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Brlef outline of thesls toplcs.

The research work carried out since september 1965 in the
laboratorles of Industrial electronlcs and automatlc control of
Brussels Unlverslty, has had as Its goal to Investigate the new
techniques of hybrid and incrémental computation for modem control
System engineering. Thils has led to the présent doctorate thesis in

the applied sciences.

The first step of this investigation was the study of exXisting
digital and analog computation, especially the hybrid computation and

the design of electronic transistor computers.

The second step and the main aim was the study of a new method
of incrémental computation in automatic control, This investigation
led us to elaborate "multiple incrémental” computation which has the
advantages of speed, versatllity and flexlbility over the unitary
increment computation which is the base of Digital Differential

Analyzers,



The Incrémental computation was flrst employed In Digital
Differentlal Anallzers (D,D,A), for Intégral operation. The velwpoint
purposea here Is that a DoD.Ao Is a spécial member of the more general
class of machines which are known as Incrémental computers. The
essentiel difference between an Incrémental computer and a digital
computer Is that, an Incrémental machine accomplshes Information trems-

fers between storage cells on a fractlonal word rather than a whole

Word basls.

The flrst D.D.Ao was bullt In the U.S.A In January 1950.
In thls machine every calculation was refered to Intégration, and
the unltary Incrément could have only two flxed value +1 and -1, In
the later "Ternary” machine, Improvement was obtalned by Increasling
the number of possible value to +1, O, -1. Thils machine was used
primarally for sclentlflc and technlcal calculation assoclated with

solution of Systems of differentlal équations.

The limitation of flIxed Incrément (x1,0) of D.D.A,, led to the
development of an Incrémental computer which could have flve flxed
values =#=I 32, O, that was suggested by S. Shackell and J.A. Tryon.
WIth hls method the Initial solution of a new problem was dellvered
with the reasonable promptness so that the changes In varlsibles
were processed INn each computation cycle, slnce the computer must
have been move promptly from whatever State It flnds Itself li.to

the State demanded by the problem (the time requlred for such motion



is known as slewing time)«

Further development of incrémental computation is the task
of this thesis, the study of "multiple incrément” computation that
increments Ccin have any desired value between 027, 2\ 22, 2”900

2”n is the aim of tiiis investigation® In this System the largest
permissible incrément is larger than any accepted change in any
input, intermediate value or resuit and incréments are e”qpressed

with a sufficient number of digits to flpw any rapid and jump functiono

The new type of transistor incrémental computer which is designed
and developed by the author in the Industrial electronic IcUDoratories
of Brussels University, perfoms the intégration on the basis of unirary

and multiple incrément computation.

In additiony this machine is capable of doing ail the basic

mathematical operations and other combined operations.

The interconnection between the integrators, was realized
normally by the stored programme or by patch panel with two lead
for unitary incrémental computation. We developed a new algorithm
which permit to interconect the integrators by only one lead on the

patch panel.

The computation time for a intégral operation in the general
purpose digital computer is about 50 ms (with dock frequency of

1 M hertz)in unitary incrémental computer, (with 500 k hertz dock
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frequency) is 40r sec, so the speed of this machine is 2500 higher
than general purpose® Still the multiple incrément computer increases
the speed of integration by 2% (same dock frequency), so the speed

of intéegration is increased by 2500 ° 2* = 40® 000 compared to general
purpose digital computer® Morever,when the incrémental computer are
provided with multiple incréments, the slewing time is reduced at

the price of equipment, the resuit has the advantage of very high speed
computation high dynamic quality in automatic control, and very good

capacity for répeéetitive calculation upon continuons quantities®

Because the incrémental computers work on discréte values of
the variation of a function at particular instants of time, they are
asaociated with the error of computation® This study of error in
incrémental computation is an important factor in the performance of

the computer and the choice of algorithme of computation in most

economical and convenient way.

The error analysis of D.D.A. has been done by some authors
(among them are particulary D.E® Skabelwnd of the university of utah

U«SsA”®, F.B. Hill at McloT® and 0® Hange in Germany)®

To our best knowledge, they claculated only the error of
method and round off, but they did not deal with the queuitization
and transmission error® Moreover, their computation were applied
only in the particular and simplest case of unitary incrémental

conputation (D«D.A).



The viewpoint of our Investigation is to présent new effective
methods of calculating ail the errors (method”round off, quantization
and transmission) in the general form of multiple incrémental compu-
tation® The "unitary incrément” becomes then a particular case

of the general theorj

This permits us to compare the various errors in both types
of incrémental computation which is necessary in order to choose the
algorithms of machine in the most ecohomical and convenient way with

the desired accuracy in relults®

The calculation of error of method in the intégration process,
lead us to choose the most convenient quality and degree of approxima-

tion for unitary emd multiple incrément computation.

Computing the quantization error for different methods of
integiration in unitary and multiple incrément computation and the
way of minimizing them, gives the idea of the choice of the register's

length and the speed of incrémental computer.

The study of rovmd off euid transmission error shows the way

of minimizing them in incrémental computation,

The calculation of the total error enabled us to compare the
error for different methods of intégration in Xxinitary and multiple

incrément computation.
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From the comparaison of these errors, we deduced the choice
of algorithm for unii:afy and multiple incrément computer# with the

desired accuracy,

Regarding application of these computations# the incrémental
computers with unitary incréments as DoDoAc has the advantage of
high computation speed, very good capacity for répétitive calculation#
small volume, low wight and reliability compared to general purpose
digital computers. This design is suitable for real time control
problem e# g, in control of Industrial process autopilot and guidance

Systems.

However the vinitary incrémental computer cannot be used where
fast slewing is required. This éliminates any problem in which it

must produce results immediatly after the first datas are applied.

When the incrémental computer is provided with multiple
incréement so that slewing time is reduced at the price of more equip-
ment, the method has of course the same advantages as D.D.Ao cund in
addition it posses short slewing time. The design is therefore
appropriate where both high computation frequency and short slewing
time are needed for dynamic response. Suitable problem appears in
the problems of Direct Digital Control (D.D.C)# optlimlzation and
simulation of automatic control# missiles aerodynamics; navigation

and aviation.



Chapter

I > THE CONCEPT OF

Introduction

1.320

lo2.

1.3.

Chapter 2 - THE METHODS AND ERRORS OF

2.1.

The baslc operation of£ a new type of incrémentalcomputers 6

Data Processing

The numerical

COMPUTATION

CONTENT

INCREMENTAL COMPUTERS

in incréemental computers

The methods euid errors of intégration i

computation when the

X is the

2.1.1.

indépendant variable .

