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Brlef outllne of thesls toplcs.

The research work carried out since september 1965 in the 

laboratorles of Industrial electronlcs and automatlc control of 

Brussels Unlverslty, has had as Its goal to Investlgate the new 

techniques of hybrid and incrémental computation for modem control 

System engineering. Thls has led to the présent doctorate thesis in 

the applied sciences.

The first step of this investigation was the study of existing 

digital and analog computation, especially the hybrid computation and 

the design of electronic transistor computers.

The second step and the main aim was the study of a new method 

of incrémental computation in automatlc control, This investigation 

led us to elaborate "multiple incrémental" computation which has the 

advantages of speed, versatllity and flexlbility over the unitary 

incrément computation which is the base of Digital Differential 

Analyzers,
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The Incrémental computation was flrst employed In Digital 

Dlfferentlal Anallzers (D,D,A), for Intégral operation. The velwpolnt 

purposeâ here Is that a DoD.Ao Is a spécial member of the more general 

class of machines whlch are known as Incrémental computers. The 

essentiel différence between an Incrémental computer and a digital 

computer Is that, an Incrémental machine accomplshes Information trems- 

fers between storage cells on a fractlonal word rather than a whole 

Word basls.

The flrst D.D.Ao was bullt In the U.S.A In January 1950.

In thls machine every calculation was refered to Intégration, and 

the unltary Incrément could hâve only two flxed value +1 and -1„ In 

the later "Ternary" machine, Improvement was obtalned by Increaslng 

the number of possible value to +1, 0, -l. Thls machine was used 

prlmarally for sclentlflc and technlcal calculation assoclated wlth 

solution of Systems of dlfferentlal équations.

The limitation of flxed Incrément (±1,0) of D.D.A,, led to the 

development of an Incrémental computer whlch could hâve flve flxed 

values ±I ±32, O, that was suggested by S. Shackell and J.A. Tryon.

Wlth hls method the Initial solution of a new problem was dellvered 

wlth the reasonable promptness so that the changes In varlsibles 

were processed In each computation cycle, slnce the computer must 

hâve been move promptly from whatever State It flnds Itself li.to 

the State demanded by the problem (the tlme requlred for such motion
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is known as slewing time)«

Further development of incrémental computation is the task 

of this thesis, the study of "multiple incrément" computation that 

incréments Ccin hâve any desired value between 0^2^, 2\ 2^ , 2^^900

2^ is the aim of tiiis investigation® In this System the largest 

permissible incrément is larger than any accepted change in any 

input, intermediate value or resuit and incréments are e^qpressed 

with a sufficient number of digits to flpw any rapid and jump functiono

The new type of transistor incrémental computer which is designed 

and developed by the author in the Industrial electronic IcÜDoratories 

of Brussels University, perfoms the intégration on the basis of unirary 

and multiple incrément computation.

In additionÿ this machine is capable of doing ail the basic 

mathematical operations and other combined operations.

The interconnection between the integrators, was realized 

normally by the stored programme or by patch panel with two lead 

for unitary incrémental computation. We developed a new algorithm 

which permit to interconect the integrators by only one lead on the 

patch panel.

The computation time for a intégral operation in the general 

purpose digital computer is about 50 ms (with dock frequency of 

1 M hertz)in unitary incrémental computer,(with 500 k hertz dock
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frequency) is 40r sec, so the speed of this machine is 2500 higher 

than general purpose® Still the multiple incrément computer increases 

the speed of intégration by 2‘* (same dock frequency) , so the speed 

of intégration is increased by 2500 ° 2** = 40® 000 compared to general 

purpose digital computer® Morever,when the incrémental computer are 

provided with multiple incréments, the slewing time is reduced at 

the price of equipment, the resuit has the advantage of very high speed 

computation high dynamic quality in automatic control, and very good 

capacity for répétitive calculation upon continuons quantities®

Because the incrémental computers work on discrète values of 

the variation of a function at particular instants of time, they are 

asaociated with the error of computation® This study of error in 

incrémental computation is an important factor in the performance of

the computer and the choice of algorithme of computation in most 

economical and convenient way.
The error analysis of D.D.A. has been done by some authors

(among them are particulary D.E® Skabelwnd of the university of utah

U«SsA^, F.B. Hill at McIoT® and 0® Hange in Germany)®

To our best knowledge, they claculated only the error of 

method and round off, but they did not deal with the queuitization 

and transmission error® Moreover, their computation were applied 

only in the particular and simplest case of unitary incrémental 

conputation (D«D.A).
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The viewpoint of our Investigation is to présent new effective 

methods of calculating ail the errors (method^round off, quantization 

and transmission) in the general form of multiple incrémental compu­

tation® The "unitary incrément" becomes then a particular case 

of the general theorj .

This permits us to compare the various errors in both types 

of incrémental computation which is necessary in order to choose the 

algorithms of machine in the most ecohomical and convenient way with 

the desired accuracy in relults®

The calculation of error of method in the intégration process, 

lead us to choose the most convenient quality and degree of approxima­

tion for unitary emd multiple incrément computation.

Computing the quantization error for different methods of 

integiration in unitary and multiple incrément computation and the 

way of minimizing them, gives the idea of the choice of the register's 

length and the speed of incrémental computer.

The study of rovmd off euid transmission error shows the way 

of minimizing them in incrémental computation,

The calculation of the total error enabled us to compare the 

error for different methods of intégration in xinitary and multiple 

incrément computation.
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From the comparaison of these errors, we deduced the choice 

of àlgorithm for unii:a£y and multiple incrément computer# with the 

desired accuracy,

Regarding application of these computations# the incrémental 

computers with unitary incréments as DoDoAc has the advantage of 

high computation speed, very good capacity for répétitive calculation# 

small volume, low wight and reliability compared to general purpose 

digital computers. This design is suitable for real time control 

problem e# g, in control of Industrial process autopilot and guidance 

Systems.

However the vinitary incrémental computer cannot be used where 

fast slewing is required. This éliminâtes any problem in which it 

must produce results immediatly after the first datas are applied.

When the incrémental computer is provided with multiple 

incrément so that slewing time is reduced at the price of more equip- 

ment, the method has of course the same advantages as D.D.Ao cund in 

addition it posses short slewing time. The design is therefore 

appropriate where both high computation frequency and short slewing 

time are needed for dynamic response. Suitable problem appears in 

the problems of Direct Digital Control (D.D.C)# optlmlzation and 

simulation of automatic control# missiles aerodynamlcs; navigation 

and aviation.
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1

CHAPTER I

CONCEPT OF INCREMENTAL COMPUTERSg

Introduction„

The current tendency in control field towards high degree of 

accuracy, reliability, as we11 as decision making and compatibility, 

has placed emphasis on the digital techniqueso The increasing size 

and complexity of control Systems, necessarily involves, the develop" 

ment of digital automatic control Systemso In this aim, the general 

purpose digital computers played the principal rôle in the first stagso

In parallel with the development of the general purpose, went 

the development of many spécial purpose techniques, which were found 

useful for implémentation of specialized devices for control computa™ 

tion and information processingo

Automatic process control is now a well established discipline 

encompassing a variety of techniques and methods, and in which compu­
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ter techniques are of increasing importanceo Direct Digital Control 

( DttDaGo ) is opening new possibilities of accuracy quality and 

economy of automatic process contrôle

Computer techniques offer practically unlimited possibilities 

for accuracy, speed and sophistication of integrated control Systemso

In view of requirement of modem control Systems, the speed of 

general purpose computer is completely insufficient for real time 

computation» Even an extremely large general purpose computer cannot 

handle the computation necessary for real time control Systems»

The time used in setting up and programming a problem may amount to 

weeks or even months» For most practical applications, vhere the pro­

blem is s-^lved in accordance with a previously prepared program, a 

general purpose computer is not neccessaryo In fact, in terms of the 

stated problem, such a computer ds unnecessarily^ con^lex and relati- 

vely inefficiente Large computers should be built only for large 

computing centers in which effective use of such computers is pos­

sible» Thus, technical and economicai taccors dictate the use of 

simpler, more reliable, economical md compact spécial purpose digi­

tal computers, for use in many applications»

During the last years, a new type of computer, based on the 

principle of digital intégration, uas oeen found increasingl/ wider 

application» Such computers, combining tne advantages of digital and 

analog machines, were first refered to digital differential einalyzers 

( DoDeAo )o Further development of digital differential analyzers
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evolved a class of incrémental computers, based on the principle of 

summation of incrémento There are two types of incrémental computers; 

the former is the incrémental computer with unitary euid fixed incré­

ments Ax = ±1 and Ay = ±1, which includes the digital differential 

analyzers ( D,D®Ao), the latter, wnich is a development of (DoDoAo), 

is new génération of incrémental compuuer with multuple in^z^mentSo 

( The incréments in the computation may taxe the multiple quantities 

of ±2°, ±2^, ±2^. »oo ±2^ )0

The high computing speed and operating efficiency of the incré­

mental computer resuit from the fact that :

a) the computer opérâtes with incréments of input quantities and 

not with the quantities themselves, as it is the case in the 

general purpose computers « This permits considérable increases 

in computing speed and in switching integrators,

b) due to the use of multiple incréments, the speed of intégration 

in incrément computer is multiplied by the factor 2^ compared 

with the unitary incrément (h = 1 ) which is used in Digital ^ 

Differential Analyzer ( DoD»Ao ) ,

c) by usine intégration as a basic operation, operations of inté­

gration, différentiation, multiplications, divisions, extrac­

tions of a rooth, logarithm calculations, and so on, take a 

time équivalent to two or three times of addition operationo 

This time is much smaller than in a general purpose computer,
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d) there Is no need to store the operation codes and znemory addres-

ses in the internai memory of incrément computer for use of in­

tégration, différentiation, multiplication and division of fun- 

ctionso .
I'a-

Consequently, the solution of a retively complex problem in the 

incrément computers does not reguire an internai memory of lar­

ge capacity,

e) with the increase in complexity and nonlinearity of the problem, 

the incrément computer becomes an even more effective machine, 

because the eunount of egulpment does not increase in proportion 

to the complexity of the problem,, The accuracy of incrément 

computer does not decrease with an increase in complexity of 

the problem,

f) in addition the incrément computer reailzes the basic mathemati- 

cal operation, as addition, substraction and multiplication of 

several values in one time of additiono It also performs the 

other basic mathematlcal and logical operations as general pur- 

pose computers

Therefore,the incrémental computers are much more rapid, econo- 

mical, compact and efficient than general purpose digital computer, and 

they hâve-the advantage of both anaiog and aigital computers»

However, because of the discrète nature of incrémental compu­

ter* s operations, an incrémental computer realizes the approximated
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value of intégration and not the original one.

In chapter one, we are going to explain the principal of incré­

ment computers and their operation.

In chapter two, the different algorithme of intégration and | 

their errors are calculated in a general case for unitary or multiple 

incrémental computation, when the independent variable of intégral X 

is equal to, or is a function of the independent variable t of the 

machine.

In chapter three, we will study the quantization process and the 

quantization error in unitary or multiple incrémental computation, when 

the independent variable of intégral X is equal to or is a function of 

the independent variable t •

In chapter four and five, we calculate the round off error, 

transmission error, the total error and the way of their minimization 

by the appropriate choice of algorithms which are applied to the ma­

chine.

In chapter six, we explain the design, development and construc­

tion of a new génération of incrémental computers, that the author 

hâve developed in the industrial electronics laboratory of the Uni- 

versity of Brussels.
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1 a 1 The basic operation of a new type o£ Incrémental Contptiters o

The need for simple, compact digital computers suitable 

for solving différentiel équations, automatic control simulation 

and optimization led to the development of a spécial type of 

control computer which is called the incrémental computer»

In ordinàry computation, the function must be évaluated 

anew for each value requlred» This computation method conducts 

to complex and time-consuming procedures®

Another approach is to compute just the incrément of the 

function from ai évaluation to the next» Two characterlstics of 

this approach are :

The value of the incrément between successive évaluations are 

smaller than the values of the function itself Æ 

The variation of a function is slmpler than the function itself, 

These characterlstics make possible some very simple computers, 

in terms of hardware and loglc» Any function can be determined 

by its initial value and its variation in time, which is called 

the incrément of function.

For instance, the function y (x), can be determined by its 

initial condition (Xq , yp) ^^s incréments 6x and 6y,

As it is seen from figure (1 - 1) the function y (x) can be 

complétély determined in time as :
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In initial condition xo Yo
M Instant Xi = Xq + = Yo + Y
f( II X2 = xi + 62 X Y2 = y 1 + 62 y

fl II
^i " ^i-1 + X ^i = Vl-1

As incrémental computers are digital machines, instead of

using the initial values (Xq, Vq), and the incréments 6^x, 6^y, they

use their quantized values Yq^) ^io^' ^iO^'

shown in figure (1 - 2) .

Therefore there is an error c, i between the oriainal valueslOx lOy

of fxinction (x) and its approximated quantized values which 

is defined as :

r-

e =x.-x.^ /,
iOx 1 iQ (1-1)

^ = V . - V. ^
iOy “1 “ lO

The quantized function y^^ (x) is determined with the initial 

values (Xçjpf Yqo^ quantized incrément •

x_ = X,. ,H ^ «XlO (i-l)Q lO (1 - 2)

- iO = v (i-l)Q

There are two kinds of incrémental Computers ; unitary 

incrément computer and multiple incrément computer.

The unitary incrément computers includes the Digital
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Differntial Analyzer (D.D.A.). In this kind of computers, the

incréments ^ x and * y are fixed and limited to ±1 or 0.
1

So it is not possible to treat functions which varies rapidly in 

time, because the fvinction y (x) can only change by the quantum Ay 

for each interval ùx. Fig. (1 - 3) .

The multiple incrément computers are a new type of machines 

which operate on multiple or variable incréments 

So it is possible to treat functions which varies rapidly in

time, because the function y (x) can change by the 6y = 2 • .Ay 

for each interval 6x = 2^* (h' 0)* (1-4).

Therefore these kind of computation havé a great advantages 

o.ver the unitary incrément computers because of their flexibility 

and ability to operate with any rapid function.

One of the principal operation of incrémental computers is 

the intégration, which can be down with unitary or multiple 

incréments.

The intégral operation by unitary incrémental computation 

is the basic operation of digital differential Analyzer (D.D.A.). 

In this case, the stepof intégration is the quantum ax, which can 

hâve the logical value +1 or 0.

Therefore the approximated value of intégral ^Q(t) is :



9

y(x)

Fig 1-2

Figl -3 Fig 1-4
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Where

S
Q

(t)
k

dq. * ^ IQ (1 - 3)

A X = ± 1 or 0

The value of 

multiplied by 

interval x (x^, x

V is chocs in in such a way that when
^i éq.
it give the intégral of the function in

with any desired accuracy, (fig« 1.5c).

The new method of intégral operation is based on the

principal of multiple incrément Computation. In this case

instead of using small step of intégration equal to the quantum
r

àXf we use a large S'bep = 2 Therefore tihe speed o£

intégration will increase by the factor 2 t compared to D.DoA. 

The intégral function ^ interval x ^i+l) *

• ■

6 S » 
iQ ^i éq.

Where

6 X “ 2 . A X
iQ

r
iQ

6 Y = 2 . A y
iQ

^r
iQ

6 2 . A s
iQ iQ

^i éq.
= f

f ^iQ^» ^iQ^' ^(i-l)Q^' ^(i-l)Q^'“*’
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interval x (x^, ^i+i) with any desired accuracy^a Fig» (1-6)»

We will study later on, the value of y . and the approximateX 9 6^ d

function of intégral in more detail.

The multiple incrément computation, has the great advantages 

of speed, versatility and flexibility over the vinitary incrément 

computation. In following discussion we shall treat the general 

case : The multiple incrément computation. The basic operation of

D.D.A, is a spécial case of multiple incrément for which r == o

The arithmetic unit which realize the intégration on the 

basis of multiple incrément computation is shown in fig» (1 - 7).

The input incréments are added in block II in order to find 

the value of function at each instant t^^ as :

.( > ^(i-l)Q^'“*° according to the choosen

aigorithm of machine gives the value of y^g » transfer to the

^iQ “ ^oQ ^
K

i=l

y^g register . After multiplication by the step of intégral 

\qX, resuit is added to the rest of intégral (from
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former itération i-1) and transfered to the S regis ter» if n and

h are the number of bits in y, and 6x register, then the nurtiber
éq

of bits in S register will be n + h o The most significant 

bits of S register, from n + 1 to n + h are taken as the 

approximated rounded off incrément of intégral t)«

’/i
5C

The output f S (t) ' transmitted to the input ô x and 6 y of 

other integrators, or is memorized in the incrément memoryo The 

rest of intégral J which is in the s register (bits Ito n) 

is memorized in the computer memory and will be used in next 

itération»

(1 - 5)

This operation is shown by the following équation»

itération i ®0(1-1) + Ï1 ëq.-' iQ'* ° ‘ iOt

itération i+1 ï(i+i) êq‘ * (1+1) q’' “ * (i+1) qm’

K

0(i+l)

By this method, the intégral operation is dore on the basic 

of multiple incrémental computation, with the input quantities

^iQX, ce O a , ^ I OUtpUt iS

the incrément of intégral 6 S*Mt)o
iQ
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The organlzatlon o£ the new serial type o£ Incrémental 

computer Is as followlng :

1 - Arlthmetlc unit

2 - Memory unit

3 - Control unit

4 - Programing unit

5 - Input output unit

The arithmetic unit of this incrémental computer operate the 

intégral operation on the basis of unitary or multiple incrémental 

computationo By a new method it performs the multiplication of 

two functions wlth higher accuracy« This unit also performs the 

basic mathematical operations as addition, substraction, 

multiplication, etc ..o in one time of addition and is also 

capable of decision making,

There are two memories for mémorisation of the values of the 

function y^^ ; the rest of intégral Soi or other intermediate 

results of computation.

The control unit gives ail the control puises for arithmetic 

unit, memory unit, programming unit and input output unit.

The new method of programming of incrémental computer is 

the patch panel using only one lead for transmitting the informa­

tion between the integrators in unitary or multiple incrément
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computation O Therefore a problem can be progreimmed on the patch 

panel exactly as on the analog computero

So the incrémental Computer has the advantages of the 

analog computer for intégration and simplicity of programming»

It also has the advantages of the digital computer for accuracy, 

decision making, mémorisation and ail the logical and basic 

mathematical operation.

This new type of machine has been devised by the author 

at the industrial electronics laboratory of Brussels üniversity.
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1.2» Data Processing In Incrémental computers »

The incrémental computers (IC) are one type of speclalized 

control deviceso This perta±ns-to-the computers in whichthe results 

of a given mathematical operation-are transmitted for use in another 

mathematicai operation bymeans of incréments.

Ail the quantities and the transformations in incrémental 

computers are merely incréments of initial quantities, v/hile at the 

completion stage of these transformations, the-results quantities are 

obtainedby the summing of the incréments.

Therefore, any variable in incrémental computer can be 

represented as the sum of-incréments.

n
X = I a

i=l

n

6 jXxi "i

y = I ^vi ‘ 
i=i ^ ^

n
Z = I a . • 6 Z

L i=l ^

Fig. (1 - 6 )

The ôx, ôy, 6z, are the incréments of the functions x, y,..

,,, Z and-the-coefficients a Syi# .... sequence orders

of incréments 6x, 6y, and 6z, v;hich dépend on the functions x, y, ,z.

The coefficients ^i* •••• ^zi hâve one of the three values 0, ±1



18

that détermines whether'the incréments ,»,o 6^z should

be added'(+l)r substracted <-l), or ineffective, to the former value 

of^x^^j^, 2^ to form ^i^ ©©©«o

For example > the fvinction y (x) which is replaced by the 

approximated-interpoiated-quantized function f j_Qy^3c) is represented

by ;

“ y(i-l)Q‘='> ■" ®iy ■ '*10^

or ^ r
ryiQ(x) = y„Q + • «igy

n
Xa = t. = x^ + y 6.x1 1 O i

a. = + 1
IX

(1“7)

(1“8)

The approximated quantized value y^^ and the order sequences 

of incréments-a^^y-are represented*in figure (lc9) ©

In the same way any function x^q, Y^q# ©oao. can be appro­

ximated by;

^ n

==iCl “ ==o ®lx ■

^iQ = ^6 ^ ®iy '

(1-9)
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n
Zj « = y + ï a. • ô .^z 
iQ O ^±1

s

So the value of each quantity at particular instar't’ , is 

obta±ned by accumülating;vthe individual incréments generated by the 

System throughout the time of its operation, on the basis of separate 

incréments arriving in time at the input of"^ the System which has the 

inhérent deiay'of T^with respect to the original continuons functions»

According to Shanon theory, any complex differential équation: 

c r • ' au _ • aj^/
y^/ ••O,, y^ / Y2f y2* •<'®“ Y2 f ‘“«y^ t

• •••• Y^t y'/ ...c. = O (1-10)ce g

can be solved-by the (IC), providedj it can be transformed to the 

following équation.

dy i,,=0 ^
(1-11)

le ~ 2^3^ao«n

y v/here y^ = 1 ( introduced - to make notation compact) ,(y^ )is the indépen­

dant variable and y^ , y^ , »o... y^^ are the dépendent variables.

