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We present theoretical studies on the scattering resonances in rotationally inelastic collisions of NH3
and ND3 molecules with H2 molecules. We use the quantum close-coupling method to compute
state-to-state integral and differential cross sections for the NH3/ND3–H2 system for collision ener-
gies between 5 and 70 cm−1, using a previously reported potential energy surface [Maret et al.,
Mon. Not. R. Astron. Soc. 399, 425 (2009)]. We identify the resonances as shape or Feshbach
resonances. To analyze these, we use an adiabatic bender model, as well as examination at the
scattering wave functions and lifetimes. The strength and width of the resonance peaks suggest that
they could be observed in a crossed molecular beam experiment involving a Stark-decelerated NH3
beam. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927074]

I. INTRODUCTION

Resonances are among the most intriguing phenomena in
scattering experiments.1–4 In inelastic scattering, a resonance
corresponds to formation of a quasibound level during the
collision5,6 and usually manifests as structure in the energy
dependence of cross sections.1 We use the term “shape” reso-
nance if the quasibound level correlates with the initial or final
monomer levels of the colliding partners, or “Feshbach” reso-
nance, if the quasibound level correlates with a monomer level
energetically inaccessible (“closed”) at the collision energy in
question.2

An accurate potential energy surface (PES) is the founda-
tion for the theoretical study of collision dynamics. Although
bound van der Waals states of the two collision partners depend
mainly upon the attractive part of the PES, quasibound levels
will be sensitive also to the repulsive portion of the PES. Since
the position and shape of scattering resonances is a distinctive
fingerprint of the PES,7,8 agreement with experiment gives
confidence in the subsequent use of a PES in the prediction
of rate coefficients and other kinetic quantities difficult or
impossible to measure.

The observation of resonances in crossed molecular beam
experiments requires low collision energy and high energy
resolution, as well as high initial-state purity.9–11 Scattering
resonances have been observed in mostly atomic, elastic colli-
sions12–14 and in the reactive F + HD → HF + D system.15

Recently, in a merged-beam geometry, shape (also called
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orbiting) resonances were seen in Penning ionization collisions
of metastable helium atoms with argon atoms or H2 molecules
at collision energies as low as 0.01 K.16,17 Both shape and Fesh-
bach resonances were observed in rotationally inelastic atom-
molecule and molecule-molecule collisions.18–21 Chefdeville
et al.18–20 investigated the scattering of H2 by CO and O2,
while Bergeat et al.21 studied CO–He scattering. In these
experiments, the authors used Even–Lavie pulsed valves22 to
cool the molecular beams. By crossing the two beams at a small
angle, they were able to lower the collision energy down to
3.5 cm−1.

For molecules with nearly degenerate pairs of levels (such
as the Λ-doublets of OH and the inversion doublets of NH3)
and/or multiple nuclear spin symmetries, standard cooling
techniques are insufficient to produce a beam with popula-
tion restricted to a single level. For these molecules, Stark
deceleration23,24 allows the production of cold beams confined
to a single state. Scanning the collision energy would then
provide an ideal means to search for resonances. Inspired
by this possibility, our groups have searched theoretically
for scattering resonances in the OH–He/Ne and the NH3–He
systems in calculations based on state-of-the-art PESs.10,11

Both these systems manifest significant shape and Feshbach
resonances. The features are narrow, with widths of ∼1 cm−1.
This poses a significant challenge to experiment.

Rotationally inelastic scattering of NH3/ND3 with H2 has
received considerable interest, not least because of the astro-
physical importance.25–35 Earlier work has focused on colli-
sions out of the ground rotational level of ortho-NH3, which
is not suitable for Stark selection. Strong resonance peaks do
appear in the computed energy dependence of state-to-state
cross sections (see Fig. 2 in Ref. 29). Inelastic collisions of ND3
with H2 were investigated experimentally and theoretically by
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Tkác̆ et al.,31 with special attention for the hexapole-selected
11− state of ND3 that is a candidate for Stark deceleration (see
Sec. II for the notation of the rotational levels).

In the present work, we study in detail resonances in
the state-to-state cross sections of NH3 and ND3 out of this
11− level, using the PES computed by Maret et al.29 This
PES has been employed in a few studies of collision dy-
namics.29,30,36,37 We will show that this system has strong and
broad resonance peaks along with relatively large state-to-state
cross sections. In addition, these resonances are well suited for
investigation with crossed molecular beams.

This paper is organized as follows: in Sec. II, we briefly
present the theory for rotationally inelastic scattering between
a symmetric top and a closed-shell (1Σ+) diatomic molecule
and describe our scattering calculations. In Sec. III, we intro-
duce the PESs used in our calculations. We describe in Sec. IV
the scattering resonances, both shape and Feshbach, that we
found. To analyze these, we use the adiabatic bender model38,39

as well as examination of the scattering wave function.11 A
discussion in Sec. V concludes.

