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Abstract

This paper studies in some details the joint-use of high-frequency data and economic variables to

model financial returns and volatility. We extend the Realized LGARCH model by allowing for a time-

varying intercept, which responds to changes in macroeconomic variables in a MIDAS framework and

allows macroeconomic information to be included directly into the estimation and forecast procedure.

Using more than 10 years of high-frequency transactions for 55 U.S. stocks, we argue that the combination

of low-frequency exogenous economic indicators with high-frequency financial data improves our ability

to forecast the volatility of returns, their full multi-step ahead conditional distribution and the multi-

period Value-at-Risk. We document that nominal corporate profits and term spreads generate accurate

risk measures forecasts at horizons beyond two business weeks.
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Asger Lunde, Marco Geraci, Davy Paindaveine, and David Veredas for insightful comments. We are grateful to Christian Conrad,

Karin Loch, Farrukh Javed and Hossein Asgharian for sharing codes for the estimation of the GARCH-MIDAS model and to Asger

Lunde for providing cleaned high-frequency data. All remaining errors and inaccuracies are ours.
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1 Introduction

This paper empirically validates the joint-use of high-frequency financial transactions and economic

data to forecast the conditional distribution of returns and some specific interesting quantities such as

the conditional volatility and the multi-period Value-at-Risk (VaR).1 Our framework relies on the use

of conditionally heteroskedastic models, introduced in the seminal contributions of Engle (1982) and

Bollerslev (1986). In particular, we combine insights from Hansen et al. (2012) and Engle et al. (2013) and

propose a new Realized LGARCH model with a time-varying intercept. Doing so, we tackle the following

research questions: Can we immediately account for the time-varying nature of some parameters in the

model? Can we link their changes to the global economic environment? How sensitive is the approach to

the choice of economic indicators? What are the gains in terms of volatility, density, and precision of risk

measure forecasts?

In order to answer these questions we extend the classical Realized LGARCH of Hansen et al. (2012)

allowing the intercept to change through data-driven adjustments. We show that our model can be

represented as a two component model akin to the additive model of Engle and Lee (1999) and argue

that filtering the low-frequency economic indicators using MIDAS techniques à la Ghysels et al. (2005)

provides a convenient framework to model the slow-moving component of volatility. We find that

using economic variables captures changes in the intercept of the model and allows to provide more

dynamic forecasts. Our new model accommodates modifications in the economic environment and

allows to construct more precise forecasts over horizons beyond two business weeks. We find out that

nominal corporate profits and term spreads provide the best results in terms of volatility, density, and

VaR forecasting.

The relation between stock market volatility and exogenous economic variables has been extensively

studied over the past three decades. The two seminal papers are the contributions of Officer (1973) and

Schwert (1989) who first argued that stock market volatility changes because of broader changes in

the underlying economic environment. A subject of particular interest concerns the joint-behavior of

volatility and the economy with a special emphasis on their lead-lag pattern and on the cyclical behavior

of stock market volatility. Many contributions, including Hamilton and Lin (1996), Perez-Quiros and

Timmermann (2000), Christiansen et al. (2012), Corradi et al. (2013), and Paye (2012), reported evidence

of the counter-cyclical behavior of the long-run market volatility. Hence, if the economy shrinks, stock

market volatility is expected to increase in response to concerns about future market conditions. Recently,

Engle et al. (2013), Asgharian et al. (2013), and Conrad and Loch (2014) confirmed this conjecture using

GARCH-MIDAS models and provided more details on the forecasting implications. In particular, Conrad

and Loch (2014) showed that the GARCH-MIDAS provides accurate long-run volatility forecasts. Using

our new model, we confirm the empirical findings of the literature and argue that the combination of

high-frequency data and economic indicators provide accurate forecasts at long horizons not only for the

1By multi-period VaR we refer to the VaR computed over a period of several days.
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conditional volatility, but also for the whole conditional density of returns and the multi-period VaR.

The usefulness of high-frequency data to model and forecast volatility is well-known both from the

statistical and applied point of view (see for instance Andersen et al. (2003), Fleming et al. (2003), and

Christoffersen et al. (2014)). The informational content of high-frequency data is exploited through the

lens of realized measures of volatility. These are recent nonparametric volatility measures based on

high-frequency transactions that have earned great success over the last decade. The most simple realized

measure of volatility is known as the Realized Variance (RV) and is simply obtained by summing up the

intraday squared returns (see Andersen, Bollerslev, Diebold and Labys (2001)). Despite its simplicity, RV

are sensitive to micro-structure noise and jumps and this has paved the way for many refined versions of

RV, for further details on it we refer the reader to McAleer and Medeiros (2008). The main insight is that

realized measures provide an accurate signal of the true latent volatility process of returns and can be

used as an input in many models. Engle (2002) was the first to include realized measures in the volatility

equation of GARCH models introducing the GARCH-X models. Later, Hansen et al. (2012) proposed the

class of Realized GARCH models that generalizes the GARCH-X by including a measurement equation

for the realized measure of volatility. Hansen and Huang (2015), Hansen et al. (2014), and Vander Elst

(2015) completed the class of Realized GARCH models with the Realized EGARCH, the Realized Beta

GARCH, and the FloGARCH, respectively. Shephard and Sheppard (2010) proposed the HEAVY model

that also focuses on modeling the conditional volatility of returns. On slightly different grounds, Corsi

(2009) proposed the HAR-RV model that provides a convenient framework to directly forecast the

realized measure of volatility. Our model lies in the family of Realized GARCH models and focuses on

the conditional volatility of returns.

Besides precise volatility forecasts, risk management also requires knowledge of the full conditional

distribution of returns at different horizons to compute risk measures and to price financial derivatives.

The multi-period ahead distribution is barely ever available in closed form and numerical techniques

have to be used. Being complete, our model allows to simulate a large amount of paths for the future

daily returns from which estimates can be obtained. We provide the details of a Monte Carlo simulation

that allows to construct multi-step ahead conditional density estimates and multi-period VaR. Similar

works to ours include Giot and Laurent (2004), Clements et al. (2008), and Brownlees and Gallo (2009)

who provided a framework based on high-frequency data to compute the VaR. We take a step further

by computing the VaR and the conditional density over horizons ranging from 1 day to 8 business

weeks. Additionally, we rely on Amisano and Giacomini (2007) and Maheu and McCurdy (2011) to assess

the ability of our models to forecast the conditional density of log-returns. In particular, Maheu and

McCurdy (2011) provide a framework to compare the ability of several models to provide multi-step

ahead conditional density forecasts. We use their approach in combination with the Model Confidence

Set (MCS) of Hansen et al. (2011).

Along this paper, we will divide the time horizon into fixed periods (e.g. a week, a month, a quarter,

etc.) and denote by Nt the number of trading days in the period t. For instance, Nt = 5 for a week,
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Nt = 22 for a month, Nt = 65 for a quarter, and so on. Unless explicitly stated otherwise, a variable

recorded on day i in period t will be written as yi,t, for i = 1, ..., Nt and t = 1, ..., T.

The rest of the paper is structured as follows. Section 2 describes the dataset used in this paper. Section

3 presents the new model used in our empirical investigation, namely the Realized LGARCH-MIDAS.

Additionally, we provide estimation results for our dataset of stocks and analyse the smooth component

of volatility. We give more details about the forecasting methodology in Section 4. In particular, we

present the framework to construct volatility and density forecasts based on Monte Carlo simulations.

