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CHAPTER V

THE TOTAL ERROR AND THE CHOICE OF ALGORITHME FOR INCREMENTAL COMPUTERS

5,1, Total error In the intégration process in unltary or multiple 

Incrément computers# when the independent variable of Intégration X, 

is the Independent variable t •

As we hâve seen In the preceedlng chapters, the actual value

of Intégral s (t) In Incrémental computer is replaced by the approxl-

mated Interpolated quantized rounded off and delayed value o£ Intégral

, which cause the error of method r(t) , the error of quan- 
QMD(k) '

tlzatlon c^Q, the romd off error and the error of transmission 

The relation between these values Ist

®(k) ®QMD(k) ^tQ ®k ^TrJjçj

ts(to» tj^) (5-1)

The total error of process of intégration is equal to:



(5-2)

= r(t) + (t) + 6j^ (t) +

tS(t^, t^)

so the équation (5-1) can be written as:

s (k) (t) QMD (k)
(t) + c. (t) ts(t^, V <5-3)

where Sj^ (t) is the actual value of intégration in interval tj^) ,

®QMD(k) approxiniated Interpolated, quantized, rounded off

euid delayed value of intégration which is the algorithm of the incré

mental machine, and (t) is the total error of process of intégration.

Now, we will calculate the total error of process of intégration 

for the rectangular, trapézoïdal, and three points method of intégration 

with unitary or multiple incréments»

As it is shovm in the preceedlng chapters, in the rectangular' 

method of intégration with unitary incréments, the error of method is:

r(t)

r(t)

k
l

i=l
y' (x)

(ç)

xe(x^, XjL+i) (5-4)

çs(Xq, Xj^) (5-5)

the error of quantizatlon is:

'tQ ‘ <*kQ - *oQ> (5-6)
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The round off error is:

6j^ < ûx (5-7)

So the total error of procèss of intégration in rectangular 

niethod of 'intégration with unitary incréments, can be found from 

équations <5-^2) , (5-4), (5-5) , (5-6) and (5-7) as following:

1 (x^ - x„)2 (5-8)
<-----------̂  y'(C) + ûy (x^q-x^q) + Ax +

2 3c

The“ approximated interpoiated> quantized/ rounded off value 

of intégral (t), using the- rectangular method of - intégration,

which-is-the-algorithm of incrémental machine with unitary incréments 

is:

®QM(k), (t)
^IQ ■ "IQ*

(5-9)

The error of method in rectangular methodof intégration with 

multiple incréments (6x « 2^ * Ax, 6y = 2^ • Ay, and 6s = 2^ • As) 

is:

k 1 2
r (t) = I ------(6x) y' (x)

i=l 2

t e(t^. ^i+1^

(5-10)

The error of quantization is:
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^tQ < "y ^ 2 (Xj^Q -

The round off error is:

(5-11)

ej^ < 6x (5-12)

so the total error of process of intégration in rectangular method of 

intégration with multiple incréments can be found from équations (5-2) 

(5-10), (5-11) and (5-12) as followings

le 1
■t —(ix)2y'(x) + 4y • 2 (x^(, - x^q) +

+ 6x + }
(5-13)

and the approximated interpolated quantized, rounded off value of 

intégral (t) , using the rectangular method of intégration,

which is the algorithm of incrémental computer with multiple incréments 

is:

sQM(k) (t)
k
l

i=l ^iQ «iQ^ (5-14)

In the trapézoïdal method of intégration with unitary 

incréments, the error of method r(t) is:

r(t)
k
l

i=l

1

12

(5-15)
X ^(x^,Xj^+i)(Ax) ^ y" (x)
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12 k2
U) çg:(x , x^)

O ^

The guantlzatlon error e (t) Is:

etQ ^ ^5-16)

The round o££ error e^^ (t) Is:

(t) < Ax (5-17)

There£ore £rom équations (5-2), (5-15), (5-16) and (5-17), 

the total error o£ the process o£ Intégration In Incrémental machine 

wlth unitary Incréments Is:

1 (X],Q - X q) 3
t ^ y" " ‘y <*kQ - *0Q>

+ AX + e
(5-18)

Tr

The approxlmated Intorpolated, rounded o££ value o£ Intégration, 

®QM ' using the trapézoïdal method o£ intégration, which is the 

algorlthm o£ the incrémental computer wlth unltary incréments Is:

°QM(k)
(t) (5-19)

In the trapézoïdal method o£ intégration, wlth multiple 

Incréments, the error o£ method r(t) Is:
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k 1
r(t) = I — (6x)^y" (x) xe(x (5-20)

i«l 12 ^

The quantization error (t) is;

Hq < iy • a** (x^g - Xqq) (5-21)

The round off error ej^ (t) iss

ej^ (t) < 6x (5“22)

Therefore from équations (5-2), (5-20), (5-21) and (5-22), 

the total error of procèss of intégration in incrémental computer 

with multiple incréments is:

k 1
S < I —
^ i=l 12

(Ôx)V" (x) + ày ® 2“ (Xj^Q - x^q) +

+ ôx + e
(5-23)

Tr

and the approximated interpolated, rounded off value of intégration 

*^QM(k) which is the algorithm of the incrémental machine 

using the trapezoidal method of intégration with multiple incréments 

iss

°QM(k)
(t)

^^iQ * 'iQ^ ^ 'iQ^
(5-24)

In the three points method of intégration, with unitary 

incréments, the error of method r(t) iss
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r(t) l “— (Axji y' ' ' (x)
i=l 24

:(x,

1

24

(Xj, - x^)
lit U)

(5-25)

Ç ^Xq>Xj^)

The quantization error is:

Hq ‘ <*kQ - =‘oQ> 

The round off error is:

(5-26)

(5-27)

Therefore, from équations (5-2), (5-25), (5-26) and (5-27), 

the total error of process of intégration with unitary incréments 

is:

1 (Xk-x^)**

24

(5-28)

y’*' (ç) + ûy (xj^Q - Xqq) + ax +

The approximated interpolated, quantized and rounded off value

of intégration s'V , ^ (t) , using the three points method of intégration
QM(k)

which is the algorithm.of incrémental computer, with unitary incréments 

is :

®QM(k) (t)
k 1 1

^^iQ ‘ "iQ^ “ "^iQ^ "

^(i-l)Q^^^
(5-29)
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In the three points method of intégration, with multiple 

incréments, the error of method r(t) is;

kl 4
r(t) = [ —■■ (6x) y'"(x) X(=(x.,x. ,) (5-30)

i=l 24 ^ ^

The quantization error e|.Q is:

CtQ < iy • 2^ - x^) (5-31)

The round off error e, is;
k

ej^ < 6x (5-32)

Therefore, from équations (5-2), (5-30), (5-31) and (5-32), 

the total error of processof-intégration, with multiple incréments 

ist

k 1 4
£4. < r I ------ («Sx) y'"(x) + ûy * 2^ (x^q - x^q) +
t 24 ^ ^

+ ÔX +
(5-33)

The approximated, interpolated, quantized and rounded off
«#

value of ’intégration (^) » using the three points method of

intégration, which is the algorithm of incrémental machine with multi

ple incréments is:

®QM(k) (t)
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12 'iQ'' <“lQy - *(l-l)Qy>’

The block diagram of incrémental computers is drawn in

(5-34)

figure (5,1)
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Block diagram of incrémental computer»
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5,2, Total error in the intégration process In unltary or multiple 

incrément computersf whenthe indépendant variable of intégration X 

Is a function of the indépendant variable t «

As it was discussed earlier, the actual value of intégral

s (t) is repiaced with the approximated/ interpolated, quantized
• '

rounded off ' and delayed value of intégral (t) as:

s (t) = s QMD(k) (t) + Cr(t) + (t) + e^ (t) + Tr •

(5-35)

s (t) - (t) +

(5-36)
= r(t) + e^Q (t) + (t) + erpj.

where is the total error of process of intégration, which is equal 

to the sum of'the error ofmethod r(t), the error of quantization 

e^q (t) ,-the round off error ej_. (t) and the transmission error

As'we hâve seen in the preceedlngchapter, the error of the 

rectanguiar^ method of intégration"r(t), with unitary' incréments, 

when :the-variable of intégration'X“ is a function. of the indépendant 

variabientiof machine:

1 k 2
r(t) = ------ (At) y'(t) x'(t) t^(t. ,t, ,)

2 i=l ^ ^ ^

1 ^^k - t )
------------------------û- y»(Ç) x'(ç)

2 k
Ç£-(Xj^/ Xq)

(5-37)
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The quantization error e^Q is;

'tQ ‘ ‘y <=‘Qk ■ “ ‘ïQk • yok>
(5-38)

The round off error e, is:k

ej^ < Ax (5-39)

and dépends on the prograituning,

So the total error e^of-intégration process in rectangular 

méthode with.unitary increment> when the independent variable of 

intégral is“a function of the'independent variable tof machine, can 

be found'by the équations (5-36)^ (5-37), (5-38) and (5-39) as:

£ <
t

2
y' (ç) x'(ç) +

+ [Ay (xQk - Xqo) + Ax (yok “ YoQ^ ^ + Ax +

(5-40)

and the approximated interpolatedy quantized, rounded off value of 

intégrationJ (t) , using the-unitary incréments is:

®QM(k) (5-41)

In the: rectangular method-of"integration-with multiple incré

ments/ when:the independent variable of intégral X is a function of 

the independent variable"t'of'machine, the error ofmethod r(t) is:
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X K 2
I (6x) y'(t) x'(t) 

2 i=l

(5-42)
r(t)

The quantization error e^Q is;

e yQk - yoQ^ (5-43)

The round off error ej^ is

(5-44)

and the transmission error dépends on the programming.