II. SCATTERING CALCULATIONS

We label the rotational levels of the NH3 and ND3 sym-
metric top molecules as j k±, where j is the total angular
momentum of the molecule, k is the projection of j on the
C3 axis, and ± is the umbrella inversion symmetry.40 The NH3
and ND3 molecules have, respectively, two (para and ortho)
and three (E, A1, and A2) nuclear spin modifications that do
not interconvert during inelastic scattering.40,41 The para or
E nuclear spin rotational levels include k-stacks with k not
a multiple of three, in particular the 11− level which is the
candidate for Stark deceleration. For reference, we show in
Fig. 1 the lower rotational levels of para-NH3 and ND3 (E
nuclear spin symmetry).

We refer the reader to several previous papers for the
full quantum description of inelastic collisions between a
symmetric top molecule and a diatomic molecule in a 1Σ

electronic state.26–28,42 We approximate the inversion doublet
wave functions of NH3/ND3 as even and odd combinations of
the two rigid equilibrium structures multiplied by rigid rotor
wave functions, namely, | j kmε⟩ = 2−1/2[| j km⟩ + ε| j k,−m⟩].

FIG. 1. Rotational level diagrams of (a) para-NH3 and (b) ND3 (E nuclear
spin modification). The level 11− can be selected with a Stark decelerator and
is labeled in red. The inversion doublets of ND3 cannot be distinguished in
the diagram due to the small inversion splitting.

The umbrella inversion symmetry is −ε(−1) j. Previous inves-
tigations of inelastic scattering in the NH3/ND3–He and NH3/

ND3–Ar systems11,43,44 showed that this approximation gives
excellent agreement with a more complete model based on full
wave functions for the umbrella vibration–inversion.

Close-coupling calculations were performed both with the
HIBRIDON suite of programs45 and with a set of scattering pro-
grams developed in Nijmegen.10,11,44,46 The availability of two
totally distinct codes provided an ideal check of the accuracy
and convergence of our calculations. We included in the close-
coupling channel basis all para rotational levels of NH3 with
j ≤ 6 or E rotational levels of ND3 with j ≤ 7. For collisions
with para-H2, the j = 0 and j = 2 levels of H2 are included,
while for ortho-H2, only the j = 1 level. The maximum total
angular momentum in the calculations was J = 20 for total
energies <70 cm−1. To determine the energy levels of iso-
lated NH3, we used rotational constants B = 9.9402 cm−1 and
C = 6.3044 cm−1,47 while for ND3, we used B = 5.1428 cm−1

and C = 3.1246 cm−1.48 We assume an inversion splitting of
0.7903 and 0.053 cm−1 for NH3 and ND3, respectively, inde-
pendent of j and k.48–50 More details on the calculation of
differential cross sections for molecule-molecule systems are
contained in the supplementary material.51

III. POTENTIAL ENERGY SURFACES

To describe the NH3–H2 potential energy surface, we use
the coordinate system defined in Fig. 2 of Ref. 28. The z
axis lies along the three-fold symmetry axis of NH3, and the
Jacobian vector R that connects the centers of mass of the
molecules has the polar angles (θ1, φ1). The orientation of the
H2 bond axis relative to this frame is defined by the angles
(θ2, φ2). The interaction potential can be expanded either in
Clebsch-Gordan coupled products of angular basis functions

V (R, θ1, φ1, θ2, φ2) =


l1µ1l2l

Vl1µ1l2l(R)

m1

⟨l1m1, l2,−m1|l0⟩

×Dl1∗
m1µ1(0,−θ1,−φ1)

×Dl2∗
−m1,0

(φ2, θ2,0) (1)

or in an uncoupled product basis

V (R, θ1, φ1, θ2, φ2) =


l1µ1l2m1

Vl1µ1l2m1(R)Dl1∗
m1µ1(0,−θ1,−φ1)

×Dl2∗
−m1,0

(φ2, θ2,0). (2)

In the above equations, Vl1µ1l2l and Vl1µ1l2m1 are expansion
coefficients, ⟨l1m1, l2,−m1|l0⟩ is a Clebsch-Gordan coefficient,
and Dl

mµ are rotation matrix elements.52 The advantage of
using the coupled expansion basis is that it is invariant under
overall rotation of the system, so that the same expansion
coefficients Vl1µ1l2l can be used independently of the orienta-
tion of the frame in which the potential is expanded. Another
frequently adopted angular expansion of the PES53 uses a
different set of angles to define the orientation of the molecules,
but is in practice equivalent to Eq. (1).

We used the CCSD(T)/aug-cc-pVDZ PES with correc-
tions from CCSD(T)/CBS calculations constructed by Maret
et al.29 We obtained from the authors the potential fitted by the
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expansions of both Eqs. (1) and (2). We performed scattering
calculations with both PESs. Because of the sensitivity of
resonances to the underlying PES, the two expansions predict a
slightly different resonance structure, as displayed in Fig. S1 of
the supplementary material.51 We recommend Eq. (1) for two
reasons: (a) when similar terms in the two angular expansions
are retained, the root mean square deviation (RMSD) is smaller
[for example, at R = 5 bohr, the potential fitted to a 120-term
expansion with Eq. (1) and a 167-term expansion with Eq. (2)
has RMSD of 0.74 and 1.20 cm−1, respectively] and (b) the
evaluation of the potential matrix elements is easier.