Sections 5 provides the results of our investigation and gives more details on the tools used to evaluate

the forecasts. Concluding remarks are given in Section 6.

2 High-frequency data and economic variables

We consider two types of data for our empirical investigation: high-frequency returns and economic

variables. We use high-frequency data from the Trade and Quote (TAQ) database for 55 very liquid stocks

covering a period from January 4, 2000 to March 30, 2012. Daily transaction prices are cleaned following

the procedure of Barndorff-Nielsen et al. (2009). We construct daily realized kernels and sub-sampled

RV, which are respectively used as input for the model and as proxy to evaluate forecasts. We need the

baseline RV to compute both the realized kernels and the sub-sampled RV

RVi,t =
Ti,t

∑
j=1

r2
j,i,t,

where rj,i,t denotes the high-frequency log-return computed over interval j, of day i, during the period t,

and Ti,t denotes the amount of high-frequency log-returns on day i during the period t.

The RV computed at the highest frequency are known to be sensitive to market micro-structure noise

and to produce upward biases. Zhang et al. (2005) argued that using sub-sampled RV dampens the

micro-structure biases. Following Zhang et al. (2005), the sub-sampled RV is formally defined as the

sample mean of 5 minute RV computed over non-overlapping sparse grids of returns as

ssRV5m
i,t =

1
S

S

∑
s=1

RV5m
s,i,t,

where RV5m
s,i,t denotes the 5-minute RV computed from S non-overlapping samples on day i, in period t.

The sub-sampled RV will be used as proxy in order to evaluate the quality of the forecasts produced by

our model.

Additionally, we use the realized kernels of of Barndorff-Nielsen et al. (2008) as input for our models.

Realized kernels are as well insensitive to micro-structure noise and are computed on day i, during period

t, as

RKi,t =
H

∑
h=−H

k
(

h
H + 1

)
γh, where γh =

n

∑
j=|h|+1

rj,i,trj−|h|,i,t,
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is called the h-th realized autocovariance. The kernel weight function is denoted here by k( h
H+1 ) with

h
H+1 ∈ [0, 1] for h = −H, . . . ,−1, 0, 1, . . . , H, and H ∈N.

Table 1 provides summary statistics about the stocks used in this paper. The first two columns report

daily averages about the amount of prices and non-duplicate prices available in our dataset. From the

third column it can be seen that most of the selected stocks are actively traded with an average median

duration of about 6 seconds. It appears that the amount of non-duplicate prices can go up to half of the

amount of available sample. However, the effects are limited by the short intervals during which prices

repeat. Indeed in column four of the table, the amount of zero returns lasting above 10 seconds remains

small compared to the total amount of transaction prices.

Additionally, we provide some statistics for daily squared returns (r2), 5-minute sub-sampled realized

variances (ssRV5min), and realized kernels (RK), and this for each asset in the columns five to eight of the

Table 1, respectively. We compute the annualized version of these volatility measures (Avol) by taking

the square root of the mean of 250 times the considered measure. The Avol numbers are in general a bit

higher for the squared close-to-close returns than for the realized measures because close-to-close returns

contain overnight information, which is not included in the realized measures we consider.

Finally, we consider the ratio between the standard deviations of squared returns and sub-sampled

realized variances computed over the full sample. This ratio provides a signal to noise type of information

and is always higher than one, suggesting that realized volatility are less volatile than squared returns.

This well known fact confirms that realized measures are less noisy than daily squared returns.

We also rely on a set of U.S. macroeconomic indicators from 1997(Q1) to 2011(Q4): the real GDP growth

(GDP), the industrial production growth (IP), the nominal corporate profits growth (CP), the national

activity index of the Chicago FED (NAI), the new orders index of the Institute for Supply Management

(NO), and the 10-years yields vs 3-months yields term spreads (TS).2 Table 2 provides summary statistics

for the considered series. In Table 2, the first four columns report the estimated mean, the estimated

standard deviation, the skewness and kurtosis coefficients. The fifth column displays the first lag serial

correlation. The last two columns present the sample cross-correlations of the indicators with the Real

GDP and NAI, which provide insight about the correlation of the indicators in our sample with the

real business cycle. A striking observation is that most of the variables are highly correlated with the

NAI suggesting that this real business indicator is akin to a common factor to these variables except for

corporate profits and term spreads. As we will see in Section 5, these two provide the best forecasts. Since

we use these variables to capture changes in the long-run volatility, they are sampled on quarterly basis.

The data were obtained from the Federal Reserve Bank of St. Louis. The variables were selected on the

basis of empirical results of Conrad and Loch (2014) who validated their good properties for forecasting

volatility.

2The difference between the sample of economic variables and the financial data is due to the 3 years of initial filtering for the

long-run volatility prior to the first observed return. More details are provided in Section 3.
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Table 1: Summary statistics of the high-frequency transactions.

