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• Prof. Kris Laukens (Universiteit Antwerpen))

This thesis has been written by the author, containing original work of his. Some described
work is a product of a collaborative effort, whose contributors are acknowledged.

iii



iv



Abstract

The inference of gene regulatory networks (GRN) is of great importance to medical
research, as causal mechanisms responsible for phenotypes are unravelled and
potential therapeutical targets identified. In type 1 diabetes, insulin producing
pancreatic beta-cells are the target of an auto-immune attack leading to apoptosis
(cell suicide). Although key genes and regulations have been identified, a precise
characterization of the process leading to beta-cell apoptosis has not been achieved
yet. The inference of relevant molecular pathways in type 1 diabetes is then a
crucial research topic.

GRN inference from gene expression data (obtained from microarrays and RNA-
seq technology) is a causal inference problem which may be tackled with well-
established statistical and machine learning concepts. In particular, the use of time
series facilitates the identification of the causal direction in cause-effect gene pairs.
However, inference from gene expression data is a very challenging problem due
to the large number of existing genes (in human, over twenty thousand) and the
typical low number of samples in gene expression datasets. In this context, it is
important to correctly assess the accuracy of network inference methods.

The contributions of this thesis are on three distinct aspects. The first is on inference
assessment using precision-recall curves, in particular using the area under the
curve (AUPRC). The typical approach to assess AUPRC significance is using
Monte Carlo, and a parametric alternative is proposed. It consists on deriving the
mean and variance of the null AUPRC and then using these parameters to fit a
beta distribution approximating the true distribution. The second contribution is
an investigation on network inference from time series. Several state of the art
strategies are experimentally assessed and novel heuristics are proposed. One is a
fast approximation of first order Granger causality scores, suited for GRN inference
in the large variable case. Another identifies co-regulated genes (ie. regulated by
the same genes). Both are experimentally validated using microarray and simulated
time series. The third contribution of this thesis is on the context of type 1 diabetes
and is a study on beta cell gene expression after exposure to cytokines, emulating



the mechanisms leading to apoptosis. 8 datasets of beta cell gene expression were
used to identify differentially expressed genes before and after 24h, which were
functionally characterized using bioinformatics tools. The two most differentially
expressed genes, previously unknown in the type 1 Diabetes literature (RIPK2 and
ELF3) were found to modulate cytokine induced apoptosis. A regulatory network
was then inferred using a dynamic adaptation of a state of the art network inference
method. Three out of four predicted regulations (involving RIPK2 and ELF3) were
experimentally confirmed, providing a proof of concept for the adopted approach.



Résumé

L’inférence des réseaux de régulation de gènes (GRN) est d’une grande impor-
tante pour la recherche médicale, car les mécanismes de causalité responsable des
phénotypes sont détectés et les cibles thérapeutiques potentielles identifiées. Dans
le diabète de type 1, les cellules beta du pancréas qui produisent l’insuline sont la
cible d’une attaque auto-immune conduisant à l’apoptose (suicide cellulaire). Bien
que des gènes et régulateurs clés ont été identifiés, une caractérisation précise du
processus conduisant à l’apoptose des cellules beta n’a pas encore été accomplie.
L’inférence des voies moléculaires importantes pour le diabète de type 1 est un
sujet crucial de recherche.

L’inférence des GRN à partir des données d’expression de gènes (obtenues par mi-
croarray et par la technologie du RNA-seq) est un problème d’inférence causale qui
pourrait tre résolue par des concepts bien établis de statistiques et de apprentissage
automatique. En particulier, l’usage des séries temporelles facilite l’identification
de la direction causal dans les paires de gènes cause-effet. Cependant, l’inférence à
partir des donnés d’expression de gène est un problème très difficile du au large
nombre de gènes existants (plus de 20000 chez l’homme) et le problème typique
du peu d’échantillons disponible. Dans ce contexte, il est important d’évaluer
correctement la prcision des méthodes d’inférence des réseaux.

La contribution de cette thèse porte sur trois aspects distincts. La première porte
sur l’évaluation de l’inférence en utilisant les precision-recall curves, en particulier
en utilisant l’aire sous la courbe (AUPRC). L’approche typique pour évaluer la
significativité du AUPRC est d’utiliser Monte Carlo et une alternative paramétrique
est proposée. Il consiste à dériver la moyennes et la variance de l’hypothèse nulle
de l’AURPC et ensuite de les utiliser pour construire une distribution beta qui
estime la vraie distribution. La deuxième contribution est une investigation sur les
l’inférence des réseaux à partir des séries temporelles. Plusieurs stratégies actuelles
sont expérimentalement évaluées et de nouveau heuristiques sont proposées. L’une
est une approximation rapide des scores de causalités de Granger du premier
ordre, appropriée pour l’inférence des GRN dans le cas de large variable. Une



autre identifie les gènes co-régulés (i.e régulés par les mmes gènes). Les deux
sont expérimentalement validées en utilisant les données de microarray et les
séries temporelles simulées. La troisième contribution de cette thèse porte sur
le diabètes de type 1 et est une étude sur l’expression des cellules beta exposées
aux cytokines, qui simulent les mécanismes conduisant à l’apoptose. Huit jeux
de données d’expression de gènes des cellules beta ont été utilisés pour identifier
les gènes différentiellement exprimés avant et après 24 heures qui ont ensuite ont
été caractérisés fonctionnellement en utilisant les outils bioinformatiques. Les
2 gènes les plus différentiellement exprimés, précédemment inconnus dans la
littérature sur le diabètes de type 1 (RIPK2 et ELF3) ont été analysés et jouent
un rle dans l’apoptose induite par les cytokines. Un réseau de régulation a été
inferré en utilisant une adaptation dynamique des méthodes actuelles d’inférence de
réseaux. Trois sur quatre de régulations prédites (impliquant RIPK2 et ELF3) ont
été expérimentalement confirmées, donnant ainsi une proof of concept de l’approche
que nous avons adoptée.
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Introduction

The contributions of this thesis focus on three aspects: 1. assessment of gene regulatory network
(GNR) inference using precision recall curves; 2. GRN inference from time series; 3. knowledge
inference in the context of pancreatic β-cell dysfunction and death in Type 1 Diabetes. In
particular, we propose a novel approach to assess the significance (in the form of a p-value)
of the AUPRC of GRN inference when a gold standard of regulations is available. Second, we
propose novel algorithms for GRN inference from time series, designed to deal with the high
variable to sample ratio, and setup an experimental session where several aspects of GRN
inference from time series are assessed and the novel methods validated. Finally, we perform a
meta-analysis using eight datasets of gene expression after β-cell exposure to pro-inflammatory
cytokines, emulating the biological mechanisms leading to β-cell apoptosis in Type 1 Diabetes.
A GRN is inferred, and previously unknown causal regulations experimentally validated.

The phenotypical characteristics of living beings are encoded in molecules called DNA
(deoxyribonucleic acid), long chains of information of a double helix structure (deciphered by
Watson and Crick (271)). DNA molecules are organized in structures called chromosomes, and
are constituted by individual blocks (genes) which regulate the production of proteins inside
cells (63). The complete set of DNA of an organism is called its genome. Gene DNA sequences
are the basic units of inheritance in evolution, although properties other than DNA sequences
may be temporarily transmitted trans-generationally (ie. epigenetic changes (80)). Variants of
genes (alleles) are responsible for the phenotypical diversity within a species. Phenotypes are
usually a result of complex networks between different interacting molecules. As an example,
the Figure 1.1 describes the regulatory network leading to apoptosis, a mechanism of cell suicide
following extra- or intra-cellular cues. It represents different types of molecules and regulations
(eg. inhibitory and stimulatory).
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Figure 1.1: Regulation of Apoptosis Signaling Pathway - Image from Cell Signaling tech-
nologies, http://www.cellsignal.com/contents/science-pathway-research-apoptosis/regulation-of-
apoptosis-signaling-pathway/pathways-apoptosis-regulation

Regulatory networks in which each element corresponds to a gene (or is a product of it) are
known as Gene Regulatory Networks (GRNs, introduced in Section 1.3). GRN discovery is
helpful to medical research, allowing for the identification of key genes in diseases or prediction
of effects of gene targeting treatments. In type 1 diabetes, insulin producing pancreatic β-cells
are the target of an auto-immune attack leading to local inflammation and β-cell apoptosis (cell
suicide). This process has been shown to be regulated by the activity of key genes, but its precise
characterization remains illusive.

Bioinformatics is a recent scientific field concerned with the analysis of biological data
through computational and statistical methods. Topics in bioinformatics include biological data
acquisition, organization, storage, accessibility and representation, and inference of knowledge
from it, such as associations between genes and phenotypes. A bioinformatics landmark was the
sequencing of the near-whole human genome in the Human Genome project (127). In humans,
around 20000 protein-coding genes have been identified, constituting less than 2% of the human
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genome (280). In the last two decades, microarrays and RNA-seq technology (see Section 1.4)
have made possible the measurement of the activity of thousands of genes in parallel.

Microarrays and RNA-seq have opened up the possibility of GRN inference from gene
expression data. This is a problem of inferring causal relationships between variables (genes)
from observational data. Using time series data facilitates causal inference as the realization of
a cause induces an effect at a later time point. In practice, GRN inference is problematic due to
the typical high variable to sample ratio (ie. thousands of genes to much fewer gene expression
observations, see Section 1.7.1). This limitation is even more serious in time series where most
datasets are composed of a few dozen samples at best. Currently, large scale gene expression
measurement is still expensive and time consuming.

This thesis concerns GRN inference from gene expression data, in particular from time
series, and its application to type 1 Diabetes. Its original contributions are threefold. The first
contribution is on the assessment of inferred GRN when a gold standard is available (a set of
known or putative regulations), in particular using the area under the precision recall curve
(AUPRC) as the assessment criterion. The second contribution is on methodological aspects
regarding GRN inference from (short size) time series. The third is on knowledge discovery
(including GRN inference and experimental validation of predicted regulations) in the context
of type 1 Diabetes. These are summarized in Section 1.11).

Gene expression 
matrix

(p genes x n samples)

gene 1
gene 2

...

gene p

sample: 
1 2 ...              n

Network
 inference Ranking of

cause-effect pairs

Ranking 
assessment
(AUPRC)

Comparison 
with gold 
standard

Experimental validation

Monday, March 9, 2015

Figure 1.2: Network inference and assessment - From a gene expression matrix, composed of
n observations of p genes, pairwise regulations are ranked. If a gold standard of regulations is
available, the ranking can be directly assessed (for instance, via the AUPRC). Alternatively, predicted
regulations may be subject to experimental validation.

The inference and assessment aspects addressed in this work are illustrated in the Figure
1.2. This first chapter introduces gene networks, the acquisition of gene expression data, causal
inference and inference assessment. Chapters 2 and 3 present preliminaries and state of the art
of network inference.

Chapter outline The remainder of this chapter is as follows: Section 1.1 introduces type 1
Diabetes; Section 1.2 introduces basic notions of biology, including GRN and gene expression
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1. INTRODUCTION

measurement; Section 1.7 describes the problem of GRN inference and its limitations; Sections
1.8 and 1.9 introduce relevant notions for GRN inference, in particular on variable selection and
causal inference; Section 1.10 discusses GRN inference assessment; Section 1.11 summarizes
the main contributions of this thesis.

1.1 Type 1 diabetes

Type 1 Diabetes (T1D) is an autoimmune disease characterized by a progressive loss of pancre-
atic β-cells. β-cells are located in the pancreas (in the islets of Langerhans) and are responsible
for the production of insulin. Insulin regulates body fat - it removes excess glucose from the
blood and converts it into glycogen, an energy storing molecule that is kept in the liver and in
the muscles. When blood glucose levels fall, glycogen is transformed back into it. Due to β-cell
loss, type 1 diabetic patients become dependent on insulin for life.

Pancreases from most patients affected by type 1 Diabetes have insulitis, a pancreatic islet
inflammation characterized by infiltration of macrophages and T-cells (56, 78). These immune
cells contribute to β-cell apoptosis by both cell-to-cell contact and release of pro-inflammatory
cytokines1 such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interferon-γ
(IFN-γ) (78). The prevalence of type 1 Diabetes is increasing at an alarming rate, and it was
expected that new cases of type 1 Diabetes in young European children double between 2005
and 2020 (204).

Insulitis probably results from a ’dialog’ between immune cells coming into the islets and
the target β-cells. The latter contribute to this interaction by local production of cytokines and
chemokines2 and by delivering immunogenic signals as a consequence of cell death (78). The
outcome of insulitis (ie. resolution or evolution to diabetes) is probably regulated by both the
individuals genetic background and environmental elements. These include dietetic components,
viral infections and other factors that remain to be determined, acting at both the immune system
and β-cell levels (77, 78, 258). In particular, there is growing evidence that the triggering of
type 1 Diabetes is associated with a viral infection (181). This emphasizes the importance of
understanding the molecular mechanisms leading to β-cell death or survival.

The measurement of mRNA expression with microarray or RNA-seq technology following
β-cell exposure to pro-inflammatory cytokines gives a snapshot picture of the changes in gene
expression characterizing the path to β-cell dysfunction and death. It has been shown, in in vitro
experiments, that exposure of beta-cells to IL-1β is sufficient to induce functional changes that

1Cytokines are proteins used in the cell signaling of the immune system.
2Chemokines are a particular group of cytokines that release chemical signals that direct the movement of the

cell.
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1.2 Transcription and translation

are similar to ones observed in pre-diabetic patients (53).1 Unfortunately, most studies have
focused up to now on islets from a single species (mostly human or rat) and used one or two
time points only (20, 77, 180, 198, 286), precluding an accurate and dynamic understanding
of the phenomena. A high number of mRNA expression measurements may arguably be
informative for an accurate estimation of the networks mediating β-cell progressive destruction.
Furthermore, comparisons between findings obtained in different species are helpful in defining
important and recurrent pathways. In the work presented in the Chapter 6 multiple datasets
of β-cell gene expression after cytokine exposure, of different species and at different time
points, were used to identify and characterize relevant genes and to infer a GRN. The impact
on apoptosis of selected genes was assessed, and predicted regulations were experimentally
validated. The next sections present basic concepts for gene network inference.

1.2 Transcription and translation

The DNA (deoxyribonucleic acid) consists of two long complementary strands composed of
four small molecules (nucleotides) (adenine, cytosine, guanine, thymine), connected in a double
helix structure. In transcription, the enzyme RNA polymerase binds to certain regions of the
DNA (called promoters), and synthesizes pre-mRNA from adjacent (to the promoter) regions.
DNA transcription is ended in special terminating regions. Genes are the individual DNA
regions coded into pre-mRNA, and are characterized by their location in the DNA sequence and
constituting nucleotides (accounting for intra-species variation) (250).2

Pre-mRNA is composed of coding (exons) and non-coding regions (introns). After transcrip-
tion, pre-mRNA is spliced and introns removed, resulting in the final mRNA.3 The resulting
mRNA is used to produce proteins by the ribosome (in a process designated by translation). In
translation, sequences of three mRNA nucleotides (known as codons) are read sequentially, each
producing an amino-acid. Translation ends with termination codons. The result of translation is
an amino-acid sequence, the primary structure of a protein (250).

Information usually flows from DNA to RNA, and from RNA to proteins, and (usually) not
in the reverse direction - this fact is the so-called central dogma of molecular biology (59).

1In order to be induced into apoptosis, beta cells must be exposed to a combination of IL-1β and IFN-γ, or of
IL-1β and TNF-α (or of the three cytokines together).

2A same gene may encode different RNA molecules, and a protein may be the result of multiple RNA molecules.
Also, genes may be overlapping, and a gene may be contained within another gene (210).

3Splicing variants may occur, resulting in different mRNA molecules (alternative splicing) and subsequent
proteins. For instance, exons may be skipped, or some exons may be mutually exclusive (the presence of one in the
final mRNA implies the absence of the other) (25). In humans almost all multi-exon genes (95 %) are subject to
alternative splicing (200).
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1. INTRODUCTION

Figure 1.3: Central dogma of molecular biology - general information flow - General informa-
tion flow, from DNA to DNA (replication), DNA to mRNA (transcription) and mRNA to proteins
(translation).

Figure 1.3 illustrates the general cases of information transfer in biological systems. There
are three general mechanisms of information transfer: transcription, translation and DNA
replication (which is necessary for cell replication). There are other (special) cases of information
transfer. Information transfer from RNA to DNA is known as reverse transcription (the obtained
DNA is called complementary DNA, cDNA). In this case, RNA information is transformed
into DNA and incorporated in the genome (examples are retrovirus, such as the HIV) (250).
RNA replication and RNA editing (by RNA) is also known to happen in simpler organisms.
Another common representation of biochemical regulations identifies three layers of regulations,
at mRNA, protein and metabolite levels1) (32). It is illustrated in the Figure 1.4.

conceptually. It is now well established that regulation
is distributed over all levels, and accordingly such
systems are referred to as ‘democratic’[13]. A recent
study quantified how the control of glycolytic flux in
three species of parasitic protist was partitioned
between gene expression and metabolism. It was
concluded that the flux is rarely regulated by gene
expression alone; in a specific case, it was regulated 
30% by gene expression and 70% by metabolism [14].
Although this indicates that future studies need to
make more effort to monitor all three levels of regulation,
it is still useful to study gene networks alone.

Why gene networks?
Increasingly, gene networks are being used as models
to represent phenomena at the level of gene expression,
and research on their construction from experimental
data are rife. The gene network model has several
applications and advantages over other approaches:

Gene networks provide a large-scale, coarse-grained
view of the physiological state of an organism at the
mRNA level. The mRNAphenotype can be a very
important representation of cell function, offering
much more precise description than can be achieved
with words [15], even when these words are part of a
controlled vocabulary, such as the Gene Ontology! [16].
For instance, if the gene of a certain protein kinase is
linked to genes involved in synthesis of a flagellum, 
one could conclude that it has a role on the chemotaxis
signal transduction pathway. In this sense, not only 

are gene networks (and especially their graphical
representations) capable of describing a large number
of interactions in a concise way, but also they might
represent the dynamic properties underlying those
interactions at a systems level. Cells exhibit complex
interacting behavior that is usually not predictable
from the properties of individual system components
alone. Gene networks provide such a system view at
the level of gene activities. We propose that gene
networks should be used for describing functions, 
and thus become a sophisticated means for annotation
of genomics and functional genomics data.

The detailed molecular mechanisms of how the
products of one gene affect expression of another gene
are often unknown but the effect itself can be easily
observed in gene-expression experiments. It is
therefore appropriate and timely to use genome-wide
gene-expression data to identify gene networks, 
an important step towards uncovering the complete
biochemical networks of cells. Research focused on
developing methods for this identification of gene
networks from microarray data are now an important
part of bioinformatics.

Knowledge about gene networks might provide
valuable clues and lead to new ideas for treating
complex diseases. It will aid pharmaceutical research
in prioritizing targets, tailoring drug therapy to the
individual needs of each patient [17], and can form
the basis for rational gene therapy.

Cellular responses and actions are often a result 
of coordinated activity of a group of genes. Gene
networks might allow genes to be ranked according 
to their importance in controlling and regulating
cellular events. There is a growing indication that
most single-gene mutations do not have marked
phenotypes (most genes in genomes are not of ‘known
function’). Most phenotypes are the result of a
collective response of a group of genes. Gene networks
help rationalize how these complex traits arise and
which groups of genes are responsible for them.

Recent estimates on the number of genes in the
human genome [18] suggest that it is only about twice
that of the Caenorhabditis elegans worm [19] (but see
also [20]). There are several hypotheses to explain this
relative ‘simplicity’of the human genome. First, the
mean number of proteins encoded by human genes
could be larger than the number encoded by genes in
other genomes [21]. Second, the proportion of
regulatory genes (encoding signaling proteins,
transcription factors, etc.) in the human genome might
be higher than in other genomes. Third, the human
gene network could have a higher mean number of
connections per gene than do other genomes 
(which implies that the encoded proteins contain more
binding sites). Both the second and third hypotheses
could be tested by determining and comparing gene
networks of various organisms. Gene networks are
then also well suited for comparative genomics.

Some studies [22,23] indicate that the topology of
gene networks might be largely responsible for the
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Gene space

Gene 1

Gene 2

Gene 3

Gene 4

Protein 3

Protein space

Protein 1

Protein 2

Protein 4
Complex 3–4

Metabolic space

Metabolite 1 Metabolite 2

Fig. 1. An example of a
biochem ical network.
Molecular constituents
(nodes of the network) are
organized in three levels
(spaces): mRNAs,
proteins, and metabolites.
Solid arrows indicate
interactions, the signs of
which (activation or
repression) are not
specified in this diagram .
Three different
mechanisms of gene–gene
interactions are shown:
regulation of gene 2 by the
protein product of the
gene 1; regulation of the
gene 2 by the complex 3–4
formed by the products of
gene 3 and gene 4; and
regulation of gene 4 by the
metabolite 2, which in turn
is produced by protein 2.
Projections of these
interactions into the ‘gene
space’, indicated by
dashed lines, constitute a
corresponding gene
network.

Figure 1.4: Three-layer biochemical network - Example of a biochemical network, organized
in three layers corresponding to mRNA, protein and metabolite levels. Solid arrows indicate
interactions and dashed arrows indicate the projection of interactions into the mRNA (gene) level.
Figure from (32).

1Metabolites are small molecules, intermediate and final products of cell metabolism.
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1.3 Gene regulatory networks

The ENCODE project started in 2003 with the goal of characterizing the activity of all
genome (253). Although protein-coding genes constitute a small fraction of the genome (less
than 2 % (280)), this project has found that near 80% of the genome takes part in biochemical
activities, such as transcription of non protein-coding RNA (253).1

1.3 Gene regulatory networks

The proteins assembled by the mRNA have a broad range of functions, including the regulation
of the transcription of other genes. Some proteins (called transcription factors) bind to non-
coding DNA regions and regulate the rate of transcription of genes (not necessarily nearby),
by promoting or repressing transcription by RNA polymerase. Other factors play a role in
transcriptional regulation, described next.

DNA is compacted and protected by a complex of molecules called chromatin, in which
histone proteins are responsible for the winding of DNA (which becomes organized in individual
sections wrapped around 8 histones, called nucleosomes). One factor in transcriptional regulation
is the modification of chromatin structure so that DNA regions becomes more or less accessible
to RNA polymerase (chromatin remodeling). This process may take the form of modifications
in histone proteins, such as by acetylation/deacetylation (histone acetylation weakens the
association of DNA to histones, making the former more accessible to RNA polymerase
and transcription), methylation, phosphorylation and ubiquitination (247). Another form of
chromatin remodeling is the modification of the nucleosome structure, by energy carrying
molecules (with an ATPase domain) (186). One other factor in transcriptional regulation are
co-activators and co-repressors, proteins that do not bind to DNA, but to transcription factors,
enhancing or reducing transcription (250).

Transcription regulating genes may regulate other transcription regulating genes, forming a
cascade of direct and indirect regulations.2 These may be represented as a network, composed
of nodes and edges, where each node represents the expression of a gene (its mRNA level), and
a directed edge represents the existence of a regulation, increasing or inhibiting the expression
of the target (positive and negative regulations). An example of a simple GRN is represented in
the Figure 1.5:

Such a (transcriptional) gene regulatory network (GRN) is a simplification as it does not
consider regulatory factors occurring after transcription and regulating translation. An example
of post-transcriptional regulation is mRNA degradation through its pairing with small RNA

1Controversy has ensued over the advertised importance of these findings, particularly on the usage of the term
function to characterize these non-protein coding activities (97).

2This concept of gene regulation should not be confused with the one of gene interaction, or epistasis, which
refers to the phenomenon of multiple genes controlling a single phenotypical characteristic (164).
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1. INTRODUCTION

gene

negative
 regulation

positive
 regulation

Monday, March 23, 2015

Figure 1.5: Example of a transcriptional gene regulatory network - Genes are represented by
nodes, and regulations, positive or negative, are represented by edges.

fragments and subsequent cleavage. The most common forms of this type of regulatory RNAs
are small interfering RNA (siRNA) and microRNA (miRNA) (2, 46).

Transcriptional GRN may be inferred from gene expression measurements, obtained by
quantification of transcribed mRNA in microarrays and RNA-seq platforms (introduced in the
next section).

1.4 Measuring gene expression

Single DNA or RNA strands bind to complementary sequences in a process termed hybridization.
Double strands are usually heated to form single strands, which then hybridize with comple-
mentary strands after cooling. This process is used in common gene expression measurement
techniques, such as blotting, polymerase chain reaction (PCR) and microarrays. Blotting con-
sists in the separation of a target molecules by gel electrophoresis, transference to a carrier and
quantification (190). PCR is the amplification of target sequences (by consecutive duplication
of target strands) and subsequent quantification (43). Blotting and PCR techniques measure
the quantity of a single or few sequences; microarrays and RNA-seq measure the expression of
multiple genes at once and provide the data necessary for GRN inference. They are described
next in more detail.

A microarray is a solid surface composed of spots of specific DNA sequences (called probes)
(108). In a microarray experiment, mRNA of a biological sample is isolated and transformed into
cDNA by reverse transcription. This cDNA is then labeled (eg. fluorescently) and hybridized
with the microarray probes. The hybridization of each probe is then quantified, giving a measure
of the amount of respective mRNA sequence in the sample (115). Several types of microarrays
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1.5 Machine learning

exist, which may be distinguished between manufacturing process1 and single/dual channel
types2. Microarray limitations are the following: they only measure RNA transcripts of designed
probes and thus do not measure non considered sequences; there may be cross hybridization
(hybridization of sequences not perfectly complementary); the range of RNA quantity that is
measured is limited, both at the higher (signal saturation) and lower level (72). Microarrays
should be subject to quality controls, identifying possible hybridization artifacts. Normalization
techniques mitigates possible systematic errors in the arrays (eg. due to batch effects).3

RNA-seq technology measures mRNA using next generation (or second generation) sequenc-
ing technology (102). In RNA-seq, a population of RNA is fragmented into small segments
(typically 30 to 400 base-pairs) and then converted to cDNA small-segments by reverse tran-
scription. Alternatively, RNA may be transformed into cDNA and then segmented (270). These
cDNA segments are then attached to a solid surface, which are read and assigned to a position
in the genome corresponding to a coding exon. The number of cDNA sequences assigned to
a given exon is a measure of its expression. Naturally, longer exons will tend to have more
sequences mapped to them, therefore length-normalized gene expression measures are usually
adopted.4 The advantage of RNA-seq over microarray technology is that it is not limited to the
identification of previously defined sequences, allowing for the identification of variations in the
mRNA (ie. splice variants or mutations) (270).

1.5 Machine learning

Machine learning is a field of computer science concerned with the extraction and application
of information from complex data. Main applications of machine learning are classification,
regression, clustering, dimensionality reduction, or the inference of general models or structures,
such as networks (24). Classification is the assignment of a class (a realization of a categorical

1Probes may be designed and spotted on the surface, allowing for customizable arrays. Alternatively, sequences
may be synthesized directly (in situ) on the array surface (9, 13).

2Single channel microarrays measure the RNA quantities of a single sample. Dual channel measures the RNA
quantities of a mixture of two samples, each labeled differently. It allows to compare samples of different conditions
(eg. control vs treatment) (232). Dual channel microarrays are commonly associated with spotted microarrays, while
single channel microarrays are to in situ microarrays (called oligonucleotide microarrays) (128).

3Normalization can be applied to single or multiple arrays. In the first case, each array is independently
normalized (as in the MAS5 algorithm (122)). An example of multi-array normalization is the RMA algorithm,
which consists of individual background correction; normalization of probe values so that all arrays have similar
distributions; and log transformation (27). Other approaches can be found in the literature (experimental comparisons
can be found in (109, 154)).

4Such as the RPKM - Reads Per Kilobase of transcript per Million mapped reads (182). For a comparison of
different normalization methods see (68).
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1. INTRODUCTION

variable) to a sample, while regression usually refers to the assignment of a continuous numerical
value to it. Clustering is the separation of samples into distinct groups, whose size and number
may be unknown beforehand. Dimensionality reduction refers to the reduction of the number of
variables in a problem, to ease its complexity and improve the accuracy of a model. It may take
the form of the selection of a subset of the original variables, or of the selection of new variables
obtained from the original ones. In the first case, variable selection may be used to quantify
the importance of variables (107). In the latter case, a common approach is to transform the
variable space into orthogonal components of decreasing explanatory content (a process known
as principal component analysis).

Classification and regression are cases of supervised learning, whereas clustering, variable
selection and network inference are cases of unsupervised learning (24). In supervised learning,
models are estimated from samples associated with a class (classification), or a numeric value
(regression). In unsupervised learning, this association is not given or is irrelevant. Machine
learning models are often estimated on a training dataset and assessed on a test dataset, not part
of the training part. Cross-validation consists in partitioning the data so that different partitions
are used as the test dataset in different assessment rounds.

The fields of statistics and machine learning are overlapping, but the goals and methodology
are perceived to differ (33). Statistics emphasizes formal theoretical results; machine learning
emphasizes accuracy in solving real world problems. Statistical models assume well-defined
processes and return valid conclusions given assumptions; machine learning models operate
as black boxes in which the nature of the relationships between variables is often unclear. One
example are random forests, described in the Section 2.6. Machine learning and statistics
sometimes use different terminology. For instance, in machine learning, instances refer to
samples, and features to variables. Popular machine learning models include nearest neighbors,
neural networks, support vector machines or random forests (110)). The terms machine learning,
pattern recognition, data mining or knowledge discovery in databases are often conflated and
are difficult to clearly distinguish.

1.6 The bias-variance trade off

The estimation of models (a model is a set of assumptions regarding a data generating process)
and parameters may be characterized in terms of bias and variance. The bias of an estimation is
its tendency to make systematic errors, in ’one direction’. In the context of a single numeric
random variable θ, the bias of an estimation θ̂ is defined as the difference between the expected
value of the estimation, and the true value (110):

bias(θ̂) = E[θ̂]− θ (1.1)
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1.7 GRN inference

The variance of an estimation θ̂ is defined as:

var(θ̂) = E[(θ̂ − E[θ̂])2] (1.2)

When assessing estimation accuracy over multiple samples, a measure of squared error is
usually adopted (if the simple mean is used, underestimations and overestimations may cancel
themselves out). The mean squared error (MSE) is the mean of the square of the errors of the
estimated values.1 The MSE of the estimator θ̂ is defined as (110):

MSE = E[(θ̂ − θ)2] (1.3)

It can be rewritten as the sum of the variance and the square of the bias:

MSE = var(θ̂) + bias(θ̂)2 (1.4)

It can happen that a biased estimator with small variance has a lower MSE than an unbiased
estimator with high variance. This observation leads to the bias-variance trade off: reducing the
variance of an estimator at the cost of a bias increase can be beneficial in terms of MSE (or other
risk functions that are a function of bias and variance). This principle is the basis of Bayesian
and shrinkage estimators.

A model with less parameters is less variant (more robust) at the cost of a possible higher
bias. If a model has too many parameters it may over-fit the data. Over-fitting refers to the
modeling of idiosyncrasies of particular observations, not representative of the variables true
distribution. Models that over-fit are highly variant, as small differences in the data may cause
large differences in the estimated model parameters. One strategy to improve the bias-variance
trade-off is to combine multiple models to obtain a less variant and less biased one. Common
strategies to do so (boosting, bagging) are introduced in the Section 2.6 in the context of decision
trees. Random forests are a popular machine learning algorithm based on ensembles of decision
trees.

1.7 GRN inference

GRN may be inferred through gene expression perturbations - by modifying the expression of
genes, such as transcription factors, and identifying other genes whose transcription/translation
is altered (are regulated by the former) (11, 126, 252, 291). A common perturbation is to
temporarily reduce the expression of genes by degradation of the respective mRNA using siRNA

1The MSE is a risk function - the expected value of a loss function (which assigns a cost to an estimation, in this
case the squared error).
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1. INTRODUCTION

(2). Due to the high number of genes in networks and necessary gene perturbations, it may be
impractical (too costly and time consuming) to infer GRNs exclusively through this manner.

Another approach to GRN inference is through the association of transcription factors to
genes, by matching transcription factor DNA binding motifs (short patterns of DNA (66)) to
motifs in gene promoter regions (93, 112). However, this approach has the downside of returning
an excessive number of false positives, as DNA binding motifs are often promiscuous and a large
number of potential binding associations are thus predicted (112). Information on transcription
factors binding profiles is available on databases such as JASPER (171) or TRANSFAC (172).
Binding associations may be experimentally confirmed with ChIP-on-chip (5) and ChIP-seq
(130) techniques (combining chromatin immunoprecipitation with microarray and RNA-seq
technology respectively). They allow to identify, in vivo, which DNA regions bind to a particular
transcription factor. As more data becomes available, ChIP data becomes a valuable resource
for network inference.

GRN may be also inferred from (non-manipulated) gene expression data using statistical
and machine learning models.These different approaches can be combined in integrative meta
strategies (112, 132, 194, 215).

This thesis concerns exclusively with the case of network inference from gene expression.
In this case, the problem of GRN inference amounts to the estimation of the parameters of a
model characterizing a regulatory network (ie. existence and/or strength of a causal relationship
between each pair of genes). This approach is limited by the fact that the number of variables
(genes) is usually much higher than the number of observations. This limitation is described
in the next section. Section 1.7.2 briefly refers the main strategies for GRN inference from
expression data.

1.7.1 The high variable to sample ratio in GRN inference

Inference of GRN from gene expression data is currently conditioned by the fact that the number
of genes (in the order of the thousands) is typically much higher than number of samples.1 In
this case, GRN inference is an ill-posed problem with an indeterminate linear solution - any n
expression values of any gene can be represented as a linear function of any group of n genes
plus a constant. Inference strategies that overcome inference indeterminacy are then adopted.

The high variable to sample ratio also means that complex network models may be highly
variant - strongly modified by small variations in few samples. For this reason, simpler inference
approaches (eg. bivariate) are known in the literature to outperform more sophisticated ones
(12, 265). GRN models should strike a balance between robustness to sample variations, and

1This limitation is commonly known as the ”small n large p”.

14



1.8 Variable selection

sufficient complexity to accurately capture multivariate regulatory relations. This is an example
of a bias-variance trade off, introduced previously in Section 1.6.

Even if the high variable to sample ratio makes it difficult to robustly infer GRN, this
endeavor may be helpful to medical research - to rank putative gene regulations and prioritize
confirmatory experiments.

1.7.2 Strategies for GRN inference

Several strategies for GRN network inference from expression data have been proposed in
the literature. These can be based on assumptions regarding gene expression, using enzyme
kinetics formulas such as the Michaelis-Menten or Hill equations (93, 133, 211). However,
these assumptions require the estimation of several extra parameters, which may be deemed
unfeasible due to the high variable to sample ratio in large networks.

A more practical alternative is to assume simple models (eg. linear), or to use concepts of
statistical dependence or variable selection. This thesis deals exclusively with such strategies,
which also have the advantage of being generalizable to any network inference problem. They
include conditional independence tests between gene expression; Bayesian networks which
use conditional independence tests to infer causal relations between genes; variable selection
approaches that select regulators of each target gene using a variety of statistical/machine learn-
ing models (eg. information-theoretic, regularization-based, random forests, neural networks,
support vector machines); Boolean networks, which involve a discretization of gene expression
into two states (ie. active and inhibited); or dynamic approaches, designed to gene expression
time series (such as lagged conditional independence tests and differential equations).

In time series, if the predictor and target genes are observed at separate time points, a causal
aspect is implied in predictor-target associations. In static data, non-temporal associations can
nevertheless be used to infer undirected networks. For reviews on network inference methods
see (10, 93, 101, 131, 133, 170, 211, 265).

The next two sections present useful notions for GRN inference. Networks can be inferred
using a variable selection strategy, consisting in the selection of predictors for each target gene
in the network. It is described in more detail in the next section. Section 1.9 presents the link
between statistical dependence and causality.

1.8 Variable selection

Variable (or feature) selection consists in the selection (or ranking) of predictor variables with
respect to the modeling of a target (class) variable. It is commonly used in bioinformatics -
eg. variable selection is used to identify genes which are good predictors of a given phenotype
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1. INTRODUCTION

(212, 224). It can be used to infer GRN, and in this case variable selection is applied to each
gene at a time, considered the target variable. A network is reconstructed through the selection
of predictors of each gene. Three main strategies for variable selection are commonly identified
in the literature: filters, wrappers and embedded methods (106, 224).

Filters, wrappers, embedded methods Following the taxonomy presented in (224), filters
are independent of statistical models (of the target variable), and only look at the characteristics
(ie. dependences) present in the data. They can consist solely on a measure of dependence
towards the target variable, such as the linear correlation or the mutual information (in this
case they are bivariate). More sophisticated (multivariate) filters operate in a forward/backward
selection manner, also considering the dependence (redundancy) towards previously selected
predictors. The advantage of filters is their simplicity, computational speed, scalability and
robustness to over-fitting. Due to these properties, filters have been used in GRN inference
(179). One example is the mRMR filter (212) which sequentially selects predictors, the ones
maximizing the difference between a measure of relevance towards the target, and the average
of a measure of redundancy towards each previously selected predictor. In the context of type 1
Diabetes, in Chapter 6 mRMR is used in the inference of a GRN in β-cells following cytokine
exposure. Several filter approaches are reviewed in the Chapter 3 and experimentally assessed
in the Chapter 5.

Wrapper methods select variables to be included in a given statistical model, by validating
that model on external data (ie. by cross validation). The search over the variable space may be
done using a variety of methods (see (138, 224)), including forward and backward selection,
simulated annealing, hill climbing, or genetic algorithms (224). The downside of wrappers is
their higher computational complexity (due to the need of validating each considered variable
subset) and risk of over-fitting. The use of wrapper variable selection in GRN inference is
not common (to our knowledge), due to the high variable to sample ratio of gene expression
datasets.

Embedded methods consist of statistical/machine learning models where variable selection
or ranking is implicit (or from which it is easily obtained). These may include linear models
where sparsity in the number of estimated non-zero coefficients is induced, or random forests
returning an attribute of variable importance (36, 106). Variable selection in the context of
linear models is described in the Section 2.2.4, and decision trees/random forests in Section 2.6.
Adaptations for time series of these approaches are experimentally assessed in the Chapter 5.
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1.9 Statistical dependence and causal inference

1.9 Statistical dependence and causal inference

Two random variables X and Y are independent if p(x|y) = p(x), or equivalently if p(x, y) =

p(x)p(y) (independence between X and Y is denoted by X ⊥⊥ Y ). Analogously, X and Y
are conditionally independent given a set of variables Z if p(x|y, z) = p(x|z). A measure of
the statistical dependence between two variables is the mutual information, a concept which
originated in the field of information theory. The mutual information is a non-negative quantity,
in which null mutual information implies no statistical dependence. It is based on the concept
of information entropy, analogous to the concept of entropy used in statistical mechanics.
The mutual information between two variables X and Y measures the similarity between
the multivariate probability distribution p(x, y) and the product of the marginal distributions
p(x)p(y) - in particular, it is the Kullback-Leibler divergence of p(x)p(y) from p(x, y) (57).
The mutual information is introduced in more detail in Section 2.1. When variables follow
multivariate elliptical distributions (such as the multivariate Gaussian), the mutual information
and the linear correlation are a continuous bijective function of one another.

Graphical models of dependence Network inference approaches based on conditional in-
dependence tests often take the form of graphical models, characterized by nodes (ie. genes)
and edges (ie. regulations) (as in the Figure 1.5). Edges represent statistical dependences
between the nodes at its extremes. Undirected graphical models, in which an edge indicates a
conditional statistical dependence are known as Markov networks (or Gaussian graphical models
when variables are assumed to be Gaussian distributed and dependences linear). Directed and
acylic graphical models are known as Bayesian networks, which use conditional independence
relations to model causality. Graphical models are described in more detail in Section 2.4. The
link between statistical dependence and causality is described in the next section.

1.9.1 On causality

Causality has been discussed in ancient Greek philosophy and then with renewed interest
since the Renaissance and the advent of modern scientific thought (184). It has been viewed
in the form of logical implications between single events (or binary variables, representing
the occurrence or not of events), and also in the context of random numeric variables, in the
form of asymmetrical functional relationships between them. Arguments in favor of this latter
approach can be found in in (184). For references on the historical developments of causality
see (118, 184, 206).

In the context of random variables, the existence of causality can be identified using
interventions (ie. by setting the value of a variable, represented by the do operator). If there is

17
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an intervention on one variable such that the conditional (given the intervention) probability
distribution of another variable is different than its marginal distribution, there is causality from
the first to the second (184).1

Definition 1. A variable X has a causal effect on a variable Y if:

p(y|do(x)) 6= p(y) (1.5)

If the causal network is known (ie. which variables cause which), the back-door and front-
door adjustments, and the theory of do-calculus allows to estimate, when possible, the effects
of hypothetical manipulations (counterfactuals) from (non-manipulated) observations, thus
providing the link between non-manipulated and post-manipulation probability distributions
(206, 208) (Section 2.4.6). In the remainder of this section we discuss the link between statistical
dependence and causality.

When conditional dependence implies causality A rule of thumb (known as the common
cause principle, CPP) is that if two variables X and Y are dependent, either one variable is a
cause of the other; or the two variables have a common cause (118).2 The cancelation or reversal
of a dependence between two variables when a third (a common cause) is conditioned on is
known as the Simpson’s paradox (206).

Assuming the CPP, if all the possible common causes of X and Y are identified and
conditioned on, the existence of a conditional dependence between X and Y implies that one is
a cause of the other (assuming that none of the common effects of X and Y are also conditioned
on - see next paragraph). Another result is that if X and Y are conditionally dependent given
any set of conditioning variables, one is a direct cause of the other.

Full conditional dependence (given all other variables) does not imply causality because
two independent variables may become conditionally dependent if conditioned on an effect of
both of them. This phenomenon is known as the Berkson’s paradox (21). In directed graphical
models, these three-variable causal configurations are known as collisions (the effect variable is
the collider, see Section 2.4).

Faithfulness Causality implies conditional dependence (given any set of conditioning vari-
ables) only under a condition of faithfulness (243).3 A probability distribution P and a causal

1This definition concerns the identifiability of causality, and not on causality itself. It may be argued that using
variable interventions to define causality is circular, as manipulations are causes themselves (184).

2Exceptions to this rule can be found in physics, in the form of instantaneous dependences between variables
without an apparent cause-effect mechanism or a common cause (particle entanglement or electromagnetism).
However, those variables may be seen as different manifestations of a same global variable. Equivalent examples are
not found in the macroscopic realm.