To describe ND3–H2 collisions, the NH3–H2 PES needs to
be modified to take into account the shift δCOM of the center of
mass. From the NH3 geometry used in Ref. 29 (rNH=1.9512 a0
and ∠HNH = 107.38◦), we have δCOM = 0.088 530 a0.

The ab initio NH3–H2 PES was determined on a grid of
29 values of R. At each value of R, 3000 orientations were
used for the CCSD(T)/aug-cc-pVDZ PES but only 1000 for
the CCSD(T)/CBS calculations. For ND3–H2, for each value
of the NH3–H2 angle θ1 (see Fig. 2 of Ref. 28), we introduce a
corresponding θ ′1 defined by trigonometry as

θ ′1 = arccos
R′2 + δ2

COM − R2

2δCOMR′
, (3)

where R′ is the intermolecular distance chosen to fit the
ND3–H2 PES, and R is the corresponding intermolecular dis-
tance for NH3–H2 calculated from

R = −δCOM cos θ1 +


R′2 − δ2

COMsin2θ1. (4)

We used these relations to transform the orientations
(θ1, φ1, θ2, φ2) for NH3–H2 to (θ ′1, φ1, θ2, φ2) for ND3–H2 for
each R′ (from the same R grid used in the NH3–H2 calculations)
and estimated the interaction energy for that geometry by
splining the R dependence of the NH3–H2 interaction energies
(ab initio points from Ref. 29) at this orientation. We then fit the
ND3–H2 interaction energies with Eq. (1) and applied the long-
range extrapolation using the method described in Ref. 29.

Figure 2 shows a comparison of R-dependence of the
larger angular expansion coefficients for the NH3 and ND3

FIG. 2. Comparison between the larger expansion coefficients Vl1µ1l2l [as
defined in Eq. (1), only terms with non-negative µ1 plotted due to symmetry
properties discussed in Ref. 42] as a function of intermolecular distance, R,
of the NH3–H2 PES described in Ref. 28 (dotted lines) and the ND3–H2 PES
described in the present work (solid lines).

PESs. We see that the two PESs are quite similar, with three
of the five larger expansion coefficients virtually identical and
the other two showing only slight differences. This is not
unreasonable given the small shift in the COM. The two expan-
sion coefficients showing differences have significant contribu-
tions from multipole-multipole electrostatic interactions, with
V1023 associated with the NH3/ND3-dipole–H2-quadrupole in-
teraction and V2024 with the quadrupole-quadrupole inter-
action.54

IV. RESULTS AND DISCUSSION

A. Collisions between NH3 and para-H2

1. Overview of the resonances

We show in Fig. 3 the energy dependence of the state-to-
state integral cross sections for transitions from the 11− initial
level at collision energies below 70 cm−1. Below the threshold
for rotational excitation, transition between the inversion dou-
blets (11− → 11+) is the only inelastic process allowed. We
observe rich resonance structure, with both broad and sharp
peaks. Because of the deep well of the NH3–H2 PES
[De = 267 cm−1 (Ref. 29)], we do not observe distinct groups
of resonances associated with the opening of a particular
channel, as are seen in molecule–rare gas systems.10,11 We will
show in Sec. IV A 2 that the resonances seen in Fig. 3 are
Feshbach resonances. The broad peaks, a few wavenumbers
in width and intensity more than three times the background
inelastic cross sections, are particularly promising prospects
for observation in a crossed beam experiment.

The 11− → 21+ transition also shows several resonances
with magnitudes twice that of the background cross section.
The analysis in Sec. IV A 3 reveals that these are shape reso-
nances corresponding to quasibound states associated with
the 21+ final level. Similar to the 11− → 21+ transition, the
cross section for the 11− → 21− transition also displays a few
shape resonances at similar collision energies, though smaller
in magnitude. The resonances in the 11− → 22± transitions
have contributions from both shape resonances, and Feshbach

FIG. 3. State-to-state integral cross section as a function of collision energy
for transition from the 11− level of para-NH3 in collisions with para-H2 in
the j = 0 level. The curves are labelled by the final rotational level.
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resonances caused by the quasibound states associated with the
21± levels.

The relative magnitudes of the state-to-state cross sec-
tions are significantly different for the NH3–H2 and NH3–He
systems. In particular, the transition to the 21+ level is much
stronger when the collision partner is H2. This can partly be
explained with the differing anisotropies of the PESs. In colli-
sions of NH3 with H2( j = 0), the V1001 and V3003 terms directly
couple the 11− and 21+ levels, while the V2002 term directly
couples the 11− and 21− levels. These three coefficients in
the NH3–H2 PES are comparable in magnitude at moderate to
large intermolecular distances. For the NH3–He PES, the corre-
sponding V10 and V30 terms have significantly smaller magni-
tudes than the V20 term (see Fig. 3 of Ref. 11), giving rise to
smaller 11− → 21+ cross sections. Further, with H2( j = 2) in
the close-coupling channel basis, expansion terms with l2 > 0
can affect the cross sections. These correspond physically to
the interactions involving the quadrupole moment of H2, which
is obviously not present for the interaction of NH3 with a
spherical target.