The total error of the rectangular method of intégration, 

with multiple incréments v/hen the independent variable of intégral 

X is a function of the independent varicüale t of machine, can be find 

from équations (5-36), (5-42), (5-43) and (5-44) as following;

and the approximated interpolated> quantized, and rounded off value 

of intégration J (t) , with multiple incréments (ôx = 2^ * Ax,

6y = 2^ * Ay and 6s = 2^ • As) is;

------- î C(fit) y‘(t) x'(t)] + [2^
2 i»l

'^Qk ” ^00^^“^ ^Tr (5-45)

k
®QM(k) (5-46)
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In the trapézoïdal methodof intégration, with unitary 

incréments, when the indépendant variable of intégrai X is a func- 

tion.of; the indépendant variable trof machine, the error of method 

r(t) isî

k
r(t) = I (ût)3[y"(t) x'(t) - y’(t) x"(t)] (5-47)

i=l

(t. - t ) 3
= ------fi [y" (0 x'(ç) - y* (ç). x"(ç)

k^

The quantization error e^Q is:

^tQ ^ " ^oq) ^^Qk “ ^oq) <5-48)

The round o££ error 6j^ is:

ejç < Ax (5-49)

and the transmission error dépends on the programming.

So/ the total error e^o£ trapézoïdal method o£ intégration, 

with- unitary ^incréments, whenvthe’^independent variable o£ intégral 

X: is a £unction' o£ the independent . variable t o£ machine , can be £ound 

£rom equationa;:.(5-36) , (5-47) -/; (5-?48) and (5-49> as £ollowing:

k (At)3
I -------— [y"(t) x‘(t) - y' (t) x"(t)] +

i=l 12
< (5-50)
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+ CAy (Xqj^ - Xqq) + Ax (Yqj^ - Yoq) ] + Ax + e^j,

The approximated Interpolated, quantized and rounded o£f 

value of intégration (t) with unitary incréments is;

®QM(k) ‘^IQ ■ ‘iO* ■ '‘IQ*’

Ther:error of method r(t) in the trapézoïdal method of integra* 

tion> using the multiple incréments, when the independent variable of 

intégral:X.is a function of the indépendant variable t of machine, is:

k (6t)3
r(t) = I -------------Cy"(t) x'(t) -y'(t) x"(t)] (5-52)

1=1 12

The quantizatlon error is:

»tQ < 2" • iy IXgij - *0Q> * '^Qk ■ ^oQ>

The round off error e, is:k

ejç < 6x (5-54)

6uid the transmission error-dépends on the programmlng.

So, the total error in the trapézoïdal method of intégration, 

using the multiple incréments, when the indépendant .variable of intégral 

is a "fonction of the independent-^variable t of machine, can be found from
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équations (5-36), (5-52), (5-53) and (5-54) as;

k ( 61) ^
I --------------[y”(t) x’(t) - y’(t) x"(t)3 +

^=1 12 (5-55)

+[2h • iy + ix (yg,^ - y^g)] + «X +

The algorithms of machinev which is the approximated interpolated.

multipie.^lncrements, when'-the- independent variable of intégral X is a 

function’of- the indépendant variable t of machine, is;

In the three points method of intégration, using the unitary 

incrément, when the indépendant variable of intégral X is a function 

of the independent variable t of machine, the error of method r (t) is:

k (At)*»
r(t) = — —[y"'(t) x'(t) - y‘(t) x" * (t) ]

i=l 24

quantized: and rounded off value of -intégration sQM(k) (t), using the

(5-56)

tS(tj^,

(5-57)

The quantization error is;
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etQ < ûy - Xqq) + Ax (YQk - Yqq)

The round off error ej^ is;

6j^ < Ax

and the transmission error e,pj, dépends on the programming.

(5-58)

(5-59)

So the total error in the three points method of intégration, 

using the unitary incréments, when the independent variable of intégral 

X is a function of the independent variable of machine t, can be found 

from équations (5-36), (5-57), (5-58) and (5-59) as following:

- to)*^
^ ^ Cy’"(t) x'(t) - y'(t) x'"(t)] +

2 4k 3

+ L Ay (Xqj^ - x^q) -i AX (yQj^ - y^^) ] + Ax +
(5-60)

The algorithm of machine, which is the approximated, interpo- 

lated, quantized and rounded off value of intégration (t) ,

using the unitary incréments, when the independent variable of intégral 

Xis a function of the independent variable t of machine, is:

SQM(k) (t)
k 1

'yiQ • hq* ‘io’' ' *

“iQy (i-l)QX -

(5-61)

12 ^(i-l)Qy * ^iQ^^
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In theithree points method of intégration, using'the multiple 

increments> when the independènt variable of intégral X is'a function 

of the indépendant variable; t'of machine, the error of meth'od r (t) 

is:

r (t)
k (6t)*»
I [y* * ' (t)

i=l 24
x'(t) - y' (t) x"* (t)]

(5-62)
t s-(t^, t^+i)

The quantization error is:

EtQ < 2‘‘ • 4y (X,^Q - + 4X (XfcQ - =o0> (5-63)

The round off error is: 

< ÔX (5-64)

and the transmission error dépends on the programming.

So the-;total error-e^,' in-the three points method of intégration 

using' the multiple incréments, when-^the independent variable of inté

gral X is : a. function of the"'independent variable- t of machine, can be

found".£rom~équations (5-36) ,- (5-62) , (5-63) and (5-64) as:

“k (6t)*»
I----------—Cy*" (t) X'(t) - y'(t) x'"(t)] +

i=l 24

+ C2^ • ûy (xj^Q - Xqq) + Ax (Xj,Q - Xqq)] + 6x + c
(5-65)

Tr
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The algorithme of machine, using the multiple incréments, 

which are the approximated interpolated, qucuitized and rounded off 

value of intégration are:

*QM(k) (t)
k 1

J, * ‘iQ* *i=l 2

(5-66)

^(i-l)Q^ " ^(i-DQ^ ° ^iQ^^ ^

The block diagram of the incrémental computer is shown in

figure (5,2) .
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fig. 5 O 2e

Block diagramof incrémental computer.
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5,3, Relative error In the intégration process in unltary or multiple 

Incrément computers,

We calculated the total error of intégration process in 

each method of intégration. But the most useful formula for evaluating 

the error in a interval t<£(t^, tj.) is the relative error y, v/hich 

is the ratio of the total absolute error to the value of 

intégration s (t) as:

y =
s (t) (5-67)

But the value of s (t) is not available befor the calculation, 

this problem can be solved by assuming:

s (t) « (XkQ - Xqq) (5-68)

where is the mean value of y in interval x ^(x^, ' which in some

cases can be presented as i (y + Y j ).7 -^max -^min'

The relative error y from équations (5-67) and (5-68) can 

be found as following;

T = -----------S--------------- (5-69)
<*kQ - ^oQ>

By using the total error from the preceeding paragraphe 

we can calculate the relative error y in each method of intégration
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with unitary and multiple incréments.

From équations (5-8), (5-18), (5-28) and (5-69), the relative 

error y of rectangular, trapezoidal and three points formula of inté

gration with unitary incréments, when the independent variable of 

intégral y is same as the independent variable t of machine, will be 

as following;

a - in rectangular method.

y’ (ç)
ûx + e

+ Ay +- Tr

- ''o -
(5-70)

b - in trapezoidal method,

Y <

m

^Qk

12

AX + e
y"(t) + Ay Tr (5-71)

X, “ x_ k O"

c - in three points method.

Y <
AX + e

m 24
y"(ç) + Ay + Tr (5-72)

- X

The relative error y, in rectangular, trapezoidal and three 

points method of intégration, with multiple incréments, when the 

independent variable of intégral X is same as the independent variable 

t of machine, from équations (5-13), (5-23), (5-33) and (5-69),
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will be:

d - in rectangular method.

Y <

■m

’ k 1 (ôx) 2
I---------------------y'(x) + sy • 2" +

6x + e
+-

Tr

^Qk " ^Qo

(5-73)

e - in trapézoïdal method,

'm

" k 1 (6x)3

i=l 12 x^ -x_ Qk Qo

y"(x) + Ay * 2^ +

6x + e Tr

^Qk “ ^Qo

(5-74)

f - in three points formula,

‘m

k 1 (6x)
I —

_i=l 24 Xqj,-Xqo
y'''(x) + Ay * 2 +

6x + e Tr

^Qk " ^Qo

(5-75)

The relative error y, in the rectangular> trapézoïdal, and 

three points formula of intégration with unitary incréments, wheh
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the independent variable of intégral X is a function of the independent 

variable t of machine, can be found from équations (5-40), (5-50),

(5-61) and (5-69) as following;

a - in rectangular method.

1

^Qk ‘ ^Qo

y'(ç) x'(ç) +

+ Llyq +
ypk - ypQ 3 ^ ^ ^Tr

^Qk “ ^oQ ^k “ ^oQ-

(5-76)

b - in trapezoidal method,

Y <
'm

+ [Ay +,

- 12k2(xQj^ - Xqq)

Ax(yQk - Yoq)

Cy"(ç) x' (O - y' (O x"(0 3 +

(5-77)
Ax + e

] + [ =
Tr

^Qk “ ^Qk “ ^Qo -
]

c - in three points formula,

Y <
‘^ko ■ '=o0>“--------21,- Cy' • ■ (t) x' (t) - y’ (t) x" ' (t) ] +

ixfyçjk - y(3o;, ++ [Ay +■---------- -+ ---------------------------- --- Tr

^Qk " ^o ^Qk " ^Qo

(5-78)
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The relative error y, in the rectangular, trapezoidal and 

three points formula, with multiple incréments, v;hen the indepen- 

dent variable of intégral is a function of the independent variable.t 

of machine, can be found from équations (5-45), (5-55), (5-65) and 

(5-69) as following:

d - in rectangular method.

Y <

m

"kl (fit) 2
i; I --------------------- y.(t) x'(t)] +

. i“l ^ ^Qk”^o
(5-79)

^Qk " ^OQ ^Qk “ ^OQ

e - in trapezoidal method.

Y <
'm

k (fit) 3
I -------------------------[y"(t) x'(t) - y'(t) x"(t)] +

_i—1 12(Xqj,—Xqq)

+ [2 • Açjy + - - - - ^ ^
^Qk “ ^OQ ^Qk “ ^OQ -

(5-80)

f - in three points method.