3The term stability is also used (206).
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Saturday, March 28, 2015

Figure 1.6: Collision in a directed graphical model - Two independent random variables may
become conditionally dependent, given a common effect. This causal configuration is known as a
collision, in directed graphical models.

model are faithful to each other if a conditional independence in P implies the absence of a
direct causal relationship between the respective variables in the model. Faithfulness is described
in the context of graphical models in Section 2.4.2. Figure 1.7 illustrates the relation between
causality and conditional dependence.

Conditional 
dependence Causality

Given all the common causes
 (and none of the common effects)

Faithfulness

Wednesday, April 22, 2015

Figure 1.7: Conditional dependence and causality - When all the common causes and none of
the common effects are conditioned on, conditional dependence implies causality. In the case of
faithfulness, causality implies conditional dependence.

Causality and time The consideration of time-series (observations of variables over time)
facilitates causal inference as effects are observed at later time points than causes. Representing
variables in multiple time points allows to distinguish between causes (observed at earlier time
points) and effects (observed at later time points). A definition of causality popularized by
Suppes (249) is that there is causality from a cause to an effect if the past of the cause and
the present of the effect are conditionally dependent, given the the past of all other possible
causes. The dependence between two variables in separate time points is usually referred to as a
lagged dependence. This form of causality is also known as Granger causality, following a test
popularized by Granger (103, 159).
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1.9.2 Causal inference

The enterprise of causal inference from data observations can be traced back to the end of
the 19th century (eg. in the estimation of regression coefficients relating welfare and poverty
(85, 290)). Advances on linear causal models led to the topic of structural equation modeling
(SEM, also denoted by) (184), presented in Section 2.3. Alternatively, in econometrics linear
models designed to time series were popularized, including vector auto-regressive models and
Granger causality tests. The latter test lagged (conditional) dependences between causes and
effects, and are described in Section 2.7).

In the last decades, theoretical contributions on causality led to the field of Bayesian
networks, directed and acyclic (or recursive) graphical models (BN) (206) (Section 2.4). BNs
may be seen as non-parametric extensions of (recursive) SEMs (207). The acyclic condition
prevents the modeling of feedback loops. This limitation is relevant to GRN inference as
feedback loops are common in biological mechanisms, including gene regulation (131, 170).
Feedback loop causality requires different models, as the causes and effects of variables are
not distinguished (184). On non-recursive graphical models see (220, 244). Using time series
allows to model feedback loops, as in this case variables may be represented in multiple time
points.

In time series, auto-correlation is the statistical dependence of a variable at different time
points. Non-stationarity occurs when the probability distribution of a variable is different
for different time points. When estimating lagged dependences, these aspects require the
consideration of extra parameters (lags) (159, 257). However, considering extra parameters
increases the model variance, in a bias-variance trade off. This is relevant in GRN inference,
typically of a high variable to sample ratio. Section 5 presents an empirical investigation on the
optimal approach to model lags in Granger causality tests, on gene expression time series.

Recent methods aim to infer causality from the identification of peculiar characteristics
(eg. non linearities) in the probability distributions of causes and effects (125, 129, 235) (these
methods remain out of the scope of this thesis).

1.10 GRN inference assessment

GRN inference can be assessed through the experimental confirmation (ie. through siRNA
experiments to inhibit the putative causal gene) of predicted gene regulations. A more practical
alternative is to compare the predicted regulations with an available gold standard, constituted by
ordered pairs of genes of known or putative regulations. Available gold standards are incomplete,
as they do not contain all existing regulations (not all have been identified) and may contain
errors. In simulated gene expression data, a complete gold standard is given. Assessing inference
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1.10 GRN inference assessment

with a gold standard is a problem of binary classification, where known regulations are instances
of a positive class (and the remaining possible regulations are of the negative class). A regulation
which is correctly inferred, according to the gold standard, is a true positive (TP). False positives
(FP), true negatives (TN) and false negatives (FN) are equivalently defined. Fig. 1.8 illustrates
the difference between TP, FP, TN and FN.

truthtruth

positive negative

inferred

positive TP
FP (type 1 

error)
inferred

negative
FN (type 2 

error)
TN

Saturday, March 28, 2015

Figure 1.8: Confusion matrix - True positives, false positives, true negatives, false negatives.

The precision is the number of TP divided by the number of instances predicted as positives
N , TPN . The recall (or TP rate) is the number of TP divided by the number of positives P , TPP .
The FP rate is the number of false positives divided by the number of negatives. The specificity
is 1 minus the FP rate. F-scores combine values of recall and precision into a single value.
These measures require the classification of instances into positive and negative classes. When
instances are ranked according to a score that they are of the positive class, ranking accuracy
can be assessed with precision-recall (pr-curves) and receiving operator characteristic (ROC)
curves.

ROC and pr-curves The use of curves to assess network inference requires that instances
(ie. gene regulations) are scored and ranked (216). Instances are ranked according to a score
that they are of the positive class and are incrementally selected. A pr-curve plots the precision
(vertical axis) as a function of recall (horizontal axis), as instances are selected. ROC curves plot
recall (vertical axis) as a function of the FP rate (horizontal axis). As instances are selected, both
curves move along the horizontal axis (left to right). These curves may be characterized with a
single value, the area under the curve (AUPRC or AUROC) - where a higher area means a better
overall accuracy. Its maximum value of 1 corresponds to the optimal configuration where all the
positive instances are ranked before all negative ones. Figure 1.9 presents precision-recall and
ROC curves of the same ranking and gold standard. In particular, the number of total instances
is 600 and the number of positives is 20.

Pr-curves have been considered to be a more informative indicator of performance than
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Figure 1.9: Precision-recall and ROC curves - Pr-curves plot precision as a function of recall;
ROC curves plot recall as a function of the false positive rate (FPR).

ROC curves on class imbalanced problems (when the positive class is the minority). In this case,
ROC analysis is less sensitive to variations in the number of false positives: a large change in the
number of FPs (recall remaining constant, vertical axis) may lead to a small change in the false
positive rate (horizontal axis) (62)). This phenomenon can be seen in the Figure 1.9, around
recall 0.2. The drop in precision is much larger than the corresponding increase in the FPR.

One advantage of ROC analysis is that the expected ROC curve, in the null hypothesis of
random selection, is invariant with the positive/negative class distribution and takes the form of
a diagonal from 0 to 1 (with a respective area under the curve of value 0.5). Regarding pr-curves,
on the contrary, the expected null curve depends on the class distribution and on the number of
positive and negative instances.

Precision comparison and assessment Pr-curves depend on the characteristics of the infer-
ence problem, namely the number of positives and negatives. If the ratio of positive instances
lowers, the expected precision lowers as well. For this reason, precision values obtained in
different configurations (ie. number of positives and negatives) are not directly comparable.
However, a measure of global precision (such as the area under the curve, AUPRC) may be
transformed into a p-value (null hypothesis of random selection), which is comparable among
different configurations. Such a p-value is also useful to assess statistical significance.

In the literature, the only approach to estimate AUPRC p-values is non-parametric, consisting
in the estimation of the AUPRC probability distribution by Monte Carlo. The first contribution
of this thesis, presented in the Chapter 4, is the analytical derivation of the mean and variance
of the null AUPRC, which are used to estimate a continuous approximation of the AUPRC
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distribution.

1.11 Thesis contributions

1.11.1 On the null distribution of the precision-recall curve

The Chapter 4 presents the first contribution of this thesis, concerning the assessment of GRN
inference through pr-curves. Different pr-curve interpolation strategies are discussed (Section
4.2), and the expected pr-curve of random selection is analytically derived (Section 4.3). From
these results the expected value and variance of the null AUPRC are derived (Section 4.4). These
parameters (together with the minimum and maximum AUPRC values) are used to estimate a
continuous approximation of the AUPRC distribution based on the beta distribution (Section
4.4.3). This approach has the advantage (compared to Monte Carlo) of returning an exact
solution, avoiding the high number of simulations required for an accurate approximation of the
AUPRC distribution. Section 4.5 presents some experimental findings, including a comparison
between the beta distribution-based AUPRC distribution and the one obtained by Monte Carlo,
for different number of instances. It is shown that the beta distribution approximation is an
accurate one, more so for larger number of instances. This result is expected: as the number of
instances increases the discrete nature of the true pr-curve is smoothed out. Another experiment
assesses the errors of the mean and variance of Monte Carlo approximations as a function of
the number of simulations, and also number of instances. As expected, it is shown that as the
number of instances grows larger, the number of simulations required to maintain a constant
same error increases. We use this approach to compute AUPRC p-values in the experimental
session of the Section 5.

1.11.2 GRN inference from time series

The Chapter 5 presents two algorithmic contributions to network inference from time series
(Section 5.2), and an experimental investigation on its accuracy (Section 5.3).

The experimental session uses real and simulated gene expression time series. The former
are 11 multivariate time series of gene expression from Saccharomyces cerevisiae (yeast), from
two different datasets, of 25 and 18 time points (214, 238). A gold standard of interactions is
obtained from the literature (1). The simulated time series are 100 multivariate time series (of
50 genes) generated by GeneNetWeaver, the software behind the popular DREAM challenges
(166, 230), for different number of time points, from 20 up to 300. Using the simulated data
we investigate how inference accuracy depends on the time series size. In the microarray time
series we investigate inference accuracy in a real biological context.
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A first experiment compares different approaches to model Granger causality (GC) between
cause-effect pairs. A second experiment compares multiple state of the art approaches for GRN
inference. In both the real and simulated data 100 networks of 50 genes were inferred. The
inference of each network was assessed with a AUPRC p-value, as described in the previous
section. The two experiments are bias-variance trade off investigations: the first on the modeling
of causality between cause-effect pairs; the second on multivariate considerations in network
inference. The two algorithmic contributions to network inference and the experimental results
are briefly described next.

Conditional GC The first algorithmic contribution to network inference is a fast approxima-
tion of a first order conditional (ie. on a single third variable) GC test between two variables
(described in Section 5.2.2). The resulting score is then used as a filter network inference method.
This approach can be seen as a dynamic extension of the PC algorithm, restricted to first order
conditional independence tests (see Section 2.5). In order to score and rank cause-effect pairs
(direct regulations), useful for assessment using precision-recall or ROC curves, each pair is
assigned the minimum of the respective first order conditional GC scores.

This strategy implies a search over the set of conditioning variables, which may be com-
putationally intensive (each test involves two linear regressions of one and two independent
variables). We propose an heuristic to prioritize the search, starting with the variables most
likely to return low GC scores, and stopping when a criterion is met. The proposed method was
experimentally validated in the Section 5.3, being the most precise inference approach in the
simulated time series. The improvement in computational speed is critical in GRN inference
from a very large number of genes (eg. the 20 thousand in human). The proposed approximation
can be generalized to the static case.

The use of first order conditional dependences has been proposed as an attractive approach
to GRN inference. Each regulation is scored as a function of three variables only, avoiding the
high variable to sample ratio limitation (170). Examples in the context of static linear models
(GGMs) can be found in (65, 163, 278, 279). Its adoption assumes that the correlation between
a non cause-effect pair of genes is explained by a single third gene. Figure 1.10 illustrates an
example of a case where this does not hold, of an indirect causal regulation via two genes. First
order conditional independence tests are not sufficient to screen off such dependence. Figure
1.11 illustrates dependences mediated via a single gene. In directed graphical models, they
correspond to the case where a single path (d-)connects two nodes (see Section 2.4).

Co-regulation identification The second algorithmic contribution to network inference is
a simple method to identify co-regulated genes (regulated by the same genes) in time series,
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Saturday, January 3, 2015

Figure 1.10: Illustration of an indirect regulation via two genes - The gene on the top regulates
the gene on the bottom via two two intermediate genes. First order conditional independence tests
do not screen off the dependence between the top and bottom genes.

Saturday, May 23, 2015

Figure 1.11: Illustration of indirect regulations via a single gene - In the left case, the genes on
the bottom are regulated by the gene on the top. In the right case, the gene on the top regulates the
gene on the bottom via a single intermediate gene. First order conditional independence tests are
sufficient to screen off the dependence between the bottom genes (left case) and bottom and top
genes (right case).

which can be combined with network inference methods. Co-regulated genes are determined by
common causes, are statistically dependent and may be incorrectly inferred as a cause-effect
pair. Under a linear assumption, we propose to identify as co-regulated the genes which exhibit
a high linear correlation between them, and also a higher non-lagged correlation than a lagged
correlation. The method is theoretically justified through the analysis of SEM path diagrams in
Section 5.2.3.1, and experimentally validated in both real and in-silico gene expression data.

Experimental session In the experimental investigation of Section 5.3, different approaches
to infer causality with respect to the number and estimation of lags and consideration of non-
stationarity are assessed. We show that one-lag approaches are more accurate than multiple-lag
approaches when the number of time points is low, but not when this number is higher than
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around one hundred points. In the network inference experiment, and in line with literature
findings, when the number of samples is low, simpler methods outperform more sophisticated
ones (which become more accurate as the number of samples increases). In the simulated time
series, methods based on first order conditional dependences are the top performing, in particular
the proposed conditional GC filter (see discussion in Section 5.4).

1.11.3 Knowledge inference in Type 1 Diabetes

The Chapter 6 presents a study on gene expression in the context of type 1 Diabetes, based on
eight datasets of gene expression in β-cells after cytokine exposure. These datasets are from
different species (human, mouse and rat), and of different time points after cytokine exposure.
Two of the used datasets, time series of rat and human gene expression, were made publicly
available in the context of the publication of the work of this chapter. A standard meta-analysis
was performed on these datasets to identify sets of genes differentially expressed before and after
24 hours cytokine exposure. These genes were functionally characterized through functional
enrichment tools, and compared with literature information in order to identify unknown genes,
of potential relevance for β-cell dysfunction and apoptosis in the type 1 Diabetes context.

In parallel, a set of 84 genes, differentially expressed both before and after 24 hours, was
selected to infer a GRN using the novel human gene expression time series dataset. The network
was inferred using a temporal adaptation of the variable selection method mRMR (212) based
on estimated lags (described in Section 6.3.5). From these lags the genes in the network were
also ordered by time of regulation. Two genes (ELF3 and RIPK2), among the most up-regulated
both before and after 24 hours (and the two most up-regulated among the unknown genes),
were selected for an assessment of their impact in β-cell apoptosis. They were knocked down
using siRNA and shown to have a protective role in β-cells as apoptosis went up after their
knockdown. Four predicted regulations (present in the inferred network) involving the two
selected genes as potential regulators were also subject to an experimental validation. Three
causal links were confirmed. ELF3 was found to up-regulate CX3Cl1 and SP110. RIPK2
was found to up-regulate IRF7 (however, if the regulations are direct or indirect remains to be
determined). These results provide a proof of concept of the network inference approach and
identified novel genes of potential relevance to better understand β-cell loss in type 1 diabetes.

1.11.4 Publications used in this thesis

• Miguel Lopes, Gianluca Bontempi, ”Using Granger causality to infer gene regulatory
networks from time series”, to be published. Used in chapter 5.

• Miguel Lopes, Gianluca Bontempi, ”On the null distribution of the precision and recall
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curve”, ECML-PKDD, 2014. Used in chapter 4.

• Miguel Lopes, Burak Kutlu, Michela Miani, Claus H. Bang-Berthelsen, Joachim Strling,
Flemming Pociot, Nathan Goodman, Lee Hood, Nils Welsh, Gianluca Bontempi, Decio
Eizirik, ”Temporal profiling of cytokine-induced genes in pancreatic β-cells by meta-
analysis and network inference”, Genomics, April 2014. Used in chapter 6.

The following publications are not used in this thesis, but consist of work which inspired or
directly led to the presented contributions.

• Miguel Lopes, Gianluca Bontempi, ”Experimental assessment of static and dynamic
algorithms for gene regulation inference from time series expression data”, Frontiers in
Genetics, December 2013.

• Miguel Lopes, Patrick Meyer and Gianluca Bontempi, ”Estimation of temporal lags for the
inference of gene regulatory networks from time series”. Belgian-Dutch Conference on
Machine Learning and Workshop on Predictive Modeling for the Life Sciences (Benelearn
and PLMS), 2012.

The following publications are not directly related to the topics of the thesis, but have
contributory work of my own and were developed during the writing of this thesis.

• Laura Marroqui, Miguel Lopes, Reinaldo S dos Santos, Fabio A Grieco, Merja Roivainen,
Sarah J Richardson, Noel G Morgan, Decio L Eizirik, ”Differential cell autonomous
responses determine the outcome of coxsackievirus infections in murine pancreatic α and
β cells”, E-Life, 4, 2015.

• Flora Brozzi, Tarlliza R Nardelli, Miguel Lopes, Isabelle Millard, Jenny Barthson, Mar-
iana Igoillo-Esteve, Fabio A Grieco, Olatz Villate, Joana M Oliveira, Marina Casimir,
Marco Bugliani, Feyza Engin, Gkhan S Hotamisligil, Piero Marchetti, Decio L Eizirik,
”Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via
different mechanisms”, Diabetologia, 2015.

• Baroj Abdulkarim, Marc Nicolino, Mariana Igoillo-Esteve, Mathilde Daures, Sophie
Romero, Anne Philippi, Valrie Sene, Miguel Lopes, Daniel A Cunha, Heather P Harding,
Cline Derbois, Nathalie Bendelac, Andrew T Hattersley, Dcio L Eizirik, David Ron,
Miriam Cnop, Ccile Julier, ”A missense mutation in PPP1R15B causes a syndrome
including diabetes, short stature and microcephaly”, Diabetes, 2015.
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1.11.5 Data and software

The following data and software was made available and developed in the context of this thesis.

• A R package to estimate AUPRC significance, implementing the approach described in
the Chapter 4. It takes as input a vector of scores and a gold standard.1

• A R package to estimate scores of Granger causality tests and other dynamic network
inference methods. The novel methods are available, as well as all the methods assessed
in the Section 5.3.2

• Datasets and R scripts to replicate the experiments of Section 5.3.3

• β-cell gene expression time series datasets, of human4 and rat5. These are presented and
used in the Chapter 6.

1.12 Structure of the thesis

This thesis is structured as follows: Chapter 2 consist of preliminaries for causal and network
inference. Chapter 3 describes the state of the art of GRN inference. The three following
chapters constitute the contributions part of this thesis. Chapter 4 is on the derivation of the
mean and variance of the null AUPRC. Chapter 5 is on GRN inference from time series. Chapter
6 is on knowledge inference on β-cells in models of Type 1 Diabetes.

1https://github.com/miguelaglopes/pranker
2https://github.com/miguelaglopes/GCnetinf
3https://github.com/miguelaglopes/NetInfExps
4http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53454
5http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53453
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2

Preliminaries

This chapter provides a foundation for the topic of causal inference and variable selection. It first
presents relevant notions of statistical dependence in the general case (using information theory)
and in the linear case. The theory behind causal inference (structural equation models, Bayesian
networks) is then presented. Analysis and causal inference in time series is also discussed.
Random forests are one example of a machine learning method that may be used to variable
selection and network inference, and is also described in this chapter.

Chapter outline Basics of information theory are presented in the Section 2.1. Section 2.2
is on the estimation of linear dependencies. Section 2.3 introduces structural equation models
and Section 2.4 the theory behind graphical causal models. The estimation of graphical models
is addressed in 2.5. Decision trees and random forests are introduced in Section 2.6, and the
analysis and inference in time series is addressed in the Section 2.7.

2.1 Basics of information theory

2.1.1 Introduction

Entropy was first introduced in the context of statistical thermodynamics, measuring the number
of microscopic states of a system consistent with its observed macroscopic state, and playing a
central role in the second law of thermodynamics (147, 153). Entropy was then extended by
Shannon leading to the emergent field of information theory (233). The information entropy
measures the amount of uncertainty, or informative content, associated with a random variable.
Information-theoretic concepts have been applied in the last decades to a variety of biological
problems (19), such as the analysis of neuron spike trains (188), cell signaling (219) or gene
network inference (256).
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Information theory allows to quantify the statistical dependence between two variables
through the notion of mutual information. Mutual information is the reduction of the entropy of
one variable when the other is conditioned on. Two variables are statistically independent if and
only if their mutual information is zero (the mutual information is always non-negative).

If two variables are elliptically distributed (eg. multivariate Gaussian), its covariance is
zero if and only if its mutual information is zero (same with partial correlation and conditional
mutual information, regarding conditional dependence). In this case, statistical dependence
is equivalent to linear dependence, and the mutual information and Pearson correlation are a
bijective function of one another. Entropy and the mutual information are discussed in what
follows (for a reference see (57)).

2.1.2 Entropy and the mutual information

Information entropy is often defined for discrete variables but can be extended for continuous
variables, in this case it is called differential entropy (we will restrict to the discrete case).

Definition 2. The entropy of a discrete random variable X with probability mass function p(x)

and support Sx is:
H(X) = −

∑
x∈Sx

p(x) log p(x) (2.1)

If the base of the logarithm is 2, the unit for entropy is the bit, if it is e, the unit is the nat.
The conditional entropy is H(X|Y ) = H(X,Y ) − H(Y ). Conditioning does not increase
entropy: H(X|Y ) ≤ H(X). It follows that H(X,Y ) ≤ H(X) +H(Y ).

Definition 3. The mutual information between two discrete random variables X and Y , with
respective support Sx and Sy is:

I(X;Y ) =
∑
x∈ SX

∑
y∈SY

p(x, y) log

(
p(x, y)

p(x)p(y)

)
(2.2)

Its relation with entropy is the following:

I(X;Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y ) (2.3)

Figure 2.1 is a common representation of the mutual information and entropies of two variables.
If two variables are independent, then p(x, y) = p(x)p(y) and their mutual information is zero.
A useful property is the following:

Theorem 1. (Data processing inequality.) If X1 ⊥⊥ Y |X2:

I(X1;Y ) ≤ min{I(X1;X2), I(X2;Y )} (2.4)
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I(X;Y)H(X|Y) H(Y|X)

H(X) H(Y)

Tuesday, August 26, 2014

Figure 2.1: Mutual information - The mutual information betweenX and Y isH(X)−H(X|Y ).

The interaction information is the trivariate extension of the mutual information, defined
next.

Definition 4. The interaction information between three random variables X , Y and Z is:
(175)

I(X;Y ;Z) = I(X;Y |Z)− I(X;Y ) (2.5)

= I(X;Z|Z)− I(X;Z) (2.6)

= I(Y ;Z|X)− I(Y ;Z) (2.7)

While conditioning always reduces entropy, conditioning may increase or decrease the
mutual information. Thus, the interaction information may be positive or negative: tf the term
I(X;Y |Z) is lower than I(X;Y ) the interaction information is negative, and positive otherwise.

X Y Z

Tuesday, August 26, 2014

Figure 2.2: An example of negative interaction information - Conditioning on any variable
reduces the mutual information between the other two variables: eg. H(X;Z|Y ) < H(X;Z).

X Y

Z

Tuesday, August 26, 2014

Figure 2.3: An example of positive interaction information - Conditioning on any variable
increases the mutual information between the other two variables: eg. H(X;Y |Z) > H(X;Y ).
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An example of negative interaction information is represented in the Figure 2.2. In this case,
if we condition on Y , X and Z become independent, thus I(X,Z) > I(X,Z|Y ). An example
of positive interaction information is represented in the Figure 2.3. Y and X are independent
and I(X;Y ) = 0, but if Z is conditioned they become dependent and I(X;Y |Z) > 0. This
case is known as a collider in graphical models (Section 2.4). The mutual information can be
generalized to a higher number of variables, although its interpretation is non-trivial - requiring
reasoning with hypergraphs (16).

2.1.3 Estimation of entropy and mutual information

Mutual information can be estimated from entropy estimations. In the case of continuous
variables, entropy is known as differential entropy and may be estimated through integration
(analytical or numerical). It requires the estimation of a continuous probability density function,
in a parametric or non-parametric way, eg. by kernel density estimation (202). Another approach
is to discretize the observations (known as binning) and use the discrete entropy formula. Two
common discretization strategies are equal-size binning (bins of the same size) and equal-
frequency binning. In the latter, bins are created such that all bins are observed the same number
of times, and in the resultant discretized probability function all bins have an equal area. For
these and other approaches see (71).

In the discrete case, the maximum likelihood (ML) estimation and a bias corrected version
of it are described in what follows. Consider a discrete random variable X , defined in a support
Sx = {x1, .., xN}. Denote the number of times a value xi is observed by ni. The total number
of observations by n. The ML estimation is based on the ML estimation of the density mass
function.

Ĥ(X) = −
N∑
i=1

p̂(xi) log p̂(xi) (2.8)

where p̂(xi) = ni
n . The ML estimation of the density mass function is unbiased, however the

entropy estimation is negatively biased.1 The asymptotic bias of the ML entropy estimation
has been shown to be (m− 1)/2n, where m is the number of non-zero probability bins. The
bias-corrected ML estimation is called the Miller-Madow estimator. It is:

Ĥ(X) = Ĥ(X) +
m− 1

2n
(2.9)

For improvements on the Miller-Madow estimation and a description of the ML entropy bias
see (201). For a review on non-parametric methods see (15). Bayesian estimation approaches
are described in (6, 188).

1This happens because an underestimation in p̂X causes a greater error in the entropy estimation than an upwards
overestimation of the same quantity.
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In the case of variables following a multivariate Gaussian distribution, the mutual information
is a bijective function of the Pearson correlation, presented next, in Section 2.2:

I(X;Y ) = −1

2
ln(1− ρ2X,Y ) (2.10)

Conditional mutual information is analogously obtained from the partial correlation (introduced
in Section 2.2.2):

I(X1;X2|X3) = −1

2
ln
(

1− ρ2X1,X2|X3

)
(2.11)
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2.2 Estimation of linear dependences

Two variables are linearly dependent if the realization of one above or below its mean increases
the conditional probability of observing the other above or below its respective mean. The linear
dependence of two variables may be quantified with their covariance. It measures how well
one variable is predicted with a linear transformation of the other. The Pearson correlation
is the covariance divided by the product of the variables’ standard deviation and is bounded
between -1 and 1 (in these extremes the variables are perfectly linearly correlated, negatively
or positively). Analogously to the Pearson correlation, the partial correlation is a normalized
measure of conditional linear dependence, measured in linear regression models. These concepts
are presented in some detail in what follows.

2.2.1 Linear regression

In linear regression, a target variable Y is modeled as a linear function of predictor variables X
(110).

Y = β0 +

p∑
i=1

βiXi + εi (2.12)

The vector β measures the influence of each Xi on Y . In particular, βi is the change in Y after
an unit increase in Xi, all things constant. A non-zero coefficient indicates a linear conditional
dependence between the respective predictor variable and the target. The standard way to
estimate β is through ordinary least squares (OLS), minimizing the empirical mean squared
error ( ˆMSE). Let xi be a vector of realizations of the variable Xi and X a matrix of observations
of the set of variables X . Assuming mean equal to zero and β0 = 0, the ˆMSE as a function of
β, is: (110)

ˆMSE(β) =
1

n

n∑
j=1

(
yj −

p∑
i=1

βixi,j

)2

(2.13)

or alternatively, in a matrix form:

ˆMSE(β) =
1

n

(
y −Xβ)T(y −Xβ)

)
(2.14)

By minimizing ˆMSE, we obtain the OLS coefficients β̂OLS :

β̂OLS = arg min
β∈Rp

(
(y −Xβ)T(y −Xβ)

)
(2.15)

By taking the derivative relative to β, equaling it to zero and solving, we have:

β̂OLS = (XTX)−1XTy (2.16)

If the additive noise ε in equation (2.12) is uncorrelated and homoscedastic the OLS is the best
linear unbiased estimator (BLUE) of the linear regression coefficients, MSE-wise (110).
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2.2.2 Linear correlation

The Pearson (or linear) correlation measures the linear dependence between two variables.

Definition 5. The Pearson correlation coefficient between two variables X and Y is:

ρX,Y =
σX,Y
σXσY

(2.17)

Other measures of correlation exist, such as the Spearman correlation, which is the linear
correlation of the ranks of the samples (the sample of lowest value has rank 1, the sample of
highest value has rank n).

The partial correlation measures the conditional linear dependence between two variables.
It is obtained from the inverse of the covariance matrix (the concentration matrix Ω) of the
considered variables (146). In the following consider a set of variables X = {Xi}, i ∈ {1, .., p}.

Definition 6. The partial correlation between Xi and Xj given X\{i,j} is:

ρXi,Xj |X\{i,j} =
−ωi,j√
ωi,iωj,j

(2.18)

The cardinality of the set X\{i,j} defines the order of the partial correlation. The partial
correlation (changing notation, between X and Y conditioned on a set Z) may also be obtained
recursively through the following formula: (146)

ρX,Y |Z =
ρX,Y |Z\Z0 − ρX,Z0|Z\Z0ρY,Z0|Z\Z0√

(1− ρ2
X,Z0|Z\Z0

)(1− ρ2
Y,Z0|Z\Z0

)
, Z0 ∈ Z (2.19)

A q-th order partial correlation is then computed from (q-1)-th order partial correlations. This
makes it possible to compute any partial correlation recursively from a Pearson correlation
(when Z = Z0).1

2.2.3 Linear regression and partial correlation

The linear regression and partial correlation coefficients are closely related. If Xy is a linear
function of X\y, the coefficient associated with Xi is given by: (146)2

βi,y =
−ωi,y
ωy,y

(2.20)

1If only full order partial correlations are to be kept, the covariance matrix inversion method is computationally
preferable to the recursive method, as the latter computes a single partial correlation in approximately the same time
O(p3) it takes to invert the covariance matrix (and obtain all pairs of partial correlations at once) (139).

2When estimating the linear coefficient matrix, this approach is computationally preferable to regressing each
variable at a time. It requires the estimation of a single p× p concentration matrix, whereas the latter case requires p
(p− 1)× (p− 1) concentration matrices.
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βi,y is related to the partial correlation in the following way:

βi,y = ρXi,Xy |X\i,y

√
ωi,i
ωy,y

(2.21)

In the bivariate case (one independent variable X and one dependent Y ) the coefficient β is
obtained from the Pearson correlation:1

β = ρX,Y
σY
σX

(2.22)

Full rank requirement The estimation of partial correlations or linear regression coefficients
through OLS requires the covariance matrix to be invertible.2 When that is not the case, the
linear model does not have an unique optimal solution. Regularization tackles this limitation.

2.2.4 Regularization

Regularization is the consideration of parameter constraints in order to solve ill-posed problems
and reduce model variance. Forms of regularization include bounds on the parameter space, or
penalization of model complexity. In linear regression, regularization usually consists in the
estimation of a full rank approximation of the covariance matrix (some strategies as referred to
in the Section 2.5.1 on graphical models) or in the modification of the OLS error minimization
function (equation (2.15)) to include a penalty term proportional to the Lp-norm of the β
coefficients (23):

β̂reg = arg min
β∈Rp

(
(y −Xβ)T(y −Xβ) + λ|β|p

)
(2.23)

where λ > 0 and |β|p =
∑n

i |βi|p (to avoid confusion, instead of the typical p, the number
of variables is denoted by n). Usually, p is 1 or 2. The L2 penalty regularization (called
ridge regression, or Tikhonov regularization) adds a constant in the diagonal of the covariance
matrix, making it invertible and enabling the estimation of β through OLS. The parameter λ
can be selected with respect to various criteria, see (45, 100). The L1 penalty regularization is
called the lasso, and the combination of Lp-norm penalty regularization is called the elastic-net
(297). Linear regression can be used for variable selection through the identification of non-null

1Both the concentration and covariance matrix are of dimension 2 × 2, and the division of the terms of the
diagonal of a 2× 2 matrix is equal to the inverse of the division of the diagonal terms of the inverse matrix.

2An invertible matrix is a square matrix that has full rank, meaning all its rows, or columns, are linearly
independent in the linear algebra sense - no row/column can be obtained as a linear combination of the other
rows/columns. The column rank and the row rank of a matrix are always equal. The maximum allowed rank of a
matrix of dimension n× p is the minimum between n and p. The rank of a square matrix XTX of dimension p× p
is the same as the rank of X , and XTX only has full rank if the rank of X is p, which is only possible if n ≥ p.
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coefficients. Lp-norm regularization is useful in this case as it induces sparsity and magnitude
decrease in the estimated non-null coefficients.

Lp-norm regularization is discussed in more detail in what follows, as it is commonly used
in network inference (see the Chapter 3).

The lasso The L1-norm penalty regularization is known as the lasso (least absolute shrinkage
and selection operator) (254). When n > p and the predictors are uncorrelated (orthogonal) the
lasso has a closed form solution. In the general case, several strategies exist in the literature to
compute the lasso solution path (ie. the linear coefficients as λ decreases from infinity to zero).
One is least angle regression (74) and makes use of the fact that the lasso path is piece-wise
linear (see below). Another is coordinate descent, updating the lasso coefficients one at a time
until convergence (89, 283). For other strategies see (199) or (203). The lasso has been shown to
be consistent (selects the true model parameters as n tends to infinity) under certain conditions
(293, 296), and unique (returning a single solution) in general conditions (predictors drawn from
a continuous probability distribution) (255).

Least angle regression (lars) The lasso solution path can be obtained with least angle regres-
sion (74). Here, the linear regression model is initialized with the selection of the predictor most
correlated with the target. The non-zero coefficients jump together in a direction equidistant
(having equal angles) to the current predictors. The size of the jump corresponds to when the
residual vector becomes as correlated with a new predictor as with the previously selected. This
happens when the residual vector bisects the angle between the current predictors and the new
one (74). This new predictor then enters the model. Lars is an improvement of a previous
method called forward stagewise selection, where the coefficients are gradually incremented
one a time. In lars, only a few steps (jumps, corresponding to when a predictor enters the model)
are necessary to compute the stagewise selection path. If a regressor leaves the model when its
coefficient hits zero, then the lars path is equivalent to the lasso path (74).

The elastic net Tikhonov regression tends to return few non-zero coefficients, difficulting the
interpretation of the model in a context of variable selection (although linear coefficients may
be transformed into partial correlations, enabling the ranking of coefficients and selection via a
threshold). The lasso returns fewer non-zero coefficients (maximum n) and a more interpretable
model. On the other hand, it tends to select only one of a group of correlated variables, and
the constraint on the number of returned non-zero coefficients may be deemed too limiting
(297). Tikhonov regression is preferable when there is a high number of non-zero coefficients
of similar magnitude; the lasso is preferable when the model is characterized by a few large
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coefficients of uncorrelated variables. The elastic net (297) tackles the limitations of the lasso
by combining Tikhonov regression and the lasso. It adds two penalty terms to the OLS MSE
minimization equation, one proportional to the L1 norm of βi and the other proportional to the
L2 norm.

β̂enet = arg min
β∈Rp

((y −Xβ)T(y −Xβ) + λ1|β|1 + λ2|β|2) (2.24)

where λ1, λ2 > 0. Elastic net can be solved with adaptations of least angle regression (297) and
coordinate descent (89).

Other variations When the regressors are grouped, L2 regularization at the intra-group level
may be combined with L1 regularization at the inter-group level (289) (if the number of groups
is 1 this is equivalent to ridge regression; if the number of groups is the number of regressors,
to the lasso). This approach induces sparsity in the number of selected groups (but not at the
intra-group level). It addresses the limitation of the lasso selecting only one variable from a
group of correlated ones. Another extension to the lasso consists in weighting differently each
coefficient (each multiplied by a penalty weight). This variation asymptotically identifies the
true non-zero coefficients in all cases (whereas the lasso does not) (296).
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2.3 Linear structural equation models

Linear structural equation models (SEMs) originated in the 20s, with Sewall Wright’s path
analysis (281), a graphical method to deduce variances and covariances in linear causal models.
Linear SEMs are a formalization of path analysis, providing the association between the
parameters (linear coefficients) of a linear causal model and the covariances of its variables.
SEMs have been extensively used to model causality in econometrics and in the social sciences
(184).1

SEMs may consider observed or latent (not observed) variables, exogenous or endogenous
(the latter are a function of other variables and are determined within the system). Disturbances
(eg. representing measurement errors) are latent exogenous variables uncorrelated with other
exogenous variables, and influencing only one endogenous variables. Each endogenous variable
is associated with a single disturbance.

In a SEM, variables are usually defined recursively, where each is a function of other
previously defined variables. Non-recursive SEMs contain feedback loops and require particular
treatment (condensing loops (184)).

Linear SEMs may be used for confirmatory purposes, by comparing observed covariances
with predicted ones. SEMs may also be used in exploratory analysis, as model parameters
(ie. its linear coefficients, in which non-zero values indicate a causal linear relation) may be
estimated from data. For some approaches see (184).

The term SEM usually implies linear models, due to its origins and decades of linear
SEM-based research and applications. SEMs have been generalized to the non-linear case and
formalized in a context of causal models (206). Following a chronological order, this section
discusses linear SEMs, while theory on causal models is introduced in Section 2.4.

An example of a (recursive) SEM, modeling endogenous variables as a function of exoge-
nous, is: 

X4 = β1,4X1 + β2,4X2 + ε4

X5 = β2,5X2 + β3,3Y3 + ε5

X6 = β5,6X5 + β8,6X8 + ε6

X7 = β3,7X3 + β8,7X8 + ε7

(2.25)

X1,X2,X3 andX8 and the ε terms (the disturbances) are the exogenous variables. The variables
X4, X5 and X6 and X7 are the endogenous variables. In SEMs, the variance/covariance of
exogenous variables is usually given.

1There has been some debate over their adequacy to causal inference. One point in contention is the distinction
between causal and statistical association, see (86) for negative perspective on SEM usage, see (26) for a rebuttal of
common arguments against SEMs.
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2.3.1 Path diagrams

The variances and covariances in a SEM can be obtained through the analysis of path diagrams.
Figure 2.4 is a SEM path diagram representation of the SEM described in the system of equations
(2.30).1 Here, each variable manifest variable is represented with a square, and each latent
variable with a circle. The model coefficients are represented by directed straight arrows (from
the independent to dependent variable). Exogenous variables only have directed straight arrows
pointed from them (not towards them). The covariance between exogenous variables (if non-
zero) is represented with curved bi-directional arrows. The variance of exogenous variables is
represented by bi-directional arrows (loops) from and to the variables.

Figure 2.4: Path diagrams in structural equation models - Path diagram representation of a
SEM. Exogenous variables (X1, X2, X3, X8 and disturbances) only have directed straight arrows
pointed from them. Endogenous variables have arrows pointed towards them. Latent variables are
represented in circles. Manifest variables are represented in squares. Each endogenous variable
is influenced by a disturbance variable ε. The variance and covariance of exogenous variables are
represented by curved bi-directional arrows.

2.3.1.1 Path tracing rules

Variances and covariances in a SEM path diagram can be obtained with a set of rules, described
herein (based on (184)). A SEM path is a sequence of arrows (straight or curved) along variables,
with the restriction that no two consecutive arrows in the path are pointed towards the same
variable (ie. a SEM path does not include the sequence of arrows X2 → X5 and X5 ← X3, in
the Figure 2.4).

1In the system of equations (2.30), for simplicity, disturbances are assumed to have a unitary linear coefficient,
and their contribution to the model is determined by their variance.
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A SEM path may contain the same arrow twice, if separated by a variance loop (ie. a path
may contain the sequence of arrows X4 ← X2 (variance loop)↔ X2 → X4, in the Figure 2.4).
Finally, a SEM path must go through an exogenous variable, passing necessarily through either
its variance loop or through a covariance bi-directional arrow.

Only one variance loop or covariance curved arrow may be part of a path (otherwise there is
necessarily a sequence of two arrows pointed to the same variable). Two paths are distinct if they
are not constituted by the same sequence of arrows. Straight arrows are associated with the re-
spective coefficient of the SEM model, and curved arrows with a respective variance/covariance.
In what follows, for simplicity, we may say that each arrow has an associated coefficient (linear
coefficient in the case of straight arrows; variance/covariance in the case of curved arrows).

2.3.1.2 Variance

The variance of a variable is obtained by adding the product of the coefficients of each SEM
path, for all distinct paths from and to that variable. These paths enter the variable with the
arrow pointed towards it, as they must go through an exogenous variable. In the Figure 2.4,
there are 5 distinct paths from and to the variable X5: the first leaves X5, goes to X2 and around
its variance loop, and then goes back to X5. The second leaves X5, goes to X3 and around its
variance loop, and then goes back to X5. The third leaves X5, goes to X2, then to X3 via the
covariance arrow, and then to X5. The fourth path does the same in the opposite direction. The
fifth path goes around the disturbance variable. Note that there is no path through X7, as all
arrows are pointed towards it. The variance of X5 is then:

σ25 = β22,5σ
2
2 + β23,5σ

2
3 + 2(β2,5β3,5σ2,3) + ε25 (2.26)

2.3.1.3 Covariance

The covariance of two variables is obtained by adding the product of the coefficients of each
path, for all distinct paths between the first variable and the second variable. Consider X5 and
X6. The paths between them are the paths of the variance of the X5 with the addition of the
arrow between X5 and X6. Thus, the covariance between X5 and X6 is:

σ5,6 = β5,6
(
β22,5σ

2
2 + β23,5σ

2
3 + 2(β2,5β3,5σ2,3) + ε25

)
= β5,6σ

2
5 (2.27)

Consider now the case of variables X4 and X5. There are four paths from X4 to X5: via X2,
via X1 and X2, via X1 and X3, and via X2 and X3. The covariance is then:

σ4,5 = β2,4σ
2
2β2,5 + β1,4σ1,2β2,5 + β1,4σ1,3β3,5 + β2,4σ2,3β3,5 (2.28)
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2.3.2 Covariance matrix estimation

The covariance matrix of all the manifest variables can be estimated through matrix operations,
as a function of the model coefficients and covariances of the exogenous variables. Following
(184), let η be a set of latent endogenous variables (of size m); Y a set of manifest endogenous
variables (of size p); ξ a set of latent exogenous variables (of size n); X a vector of manifest
exogenous variables (of size q); ε a set of disturbances (of size m+ p, one for each endogenous
variable). In a matrix form, the endogenous variables can be modeled as:[

η

Y

]
= A

[
η

Y

]
+
[
Γξ ΓX Γε

] ξX
ε

 (2.29)

A is a (p + m) × (p + m) matrix representing the contribution (ie. linear coefficients) of
endogenous variables on the modeling of other endogenous variables. Γ =

[
Γξ ΓX Γε

]
is a

(p+m)× (n+ q + p+ q) matrix representing the contribution of exogenous variables (latent,
manifest and disturbances) on the endogenous variables. The variance/covariance matrix of the
manifest variables (endogenous and exogenous) is given by:

Σ = GB∗−1Γ∗ΦΓ∗TB∗−1
T

GT (2.30)

This equation is known as the fundamental theorem of structural equation modeling (184). In
the following we describe the meaning of these symbols, for the proof of equation (2.30) see

(184). G =

[
Gy 0

0 Gx

]
where Gy =

[
0 I

]
with the null matrix of dimension p ×m and

the identity matrix is of dimension p × p; and Gx =
[
0 I 0

]
with the first null matrix of

dimension q×m, the identity matrix of dimension q×q and the second null matrix of dimension
q × (m + p). B∗−1 is a square matrix with number of rows/columns equal to the number of

columns of G (2m+ 2p+ n+ q) and is equal to

[
B−1 0

0 I

]
, where B = I−A. Γ∗ =

[
Γ

I

]
,

with dimension (2m+ 2p+ n+ q)× (n+ q + p+ q). Finally:

Φ =

Φξξ ΦξX 0

ΦXξ ΦXX 0

0 0 Φεε

 (2.31)

Φξξ is the n× n covariance matrix of the latent exogenous variables (excluding disturbances);
ΦXX is the q × q covariance matrix of the manifest exogenous variables; Φεε is the (m+ p)×
(m+ p) covariance matrix of the disturbances (assumed to be diagonal); ΦXξ is the covariance
matrix between the manifest exogenous and the latent exogenous. The covariances between
disturbances and exogenous variables is assumed to be zero.
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2.4 Graphical models

A graphical model is a representation of the conditional dependences of a multivariate probability
distribution P in a graph characterized by nodes and edges (or vertices), G = 〈N,V 〉. Variables
are represented in nodes, and conditional dependences between variables by edges.

