van der Waals complexes NH3–He and NH3–Ar have recently
been computed in our groups using the coupled-cluster method
with AVQZ basis sets (see Refs. 25 and 33 and references
therein for a comparison with previous work). Calculations for
NH3–Ne,–Kr, and –Xe have also been performed with various
ab initio methods.16,18,32,34–36 However, these calculations have
been restricted to the region close to the van der Waals
minimum, and no complete PESs, including the long-range
part of the potential, are available. This will limit the accuracy
in calculations of scattering cross sections at low energies.
Moreover, it should be noted that these previous studies did
not consider the dependence of the PES on the inversion
motion of NH3 in the complex.

In most calculations on NH3–atom and NH3–molecule
scattering, ammonia is considered to be rigid, as the collision
energies considered are smaller than the energy of the
various vibrational modes. It is, however, important to
consider the possibility of NH3 inversion (or umbrella motion,
corresponding to the ν2 mode) which induces a splitting of
0.79 cm−1 in the ground vibrational level due to tunnelling.
This is usually taken into account by means of a model that
expresses the inversion wave functions as linear combinations
of the equilibrium structures1,37 (see Sec. III A). While this
approximation has been shown to be accurate in the calculation
of scattering cross sections at higher energies,11,25 one can
expect the inversion motion to affect the cross sections when
the collision energy becomes comparable to the splitting.
For the reasons described above, and in order to make a
detailed comparison between the Rg’s, we computed the
PESs corresponding to the interaction of NH3 with Ne, Kr,
and Xe. We chose to take the inversion coordinate into account
explicitly.

The interaction energy was computed as a function of
four coordinates (R′, θ ′, ϕ′, ρ′). The R′ coordinate is the length
of the vector R′ that connects the N atom to the Rg atom, θ ′

is the angle between the vector R′ and the ammonia C3 axis,
ϕ′ is the angle of rotation of this vector around the C3 axis,
while ρ′ is the umbrella or inversion angle, defined as the
angle between the C3 axis of ammonia and the N–H bonds
(see Fig. 1 in Ref. 33 for an illustration of the coordinate
system). For θ ′ = 0 or π, the complex has orientation Rg–NH3
or Rg–H3N, respectively. For ϕ′ = 0, the Rg is in the plane
formed by the C3 axis and one of the N–H bonds, while for
ϕ′ = π/3, it is located at equal distance between two hydrogen
atoms. The C3v symmetry of NH3 is conserved throughout
our calculations. The N–H bond r length was fixed at its
vibrationally averaged value, r0 = 1.9204 a0, as calculated in
Ref. 33.

The PESs were computed by means of the coupled-cluster
method with single, double, and perturbative triple excitations
(CCSD(T))38 with a Hartree-Fock reference wave function
using the MOLPRO 2012.1 program.39 The performance of
various basis sets was examined for NH3–Ar in Ref. 33, and
it was established that the aug-cc-pVQZ (or AVQZ) basis set
supplemented by a set of diffuse midbond functions provided
an excellent accuracy. The PESs were therefore computed
with the AVQZ basis set for all atoms,40 to which we added
a set of (3s3p2d2 f 1g) midbond functions41 which has been
shown to give accurate results for interactions involving rare
gases. For Kr and Xe, the core electrons were described
by means of relativistic pseudopotentials.42 The basis set
superposition error was accounted for at all geometries using
the counterpoise method.43 In our calculations, the 2s22p3

electrons of the N atom, the 1s electrons of the H atoms,
and the ns2np6 electrons of the Rg atom (16 electrons in
total) were correlated in the CCSD(T) calculations. The
correlation contribution of the outer-core electrons to the
interaction energy was found to be less than 0.4% in the case
of NH3–Ar33 and it is thus neglected in the present study, even
though the effect is expected to increase for the heavier rare
gases Kr and Xe.44 The value of the T1 diagnostic45–47 was
inferior to 0.01 for all geometries and all rare gas species,
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which demonstrates the single-reference character of the wave
function.

The grid used for the ab initio calculations was
constructed as follows. For θ ′, the grid consisted of 11
Gauss-Legendre points from 0 to π, while for ϕ′, we used
a Gauss-Chebyshev grid of 4 points from 0 to π/3. This
is the same angular grid that was previously employed for
NH3–He and NH3–Ar. For ρ′ ≥ π/2, we used an equidistant
grid of 7 points for Ne and 5 points for Kr and Xe. All other
geometries can be obtained by symmetry. Finally, for the
intermolecular distance R′, we used a grid of 34 points for Ne
(3.5 ≤ R′ ≤ 35 a0), 31 points for Kr (4 ≤ R′ ≤ 30 a0), and 28
points for Xe (4 ≤ R′ ≤ 28.5 a0). We used a constant spacing
of 0.2–0.3 a0 in the short-range, while in the long-range, the
spacing increased progressively. The larger number of grid
points for NH3–Ne results from the fact that we found it
necessary to include additional points in the long-range in
order to obtain a satisfactory fit of the PES (see below). In
total, we computed 10 472 points for the NH3–Ne PES, 6820
points for the NH3–Kr PES, and 6160 points for the NH3–Xe
PES. The complete set of ab initio energies is available as
supplementary material.48