1

^m

k (fit)**
I -- - - - - —

i=l 24(xkQ-x^ç^)
Y < Cy'’'(t) x'(t) - y»(t) x''•(t)]+
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+ ^Qy +
" ypo^

*Qk “■ ^Qo
+

+ e_ _______ Tr

^Qk “ ^Qo -

As it is seen, with unitary or multiple incréments computation, 

the relative’error is inverse'proportional to y^. Therefore, in order 

to reduce .the relative error y^ we-should increase the value of yj^ by 

choosing properiy the scale factor*of*y régister in the operation of 

intégration.

By increasing the content~of y register, wedecrease the 

relative errorand increase*the-output rates. In general, it can be 

seen that'any effect which increase'the output rates willdecrease the 

relative error.
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5,4, Minlmizatlon of the transmission error In unitary or multiple 

Incrément computers,

As it was mentioned in chapter 1, by transmitting the output 

data of some integrators to the inputs dx and dy of integrator k, there 

is a delay of (1+X)T between the actual continuons functions X (t),

Y (t) and the approximated interpolated, quantized and delayed functions 

fiQDx (t), ^iQDy ' which cause the error of quantization and the 

error of transmission, The functions X (t), Y (t) are defined as:

X (t) = X [Xj,, ÔXj , £ X2 f • • • • 6^X^®,e (i*~lÿ2^,e,^3

(5
Y (t) = Y ty^, 5yi » ••••C

M

>1
«0 6^y/®», (i=1^2^,,,“]

and (t) , ^iQDy expressed as following:

Z'
^iQDx “ ^ix ÔjQX,,.,. t]

(5-83)
_^iQDy “ ^iy '^yoQ' ^' * • * • ^(i-X-DQ^'

As it was mentioned in quantizationprocess, the delay = XT 

cause the-quanti zation error ^iQy in interval t<S’(tj^, ^i+1^ '

which is -the différence between -the quantized function ^iQy^

the unquantized function ^ix^ ^iy following

-•

^iQx “ ^ix (t) " ^iQx (t)

_^iQy “ ^iy (t) ^iQy (t)
(5-84)
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where

and

^ix (t) = fix 62X^06*0 6^x, t]

>1
•H

M
-l

--------------J

(t)
“ ^iy lY» zYf « » • ® t]

^iQx (t) = ^iQx ^ ^ 2Q^> e » • e 6iqX, t]

^iQy (t)
“ ^iQy ^^OQ' ^IqY t ^2q^ f•»•• «iQY, t]

(5-85)

(5-86)

The " quantiZation error ^iQy' and the delay of quantization

7“= XT can'be miniirvized by reducting the weight of the quantuins ûx and

Ay.
The input data which shouid be availablein the input of 

incrémental coinputer, are "the quantized value Yqqi

Ô2qX> Ô2Qy»«...® ^iQ^^ ^iQ^' t> But in paraile1 incrémental computer,

the data/ which are available at the input of machine in the i^ 

itération, are the data of former itération 1> 2,.».,,,i-l as followings

^iQ^ * ^ 2Q^,•» • • »'^(i-l)Q^»

1—
1

0 0 ^ IQ^ > 2qY » • • • «
(5-87)

So instead of the approx±matedinterpoiated> quantized 

function ^iQy' there will be:the approximated interpolated,

quantized:andndelayed funçtion_f^Ç^j^^, whose data hâve a delay

of T (itération time of intégrai) with respect to"the functions f iQx'

f iQy,. so the . f iQjjx^ fiQOy are ' cons truc ted in the~input of the incré

mental computer as following:
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^iQDx ~ ^iQDx ^^OQ»

(5-88)
fiQDy (t) = fiOD^ •^yoQ'

Therefore, in each itération, there will be a transmission 

error e,^ as following:

which cause the total transmission error

The block diagram of incrémental computer, as it was discussed 

earlier, is shown in figure (5.3),

In order to suprime the'delay T and the transmission error 

it is sufficient to extrapoiate-the*output incrément each

integrator• in parallel incrémental computer, in interyal. te ^^i»'^i+l^ * 

In this way, the input data of-integrator k will be:

(5-89)

^Ty ^iQy '■^oQ' *^2qY " ^iQDy *-^oQ' IQ^

6 2qYf • • e • * a-DQ^'*^

yoQ' ^Qi'< • •ose
<5-90)
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inter- inte-
input information polation quantization gration

fig. 5.3«

Block diagram of I.C
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instead of the data

^oQ' 6^qX,..o..

(5-91)

S ^

The transfer function of extrapolators F(p) ® e^^, which use

the.output-data of integrators, 6 îqS, ô^qS, 6 j^_-j_jqS1s defined

as:

The new block diagram of'incrémental machine is drawn in figure

(5.4) .

In serial incrémental computer, in proper way of■programming, 

it'is possible to suppress-the delay T and transmission error 

between integrators. If n integrators are connected in cascade (fig 5,5) 

and are proceeded in the"same'direction, then the'input data of each 

integrator:in~i itération-(except the first one) will be as following:

F (p) = F '^(i-l)Q®^ (5-92)

9

(5-93)
L^OQ^ a • • • •

For instant, the input-6y of integrator 2 has the information 

of i^ itération of integrator-1'as following:

(6is)j^ = («2y)i (5-94)
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*lQy “ ®iQy

In this case, because the data of itération.exist in the

input of ail integrators (except the first one), there is no trans

mission: err or and thereis no needof extrapolation block.

Examplei In order to generate'Y'=• cos ut the interconneetion diagram 

is as. figure (5.6) ,

In the. figure (5.6), the integrators are :connected in cascade 

and proceededr in the same-direction*. Therefore> the following differen 

ce ' équation ■:may be written* for* each" integrator.

(71 j)^ = (Y)^ • dt

integrator

1
Ï1 - ïi-i + (’X)! (5-95)

(7Y)^ = - (713)^.^

integrator
2

(VI^)^ = U ^ • (dx)^

(5-96)
(dx)^ =
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inter

fige 5e4.

Block diagrain of I.C. by adding the extrapolation block X„
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2

fig. 5,5
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t 2 3

fig. 5.6
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and for 

integrator 3

(dt)

y± = y^.^ + (7y)^ (5-97)

(7y)^ = (VI.)i ' -2'i

The équations (5-95) , (5-96) and (5-97) can be written as; 

(VI^)jL = * dt

^ = ^i-1 -
(5-98)

(71^)^ = U * (5-99)

/■
(via)^ = y^ • dt

Yi = Yi-i +
(5-100)

by finding the y^ and taking its Z transform, from équations (5-98), 

(5-99) and (5-100), the Y (z) will be:

Y (0) (1 - 2"^)
Y (z) = — ■ ■■ —----------------------r—--------

1-2 (1 - u^- ) z + z”2
(5-101)

The inverse Z transform of équation (5-101) v;ill bej

Y (0)

(1 -
Y (iT) cos (in T +X)
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1 o)T (1 - ) 2
fi = — arc tg ~ (5-102)

T 1 -
2

2 wT
X = arc tg----------——

^ 4 - ü)2t2

As it can be seen from équation (5-102), if T becomes very sinall 

T—^0, Then, amplitude, frequency and phase of the approximated function 

Y (iT) will be very near to the original function Y = cos wT as 

following:

T

fi

“ Y (0) (5-105)

T-*- 0

ï (0)

O
(5-104)

a U)

T-

X
2 ü) T

arc tg ---------—-
4 - -^2.r2 T— 0 “ 0

so the équation (5-102) can be v/ritten as:

(5-106)

Y (iT) = cos (uiT) (5-107)
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Of course, the small différence which exist between the original 

function Y = cos ut and the équation (5-102) is, because of the errors 

of method, the quantization, round off, of the integrators and also 

the ^ transmission error in the first integrator.

In the same problem, if the integrators are sériés coscaded 

in reverse direction, the interconnection diagram will be as figure 

(5.7) .

The incréments

input of intégral, in the i^ itération. : So it is like the parallel 

incrémental computer which use the data with the time delay of T 

(machine cycle). Therefore there will be the error of transmission in 

each intégral as following;

0 (5-108)
in integrator 1

e Ty = (VI,)2'i-l (VI,)2'i

S

(5-109)

in integrator 2
c Ty 0

V,

(5-110)

in integrator 3



257

3 2 1

fig» 5o7
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The différence équation of the integrators will be:

<”3>i = yi •
integrator 1 y± = Yi-i + (5-111)

integrator 2

integrator 3

(VI ). = 
2 i

- 2 » (dx )

(dx2)^ =

:vii)i = Yi ’ (dt)^

(5-112)

(5-113)

.("^3)1 = - <”3>i

by solving the équations (5-111), (5-112) and (5-113), and taking the 

Z transform of them, the resuit will be:

Y (2) =
Y (0) (1 - 2"M

,“2 (1 + U)2t2) - 2z"^ + 1
(5-114)

and its inverse Z transform is expressed as:
(5-115)

Y (iT) = Y (0) e^ ^ cos (i arc tg wT)

As it is seen from équation (5-115), the génération of function 

Y (iT) = Y (0) cos u)T, is followed by the génération of 'an exponential
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2 2
function 1 + w T ^ whlch is the resuit of accumulation of

the transmission error and e,j,y in each itération®

It is seen, when the integrators are sériés coscades in the 

same direction which they are procèss, the data in the input of each 

integrator are:

and

«IqY. «2qY.-.

so there is no delay T of transmission data which has existed in the 

parailel incrémental computer; therefore, there is no transmission 

error e^^,.