The équation (1-11) can be written in the follov/ing form:

n
‘iyv = I

i, j=0
^ijk * Yi ‘



20

f (x, y , y , ... O. y', y', 
12 12 y (k) ^(k)

/ e • )

y, = X
(1-12)

k 2^3ÿo»ao n

(k is the number of integrator)

In ordertosolve the-équations (1-12) by the (IC), we should 

transform it-to the input-and output quantity of tho (IC). With this 

aim, it is assumed;

ijk • ^1 • = ■s«ijk

■3«ijk = ^ijk •

dz , = y * dy, ml -*m ^2

(1-13)

The first équation (1-13)/ can be written in three équations:

n
= I dç

\k j,i=0

‘^^ijk = ^ijk * ml (1-14)

= y— ■eq

in this équation, dz^^ = y^^ * dy^^ is the output of the integrator,

(y^^ is the équivalent value-of~y), It is connected to the input of

the integrator k by the programme matrice a. (a. .. = O or ± 1 isijk ijx n
determined by the programme)^, and the équation dyj^ = dç

i, j=l ijk
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gives the input variable yj^ of (IC) , which is the sum of the outputs 

of the other integrators, So, the model of (IC), for solving the 

differential équation, is shown in figure (lolO),

As it is seen from the figure (1.10), the output of the other

integrators dz^^ are connected to the input (k) » * • • "

^Yj ()c) integrator (k) , by the programme unit, which détermine

the matrice a... for the interconnection between the integrators. 
ij^

The values *^^ml' calculated by integrating

the équation in interval •

n
^i ^k “ ^^ i/j=0

'i+1

‘^^ijk

Xj

^i+1

'ijk^ ‘^ijk^

Xi+1
a dz , 
ijk ml

Xj

‘i+1

6Zml

(1-15)
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fige 1“9

fige1“10
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k = 2,3

In order to calcula te the intégral of input quantities

it would be necessary to hâve the informations of ®ijk

and ° dy^ in i intervalo But in practice, in the i^^ itération 

of the only informations which exist, are the informations of

former itérations, 1, 2, eooo (i-1), which are in the memoryo Therefore, 

ail the data hâve a delay of one machine cycle T, with respect to the 

quantized value of information® Of course, this delay is appeared in 

the transmission of data, to the inputs®

As it was seen, the quantization process produces an inhérent

delay 7" with respect to the continuons function® Here it is shown that

in the transmission of 4^ta, there will be an itération delay time T

in the input data of the intégrât or, compared with the quantized data

which should be available in the i jj^èration® The total delay of

data is 7"+TorT (1 + —) =T (1 + X),by assuming X = ^ ®
T T

Consequently, the informations that are available in the input 

of the integrators, from the above discussion, can be written as;

^^oQ' *^20^» 0 0 O O 6

6
(i-X-l)Q

^(i-X-l)Q^^

(1-16)
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The block diagram of (IC) wlll be as in the figure (loll)»

Now we will explain the resolution of différentiel équations, 

by the incrémental computer» As it was seen in order to solve the 

équation (1-10) by incrémental computer, it should transform to the 

following équations:

n
1

i,D=0
^^i jk

®ijk ‘ 1 iml

^im ° dyii

(1-17)

The third équation (1-17), is the integrator action, thei 

second one is the multiplier action by the constant Coefficients 

®ijk' first one are the summation of incrément, which give the

desired output The équation (1-17) can be programmed on the

incrémental computers, as it is shown in figure (lol2),

In the figure (1»12), the incrémental co^üter first opérâtes 

ail the intégrations, then it opérâtes ail the multiplications, and 

at last it opérâtes the summations»

But as it was discussed earlier, because of discret nature 

of the operation of the incrémental computer, and the delay of T (1+X) 

which is introduced, there will be an error in each operation.
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Intégration action Multiplication Summation action
action ,

Fig. Irl2
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In follbwing chapters, we shall calculate the error in unitary 

and multiple incrément computation for varions methods of intégration»

1,3e The numerical intégration in incrémental computers»

Numerical intégration is the study of how the numerical value 

of an intégral câh be found» There is the method of approximate 

intégration, where an intégral is approximated by a linear combination 

of the values of the integrand»

y dx = f(x) ° dx

(1-18)

= tüj f(x^) + fCx^) + «.O. +“k 

a < X < b

The jq , X 2» .0.0 Xj^ are k points usually chosen to lie so in 

the interval of intégration, and the numbers wj , «2 » are k

weights accompanylhg these points. Occasionally, the values of the 

dérivatives of the integrand appear on the right hand side of the 

équation ( 18 ) . Let's suppose that y = f (x) is a bounded function

on the finite interval (a, b), Partition the interyal (a, b) into k



subintervals by the points:

a = x_ < X ,< . e,, »0 12 = b

let be any points in the subintervals ^ ^i+1*

of :
k
I f (ç.) (x^ - Xj^)

is called ReJmand sum.

The approximate form of intégration in interval x<s(a, b) is:

b

y dx =

. a
k ->• »

Xi) (1-20)

where f (ç^) is an approximate function of y^^ « f (ç^) for interval 

ç<s (x^, ^i+1^» shown in figure (1,13),

If the independent varicüDle of intégral X is a function of the 

independent variable t of the machine, then the functions Y (t) and 

X (t) are replaced by the approximated interpolated functions f. (t) 

and (t) as following:

X (t) » f^x ^t) t<S-(t^, tj^+;L)

Y (t) fis
‘ly

(1-21)
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wherè

f ( t) — f ^ 1 ^ 2 ^ • O O » €

f±y (t) = f^y (Y^, yi_i, O

t)

t)
(1”22)

Then the general formula of intégral S (t) ,

S (t)

’b

a

X(t)
Y (t) d —=“ dt 

dt
(1-23)

te(a, b)

is replaced by the approximated interpolated function of integra! 

S“(t) as;

%0
S (t)

In general it is possible to interpolate the functibns f(t) , 

fiy (t) with any interpolation formula as Newton, Reiman, Stirting, 

Lagarangian, and so on, with any degree of accuracy, in interval 

t(t^, «

The polynomial formula of Interpolation is much used in physical 

and engineering problème, specially in the digital computer, whôse

k
I

i=l

'i+1

fiy (t) • â
dt

dt

(1-24)
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functions are transformed to the approximated polynomial functions„

But in incrémental computer, the informations which are transmited 

and opérated on, are in the incrément forms 6x, 6y, 6to Therefore, the 

first condition of interpolation function for incrémental computer is 

that, it must use the incréments of functions.

The Newton interpolation formula with forward informations in 

interval Xj^+i) # can be represented as;

fi(0 Yi + C 6^y +
ç (ç-1)

21

II
y +

ç(Ç“l) (ç-2)

31
6^ y+*"**

" (Ç*”l) e O , (3-n+l) {

ni

(n)
(1-25)

and I

^i y = ^ f ^""i^

II I Iy = y - «^y

As it is seen from équations (1-25), (1-26) and figure (1.14), 

the interpolation formula for each interval xs(xj^, x^^^) dépends on 

the information of the points Xj^, ^i+2' ^i+n°

The formula is called the Newton's interpolation formula with 

forward différences, This formula is useful, when we hâve forward 

informations of interval ç (xj^, , like the physical problem or

(1-26)
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igo 1.

y(x)

figol-13

Fig, 1«11
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experimental data®

But in incrémental machine, in itération i, the only information 

that may exist in the memory, is the information of former itération 

i-1, i“2, i-3, O 0... 0,10 Therefore, the second condition of the 

interpolation formula is that, it should use backward différence data, 

or the incréments of former itération» The Newton's interpolation for­

mula with backward différences, in interval Çe(x^, is:

fi(Ç) = “ Ç * qy -
ç(ç+l) Il

21
6. y -

(1-27)

ç(ç+l) (ç+2)

31

.IIIy -
ç (ç+1) (ç+2) . c. (ç+n-l).(n)

ni

where

*1 y = f (Xj^) - f (x^_i)

(1-28)

By using the équation (1-27), the intégral of interpolated 

function in interval x<s(x^, will be as following:

6^ s =-6^x

-1

f (O dç (1-29)

O
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-
I 1

çyi-------- 6 y - — (— + —) 6 y
2 ^ 2 3 2 ^

-- (— + ç3 + ç2) 6, y - -— (““ + 
64 ^ 24 5

3ç*» llç3 

2 3
+ _ + __ + 3ç2) g-—y _III

O O 0 O O
-1

O

= y, * 6.x +
1 1 II
““ 6.x * 6.y + --------6.x “ 6.y +
2 ^ 12 ^ ^

^ III , IV
----- 6.x * 6.y + -------- 6,x • 67 y + .
24 720 ^

(1-30)

X<S(X£,

in the formula (1-30), if we choose the first term of right hand side, 

we will hâve:

«fS “ yjL * «iX (1-31)

that is the approximate intégration formula of the rectangular méthode

By choosing the first two terms of right hand side of the 

équation (1-30), we will hâve;

1
6^s = y. ' 6.x + 6.x ° 6.y
i ■'il O 1 i-'

x^(Xi» Xi+i

(1-32)
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The formula (1-32) is the approximate formula of the trapézoïdal 

method of intégration®

The Newton's interpolation formula with backward différence 

informations, is very useful in interpolating the functions X (t) and 

Y (t) .

In the following chapter we use the Newton's interpolation 

formula for unitasry and multiple incrémental computations.
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CHAPTER II

THE METHODE AND ERRORS OF INTEGRATION IN INCREMENTAL

COMPUTATION

2,1, The methods and errors of Intégration In Incrémental computation 

when the Independent variable of Intégral x Is the Indépendant varla- 

ble t»

If we hâve the continuous function y(x), where the independent 

variable x is the variable t of machine , the intégral S(x) in inter­

val X 6 (x , X ) will be:
O k

S(x)

X
k

y(x) dx

X

(2-1)

O
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Considering the y (x) function in the interval x é(x ,x ).
O k

There are infinit points (x,y,) between which are necessary

for calculating the exact value of intégral in the interval x<s(?f -v u
O k

But in practice, because it is the time consuming for calculating the

infinit points (x,y) in interval x<s(x ,x ) , and also it is too expen-
o k

sive to construct the machine for calculating the infinit points in 

this interval with infinit capacity of raemory^therefore we are obliged 

to use some points (x,y) in interval xeCx^^x^^), let us say 

(i=o,l,2,, e .k) fig. (2-1), So there is an error between the exact 

value of function y(x) and the interpolated function which use

the finit point x^^,y^,,,. (i=l,2,,, ,k)

The error between the actual function y(x) and inter­

polated function f^y (x) in each internai x e‘(Xj^are:

^iy " ^iy ^

(x) - X (x)
(2-2)

as X = t then e, = o (2-3)ix

by putting the value of y(x) and from équations (2-2) and (2-3) in 

équation (2-1), we wiil hâve:

k
s(x) = };

i=l
(f. (x) -e. ) dx

iy ly
(2-4)
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k
» I
i=l

"i+1

fl„(x) - I 
ly i=i

iH

‘i+1

e. dx (2-5) 
iy

x) + r (x)

or

s"(x)= I
loi

k
r(x)= -I

1=1

1+1
fj^y(X) dx

1+1
e. dx Iv

(2-6)

(2-7)

K
where S (x) la a^proxlmated Interpolated fomula o£ Intégration and 

r (x) la the error o£ method In the proceaa o£ Intégration. The error 

of method r(x) dependa to the degree of Interpolation fonction 

whlch le ua.ed. In, the followlng paragraphe we wlll calculate the error 

of method r (x) for different method of Intégration.

2.1.1. Intégration by the Interpolated cttotangular formula Ifi ufilt&rv 

or multiple Incrément computation.

The almplest method of Intégration la the rectangular method, 

when the Indépendant variable of Intégration x la aame aa the indépen­

dant variable tof machine.

In the rectançnolar method of intégration the interpolation
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function (x) which is replaced to y(x) in interval x<^(xi,x^^^)

is the first tenu of Newton interpolation formula. Therefoie the inter­

polation function as it is shcwn in figure (2.2) will be:

(2-8)

The error between the actual function y(x) and interpolated 

function f^y can be find by the following expression:

^iy ^ ^2-9)

The formula of intégration 6^s in interval x<S^(Xj^,x^^^) is:

ôfS
^i+1

y (x) dx (2-10)

if we put the équation (2-9) in équation (2-10) we will

hâve:

’^i+l

•^i

■ly
- e. ] dx

iy
(2-11)

The intégral formula s (x) for ail le interval will be:

s(x)= I «. s = ^ 
i*l i i=l

^i+1

[fiy (X) -e^y] dx (2-12)
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fig» 2«2o



39

k
= l
i = l

i + ^

(x) dx - I
T y i=i

X. 1

e . dx
ly

(2-13)

= s" (x) + r (x) (2-14)

0%

where s (x) is the approximated interpolated function of intégral, 

and r(x) is the Miur of method.

In order to calculate the error or method r(x), we should hâve 

y(x) and f^y (x)o The exact value of function y(x) in internai 

xS (x^-,x^^.-| ) ciap be-found by the infinit points (x^,y^,.cc i =1 ,2,,, o») 

from Newtoh interpolation forrntla as following:

I ç(çtJ-). II ç(ç+l)(€îr2) III
y(x) “y,* “ y ' ------— <5 y - ——^——------ - 6 y . »

^ i ?! i 3 ! i

tvC+1)(ç+2)

n !
---------------«• 'y 0 0 0 0 0 (2-15)

from équation (2-8), (2-9) and (2-15) the will be

(x) - y(x) iy ly J \ / (2-16)

= Ç 6.y
I ç(ç + l) TT Ç.(Ç + l)(Ç + 2) jjj
.y + __ fiily + ................. 6. y +,

2! 1 3! ^3!
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ç(ç+l)(ç+2)... (E+n-l)
+ --------------------------------------------------------- 5 ’y+... (2-17)

n ^

in practice we can neglect the second and others ternis of in équa­

tion (2-16) and (2-17) with respect to the first one so e,^ will be as 

fol 1owing ;

(2-18)

Putting the équation (2-8) and (2-18) in équation (2-13), and 

tacking the intégral in interval xe(xj,x^^^) or çe(-l,0), then we 

will hâve:

s(x) =
k "1+1

f. (x)dx - I 
i=i

"i+i

^iydx (2-19)

k
"I <5X 
i=l

y^. dç + ^ 6x 
i =1

ç*6^y dç (2-20)

k

1^1
X +

k 1

J, T «y ÔX
i

(2-21)

= s” (x) + r^(x) (2-22)

Frotn équations (2-19), (2-20), (2-21 ) and (2-22), the approximated 

interpolated formula of intégral S" (x) which is the algorithm of machine 

i s :
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s" (X) = T y • s,: 
1=1

(2-23)

and the error of method Tj(x) is

k 1
r (x) = I — 6.x ° 6.y as 6.y = y’(ç) 6.x

1=1 2 ^ ^ 1 1

(2-24)

k 1 2
Fj(x) = I — 6.x • y* (ç) 

1=1 2

In the case ofunltary Incrémental computer, 6x 

so the équation (2-25) can'be wr1tten ass

= AX =

(2-25)

1 (X|, = x^) k
r (X) = — ■ ° I y*(ç) çe(x.,x. ^)

1 2 k2 1=1 ^
as suming

then

1 k
y'(s,) = — ï y'(?)' k 1 = 1

«,e(X(,.x^)

1
r (x) = —

^ 2

(Xk"X ) y.( )
k ‘

(2-26)

It can be shown that |y'(ç)| ^
I (Ay)

where b 1s the number
Ax

of Ay Input of the 1 ntegrator^ 1 n oui machine b = 7. So the error of

method r^(x) for unitary-1ncremental computer wlll be

r,(x) < —iy (X^-X^) (2-26)

The équation (2-23) gtves the algorithms of rectangular method 

of-Intégration assum1ngf^y=y^o But Ifwe assume ;
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^iy “ ^i+1

Then the algorithms of rectangular method w1ll be:

(2-27)

(2-28)

and the error of th1s method will be:

k #■(X) - r^M6.x)" y* (O ç (Xi.x ) (2-29)
^ i=l 2 ^

The actual value of intégral s(x) is between the s‘*(x) and s“ (x)

as :

where:

So (x) > s(x)> s" (x)

=; (X) = y,.»,

(2-30)

(2-31)

= J,

2„1,2» Intégration by the interpolated trapezoidal formula in unitary 

or multiple incrément computation.

In trapezoidal method, the interpolation fonction f^^ (x) which 

is replaced to y (x) in internai xs:(x^,x^^^) is the first two terms 

of Newton interpolation formula (eq,2-15) in internai xe’(x^,x. ^), as 

fol 1owing:
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(x) = y,- " 5*

or ç ^0,-1) (2-32)

As it is seen from figures (2-3,4)^ in trapezoidal method, the 

y (x) is interpolated lineary in interval x , therefore it

has less error than the rectangular method. If we assiame the error e
iy

between the actual function y (x) and the approximate interpolated

fonction f (x) in interval x<s:(x, ,x^ ),
iy i i+1

Then we will hâve:

^iy "" ^i ^
(2-33)

The intégral formula, in interval x e(x^,x^_j_j^) , is

6j^s =
‘i+1

y (x) dx

if we put the y (x) from

équation (2-33) in équation (2-34), then:

(2-34)

6iS =
‘i+1

[f (x) - E ] dx
y iy

(2-35)

As we assumed x is indépendant variable of machine therefore

= fjç (x) - X(x) = O
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figo 2o3o

figo 2o4
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In order to find the value of intégral (2-35), we should find

y (X), (X).

The exact value of y (x) can be found with infinit points 

(Xi, Y(i=l, 2,,,..,® ) ). From Newton interpolation formula 

(eq. 2-15; •

From équation (2-32), (2-33), and (2-15), the e can be find
iy

as following:

c
iy

ç(ç+l) ç(ç+l)(ç+2)
f (X) - y (X) --------------- y +...........- .........
iy 2! i 31

• . y +«.. 
1

ç (ç+l) (ç+2) .,, (ç^ -1) (n)
----------------------------------------------------

U 1
(2-36)

In practice we can neglect the second and others tenus of e ,
^y

with respect to the first one, Therefore the e^y from équation (2-36) 

will be:

■iy

ç(ç+l)

2!
y (2-37)

By putting the from équation (2-37) and f^^ (x) from équation

(2-32) in the intégral formula (2-35), we will hâve;

i+1

i-1

[y, - ç* 6^ y “
ç(ç+l)

6^^ y] dx 
i

6 s 
i 21
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By changing variable xe:(x^, to Ç (-1,0) as before

we will hâve:

" =
- 6x

J Ç(Ç+1) II
[y _ Ç«f V - -------— ( _ y]
i i 2! 1

- 6X

2 3 2
^ . I 1 Ç Ç

2 i 2! 3 2

-1

0

6x
II 1 II

+ y ---- f 7 +---- -- 6 (y)
^ 2 i 12 i

The équation (2-41) can be written as:

^ (I) ^ IT; s = y. * 6x +—- 6^ +— f (y)*
1 1 2 i 12 ^

ôx

If we assume the approximated interpolated intégration 6' 

interval xs(x^,x^^^) , be equal to:

1
6^S = Yj^ ' Y * 'SjXfl) y . ...

2 i i

(2-38)

dç

(2-39)

I •

(2-40)

(2-41)

(2-42) 

‘s in

(2-43)

Then the équation (2-42) can be written as:
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6.s = 6/ s + r (x) xs(x. ,x ) (2‘
111 1 ±^2.

In équation (2-44) the 6j|^s is the real value of intégral, 

is the approximated interpolated value, and the r^(x) is the error 

method in this interval, which can be find from équation (2-42), ( 

and (2-44) as following:

1^ (x) = 6^^ (y).6x xe(x^,x^^^)

The inteqrax rormule for k will be:

k
S(x) = I 6 s (x) 

i=l ^

(2

(2

(2

k 1 kl (II)
= I (y. «X +—^6y • ôx) + ^ ------ ôy ‘ 6x

i=l ^ ^ i i i=l 12 1
(2-

The approximated interpolated function of intégral s (x) for 

k interval will be:

** / s ( X) = î 6*; s
i=l i

(2-

Ic
I (y-i ‘ <5. X +------ 6. y ' 6.x)

jL SS 1 ^

44)

(x)

of

-43)

45)

46)

47)

•48)

49)

(2-50)



48

and the error of method is:

r(x) r
i=l ^

(X)

by uslng

we will hâve

k 1 

i=l 12
«Y

6^^ (y) = y". (6x)

k 1 3
r(x) = I ------- (6x) *y" (X)

i=l 12

In the case of unitary incrément 6x = Ax, 4y = ûy and

Ax =’
Xk"Xo

asstimlngt
1 k

y"(ç) ------- I y" (X)
' k i=l » O k

then the error of method r(x) is:

k 1
r(x) = I ------ (AX) . -y'» (X)

i=l 12 ^

k 1 (x.-x^,
= I -----  • _JS_° . y- (JC)

i=l 12 k3

1 (X -X )3

(2-51)

(2-52)

(2-53)

(2-54)

(2-55)

(2-56)

12
(2-57)
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or:
r (x) = "

12

It can be shown that y”(ç)<

(2-58)

max as b = 7, so the error
(ax)2

of method F(x) for unitary incrémental computer will be:

r (x) < Ay (x,-x^) 
12 ^ °

(2-59)

By comparing the error-of rectangular method (eq» 2-26), and the 

error of trapézoïdal method-(2-58) , it is clear that by increasing k, 

the error in trapezoidalforraulaisdecreasing more rapide than the 

rectangular method, in others'words, the error in the trapézoïdal method 

isdecreaaing k time more'rapide than the rectangular méthode

2ele3O Intégration by the three points formula in unitary or multiple 

incrément computation e

The interpolation function f^^ (x) which is replaced to y (x) 

in interval Xi^(x^,x^_i.j^) , is the first three terms of Newton interpola­

tion, in other words, f^^-(x) use the information of three points, 

(Xi^.1# » (x^/ y^) and (x^_^f ^i-l^ " figure (2e5) c

ç(ç+l)
y^iy = yi “ Ç

21
(2-60)
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fig, 2o6 X
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çe(-l,0) or

where

f^y (X) = f , (x^,y^) ,

There is an error between the actual function y (x) and the 

interpolated function (x) which can be find by the expression;

Eiy = (x) - y (x) (2-61)

The formula of intégration in interval x e:(x^,Xj|^^]L)

6^ s “

If we put the value of y (x) from équation (2-61) in équation 

(2-62), we will hâve;

X
1+1

X.

y (x) dx (2-62)

s =

X
i+1

’-^iy ” ^iy

(2-63)

for k Interval the intégral formula s (x) will bej

k
s(x) = I ô s(x) 

i=l ^
(2-64)
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k
l

i=l

'i+1

e . (x) ] dx
iy

(2-65)

y

In order to calculate the équation (2-65), we should hâve the

(x) , t. and (x) . 
iy iy

The value of y (x) can be found with infinit points of

C (i®*l# 2^***«b»o®°) 3

from Newton interpolation formula (eq«2-15) for i=«. From équa­

tion (2-60)f (2-61) and (2-15) , the can be found as following.