In bound state or scattering calculations, the matrix
elements of the intermolecular potential between angular
momentum basis functions are required. Their evaluation is
facilitated if the potential is expanded in tesseral harmonics
Slm, i.e., real combinations of spherical harmonics,

V (R′, θ ′, ϕ′, ρ′) =

l,m

vlm(R′, ρ′)Slm(θ ′, ϕ′). (1)

We only used the tesseral harmonics with m ≥ 0,
i.e., functions of cosine type, which are defined as Slm
= 1√

2

�
Y−m
l
+ (−1)mYm

l

�
for m > 0 and Sl0 = Y 0

l
in terms of the

spherical harmonics Ym
l

. The sum over l runs from 0 to 10,
while the sum over 0 ≤ m ≤ l contains only terms for which
m is a multiple of 3 due to the threefold symmetry axis of
NH3. We employed the same method as in Ref. 33 to fit the
expansion coefficients vlm(R′, ρ′). In the interaction region, we
used two-dimensional cubic splines. In the asymptotic region,
we fitted the expansion coefficients at the last three points
of the grid in R′ to an analytical expression consisting of an
inverse power expansion in R′ and a polynomial expansion in
ρ′,

vlm(R′, ρ′) =

n,p

clmnp

(
ρ′ − π

2

) p
R′−n. (2)

We retained the first two terms in the expansion in inverse
powers of R′ (n = ni and n = ni + 2, where ni depends25 on
the value of l) and ten terms in the polynomial expansion in ρ′

with 0 ≤ p ≤ 9. Since the functions vlm(R′, ρ′) are even or odd
functions of

�
ρ′ − π

2

�
according to the parity of l + m, only

terms with p even or odd appear in Eq. (2) and the sum reduces
to five terms. Each function vlm is therefore represented by 10
coefficients clmnp. We obtained a good representation of the
asymptotic PES by including only terms up to l = 5.

Finally, we note that scattering calculations require that
the PES be evaluated in a coordinate system (R, θ, ϕ, ρ) with
the origin at the center of mass of NH3 rather than on N.
The transformation from one coordinate system to the other

is straightforward (see Ref. 33) but requires a re-expansion
of the PES in terms of these new coordinates. Similarly, in
order to treat collisions of ND3 with rare gases, the coordinate
system must also be modified to reflect the shift in the position
of the center of mass of the molecule. We assume here that
apart from this shift, the PES is the same for the interaction of
NH3 or ND3 with rare gases, which amounts to neglecting the
minor change in r0 between the two isotopes. In what follows,
we only use the center of mass coordinates.

B. Analysis of the PES

The main characteristics of the NH3–Rg PESs have
previously been identified33,36,49 and it has also been shown
that the PESs for all these complexes share the same qualitative
features.36 In particular, it is well known that the minimum of
the PES occurs for ϕ = 60◦, i.e., when the rare gas atom is
located between two hydrogen atoms.

The equilibrium geometries and dissociation energies are
given in Table I. Several points can be observed. The first
is that the dissociation energy De increases with the size of
the rare gas atom, as expected since the larger Rg’s are more
polarizable. The second is the increase in the equilibrium
distance Re with the Rg size, which is also expected as the
atomic radius is larger for the heavier Rg. Finally, we note that
θe decreases with increasing Rg size, which is due to the fact
that the larger Rg’s have a larger electronic cloud that induces
a repulsion by the hydrogen atoms. The values presented in
Table I agree well with the values reported by Bistoni et al.
based on a CCSD(T) geometry optimization.36

There are three saddle points that hinder internal rotation
of NH3 in the complexes. The first (S1) occurs for ϕ = 0 and
hinders rotation along the ϕ coordinate. The other two (S2
and S3) correspond to θ = 0◦ and θ = 180◦, respectively. We
recall that θ = 0◦ corresponds to the Rg–NH3 configuration,
while θ = 180◦ corresponds to the NH3–Rg configuration. For
both geometries, the NH3–Rg complex has C3v symmetry. The
geometries of these saddle points are given in Table II along
with the corresponding energy above the global minimum of
the complex (potential barriers). At the S1 geometry, the Rg
atom is in the plane formed by the C3 axis and a N–H bond,
it thus cannot approach NH3 as closely as for ϕ = 60◦, and
the equilibrium distance is increased. For the same reason, the
equilibrium angle θ is much smaller in this geometry than for
the global minimum. The barrier preventing rotation about the
C3 axis is seen to reach a plateau for Ar, Kr, and Xe.