# Trans. # non-dupl. Trans. dura. # ret = 0 (> 10sec) Avol-r2 Avol-ssRV5m Avol-RK Avol-RVall Ratio

AA 4099 2472 4.873 243 45.62 37.76 38.02 51.99 2.43

ABT 3146 1811 5.343 260 25.67 24.28 24.49 29.39 2.79

AES 1845 872 8.236 192 64.53 54.31 52.39 68.81 3.21

AIG 4249 2544 4.371 252 73.15 58.52 55.47 132.81 1.43

AKS 1889 1145 22.75 122 67.61 61.53 59.32 72.95 2.09

AMD 3372 1840 4.806 232 66.14 53.73 52.85 89.00 4.04

AAPL 6489 4538 2.266 155 49.36 40.52 39.56 72.08 11.22

AXP 3579 1983 4.439 275 41.31 35.01 35.88 37.63 2.18

BA 3306 2015 4.993 227 33.14 28.62 28.83 33.15 2.77

BAC 7197 4707 3.524 261 53.92 40.26 41.01 67.03 2.84

BMY 3223 1768 4.817 267 30.23 27.95 28.13 35.23 1.46

BSX 2552 1290 7.646 219 41.62 37.09 36.09 55.76 3.67

C 7245 4167 2.811 314 57.72 45.79 45.32 131.36 2.53

CAG 1749 859 9.191 197 23.35 23.85 22.34 33.77 3.43

CAT 3505 2300 5.440 198 35.39 30.61 30.66 33.17 2.24

CHK 3174 1956 19.50 159 51.80 50.57 43.89 58.53 1.91

CSX 2638 1594 9.361 189 36.59 32.68 32.02 35.05 2.71

D 1926 1074 8.490 201 23.31 23.15 23.16 25.26 2.05

DD 3131 1760 4.953 260 30.92 28.26 28.38 32.76 1.79

DIS 3381 1762 4.727 282 34.46 29.80 29.91 43.01 2.17

DOW 3097 1734 5.629 249 39.26 33.69 33.55 39.01 2.61

EMC 3581 1871 4.195 280 50.95 42.47 42.27 65.31 2.31

FCX 4219 3025 11.33 130 52.44 43.99 42.62 57.34 2.18

GE 6906 4457 2.642 294 34.18 30.45 30.69 51.40 3.45

GIS 2050 1159 8.730 200 19.35 19.45 19.11 22.38 2.37

GLW 3455 1886 4.651 262 60.21 49.73 48.63 73.74 1.78

HAL 4109 2275 4.292 263 49.34 42.35 42.48 48.21 2.78

HD 3978 2153 3.873 292 35.95 30.64 30.82 38.42 3.20

IBM 4357 2852 3.682 237 28.56 24.55 25.18 28.69 5.13

INTC 9535 5460 1.787 219 42.69 35.13 34.01 70.37 4.18

JCP 2490 1404 8.405 209 45.51 40.87 39.76 45.32 2.48

JNJ 3898 2269 4.291 275 20.96 19.60 19.81 23.69 3.51

JPM 5240 2986 3.628 284 45.58 37.40 37.98 41.28 3.16

KEY 2514 1328 8.063 218 52.69 46.52 45.67 62.77 2.35

KO 3241 1686 4.731 275 23.22 21.04 21.41 25.50 2.69

MCD 3239 1790 5.112 262 26.14 25.15 24.92 33.98 2.45

MDT 2965 1578 5.299 273 28.07 25.29 25.16 28.20 2.09

MMM 3037 1889 5.457 208 25.57 23.54 23.91 23.99 2.44

MO 3956 2407 4.374 260 27.19 24.39 23.70 38.82 1.84

MSFT 9359 5447 1.829 236 33.77 27.80 27.15 52.43 2.01

NBR 2471 1338 7.825 224 48.52 40.76 41.10 42.26 1.37

NEM 3521 2059 6.858 228 41.80 35.70 35.06 38.63 2.49

ORCL 6802 3613 2.639 250 46.09 39.42 37.56 89.36 4.06

PFE 5614 3352 3.070 288 28.12 25.56 25.72 46.33 3.56

SLB 4632 3040 3.772 209 40.13 35.45 36.05 36.53 2.63

SPY 7671 4372 3.675 197 21.82 17.94 17.53 20.44 2.74

TJX 2135 1064 8.819 223 32.87 30.95 30.28 33.72 2.61

USB 3136 1661 6.675 257 39.91 36.17 36.20 41.57 2.35

UTX 2961 1783 5.778 216 30.26 26.05 26.41 26.86 3.81

VLO 3484 2218 11.26 171 44.11 36.35 36.67 38.52 2.41

WFC 5020 2888 4.099 286 44.52 36.16 36.95 40.74 2.38

WMT 4241 2403 3.754 277 26.36 24.51 24.70 29.39 2.17

WY 2176 1329 6.800 169 36.43 32.33 32.12 33.51 1.80

XOM 5565 3292 3.364 275 26.89 24.03 24.68 27.27 4.17

XRX 2155 1080 7.897 205 51.47 43.07 39.45 83.52 2.40

Summary statistics based on the cleaned dataset of high-frequency transactions for the panel of stocks considered. The sample

covers the period from January 4, 2000 to March 30, 2012. The first two columns report daily averages about the amount of prices

and non-duplicate prices available in our dataset. We also provide the median duration and the average amount of zero returns

lasting above 10 seconds. Avol provides a proxy of the annual volatility and is computed by taking the square root of 252 times the

mean of either squared returns or the realized measure. r2 represents the squared returns, ssRV5m denotes the 5-min realized

variances, RK the realized kernels, and RVall the realized variances computed using all transaction prices. The last column shows

the ratio between the standard deviations of r2 and sub-sampled realized variances computed over the full sample.
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Table 2: Summary statistics of the economic indicators.

µ̂ σ̂ Skewness Kurtosis ρ(1) GDP NAI

GDP 2.622 2.258 −1.141 6.048 0.501 1.000 0.774
IP 1.669 5.300 −1.773 6.793 0.700 0.777 0.874
CP 14.186 36.585 1.872 9.969 −0.025 −0.091 −0.104
NAI −0.242 0.841 −2.013 7.353 0.847 0.774 1.000
NO 54.732 7.223 −0.948 4.861 0.713 0.651 0.781
TS 1.749 1.236 −0.087 1.632 0.928 −0.141 −0.232

Summary statistics for the panel of economic indicators considered. The sample covers the period from from 1997(Q1) to 2011(Q4)

and observations are recorded every quarter leading to a sample of 60 observations. The first four columns report the estimated

mean, standard deviation, skewness and kurtosis. The fifth column report the first lag serial correlation and the last two columns

report sample cross-correlations of each indicator with Real GDP and NAI, providing insight on the correlation of the indicators

with the real business cycle.

3 A joint model for returns, volatilities, and economic variables

The log-returns ri,t are computed as ri,t = ln( Pi,t
Pi−1,t

), where Pi,t denotes the price at time i in period t. We

consider daily close-to-close log-return and assume a conditionally heteroskedastic process

ri,t = µ +
√

hi,t zi,t, ∀i = 1, . . . , Nt, and ∀t = 1, . . . , T, (1)

where zi,t ∼ i.i.d.(0, 1). Moreover, we denote by V[ri,t|Fi−1,t] = hi,t > 0 the conditional variance, and

by E[ri,t|Fi−1,t] = µ ∈ R the conditional expectation, where Fi−1,t is a σ-field representing the available

information up to day i− 1 during period t. Equation (1) is referred to as the return equation and will be

equivalent for all the considered models.

The conditional variance hi,t captures the total volatility at time i and is modeled using a Realized

LGARCH model with a time-varying intercept

h̆i,t = (1− α− β− γϕ)τ̆t + αr̆2
i−1,t + βh̆i−1,t + γ(x̆i−1,t − ξ), (2)

x̆i,t = ξ + ϕh̆i,t + δ(zi,t) + ui,t, (3)

where we use the notation y̆t = log yt. Equations (2) and (3) are respectively called the GARCH and the

measurement equation. We set r̆2
i,t = log(ri,t − µ)2 − z̄ and z̄ = E[log z2

i,t], which is a bias correction.3

Furthermore, ui,t ∼ i.i.d.
(
0, σ2

u
)
, with σ2

u > 0, is a sequence of random variables independent from the

residuals zi,t of equation (1). The variable xi,t denotes a realized measure of volatility and if x̆i,t is a

conditionally unbiased estimator of h̆i,t, then we have ξ = 0 and ϕ = 1. Here, δ(zi,t) is called the leverage

function, which can generate an asymmetric response in volatility to return shocks and, without loss of

generality, we have E[δ(zi,t)|Fi−1,t] = 0. A convenient choice for the leverage function is to use Hermite

polynomials.4 Given the simple structure, the model is easy to estimate and interpret. Moreover, the

3From Equation (1): log(ri,t − µ)2 = h̆i,t + log(zi,t)
2. Assuming a standard normal distribution leads to z̄ ≈ −1.2704.

4The quadratic specification δ(zt) = δ1zt + δ2(z2
t − 1) is usually used, with δ1 and δ2 ∈ R.
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fact that (1− α− β− γϕ) τ̆t is time-varying allows to capture changes in the intercept of the Realized

LGARCH model and closely relates to the local variance targeting technique for GARCH models, see

Francq et al. (2011). Models with a time-varying intercept and parameters were also analysed by Amado

and Teräsvirta (2013), and Amado and Teräsvirta (2014).

Besides, this model can be represented as a two-component model. We define ği,t as the component

capturing the short-term dynamics of volatility and τ̆t as the component representing the slow component

or the long-term variance. Writing ği,t = h̆i,t − τ̆t, the dynamics of ği,t are given by

ği,t = α(r̆2
i−1,t − τ̆t) + βği−1,t + γ(x̆i−1,t − ξ − ϕτ̆t). (4)

Hence, our specification appears to be similar in spirit to the model of Engle and Lee (1999) who

decompose the conditional variance as a sum ht = τt + gt. However, we use logarithms in such a way to

avoid negative values for ht, which will be convenient for Monte Carlo simulations.