Intégration by the

£f£ormula in unitary or raultiple

tion.

Intégration by the

f£ormula

tion

in unitary or multiple

intégration in incrémental computers

INTEGRATION IN INCREMENTAL

N incrémental

indépendant variable of intégration

interpolated rectangular

incréement computa-

interpolated trapézoidal

incréement computa-

17

26

34

34

3C

42



2e2a,

2.3.

2.1.390 Intégration by the interpolated three points

formula in Xxinitary or multiple incrément computa-

tiono 4

The method of intégration in incrémental computation

when the indépendant variable of integration X is a

function of the indépendantvariable t » 57
2 02,1. Intégration by the general interpolation formula

iNn unitary ormultipleincrément computation. 54
2e 2.2 Intégration oy uie interpolated rectananl . 'w

formula in unitary or multiple incrément computa-

tion 67
2.2.3. Intégration by Uie interpolated trapézoidal

formula in unitary or multiple incrément computa-

tion. 69
2.2.4. Intégration by the interpolated three points

formula in unitary or multiple incrément computa-

tion. 72
The error of method in incrémental computation, when the

indépendant variable of integration X is a function of

the indépendant variable t « 75
2.3.1. Error of the rectangular method of intégration
in unitary ormultiple incrément computation, 75

2.3.2. Error of the trapézoidal method of intégration

in unitary or multiple incrément computation. 79



2.4,

Chapter 3

3.1.

Xl

2.3.3« Errorof the three points method of intégration
iNn unitary or multiple incrément computation 8?
Conclusions 86

- THE QUANTIZATION AND ERROR IN INCREMENTAL COMPUTATION. 90

The quantization process in incrémental computation 90

3.1910

Quantization in incrémental computation by the
indépendant variable x, and algorithm of

quantized points. 93
Quantization in incrémental computation by the
dépendent variable y, and algorithm o£f

quantized points. 97
Quantization of the continious function y (X)

iNn incrémental computation by variebles y and t
when the indépendant variable of intéegration x is
the indenendent variable t, and algorithm of

Muanxized points. 100

The quantization error in unitary incrément computation,

when the

independent variable of intégration X is the

independent variable t » 107

3.2.1.

Quantization error xi. ~“he rectangular method
of intégration. 109
Quantization error in the trapezoidal method of

intéegration 111



30230 Quantization error in the three points method of
intégration.

The quantization error in unitary incrément computation

when the independent variable of intégration x 1s a

function of the independent variable t*

3.3.1, Quantization error in the rectangular method
of intégration.

3.3.2, Quantization error in the trapezoidal method
of intégration.

3.3.3, Quantzation error in the three points method of
intégration.

The quantization error in multiple incrément computation,

when the independent variable of Intégration x is the

independent variable t »

34.1, Quantization error in the rectangular method of
intégration.

3.4.2. Quantization error in the trapezoidal method of
intégration.

3.4,3e Quantization error in the three points method of
intégration,

The quantization error in multiple incrément computation,

when the independent variable of intégration is a func-

tion of the independent varil3k=" t»

3<5,1. Quantization error in the rectangular method

of intégration,

115

119

128

133

136

141

14p,

151

154

15pP

166



3,6.

X111

3«5.2. Quantization error in the trapézoidal method

of intégration>»

3,5.3, Quantization error in the three points method

of intéegration.

Conclusions,

Chapter 4 - THE ROUND OFF ERROR,THE TRANSMISSION ERROR AND

4.4,

NONLINEARITY IN INCREMENTAL COMPUTERS,

The round off error in the intégration

process by

unitary or multiple incrément computers.

4.1.1. Upper bound of round off error
incremental computers,
4.1.2. Upper bound of round off error

incrémental computers,

The tremsmission error in unitary or multiple

computer.

The nonlinearity at the input of incrémental

and choice of scale factors.

Conclusions.

in unitary

in Mmultiple

Chapter 5 - THE TOTAL ERROR AND THE CHOICE OF ALGORITHMS FOR

5.1,

INCREMENTAL COMPUTERS,
Total error in the intégration process

multiple incrément computers, when the

in unitary or

independent

incrément

computers

170

173

178

181

18l

192

196

199

2il

218

219



5,30

5,40

5.5,

5.6.

X1V

variable of intégration X, is the indépendant

variable t« 219
Total error in the intégration process in unitary

or multiple incrément computers, when the independent
variable of intéegration x is a function of the

independent variable to 229
Relative error in the intégration process in unitary or
multiple incrément computers. 239
Minimisation of the transmission error in unitary or
multiple incrément computers. 245
Choice of number of bits in multiple incrément computer,262
Choice of alaorithms for unitary and multiple incrément

computers, 272

Chapter 6 - A NEW TYPE OF UNIVERSAL INCREMENTAL COMPUTER.

DESIGN - DEVELOPMENT - CONSTRUCTION 277
INntroduction 277
6.1. Organisation of Computer. 281
6.2. Arithmetic unit 284
6.3. A new concept for programming unit in incrémental

Computer, 317
6.4. Main store of incrémental Computer, 326
6.5. Conclusions, 338

Bibliography 341



CHAPTER 1

CONCEPT OF INCREMENTAL COMPUTERSy

Introduction,

The current tendency in control field towards high degree of
accuracy, reliability, as well as decision making and compatibility,
has placed emphasis on the digital techniqueso The increasing size
and complexity of control Systems, necessarily involves, the develop”
ment of digital automatic control Systemso In this aim, the general

purpose digital computers played the principal réle in the first stagso

In parallel with the development of the general purpose, went
the development of many spécial purpose techniques, which were found
useful for implémentation of specialized devices for control computa™

tion and information processingo

Automatic process control is now a well established discipline

encompassing a variety of techniques and methods, and in which compu-



ter techniques are of increasing importanceo Direct Digital Control
( DttbaGo ) is opening new possibilities of accuracy quality and

economy of automatic process contrdle

Computer techniques offer practically unlimited possibilities

for accuracy, speed and sophistication of integrated control Systemso

In view of requirement of modem control Systems, the speed of
general purpose computer is completely insufficient for real time
computation» Even an extremely large general purpose computer cannot
handle the computation necessary for real time control Systems»

The time used in setting up and programming a problem may amount to
weeks or even months» For most practical applications, vhere the pro-
blem is s-“lved in accordance with a previously prepared program, a
general purpose computer is not neccessaryo In fact, in terms of the
stated problem, such a computer ds unnecessarily™ con™lex and relati-
vely inefficiente Large computers should be built only for large
computing centers in which effective use of such computers is pos-
sible» Thus, technical and economicai taccors dictate the use of
simpler, more reliable, economical md compact spécial purpose digi-

tal computers, for use in many applications>»