2. Feshbach resonances in the 11− → 11+ transition

To understand the resonances in the 11− → 11+ transi-
tion, we plot in Fig. 4 the contributions to the integral cross
section (partial cross sections) from each partial wave, distin-
guished by the total angular momentum J and the parity of

FIG. 4. Partial cross sections as a function of collision energy for the 11−
→ 11+ transition of para-NH3 in collisions with para-H2 in the j = 0 level.
Solid lines represent the cross sections for + parity and dotted lines − parity
for the given total angular momentum J . The red and blue vertical lines on
the J = 6, + parity partial cross sections show the stretch level energies of
the adiabatic bender curves (shown in Fig. 5) associated to the 22± and 11±
levels of NH3, respectively.

the scattering wave functions under inversion. We observe
several series of resonance structures consisting of peaks of
similar shape. These peaks shift to higher collision energies
as J increases. We expect that peaks within a given series are
resonances arising from quasibound states associated with the
same rotational level of NH3. As J increases, the corresponding
orbital angular momentum L increases, which leads to a higher
centrifugal barrier and a higher quasibound state energy.

To investigate the origin of the resonances, we performed
an adiabatic bender analysis similar to that described in
Sec. IV C of Ref. 10. Here, we diagonalize the Hamiltonian
exclusive of the radial kinetic energy for a given partial wave
to obtain adiabatic bender curves. The energies of the van der
Waals stretch levels supported by those curves are computed
using a discrete variable representation (DVR) method.55,56

We display the derived adiabatic bender curves and qua-
sibound level energies for the J = 6, + parity partial wave in
Fig. 5 as an example. We see that the stretch levels supported by
the adiabatic bender curves associated with the NH3 22± levels,
with energies 8.30, 15.71, and 22.30 cm−1 (red vertical lines in
Fig. 4), are in reasonable agreement with the positions of the
sharp resonance peaks that appear on the energy dependence
of partial cross sections for this partial wave (the upper solid
green curve in Fig. 4). The two lower stretch levels associated
with the NH3 21± levels, with energies 19.49 and 26.44 cm−1

(blue vertical lines in Fig. 4), agree with the positions of the
broad resonance peaks. These results suggest that both the
sharp and broad resonance peaks shown in Fig. 4 are Feshbach
resonances, with the sharp peaks originating from quasibound
states associated with the NH3 22± level and the broad peaks
from the 21± level.

One of the adiabatic bender curves in Fig. 5 has a bound
stretch level at 33.18 cm−1, at which no resonance appears in
Fig. 4. A close look reveals that this adiabatic bender curve
has avoided crossings with other curves, including those asso-
ciated with a different NH3 level. This is an example of the
limitations of the adiabatic bender model. Near an avoided

FIG. 5. Adiabatic bender curves for the interaction between para-NH3 and
para-H2 for the J = 6, + parity partial wave. The colors of the lines indicate
the asymptotic inversion doublet associated with the curves (the assignment
is only approximate due to avoided crossings between curves). Quasibound
states are shown as dotted horizontal lines. The zero of energy is the asymp-
totic energy of the 11− level of NH3 and the j = 0 level of H2.
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crossing, the scattering wave function would change dramat-
ically, and the separation of radial and angular functions, as
assumed in the adiabatic bender model, would no longer be
a good approximation. Such a phenomenon is analogous to
nonadiabatic effects57 in electronic structure theory. As shown
in Fig. 5, the NH3–H2 adiabatic bender curves have well depths
comparable or greater than the rotational level separation, and
the adiabatic bender analysis is particularly vulnerable to these
avoided crossings.

An alternative method of studying the (shape or Fesh-
bach) resonances is to examine the contributions to the radial
scattering wave functions from different channels that corre-
spond to various monomer rotational levels and partial wave
quantum numbers L.11 The Nijmegen scattering program uses
a renormalized Numerov propagator and it is relatively easy
to generate these radial scattering wave functions. We plot
in Fig. 6 such contributions to the squared scattering wave
function of the J = 6, + parity partial wave at two collision
energies. The two energies considered in Fig. 6 are close to
each other, but the scattering wave functions are quite different.
Figure 6(a) corresponds to a collision energy of 20.65 cm−1

where a broad resonance peak occurs. We see clearly that the
21− channel with L = 4 has a dominating amplitude in the
region of the van der Waals well, but vanishes at larger R
because this channel is still closed at this collision energy.
This shows that the broad resonance peak around this en-
ergy corresponds to a Feshbach resonance associated with the
21− level of NH3 and L = 4. Figure 6(b) represents a collision
energy of 22.65 cm−1 at which there is a sharp resonance
peak. The major contributor to the scattering wave functions
here is the 22+ channel with L = 6, asymptotically closed at
this collision energy. Hence, this sharp peak also corresponds
to a Feshbach resonance, but involves the 22+ level of NH3.
For comparison, we also plotted the scattering wave functions
at some nearby, off-resonance energies, but these plots only
show the continuum functions of the channels open at the