The edges of graphical models may be directed or undirected. Direct graphical models
usually have a causal interpretation (ie. edges are directed from causes to effects (206)). Nodes
connected by an edge to another node are adjacent or neighbors of that node. In directed graphs,
nodes are referred to in terms of parents and children (and ancestors/descendants): a node is
a parent of another if there is a directed edge from the first to the second. Ancestors include
parents, grandparents and so on. A path consists of a set of edges (directed or undirected)
connecting two nodes along a set of intermediate nodes. A collider of a directed path is a node
in which the edges of the path point towards it.

Causal models Following Pearl (206) (page 203), a causal model M is defined to be a
composition of three elements: a set of background (or exogenous) variables U , determined by
factors outside the model; a set of endogenous variables V , determined by variables within the
model (exogenous and endogenous); and a set of functions uniquely determining the value of
each endogenous variable, given the values of the other variables.

A probabilistic causal model (also referred to as a structural equation model (208), in which
the linear case was discussed previously) is composed of a causal model M plus a probability
distribution of U .

2.4.1 Separation and d-separation

We adopt the term separation for undirected graphs and d-separation for directed graphs, both
denoted by the symbol ⊥⊥G. The symbol ⊥⊥P denotes independence in P . The fact that Z
separates/d-separates X and Y is represented with X ⊥⊥G Y |Z.

Separation is defined as follows (266).

Definition 7. (Separation in undirected graphs.) Let G be an undirected graph, and X , Y and
Z three disjoint sets of nodes. Z separates X and Y if Z contains at least one node in each
path between X and Y .

D-separation is the analogous concept for directed acyclic graphs (266). A crucial character-
istic is the role of colliders.

Definition 8. (D-separation in directed acyclic graphs.) Let G be a directed graph, and X , Y
and Z three disjoint sets of nodes. Z d-separates X and Y if, for all paths between X and Y ,
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there is a node W satisfying one of the two conditions:

• W is a non-collider in the path and W ∈ Z.

• W is a collider in the path and does not - and neither do its descendants - belong in Z.

If a path does not contain colliders, its edges follow the same direction and the path is active.
If a path contains colliders, the path is blocked. A set of nodes present in all active paths between
two nodes d-separates these two nodes. A collider d-connects nodes at opposite sides (relative
to the collider) of a blocked path.

Markov property If all graphical separations/d-separations are associated with conditional
independences in P , then the graph has the Markov property with respect to P (206).

Definition 9. (Markov property) A graph G has the Markov property with respect to P if and
only if, for any pair of nodes X and Y and set of nodes Z:

X ⊥⊥G Y |Z =⇒ X ⊥⊥P Y |Z (2.32)

This property comes in three forms, which are equivalent if P is strictly positive (they are
not distinguished in this section and are referred to as the Markov property) (146, 206). Note
that a fully connected graph (where all nodes are adjacent to all other nodes) trivially respects
the Markov property. The implication in the opposite direction is guaranteed by the property
of faithfulness (see next section). In directed graphs, the Markov property is referred to as the
causal Markov property. It implies that a node is independent of all its non-descendants (direct
or indirect effects), given all its parents (direct causes) (206).

2.4.2 Faithfulness and minimality

Faithfulness The Markov property guarantees that each separation/d-separation relation in G
is associated with a conditional independence in P . This imposes a minimum number of edges
in G. However, if extra edges are added to the graph, the Markov property is still valid. Edge
sparseness is guaranteed by the opposite implication (conditional independence implying graph
separation). This implication, together with the Markov property, is known as faithfulness.1

Definition 10. (Faithfulness.) A graph G is faithful to a probability distribution P if only if, for
any pair of nodes X and Y and set of nodes Z:

X ⊥⊥G Y | Z ⇐⇒ X ⊥⊥P Y | Z (2.33)

1The term stable is also commonly used (206).
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There are instances where a true causal structure (represented in a directed graph) is
unfaithful to the probability distribution of its variables. For instance, ifX = βY +αZ+εX and
Y = −αZ + εY , X is independent with Z (206). However, such a precise parameter (the linear
coefficients) canceling has probability zero if the parameters follow a continuous probability
distribution function and are independent (178, 206)). Non faithfulness may also occur when the
multivariate probability distribution is not strictly positive and there are functional dependences
(variables fully determined by other variables) (96, 243, 266). The requirement of a strictly
positive probability distribution is formalized in the graphoid axioms (96, 209).

Minimality A faithful graph is the sparsest graph that respects the Markov property, as all
conditional independences in P are represented in the form of absences of edges. However, as
referred above, faithfulness may not be guaranteed. On the other hand, there is always a minimal
graph with respect to a probability distribution (187). Together with faithfulness, the property of
minimality ensures the adoption of simpler graphs, in the spirit of Occam’s razor.

Definition 11. (Minimality) A graph G is minimal with respect to a probability distribution P if
the Markov property holds, but does not anymore if any edge is removed.

2.4.3 Undirected and directed graphical models

Undirected graphical models in which the Markov property holds are known as Markov networks,
or Markov random fields. If the variables are multivariate Gaussian distributed, dependence is
measured with the linear (partial) correlation, and the Markov network is known as a graphical
Gaussian model. Directed acyclic (or recursive) graphical models (DAGs) in which the causal
Markov property holds are known as Bayesian networks (BN).

A difference between BNs and Markov networks is that Markov networks cannot represent
colliders with independent parents. In this case, there is an edge between the two parents in the
Markov network, as they are dependent given all other variables including the collider (such
an edge does not exist in a faithful BN). Markov networks are then unfaithful if the underlying
causal structure contains colliders with independent parents.

In BNs, the acyclic condition allows for a compact factorization of the multivariate probabil-
ity distribution in terms of individual marginal distributions using the chain rule of probability
(206). This makes use of the fact that any node is conditionally dependent of all its non-
descendants, given its direct parents. Let Xpa

i be the set of parents of Xi:

P(X1, .., Xp) =

p∏
i=1

P(Xi|Xpa
i ) (2.34)
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The acyclic condition prevents the modeling of feedback loops. However, these may be inferred
indirectly using time series data, if each variable is represented in multiple nodes corresponding
to different time points. Such networks are known as dynamic Bayesian networks (DBNs)
(99, 185).

In BNs, edge direction may be identified in open collider situations: if X and Y are
independent but are conditionally dependent given Z, the latter d-connects X and Y and is a
collider in a path involving them. This is the principle behind edge orientation in constraint-
based BN inference algorithms (Section 2.5.2). Other edges may then be directed in order to
respect the acyclic condition, but if there are equivalent networks (see below) it is not be possible
to uniquely orient all edges (206). However, edge direction is trivially identified in DBNs, as
edges are directed from nodes at past time points to nodes at future time points.

2.4.4 Equivalent networks

The Markov property, faithfulness and minimality aim to guarantee an optimal representation of
the dependences encoded in P . However, there may be multiple directed graphs respecting these
properties. This the case of graphs with the same skeleton (edges disregarding direction) and
the same v-structures (ie. colliders in an open triplet). Such networks are said to be equivalent
(51, 267).

Consider a simple open triplet case, with three nodes and two directed edges, and in which
we fix the unconnected pair of nodes. There are four possible ways to orient the edges (Figures
2.5 and 2.6). Conditional independence only allows for the unique identification of one case,
the collider configuration (Figure 2.5). In this case, X and Y are independent but conditionally
dependent given Z. However, if X and Y are dependent but conditionally independent given Z,
any of the three structures of Figure 2.6 are possible.

X Y

Z

Tuesday, August 26, 2014

Figure 2.5: Collider configuration of an open triplet - X and Y are independent, but become
conditionally dependent given Z.
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X Y

ZX YZ

X YZ

Sunday, August 31, 2014

Figure 2.6: Non-collider configuration of an open triplet - X and Y are dependent, but become
conditionally independent given Z. The three cases are d-separation equivalent.

2.4.5 Markov blankets

Definition 12. The Markov blanket (MB) of a node X is the minimum set of nodes that (d-
)separates X from all the other nodes in the network.

Alternatively, it is the set of nodes that are not (d-)separated from X , given all other nodes
in the network. In a Bayesian network, the MB of X is constituted by its parents, children and
spouses (nodes that share with X a common child) (4, 205). Figure 2.7 illustrates the MB of a
node X . Markov blankets are useful in the context of variable selection. Assuming the Markov
property, given the MB of a variable X , no other variable is conditionally dependent with it.
Thus, the MB of X is an optimal set of predictors of X: it is the minimum set of predictors for
which there is no predictive gain in the consideration of extra predictors (4, 259). A Markov
network (undirected model) is constituted by the edges connecting all nodes to the respective
MB.

Figure 2.7: Markov blanket of nodeX in a DAG. - The Markov blanket of a nodeX is constituted
by its parents, children and spouses (parents of a common child).
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2.4.6 Computing the effects of interventions in Bayesian networks

In Bayesian networks, hypothetical effects of interventions (ie. setting a variable/node to a fixed
value, represented with the do operator) may be obtained from observational data, if the causal
effect is identifiable (206, 208). This condition means that the causal effect only depends on
(and is uniquely identified from) the set of causal assumptions (encoded in the directed graph)
and the probability distribution. Given them, the causal effect does not depend on possible
variations of the functional parameters of the model (eg. linear coefficients). Any identifiable
intervention effect may be estimated with a set of rules known as do-calculus (out of the scope
of this thesis, see (121, 206, 237)).

Another approach to estimate the effects of do operations consists in covariate adjustments
(meaning marginalizing out the covariates). Two known strategies to select these covariates
are known as the back-door and front-door criteria (206). The back-door adjustment is briefly
described next, providing the effect on Y of a do(x) operation. It consists in adjusting for all
the common causes of X and Y (and none of their effects).

Definition 13. (Back-door criterion) A set of variables Z satisfies the back-door criterion with
respect to two sets of variables X and Y if:

• Z blocks every path between X and Y with an arrow into X .

• No node in Z is a descendent of X .

The adjustment for back-door covariates is:

Theorem 2. (Back-door adjustment) If Z satisfies the back-door criterion with respect to X
and Y , then:

P(y|do(x)) =
∑
z∈Sz

P(y|x, z)P(z) (2.35)
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2.5 Estimation of graphical models

This section presents standard estimation approaches for undirected and directed graphical
models, introduced in the previous section. Section 2.5.1 is on Gaussian graphical models, and
Section 2.5.2 on Bayesian networks. Section 2.5.3 presents strategies to infer Markov blankets
(constituting the Markov network), and sets of parents and children (constituting the skeleton of
a Bayesian network).

2.5.1 Gaussian graphical models

As referred previously in Section 2.4, Gaussian graphical models (GGM) are undirected graphi-
cal models in which edges represent non-zero partial correlations between its nodes (146, 276).

When n > p and the covariance matrix has full rank, the partial correlation matrix can be
obtained by inverting the covariance matrix (Section 2.2.2). If the covariance matrix is not
invertible, an invertible estimation may be obtained using variance-reducing techniques such
as regularization or shrinkage (discussed next). Regularization in linear models was discussed
in Section 2.2.4 and the estimation of the inverse of the covariance matrix with L1-norm
regularization is known as the graphical lasso (88). Alternatively, regularization may be applied
to each target variable at once (returning the respective predictors linear coefficients / partial
correlations). Another approach is the estimation of the nearest invertible correlation matrix
with respect to a distance measure (116).

Full order partial correlations may also be approximated with lower order partial correlations.
This strategy and shrinkage-based estimation are discussed next in more detail. It is also possible
to infer GGMs by inferring the Markov blanket of each variable (under Gaussian assumptions).
Markov blanket inference strategies are described in the Section 2.5.3.

2.5.1.1 Shrinkage estimation of the covariance matrix

If Σe is the empirical (possibly non-invertible) covariance matrix, the shrinkage estimation Σs,
given a shrinkage target Σt is obtained by:

Σs = λΣt + (1− λ)λΣe (2.36)

The shrinkage target matrix Σt may take various forms (see (229) for a review of commonly used
shrinkage targets), from low to high complexity (ie. number of different elements). For instance,
if Σt is diagonal, only the diagonal elements of the covariance matrix (the variances) are shrunk
(towards the diagonal of Σt) while the non-diagonal elements are shrunk to zero.1 Literature

1A shrinkage estimator moves (shrinks) an estimation towards a target point, estimated from the data. It has
been shown to dominate, MSE-wise, maximum likelihood estimators in certain situations (73). Shrinkage is closely
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approaches to estimate the parameter λ include empirical Bayes methods and cross-validation
(229). The λ minimizing the MSE can also be derived analytically, a result due to Ledoit and
Wolf (149, 229). This estimation has been shown to be biased and an unbiased estimate based
on bootstrapping has been proposed in (141).

2.5.1.2 Lower order partial correlations

Lower order partial correlations can be used to approximate full order partial correlation graphs,
assuming faithfulness (48). Let Gq denote a graph where the absence of an edge implies the
absence of a non-null partial correlation up to order q between the respective nodes, and let
G be the full partial correlations graph). When q = 0 edges correspond to a non-null Pearson
correlation between the respective nodes. As q grows, under faithfulness1, edges can only be
removed (the ones whose nodes become conditionally dependent given any set of q variables).
Thus, given r < q < p (48):

G ⊆ Gq ⊆ Gr (2.37)

When estimating q-th order partial correlations graphs, only edges present in the q − 1-th order
graph have to be tested for conditional independence. One approach to estimate G is then to
start with G0 and recursively remove edges as q increases (140). In the context of Bayesian
networks this approach is known as the PC algorithm (see next section).

2.5.2 Bayesian networks

One application of Bayesian networks (when the graph is known) is the inference of conditional
probability distributions of unobserved variables. Inference methods may be exact or approx-
imate, both NP-hard (55, 60, 113). A related application is the inference of the most likely
values of all unobserved variables (most probable explanation), or of only a subset (maximum a
posteriori) (145).

Methods to infer the graph of a BN are commonly distinguished into approaches based on
conditional independence (CI) tests; and based on a search over the network space (known as
search and score methods) (145). Well-known algorithms based on CI tests are the PC algorithm,
inferring the skeleton of the network (its non-directed edges), and the IC / SGS algorithms
(similar and proposed independently), which return a directed network (206, 243). The skeleton
of a BN may also be inferred by identifying the parents and children of each node. The skeleton

linked to empirical Bayes methods (221), and is a form of regularization (Section 2.2.4).
1On the assumption of faithfulness: a GGM (or a Markov network) is not faithful if there are colliders with

independent parents in the underlying causal structure. When this is the case, there is an edge between the two
parents in the full order GGM, while there is none in the linear correlation graph (of order 0).
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can then be directed using IC / SGS. An approach to do so is by first identifying the Markov
blanket of each node. The PC and the IC / SGS algorithms are described next. Algorithms for
Markov blanket inference are described in Section 2.5.3. Section 2.5.2.2 refers some score and
search strategies.

2.5.2.1 Inference based on CI-tests

Assuming faithfulness, two nodes connected by an edge are conditionally dependent, for any
conditioning set of variables. If two nodes are found to be conditionally independent, there
should be no edge connecting them. The PC algorithm (206, 243) (algorithm 2.1) considers
conditioning sets of increasing cardinality (ie. number of elements) starting from 1. An edge
between two nodes is discarded as soon as d-separation is found.

Algorithm 2.1: The PC algorithm.
input : a multivariate probability distribution P of a set X of p variables
output : an undirected graph G

1 initialize a fully connected (undirected) graph G ;
2 initialize k = 1 ;
3 while k < p do
4 for each Xi ∈ X do
5 for each Xj ∈ X do
6 (if there exists a set of conditioning variables which screens off the

dependence between Xi and Xj , of cardinality k)
7 if ∃Xz, Xz ⊆ X, |Xz| = k : I(Xi;Xj |Xz) = 0 then
8 remove the edge between Xi and Xj in G

9 k = k + 1 ;

The IC / SGS algorithm (206, 243) is a general scheme to infer the skeleton and infer edge
direction and is described in the algorithm 2.2. The first step infers the skeleton and can be
implemented with the PC algorithm.

Regarding the third step, rules have been identified as sufficient to identify all the common
oriented edges in a class of equivalent networks, respecting the principle of no extra v-structures
and no directed cycles (177, 206). They consist on four situations where an undirected edge
between X and Y can be directed from X to Y , without creating new cycles and v-structures.
These situations are illustrated in the Figure 2.8. Note that orienting the edge from Y to X
necessarily creates v-structures or cycles. In the figure we see that:
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Algorithm 2.2: The IC / SGS algorithm.
input : a multivariate probability distribution P of a set X of p variables
output : a partially directed graph G

1 initialize a fully connected (undirected) graph G ;
2 (step1 - identification of conditional independences)
3 for each Xi ∈ X do
4 for each Xj ∈ X do
5 (if there exists a set of conditioning variables which screens off the dependence

between Xi and Xj)
6 if ∃Xz, Xz ⊆ X : I(Xi;Xj |Xz) = 0 then
7 remove the edge between Xi and Xj in G

8 (step 2 - identification of collider structures)
9 for each triplet of variables Xi, Xj and Xz , where Xj and Xi are non-adjacent, but are

adjacent with Xz , in G do
10 if Xj 6⊥⊥ Xi|Xz then
11 orient the edges between Xi and Xz , and between Xj and Xz , to be directed

towards Xz ;

12 (step 3 - orientation of all other edges)
13 orient as many edges as possible in G, on the condition that no directed cycles and new

colliders are created ;

• In situation 1, orienting an edge from Y to X create a new v-structure (X is the collider).

• In situation 2, orienting an edge from Y to X creates a directed cycle.

• In situation 3, orienting an edge from Y to X implies that an orientation of the edges
between X and Z1 and between X and Z2 creates either a cycle, or a new v-structure
composed of X (the collider), Z1 and Z2.

• In situation 4, orienting an edge from Y to X implies that an orientation of the edge
between X and Z2 creates either a cycle, or a new v-structure composed of X (the
collider), Z2 and Y .

The difference between IC and SGS is that SGS specifies step 3, orienting edges based on
the first two rules stated above.

It is possible to test whether a partially oriented graph can be fully extended into a fully
oriented DAG. This tests consists in recursively removing any collider in open triplets without
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Figure 2.8: Rules for edge orientation in Bayesian networks - Situations where an edge can be
directed from X to Y without creating cycles and new v-structures.

directed edges pointed from it, and where its adjacent nodes via undirected edges are adjacent
to all nodes adjacent to the collider. If all colliders in open triplets can be removed, then the
graph may be extended to a fully oriented DAG (70, 206). If this is the case, a way to direct
undirected edges is to test hypothesis by checking if the extension remains valid.

2.5.2.2 Score and search approaches

Approaches based on CI tests may be computationally intensive due to the possibly large number
of required conditional independence tests, particularly in large networks. Alternative methods
infer BN by searching the network space, assessing each network with a scoring function.
Search methods include hill climbing, simulated annealing (113), evolutionary algorithms (145)
or particle swam optimization (269). Scoring functions take into account goodness of fit and
network sparsity. Common scoring functions are the AIC, the BIC (see Section A.1), the
Bayesian Dirichlet criterion, the minimum description length criterion (145), or the MIC (64).
An empirical comparison between different scoring functions can be found in (47). These
commonly assume that the data is discrete, requiring a discretization of continuous variables.
Scoring functions for the continuous Gaussian case can be found for instance in (95, 114).

2.5.3 Markov blanket inference

The edges of a Markov network (undirected model, such as the Gaussian graphical model)
connect each node to its Markov blanket (MB, Section 2.4.5). On Bayesian networks edges
connect nodes to the respective set of parents and children, the MB except for spouses (parents
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of same children). This section describes some approaches to infer MBs and sets of parents and
children (from these the skeleton of a BN is obtained, which may be directed using IC / SGS).

Inferring MBs One method to infer the MB of a variable Y is known as Grow-shrink (168)
and involves two steps. In the first, variables are added to a MB candidate set if they are
conditionally dependent with Y , given the previously selected variables. In the second step,
variables are removed from the MB candidate set if they are conditionally independent with Y ,
given the remaining candidate set. A refinement of the selection part (known as IAMB (260))
selects at each step the variable that maximizes the conditional dependence with Y given the
previously selected (eg. using the mutual information to quantify dependence).

Methods to infer the parents and children of Y work in a similar fashion. The difference
is that while a variable is part of the MB of Y if it is conditionally dependent with Y given all
other variables, it is a parent or child of Y if it is conditionally dependent with Y given any
variable(s).

Inferring parents and children One method to infer the set of parents and children of Y
is MMPC (261), which also proceeds in two steps. First, for each variable X , the subset of
variables among the currently selected for which conditioning on minimizes the conditional
dependence between X and Y is identified. MMPC then adds to a candidate set the variable X
for which this (minimal) conditional dependence is maximum. If the dependence is null, the
selection stops. In the second step, the algorithm removes from the candidate set any variable
which is conditionally independent with Y , given any set of variables in the candidate set.
Another method is the HITON algorithm (3). It adds variables to a candidate set of parents
/ children following an order based on their pairwise dependence with the target. After each
variable is added, all previously selected variables which are conditionally independent with Y
given any subset of the previously selected are discarded. The algorithm stops when all variables
were considered.

From MB to parents and children The difference between the MB and the set of parents
and children is that the MB also includes spouses. If the set of parents/children is known, for all
variables, the spouses of Y may be identified as follows (3). Possible spouses of Y are be first
identified as being the variables that are parents/children of each parent/children of Y , but are
not parents/children of Y . Spouses of Y are then the ones which are conditionally dependent
with Y given any of its parents/children. When the MB of a node Y is known, any variable in it
that becomes conditionally independent with Y given any other variable in the MB must be a
spouse of Y .
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2.6 Variable selection with decision trees and random forests

Decision trees are machine learning models used in supervised classification and regression.
Following the machine learning terminology, variables may be referred to as attributes, and
samples as instances. A decision tree is composed by test nodes, branches and leaf nodes. An
instance enters the tree at a root node, follows a path of branches, and ends up in a final leaf.
Random forests are ensembles of decision trees, discussed in more detail below.

A test node represents a question on the nature of the instance (eg. if one of its attributes
belongs to a given class or is higher than a threshold; or in which region of the attribute space it
falls into). The outcome of test nodes are branches leading to other test nodes or leaves. Leaves
are nodes without outgoing branches, representing the class of the instance to classify (or a
numeric value in the case of regression trees).

Attributes appearing on top nodes should be more informative of the target/class variable.
This observation can be used to perform variable selection, for instance by growing several trees
and identify which attributes (variables) appear on top nodes (83, 298)).

Tree nodes are characterized in terms of impurity, measuring the class variance in the
instances in the node (in classification). If all instances in a node are of the same class, the
node is pure. Impurity is maximum when the classes have an equal frequency. Node impurity
is usually measured with the entropy or the Gini index (248). In the case of regression trees,
impurity may be quantified with the local residual sum of squares (considering only the node
instances).

2.6.1 Learning decision trees

Several algorithms have been proposed to learn decision trees from data. A major group (ID3,
C.45, CART) (34, 87, 217) 1 is characterized by a divide-and-conquer strategy. Instances enter
the tree at an initial node and then each follows one of multiple downward branches, according
to the values of a most informative attribute, according to some criterion. A branch follows
into a subsequent node, where its instances are split again, according to the most informative
attribute not previously used in node splitting of parent nodes. A leaf is an end node and is
created when all the instances in its parent branch belong to the same class (the leaf is assigned
the value of that class), or if there are no more attributes not used previously in splitting (in this
case the leaf is assigned the majority class of the subset instances). It may happen that there are

1C.45 is an extension of ID3 to deal with continuous values, missing data, and which also implements a pruning
step to mitigate over-fitting. In the case of CART, any test node only outputs two branches (this is not a restriction
in ID3/C.45, for non-continuous data). Differences between CART and C.45 are relative to tree pruning, splitting
criterion and handling of missing values.
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no instances in a current branch, and in this case its subsequent node is a leaf whose class is the
majority class of the instances in the parent node.

2.6.2 Boosting, bagging, random forests

Decision trees are commonly used as the base model in model ensembles. Common ensemble
strategies (boosting, random subspace methods, bagging) are described next. Boosting is the
process of iteratively combining weak models into a stronger one. It consists on assessing
the classification error on the training set and then increasing the weight of the misclassified
examples on the training set distribution. The classification is then repeated and so on. One
popular example is the AdaBoost algorithm, using decision trees as the individual models (87).

Random subspace methods combine models obtained after randomly sampling the variable
space (119, 136). Whereas boosting is an iterative procedure in which the final model is
incrementally improved, in this approach weak models are learned in parallel and then combined.
This approach has been shown to return robust models, as variant and susceptible to over-fitting
as the weaker individual models, but more precise (less biased) than these (136). Bagging
(bootstrap aggregating) (35) is the process of sampling with replacement the training dataset,
training a model in each case and then combining the obtained individual models.

These methods combine model variations in the variable space (boosting, random subspace
methods) and in the sample space (bagging). Random forests combine variations in both levels.
They are defined as an ensemble of individual decision trees, each depending on a random vector
sampled independently from the same probability distribution(36). A common implementation
is a bagging-combination of decision trees, in which the attributes considered at node splitting
are randomly selected (36).

Variable importance Random forests allow for variable selection through the consideration
of the importance of each variable (attribute). One approach to estimate variable importance is
through the reduction in the accuracy in out-of-bag samples (samples not used in training) when
the values of the variable are randomly permuted (36).

Another approach to measure the importance of a variable is to estimate the average
improvement of the tree after node splitting when that variable is considered in the split. This
may be quantified by estimating the difference between the impurity of the node that is split, and
the average (weighted on the number of instances) impurity of its children nodes (a difference
which is necessarily positive (248)). Random forests have been applied in the context of GRN
inference (124), see Section 3.2.5.
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2.7 Analysis of time series

A time series is an ordered sequence of variable observations along time. Time series analysis
is useful in a broad range of areas: in econometrics (in the temporal behavior of market
values, unemployment or inflation), physical and environmental sciences (eg. evolution of
global warming) or medicine (effect of treatments over time). Time series analysis may have a
forecasting purpose (to predict variable realizations in future time points), or it may concern the
inference of statistics of temporal variables.

2.7.1 Considerations using dynamic models

This section reviews approaches to model (lagged) statistical dependences between stochastic
processes represented in multivariate time series. Due to the temporal direction of causality,
these dependences may be used to infer causal relationships. We note two points of care in the
modeling of causality using lagged dependences.

1. Causality may be missed if the sampling rate is too low. If the sampling period is higher
than the time it takes for a change in Xi to influence Xy, the change in both Xi and Xy is
observed at the same moment and the causal direction cannot be inferred from data alone.

2. Non-stationarity poses problems to standard estimation strategies, as the probability
distribution of variables changes over time. Strategies to deal with non-stationarity should
then be adopted.

The remainder of the section is organized as follows. Section 2.7.2 introduces basic notions of
time series, including auto-correlation, stationarity and vector-autoregressive processes; Section
2.7.3 is on the estimation of auto-regressive models; 2.7.4 describes Granger causality; 2.7.5
describes strategies to deal with non-stationarity; 2.7.6 introduces dynamic Bayesian networks;
2.7.7 introduces analysis in the frequency domain.

2.7.2 Properties of time series

Time series are sequential observations of stochastic (ie. subject to uncertainty) processes called
data generation processes. The values of the process at individual sampled points are modeled
as distinct random variables, characterized by the same functional dependences (159). Some
properties of stochastic processes are discussed in this section.

On notation The term time series usually denotes univariate time series, while the term
multivariate time series refers to a set of univariate time series, corresponding to different
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variables. Regarding notation, the symbol Xt may denote both the variable(s) (data generation
process) X at time t in the (multivariate) time series, or the process itself (which is also referred
to as a variable). In the case of multiple variables, Xi,t refers to the i-th variable in the set Xt.
A variable Xt−l (at time t − l) is termed a lagged variable of Xt, of lag l. Lags may also be
referred to using τ .

2.7.2.1 Auto and cross-covariance

The auto-covariance/auto-correlation of stochastic processes are the covariance/correlation
between variables at different time points (159).

Definition 14. The auto-covariance of a stochastic process Xt at two time points t1 and t2,
with respective means µt1 and µt2 , is:

σt1,t2 = E[(Xt2 − µt1)(Xt2 − µt2)] (2.38)

Note: in the context of a single variable Xt its expected value E(Xt) is simply denoted by
µt. The auto-correlation of Xt at t1 and t2 is then σt1,t2 divided by σt1σt2 . The cross-covariance
is the covariance between two processes at different time points.

Definition 15. The cross-covariance between two stochastic processes Xt and Yt at time points
t1 and t2 is:

σXt1 ,Yt2
= E[(Xt1 − µXt1

)(Yt2 − µYt2 )] (2.39)

The cross-correlation is defined analogously to the auto-correlation.

2.7.2.2 Stationarity

A stochastic process is stationary if its probability characteristics do not change over time. It is
usually defined in a weak and strong (or strict) sense (159).

Definition 16. (Weak sense stationarity) A stochastic process is stationary in the weak sense if
and only if:

E[Xt] = E[Xt+τ ], ∀τ ∈ Z (2.40)

and
σt1,t1+τ = σt2,t2+τ , ∀t1, t2, τ ∈ Z (2.41)

Weak-sense stationarity means that the expected value of the time series is the same for
for all time points, and that its auto-covariance only depends on the temporal lag (τ ) between
the two considered points. It follows that the variance of a weak-sense stationary time series is
constant for all values of t (corresponding to the auto-covariance when τ = 0).
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Definition 17. (Strong sense stationarity) A stochastic process is stationary in the strong sense
if and only if:

P(xt) = P(xt+τ ), ∀t, τ ∈ Z (2.42)

Strong-sense stationarity is a stronger condition requiring that the probability distribution of
Xt is the same for all values of t. A related definition is the one trend-stationarity. A process is
trend-stationary if it contains a non-stationary component which is a function of t and whose
removal renders the process stationary.

2.7.2.3 Vector auto-regressive models

Vector autoregressive (VAR) models are linear models in which set of variables Xt (at time t)
are modeled as a linear function of themselves at previous time points, additive white noise and
a constant (intercept) term. In the univariate case, the term auto-regressive (AR) model is used.
VAR models are commonly used as an approximation of data generating processes, in various
fields (159). VAR models are characterized by an order L indicating the number of considered
lags. A VAR(L) is then:

Xt = c+

L∑
l=1

BlXt−l + εi (2.43)

In the general multivariate case, Bl is a p× p matrix of coefficients relating the effect of each
Xi,t−l into each Xi,t. The reverse characteristic polynomial of a VAR model is the determinant
det(I−

∑L
i=1Blz

i). A property of VAR models is the one of stability. It is defined as follows
(159).

Definition 18. A VAR process is stable if the determinant of its reverse characteristic polynomial
does not have roots inside or on the unitary circle.

Stability implies stationarity, however the converse is not true (there are cases of unstable
stationary VAR processes, see below) (159).

2.7.2.4 Integration and cointegration

An univariate time series is said to be integrated of order n if it is non stationary and differ-
entiation (ie. subtraction of the value at the previous time point) n times makes it stationary
(79). In the AR process case, the time series is integrated of order n if its reverse characteristic
polynomial has n unit roots (equal to 1). If an AR process has roots strictly inside the unitary
circle, it exhibits an explosive behavior (the variance of the process increases with t at an
exponential rate). Processes with one unit root are known as random walks, and their variance
increases linearly with t. If additionally, the intercept term in equation (2.43) is different than
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zero, the expected value of the process also increases linearly with t. This process is known
as a random walk with drift and has a deterministic trend (as opposed to a stochastic trend).
Stationary and integrated processes are the most well studied cases in the time series literature
(159).

In case of a VAR with n unit roots, its individual processes may be integrated of order < n

or even stationary (due to canceling terms). Also, as opposed to the univariate case, a constant
term in equation (2.43) does not imply deterministic trends in the individual processes (159).

Differentiating n times the VAR necessarily makes its individual processes stationary.
However, differentiating may result in a loss of information regarding relationships between
variables (eg. a common trend). This limitation is addressed with the concept of cointegration.
multivariate time series integrated of order n are cointegrated if there is a linear combination
of them resulting in a stationary time series, or integrated of order < n. A slightly different
definition is: multivariate time series whose maximum order of integration is n are cointegrated
if there is a linear combination of them (with non-zero coefficients) resulting in a stationary time
series, of integrated of order < n. A known framework in econometrics to deal with integrated
variables is the vector error correction model (outside the scope of this work) (159).

2.7.3 VAR estimation

A direct approach to estimate the coefficients of a VAR model as in equation (2.43) is by OLS
(Section 2.2.1). In the case of a VAR1 model, the OLS estimation of the B matrix is:

B̂OLS = (XT
t−1Xt−1)−1XT

t−1Xt (2.44)

The solution can be modified to represent higher order VAR models. The solution for a VAR2
is obtained by replacing Xt−1 with {Xt−1,Xt−2}. If the respective covariance matrix is
invertible, a solution can be obtained with regularization (Section 2.2.4).

The OLS estimation is consistent and has the usual asymptotic properties if the VAR
process is stationary and normally distributed (assuming white noise) (159). In the case of
non-stationarity, differentiating until stationarity or using vector error correction models is then
usually required. One exception is the the particular case of two cointegrated processes of order
one, where the OLS estimation is consistent (79). Residual auto-correlation also appears if
the lag length L in the estimated model is not as high as the order of the underlying process.
An estimation of L may be obtained with standard model quality measures, such as the AIC
(appendix A.1).
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2.7.3.1 Tests of stationarity and existence of unit roots

A test whose null hypothesis is time series stationarity is the KPSS test (144). Tests whose
null hypothesis is the existence of unit roots are the Dickey-Fuller tests (67), or the Phillips-
Perron test (213). Testing the number of unit roots (order of integration) may be carried out by
recursive stationarity/unit root testing and differentiation. One approach to estimate cointegration
between two integrated time series of order one is the Engle-Granger method, based on the OLS
consistency in this particular case (79)). It consists on estimating using OLS the residuals of a
linear regression of one time series using the other. If the residuals are stationary, the two time
series are cointegrated. For other tests see (37).

Figure 2.9 illustrates a simulated gene expression time series (generated with GNW) esti-
mated to be non-stationary with the KPSS test (p-value cut-off of 0.05). Figure 2.10 illustrates
two time series estimated to be cointegrated with the Engle-Granger method (p-value cut-off of
0.05).
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Figure 2.9: Example of a non-stationarity time series. - Gene expression time series of 100
points, generated by GNW, estimated to be non-stationary with the KPSS test (p-value cut-off of
0.05).

2.7.3.2 Reduced and recursive VAR models

The use of VAR models has been popularized in econometrics in the last decades, replacing a
paradigm based on SEMs, with restrictions on causal links and distinctions between endogenous
and exogenous variables (240, 245). On the contrary, VAR models do not use impose causal
restrictions (each variable is modeled as a function of all other variables). In a retrospective
review on the use of VARs in the context of econometrics, Stock and Watson point out their
success in data description and forecasting (but not so much in causal inference and policy
analysis) (245).
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Figure 2.10: Example of two cointegrated time series. - Two gene expression time series of 100
points, generated by GNW, estimated to be cointegrated with the Engle-Granger method (p-value
cut-off of 0.05).

VARs can be represented in two forms. The reduced form is the one presented in the
equation (2.43), where each variable is modeled as a function of its past and the past of other
variables only. If there is causality occurring faster than the sampling rate (as mentioned in
Section 2.7.1), the error terms of different time series will be correlated. In this case recursive
VAR models may be used (245). Here, variables are modeled as a function of the present of
other variables also (and not only the past), such that the error terms of the individual time series
are uncorrelated. Recursive VARs take the form of:

B∗0Xt = c+

L∑
l=1

B∗l Xt−l + ui (2.45)

Bl are p× p coefficient matrices, and the new matrix B∗0 represents the dependence between
variables at time t. Recursive VARs model instantaneous causality and may be estimated from
reduced form VARs. However, recursive VARs are not uniquely identified from reduced-form
VARs, being dependent on the variable ordering (135, 245). This ordering should reflect an
informed expert judgment - when this is the case, the recursive model is known as structural
(245).

2.7.4 Granger causality

Granger causality (GC) is a test for causality on time series popularized by Granger in economet-
rics (103), and is often used as a synonym for the definition of causality of Suppes (159, 249).
There is GC from a X (the cause) to Y (the effect) if there is a conditional dependence between
the present of the Y and the past ofX , conditioned on the past of other possible causes, including
the effect itself.
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2.7 Analysis of time series

An alternative definition of Granger causality is that there is GC fromX to Y if future values
of Y are better predicted using the present and past values of X , than otherwise (159). This
definition concerns the predictive power of Xt−l1 on Yt+l2 , where l1 ≥ 0 and l2 > 0 (known as
multi-step forecasting). When forecasting multiple future time points of a target (as opposed to
just the first), and in the case of three or more variables, non (direct) causes may be useful (ie.
if they are relevant in the prediction of the direct causes of Yt+l2 , at intermediate time points
l1 < l2) (159, 161). As the topic of forecasting is out of the scope of this thesis, we will restrict
to the first characterization of GC, equivalent to the other in the one-step into the future case.

In the linear model, GC is inferred by testing the hypothesis that the linear coefficients of X
(corresponding to different lags), in a VAR model of Y , are equal to zero. These coefficients
may be tested individually or at once, addressing the problem of multiple testing. In the last
case, two models are compared, one where the coefficients of X are included, the other where
they are restricted to zero. If Y is better predicted in the first case, there is GC from the predictor
to it. The bivariate case (no other variables are conditioned on) takes the following form (Xy is
the target and Xi the predictor):

Xy,t = α0 +

(
L∑
l=1

αlXy,t−l

)
+

(
L∑
l=1

βlXi,t−l

)
+ εut (2.46)

If Xy,t does not depend on Xi,t−l (Granger non-causality from Xi to Xy), βl = 0 (these
coefficients are restricted to 0), and equation (2.46) reduces to:

Xy,t = α0 +

(
L∑
l=1

αlXy−l

)
+ εrt (2.47)

Under the assumption that the residuals are uncorrelated, homoscedastic and normally dis-
tributed, the F-test comparing the two models is as follows. Let RSSU and RSSR be the
residual sum of squares of equations (2.46) and (2.47), and N the number of points in the time
series. Define the statistic Giy as (L being the number of lags):

Giy =
(RSSR −RSSU )/L

RSSU/(N − 2L− 1)
(2.48)

Under the null hypothesis (Granger non-causality), Giy follows a F distribution with degrees of
freedom L and N − 2L− 1 (assuming a constant in the regression). The number of lags L in
equations (2.46) and (2.47) can be estimated using a measure of model quality such as the AIC.
We have assumed that L is the same for both variables, but that may not be the case. If they are
different, equation 2.48 should be modified accordingly. Usually, the number of lags of each
variable is estimated in its respective restricted model (equation 2.47 for Xy,t). The described
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method tests Granger non-causality (it is the null), however for simplicity we refer to it simply
as a GC test.

In the one lag case, testing linear GC is equivalent to testing a lagged partial correlation
between Xi,t−1 and Xy,t, conditioned on Xy,t−1. GC tests can be modified to incorporate
conditioning variables, added to both the unrestricted and restricted models. The F-statistic of
equation (2.48) should be modified - the denominator becomes N − pL − 1, where p is the
number of variables in the unrestricted model. If p > n the linear model is ill-posed due to
over-fitting and the GC test is unfeasible.

GC has also been described in the frequency domain (98) and extended to the non-linear
case with mutual information. This information-theoretic form is known as transfer entropy
(231). In the bivariate case, the transfer entropy from Xi to Xy is

TXi→Xy = I(Xy,t;Xi,t−l|Xy,t−l), l ∈ Sl (2.49)

(Sl represents the set of considered lags.) The transfer entropy is the mutual information between
Xi and Xy, conditioned on the past of Xi.

2.7.5 Granger causality in non-stationary time series

In the linear case, OLS-based inference requires residual properties which are not obtained in
non-stationary time series (105). One way to overcome the non-stationarity limitation is to
differentiate the time series until they are stationary and then apply OLS on the new stationary
time series. Another strategy was proposed by Toda and Yamamoto (TY) (257) in the context of
GC tests and is described next.

In the case of two cointegrated time series, one result is that there is necessarily GC between
them (in one, or both directions) (104). In this case, standard GC tests maintain their asymptotic
properties (160).

TY modification The TY-modified GC test consists in finding the maximum order of inte-
gration of all time series, adding an extra number of lags equal to this value in the restricted
and unrestricted models (for all regressors), and then testing for GC. This approach has the
advantage of avoiding pre-testing for cointegration. In the bivariate case described in the pre-
vious section, if the maximum order of integration of the multivariate time series is d, the TY
approach compares the following restricted and unrestricted models:

Xy,t = α0 +

(
L+d∑
l=1

αlXy,t−l

)
+

(
L+d∑
l=1

βlXi,t−l

)
+ εrt (2.50)
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Xy,t = α0 +

(
L+d∑
l=1

αlXy,t

)
+

(
d∑
l=1

βlXi,t−l

)
+ εut (2.51)

The number of denominator degrees of freedom of the F-test in equation (2.48) changes to
N − 2(L+ d)− 1), and it becomes:

Giy =
(RSSR −RSSU )/L

RSSU/(N − 2(L+ d)− 1)
(2.52)

This approach has the advantage that the resulting statistic is well-behaved asymptotically, even
in the case of integrated variables. However, the extra regressors added in the restricted and
unrestricted models may result in a loss of power of the test, particularly in the small sample
case (69).