ç(ç+l)(ç+2)
^ - y (x) = +—----------------------- (S. y +

iy iy 3j 1

ç(ç+1)(ç+2)...(ç+n-1) , ,
+ --------- ------------ - + .... (2-66)

ni i

if we nsglect the second and other terms of 

the first one, we will hâve:

with respect to 
iy

"iy

ç(ç+l)(ç+2)
+ ------------———

31 i
y (2-67)

By putting the 

(2-65) we will hâve:

e. from (2-67) and f
iy

from (2-60) in équation

£
i

s £x yi-ç (y)
C(ç+1) Il
—— 6. (y) - 

21 ^
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ç(ç+l)(ç+2) jjj'

TT~ 'y
dç

^ Il ^ ,ITI.6x [y +-------6y +------- 6 y +------- 6. Y]
^ 2 ^ 12 ^ 24 ^

(2-69)

1

2
^ II III

y. 6x +■— ôy. 6x +—— 6. y 6x +“—(5.y &y.
1 », 1 i 12^

1

24 (2-70)

.IIby putting 6^ y <= ô^^y - 5^_j^y in équation (2-70), we will hâve:

1
6^ S (x) = y^ Ô^x +-------ô^y * 6^x +------- 6^

2 12

24
6 y^^^* 6x (2-71)

is:

as the approximated interpolated function in interval xe(x^,xj|^^]^)

6
i

1
6x +-------6x
i 2 i

1
ôy +'------- (ôx*6y -6, ,y*6x)
i 12 i ^ i

(2-72)

then équation (2-71) can be written as following:

6^ s(x) = ô^s« (x) + (X) (2-73)

where r^(x) is the error of method in interval x <s(x^,x^^^^)

^ III
which is equal to: r (x) = +------- 6^ • 6 y (2-74)

i 1 i
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The intégral formula s (x) for k interval can be found from 

équation (2-73) as followingî

s (x) î «1 s
i=l ^

(X) (2-75)

I 6 s«(x) + l T
i=l ^ i=l ^

(x) (2-76)

i\. X J.
I (yJ «X +— 6y^ «x

i=l ^ 1 2 12 ^ i

k 1 III
---------6y, ,‘fix) + I ---------- 6x*6.; y

12 ^ i i=l 24
(2-77)

= s’'(x) + r(x) (2^78)«

where s*'(x) is the approximated interpolated intégration function for 

k interval as:

(x) = I (y. 6x +-------6y. 6x +------- (6y *6:
i=l 1 2 ^ i 12 ^ i

X -

- «y^.i ^x) ) (2-78)

and the error of method in k interval ia:

r(x) = I +------- 6x*6^^^^y
i=l 24 ^ ■ ■

(2-79)
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by using

= i " ' (X) (6j^x)^

the équation (2-79) will be:

k 1
r(x) = I +------- (6.x) ‘y"'

i=l 24 ^
(X)

Therefore the algorithme and errors o£ Intégration are:

s(x) = s" (x) + r (x)

s'‘(x)

eq

k

^ ^eq i=l
6iX

y, +—6y. +— 
^ 2 ^ 12

k 1

(«y. - 6y ) 
•^i-1

r(x) = I +-------(â.x) y "• (x) xe(x.,
i=l 24 ^ ^

In the case of unitary incrément computation 6x = Ax =■

so:

1 k (x,-X )
r(x) =------- I _iS___£_y'*' (X)

24 i=l k*»

(2-80)

(2-81)

^i+1^

(2-82)
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assiimlng

1 k
(Ç) =-----  I y"' (X) ç.<e:(x-,x,) (2-83)

' k i=l ± U «.

thenthe équation (2-82) can be wrltten as:

1 (x.-x^)*» (2-84)
r(x) =4—•-—y'" (Cl) Cie(xQ,xv)

24 k3 1 X «

if the maximuia or y“ * ‘ (ç, ) in interval C ^ (x ,x, ) is M:
1 1 O k

[y"’ (O ] = M
' max

then the équation (2-84) is writteh as:

r (x)
1 (Xt, fX^) -

+------ -------^ M
24 k3

(2-85)

By comparing tne «rrorrof rectangular method :in^équation (2-26) 

and the error of second order method> (eq.(2-84) it is clear that, by 

increasing k, the error df second order formula is decreasing more 

rapide thanrectangular method to zéro. In otherwords, in second order 

interpoiatioti the error decreasing'k^ tljne more rapide: than rectangular

method
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2,2, The method of intégration In Incrémental computation when thé 

Independent variable of intégration x le a functlon of the indépen­

dant variable ^ •

We hâve 4iscused the algorithms of Intégration in the Incrémen­

tal compe^al^eii^ ^i&eii the Independent variable of Intégral x Is the 

independent variable t of machine, So we hâve interpolated the y (x) 

function by f^y (x) as followingi

y (x)- «t f^y (x) X = t

and the intégral formula

s (x) y dx (2-101)

was replaced by the approxlmated intégration formula s^(x) ast

s** (x) f^y (x) dx (2-102)

if the input dx of integrator is not time, but a function of time^llke 

X (t) then the y (x) function will be a function of time t emd the 

équation (2-lCI) can.be written as<

s (t)
x(t)

(t) *d ---------- dt
dt

(2-103)
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The intégral formula for interval xetx^ is:

6s (t)
x(t)

(t) *d---------- *dt
dt

te(t
i'^i+1^

(2-104)

“At
for instance for generating e sin ut

as it is shcun in figure (2-8) , the variable of intégrai ors (2) and 

(3) are:

X (t) = e”'^^ y (t) = e'^^^sln „t

Therefore each integrator in general can be represented as in 

figure (2-9).

The function X (t) and Y (t) are replaced with their approxima-

ted interpolated value f^^ and fj^y*

The interpolated functions fj^^ (t) and f^^ (t) in interval 

xe(x^ ,Xj^^j^) ,as it was discussed before should use the backviard infor­

mation in the fosrm of incréments.

As it is seen from figures (2-10) and (2-11) the interpolated 

ftanctions f^^^ (t) and f^^ (t) , in interva* xe(Xj^,Xj^^j^) , use the p back- 

word points information, as following:

ix (t) = f^ [x^, 6x^,

•i'
6t. 6t

i-1' • 9 “i-p’ (2-105)
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1

fig. 2o9
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f ig O 2

fig.

■iX

2«11
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*ly ' S ^i-1' ^1-2...............

^1-p' *^i' *1' ^i-i'-”' *^i-pJ

As it was discussed earlier, there are the error e. and e. #
ix iy

between the actual functions X (t) , Y (t) and the interpolated func- 

tion (t) , fiy (t) in interval t er(t^as;

/
= ^ix “ X (t)

,^iy = ^iy - ^

(2-106)

if v;e put the value of équations (2-105) and (2-106) in équation 

(2-104), we will hâve;

s(t) =

'i+1 X(t)
Y (t) -d— dt 

dt
(2-107)

'i+1

[f.
ly

[f “E. ]
e, ] d—— — dt
iy dt

(2-108)

'i+1

f . d-.^ dt +
dt
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'i+1
r ^ /i4-C- d ---------- dt f , d -12L

yi dt

'i+i

a-i^ at
'i+1

/I
«=iv

dt

'i+1

fyi d-
'Ix

dt
dt

i+1
e, a—iï at 
iy at

The intégral formula for k interval wlll be:

s (t) I 'ii=l ^
s (t)

s (t) =
k

I
i=l

'i+1 f, k
dt + j;

r
■ly at i=l

'i+1

e. d"
iy

'i+1
c ix

at t

ti+1

e.„ d—Î2. dt-iy dt

The approximated interpolated functirm of intégral in

xe(xi, , is;

dt] (2-109)

(2-110)

(2-111)

dt

(2-■1.12)

interval
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6^ s«(t)

'i+1

■iy
■d—^ dt 

dt
(2-113)

which instead of Y (t) and X (t) their approxlmated interpolated func- 

tlons are used. So the approxlmated intégration formula for

k interval will be:

s«(t) = I s«(t) 
i=l

k

= l
i=l

^i+1
^ix

» d-^ dt 
■ “ dt

(2-114)

(2-115)

By putting the équation (2-114) and (2-115) in équation (2-112) 

we will hâve:

s(t) = s’*(t) + r(t) (2-116)

where s (t) is the exact value of intégration, s’Mt) is the approxima- 

ted value of intégration, and r(t) is the error of method which has 

the following value:

r(t)
k
l

ioi

'i+1
fix

t. d—— dt 
di.



dt (2-117)

^i+1 ft
. , ^ix ,
f d---------- dt +
iy dt

i+l

e, d-
iy

ix
dt

2,2.1, Intégration by the general interpolation formula in unitary or

multiple incrément conçutation.

As it was dj scussed before the general formula of intégration 

s (t) in interval ^ is;

s(t)
X(t)

(t) 'd------------ dt
dt

(2-118)

and the approximated interpolated formula of intégral 6^ s^(t) which 

is the algorithm of machine is;

6^ s^Mt) (t) d
dt

dt (2-119)

In order to calculate the approximated interpolated formula of 

intégral 6 . s"(t) from équation (2-119), we should hâve f. and Ç 

as following:

ç(ç+l)
- Ç 6x. — v<â>

Ç(Ç+1)(ç+2)

21 31
• • «
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f±y = Yi - r«Yi -
ç(ç+l) (2) ç(ç+l)(ç+2) (3j

ôy 6y.
21 ^ 31

(2-120)

By changing the variable tto ç<s:(-l,0) in équation 

(2-119) we will hâve;

6^ S'-(t) =

-1
fix(0

fiv U) *d—----------dç
dç

çe(-l,0) (2-121)

in order to calculate the équation (2-121) we should calculate the

^ix
d-------------------, this value can be calculated from équation

dç

(2-120) as folJnwing;

fi^

dç

2 1
= ----------(2Ç+D6.X---------— (3Ç+6Ç+2)6 X -

21 ^31 i

3 2
(4ç +18Ç +23Ç +6) /!♦

4!

A^yôiX - (2-122)

fix(U
by putting the value of f. (ç)from équation (2-120) and d--------------

ly dç
from

équation (2-122) in équation (2-121) will hâve;

-1
O -S” = ty^ - Çôy^ -

Ç(Ç+1) 2 Ç(Ç+D(Ç+2) 3

21
6y^ -

3!
ôy^-,. ]•
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. t- ..X --i- i:i (2Ç+1) -------  6,x (3ç'+ 6ç + 2)
i O I 121

1 (3) .. 2

31

^ 3 2
-------- é X (4ç + 18Ç + 22Ç +

41 i
6)—Odç

1 2 (2) 1 (3\ 3 2
• Ç—- (ç+ç) 6^x (Ç + 35 + 2Ç) +

2 3 2
Ç «Yi (2) 2C Ç

+—_ôy. *6.x + — èxi (------ —
2 ■ ^ 21 ^ 3 2

3ç 3 2

31
(-------- + 2ç +ç )4

21
ôy^*6x^ (.

3 2 2 3
^ ^ ''^1 ^yj

3 2 4

2ç 3 5
(— +ç +------) +

4 2

1 3 Ç 3 2
+— 6y. *6Xx (— +ç +4 ) + . 

31 4
(2-123)

= 4 y. 6x^ 4-^6y^ • 6x^ 4>^ 6y^ * 6x^ —^ 6y^ * 6^^ +.

1
+-------- ôy, • 6 X---------- 6y * 6,x 4

24 1 i 24 ^ ^
(2-124)

The approxîmated interpolated formula of intégral s"(x) for 

k interval will be:

k
S“(x) = I [y. ôx.

i=l ^ ^

1 1
4--------6y * 6x. 4——

2 ^ ^12
(i y^ ôx^ - 6y^ ôx^ î 4
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+------- (6 6.x - 6y. • P.k + ] (2-125)
24 1 1 11

The équation (2-125> Isthe general formula of Intégration whlch 

Is based on the Newton Interpolation formula.

2«2«2, Intégration by the Interpolatedrectangular formula In unltary 

or multiple Incrément computation.

By chooslng the flrst terme of équation (2-124)# the algorlthm 

of Intégral In Interval wlll be:

ôi s"= y^ fiX^ (2-126)

the le the approxlmated formula of Intégration whlch use the

Information of point (x^^y^) In Interval ter(t^^t^^jL^ » équation

(2-124) can ot wrltten as:

6^ s(x,y) = 5^ s«(x>y) + ^x,ÿ) (2-127)

where 6^ s (x,y) Is the actual value of Intégral^ In Interyal te: 

e:(tj^,t^^j^) , 6j^ s“(x,y) Is the approxlmated value of ;Intégral whlch is 

the algorlthm of machine, and (x,y) is the error of method in +-his 

interval, tnar can be calculated from équations (2f*124) > (2-126) and 

(2-127) as followingt

1 1 (2) (2)
(x,y) ---------6y^ *6x^ +— (6 - 6y^ 6x^ ) +..

2 12
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+------- à.x. - 6y, • 6.x^^ ) +... (2-128)
24 1 1 il

by using the équation (2-127) we can find the intégral formula for 

k interval as:

k
s (x,y) >= I 6 s(x,y) (2-129)

i=l ^

k k
= I «Si s«(x,y) + I r (x,y) (2-130)

i=l ^ i=l i

The algorithms of intégration for ail k interval, can be found 

from équation (2-126) and (2-130) as following:

k
S“(x,y) = I 6. S”(x,y) (2-131)

i=l ^

k
= I

i=l
^i 6x i

so the équation (2-120) can be written as:

s(x,y) = s'HXfY) + r(x,y) (2-132)

where s(x,y) is the actual value of intégration, s^(x,y) is the 

approximated value of intégration which is the algorithmof machine, 

and r{x,y) is the error of method which is equal to:
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X (2,\ (
r(x,y) = ï * fi.x +—- (6y; * 6.x - 6y. * 6,^ M

1=1 2 ^ ^ 12 ^ ^ ^ ^

+— 6^x - 6yj^ • 6x^®> )+•.... ] (2-133)

2.2.3. Intégration by the Interpolated trapézoïdal formula In unltary 

or multiple Incrément computation.

In trapézoïdal method o£ Intégration, the Y (t) and X (t) func-

tlons are Interpolated llneary, In other words, It use the Information
•1

of two points tj^ and ^1+1» In Interval ts(t^,t^^^) as It Is shcwi In 

figure (2-12) and at the équation (2-134).

X (t) » <X^, t^, tj_^j^)

Y (t) “ f^y (yj., yi+i, t^, t^+i)
(2-134)

by chooslng the flrst two terme of équation (2-124) wl wlll havet

6^ S«(x) = y^ * +—
2

(2-135)

The équation (2-124) can be wrltten as:

6^ s(x) = 6^ S»<(x) + (x) (2-136)

where 6^ s (x) Is the actual value of Intégration, 6^ s^(x) Is the 

approxlmated value, and (x) Is the error of method In Interval
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x(t)

fig. 2ol2,
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X which from équation (2-125) , (2-135) and (2-136) can be

calculated as:

(x) ------- • i^^) +

+------ (ôiy^. 6.x - 6.y * iji) +o....
24 1 1 1 1

(2-137)

The intégral formula S (x) for k interval can be found from 

équation (2-136) as following:

S (x) = I 6. s (x) 
i=l ^

(2-138)

I 6 S“(x) + I T
i=l ^ i=l ^

(X) (2-139)

The algorithm of intégration in k interval from équation 

(2-135) is:

S“(x) = I 6. s! 
i=l

(2-140)

= î (Yi * +-------6x. • 6y ;
i=l ^ ^ 2 ^ ^

(2-141)

The équation (2-139) can be written as:

(2-142)S (x) = S"(x) + r(x)
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where S (x) Is the actual intégration function, S"(x) is the approxi- 

mated intégration function and r (x) is the error of method in k inter 

val which is egual to:

k
r (x) = I r. (X) 

i=i ^

k
= I

i=l

(2-143)

24

( 3 1
6^x - 6'P) + 0 « (2-144)

2.2.4. Intégration by the interpolated three points formula in unitary 

or multiple incrément computation.

In the three points interpolation method of intégration, the

interpolated function f^^ (t) and f^^ (t) use the infoinnation of three

points
^i+1^' y^) and . Yi-l) in interval xe;(x^,x^^^

as following

X (t) = ■ « (Xi^l» Xi-l» t) (2-145)

Y (t) =<
*iy “ * <^1+1- ïi' Yi-1/ t)

By choosing the first three therms of équation (2-124), we will

hâve t
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6^ S*' = y. ‘ ôx^ I ■ 6x^ * 6y
2

a$!
i “ -^i '"*1 ■ O '"‘i ”■*! ' 12 '

(^y ' 6x, -

by putting the value of ^y|, ôj^^^by its équivalent,

= «Yi - fiYi_i

(2)
6X^ = 6x^ -

6y^ *6iJ)

(2-146)

(2-147)

then the équation (2-146) can be changed to:

‘i “ ïi • ' '^1 "l'i ■ '*=‘1-1 -

(2-148)

The équation (2-148) is the algorithmof intégration with three 

points interpolation, which use the information of points ^^i+i»Yi+x)» 

(Xi,yi) and incrémental forms. As it was mentionned

earlier , this algorithm has the property of smoothing effect as it is 

shoun in figure (2-5)* The actual value of intégration s (x) is;

s(x) = s-(x) + r(x) (2-149)

where s-(x) is the algorithm of intégration for k interval as:

(x) = I 64 s = 
i=l

“ ili ■"“T*=‘i ■ ***1 *

1

2
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» <«^1 ' ‘='1-1 - ‘yi-i • ‘"i) (2-150)

with the error of method equal to:

k
r(x) = I T (x) 

1=1 ^

k

l
1=1 24

6iX - fiy^
(3)6^x' ) +... . (2-151)
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2c3, The error of method in incrémental computationf vhen the Indepen- 

dent variable of intégration Is a functlon of the Independent variable

2.3el, Error of the rectangular method of intégration in unitary or 

multiple incrément computation.

As it was discussed before^the general formula of intégration 

which is used in incrémental computer is based on Newton interpolation 

(eg,2-124) as followingi

1
Sx +—6y 

^ 2 ^

1
6x. +-— 

^ 12
4 2)

«Yi 'ûx,)4

■*- (3) (3)
------- (6y. * 6x. - 6y * 6x. ) (2-152)

24 1 1 1 1

In the rectangular method of intégration, the interpolated 

function and f^^ use one point information, in other words, the 

approximated formula of intégration is the first term of équation 

(2-152) as:

(2-153)

The approximated formula of intégration S”(x) has the error

(x,y) with the actual value of intégral 6^ s as:
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6. s = 6 s" + r. (x,y)

where

(> ,/) = + C'~~'Syj^ • <Sx^ +-—-(^y[ * 6x^ - ôy^ ■

t^(ti , (2-

By neglecting the second and higher terms of (x,y) with 

respect to the first term, we will hâve:

(x,y) = +“—6x. ° 6y, (2-

The exact intégration formula for k interval from équation 

(2-154) will be:

s (x,y) = 5; 6 s
i=l ^

(2-

k k
^ l s» + I (x,y)

i=l i=l
(2-

where the approximated value of intégration is!