By comparing S2 and S3, we observe that the configuration
with θ = 0◦ is always more favorable than θ = 180◦, implying

TABLE I. Global minimum of the PES.

Rg Re (a0) θe (deg) De (cm−1)

He 6.10 89.0 35.08
Ne 6.23 87.5 66.81
Ar 6.76 85.1 147.6
Kr 6.99 83.0 173.6
Xe 7.35 79.9 197.7
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TABLE II. Geometries (R in a0, θ in degrees) and energy above the global
minimum (in cm−1) of the three saddle points of the NH3–Rg PESs.

S1(ϕ = 0) S2(θ = 0◦) S3(θ = 180◦)
Rg R θ E R E R E

He 6.74 82.4 10.34 7.30 21.56 7.34 23.34
Ne 6.75 77.2 16.03 7.02 29.61 7.03 34.15
Ar 7.19 74.1 29.51 7.30 43.91 7.35 57.30
Kr 7.36 65.8 32.25 7.46 39.76 7.55 60.17
Xe 7.64 46.3 31.88 7.74 32.32 7.89 62.44

that the Rg atom prefers to be close to the lone pair of N
rather than to the hydrogen atoms. While the potential barrier
at θ = 180◦ increases with the size of the Rg atom, the barrier
at θ = 0◦ is of maximum height for argon and decreases for
the larger Rg atoms.

In Fig. 1, we show the four dominant terms vlm(R) in
the expansion of potential (1) for the equilibrium value of ρ,
ρe = 112.1◦, and for all Rg atoms. These expansion functions
will be used in Sec. III to interpret the relative magnitudes
of scattering cross sections. The isotropic term v00(R)/

√
4π

has a well that is substantially less deep than the well in the
full potential. The equilibrium distances Rm and depths ϵm of
the isotropic component of the potential are given in Table III
together with the corresponding C6 coefficients. These values
can be compared to those obtained by Pirani et al. from high
resolution molecular beam experiments in which the elastic
cross sections for NH3–Rg scattering were measured.21 There
is good agreement with the present values for all parameters,
except for NH3–Xe where the discrepancy in the value of ϵm
is somewhat larger.

TABLE III. Parameters of the isotropic component v00(R, ρe)/
√

4π of the
NH3–Rg PES, and comparison with the experimental values from Ref. 21.

Rm (a0) εm (cm−1) C6 (Eha
6
0)

Rg Theoretical Expt. Theoretical Expt. Theoretical Expt.

He 6.83 6.99 19.17 19.76 11.61 10.5
Ne 6.79 6.94 44.56 44.76 24.97 22.8
Ar 7.20 7.24 111.5 109.7 79.86 71.8
Kr 7.43 7.45 136.1 142.8 113.6 111
Xe 7.77 7.77 159.3 173.4 167.4 174

III. SCATTERING CALCULATIONS

A. Theory

The general theory of quantum inelastic scattering
between a rigid symmetric top and an atom has been described
in detail in the literature.1 When the inversion coordinate ρ is
taken into account explicitly, the Hamiltonian of the complex
can be written as50

Ĥ =

i

ĵ2
i

2Iii(ρ) + T̂(ρ) + Vumb(ρ) − ~
2

2µR
∂2

∂R2 R

+
1

2µR2 ( Ĵ2 + ĵ2 − 2ĵ · Ĵ) + V (ρ,R, θ, ϕ), (3)

where µ is the reduced mass of the system, ĵ is the angular
momentum operator of NH3, and Ĵ is the total angular
momentum operator. The first three terms of the Hamiltonian
describe the motion of the NH3 monomer. The sum in the first
term runs over i = x, y, z and Iii(ρ) are the principal moments
of inertia of NH3. The second term is the kinetic operator

FIG. 1. Comparison of the dominant terms vlm(R, ρe) in the expansion of the NH3–Rg PES for the five Rg atoms. (a) v00/
√

4π, (b) v10, (c) v20, and (d) v33.
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corresponding to the inversion motion, given by

T̂(ρ) = 1
2
g−

1
4
∂

∂ρ
I−1
ρρg

1
2∂ρg

− 1
4 , (4)

where g(ρ) = IxxIyyIzzIρρ is expressed as a function of the
principal inertia moments of ammonia and the moment of
inertia Iρρ associated with the umbrella motion.50 Vumb(ρ)
is the double-well potential for the umbrella motion, with a
barrier at ρ = π/2. We used the same parametrization as in
Ref. 25,

Vumb(ρ) = kρ

2

(
ρ − π

2

)2
+ aρ exp


−bρ

(
ρ − π

2

)2
. (5)

Due to tunnelling through the barrier, the first two
vibrational states are split into doublets. The three parameters
are fitted in order to reproduce the experimental v = 0 → 1
transition frequency (949.9 cm−1) as well as the splittings
in the v = 0 (0.79 cm−1) and v = 1 (35.2 cm−1) states. The
parameters for NH3–He are given in Ref. 25. For the other
rare gases, we re-fitted the parameters to reflect the fact that
the length of the N–H bonds used to compute the PES
was slightly different. We used kρ = 92 026 cm−1 rad−2,
aρ = 23 383 cm−1, and bρ = 3.205 rad−2. For ND3, the
splittings are smaller (0.053 cm−1 in the v = 0 level) and the
parameters are kρ = 93 170 cm−1 rad−2, aρ = 23 349 cm−1,
and bρ = 3.236 rad−2.