Different approaches can be analysed to model τ̆t including Splines such as in Engle and Rangel

(2008). Our approach consists of filtering exogenous low-frequency economic variables with the recent

MIDAS tools presented in Ghysels et al. (2005)

τ̆t = m + θ
K

∑
k=1

φk(ω1, ω2)Xt−k, (5)

where Xt represents economic variables. The joint model is naturally named the Realized LGARCH-

MIDAS model. The component τ̆t remains constant between data releases and is updated every time a

new value is published. The parameter θ is useful to document counter-cyclical patterns in the secular

volatility, see Engle et al. (2013), Asgharian et al. (2013), and Conrad and Loch (2014). Notice that if θ is

equal to 0, we return to a classical Realized LGARCH model.

The number K represents the periods over which we smooth the economic variables. We choose the

same specification for all models. To the best of our knowledge, there is no efficient procedure on model

selection allowing to use the usual information criterion with our new model. It could be argued that

since inference relies on standard QMLE, classical model selection tools could be used. Nonetheless, it

would imply testing a very large amount of different models, searching for the optimal amount of lags in

the filter at the appropriate sampling frequency for the exogenous data. Instead, we pick a specification,

i.e. K=12 and quarterly data, that has proved to be successful in the literature for similar problems, see

for instance Conrad and Loch (2014).

The filter φk is parametrized with a Beta lag polynomial structure5

φk(ω1, ω2) =
(k/(K + 1))ω1−1(1− k/(K + 1))ω2−1

∑K
j=1(j/(K + 1))ω1−1(1− j/(K + 1))ω2−1

, with
K

∑
k=1

φk(ω1, ω2) = 1,

where ω1, ω2 > 0, 0 < k
K+1 < 1, and φk ≥ 0 for k = 1, . . . , K. Its shape is controlled by the coefficients

ω1 and ω2. The Beta lag polynomial structure is very flexible for modeling different weighting schemes,

5Ghysels et al. (2005) suggest different filters for the implementation of MIDAS techniques.
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although limited to uni-modal shapes.6 The restriction ω1 = 1 and ω2 > 1 ensures a decaying pattern in

the filter with maximum weight at the observation of the last period.

The parameter space is given by Θ = (µ, ξ, α, β, γ, ϕ, δ1, δ2, m, θ, ω2) with the following conditions

on the parameters: µ and ξ ∈ R, α, β, γ and ϕ > 0 with α + β + γϕ < 1, δ1, δ2 and m ∈ R, and θ

and ω2 > 0. The parameters of the Realized LGARCH-MIDAS are estimated using Quasi-Maximum

Likelihood (henceforth QMLE – see Bollerslev and Wooldridge (1992)). Consistently with the literature

(see Engle (2002), Hansen et al. (2012), Hansen and Huang (2015) and Vander Elst (2015)), we use a

Gaussian distribution for our QMLE and the log-likelihood function to be maximized is given by 7

l(r, x; Θ) = −1
2

T

∑
t=1

Nt

∑
i=1

[2 log(2π) + log(hi,t) + (ri,t − µ)2/hi,t + log(σ2
u) + u2

i,t/σ2
u ].

Before analysing some estimation results, we make the following remark. The fact that realized measures

of volatility are included in the GARCH equation is known to improve greatly the performances of

models in terms of forecasting. Nonetheless, the advantages are only striking for short-term horizon

forecasts calling for additional refinements of the current models. Using a time varying intercept in the

model is expected to improve the longer horizons forecasts as the intercept will adapt automatically to

the current market conditions. Nonetheless, it could be argued that using a short rolling-window with

the Realized LGARCH model could glean more reactive forecasts and lead to equivalent results, the cost

being a smaller sample to estimate the model. The goodness of the Realized LGARCH-MIDAS lies in the

fact that all the observations are used while an automated procedure allows for data-driven changes in

the long-term volatility.

Table 3 contains detailed estimation results for the Realized LGARCH-MIDAS implemented with

nominal corporate profits. Additionally, we provide in Figure 1 the volatility for the S&P500 tracker

(SPY) estimated from the Realized LGARCH-MIDAS and implemented with the 6 different economic

indicators.

The most striking observation from Table 3 concerns the parameter α, which is systematically found to

be close to zero. This feature has been documented by Hansen et al. (2012) who pointed out that squared

returns are not useful when realized measures of volatility are used in the model.

Second, the intercept parameter ξ of the measurement equation is negative for all the stocks suggesting

that the x̆i,t is not a conditionally unbiased estimator of h̆i,t. One of the reason relates to the use of

logarithmic volatilities and was documented in Hansen and Huang (2015) and Vander Elst (2015).

It is noteworthy to mention that the parameter ϕ is on average close to 1 suggesting that the differences

between the conditional and the realized volatility are actually captured by the intercept. The coefficients

δ1 and δ2 of the leverage function have the expected sign and the only stocks to produce counter

6We refer the reader to Ghysels et al. (2006) for further details regarding the patterns one can obtain with the Beta lag structure.
7One could criticize our choice of the Gaussian distribution, but we can justified it by two arguments. On the one hand, it

is well known that a conditional Gaussian model can display unconditional heavy tails because of changes in the volatility. On

the other hand, Andersen, Bollerslev, Diebold and Ebens (2001) pointed out that log-returns standardized by realized volatility

measures are close to Gaussian.
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intuitive results are BSX and GIS. Additionally, the parameter θ is negative for all stocks (except for

VLO) which confirms the counter-cyclical impact of nominal corporate profits, i.e. if profits increase, one

expects positive returns and a decline in the long-run volatility. Finally, the constraint on the parameters

π = α + β + γϕ < 1 turns out to be respected for all stocks. Nevertheless, the element π that represents

the persistence of the short-term dynamics ği,t is contained in the interval [0.95; 1] for most of the stocks

pointing to potentially long-memory features.

Two observations from Figure 1 close this section. First, a careful visual inspection of the plots enables

us to see that the choice of the economic indicator has almost no impact on the in-sample volatility paths.

The differences will become clearer when forecasting volatility or conditional VaR. Second, it appears that

the long-run volatility component implied real GDP growth, industrial production growth, real business

cycles (NAI) and new orders is slightly lagging the total volatility process. On the contrary, nominal

corporate profits seem to provide a contemporaneous component while term spreads clearly generate a

leading and smoother long-run component.

4 Forecasting methodology

This section provides details on the methodology used to produce the different forecasts. We compare

8 different models, the Realized LGARCH-MIDAS model with the 6 different economic indicators

separately, the Realized LGARCH, and the GARCH(1,1). The Realized LGARCH-MIDAS is specified

using K = 12 lags of quarterly data, i.e. 3 years of variables to filter the long-term component of the

model. The relevance of our approach is confirmed by the results in Section 5. For this section, we will

use the notation hi+k,t|i = E
[

hi+k,t|Fi,t

]
.8

4.1 Conditional volatility forecasting

We conduct a pseudo out-of-sample forecasting exercise and compare the precision of the 8 competing

models for forecasts ranging from 1 day to 8 weeks (40 days) ahead. The Realized LGARCH-MIDAS

models are implemented on the basis of an expanding window and the initial sample covers the period

from January 4, 2000 to December 26, 2003 (i.e. 1000 observations). On the contrary, the Realized LGARCH

and the GARCH(1,1) are implemented using a rolling-window containing 4 years of data, i.e. 1000

observations. The two benchmark models could also be implemented using an expanding window but it

would probably lead to less accurate forecasts due to possible changes in the parameters.