FIG. 6. Contributions of various rotational levels jk± of NH3 and partial
waves L to the square of the scattering wave function with J = 6, + parity for
the scattering of NH3 in the 11− initial state and para-H2 ( j = 0). Collision
energies are (a) 20.65 cm−1 and (b) 22.65 cm−1.

TABLE I. Resonance peaks in state-to-state cross sections and corresponding
quasibound states giving rise to the resonances in the 11−→ 11+ transition
of NH3 in collisions with para-H2 ( j = 0). The associated NH3 rotational
levels jk± and partial wave quantum numbers L are obtained from the wave
function analysis described in Sec. IV A 2.

J Parity Energy / cm−1 jk± (L)

5 (+) 20.20 21+(4), 21−(3)
5 (−) 20.65 21−(4), 21+(3)
6 (+) 20.00 21+(4), 21−(5)
6 (−) 20.65 21−(4), 21+(5)
6 (−) 25.95 21+(5), 21−(4)
6 (+) 26.55 21−(5), 21+(4)
7 (−) 26.10 21+(5), 21−(6)
7 (+) 26.80 21−(5), 21+(6)
7 (+) 32.85 21+(6), 21−(5)
7 (−) 33.50 21−(6), 21+(5)
8 (+) 33.10 21+(6), 21−(7)
8 (−) 33.85 21−(6), 21+(7)
8 (−) 40.60 21+(7), 21−(6)
8 (+) 41.35 21−(7), 21+(6)
9 (−) 40.95 21+(7), 21−(8)
9 (+) 41.70 21−(7), 21+(8)

6 (+) 15.20 22+(5), 22−(6,4)
6 (−) 15.60 22−(5), 22+(6,4)
6 (−) 22.65 22+(6), 22−(5,7)
6 (+) 23.10 22−(6), 22+(7,5)
7 (−) 22.15 22+(6), 22−(7,5)
7 (+) 22.70 22−(6), 22+(7,5)
7 (+) 30.25 22+(7), 22−(6,8)
7 (−) 30.85 22−(7), 22+(8,6)
8 (+) 29.95 22+(7), 22−(8,6)
8 (−) 30.55 22−(7), 22+(8,6)

given collision energy and no channels with particularly large
amplitudes in the region of the van der Waals well.

An overview of the resonances in the 11− → 11+ tran-
sition is given in Table I. One series of Feshbach resonances
involves the 21± levels of NH3, just like the L = 4 resonance
illustrated in Fig. 6(a), with partial wave quantum numbers
L = 4, 5, 6, and 7. The second series, illustrated for L = 6
in Fig. 6(b), involves the 22± levels of NH3 with L = 5, 6,
and 7. Figure 3 shows that resonances in the first series are all
broad, while those in the second series are all sharp. This is
related to which terms in the expansion of the potential couple
these closed states to the open 11± states; for the 21± levels
in the first series, these are primarily the Vl1µ1l2l terms with
l1 = 1, 2, and 3 and µ1 = 0, while for the 22± levels in the
second series, these are primarily the terms with l1 = 3 and
µ1 = 3. The plot of the expansion coefficients in Fig. 2 shows
that the latter terms are considerably smaller, which explains
why the resonances in the second series are much sharper than
those in the first series. This agrees with the observation that
the 11− → 21± transitions have larger cross sections than the
11− → 22± transitions, despite a larger energy gap (see Fig. 3).
From the energy spacings between the resonances and the
assigned L values, one can deduce an effective end-over-end
rotational constant of the quasi-bound NH3-para-H2 complex.
Both series of resonances correspond to a rotational constant
of about 0.6 cm−1. This value, combined with the reduced mass
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of the complex, yields an effective R value of about 7.5 a0,
which agrees with the R value corresponding to the maximum
in the dominant component of the scattering wave functions in
Fig. 6. Noticeably, this is somewhat larger than the equilibrium
distance Re = 6.1 a0.

We see that the two techniques for analyzing the reso-
nances agree on the origin of the resonances. The scattering
wave function analysis, while slightly more computationally
demanding, does not suffer from avoided crossings in the adia-
batic bender analysis.