In the second case, where the integrators are sériés coscaded
+"V»

in reverse direction, because in the input of each integrator in i 

itération; there is the information of former itération:

“ ^(i-l)Q^ ^(i-DQ^' there will

be a delay of T in the transmission of data, which cause the trans

mission error and in-each itération as it was the case in the 

parailel incrémental computer. The conclusion is that, in order to

minimize the-transmission error in serial machine, the programming
•♦•K

should be in such a way that in the i itération, the input of most 

integrators use the data of the i itération. Those integrators which 

cannot reçoive the data of-the i itération, should use an extrapo-
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lator unit as it was the case in the parallel incrémental computere

If the output extrapolation value of each integrator is called 

s, theh the above discussion can be formulated in the following 

form:

where

*^QE ®ji “ ■^jK ®(j-K) ^QE (5-116)

'a, y, 1 if j-K > O 3-K

(5-117)
A. ^ = O if j-K 4 O

= 1 if j-K » 0 

Bj_jç = O if j-K < O
(5-118)

and 6^ s” is the approximated interpolated and quantized value of 

intégral function. By taking intoaccount the above discussion and 

the équations (5-116), (5-117) and (5-118), the block diagram of 

serial'incrémental computer can be represented as in the figure (5,8).
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inter- integra-

'
output

rounüeû oirt extrapolation'*"' otner integrators

programme unit

fig. 5s8»

The blook diagram of serial loCo with the extrapolation

unit

■-Il eu
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5o5 Cholce of nvunber of bits in ntultlple Incrément computer»

As it was seen, the value of intégral fvinction S (t) is

replaced by the approximated interpolated quantized euid rounded off
#*

value of intégral S (t) with the error g. as :
Qm t

= S (t) - S^^'t) (5-119)

anc the relative error is defined ;

y = (5-120)
« S ( t)

If Gvp) and G (p) are transfer function of desired value of

intégration and approximated one, then the relative error Y(p) will

be y(p) = ■ ~n..9= 1- Q(P) (5-121)
G vp; G(p)

for p = jw, the value of G(w) “ "è absolute value of relative 

error Y(w) will be

Ÿ(m) = 1 - w G ((ü) (5-122)

In order to find the relative error , we should find the
«#

transfer fxanction of approximated value of intégration G (u)) > for 

each method of intégration.

As for multiple incrémental computation, the degree of inter

polation function is more than one, therefore wè calculate the 

transfer fxinction of first degree (trapezoidaj) and higher degree 

interpolation formula for approximate intégration.

Thé numerical réalisation of intégration by the trapezoidal method, 

is :
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Q(t) =

(5-123)

i(t) “ dt

t - T

=—[i”(t) - i”(t - T) ]
2

if the integra! is realized by this numerical method, the calculations 

are performed by the following récurrence relations ;

(5-124)

S" (t) = S"(t - T) +—[i (t) + i"(t - T)]

its transfer function will bes

1 + e"P'^
G“ (p) (5-125)

1 - e •pT

±jwtsubstituting j « for p and e ^ cos ut + j sin wt in équation 

fe-125)/ we geti

J, T uT
G*'(jw) = “ j cot —=■ 

2 2
(5-126)

a'*(u) = 1g"(w)1

(5-127)
T u)T

cot
2 2
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0"(o)) ---------------
2

K»
The ratio of transfer function of the approximate formula A*'(u) 

(eq» 5-127) to the transfer function of the desired one

2 2 
1 
ûT

(5-128)
uT

2

üiT
cot

for three points formula of intégration:

(5-129)

®i^Q

t i

t-T

i (t) * dt

,c 1 1
T Ci (t) +—-Ai(t) +— Cûi(t) 

2 12

(5-130)

ûi(t + J ]

by putting:

Ai(t) = i(t - T) - i(t) 

Ai(t + T) = i(t) - i(t + T)

(5-131)

in équation '5-13p) we get
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17 1
6.S« (t) = T [—i(t) +— i(t - T) +— i(t + T) ] (5-132) 

^ 3 12 12

Writting the recurance équation we will hâve:

Sq (t)
1 7

T) + T[ —i(t) +— i(t - T) + 
3 12

(5-133)

+—_ i(t + T) ] 
12

Taking the transfer function of équation (5-133) we get:

G (p)
s’*(p) 

I (P)
(5-134)

by puting : 

and

P = 3“ 

± j(i)t
cos ut ± j sin ut

the équation (5-134)can be written asi

A'(ju) => |G'*(ju) (5-135)
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T \J'1Z cos^ uT +16 cos ü)T + 52

The ratio of the approximate formula A''(jüi), (eq®5-135 to the 

transfer function of the derired one G (jw), is as following ^

T 1/ 28 cos ^ ü)T +16 cos wT + 52 
24 sln°^f^ (5-136)

1 
U

U)T / 7 COS^ U)T + 4 cos Ü)T + 13

12 sin ^
2

We will now consider Simpson's method of intégrationo This 

formula is obtained by integrating the second order interpolation 

polynomial which coïncides with the abscissae at points t, t-T, t-2T 

and with discrète values of the input signal at these instantSo

The diflnite intégral Is calculated by the équation:

A“(jü)) 

G (jiü)

t

i(t) • dt

t-2T

(5-137)

T
« —[i"(t) + 4i"(t - T) + i"(t - 2T)] 

3
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If thls method is employed, the following récurrence relation 

Is used:
(5 - 138)

T
I"(t) = I(t - 2T) +“—Cl(t) + 4i”(t - T) + i”(t - 2T)]

3

The transfer function isî

T 1 + 4 e“P^ + e”
G'‘(p) =

(5 - ]39

1 “ e 2pT

substituting ju for p and e 

(5 - 139) , we get

j wt
COS ut + j sln ut in formula

G'*(ju) = - j (5 - 140)

A*'(u) G*‘(ju)

T

3

(5 - 141)

e'‘(u) =
n

2 (5 - 142)

The ratio of transfer function A“(u) of the approximate formula 

(eq.5-141 to the transfer function of the desired one is :

A*(u) Tu

G (u) 3
(5 - 143)
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Then the relative error for each method of intégration is:

1 - in trapezoidal method:

ut
Y (u) = 1 -

ut
cot (5-144)

2 - in three points method:

Y (ui) = 1 -
ut ^7cos^ ut + 4cos ut + 13

12 sin ut (1-145)

3 - in Simpson's method:

ut 2 + cos ut
Y (w) O 1 -

sin ut
(5-146)

If the uq is the maximum froquency that can pass in the 

linear part of characteristic frequency of incrémental computer, without 

producing the distortion and phase shift at the output, then we will 

hâve :

y « A ' sin Uç t (5-147)

so the incrément 6y, which is applied to the input of incrément 

computer is:

6y dy
3MB. g, *
6t dt

(5-148)
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= A U * COS 0)_ t (5-149)

or
6y = A “ oj ’ (5t cos U t (5-150)

where fit is the machine cycle T, from équation (5-150), the

y is maximum when cos t = 1c

so

‘‘y>max “ “c • ^ (5-151)

(A)max maximum capacity of Y regis ter of the incrémental

computer, which is equal to:

(A)_„ax = 2" - 1 (5-152)

where n is the number of bits of Y register® The maximum value of 

incréments (6y)„_„ is equal to:XtiâX

<‘y>max = 2*’ - 1 (5-153)

where h is the number of bits in incrémental register fiy® By putting 

the value of (A) and (fiy) from équations (5-152), (5-153), inIllaX ITlâX

équation (5-151), we will hâve:

2^ - 1 = T " u)^ (2 - 1) (5-154)

The maximum frequency can be found from équation (5-154) as
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following:

(5-155)

The choice of the nxamber of bits in incrémental register h, 

can be made as high as it is desired in such a way that the error 

y(o)) does not become greater than the quantum soî

y(o)) < 2“*^ (5-156)

By using the équation (5-156) for the error of different method 

of intégration, the relation between h and n can be found by expanding 

the équation (5-144) , (5-145) and (5-146) in u and taking the first 

term of expansion as the approximationo By putting its maximum value 

ü)q from équation (5-155) in them, then for trapezoidal method of 

intégration we will hâve:

n+2
2^ < yr 2 “ (5-157)

for n = 10

h < 6

For three points and Simpson*s method, we will hâve:

3n+3
2^ < 1 “ 15 X 2 H 

for n = 10
(5-158)

h < 8
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From the équations (5-157) and (5-158)g it is seen that it is 

possible to increase the speed of intégration by increasing the mamber 

of incrément bits h from 1 to 8 bits for n = 10, in such a way that 

the error does not exceed the quantum Ayo But it is seen that the 

maximum value of h does not change too much from the first degree 

interpolation (trapezoidal method) to the second degree interpolationo 

The reason is that, when we increase the step of intégration and the 

degree of interpolation, although we reduce the error of method, 

we do not reduce the quantization error

It was discussed in chapter (3) , the quantization error is 

practically same in ail methods of intégration o That is why, by 

using more accurate formula of intégration, although the error of 

method is reduced, the total error will reduce slightly. So the 

remide of reducing the total error is reducing the quantization error 

as wello The best choice between the method of intégration and the 

mamber of incrément bits h, is to choose the error of method r(t) 

approximately equal to the quantization error e^q (t)o
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5,6 « Choice of algorlthms for unitary and multiple incrément computers «

In order to choose the algorlthms of unitary and multiple 

incréments computers, with a desired accury, we-should know the errors 

of the algorlthms.

The error which exist in incrémental computation is the sum 

of the error^of method r(t), the.quantization error.e, the round off 

error ej^, and, the transmission, error e.pj.o In the preceeding chapters, 

we hâve also seen how to reduce ail these partial errors.

It is possible to reduce the error of method r(t) as low as 

possible, , by choosingthe high degree interpolation formula. It was 

also seen that, it is not worthwhile to use higher than first degree 

interpolation-formula for unitary incrémental computation (ref. chapter 

2) .

The quantization error e^Q.does not dépend on the method of 

intégration® It only dépends on: the .quantums Ax, ày and on the number 

of bits h in ÔX register.

The round off error ej^ of incrément computers can be minimized 

by the appropriate initiai condition.

The transmission error: ecan be minimized by adding the 

extrapoiator blOcks in paraile1 incrément computers. In serial incré

ment, computer s:ÿ the transmission error can be minimized by the proposed
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method of programming in.the chapter 4o The total error is the sum 

of error, of-:method r (t) , the:^quantization error e , the round off 

error ej^, and the transmission error eipj.=

The choice of algorithme in incrémental computation must be 

made in such a way that> with minimal equipment and calculating 

time, the total error doesnot exceed a certain limita

We résumé here the rectangular, trapézoïdal methods,and their 

pa^rtial resulting errors, as well .as the total errors and;;the algorithme a

In rectangular method of intégration in unitary incrément 

computers, the error of method r(t) is:

7
r(t)< ------(Xj^ - x^) Ly

2

The quantization error is;

'‘y - ='o>

Then the total error is;

H " “‘y - ='o'

and the algorithme of intégration are;

i=l

+ e]^ +
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b

^io ° “ioy>j

where b is the number of Ay input of incrémental computer.