2.7.6 Dynamic Bayesian networks

Dynamic Bayesian networks (DBN) are extensions of Bayesian networks in which each variable
is represented in multiple nodes corresponding to consecutive time points (or slices). Edges
connect nodes at different time points, in a temporal direction. DBN graphs are naturally
acyclic, as edges are always directed from a node to another at a subsequent time point. It
is possible to model feedback loops, as each node is represented at multiple time points (eg.
X1,t → X2,t+1 → X1,t+2). Usually the number of considered time slices is only two. In
this case, and under linear assumptions, DBN are similar to VAR1 models. See (185) for an
extensive description of DBNs.

Some authors have extended graphical causal models (ie. Bayesian networks) to deal with
time series (in this case each variable is represented in a single node, as opposed to in DBN). A
”global Granger causal Markov property” is described in (75), analogous to the Markov property
(Section 2.4.1), with the difference that GC takes the role of statistical dependence. White and
colleagues (273, 274) established an equivalence between GC and causality in the framework of
Bayesian networks, under a condition of exogeneity of unobserved variables (ie. these are not
determined by observed variables).

2.7.7 Differential equations

Ordinary differential equations model an n-th degree derivative as a function of lower degree
derivatives. One example, of the first derivative of a variable Xy (Ẋy) modeled as a function of
itself, other variables and external perturbations θy,t is the following:

Ẋy,t = fi(X1,t, .., Xp,t, θy,t) (2.53)
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If fi is a linear equation, Ẋy becomes:

Ẋy,t =

p∑
i=1

βiyXi,t + θy,t + εy,t (2.54)

In practice, when dealing with discrete time series, and in the absence of external perturbations,
Ẋy,t may be approximated as Xy,t+1 −Xy,t (as in (11, 151)).

2.7.8 Analysis on the frequency domain

Time series can be analyzed on the frequency domain, using the Fourier transform (FT). A
possible application of the FT in gene expression time series data is the identification of periodic
biological processes, and noise removal. Examples can be found in (251), (239) or in (222). In
the frequency domain, the ordering of cause-effect pairs may be identified as follows. If one
time series causes the other, it precedes it in time, and in the frequency spectrum there is a phase
difference between the time series (for each frequency). This phase difference becomes higher
(in absolute value) as the frequency increases. It is then expected a positive (or negative) slope
in the phase difference spectrum. The signal of the slope gives information about which time
series precedes the other. This method is known as the phase-slope index (191).

2.8 Conclusion

This chapter presented the preliminaries for causal inference from variable observations. As
discussed in the introduction (Section 1.9), causality is closely linked to statistical dependence.
Statistical dependence may be quantified with the mutual information, a concept from infor-
mation theory and introduced in Section 2.1. When variables are elliptically (eg. normal)
distributed, linear dependence is equivalent to dependence. Linear models are extensively used
and were introduced in Section 2.2. Conditional dependence between two variables implies
causality between them when all their common causes are conditioned on, but two independent
variables are conditionally dependent given a common effect. These insights are the basis of
causal models, commonly represented in a graphical form - where nodes represent variables,
and edges represent causal mechanisms. Due to the need of a clear distinction between the
causes and effects of a variable, these models are usually acyclic (or recursive). Only this case
was considered in this chapter. Linear causal models (known as structural equation models)
were introduced in Section 2.3, and general graphical causal models (Bayesian networks) in
Section 2.4. Undirected graphical models are often used to represent conditional dependences
between variables, one example being the graphical Gaussian model, in which edges represent
partial correlations between nodes (variables). Some strategies to infer causal models were
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presented in Section 2.5. Networks may also be inferred with the selection of predictors for
each target variable. Variable selection may be implemented using a variety of statistical and
machine learning methods, such as decision trees and random forests. These were introduced in
Section 2.6. The final Section 2.7 addresses the topic of analysis and causal inference from time
series. The use of time series allows to associate variable observations at different time points
and to distinguish between possible causes and effects - as the effect of a cause is observed at
a later time point than the cause itself. This is the basis of Granger causality tests and vector
autoregressive models. The described concepts compose a foundation for network inference.
Some literature applications of network inference in the context of gene regulatory networks are
described in the next Chapter 3.

69



2. PRELIMINARIES

70



3

State of the art for network inference

This chapter gives a flavor of GRN inference approaches that can be found in the literature, and
specific methods will be described in detail (some with available software implementations).
As discussed in Section 1.7), we will deal exclusively with inference from observational
gene expression data only and will not consider strategies incorporating prior information or
experimental perturbations (see (11, 195)).

We distinguish between inference methods designed to non-temporal, static observations;
and dynamic methods explicitly designed to time series. The former may be directed (Bayesian
networks) or undirected, while the latter are directed. Due to the high variable to sample
ratio in GRN inference, inference based on high order conditional independence tests is not
feasible and alternative strategies are adopted. Reviews on GRN inference can be found in
(10, 93, 101, 131, 170, 211, 265).

The number of GRN inference approaches in the literature is large and we do not aim to
provide an extensive survey. In the particular case of dynamic inference, strategies that are
left out of this chapter include Boolean networks, S-systems and state space models. Boolean
networks model gene expression (of two states only) at a time point as a boolean function of
gene expression at the previous point. They were among the first GRN inference approaches
to be proposed in the literature (134, 152). S-systems have also been used to model gene
expression dynamics (268). They are representations of non-linear functions using the Taylor
series approximation (227). Under certain assumptions, the estimation of the parameters of the
S-system is simplified and reduces to a linear problem (268). Finally, state space models have
been used to map gene expression into a lower orthogonal space vector (117). The hidden state
evolves over time, controlling the gene expression at the original space.

71



3. STATE OF THE ART FOR NETWORK INFERENCE

Chapter outline Section 3.1 describes experimental findings in the literature regarding net-
work inference. Section 3.2 describes static GRN inference approaches, including based on filter
variable selection (Section 3.2.1), information theory (Section 3.2.2), linear models (Section
3.2.3), Bayesian networks (Section 3.2.4), and random forests (Section3.2.5). Section 3.3
describes dynamic approaches, based on the estimation of optimal lags (Section 3.3.1); VAR
models and dynamic Bayesian networks (Section 3.3.2); and differential equations (Section
3.3.3).

3.1 Network inference assessment in the literature

The DREAM challenges are a successful endeavor to assess and compare methods to solve
problems in biology, including GRN inference. In this section we describe some relevant
findings of these challenges. The DREAM5 challenge (166) consisted in the inference of three
networks, two of around 5000 genes (of E.coli and S.cerevisai) and one of around 1600 genes of
simulated gene expression data. In all cases a gold standard of regulations is available. Networks
were inferred from between 500 and 900 gene expression samples of a variety of experiments,
including perturbatory and time series. Figure 3.1 illustrates the results (from (166)). Some
assessed methods are described in this section. The regression methods are composed of
combinations of the lasso and data resampling techniques (Tigress is method 1, Section 3.2.3).
Regarding the MI methods: method 1 is CLR, then MI and ARACNE (Section 3.2.2). Methods
4 and 5 are based on Markov blanket inference (Section 2.5.3). The correlation methods are
the Pearson and Spearman and the first two Bayesian networks methods are search and score
approaches (simulated annealing), the next two are based on Markov blanket inference. GENIE3
(Section 3.2.5) is the first of ”other” methods. Meta predictors combine multiple methods
(described below). Although high precision was obtained in the in-silico network, the precision
is much lower in the biological networks. In the S.cerevisai experiment the precision of all
methods was close to random. The inference performance was measured with the AUPRC,
which was assigned a p-value obtained with Monte Carlo.

Ensemble of predictions In the DREAM5 challenge, an ensemble of methods achieved the
highest precision. It is based on a (non-weighted) combination of the methods’ ranking of
regulations, using the Borda count method (each regulation is assigned a rank by each individual
method, and these ranks are then averaged (264)). The higher performance of Borda count-based
combinations (compared with individual methods) has also been observed in previous DREAM
challenges (167, 246). It was also shown that weighting networks according to its individual
precision results in a even higher precision.
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Figure 3.1: DREAM5 inference results - AUPRC results for three different network inference
tasks (S. cerevisiae, E.coli and in silico) and combined score, for multiple methods. Reprinted by
permission from Macmillan Publishers Ltd: Nature Methods (166), copyright 2012.

Simpler may be better It has been noted in previous DREAM challenges that simple GRN
inference approaches often outperform more sophisticated ones (167, 265). The DREAM3
challenge consisted in the inference of networks of 10, 50 and 100 genes from data reflecting
interventions (gene knock downs) and time series of 21 time points (216). The authors note
that the highest inference precision could be obtained with a simple z-score using perturbation
experiments only1. In this challenge, several assessed methods did not perform significantly
better than random (11 out of 29). In previous challenges, a simple bivariate correlation was
also shown to outperform more complex approaches (12)).

Gene expression time series Presently, the time series of gene expression that can be found
in public repositories are composed of a few dozen of different time points at most. The high
variable to sample ratio limitation is then more accentuated in inference strictly from time series.
For this reason, GRN inference from time series is usually validated in medium sized and small
networks.

One of the most informative gene expression time series currently available is of the human

1The expression of Y after X is perturbed is normalized into a z-score, which is used as a measure of the
likelihood of a regulation from X to Y .
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cancer cell cycle (Hela) (275). It consists on 3 multivariate time series of 12, 27 and 48 time
points, and 1134 genes were identified as being periodically expressed along the cycle. Network
inference on these genes and time series has been presented in (151, 158). In the literature, other
used time series are of a shorter size (around 20 points and lower) (11, 223, 294, 295).

Due to lack of a complete gold standard, inference assessment is often done on smaller
networks (an handful of genes to few dozens) (11, 223, 226, 294, 295). Due to the time series
short size, multiple datasets may be combined: 95 multivariate time series of yeast, of 6 time
points, were used with prior knowledge to infer a network of around 3500 genes (284); 44
multivariate time series of 10 time points were used to infer a network of 58 genes (196). A
similar combination is assessed in 5, using yeast time series. Often, GRN inference validation is
done on simulated data.

3.2 Static approaches to network inference

In this section we describe some state of the art network inference strategies for static data,
based on filter variable selection, mutual information, Bayesian networks and random forests.

3.2.1 Filter forward selection variable selection

As discussed in Section 2.5.3 undirected graphical models (Markov networks) may be obtained
by inferring the MB of each variable in the network. The described approaches in that section
work by estimating high order conditional dependences, which may be unfeasible in the high
variable to sample ratio case. In this case, an alternative is to resort to approximations based
on lower order approximations. Some approaches are described next, working in a forward
selection manner (as the methods of Section 2.5.3). These variable selection methods are
considered to be filters (Section 1.8). From them, network scores may be obtained.

In what follows, dependences are formulated in terms of relevance towards a target and
redundancy between predictors. We use MI as the dependence measure. The target variable is
denoted by Xy and the set of predictor variables by X\y. Additionally, consider Xs

k to be the
k-th selected predictor variable, and Sk the set of previously selected variables (before the k-th
selection). |Sk| denotes the number of elements in Sk.

FCBF FCBF (Fast Correlation Based Filter) (288) selects, at each selection step k, the
predictor with the highest relevance towards Xy, among the predictors whose relevance to Xy

exceeds the redundancy with any previously selected predictor in Sk.
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mRMR mRMR (minimum-Redundancy-Maximum-Relevance) (212) selects, at each step,
the predictor maximizing the difference between the relevance towards the Xy and the average
redundancy towards each of the previously selected predictors. The k-th selected predictor is:

Xs
k = arg max

Xi∈X\y\Sk

(ui − ri) (3.1)

where ui = I(Xi;Y ) and

ri =
1

|Sk|
∑
Xj∈Sk

I(Xi;Xj) (3.2)

The term ui represents the relevance ofXi towardsXy and the term ri represents the redundancy
ofXi with the previously selected predictors Sk. mRMR selects variables by taking into account
redundancy and relevance, and by only considering pairwise dependences avoids the estimation
of conditional dependences. If k = 1 the term ri is set to zero.

MRNET MRNET (179) is an application of mRMR to network inference. To any pair of
genes Xi and Xj a score is assigned which is equal to the maximum between two mRMR scores
u− r: the mRMR score of Xi when Xj is used as the target gene, and the mRMR score of Xj

when Xi is used as the target gene.

CMIM CMIM Conditional Mutual Information Maximization) (83) selects the predictor with
the highest lowest conditional dependence with Xy, for all previously selected predictors used
as the single conditioning variable. The k-th selected predictor is:

Xs
k = arg max

Xi∈X\y\Sk

( min
Xj∈Sk

(I(Xi;Xy|Xj))) (3.3)

CMIM is based on conditional dependences of a single conditioning variable (of order 1), thus
avoiding the over-fitting issue of high order conditional dependence estimation, when n is low.

mIMR mIMR (min-Interaction Max-Relevancy) (29) considers the interaction information
(Section 2.1.2) to add a causal aspect to variable selection, as the interaction information of an
open triplet with a collider is negative.1

At each step, mIMR selects the predictor maximizing the difference between its relevance
towards Xy and the average of interaction terms including the predictor, Xy, and each of the
previously selected predictors. The k-th selected predictor is:

1Due to inconsistent notation in the literature, the interaction information is sometimes defined as I(X;Z|Z)−
I(X;Z) or I(X;Z)− I(X;Z|Z). In mIMR the last definition is used.
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Xs
k = arg max

Xi∈X+\Sk

I(Xi;Xy)−
1

|Sk|
∑
Xj∈Sk

I(Xi;Xj ;Xy)

 =

= arg max
Xi∈X+\Sk

I(Xi;Xy)−
1

|Sk|
∑
Xj∈Sk

(I(Xi;Xy)− I(Xi;Xy|Xj))

 =

= arg max
Xi∈X+\Sk

(
∑
Xj∈Sk

I(Xi;Xy|Xj)) (3.4)

X+ is a subset of X\y, containing the variables that have a positive mutual information (non-
zero) with Xy.

In the open tripet case, the interaction information is negative if there is a collider. Then,
either Xy is the collider, or one of Xi and Xj is the collider. The situation of interest is when Xy

is the collider (as Xi and Xj are then causes of Xy). If Xi is the collider, then Xj is independent
with Xy and does not enter the initial set X+. This way, mIMR tends to select predictors which
are a cause of Xy.

3.2.2 Inference based on information theory

The mutual information is a measure of non-linear dependence and its use has been popularized
in GRN inference. Under a Gaussian assumption the mutual information is a monotonous
function of the linear correlation (Section 2.1), and the linear and the Spearman correlations
have been shown to outperform other estimations of MI in GRN inference (193).

Relevance networks A simple approach to infer GRN is to score each possible regulation
with the MI between the two respective genes. A network can be inferred by selecting the highest
score regulations. This simple approach does not take into account multivariate dependences,
and is liable to score highly pairs of genes which are only indirectly dependent. Other methods
aim to improve this aspect through the consideration of multivariate aspects, and are described
next.

ARACNE ARACNE (169) is based on the Data Processing Inequality (Section 2.1.2): if if
two genes X and Y are indirectly dependent via a third one (Z), then the dependence between
X and Y is weaker than the dependence between X and Z, and between Y and Z. In this case,
ARACNE discards a regulation between X and Y to prevent the inference of false positives.
ARACNE first computes the MI of each pair of genes. Then, it considers each combination of
three genes and discards the weakest pairwise dependence, if the difference between the two
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weakest dependences (measured with the MI) is above a certain threshold. If the true network is
a tree1, ARACNE is able to reconstruct it, due to the DPI. This method enjoys some popularity
(eg. successfully used in GRN reconstruction in B cells (14)).

CLR CLR (81) normalizes the pairwise MI so that all genes have the same MI mean and
variance (between itself and all other genes). In CLR, the regulation between Xi and Xj is
assigned a score equal to wij =

√
z2i + z2j , where:

zi = max
(

0,
I(Xi, Xj)− µi

σi

)
(3.5)

µi and σi are the mean and the standard deviation of the mutual information between Xi and
all the other genes (zj is analogously defined). CLR tends to select highest ranked regulations
involving all genes.

3.2.3 Linear models

Due to their well-studied properties, linear models are extensively used in network inference.
The high variable to sample ratio prevents the use of OLS and strategies to deal with inference
indeterminacy are usually adopted (such as regularization, shrinkage, or use of lower order
partial correlations, see Section 2.5.1).

GeneNet A extension to infer partially directed GGMs is described next (and available in
a R package named GeneNet (197, 228)). A positive definitive estimation of the covariance
matrix is obtained using shrinkage, which is then used to obtain a partial correlation matrix. An
undirected GGM is obtained by selecting the highest partial correlations (edges between the
respective nodes). In a second step GeneNet orients edges as follows. For each pair of connected
nodes, the respective partial variances (diagonal entries in the partial correlation matrix) are
obtained. The ratio between the partial variance and the variance is the proportion of variance
that remains unexplained after a linear regression using all other variables as predictors (see
Section 2.2.2). This is used as a measure of variable endogeneity, of how much a variable is
explained from within the system (the lower it is, the higher the endogeneity). An edge between
two nodes is directed from the least endogenous to the most endogenous.

Tigress Tigress (111) is based on Lars (Section 2.2.4), with an additional step of stability
selection, described next. Tigress first perturbs the gene expression data, multiplying each

1A tree, in graph theory, is an undirected graph with only one path between two nodes - there are no fully
connected triplets.
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multivariate sample by a value between 0 and 1. Then it runs Lars on the new data, in a variable
selection way (each variable is considered the target, one at a time), selecting the top k ranked
predictor variables (of the first k Lars steps). This step is repeated a number of times, for
different values of k. An area under the curve, relating the frequency of selection as a function
of k, is used to score the predictors of the target gene. Software code (in Matlab) is available
online.1

3.2.4 Bayesian networks

Several score and search approaches to infer BN (and DBN) from gene expression data are
adopted and assessed using simulated time series data (designed by the authors) in (287). The
search methods include a greedy search with multiple random restarts, simulated annealing and
a genetic algorithm. The adopted scoring functions are the Bayesian Dirichlet equivalence and
the BIC. The used methods are publicly available, an implementation named Banjo.2

An BN approach to deal with the high variable case is the Sparse Candidate algorithm
(90, 91). First, for each node (gene) a candidate set of parents is selected. On this constraint, a
BN maximizing a score is then obtained. Then, for each node, the candidate set of parents is
modified, to include the current parents plus a number of genes maximizing a score, dependent
on the current network. This number of genes is chosen so that each gene has a same number of
candidate parents. Another network is obtained, and the procedure is repeated until convergence
(ie. the returned network is not improved upon). Software implementing this method is publicly
available online.3

An approach combining skeleton inference with MMPC (Section 2.5.3) and hill climbing
search to orient edges has also been used in GRN inference (262).

3.2.5 Random forests

Random forests have been applied for GRN inference under the name GENIE3 (available as an
R function) (124). For each target gene, a random forest is created using all the other genes as
the predictor variables. These are scored by importance - considered to be the average decrease
in node impurities resultant from splitting, in the cases when the predictor variable is considered
in the decision. The impurity of a node is measured to be the residual sum of squares (of the
local regression on the response) at that node. Random forests are created using the R library
randomForest.

1http://cbio.ensmp.fr/ ahaury/svn/dream5/html/index.html
2http://www.cs.duke.edu/ amink/software/banjo/
3http://compbio.cs.huji.ac.il/LibB/programs.html
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3.3 Dynamic approaches to network inference

This section describes dynamic approaches to GRN inference, based on the estimation of lags
(Section 3.3.1), VAR models and dynamic Bayesian networks (Section 3.3.2), and differential
equations (Section 3.3.3).

3.3.1 Lag estimation

Lagged dependences may be used to estimate the lag (τ∗) for which the dependence between
two time series is maximum:

τ∗ = arg max
τ

I(X1,t;X2,t+τ ) (3.6)

Under the Gaussian assumption, the mutual information may be estimated using the linear
correlation. Lag estimation was first proposed in the context of biochemical pathways (7,
265) and has been used several times in GRN inference (50, 155, 157, 294). A particular
implementation is described next.

Time-Delay Aracne The Time-Delay ARACNE (294) (available as an R package) extends
ARACNE and is based on three steps. First, it estimates the first time point on which each
gene is differentially expressed. Two thresholds then are chosen, one for up-regulation, and the
other for down-regulation. A gene is differentially expressed if the ratio between the expression
level at time t and the expression level at time t = 1 is higher or lower that the up-regulation
or down-regulation thresholds, respectively. The set of possible regulations is restricted to the
regulations where the target gene has a start-of-regulation time higher than the start-of-regulation
time of the predictor gene (if two genes have the same start-of-regulation time, regulations in
both directions are allowed).

The second step of the algorithm lags the temporal expression of each pair of genes, for a
consecutive number of lags, and finds the lag which maximizes the mutual information between
the genes. The lagged mutual information is estimated with a copula based approach. A score
is assigned to the edge from Xi to Xy, being the maximum of the lagged mutual information
I(Xi,t−l;Xy,t), for different lag values l. The directed edges whose score is higher than a
defined threshold are kept in the graph. The threshold is calculated using a statistical test based
on bootstrapping the data. The third and final step of the algorithm applies the DPI property to
break up fully connected triplets.
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3.3.2 VAR models and dynamic Bayesian networks

VAR models and DBNs have been extensively used in the context of gene regulatory network
inference. Due to the high variable to sample ratio, regularization or low order conditional
dependences are usually adopted (such as bivariate GC tests (183)). One lag models are typically
the most popular ((92) or (234)) but models using multiple lags have also been proposed, such as
an weighted lasso (Section 2.2.4) grouping predictors at different lags (158, 236). The estimation
of different networks for different time points has also been proposed (292). In what follows,
particular implementations are described in more detail.

Simone A weighted lasso approach to the inference of the VAR1 coefficients is described in
(49), and implemented in the R package Simone. First, genes are grouped based on connectivity
patterns. Two main groups are created: hubs, which are genes showing a high likelihood
of regulating other genes, and leaves, mainly connected to hubs. Hubs are assumed to be
transcription factors. Each gene is assigned into one of these two groups using prior information,
or an estimation from the data. The latter case consists in estimating a matrix of coefficients
using the standard lasso and then to group genes into hubs or leaves according to the L1 norm
of the respective coefficients (relative to the modeling of the other variables). After this step, a
target gene Xy,t is modeled as:

β̂hubs = arg min
β∈Rp

((Xy,t −X\yt−1β)T (Xy,t −X\yt−1β) + λ

p∑
i=1

wi | βi |) (3.7)

The weight wi is a function of whetherXi is a hub or a leaf. Let Zi,hub and Zi,leaf be parameters
taking values of either 0 or 1, indicating if X\yi is hub or a leaf. wi is given by:

wi = ρρiy(ρhubZi,hub + ρleafZi,leaf ) (3.8)

where ρhub and ρleaf are parameters defining the weights of hubs and leaves; ρ is a general
parameter (to be tuned); and ρiy is a parameter to incorporate prior knowledge (set to 1 if none
is used). The output of Simone is a list of networks for various values of λ. Starting from a
value returning an empty network, λ is progressively shrinked. Simone outputs all the different
networks obtained along the shrinkage of λ.

Recursive elastic net A GRN inference proposal (called recursive elastic net (234)) combines
the elastic net with a weighted lasso. The coefficients β, for a target variable Y and a respective
vector of realizations y, in the recursive elastic net, at the iteration i, are estimated as:

β̂i = arg min
β∈Rp

(Xy,t −X\yt−1β
i)T (Xy,t −X\yt−1β

i) +
λ2
2
‖ βi ‖2 +λ1

p∑
k=1

wik | βik |) (3.9)
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The coefficient weights are computed recursively in a number of iterations. Weights are not
considered in the first iteration, and the following are given by:

wij =
1

| βi−1j | +δ
(3.10)

where βi−1j is the estimation of the coefficient βj at the iteration i− 1 and the parameter δ > 0

is used so that zero coefficients are not assigned an infinite weight.

G1DBN G1DBN (available in an R package (148)) combines first-order and higher-order
partial correlations. It is a two-step method: the first step consists in the computation of all the
possible first order partial correlations (and significance testing), between each gene Xz,t−1

and each gene Xy,t, conditioned on each gene Xi,t. Each directed regulation, from Xz,t−1 to
Xy,t, is assigned a score equal to the maximum of the p-values of the respective coefficients.
Regulations whose p-values are lower than a cut-off are selected to create a network (in the
description of the method, the authors use a cut-off of 0.7). The second step of the algorithm
further prunes the network obtained in the first step. In it, each node Xy,t has a set of parents
(pa(Xy)), and is modeled as:

Xy,t =
∑

i∈pa(Xy)

βi,yXi,t−1 + εi (3.11)

The coefficients βi,y are estimated and assigned a p-value.

3.3.3 Differential equations

In an approach named inferelator (28), the first derivative of gene expression Ẋi,t is written as:

Xi,t + τẊi,t = g(

p∑
j

βjXj,t) (3.12)

τ is a time interval to be estimated. The function g implements a truncation of extreme values.
The function is approximated as:

Xi,t + τ
Xi,t+1 −Xi,t

∆t
= g(

p∑
j=1

βjXj,t) (3.13)

The inferelator starts with an initial estimate for τ and the coefficients β are estimated using the
lasso. Then, assuming that estimate, τ is updated with the one minimizing the prediction error.
This is repeated until convergence. The coefficients β are a measure of the likelihood of the
respective gene regulations. A combination of the inferelator with a lagged version of CLR (one
first lag) is proposed in (162). The inferelator coefficients and the normalized MI coefficients
returned by CLR are combined in the form of the root square of the sum of their squares.
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3.4 Conclusion

This chapter reviewed several approaches to GRN inference (static and dynamic) that can be
found in the literature. These consist on the application of statistical and machine learning
notions to deal with the high variable to sample ratio of GRN inference, presented in Chapter
2. Examples include regularized linear models, approaches based on low order conditional
dependences or random forests. GRN inference strategies may be static or dynamic, designed
to time series. In this case, common dynamic approaches are based on lagged dependences,
between variables at different time points (separated by a lag), requiring a shift of one time
series relative to the other. Although multi-lag strategies can be found in the literature, usually a
single first lag is adopted.

Due to typical short size of gene expression time series, inference is very challenging and
improving on random inference is not guaranteed, particularly on real datasets. In this context,
inference assessment assumes a crucial role. This is the topic of the first contributions Chapter 4.
In the Chapter 5, several methods here described are experimentally compared in GRN inference
from time series.
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4

GRN inference assessment with
precision-recall curves

4.1 Introduction

The accuracy of GRN inference may be assessed by comparing the inferred network with an
available gold standard. This is an instance of assessing a binary classification task, where
the edges present in the gold standard are of the positive class and the absent edges of the
negative class. When network inference results in a ranking of edges (in which the top ranked
are associated with higher edge scores), inference may be assessed for multiple threshold values
of edge selection. In this case, an approach to assess inference accuracy is through precision
and recall curves (pr-curves), associating precision (y-axis) with recall (x-axis), as edges are
incrementally added to the network, from the highest to lowest ranked. An alternative to the
pr-curve is the receiving operating characteristic (ROC) curve, associating recall (y-axis) to the
false positive rate (x-axis), introduced in the Section 1.10. The average precision in pr-curves is
typically measured with the area under the curve (AUPRC), where a higher area (maximum 1,
when all the positive instances are ranked higher than all the negatives) means a higher average
precision.

Pr-curves and the AUPRC are commonly used to assess GRN inference accuracy, for
instance in the DREAM inference challenges (166, 246). The statistical significance of the
AUPRC (relative to a null hypothesis of random selection) is typically obtained using Monte
Carlo, which may be computationally intensive in the case of large networks.

In this chapter we propose an alternative to estimate AUPRC significance. We will consider
the case when precision-recall values are computed for all elements in the ranking, and the
pr-curve is interpolated between consecutive points of recall. We derive the expected null
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discrete pr-curve and the expected value and variance of the AUPRC. These (and the minimum
and maximum of the AUPRC) are used to obtain a continuous beta distribution, which is used
as an approximation of the true null AUPRC distribution. This approximation is used to assess
network inference in the Chapter 5.

Documented R software implementing the described method is available online.1

Continuous and discrete curves Pr-curves are discrete, defined in a finite number of recall
values. In order to obtain a continuous curve, an interpolation between consecutive points is
then required. However, this may result in a curve with an accentuated discrete behavior (eg.
saw-tooth shapes). One alternative is to estimate smooth pr-curves, by non-parametric (eg.
boostrap-based (52)) or parametric means (eg. assuming an intrinsic continuous (eg. normal)
probability distribution describing the class decision, for the two classes (of negatives and
positives) (38)). An implicit assumption is that the set of considered instances is a realization of
two class distributions.

We only consider the first case, where consecutive points in the pr-curve are interpolated.
Also, we assume that precision-recall values are computed for each ranked element. The analysis
of the AUPRC from this perspective is related to average precision measures, commonly used in
information retrieval (241).

Statistical significance The significance analysis of pr-curves is less developed than the one
of ROC curves, where the distribution of the curve and its area under is available (31). On
pr-curves, one approach to test the difference between curves is through confidence intervals
(30). The null distribution (corresponding to random selection) of the pr-curve and in particular
of the AUPRC is useful to test the hypothesis of random precision. The fact that a p-value is
obtained also makes it possible to compare different pr-curves (obtained in problems of different
null distributions and not directly comparable).

To our knowledge the only used approach to estimate the null pr-curve/AUPRC distribution
in the literature is nonparametric (by Monte Carlo). This approach can be computationally inten-
sive, requiring a high number of simulations for a good approximation of the true distribution.
The sampling error is also subject to uncertainty. In this chapter an alternative is proposed, based
on the estimation of a continuous approximation of the true (discrete) AUPRC distribution.

Chapter outline Section 4.2 describes different strategies to interpolate pr-curves and compute
the respective AUPRC. Section 4.3 contains the analytical derivation of the expected (maximum
and minimum) precision for a given recall value, as they are sufficient for the expected null

1https://github.com/miguelaglopes/pranker
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pr-curve. Section 4.4 uses the previous results to derive the mean and the variance of the
AUPRC distribution, and proposes the beta distribution approximation to it. Section 4.5
describes how to use the proposed method to assess AUPRC significance, and presents an
experimental comparison with the Monte Carlo approach. The impact of the number of Monte
Carlo simulations in the respective expected error (in terms of mean and variance) is also
experimentally investigated.

4.2 Interpolation of the discrete pr-curve
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Figure 4.1: Different ways to interpolate an empirical pr-curve - Different ways to interpolate
an empirical pr-curve, P = 4. The first selected instance is positive, the next six are negatives, and
the last three are positives. Points represent the precision after the selection of each instance until all
positives are selected.

Consider a ranking of N instances, of which P are positive, and that precision-recall values
are obtained for each ranked element. The interpolation of the points in the curve is not
straightforward since several values of precision can be associated to the same recall (i.e. each
time the next instance in the ranking is not positive, precision falls and recall remains constant).
A pr-curve may then characterized by a saw-tooth shape, which is the more accentuated the
lower is the value of P .

Multiple interpolation strategies exist. A common approach (named interpolated average
precision) assigns to each recall, the value of the maximum precision at that recall, or at higher
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recall values (165). An alternative consists in considering that the precision between two
consecutive recall values is constant and equal to the maximal precision value associated to
the higher recall (an approach named average precision). A more precise way to interpolate
pr-curves is to connect the minimum precision at a given recall and the maximum precision at
the subsequent recall (246). Consider a scenario with P positive instances. At a point A, after a
selection of n instances, there are TP true positives and FP false positives. The precision at
this point is TP

TP+FP and the recall is TP
P . If the next selected instance is positive, the precision

moves to TP+1
TP+FP and the recall moves to TP+1

P . Let this be point B. Point A corresponds to
the minimum precision at the recall TPP , and point B corresponds to the maximum precision
at the recall TP+1

P . In these two points, the precision p as a function of the recall r takes the
following hyperbolic form: p = rP

rP+FP . The simpler linear interpolation between points A
and B is a close approximation of the hyperbolic function, particularly between close recall
points. It returns area values necessarily lower, making this approximation a close lower bound.
The estimation of the AUPRC is straightforward in all interpolation strategies (except in the
hyperbolic interpolation), reducing to a sum of trapezoid areas. Regarding the hyperbolic
interpolation, a way to estimate the AUPRC is to incrementally increase it every time there is a
recall increase. If we integrate p from point A to point B, we have the area below p, between
these points. The integration of p for values of r between TP

P and TP+1
P (the area between

these points) is easily derived1 (246). Figure 4.1 illustrates the differences in the different
interpolation approaches described, for (at least) 10 instances, 4 of which are positive. The first
selected instance is positive, the next 6 are negatives, and the next 4 are the remaining positives.

4.3 The expected null pr-curve

This section derives analytically the expected maximum and minimum (and average) precision
for a given recall in the case of random ranking. A value of recall can be associated with multiple
values of precision, but only the maximum and minimum determine the pr-curve (as discussed
in 4.2). This section also investigates the difference between the maximum and minimum null
precision, as a function of P and N .

4.3.1 Expected maximum precision for a given recall

Let N be the total number of instances, and P the number of positive instances. Suppose we
have a random ranking where n denotes the position of the k-th positive instance. This implies
that for the recall r = k

P we obtain the precision, p = k
n . This precision p is the maximum

1AreaAB = 1
P

(
1− FP ln(FP+TP+1

FP+TP
)
)
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precision that can be obtained for the recall r, since further selections will either cause the
precision at recall r to go down (false positive) or the recall to increase to k+1

P (true positive).
The probability that the k-th positive selected instance is the n-th selected can be obtained
with the hypergeometric distribution (returning the probability of selecting k positive instances
in n draws, without replacement, on a population of size N , with P positive instances (and
N − P negative instances). The probability that the k-th positive instance is the n-th selected
instance is equal to the probability of selecting k − 1 positive instances in n− 1 draws (without
replacement), multiplied by the probability of selecting a positive instance in the next draw
(which is P−(k−1)

N−(n−1) ). The first multiplicand is returned by the hypergeometric distribution:

Ph(k − 1, n− 1, N, P ) =

(
N−n+1
P−k+1

)(
n−1
k−1

)(
N
P

) (4.1)

Let the probability that the k-th positive selected instance is the n-th selected instance be denoted
by Psel(k, n,N, P ). This probability is also known as the negative (or inverse) hypergeometric
probability (84). It is defined as:

Psel(k, n,N, P ) =

(
N−n+1
P−k+1

)(
n−1
k−1

)(
N
P

) (
P − k + 1

N − n+ 1

)
=

(
N−n
P−k

)(
n−1
k−1

)(
N
P

) (4.2)

Note that the probability that the first randomly ranked instance is a positive one (i.e. n = 1 and
k = 1) is P

N while the maximum precision at the recall level k
P is pmax(k) = k

n . Therefore, the
expected maximum precision for a recall k

P of a random selection, is:

〈pmax(k)〉 =

n=N∑
n=k

k

n
Psel(k, n,N, P ) (4.3)

4.3.2 Expected minimum precision for a given recall

The probability that the k-th positive instance has the n-th position in the ranking equals the
probability that the minimum precision at the recall k−1

P is k−1
n−1 . Therefore, the expected

minimum precision at recall k−1P , of a random ranking, is:

〈pmin(k − 1)〉 =

n=N∑
n=k

 k−1
n−1Psel(k, n,N, P ), n > 1

Psel(k, n,N, P ) n = 1
(4.4)

Note that if n = k = 1 the first selected instance is a positive one and the value of precision is
not defined when the recall is zero. In this case the value of such zero-recall precision is set to
one (as in Figure 4.1). Otherwise, the precision at recall zero is also zero. Equation (4.4) can be
simplified as it follows. If k = n = 1, Psel(k, n,N, P ) is equal to P

N . If k > 1 (i.e. the recall is
k−1
P ), equation (4.4) becomes:
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〈pmin(k − 1)〉 =

n=N∑
n=k

(
k − 1

n− 1

)
Psel(k, n,N, P ) =

=

n=N∑
n=k

(
k − 1

n− 1

) (N−n
P−k

)(
n−1
k−1

)(
N
P

) =
1(
N
P

) n=N∑
n=k

(
n− 2

k − 2

)(
N − n
P − k

)
(4.5)

Since according to the Chu-Vandermonde identity (8),

c∑
a=0

(
a

b

)(
c− a
d− b

)
=

(
c+ 1

d+ 1

)
(4.6)

if a = n− 2, b = k − 2, c = N − 2 and d = P − 2, 〈pmin(k − 1)〉 becomes:

〈pmin(k − 1)〉 =
1(
N
P

)(N − 1

P − 1

)
=
P

N
(4.7)

This implies that the expected minimum precision for any value of recall is constant and equal to
P
N . An horizontal approximation of the null pr-curve of value P

N necessarily underestimates the
true null pr-curve (for any interpolation strategy that takes into account not only the minimum
precision, but also the maximum precision). A discussion of this dissimilarity, and its dependence
with P and N , is presented in 4.3.4.

4.3.3 Expected average precision for a given recall

For a comparative purpose, we also derive the expected average precision for a given recall k
P of

random selection. For a given recall k
P , the probability that the n-th selected instance is the k-th

positive, and that the (n+ n∗ + 1)-th selected instance is the (k + 1)-th positive, is estimated.
This probability is multiplied by the average of the precision k

n∗∗ for all values of n∗∗ between
n and n+ n∗ (for k positive selected instances). The sum of this product, for all possible values
of n and n∗ gives the expected average precision for a given recall. Formally, it is as follows:

〈pavg(k)〉 =

N∑
n=k

(
Psel(n, k,N, P )

N−n∑
n∗=0

P∗
selp

∗
avg

)
(4.8)

where

P∗
sel = Psel(1, n

∗ + 1, N − n, P − k) (4.9)

and

p∗avg(n∗, n) =


k
n n∗ = 0

1
n∗+1

(
k
n +

∑n∗

n∗∗=1
k

n∗∗

)
n∗ > 0

(4.10)
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4.3.4 Difference between expected maximum precision and expected minimum
precision
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Figure 4.2: Expected maximum, average and minimum precision for different values of recall,
and for different combinations of P and N - In the left plot P

N is fixed (0.1), in the middle plot
N is fixed (100), in the right plot P is fixed (10). Different colors represent different values of N
and P .

On the basis of previous results it is possible to bound the gap between the expected
maximum precision and expected minimum precision for a given recall k

P . The expected
minimum precision, for any recall, is P

N . Since 〈pmin(k)〉 = 〈pmin(k − 1)〉, as 〈pmin(k)〉 is
constant and does not depend on k, we obtain

〈pmax(k)〉 − 〈pmin(k)〉 = 〈pmax(k)〉 − 〈pmin(k − 1)〉 =

=

n=N∑
n=k

Psel(k, n,N, P )

(
k

n
− k − 1

n− 1

)
=

n=N∑
n=k

(
N−n
P−k

)(
n−1
k−1

)(
N
P

) (
n− k

n(n− 1)

)
=

=

n=N∑
n=k

(
N−n
P−k

)(
n−2
k−1

)(
N
P

) (
1

n

)
(4.11)

By replacing the term
(
1
n

)
with

(
1

n−2

)
we obtain an upper bound of the difference
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〈pmax(k)〉 − 〈pmin(k)〉. This upper bound is:

n=N∑
n=k

(
N−n
P−k

)(
n−2
k−1

)(
N
P

) (
1

n− 2

)
=

n=N∑
n=k

(
N−n
P−k

)(
n−3
k−2

)(
N
P

)
(k − 1)

= (4.12)

(and using again the Chu-Vandermonde identity, equation (4.6))

=

(
N−2
P−1

)
(k − 1)

(
N
P

) =

(
N
P

) (N−P )P
(N−2)N

(k − 1)
(
N
P

) =
(N − P )P

(k − 1)(N − 2)N
(4.13)

Equation (4.13) represents the difference between the expected maximum precision at recall k
P

and the expected minimum precision P
N . Let us consider also the relative difference (divided by

P
N ). For a given recall, if P is fixed, this difference decreases with N (but the relative difference
increases). If N is fixed, the difference (and relative) difference decreases with P . If P

N is fixed,
the difference increases with the number of instances.

This behavior is illustrated in the Figure 4.2, which illustrates the expected maximum,
average and minimum precision as a function of recall, for different combinations of P and N .
Note that there is an uptick in the average precision curve when it reaches the last recall value.
This is due to the fact that when the last positive instance is selected, the curve is completed and
there are no more selections - at recall 1, the maximum and average precision are the same.

The fact that the null pr-curve tends to P
N in the asymptotic case (i.e. P → ∞ and finite

P/N ) becomes clear. If a value of recall k
P is finite and if P → ∞, then k must also tend to

infinite (and equation (4.13), representing an upper bound between the expected maximum and
minimum null precision, tends to 0).

4.4 The null distribution of the AUPRC

Based on the previous results, we next derive the expected value and variance of the AUPRC.
Three interpolation strategies presented in the Section 4.2 (average precision, hyperbolic inter-
polation and linear interpolation) are considered in what follows.

4.4.1 Expected value of the AUPRC of a random selection

Let AUPRCpmax denote the AUPRC returned when using the average precision interpolation
(average of the maximum precision for all recall values), by AUPRChyp the one returned by
hyperbolic interpolation and by AUPRClin the one computed with linear interpolation. From
equations (4.4-4.7) we can estimate the average maximum precision and the average minimum
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precision of a random ranking for all recall values. The average maximum precision for non-zero
recall is:

〈pmax〉 =
1

P

P∑
k=1

〈pmax(k)〉 (4.14)

and the average minimum precision is:

〈pmin〉 =
1

P

P−1∑
k=0

P

N
=
P

N
(4.15)

It follows that the expected AUPRCpmax and AUPRClin of a random ranking of instances are:

〈AUPRCpmax
random〉 = 〈pmax〉 (4.16)

〈AUPRClin
random〉 =

〈pmax〉+ 〈pmin〉
2

(4.17)

The expected AUPRChyprandom is estimated as follows: each time there is an increase in recall,
there is an increase in the AUPRC. This increase is equal to:

∆A(k, n) =


1
P

(
1− (n− k)ln( n

n−1

)
n > 1

1
P n = 1

(4.18)

where k = TP + 1 and n = TP + FP + 1 (see Section 4.2). The value in (4.18) is the area
that is added to the AUPRC when the k-th selected positive instance is the n-th selected. We
can estimate the expected added area for any value of k:

〈∆A(k)〉 =

N∑
n=k

∆A(k, n)Psel(k, n,N, P ) (4.19)

The expected AUPRC of a random ranking, using the hyperbolic interpolation, is given by:

〈AUPRChyp
random〉 =

P∑
k=1

〈∆A(k)〉 (4.20)

Finally, the expected AUPRC of a random ranking in the asymptotic case (ie. assuming that the
number of instances is infinite, and P

N is finite, see Section 4.3.4) is:

〈AUPRCasymp
random〉 =

P

N
(4.21)

Figure 4.3 shows the expected AUPRC for the different interpolation methods, and for the
asymptotic continuous case, as a function of P

N . In the right plots, P is fixed (equal to 10), and
in the left plots N is fixed (equal to 100). The plots on the top show the absolute expected
AUPRC, whereas the bottom plots show the relative difference, the difference between the
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Figure 4.3: Estimated expected AUPRC of a random ranking as a function of P
N when P=10,

and N=100 - In the left plots P is fixed (10) and in the right plots N is fixed (100). The top plots
represent the AUPRC. The bottom plots represent the relative difference to P

N .

expected AUPRC and the asymptotic AUPRC ( PN ), divided by the latter. An increase in N leads
to a decrease in the absolute difference between the AUPRC estimations (top-left plot), but leads
to an increase in the relative difference (bottom-left plot). An increase in P leads to a decrease
in both absolute and relative differences (in line with the results of Section 4.3.4).