During the last years, a new type of computer, based on the
principle of digital integration, uas oeen found increasingl/ wider
application» Such computers, combining tne advantages of digital and
analog machines, were first refered to digital differential einalyzers

( DoDeAo D)o Further development of digital differential analyzers



evolved a class of incrémental computers, based on the principle of

summation of incrémento There are two types of incrémental computers;

the former is the incrémental computer with unitary euid fixed increé-

ments

analyz

Ax = x1 and Ay = #x1, which includes the digital differential

ers ( D,D®A0), the Ilatter, wnich is a development of (DoDoAo0),

is new géenération of incrémental compuuer with multuple in~"z mentSo

( The

incréements in the computation may taxe the multiple quantities

of x2°, x2n, 27~ »00 x2n )0

mental

a)

b)

The high computing speed and operating efficiency of the incré-
computer resuit from the fact that

the computer opérates with incréments of input quantities and
not with the quantities themselves, as it is the case in the
general purpose computers« This permits considérable increases

in computing speed and in switching integrators,

due to the use of multiple incréments, the speed of intégration
in incrément computer is multiplied by the factor 2~ compared
with the unitary incrément (h = 1) which is used in Digital A

Differential Analyzer ( DoD»Ao ),

by usine intégration as a basic operation, operations of inte-
gration, difféeérentiation, multiplications, divisions, extrac-
tions of a rooth, logarithm calculations, and so on, take a
time équivalent to two or three times of addition operationo

This time is much smaller than in a general purpose computer,



d)

e)

L))

mical,

there Is no need to store the operation codes and znemory addres-
ses in the internai memory of incrément computer for use of Iin-
tégration, différentiation, multiplication and division of fun-
ctionso .

I'a:
Consequently, the solution of a retively complex problem in the

increment computers does not reguire an internai memory of lar-

ge capacity,

with the increase in complexity and nonlinearity of the problem,
the incrément computer becomes an even more effective machine,
because the eunount of egulpment does not increase in proportion
to the complexity of the problem,, The accuracy of incrément
computer does not decrease with an increase in complexity of

the problem,

in addition the incrément computer reailzes the basic mathemati-
cal operation, as addition, substraction and multiplication of
several values in one time of additiono It also performs the
other basic mathematical and logical operations as general pur-

pose computers

Therefore,the incrémental computers are much more rapid, econo-

compact and efficient than general purpose digital computer, and

they have-the advantage of both anaiog and aigital computers»

ter*s

However, because of the discrete nature of incrémental compu-

operations, an incrémental computer realizes the approximated



value of intégration and not the original one.

In chapter one, we are going to explain the principal of incré-

ment computers and their operation.

In chapter two, the different algorithme of integration and |
their errors are calculated in a general case for unitary or multiple
incremental computation, when the independent variable of integral X
is equal to, or is a function of the independent variable t of the

machine.

In chapter three, we wvill study the quantization process and the
quantization error in unitary or multiple incrémental computation, when
the independent variable of integral X is equal to or is a function of

the independent variable t

In chapter four and five, we calculate the round off error,
transmission error, the total error and the way of their minimization
by the appropriate choice of algorithms which are applied to the ma-

chine.

In chapter six, we explain the design, development and construc-
tion of a new génération of incrémental computers, that the author
have developed Iin the industrial electronics laboratory of the Uni-

versity of Brussels.



1 al The basic operation of a new type of Incrémental Contptiterso

The need for simple, compact digital computers suitable
for solving differentiel équations, automatic control simulation
and optimization led to the development of a spécial type of

control computer which is called the incrémental computer»

INn ordinary computation, the function must be évaluated
anew for each value requlred» This computation method conducts
to complex and time-consuming procedures®

Another approach is to compute just the incrément of the
function from ai évaluation to the next» Two characteristics of
this approach are
The value of the incrément between successive évaluations are
smaller than the values of the function itself £
The wvariation of a function is slmpler than the function itself,
These characterlstics make possible some very simple computers,
in terms of hardware and loglc» Any function can be determined
by its initial value and its variation in time, which is called

the incrément of function.

For instance, the function y (x), can be determined by its
iNnitial condition (Xq, yp) Ms incréments 6x and 6y,
As It is seen from figure (1 - 1) the function y (X) can be

complétély determined in time as



In initial condition XO Yo

Instant Xi = Xq + = Yo + Y

f I X2 = Xi + 62 X Y2

yl + 62y

f I
S IR T RN BV I L
As incrémental computers are digital machines, instead of

using the initial values (Xq, Vq), and the incréments 6™x, 6y, they

use their quantized values Yan) NioN Mo

shown in figure 1 - 2).

Therefore there is an error c i between the oriainal values
(@)% IOy

of fxinction (xX) and its approximated quantized values which

is defined as

e. =><.—-2>x.M /,

iOx 1 1Q (A —1)
N - - V. N

iOy ““1 “1O

The quantized function y™ (xX) is determined with the initial

values (X¢jpf Yqgo! quantized incrément .
o T Xda-ngd  1s* -2
-io T Vda-no
There are two kinds of incrémental Computers ; unitary

increment computer and multiple incrément computer.

The unitary incrément computers includes the Digital



Differntial Analyzer (D.D.A)). In this kind of computers, the
increments "1 x and * y are fixed and limited to +1 or O.

So It is not possible to treat functions which varies rapidly in
time, because the fvinction y (xX) can only change by the quantum Ay

for each interval ux. Fig. (1 - 3).

The multiple incrément computers are a new type of machines
which operate on multiple or variable incréments
So It is possible to treat functions which varies rapidly in
time, because the function y (X) can change by the 6y = 2 « Ay
for each interval 6x = 27n* (h’ 0)* (1-4a).

Therefore these kind of computation havé a great advantages
o.ver the unitary incrément computers because of their flexibility

and ability to operate with any rapid function.

One of the principal operation of incrémental computers is
the intégration, which can be down with unitary or multiple

incréments.

The intégral operation by unitary incrémental computation
is the basic operation of digital differential Analyzer (D.D.A.).
In this case, the stepof intégration is the quantum ax, which can

have the logical value +1 or O.

Therefore the approximated value of integral Q) is



y(X)

Fig 1-2

Figl -3 Fig 1-4
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S ®

Q dq * A Q (1 - 3)

Where

AX = 1 or O

The value of V is chocs in in such a way that when
N éq.
multiplied by it give the intégral of the function in

interval x xn, X with any desired accuracy, (fig« 1.5c).