Since the Realized LGARCH-MIDAS is a complete model, we can construct multi-step ahead forecasts

for the latent volatility process. Iterative forecasts are constructed from the model for the k-step ahead

observation h̆i+k,t = ği+k,t + τ̆t. The total log-volatility forecast is composed of two elements that will be

treated separately. On the one hand, τ̆t is considered as a random walk and will be regarded as constant

8For the sake of simplicity, we omit the fact that if i + k > Nt, the volatility falls in the next period t + 1 and we will still write

forecasts as hi+k,t|i .
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Table 3: Estimation results for the Realized LGARCH-MIDAS with nominal corporate profits.

α β γ ξ ϕ δ1 δ2 θ σ2
u π Av.ğ

AA 0.02 0.57 0.36 −0.50 1.03 −0.06 0.07 −0.03 0.15 0.95 −0.07

ABT 0.01 0.61 0.36 −0.18 0.95 −0.04 0.05 −0.04 0.18 0.96 −0.04

AES 0.01 0.56 0.48 −0.13 0.82 −0.06 0.05 −0.05 0.26 0.96 −0.07

AIG 0.01 0.44 0.60 −0.32 0.86 −0.04 0.05 −0.02 0.22 0.97 −0.18

AKS 0.02 0.65 0.22 −1.16 1.23 −0.05 0.09 −0.01 0.32 0.94 −0.08

AMD 0.02 0.59 0.32 −0.74 1.05 −0.02 0.03 −0.03 0.19 0.95 −0.10

AAPL 0.02 0.50 0.43 −0.57 1.00 −0.06 0.01 −0.04 0.21 0.95 −0.16

AXP 0.01 0.51 0.44 −0.38 0.99 −0.05 0.07 −0.05 0.17 0.96 −0.05

BA 0.01 0.55 0.40 −0.38 0.97 −0.04 0.07 −0.03 0.16 0.95 −0.02

BAC 0.02 0.41 0.58 −0.35 0.92 −0.06 0.05 −0.05 0.18 0.97 −0.08

BMY 0.01 0.59 0.34 −0.32 1.00 −0.05 0.04 −0.04 0.21 0.94 −0.07

BSX 0.02 0.72 0.21 −0.56 1.04 0.01 0.08 −0.03 0.29 0.96 −0.14

C 0.03 0.44 0.54 −0.25 0.91 −0.07 0.07 −0.05 0.17 0.96 −0.10

CAG 0.00 0.54 0.43 −0.17 0.87 −0.04 0.06 −0.04 0.24 0.92 −0.01

CAT 0.01 0.52 0.37 −0.64 1.13 −0.05 0.05 −0.02 0.16 0.95 −0.04

CHK 0.02 0.63 0.31 −0.43 0.99 −0.06 0.09 −0.03 0.26 0.96 −0.09

CSX 0.01 0.63 0.31 −0.50 1.03 −0.03 0.08 −0.03 0.19 0.96 −0.03

D 0.02 0.56 0.34 −0.19 1.09 −0.05 0.06 −0.03 0.19 0.95 −0.06

DD 0.01 0.51 0.47 −0.16 0.93 −0.06 0.05 −0.04 0.15 0.95 −0.03

DIS 0.01 0.55 0.42 −0.29 0.93 −0.06 0.05 −0.04 0.17 0.95 −0.05

DOW 0.01 0.62 0.37 −0.28 0.91 −0.04 0.06 −0.03 0.18 0.97 −0.06

EMC 0.02 0.54 0.47 −0.09 0.84 −0.04 0.04 −0.06 0.17 0.95 −0.08

FCX 0.02 0.58 0.33 −0.73 1.07 −0.07 0.08 −0.02 0.20 0.95 −0.04

GE 0.02 0.50 0.46 −0.29 0.96 −0.05 0.05 −0.05 0.17 0.96 −0.05

GIS 0.01 0.54 0.34 −0.20 1.12 0.00 0.05 −0.03 0.20 0.93 −0.03

GLW 0.02 0.51 0.44 −0.45 0.95 −0.06 0.08 −0.04 0.19 0.95 −0.08

HAL 0.02 0.60 0.39 −0.11 0.87 −0.07 0.02 −0.04 0.16 0.96 −0.09

HD 0.02 0.49 0.53 −0.14 0.83 −0.03 0.03 −0.05 0.16 0.94 −0.04

IBM 0.01 0.48 0.49 −0.29 0.93 −0.06 0.05 −0.04 0.15 0.95 −0.04

INTC 0.02 0.44 0.57 −0.23 0.86 −0.04 0.02 −0.05 0.13 0.94 −0.02

JCP 0.01 0.60 0.32 −0.67 1.10 −0.04 0.09 −0.03 0.21 0.95 −0.02

JNJ 0.02 0.58 0.39 −0.15 0.94 −0.03 0.06 −0.04 0.17 0.97 −0.12

JPM 0.02 0.46 0.50 −0.29 0.94 −0.06 0.07 −0.06 0.16 0.95 −0.08

KEY 0.03 0.55 0.44 −0.21 0.92 −0.03 0.07 −0.04 0.22 0.98 −0.18

KO 0.01 0.54 0.45 −0.15 0.90 −0.04 0.06 −0.04 0.16 0.96 −0.05

MCD 0.01 0.65 0.30 −0.28 1.03 −0.05 0.08 −0.03 0.18 0.97 −0.06

MDT 0.00 0.52 0.37 −0.48 1.11 −0.04 0.04 −0.03 0.20 0.93 −0.02

MMM 0.01 0.53 0.37 −0.37 1.09 −0.04 0.05 −0.03 0.18 0.94 −0.03

MO 0.01 0.59 0.43 −0.24 0.81 −0.05 0.07 −0.05 0.23 0.94 −0.02

MSFT 0.01 0.46 0.54 −0.26 0.87 −0.03 0.03 −0.05 0.14 0.93 −0.03

NBR 0.02 0.62 0.32 −0.50 1.03 −0.06 0.06 −0.02 0.16 0.97 −0.04

NEM 0.01 0.59 0.31 −0.73 1.15 −0.04 0.08 −0.02 0.14 0.95 −0.03

ORCL 0.02 0.46 0.54 −0.17 0.87 −0.05 0.06 −0.04 0.16 0.94 −0.05

PFE 0.02 0.54 0.37 −0.32 1.03 −0.05 0.05 −0.03 0.16 0.94 −0.06

SLB 0.02 0.57 0.36 −0.41 1.06 −0.06 0.05 −0.02 0.13 0.96 −0.04

SPY 0.01 0.42 0.51 −0.50 1.00 −0.13 0.03 −0.04 0.15 0.95 −0.04

TJX 0.01 0.55 0.37 −0.28 0.99 −0.01 0.08 −0.04 0.21 0.92 −0.01

USB 0.01 0.50 0.51 −0.11 0.89 −0.04 0.08 −0.05 0.21 0.96 −0.06

UTX 0.01 0.53 0.48 −0.24 0.86 −0.05 0.02 −0.04 0.18 0.95 −0.01

VLO 0.02 0.63 0.30 −0.75 1.10 −0.05 0.09 0.00 0.20 0.97 −0.06

WFC 0.02 0.53 0.48 −0.16 0.90 −0.05 0.06 −0.05 0.17 0.98 −0.11

WMT 0.02 0.60 0.34 −0.21 1.01 −0.03 0.06 −0.04 0.15 0.96 −0.05

WY 0.01 0.59 0.36 −0.39 1.01 −0.04 0.07 −0.03 0.16 0.96 −0.05

XOM 0.01 0.51 0.41 −0.28 1.05 −0.10 0.05 −0.03 0.14 0.95 −0.02

XRX 0.03 0.62 0.36 −0.22 0.81 −0.02 0.05 −0.06 0.25 0.95 −0.17

Estimation results of the parameters α, β, γ, ξ, ϕ, δ1, δ2, θ for the 55 stocks of our dataset over the full sample covering the period