In trapézoïdal method of intégration in unitary incrément 

computers, the error of method r(t) is:

7
r(t) < "— (x^ - Xq) Ay 

12 ^

The quantization error e.« is;

(x„ - X„) + e,^ + 

are:

f „ k 1
®Q <yiQ • ' ‘IQ*'

h
I ^iQ = y(i-i)Q * “iQy’j

In unitary incrément computers, by comparing the total error 

in rectangular and trapézoïdal method of intégration, it is seen

tu

Then the total error is:

19
g < ~Ay
^ 12

and the algorithme of intégration
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that, the total errore^ in trapézoïdal method is 2®5 time smaller 

than the rectangular method. It is also seen that,.it:is not worthwhile 

to use an higher degree interpolation formula than the- f1rst degree 

interpolation.

For instance by choosing the three points method of intégration, 

we hâve :

1
yiQ • ‘iQ* ■ ''iQy *

1 1 “

^ " ‘d-DQ’' ■

In this équation, the quantities in paranthesis are smaller than 

the quantum ày of the function y (x) , Therefore , -the computer cannot 

detect and operate on it. So, when accurate algorithms are needed for 

unitary incrémental computation, the algorithms of the trapézoïdal 

method of intégration are more convenient.

In multiple incrémental computation, the step of intégration ôx 

is 2^ time larger than (6x = 2^ • Ax) unitary incrément computation. 

Therefore, the algorithms of thls computation should be chosen with 

higher précision.

The three points intégration formula gives a good approximation 

for multiple incrément computation. The algbrlthm of this method is:
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k 1

i=l ^

1

' '^(i"l)Q^ ” "^(i-Doy '

We ha'■e seen in ( 5 - 5 ) diat it is possible to increase

the step of intégration 6x to six bits, for ten bits Y register, in 

such a way that, the total error does not exceed the quantum Ay^

For larger intégration step 6x, we can choose the third, fourth, 

and even higher degree interpolation formula» But, by increasing the 

degree of the interpolation formula, the algorithm becomes more complex, 

so it needs too much equipment and calculating time» On the other hand, 

by increasing the step of intégration, the quantization error e^q is 

increased as well, and in some cases, the quantization error e^q may 

dominate the total error e^»

Therefore, by choosing the step of intégration 6x, the most 

economical and convenient way of choosing the algorithm of machine is, 

to select a degree of interpolation formula, and the quantum Ay, in 

such a way that, the error of method r (t) , becomes equal to the 

quantization error
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CHAPTER V]

A NEW TYPE OF UNIVERSAL INCREMENTAL COMPUTER»

DESIGN - DEVELOPMENT - CONSTRUCTIONo

Introduction a

The principal concept of the design philosophy of a new type of 

incrémental computer is the realization of a high speed digital machine 

which is opérationally analogous to a analogue computer with the accuracy 

and reliability of a digital machine» This computer performs the mathe- 

matical and logical operation of digital computer as welloTherefore this 

machine, successfuly combines the principal operation and advantages 

of digital and analogue computer »

The basic operation of this machine is the intégration, summation, 

and multiplication of functions»

It also opérâtes variousmathematical operations as addition,
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substraction, multiplication, division as well as logical decision 

mcücing.

The incrémental computers cem effective]y be used for solving a 

System of linear or nonlinear différentiel équations, as well as alge- 

bralc, intégral, trigonométrie équations or other problems, associated 

with calculation of continuons functions,

The incrémental computers may be devidedintotwo types, serial 

cind parallel:

In serial machine, the intégration and others operations are 

sequentially performed one after another in the serial form. In this 

computer, the common unlts are; the memory unit, arithmetic unit, control 

unit and input output units,

The common memory permits the continuons solution of a mathematical 

problem to be achived serially, that is, one operation after another 

by means of only one arithmetic unito Such a serial method of solving 

a problem by means of a single integrator in an analogue computer is 

in principle possible, if a suitable analogue memory is available.

In serial incrémental computer, the interconnection of integrators 

into a sequence required for a problem solution, is achieved by means 

of a programme whlch may be fixed or altered, according to the resuit 

obtained.during the problem-solving process.
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In other words, this machine may achieve conditional or uncondi= 

tlonal transfer from one programme to another In a manner slmllar to 

that achieved in a conventional digital computer® From the standpoint 

of economy, serial machines are conveniently used for solving complex 

nonlinear problème, requiring a relatively large number of integrators® 

It possess wide possibility for execution of varions logic operations® 

The speed of problem solution in a serial machine dépends on the com- 

plexity of the problem®

A parallel incrémental computer consists of a number of indivi- 

dual digital integrators, each'integrator being a self-contained unit 

operating independently of the-other integrators® In a parallel machine, 

it is not necessary to hâve a common memory unit and an arithmetic unit® 

Interconnection of individuel integrators are performed by a plugboard® 

The advartage of the parallel incrémental computer is high computing 

speed, which does not dépend on the conplexity of the problem® This 

speed advantage is achieved at the expense of more integrators and, 

consequently, leads to a considérable increase in the electronic equip- 

ment® Thus, the use of parallel incrémental computer is advisable only 

in those cases where an extremely high computation rate is necessary®

Combination of the problem-solving principal used in analogue 

computers' and the digital technique permits to achieving in both types 

of incrémental computers, an essentially.new type of digital computer, 

possessing advantages of both analogue and digital machines®
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On' the other hemâ, the use o£ Incrémental con^uters permits a substan- 

tlal Increase In accuracy o£ computation, In flexlbillty and general 

appllcabllityof the computerÿ as well as In slmplicltyof design and 

economy.

The Incrémental computer which Is devised by the author In the 

Industrial eleotronlc laboratory^o£ Brussel University is a new type 

o£^ serial incrémental computers «
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6-1. Organization of computer^

The incrémental computer consiste of five main uflits:

Arithmetic unit, programming unit, memory unit, control unit and input 

outpuc unit.

The arithmetic unit is an electronic device which is able to 

carry outthe intégration based on unitary or multiple incrémental 

computation, as we 11 as the summation and multiplication of the functions. 

In addition, it operate the basic arithmetic operations, such as addit

ions, substractions, multiplications cuid divisions, as general purpose 

digital computer. The multiplication.is done in one time of addition 

with a spécial algorithme

The programming unit is based on the new System of transmitting 

the information between the integrators. The transmission of data from the 

output of the integrators to the input of a desired integrator is 

performed on the patch pêinnel as the analogue computer. The transmissions 

data, are carried out by one ceible for unitary and multiple incrémental 

computations on the patch pannel. Therefore, there is no need of storing 

the programme instruction in the memory, and the programme is easily 

checked by.Visual observations.

The memory unit is used to contain the initial numerical data, 

calculated Intermediate résulta, the final résulta, as well as the sets 

of instruction for arithmetic operations.
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The control unit is also indispensable for the automatic 

functioning of the computers. In general, it coordinates the operation 

of the other four main parts, The block diagram of incrémental computer 

is shown in figure (6-1)
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6 2o Arithmetlc unlto

In serial Incrémental computer^ the operations are proceeded 

sequentlally In a common arlthmetlc unlto

The arlthmetlc unit Is composed of six reglsters A, B, C, D, R,

S# a multiplier M and some one bit adders, as they are shown in figo(6-2).- 

and(6-3)» The logical design of this unit is described by building up 

the complété schematic from the basic logical elemento

The principale operations are as following?

6 2ol. The incrémental operationso

6.2ololo The intégration operation based on the unitary incrémental 

computation# by the rectangular methodo

6 2olo2o Intégration operation based on the unitary incrémental 

computation with trapézoïdal méthode

6 2olo3e Intégration operation based on the multiple incrémental 

computation o

6.2ele4o New System of multiplication of two functionso

6 2elc5o Summation of the functions or digital servo
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6,2ola6o Function generator®

6.2.2. Numerlcal operation.

6 2i2él. Addition and substraction of two 10 bit nuitibers A, B. 

(B) ; = (B) ± (A)

6-2,2.2. Addition and substraction of two 20 bits nuM>er:

(S,R);=(S,R) ± (A,B

6 2.2.3. Addition and substraction of three numbers A, B and R 

in one time of addition. (R): = (R) + (B±A).

6.2.2.4. Multiplication of two numbers, in one time of addition

(R,S) ; = (B) ® (C) 
or

(R,S); = (B±A) " (C)

612.2.5. Division.

6.2,3. Logical and other auxiliary operations.

We explain now, the logic flow of each operation in more details.

,6.2 01.1. Intégration operation, based on the unitary incrémental comput

ation, by the rectangular method.

The basic operation Is formed by using three registers, 6y, B,
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and Re As it was seen, the algorithm of this method is;

' ^10 ' ^(1-1)0 ^

1
_‘iQ® " — " ' ''IQ* * =0(1-1) - =ol^

The value ô^y cornes from programming unit and is put in the 

register ôy*. The values of the funçtions ëuid the rest of

intégral which arrives from the memory, are put in the registers

B and Ro The first adding operation of the above équation is done by 

the registers B, *^iQy the adder The resuit is put in the register 

B. The output y^^Q of the adder is sumed by the rest of intégral 

from register R in the adder at the same time that the first operation 

is performedo If there is an overflow, the output block As gives the 

signe and the value of As which is stored in the incrément memory of 

programming units for applying as the input of other integrators or 

output devicef Fig» (6 - 4 )

The communication System between the integrators, is the 

ternary System; that means an overflow As can hâve one of the three 

values ±1 or OO The actual significance of the "one" is of course, 

determined by the s cale given to it during the programming of the machine^ 

The ternary communication Systems are well known and explained in the 

litrateaure, we explain only the algorithm by flow diagrain Figo(6-5)
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6.2.1.2. Intégration operation based on the vinitary incrémental 

computation with the trapézoïdal methodof intégration.