The new method of intégral operation is based on the
principal of multiple incrément Computation. In this case

instead of using small step of intégration equal to the quantum
r

aXf we use a large S'bep = 2 Therefore tihe speed of
intégration wvill increase by the factor 2 t compared to D.DoA.
The integral function * interval x ~Ni+D
6 S »
iQ ~oéq
Where
6 X cc 2 A X
Q IQ
r
6 Y =2 Ay
iQ iIQ
Ar
6 2 A S
1Q iQ

T
N éq. f 2NQ™N NN A G-DH AG-D QAN
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interval x xn™, ™Ni+i) with any desired accuracy™a Fig» (A-6)>»

We wvill study later on, the value of y and the approximate

X9 67

function of intégral in more detail.

The multiple incrément computation, has the great advantages

of speed, versatility and flexibility over the vinitary incrément

computation. In following discussion we shall treat the general
case : The multiple incrément computation. The basic operation of
D.D.A, is a spécial case of multiple incrément for which r = 0

The arithmetic unit which realize the intégration on the

basis of multiple incrément computation is shown in fig» (1 - 7).

The input incréments are added in block 1l in order to find

the value of function at each instant t™" as

K
NQ Mo Q N =l
.( > NA-D O ee*e according to the choosen
aigorithm of machine gives the value of y™g » transfer to the
y"g register . After multiplication by the step of intégral

\agX, resuit is added to the rest of intéegral (from
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former itération i-1) and transfered to the S register» 1 ¥ n and
h are the number of bits in yéq and 6x register, then the nurtiber
of bits in S register wvill be n + h ¢ The most significant

bits of S register, from n + 1 to n + h are taken as the

approximated rounded off incrément of intéegral T«
¢ 7i
The output fS () ' transmitted to the input6é x and 6 y of

other integrators, or is memorized in the incrément memoryo The
rest of intégral J which is in the S register (bits Ito n)
is memorized in the computer memory and wvill be used in next

itération>

This operation is shown by the following équation»

itération i ®O(1-1) + Tl &q.-' iQ'™ ° * iOt
@ - 95

iteration i+l T(i+i) éq *(A+1) g «“ * (i+1)gm’ o+

By this method, the intégral operation is dore on the basic
of multiple incrémental computation, with the input quantities
NQX, cela , ~ | OUtpUt isS

the incrément of integral 6_Q S*Mt)o
i
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The organlzatlon of the new serial type of£ Incréeémental

computer Is as followlng

1 - Arlthmetlc unit

2 - Memory unit

3 - Control unit

4 - Programing unit
5 - INnput output unit

The arithmetic unit of this incrémental computer operate the
intégral operation on the basis of unitary or multiple incrémental
computationo By a new method it performs the multiplication of
two functions with higher accuracy« This unit also performs the
basic mathematical operations as addition, substraction,
multiplication, etc ..o in one time of addition and is also

capable of decision making,

There are two memories for mémorisation of the values of the
function y™ ; the rest of intégral Soi or other intermediate

results of computation.

The control unit gives ail the control puises for arithmetic

unit, memory unit, programming unit and iNnput output unit.

The new method of programming of incrémental computer is
the patch panel using only one lead for transmitting the informa-

tion between the integrators in unitary or multiple incrément
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computationl Therefore a problem can be progreimmed on the patch

panel exactly as on the analog computero

So the incrémental Computer has the advantages of the
analog computer for integration and simplicity of programming»
It also has the advantages of the digital computer for accuracy,
decision making, mémorisation and ail the logical and basic

mathematical operation.

This new type of machine has been devised by the author

at the industrial electronics laboratory of Brussels University.
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1.2» Data Processing In Incrémental computers»

The incrémental computers (IC) are one type of speclalized
control deviceso This pertaxns-to-the computers in whichthe results
of a given mathematical operation-are transmitted for use in another

mathematicai operation bymeans of incréments.

Al the quantities and the transformations in incrémental
computers are merely incréments of initial quantities, v/hile at the
completion stage of these transformations, the-results quantities are

obtainedby the summing of the incréments.

Therefore, any variable in incrémental computer can be

represented as the sum of-incréments.

X = i;| axi 6_{'X
n Fig. (1 - 6 )
y = | v

n
L= 1 a. vl
L i=lI n
The 6x, 0y, 6z, are the incréments of the functions x, y,..
,»» Z and-the-coefficients a Syi# ... sequence orders
of incréments 6x, 6y, and 6z, v;hich dépend on the functions Xx, vy, Z.

The coefficients Nj* eeee ~zj have one of the three values 0O, *1
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that détermines whether'the incréments ,»,0 67z should
be added'(+Dr substracted <=-1), or ineffective, to the former value

OF XN, 2N to form NN ©O0«0

For example> the fvinction y (xX) which is replaced by the

approximated-interpoiated-quantized function fj_Qy”) is represented

by ;

Cy(-DOE> " ®iy 1 *10N
@=n

ryiQ(x) = vy,Q + + «igy

(1“8)

X?L:tl:xfo\+y 6_X

The approximated quantized value y™ and the order sequences

of incréments-a™y-are represented*in figure (Ic9) 0

In the same way any function x™q, Y~g# ©oao. can be appro-

xXimated by;

==iCl “* == ®Ix 1
(1-9)

~NQ = N6 A ®iy
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n

Zj« =y + 0 a. ¢ 0.7z
1Q 0 =
So the value of each quantity at particular instar't , is

obtatned by accumilating;vthe individual incréments generated by the
System throughout the time of its operation, on the basis of separate
increments arriving in time at the input of'*the System which has the

inhérent deiay'of TMwith respectto the original continuons functions»

According to Shanon theory, any complex differential équation:

c r . ' au _ . aj™/
y™N e«O,, Yy | Y2f y2* <®" Y2 f “Clay™
- em—- Y&él — g = O (1710)
can be solved-by the (IC), providedj it can be transformed to the
following équation.
(1-11)
dy i,,=0 -
le ~ 27"3”ao«n
v/ihere y» = 1 (introduced - -to make notation compact) ,(y” )is the indépen-
dant variable and y*, y*, »o0... y"“ are the dépendent variables.