S" (t) - I 6. s = 
i=l ^

(2-

and the error of method in k interval will be:

k
r(t) = I r. (x,y) 

i=l ^

•154)

t c « 3 

•155)

156)

157)

158)

159)

(2-160)
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so the équation (2-158) can be written as;

s (x,y) = S” (x,y) + r(t) (2-161)

in équation (2-161) the actual value of integratal is s (x,y), the 

approximated value of intégral which is the algorithm of machine 

is S'Mx,y) , and the error of method r (x) is as following;

r (t)
k

= 1 r. (x,y) (2-162)
i=l ^

assuming

1 k
= +— \ * 6y t<Elt.,t..,) (2-163)

2 i=l ^ 1

ôx^ = X* (t) • 6t

and

6y^ = y'(t) * 6t

The équation (2-163) can be written as;

r(t)
1 k 2

= \ ’ (6t) “ y'(t) ‘ x'(t)
2 i=l

ts(t^,t^_^^) (2-164)

In the case of unitary incrément computer

6y = Ay and 6x = Ax =————
k

so the équation (2-164) can be written as;
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1 k (t.-t
r(t) = +— I _-JL_2ry' (t)

2 i=l k2
X' (t) (2-165)

assuming

y' (U • X' (U
I f

1 k
— I y* (t) * x' (t) 
k i=l

The équation (2-165) can be expressed as following:

1 -t ) 2
r(t) = ---------JL_^y. (ç) “ X* (ç) ç^(t ,t,)

2 k • * ° ^
(2-166)

As it Is seen from équation (2-166), the error of method r (t) 

in k interval dépends to the interval ts:(t^,tj^) and also to the 

dérivative of functions x (t) and y (t) which are applied in the input 

of integrator*

If we assume the maximum value fo y' (O as M
I

and the maximum value of x' (ç) equal to

[x' (ç) ] = M,, (2-168)
max 2

then the maximum error of rectangular method will be;

r (t) M
2

(2-169)
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2,3.2. Error of the trapézoïdal raethod of intégration in unitary or

multiple incrément computation.

In trapézoïdal method of intégration, the interpolated function 

^ix and (t) which are replaced to x (t), y (t) are using two

backwords points information, in other words the approximated value 

of intégration is the first two terms of équation (2-124) as following:

1
S'' = y^ • dXj^ +■—-ôx^ * 6y^ (2-170)

The équation (2-152) can be written ass

6i s =6^ S“ + (t) (2-171)

where s is the actual value of intégration, 6^ s” is the approxi­

mated value and (ti is the error of method in interval t 

which is equal toi

(t)
12

- 6y^

(2-172)

24

(3)
(6y^ » - 6y^ * S:^l^ ) +,

from équation (2-171) the actual intégration formula for k interval 

will bel

k
s (t) = I 6 s

i=l ^ (2-173)



80

le le
= I 6. s" + I T. (t) (2-174)

i=l ^ i=l ^

= s»(t) + r(t) (2-175)

where s"(t) is the approximated value of intégral which is the algc 

rithm of machine and the r(t) is the error of method in k interval 

that is egual to:

r(t) = I r (t)
i=l ^

(2-176)

I [— (sfy^* - 6y^ “ 6^^^ )
i=l 12 ^ ^ ^

(ô|y^* 6^x - 6y^ * 6^1^ ) + o«o] (2-177)
24

by neglecting the second, third,..«paranthesisof équation (2-177) 

with respect to the first one, we will hâve:

" (t)
k

= l
i=l 12

6^X -

by using

t e

6^ y = y' (t) * 6t , 6^ X = x' (t) ‘ ôt 

6(^)y = y"(t) • (ôt) 2, = x" (t) * i&t)

(2-178)
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The équation (2-178) can be written as:

k (6t)3
r (X) = I ------------ [y- (t) • x’ (t) - y' (t) * x" (t)]

1=1 12

^^(ti'ti+l)

(2-179)

when unitary incrément is used 6x = Ax and 6y = Ay, by assuitiing:

1 k
y"(ç)*x'(ç) = ------ I y" (t) » x' (t)

' ' k i=l

1 k
y'(0*x"(ç) = -— I y' (t) * x" (t) 

' ' k i=l

and

k

the équation (2-179) can be written as following:

r(t) = —2- [y" (ç) • X* (O - y' (ç) • x" (ç)]
12.k2 I I t t

5

(2-180)

As it is seen from équation (2-180) the error of method dépends 

to the first and second derivatlve of function x (t) and y (t) which 

are applied to the inputs of integrator, and also to the Interval of 

intégration tj^ - t^.
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2,3a3e Error of the three„.points method of intégration in unitary or 

multiple incrément computationO

In three points interpolation formula^ the interpolation function

f (t) and f (t) which are replaced to x (t) and y (t) are using X X 1 y
three backwords information points, in other word^ the approximated 

^alue of Intégration is the'first three terme of équation (2-152) ast

s?'(t) » +"!—‘6x^ * 6y^ +------- )
2 12 

the équation (2-152) can be written as followingt
(2-181)

6^ s(t) = 6^ s«(t) + (t) (2-182)

where 6^ s (t) is the actual value of intégration, 6^ S'^(t) is the 

algorithm of intégration-and (t) is the error of method in interval 

t<s(t^>t^_^j^). The error of mehtod"in interval (t) can be find from 

équation .(2-152) , (2-181) and (2-182) as following:

(t) + [■
24

ôj^X - 6y. ) +< (2-183)

The value of intégral in k interval is:

k
3 (t) “ I 6 s (t) 

i=l ^
(2-184)



(t) (2-185)

R 3

k k
= I 6. s"(t) + I r.

^ i=l ^

where s (t) is the actual value of intégral in k interval, S'v(t) is

the algorithm of intégration in k interval, and
k

r(t) = I r. (t)
i=l ^

is the error of method in k interval. The value of s-‘(t) and r(t) 

can be find as:

S”(t) = I 6. s«(t) 
i=l

(2-186)

I C Yi • «X +- 
i=l ■ ^

-6x, • 6y. ^

1 ( 2 )
■i------- (6 y • 6,x - 6,y •

12 i 1 1 1 ) 3

(2-187)

r(t) = I r,(t)
i=l i

(2-188)

by putting

(3) |3,
= I [— (6.y » «5,X - 6.y * 6,x ) +...] (2-189) 

i=l 24 ^ ^ ^ ^

y = y' (t) • 6t

= y" ' (t) * (ôt) 3

= X* (t) * ôt

= X* " (t) ' (ôt) 3
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in équations (2-188) and (2-189) we can Write;

r(t) = I
i=l

(6t)

24
-[y''*(t) * x'(t) - y* (t) * X*'

if we heglect the higher order terms with respect to first 

the error of method in k interval will be;

k (ôt)**
r(t) = I ——-[y"'(t) • x'(t) - y’(t) * x"’ 

i=l 24

in unitary incrément computation 6t = At, 6y = Ay and 6x 

assuming:

1 k
y" ’ (O • X’ (ç) = — I y' ” (t) “ X» (t) 

' ' k i=l

y' (O * X’ " (ç) =
I I

1 k
— I y' (t) • X'” (t) 
k i=l

5_^(to,V

and At =
"^k -

The équation (2-191) can be written as:

(2-190)

' (t) ]+. , O

two terms, 

(t)] (2-191) 

= Ax

’• (O ]
I

(2-192)

I
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The équation (2-192) is the error of method r(t) in three 

points interpolation formula, v/hich dépends on the first and third 

dérivative of functions x (t) and y (t) ^



86

2,4,= Conclusion O

In this chapter, we calculated the error of method r(t) in 

incrémental computation, in the general case, where the incréments 

ôx, 6y and 6s can take any values, Therefore, these computations are 

valid for multiple incrémental computations, (6x = 2^ ® ûx, ôy = 2^ •Ay, 

As = 2^ ® As) as well as for unitary incrémental computation (6x = Ax,

Ay = Ay, 6s = As) .

Unitary incrémental computation, which is used in digital 

differential anal^zer (D,D,A) is a spécial case of multiple incrémental 

computation (r =0 •

We hâve calculated the error of method r(t), for methods of 

intégration, when the indépendant variable of intégral X is equal to 

or is a function of the indépendant variable t of machinée

Conseguently, the error of method r(t) is the différence between 

the value of intégral s (t) and the approximated interpolated value 

of intégral s"(t)j

r(t) = s (t) - s-(t) (2-216)

The error of method r(t) dépends on the degree of the interpol­

ation formula used for the algorithme of intégration®
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In the followlnç, table, we are comparing the different algorithms 

of intégration and their respective error for unitary incrémental 

computation, when the indépendant variable of intégral X is equal to 

the indépendant variable t of machine.

Method of intégration Algorithm of intégration Error of method

Rectangular method 

(zéro degree inter­

polation)

k
s’‘(t) » [ y. *

i=l

7
r(t)<-^(xj^-Xçj) Ay

Trapézoïdal method 

(first degree inter­

polation)

s"(t) “ î (Yi ® iüijX + 
i=l ^

+^û^y ® û^x)

7
r(t)<——(Xiç-x ) Ay 

12 ^ °

Three points method 

(second degree 

interpolation)

J. k
s (t) = 1 [y. ' +

i=l ^

+ ^ A^y ® A^x +

7
r(t)<—(x.-x^) Ay 

12 ^ °

As it is seen from the table, the choice of the trapézoïdal 

method (first degree interpolation), instead of the rectangular method
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(zéro degree interpolation) ,

factor-Therefore»
1/2

than the rectangular méthode

the error of method is reduced by the 

the trapezoidal method is much more accurate

As it is seen from the algorithm of three points method# for 

unitary incrémental computation# the values of the paranthesis is 

smaller than the quantum ûy of function y (x)® Threrfore# in unitary 

incrémental computation, it is not worthwhile to use higher degree 

interpolation formula than the first one® So, the first degree inter­

polation formula, known as trapezoidal method, is good approximation 

for unitary incrémental computation®

On the other hand, when we use the multiple incrémental computation, 

where the step of intégration is 2^ larger than unitary incrémental 

computation (6x P 2^ ° Ax, 6y = 2^ ' Ay and 6s = 2^ “ As), we should 

use more accurate intégration formula®

The three points method of intégration (second degree interpolation) 

is a more convenient one for multiple incréments computation;

,, k 1
s' (t) = \ ty^ " 6j^x +™6.y ' 6iX +

i=l ^ 2

1
^ (i-1)^ * '^i^^ ^

If the degree of the interpolation formula increased to higher
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than two, then the intégration formula will become more complex, 

because it needs too much equipment and operatlng time to do the 

intégration.

In the incrément computer of industrial electronic laboratory 

of the Brussel University, which is devised by the author# the 

algorithms of intégration in unitary incrémental computation, can be 

chosen either rectangular or trapezoidal method, and in multiple 

incrémental computation, it is the three points method.
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CHAPTER III

THE QUANTIZATION AND ERROR IN INCREMENTAL COMPUTATION.

3,1 « The quantizatlon process in incrémental computation.

In incrémental computation, the résulta of a given mathematical 

operation is transmitted for use in another mathematical operation 

by use of quantized incréments» The operation of quantization of 

continuons function y (x) , may be done by the quantvim of independent 

variable Ax, or by the dépendent variable Ay» The more naturel quan- 

tization which is done in the incrémental computation, is 'e complété 

quantization with respect to the quantum Ax and Ay with irherent de]ay 

of digital System,

As we hâve discussed earlier, the more general intégration 

operation in incrémental computer is:

s (x) Y (t)
X (t)

d —------— dt
dt

(3-1)
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We hâve seen in chapter 2, that the continuous functions Y (t) 

and X (t) which hâve the information of infinits points, were approxi- 

mated interpolated to the functions f^^ (t) and f(t) which hâve the 

information of finits points .tj^ (i=l,2, o ®k) ]

In this case there will be an error between the actual functions 

X (t) , Y (t) and the approximated interpolated functions 

equals to:

^ix “ ^ix
(t) - X (t)

^iy “
U. ^iy

(t) - Y (t)

The functions f and f^y can be represented as

'^ix = [Xji^, t^ (i=»l,2,.,, ,k) ]

II>1
•H

M
-l ^ y i » y j _i, ® » » t^ '( i — 1 ÿ 2- , , 9 s .k) ]

In the quantization process of incrémental computation, the 

ranges of magnitude f^^j^ (t) and f^^ (t) are divided into interval k 

which are not necessary equale'All the magnitude falling within each 

interval are quantized (equaled) to a single value within the interval 

of the analog inputs signal X (t) and Y (t) , as it is shcwn in figures 

(3-1) and (3-2),

Therefore the incrémental machine, instead of using the informa­

tion of points [ (x^, Yj^) » t^ (i=l,2,e,.k) ] use

the quantized points C Yiq) » <^(i-l)Q» ^(i-1)" ' * * * ^iQ
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So the approximated interpolated functions are

quantized and converted to the approximated interpolated and quanti- 

zed functions f (t) , f^Qy (t)^v;hich hâve the error of quantization 

EiQx» Ej^Qy in each points (x^,yj^) v/ith the unquantized interpolated 

functions f^y as following:

■iQy

""iOx fix (t) ^ixQ (t)

'^iQy
=

^iy
(t) -

^iyQ
(t)

iQx (t)
' ^iQy

(t) can be ’

(t) =
^iQx [X

iQ' X(i.•1)Q

(t) =
^iQy [yiQ' ^(i-■1)Q

(3-4)

tjl^çj ( 3---1^2^ 9 « ck) ]
(3-5)

As in incrémental computation the quantities are represented 

in incréments 6^x, <5^y» the équation (3-5) can be written as:

'iQx “ ^iQx *"^iQ' <5 (qX, » « » = t^Q (i-1,2, c .k) ]

(3-6)

■iQy (t) - f^Qy tyiQ» ^iQ^' (i_i) ^ ^io 1,2,. 9 »k)]iQ

The quantization process in incrémental computer cause the 

error of quantization ^iQy is the différence: between the

quantized and unquantized /alue of function in each points (x^,y^) 

that cause the total error of quantization in the process of
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Incrémental computation» Conslderlng theabove discussion, the block 

diagram of incrémental computer can be represented. as in figure (3-3) 

The guanii ^.ation procès s ha s the influence in the.mathematical 

operétions, of incrémental computer and the choice of the algorithme 

of intégration. The total quantizatipn error should not exceed 

from sorne acceptable llmit» -In foregoing paragraphi we wlll study the 

quantization. procès s, the error of quanti zation and also the irhersnt 

delay in process of quantization.

3.1.1. Quantization in incrémental computation by the indépendant 

variable X, and algorithme-of quantized points.

The- quantized point is"--the- intersection^ between the line 

-nAx,... -2ax, - Ax, 0 , Ax, 2ax,.... + nAx, and -the f^ (x)

function which is shown in fig» (3.4.a)« But in digital itération 

machine, because the time of mathematical operations^the quantized 

points hâve:always the delay with respect to the original continuons 

fonction y (x) , the maximum of tho delay is equal to one quantum of 

Ax, as it is shown in figure (3.4.b).

The delay of quantizated function with respect to the continuons 

function, présent an error ein each point of quantization which 

is the différence oetween the continuons function Çy (x) eind quantized 

function f ri that point as:
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r
r'

^Ix

I I >

L

ii.''r
4

iy

Fier.: 3'3.
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'iQx ' *iy - *iyO (3-7)

This error may produce the phase shift between the continuous 

function (x) and the guantized function fj_yQ (x) ® It will bc shov/n 

later on^that the quantization error e^^^^depend to the quant Ax and 

Ay. In order to reduce the quantization error, the value of quant Ax 

and Ay should be decreasedo

The algorithm of quantized points can be fcund by the équation

below;

=<i,Q = y(i-i)o + ■ V
(3-8)

^IQ ' y(i-l)Q ®iy ■

i ~ 1, 2,®*oeK

As it is seen froiti équation (3-8) and figure (3-4) , each point 

(x^Q, Yiq) is calculated by the points (J<(i_i)Q# quants

AqX, 6j_y and the parameters (they can be ± 1 or O) which

détermine wether the quants ^qX, 6^y should be added to (+1), substrac- 

ted form (-1) or, j^néTfeç^^ the value of (x^^^jq» ^(i-l)Q^*

it is seen from figure (3-4), the quantized points are not determined 

completely in this procedure, because the incrément 6j^y is not quanti­

zed, and is un)cnown6 Therefore the quantization of function by the 

only variable x is not sufficient to détermine the quantized points

y±Q>‘
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3.1,2O Quantization in incrémental computation by the dépendent varia­

ble Y, and algorithm of quantized points.

In this case the continuons function (x) is quantized with 

the quantum of dépendent variable Ay, So for,quantization process, we 

should choose the value of quantum Ay and the initial point (Xq, Yq) , 

This process is shown in figure (3-5)

The quantized points are the intersèctionof continuons function 

fy (x) , with tne Unes -iAy, - (i-1) Ay,,., ,-Ay, 0, +A/, +2Ay,,, ,+iAy,

As it was mentioned earlier, in digital itération machine, 

because of time which is spend to calculate the mathematlcal operations, 

the quantlzeu points hâve some delay with respect to the continuons 

function,

The inharenx lelay of digital quantization with respect to Ay^ 

introduce an error in each point between the continuons function fj^y(x) 

and the quantized function fiyQ (x) eaual toî

‘"iQy “ ^iy ” ^iyQ (3-9)

The delay whicn introduce the error produce the phase

shift and the amplitude deformation of qaam,ized function fj^yQ 

with respect te ■•■>»<=» original continuons function fy (x) , as it is 

shown in figure (3-6),

Each quantized point x^q, yj.Q can be find by its backward infor­

mations y(i-l)Q» following:
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^iQ = ^(i-l)Q + ^ix

(3-10)

^iQ = y(i-l)Q ^iy °

1 “ lÿ 2|osea)^

In équation (3-10) , the (Xj^q# quantized point, which

should be determined by the point ^i-1^ ' pai^axieter a^^, a^^^

(equal to ± 1 or 0) , the quant A^y and the unquantized incrément 6^Xa 

As it is seen, the incrément 6^x is not quantized and is variable in 

the process of quantization» Therefore the machine can not calculate 

the value of A^x which is not known, in other words, the quantization 

procedures are not conplet®

The équation (3-10) can be written with the information of 

initial point (Xq, y^) and the incréments ôj^x, A^y, as followings

k

'==iQ = *OQ + «1== ^ix

k

^IQ “ ^OQ «iy

(3-11)

In équation (3-11) the point ^iQ^ determined by the

initial quantized point (Xqq, Yqq) which isdelaid with respect to 

the original point (x^, Yq) » the parameter quantums

6^x, A^yc
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3«le3, Quantization of the continuous function Y (X) in incrémental 

computation by variables y and t, when the independent variable of 

intégration X is the independent varieÜDle t of machine, and algorithm 

of quantized points*

When the independent variable x of intégral is equal to the 

independent variable t of machine, then, the formula of intégration

s (t)

will be!

X = t
s(t)

X,

y (x) dx

y (t)*d (t)

(3-12)

(3-13)

As it was discussed earlier the continuous function y (t) is 

replaced by the interpolated function f^y(t) which gives the approxi- 

mated value of intégration s“(t) as:

(t) =
k

l
i=l

'i+1

fiy (t)“d (t) (3-14)

by this approximation there will be the error of method r (t) , which 

is the différence between the actual value of intégration s (t) and 

the approximated value s”(t),
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r(t) = -s«(t) + s (t) (3«15)

In digital machine ail the guantltles are discrète values or 

quantlzed, wlthln an Interval, so the continuons Interpolated functlon 

fj^y(t) Is quantlzed wlth the variable of machine t, and the dépendent 

variable y,

The actual operation oE quantlzatlon Is done In figure (3-7), 

wlth the quantum:ût = Lx, Ay® The curve (1) Is the quantlzatlon of 

functlon f j^y (x) wlth respect to quant Ay whlch has accompanled wlth 

Inhérent delay of digital machine^

The xs aiso quantlzed wlth respect to Ax = At, but

there Is no delay, ~ ^ “ t), so the quantlzed points are

on the contJnuous functxon,

The actuax points of quantlzatlon should be In curve (1), and 

also the Unes ùx, so they are In the Intersections of curve (1) and 

the Unes Ax as It Is shown figure (3“8) ^

The quantlzed functlon Is comblned wlth quantlzed points by 

conslderlng tne delav between the continuons functlon and quantlzed 

functlon, figure (3-^’i The quantlzatlon error ^^Qy> each point 

Is deflned asi

^"iQy ""y

^IQy ^ly ” ^lyQ

(3-15)
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The quantization of function 
x(t) by At

The quantization of y(x) by 
At and Ay

fig® 3o9ofig® 3o8
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The cause the total guantization error It will be seen that

the actual value of intégral is equal to the approxlmated quantized

value of integra! s” (x) (algorithm of machine) plus the error of method 

r(t) and the error of guantization so:

Because of the delay of guantization process, there is an error 

of phase, between the continuons function and discrète quantized function, 

italso cause the deformation-of amplitude» The error of phase and 

guantization, dépends onthe quantums Ax, Ay»

By taking into account the*above discussion, the block diagram 

of incrémental computer can be drawn in figure (3»10)o

As it is seen from figure (3c10), the function y (x) is first

the error of Ej^y, which cause the total error of method r(x)» Then the 

approximated function is^quantized by the variable of machine t and

The algorithm of quantized points can be found from backward 

quantized points as it is shown in figure (3dl) and équation (3-23)»

s (x) = s“ (x) + [r(t) + (t)] (3-22)

cause the error of guantization and the delay e”P^for;7" < At

(3-23)

i = 1, 2 k
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approximation
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'information
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ilL

F sa.-. 3-iO.