In our calculations, we kept the four lowest states φ±v (ρ)
of the umbrella motion (where ± denotes the parity of
the function under the inversion), corresponding to v = 0
and v = 1. We will compare the results obtained using the
Hamiltonian (3) with those obtained with a model1,37 that
approximates the ground tunneling states as symmetric or
antisymmetric combinations of the equilibrium structures,
|±⟩ = [ f (ρ − ρe) ± f (π − ρ + ρe)]/

√
2, where f (x) is a Dirac

delta function localized at x = 0. This model only requires
the knowledge of the PES at the equilibrium angle ρ = ρe
and has been shown to give accurate results11,25 by direct
comparison with the “exact” method using Hamiltonian
(3). However, at collision energies lower than the inversion
splitting (0.79 cm−1), this approximation is not expected to be
valid.

The inelastic scattering cross sections were computed
using the quantum-mechanical close-coupling method, in
which the total wave function is expanded as a sum of
products of radial and angular functions. Upon integration
over the angular coordinates, the Schrödinger equation leads
to a set of coupled second-order differential equations to
be solved using appropriate boundary conditions.25 The total
angular momentum J and its projection M on the space-fixed
z axis are conserved during the collision.

The molecular symmetry group51 of inverting NH3, and
also of the NH3–Rg complexes, is D3h(M). NH3 has two
nuclear spin configurations depending on the value of k,
the projection of the angular momentum j on the symmetry
axis of the molecule. Rotational levels with k = 0,3,6, . . .
(ortho-NH3) correspond to the A2 representations, while levels
for which k is not a multiple of 3 (para-NH3) correspond
to the E representations. The levels corresponding to the
A1 representations are forbidden by nuclear spin statistics.

The different spin configurations cannot interconvert during
collisions. In the case of ND3, there are no restrictions due
to nuclear spin statistics, and states with k = 0,3,6, . . . can
correspond either to the A1 or the A2 representations, so that
there are three nuclear spin modifications.

The rotational levels of NH3 and ND3 are labeled as
| j k±⟩, where ± refers to the symmetry under inversion. The
lowest energy levels of NH3 are shown in Fig. 2.

B. Computational details

The four lowest levels φ±v (ρ) of the umbrella motion
were calculated with the sinc-function discrete variable
representation method.52 Tests were performed with six
umbrella functions, which showed that our calculations are
converged. The coupled equations were solved with the
renormalized Numerov propagator for energies in the range
0.001–300 cm−1. The size of the grid in R, its number of
points, and the maximum value of the total angular momentum
J depended on the collision energy as well as on the colliding
partners. Numerous tests were performed to make sure that
the cross sections were converged. At the lowest energies
considered, a typical grid ranged from 4 a0 to 100 a0, with the
number of points increasing from about 200 for He to 600 for
Xe. At the highest energies, we chose grids ranging from 4 a0
to 30 a0 with about 150–200 points for the various rare gases.

The maximum value of J required to obtain converged
cross sections increased with the reduced mass of the system.
At the highest energy, 45 partial waves were required to
converge the elastic cross sections for NH3–He, while for
NH3–Xe that number increased to 175. The convergence was
faster for the inelastic cross sections. The size of the angular
basis set was truncated at jmax = 7 for NH3 and jmax = 9 for
ND3.

C. Results

For the reasons mentioned above, we will from now on
focus on the initial state 11−. Unless otherwise stated, the

FIG. 2. Diagram of the lowest rotational energy levels of NH3 labeled as
jk±. The levels of ortho-NH3 are shown in black while those of para-NH3
are shown in red.
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cross sections were calculated using the explicit treatment of
the umbrella motion. The elastic (11− → 11−) and inelastic
(11− → j k±) cross sections corresponding to scattering of
NH3 (top panel) or ND3 (bottom panel) with neon atoms are
shown in Fig. 3 for collision energies between 0 and 100 cm−1.
We note that the elastic cross section is much larger than the
inelastic cross sections over the whole energy range. The 11+
state lies 0.79 cm−1 below the initial state 11− for NH3 and
0.053 cm−1 for ND3 and is therefore open at all collision
energies.