4.4.2 Variance of the AUPRC of a random selection

For the sake of simplicity only the average precision approach is considered, though the obtained
results can be easily extended to the linear interpolation approach, and with some more difficulty,
to the hyperbolic interpolation. The expected AUPRC of a random selection, using the average
precision interpolation, is given in (4.16): the AUPRC is the average of the expected maximum
precision for the different recall values. This is equivalent to the sum of the expected maximum
precision for the different values of recall, divided by P (equation (4.14)) The variance of a sum
of random variables is equal to the sum of the values of their covariance matrix. In our case, we
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have:

Var(AUPRCpmax
random) =

P∑
k=1

P∑
j=k

Cov
(

1

P
pmax(k),

1

P
pmax(j)

)
(4.22)

For simplicity, let us define Xk = 1
P pmax(k) and Xj = 1

P pmax(j). The covariance between
two random variables Xk and Xj is:

Cov(Xk, Xj) = E(XkXj)− E(Xk)E(Xj) (4.23)

The term E(Xk)E(Xj) is straightforward to estimate, given that we already have E(Xk) and
E(Xj) (they are given by 1

P 〈pmax(k)〉 and 1
P 〈pmax(j)〉, in the equation (4.3)). The term

E(XkXj) is given by the sum of the product between all the possible values of Xk and Xj ,
multiplied by the probability of observing them:

E(XkXj) =
∑
x

∑
y

P(Xk = x,Xj = y)xy (4.24)

The probability P(Xk = x,Xj = y) can be stated as:

P(Xk = x,Xj = y) = P(Xk = x)P(Xj = y|Xk = x) (4.25)

P(Xk = x) is the probability that the maximum precision at the recall k
P is xP . P(Xk = x)

is therefore equal to P(pmax(k) = xP ). The probability mass function of pmax(k) is defined
by Psel(k, nk, N, P ) (equation (4.2)). This equation gives the probability that the maximum
precision at recall k

P is k
nk

, assuming N total instances and P positive instances. Concluding,
P(Xk = x) = Psel(k, nk, N, P ), given that x = k

Pnk
and Xk = 1

P pmax(k).
The conditional probability P(Xj = y|Xk = x) is the probability that the maximum

precision at the recall j
P is yP , given that the maximum precision at the recall k

P is xP . If we
define yP = j

nj
and xP = k

nk
, and on the condition that j > k, P(Xj = y|Xk = x) is the

probability that the (j − k)-th positive selected instance is the (nj − nk)-th selected instance, in
a population of N − nk instances, and P − k positive instances. This probability is given by
Psel(j − k, nj − nk, N − nk, P − k) (4.2). Let’s denote it simply by P∗sel. Equation (4.24) can
be rewritten as:

E(XkXj) =

N∑
nk=1

N∑
nj=nk+j−k

Psel(k, nk, N, P )P∗
sel

k

nkP

j

njP
(4.26)

If j < k, E(XkXj) = E(XjXk). If j = k, E(XkXk) is given by equation (4.3): E(Xk) =
1
P 〈pmax(k)〉, and Psel(k, n,N, P ) describes the probability mass function of pmax(k). Xk
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takes values in k
Pn , n = k, k + 1, ...N . Therefore, we have:

E(XkXk) =

n=N∑
n=k

(
k

Pn

2)
Psel(k, n,N, P ) (4.27)

Cov(Xk, Xj) can now be estimated as in (4.23), and the variance of the AUPRC of a random
selection, if the pr-curve is interpolated using the average precision interpolation, is given in
(4.22).

4.4.3 Distribution of the AUPRC

The knowledge of the mean and variance of the AUPRC, and the fact that it is contained in a
finite interval (between a minimum and 1) suggests the adoption of the beta distribution as a
parametric approximation to the AUPRC probability distribution. The beta is the most popular
continuous distribution with finite support, fully described with two parameters characterizing
the mean and variance, and two parameters defining the support interval. Being a continuous
distribution, it can only be an approximation of the true (discrete) distribution. However, due to
its ease of use, it is a practical alternative to Monte Carlo simulations.

The two shape parameters of the beta distribution, α and β, can be estimated through the
methods of moments approach:

α = x∗
(
x∗(1− x∗)

v∗
− 1

)
(4.28)

and

β = (1− x∗)

(
x∗(1− x∗)

v∗
− 1

)
(4.29)

where x∗ and v∗ are the normalized mean and variance (84):

x∗ =
〈AUPRCpmax

random〉 −min(AUPRCpmax
random)

1−min(AUPRCpmax
random)

(4.30)

and

v∗ =
Var(AUPRCpmax

random)

(1−min(AUPRCpmax
random))2

(4.31)

In the equations above, the value 1 in the denominator corresponds to the maximum
AUPRCpmaxrandom. The minimum is attained when the last P ranked instances are all positive.
Since precision is non-zero only in the last k recall points the minimum is returned by:

min(AUPRCpmax
random) =

1

P

P∑
k

k

N − P + k
(4.32)
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The support of the resulting standard beta distribution should be re-transformed: multiplying
by the range (1−min(AUPRCpmaxrandom), and addition of min(AUPRCpmaxrandom).

4.5 Empirical assessment

This section assesses the beta distribution approximation against the true AUPRC distribution.
The Figure 4.4 plots a Monte Carlo (empirical) obtained AUPRC distribution (10000 number
of simulations) and the approximation based on the beta distribution. The ratio P

N was fixed at
0.5, and the number of instances was set to 200, 800 and 3200. The AUPRC corresponding to a
p-value of 0.1 in the beta distribution approximation is drawn, and the corresponding p-value in
the Monte Carlo distribution is indicated. It is seen that the beta distribution approach reasonably
approximates the true AUPRC distribution, and this approximation seems more precise as the
number of instances increases. This is expected, as as the number of instances increases, the
discrete saw-tooth shape of the null AUPRC distribution is smoothed out.

0.05 0.15 0.25 0.35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=200, P=10

AUPRC

C
D

F

beta
empirical
p−value (beta) = 0.1
p−value (emp) = 0.095

0.04 0.08 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=800, P=40

AUPRC

C
D

F

beta
empirical
p−value (beta) = 0.1
p−value (emp) = 0.1

0.04 0.05 0.06 0.07 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N=3200, P=160

AUPRC

C
D

F

beta
empirical
p−value (beta) = 0.1
p−value (emp) = 0.102

CDF of empirical null AUPRC and beta approximation 
 P/N=0.05 

 10000 simulations

Figure 4.4: Cumulative distribution of the AUPRC (empirical and beta distribution) - The
distribution of the AUPRC for three cases of increasing number of instances was estimated with
10000 simulations, or with the beta distribution approach. The ratio P

N is fixed at 0.5.

The error of the approximation when the number of positive instances is low is illustrated in
the Figure 4.5. For configurations of N = 2500 and P equal to 10, 50 and 100, 10000 AUPRC
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z-scores (standard scores of the normal distribution) of random rankings were obtained with
the beta distribution approximation. These are shown in the figure, including a reference of
values generated from a standard normal distribution. It can be seen that there is a positive bias,
increasing as P decreases. Further investigation on this error should be carried out.
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Figure 4.5: Boxplots of null AUPRC z-scores, for different values of P - Boxplots of 10000 null
AUPRC z-scores, obtained with the beta distribution approximation, for N = 2500 and P equal to
10, 50 and 100. A reference of values generated from a standard normal distribution is also shown

A final experiment concerns the study of the impact of the number of simulations on
the accuracy of the empirical AUPRC distribution. Figure 4.6 shows the relative difference
between the empirical and expected AUPRC mean and variance (relative to the expected
values), as a function of the number of simulated AUPRC. This experiment was performed for
N = 90, 180, 900, keeping P fixed at 15. The values shown are the average of 1000 sets of
simulations (the variance is also plotted for N = 90 and N = 900, for simplicity for a couple
of simulation numbers only). The number of simulated AUPRC is shown in a logarithmic scale
of base 2, and goes from 2 to 131072 (217). The relative difference is shown in a logarithmic
scale of base 10. A threshold for the relative difference corresponding to 0.01 (10−2) is drawn.
As expected, the empirical mean and variance tend to the respective expected values, as the
number of simulated AUPRC increases. When N = 90, the relative difference of both the mean
and variance is below 0.01 when the number of simulations is higher than 32768 (215). When
N = 900 this number increases to 131072 simulations (217). The number of needed simulations
to approximate the true distribution increases with the number of instances. As described, the
expected value and variance of the null AUPRC can be used to control the sampling error of
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Figure 4.6: Comparison between empirical and the true parameters of the AUPRC distribu-
tion - Relative difference of the mean and variance of the empirical AUPRC distribution, relative to
the true values, as a function of the number of random AUPRC generations.

empirical estimations.

4.6 Conclusion

Pr-curves (and the respective AUPRC) are commonly used to assess the accuracy of IR algo-
rithms. The distribution of the null AUPRC (of random ranking) can be used to estimate the
significance of single and multiple independent AUPRC values. A direct approach to obtain
the AUPRC distribution is to compute the probability of each possible curve (by multiplying
the probability at each point, conditioned on the previous one, for all points). An AUPRC is
assigned to each curve and probability, and the AUPRC distribution may then be reconstructed.
However, when the number of instances is high this approach is unfeasible due to the large
amount of possible pr-curves (of order of magnitude close to NP ).

Monte Carlo methods are typically used to estimate the AUPRC probability distribution,
however they can also be computationally intensive, requiring a high number of simulations to
accurately approximate the true distribution. In this chapter we deduced analytically expressions
for the expected null pr-curve, and for the null AUPRC mean and variance. These parameters
can be used as performance baselines, and to assess the quality of Monte Carlo distributions.
We also propose to use them to estimate a parametric continuous approximation of the null
AUPRC distribution based on the beta distribution. This approximation is shown to become
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more precise as the number of instances increases, however a non-negligible bias was found
for low values of P (in the particular case of N = 2500 and P = 10). It is used in the network
inference assessment of chapter 5.

Figure 4.7: Example of R code for AUPRC assessment. - Ranking assessment using a R imple-
mentation of the proposed beta-distribution approximation to the AUPRC, available in the author’s
page.

Implementation and computational limitation This beta distribution approximation of the
AUPRC is proposed as an alternative to lengthy Monte Carlo simulations, however it is also
computationally intensive when the number of instances is high. This is due to the computation
of the AUPRC variance, obtained after considering all the probabilities in the support space
(equations (4.22 - 4.24)). A software implementation in R (integrating C++ code) is available
online1, computing the expected value and variance more efficiently than the direct application
of the described formulas. Another approach to speed up the variance computation, implemented
in the available code, is to skip intermediate elements of the covariance matrix in the equation
(4.22), and then interpolate them with splines. In a 2010 macbook, the AUPRC distribution is
approximated in minutes when the number of instances is in the order of the tens of thousands.
When it is in the order of hundreds of thousands and higher, the computation takes longer.
However, once computed, the parameters may be kept for future use. A comparison between

1https://github.com/miguelaglopes/pranker
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the computational performance of the Monte-Carlo approach and the proposed approach is left
for future work. Alternatives to speed up the computation of the AUPRC variance should also
be investigated. One alternative approach to overcome this limitation is to replace the AUPRC
interpolation strategy with an approximation, described next. Nevertheless, even with the speed
limitation in the large N case, the proposed method remains an attractive alternative to Monte
Carlo when the number of instances is not too large (ie. hundreds of thousands) and not too low
(ie. few dozens). The Figure 4.7 illustrates an application of the available R function. It takes as
input a ranking (randomly generated in the example) and a gold standard (in the example, the
first 50 instances are positive).

Alternatives and future research Instead of computing precision values for all values of
recall to obtain the AUPRC, one alternative is to compute the precision for different points of
n (number of selections) (eg. sampled at same intervals). A sensible AUPRC score would be
an weighted average of these precision values, with the weights proportional to the difference
between the associated recall and the one of the previous selected point (the sum of weights
would be 1). The advantage of this AUPRC score is that its expected value and variance is
less demanding to compute, even when the number of instances is high. In this case, for a
given n, there is a maximum of P possible values of precision whose probability needs to be
computed. On the contrary, in the considered interpolation strategies, which associate a precision
value to each possible recall, there may be close to N possible values of precision for a single
recall. Having the expected value and variance of this new AUPRC, its distribution can also
be approximated with the beta distribution. The only non-trivial aspect in this procedure is the
consideration of the weights, which depend on the associated and previous precision. Another
alternative to AUPRC significance to both Monte Carlo and the proposed beta distribution
approximation is to assign a p-value to the p-values of all the points in the obtained pr-curve.
Note that the p-values are dependent and methods to combine them should be applied. However,
current methods to combine dependent p-values often entail a continuous assumption on the
variables distribution (40, 142). The alternatives here described constitute interesting points of
future research.
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5

GRN inference from gene expression
time series

5.1 Introduction

This chapter presents an experimental investigation on GRN inference from gene expression
time series. It also describes two novel techniques for GRN inference from time series: one filter
network inference approach based on a fast measure of (first order) conditional GC (denoted by
GC3), and one approach to identify co-regulated genes (ie. regulated by the same transcription
factors), not a network inference approach by itself, but which can be incorporated in network
inference methods. These were introduced in the Section 1.11 and are described in detail in the
Section 5.2.

Experiments were performed on 11 multivariate time series (of 1731 considered genes) of
Saccharomyces cerevisiae (yeast) microarray gene expression (of 18 and 25 time points), and
on 100 simulated multivariate time series (of 50 genes) of increasing size, from 20 to 300 time
points. A gold standard of known regulations was used in both cases. Due to the high number
of considered genes and time series, the reported experiments and findings constitute a relevant
contribution to network inference assessment and validation.

Three experiments were performed. The first is on the selection of lags in the estimation of
temporal dependences, in particular of bivariate GC in cause-effect pairs of gene expression
time series. We assess causal inference accuracy when using single or multiple lags (which may
be the first, or estimated) and the Toda and Yamamoto (TY) modification of the GC linear test
to take into account non-stationarity. As more lags (predictors) are used, the model becomes
more variant. Using higher lags also means discarding a higher number number of used samples
(at the extremes of the time series). This variance increase is likely to be critical when the time
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5. GRN INFERENCE FROM GENE EXPRESSION TIME SERIES

series are of short size, as in the gene expression case.

The second experiment assesses the proposed method to identify co-regulated genes by
comparing it with the available gold standard and computing significance p-values. The third
experiment assesses different dynamic strategies to GRN inference from time series, using the
same lag selection strategy (the first lag). 100 networks of 50 genes (in both yeast and simulated
time series) were inferred. The assessed strategies (described in the Chapter 3) are bivariate
GC, dynamic adaptations of MI-based methods (MI, ARACNE, CLR), forward selection filter
(mRMR, CMIM, mIMR) and embedded variable selection (lasso and random forests), methods
from the literature (Simone, G1DBN, GeneNet), the proposed novel methods, and an ensemble
of dynamic methods. GRN inference methods should be well-balanced in terms of bias and
variance and this experiment aims to shed light on an optimal balance. Inference accuracy was
assessed with the AUPRC, following the method described in Chapter 4. Both the lag selection
and network inference experiments are bias-variance trade off investigations, in which simpler
models are more biased but less variant.

Documented R software implementing the novel GC methods and the used dynamic adap-
tations of static methods is available online.1 R data files and scripts used in the experimental
session are also available.2

Results In the lag selection experiment, the most precise strategy in the yeast time series is
to consider only the first lag. In the simulated time series, the selection of a higher number of
lags (as well as the consideration of non-stationarity) results in a more precise inference as n
becomes higher (> 40). The proposed co-regulation identification method is shown to identify
co-regulated genes with a very significant precision.

In the network inference experiment, precision was very low in the yeast time series, with
few methods performing better than random. The obtained precision was higher in the simulated
time series, increasing with the time series size n. In this case, and when n > 40, the most
precise approach was the proposed GC3 method.

Chapter outline Section 5.2 presents the two algorithmic contributions to GRN inference.
Section 5.3 presents the experimental session and results. Section 5.4 is the discussion.

1https://github.com/miguelaglopes/GCnetinf
2https://github.com/miguelaglopes/NetInfExps
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5.2 Contributions to GRN inference

In this section we present two novel extensions to GC based network inference. The first is a
fast approximation of first order conditional GC scores which are used to infer networks. This
method scores the predictors of each target with a measure of dependence, and may thus be
considered a filter variable selection method (Section 1.8), adapted to time series. The second is
a simple method to identify co-regulated genes, which can be incorporated in network inference
methods.

5.2.1 Model justification

t-2

t-1

t

Xi Xy

time:

Xz1, Xz2

Sunday, April 12, 2015

Figure 5.1: Simple causal network - Network with causal dependences up to 2 lags. There
is causality from gene Xi,t to Xy,t, but there is also a statistical dependence between
{Xz1,t−l, Xz2,t−l} and Xy,t if Xi,t−l is not conditioned on. Xz1,t is the node on top.

Consider two gene expression time series, Xi,t and Xy,t, where Xi,t−1 is a cause of Xy,t

and where Xy,t is a function of Xi,t−l and Xy,t−l, for l = 1, 2. This case is represented in
Figure 5.1. The figure also shows two other genes, Xz1,t and Xz2,t, which have an indirect
lagged dependence with Xy,t, via Xi,t. In network inference, Xi,t should then be considered
(conditioned on) when assessing the existence of direct causality from either Xz1,t and Xz2,t

to Xy,t. In the high variable to sample ratio case, it is not feasible to condition on all possible
variables. An alternative approach, sometimes used in the literature, is to condition on a single
third gene (170). In dynamic GRN inference one example is G1DBN, described in Section 3.3.2.
This strategy avoids the high variable to sample limitation, as regulation scores are only based
on the expression of three variables (genes).

If all indirect regulations between two genes are mediated via a single third gene, an
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inference strategy based on first-order conditional dependences is sufficient to infer the true
network, as discussed in the Section 1.11.2. In the context of graphical models, this condition
means that there is a single path connecting each pair of connected nodes in the network. As
mentioned, the limitation of this strategy is that only indirect dependences via a single gene are
screened off.

If only the network structure is relevant (ie. indication of its edges) inference consists
in applying conditional independence tests between each pair of nodes (genes), for all single
conditioning nodes. An edge (regulation) is absent from the network if there is a null conditional
independence between its nodes. This amounts to the PC algorithm restricted to first order
conditional independence tests (Section 2.5.2). If possible edges are to be scored and ranked
(useful for the assessment using precision-recall or ROC curves), an appropriate edge score is
the minimum of conditional dependence scores between its nodes, for all single conditioning
nodes. By conditional dependence score we mean a score (eg. the standard score of the normal
distribution) obtained from the p-value resultant from a test on the null hypothesis of conditional
independence (a lower p-value meaning a higher score). If the ranking of edges associated with
a null conditional dependence is irrelevant, conditional independence tests may stop as soon as
conditional independence is found.

We adopt this strategy for time series, considering linear conditional GC tests. The returned
p-value is transformed into a z-score (standard score of the normal distribution) and used as
the GC score. As mentioned in the Section 2.7.4, in the single lag case a GC test is equivalent
to a test on the linear lagged partial correlation between the predictor and target, conditioned
on the past of the target (ie. considering auto-correlation). The benefit of conditioning on the
past of the target is seen in the Figure 5.1. Xi,t (considered the target) and Xy,t−1 (considered
the predictor) are dependent, due to a common cause in Xi,t−2. However, this dependence is
screened off if Xi,t−1 or Xi,t−2 are conditioned on.

Scoring each possible edge with the minimum of first order conditional GC scores between
its nodes requires a search over all conditioning nodes (each implying a conditional GC test).
Scoring all possible edges this way may be computationally burdensome in large networks.
Assume that the time complexity of a linear regression model with p predictors using OLS is
O(p2).1 In a network with p genes, assuming a single lag, scoring each regulation requires
p− 2 (one for each conditioning variable) linear unrestricted models with three predictors (the
lagged target, predictor and conditioning variable), each with complexity O(32), and p − 2

restricted models with two predictors (the lagged target and conditioning variable), each with
complexity O(22). This results in a complexity of O(13(p− 2)). The complexity of scoring all
possible regulations (p2 − p, excluding auto-regulatory) is then approximately O(13p3). Note

1Assuming p < n, it is O(np2) asymptotically, but we drop the n for simplicity.
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that we assume each edge is scored with the minimum of conditional GC scores, even for edges
associated with null GC (if edge ranking is irrelevant for these cases, the search may stop as
soon as null GC is found).

We propose an heuristic to speed up the search for the minimum conditional GC score of
each possible edge, controlled by a stopping criterion. This method is designated by GC3 (as
each score is a function of three variables) in the remainder of this chapter. In what follows,Gzy|i
means a conditional GC score fromXz,t toXy,t, conditioned onXi,t (andGzy a non-conditional
GC score).

5.2.2 Fast minimum first order conditional GC (GC3)

The linear GC score from Xz,t−l to Xy,t, conditioned on Xi,t−l (Gzy|i), is estimated with the
following modification of the restricted/unrestricted models of equations (2.46) and (2.47):

Xy,t = α0 +

 Ly∑
l=1

αlXy,t−l + βlX
z
t−l + γlXi,t−l

+ εut (5.1)

Xy,t = α0 +

 Ly∑
l=1

αlXy,t−l + γlXi,t−l

+ εrt (5.2)

The GC score is obtained by comparing the two models using the F-test of equation (2.52),
changing the number of denominator degrees of freedom toN−3L−1 (taking into accountXi,t).
As mentioned above, when scoring network edges with a first order conditional dependence
score (in this case, GC), an appropriate score is the score minimum, for all conditioning nodes.
In this case, Xi is one such as i = arg minj(Gzy|j). Scoring all possible edges this way may be
computationally intensive in large networks and we propose a faster approximation, described
next.

5.2.2.1 Searching for the conditioning gene

For each possible regulation from Xz,t to Xy,t, the genes Xi, i ∈ {1, ..p} , i 6= z, y are ranked
according to a parameter bziy, functioning as a proxy of the conditional GC score between Xz,t

and Xy,t conditioned on Xi,t. The indices i are sorted by bziy, and Gzy|i z-scores are estimated
consecutively, following that order. The minimum GC z-score is kept along the process. If s
consecutive Gzy|i scores are higher than the current minimum, the process stops. As s increases,
this approximation tends to the full search of all conditioning variables.
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Two ranking approaches Consider the Figure 5.2. If the dependence between Xz,t−l1 and
Xy,t is due to Xi,t−l2 then Xi,t−l2 is either an effect of Xz,t−l1 and cause of Xy,t or a common
cause of Xz,t−l1 and Xy,t.

In the first case, Gzi > Giz , in the second Gzi < Giz. In both cases, both Giy and
max(Gzi, Giz) should be higher than Gky and max(Gki, Gkz) for a gene Xk which does not
block the dependence between Xz,t−l1 and Xy,t.

Xz,t-11 Xi,t-12

Xy,t

Xz,t-11 Xi,t-12

Xy,t

if Gzi > Giz if Gzi < Giz 

Gzi 
Giy Giy 

Giz 

Monday, April 13, 2015

Figure 5.2: Spurious direct causality between Xz,t−l1 and Xy,t via Xi,t−l2 - The two situations
where Xz,t−l1 and Xy,t are dependent via a single gene Xi,t−l2 are represented. Either Xi,t−l2 is
an intermediate gene in the causal chain (left side), or a common cause of Xz,t−l1 and Xy,t (right
side). In the first case, Gzi > Giz , in the second Gzi < Giz (G being GC scores).

We suggest two approaches to estimate bziy. The first takes into account the previous
consideration and the two possible cases where Xi,t blocks the dependence between Xz,t and
Xy,t:

bziy = Giy + max(Gzi, Giz) (5.3)

The second is a faster static approximation and approximates the GC score above with the
linear correlation between the respective genes:

bziy = |ρ(Xz,t, Xi,t)|+ |ρ(Xi,t, Xy,t)| (5.4)

where ρ is the Pearson correlation. This score is simply the average of the non-lagged correlation
between Xz,t and Xi,t and between Xi,t and Xy,t.

This network inference approach (GC3) is described in the algorithm 5.1 (where the two
strategies to compute bziy are designated by correlation and GC based). This approach, for
different values of s (1, 3 and 5), is assessed in the experimental session. The advantage of the
correlation based strategy is that it is faster, requiring a bivariate correlation matrix. The GC
strategy is better motivated but requires a matrix of bivariate GC scores. As s increases, the
outcomes of these strategies converge.
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Algorithm 5.1: A (fast) measure of first-order conditional GC.
input : a n× p gene expression time series matrix; parameters lmax and Lmax; bivariate

GC z-scores Gij , i, j ∈ {1, .., p}; a stopping criteria s; ranking method
(correlation or GC)

output :GC3 z-scores G3
ij , i, j ∈ {1, .., p}

1 for each target Xy,t, y ∈ {1, .., p} do
2 for each predictor Xz,t, z ∈ {1, .., p} , z 6= i do
3 for each conditioning variable Xi,t, i ∈ {1, .., p} , i 6= y, z do
4 if ranking method = GC-based then
5 bziy = Giy + max(Gzi, Giz)

6 if ranking method = correlation-based then
7 bziy = |ρ(Xz,t, Xi,t|+ |ρ(Xi,t, Xy,t)|

8 i∗ = indices i ordered by bziy value;
9 initialize G3

zy with a high value;
10 for each j ∈

{
i∗1, .., i

∗
p−2
}

do
11 estimate the conditional GC, Gzy|j ;
12 if Gzy|j < G3

zy then
13 c=0;
14 G3

zy = Gzy|j ;

15 if Gzy|j > G3
zy then

16 c=c+1;

17 if c > s− 1 then
18 break;

Computational time The computational time of GC3 is difficult to pin down exactly (as it
depends on the quality of the proxy variable), but is controlled by s. In the best case scenario
(for each regulation, the stopping criteria is met after 1 + s GC estimations), GC3 involves the
estimation of (1 + s)p2 linear regression models with three and two predictors (not considering
the ranking computation). The complexity of the best-case search is then O((1 + s)(13p2))

(assuming the complexity of linear regression as in Section 5.2.1 above).

It is known that the average number of coin flips to get straight n heads (with ph being the
probability of observing heads) is p−n

h −1
1−ph .1

1http://www.quora.com/Whats-the-expected-number-of-coin-flips-until-you-get-two-heads-in-a-row
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Assuming that the ranking of the proxy variable is a better approximation of the ranking
of conditional GC scores than random ranking, the expected computational time is lower than
O((1 + 0.5−t−1

0.5 )13p2). This gives us O(7 ∗ 13p2) for s = 2, O(15 ∗ 13p2) for s = 3 and so
on. If, for instance, the average probability that the next conditional GC score in the ranking
is lower than the previous one is 0.8 (if the proxy ranking reasonably approximates the true
ranking), we have O(6 ∗ 13p2) for s = 3. This improves the O(13p3) time of the full search
by a magnitude equal to p/6. Note that this does not consider the computation of the ranking,
which if estimated with GC scores is approximately O(5p2) (p2 − p linear regressions with two
and one predictors).

5.2.3 Co-regulation identification

GRN inference using conditional independence tests is vulnerable to type 2 errors (to miss true
regulations) if either the predictor or target genes are co-regulated (and highly correlated) with
another gene. In this case, conditioning on this gene reduces the mutual information between
the predictor and target genes, and the significance of conditional independence tests.

Co-regulation may also lead to the inference of spurious regulations (type 1 errors) if a
bivariate measure is used to infer GRN (eg. inferring a regulation between the genes Xz2 and
Xy in the Figure 5.1). Identifying co-regulation may be then be useful to GRN inference: by
discarding regulations between co-regulated genes prior to, or after inference. In the following
section a simple test to identify co-regulation is proposed, theoretically validated in the linear
case under a parameter constraint.

5.2.3.1 A co-regulation identification algorithm

The proposed test to identify co-regulation is as follows: two genes are co-regulated if their
expression time series exhibit a high correlation, and a stronger non-lagged correlation than
otherwise (in any temporal direction). The first condition is justified as we wish to identify
the pairs of correlated co-regulated genes that may be incorrectly identified as a cause-effect
pair (or screen off the dependence involving co-regulated genes). The second condition is true
in the linear case under a condition described in the next section, through the analysis of the
covariance structure of linear causal models (Section 2.3).

Algorithm 5.2 describes the adopted co-regulation identification test (for simplicity, only the
first lag is considered). The correlation should be transformed into p-values (in the experimental
session we adopted the Fisher’s transformation, appendix A), to take into account differences
in the number of samples due to lagging. A potential problem of this approach is the incorrect
identification of genes involved in a regulation as being co-regulated, preventing the inference
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of true regulations (type 2 errors). This aspect, and the precision of the method, are investigated
in the experimental session (in Section 5.3.3).

In the Section 5.3.4 we assess the inclusion of this method in network inference using
bivariate GC and the GC3 filter introduced above. In both cases, regulations between co-
regulated genes are discarded (with the aim of preventing type 1 errors). Additionally, in the
conditional GC case, genes co-regulated with the predictor or with the target variables are not
used as the conditioning variables (with the aim of preventing the type 2 errors).

Algorithm 5.2: Identification of co-regulation.
input : a n× p gene expression time series matrix; a correlation threshold k
output : a co-regulation matrix Ci,j , i, j ∈ {1, .., p} (1 meaning co-regulation)

1 for each Xi, i ∈ {1, .., p} do
2 for each Xj , j ∈ {1, .., p} , j 6= i do
3 (estimate lagged correlation):
4 ρt−1 = max(|ρ(Xi,t−1, Xj,t)|, |ρ(Xj,t−1, Xi,t)|) ;
5 (estimate (non-lagged) correlation):
6 ρt = |ρ(Xi,t, Xj,t)| ;
7 if ρt > ρt−l then
8 if ρt > k then
9 Ci,j = 1 ;

10 (Xi and Xj are identified as co-regulated)

5.2.3.2 Method justification

Assume three variables Xt, Y1,t and Y2,t. Xt is a cause of the two other variables; and all
variables are dependent on its past (at a single previous time point) and error terms, representing
non-modeled sources of variation (which are assumed to be independent). In the linear case, we
have:

Xt = βXXt−1 + εX (5.5)

Y1,t = βY1Y1,t−1 + βX,Y1Xt−1 + εY1 (5.6)

Y2,t = βY2Y2,t−1 + βX,Y2Xt−1 + εY2 (5.7)
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Βxy2 Βy2Βy1 ΒxΒxy1
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Y1 X Y2
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σy1y2
σxy1 σxy2

Sunday, January 4, 2015

Figure 5.3: Co-regulation case involving three genes - Xt regulates both Y1,t and Y2,t. All genes
are also dependent of its past (the single previous time point) and subject to error terms.

Figure 5.3 is a SEM representation (Section 2.3) of the causal network for two consecutive
time points (t and t-1), with each edge characterized by the respective linear coefficient. The
covariances between the variables at t-1 (they are exogenous variables) are represented by
bi-directed arcs. These covariances are equal to the ones at the subsequent time point, which
can be inferred by path tracing rules.1

The covariance between Xt and Y1,t is obtained by multiplying the variance of Xt by the
sum of the products of the coefficients of each distinct SEM path between Xt and Y1,t (Section
2.3). There are two SEM paths betweenXt and Y1,t: through Xt−1, and through Xt−1 and Yt−1.
Note that bi-directed arcs can only be passed once in each path. Assume that all variables have
unit variance (without loss of generality). The covariance between Xt and Y1,t is the same as
the covariance between Xt−1 and Y1,t−1 (denoted by σX,Y1) and is given by:

σX,Y1 = βX,Y1βX + βY1σX,Y1βX (5.8)

The above can be reformulated:

σX,Y1 =
βX,Y1βX

1− βY1βX
(5.9)

There are four open paths between Y1,t and Y2,t. The covariance σY1,Y2 is given by:

σY1,Y2 = βX,Y1βX,Y2 + βX,Y1σX,Y2βY2 + βY1σY1,Y2βY2 + βY1σY1,XβX,Y2 (5.10)

1In the drawn graph, the exogenous (at t-1) variables are distinguished by symbol (squares) - following the SEM
representation of Section 2.3.
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and we obtain:

σY1,Y2 =
βX,Y1(βX,Y2 + σX,Y2βY2) + βY1σX,Y1βX,Y2

1− βY1βY2
(5.11)

There are two open paths between Y1,t and Y2,t−1. From them we obtain the covariance
between those two variables:

σY1,t,Y2,t−1 = βY1σY1,Y2 + βX,Y1σX,Y2 (5.12)

We wish to prove that |σY1,Y2 | > |σY1,t,Y2,t−1 | - that the non-lagged covariance is higher than
the lagged one (in absolute terms). The condition is then:

|σY1,Y2 | > |βY1σY1,Y2 + βX,Y1σX,Y2 | (5.13)

Which is true if:
|σY1,Y2 | > |βY1σY1,Y2 |+ |βX,Y1σX,Y2 | (5.14)

The inequality above is implied by the following inequality (they are equivalent if βY1 is
positive):

|σY1,Y2(1− βY1)| > |βX,Y1σX,Y2 | (5.15)

Substituting σY1,Y2 with equation (5.11) and σX,Y2 with equation (5.9) (σX,Y2 is defined
analogously as σX,Y1), we obtain:∣∣∣∣βX,Y1(βX,Y2 + σX,Y2βY2) + βY1σX,Y1βX,Y2

(1− βY1βY2)
(1− βY1)

∣∣∣∣ > ∣∣∣∣βX,Y1βX,Y2βX1− βY2βX

∣∣∣∣ (5.16)

Substituting σX,Y1 and σX,Y2 with equation (5.9) we obtain:∣∣∣∣βX,Y1 (βX,Y2 +
βX,Y2βXβY2
1− βY2βX

)
+
βY1βX,Y1βXβX,Y2

1− βY1βX

∣∣∣∣ > ∣∣∣∣βX,Y1βX,Y2βX(1− βY1βY2)

(1− βY2βX)(1− βY1)

∣∣∣∣
(5.17)

Simplifying:∣∣∣∣(1 +
βXβY2

1− βY2βX
+

βXβY1
1− βY1βX

)∣∣∣∣ > ∣∣∣∣ βX(1− βY1βY2)

(1− βY2βX)(1− βY1)

∣∣∣∣ (5.18)

After equaling the denominators on the left hand side, we obtain:∣∣∣∣1− β2XβY1βY21− βY1βX

∣∣∣∣ > ∣∣∣∣βX(1− βY1βY2)

(1− βY1)

∣∣∣∣ (5.19)

The inequality only depends on the coefficients βY1 , βY2 and βX , representing the auto-
correlation of the variables in consecutive time points. The subspace of βY1 and βY2 for which
the inequality is true, for βX = {0.3, 0.5, 0.7} is represented in the Figure 5.4. It can be seen
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Figure 5.4: Coefficient subspace for which the co-regulation criterion is valid - If Y1,t and
Y2,t have a common cause (Xt), and follow a linear model as described in the Figure 5.3, their
non-lagged correlation is higher than their lagged correlation in a subspace of βY1 , βY2 and βX ,
as described in the equation (5.19). The figure illustrates this subspace, between -1 and 1, for
βX = {0.3, 0.5, 0.7} in orange.

that the inequality is true for a large subspace of βY1 and βY2 . The coefficients were restricted to
the interval between -1 and 1. This results from the assumption of unit variable variance. The
variance of Xt is obtained as the sum of the squares of the coefficients of its causes (Xt−1 and
εX ) as they are independent:

σ2Xt
= β2X + ε2X ⇒ 1 = β2X + ε2X ⇒ 1 > |βX | (5.20)

Trivially, the result remains valid if other causes are considered (as in the case of σ2Y1,t and
σ2Y2,t).
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5.3 Experimental session

The experimental section consists of a set of experiments using real microarray and simulated
gene expression time series. The simulated time series were generated with GeneNetWeaver
(GNW (230)), in which a gold standard of gene regulations is provided. Multiple multivariate
time series of different sizes were generated. The GNW time series were considered as they are
used in the well-known DREAM network inference challenges.

The microarray gene expression data are two publicly available sets of multivariate yeast
gene expression time series (described below). Gene regulations reported in the literature were
used as the gold standard. Three experiments were performed, described next.

• Section 5.3.2 assesses different approaches to model GC, regarding number of lags and
consideration of non-stationarity, in the causal inference of the direction of known gene
regulations, as a function of n (time series size).

• Section 5.3.3 assesses the precision of the co-regulation identification approach of Section
5.2.3.

• Section 5.3.4 compares a variety of state of the art network inference approaches, ensemble
of methods, and the proposed GC3 filter and co-regulation identification method. Inference
is assessed with the AUPRC, following the approach proposed in the Chapter 4).

5.3.1 Methods and materials

5.3.1.1 Data and gold standard

Yeast microarray data The microarray time series datasets are from the same species and
are composed of multiple multivariate time series:

• 2 multivariate time series of gene expression of Saccharomyces cerevisiae (yeast) (214),
along two cell cycles. The time series are of 25 points, from 0 to 120 minutes, sampled at
a regular interval of 5 minutes. The data is available in the NCBI GEO database, accession
number GSE4987.

• 9 multivariate time series of gene expression of different strands of Saccharomyces
cerevisiae (238), composed of time series of 18 time points, sampled at irregular times
from from 0 to 340 min. These were linearly interpolated resulting in time series of 35
points, of 10 min interval. The NCBI GEO accession number is GSE24771.
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A gold standard of 2960 regulatory interactions involving the genes present in both yeast datasets
was obtained from YeastMine, at the Saccharomyces Genome Database 1. These regulations
were originally obtained from YEASTRACT, a repository of yeast gene regulations (1). In
YeastMine, the YEASTRACT regulations were filtered in order to remove the ones curated
from two or fewer publications. This way, only high confidence regulations are considered.
YEASTRACT collects gene regulations documented in the literature, inferred from changes
in gene expression due to deletions or mutations in transcription factors, or from binding
associations, for instance obtained with ChIP technology. In the first case, a limitation of
this gold standard is that direct and indirect regulations are not distinguished. Only the genes
involved in a gold standard regulation were considered, 1734 in total.

GNW data Time series simulating E.Coli gene expression (1565 genes, 3758 regulations)
were generated with GeneNetWeaver (v3.1 Beta) (230). 10 networks of 50 genes were initialized,
and for each of them 10 multivariate time series of 300 time points were generated (resulting in
100 multivariate time series).2 To assess the impact of the number of time points in the inference
quality, only the n central points were considered, n = {20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300}
(in the last case all points are considered).

5.3.1.2 Network inference methods

We assessed several state of the art network inference methods, both static and dynamic,
including the proposed GC3 filter (Section 5.2) and a bivariate GC test (designated henceforth
by GC2). GC tests were carried out using the F-test as described in Section 2.7.4, returning a
p-value/z-score. The co-regulation test (Section 5.2) was included in both GC2 and GC3, as
described in Section 5.2.3.1. The adopted correlation cut-off was 0.7 (the precision and recall
for this value, in the considered time series, is presented in Section 5.3.3).

We also assessed ready-to-use network inference methods (available in R implementations)
and dynamic adaptations of static state of the art network inference methods. All were presented
in the Chapter 3. We also combined all the dynamic methods with the Borda count method, as
done in the DREAM challenges (Section 3.1)).

In most of the approaches, edge scores were measured with (conditional) linear correlations,
or with (regularized) linear regression coefficients, entailing a Gaussian assumption. For instance,
in the MI-based methods, MI was estimated as a function of the linear correlation (see Section

1http://yeastmine.yeastgenome.org/yeastmine/ data from September 2013.
2Regarding the parameters of the GNW time series generation: the duration of time series is 14950, number of

measured points is 300, the other being the default options.
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2.1.3). The only exception is random forests. All the dynamic approaches use one lag (the first).
The assessed approaches are described next.

Literature methods We implemented three ready-to-use methods to infer gene regulatory
networks (Simone, G1DBN, GeneNet), available in R packages and described in the Chapter 3.
GeneNet is a static approach, although it predicts directed networks (Section 3.2.3). Simone and
G1DBN are dynamic approaches, described in Section 3.3.2. We adopted default parameters
on all methods. In particular G1DBN uses a p-value cut-off of 0.7 (as described in (148)). In
Simone, we score each regulation with the sum of its scores, for all returned networks (for
different values of λ).The proposed clustering into two groups is also adopted.

RF and Lasso We assessed two network inference methods based on embedded variable
selection, using random forests (RF, Section 2.6 and the Lasso, Section 2.2.4). Each gene, one at
a time, is considered the target and the remaining genes considered as predictors. We considered
dynamic adaptations of these methods, by lagging the predictors (one lag) relative to the target.
In the case of random forests, a static (non-lagged) version was also assessed.

We implemented RF using the R package randomForest, with the parameters as in the
Genie3 method (Section 3.2). Regarding the Lasso, we used the appropriate modification to
Lars (see Section 2.2.4) available in the R package lars to compute the Lasso coefficients along
the path of the penalty term, from maximum to zero (the least squares solution), sampled in
a regular intervals of the ratio between the L1 norm of the coefficient vector and the norm at
the least squares solution. Each regressor is assigned a score which is the average of its lasso
coefficients along the lasso path.

MI A simple bivariate filter approach consists in the estimation of the MI of the expression of
each pair of genes (eg. I(Xi, Xj)). We score each (directed) regulation with an estimation of
the lagged MI (1 lag) of the respective genes (eg. I(Xi,t−1, Xj,t)).