The algorithme of trapézoïdal method of intégration is:

’ ïiQ = y(i-i)Q «iQy

1 1 

“ 2 * ~ "lQy> W

*

The logic flow of the System is shown in figure (6-6).

The first operation of the above équation is performed by the

registers 6y, B, and the adder ,, The adder provide the sum

+ Y " This sum is added to (ûx = + 1 ) or substracted

from (ax = - 1), inefected (Ax = O) the rest of intégral s .
o (1-1

by the adder e. „

The three addition operations are performed simultaneously. 

Therefore, it is very rapid and economical System.

The output overflow ± As will produce with the same 

algorithme, as rectangular method.
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6o2.1,3o Intégration based on multiple incrémental computation »

As it was discussed earlier, by increasing the step of 

intégration Ax in DoDoAc to 6x = 2^ ° Ax, (h>r>o) in multiple 

incrémental computer, the speed of intégration is increased by 

the factor of 2^o

Assume y
■'eq

is chosen in such a way that fulfil the

following requirements

= ^eg ‘iO*

where
Ygq “ ^ ^^iQ^ Sj^Qy^ooDoo]

Therefore, if we put the value of y^^ in register y^^ 

(figg-7) and multiply by the in multiplier M, then the

value of intégral will be ygg ° ^ registero If the number

of bit in y^g register is n, in 6x reglster is h, then the number 

of bits of S register will ben + ho The rounded off value of 

intégral is h most dignificant bits of S register from

n+lton+ho This value of intégral is transmettid to the 

incrément storage of programming unit as the output of integrator» 

The n less significant bits of S register goes to the memory for 

adding to the value of Ygg *^(i+i)Q^^ i^ next itération (i+1) o

The value of y is formed from ô x, ô y which cornes
^ iQ iQ
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fig 6-7
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from programming unito The value of is t±ie sum of

adder e, that resuit is put in 6y registero

We will now explain the operation of arithmetic unit of 

incrémental computer of the Brussel University^ which perform the 

intégration on the basis of multiple incremento

The most economical and convenient algorithme of intégration 

for multiple incrémental computation as it was seen in chapter 5^ 

are:

which cornes from programming unit^ and is added in the

1
+

1 1 ô
(i-l)Q'

Yeq = ^iQ ”7 ^ 12
- 6

7

ôx = 2^ ° Ax

h > r > O
6y = 2^ ° Ay

2r6s
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\s the realization of terms
12 <^iQy

6iç,x) need too much equipment for the factor 

approximation we :;an replace this term by
16

so with a good 

^i-l)Q^ "

“ *^(i-i)cy

wlll be:

6icX) which is easy to realize ito Therefore,

1

1

" 77 ■ ‘U-DO^ ■

The logic flow of the intégration operation is shown in 

figure (6-8) .

The values <«iQy>i> <«ioy>2> <«iQy>5'

(6iQy)g, corne from the programming unity and are

put in the 4 bit shift registers S^y, ô^Yfococ «S^yc The incréments

(6iQy)(p (ôj^^y) O c. ̂ ^iQy^7<> suinmed by the adders Cg, c^,

Cq, Êg, Ejo# ^11 and the résulta are put in the 6y register with

7 bits® The value of y. is get from the output of the adder e«
iQ 2

and is put in the register Bo The values of y^^^ + '^iQy “

- ^(i-l)Q^ found from the output of the adder and is

multip] ied in multiplier M, by the value of fij^QXo The output of 

the multiplier M is added to the value *^(i-l)Q^ ° which

is the output of the multiplier ^ and gives at its output the
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Fia 6-8



296

1 1

^IQ 'iQ* * ° ‘U-1)Q* -

“ ® This aum is entered in the adder Cj and la

summed with the rest of intégral of the preceeding itérat

ion (i-1)0 The output of the adder £5 iss 

1 1
cyio ° ‘iQ* *~«iQy ■ «iQ* ‘«iQy ' ^i-dq* -

“ *(i-i)Qy ' *10*^ * ®o(i-i)“

As the value o£ y is put in 10 bits B register, and the 

value of in four bits 6x register, the value of ^iQ ° ^iQ^

and the above bracket will hâve maximum 14 bits» This value is 

put in the 14 bits register (S^R), (10 bits of register R and 

4 bits of register S)0 Four most significant bits of the register 

(S,R) , are taken as the output , which is the rounded off
« 5.

value of The incrément of intégration is sent to the

incrément memory in progreunming unit» The less significant bit 

(register R) is the new rest of the intégral which is sent

to the memory with the value of y^^^ for the next operation»

6 ,2»1o4o New System of multiplication of two functions»

The multiplication of two functions.x and y was achieved 

normally in a differential form»
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d (x»y) = x ° dy + y ° dx (I)

Thus, a minimum of two integrators and an adder (figo6-9) 

was requiredo

The exact value of x« y) iss

(x^ +A^x) (y^ + A^y) = ^iYi+ ° + YjL ° ^i^ +

A(x , y^) = x^ ° A^x + y^ ° A^x + A^y ° Aj^x

(2)
AfY

(3)

Normallv the third term in équation (3) was neglected and 

the equation(I) was used with three integratorsj with the error 

of Aj^x, A^yc

But a new method ■* ~ just calculating the sum of the three 

terms in the équation(3) '.ss

A(x. y) = x^ ° Ay + ° Ax (4)

Therefore^ we can calculate the équation(4) in arithmetic 

unit, and transmitting the incrément of frnction a(x « y) as it 

was done in the intégration, with the ternary communication systemo 

In this System we can build the multiplier block in ■ ncremental 

computer, with the inputs Ax, Ay and the output A(y « /), exactly 

with the communication system of integrators, and ui»ing one block 

instead of three integrators, with higher accuracyc
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The logic flow of this operation is shown in fig, ( 6-10)

There are five multiplier of function in the incrémental 

computer of the industrial electroniclaboratory of the Brussel 

University, which are designed by the author. The transmission 

of informations in input and output of the multiplier is done by 

only one cable on the patch panne1, as it was the case of the 

intégration.

S2,lô5, Summation of the functions or digital servo.

Though a separate accumulator or the Y accumulator of an 

integrator can accept two or more incrémental inputs, and accximu- 

late their sxam, it cannot généra te a rate equal to the sum of the 

input rates. The addition of rates may be perforraed by using an 

integrator programmed to function as a digital servo.

Considering first how a digital servo can produce an 

incrémental output equal to the sum of two inputs.

Since its operation has beer governed- by the number System 

used, the description willbe related specifically to the number 

System usually employed in the integrators with bineary communi

cations.

This number System^ shown in figure (6-ID, is described as
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circular, because, when an incrément is added to the représentation 

of the maximum positive number, 1 - 2“^, the resuit is the 

représentation of the maximum négative number -1, and conversely, 

substracting a single incrément from -1, produces 1 - 2”^,

In serve integrator~we-put the maximum positive number of 

1 - 2"^ in Y register of the integrator, and the independent 

variable is time® ünder these conditions, the integrator will 

produce a 1 at its*output"during each itération period. The sequence 

of l*s,* thus generated; représenta the the maximum positive 

output rate of the machine. If a single bit is added in the least 

significant bit, the value'of the intégral will change from 1 - 2 ^ 

to -1 and the integrator will then generate a sequence of zéros, 

the maximum négative rate.

The initial value of y register is put to 1 - 2~^ (1.illl...1;. 

If the output ds is feedback with the négative signe to the input 

dy, then by applying the~quantities e in the other input of dy, 

the first output signal will be a positive rate (+1), and the 

value of y register“becomes 1 - 2“*^ + e. When fed back, during 

the next itération period it change from 1 - 2*’^ + e to 1 - 2~^ + 

e - 1. As a resuit the next'output of the integrator will be a 

négative incrément, which feeds back with opposite signe converting 

■the value of integrand to 1 - 2“^ + e, but as this value is a 

négative number, it gives at-■the output a négative incrément, and
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Binary
number

0.5

zéro

Décimal
équivalent

loin 7/8

lollO 6/8

1.101 5/8

lolOO 4/8

IcOil 3/8

loOSo 2/8

loOOl 1/8

1.0 00 0

Oolli ~l/8

O.liO -2/8

OolOl -3/8

OolOO ”4/8

0.011 -5/8

OoOiO -6/8

OoOOl -7/8

OoOOO -1

Fig 6“11
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feeds back by (^1), so the new value of integrand will be 

1 - 2”^ + e + lo Thisprocess continues until the value of y 

register becomes 1 - 2”’^# as its initial value, and the number 

of puises at the output of the System becomes to eo

This System has the application when we want to send some 

puises egual to a number e^ The servo System can be used in 

feedback control Systems,- for générâting a number of positive or 

négative puises, dependingon the applicationo

There are five servo Systems with seven dy inputs , four 

outputs + AS and -AS in the incrémental computer of the industrial 

electronic laboratoryo The Systems of communication are bineary 

Systems, and the interconnections between them and the integrators 

are done by one cable on~the patch pannel»

6,2elo6o Function generator.

In analogue computation, it is possible to generate any 

function with the linear method of interpolation, by the djode 

résistance function generator o

The vciriation of résistance R and the number of diode in 

the circuit can generate^^any function by the linear interpolation

formula
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The same operation can be done by the incrément 

principale the variation of numerical value W and a (figo6-''3)

In this aim, if we use an integrator as a multiplier, 

the content of Y register ofthis integrator is a which cornes 

from the memoryo The value of W is put in the W register of the 

memory, The outputdzof-the-integrator is;

dz = a ° dx 

or

Z l<2z

= a ' idx = a ° X

The integrator-continues to perform the intégration 

operation for each dx'inputj until the number of dx input puises 

which are count by the counter X, becomes equal to Wo At this 

moment, the comparatorgives the signal of the end of operation^ 

The-réversible counter (r:v-count the dz puises, so its content 

will be Z - a ° W at thSt instant : Figo (6 ~ 14)

By choosingthe value of a in the Y register of inte

grator and w in the W register, it is possible to generate any 

linear curve v/ith any slope ' (a) andbias (w) o

So, by generating-the curve ÔA, AB, BC,. o o c. one after 

theother, we can produce - the curve o A B C D M NoFig (6-13
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Fig 6-14)
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6,2,2,

The additions and substractions are done b; one bits 

addersand the registers A, B, R, S,,

6-2O2.1® Addition and substraction of two numbers A, B,

(B) : = (B) ± (A) ®

For this operation the shift registers A,' B eind the adder 

£2 are used. The resuits of operation are put in register B, 

as it is shown in figure ( 6 - 5 )

'6 2,2,2. Addition and'substraction of two 20 bits number, 

(S,R); = (S,R) ± (A,B) .