The block diagramof incrémental computer
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As it is seen from équation (3-23) and figure (3-11) each point 

(^iQ/ YiQ) is calculated by the points y(i-i)Q)» the quants

AqX, and the parameters (they can be ± 1 or O) which

détermines wether the quant ÛqX, Agy should be added to (+1) subs- 

tracted from (-1) or ineffected to the value of ^(1-1)0^*

If we hâve b input of Ay ih integrator then the équation (3-23) 

can be written as :

^•in - ^(i-l)Q ®ix °

b (3-24)

. = ""(I-DQ ^

Normally in incrémental machine, there are 4 or 10 Ay inputs 

of integrator depending.onthe construction of machine, in incrémental 

computer of our xêu^wratory b =» 7,

The équation (3-24) can be-also written in the following form:

Hn “ *00 +

ïkQ “ ^OQ *

i«l 'ix

k b
I l

i=l j«l

(3-24f

As it is seen from équation [3-24f, the quantized points are 

determined by the quantum Ax. Ay, the parameters ®iy

initial point (x^^, y^g)«



107

independent variable of intégration x Is the Independent variable t*

\s we hâve discussed earlier, the continuous function y (x) in 

interval x was replaced by the approximated interpolated

continuous function which cause the error of method r(x), between

the actual value of intégration s ^<x) and the approximated interpola- 

ted value s*v(x) as following:

s (x) = S"(x) + r(x) (3“25)

s**(x) =
k
l

i=l

‘i+1

•iy dx (3-26)

fiy = fiy y^, 6^x, 6^x, 6^y

O ® O ® O 6 9 *5 ^y D

9 Q O a O

(3-27)

But in digital machine ail the quantities [x^, y^, <S^x, ô^y^o»® 

60® a 6j^y] are quantized within an interval by the variable of

machine t® Therefore instead of the quantities [x^, y^, S^x, <5jy, O C O O

i^x, 6j^y], there will be their quantized values tXjQ, y IQX,

6^qX, So the quantized function f^^^ which use the

quantized quantities y^Q, Ô^Qy,®®®®® «Sj^qX, '^j^Qy] will bes

*i0y “ *i0y ^iQ' *10^’
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X ^i+1^ (3-28)

Therefore there wlll be an error e, between the approximated
iQy

interpolated functlon and the approximated interpolated quantlzed 

function .f as followings

^iQy
(3=29)

by putting .the équation (3-26‘) i (3=28) and (3“?29) in équation (3-25) 

we will hâve:

s (x)
k
I

i=>l

^i+1

^ "iQy’

, Xi

dx + r(x) (3-30)

X
k
l

i=l

i+1
X

■iQy

k
dx + I 

i=l

i+1

'iQy

(3-31) 

dx + r (x)

^i

= S" (x) + (x) + r(x) (3-32)

in équation :3-30),(3-31) and (3-32), the s" (x) is the approximated 

interpolated and quantized value of intégral whichis the algorithm 

of machine equal to:

(X)
k
I

i=l

’^i+l

^iQy dx (3-33)



e^Q (x) is the quantization error In the processof intégration 

equal to:

k

'tQ (=') =

and r (x) is the error of methodyîwhich we hâve cal eu la ted in chapter

(21, for different method of integrationo
«

As it is seen from équation (3-30),(3-31) and (3-32), the actual 

value; of intégral s (x) 1s equal to the approximated interpolated 

quantized value of intégral s^(x), plus the error of method r(x) and 

the quantization error (x)® In foregoing paragraphe we; wi11 calcu-

late;the quantization error for different method of integrationo

‘‘i+1

e._ ° dx
iQy

(3-34)

3o2oi« Qucuitization error in rectangular method of: intégrationt

The interpolated function f^^ (x) which. is replaced to the y (x) 

in interval xe(Xj^,x^^j^) in the rectangular method is:

(3-35)

and the interpolated quantized function is:

f
iQy

(3-36)

Therefore the équation:(3-291 canbewritten as:
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^iQy “ “ ^iQ

The approxlmateâ formula o£ intégration s»(x) is:

k
s«(x) = I - A X 

i=l ^

“1

*ly ' 

O

(3-37)

(3-38)

by putting the value of from équation (3-35) and (3-37) in équation

(3-38) , ,we will hâve;

s “ ( x)
k
I

i=l
Ax

-1

^^iQ ^iQy^

,0

(3-39)

k
I

i=l iQ
A^X +

k
l

i=l iQy
A^X (3-40)

= s" (X) + (3-41)

from équation (3-39),(3-40) and (3-41) it is clear that the approxi- 

raated quantized value of integratior (x) which is the algorithm of 

machine, is equal to:

k

<'') = ïiQ ■ ''i* (3-42)

and the e^Q is the error of quantization which is the différence bet- 

ween the quantized and unquantized intégration function as;
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= s«(x) - s" (x)

from équation (3-40) and (3“»41), the CcUi be find as;

(3-43)

tQ i“i iC3y i (3-44)

as it was diseussed in the process of intégration, the ^ Ay

sO the équation (3-44) can be written as following:

tQ < I Ay “ û X 
i=l ^

or

or

'tQ ' ‘i*

tQ " "y ^^Q “ ^OQ^

(3-45)

(3-46)

(3-47)

Therefore, the errorof quantization e^q dépends to the quant Ay 

and the in ter val of intégration x ^(Xq, Xj^) =, In ordertor reduce this 

error we should reduce the quant Ayo

3o2o2« Quantization error in the trapezoidalmethod of intégrationo

In trapézoïdal method of inteoration, the interpolated function

f^y, which is replaced to y (x), is as following:

■iy “ ïi - « • ''iï (3-48)
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As the quantized point do not coïncide wlth the iinquantlzed 

pointsÿ^ therefore, there wlll be an error whlch is defined as:

HOy = ^1 - yiQ <3-«)

by putting the value of équation (3-49) in équation (3-48), we wlll 

hâve:

^iy “ ^^IQ ^ ®iQy^ ” ^ ^1 -^IQ^ ^IQy^ (3-50)

^IQ ®lQy ’ ^
(A ■ y + Ae^_ )

IQ iQy
(3-51)

because the lndependent Tvari6d>le >o£ intégral ls-.thet lndependent varia­

ble. o£ machine, so

^iQ “ ^i (3-52)

then the approximated £ormulao£ intégral £rom équation (3-38) can be 

£ind as:

-1

£iy (O dÇ (3-53)

;e(-l, O) or xs(Xj^, ^i+i^

by putting: the équations (3-51) and (3-^52) in équation (3-53) , we will

hâve:
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h

-1 (3-54)

“""iQ ^ ‘iQy’ •' ‘W ‘'lOy’’

= X
iQ ^iQ ^iQy j

Ç (-1,0)

(3-55)

6^ s"= (y
iQ ‘ ‘ "■ ^"iQy * ■"

'®iQy ’ X <5:(Xi, 3^i+i> (3-56)

The approximated interpolated formula of intégral s** (x) for k 

interval will be:

s’‘(x) = I s s^' (3-57)
i=l ^

= Jl ‘=^iQ ■ ‘iQ’' ■ ‘iQ^’ ^

(3-58)
k 1

+ I (e.^ ° A.^X +=—-Ae, ® A.^X)
iQy iQ 2

in the équation (3-58), the first sum is the approximated interpolated
««

and quantized value of intégral s" (x) which is the algorithm of ma­

chine as following:
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s
Q

(X)
k 1

iii ‘ • ‘iQ^’
(3-59)

and the second bracket is the error of quantization in the process of 

intégration^ as following:

= Ji '^iQy ' ■ "iQ=‘>

sO the équation (3-58) can be written as:

s"(x) = Sq (x) + (3-61)

where s"(x) is the approximatedinterpolated continuons function,

Sq (x) is the approximated interpolated quantizedfunetionof intégral 

and is the error of quantization.

In équation (3-60), the second term can be neglected with respect 

to the first one, so the équation (3-60) can be written as;

e to

k

iQy iQ
(3-62)

as we hâve seen in the process-of quantization Cj^Qy so the

équation (3-^62) can be written as;

c
tQ

k
< I Ay • a^qX 

i=l
(3-63)
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or

'"tQ ûy * I ^iQX
i=l

(3-64)

as I = Xq - Xj^ so:
i=l

tQ ûy (Xq - Xj^) (3-65)

The équation (3-65) gives the value of quantizationerror that 

dépend to the quantxim Ay and ■ the interval (x^-Xj^) o

3^2»3« Quantization error in the’three points method of intégration.

In three points method of intégration, the interpolated function 

f^y which is replaced to y (x) is:

•iy
yi - Ç A^y -

Ç(ç+1) 

21 i
(3-66)

by putting the value y^^ from équation (3-49) in équation (3-66), we 

will hâve:

^ly = '^iQ 'iOy> ■ “i ‘ïiQ ^Qy> '

4(t+l) (3-67)

- ‘i ‘yiQ + W

" ^^iQ ^iQy^
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Ç(Ç+1)

21 yiQ ^ Hoy>
(3-68)

As the Independent variable of Intégral X Is the indépendant 

variable tof machine so:

""i " ^iQ
(3-69)

Then the approximated interpolated formula of intégration 

s*' in intervax x ^(x^^, *i+i^ '^ï^itten as:

6, S = - A_X
iQ

-1

f (C) * dç (3-70)

- ^IQ^ ^ <yiQ ®iQyî ^^iQ^ ^i ^iQy^

C(Ç+1) 

21

(3-71)

'iQy' ’

X
iQ ‘^iQ ^ 'lQy> <'‘lQy * ‘i ^Qy> *

or

*77 ^iQ 'iOy>

(3-72)

«i =" = (Yiq • ‘iQ>‘ ♦—* /lQ* *— ïiQ • ‘lQ*> +12
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+ ( e
ioy ‘io=‘ *

12 ‘1=' • =lQy> (3-73)

The approxiroated interpoiated intégral formuola s’*(x) for k 

interval will be;

s*‘(x) = I 6. s’' 
i=l ^

(3-74)

k
I

i=l

1

2ï- <yiQ • ‘IQ* +-T‘iQ* • ‘iQ^

k
+ I (c

i=l
iQy ° +—A^qX » ej^Qy +

12 ‘1* • 'lQy>

(3-75)

The approxiroated interpoiated and quantized function of intégral 

s^(x) whioh is the algorithroof machine is equaltothe content of 

first bracket as following:

(3-76)

II
s" (X) = (Yiq • +—■"—‘IqÏ • ‘lQ='>

The content of second'bracket is the error'of quantization which
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Is equal to:

e
tQ iii ^^iQy ” 2 ° ^

1
+=—“ A.X

12
ûll t

iQy^

(3-77)

we can neglect the second and third terms of équation (3-77) with 

respect to the flrst one® So the error of quantization will be;

k

'"tQ = ®iQy ” (3-78)

As it was discussed in the procèss of quantization the 

< Ay, so the équation (3-78) can be written as:

e
tQ

<
k
l ûy

i=l
(3-79)

as
k

"iQ* “ *k • *o

SO

‘tQ ‘ ‘y ‘*k - *o> (3-80)

The équation (3-80) gives the error of quantization in the three 

points method of intégration® As it is seen, the dépend to the 

value-Of quant Ay, and to the interyal (Xj^ - x^)



119

3s3» The quantization error in unitary incrément computationwhen the 

independent variable of Intégration X is a function of the indépendant 

variable 1 ►

If we hâve the contJnuous function X (t) and Y (t) which are

replaced -by .their approximated interpolated function f 

then the intégral in interval te^^Ct^» tj^) is;

(t) and

s (t) Y (t)
X(t)

d _ dt 
dt

(3-88)

As we hâve discussed earliér, this intégral formula.is replaced 

by the approximated interpolated formula of intégration s-*(x) as 

following;

s«(t) = I 
i=l

'i+1

f^ (t) * d dt
iy dt

(3-89)

where

f — fy tYj^ # ^ ^i-=l^ / O ® O 0 O ^j_Q* OOo(l“l»2,OOok) 3

(3-90)

f JJ — ftx^f 6^xJ 5 _j^x/ O ® B ® O ^ ° ® O ok) ]
k - «

The error of this approximation is calied the error of method

r (t) which is equal toî
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r (t) = s (t) - (t) (3«91)

The équation (3-90) can be wrltten as:

^iy “ ^i-1' ^IQ ]

^i.2'“ “

(3-92)

tj^Q (l=lf2ÿooK) ]

As It Is seen £rom équation (3-92); the Interpolated functlon 

f±jç» f^y» hâve the information of Cx^^, y^, y^.l» » • »

But in digitalmachine- ail the value are quantized with the 

variedîle .of machine t, so instead of Cx^, y^, ^(j[;.x) ^ ^(i-1) ' “ ° °^iQ 

(i=l,2,.ok)], we will hâve-the quantlzed points Cx^q, y^Q, *(1-1)Q' 

y(i-l)Q'® ° ®“^iQ 0.ck)l, therefore, the approximated interpola-

ted functions f^x' ^^y' with the approximated Interpola-

ted and quantlzed functlon. ^iQy' with the ;informatlon of quanti*

zed points tx^Q, y^Q# ^(i-l)Q* y (i-l)Q^°°'’ °^lQ (i“l# 2^ o » ok) ] o

So, in each pointfWe hâve the quantlzed error e, , 

ciQy vhich are the difference-ibetween the quantlzed- and unqucintized 

value of .functlon as following:

‘\Qx “ *ix - *1QX

'iQy ” *ty - *i0y

(3-93)

Eor instant, if the X (t^ “ie"*"^, and Y (t) “ sin ut, fig. (3ol3)
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1

F iGr. •- 3-i3.
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the ^iQx* ^iQy shovm in following figxires (3-14) and

(3-15)c

As we Jiave dlscussed earlier, the quantized points of function

, are the intersection of the curve b and the line At= consto with 
ix

the quanti zed error in each pointe

In order to quantize the function it is sufficient to find

the intersection of (curve;2) with the linesAt = consto as before» Thé 

procedure isshown in figure (3-15)o

The quantization of function e^^ « sin ut with respect to the 

quantums Ax and Ay, can be find by the intersections of (curve 1 and 2) 

as it is shown in figure (3-16)

The quanti zed points x^^, y are de laid with the actual 

continuons function y (x)O The différence between these quantized points 

and correspondent points of continuons function y (x) is the error of 

quantization ^iQy should not be greater than Ax and Ay

as it is shown in figure (3-17) and in équation (3-94)»

So

"iQx = ^

^iQy = CB < Ay
(3-94)

The approximated interpoiated intégration function ô^s"(t) is:
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The quantized points of f
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S"(t)
'i+1 f. (t)

(3-95)

if we put the value of the functions ^from équation (3-93) in 

équation (3-95), then we will hâve :

6^ s“(t) =
*^i+l

t.1

»iQy ^ ^
(3-96)

*^i+l

t.
1

iQy

i+1

iQy d-i^dt +dt
t.1 (3-97)

H+1

t,
1

■iQy d-ig—dt*
i+1

iQy
^iQx
dt dt

The first term of équation (3-97) is the approximated interpolated quanti 

zed formula of intégration 6^^ s“(t) which is the algorithm of machine as follo- 

wing :

S“(t)
^iQx^*"^ (3-98)

The other terms of équation (3-97), are the error of quantization
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in interval te(t^, ^i+1^ which is equal to:

^iQ

'i+1
®iQX(t) " d—iH*------  dt +

iQy dt

(3-98)

'i+1

■iQy d- ------- dt +
dt

'i+1

dt
dt

So the équation (3-97) can tbe written as:

s«(t) = s-(t) + e^Q (t) te(t^, (3-99)

By summing the équation (3-99)' for k interval/ we will hâve:

s *‘(t)= ^ 6.
i=l ^

(t) (3-100)

k k
ï «i Sq (t) + ï

i=l ^ i=l iQ
(3-101)

“ =Q * Sq
(3-102)

where (t) is the approximatedr-interpolated and quantized formula 

of intégration which iS ithe algorithm of machine, equal to:

s“ (t)

k
I

i=l

'i+1
• d—dt

iQy dt
(3-103)



127

and Is the total quantization error In Interval t^(t^, t^) In 

the process of intégration as following ;

’tQ î_ -iQ (t)
i=l

k
I

i=l

'i+1

f (t) • d-------il---------- dt +
n / dt

k

+ I
i=l

'i+1

k
+ l

i=l

'i+1
6iQx(t)

e (t) • d——-------- dt’lQy dt

(3-104)

(3-105)

In équation (3-102), the s**(t) is the approximated interpolated 

continuons function of intégration, Sq (t) is the approximated interpo­

lated quantized function of intégration which is the Algorithm of ma­

chine, and e^Q(t) is the error of quantizationthat is the différence 

between the approximated quantized and unquantized intégration functions. 

The delay which exist in the procèss of quantization cause the phase 

shift between the continuons function and quantized function, it also 

cause the deformation of amplitude and the error of quantization» The 

error of quantization dépends to the quantums of Ax, Ay, At which should
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take into considération in the debi^ning of incrémental computero In 

some caseSÿ the error of quantization may dominate. ail others errors. 

In order to reduce the errorof quantization, It is sufflcient to 

reduce the value of auantv’iar;. , Ay, and At-

By considering the above discussion, the block diagram of 

incrémental computer can be drawn as in the figure (3-18)o

As it is seen from figure; (3-18), the function y (x) is first

interpolated and approximated to the functions f^^, and f^^, in inter­

val X sl(Xj|^,- Xj^+3^), with the error of which cause the total

error of method r(t)o Then this approximated function is quantized by

the variable, t of machine, and cause the error of quantizatlon e,^ ,
rQx

e^Qy, in^ each. point that cause the total error of quantization c^^Ct) , 

it also introduce the deiay e“P^where |t"| < AXo

3«3.1* Quantization error in the rectangular method of intégration*

As it was shown in chapter: 2* the interpolation functions f 

and f. in rectangular method of intégration are:

*iy ' ïi

(3-106)

In the. quantizatlon process, there are the errors 

between the actual unquantize^ point (x^, y^) and their.correspondent
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interpolation and |
approximation quantization intégration i

------------------ ^ ,-------------------------------------------- I--------------------------------- ^

flCs/.S "18,

The block diagram of incrémental computer*
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quantized points (x^Q/ - as following:

^iQx = ■ *iQ

,®=iQy “ Vi “ Yiq

(3-107)

by putting 7the équations ; (3-106);> (3-107) in the intégral équation 6^s’* :

-1

6 s’*
i

(3-108)

we will hâve:

6. s*‘ “ - (A x+ Ae.- ) 
i iQ iQx

-1

'^iQ * 'lQy>'*'

(A. X + Ae._ ) I y.^ + e._ 
iQ iQx' -^iQ iQy

(3-110)

or

h = yiQ • '‘iQ* + <yiQ • ‘HQx + 'iQy ' ‘iQ*

‘'iQx * 'iOy^ (3-111)

The interpola ted quanti zed function of intégral s^ in 

intexrval XÆ (Xj^, ^i+1^

‘iQ “ ïiQ ■ ‘iQAj^X (3-112)
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Then the équation (3^111) canbe written as:

«IQ + «iQt (3-113)

where is the quantization error in interval x e’^i+l^

^iQt “ ^iQ ° ^®iQx ®^iQy ° ^iQ’' ^^iqx ° ®iQy

(3-114)

The approximated interpolated-formula s’*(x) for k interval can 

bei found from; équations ; (3-112) ^ (3-^113) and (3î*114) as following:

S”(X) = I 6jL 3‘
i=l

(3-115)

“ r «iQ s*' + l.
i<=l i=l

■iQt (3-116)

^iQ " ‘IQ* ^ ‘^iQ ” ‘'iQx *

®iQy ' ^^iQx ° *^iQy^

(3-117)

= sg (X) + (3-118)

from équations (3-115), (3-116), (3-117) and (3-rll8) , it can be seen 

that the£ approximated interpolated quantized funetion ;of intégral 

s^ (x) , which'is the algorithim of machine, is:

®Q <=‘> ' ÏIQ ' ‘iQ* (3-119)
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and the quantization error is:

'tQ “ j, iQ “ ^^iQx *=iQy “ “iQA^p.x + Ae._ ° e._ ) 
iQx iQy"

(3-120)

In équation (3-120) the third tenn can be neglected with 

respect to;the two firstoneso'So the quantization error is equal 

to:

'tQ iil “ ^®iQx ®iQy ° ^iQ*^
(3-121)

As e.^ < Ay so
iQy ^

iii Hoy ° " '^y <*k - Xo> (3-122)

The first term of équation (3-121) is:

I ^iQ
i=l ^

Ae._ O - ^(i-l)Qx^•iQx
i=l

(3-123)

£. < Ax and e < Ax, the eauation (3-.123) can be transformediv'X (i-l)0>:
f.'.o :

Ji ■ ‘'iQ* * “ - yo>
(3-124)

if we put the value of équation (3-122) euid (3-124) in équation (3-121), 

we will hâve:
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'tQ * ‘y ‘*kQ ■ *oQ> ‘^kQ ■ yoQ> (3-125)

The équation (3~125) glvesi^^the quantlzatlon error in the 

rectangulari method of intégration^ As it is seen^ the quantization 

errorvE^Q dépends to the .quantums: Ax<i Ay, and the interval of integra» 

tion x *

3o3«2o Quantization error ini the trapezoidal method iof intégrationo

Xn the jtrapezoidal method of intégration, the approximated 

interpolated functions f^^ and are:

■ix = - « ‘i*

*iy =

(3-126)

by putting the équation (3r>10l7)- in équation (3-126) > we will hâve:

-1

4X dç = - + .^Q^)

( (yio + =iQy) -î ‘w ‘*lQy>> « <3-127)

■-1

0
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" <‘lQ=‘ * ‘'1QX> “ÏIQ + 'iOy> * ‘'iQy”

(3-128)
1

' ‘IQ* • ■ ''‘IQX * (3-129)

+ =lQy • ‘IQ* ^ ‘IQ* • ‘'iOy •" *1QX ' ‘'iQy +

+--------e (A. «y + ^^4/N.)^
2 iQy iQ-^ iQy

The formula of trapézoïdal method o£ intégration in Interval

XG.<Xj^, ^i+l)

'‘i ®Q “ ^iQ ° '^iQ’^ °iQ iQ
(3-130)

from équation (3-129) and (3-130), we can write the following équation

H s’*= 6^ sg + (3-131)

where is the quantizationüerror"in interval X s(x^, x^_j_j^), which

Is equal to:

^iQt “ ^iQ ' ^®^iQx '^iQy ° ^io’' f^iQ^ ° ^^iQy (3-132)

^iQx • ''"iQy ""IQX “ ""iQy ■"“T""iQy “ ""iQ^

1

2 ^ioy ° "®iQyJ
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In équation (3*>132) , the terms In the bracket are neglectable 

in comparing with the first two termso Therefore, the quantization 

error in interval xs:(x^, ^i+1^ will be;

'iQt ° ^10 • * ‘iOy ■ ‘iQ*

The approximated interpolated formula of intégral for k interval 

can be found from équation (3-131) as:

k
s»«(x) = I 6. s^' (3-134)

i=l ^

k
I

i=l
6 S'
iQ

k
+ l

i=l iQt
(3-135)

= "tQ
(3-136)

where (x) is the interpolated quantized intégration formula that 

can be found from équation (3-130), (3-135) and (3-136) as following:

(3-137)

sg (x)
k k
l «iqs’= I (y^ 

i=l ^ i=l ‘iQ* *-7^iQ* ■ ‘iQ^’

and the total quantization error e^Q in k interval from équations 

(3-133), (3-135) and (3-136) will be:

e " y £ 
tQ i=i

(3-138)
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k
(3-139)

or
k

(3-140)

It is seen from équations (3-121) and (3-140) that, the quanti- 

zation error in trapézoïdal methodof intégration is same as the rec- 

tangular method» Therefore, from équations (3-122), (3-124) and (3-140) 

the quantization error e^Q is:

As it is seen from équation (3-141), the quantization error 

dépends to the quar.tums Ax, Ay and the interval of intégration o

3o3.3o Quantization error in the three points method of integrationo

In the three points method of intégration, the approximated 

interpolated functions fand f^^ which are replaced to the functions 

X (t) and Y (t) are:

'tQ ' ‘y - ’'oQ> + <yko ■ yoQ>X (3-141)

fiy (Ç) = Yi “ Ç ^iY "

^ix “ ^i " ^
(2)

——   A \ 'x (3-142)



As we hâve dlscussed, the approximated interpolated formula

of Intégral in interval te(t^^^ ^i+1^

-1

6^ f_. (ç) d-JiL_ dç
dç■iy

(3-143)

(3-144)

ç(ç+l) 2 2Ç+1/ »
^ y , ^ .y] C-A X —=—A.x] dç

^ 21 ^ ^ 21 ^

By putting the équation (3-107) in équation (3-144)^ we will

hâve:

6 s« = 
i

-1

®^lQy^ " ^ ^i^^iQ ^iQy^

O

€(ç+l)

21

(3-145)

I

^^iQ ®lQx^

2Ç+1

21
dç
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^iQ • ‘lQ=' ■ ^l-l(l-l)Q
X -

(3-146)

“ ^^IQX + ^IQx ° +IQ

1 1
® Ae._. +——■ A.-X ° AEj.^ +«™. A._x ° +

"iQx IQy 10^ iQy

O O û e O

6._ s’* + e. 
iQ IQt

(3-147)

As we hâve âlscusseâ before in thiree points inethod#^^,-: 

quantized formula of intégral 6^^ s”in interval tŒ{t^, iss

1 1

'iQ ® ■ 'iQ^' ■ ‘iQ^

(3-148)

“ "(i-l)Qy *

and the quantization error in this interval of intégration from

équations (3-146) and (3-147) is;

’iQt ^^iQ “ "^iQx ^ ^iQy ” ^iQ=^^ +iQx “‘•iQy

(3-149)

1

2

1

^iQ^ * ^®iQy ^iQ^ ' ^^iQy ^iQ^^^^d-DQy"^12
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+ o O O e O O

In équation (3-149), ail tems can be neglected with respect 

to the two first oneo Therefore the quantization error in inter­

val t s (t^, will bes

^iQt “ y±Q ' ®IQx ®^lQy ° ^IQ*
(3-150)

The approxiinated interpolated formula o£ Intégration s (x) 

for k Interval will bes

s" (x) = I s« (x) (3-151)
i=l

k

l «
i=l iQ

s** + J]
i=l iQt

(3-152)

s» (X) ^ (3-153)

The: approximated interpolated and quantized formula of intégra­

tion: (x) which is the algorithm of machine is:

sg (x) = I 
^ i=l yiQ "iQ^ ^iQ^ ^iQy

12 ^''iQy * ""(i-DQ^ - ^i-i)Qy ‘

(3-154)
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and~the quantizatlon error e^Q can be found from équations (3-150), 

(3-152). euid (3-153) as following:

^tQ “ -^IQ ' ^^IQX ^iOy ° (3-154)

As we hâve seen before^ the^équation (3-154) can betransformed 

to the équation (3-155).

^tQ ^ - Xqq) + Ax (yj^Q - Yqq) (3-155)

It is seen from équation (3-155), the quantization error c^q 

dépends on.>the quantums Ax, Ay, ;and;the interval:of intégrationo
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3a4è:The quantization error In multiple Incrément cempntatlon, when 

the Indépendant variable of Intégration X Is the Indépendant variable

t.

When^the Indépendant variable X of Intégral Is equal to the 

Indépendant variable t of machine/ then the formula of Intégration Is î

s (x) = y (x) dx (3-166)

or;.lts ; approxlmated Interpoiated- formula for Interval t e (tj^, ^1+1^ 

Is :

6^ s«(t) =

'1+1

fiy (t) dt (3-167)

As It was dlscussed earller y (t) Is replaced by the Interpola- 

ted functlon fj_y (t) whlch glves the approxlmated value of Intégral 

S”(t) so:

ffy “ ^y ^o'

ft

s« (t) =
k

I
1=1

1+1
f^y (t) dt (3-168)
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By this approximation, there will be an error of method r(t), 

whichisthe différence betweentheactual value of intégration s (t) 

and the approximated interpolated value s’‘(t) like:

r(t) = - s«(t) + s (t) (3-169)

r(t) = rCx^, 6^x, 6^y]

In digital machine ail the quantifies are in discret value or 

are quantizedwithin an interval, so the continuons interpolated 

function f^y (t) is quantized with the quantum of variable of the ma­

chine ût and the dépendent variable ^y.

An example 1 s the génération of a sine waV e as figure (3-19) o

As we hâve seen the continuons funetion f^^ (x) is quantized 

with respect to the quantums At, Ay with the insèrent delay of digital 

machine (is shown in figure 3»20)» The quantized points of continuons 

function f^y (x) are the intersection of curve (1) with the line 

At = consti (it is shown in figure 3o20).

As we Work with multiple incréments, in this case we assume 

-2 2
6x = 3 At and 2 < 6y < 2 , so the only quantized points which are 

available in the machine are the points in interval Ax = 3 At, that 

are shown in figure (3.-20) by the points ®<>

As the independent variable of intégral is the independent

variable of machine, f^^ (x) = x (t) = t, so there is no quantifica­

tion error for function f. in each point, i>e : e,.. =
ix uux

Oo
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e sln ut.

f—
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[ ~~
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^____̂
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—TTi J -a . Iv.

6t==2^-At 6t=2^”At

y=sin ut cos ut
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But as it is seen from figure (3-20) and (3-21), in each 

quantized point there is an error of quantization which is the

différence betweenthe continuons function f^^ and the quantized func- 

tion f^Qy as followingi

‘Qty “ *ly <*> ■ *lQy '*>
(3-170)

the quanti zation error e^^y in points (x^, y^^^) is smaller than the 

quantum Ay so:

^iQy
Ay (3-171)

Therefore the quantization error in each point (x^, y^) 

will be:

= OiQx

HOy ' *ly <*> - *lQy '*> x^(x^, ^i+1^ (3-172)

by putting the value of ^£y fi^om équation (3-172) into équation 

(3*^167) , we will hâve:

6^ s«

'i+1

[flQy (t) + dt (3-173)

xS(x^, ^i+1^

The approximated formula of intégral in k interval will be;
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S”(x) = J] s’*
i=l ^

(3-174)

k

l
1=1

^i+1

'■ "iQy^
(3-175)

k

l
1=1

1+1
f.^ (t) dt + y

^Qy iâi

■1+1

iQy
dt (3-176)

= Sq (t) + e^Q (3-177)

where Sq (t) Is the approxlinated Interpolated and quantlzed functlon 

o£ Intégral whlch Is the algorlthm o£ machine and egual to:

(t) = I 
1=1

^1+1

■iOy dt (3-178)

and the Is the error of quantizatlon In k Interval whlch Is equal 

to;

'"tQ

k
l

1=1

t1+1
(3-179)

from équations (3-169) and (3-177), It can be seen that the actual 

value o£ Intégration Is the sum o£ the approxlmated Interpolated
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quantized funetlon of Intégral Sq (x) , plus the errer of method r(x) 

and the errer ef quantizatien as fellewing:

s (X) = Sq (x) + [r(x) + (x)] (3-180)

As we hâve dlscussed already, because ef delay ef quantizatien 

precess, there'is an errer ef phase betxeen the centinueus functien 

éuid the discret quantized functien. The errer ef phase and quantiza­

tien dépends te the value ef quantums Ax, ày, As, and aise te the 

multiple incréments 6x = 2^ • Ax, &y = 2^ • Ay and 6s = 2^ “ As,

( O < X < h). By reducing the value ef quantums Ax, Ay, As, and the 

incréments 6x, 6y, 6s, the quantizatien errer wl 11 reduce tce.

By taking intc acceunt'the errers and delay ef'incrémental 

system> the bleck diagramcf integraticn willbe as figure (3-10),

It is seen frem figure (3-10) that the functien y (x) is first

interpelated te the functien f^y (x) in interval xe , with

the errer which cause the total errer of method r(x) , then the

approximated functien 1 s quantizedvby the variable of machine t, and

cause the errer e,^ in each point which cause the total errer of
iQy ^

quantizatien e;j.Q (t) , and aise it introduce the dé lay of e”P^or

7"< At
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3o4ôlé Quantlzatlon error in the rectangular method o£ Integratlono

The approximated interpolated function which is replaced 

to the function y (x) in intexyal xe in the rectangular 

method of intégration is:

fiy = x<e(x^, ^i+1^ (3-181)

and the approximated interpolated formula o£ intégral 6^ in inter- 

val x,e(Xj^, x^^. 2^) is:

-1

6
i

s« dç (3-182)

In theT guantization process', there is the error betweén

the■ actual: unquantized points (x^^^ y^) and their correspondent queui' 

tized points; (Xj^Q, ^iQ^ as following:

=iQy = ^1 * ^iQ
(3-183)

Çy putting the équations (3-181) and (3-183) in équation (3-182) 

we will hâve:

-1

£
i

dç (3-184)

0
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= » E^Qy (3-185)

= 6^ Sq + 6^x ® ®lQy (3-186)

The approxlmated formula o£ intégral for k Interval wlll be:

k
s«(x) “ I 6i s«(x) (3-187)

i=l

k k

= yiQ • ‘lQ=' + 'IQy • <3-188)

= s“ (X) + (3-189)

In équations (3-187), (3-188) and (3-189), the approximated 

quantized function of intégral Sq (x) which is the algorithm of machine 

is:

<*> = ,2 yiQ • «iQX 
i=l

(3-190)

where

2^ ® Ax

and the quantization error e^q is equal to:

^tQ ^iQy * ^iQ^
(3-191)

as the incrément ^j^qX is the multiple incrément «S^^x = 2^ Ax, and
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the is smaller than the quantvun Ay soi

= 2 • ax

■iQy
Ay (3-192)

by putting the values of équation (3«rl92) in équation (3-191), we 

will hâve:

e
tQ

k
< I ûy

i=l

h > r > O

(3-193)

as the maximum value 

written as:

of r = 4 h so the équation (3-193) 
max ^

can be

or

or

=tQ < • 2

‘ ‘y • 2 (-kQ - -oq)

(3-194)

(3-195)

(3-196)

It is seen from équation (3-196), that the quantization error 

dépends to the quantum Ay to the number of bit (h) which is 

chosen for multiple incrément 6£x= 2^ ° Ax, and also to the duration
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of intégral (Xj^ - x^)

3e4e2o Quantization error in the::trapezoidal method of intégrationo

In the trapezoidal method of intégration# the approximated 

interpolated function which is replaced to the function y (x)

is as following:

fty “ ïi - « • «ly

where

(3-197)

By putting the value ofy^from équation (3-183) into the 

équation <3*197), we will hâve:

‘ly “ ‘yiQ =lQy> - ' ‘^iQ ‘iQy>

Therefore the approximated interpolated formula of intégral 

3^ S"(x)from équation (3-182) canbe written as:

6^ s” (x) =-6j^x

-1

*iy (3-199)

•6^x
"^IQ ^ ‘ioy'

(3-200)

« 'l '^Q ^ 'i(5y)^ «

0
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yiQ “ ° HQy +

1

2

(3-201)

6._ S” + E._,
iQ iQt

(3-202)

The approximated interpolated formula of intégral b''(x) for 

k interval is:

s»<(x) = I 6. s«(x) 
i=l ^

(3-203)

‘^iQ • ‘iQ* -^iQ* • ‘iQ^’ ^

* ‘iQ* <‘ioy

(3-204)

- (X) f (3-205)

from équations (3=203), (3-204) and (3-205), itcanbe seen that, the 

approximated;interpolated quantized formula of intégration Sq (x) which

is algorithmeof machine^ is equal to:

(X)
k 1

<Ï1Q • «iQX • «icy) (3-206)

6 6j^x = 2^ ® At
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6
iQ^ “

Ay

and the total quantizationerror is:

Sq “ ih ^iQ ^^iQy

in ©quation (3-207), the second term can be neglected 

the first one> so will be;

k
V

tQ ^iQy

as >5 X = 2 • A.x
iQ i

and
iQy

< Ay

so the équation (3-208) canbewritten as:

Sq *
2^ “ 6.x® Ay 

i=l ^

h > r > O

The maximum value>o£ r is equal to h, le: r 

équation (3<‘<209) is expressed as following:

max

Etc < 2 • Ay I A X
^ i=l ^

(3-207) 

with respect to

(3-208)

(3-209) 

h, so the

(3-210)
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or
e
tQ

Ay (xj^Q - Xqq) (3-211)

The équation (3-211) givesthe value ofquantizatlon error 

In multiple Incrément intégrationÿ^as It Is seenf the~quantizatlon 

error in trapézoïdal method ^of Intégration'is'same'as the quanti- 

zatlon error'ofrectangular'intégration (équation 3-196)o

3» 4i3, Quantization error' in the>three points method of'intégrationo

In the three points-formula of'intégration, the*y (x) function 

is replaoed wlth the interpolated function f. as:

by putting the value of y^^ from équation (3-183) into. the équation 

(3-212), we will hâve:

ç(5+l)
*iy = - f «iï (3-212)

21

f(0 = (YiQ + HQÿ> “ ^ tyiQ + "iQyî “

Ç(Ç+1) TI (3-213)

^^iQ ^iQy^ " ^ ^^iQy ^^IQy

(3-214)
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Therefore, the approxlxnated interpolated formula of intégration 

in interval x ^(x^, ^i+1^ will be:

6 s ®= - 
i iQ

-1

f. ’ dç iy (3-215)

“ - 'iQ^

-1

[(YiQ + Eioy) -Ç

e(ç+i) Il
(3-216)

.ir
21

(6,^y + 6 e^Qy)] dÇ
iQ

“ ^^iQ “ 'iQ* ‘ «iQy «iQ* '«^îoy] +

(3-217)

+ [6^qX Vc^Qy +_6j^qX » ÔE^oy +— 6^qX • «^^^iQy]

The approximated interpolated formula of intégral s'* (x) for 

k intervai will be:

i«(x) = I 6. s’*- 
i=l ^

(3-218)

k 1 1 JJ

= î (y<n • «lo* +—«iQÏ • «IQ* ^iQy • «1Q*1 +1=1 2
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k 1
+ l («iQX “ +—6^0* “ +

i=l IQy 2 'iQ'' ''‘■iQy

12

(3-219)

s3 (X) + C^Q (3-220)

The approxlmated Interpolated'quantized ^funotlon'of Intégral 

(x) whlGh ±8 algorlthra ^of niachlne;^from équations |3<^218) , (3-219) 

and (3«220)/ can be expressed ass

(3-221)

II
<*> “ ‘^IQ * «IQ* -^iOÏ ” '*10* 'iQÏ ” ■'lQ=‘ >12

k 1 1

Jl ■ ‘iO* “iQ^

(3-222)

6^X =2 ® At

S^y = 2^ • Ay

and the: error 'Of quantizatlon-ïE^Q Is equal to:

k 1
e.^.= I * e._ +—-Ô.-X “ +•*> ' iO iQy 2tQ 1=1 IQy

1

12

(3-223)
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In équation (3-223) , the second and'thlrd ternis can be neglected wlth 

respect ito the first one^ therefore^ the équation (3-223) can be wrltten

as:

e
tQ

k

I
1=1 *"lQy

(3-224)

As-It was dlscussed earller, I 1 < and = 2^ °

the équation (3-224) can'^be expressed as followlng:

k
e.^ < I 2^ * A.x • ày (3-225)

h > r > 0

as the maximum value of r equal to h 1. e r = h> so the équation
max

(3-225) canbe-wrltten as:

Hq ' V

or

'tQ ‘

(3-226)

(3-227)

The équation (3-227> glves the quantizatlon error In 

the process of Intégration;» As It ls seen, the : querntlzatlon error 

dépends . tOT*the quantum Ay> the nurober of Incrément bits h, and the 

duration of Intégral (Xj^ - x^).
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3b5o The quantlzation error In multiple Incrément computation# when 

the Independent variable of intégral X Is a function of the Independent 

variable t«

As we hâve seen in chapter 2, the contlnuous functlons X (t), 

and Y (t) are replaced with the approximated interpoiated functions 

and Then the intégral formula s (t)*

s (t)

t

Y (t)

JtO

X (t)
d----------------- dt

dt
(3-239)

is replaced by its approximated interpoiated value o£ intégral s”(t) 

with the error o£ method r(t) as follovingj

S" (t)
k

I
i=l

^i+l

f <= d ■ dt 
dt

(3-240)

s(t) = s”(t) + r(t)

But in digital machine, the approximated interpoiated function 

f^y (t) and f^^ (t) are quanti2ed with the variable of machine t®

As it was mentioned earlier,' because of the time of mathemati- 

cal operation in digital machine>there is an inhérent delay in quan­

ti zed functions fj^yQ (t) and (t) , with respect to the continuons
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functions (t) and (t) , which cause the error of quantizationo

This effect Is shown in figures (3-22), (3-23) and (3-24)o

The quantization errors and e^Qy which are the différences 

between the quantized and unquantized functions in point (x^, » are 

deflned as following:

^iQx (t)

LHQy
(t)

(3-241)

As it Is shown in figure (3-22), the quantized point is the 

Intersection between the quantized function wlth respect to Ly (curve 1) 

and the line 6X = 3 ôt, (they are shown in figures (2) and (3) by the 

signe .