The équation (1-11) can be written in the follov/ing form:

iyv = 1. ANijk * Y
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FOYa% oy Y T e

= X
v (1-12)

k 27"3yo»ao n

(k is the number of integrator)

In ordertosolve the-équations (1-12) by the (IC), we should
transform it-to the input-and output quantity of tho ((IC). With this

aim, it is assumed;

ijl< + A1 o

ms«ijk
m3«ijk = ~Nijk (1-13)

dz o = ¥ " 9%

The first équation (1-13)/ can be written in three équations:

\k j.i=0

Anjjk = Nijk ¢ ml (1-14)

yeeg 1
in this équation, dz™ = y™ * dy™ is the output of the integrator,
Y™ is the équivalent value-of—y), It is connected to the input of
the integrator k by the programme matrice aijk (alj.).(
determined by the programme)”, and the équation dyj® = dc ..
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gives the input variable yj* of (IC), which is the sum of the outputs
of the other integrators, So, the model of (IC), for solving the

differential équation, is shown in figure (olO),

As it is seen from the figure (1.10), the output of the other
integrators dz™ are connected to the input (K) » *eoo"
~Yj ()c) integrator (k) , by the programme unit, which détermine

the matrice a.. for the interconnection between the integrators.
1]

The values *=aml' calculated by integrating
the équation Iin interval .
i+l
n
VAN /\k cc N NG
A i/§=0 ke
Xj
N+l
Xi+1
a__ dz ,
ijk ml
Xi
i+l
6Z

ml
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fige 19

figel““10
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k = 2,3

INn order to calculate the intéegral of input quantities

it would be necessary to have the informations of ®ijk
and ° dy”™ in i1 intervalo But in practice, Iin the i™ itération
of the only informations which exist, are the informations of

former itérations, 1, 2, eooo ((i-1), which are in the memoryo Therefore,
ail the data have a delay of one machine cycle T, with respect to the
quantized value of information® Of course, this delay is appeared in

the transmission of data, to the inputs®

As It was seen, the quantization process produces an inhérent
delay 7" with respect to the continuons function® Here it is shown that
in the transmission of 47ta, there wvill be an itération delay time T
in the input data of the intéeégrator, compared with the quantized data
which should be available in the i ji~rération® The total delay of

n

data is 7"+TorT (1 + ?) =T (1 + X),by assuming X = {I_\‘R
Consequently, the informations that are available in the input

of the integrators, from the above discussion, can be written as;

~AOQ! DOy 0000 6

6 (-X-1yO (1-16)

~([i-X-DQAN
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The block diagram of (IC) wvill be as in the figure (ol)>»

Now we wvill explain the resolution of differentiel équations,
by the incrémental computer» As it was seen in order to solve the
équation (1-10) by incrémental computer, it should transform to the

following équations:

i,D1=O Tk
®ijk il Sl
Aim o dvii

The third équation (1-17), is the integrator action, thei

second one is the multiplier action by the constant Coefficients
®ijk’ first one are the summation of incrément, which give the
desired output The équation (1-17) can be programmed on the

incrémental computers, as it is shown in figure (l0I12),

In the figure (1»12), the incrémental co”™uter first opérates
ail the intégrations, then i1t opérates ail the multiplications, and

at last it opérates the summations»

But as it was discussed earlier, because of discret nature
of the operation of the incrémental computer, and the delay of T (1+X)

which is introduced, there wvill be an error in each operation.
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Intégration action Multiplication Summation action
action

Fig. Irl2
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In follbwing chapters, we shall calculate the error in unitary

and multiple incrément computation for varions methods of intégration>

1,3¢ The numerical intéegration in incréemental computers»

Numerical intégration is the study of how the numerical value
of an intégral cdh be found» There is the method of approximate
intégration, where an intéegral is approximated by a linear combination

of the values of the integrand>»

y dx = f(x) ° dx
(1-18)
= ty fxn) + fCx™) + «.O. +“k
a< X<b
The jg , X2 .0.0 Xj* are k points usually chosen to lie so in
the interval of intégration, and the numbers wj , «2 » are k

weights accompanylhg these points. Occasionally, the values of the
dérivatives of the integrand appear on the right hand side of the
équation ( 18 ). Let's suppose that y = f (X) is a bounded function

on the finite interval (a, b), Partition the interyal (a, b) Iinto k



subintervals by the points:

= < < =
a Xﬁ X T = .e,,» b
let be any points in the subintervals A E o
of:
k
I f (¢c) x» - X"

is called ReJmand sum.

The approximate form of intégration in interval x<s(a, b) is:

b
y dx = Xi) (1-20)
. a K > »
where T (¢”) is an approximate function of y“ « f (¢) for interval
c<s (X, Ni+1"™ shown in figure (1,13),

ITf the independent varicuDle of intégral X is a function of the

independent variable t of the machine, then the functions Y (t) and

X () are replaced by the approximated interpolated functions f. ()
and (t) as following:
X () » ™ ™) t<S-{", tjr+L)
‘ (1-21)
Y (©) fs .

ly
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where
f (o - f " i 2N o 00»E T)
122
fxry (O =y ¥Y*, vyi_li, 0 t)
Then the general formula of integral S (t),
'b
X0
S (O Y () d —= dt (1-23)
dt
a

te(a, b)
is replaced by the approximated interpolated function of integral

s““(t) as;

i+l

S () i . 3 dt
iil iy ® a dt

(1-24)

INn general it is possible to interpolate the functibns F¥CTt) ,
fiy () with any interpolation formula as Newton, Reiman, Stirting,
Lagarangian, and so on, with any degree of accuracy, in interval

te™, «

The polynomial formula of Interpolation is much used in physical

and engineering probléme, specially in the digital computer, whése
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functions are transformed to the approximated polynomial functions,,
But in incrémental computer, the informations which are transmited
and opérated on, are in the incrément forms 6x, 6y, 6to Therefore, the
first condition of interpolation function for incrémental computer is

that, it must use the incréments of functions.