from January 4, 2000 to March 30, 2012. The elements π = α + β + γϕ and Av.ğ represent the persistence and the sample mean of

the dynamic component, respectively.
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Figure 1: The 6 figures provide the volatility path estimated from the Realized LGARCH-MIDAS model for SPY and implemented

with the 6 different considered indicators (sample for returns: January 4, 2000 to March 30, 2012 – sample for economic variables:

1997(Q1) to 2011(Q4)). The grey line represents the annualized conditional volatility hi,t and the black thick line, the annualized

component τi,t.
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for all horizons even though some dates may fall in the next period. Different approaches could be used

to produce more dynamic forecasts but this is out of the scope of this work. The random walk approach

is expected to generate more persistent forecasts. In contrasts, a classical time series model, like an AR(1)

process, is expected to imply quicker mean-reversion in the forecasts than the random walk. Our results

in Section 5 support this naı̈ve procedure.

On the other hand, forecasts for ği+k,t can be produced easily by using iteratively the model for the

k-step ahead observation

ği+k,t = α(r̆2
i+k−1,t − τ̆t) + βği+k−1,t + γ(x̆i+k−1,t − ξ − ϕτ̆t), (6)

x̆i+k,t = ξ + ϕh̆i+k,t + δ(zi+k,t) + ui+k,t, (7)

where δ(zi+k,t) + ui+k,t is a martingale difference sequence. By re-arranging the different variables, we

obtain a zero-mean AR(1) representation for the dynamic component

ği+k,t = A ği+k−1,t + B εi+k−1,t, (8)

where A = α + β + γϕ, B =
[
γ γ α

]
, and εi+k−1,t =

[
δ(zi+k−1,t) ui+k−1,t log(zi+k−1,t)

2 − z̄
]′

.

Moreover, B εi+k−1,t is also a martingale difference sequence. Hence, the k-step ahead forecast can easily

be computed as h̆i+k,t|i = ği+k,t|i + τ̆t. However, by Jensen’s inequality, the use of logarithms implies that

E[log hi+k,t|Fi−1,t] ≤ log E[hi+k,t|Fi−1,t]. We cope with this issue by using Monte Carlo simulations to

compute direct forecasts for hi+k,t. The residuals of the model can be generated from

ζ
(n)
i+k,t :=

 z(n)i+k,t

u(n)
i+k,t

 ∼ N2

0,

 1 0

0 σ2
u

 ,

where k = 1, ..., H, n = 1, . . . , N and σ2
u > 0. Using the sequence of simulated residuals, a path for the

volatility for the next H steps can be constructed by using equation (8) and h̆(n)i+k,t = ğ(n)i+k,t + τ̆t. Consistent

estimates of hi+k,t can be obtained at each horizon from 1
N ∑N

n=1 exp(h̆(n)i+k,t). An equivalent procedure

is applied to the Realized LGARCH following insights from Hansen et al. (2014) and we use the usual

recursions to produce forecasts for the GARCH(1,1). In our procedure, we will use N = 1000 simulations

for each horizon.

4.2 Conditional density and VaR forecasting

The Realized LGARCH-MIDAS has the flexibility to provide forecasts for the full conditional density

of returns from which the conditional VaR can be extracted. Because returns are not independent and

volatility is time-varying, there is generally no analytical expression for the multi-step ahead conditional

density and numerical techniques have to be used. In the context of multi-period VaR forecasting,

Christoffersen (2003) suggested to use either standard Monte Carlo simulations or filtered historical

simulations. Our approach relies on Monte Carlo simulations. The conditional distribution of multi-step

ahead returns comes as a by-product of the procedure described in Subsection 4.1. Simulations for the
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volatility can be obtained using equation (8) and h̆i+k,t = ği+k,t + τ̆t. Denoting the k-step ahead n-th

simulated volatility by h(n)i+k,t = exp(h̆(n)i+k,t), we obtain

r(n)i+k,t = µ +

√
h(n)i+k,t z(n)i+k,t, k = 1, . . . , H, and n = 1, . . . , N. (9)

From the series of simulated daily log-returns, we can estimate the conditional density and extract

conditional moments and quantiles of interest such as the VaR. Moreover, the simulated series allow

to conveniently compute returns over a longer period by aggregating the returns at different horizons.

We denote the cumulative returns as r(n),hor
i,t = ∑hor

d=1 r(n)i+d,t and obtain N vectors of returns with horizons

ranging from 1 to 40 days. For instance, for hor = 2, we have that r(n),2i,t = r(n)i+1,t + r(n)i+2,t. Those series

constitute the basis to describe the conditional density of returns on longer horizons and will be used to

compute the VaR over several periods. An equivalent procedure is applied to the Realized LGARCH and

the GARCH(1,1) models which are easy to simulate.

5 Results

We will make repeated use of the MCS of Hansen et al. (2011). The MCS is a convenient tool to statistically

compare many competing models. It relies on recursive testing and elimination of poor performing

models providing a data-driven optimal reduced set of models that are statistically not distinguishable in

terms of forecasting performances. The analysis is performed for different loss functions for all stocks

and we report the frequencies at which each model was included in the MCS at 5% level. The MCS

procedure is implemented with 10, 000 bootstrap replications and using a 5% level of confidence. We

evaluate the quality of the forecasts using 5-min sub-sampled realized variances as proxy for the true

latent conditional volatility.

5.1 Conditional volatility forecasts evaluation

We evaluate the volatility forecasts using two approaches. First, we provide the R2 from simple Mincer-

Zarnowitz regressions, see Mincer and Zarnowitz (1969), computed from

ssRV5m
h+i,t = α + β hMh+i,t|i + εi,t, (10)

where hMh+i,t|i denotes the h-step ahead forecasts for model M. Models providing accurate forecasts

should be characterized by high R2 pointing to their ability to explain the variability of the conditional

volatility proxy. Additionally, we compare the forecasts at different horizons using the MSE loss function

L(ssRV5m
h+i,t, hMh+i,t|i) = (hMh+i,t|i − ssRV5m

h+i,t)
2,

and the QLIKE loss function studied by Patton (2011) and which is defined as

L(ssRV5m
h+i,t, hMh+i,t|i) = log hMh+i,t|i +

ssRV5m
h+i,t

hMh+i,t|i
.
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Both functions are shown by Patton (2011) to be robust and are used as input for the MCS at the different

horizons considered. A complete review of useful techniques to compare volatility and correlation

forecasts is provided by Patton and Sheppard (2009) and it includes a section covering loss functions in

more details.