We observe in Fig. 3 the opening of the various rotational
channels, where the transition becomes energetically possible.
At the threshold, the cross section increases sharply. For
example, the 22+ channel opens up at a collision energy of
28.3 cm−1 for NH3 and 14.7 cm−1 for ND3, while the 22−
channel is higher by the inversion splitting, 0.79 cm−1 for
NH3 and 0.053 cm−1 for ND3. Other rotational levels become
accessible at higher energies.

The relative magnitude of the cross sections can be
understood by examining the expansion coefficients vlm(R, ρ)
shown in Fig. 1, since they appear in the coupling matrix
elements responsible for a given transition (apart from
indirect processes).1 For example, transitions which change
the umbrella state of ammonia are caused by terms vlm for
which l + m is odd, while the terms with even l + m conserve
the symmetry of the umbrella state. The elastic cross section

FIG. 3. Elastic and inelastic cross section for scattering of NH3 (top) and
ND3 (bottom) in the initial state 11− by neon atoms.

depends on the v00 term, which is the dominant term for
all rare gases, so that the elastic cross section is larger than
the inelastic cross section. We observe from Fig. 3 that the
inelastic cross section is dominated by the 11− → 22− channel
as soon as it becomes energetically possible. This transition is
governed by the term v33, which is large. On the other hand,
the 22+ channel is not directly coupled to the 11− state by
v33, so its cross section is very small. The 11− → 21− cross
section is the second largest inelastic cross section at high
energy and is controlled in first instance by the v20 coefficient.
The 11− → 11+ transition is caused by the v10 term. While it
is the only inelastic process at low collision energy, at high
energy it is not the dominant cross section as the magnitude
of other coefficients such as v33 and v20 is larger. In the case
of ND3, due to its smaller rotational constants, more channels
are open in the energy range considered. We observe that the
cross section 11− → 44− becomes one of the leading inelastic
cross sections as soon as this channel opens, which can be
explained by the fact that this transition is also caused by the
large v33 term.

The elastic and inelastic cross sections shown in Fig. 3
exhibit a large number of resonances which can be due
either to quasi-bound states in the initial or final level
(shape resonances) or due to other excited states (Feshbach
resonances). In particular, it is well known that strong
Feshbach resonances can occur at energies below the threshold
corresponding to the opening of a new channel. Since ND3
has more open channels at any given energy, the resonance
structure is denser than in the case of NH3. The effect of
resonances (compared to the background cross section) is
larger for the 11− → 11+ transition than for the 11− → 22−
transition, and it is possible that such resonances will soon
be observed experimentally.25 The 11− → 22+ cross section
shows an even more pronounced resonance structure, but the
fact that it is much smaller will make the measurements
more difficult. The resonances are gradually suppressed as the
energy increases.

The general features illustrated above for NH3–Ne
collisions are also valid for the other rare gases, but several
trends along the Rg series are worth noting. First, the relative
magnitude of the various inelastic cross sections is not always
the same. For collisions of ammonia with helium, it was
found25 that the largest inelastic cross section corresponds to
the excitation 11− → 21−, while for the other rare gases it is
11− → 22− instead. The contribution to inelastic scattering
of the cross section for the 11− → 21− transition actually
becomes smaller for heavier rare gases, which is related to
the distinctive shape of the v20 coefficient that is responsible
for this transition. This follows from the fact that although
the expansion coefficients vlm have the same shape for all
the rare gases (see Fig. 1), their relative magnitude changes.
Second, we have seen that the depth of the PES increases
with the size of the rare gas, which implies the existence of
quasi-bound states with higher energy. This in turn leads
to the presence of shape resonances at higher collision
energy for heavier rare gases, as will be further discussed
below.

In Fig. 4, we compare the cross sections corresponding to
the 11− → 11− and 11− → 11+ transitions for NH3 or ND3
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FIG. 4. Cross sections for elastic (11−→ 11−) and inelastic (11−→ 11+) scattering of NH3 or ND3 with rare gas atoms, with ammonia initially in the 11−
state. (a) He, (b) Ne, (c) Ar, (d) Kr, and (e) Xe.

in collision with the five rare gases. In order to keep the same
scale for all figures, the inelastic cross sections for helium
were multiplied by a factor of 10.