ARACNE ARACNE (Section 3.2.2) removes an edge of a closed triplet if the corresponding
(bivariate) MI is the lowest of the three edges MI, and if the difference between that MI and the
second lowest MI is above a threshold. We implemented ARACNE with a temporal modification:
a regulation from Xi to Xy is removed if there is a gene Xj for which the following condition
holds. Let min(I(Xi,t−1, Xj,t), I(Xj,t−1, Xy,t)) be denoted as min Iijy:

|I(Xi,t−1, Xj,t)− I(Xj,t−1, Xy,t)| < min(Iijy − I(Xi,t−1, Xy,t)) (5.21)

117



5. GRN INFERENCE FROM GENE EXPRESSION TIME SERIES

CLR The CLR (Section 3.2.2) consists of a normalization of the pairwise MI. In the adopted
dynamic modification, the normalized MI between Xi,t−1 and Xy,t is:

I∗(Xi,t−1, Xy,t) =
√
Ii(Xi,t−1, Xy,t)2 + Iy(Xi,t−1, Xy,t)2 (5.22)

where

Ii(Xi,t−1, Xy,t) =

(
I(Xi,t−1, Xy,t)− µi

σi

)
(5.23)

and µi and σi are the mean and standard deviation of I(Xi,t−1, Xk), k ∈ {1, .., p}. Iy(Xi,t−1, Xy,t)

is defined equivalently, where µy and σy are the mean and standard deviation of I(Xk,t−1, Xy), k ∈
{1, .., p}.

MRMR, CMIM, MIMR MRMR, CMIM, and mIMR (Section 3.2.1) consist in a forward
selection of predictor variables, the selected variable at each step being the one maximizing
a criterion considering the pairwise and/or conditional dependences with the target and the
previously selected variables. Following the approach implemented in MRNET using mRMR,
we apply these methods to GRN inference by scoring each regulation with the criterion value
(at the time of selection) of the respective gene, for a given target gene.

The adopted dynamic modification consists in using lagged correlations (1 lag) between
target and predictor variables. Dependences between predictors are estimated with non-lagged
correlations. In both mIMR and CMIM implementations, the selection stops as soon as the
dependence (linear correlation) between the last selected predictor and the target is below a
cut-off (pv< 0.05, using Fisher’s transformation, appendix A). This was done to avoid intensive
computations for lowly scored regulations.

5.3.2 Experiments - GC lag selection

The first experiment assesses GC lag selection in GRN inference. In the yeast experiment, a
GC z-score was assigned to each direction (correct and incorrect) of a directed cause-effect
pair (ie. directed regulation) present in the gold standard, for each of the multivariate time
series. The scores of all multivariate time series were then averaged (as with the Stouffer’s
method, appendix A.4). The inferred direction was the one of the highest value. Significance
was assessed with the binomial distribution (probability of a number of successes each with
probability 0.5, in a sequence of independent experiments). A similar experiment was done on
the GNW time series, the difference being that each directed regulation in each multivariate
time series was assessed individually.
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Causal direction inference strategies Three methods to infer the causal direction were
assessed. The first is a lagged correlation approach (LC), returning the maximum lagged
correlation from a predictor to target gene, for a given number of lags (l ∈ {1, .., lmax). The
second uses the GC F-test. The third uses the TY modified GC F-test (considers non-stationarity,
Section 2.7.5). In the GC tests (both standard and TY-modified) the predictor lags are either the
first or estimated in a forward selection manner (by RSS minimization). In all cases, the lags of
the target variable are the first, and the number of target and predictor lags are the same.

Regarding LC, the lag was defined as the first or it was estimated (lmax = 3). The first case
is designated as LC-F (first), the second as LC-E (estimated). In the GC approaches, the lag
selection was the following:

1. The number of lags L is 1, and the lag is the first (GC-F1).

2. The number of lags L is 1, and the lag of the predictor is estimated (GC-E1).

3. The number of lags L is estimated (may be multiple), and the lags are the first ones
(GC-FM).

4. The number of lags L is estimated, and the lags of the predictor are estimated (GC-EM).

The parameter L in the multi-lag settings is defined as the value that optimizes the AICc
(appendix A.1) in the restricted model (equation (2.47)).

Regarding the TY test for GC, it was implemented by first selecting the lags as above, then
by estimating the maximum order of integration d of the two time series (Section 2.7.2.4). The
KPSS test was used to test the null of stationarity (Section 2.7.3.1, p-value cut-off of 0.1). The
TY modified test was carried out as described in Section 2.7.5. This approach is referred to as
TY.

The causal inference precision is presented for the top 10% and the top 10-50% ranked
regulations (ordered by z-score average). The precision of the highest ranked regulations is
of particular importance, as GRN inference consists in a selection of the most highly ranked
(according to some criteria) network edges.

Results - yeast The results for the yeast microarray data are in the Figure 5.5. It presents the
proportion of correctly inferred causal directions, for the top 10% and the top 10-50% ranked
regulations. In this experiment, the optimal GC modeling strategy is GC-F1 (described above).
The consideration of estimated and multiple lags causes a performance decrease, as well as the
adoption of the TY test. LC has a high precision considering the top 10% regulations, but this
precision is lower than all other approaches when considering the lower ranked interactions.
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Figure 5.5: GC modeling assessment (yeast) - Proportion of correctly inferred regulation direc-
tions, for the yeast microarray time series. Direction was inferred as being the one returning the
highest average GC z-score (for 11 times series sets). Results are for the different approaches
to infer GC. The top 10% and the top 10-50% ranked regulations (of the respective method) are
considered. The number of regulations is 2960. The dashed line corresponds to a p-value equal to
0.001, obtained using the binomial distribution.

The adoption of the TY modification has a negative impact, more visible in the 10% ranked
interactions. The best achieved precision on the top 10% regulations (LC-F and GC-F1), is
around 0.65 (considering 296 regulations, its p-value is 1−7).

Results - GNW The results for the GNW data are in the Figure 5.6, showing the proportion
of correctly inferred causal directions, for the top 10% and the top 10-50% ranked regulations.
Results are presented as a function of the time series size n. As expected, inference precision
increases with n. It is also higher when only the top regulations are considered (see also the
difference in scale in the figure plots). Considering the top 10% regulations, when n is high, the
highest precision is obtained considering multiple lags.
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Figure 5.6: GC modeling assessment (GNW) - Proportion of correctly inferred regulation direc-
tions, for each pair of GNW time series (of the same set) whose genes are involved in a causal
regulation. Direction was inferred as being the one returning the most significant GC. Results are
for the different approaches to infer GC and are presented as a function of the time series size
(interpolated with splines). The top 10% and the top 10-50% ranked regulations (of the respective
method) are considered. The number of regulations is 7810. The dashed line corresponds to a
p-value equal to 0.001, obtained using the binomial distribution. The legend is only shown in the
right plot, to avoid redundancy.

5.3.3 Experiments - identification of co-regulation

The second experiment consists in the assessment of the co-regulation identification method
proposed in Section 5.2.3. Each pair of time series in each time series set, in the yeast and GNW
datasets, was tested for co-regulation following the algorithm 5.2, for k = {0.9, 0.7, 0.5}. A gold
standard of co-regulation is directly obtained from the gold standard of regulation. The tables
5.1, 5.3 and 5.5 represent the accuracy of the method for the yeast and for the GNW datasets,
when n = {20, 300}. The tables present the number of pairs of genes estimated as co-regulated
(#ĉr), the number of true co-regulations (#cr), and the number of the correctly estimated as
co-regulated (#(ĉr ∩ cr)). Precision, recall and a p-value (hypergeometric distribution) are also
presented. Regarding the gold standard of co-regulation, only co-regulated genes not involved
in a causal regulation, were considered as co-regulated.
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Table 5.1: Precision of co-regulation inference (yeast) - #ĉr is the number of estimated co-
regulated pairs of genes; #cr is the number of true co-regulated; #(ĉr ∩ cr) is the number of pairs
of genes correctly identified as co-regulated; precision and recall are relative to the identification of
true co-regulated pairs, among the estimated as co-regulated; N is the number of considered pairs of
genes. The p-value is given by the hypergeometric distribution.

#ĉr #(ĉr ∩ cr) Precision Recall #cr N p-value

k=0.9 15089 4376 0.290 0.00252 1733039 16527621 0 (e−1977)

k=0.7 454799 73746 0.162 0.0425 1733039 16527621 0 (e−7155)

k=0.5 1883050 242827 0.129 0.140 1733039 16527621 0 (e−6232)

Table 5.2: Incorrect identification of regulation as co-regulation (yeast) - #ĉr is the number of
estimated co-regulated pairs of genes; #r is the number of regulations; #(ĉr ∩ r) is the number of
regulations whose genes were incorrectly identified as co-regulated; precision and recall are relative
to the identification of regulations, among the pairs of genes estimated as co-regulated; N is the
number of considered pairs of genes. The p-value is given by the hypergeometric distribution.

#ĉr #(ĉr ∩ r) precision recall #r N p-value

k=0.9 15089 18 0.00119 0.000553 32527 1652762 0.985

k=0.7 454799 908 0.00200 0.0279 32527 16527621 0.385

k=0.5 1883050 3983 0.00212 0.122 32527 16527621 7.92−7

Table 5.3: Precision of co-regulation inference (GNW, n=20) - legend as table 5.1.

#ĉr #(ĉr ∩ cr) precision recall #cr N p-value

k=0.9 2628 1784 0.678 0.0275 64810 122500 2.04−56

k=0.7 7318 4584 0.626 0.0707 64810 122500 1.38−67

k=0.5 12737 7607 0.597 0.117 64810 122500 2−60

Table 5.4: Incorrect identification of regulation as co-regulation (GNW, n=20) - legend as table
5.2.

#ĉr #(ĉr ∩ r) precision recall #r N p-value

k=0.9 2628 157 0.0597 0.0203 7760 122500 0.764

k=0.7 7318 419 0.0572 0.0539 7760 122500 0.986

k=0.5 12737 765 0.0601 0.0985 7760 122500 0.944

A potential problem of the co-regulation filter is the incorrect identification of regulation as
co-regulation, preventing the inference of true regulations (type 2 errors). To assess the degree
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Table 5.5: Precision of co-regulation inference (GNW, n=300) - legend as table 5.1.

#ĉr #(ĉr ∩ cr) precision recall #cr N p-value

k=0.9 3528 2713 0.768 0.0418 64810 122500 1.33−196

k=0.7 7445 5038 0.676 0.0777 64810 122500 3.82−157

k=0.5 9933 6529 0.657 0.101 64810 122500 1.02−160

Table 5.6: Incorrect identification of regulation as co-regulation (GNW, n=300) - legend as
table 5.2.

#ĉr #(ĉr ∩ r) precision recall #r N p-value

k=0.9 3528 148 0.0419 0.0191 7760 122500 1− 1.33−8

k=0.7 7445 336 0.0451 0.0433 7760 122500 1− 1.90−12

k=0.5 9933 441 0.0444 0.0568 7760 122500 1− 1.39−17

of this (possible) limitation, direct regulations were considered as the positive instances in the
described test (results in tables 5.2, 5.4 and 5.6). In this case, #r is the number of regulations,
#(ĉr∩r) is the number of regulations whose genes were (incorrectly) identified as co-regulated,
and precision, recall and p-value are relative to the identification of regulation.

In both experiments (yeast and GNW), the proposed co-regulation identification method
achieves a (relatively) very high precision (illustrated by the extremely low p-values, particularly
on the yeast experiment - tables 5.1, 5.3 and 5.5). On the contrary, the number of regulations
whose genes were identified as co-regulated (type 2 errors) is in the range of random selection in
the yeast experiment (except when k = 0.5) and GNW experiment when n = 20. In the GNW
case, this number is significantly low when n = 300. This is likely due to the fact that in the
GNW time series direct regulations are clearly characterized by lagged dependences - ie. they
tend to be stronger than non-lagged dependences in cause-effect pairs. In this case, cause-effect
pairs are not selected by the co-regulation filter.

5.3.4 Experiments - network inference

The network inference experiment consists in the inference of 100 networks of 50 genes, in both
the yeast microarray and GNW time series, using the inference methods previously described
in Section 5.3.1.2. For each network and inference method a matrix of regulation scores was
obtained, which was assessed with the AUPRC (average precision approach, Section 4.2).

In the yeast experiment, 1000 sets of 50 genes were randomly selected. The 100 gene sets
with the highest number of regulations (present in the gold standard) were then selected as
the network genes. Each 50-gene network was then reconstructed by each method, each time
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using a multivariate time series. The edge scores obtained with the different multivariate time
series were then combined (Borda count method) to obtain a single score for each edge, on each
network. Alternatively, each network obtained in each multivariate time series was assessed
individually (results in the appendix B, not shown in this section). In the GNW experiment,
each network was inferred from an unique multivariate time series.

The yeast networks have a number of edges between 7 and 24, with the average number
being 10. The total number of possible edges in a 50-gene network is 502 − 50 = 2450

(excluding auto-regulations). For this range of total and positive instances (N = 2500 and
P ∼ 10) there is a relevant bias in the AUPRC beta distribution approximation of Chapter 4,
as illustrated in the Figure 4.5. For this reason, we assessed AUPRC significance with Monte
Carlo simulations (100000 simulations for each different network configuration and AUPRC
distribution).

The GNW networks have a number of edges between 51 and 118, and the average number
of regulations is 84.6. The number of edges (positive instances) in these networks is higher than
in the yeast experiment, and the bias of the AUPRC beta distribution is lower. It was considered
acceptable (see Figure 4.5), and AUPRC z-scores were obtained following the proposed beta
distribution approximation.

In the following results, Granger causality methods (GC2 and GC3), possibly incorporating
the co-regulation filter, are designated by:

• GC2: bivariate GC z-scores, using one lag (the first)

• GC2+CF: bivariate GC z-scores, using the first lag, with the co-regulation filter (with
parameter k = 0.7) as described in Section 5.2.3.

• GC3-SR1: The proposed GC3 filter, as described in Section 5.2.2, using the first lag. The
ranking method (Section 5.2.2.1) is static, and the stop parameter is s = 1.

• GC3-DR1: GC3 filter with dynamic ranking and s = 1.

• GC3-DR3: GC3 filter with dynamic ranking and s = 3.

• GC3-DR5: GC3 filter with dynamic ranking and s = 5.

• GC3-DR3+CF: GC3 filter with dynamic ranking, s = 3, and with the co-regulation filter
(with parameter k = 0.7) as described in Section 5.2.3.

The assessed literature and state of the art methods were described previously in Section 5.3.1.2.
Only two static methods were implemented (GeneNet and RF). The Borda-count combination
of dynamic methods is designated by META.
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Figure 5.7: GRN inference performance (yeast time series) - Box plots of the AUPRC z-scores
of the assessed methods. 100 GRN, of 50 genes, were inferred from the 11 yeast multivariate time
series. Each network was inferred individually in all multivariate time series, and the obtained
predictions combined with the Borda count method. The AUPRC of each inferred network was
obtained and transformed into a z-score, obtained with Monte Carlo, 100000 simulations.

The results are presented in a series of figures. Figure 5.7 presents boxplots of the AUPRC
z-scores in the yeast experiment, and Figure 5.8 presents the boxplots of the scores in the GNW
experiment, for time series size of 20 and 300 time points. The results of the yeast experiment
when assessing network inference on each multivariate time series individually is present on the
appendix B. The appendix also shows the GNW experiment results for the intermediate number
of considered time points (between 40 and 200).

The difference between different methods was assessed using the Wilcoxon signed rank test
(see appendix A). The results are presented in the heatmap Figures 5.9 (yeast experiment), 5.10
and 5.11 (GNW experiment, for n = 20 and n = 300). In these matrix figures, different colors
represent different obtained p-values.

In the boxplots, the first method (on the right) is bivariate GC (GC2), followed by the novel
GC-based methods. The next presented methods are the state of the art approaches, ranked as in
the significance heatmap figures (best performing methods on top).

Yeast results On the yeast experiment, inference precision is very low, and the only methods
achieving a precision significantly higher than random (pv < 0.01) are GC2 (including or
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Figure 5.8: GRN inference performance (GNW time series) - Box plots of the AUPRC z-scores
of the assessed methods. 100 GRN, of 50 genes, were inferred from GNW multivariate time series
(one network corresponding to one multivariate time series). The AUPRC of each inferred network
was obtained and transformed into a z-score, following the beta-distribution approximation proposed
in Chapter 4. Results are shown using the 300 points of the time series, and the middle 20.

not the co-regulation filter), GC3-SR1 (with static ranking), and random forests (RF, dynamic
implementation) and the ensemble of dynamic methods (META). The top ranked approach is
the dynamic implementation of RF. The adoption of the co-regulation filter results in a small
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Comparison of AUPRC values 
 Wilcoxon signed rank test
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Figure 5.9: GRN inference statistical comparison (yeast experiment) - Comparison between
the different GRN inference methods AUPRC z-scores (100 in total). The Wilcoxon signed rank
test was used and the obtained (two-tailed) p-values are represented in the matrix. If the element
[i, j] is blue, then method i performs better than method j. Methods on top are the best performing.
Results for the yeast experiment.

precision increase, although the difference is not significant. When networks are inferred from a
single multivariate time series, no method is significantly more precise than random (appendix
B).

GNW results On the GNW experiment, the precision of almost all methods increases with
the size of the time series (the exception being the static implementation of RF, which is not
significantly better than random even when n = 300). When the number of samples is low,
several methods perform similarly. When n = 20 the top 8 ranked methods on Figure 5.10 do
not exhibit a significant difference among them. However, even in this case almost all methods
perform significantly better than random (exception being RF, static and dynamic).

When n = 300, the most precise methods are GC3-DR5, G1DBN and GC3-DR3 (with and
without the co-regulation filter), not significantly different between them. The next most precise
approaches are the remaining variations of GC3. These methods are significantly more precise
than the remaining (pv < 0.0001).

The co-regulation filter has a beneficial impact in both GC2 and GC3-DR3, however only
significant on the first case. GC3-DR5 is more precise than GC3-DR3, which in turn is more
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Comparison of AUPRC values 
 Wilcoxon signed rank test
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Figure 5.10: GRN inference statistical comparison (GNW, n=20) - Legend as of Figure 5.9.
Results for the GNW time series, considering the middle 20 points of the time series.

Comparison of AUPRC values 
 Wilcoxon signed rank test
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Figure 5.11: GRN inference statistical comparison (GNW, n=300) - Legend as of Figure 5.9.
Results for the GNW time series, considering the 300 points of the time series.
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5.4 Discussion

precise than GC3-DR1. The effect size is small (Figure 5.8), but significant (pv < 0.01, Figure
5.11). GC3-SR1 performs similarly as GC3-DR1.

5.4 Discussion

5.4.1 GC lag selection

In the experiment of Section 5.3.2, the optimal approach to model GC on the yeast time series is
using the first lag (Figure 5.5). The consideration of multiple and/or estimated lags results, and
the adoption of the TY test, results in a performance decrease. This is explained by an increase
in inference variance, more critical in the small sample case (the yeast time series are 25 and 35
points long, after interpolation).

In the GNW time series, the overall inference precision increases with n. When n becomes
larger than around 60, the most accurate approaches to model GC are the ones considering
multiple and/or estimated lags (considering only the top 10% ranked regulations). When n is
lower, an higher precision is obtained with a single lag (lagged correlation, or GC with one
lag). These is expected, as when n increases the extra variance of considering extra lags is
mitigated. Regarding the GC-TY modification, its adoption only marginally improved the
inference precision at the highest values of n. A more beneficial effect may be observed at
values of n higher than the considered.

5.4.2 Co-regulation identification

The proposed method to identify co-regulation is based on the simple assumption that if two
gene expression time series are co-regulated, respective changes in gene expression occur
simultaneously. As shown in the Section 5.3.3, the proposed approach correctly identifies
co-regulation with a very high precision, on both microarray and simulated time series. On the
contrary, the spurious identification of regulation as co-regulation is under the range of random
selection. These results validate the proposed co-regulation identification method. It is justified
theoretically in the linear case, under the constraint identified in Section 5.2.3.2.

5.4.3 Network inference

In the yeast experiment, the obtained overall precision was very low, with few methods perform-
ing better than random. The results are even worse when considering inference on the individual
11 multivariate time series, as opposed to the adopted combination (these results are shown in
the appendix B), where no method performed better than random. Apart from the short size of
the time series, the low precision may be due to low quality of the microarray data and of the
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5. GRN INFERENCE FROM GENE EXPRESSION TIME SERIES

adopted gold standard, which is likely incomplete. Another potential problem emerges from the
fact that inference was applied on relatively small networks of 50 genes, which do not contain
all the common causes (regulators) of the respective genes. Due to this, indirect dependences
via common causes may be a cause of type 1 errors. Finally, the expression of some genes may
be relatively stable along the time series, resulting in low entropy behavior and small regulatory
effect sizes.

On the contrary, the precision is higher on the GNW experiment, where almost all methods
achieve a precision significantly better than random, even when n = 20. As opposed to the
yeast networks, the GNW simulated networks contain all the regulators, and the gold standard
is complete. As such, the inference of the gold standard is easier. The time series are also
likely to be less noisy and more informative (the GNW time series reflect responses to gene
expression perturbations). In the GNW experiment when n = 20 several methods achieve a
similar precision. When n > 40 (appendix B) the most precise methods are the proposed first
order conditional GC filter (GC3) and G1DBN, based on first order conditional dependence
scores. These depend on three variables only and are protected against over-fitting, overcoming
the high variable to sample ratio limitation. Our results suggest that in this case, first order
conditional independence tests are an appropriate inference strategy. The limitation of this
approach is that indirect regulations via multiple genes may be incorrectly inferred as direct
regulations, as discussed in Section 5.2.1.

The adopted co-regulation filter has a beneficial impact in both GC2 and GC3 in the yeast
and GNW experiments (significant in the GC2 and GNW case). The fact that the filter benefit is
small is likely due to the the low number of pairs of genes estimated to be co-regulated (as seen
in Section 5.3.3).

All assessed methods, except random forests, are based on the estimation of linear depen-
dences. These may be (more or less trivially) extended to the non-linear case using mutual
information. The adequacy of the linear assumption and how it compares to a non-parametric
estimation of MI is out of the scope of this work.

GC3 GC3 consists in a heuristic to conduct first order conditional independence tests in the
estimation of graphical models. It reduces the number of necessary tests to obtain a graph
representing first order conditional independences, and was applied in a dynamic context using
Granger causality. Its application to a static context is trivial. This heuristic consists on the
ranking of individual conditioning variables, based on non-conditional dependence scores. A
similar heuristic may be applied to higher order conditional independence tests, by ranking
sets of conditioning variables of cardinality k according to k − 1 order conditional dependence
scores. This strategy becomes then a fast approximation of the PC algorithm, useful in large
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networks.

Two strategies were suggested to compute the ranking of conditioning variables, for each
cause-effect pair (static and dynamic, Section 5.2.2.1). The precision of the two approaches
is similar in the GNW experiment, while the static is more precise in the yeast experiment.
The search over the ranked conditioning variables depends on a parameter s. As it increases
(maximum being p− 2), the number of conditional independence tests required to obtain the
minimum conditional dependence score tends to p − 2 (the full search). As expected, the
precision increases with s (GNW experiment). However, the difference is small (Figure 5.8),
and the high precision obtained even when s = 1 suggest that both rankings are accurate and
that the proposed heuristic is a good approximation of the search over all conditioning variables.

As discussed in Section 5.2.1, the complexity of inferring a network with GC3 using the full
search (ie. setting s = p− 2) is O(13p3) (assuming the complexity of linear regression as in
Section 5.2.1), which can be considered too slow in the large p case. The proposed approximation
decreases the complexity time to close toO(p2). Under the 0.8 probability assumption of Section
5.1 (not considering the previous computation of the ranking of conditioning variables) we have
O(2 ∗ 13p2) for s = 1 and O(6 ∗ 13p2) for s = 3. Under this assumption, using s = 1 reduces
the computational time of GC3 by a factor of p/2. This is a substantial improvement in large
networks (thousands of genes).

State of the art methods A curious result is the precision of RF in both experiments (it is the
most precise method in the yeast experiment, and the least precise in the GNW experiment). Due
to combining bagging with multiple random variable subspaces, RF are known to be protected
against over-fitting and model variance (Section 2.6). On the other hand, regulation scores are a
complicated non-linear function of all genes in the network. The different characteristics of the
microarray and simulated time series may explain the difference in RF performance, but this
point requires further investigation.

CMIM, MRNET, mIMR, and the Lasso (also implemented by Simone) are forward selection
procedures, selecting predictors of a target variable incrementally, at each step considering
the dependence towards the target and the previously selected predictors. While this favors
the selection of non-redundant predictors, the selection and scoring of predictors is dependent
on previous selections. For this reason, a forward selection strategies adequate for predictive
purposes may not be optimal for causal inference.

The combination of methods resulted in a high precision, although lower than the most
precise individual methods. In this second aspect we failed to replicate observations previously
reported in the literature (Section 3.1).
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5. GRN INFERENCE FROM GENE EXPRESSION TIME SERIES

Precision of GRN inference The AUPRC z-score used to assess inference precision is relative
to its null distribution, which depends on the number of possible regulations and true regulations.
The relation between the AUPRC and the z-score, as a function on the number of genes, and
number of true regulations, is illustrated in the table 5.7, where the AUPRC corresponding
to a z-score = {2, 4, 6, 8} is presented, for number of genes and number of regulations both
= {50, 100}. When estimating the AUPRC the number of positive instances P is the number of
directed regulations, and the number of instances N is given by N2 −N (all possible directed
regulations, except auto-regulatory). Although the mean of the distribution increases with P

N , its

Table 5.7: Relation between the AUPRC and z-score, for different network characteristics -
the table presents the AUPRC corresponding to a z-score = {2, 4, 6, 8}, for the possible combina-
tions of number of genes (50 or 100) and number of regulations (50 or 100). The µ and σ (standard
deviation) of the null distribution are derived, and the z-score estimated, as in Section 4.

network characteristics AUPRC of z-score
# genes # regulations null µ null σ z=8 z=6 z=4 z=2
50 50 0.0234 0.00537 0.117 0.0831 0.0562 0.0361

50 100 0.0437 0.00544 0.115 0.0917 0.0720 0.0558

100 50 0.00593 0.00213 0.0561 0.0365 0.0216 0.0114

100 100 0.0110 0.00185 0.0394 0.0295 0.0214 0.0152

variance decreases with both P and N . This explains why a z-score of 8, when N (given by the
number of genes) is fixed, is associated with a lower AUPRC when P=100 than when P=50.

The number of edges in the GNW networks is between 51 and 118. An average z-score
approaching 4 is obtained with GC3 when n=300. This corresponds to an AUPRC between
0.05 - 0.07 (for a number of edges between 50 and 100). These are low values of precision;
however, the AUPRC measures the average precision over all values of recall. In network
inference, precision at the lowest values of recall is what matters in practice (confirmatory
experiments check the highest ranked predictions). The Figures 5.12 and 5.13 illustrate the
obtained precision of GC3 (in particular, the setting GC3-DR3+CF as described in Section
5.3.4) in the GNW experiment when n = 20 and n = 300. The precision values in the 100
networks are represented in boxplots for different values of recall (until 0.5). The precision is
considerably higher at the lowest levels of recall. When n = 300, an average precision close to
0.2 is obtained at the lowest recall.

5.5 Conclusion

We summarize the major conclusions:
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Figure 5.12: Boxplots of precision as a function of recall (GNW data, n=20) - Precision values
of the 100 networks (GC3 with the co-regulation filter, in particular GC3-DR3+CF), as a function of
recall.
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Figure 5.13: Boxplots of precision as a function of recall (GNW data, n=300) - Legend as
Figure 5.12

• When modeling temporal dependences, it is important that the considered lags capture the
lagged regulatory dependences. However, particularly when n is small (in the microarray
experiment, and in the GNW experiment when n < 40), the consideration of high and
multiple lags results in an increase in model variance. In this case, considering a single
(first) lag is the most adequate strategy to infer gene regulation causality. As n increases,
strategies to model GC that consider multiple, estimated lags, and non-stationarity, become
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5. GRN INFERENCE FROM GENE EXPRESSION TIME SERIES

more precise (as shown in the Figure 5.6).

• On the microarray experiment, network inference precision is low, and not guaranteed to
be better than random. Apart from the high variable to sample ratio, another reason may
be low data quality and incompleteness of the gold standard. In this low precision case, a
precision significantly higher than random inference is not guaranteed. The approach to
assess AUPRC significance (null of random selection) of Chapter 4 is relevant in such
a context. In order to improve inference precision, longer time series should be used.
Additionally, multivariate time series may be combined, together with data obtained from
different experiments.

• An heuristic to obtain the minimum first order conditional GC dependence is proposed
(GC3) as a faster alternative to the full search over all conditioning variables. An approach
to identify co-regulation is also proposed, which is theoretically justified under certain
conditions.

• In the GWN network inference experiment, the most precise inference method is GC3 and
G1DBN, also based on first order partial correlations. This suggests that using first order
conditional dependences are indeed a good strategy for GRN inference. The co-regulation
filter was shown to identify co-regulation with a very high precision, and its incorporation
in network inference methods increased their inference precision.

Data files and R scripts to replicate the described experiments are available online, as well
as R software implementing the used dynamic inference methods (including GC3 and the
co-regulation filter).12

1https://github.com/miguelaglopes/GCnetinf
2https://github.com/miguelaglopes/NetInfExps
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6

Temporal profiling of
cytokine-induced genes in pancreatic
β-cells by meta-analysis and network
inference

6.1 Introduction

This chapter presents contributions regarding the inference of relevant genes and regulations
in type 1 diabetes. Type 1 diabetes (T1D) is an autoimmune disease where local release of
cytokines such as IL-1β and IFN-γ contribute to β-cell apoptosis. From 8 datasets of β-cell
gene expression after exposure to IL-1β and IFN-γ, we identify a set of relevant genes to
T1D. Two of these datasets were made available as a result of this work, and contain time-
series expressions in human islet cells and rat INS-1E cells. Genes were ranked according
to their differential expression within and after 24 hours from exposure, and characterized by
function and prior knowledge in the literature. A regulatory network was then inferred from
the human time expression datasets, using a temporal network inference method. The two most
differentially expressed genes previously unknown in T1D literature (RIPK2 and ELF3) were
found to modulate cytokine-induced apoptosis, and three predicted causal regulations were
experimentally confirmed. The inferred regulatory network is thus supported by the experimental
validation, providing a proof-of-concept for the proposed statistical inference approach.

Chapter outline Section 1.1 is an introduction to T1D; Section 6.2 describes the adopted
methodology; Section 6.3 describes the methods and materials; Sections 6.4, 6.5 and 6.6 presents
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β-CELLS BY META-ANALYSIS AND NETWORK INFERENCE

the results, discussion and conclusion, respectively.

6.2 Inference methodology

The meta-analysis consists of eight gene expression datasets from microarray and RNA-seq
experiments measuring gene expression levels of human pancreatic islets, rat FACS-purified
β-cells and rat INS1E cells (a cell line emulating many of the characteristics of pancreatic
β-cells (242)) exposed to IL-1β or IL-1β and IFN-γ (20, 22, 77, 180, 198, 198) (see details in
table 6.1).

Table 6.1: Datasets used in the meta-analysis study - Characterization of the different datasets
used in the present study. Columns represent the gene expression datasets. Rows represent the
different dataset characteristics. These are: cell type; type of experiment (microarray or RNA-seq);
experiment platform; combination of cytokines used; the number of independent preparations used
in the dataset (e.g., 3 human islets, indicating islets from three individuals); the total number of
samples (time points) examined per individual preparation; the time points; the dataset reference.

Supplementary Table 1: Datasets used in the meta-analysis study 

Cell type Human 
islet cells 

Rat INS1 
cells 

Rat INS1 
cells 

Rat INS1E 
cells 

FACS-
purified rat 
!-cells 

Human 
islet cells 

Human 
islet cells 

Human 
islet cells 

Exp. type Microarray Microarray Microarray Microarray Microarray Microarray Microarray RNA-seq 

Exp. 
Platform 

Affymetrix 
Human 

Genome 
U133 Plus 
2.0 Array 

Affymetrix 
Rat Gene 

1.0 ST 
Array 

Affymetrix 
Rat 

Genome 
230 2.0 
Array 

Affymetrix 
Rat 

Genome 
230 2.0 
Array 

Affymetrix 
Rat 

Genome 
230 2.0 
Array 

Affymetrix 
Human 

Genome 
U133 Plus 
2.0 Array 

Affymetrix 
Human 

Genome 
U133A 
Array 

Illumina 
Genome 

Analyzer II 

 

Cytokines IL-1! and 
IFN-" 

IL-1! and 
IFN-" IL-1! IL-1! and 

IFN-" 
IL-1! and 

IFN-" IL-1! IL-1! and 
IFN-" 

IL-1! and 
IFN-" 

Num. 
prep. 3 2 4 3 3 4 3 5 

Num. 
samples 
p/ prep. 

18 13 5 3 2 2 1 1 

Time 
points 
(hours) 

0, 1, 2, 4, 
8, 12, 24, 

36, 48, 60, 
72, 84, 96, 
108, 120, 
132, 144, 

168 

0, 1, 2, 4, 
6, 8, 10, 

12, 24, 36, 
48, 60, 72 

2, 4, 6, 12, 
24 2, 12, 24 6, 24 24, 48 48 48 

Ref [159] [159] [22] [183] [201] [20] [289] [78] 

 
Characterization of the different datasets used in the present study. Columns 
represent the gene expression datasets. Rows represent the different dataset 
characteristics. These are: cell type; type of experiment (microarray or RNA-seq); 
experiment platform; combination of cytokines used; the number of independent 
preparations used in the dataset (e.g., 3 human islets, indicating islets from three 
individuals); the total number of samples (time points) examined per individual 
preparation; the time points; the dataset reference. 
 

Two of these datasets, based on human pancreatic islets and rat insulin-producing INS-1E
cells, are described in (156), and are available at GEO (reference numbers GSE53454 and
GSE53453). The human islet dataset consists of a detailed time course analysis, ranging from
1 to 168 hours (7 days; this very late time point was included to model the long-term and
protracted immune assault to which beta cells are exposed in diabetes) and is composed of 18
time points; to our knowledge, this is the most detailed time course array analysis performed in

136



6.3 Materials and methods

cytokine-treated human islets, up to this date.

The meta-analysis is performed to identify a group of genes whose expression levels are
consistently and strongly modified by cytokines on both human and rat datasets, before or after
24 hours. This provides a unique indication of the dynamics of gene expression leading to
apoptosis. An enrichment tool is used to assign biological terms to a majority of identified
genes. A set of novel genes is identified, which were not previously reported in T1D literature.
A network of regulations between a set of highly differentially expressed genes is then inferred
from the human-islet dataset by using a temporal network inference algorithm. The predicted
network is also used to order genes by time of regulation.

As a confirmatory procedure, two genes, ELF3 and RIPK2, found to be among the 10 most
up-regulated both before and after 24 h, and the two most up-regulated of the novel genes,
had their expression levels validated by RT-PCR analysis in INS1E cells exposed for 24 h to
IL-1β and IFN-γ. Furthermore, these genes were knocked down for an assessment of their role
(as predicted by the inferred network) on cytokine-induced β-cell apoptosis and expression
of downstream genes. Both ELF3 and RIPK2 are found to have an impact on apoptosis and
to influence the expression of genes predicted to be downstream. The experimental approach
followed in the present study is summarized in the Figure 6.1.

6.3 Materials and methods

6.3.1 T1 Diabetes datasets

The datasets used in the meta-analysis (6.1) consist of cytokine-treated β-cells or clonal insulin-
producing cell lines. These datasets result from experiments where the cells were treated
with both IL-1β and IFN-γ, or with IL-1β alone (therefore the cytokine IL-1β is the common
cytokine to all the datasets). Note that human islets are usually exposed for longer time points to
cytokines than rat β-cells due to their increased resistance to cytokine-induced apoptosis (76).

6.3.2 Pre-processing of microarray data

The output of microarray experiments were stored in DAT files, processed by Affymetrix
software to perform background subtraction and saved as .CEL files, containing intensity values
for the probes in the chip. The pre-processing of the .CEL files of all the datasets was done
using Custom Chip Definition (CDF) files, based on ENTREZ gene IDs, following the approach
described in (61). These files map probe values into gene values for different microarray
platforms (in our case, hgu133plus2 and hgu133a for human cell lines, and Ragene10stv1 and
Rat2302 for rat/INS1 cell lines). The R package ”SimpleAffy”, taking as input a dataset CDF
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Meta-analysis of gene 
regulation, before and 

after 24 h

Identification of cytokine-
regulated genes

Selection of genes for 
network inference

Gene expression 
datasets

Network inference 
(Human islets time 

series)

Validation
Expression of genes 

predicted to be 
downstream

RT-PCR validation, 
gene knockdown and 
impact on apoptosis

Selection of genes for 
experimental 

validation

Functional enrichment, 
association with T1D

Regulations from the 
literature

Wednesday, June 11, 2014Figure 6.1: Overview of the adopted methodology - The methodology starts at the top of the
diagram and ends at the bottom. Several gene expression datasets were used in a meta-analysis of
cytokine-induced gene expression modulation, before and after 24h. Cytokine-modulated genes
were identified and function allocated based on the datasets. A gene subset was selected to infer
a regulatory network, using a newly presented time series dataset. Selected genes were subject to
validation experiments based on gene knockdown and measurement of impact in apoptosis. The
impact on genes predicted to be downstream, by the network inference, was also measured.

file, was used to normalize the respective CEL files and to compute the RMA expression levels.
The quality of the individual arrays, after RMA normalization, was assessed using MA plots (R
package arrayQualityMetrics). No array was found to be problematic, using the Hoeffding’s
independence test D statistic (default cut-off value of 0.15).

6.3.3 Selection of common genes

As the gene expression datasets relate to different species and come from different microarray
platforms, preliminary correspondence mapping and filtering was implemented. Only the genes

138



6.3 Materials and methods

in human and rat experiments sharing common homolog were selected (two genes from different
species are considered homologs if they descend from the same gene, on the last common
ancestor of the species). The list of homolog genes (of rat and human) was retrieved in the NCBI
Homologene database (94), enabling the mapping of genes from one species to another and to
select a list of common genes to rat and human species. The final number of genes, common to
all species and platforms, was reduced to 8148.

6.3.4 Meta-analysis of correlation coefficients

The adopted measure of differential expression is the Pearson sample correlation between gene
expression and a dichotomous (binary) vector denoting cytokine exposure or control. This
correlation is known as the point-biserial correlation coefficient. It was chosen as the measure
of cytokine regulation effect size, as it is commonly used in meta-analysis, along with Cohens
d (123, 176). For each gene, point-biserial correlations were estimated for all datasets. Meta-
analysis on individual dataset correlation values was done by weighted average, and we defined
the weights to be proportional to the number of samples in the respective dataset. This is a
simple form of the random effects meta-analysis method proposed by Hunter and Schmidt (123),
which is described and compared favorably with other methods in (82). The effect size, on a
gene, is measured as:

r =

∑
i ri∑
i ni

(6.1)

where ri is the correlation score of the gene in the dataset i, and ni is the number of samples of
the dataset. A returned score close to 1 indicates that the respective gene is strongly up-regulated
with cytokines, where a score close to -1 indicates that the gene is strongly down-regulated.
The experimental samples were partitioned into two groups of samples taken before or at 24
hours and of samples taken after or at 24 hours. For each gene, a meta-correlation score was
calculated for the two temporal intervals. The threshold of 0.5 was used to identify large effects
(54). Statistical significance was estimated by controlling the expected false discovery rate at
0.05, to account for multiple testing (following the Benjamini-Hochberg procedure (17) (see
appendix A). Individual p-values were estimated as described in (82) (see Hunter and Schmidt
method).

6.3.5 Network inference

Before network inference, the human islet dataset was preprocessed by i) averaging the three
time series repetitions and ii) interpolating the resulting 18 time points vector to create a vector
of 169 points, one for each hour from 0h to 168h. Network inference was performed using a
lagged adaptation of the variable selection mRMR (Section 3.2.1). The adaptation consists in
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the use of a symmetric lagged mutual information matrix, in which each pairwise lag is the one
that maximizes the lagged mutual information between the two time series (considering both
directions). For each target gene Y , only the genes X for which I(Xt;Yt−l) < I(Xt−l;Yt) are
considered as predictors, l being the estimated lag:

l = arg max
i

I(Xt−l;Yt), l ∈ {−lmax, ..,−1, 0, 1, .., lmax} (6.2)

The mutual information was estimated with the linear correlation and transformed into MI using
the Gaussian assumption (Section 2.1.3). The lags were estimated with a maximum lag of 5
time points (5 hours was assumed to be a reasonable upper bound of the lag of transcriptional
regulations). In order to improve the decrease the variance of the inference, a re-sampling
estimation based on leave-one-out was adopted (inspired by the jack-knife, appendix ??). It
consists in repeating the network inference algorithm n times (the number of experimental
samples), each time leaving one sample (time point) aside. The resulting n + 1 (n plus the
original, where no time point is removed) networks are combined by first selecting the N = 800

strongest edges in each network, and then by selecting the common edges on all resultant
networks.

6.3.6 Temporal mapping of genes

An outcome of the adopted GRN inference method (described in Section 5) is the lag associated
to each inferred regulation. Using these lags, the network genes were mapped into a temporal
reference, where their position relative to the remaining genes indicates if they are regulated
before or after them. The approach is the following: for each pair of genes in the predicted
network, all the possible shortest undirected paths (in the predicted network) connecting them are
calculated. Each of these paths is assigned a value, which is the sum of the lags of the respective
edges (predicted interactions). Note that the lags can be positive or negative, depending on the
causal direction. These values are averaged and the resulting value is assigned to the considered
pair of genes. This value is an estimation of the time between the regulations of the two genes.
By repeating the procedure for all different pairs of genes a square matrix of temporal distances
between genes is obtained. In order to rank all the genes in time, each gene is assigned the
average of the temporal distances between it and all the remaining genes. Note that the genes
that are not part of any predicted interaction can not be included in this analysis.

6.3.7 Gene confirmation by RT-PCR and functional analysis by knockdown us-
ing specific siRNAs

Small interfering RNAs (siRNAs) were used to specifically silence ELF3 and RIPK2. Regarding
the statistical analysis, data are expressed as mean SEM. Comparisons were performed by
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ANOVA followed by Students t test with Bonferroni correction or two-tailed paired Students t
test, as indicated. A significance p-value cutoff of 0.05 was adopted.