The Newton interpolation formula with forward informations in

interval Xj~+i) # can be represented as;
¢ (¢-1) 1
Fi(O Yi+ ¢ 6%+ y *
21
(1-25)
G(CD (G-2) "CDe0, (3-n+h)  { (M
6/ y+*"*~k
31 ni
and |
/\i y = AN f /\""i/\
1 I \ (1-26)
y = y - «y

As it is seen from équations (1-25), (1-26) and figure (1.14),
the interpolation formula for each interval xs(xj”, x™”%) dépends on

the information of the points Xj*, N+2' Ni+n©

The formula is called the Newton's interpolation formula with
forward différences, This formula is useful, when we have forward

informations of interval ¢ 7, , like the physical problem or
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y(x)

igo 1. figol-13

Fig, 1«11
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experimental data®

But in incrémental machine, Iin itération i, the only information
that may exist in the memory, is the information of former itération
i-1, i“2, i-3, 00... 0,10 Therefore, the second condition of the
interpolation formula is that, it should use backward difference data,

or the incréments of former itération>» The Newton's interpolation for-

mula with backward différences, in interval Ce(x™, is:
c(c+D) 1
fi(G) = “ ¢ oay - 6. vy -
21
(1-27)
c(ec+h (c+2) ¢ (¢+1) (¢+2) . c. (¢+n-D.(N)
31 i ni
where

*1 y = Ff XN - F (xX™)

(1-28)

By using the équation (1-27), the intégral of interpolated

function in interval x<s(x™, wvill be as following:

6" s =-6"X f (O dc¢ (1-29)
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[ 1
- SYi—— 6y - — (—+ —) 6 vy
2 n 2 3 2 n
—_— (— + g3 + (;2) 6, y - —— (:; << 4
S =1 n 24 5
3¢*» HnHe3 -1
+ + +3¢2) gty 4pqy
2 3 0
1 1 1
=y, * 6 X+ “““ 6.Xx * 6.y + —6.X “ 6.y +
2 n 12 A n
(1-30)
N 111 , v
— 6.X * 6.y + 6,X * 67 y +
24 720 ~

X<S(XE,

in the formula (1-30), if we choose the first term of right hand side,

we wvill have:
«fS “  yjL * «iX (1-31)
that is the approximate inteégration formula of the rectangular méthode

By choosing the first two terms of right hand side of the

équation (1-30), we wvill have;

67's = % _i6..x+ 0 6.X 6.y (1-32)

XN Xi>»>  Xi+i
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The formula (1-32) is the approximate formula of the trapézoidal

method of intégration®

The Newton's interpolation formula with backward différence

informations, is very useful in interpolating the functions X (t) and

Y (@) .

In the following chapter we use the Newton's interpolation

formula for unitasry and multiple incrémental computations.
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CHAPTER 11

THE METHODE AND ERRORS OF INTEGRATION IN INCREMENTAL

COMPUTATION

2,1, The methods and errors of Intégration In Incrémental computation

when the Independent variable of Integral x Is the Indépendant varla-

ble t»

IT we have the continuous function y(x), where the independent
variable x is the variable t of machine , the intéegral S(x) in inter-
val X 6(xo, xk) wvill be:

X
k
S() y(x) dx 2-1)
X
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Considering the y (x) function in the interval xé(xo ,xk).
There are infinit points (X,y,) between which are necessary
for calculating the exact value of intégral in the interval x<s(’?fo -vku
But in practice, because it is the time consuming for calculating the
iNnfinit points (X,y) in interval x<s(x0 ,xk), and also it is too expen-
sive to construct the machine for calculating the infinit points in
this interval with infinit capacity of raemory”~therefore we are obliged

to use some points (X,y) in interval xeCx™Mx™), let us say

(i=m=o0,l1,2,,¢ .k) fig. (2-1), So there is an error between the exact

value of function y(x) and the interpolated function which use
the finit point x™Ny»,,,. (=l,2,,, ,k)
The error between the actual function y(x) and inter-

polated function Yy (X) In each internai xe'(><jTare:

/\iy L /\iy N\
(2-2)
) - X
as X = t then e, = o0 (2-3)
ix
by putting the value of y(x) and from équations (2-2) and (2-3) iIin
équation (2-1), we wviil have:

k
s(x) =} (f-iy ) _eiy) dx (2-4)
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i+l i+l
b fl,,(x) - | e, dx (2-5)
i=lI ly i=i 1y
iH
X) + r(x) (2-6)
or
1+1
s")= | firy(X)  dx (2-7)
loi
k 1+1
re9)= -1 e dx
1=1 v

K
where S Intégration and

(xX) la a™proximated Interpolated fomula of

la the error of£ method In the proceaa of Intégration. The error

r(x)

of method r(x) dependa to the degree of Interpolation fonction

whilch le ua.ed. In, the followlng paragraphe we wvlll calculate the error

of method r (x) for different method of Intégration.

Interpolated cttotangular formula Ifi ufilt&rv

2.1.1. Intégration by the

or multiple Incrément computation.

The almplest method of Intégration la the rectangular method,

when the Indépendant variable of Intégration x la aame aa the indépen-
dant variable tof machine.

INn the rectancnolar method of intégration the interpolation
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function (X) which is replaced to y(x) in interval X<~N(Xi,X™")

is the first tenu of Newton interpolation formula. Therefoie the inter-

polation function as it is shcwn Iin figure (2.2) wvill be:
(2-8)
The error between the actual function y(x) and interpolated
function f~y can be find by the following expression:
Ny N N2-9)

The formula of intégration 67s Iin interval x<S"(Xj™Mx™7M) is:

N+1

ofS y (X) dx (2-10)

iT we put the équation (2-9) In équation (2-10) we wvill

have:

N+

-y - 51 o (2-11)

oNj
The intégral formula s (x) for ail le interval wvill be:

Ni+1

sE)=1 « s =7 [fiy (X) -e”y] dx (2-12)



fig>»
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i+

= (x) dx -_1I. e. dx (2-13)
i Ty

= 8" (X)) + I (X (2-14)

0%

where s (xX) is the approximated interpolated function of intégral,

and r(x) is the Miur of method.

In order to calculate the error or method r(x), we should have
y(x) and Yy (x)o The exact value of function y(x) in internai
XS (XM, xM.-| ) ciap be-found by the iInfinit points x™,y”,.cc i=1,2,,, o»)

from Newtoh interpolation forrntla as following:

I ¢(ctd). 11 g(c+D(ETr2) 111

y(x) “cy*r =« Yy — by - 6y .o
A i ?1 i 3! i
tvC+1)(c+2)
— e 'y (2-15)
n!
from équation (2-8), (2-9) and (2-15) the wvill be
iy ly x) - y(x) (2-16)

l ¢+ _IT CE+D(C+2) 6jjj
= ¢ 6:y * filly + L STyt
2! 1 3! N
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c(c+D(c+2)... (E+n-D)
+ 5 Y+ (2-17)
n N
in practice we can neglect the second and others ternis of in équa-

tion (2-16) and (2-17) with respect to the first one so e, will be as

fol 1owing ;

(2-18)

Putting the équation (2-8) and (2-18) in équation (2-13), and

tacking the intégral in interval xe(Xj,x™") or ce(-1,0), then we

will héave:

K 1+l i
s(x) = f. (X)dx - 1 Nydx  (2-19)
i=i
k
'_'II<5X yr d¢ + N 6X c*6ny d¢  (2-20)
i= i=1
k k |
X + «y QX (2—21)
17 J, T i
= 8”7 (X) + rM(x) (2-22)

Frotn équations (2-19), (2-20), (2-21) and (2-22), the approximated
interpolated formula of intégral S" (x) which is the algorithm of machine

is:



41

s" X)) = T y s (2-23)

and the error of method Tj(x) is

(2-24)
k |
r- x = 1 — 6Xx ° 6y a 6.y =y’ (¢) 6.
1=1 2 A A 1 1
k 1 2
Fji(x) = I — 6.x * y*(¢) (2-25)
1=1 2
In the case ofunltary Incrémental computer, 6x = AX =
so the équation (2-25) can®be wrltten ass
1 (X[, =xM) k
r-xy = —. L el () ce(x.,x. M
1 2 k2 1=1 A
as suming
Lok
y.(sl) = T 1!1 y'(’>) <,e(X(.-x™)
then 1 (Xk"X )
r (x) = — y-C ) (2-26)
A 2 k ‘
. I (Ay)
It can be shown that |y'(¢)|] ™ where b 1s the number
AXx

of Ay Input of the 1ntegrator™ 1n oui machine b = 7. So the error of

method r~(x) for unitary-incremental computer will be

r,(x) < iy (X™-XN) (2-26)

The équation (2-23) gtves the algorithms of rectangular method

of-Intégration assumlngf*y=y~o But Ifwe assume;
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Ny NI+l (2-27)
Then the algorithms of rectangular method wl1ll be:
(2-28)
and the error of this method wvill be:
k
<) - r " yv (O ¢ (Xi.x ) (2-29)

n i= 2 ~

The actual value of intégral s(x) is between the s*(x) and s“ (X)

as .

So (X) > s(X)> s" (X) (2-30)

where:

= (X) V,.>», (2'31)

:J’

2,1,2» Intégration by the interpolated trapezoidal formula in unitary

or multiple incrément computation.

In trapezoidal method, the interpolation fonction ™ (x) which
is replaced to y (X) in internai Xs:(X™,xX™M7) is the first two terms
of Newton interpolation formula (eq,2-15) in internai xe’(xX™,x. ), as

fol 1owing:
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x) =y- " 5
or ¢ "0,-1) (2-32)
As 1t is seen from figures (2-3,4)" in trapezoidal method, the

y (X) is interpolated lineary in interval x , therefore it

has less error than the rectangular method. If we assiame the error e

1y
between the actual function y (X) and the approximate interpolated
fonction f (xX) in interval x<s:(x, ,x% ),
iy 1 1+1
Then we wvill héave:
/\iy mm /\i N\ (2_33)
The intégral formula, in interval x e(xX™x™_j_j») , is
‘I+1
6j"'s = y (X) dx (2-34)
if we put the y (xX) from
équation (2-33) in équation (2-34), then:
i+l
6IS = [f (X)) - E, ] dx (2-35)

As we assumed X is indépendant variable of machine therefore

=fic ) - X(xX) =0



figo 2030

figo 204
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In order to find the value of intégral (2-35), we should find

y ), ).

The exact value of y (X) can be found with infinit points
Xi, ™S (=1, 2,,,..,® ) ). From Newton interpolation formula

(eq. 2-15; -

From équation (2-32), (2-33), and (2-15), the e can be find

iy
as following:
c(c+D c(c+h(c+2)
c. f X -y X —— D s S —
2 y 2! i 31
¢ (¢t (¢c+2) .,, (¢~ -1) (n)

. y +«.. -

Ul
(2-36)

INn practice we can neglect the second and others tenus of e
/\

Y
with respect to the first one, Therefore the ey from équation (2-36)

wvill be:
c(c+)
. Yy (2-37)
mly 21
By putting the from équation (2-37) and ™ (x) from équation

(2-32) In the intéegral formula (2-35), we wvill have;

c(c+D)
* 6/\ e 6"\ dx
i Iy. - ¢ y ’ : V]

i-1
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(2-38)
By changing variable ><~xe:- (>, to ¢ (-1,0) as before
we wvill have:
J C(C+1) 11
_ - BX [y _ C«f V - =t — (. Y1l d¢
- i i 2! 1
(2-39)
2 3 2
A I 1
- 6X v v | o
2 i 21 3 2
-1
(2-40)
0
H B 1 11
% ty - 7 4 6 ) (2-41)
n 2 i 12 i
The équation (2-41) can be written as:
;S = y.* 6X e 6’\(|) P fIT (y)* 6x (2-42)
1 1 2 i 12 »

IT we assume the approximated interpolated intéegration 6'‘s in
interval xXs(x™,x™M") , be equal to:
1

enrs = Yj© , _fl) Y + osix (2-43)
1 1

Then the équation (2-42) can be written as:
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6.s = 6/ s +r (X xs(x. ,X ) (2 44)
A "EH ~m 1 2.

In équation (2-44) the 6j*s is the real value of intégral, x)
is the approximated interpolated value, and the r~(x) is the error of
method in this interval, which can be find from équation (2-42), ( -43)

and (2-44) as following:

1N (x) = 6/ (y).6x X (X, XA (2 45)

The integrax rormule for k wvill be:

S(x) = IT 6 s (X (2 46)
i=l ~
(2 47)
k 1 <l an
= 1 (y.«X +—"6y ¢ 0O0Xx) + " - oy ‘BX
i—=lI n A | i i=l 12 1
(2 +48)

The approximated interpolated function of intégral s (x) for

k interval wvill be:

s“I{X) = T 64 s (2- 49)

| (y'| SR G s— 6.y ' 6.%X) (2-50)
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and the error of method is:

r(x) ) r 0,9 (2-51)

«Y (2-52)

we wvill have
k 1 3
rex<x) =1 — B *y" X (2-53)
i=l 12
In the case of unitary incrément 6x = Ax, 4y = 0y and
Xk"Xo
Ax =
asstimingt
1 k
y'(¢) - y" X (2-54)
] K i— » o] Kk
then the error of method r(x) is:
k 1
rex)y = I — (AX) . -y'>» (X) (2-55)
i=l 12 n
k 1 (x.—x’;,
= 1 ¢+ _JS_° . y- (0 (2-56)
i=l 12 k3
1 (X -X )3
(2-57)
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or: (2-58)
r e =ro
12
It can be shown that y’’(¢)< max as b = 7, so the error
(ax)2
of method F(x) for unitary incrémental computer wvill be:
r (x) < Ay (X,-XN) (2-59)
12 ~ e