To facilitate the analysis, we will distinguish two separate
energy regimes. For energies E > 10 cm−1, several trends can
be distinguished in the cross sections: (i) The elastic cross
section increases with the size of the rare gas. This is expected
given that the magnitude of the corresponding expansion coef-
ficient, v00, also increases with size of the rare gas (see Fig.
1). The same conclusion applies to the inelastic cross section
11− → 11+, which depends mainly on the v10 coefficient. (ii)
The elastic cross sections of NH3 or ND3 colliding with a
given rare gas have similar magnitude, although the resonance
structure differs. This is not the case for the inelastic 11−
→ 11+ cross section, which is in general larger for NH3 as a
colliding partner rather than ND3. This can be explained by the
fact that while the v00 coefficients are almost identical for NH3
and ND3, the v10 coefficients are larger for NH3 compared to
ND3 (not shown). (iii) Because the depth of the PES increases
with the size of the Rg, resonances occur at higher collision
energies for the heavier Rg. (iv) The resonance structure is

denser for ND3 than for NH3, both in the elastic and inelastic
cross sections. As the mass of ND3 is larger (and its rotational
constants smaller) than NH3, the number of quasi-bound states
giving rise to resonances is larger.

Below E = 10 cm−1, no clear trend appears. The energy
at which the cross sections start to behave according to the
Wigner threshold law, which implies that the elastic cross
section becomes constant while the inelastic cross section
is proportional to 1/

√
E, depends on the colliding partners.

For instance, at the lowest energy the elastic cross section
for NH3–He collisions is smaller than for ND3–He, while
the inelastic cross section is larger. On the other hand, for
scattering of NH3 or ND3 with Ne or Xe, we reach the
opposite conclusion. For Ar and Kr, both the elastic and the
inelastic cross sections are larger for ND3 than for NH3 at the
lowest energy considered here.

D. Effect of the umbrella motion

As discussed in Sec. III A, most scattering calculations
involving ammonia are realized using a simple model1,37
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that approximates the ground tunneling states as symmetric
or antisymmetric combinations of the equilibrium structures.
This approximation is expected to be accurate11,25 and it
is commonly applied either by choice (it simplifies the
calculations and the umbrella motion is not expected to
alter the dynamics at the collision energies considered) or
by necessity, i.e., because the dependence of the PES on the
umbrella coordinate was not considered. However, when the
time scale of the collision becomes comparable to that of the
inversion, the umbrella motion might affect the dynamics.

It was shown in Ref. 25 that for NH3–He scattering the
explicit description of the inversion motion and the model
treatment gave very similar results even at energies as low
as 10−4 cm−1, although some subtle differences appeared in
the shape of some resonances at higher energy. However,
the same behaviour is not observed for other rare gases.
The cross sections for the elastic and 11− → 11+ processes
calculated using both approaches to inversion motion are
compared for scattering of NH3 with neon and argon atoms
in Fig. 5. For both rare gases, we observe that the elastic
and the inelastic cross sections are well represented by the
model treatment for energies down to about 2 cm−1. However,
some discrepancies appear at lower energies. For NH3–Ne
collisions, these differences are at most 40% for elastic

FIG. 5. Cross sections for 11−→ 11− (black) and 11−→ 11+ (blue) transi-
tions in collisions of NH3 with neon (top) or argon (bottom). The full lines
are results obtained with a full treatment of the umbrella motion, while the
dashed lines are results obtained with the two state model (see text).

scattering and 80% for inelastic scattering down to 10−3 cm−1.
The effect is much more striking in the case of NH3–Ar. At
the lowest energy of 10−3 cm−1 considered here, the elastic
cross section obtained by the model treatment is incorrect by
a factor of 5, while there is a factor of almost 50 between
the inelastic cross sections obtained by the two approaches.
In the case of NH3–Kr collisions, we also found significant
differences (up to a factor of 10) in the cross sections below
1 cm−1 obtained with the two descriptions of the umbrella
motion (not shown). However, for NH3–Xe the difference is
much smaller (a factor of 2 at most). The effect of the umbrella
motion on the scattering cross sections thus cannot be simply
reduced to a mass effect.

We also observed that the cross sections obtained with
the elaborate treatment of the umbrella motion and only two
umbrella functions were almost identical to those obtained
with four functions. This implies that the difference between
the model approach and the explicit treatment of the umbrella
motion is due to the approximation of the matrix elements as
vlm(R, ρe) in the model treatment rather than to the inclusion
of higher-lying states φ±v (ρ).

Based on these findings, we recommend that the full
treatment of the umbrella motion be applied in order to obtain
accurate cross sections for scattering in the cold (E < 1 cm−1)
or ultracold (E < 10−3 cm−1) regimes.

E. Sympathetic cooling of ammonia

The experimental preparation of cold (below 1 K) and
ultracold (below 1 mK) molecules, when possible, promises
many interesting applications that range from quantum
information and precision measurements to the realization
of many-body Hamiltonians.53 Among the numerous schemes
that have been devised to cool molecules, sympathetic cooling
of Stark-decelerated molecules with laser-cooled atoms is very
promising. In this method, the molecules are trapped either
electrostatically or magnetically and thermalize by elastic
collisions with the ultracold atoms. If the molecular species
is not trapped in its absolute ground state, as is usually the
case, inelastic collisions that remove molecules from the trap
can also occur. In order for the cooling process to be efficient,
elastic collisions should be much more frequent than inelastic
collisions. It is usually assumed that the sympathetic cooling
of a molecule by ultracold atoms is feasible if the ratio of
elastic to inelastic cross sections is on the order 10–100 over
the relevant range of temperature. The obvious choice of
ultracold atoms are alkali atoms, since these can be routinely
produced in the laboratory. Unfortunately, in most cases,
inelastic collisions driven by anisotropic terms in the PES are
too frequent and prevent an efficient cooling process.