Additional information on the resonances can be obtained
by looking at the phase shifts in the scattering wave function.
These phase shifts can be obtained from the eigenvalues of
the scattering matrix.1,58 The top panel (a) of Fig. 7 shows
the sums of the phase shifts in all open channels for various
total angular momenta J for collision energies up to 28.1 cm−1,
where the 22+ channel opens and a jump in the phase shift
sum occurs. Since we consider both parities ±, there are two
curves for each J. From scattering theory, it follows that when
a resonance occurs, the phase shift sum rapidly increases by π
as a function of the collision energy.1,58 In Fig. 7(a), we see
this happening at the collision energies where the Feshbach
resonances are found in the elastic and inelastic cross sections.
The derivative of the phase shifts with respect to the energy
gives the lifetime of the collision complex.1 These lifetimes are
shown in Fig. 7(b). This figure illustrates that at the energies
where resonances occur, we indeed get long-lived collision
complexes. One can see that each pair of curves belonging
to the same J and different parities ± shows similar peaks,
shifted by about 0.8 cm−1, which is the splitting between the
± umbrella inversion tunneling states in NH3. By comparing
this figure with Fig. 4, one observes that the narrower the
resonance, the longer its lifetime.

FIG. 7. (a) and (b) Phase shift sum and collision lifetime for different total
angular momenta J for the scattering of NH3 in the 11− initial state and
para-H2 ( j = 0). The two curves drawn for each J value correspond to the
± parities of the overall scattering wave function.

FIG. 8. Differential cross sections for the 11−→ 11+ transition in NH3 in
collisions with para-H2 j = 0 at several collision energies, labeled on each
panel.

We also computed the differential cross sections (DCSs) at
several resonance and off-resonance energies; these are shown
in Fig. 8. The pattern of increased backward scattering at ener-
gies close to a resonance, as we found for the OH/NH3–rare gas
systems,10,11 is less clear for NH3–H2 collisions. Figures 8(a)
and 8(c) show DCSs at energies close to sharp resonance
peaks, and we see significant backward scattering as expected.
Backward scattering is even dominating at a collision energy
of 4.265 cm−1, corresponding to the first sharp resonance peak
shown in Fig. 3. Figures 8(b) and 8(d) correspond to ener-
gies at a peak and a valley, respectively, among a series of
broad resonance peaks. Surprisingly, we do not see strong
backward scattering at the near-resonance energy. We note that
the differential cross sections are not from the J = 6, + parity
partial wave alone and there are significant contributions and
interferences involving other partial waves.

3. Shape resonances in the 11− → 21+ transition

In this section, we analyze the resonance structure shown
in the energy dependent 11− → 21+ cross section. Although
not as dramatic as the resonances in the 11− → 11+ transition,
the resonances in this transition have a relatively simple struc-
ture, and these moderately broad resonance peaks at slightly
higher collision energies may facilitate the observation of reso-
nances in molecular beam experiments.

We first show the partial cross sections for this transition
in Fig. 9. We see the contribution to the resonance peaks is
quite different from those shown in Fig. 4. Namely, each of the
three peaks at collision energies of ≈40, 50, and 60 cm−1 has
contributions from several partial waves. The three peaks have
increasing widths as the energy increases. These are typical
characteristics of a shape resonance.10,59,60 This resonance
structure, however, is distinguished from that observed in the
NH3–He and OH–He systems by the rapidly increasing back-
ground cross section and the large spacing between resonance
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FIG. 9. Partial cross sections as a function of collision energy for the
11−→ 21+ transition of para-NH3 in collisions with para-H2 in the j = 0
level. Solid lines represent the cross sections for + parity and dotted lines
− parity for the given total angular momentum J .

peaks. The large spacing is a direct consequence of the small
reduced mass of the system and large centrifugal barriers.

To confirm the origin of these resonances, we again
applied the adiabatic bender model used in Sec. IV A 2. The
adiabatic bender curves look similar to those shown in Fig. 5
and are not shown here. After computing the adiabatic bender
curves, we treat them as in a conventional one-dimensional
scattering problem and compute the phase shift as a function
of collision energy. We plot in Fig. 10 the phase shifts for all
adiabatic bender curves associated with the 21+ level with
6 ≤ J ≤ 9 that give rise to such changes in phase shift. We
see clearly for each of the curves shown in Fig. 10 that the
energy dependent partial cross section for the corresponding
partial wave (Fig. 9) shows a resonance peak at a similar
collision energy. Further, the widths of the resonances match
those for a change of phase shift by π. This confirms that the
resonances in the 11− → 21+ transition are shape resonances
caused by quasibound states associated with the final level of
the transition.

We note that there are four rotational levels below the
21+ level and the adiabatic bender curves related to that level
have large cardinal indices. There are many avoided crossings
between the adiabatic bender curves that make such phase shift
analysis difficult and inaccurate. For this particular case, we
found such analysis unsatisfactory.