Figure 2 provides the average R2 for the different models computed from the 55 stocks. We observe

from Figure 2 that the Realized LGARCH provides more accurate forecasts for short horizons. Clearly, the

R2 computed from the Mincer-Zarnowitz regression is higher for horizons ranging from 1 to 7 days. For

longer periods, the R2 of the different models decreases which visually confirms that it is more difficult

to forecast at longer horizons. Moreover, the Realized LGARCH model curve seems to decrease at a

faster rate and displays strong convexity. In contrast, the Realized LGARCH-MIDAS has slower linear

decay and this points to higher performances to forecast volatility at longer horizons. In fact, the Realized

LGARCH-MIDAS outperforms the competing models for most of the horizons beyond 5 days. This is

especially the case for nominal corporate profits and term spreads that provide uniformly more precise

forecasts from horizon 5-7 to 40 steps ahead. The Realized LGARCH-MIDAS implemented with nominal

corporate profits provides clearly the most impressive results. Finally, it appears that Realized LGARCH

only performs well at short horizons and is outperformed by the GARCH(1,1) for long horizons. In fact,

the GARCH(1,1) provides more accurate long-run forecasts than real GDP growth, industrial production

growth, and the real business cycle indicator NAI.

Table 4 provides the frequency at which the models are included in the MCS for different loss functions.

We display results for a few horizons ranging to 40 steps ahead on the basis of a sample covering the

period from January 4, 2000 to March 30, 2012. Panel A and B provide results for the MSE and the QLIKE

loss functions, respectively. The results also suggest that the Realized LGARCH provides more precise

forecasts at short horizons but is outperformed by the Realized LGARCH-MIDAS at longer horizons,

and in particular by the model implemented with nominal corporate profits. For both loss functions, our

model provides the best result and is most frequently included in the MCS. Notice that the GARCH(1,1) is

also often included in the MCS confirming earlier finding of Hansen and Lunde (2005) on the usefulness

of a simple GARCH(1,1) model for volatility forecasting.

5.2 Conditional density forecasts evaluation

We compare the models’ ability to forecast the conditional density using the predictive likelihood measure

studied in Amisano and Giacomini (2007) and Maheu and McCurdy (2011). We analyse the ability of the

different models to produce multi-step ahead density forecasts. Let us modify a bit our notation for the

next two subsections in order to make the presentation easier. We denote returns by rt, t = 1, ..., T and

the average predictive likelihood over the sample is computed for k ≥ 1 as

Dk =
1

T − 1000− 40 + 1

T−k

∑
t=1000+40−k

log fk (rt+k|Ft, Θ) ,
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Figure 2: Average Mincer-Zarnowitz R2 for the GARCH(1,1) (G), Realized LGARCH (RLG) and Realized LGARCH-MIDAS

(RG-M-X).
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Table 4: Model Confidence Set Results.

Horizon 1 5 10 15 20 25 30 35 40

Panel A: Volatility forecasting – Loss=MSE

G(1, 1) 0.22 0.29 0.31 0.36 0.31 0.31 0.31 0.31 0.31
RLG 0.80 0.62 0.25 0.15 0.07 0.05 0.04 0.04 0.02
RLG-M-GDP 0.13 0.07 0.04 0.05 0.07 0.11 0.09 0.07 0.07
RLG-M-IP 0.09 0.05 0.04 0.04 0.04 0.07 0.07 0.05 0.05
RLG-M-CP 0.40 0.58 0.69 0.75 0.69 0.69 0.65 0.64 0.64
RLG-M-NAI 0.07 0.07 0.02 0.04 0.02 0.02 0.02 0.00 0.00
RLG-M-NO 0.05 0.11 0.15 0.13 0.16 0.20 0.18 0.11 0.11
RLG-M-TS 0.20 0.16 0.13 0.20 0.11 0.13 0.05 0.05 0.04

Panel B: Volatility forecasting – Loss=QLIKE

G(1, 1) 0.04 0.31 0.42 0.42 0.44 0.45 0.40 0.36 0.38
RLG 0.96 0.42 0.11 0.07 0.02 0.02 0.02 0.02 0.02
RLG-M-GDP 0.04 0.07 0.04 0.02 0.02 0.02 0.04 0.04 0.04
RLG-M-IP 0.00 0.05 0.04 0.04 0.02 0.00 0.02 0.02 0.04
RLG-M-CP 0.02 0.56 0.65 0.69 0.67 0.71 0.73 0.75 0.75
RLG-M-NAI 0.04 0.07 0.04 0.04 0.04 0.04 0.04 0.04 0.04
RLG-M-NO 0.00 0.07 0.04 0.05 0.02 0.02 0.00 0.00 0.00
RLG-M-TS 0.02 0.05 0.05 0.02 0.00 0.00 0.00 0.00 0.00

Panel C: Density forecasting – Loss=-Pred. Density

G(1, 1) 0.15 0.29 0.27 0.24 0.20 0.24 0.20 0.16 0.13
RLG 0.96 0.95 0.76 0.27 0.18 0.15 0.09 0.09 0.07
RLG-M-GDP 0.15 0.47 0.44 0.33 0.24 0.20 0.16 0.15 0.09
RLG-M-IP 0.15 0.53 0.51 0.38 0.33 0.29 0.22 0.18 0.20
RLG-M-CP 0.20 0.69 0.78 0.87 0.82 0.84 0.85 0.84 0.85
RLG-M-NAI 0.16 0.60 0.53 0.35 0.22 0.25 0.16 0.15 0.09
RLG-M-NO 0.13 0.51 0.44 0.27 0.20 0.22 0.15 0.13 0.15
RLG-M-TS 0.13 0.38 0.25 0.18 0.13 0.11 0.13 0.11 0.09

Panel D: VaR forecasting – Loss=Tick Loss

G(1, 1) 0.85 0.75 0.67 0.62 0.53 0.49 0.47 0.51 0.49
RLG 0.96 0.96 0.67 0.64 0.42 0.29 0.11 0.11 0.05
RLG-M-GDP 0.78 0.78 0.62 0.47 0.49 0.33 0.33 0.27 0.22
RLG-M-IP 0.78 0.73 0.64 0.58 0.47 0.42 0.25 0.24 0.16
RLG-M-CP 0.78 0.75 0.64 0.53 0.35 0.31 0.27 0.18 0.18
RLG-M-NAI 0.58 0.44 0.25 0.24 0.16 0.13 0.13 0.13 0.09
RLG-M-NO 0.56 0.51 0.33 0.22 0.20 0.20 0.15 0.13 0.13
RLG-M-TS 0.78 0.75 0.67 0.65 0.58 0.53 0.55 0.55 0.56

MCS results for different loss functions. The entries of the table correspond to the frequency at which a model is included in the

MCS at 5%. We provide results for a few horizons ranging to 40 steps ahead on the basis of a sample covering the period from

January 4, 2000 to March 30, 2012. The pseudo out-of-sample exercise relies on a rolling window of size 1000 for the Realized

LGARCH (RLG) and the GARCH(1,1) (G(1,1)) and on an expanding window with initial sample of size 1000 for the Realized

LGARCH-MIDAS models (RLG-M-X). The abbreviations in the RLG-M-X correspond to the economic variables, see Section 2.