The quanti zed points of f^^ (t) “ f^^^^ (t) = e ^sin ut, are 

determlned in figure (3-24)e As it is seen, the quantlzed points are 

found ^by theaintersectlon of curve (1) and (2) which are quantlzed 

function with respect to’the quantums Ax and Ayo But the only inter­

section points are the real quantlzed points of the System which hâve 

the dist^mce of 6^x = 2^ » Ax, in our case it is supposed that, 

ô^x = Ax, “ 2Ax, ^^+23? = 3Ax, = 4Ax, = 5Ax,

The unquantized interpolatediapproxlmated formula of intégration 

in interval t^(tj^, » as it was mentionned before, is;
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6^ S«(t)

'i+1

fly (t) (3-242)

If we put the value o£ the fxinctlons f. (t) and f (t) in interval
ix iy

t<s(t^, from équation (3-241) in équation (3-242), then it can

be exprèssed as:

B^(t)
'i+1

if J. „ A O /I ®iQx
^^iOy ^ Hoy)

(3-243)

'i+1

'loy <*> • ^"17^ ^

'i+1
c • ^ iQx .
®lQy ■̂*■ 

dt

(3-244)

^i+1 ^i+1

e • d___dt + f » dt
iQy "iQy

^i ^i

The first term of équation r(3-244) t-is the interpolated quantized 

formula of intégration which is «the algorithm of machine in interval

tG(t^, ^i+1^
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'iQ

'i+1

^iQy
d—èU|E------- dt

dt
(3-245)

The others terms o£ équation (3-244) are equal to the quantlza- 

tion error of intégrale In the Interval t^(t^, ^i+1^ equal toî

^iQt “

'i+1

•iOy d—------- dt +
dt

'i+1

O d_Ü2!L dt +
dt

'i-rl

•iQy d—i2^L dt 
dt

(3-246)

so the équations (3-243) and (3-244) ceui be wrltten as:

6^ s**(t) = 6^ ®Q ® iQt te(4, Vl) (3-247)

By suinmlng the équation «(3-247) in k interval, we will hâve 

the approxlmated interpolated Intégral formula In interval t £(t^, tj^) 

as:

k
s**(t) “ I s»'(t) 

i=l ^

k

I
i=l

’i ®Q (t)
k

+ I
i=l 'iQt

(3-248)

(3-249)
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®Q ®tQ (3-250)

where (t) :

s« (t)
k

L ®Qi=l
(3-251)

k

I
1=1

'i+1

^IQy
at

dt
(3-252)

Is the approxlmated interpolated and guantized value of intégral which 

is the algorithm of machine^ and the total quantization error e^Q in 

interval t<c (t_, tj^) is expressed as following:

k

'tQ “ ^iQt (3-253)

k

ï
i=l

’l+l
^iotfioy (t) » dt t

k

+ I
i=l

'i+1

(3-254)

k
^ I

i=l

'i+1

‘iOy
(t) ° d-

"iOx 

dt
dt

J
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The équations (3-253) and (3-254) give the total quantlzatlon 

error which is the différence between the unquantized and quantiz-

ed function of intégral in the process of digital intégration.

The delay which existin;the process of quantization operation 

cause the phase shift between the continuous approximated function, 

and the quantized approximated function. It also cause the error of 

queuitization e. which dépends on the quantums Ax, Ay, and on the 

number of bit h of multiple incrément.

From the above discussion, the block diagram of the incrémental 

computer can be represented ias in^figure (3.18). So, we can see from 

the figure (3,18) , that the functions X (t) and Y (t) are first inter­

pola ted approximated to the functions f^^ eind f^^ in interval xe (x^,x^^0^) , 

with the errors of and -which cause the total error of method 

r(t) . Thenothe approximated interpoiated functions are quantized by 

the variable Of machine (t) and cause the quantization errors

in each point, which= cause the total error of quantization 

and also introduce the delay e“P^with It"! < Ax.

3,5,1. Quantization error in the rectangular method pf intégration.

The interpolation functions"f^jç and in the rectangular

method of intégration, are:

*iy = Ï1
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We hâve discussed earlier, that each point y^) 

the variable tof machine tothe quantized point (x 

error of quantization in that point and e^Qy

is quantized by 

iQ» Y^q) with the 

as :

"^iQx ” ^i ‘ ^iQ

^"iQy “ yi “ yiQ
(3-259)

so if we put the values (x^, yj^) of équation (3-259) in équation 

(3*108)r we will hâve:

6^ s”(t)

-1

(YiQ ®iQy^ ^’^iQ ®iQx^

O

(3-260)

- YiQ • 'iQ^ + ^iQ * '^iQx ^iOY * "*10^ ^

^iQy “ "^®iQx

(3-261)

= yiQ * H(3* + <"iQy “ + yiQ “ ^HQx +

(3-262)

^iQy ° ^'^iQx^

= 6^s" (t) + te(tj^, (3-263)

The approximated interpolated intégral formula s*‘(t) for k 

interval can be find from équations (3-260) , (3‘?261) , (3-262) and 

(3-263) as:
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i. s”(t) " I fi. s« 
^ i=l ^

(t) (3-264)

I fi^ Sq (t) + I 
i=l ^ Q i=l

(3-265)

ifiQ ” '*10* * '‘iOy • '*10* +

■•• yiO ' *Hox ■" Hoy • ^HOx>

(3-266)

in the équation (3-266), thefirstterm is the approximated interpo- 

latedquanti2edfunctionof intégration Sq (t) which is the algorithm 

of machine, equal tox

s
Q ïio • *10* tG(to, tj^) (3-267)

and the other terms of équation (3-266)are the total error of quanti-

zation e^Q equal to:

(3-268)

^to ° ‘"loy " *10* + yio • *Hox + 'ioy *=10x>

in équation (3-268) , the •third term is small with respect to the two 

first one, therefore it can be neglected, so the total quantization 

error will bex

k

tQ “ ^®iQy V ^iQ’^ ^iQ ° ^^iQx^ (3-269)
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As we hâve seen already:

■f'

"iQy> "

(3-
'iQxl < AX

6^qX “ 2 ® Ax

Z ïiQ • «Hqx ‘ '^kQ - w 
i=l

(3-

then, from équations (3-269), (3-270) and (3-271) wewill hâves

as

'tQ ‘ ,Z, ' " 'ioy • ‘i* * '^kQ - yoQ> ‘3-
i = l

(3-

i£l iQy
° A.x < 2" y e._ ° AjX

i i=i ^

h > r > O

and Hoyl ‘ ''y

so

or

l- 2^ • c 
i=l

iQy * < 2 - Ay O A^x (3-

^ 2^ ' - e * ^ oh
i=l

iQy ” ^iX < 2 “ A^y (Xj,Q -Xoq) (3-

From équations (3-275) and (3-2*2 , the quantization error (

270)

271)

272)

273)

274)

275) 

tQ

will be:
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®tQ ^ ° ^Qy “ ^oQ^ (3-276)

The équation (3-276) glves the quantlzatlon error of inté­

gration ^with multiple incrément in the rectangular method of intégra­

tion O As iit is seen, the e._ dépends to the quantums Ax, Ay, to the 

duration of intégral “î'q) and (yj^ ' and also to the nuinber of 

bits h for the multiple IncrementSo

3,5«2c Quantlzatlon error in the trapézoïdal method of intégration,

In the trapézoïdal method of intégration, the approxlmated 

Interpolated functions f^^ and f^y^ which are replaced to the functions 

X (t) and Y (t) are:

*ty = Vi - « «lï

(3-277)

*lx = *1 - « «ix

and the approxlmated interpolated intégral function 6^s** for interval 

t^ (t^,. t^^j^) will be:

-1

£ 4 s’ (yi ç fi^y) ô^X dç çe(o,-l) (3-278)

by putting the value of (x^> yj^) from équation (3-259) in équation
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(3-278), we will hâve:

(3-279)

^‘^IQ 'iQy> “ ' * ‘ioy” ‘ + ‘iQy’'^'

1

2

(3-280)

(YiQ ‘ «iQ* +—*iQy “ «iQ*) + 6e,«„ +

1

®^iQy * '^iQy ‘ ^®iQx

1
+-----—6 e

2 iQy ■ ‘iQ* * 2

The approximatedinterpoiated formula of intégration s“(x) 

in k interval will be:

S'*(x) = 6^ s'
i=l

(3-281)

k 1

l, ^^iQ * ^iQ*' ■^T’^iQy “
i=l

(3-282)

+ I cy
i=l

iQ “ «^iQX + "iQy ‘ «iQ^' + "iQy “ «"iQx

1 1 
+___5 y • 6e.^ +—”6e

2 iQ-^ iQx 2 iQy “ ^iQ^ ■^“T^^iQy ” ^^iQx^
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The équations (3-281); and (3r282) can be written as:

s»‘(x) » s« (X) + (3-283)

where (x) Is • the approxlmated/^lnterpolated formula o£ Intégration, 

(x) . Is'the approxlxnated'jinterpoiated quantlzëd: formula o£ Intégra­

tion-whlcb'lsr^the algorlthm-of machine, equal to:

k 1
3“ (X) - r (y^Q “ «IQ* +^iQy ■ «IqX) (3-284)

The„ quantizatlon error c^-;In the process•of Intégration 

can be flndr.from équations 43-282^ >and (3-283) as:

■tQ

k
ï

1=1 ^IQ
6 e IQX + e iQy ô^qX + e IQy

(3-285)

^^IQX

111
O +—fie^Qy ° 6j^qX ° ^®^lQx

In-équation (3-285) the ?thlrd; fourth and other terms, are 

very small wlth respect to the flrst two terms^ therefore, they can 

be negleotedtf So -Ùie ecan.~be;written as:

k

Sq “ Ji Ï'^IQ ' - "iQy ’ (3-286)

as It Is: seen from équation; (3-266), the e In trapézoïdal method of 

Intégration , isi practlcaliy equal^ ito'the of rectangular method of
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intégration (équation 3°27â> o So wlth the same reason whlch was dis» 

cussed ^n xectangular méthode the équation (3»^286) can be transformed 

to the~followlng équationo

'tQ ^ * ‘y (^kQ -: *0Q> + V •''kQ ■ yoQ> (3-287)

In order to reduce^Tthetsquantizatipn errorî we should 

decreaae the value o£ quantunisr Ax^ ûy^ and the nunÆ>er of incrément 

bits ho

3à5c3ô Queintization errorv in the .‘three points methodof intégration o

The approximated interpoiated functions and which are 

replacedv to the functions X (t) and Y (t) ares

•ix = !=! - 5

*ly “ Ïl - « \y

Ç(Ç+1) 2
' 6 , X

2Î ^

ç(ç+l) 2
■ «iY

(3”288)

21

Therefore the apprixomatedrinterpolated intégral function 

6^ s?* Cx> for interval ts(t^> will be;

6 s«=
i

^ ix
f - d— d ç
iy dç

(3=289)
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“1

6^ £:« B
r ç(ç+i) (2)

6iX -

2Ç+1 (2)

21
rt ^ X

(3=289)

dÇ

K
The équation (3-289) glves the value of the approximated, 

interpolated formula of Intégral In Interval t£:(t^, ^1+1^°

In order to flnd the approxlmated Interpolated quantlzed value
JJ

of intégral 6^ Sq, we should replace the value x^, with its quanti-
:c

2ed value x^Q, from équation (3-259) in équation (3-289) » So the
#c

équation (3-289) can be written as:

-1 _

^^iQ ^iQy^ ^iQy^

, O "* (3=290)

ç(ç+l) 2

21 ^i^^iQ ^iQy^ ^i ^^iQ ^iQx^

2Ç+1 p,

21
i ^^iQ ®^iQx^ dç

^iQ " «iQy ; ^'iQ^ ''i-1

(3-291) 

,x “
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■iQy + yiQ “ «^iQx + ^iQy " ^^iQx 

1
^^iQX 2 " *^iQ^ «oocoe

The approximatedinterpoiated formula of intégral s”(x) for 

k interval will be:,

s»«<x) = I 6. s = 
i=l ^

(3-292)

k

I
i=l ^IQ ° 'iQ^ ^~^iQy ' ^ '(i-l)Q^

^iQ^ ° ^(i-l)Q^^

k

+ I
i=l ^iQy 'iQ^ ^iQ

5 c iQx + e
iQy

6e+ 
iQx

1
^^iQx •'"^^"iQy

(3-293)

^iQ^ O O O O O

= Sq (X) + (3-294)

from équations (3-292) ÿ (3-293)> and (3-294) , it can be seen that the 

approximated interpolated'quantized value of intégral s” (x) , which 

is the algoritbm of machine> is^equal to:
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sg (X) = I
^ i=l yiQ ‘ ■"

(3-295)
1

12
+_ (6^qY ^ 6(i_i)QX- 6.qX » «(i_i)Qy)

and from the same équation, we can find the value of the total quan' 

tization error in interval t £(t^, tj^) as followings

k
e.^ = I'tQ

i=l
'IQy ’ ‘^iQ^ ^iQ ' ^iQy ° *^^iQx

1

2
+—ôiQy ' +—«"iQy -iQ

1

2
6.^x + O 0 O a 0

(3-296)

in équation (3-296), the third, fourth and other terras are very sraall 

with respect to the first two terras, so they can be neglected» There- 

fore, the total quantizatipn error in k interval will be:

Sq “ '■''iQy * ^iQ ° ^^iQx^ (3-297)

As we hâve already seen in the rectangular and trapezoidal 

method of. intégration, the équation (3-297) can be transformed to the 

following équation:

‘tQ < • 4y (x,^Q - x^) + 4x (y^Q - y^g) (3-298)

It can be seen from équation (3-269), (3-286).and (3-297),
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that the quantization error in the process of intégration does not 

dépend on themethod of intégration^ but it dépends on the quantums 

àx, Ay> on the dxiration of intégral 

number o£ bits h o£ multiple incrémento
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3o6, Conclusion,

In this chapter, we hâve calculated, for different methods 

of intégration^ the quantization error for unitary and multiple 

incrémental computation, when the indépendant variable of intégral X 

is equal to, or is a function of the indépendant variable t of machinée

The quantization error e^Q is the différence between the 

approximated interpolated intégration function s?<(t) and the approxi- 

mated interpolated quantized function 'jt)

e^Q = s"(t) - (t)

The values pf quantization errors for different methods of 

intégration, in the case of unitary and multiple incrément computation, 

are shown in the belowing table (3,1),
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TABLE 3.1

Method of intégration Quantization error 

in unitary incrémental 

computation

Quantization error e 

in multiple incrémental 

computation

Rectangular, trapé­

zoïdal and three points

method when Y = f (X) 

X = t

hq ' ‘y <>'kQ-*oQ> EtQ ‘ 2 <='kQ-=oQ>

Rectangular, trape-

zoidal and three points "tQ ^ ^^kQ-^oQÎ StQ < (k,,Q->=oQ) +

method, when X = X (t) 

y = Y (t)

+ ÛX (YkQ-YoQ) + (Ykg-YoQ)

As it is seen fromthis table, the quantization error is the 

same in the rectangular, trapézoïdal, and three points method» In the 

case of multiple incrémental computation, this error dépends on the 

quantums Ax, Ay and on the number of bits h in 6X registero

In incrémental computation, by choosing the more accurate 

interpolation formula, we can increase the step of intégration from
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Ax to 6x = 2^ * Ax; this increases the speed of intégration by 2^*

But as it is seen in table (3ol), we also increase the quantization 

error e^Q by the same factor^

In the chapter (6) » we shall see what is the greatest admissible 

h, for different methods of intégration, so that, the errors don't 

exceeding a certain limit®

In order to reduce the quantization error we should decrease

the values of quantums Ax = Ay = 2 where n is the number of bits 

in the y register» By increasing n, we can decrease the quantums Ax 

and Ay, but it is not interestingto increase n too much, because the 

machine speed wi11 decrease, and the amount of equipment will increase^ 

So, thereis a compromise between the choice of bits n in the Y regis- 

ter, and the quantization error O Usually, the value of n is between 

ten and twenty, so Ax = Ay = (2"”^° to 2“^°).,

In incrémental computer of industrial electronics of the 

Brussel University, which is designed by the author, n can be chosen

as ten or sixteen.
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CHAPTER IV

THEi ROUND OFF, TRANSMISSION ERROR AND: NONLINEARITY 

IN THE INCREMENTAL COMPUTERO

As we hâve seen beforev the continuons functions X (t) and

Y (t) are replaced by the approximated interpoiated functions

which hâve the errors between the actual functions X (t)

Y (t) , and the approximated interpoiated functions f^y as:

^ix = ^ix - X (t)

Hy = fiy - Y (t)
(4-1)

rho errors e^y» cause the total error of the method of

: ,:rior r (t) , v/hich is the différence between the actual integra-
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tion function s (t), and the approximated interpolated intégration 

function s“(t) as:

s (t) = S"(t) + r(t) (4-2)

In the quantization process, each point C(xj^, yj[) » yi-1^ »

ooo®] is replaced by the quantized points C YiQ) » ^^(i-l)Q»

y(i_l)Q,» O 6 »] which hâve the error of quantization ^±Qyf that

is the différence between the quantized functions ^iyQ'

unquantized functions f (t), (t), as following:

^iQx " ^ix " ^ixQ

^iOy = ^iy ■ ^iyQ

(4-3)

The ej_Qx» ^iQy total quauitization error in

the process of intégration» that is the diffence between the approxi­

mated interpolated function of intégration s’*(t) and the approximated 

interpolated quantized function of intégration s“ (t)o

s«(t) = sg (t) + (4-4)

The sg (t) is the approximated interpolated quantized function 

of intégral which is the algorithm of the incrémental machinée There- 

fore the relation between the actuai function of intégral s (t) and 

the approximated interpolated quantized function of intégral sg (t) isi

s (t) = Sq (t) + [r(t) + (4-5)
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As we hâve seen the b look dlagran of Incrémental computer 

Is shown In figure (4ol)o

In incrémental computer, the results of a given mathematical 

operation is transmitted for use in another mathematical operation 

by the use of quantized incrémentso

If the number of bits of y register is n, and the number
eq

of bits of6x register is h, then the number of bits of Sq (t) register 

is (h+n) as:

s" (t) = y^q • 6x (4-6)

By the convention the absolute value of y register is arreinged 

by scale factor in such a way that it is always less than one, so the 

less significant bit of y register has the weight of 2”^ which is 

equal to the quantum Ay so Ay = The weight of S register has

exactly the same weight as y register, as it is shown in figure (4o2) ^

Therefore, S register has one fractlonal part Sq with n less 

significant bits whose content is less than one, and the o the r most 

significant parts 6s which hâve h bits, and the content is greater 

or equal to one. As it is seen from figure (4.2), the most significant 

bit of S register has the weight of 2^, and the maximum value of 

is*®Qt

'■®Qt^max
(4-7)
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interpolation
process quantization process

Ü^O 4ol®

Block diagram of incrémental computer=
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S regieter 

h bit I n bit

figo 4o2
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the less significant bit of S register has the weight of 2”^ which 

Is the gucintuin of As, so:

Às = 2"^

in incrémental computer, using the unitary incrément h = /, the 

maximum value of is equal to one, in other words, when the content 

of S register bécomes greater than one, there will be an overflow, 

equal to one in 6^^ s, and the rest of intégral is accvimulated in 

part of S register. In incrémental computer, using multiple incréments, 

the maximum value of Sq^ can be equal to 2- = 1 or 2 , 2 , ... 2“,

So there will be an overflow when the value of Sq^ becomes greater 

than one, and the rest of intégral will be in register. Therefore, 

we can Write in any itération the following relation.

Sq (t) - s^M(t) + s^k (4-8)

where s^ (t) is the approximated interpolated quantized value of 

intégral; for instcuice in the trapézoïdal formula equal to:

k 1

' I 'ïiQ ■ ‘iQ*
X““X ^

\0
and s (t) is the sum of incrément of intégral at the h most signifi- 

QM
cant bit of S register, which is the output of incrémental machine.
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sQM (t)
k

I
i=l

6 . s” 
i QM

(4-11)

In équation (4-11), is the quantized incrément of

intégral (the h more significant bits of S register) , is the n less
1

significant bit of S register or i s the rest of intégral Sq (t), which 

is neglected in that itération for output information, but is accumu- 

lated in the memory for adding to the value of intégral in the next 

itération.

Therefore the value of intégral which is output of incrémen­

tal machine s^^^ (t) is equal to:

®QM

k

l
i=l

6 . s'‘ 
i QM

(4-12)

= Sq (t) - Sq (4-13)

in équations (4-? 12) and (4-13)^ the 6^^ Sqj^ i s the incrément of the 

approximatedlnterpolated quantized and roundedoff of intégral, and 

Sq is the round off error of the process of intégration.

The actual value of intégral S (t) can be found from équations 

(4-5), (4-12) and (4-13) as:

(4-14)

S (t) « s^j^ (t) + [r (t) + e^Q (t) + Sq (t)]

where r(t) and (t) are the error s of me thod and quanti zation, SQ(t) 

is the round off error and s(t) la the approximated interpolated



IP.R

quantized rounded off value of the integ^tiono Froih équation 

we hâve:

The algorithm o£ machine which is equal to Sq (t) in the 

rectangular^ trapezoidal and::threec^points interpolation formula o£ 

intégration is:

in rectangular method:

SQk “I. yi '
i=l

in trapezoidal method:

(4-16)

sQk <yi • «1=
i=l

X ° 6.y) (4-17)

in -three points method:

sQk <*> = ,1,
i=l

64X +——6jX - 6^y + 
2

+------- (64y “ «i-ix
12

(4-18)

and the approximated interpolated quantized, round off value of inté­

gral Sqj^ (t) which is output;of incrémental machine, can be found 

from équations (4-15), (4-16) / (4-17) and (4-18)
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In rectangular method:

(t) = 'l tt)
i=l

Vi • «1* -

In trapézoïdal method:

(4-19)

sQMk = I ■'iQM1=1

1

2= ili ‘^1 ' " •’ok

(4-20)

In three points method:

®QMk (t)
1=1 IQM

k

I
1=1

.. 1 _

'^yi * ^1^ ■*■—^i’^ " ^1^ ^*iy * ^1-1^ 2

1

12

(4-21)

- 6i_iy • ô^x)]- Sqj,

If we flnd the Sq^ for Itération.k by the rectangular method, we wlll 

hâve :

°QMJt “> = ï-1 • - =ok (4-22)
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and the (t) for itération (k*=l) by the same method will bej

®QM(k»l) yi * ^i^ ” ^o(k-l)

Therefore, the incrément of integra! 6. (t) will be
1 QMJC

the différence of ®QM(k-l) équations (4»=22) and (4-23),

It can be expressed as:

(t) = (t) - s
i QMk *QM(k-l) (t)

= • ‘k ’= * ®o(k-l) " “"ok

The équation (4-25) can be written as:

(4»24)

(4-25)

^ok^^^ “ ^k * *^k^ ^o(k“l) (4°26)

The expression (4“26) gives the exact operation of intégration 

in incrémental machine,, That means in each itération, the value of 

Yk -■ is calculated and added to the rest of intégral of the pre=

vious itération , so it gives the output 6^ ®qm]c which is

the approximated interpolated quantized rounded off of incrément at 

the output of machine, and it also gives the new value of the rest of 

Intégral Sjjk In the n less significant bit of S register which

goes to memory for memorization in order to use for the next interval»

The value of 6^^ ®qm]ç can be found easily with the same 

method for trapézoïdal and three points formula as following:
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In the trapézoïdal method: 

^1 ®Snk * ®ok - <ïk
1

6^X +------6
^ 2

(4-27)

In three points method:

'i ®ÔMk ®ok “ Cïk «k* +—“k* «kï («kï

(4-28)

*(k-l)**

- ‘(k-l)y • *k*>^ + So(k-l) <t)

The same conclusion o£ équation (4-26) can be taken for the 

équations (4^27) and (4-28)« For Instance, In the trapézoïdal method o£ 

Intégration, the value o£ (yj^ • 6j^x +-^—fij^x " 6j^y) Is added to the

rest o£ Intégral £rom former Itération r and there wlll be an

Incrément output 5^^ also a new value of the rest of

Intégral (t) whlch wlll go to the memory for the next Itération.