The addition and substraction of two nuihbers (S,R) and 

(A,B> are done in adder*and the résulta are put in register 

(S,R)^ as it is shown'in figure( g - g )

g.2,2,3. Addition and*substraction of three-numbers A, B and R, 

(R) : = (R) ± (A ± B) ,

The addition and-substraction ofthree numbers R, A, B,
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Fig ( 6- I5)

Fig(6-16)



are done by the registers A> R and the adders The

sum of these three numbers are -done in one time of addition and 

the résulta are put in register R, as it is shown in figure (6-17)

g 2,284e Multiplication of'two numbers in one time of addition, 

(S,R): = (B) MC) or (S,R) : = (B ± A) MC) ,

The multiplication of two" numbers Ê and C or the algebraic 

sum of(B t A) to (C) isdone with a spécial algorithm which is 

a kir.d of serial emd parallel multiplication, The time of multi

plication is egualto one time-of addition.

If C^, CjQ are the outputs of C register bits,

then-the'multiplication algorithm is:

(B) MC) = B*2^"C, + B^28.C + BM^'C.+e , . e+B*C,
10 9 O 1

The logic flow is shown in figure (^

The multiplier M has 9 adders and one 1 bit memory for 

10 bitS'C register, The output'of one bit memory is 2^* 

the output of eg is.2®®eg® B^, The output of Cg is 2^°’Cg® B^ and 

so on. Therefore, theoutput of-each adder gives one term of above 

algorithm «
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Fig (6-17)
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As it is seen, the value of or ; = (B^) ± (A^) arrives

in serial form at the inputof-multiplier, and in the multiplier 

this value is multiplied by the value of C register in the 

parallel form» The outputof multiplier is the output of adder 

Ej which'is S;tc?red in'the register (S, R) o

The first advantage of this multiplier isthat, it does 

the multiplication in one-time~of addition, and its input B^ 

can-be-the output■of-any adder or logical functiouo For instance 

here,' the output of'is applied for the multiplication of 

Bj^ » C or (Bjl ± Aj^) •> (C) o In'the multiple incrémental corrputation, 

the output of adder' is applied to its input for the operation:

1 1

2 10

The other advantage is that, the amount of equipment 

depends'on'the number'of bits in'C registero For instance, if we 

want to multiply the-four'bits of C register to ten bits of B 

register, then we need~only 3 adders e^, and 63 instead of 

9 adders o

6 26 2,5<, Division,

If A is dividand, D is the diviser, q is the quotient and
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r is the rest of the divisiono Then, the division équation isi

A ï r

D ^ D

In order to do the division of the nurnber A over D, the 

number A should be put-in'the register (S,R)^ the number D in 

the register A«

After the division operation, the quotient <3 cornes in the 

register e, and the rest'of intégral in the register (S,R)o 

The aigorithm of the-operation is shown in the flow diagram(6*19)

When A > O or A-< o,- we should add one bit to the resuit 

D < O D > O

quotient q Therefore, another adder is necessaryo The control 

unit-gives ail the control'signal and dock-puises which are 

necessary'for the division-operation„

6 2 0 3 o Logical and other auxilary operationso

Four 10 bits shift-registers A, S, and R or two 20 bits 

shift registers (A>~B) -and-(S,-R), can be used independently, as 

the'shift registers-for any',purpose of -calculation, as they are
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shown in figure(6-20),

There is a réversible counter which is cailed register Do 

The fiipflops which are usedin this counter are the T type 

flipflopsô The input-équations *of eâclï bit are:

Yj = C + D

C + yj ° D

Y3 = Yj" Y2° C + Y\ ” y* ° D

Y =Y ® y°Y ° C+Y* ° Y* ® Y* ° D 
4 12 3 12 3

Y = y “ y ° Y
10 1 2 :

y O Y ° y * Y ° c
6 7 8 9

+ Y I ® V* ° V* ® vl ° V* ® V* ° V* y;° d

Y = Y 
11 1

V ®v ®v ®v ®v ®v ®v ®v ®v 
2 3 4 ^5 6 7 8 ^9 10 ^

I V* * V* ® V* * V* ® V* * V® ® V® * V® • V® ® V® ®
^1 ^2 ^3 ^4 ^5 ^6 ^7 ^8 9 10

There is a comperator‘which indicate whether two numbers 

C and D of ten bits-are equal or noto The logical équation is:

Ei = C,,/ + c; “ d; ° E,^i

There is also'a simulator for various logical problem
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6 3 O A new concept for programmlng unit In Incrémental computero

In a serial unitary incrémental computer, the prograrinc oi’ 

a problem is generally stored in the memory, like in the case of serial 

DeDsA.

In parallel D.DoAo, a patch panel used to interconnect the 

integrators by two leads for one bit unitary incrément plus signeo

The new programming unit, use a patch panel for serial and 

parallel machines, which need only one lead for transmitting the infor 

mation between the integrators»

The main advantage of this System is that, there is no need of

storing the programme instructions in the memory, which need too much
/

memory storage and operation time» Therefore, the programme of a 

problem is realized on the patch panel, exactly as an analog computer, 

with only one lead between the positive or négative output, and the 

dx or dy input of the integrators»

This new System of transmitting the information between the 

integrators, can be used either for unitary or for multiple incrément 

computation.

The programming unit of the serial incrémental computer, which 

is designed by the author in the industrial electronic ledDoratory of 

Brussel university, has two parts»
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The former, built on two pannels, offers the possibility of 

in terconnecting sixty integrators working with the unitary incrément 

principle »

The latter, permits of interconnecting ten integrators working 

with the multiple incrément principle o On the same pannel, there are 

five functions adder and functions multiplifr,

On the patch pannel, each integrator has a block of sixteen 

sockets, There are one dx input, seven dy inputs, four positive ds 

and four négative ds outputSo The inputs and outputs of each integrator 

are shown in figure (6-21)

The algorithms of the system are as following:

The sixty integrators are operated one after another^ by the 

sixty signais Aj till A0O which arrive from the selector of the control 

unit O

When the control unit gives the signal A., the following operations 

take place:

a) The informations of the integrator j, which were stored in 

the memory, are transfered to the arithmetic unit»

b) The programme unit takes the input informations fx, 6y^, ày^foo 

« O O 6y7 from the output of integrators or other devices »
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c) The arithmetic unit performs the intégration operation and 

gives the output incrément of intégral 6so

d) The incrément 6 s is stored in the incrément memory, which 

in unitary incrément computations is 1 bit memory and in 

multiple incrément computations is h bit memoryo

e) The new values of function y^^ and the rest of intégral s^^ 

are stored in the memory of the computer o

The task of programming unit is first» taking the input inform- 
7

ation 6x and ) (6y) from the output of different integrators and
j=l i

sanding it to the arithmetic unit. The timing diagram of the arithmetic 

unit and programming unit is shown in figure (6-22),

The operation of transmitting the information 6x, 6v^, 6y2»ooc. 

.0. 6y^ to the input of integrator j at Aj is done as following;

Let's suppose, the three inputs 6x, 6y^, 6y^, of intégration j 

are connected to the output of integrator i, p, Q, on the patch pannel, 

fig (6-23) .
At the integrator period Aj, the integrator j asks the informat

ion to its input by sending eight puises AjD^, Aj D2, A^ Dj, A^ D^,

Aj D5, Aj Dg, A^ D^, A^ Dg from its inputs 6x, 6^y, àt^Y, 6^Yt

SeYi ifYt

In our example, the integrator j sends the Aj D, signal from 

its input 6x by the external lead on the patch pannel. This signal
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Fig 6-23



323

Aj pass via an 0 R circuit (+As^) and gives the order of transfering 

the value of 6^s to the arithmetic unit^fiq (6-24).

The signais Aj and Aj which are send by the input 6y3

and 6y7 of the integrator j, transfer the incrément ô s and ( s
P q

to the arithmetic unit...