In the case of NH3, the state that can be trapped (the
low-field seeking state) is the 11− state. Since the 11+
channel is open at all collision energies, inelastic collisions
11− → 11+ can occur, which could prevent the cooling
process. Zuchowski and Hutson previously examined the
prospects for the cooling of NH3 by thermalizing collisions
with ultracold alkali-metal or alkaline earth metal atoms32,54

and concluded that the interaction potentials in these systems
were too anisotropic. They also discussed the case of NH3–Xe
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collisions, which they deemed more viable based on the low
anisotropy of the PES.

Recently, Edmunds and Barker31 demonstrated the
realization of the trapping of argon atoms in the ground state by
optically quenching them from a laser-cooled metastable state.
The method can be applied to other rare gases55 and opens
the way for studying cold or ultracold NH3–Rg collisions,
as well as for sympathetic cooling of molecules such as
ammonia. Indeed, the cooling process can be expected to be
more favorable with rare gases as the PES is in general more
isotropic than with alkali atoms.

From the discussion in Sec. III C, it can be anticipated
that the lightest rare gases will provide the best prospects for
sympathetic cooling. We have indeed seen that the magnitude
of the anisotropic terms in the expansion of the PES, and in
particular the v10 term responsible for 11− → 11+ transitions,
increase with the size of the rare gas, leading to larger inelastic
cross sections. However, the elastic cross section also increases
so that the trend in the ratio σel/σinel is uncertain.

We present in Fig. 6 the ratio σel/σinel for the low
energy scattering of NH3 and ND3 with the five rare gases.
For energies in the range 10–100 cm−1, we observe that the
lighter rare gases provide larger ratios. However, this trend
disappears in the cold regime where it depends on details of
the PESs. In the case of NH3, collisions with helium and neon
provide the best prospects. For NH3–He scattering, the ratio
decreases from a value of about 500 at E = 10 cm−1 down

FIG. 6. Ratio σel/σinel between elastic and inelastic cross sections for scat-
tering of NH3 (top) and ND3 (bottom) in the 11− state with rare gas atoms.

to 20 at E = 10−3 cm−1. For NH3–Ne collisions, the ratio is
less than 10 at E = 1 cm−1, but increases at lower energies
and reaches 100 at E = 10−3 cm−1. The ratio σel/σinel then
decreases with decreasing collision energy due to the different
threshold behavior of the elastic and inelastic cross sections.

In the case of ND3, the ratio for collisions with helium
is larger than 100 at most energies down to 10−3 cm−1 and
provides the best option. The ratio for neon is about one order
of magnitude smaller, while for the three heaviest Rg’s it is
even much smaller.

An important issue that arises when exploring the
dynamics at low energy is that scattering cross sections
strongly depend on details of the PES. In the (ultra)cold
regime, the collision energy becomes smaller than the
uncertainty in the PES that is due to the various approximations
made in the electronic structure calculations. For this reason,
it is useful to examine the sensitivity of the scattering cross
sections to small variations in the PES. The simplest way
to assess this sensitivity is to scale the PES by a factor λ
and to compute the cross sections for various values of this
parameter.54

We illustrate this sensitivity in Figs. 7 and 8, which show
the dependence of the ratio σel/σinel on λ for collisions of
NH3 with Ne and Ar. We have assumed a precision of 1%
on the PES, so that λ is comprised between 0.99 and 1.01.
Although the CCSD(T) method with the large basis set used
in the ab initio calculations presented in Sec. II is accurate (as
was demonstrated, for example, by comparing the computed
spectrum of NH3–Ar to measured data33), it is difficult to
assess the precision of the PES with certainty. We use here
the value of 1% for illustrative purposes.

FIG. 7. Sensitivity of the ratio σel/σinel to a scaling of the whole PES by
a factor λ for NH3–Ar collisions. Top panel: Ratio as a function of collision
energy for several values of λ. Bottom panel: Ratio as a function of λ for two
collision energies.
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FIG. 8. Same as Fig. 7 but for NH3–Ne.