The same operation Is done for three points method, In thls case, the

value of CYk " V ‘ +“12 ° ^(k-1)* " ^(k-D^ ' ^

Is calculated and added to the rest of Intégral of the preceedlng 

Itération J. The resuit wlll be the output ®QMk

new value of the rest of Intégral whlch wlll go to the memory for 

uslng the next Itération,

In general the round offerror-e Ineach Itération Is a
k

functlon-pf ej^ « f CS^j^, So(k-l) ' “ ® ° ^ and'In our case> the round

off -error'e^ln* each Iteratlon'ls ek- = - S^j^,
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4 e loi a Upper bound of round off error of intégration in unitajfy 

incrémental computer.

As we hâve seen in the former paragraphe the relation between 

the output incrément of machine 6^^ ®Qnk and the algorithm of 

machine Ygqj^ is as following:

®ok + «1 «QMk “ yeg.k ■ '*k== ^ So(fc.i) (4-29)

or

«i ®QMk “ ^eq.k • 'k* * <So(k-l) - Sok> «-30>

where in the rectangular method, and Y^g = Yi +-^*£Y in the

trapézoïdal method.

In incrémental computer, with unitary incrément; the incrément 

of intégrale the dépendent variable and the indépendant variable are 

equal to the quantums ASeAy and Ax. So the équation (4»29) can be 

written as:

^ ®QMk * ^eq.k * ^®o(k-l) “ ^ok^ (4»31)

if we consider the value of (t) and Aj^Xe equal to the logical

± 1 or Oe then we should introduoe the factor 2'*'^ in the value of 

A Sqjjj^ (t) . In other words, the significant of A Sqj^ (t) is 2^ time 

greater than;: the logical t l. iSo the équation (4-30) in the coded 

form can. be expressed as:

^ ®QMk ” ^eq.k “ ^k^ ^®o(k-l) " ^ok^ (4-32)



193

in équation (4-^32) , if we neglect thé round off error “• Sq]^)

we will hâve the familiar équation of incrémental machine as;

A s
QMk (t)

1
^eqCk) ÀX (4=33)

if we use the équation (4-32), for first, second and k itérations

we will hâve the following équation:

(4-34)

2"" ^ = yeq(l) ° + ^^0(0) " ^c(l)^ itération
(4-35)

2"^ ^ ®QM(2f^) “ ^60(2) ° - S^^2)î 2^*^ itération

by putting from egj^Jàon (4-34)in équation (4-35), we will hâve;

2"" ^ ^5^(1) (t) + 2^ A = yeq(l)
Ax + y

eq(2)
Ax +

+ So(o) " ^0(2)

(4-36)

if we find the équation (4-36) for k itération, we will hâves

k

I
i=l

2^ A sQM(i) 'eq(i) Ax + S
0(0) °o(k)

(4-37)

The équation (4-37) can be written as following;

^ ®QM(k) 2n

(4-38)

"o(k)J

The value of—^ (S"FT ^^0(0) ^o(k) ) is the round off error e.

of the process of intégration» By neglecting ejç, we will hâve the
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normal équation of incrémental computer with unitary incrément as 

following:

k k 1

^ ®QM(k) ° 2^ ^eq(k)
(4-39)

so the round off error is equal to;

1
®k = ”^^^0(0) ■ ^o(k)^ (4-40)

as the nuinber of bits of S register is one bit greater than Y register 

therefore, the number ofbits'of S register is (n+1)» So the logical 

weight of S register for (n+l^'bit is equal to 2*^^^ - 1 which we call 

N so:

N = 2^"^^ - 1 (4-41)

2'^'^^ (4-42)

by putting the value of N from équation (4-42) in équation (4-40) , we 

will hâve:

2
®k = “ ^^0(0) “ ^o(k) ^ (4-43)

in order, to détermine the'upper bound of round off error, we consider 

its absolute value [ej^j so:

2

N ^o(o) ^o(k) (4-44)
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since ®o(o) “ ®o(k) < S , X = N 
O (max)

(4-45)

so < 2 (4-46)

N
if we put the initial condition of S register to-^(the most signifi- 

cant bit) ,

N

o(o)
(4-47)

then, by putting the value of équation (4-47) in équation (4-44), we 

will hâve:

2 N
ek = — 

N
— - ^o(k) (4-48)

since N > S^(k) > 0 (4-49)

N N
then

— - =o(k)
2 (4-50)

by putting the value of (4-50) in équation (4-48), we will hâve;

i®ki ' 1 (4-51)

Therefore> by choosing the appropriated initial condition

S , , =_4_ , we v;ill ha/e the round off error e, which is smaller than 
o(o) k

one, i, e, or smaller than the less significeint bit of S register.
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On the other hand, the less slgnificant bit of S register has the 

weight'of which is equal to= the quantums Ax or As so;

lej^l < As or |ej^l < AXo

4 6lo2o Upper bovind of round off error of intégration with multiple 

incrémental computero

In multiple incrémental computer, the incréments Ax, Ay, 

and As are:

6x =
2r »

Ax

6y = 2r . Ay h > r > O (4-52)

6s = 2^ As

We can use the general équation (4-29) for the quantized

incrément 6. . (t) as :J- QM(K)

^i®QM(k) " ^eq(k) ° ^k^ ^^o(k-l) " ^o(k)^ (4-53)

The coded équation (4-53) can be find easily with the same 

reason that^the équation (4-32) in the form:

^ *^i®QM(k) " ^eq(k) ^®o(k-l) ‘ ®o(k)^ (4-54)

For.k interval we can findthe following équation:



197

I 2"->' . S5„(„) (t) = ! • «X + (So(„, - S„(„, (4-55)
1—X 1=X

By dividing the équation (4-55) to 2^”^ we wi 11 hâve;

r*
®QM(k)

2^ k
(t) =——— ^ ^ea(k)

2n i-,1 eqtKj
• 6x +— (S 

2^ o(o)

(4-56)

^o(k)^

the second term of équation (4-56) is the round off error ej^ of the 

process of intégration with multiple incrément which is equal to:

eu =- (S - J
2n o(o) o(k)

(4-57)

By neglecting the round off error in équation (4-56) , we will 

hâve the operation équation of incrémental computer with multiple 

incrément as following;

^i ®QM(k) ^eq(k) “ ^k^ (4-58)

or

^i ®QM(k)

2h
(t) ------------ y

2n ■^eq(k) k (4-59)

As we hâve seen in the preceding paragraphe N “ 2^"^^, so 

we can write the équation (4-57) as following;

,h+l

®k N ^^o(o) " ^o(k) ^ (4-60)
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as
^o(o) ” ^o(k)

< N (4-61)

so the round off error e, will be:
k

e,, < 2h+1 (4-62)

By putting the initial condition in S register, like = ? ,

the round off error ej^ reduce to half of its upper bound as following;

oh+1

N

N
(4-63)

since N > S > O 
o(k)

so
l®kl " 2^ (4-64)

The équation (4-64) gives the upper bound of round off error

ej^ in multiple incrémental computer, by using the appropriate initial

N
condition S_ = — .

O 2

As the maximum bits of incréments 5x and 6s are h

( (6s) = (6x) = 2“ ), SO the équation (4-64) can be written as;
max max

lej^l < |6s| (4-65)

from équation (4-65), it is seen that the absolute value of round off 

error is smaller than the incrément 6s in multiple incrémental compu­

ter
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4.2, The transmission errors In unltary or multiple Incrémental 

computers,

In the intégral operation of incrémental computers, the informa­

tions which are needed in interval ^i+1^ expressed as

following:

^iQx “ ^IQx ^^oQ' ............. ^iQ^' ^iQ

^iQy “ ^iQy 6 ^^y, 6 2qY 0 ® » 0 ® ^iQ^' ^iQ

(4-66)

6 s” = 
i Q

'i+1

^lOï dt

As it is seen in chapter (1), because the itérative nature 

of incrémental computer, the only informations which exist are the 

informations of former itérations, 1, 2, 3,..,» , (i-1), which we find 

in the memory, Therefore, the data has a delay of one machine cycle T 

with respect to the quantized value of information. The delay T is 

produced in the input lata of incrémental computer, which are the out- 

put of the other integrators in the former itérations. This effect can 

be shown by figure (4.3). The delay cause the error of transmission 

Etx» *^Ty each interval x€’(x^, that is the différence between

the approximated interpolated quantized functions f ^iQy' 

approximated Interpolated quantized delaj^ed functions ^iQDy'
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fig. 4o3,
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as following:

^Tx ~ ^iQx t]

^iQDx *-^oQ' 62QX,...., t]

(4-67)

^Ty ~ ^iQy ^

“ ^iQDy ^2qY>---------- *(i-l)Q^'

xs:(xj^, ^i+1^

The e_ and e_ cause the total transmission error e„
Tx Ty Tr

As it was discussed earlier, the approximated interpolated
««

guantized value of intégral 6^^ Sq (x) is equal to:

.Sî
’Q6. s" (t)

'i+1

"iQy

^i+l^

(4-68)

by putting the value ^iQy équation (4-67) in équation

(4-68), we will hâve:

6
i

(t)

'i+1

•^^iQDy

(4-69)
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'i+1
^iODx

'iQDy *

'i+1

^iQDy

""Tx
d—— dt + 

dt

'i+1
- ^iQDx ,e . d——-------- dt +

^ dt

(4-70)

'i+1

e • d__^fL dt 
^ dt

The équations (4-69) and (4-70), can be written as following;

^ 'i = 'i ®QD ^Tir (4-71)

where 6^ Sqj^ is the approximated interpolated quantized, rounded off 

and delayed which is claculated by the incrémental computer as follow­

ing:

6
i QD

'i+1

^iQDy
IQDx

(t)
dt

dt

iQDx “ ^iQDx *-^oQ' t]

iQDy (■t) “ ^iQDy ^^oQ' «iQYr «2qY^®» **' ^(i-l)Q^'
t]

^i+1^

(4-72)
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and the is the total transmission error in interval tÆ" (t ^i+l)

which is equal to:

'i+1

'Tir

Tix
(t) • d - ^ dt +

iQDy

ti

^i+1

•Ty
•iQDx

(4-73)

(t)
— dt+

dt

'i+1

'Ty
^ Tx
d——“ dt 

dt

from équations (4-71), (4-72) and (4-73), the intégration formula 

Sq (t) in interval te(t^, tj^) will be;

Sj (t)
k
l

i=l
6i (t) (4-74)

k

l «
i=l i ®QD

(t) + I e 
i=l Tir (4-75)

= s»i3 (t) + (4-76)

in the équations (4-74) , (4-75) and (4-76), the s^ (t) is the appro- 

ximated interpolated quantized formula of intégration, which is equal 

to;

/U-XSq (t)
k

I
i=l

'i+1
^iOx

*lQy <« • ^
(4-77)
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The Sqq (t) is the approximated interpolated quantized delayed 

formula of intégration in interval tj^) which is calculated by

the incrémental computer and is expressed as;

®QD

k

= l
i=l

ti+1

^iQDy
(t) (4-78)

and the c is the total transmission error in interval t^(t^, tj^) 

which is equal to;

'Tr = I
i=l

'Tir

k

l
i=l

'i+1

k

+ I
i=l

'i+1
, ^iQDx

e_ • d—-----------— dt +
^ dt

(4-79)

k
+ I

i=l

'i+1
^Tx

^Ty ‘
y dt

if the input dx of incrémental computer is dt, then;
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*iQDx <t) = t

O (4-80)

the total transmission error, when the indépendant variable of inté­

gral is egual to the independent variable of machine t, can be find 

from équation (4-79) by putting = 0 as following;

e
Tr

k

I
i=l

f
ti+1

(4-81)

From the above discussion, the block diagram of incrémental 

computer which was shpwn in figure (4,2) can be developed as in fig\are 

(4.4).

It is seen from figure (4.3), in transmitting the data 

between the integrators in incrémental computers, it is introduced the 

delay T which cause the error of transmission

Example: the solution of second order differential équation, 

d^Y
--------r + Y = 0 (4-82)
dt

is Y = cos t

This problem is programmed in incrémental computer as figure

(4.5)
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input inter-
information polation quantization intégration

fig. 4.4
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1 2

fig, 4,5
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In itération n, the following différence équation can be 

writtenin each integrator;

in integrator 
(1)

(VIJ = y ' dt 
1 n •'n

y = Y T + ^Y ■'n ^n**l ^
(4-84)

n

in integrator 
(2)

"^2>n =

Y = Y , + VY n n-1 n

(4-85)

as the incrémental computer is the parallel type, the incréments VI^ 

and Vlj which are available in'the n*^ itération^ in the input of each 

integrator, are from former itération n-1 so:

(4-86)

by putting the value from équation (4-86) in équations (4-84) and 

(4-85), we will hâve;

(71,). = . at

------ = = ïn-1 *k nQDy
(4-87)
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,Wy = = Vl -
(4-88)

But the right expression of équations (4-87) and (4-88) 

should hâve the information of n^ itération as following;

■ioy = “ ïn-1 <”2>„

(4-89)

fiQY = ^n = ^n.l “

(4-90)

As it was discussed earlier in this case, the transmission 

error in interval tÆ(tj^, ^n+1^

^Tx “ °

j^Cty “ “ ^xQDY

(4-91)

(t)
n+i

from équations (4-88) , (4-90) and (4-91) , the and e,py in interval

t e=(t^, t^^j^) will be:

e^x “ °

e™. = - (Vil)
Ty 1 n^l * n

(4-92)
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which will cause the total error in the process of intégration®

By taking the z transformed froiti équations (4-89) and (4-90), 

we will hâve;

Y (Z) =
Z"2(1+t2) - 2z“l + 1

(4-93)

The inverse Z transforme of the équation (4-93), can be 

calculated. from the contour intégration arovind the unit circle,

Y (nT) =
2ïïj

jUrl t y J2) dz (4-94)

1

2nj

.n-l
z“2(1+t2) - 2z“l + 1

(4-95)

The solution of the équation (4-95) will be;

\1 ^
Y (nT) = y_ * log i| 1+T ^ arc Tan T) (4-96)

The solution of diffential équation (4-82) is the équation

ha s accuiTu: 

n log\lî+T2

(4-r96) , it means that the transmission error e^^ has accumulated in

each itération and caused:the exponentiel terms e 

(4-96).

in équation
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4.3a The nonllnearlty at the Input of Incrémental computers, euid cholce 

of scale factors c

Any computation machine has a limitation in the magnitude 

of the numbers which it can handle. A desk calculator, for example, 

has an accumulator of fixed size. An electronic analogue computer 

opérâtes over some limited voltage range and a digital machine has 

a maximxim capacity of its register. In order to assure that the inter- 

mediate résulta stay within specified linear range during running of 

a problem, in incrémental computer, the problem should be scaled.

This means that the capacity of register must not exceed of its maxi­

mum capacity, otherwise, it will be saturated and the System becoraes 

nonlinear. Therefore, the incrémental computer has two zones, linear, 

and nonlinear part.

As it was discussed earlier ail the guantities in incrémental 

computer, are in the form of incrémental, and any function is obtained 

by suraming of its incrément as followings

k
X (t) = I a. * 6.x (t)

i=l

y (t)
Ji “ly ■

k
w (t) = I 

i=l
‘iw

(4-97)

(t)
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k
Z (t) = I a. • 6.2 (t) 

i=l

When the incrémental computer works as an integrator, the 

dépendent variable of intégral y (t) is found by summing its incréments 

6j^y in the summator I as it is shown in figure (4,6) and équation 

(4-98) .

6
i

^i+1

y (t) * dx (t) 

ti

[y ®iy • “iy <t)

(4-98)

The value of y (t) is stored in the memory of the machine, 

but the length of memory register is finite, there are a maximum 

number of incréments which it can accumulate, and so the value of y (t) 

is limited by the capacity of Y register of memory and arithmatic 

unit, if the sum of incréments passes the capacity of Y register of 

incrémental computer, the Y register v/ill be saturated.

Therefore, the input block of incrémental computer can be 

determined as figure (4,6) ,

A primary purpose of scaling in incrémental computer is 

to assure that the intermediate results of y function, stay within the 

specified linear range (±A) of incrémental computer, The problem of
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fig» 4o6o

Block diagram of serial loC
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scaling in incrémental computer, is similar to that of scaling in 

analogue computer. The control of scale may be achieved in a number of 

ways, By providing a facility that allows a choice of the number of 

significant digits employed in any integrator, the use of constant 

multiplier, and digital serves with gain etc, The first step up in 

scaling a problem is to estimate the maximum values of each variable 

which is likly to attain during the course of computation, The more 

accurate is this estimation, the better is the solution.

If the estimation is too low, the integrators will oyerflow, and the 

problem will hâve to be rescaled. If the estimation is too high, more 

significant places will be used than reguired, and it will take longer 

than necessary to attain a solution, Of course, it is désirable to 

hâve ail scales as great as possible for the maxlmiim capacity o£ register

Although a scale factor can be any number within a machine 

range, restricting scale factors to intégral power of the machines 

radix allows the product of scale factors, to be obtained by summing 

the exponents, So to each quantity in the machine, there corresponds 

a certain scale,

M = 2

where 2 is the radix of bLneary numbers, and m is the power to which 

the radix 2 must be raised in order to equal M. The scale M indicates 

the number by which one unit of the quantity is represented in the 

machine. For example, if a quantity B is insertedinto the Y register
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3
of the machine with a scale M = 2 , this signifies that one unit of

quantity B is represented in the machine in the form of 8 pulseso

Now we explain the appropriate choice of scale factor which 

permits the operation of incrémental computer in its linear part, with 

the maximum accuracyO

We^assume that the physical quantities are represented in the 

sarae notation as the mathematical numberso For the unitary incrémental 

machine we hâve:

where n is the number of bits in Y register of the integratoro Assviming 

ç, V, r, are physical quantities> represented by the mathematical numbers 

X/ y, s respectivelyO Then, the équation (4-09 ) can be written as:

As the integrators hâve to simulate the relation between physical 

quantities of the form

ds - = 2"^ ° y ° dx 4-99

V (4-100

dr = Ç “ dv (4-101)

Then the condition must be-satisfied in (4-100) is

+ Sç — n — Sp = O (4<402)



216

expression (4-^®^)is the scale relation betweenthefoundemental 

quantittes In’unitary incrémental computation.

In multiple incrémental computation, we hâve:

2^
6s = --------- y * Ax (4-103)

2’”

with the same reasoning, the-scale relation between the quantities 

of multiple incrémental computation will be:

S + S - n + h - S„ = O (4-104)
V Ç 1

A further considération is taken into account in choosing the 

value of scale factors. If in the course of variation, some physical 

quantity V attains some maximum value, the quantity which is represented 

in the machine by the convention is:

2%iax
< 1 (4-105)

where m^^^ is the exponent’of -2 in such a way that, the value which 

is represented in the machine-becomes smal1er than one. So the quantity 

which is represented in the■machine is |v| ' 2^ax^ and taking into
g

account the scale factor 2 , this value is represented in the machine

|v| * 2^^^ “ 2^'' . The maximum capacity of Y register of the integrator 

is 2^, for avoiding the overflow of Y register, the following relation 

should be"satisfied:



217

or

'"max

The équations (4, 102) ^4-104) and détermine the, scale

factor of-each integrator-±n unitary and multiple incrémental computer»

In order to increase'the accuracy of the problem, the scale 

factors should be chosen in such away, to use the full capacity of the 

Y register provided that the"machine works in linear zone and doeS not

saturate
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4.4. Conclusion.

We hâve seen in this chapter that, by using the appropriate 

initial condition at S register^ in unitary incrément computation, the 

round off.error becomes smallér than one, and in multiple incrémental 

computation, becomes smaller than 2^.

Wealso calculated, the;transmission error in incrément 

computers, and in the next chapter,cwe will study the way of minimiz- 

ing this error.

As it is shovm, the:nonlinearity at the input of incrémental 

computers, can be avoided by a.good choice of scaling.