6.4 Results

To confirm the hypothesis that the receptors for the two cytokines (IL-1β and IFN-γ) are
expressed in human pancreatic islets, the RNAseq dataset was used to measure the expression
of IL-1R (19.6 RPKM), and of IFN-γR1 and IFN-γR2 (respectively 18.1 and 20.3 RPKM). For
comparison, expression of the GLP-1R, a crucial receptor for pancreatic β-cell function was 9.8
RPKM (77).

6.4.1 Selection of differentially expressed genes before and after 24 hours

Table 6.2: Ranked down-regulated genes - Ranked down-regulated genes, differentially expressed
and with a meta-score lower than -0.5, before 24 hours, after 24 hours, and both. For each gene, and
for before and after 24 hours, a meta-score measuring cytokine modulation was calculated. This
table shows the genes with a meta-score lower than -0.5 (meaning they are down-regulated), in the
two temporal intervals , and ranked by absolute value (from most to least differentially expressed).Table 1 : Names and scores of top down regulated genes 

 
before 24 hours before and after 24 hours after 24 hours 

ISL1 
ZNF395 
NR0B2 
NKX6-1 
RUNX1T1 
USP31 
NCALD 
APPL2 
APEX1 
ING2 
FAM171A1 
SSTR1 
BLCAP 

-0.693 
-0.59 
-0.572 
-0.572 
-0.568 
-0.539 
-0.535 
-0.533 
-0.532 
-0.531 
-0.515 
-0.505 
-0.502 

EIF4EBP2 -0.523 -0.512 SLC3A1 
HADH 
SPP1 
CPA2 
PDLIM1 
PCBD1 
NPTXR 
GJB1 
ADRA2A 
SLC15A2 
RBP2 
PEBP1 
RAMP1 
PFKM 
RUNDC3B 
ASB9 
ALDH7A1 
RAB40B 
UPK1B 
ENTPD3 
CTNNBIP1 
CELSR2 

-0.756 
-0.683 
-0.66 
-0.65 
-0.65 
-0.636 
-0.627 
-0.626 
-0.619 
-0.616 
-0.615 
-0.611 
-0.601 
-0.6 
-0.592 
-0.585 
-0.583 
-0.58 
-0.572 
-0.57 
-0.57 
-0.566 

HPGD 
CTRB2 
MAOB 
C11orf95 
TIMP2 
EPB41L1 
ACSM3 
POLE2 
PDGFC 
ANKH 
CTGF 
VAV3 
CIRBP 
COL1A2 
FGFR3 
SPC25 
IGFBP2 
BBS1 
RIN2 
CAV2 
PCSK5 
SLC25A3 

-0.563 
-0.557 
-0.555 
-0.555 
-0.554 
-0.553 
-0.547 
-0.546 
-0.536 
-0.535 
-0.535 
-0.533 
-0.533 
-0.53 
-0.529 
-0.525 
-0.523 
-0.522 
-0.514 
-0.512 
-0.507 
-0.503 

 
 
Down-regulated genes, with a meta-score lower than -0.5, before 24 hours, after 24 
hours, and both. For each gene, and for before and after 24 hours, a meta-score 
measuring cytokine modulation was calculated. This table shows the genes with a 
meta-score lower than -0.5 (meaning they are down-regulated), in the two temporal 
intervals, and ranked by absolute value (from most to least differentially expressed).   

In order to identify genes that are most differentially expressed at early and late stages after
cytokine exposure, the set of experimental samples (control and cytokine-exposed) was split
into two groups: the first one contained samples measured within (and including) 24 hours from
cytokine exposure while the second one contained samples measured after (and including) 24
hours. For each gene (8148 in total) and each group a meta-analysis correlation score, measuring
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Table 6.3: Ranked up-regulated genes - Ranked up-regulated genes, differentially expressed and
with a meta-score higher than -0.5, before 24 hours, after 24 hours, and both. For each gene, and
for before and after 24 hours, a meta-score measuring cytokine modulation was calculated. This
table shows the genes with a meta-score higher than 0.5 (meaning they are up-regulated), in the two
temporal intervals , and ranked by absolute value (from most to least differentially expressed).Table 2 : Names and scores of top up regulated genes 

 
before 24 hours before and after 24 hours  after 24 

hours 
CCL20 
SDC4 
STX11 
CXCL1 
BMP2 
IER3 
RND1 
IL15 
IFNGR2 
SLC37A1 
BIRC2 
GADD45B 
ZFP36 
PPP1R15A 
RND3 
NFKBIB 
SEMA4A 
RFX5 
CDKN1A 
RNF114 
ABTB2 
JUNB 
F11R 
CLIC2 
LGALS3BP 
PARP8 
PSMA4 
IRF9 
SEC14L2 
MAPK6 
SLC25A28 
TRIM26 
TRIM5 
EHD1 
SGK1 
AGRN 
FASN 
PVRL2 
MVP 
PDE9A 
MYCBP2 
TBK1 
IL10RB 
IFNGR1 
ATF3 

0.797 
0.789 
0.752 
0.751 
0.736 
0.734 
0.718 
0.711 
0.7 
0.69 
0.689 
0.668 
0.664 
0.66 
0.658 
0.651 
0.646 
0.639 
0.634 
0.627 
0.627 
0.625 
0.624 
0.624 
0.621 
0.618 
0.617 
0.613 
0.609 
0.605 
0.6 
0.59 
0.589 
0.588 
0.588 
0.587 
0.584 
0.583 
0.582 
0.579 
0.579 
0.578 
0.578 
0.574 
0.573 
 

JUN 
TJP2 
RAPGEF5 
OGFR 
IL7 
FBXO7 
LYN 
NPPC 
CLIC1 
RBM47 
BCL10 
SPINT1 
LRRC16A 
EXT1 
TP53 
CD40 
TPBG 
CCDC109B 
LZTS1 
CIDEC 
PION 
APAF1 
LSR 
ARID5A 
SEC14L3 
GJD2 
IL1A 
ZC3H7A 
CNP 
NBN 
TBC1D22B 
FRMD8 
FNDC3A 
RASGRP3 
PRKCSH 
MAFK 
EZR 
BCL3 
PFKP 
PPP1R11 
USP25 
LGALS13 
PAWR 
NELL1 

0.572 
0.571 
0.569 
0.562 
0.561 
0.561 
0.56 
0.559 
0.556 
0.553 
0.552 
0.55 
0.55 
0.549 
0.548 
0.546 
0.546 
0.543 
0.543 
0.543 
0.538 
0.532 
0.53 
0.529 
0.524 
0.524 
0.523 
0.522 
0.522 
0.521 
0.518 
0.517 
0.516 
0.513 
0.51 
0.51 
0.508 
0.508 
0.507 
0.506 
0.505 
0.503 
0.502 
0.5 

CXCL2 
IRF1 
NFKBIA 
ZC3H12A 
CXCL3 
ICAM1 
RIPK2 
CXCL11 
ELF3 
NFKB2 
CSF1 
CXCL10 
TAP1 
RHBDF2 
BIRC3 
TNF 
HLA-G 
TRAFD1 
SOD2 
MAP3K8 
NFKB1 
TNIP1 
CD83 
UBD 
GBP2 
CD69 
LTB 
DENND2D 
RTP4 
PSMB9 
PSMB8 
TMEM140 
STAT2 
TRIM25 
UBE2L6 
PPP2R5B 
HLA-E 
NAMPT 
CX3CL1 
STAT1 
SP110 
TRAF3IP2 
JAK2 
FAS 
PSMB10 

0.892 
0.879 
0.864 
0.851 
0.843 
0.832 
0.806 
0.803 
0.801 
0.799 
0.796 
0.789 
0.778 
0.765 
0.765 
0.742 
0.74 
0.738 
0.737 
0.737 
0.73 
0.725 
0.721 
0.718 
0.705 
0.699 
0.697 
0.691 
0.688 
0.686 
0.682 
0.681 
0.671 
0.668 
0.661 
0.661 
0.658 
0.651 
0.647 
0.646 
0.642 
0.641 
0.64 
0.638 
0.633 

0.82 
0.87 
0.82 
0.885 
0.859 
0.824 
0.818 
0.803 
0.568 
0.678 
0.603 
0.805 
0.856 
0.816 
0.757 
0.681 
0.741 
0.763 
0.803 
0.666 
0.646 
0.764 
0.529 
0.783 
0.835 
0.512 
0.718 
0.792 
0.711 
0.849 
0.822 
0.763 
0.75 
0.672 
0.828 
0.592 
0.838 
0.722 
0.732 
0.752 
0.752 
0.73 
0.642 
0.594 
0.839 

BCL2L14 
IFI35 
TAPBP 
STAT3 
TAP2 
ACSL5 
EPHA2 
OPTN 
PTPN2 
IRF7 
LGMN 
PARP12 
IFI44 
C19orf66 
RELA 
MAFF 
IRAK3 
ISG20 
FAM82A2 
SERPINB9 
SAMD9 
CASP4 
ISG15 
OAS1 
TANK 
LMO2 
B2M 
DHX58 
KARS 
ARAP1 
CD82 
TRAF3 
HOPX 
BPGM 
NMI 
C1R 
ADM 
ERAP1 

0.632 
0.631 
0.63 
0.628 
0.626 
0.618 
0.618 
0.615 
0.614 
0.606 
0.605 
0.6 
0.596 
0.59 
0.586 
0.583 
0.583 
0.574 
0.574 
0.573 
0.573 
0.569 
0.563 
0.56 
0.56 
0.559 
0.548 
0.544 
0.535 
0.535 
0.525 
0.524 
0.524 
0.516 
0.512 
0.512 
0.51 
0.509 

0.545 
0.758 
0.788 
0.557 
0.801 
0.76 
0.512 
0.621 
0.519 
0.692 
0.738 
0.742 
0.572 
0.715 
0.596 
0.715 
0.649 
0.799 
0.644 
0.717 
0.509 
0.777 
0.731 
0.743 
0.503 
0.549 
0.654 
0.64 
0.523 
0.665 
0.539 
0.594 
0.622 
0.566 
0.636 
0.847 
0.634 
0.593 

WARS 
BST2 
CD74 
IFI30 
C1S 
IFITM1 
FEZ1 
ASS1 
CXCL9 
HLA-DMB 
HLA-DRA 
C2 
ST5 
PDZK1IP1 
HLA-DRB1 
BID 
HLA-DQA1 
PPAP2B 
IL1B 
RARRES1 
IFI27 
CFLAR 
MX1 
SLC11A2 
IFIH1 
BCL2A1 
LAMB3 
TNFAIP2 
WTAP 
OASL 
IFIT3 
FGD6 
CSF2RB 
SP140L 
PPPDE2 
KIT 
GSDMD 
TNFRSF1A 
ANXA1 
SLCO5A1 
HPX 
STX4 
ADAR 
DCN 

0.835 
0.781 
0.78 
0.772 
0.77 
0.759 
0.756 
0.745 
0.74 
0.722 
0.72 
0.71 
0.7 
0.696 
0.693 
0.685 
0.676 
0.669 
0.659 
0.654 
0.652 
0.648 
0.648 
0.643 
0.632 
0.631 
0.613 
0.606 
0.601 
0.598 
0.596 
0.586 
0.58 
0.577 
0.577 
0.573 
0.556 
0.549 
0.545 
0.537 
0.527 
0.521 
0.514 
0.511 

 
Up-regulated genes, with a meta-score higher than -0.5, before 24 hours, after 24 
hours, and both. For each gene, and for before and after 24 hours, a meta-score 
measuring cytokine modulation was calculated. This table shows the genes with a 
meta-score higher than 0.5 (meaning they are up-regulated), in the two temporal 
intervals , and ranked by absolute value (from most to least differentially expressed). 

its differential expression across all datasets, and a significance measure, was calculated. This
meta-analysis correlation was obtained from individual dataset correlation scores (see Section
6.3.4). 274 of the most differentially expressed genes, before or after 24 hours, were selected
for further analysis. The selected genes satisfied the following three criteria: i) they had a
meta-correlation score higher than 0.5 in absolute values; ii) the sign of the individual dataset
correlations was the same (meaning that they are similarly regulated on all datasets) and iii)
the meta-correlations were considered significant, admitting a false discovery rate of 0.05.
These criteria were defined to make sure that the selected genes are significantly and strongly
regulated by cytokines, and exhibit a common behavior on all datasets. The threshold of 0.5
was chosen as it is appropriate for the identification of large effect sizes (54). Tables 6.2 and 6.3
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show the ranked lists, as well as the meta-correlation, of the 274 selected genes. Note that an
up(down)-regulated gene corresponds to a positive (negative) correlation.

6.4.2 Gene characterization using enrichment analysis

In order to identify biologically meaningful terms associated with the selected genes, these
were submitted to an enrichment analysis using the online software DAVID (120). Four lists
of genes (down-regulated before 24h, down-regulated after 24h, up-regulated before 24h, up-
regulated after 24h) were submitted to DAVID using the default options. Only terms returning a
p-value lower than 0.001 were kept. The returned terms belong to different categories: biological
processes present in the Gene Ontology (GO) annotation (GOTERM BP FAT); cellular processes,
also from the GO annotation (GOTERM CP FAT); protein domains from the InterPro consortium
(INTERPRO); molecular pathways from the KEGG pathway database (KEGG PATHWAY); and
functional categories of proteins, present in the Swiss Prot and Protein Information Resource
databases (SP PIR KEYWORD).

We associated each gene with a term, and in the case of multiple terms assigned to a gene
the selected term was the one of the lowest p-value. Tables 6.4, 6.5 and 6.6 show the results for
the groups of genes down-regulated after 24 hours or up-regulated before and after 24 hours.
There were no terms enriched for the list of down-regulated genes before 24h. About two thirds
of the differentially expressed genes (173 out of 274) were found to be enriched for terms using
DAVID, before and after 24h, and are likely to play a role in the functions associated to them.
As expected from previous studies (reviewed in (78)), there is a clear predominance of terms
related to apoptosis and defense mechanisms.

Table 6.4: Enriched terms for genes down-regulated after 24 hours - Attributed terms to genes
down-regulated after 24 hours. Enrichment analysis was performed with DAVID, with default
parameters and p-value threshold < 0.001. Only genes associated with enriched terms are shown.
Only one term is associated to each gene (the one with the lowest p-value).

Supplementary Table 2: Function of genes down regulated after 24 hours 
 
gene names 
 

category term 

CAV2 FGFR3 VAV3 SLC15A2 MAOB CELSR2 
SLC3A1 PFKM ANKH RAB40B GJB1 BBS1 
EPB41L1 NPTXR CTGF COL1A2 ADRA2A SLC25A3 
PEBP1 ENTPD3 IGFBP2 RAMP1 

GOTERM_CC_FAT GO:0005886~plasma 
membrane 

 
Attributed functional terms to genes down-regulated after 24 hours. Functional 
enrichment was performed with DAVID, with default parameters and p-value 
threshold <0.001. Genes associated with enriched terms are presented. Only one 
functional term was enriched, 
 

6.4.3 Gene characterization using T1D literature

The 101 non-enriched genes (before or after 24h) were analyzied by text mining the T1D
literature. The following sources were taken into consideration: NCBI GENE (44); GeneCards
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Table 6.5: Enriched terms for genes up-regulated before 24 hours - Attributed terms to genes
up-regulated before 24 hours. Enrichment analysis was performed with DAVID, with default
parameters and p-value threshold <0.001. Only genes associated with enriched terms are shown.
Only one term is associated to each gene (the one with the lowest p-value).Supplementary Table 3: Function of genes up regulated before 24 hours 

 
gene names 
 

category term 

PSMB10 CXCL1 NBN TNF TBK1 CXCL3 CXCL2 
OAS1 C1R NFKB2 IL15 CX3CL1 CXCL11 IFI35 
CXCL10 TAPBP B2M CCL20 IL10RB TAP2 
TAP1 ERAP1 BCL3 FAS LTB DHX58 IL1A 
ICAM1 BCL10 LYN IL7 RELA TP53 HLA-E HLA-
G PSMB8 PSMB9 TRAF3IP2 CD83 GBP2 

GOTERM_BP_FAT GO:0006955~immune response 

NMI ELF3 NFKB1 LGALS3BP TNIP1 F11R 
BMP2 CLIC1 CD40 STAT3 IRF7 RIPK2 APAF1 

GOTERM_BP_FAT GO:0006952~defense response 

IFI44 STAT1 ISG20 STAT2 IRF9 IRAK3 TRIM5 
ISG15 IFNGR2 IFNGR1 

GOTERM_BP_FAT GO:0009615~response to virus 

IER3 PAWR ZC3H12A SGK1 BCL2L14 
FAM82A2 SOD2 CIDEC JUN JAK2 GADD45B 
PPP1R15A 

GOTERM_BP_FAT GO:0006915~apoptosis 

ADM GOTERM_BP_FAT GO:0009617~response to 
bacterium 

OPTN GOTERM_BP_FAT GO:0008219~cell death 
CDKN1A GOTERM_BP_FAT GO:0002684~positive regulation of 

immune system process 
IRF1 GOTERM_BP_FAT GO:0001817~regulation of cytokine 

production 
LMO2 BPGM GOTERM_BP_FAT GO:0002520~immune system 

development 
NELL1 GOTERM_BP_FAT GO:0042981~regulation of 

apoptosis 
JUNB NPPC HOPX GOTERM_BP_FAT GO:0051094~positive regulation of 

developmental process 
PRKCSH RASGRP3 GOTERM_BP_FAT GO:0007243~protein kinase 

cascade 
ATF3 GOTERM_BP_FAT GO:0042127~regulation of cell 

proliferation 
SEC14L2 EZR FASN FNDC3A ZFP36 PFKP 
SERPINB9 RND1 PDE9A 

GOTERM_CC_FAT GO:0005829~cytosol 

CNP LSR GOTERM_CC_FAT GO:0005615~extracellular space 
NAMPT CSF1 GOTERM_MF_FAT GO:0005125~cytokine activity 
CASP4 BIRC3 BIRC2 INTERPRO IPR011029:DEATH-like 
NFKBIB TANK TRAF3 KEGG_PATHWAY hsa04622:RIG-I-like receptor 

signaling pathway 
MAP3K8 KEGG_PATHWAY hsa04620:Toll-like receptor 

signaling pathway 
RFX5 LGMN KEGG_PATHWAY hsa04612:Antigen processing and 

presentation 
ACSL5 KEGG_PATHWAY hsa04920:Adipocytokine signaling 

pathway 
NFKBIA TRIM25 SP110 KARS PSMA4 PVRL2 SP_PIR_KEYWORDS host-virus interaction 
EPHA2 SP_PIR_KEYWORDS Apoptosis 
LZTS1 PPP2R5B CLIC2 MVP PTPN2 LRRC16A 
SAMD9 OGFR ARAP1 

SP_PIR_KEYWORDS cytoplasm 

 
Attributed functional terms to genes up-regulated before 24 hours. Functional 
enrichment was performed with DAVID, with default parameters and p-value 
threshold <0.001. Genes associated with enriched terms are presented. Different 
rows represent different enriched terms. If a gene is associated with mutiple enriched 
terms we only present the association with the enriched term of lowest p-value. 
 

(225) ; eGIFT ((263), using the keyword diabetes ); T1Dbase ((42) searching for genes associated
with T1D relevant publications); and the Beta Cell Gene Bank (42) (any referred gene). 45 (out
of 101) genes were found to be associated with T1D terms (see table 6.7). We considered the
remaining genes as unknown yet potentially relevant for the pathways leading to T1D β-cell
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Table 6.6: Enriched terms for genes up-regulated after 24 hours - Attributed terms to genes up-
regulated after 24 hours. Enrichment analysis was performed with DAVID, with default parameters
and p-value threshold <0.001. Only genes associated with enriched terms are shown. Only one
term is associated to each gene (the one with the lowest p-value).Supplementary Table 4: Function of genes up regulated after 24 hours 

 
gene names category term 
PSMB10 IFIH1 TNF HLA-DRB1 CXCL3 CXCL2 
CXCL9 OAS1 C1R NFKB2 C1S CX3CL1 HLA-
DMB CXCL11 CD74 IFI35 CXCL10 TAPBP B2M 
TNFRSF1A TAP2 TAP1 IL1B ERAP1 FAS C2 
LTB DHX58 ICAM1 BST2 RELA HLA-E PSMB8 
HLA-G HLA-DQA1 PSMB9 TRAF3IP2 CD83 
OASL GBP2 HLA-DRA 

GOTERM_BP_FAT GO:0006955~immune response 

IFI30 GOTERM_BP_FAT GO:0019882~antigen processing 
and presentation 

NMI ELF3 NFKB1 MX1 TNIP1 ANXA1 STAT3 
IRF7 RIPK2 

GOTERM_BP_FAT GO:0006952~defense response 

IFI44 ISG20 IRAK3 GOTERM_BP_FAT GO:0009615~response to virus 
JAK2 GOTERM_BP_FAT GO:0048584~positive regulation of 

response to stimulus 
CSF2RB KIT GOTERM_BP_FAT GO:0019221~cytokine-mediated 

signaling pathway 
BID BCL2L14 FAM82A2 BCL2A1 SOD2 
SLC11A2 ZC3H12A 

GOTERM_BP_FAT GO:0012501~programmed cell 
death 

ADM GOTERM_BP_FAT GO:0009611~response to wounding 
OPTN GOTERM_BP_FAT GO:0008219~cell death 
SERPINB9 GOTERM_BP_FAT GO:0006916~anti-apoptosis 
IRF1 GOTERM_BP_FAT GO:0001817~regulation of cytokine 

production 
LMO2 BPGM GOTERM_BP_FAT GO:0048534~hemopoietic or 

lymphoid organ development 
HOPX GOTERM_BP_FAT GO:0051094~positive regulation of 

developmental process 
TNFAIP2 GOTERM_CC_FAT GO:0005615~extracellular space 
DCN LAMB3 STX4 GOTERM_CC_FAT GO:0005576~extracellular region 
NAMPT CSF1 GOTERM_MF_FAT GO:0005125~cytokine activity 
CASP4 BIRC3 INTERPRO IPR011029:DEATH-like 
LGMN KEGG_PATHWAY hsa04612:Antigen processing and 

presentation 
TANK TRAF3 KEGG_PATHWAY hsa04622:RIG-I-like receptor 

signaling pathway 
MAP3K8 KEGG_PATHWAY hsa04620:Toll-like receptor 

signaling pathway 
ADAR KEGG_PATHWAY hsa04623:Cytosolic DNA-sensing 

pathway 
ACSL5 KEGG_PATHWAY hsa04920:Adipocytokine signaling 

pathway 
TRIM25 SP_PIR_KEYWORDS immune response 
CFLAR NFKBIA SP110 STAT1 KARS STAT2 
ISG15 HPX 

SP_PIR_KEYWORDS host-virus interaction 

EPHA2 SP_PIR_KEYWORDS Apoptosis 
 
Attributed functional terms to genes up-regulated after 24 hours. Functional 
enrichment was performed with DAVID, with default parameters and p-value 
threshold <0.001. Genes associated with enriched terms are presented. Different 
rows represent different enriched terms. If a gene is associated with mutiple enriched 
terms we only present the association with the enriched term of lowest p-value. 
 

apoptosis.

6.4.4 Network inference using the Human Islets time series

The next step of the analysis is the inference - from the human-islet time expression dataset - of
a network of regulatory interactions between the 84 most differentially expressed genes. These
selected genes correspond to a subset of the previously selected 274 genes, namely the ones that
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Table 6.7: Genes not associated with a biological term, associated or not with T1D in the
literature - Differentially expressed genes, before 24 hours, after 24 hours, or both, not associated
with an enriched term. Enrichment analysis was performed with DAVID, with default parameters and
p-value threshold < 0.001. These genes were grouped according to being found, or not, associated
with T1 Diabetes in various available sources (NCBI GENE, GeneCards, eGIFT, T1DBase, The
Beta Cell Gene Bank).Supplementary Table 5: Genes not associated with a functional term, associated or 

not with T1D in the literature 
 
 Genes associated with T1D Genes not associated with T1D 
down 
regulated, 
before 24h 

APEX1 ISL1 NKX6-1 EIF4EBP2 NCALD 
NR0B2 SSTR1 

APPL2 BLCAP FAM171A1 ING2 RUNX1T1 
USP31 ZNF395 

down 
regulated, 
after 24h 

PDLIM1 RUNDC3B TIMP2 ACSM3 
ALDH7A1 CPA2 CTNNBIP1 CTRB2 
EIF4EBP2 HADH HPGD PDGFC PCSK5 
PCBD1 SPP1 

RIN2 SPC25 ASB9 CIRBP C11ORF95 POLE2 
RBP2 UPK1B 

up regulated, 
before 24h 

CD69 RAPGEF5 TRAFD1 AGRN GJD2 
MAPK6 PARP12 PARP8 PPP1R11 
RHBDF2 SDC4 TJP2 TRIM26 UBD MAFK 

ARID5A CD82 DENND2D EHD1 FBXO7 FRMD8 
MYCBP2 RBM47 RND3 SEC14L3 TBC1D22B 
ABTB2 C19ORF66 CCDC109B EXT1 LGALS13 
PION RTP4 RNF114 SEMA4A SPINT1 
SLC25A28 SLC37A1 STX11 TMEM140 TPBG 
USP25 UBE2L6 MAFF ZC3H7A 

up regulated, 
after 24h 

ARAP1 CD69 PDZK1IP1 PPPDE2 
TRAFD1 WTAP ASS1 IFITM1 PPAP2B 
PARP12 PTPN2 RHBDF2 WARS UBD 

CD82 DENND2D FGD6 SP140L C19ORF66 
FEZ1 GSDMD IFI27 IFIT3 PPP2R5B RTP4 
RARRES1 SLCO5A1 SAMD9 ST5 TMEM140 
UBE2L6 MAFF 

 
Differentially expressed genes, before 24 hours, after 24 hours, or both, not 
associated with an enriched functional term. Functional enrichment was performed 
with DAVID, with default parameters and p-value threshold <0.001. These genes 
were grouped according to being found, or not, associated with T1 Diabetes in 
various available sources (NCBI GENE, GENECARDS, eGIFT, T1DBase, The Beta 
Cell Gene Bank). 
 

were selected at both before and after 24 hours, corresponding to the central columns of tables
6.2 and 6.3. The used algorithm is a temporal adaptation of the mRMR variable selection method
(as described in Section 6.3.5). The final outcome of the algorithm is a set of 213 inferred
directed regulations illustrated in Figure 6.2, where nodes represent genes and arrows represent
regulations (only genes that were predicted to take part in an regulation are represented). All the
represented genes are up-regulated genes. An in silico validation of the inferred network was
done using the TRANSFAC (172) and the GeneCards databases (225). From these databases
a list of 85 presumptive gene regulations was gathered (between the 84 genes of the inferred
network). Nine of these annotated regulations are present in the predicted network (represented
in red in the Figure 6.2). Taking the TRANSFAC/ GeneCards regulations as reference, the
precision of the inferred network is 0.0422 (9 true positives out of 213 positives), a low yet
significant value. The expected precision of a random selection of 213 regulations is 0.0122 and
the probability of randomly attaining a precision as high as 0.0422 amounts to 0.001 (p-value
returned by the hypergeometric distribution).

In order to visualize the gene dynamics captured by the network inference algorithm,
the gene expression levels of gene pairs taking part in inferred regulations (Figure 6.3) was
plotted. Four putative regulator-target pairs implying unknown genes were considered. These
four interactions were subject to a posterior experimental validation (see next section). The
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Figure 6.2: Predicted regulations with the adopted network inference algorithm - The nodes
represent genes and the directed edges represent gene regulations (the arrow direction indicates the
causal direction). The genes present in the represented network were consistently modulated by
cytokines, before and after 24 hours. Edges in red represent regulations that were reported in the
literature.

expression time series of the regulator was plotted in red while the one of the target gene in blue.
Figures a and b show the behavior of ELF3 and two predicted downstream genes: CX3CL1
and SP110, while Figures c and d show the behavior of RIPK2 and two predicted downstream
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Figure 6.3: Expression time series of genes involved in regulations - The temporal characteriza-
tion of genes taking part in interactions present in the inferred regulatory network is shown. Gene
expression is plotted for different time points along a range of 168 hours. A linearly interpolated
average is also shown. The human islet time series dataset is composed of three sequences of
gene expression observations, of different temporal ranges, and therefore some time points are
represented by less than 3 observations. Y-axis represents RMA expression levels. Figures a) and b)
show ELF3 and the downstream-predicted CX3CL1 and SP110. Figures c) and d) show RIPK2 and
the downstream-predicted IRF7 and SOD2. ELF3 and RIPK2 are shown in red. In each figure, the
average expression of the genes shown in orange and blue were optimally correlated with a lag (the
gene in blue following the gene in blue).

genes: IRF7 and SOD2. Of note, the regulation patterns of the gene pairs in Figures a and b
have similar shapes. The gene pairs in Figures c and d have a somewhat less correlated behavior,
which can be due to the existence of multiple regulators of IRF7 and SOD2.

The inferred network (and inferred regulation lags) was used to order genes by regulation
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Figure 4

Thursday, November 14, 2013

Figure 6.4: Temporal mapping of genes - Genes were mapped into a common temporal reference
and associated with functional terms. The network inference algorithm returned a lag characterizing
each gene interaction. From these lags a time of regulation of each gene was estimated. The figure
shows the genes in the network ordered by time of regulation (from top to bottom). The figure also
indicates the functional role that was attributed to each gene (circle colors). A gene is represented
by more than one circle if it is associated with multiple roles.

time. The genes of the network were mapped into a temporal reference using the approach
of Section 6.3.6. Figures 6.2 and 6.4 show the resulting mapping where the time arrow goes
top down (i.e. lower genes are regulated later than upper genes). In order to map functions to
such temporal framework (Figure 6.4), the GO terms returned by DAVID were used. Clusters
of similar terms, associated with the majority of genes, were identified: antigen presentation,
inflammatory response, other immune/defense response terms, apoptosis/death, cytokine-related.
Note that there is some overlap in these terms, and that a majority of genes are associated with
multiple terms. The first three clusters are rather similar: the only difference is that the first group
is associated with the adaptive immune response, while the second group is associated with
the innate immune response. The data shown in Figure 6.4 suggests a biologically meaningful
sequence of molecular mechanisms. Thus, the first group of regulated genes is associated with
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defense/immune response; this is followed by modulation of genes related to cytokine activity
and apoptosis, and then another group of defense/immune response genes is activated.

6.4.5 Biological validation of the network inference results

The genes RIPK2 and ELF3 were selected for biological validation since they were among the 10
most differentially expressed mRNAs, before and after 24 hours of cytokine treatment (see table
6.3), and the 2 most differentially expressed with an unknown role in basal and cytokine-induced
apoptosis. In both INS-1E cells and FACS-purified primary rat β-cells cytokines up-regulated
the expression of ELF3 (Figure 6.5) and RIPK2 (Figure 6.6). Small interfering RNA (siRNA)
was used to knock down (KD) ELF3 and RIPK2, and to observe their role in cytokine-induced
apoptosis and regulation of gene expression. ELF3 KD increased β-cell apoptosis both under
basal condition and following cytokine exposure (Figure 6.5 D), while KD of RIPK2 increased
only cytokine-induced apoptosis, Figure 6.6 D).

In the inferred network (Figure 6.2) ELF3 was predicted to regulate CX3CL1, SP110,
TRAF3IP2, ICAM1, SERPINB9 and STAT3, while RIPK2 was expected to modulate IRF7,
SOD2, DHX58 and CASP4. Two predicted targets for both ELF3 and RIPK2 were selected for
an experimental validation of the inferred regulations. KD of ELF3 decreased expression of
two predicted downstream targets, namely the chemokine CX3Cl1 and the nuclear body protein
SP110 (Figure 6.5(E and F). Similarly, KD of RIPK2 decreased expression of the predicted
target IRF7 (a key regulator of chemokine expression in pancreatic β-cells (198)), and induced
a trend for lower expression of the free radical scavenger enzyme SOD2 (Figure 6.6 (E and F).

6.5 Discussion

This section described a meta-analysis, based on 8 different datasets, of gene expression of
pancreatic β-cells (rat and human) after exposure to the pro-inflammatory cytokines IL-1β and
IFN-γ. The comparison between the two different species, and the use of a large number of
independent experiments (table 6.1 and references herein), based on both array analysis and
RNAseq, provided a depth of information that is unique in the field. Two of the used datasets
were made available in the course of this work (156). They are gene expression time series of
human islets and rat clonal β-cells after cytokine exposure, and represent a valuable resource
due to their comparatively high number of different time points studied.

Genes were ranked by magnitude of cytokine regulation at time points before and after 24
hours. 24 hours was selected as the dividing time point because it is around this time point that
a progressive increase in cytokine-induced apoptosis is observed (204, 286). A list of genes that
are strongly regulated by cytokines, on both human and rat experiments, and before or after 24
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Thursday, November 14, 2013

Figure 6.5: Confirmation of predicted changes in the expression of ELF3 and downstream
targets - INS-1E cells (A) and FACS-purified primary rat β-cells (B) were treated for 24 h with
IL-1β+IFN-γ (respectively 10 + 100 U/ml for INS-1E and 50 + 500 U/ml for primary β-cells) or
left untreated (UT). Cells were collected for evaluation of ELF3 mRNA expression by qRT-PCR.
The values obtained were corrected by the housekeeping gene GAPDH. Results are the mean ±
SEM of 3 independent experiments. * p ¡ 0.05, paired t-test. (C-F) INS-1E cells were transfected
with a siRNA against ELF3 or with negative control siRNA (siCt). 48 h after transfection cells were
treated with IL-1β+IFN-γ (respectively 10 and 100 U/ml) or left untreated (UT) for 24 h. (C) Cells
were collected and mRNA was evaluated for ELF3 expression. The values obtained were corrected
by the housekeeping gene GAPDH. (D) Cell death was evaluated by Hoechst 33342/propidium
iodide staining. Cells were harvested, the mRNA was collected and assayed for CX3CL1 (E) and
SP110 (F) by qRT-PCR. The values obtained were corrected by the housekeeping gene GAPDH.
Results are the mean ± SEM of 5-8 independent experiments. * p ¡ 0.05, ** p ¡ 0.01 and *** p ¡
0.001 as indicated, ANOVA.

hours, is presented. A majority of these genes are characterized with a main functional term,
related to apoptosis and cell inflammation, but the role of a relevant fraction remains unclear.
Further investigations on these genes without known function in β-cells could provide valuable
novel knowledge regarding the mechanisms of cytokine-induced apoptosis in T1D.

A group of key genes was selected as the nodes of a regulatory network. This network
was inferred using a dynamic adaptation of a state of the art filter variable selection method
(mRMR), using the human islet gene expression time series. The inference of a network
from a limited amount of observed samples poses a difficult challenge and its validation is

151



6. TEMPORAL PROFILING OF CYTOKINE-INDUCED GENES IN PANCREATIC
β-CELLS BY META-ANALYSIS AND NETWORK INFERENCE

0.0

0.4

0.8

1.2

UT IL-1! +IFN-"

*

EL
F3

 / 
G

A
PD

H

0.0

0.4

0.8

1.2

UT IL-1! +IFN-"

*

EL
F3

 / 
G

A
PD

H

0

20

40

60

siCt siELF3

***

***
**

***

A
po

pt
os

is
 (%

)

0.0

0.4

0.8

1.2

siCt siELF3

* * UT
IL-1! + IFN-"

EL
F3

 / 
G

A
PD

H

0.0

0.4

0.8

1.2

siCt siELF3

*** ***

***

C
X3

C
L1

 / 
G

A
PD

H

0.0

0.4

0.8

1.2 ***

*

siCt siELF3

**

SP
11

0 
/ G

A
PD

H

A B

C D

E F

Figure 5Figure 6

Thursday, November 14, 2013

0.0

0.4

0.8

1.2

UT IL-1! +IFN-"

***
R

IP
K

2 
/ G

A
PD

H

0.0

0.4

0.8

1.2

UT IL-1! +IFN-"

***

R
IP

K
2 

/ G
A

PD
H

0.0

0.4

0.8

1.2

siCt siRIPK2

*** **

***

IR
F7

 / 
G

A
PD

H

0.0

0.4

0.8

1.2

siCt siRIPK2

*** ***

SO
D

2 
/ G

A
PD

H
0

20

40

60

siCt siRIPK2

***

***

**

A
po

pt
os

is
 (%

)
0.0

0.4

0.8

1.2

siCt siRIPK2

******

***

UT
IL-1! + IFN-"

R
IP

K
2 

/ G
A

PD
H

A B

C D

E F

Figure 6Figure 6
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Figure 6.6: Confirmation of predicted changes in the expression of RIPK2 and downstream
targets - INS-1E cells (A) and FACS-purified rat primary β-cells (B) were treated for 24 h with
IL-1β+IFN-γ (respectively 10 + 100 U/ml for INS-1E and 50 + 500 U/ml for primary β-cells) or
left untreated (UT). Cells were collected for evaluation of RIPK2 mRNA expression by qRT-PCR.
The values obtained were corrected by the housekeeping gene GAPDH. Results are the mean ±
SEM of 3 independent experiments. *** p ¡ 0.001, paired t-test. (C-F) INS-1E cells were transfected
with siRNA against RIPK2 or with negative control siRNA (siCt). 48 h after transfection cells were
treated with IL-1β+IFN-γ (respectively 10 or 100 U/ml) or left untreated (UT) for 24 h. (C) Cells
were collected and mRNA was evaluated for RIPK2 expression. The values obtained were corrected
by the housekeeping gene GAPDH. (D) Cell death was evaluated by Hoechst 33342/propidium
iodide staining. Cells were harvested, the mRNA was collected and assayed for IRF7 (E) and SOD2
(F) by qRT-PCR. The values obtained were corrected by the housekeeping gene GAPDH. Results
are the mean ± SEM of 4-6 independent experiments. ** p ¡ 0.01 and *** p ¡ 0.001 as indicated,
ANOVA.

often inaccurate because of the large number of false negatives in annotated databases. This
limitation in validation can only be overcome with more comprehensive knowledge regarding
gene interactions. The accuracy of network inference algorithms tends to be low, due to typical
low number of samples of gene expression datasets (as observed in the Chapter 5). In spite
of this limitation, the inferred network achieved a precision significantly higher than random
selection.

Two of the most differentially expressed genes before and after 24 hours, ELF3 and RIPK2,
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were subject to an experimental validation. Their knockdown led to an increase in β-cell
apoptosis. Predicted interactions involving ELF3 and RIPK and 4 downstream genes were also
submitted to experimental validation.

The first gene analyzed, ELF3, is a transcription factor that is mainly expressed in epithelial
cells (192). It has been previously shown that ELF3 is implicated in the regulation of the
morphogenesis and differentiation of mature endothelial cells in the small intestine (189) and
in the inflammation of airway epithelia (143). In human bronchial airway epithelial cell lines,
IL-1β + TNF-α treatment up-regulates ELF3 expression via NF-kB transcriptional activation
(282). In line with these findings we observed an up-regulation of ELF3 in both INS-1E cells
and in rat primary β-cells after IL-1β + IFN-γ treatment. Using a specific siRNA against ELF3
we found that ELF3 KD significantly increases β-cell apoptosis. The analysis of two putative
downstream target genes (CX3CL1 and SP110) confirmed that their expression is inhibited after
ELF3 KD. CX3CL1 is a chemokine that promotes leukocyte migration, cytotoxicity of NK cells
and cytotoxic T lymphocytes and is induced after cytokine treatment in β-cells (61, 204), while
SP110 is a nuclear body-associated protein that is induced by IFN-γ treatment in other cell
types (218).

The second gene analyzed is RIPK2, a serine / threonine kinase that activates the NF-kB
pathway (173) and it is up-regulated by NF-kB after cytokine treatment in endothelial cells (285).
Recent findings suggest that RIPK2 is implicated in the regulation if the alternative NF-kB
pathway and its KD increases cell apoptosis (44). It was confirmed in β-cells the up-regulation
of RIPK2 after IL-1β + IFN-γ treatment and observed an increase in cytokine-induced β-cell
apoptosis after the KD of the gene. RIPK2 KD had a significant effect on one of the two
predicted downstream genes, namely IRF-7. IRF7 is a transcription factor that plays a key role
in cytokine-induced chemokine expression by pancreatic β-cells (198).

ELF3, RIPK2 and the validated downstream genes, were attributed a main functional term
related to defense mechanisms (defense response, immune response, host virus interaction, in
the tables 6.5 and 6.6).This suggests that these genes may play a protective role for β-cells
facing, for instance, a viral infection. In line with this hypothesis, ELF3 has been associated with
airway inflammation (39, 143) while RIPK2 mediates signals in both the innate and adaptive
immune systems (137).

It can be concluded that ELF3 is indeed likely to be upstream CX3CL1 and SP110, and
RIPK2 upstream IRF7, but the question of whether these causal effects are direct or indirect (via
intermediate gene(s)) remains open. These experimental results are consistent with the inferred
network, and show that the statistical inference of gene regulatory networks, from time series,
can be a helpful tool in the prediction of novel gene interactions.

The presented novel approach to map genes that are part of an inferred network, taking
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6. TEMPORAL PROFILING OF CYTOKINE-INDUCED GENES IN PANCREATIC
β-CELLS BY META-ANALYSIS AND NETWORK INFERENCE

into account a temporal reference of regulation time, can be helpful in the temporal ordering of
molecular events once genes are assigned functional terms. Previous approaches to deal with
this problem included the simple clustering of gene expression time series (e.g. based on the
Euclidean distance as in (272). In (150), similarly to the proposed approach, a relative time of
regulation of genes was inferred from the pairwise temporal shift between genes. This approach
is based on the ordinary least squares method, and the estimation of the pairwise lags is more
complex than our approach.

The results presented suggest that molecular mechanisms related to defense/immune re-
sponse are active throughout the process that will culminate in β-cell death. Furthermore, key
mechanisms related to the triggering of apoptosis seem to be activated early following cytokine
exposure, indicating that novel approaches to protect β-cells in type 1 diabetes may need to be
implemented in the early stages of insulitis.