Figure 7 shows a typical example of the sensitivity for
NH3–Ar collisions. We observe that the ratio σel/σinel is
relatively stable with respect to a change in λ down to an energy
of 0.1 cm−1. However, below 0.1 cm−1, dramatic variations
of the ratio can be seen, which are due to the occurrence
of scattering resonances that depend very sensitively on the
potential. At an energy of 10−3 cm−1, the ratio varies by four
orders of magnitude over the range of λ considered here (see
Fig. 7, bottom panel). If the potential is scaled by 0.5%, the
ratio reaches a value of 1000 (to be compared to the reference
value of 10 for λ = 1), which would make collisions with
argon an excellent prospect to cool NH3. However, due to the
extreme sensitivity as a function of λ, it is difficult to assess
this possibility with confidence. Moreover, for energies in the
range 0.1–10 cm−1, the ratio σel/σinel is of order 10, which is
probably too small.

Figure 8 shows the ratio σel/σinel for NH3–Ne collisions,
which represents the most promising prospect for sympathetic
cooling of ammonia based on the results shown in Fig. 6.
Similar to the case of NH3–Ar collisions, the ratio is almost
independent of λ down to collision energies of about 0.1 cm−1.
However, at lower energies the dependence of σel/σinel on λ
is much weaker than for NH3–Ar. For example, at a collision
energy of 10−3 cm−1, the ratio is larger than 50 in most of the
range of values of λ explored, although it decreases strongly
around λ = 0.993 to less than 10. We repeated the calculations
at an energy of 10−5 cm−1, where the ratio σel/σinel is larger
than 10 for all values of λ, with a surprisingly weak dependence
in the scaling parameter. These results show that the NH3–Ne
system is a good candidate for ammonia cooling even if the
true PES would be slightly different from the one calculated
in this study.

Finally, it should be noted that the dependence of the PES
on a single scaling parameter λ is not sufficient to perform a

full sensitivity analysis of the scattering cross sections since
the anisotropy of the PES does not change. A more complete
analysis would be desirable and could be performed, for
example, using the method recently presented by Cui and
Krems56 in order to assess more thoroughly the possibility of
sympathetic cooling of NH3 and ND3. However, we note that
since the value of the ratio σel/σinel is only weakly dependent
on λ for collision energies above 0.1 cm−1, He and Ne would
still provide the best prospects, as illustrated in Fig. 6.

In the context of possible future experiments, the effect
of the trapping field should also be considered. In the cold
regime, it is expected that the presence of a field will result in
smaller elastic cross sections and larger inelastic cross sections
compared to the field-free case.57 This would lead to a decrease
of the ratio σel/σinel and could cause the cooling process to
be less efficient even for the favorable cases discussed above.
On the other hand, at higher energies the effect of the field on
the cross sections, and particularly on the resonance structure
discussed in Sec. III C, is anticipated to be small.

IV. CONCLUSIONS

We have presented calculations on the elastic and
rotationally inelastic scattering of NH3 and ND3 with rare
gas atoms. We obtained scattering cross sections by means
of the quantum close-coupling method for collision energies
between 0.001 and 300 cm−1 while taking the inversion motion
of NH3 explicitly into account.

The scattering calculations were performed using accurate
four-dimensional ab initio potential energy surfaces that
depend explicitly on the umbrella angle of NH3. For the
NH3–He and NH3–Ar systems, we used previously reported
PESs, while the PESs of the NH3–Ne, NH3–Kr, and NH3–Xe
complexes were computed in this work using the CCSD(T)
method with large basis sets. We constructed fits of the
PESs that include an accurate description of the long-range
behaviour. We identified the main features of the PESs as well
as the trends along the rare gas series, and compared them to
previous studies.

The cross sections for scattering of NH3 and ND3 with
rare gas atoms were obtained for the initial state j k± = 11−
of ammonia, which is amenable to Stark deceleration and
electrostatic trapping. We showed that a rich resonance
structure, composed of shape and Feshbach resonances, is
present in the inelastic cross sections. Such resonances can
probably be observed in future experiments using Stark
decelerated molecular beams of ammonia. The relative
magnitude of the cross sections for the various inelastic
channels can be explained in terms of the coefficients vlm(R, ρ)
that appear in the expansion of the anisotropic PES in spherical
harmonics. In particular, we showed that the magnitude of the
11− → 11+ inelastic cross sections increases with the size of
the rare gas atom, and that the cross section is larger when the
colliding partner is NH3 rather than ND3. We also examined
the validity of a commonly used model treatment of the
ammonia umbrella motion at low collision energy. We found
that while the model performs very well for NH3–He, as was
previously reported,25 large discrepancies with the explicit
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treatment of the umbrella motion can occur for scattering
of NH3 with the other Rg atoms at collision energies below
1 cm−1.

Finally, we investigated the possibility of using cold or
ultracold rare gas atoms in order to sympathetically cool NH3
or ND3 molecules. We found that the largest values for the
ratio of elastic to inelastic cross sections are obtained for the
NH3–Ne and ND3–He systems, which thus seem to offer the
best prospects for the experimental realization of sympathetic
cooling of ammonia.
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