The nature of these resonances was further confirmed by
the scattering wave function analysis. It showed in this case that
at the collision energies where the resonances occur, the wave
functions in the van der Waals well are strongly dominated
by contributions from specific channels, open at the given

FIG. 10. Phase shifts as a function of collision energy for the collision
between para-NH3 and para-H2, obtained from close coupling adiabatic
bender curves that correlate asymptotically with NH3 21+ and H2 j = 0.
The curves are labeled with J

(±)
n , where J , (±), and n are the total angular

momentum, the total parity of the scattering wave function, and the cardinal
index, respectively. Only curves with 6 ≤ J ≤ 9 that show a rapid increase of
phase shift by π are plotted. The colors and line shapes of the curves match
those for the corresponding partial waves in Fig. 9.

collision energy. This is the signature of a shape (or orbiting)
resonance, and we could determine which rotational levels
of NH3 and which partial wave quantum numbers L mainly
contribute to the corresponding quasi-bound states.

B. Collisions between NH3 and ortho- and normal H2

We show in Fig. 11 the collision energy dependence of
the state-to-state cross sections out of the 11− level of NH3
in collisions with ortho-H2 in the j = 1 rotational level. We
see that the 11− → 11+ transition dominates at the collision
energies considered, and the cross section for this transition
is considerably larger than the corresponding transition for
collision with H2 j = 0, displayed in Fig. 3. Unlike H2 j = 0,
the j = 1 level can polarize as it approaches the collision
partner; the form of the j = 1 rotational wave function allows
access to regions of the PES that are anisotropic in θ2 (or l2
> 0). Only l2 = 0 terms in the angular expansion [see Eq. (1)]
of the PES directly couple channels in collisions with H2 j = 0,
while many of the larger expansion coefficients have l2 > 0. A
similar enhancement in cross sections for collisions of ortho-
H2, as compared to those for para-H2, has also been found in
other molecule–H2 inelastic collisions.61,62

We also see that the energy-dependent 11− → 11+ cross
section plotted in Fig. 11 displays many overlapping reso-
nances. This contrasts with the much smaller number of mostly
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FIG. 11. State-to-state integral cross sections as a function of collision energy
for transitions from the 11− level of para-NH3 in collisions with ortho-H2 in
the j = 1 level. The final levels are indicated for each transition for which
the cross section is plotted. The cross sections to the 21± and 22± levels are
multiplied by 3 for clarity.

resolved resonances seen for collision of H2 j = 0 (see Fig. 3).
We also calculated the dissociation energy D0 of the various
nuclear spin species of NH3–H2, see Table II. The results in
this table show that D0 is considerably larger for NH3–ortho-
H2( j = 1) than for NH3–para-H2( j = 0) since the effective
PES for the former includes l2 > 0 terms and the H2 rota-
tional wave function can polarize to sample the most attractive
geometry of the complex. This is similar to other molecule–H2
complexes in which the dissociation energy of the complex is
significantly larger for ortho-H2 than for para-H2.63–68 Thus,
there are more bound, and quasi-bound, levels associated with
NH3–H2( j = 1) than with NH3–H2( j = 0), and the resonance
structure in the cross section for the 11− → 11+ transition
is much more complicated for collision with H2 j = 1 than
for j = 0. We have not carried out a detailed analysis of the
resonances seen in Fig. 11.

The shape resonances in the cross sections for the
11− → 21± transitions in collisions with H2 j = 1 are small
in magnitude relative to the non-resonant background, as
compared to those when H2 j = 0 is the collision partner.
For the 11− → 22± transitions, the shape and Feshbach reso-
nances associated with the 21± levels overlap and are small
in magnitude (see Fig. 11). We expect that the resonances in
these transitions will be difficult to observe in crossed beam
experiments.

Normal hydrogen has an ortho to para ratio of 3:1. We plot
in Fig. 12 the cross section for the NH3 11− → 11+ transition
in collision with para-, ortho-, and normal H2. Because of
the larger nuclear spin statistical weight and the larger cross
section, the resonance structures for NH3–normal H2 (black

TABLE II. Dissociation energies D0 of the various nuclear spin species of
NH3–H2.

NH3–H2 D0 / cm−1

ortho–para 32.43
para–para 34.25

ortho–ortho 59.78
para–ortho 66.00

FIG. 12. Integral cross section as a function of collision energy for the
11−→ 11+ transition of NH3 in collisions with para-, ortho-, and normal
(1:3 para:ortho) H2. Computed cross sections (solid lines) and cross sections
convoluted with Gaussian energy spread of FWHM of 2 cm−1 (dotted lines)
and 5 cm−1 (dashed lines, only for NH3–para-H2) are plotted.

lines in Fig. 12) are almost the same as for NH3–ortho-H2
(green lines in Fig. 12).

To estimate the feasibility of observing these resonances in
molecular beam experiments, we also plot in Fig. 12 the cross
sections for the 11− → 11+ transition of NH3 in collisions
with para-, ortho-, and normal H2, convoluted with Gaussian
collision energy spreads of two different widths. We see that
with a 2 cm−1 energy resolution, the sharp resonance peaks
disappear, but the broad resonance peaks are still resolved.
However, with an energy spread of 5 cm−1, only relatively weak
oscillatory structures corresponding to the broad resonance
peaks are left. Such structures would be difficult to observe
in experiments. The best prospect for observing resonances in
NH3–H2 collisions is with para-H2.