The internai connection of input output socket of each integrator 

j, with the incrément memory and the arithmetic unit, is shown in 

figure ( 6-25 )

By this System, when the integrator j begins to operate by 

sending 8 puises D, to , via the leads on the patch pannel, it

gabhers its input information in the arithmetic unit, Then the intégral 

operation is done in the arithmetic unit, at the end, the output ôs 

is send to the memory incrémental storago ô-s by the signal A, D24-'

This System has the great adventages of transmitting the inform

ations between the integrators by only one lead on the patch pannel, 

for the unitary and multiple incrément computation«
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Main store of Incrémental computer

In this article# a description is given of the main store of 

the incrémental computer# which is designed by the author in the 

industrial electronic laboratory of the Brussel Universityo

The basic methematical éléments of the computer are a set of 

sixty integrators which are based on the unitary incrément computations 

and ten integrators which are based on the multiple incrément comput

ations , Each of them are represented by a pair of b .neary numbers# 

and s^^ (i = 1, 60) ^ These numbers of ten b i.neary digits plus

signe# are stored on two 11 x 140 magnetic core matrix# from which 

they are read together in parallel# ioCc The Y^ and s^j^ numbers 

corresponding to one integrator are treated within# the store as a 

single word of 22 bitSo In one complet machine cycle# ail sixty words 

are read in the sequence A^# # ooceo A^c During the period A^# the

number pair Yj^ and s^j^ are transformed to the arithmetic unitSo In 

arithmetic unit# the numbers are operated upon according to a program

me, producing two new numbers ^®(i+l)o‘ These numbers are returned

to the locations previously occupied by Y^^# ®oi'’ main store# to

be read as a new Y^# s^j|_ during the succeeding machine cyclco

The two memories can also be used completely indépendant of 

the incrémental computer# they can be programmed and addressed manualy 

by the signais or by the programme# for any mathematical and logical 

operation» The values of registers A# B# C# D# R# S of arithmetic unit
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can be written in the two memories, and any value which is read in the 

xtiemory, can be put in the registers A, B, C, R, So

The figure^5^26)®^°^® interconnections between memory, 

arithinetic unit and control unito

Each memory is devided into memory locationso The memory location 

has the capacity to store one word, consisting of 11 bitSo The numbers 

of bits are‘same for ail locations of the memoryo When a word is to be 

stored, that word is sent to the memory and at the same time an address 

is given to ito The word is then stored in that addresso

Thiç procedure is called writing in the memoryo The opposite 

procedure, is called reading from the memory, again an address is given, 

whereupon the contents of that address are returned at the arithmetic 

unit® A store operation in an address automatically involves the erasur 

of the previous contents of that addresso

Information in core storage is stored by using the magnetic 

properties of ferrite coreso Each ferrite core can store a single bit 

of information, either a logical 1 or a logical 0®

A ferrite core is a bi-stable storage device® The ferromagnetic 

properties of the core permit it to be megnetized by applying an inter» 

nal magnetizing force® lyo wires X and Y, cari^^ing electric current, 

ineerted through the core, provide this force® After the core is 

magnetized, it retains the magnetic flux aven though the magnetizing
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force is removedo It can be inagnetized in either a north-to-south or 

a south-tO”north direction in much same way that a trigger can be set 

in two States, hence, the term bi~stableo These two States are shown 

as points A and D in figi-ire (6-27).

Magnetic force H is plotted horizentally, flux density B, is 

plotted verticallyo If a large positive H, represented by the current 

I is applied, the core retains a flux dendity D, after the magnetizing 

force has returned to zerOo Similary, if a large négative I is applied 

to the core, the flux follows the path D, E, Fo Then the core retains 

a residual magnetizing équivalent to A after the négative I has been 

removedo Current greater than I or-I hâve little effect on the flux 

density B, because the core is then saturatedo

Point D has been arbitary assigned to steind for logical one, 

and point A for a logical zerOo

In figure (6-27) it is évident that ^ I has li,ttle effect on the

flux density E of the core® For example, if the core were in the lo-

1
gical one State, point D, and only - — i were applied, the magnetizing

2
force produced would be insufficient to cause the flux density to change 

beyond point Eo The core would therefore not change its bit status 

from the logicaj-one to zéro as it did when full ~I was appliedo

The switching System used in core storage, uses this ability of

the core to discriminate between i I and full lo Consldering the X and
2

Y wires running parai le 1 through the core and each carrying 250 miliamps
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of current in the same directiono The resulting force from each current 

is additive and équivalent to the force produced by one current of 500 

milliampso Assuming that 500 milliamps is the -I required to swi.tch the 

status of the core, the X and Y wires are each considered to be carrying

Another wire, calied the inhibit wire^ passes.through the core 

as shown in fig( 6-28 ) 0 It run para lie 1 to the X wire and, like the X

wire, can carry only i lo At the appropriate time, it carries — I in the

1 ^ ^ 
direction opposite — I in the X wire^ The net results are to cancel the

effect of the magnetizing force produced by the X wireo The inhibit line

is energized when it is not désirable to change the bit status of the

core» When -I is applied, itis possible to deteet the original State

of the core by means of an additional wire, through the core called the

sense wire» If the core is in State D when -I is applied, the change of

flux, from point D to A, induces a voltage in the sense wire» This voltage

puise indicates that the core contained a one» If the core is at point

A when the -I is applied, there is no flux change and no voltage is

induced in the sense wire» This absence of induced voltage indicates

that the core contained a zéroO The core planes with sense amplifies,

inhibits drivers and switches are shown in fiç(6-29)o

The figure(6-29) refers to the 11 planes used for 11 bits of 

memory, It shows that one X drive line goes through 14 cores in a given 

row of a plane, and continues through the corresponding row of 14 cores 

Ln each of the other planes» In a IG x 14 core array, one X drive line
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then passes through 14 (cores per row per plane) X 11 (planes); or 

154 corese

Similîiry, one Y drive line ^goes through ail 10 cores in a given 

row of a plane , and continues rthrough the corresponding 10 cores in 

each of the other planeso The Y lines crosses the X line at an angle 

of 90°, in e?'h core plane. In a 10 x 14 core array, one Y drive line 

then passes through 10 (cores per tow per plane) x 11 (planes) , or 110 

cores,

7m inhibit drive line is associated with each bit planée

A sense line is threaded parallel to the Y drive line through 

ail cores in each core plane® Eaeh^core plane has one sense line, It 

is crossediover at the middleof the core plane tocancel the effect 

of the -inutual coupling between it and the Y drive line®

The logic flow from and to main core storage, is shown in 

figure (6-30) The sense lines from core storage must pass through 

sense amplifiera O The induced'voltage puise resulting from the read- 

out of a logical 1 is of suchiow amplitude (40 to 50 miltivolts) that 

it must be amplified to setothe ^lassociated read register,

To select the induced voltage puises from noise on the sense 

line, a short puise (strobe) gates the sense amplifier just when the 

ferrite core is being read out.
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The read register holds the information read from f^toragso This 

information can be written back into the cores by the palh indicatedo

The inhibit drivers control the writing into coreso Because 

Write current is in a direction opposite to read current^ ail cores 

would be set to 1 if the inhibit drives were not activated during write 

time» The inhibit drivers prevent writing a one in a core by allowing 

a half current to flow in the inhibit line that opposes the write 

current in the X drive linso

The core storage cycle (11®5 microseconds) is divided into two 

parts: The read portion and the write portiono The read portion of the 

cycle makesavailable to the System information contained in the core 

storage unita The write portion of the cycle allows information contained 

in other unit to be entered into the core storagCo

These operations of memory are explained in some words as 

following:

Read: On a read portion of storage cycle# the same relative 

core in each core plane is impulsed with X and Y drive 

current in the read'directions This current sets ail cores 

at a particular address to Oo Anyones présent during read 

time are picked up on the sense Unes# amplified by the 

sense amplifiers# and used to set the read register® Cores 

that contain zéro hâve no induced voltage in the sense line; 

therefore# those bits in read register rest inchanged (0)®
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Write: During the last part of the storage cylce, the X and Y

drive lines of writing are impmlsed in the opposite direc

tion or Write directionO This Write current is in a direc

tion to place a 1 in the cores being addressedo However, 

if any of the cores are to remain zéro, the corresponding 

inhibit gates turn on their associated inhibit driveso 

With the inhibit drivers on, inhibit current flows in the 

inhibit line in a direction opposite-to the current in the 

X drive line^ Therefore, the X drive current is Ccincelled 

and the core remain^at zéroo The read write signal the 

inhibit signais and ‘output signal of sense amplifiers, 

are shown in figure (6-31),
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6o5o r-nnclus.-* <^nso

This investigatin has led us to develop a new method of incremen- 

tal computation, with multiple incréments, which has the advantage of 

speed, versatility, flexedîility and short slewing time for jump func- 

tion over the unitary incrémental computation ( DoDoAo )o

A new effective method has presented for the computation and 

comparison of varions errors in unitary and multiple incrémental 

computation0 This was necessary in order to choose the algorithme of 

the machine in the most economical and convenient way with the desired 

accuracy in résultéo It was shown that by choosing more accurate in

terpolation formula for incrémental computation, it is possible to re

duce the error of method as low as possibleo But from calculation of 

this error, it was shown that, it is not worthwhile to use higher than 

first degree interpolation formula ( trapézoïdal ) for unitary incré

ment computation o It was also concluded that, the second degree inter

polation formula ( three points method ) is a good approximation for 

multiple incrément computationo

From the con^utation of quantization error, it was seen that, the 

quantizatlon error is same for each method of intégration but it dé

pends to the quantums Ax, Ay and the number of bits h in multiple in

créments o The study of this error conducts us to choose the register®s 

length and the speed of the computers „ The study of round off and 

transmission errors showed the way of minimizing them in incrémental 

computerso
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The calculation of the total error cnabled us to compare the error for 

different methods of intégration in unitary and multiple incrément 

computation. From the comparison of these error, we deduced the choice 

of algorithms for unitary and amultiple incrément computer, with the 

desired accuracy,

We explained the design, aIgorithm and development of a new type 

of transistor incrémental computer which is desvised by the author ii 

the Laboratory of Brussels üniversity, This computer performs the in

tégral operation on the basis of unitary and multiple incrément compu

tation. In addition, this machine is capable of doing the basic mathe- 

matical and other combined operations, By a new algorithm, the inter

connection between the integrators was realized on the patch panel 

only by one lead. A new method of multiplication of two functions is 

represented which use only one integrator with higher accuracy instead 

of three integrators which were used before.

The memories of computer can be used for incrémental or numerical 

operation of computer or works as the independent memory device,

The selector of control unit gives the order of intégration sequence 

to the apithmetic unit in only desired sequences, The time of compu

ting the intégration in general purpose is 50 msec. ( with dock fre- 

quency of 1 MHz ) in unitary incrément computer is 40 ysec, ( with 

dock frequency of 500 KHz ), so the speed of this machine is 2,500 

higher than general purpose. Stilli the multiple incrément computation 

increase the speed of intégration by 2** ( with same dock frequency ) ,



340

so the speed of intégration is increased by 2»500 o 2** = 40o000 compa- 

red to general purpose digital computer»

From above discussion; it appears that future investigation would 

be directed to the application of incrémental conç>utation in the Direct 

Digital Control ( DoDoC» ) , optimization and simulation of modem auto» 

matic control which requires high dynàmic quality, accuracy^ flexibili- 

ty, speed and reliability»
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