Panel A and B provide volatility forecasting results (MSE and QLIKE loss functions). Panel C provides results related to conditional

density forecasts while Panel D summarizes results for the VaR forecasts.
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where fk (·|Ft, Θ) denotes the k-period ahead predictive density and is evaluated at the realized return

rt+k. The numbers 1000 and 40 correspond to the initial sample size and the maximum horizon over

which forecasts are produced. It is computed for k = 1 using the Gaussian distribution and for k > 1 on

the basis of Monte Carlo simulation. It is the key input to compute the predictive likelihood and, using N

draws, it is evaluated at the observed return rt+k

fk (rt+k|Ft, Θ) ≈ 1
N

N

∑
n=1

fk

(
rt+k| µ, h(n)t+k

)
,

where h(n)t+k is simulated following the algorithm from Subsection 4.1 and fk

(
·| µ, h(n)t+k

)
is the Gaussian

distribution with mean µ and variance h(n)t+k. The intuition is that models capturing properly the data

features will produce larger values for Dk.

Figure 3 provides the sample mean of the average predictive likelihood for the competing models at

different horizons. Results confirm the findings from the previous subsection that the Realized LGARCH

is performing well at short horizons but produces poor long-run forecasts. Moreover, it appears clearly

that the Realized LGARCH-MIDAS is performing better than the other models at long horizons. In

particular, the Realized LGARCH-MIDAS implemented with nominal corporate profits provides the

most convincing results displaying a slow level of decay of the average predictive likelihood.

We use the MCS with the time series − log fk (rt+k|Ft, Θ) as input. Notice that we use a minus in

front of the log density in order to translate it to a loss function. Panel C from Table 4 contains the results

and confirms the findings from Figure 3. Again, it appears that models including economic variables

are performing very well and the Realized LGARCH-MIDAS-CP has clearly more power to forecast at

longer horizons.

5.3 Conditional VaR forecasts evaluation

We provide multi-period VaR forecasts for periods ranging from 1 day to 40 days at probability level

p = 1%. Results for multi-period VaR forecasts are analysed using the tick loss function usually employed

in conditional quantiles regressions, see Komunjer (2005). Keeping our notation from the previous

subsection, the tick loss function is defined as

TL(p, hor) =
1

T − hor− 1000 + 1

T−hor

∑
t=1000

(
p− 1{

rhor
t <VaRhor,p

t

}) (rhor
t −VaRhor,p

t

)
, (11)

where rhor
t denotes the cumulative returns over hor = 1, ..., 40 days, and is computed from daily log-

returns rhor
t = ∑hor

d=1 rt+d = ln(Pt+hor/Pt). Moreover, VaRhor,p
t denotes the VaR forecast at time t for the

period of time covering [t; t + hor]. Notice that results from this subsection should not be compared with

those presented in Subsection 5.2 because we try to forecast the VaR over a period covering several days

whereas the average predictive likelihood was informative about density forecasts quality for daily future

returns ri+k,t. Hence, even though the two problems are connected, differences in the results can appear.

Figure 4 provides the average losses at different horizons. The first observation is that the loss increases

with the length of the period over which the VaR is computed. However, the average exception rate
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Figure 3: Average predictive likelihood for the GARCH(1,1) (G), Realized LGARCH (RLG) and Realized LGARCH-MIDAS

(RG-M-X).
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remains constant and the increase in the tick loss only corresponds to larger deviations between returns

and the corresponding VaR. Moreover, it clearly appears that real GDP growth, industrial production

growth, nominal corporate profits, and term spreads provide the best results among the economic

variables. Moreover, they provide more accurate multi-period VaR forecasts than the Realized LGARCH

for horizons beyond 10-days. For shorter horizons, it is difficult to draw conclusions from these plots as

the three models seem to coincide for most of the periods. Moreover, we find that the Realized LGARCH-

MIDAS with term spreads is the most attractive model providing lower losses at long horizons. The other

models often provide close results to the GARCH(1,1) model which turns out to be a very attractive model

for VaR forecasting. Only the Realized LGARCH-MIDAS-TS systematically outperforms the GARCH(1,1).

In contrast, our models based on real business cycle indicators and new orders index provide somewhat

disappointing results and seem to be uniformly outperformed both by the Realized LGARCH and the

GARCH(1,1) models. In particular, the model based on new orders provide extremely bad results.

We use the Tick losses
(

p − 1{
rhor

t <VaRhor,p
t

}) (rhor
t − VaRhor,p

t
)

as input for the MCS to statistically

compare the ability of the models to forecast the multi-period VaR. Results are reported in Panel D of

Table 4. We find out that the Realized LGARCH model is very difficult to beat at short horizons and is

most frequently included in the model confidence set. Nonetheless, as from horizon 10, we find that both

the GARCH(1,1) and the the Realized LGARCH-MIDAS implemented with term spread are performing

equally well. From horizon 15, the Realized LGARCH-MIDAS-TS is the most attractive model to compute

multi-period ahead forecasts. The fact that models with realized measures of volatility perform well at

short horizon (e.g. 1 day) is not surprising and confirms earlier findings of Brownlees and Gallo (2009).

Nevertheless, it must be acknowledged that the GARCH(1,1) performs impressively well at long horizons

suggesting that realized measure of volatility may be only useful at short horizons.
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Figure 4: Average tick losses for the GARCH(1,1) (G), Realized LGARCH (RLG) and Realized LGARCH-MIDAS (RG-M-X).
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6 Conclusion and outlook on future research

In this paper, we investigate the forecasting power of models relying on both realized measures of

volatility and exogenous economic indicators. We analyse their ability to forecast the conditional volatility

of returns as well as their full conditional density, and the conditional multi-period VaR. Our framework

relies on a refined extension of the Realized LGARCH model and includes a time-varying intercept that

accommodates for changes in the long-run volatility of the returns. Hence, it allows macroeconomic

information to be included directly into the estimation and forecast procedures. We use MIDAS techniques

to filter the low-frequency data and call our model the Realized LGARCH-MIDAS model. We perform an

analysis on a panel of 55 U.S. stocks relying on more than 10 years of high-frequency data, and using 6

broad economic indicators of the U.S. economy including real GDP growth, industrial production growth,

nominal corporate profits growth, a real business cycle indicators, a new orders index, and term spreads.

We find that the Realized LGARCH-MIDAS model implemented with nominal corporate profits and

term spreads provides the best results. It outperforms the Realized LGARCH and the GARCH(1,1) for

horizons beyond two business weeks in terms of volatility, conditional density and VaR forecasting. Our

model is outperformed by the Realized LGARCH only for short horizons. This finding advocates in favor

of our model to compute the regulatory 10 and 15 days-ahead VaR, which are required for most of the

financial institutions. We provide more empirical evidence about the usefulness of the models and their

good performance by using the MCS to compare a set of loss functions capturing important practical

features such as density forecasts precision.

The focus of this paper has been set on comparing many stocks rather than many possible specifi-

cations, and it produced already interesting and intriguing results. Nonetheless, there is clear room for

further exploration of the setting and many things could be done in terms of variable selection, specifi-

cation of the model, distributional assumptions and variables combinations. For instance, our working

model could be generalized to more flexible distributions and exploring the impact of non-Gaussian inno-

vation distributions constitutes probably a very attractive task for VaR. However if one wishes to perform

model selection, try out different distributions or variable combinations, the computational burden could

possibly become quickly unmanageable. Moreover, one could as well investigate the impact of using

higher-frequencies to update the model more frequently. The recent techniques related to nowcasting could

be used to provide more timely updates of the infrequently released economic variables and produce

more reactive forecasts. Ideally, sub-samples should be used to test for breaks in macro and financial

series along with further investigation for spurious correlations. An other interesting development would

be to link each asset with its own series of profits. These are just some of the research avenues which are

left for future work.
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