C. Collisions between ND3 and H2

The ND3 molecule has a smaller inversion splitting and is
easier to manipulate with a Stark decelerator. Accordingly, we

FIG. 13. State-to-state integral cross sections as a function of collision energy
for transitions from the 11− level of ND3 in collisions with para-H2 ( j = 0).
The final levels are indicated for each transition for which the cross section is
plotted.
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investigate resonances in ND3–H2 collisions in this subsection.
We present in Fig. 13 state-to-state integral cross sections as a
function of collision energy for transitions from the 11− level
of ND3 in collisions with para-H2 j = 0. There are pronounced
resonance structures in the cross section for the 11− → 11+
transition. Similar to the NH3–para-H2 system, the broad peaks
are Feshbach resonances associated with the 21± levels of
ND3, while the sharp peaks are Feshbach resonances associ-
ated with the 22± levels. While the NH3–H2 and ND3–H2 PESs
are quite similar, the ND3 rotational levels are more closely
spaced. As a result, the ND3 22± and 21± levels become open
at lower collision energies; this in turn lowers the energies of
the quasibound levels associated with these levels relative to
the energy of the initial 11− level. It is therefore reasonable
to see the resonance peaks appear at lower collision energies.
Also, two higher inversion doublets, 32± and 31±, open at≈45
and≈51 cm−1, respectively. Quasibound states associated with
these levels also give rise to weaker resonance peaks in the
plotted collision energy range, making the resonance structure
more complicated.

The propensities for various transitions are generally the
same for NH3–H2 and ND3–H2, consistent with the similarity
of the PESs. However, the resonances in the 11− → 21± and
11− → 22± transitions of ND3 show significant overlap and
would be difficult to observe cleanly in crossed beam experi-
ments. We do not show a detailed analysis of these resonances
here.

V. CONCLUSIONS

We have presented calculations and analysis of resonances
in rotationally inelastic scattering of NH3 and ND3, in the
11− initial level, with H2 in j = 0 and j = 1. The large width
of many resonances and relatively large resonance contri-
butions to the cross sections, particularly para-H2 collisions
resulting in 11− → 11+ transitions, suggest that these reso-
nances could be observed in molecular beam experiments.
This would require resolution of the collision energy to better
than ≈2 cm−1, similar to what would be required for the
OH–He/Ne and NH3–He systems.10,11 Notably, though, the
NH3–H2 resonances are more prominent and the cross sections
larger.

The required collision energy range could be achievable in
Stark deceleration experiments in geometries where the beam
crossing angle is less than 45◦. The necessary energy resolution
could be achieved by optimizing the kinematics of the exper-
iment.69 In the most elegant implementation, both integral
and differential cross sections are recorded as a function of
collision energy using the velocity map imaging detection.70

The NH3 molecule is particularly amenable to this combina-
tion of techniques, although the implementation of a recoil-
free resonance-enhanced multi-photon ionization (REMPI)
scheme can constitute a formidable challenge.71 Experiments
of this type are currently underway.

With the heavier D2 as the collision partner, the resonance
structures are more complex, with significant overlapping
between resonances associated with different asymptotic rota-
tional levels. The energy dependence of the cross sections is
plotted in the supplementary material.51 The reduced mass

of NH3–D2 is almost twice that of NH3–H2. Thus, the zero-
point energy of the deuterium complex will be smaller, so
that the PES will support more bound and quasi-bound levels,
including some levels with stretch quantum number greater
than zero. Consequently, Feshbach resonances arising from
quasi-bound levels associated with higher NH3 rotational
levels will appear at a lower energy and overlap significantly.
In addition, the technique for ortho→ para conversion is more
efficient for H2 compared to D2. For all these reasons, then, D2
is a less promising candidate for the study of resonances.

The ground rotational level (00+) of NH3 is not amenable
to Stark deceleration. Notwithstanding, we find that NH3–H2
cross sections for transitions from that level, particularly for the
00+ → 10+ transition, display interesting resonance structures
with both broad and sharp resonance peaks. These energy-
dependent cross sections are presented in the supplementary
material.51

For any given system, the location and heights of reso-
nances in inelastic scattering are a sensitive function of the
underlying PES. The PES we used is that of Maret et al.,29

based on ab initio calculations at the CCSD(T)/aug-cc-pVDZ
level, corrected by similar CCSD(T) calculations with an aug-
cc-pVTZ basis. To check the accuracy of the PES, for 3000
orientations at R = 5 a0, we have performed more sophisti-
cated CCSD(T)-F12a calculations72,73 with an aug-cc-pVTZ
basis. We then fitted the interaction energy at these 3000 points
using the same angular basis as used by Maret et al. We found
that all ten expansion coefficients with the largest absolute
values differ by less than 1% from those in this earlier PES.
Therefore, we believe the PES of Maret et al. is sufficiently
accurate for a careful study of the scattering resonance in this
system.
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