6.6 Conclusion

A meta-analysis study is presented, using a collection of gene expression datasets of pancreatic
β-cells conditioned by an environment similar to the one observed in T1D induced-apoptosis (i.e.
exposure to pro-inflammatory cytokines) to identify a set of relevant and differentially expressed
genes. These genes were characterized by function and prior knowledge in the literature, and
used to infer temporal regulatory networks. Biological validation experiments showed that
inhibition of two of the most relevant genes, previously unknown in T1D literature, have an
impact in apoptosis. Predicted regulatory interactions involving those genes were also consistent
with experimental results. The inferred regulatory network is thus supported by the experimental
validation of predicted causal effects involving the validated genes, providing a proof-of-concept
for the proposed inference approach.
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7

Conclusions

7.1 GRN inference

The inference of gene regulatory networks (GRN) is helpful to medical research, through
the identification of relevant genes and causal mechanisms associated with phenotypes. One
application is a prioritization of gene regulations subject to posterior experimental validation.
An example is found in this thesis, with the inference of a regulatory network of differentially
expressed genes in β-cell genes after cytokine exposure, emulating the molecular mechanisms
leading to β-cell apoptosis in type 1 Diabetes. Top predicted regulations were then experimen-
tally validated.

GRN inference from expression data is a causal inference problem which may be tackled
with concepts and techniques developed in statistics and machine learning. The use of time
series facilitates the problem of causal inference, as the direction of causality may be identified
with lagged statistical dependences. However, GRN inference is currently very challenging due
to the typical very high number of variables (genes) to observations. This limitation prevents the
use of standard inference techniques and calls for the adoption of alternative approaches suited
to the high variable to sample ratio. Such strategies include measures of pairwise or low order
conditional dependence, regularization, or filter variable selection. The preliminaries for causal
inference were presented in the Chapter 2, and the state of the art of gene network inference in
Chapter 3.

When a gold standard of regulations is available, it may be used to assess inferred networks.
If regulations are ranked, one measure of assess inference accuracy is the area under the
precision-recall curve (AUPRC), commonly adopted in the field (166). A null (relative to
random selection) AUPRC distribution is required to assess statistical significance, and is
helpful to compare AUPRC scores in different inference tasks, as the AUPRC distribution
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depends on the number of total and positive instances. The common approach to obtain AUPRC
distribution is via Monte-Carlo, which may be computationally intensive when the number of
instances is high.

The contributions in this thesis are summarized and discussed in the next section. They
are three-fold and consist on: a parametric approximation to the AUPRC distribution; novel
inference algorithms and an experimental investigation of GRN inference from time series; a
meta-analysis and network inference from gene expression in β-cells after cytokine exposure, in
the context of type 1 Diabetes.

7.2 Summary and discussion of contributions

7.2.1 Performance assessment with the AUPRC

The first contribution of this thesis is the analytical derivation of the mean and variance of
the null distribution of the AUPRC, presented in Chapter 4. These parameters are used to
approximate the AUPRC null distribution, using the beta distribution. The beta distribution is a
continuous distribution, defined by its support (minimum and maximum) and two parameters -
the mean and variance. This approach stands as an alternative to a distribution estimation based
on Monte-Carlo, which may be computationally intensive. For instance, as seen in Section
4.5, for 900 possible regulations (a situation of a small network of 30 genes), around 130000
simulations are needed so that the expected relative variance error is below 0.01. The proposed
approach is used to assess network inference in the experimental session described in the Chapter
5. The characteristics of the expected null precision-recall curve are also extensively discussed.

Limitations and future work The beta distribution is a continuous distribution and how well
it approximates the true (discrete) AUPRC distribution was only briefly investigated in Section
4.5. When the number of positive instances becomes lower, the discrete nature of the AUPRC
curve becomes more accentuated and naturally diverges from a continuous approximation. In
the case of a very low number total or positive instances, the beta distribution approximation
exhibits a relevant bias and should not be adopted (Monte Carlo should be used instead, as in
the yeast network inference experiment of Chapter 5).

The degree of accuracy of the proposed approximation should be investigated in more detail
for different configurations of total and positive instances. As discussed in the Section 4.6, the
proposed approximation is also computationally intensive (in particular, the computation of the
variance) when the number of instances is high. A software implementation made available
tackles this issue with an approximation of the true variance, based on a spline interpolation of
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the covariance elements of the covariance matrix of the pr-curve. Alternative approaches for
AUPRC significance were also discussed in the Section 4.6.

7.2.2 GRN inference from time series

The Chapter 5 consists of an experimental investigation on GRN inference from time series.
Two methodological contributions were presented: a fast approximation of the minimum of
first order GC scores, which is used as a filter network inference method; and a method to
identify gene co-regulation. The proposed inference approach (GC3) consists in attributing to
each directed regulation the minimum of first order conditional GC scores. As a full search on
all conditioning genes is computationally expensive in large networks, an heuristic to conduct
the search is proposed whose speed and approximation accuracy is controlled by a user-given
parameter. This method is experimentally validated in GRN inference using simulated gene
expression time series, where it achieves the highest precision among state of the art approaches.
Its accuracy is due to the fact that each possible regulation is scored as a function of only three
genes, thus minimizing issues of over-fitting and high variance. The method can be easily
adapted to static inference, through the use of first order partial correlations instead of GC
scores. A similar heuristic may also be applied to higher order conditional independence tests,
as discussed in Section 5.4.

The proposed strategy to identify co-regulation is also experimentally validated, through
the precise identification of a very high number of co-regulation occurrences in both real and
simulated data.

The described experimental session is composed of real microarray data (of around 20 time
points) and short to medium sized simulated time series (20 to 300 time points). First, we
assess different approaches to model linear Granger causality in cause-effect pairs of time series.
Simple one-lag bivariate Granger causality models outperform more complex ones, considering
multiple lags and non-stationarity, when the number of samples (n) is low. When n becomes
higher than 100 time points, inference using more sophisticated approaches becomes more
precise.

Secondly, we conduct a comparison between state of the art network inference approaches.
Using the microarray and simulated time series, we infer 100 networks of 50 genes. Each
network ranking is assessed with the AUPRC which is subsequently transformation into a z-
score. Methods are then compared with the respective AUPRC z-scores, including a significance
analysis. Regarding this aspect we point out a flaw in own previously published work, where
AUPRC values coming from different distributions (networks) were simply averaged (155). This
aspect was already observed and referenced at the end of that paper, and led to the investigation
resulting in the work of Chapter 4.
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Limitations and future work One limitation of the proposed methods for network inference
is that they are based on linear models. However, Granger causality may be extended to the
non-linear case using transfer entropy. Its application to GRN inference should be investigated in
future work. A similar observation is applied to the co-regulation filter, which may be extended
to the non-linear case by considering the mutual information (instead of the linear correlation).
A point left for future work is a theoretical investigation of this general case (as on Section
5.2.3.2 for the linear case).

A limitation of the presented experimental session is the limited variety of data used. Only
two microarray datasets were used, and the simulated time series were generated by a single
software (GNW). It is unclear how well the GNW time series are representative of real gene
expression time series. It is possible that there are particular characteristics in the GNW time
series which stand responsible for the observed results. Also, the GNW time series are only
up to 300 time points and a similar analysis in longer time series is left for future work. In
particular, it would be interesting to investigate at which range of time points inference methods
based on high order conditional dependences become more precise than based on first order
conditional dependences. Another limitation of the experimental session is the fact that only
a few network inference methods were assessed (mostly linear, except for random forests).
The mutual information in information-theoretic methods was estimated following a Gaussian
assumption, and as a function of the linear correlation. An investigation on the inference
precision of non-parametric MI estimations, as a function of n, is an interesting point for future
work.

7.2.3 Knowledge inference in type 1 Diabetes

In Type 1 diabetes (T1D), insulin-producing β-cells undergo apoptosis, due to local release of
cytokines such as IL-1β and IFN-γ. In the work described in Chapter 6, 8 time-series datasets
of β-cell gene expression after exposure to IL-1β and IFN-γ (two of them made available in
the context of this work) were used to identify genes differentially expressed after cytokine
exposure. Differentially expressed genes were identified, before and after 24h, functionally
characterized and compared with available literature information. The two most differentially
expressed genes previously unknown in T1D literature (RIPK2 and ELF3) were found to
modulate cytokine-induced apoptosis. The knockdown of these genes caused an increase in
β-cell apoptosis.

A regulatory network was inferred using a temporal adaptation of a known filter network
inference approach (based on the estimation of lags) and three out of four predicted regulations
(involving RIPK2 and ELF3) were experimentally confirmed. ELF3 knockdown inhibited the
expression of two genes predicted to be downstream, CX3CL1 and SP110. RIPK2 knockdown
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inhibited the expression of IRF7, also predicted to be down-regulated by it. Functional enrich-
ment analysis suggests that the genes involved in these regulations may play a role in defense
mechanisms in beta-cells. Finally, a strategy to map genes to a time of regulation was presented,
based on the inferred network and estimated regulation lags, which was used in the ordering of
biologically meaningful events after cytokine exposure.

Limitations and future work One limitation of the presented study is that although three
causal regulations were experimentally confirmed, they cannot be concluded to be direct, as
the observed effect may be due to an indirect regulation. Regarding the network inference, one
possible point of contention may be the processing of the time series: the three time series
were averaged prior to network inference, and interpolated to obtain a constant time interval.
The question on whether in these situations, the time series should be analyzed individually, or
concatenated to form longer time series is left for future investigation. The inference method
is a forward selection-based filter variable selection approach (mRMR), but other approaches
might be more appropriate, as discussed in the Chapter 5. It is based on an estimation of the
lags regulating gene expression, and an upper bound of 5 hours was adopted. This lag may be
considered too high, and a future point of research is an investigation on more appropriate lower
and upper bounds for the lags of gene regulations. The proposed method to order genes by time
of regulation should also be subject to a more critical analysis and validation.

7.2.4 Concluding remarks

The inference of gene regulatory networks is a useful application of bioinformatics, valuable
for medical research. This thesis focuses on the problem of GRN inference from (mRNA)
expression data only. A proof-of-concept is presented in the form of a bioinformatics analysis
and GRN inference in the context of type 1 Diabetes. It lead to the identification of novel genes
playing a role in β-cell apoptosis and experimentally confirmed findings, in particular of causal
links between predicted cause-effect gene pairs.

GRN inference only from mRNA expression data entails a biological simplification as the
regulatory mechanisms occurring post transcription are ignored. It is an extremely challenging
problem due to the typical low number of available gene expression measurements. This
difficulty is observed in the low values of precision in the experiments reported in this work. A
sensible approach to overcome this limitation is to combine multiple gene expression datasets and
alternative relevant information, such as information on binding sites, perturbation experiments,
available information in the literature. The development and scrutiny of integrative approaches
is then an essential next step for current research. Still, each source of relevant information
should be well studied, and causal inference from time series stands as valuable tool in the
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endeavor of GRN inference. The work presented in this thesis is a contribution to this particular
topic of knowledge.

The adequate assessment of inference methods is an important issue and a contribution to
this topic is also presented, in the form of an approximation of the statistical significance of
precision-recall curves.
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Appendix A

Model assessment and hypothesis
testing

This appendix presents some tools used in this thesis, notably on the assessment of statistical
models and testing of hypothesis.

A.1 Assessing statistical models

Common measures to assess statistical models take into account goodness of fit while penalizing
model complexity. These include the Akaike information criterion (AIC) or the Bayesian
information criterion (BIC), extensively studied and with interesting properties (41). In these
cases the lower is the measure, the better is the model. Assume a model with likelihood L and k
parameters, estimated from n observations. The AIC measure:

AIC = 2k − 2 ln(L) (A.1)

The AICc is the AIC with a correction for finite sample sizes. It is given by:

AICc = AIC +
2k(k + 1)

n− k − 1
(A.2)

In OLS linear regression the model likelihood L is given by:

ln(L) = −n
2

ln
RSS

2
(A.3)

Resulting in a AIC of:

AIC =
n

2
ln
RSS

2
+ 2k (A.4)

This form of the AIC (in particular the AICc version) is used in the experiments of Section 5.3.
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A.2 Linear correlation coefficient

The p-value of a sample estimate of the linear correlation (Pearson and partial) relative to the
null hypothesis of zero correlation may be be approximated with the Fisher’s transformation
(58). The sample partial correlation between X and Y (conditioned on a set of variables Z,
possibly empty) is transformed into a statistic named z.

z =
1

2
ln

(
1 + rX,Y |Z

1− rX,Y |Z

)
(A.5)

z follows approximately a normal distribution with mean
1+ρX,Y |Z
1−ρX,Y |

(ρX,Y |Z is the true partial

correlation) and standard deviation 1√
N−|Z|−3

, where |Z| is the cardinality of the set Z. This

test is used in network inference methods implemented in the Section 5.3, assessing the null
hypothesis of zero correlation.

A.3 Testing sample differences

A common and useful statistical test is on whether groups of samples follow the same distribution.
In the two variable case, these tests are paired or unpaired - in the first case, the samples of
the two groups are observed simultaneously (paired tests are more powerful). One well known
paired test is the Wilcoxon signed-rank test (277). This non-parametric test was used in the
network inference experiment of Section 5.3 and is as follows. First the differences of the paired
samples are obtained; then the values are ordered by magnitude and assigned a rank (lowest
value is 1); the ranks are multiplied by the sign of the respective difference and are summed up,
resulting in W . If the median difference is zero, W follows a normal distribution with mean 0
and standard deviation

√
N(N + 1)(2N + 1)6.

A.4 Meta-analysis of statistical tests

The field of meta-analysis tackles the problem of combining the results of multiple experiments.
Two common approaches to test multiple p-values are the methods of Fisher and Stouffer. For
instance, the latter transforms the p-values into z-scores, sums them up and divides by

√
n. The

resulting statistic (if all the null hypothesis are true) follows approximately a standard normal
distribution. One application of meta-analysis is the estimation of a global effect size in multiple
experiments. In this case it is common practice to weight each experiment differently, on the
basis of its quality (eg. number of used samples, variance). The effect of the experimental
condition can be assumed to be a fixed value (same for all experiments), or following a random
distribution (considering differences in the experiments). These two models are known as
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fixed-effects and random-effects models. For a reference see (123). One simple meta-analysis
was performed in the Chapter 6 (Section 6.3.4), weighting different experiments on the number
of samples.

A.5 The multiple testing problem

If we consider n independent p-values, the probability that at least one of them is lower than p
is 1− (1− p)n. As we increase the number of tests, the probability increases that a test will
return a p-value below some arbitrary level (leading to an erroneous rejection of the null). This
is commonly referred to as the multiple testing problem (174).

The Bonferroni correction Assume n experiments, where the null is true, and that we set αn
to be a cut-off below which p-values are considered statistical significant. By Boole’s inequality
1, the probability that at least one of the p-values will fall below the cutoff is lower than∑

n
α
n = α. Setting the significance cut-off at α

n assures that the probability that one null
hypothesis is incorrectly rejected (a type 1 error) is lower than α. Trivially, this result remains
valid if we also consider p-values of experiments where the null hypothesis is false (ie. if we
do not know in which experiments the null is true). The probability of incorrectly rejecting the
null decreases as we add experiments where the null should indeed be rejected. This approach
controls the probability of at least one type 1 error (known as the familywise error rate), and is
known as the Bonferroni correction.

False discovery rate The Bonferroni correction may be too conservative when the number or
hypothesis is high (for instance in gene expression experiments). In these cases, applying the
Bonferroni correction results in a very low α

n and a very stringent significance level. Another
approach is to control the rate of type 1 errors (the number of errors divided by n, known as the
false discovery rate). A known procedure to do so was proposed by Benjamini and Hochberg
(17) and is as follows. First, the p-values are ordered from the lowest to highest (the index is
k). Then, a false discovery rate α is defined used to obtain the largest k such that pk < k

mα.
Finally, the null hypothesis is rejected in the first k p-values. The expected false discovery rate
can be shown to be below α. Further refinements of this procedure have been proposed (18).
The Benjamini and Hochberg was used in the Chapter 6, Section 6.3.4).

1Boole’s inequality states that the probability of at least one event (out of multiple events) happening is equal or
lower than the sum of the individual probabilities of all events.
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Appendix B

GRN inference from gene expression
time series - supplementary results

This section presents supplementary results for the network inference experiment of Section 5.3.
Figure B.1 presents the AUPRC z-scores obtained in the yeast network inference task.

Contrary to the results presented in the Figure 5.7 where the results obtained in each multivariate
time series were combined, here networks were inferred from each multivariate time series
individually (resulting in the inference of 100× 11 networks). Figure B.2 presents the results
of the Wilcoxon signed rank test for this experiment. Note that there are multiple significant
differences, not perceived in the boxplot representation. This is due to the higher number of
considered networks (1100 compared to 100 when the inference from the individual time series
was combined, as shown in Section 5.3). Note also that random inference is one of the top
performing methods.

Figures B.3, B.4 and B.5 present the AUPRC z-scores obtained in the GNW network
inference task, when the considered time points are the middle 40, 60, 80 (Figure B.3), 100, 120,
140 (Figure B.4), 160, 180 and 200 (Figure B.5) points. The Figures B.6 and B.7 present the
results of the Wilcoxon signed rank test for this experiment. To avoid redundancy the results
are presented only for the middle 40 and 80 time points (the results for higher number of time
points follow a similar pattern).
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B. GRN INFERENCE FROM GENE EXPRESSION TIME SERIES -
SUPPLEMENTARY RESULTS
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Figure B.1: GRN inference performance (yeast time series) - inference on individual time
series - Box plots of the AUPRC z-scores of the assessed methods. 100 GRN, of 50 genes,
were inferred from the 11 yeast multivariate time series. Each network was inferred individually
in all multivariate time series (resulting in 100 × 11 inferred networks). The AUPRC of each
inferred network was obtained and transformed into a z-score, obtained with Monte Carlo, 100000
simulations. The difference to Figure 5.7 is that in that case the inference on the multivariate time
series was combined.
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Figure B.2: GRN inference statistical comparison (yeast experiment) - inference on individual
time series - Comparison between the different GRN inference methods AUPRC z-scores (1100 in
total). The Wilcoxon signed rank test was used and the obtained (two-tailed) p-values are represented
in the matrix. If the element [i, j] is blue, then method i performs better than method j. Methods on
top are the best performing. Results for the yeast experiment, when inferring networks from each
multivariate time series individually.
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Figure B.3: GRN inference performance (GNW time series), using 40, 60 and 80 time points.
- Box plots of the AUPRC z-scores of the assessed methods. 100 GRN, of 50 genes, were inferred
from GNW multivariate time series (one network corresponding to one multivariate time series).
The AUPRC of each inferred network was obtained and transformed into a z-score, following the
beta-distribution approximation proposed in Chapter 4. Results are shown using the middle 40, 60
and 80 points of an original 300 point multivariate time series.
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Figure B.4: GRN inference performance (GNW time series), using 100, 120 and 140 time
points. - Legend as of Figure B.3. Results are shown using the middle 100, 120 and 140 points of
an original 300 point multivariate time series.
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Figure B.5: GRN inference performance (GNW time series), using 160, 180 and 300 time
points. - Legend as of Figure B.3. Results are shown using the middle 160, 180 and 200 points of
an original 300 point multivariate time series.
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Figure B.6: GRN inference statistical comparison (GNW, n=40) - Legend as of Figure B.2.
Results for the GNW time series, considering the middle 40 points of the time series.
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Figure B.7: GRN inference statistical comparison (GNW, n=80) - Legend as of Figure B.2.
Results for the GNW time series, considering the middle 80 points of the time series.
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E. C. MEULEN. Nonparametric Entropy Estima-
tion: An Overview. International Journal of the
Mathematical Statistics Sciences, 6:17–39, 1997. 34

[16] ANTHONY J. BELL. The co-information lattice. In
in Proc. 4th Int. Symp. Independent Component Analy-
sis and Blind Source Separation, pages 921–926, 2003.
34

[17] YOAV BENJAMINI AND YOSEF HOCHBERG. Con-
trolling the False Discovery Rate: A Practical and
Powerful Approach to Multiple Testing. Journal of
the Royal Statistical Society. Series B (Methodologi-
cal), 57(1):289–300, 1995. 139, 163

[18] YOAV BENJAMINI AND YOSEF HOCHBERG. On the
Adaptive Control of the False Discovery Rate in
Multiple Testing With Independent Statistics. Jour-
nal of Educational and Behavioral Statistics, 25(1):60–
83, 2000. 163

[19] TOBY BERGER. Living Information Theory. IEEE
Information Theory Society Newsletter, 53(1):1+,
March 2003. 31

[20] R BERGHOLDT, C BRORSSON, A PALLEJA, L A
BERCHTOLD, T FLØ YEL, C H BANG-BERTHELSEN,
K S FREDERIKSEN, L J JENSEN, J STØ RLING,
AND F POCIOT. Identification of novel type 1 dia-
betes candidate genes by integrating genome-wide
association data, protein-protein interactions, and
human pancreatic islet gene expression. Diabetes,
61(4):954–962, April 2012. 7, 136

[21] J. BERKSON. Limitations of the application of four-
fold table analysis to hospital data. Biometrics,
2(3):47–53, June 1946. 18

[22] CLAUS BERTHELSEN, LYKKE PEDERSEN, TINA

FLOYEL, PETER HAGEDORN, TITUS GYLVIN, AND

FLEMMING POCIOT. Independent component and
pathway-based analysis of miRNA-regulated gene
expression in a model of type 1 diabetes. BMC Ge-
nomics, 12(1):97, February 2011. 136

[23] PETER BICKEL, BO LI, ALEXANDRE TSYBAKOV,
SARA GEER, BIN YU, TEFILO VALDS, CARLOS

RIVERO, JIANQING FAN, AND AAD VAART. Reg-
ularization in statistics. TEST: An Official Journal
of the Spanish Society of Statistics and Operations Re-
search, 15(2):271–344, 2006. 38

[24] CHRISTOPHER M. BISHOP. Pattern Recognition and
Machine Learning (Information Science and Statis-
tics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006. 11, 12

[25] DOUGLAS L. BLACK. Mechanisms of Alternative
Pre-Messenger RNA Splicing. Annual Review of Bio-
chemistry, 72(1):291–336, 2003. 7

[26] KENNETH A. BOLLEN AND JUDEA PEARL. Eight
Myths About Causality and Structural Equation
Models. In STEPHEN L. MORGAN, editor, Hand-
book of Causal Analysis for Social Research, Hand-
books of Sociology and Social Research, pages 301–
328. Springer Netherlands, 2013. 41

[27] B M BOLSTAD, R A IRIZARRY, M ASTRAND,
AND T P SPEED. A comparison of normaliza-
tion methods for high density oligonucleotide array
data based on variance and bias. Bioinformatics,
19(2):185–193, January 2003. 11

[28] RICHARD BONNEAU, DAVID REISS, PAUL SHAN-
NON, MARC FACCIOTTI, LEROY HOOD, NITIN

BALIGA, AND VESTEINN THORSSON. The Infere-
lator: an algorithm for learning parsimonious reg-
ulatory networks from systems-biology data sets de
novo. Genome Biology, 7(5):R36+, 2006. 81

[29] GIANLUCA BONTEMPI AND PATRICK EMMANUEL

MEYER. Causal filter selection in microarray
data. In JOHANNES FURNKRANZ AND THORSTEN

JOACHIMS, editors, ICML, pages 95–102. Omnipress,
2010. 75

[30] KENDRICK BOYD, KEVIN H. ENG, AND

C. DAVID PAGE JR. Area under the Precision-
Recall Curve: Point Estimates and Confidence
Intervals. In HENDRIK BLOCKEEL, KRISTIAN KER-
STING, SIEGFRIED NIJSSEN, AND FILIP ZELEZN,
editors, ECML/PKDD (3), 8190 of Lecture Notes in
Computer Science, pages 451–466. Springer, 2013. 86

[31] ANDREW P. BRADLEY. The use of the area under
the ROC curve in the evaluation of machine learn-
ing algorithms. Pattern Recognition, 30:1145–1159,
1997. 86

[32] P. BRAZHNIK, A. DELAFUENTE, AND P. MENDES.
Gene networks: how to put the function in ge-
nomics. Trends in Biotechnology, 20(11):467–472,
November 2002. 8

[33] L. BREIMAN. Statistical modeling: The two cul-
tures. Statistical Science, 16(3):199–215, 2001. 12

172



REFERENCES

[34] L. BREIMAN, J. H. FRIEDMAN, R. A. OLSHEN, AND

C. J. STONE. Classification and Regression Trees.
Wadsworth International Group, Belmont, CA, 1984.
57

[35] LEO BREIMAN. Bagging Predictors. Mach. Learn.,
24(2):123–140, August 1996. 58

[36] LEO BREIMAN. Random Forests. Mach. Learn.,
45(1):5–32, October 2001. 16, 58

[37] JOERG BREITUNG AND M. HASHEM PESARAN.
Unit Roots and Cointegration in Panels. CESifo
Working Paper Series 1565, CESifo Group Munich,
2005. 63

[38] KAY HENNING BRODERSEN, CHENG SOON ONG,
KLAAS ENNO STEPHAN, AND JOACHIM M. BUH-
MANN. The Binormal Assumption on Precision-
Recall Curves. In Proceedings of the 2010 20th In-
ternational Conference on Pattern Recognition, ICPR
’10, pages 4263–4266, Washington, DC, USA, 2010.
IEEE Computer Society. 86

[39] C BROWN, J GASPAR, A PETTIT, R LEE, X GU,
H WANG, C MANNING, C VOLAND, S R
GOLDRING, M B GOLDRING, T A LIBERMANN,
E M GRAVALLESE, AND P OETTGEN. ESE-1 is a
novel transcriptional mediator of angiopoietin-1 ex-
pression in the setting of inflammation. The Journal
of biological chemistry, 279(13):12794–12803, March
2004. 153

[40] MORTON B. BROWN. 400: A Method for Combin-
ing Non-Independent, One-Sided Tests of Signifi-
cance. Biometrics, 31(4):987+, December 1975. 101

[41] KENNETH P. BURNHAM AND DAVID R. ANDER-
SON. Multimodel Inference: Understanding AIC
and BIC in Model Selection. Sociological Methods
& Research, 33(2):261–304, 2004. 161

[42] OLIVER S. BURREN, ELLEN C. ADLEM, PRE-
MANAND ACHUTHAN, MIKKEL CHRISTENSEN,
RICHARD M. R. COULSON, AND JOHN A. TODD.
T1DBase: update 2011, organization and presen-
tation of large-scale data sets for type 1 diabetes
research. Nucleic Acids Research, 39(Database-
Issue):997–1001, 2011. 144

[43] S. A. BUSTIN. Absolute quantification of mRNA
using real-time reverse transcription polymerase
chain reaction assays. Journal of Molecular En-
docrinology, 25(2):169–193, October 2000. 10

[44] X CAI, M WANG, H KONG, J LIU, Y LIU, W XIA,
M ZOU, J WANG, H SU, AND D XU. Prokaryotic
expression, purification and functional characteri-
zation of recombinant human RIP2. Molecular biol-
ogy reports, 40(1):59–65, January 2013. 143, 153

[45] D. CALVETTI, S. MORIGI, L. REICHEL, AND

F. SGALLARI. Tikhonov Regularization and the
L-curve for Large Discrete Ill-posed Problems. J.
Comput. Appl. Math., 123(1-2):423–446, November
2000. 38

[46] RICHARD W. CARTHEW AND ERIK J. SONTHEIMER.
Origins and Mechanisms of miRNAs and siRNAs.
Cell, 136(4):642–655, February 2009. 10

[47] ALEXANDRA M. CARVALHO. Scoring functions for
learning Bayesian networks. Technical report, In-
stituto de Engenharia de Sistemas e Computadores
Investigação e Desenvolvimento, 2009. 55

[48] ROBERT CASTELO, ALBERTO ROVERATO, AND

MAX CHICKERING. A robust procedure for gaus-
sian graphical model search from microarray data
with p larger than n. Journal of Machine Learning
Research, 7:2006, 2006. 52

[49] CAMILLE CHARBONNIER, JULIEN CHIQUET, AND

CHRISTOPHE AMBROISE. Weighted-LASSO for
structured network inference from time course
data. Statistical applications in genetics and molec-
ular biology, 9(1), 2010. 80

[50] TING CHEN, VLADIMIR FILKOV, AND STEVEN S.
SKIENA. Identifying gene regulatory networks
from experimental data. In 3rd Annual International
Conference on Computational Molecular Biology (RE-
COMB’99), pages 94–103. ACM-SIGACT, 1999. 79

[51] DAVID MAXWELL CHICKERING. Learning Equiv-
alence Classes of Bayesian-network Structures. J.
Mach. Learn. Res., 2:445–498, March 2002. 48

[52] STÉPHAN CLÉMENÇON AND NICOLAS VAYATIS.
Nonparametric Estimation of the Precision-recall
Curve. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ICML ’09,
pages 185–192, New York, NY, USA, 2009. ACM. 86

[53] MIRIAM CNOP, NILS WELSH, JEAN-CHRISTOPHE

JONAS, ANNE JORNS, SIGURD LENZEN, AND DE-
CIO L. EIZIRIK. Mechanisms of pancreatic beta-cell
death in type 1 and type 2 diabetes: many differ-
ences, few similarities. Diabetes, Dec 2005. 7

173



REFERENCES

[54] JACOB COHEN. A power primer. Psychological Bul-
letin, 112(1):155–159, July 1992. 139, 142

[55] GREGORY F. COOPER. The Computational Com-
plexity of Probabilistic Inference Using Bayesian
Belief Networks (Research Note). Artif. Intell., 42(2-
3):393–405, March 1990. 52

[56] K T COPPIETERS, F DOTTA, N AMIRIAN, P D
CAMPBELL, T W KAY, M A ATKINSON, B O ROEP,
AND M G VON HERRATH. Demonstration of islet-
autoreactive CD8 T cells in insulitic lesions from re-
cent onset and long-term type 1 diabetes patients.
The Journal of experimental medicine, 209(1):51–60,
January 2012. 6

[57] THOMAS M. COVER AND JOY A. THOMAS. El-
ements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-
Interscience, 2006. 17, 32

[58] N. J. COX. Speaking Stata: Correlation with
confidence, or Fisher’s z revisited. Stata Journal,
8(3):413–439(27), 2008. 162

[59] FRANCIS CRICK. Central Dogma of Molecular Bi-
ology. Nature, 227(5258):561–563, August 1970. 7

[60] PAUL DAGUM AND MICHAEL LUBY. Approximat-
ing probabilistic inference in Bayesian belief net-
works is NP-hard. Artificial Intelligence, 60(1):141
– 153, 1993. 52

[61] MANHONG DAI, PINGLANG WANG, ANDREW

BOYD, GEORGI KOSTOV, BRIAN ATHEY, ED-
WARD JONES, WILLIAM BUNNEY, RICHARD MY-
ERS, TERRY SPEED, HUDA AKIL, STANLEY WAT-
SON, AND FAN MENG. Evolving gene/transcript
definitions significantly alter the interpretation of
GeneChip data. Nucl. Acids Res., 33(20):e175–e175,
January 2005. 137, 153

[62] JESSE DAVIS AND MARK GOADRICH. The relation-
ship between Precision-Recall and ROC curves. In
Proceedings of the 23rd international conference on
Machine learning, ICML ’06, pages 233–240, New
York, NY, USA, 2006. ACM. 22

[63] R DAWKINS. The Selfish Gene. Oxford University
Press, Oxford, UK, 1976. 3

[64] LUIS M. DE CAMPOS. A Scoring Function for
Learning Bayesian Networks Based on Mutual In-
formation and Conditional Independence Tests. J.
Mach. Learn. Res., 7:2149–2187, December 2006. 55

[65] ALBERTO DE LA FUENTE, NAN BING, INA

HOESCHELE, AND PEDRO MENDES. Discovery
of meaningful associations in genomic data us-
ing partial correlation coefficients. Bioinformatics,
20(18):3565–3574, 2004. 24

[66] PATRIK D’HAESELEER. What are DNA sequence
motifs? Nature Biotechnology, 24(4):423–425, April
2006. 14

[67] DAVID A. DICKEY AND WAYNE A. FULLER. Dis-
tribution of the Estimators for Autoregressive Time
Series With a Unit Root. Journal of the American Sta-
tistical Association, 74(366):427–431, June 1979. 63

[68] MARIE-AGNS DILLIES, ANDREA RAU, JULIE

AUBERT, CHRISTELLE HENNEQUET-ANTIER, MA-
RINE JEANMOUGIN, NICOLAS SERVANT, CLINE

KEIME, GUILLEMETTE MAROT, DAVID CASTEL,
JORDI ESTELLE, GREGORY GUERNEC, BERND

JAGLA, LUC JOUNEAU, DENIS LALO, CARO-
LINE LE GALL, BRIGITTE SCHAFFER, STPHANE

LE CROM, MICKAL GUEDJ, AND FLORENCE JAF-
FRZIC. A comprehensive evaluation of normaliza-
tion methods for Illumina high-throughput RNA se-
quencing data analysis. Briefings in Bioinformatics,
2012. 11

[69] JUAN J. DOLADO AND HELMUT LUTKEPOHL. Mak-
ing Wald Tests Work for Cointegrated Var Sys-
tems. Working papers, Centro de Estudios Monetarios
Y Financieros-, 1994. 67

[70] DORIT DOR AND MICHAEL TARSI. A simple al-
gorithm to construct a consistent extension of a
partially oriented graph. Technical Report R-185,
Cognitive Systems Laboratory, Computer Science De-
partment, University of California, Los Angeles, CA,
USA, October 1992. 55

[71] J. DOUGHERTY, R. KOHAVI, AND M SAHAMI. Su-
pervised and unsupervised discretization of contin-
uous features. In ICML-95, 1995. 34

[72] SORIN DRAGHICI, PURVESH KHATRI, ARON C. EK-
LUND, AND ZOLTAN SZALLASI. Reliability and re-
producibility issues in DNA microarray measure-
ments. Trends in genetics : TIG, 22(2):101–109,
February 2006. 11

[73] B. EFRON AND C. MORRIS. Stein’s Paradox in
Statistics. Scientific American, 236:119–127, May
1977. 51

174



REFERENCES

[74] BRADLEY EFRON, TREVOR HASTIE, IAIN JOHN-
STONE, AND ROBERT TIBSHIRANI. Least angle re-
gression. Annals of Statistics, 32:407–499, 2004. 39

[75] MICHAEL EICHLER. Granger causality and path
diagrams for multivariate time series. Journal of
Econometrics, 137(2):334–353, April 2007. 67

[76] D L EIZIRIK, D G PIPELEERS, Z LING, N WELSH,
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[83] FRANÇOIS FLEURET. Fast Binary Feature Selec-
tion with Conditional Mutual Information. J. Mach.
Learn. Res., 5:1531–1555, December 2004. 57, 75

[84] CATHERINE FORBES, MERRAN EVANS, NICHOLAS

HASTINGS, AND BRIAN PEACOCK. Statistical Distri-
butions. John Wiley and Sons, Inc., 2010. 89, 96

[85] D. A. FREEDMAN. Linear Statistical Models for Cau-
sation: A Critical Review. John Wiley and Sons, Ltd,
2005. 20

[86] DAVID FREEDMAN. From Association to Causation
via Regression. Advances in Applied Mathematics,
18(1):59 – 110, 1997. 41

[87] YOAV FREUND AND ROBERT E. SCHAPIRE. Exper-
iments with a New Boosting Algorithm. In Interna-
tional Conference on Machine Learning, pages 148–
156, 1996. 57, 58

[88] JEROME FRIEDMAN, TREVOR HASTIE, AND

ROBERT TIBSHIRANI. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics,
9(3):432–441, July 2008. 51

[89] JEROME H. FRIEDMAN, TREVOR HASTIE, AND ROB

TIBSHIRANI. Regularization Paths for Generalized
Linear Models via Coordinate Descent. Journal of
Statistical Software, 33(1):1–22, 2 2010. 39, 40

[90] NIR FRIEDMAN, MICHAL LINIAL, IFTACH NACH-
MAN, AND DANA PE’ER. Using Bayesian Networks
to Analyze Expression Data. In Proceedings of the
Fourth Annual International Conference on Computa-
tional Molecular Biology, RECOMB ’00, pages 127–
135, New York, NY, USA, 2000. ACM. 78

[91] NIR FRIEDMAN, IFTACH NACHMAN, AND DANA

PEÉR. Learning Bayesian Network Structure from
Massive Datasets: The Sparse Candidate Algo-
rithm. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, UAI’99, pages
206–215, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc. 78

[92] ANDRÉ FUJITA, JOÃO R. SATO, HUMBERTO M.
GARAY-MALPARTIDA, RUI YAMAGUCHI, SATORU

MIYANO, MARI C. SOGAYAR, AND CARLOS E. FER-
REIRA. Modeling gene expression regulatory net-
works with the sparse vector autoregressive model.
BMC systems biology, 1:39, xx 2007. 80

175



REFERENCES

[93] TIMOTHY S. GARDNER AND JEREMIAH J. FAITH.
Reverse-engineering transcription control net-
works. Physics of Life Reviews, 2(1):65 – 88, 2005.
14, 15, 71

[94] LEWIS GEER, ARON MARCHLER-BAUER, RENATA

GEER, LIANYI HAN, JANE HE, SIQIAN HE, CHUN-
LEI LIU, WENYAO SHI, AND STEPHEN BRYANT.
The NCBI BioSystems database. Nucleic acids re-
search, 38, January 2010. 139

[95] DAN GEIGER AND DAVID HECKERMAN. Learning
Gaussian Networks. In Proceedings of the Tenth
International Conference on Uncertainty in Artificial
Intelligence, UAI’94, pages 235–243, San Francisco,
CA, USA, 1994. Morgan Kaufmann Publishers Inc. 55

[96] DAN GEIGER, THOMAS VERMA, AND JUDEA

PEARL. Identifying independence in Bayesian Net-
works. Networks, 20:507–534, 1990. 47

[97] PIERRE-LUC GERMAIN, EMANUELE RATTI, AND

FEDERICO BOEM. Junk or functional DNA? EN-
CODE and the function controversy. Biology and
Philosophy, 29(6):807–831, 2014. 9

[98] JOHN GEWEKE. Measurement of Linear Depen-
dence and Feedback Between Multiple Time Se-
ries. Journal of the American Statistical Association,
77(378):304–313, 1982. 66

[99] ZOUBIN GHAHRAMANI. Learning dynamic
Bayesian networks. In Adaptive Processing of
Sequences and Data Structures, pages 168–197.
Springer-Verlag, 1998. 48

[100] GENE H. GOLUB AND URS VON MATT. Tikhonov
Regularization for Large-Scale Problems. In
GENE H. GOLUB, S. H. LUI, F. T. LUK, AND R. J.
PLEMMONS, editors, Workshop on Scientific Comput-
ing, pages 3–26. Springer, 1997. 38

[101] J. GOUTSIAS AND N. H. LEE. Computational and
experimental approaches for modeling gene regula-
tory networks. Curr. Pharm. Design, page 2007. 15,
71

[102] AYMAN GRADA AND KATE WEINBRECHT. Next-
Generation Sequencing: Methodology and Appli-
cation. Journal of Investigative Dermatology, 133(8),
August 2013. 11

[103] C. W. J. GRANGER. Investigating Causal Relations
by Econometric Models and Cross-spectral Meth-
ods. Econometrica, 37(3):424–438, August 1969. 19,
64

[104] C. W. J. GRANGER. Some recent development in a
concept of causality. Journal of Econometrics, 39(1-
2):199–211, 1988. 66

[105] C. W. J. GRANGER AND P. NEWBOLD. Spurious re-
gressions in econometrics. Journal of Econometrics,
2(2):111–120, July 1974. 66

[106] ISABELLE GUYON AND ANDRÉ ELISSEEFF. An In-
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Comparison of algorithms for the analysis of
Affymetrix microarray data as evaluated by co-
expression of genes in known operons. Nucleic Acids
Research, 34(2), 2006. 11

[110] TREVOR HASTIE, ROBERT TIBSHIRANI, AND

JEROME FRIEDMAN. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New
York Inc., New York, NY, USA, 2001. 12, 13, 36

[111] ANNE-CLAIRE C. HAURY, FANTINE MORDELET,
PAOLA VERA-LICONA, AND JEAN-PHILIPPE P.
VERT. TIGRESS: Trustful Inference of Gene REg-
ulation using Stability Selection. BMC systems biol-
ogy, 6(1), 2012. 77

[112] MICHAEL HECKER, SANDRO LAMBECK, SUSANNE

TOEPFER, EUGENE VAN SOMEREN, AND REINHARD

GUTHKE. Gene regulatory network inference: data
integration in dynamic models-a review. Bio Sys-
tems, 96(1):86–103, April 2009. 14

[113] D. HECKERMAN, D. GEIGER, AND D. M. CHICK-
ERING. Learning Bayesian Networks: The Combi-
nation of Knowledge and Statistical Data. Machine

176



REFERENCES

Learning, 20(3):197–243, September 1995. Available
as Technical Report MSR-TR-94-09. 52, 55

[114] DAVID HECKERMAN AND DAN GEIGER. Learning
Bayesian Networks: A Unification for Discrete and
Gaussian Domains. CoRR, abs/1302.4957, 2013. 55

[115] M. J. HELLER. DNA microarray technology: de-
vices, systems, and applications. Annu Rev Biomed
Eng, 4:129–153, 2002. 10

[116] NICHOLAS J. HIGHAM. Computing the nearest cor-
relation matrixa problem from finance. IMA Jour-
nal of Numerical Analysis, 22(3):329–343, 2002. 51

[117] OSAMU HIROSE, RYO YOSHIDA, SEIYA IMOTO,
RUI YAMAGUCHI, TOMOYUKI HIGUCHI,
STEPHEN D. CHARNOCK-JONES, CRISTIN G.
PRINT, AND SATORU MIYANO. Statistical inference
of transcriptional module-based gene networks
from time course gene expression profiles by using
state space models. Bioinformatics, 24(7):932–942,
2008. 71

[118] CHRISTOPHER HITCHCOCK. Probabilistic Causa-
tion. In EDWARD N. ZALTA, editor, The Stanford En-
cyclopedia of Philosophy. Winter 2012 edition, 2012.
17, 18

[119] TIN KAM HO. The Random Subspace Method for
Constructing Decision Forests. IEEE Trans. Pattern
Anal. Mach. Intell., 20(8):832–844, 1998. 58

[120] DA WEI HUANG, BRAD SHERMAN, AND RICHARD

LEMPICKI. Bioinformatics enrichment tools: paths
toward the comprehensive functional analysis of
large gene lists. Nucleic acids research, 37(1):1–13,
January 2009. 143

[121] YIMIN HUANG AND MARCO VALTORTA. Pearl’s
Calculus of Intervention Is Complete. In UAI. AUAI
Press, 2006. 50

[122] EARL HUBBELL, WEI-MIN LIU, AND RUI MEI. Ro-
bust estimators for expression analysis. Bioinformat-
ics, 18(12):1585–1592, 2002. 11

[123] J E HUNTER AND F L SCHMIDT. Methods of Meta-
Analysis: Correcting Error and Bias in Research Find-
ings. SAGE Publications, 2004. 139, 163
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