By comparing the error-of rectangular method (eg» 2-26), and the
error of trapezoidal method-(2-58) , it is clear that by increasing Kk,
the error in trapezoidalforraulaisdecreasing more rapide than the
rectangular method, in others'words, the error in the trapéezoidal method

isdecreaaing k time more‘rapide than the rectangular méthode

2ele30 Integration by the three points formula in unitary or multiple

incréement computatione

The interpolation function ™ (x) which is replaced to y (X)

in interval XiN(XxXN,x™_i.jn) , is the first three terms of Newton interpola-
tion, in other words, f™M-(x) use the information of three points,
(Xin.1# y (XN y?™) and (XN Ni-IN" figure  (2e5) ¢
c(ec+D
~iy = yi “ ¢ Yy (2-60)

21



fig,
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ce(-1,0) or

where
7y X = F , (XY
There is an error between the actual function y (xX) and the
interpolated function (X) which can be find by the expression;
Eiy = > -y (2-61)

The formula of intégration in interval x e:(xXNXj|™]L)

1+1
6N s y (X)) dx (2-62)

If we put the value of y (x) from équation (2-61) in équation

(2-62), we wvill have;

(2-63)

for k Interval the intéegral formula s () wvill bej

k
s(x) = | b8 s (2-64)
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k
| e. (X)) ] dx (2-65)
i=lI iy

In order to calculate the équation (2-65), we should have the

y 0, t and x) .
iv iy

The value of y (xX) can be found with Iinfinit points of

C (i®*l¢ 2N ***«<b»o®®) 3

from Newton interpolation formula (eq«2-15) for i=«. From équa-
tion (2-60)f (2-61) and (2-15), the can be found as following.

c(c+h(c+2)

iy b iy -y x =+ 3; (S-l y +
c(c+1)(c+2)...(¢+n-1) v
+ - e + .. (2-66)
ni i

if we nsglect the second and other terms of with respect to
1y

the first one, we wvill have:

c(c+h(c+2)
* y (2-67)
e 31

By putting the e. from (2-67) and f from (2-60) in equation

1y
(2-65) we wvill have:

C(c+1) 11

21 ~



53

c(c+h(ec+2) 1J1ij
d¢
TT— 'y
n 11 n 1Tl

6x [y +——6y + 6 y +—— 6. VY] (2-69)

A2 oA 12~ 24 A

1 n 11 1 11

. 6X 41— 0y. 6Xx_ +—— 6. y 6x +“—(5y &y.
yl ) 1 i 122" 24

(2-70)

by putting 6"“y < My - 5” MYy in équation (2-70), we wvill have:

1
62 S (X) = y» O +—5B7y * BAX +—— 64
2 12
6 Yy NNE Bx (2-71)

24

as the approximated interpolated function in interval xe(xX™Xj|™M]™)

1 1
6 _ 6X +——6Xx oy + (bx*6y -6, ,y*6X) (2-72)
i _ B _ -
i 2 1 1 12 ] n 1

then équation (2-71) can be written as following:
6" s(X) = O7"s« (X)) + ) (2-73)

where r~N(x) is the error of method Iin interval X <s(X",XxXM~2\N)

n 11
which is equal to: r xX) =+ 6" ¢ 6 \Y (2-74)
i

-
[
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The integral formula s (x) for k interval can be found from

equation (2-73) as followingt

s (X) I «1 s % (2-75)
i—=lI n
Il 6 s«<(x + | T ™ (2-76)
i—1 A i=l ~
i\ X J.
I (yd «X +—— ey «X
i=I 1 2 12 A
k 1 1
—s6y, ,fix) + | 6X*6.; Yy (2-77)
12 n i i=1 24
2N78)«

= S"CO + reo

where s*'(x) is the approximated interpolated integration function for

k interval as:

x) = | (y. 6x + 6y. 6x +—— (By *6X -
i=lI 1 2 N 12 N
- «<y™i ™) ) (2-78)
and the error of method Iin k interval ia:
r(X) = | +—— 6<x*6MMy (2—79)

i—=lI 24 N 1 1
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by using

X)) (BN

the equation (2-79) wvill be:

red = I +—— (6.x) v (%)

Therefore the algorithme and errors of Intéegration are:

s(xX) = s"(X) + r X
k

te 6iX

s' (%) ié| req i
, +—6y. +— (« - 6

eq yA 2 yA 12 («y- y’\i—l)

k 1

r(x) = I +——@a.x) y "= (X) xe(x.,
i=l 24 A ~

INn the case of unitary incrément computation 6x = AX =1

SO:

1 Kk <,-X )
r(x) =— | _is_ £ vyv'* X
24 i=lI k*»

(2-80)

(2-81)

(2-82)
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assiiming

Q) = 1 V' PR SO, (2-83)

«.

x
[
H+

thenthe équation (2-82) can be wriltten as:

1 (X =XN)*>> (2-84)
r(x<) =4 - AV AR (@1)) Cie(xQ,xVv)
24 k3 1 X «
ifT the maximuia or y**' (¢,) in interval C ™~ (X ,X, ) Is M:
1 1 o k

[V (O ] =M

max

then the éequation (2-84) is writteh as:

1 (Xt, £XA) -
r (%) o e M (2-85)
24 k3

By comparing tne <«<rrorrof rectangular method in"équation (2-26)
and the error of second order method> (eq.(2-84) it is clear that, by
increasing k, the error df second order formula is decreasing more
rapide thanrectangular method to zéro. In otherwords, in second order
interpoiatioti the error decreasing'k”™ tljne more rapide: than rectangular

method
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2,2, The method of intégration INn Incrémental computation when thé
Independent variable of intéegration x le a functlon of the indépen-

dant variable ~* -

We héave 4discused the algorithms of Integration in the Incrémen-
tal compenal™eii™® Ni&eii the Independent variable of Integral x Is the
independent variable t of machine, So we hé&ve interpolated the y (X)

function by Yy (x) as followingi
y -« Yy 0 X =t

and the integral formula

s ) y dx (2-101)

was replaced by the approximated integration formula s™N(x) ast

s** () Yy (x) dx (2-102)

ifT the Iinput dx of integrator is not time, but a function of timetllke
X () then the y (X)) function wvill be a function of time t emd the

equation (2-ICl) can.be written as<

x(t)
dt (2-103)

s (b () *d
dt
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The intéegral formula for interval xetx”™ is:
()
6 * * -
s (b ) *d dt te(ti"\i+1’\ (2-104)
dt
for instance for generating e sin ut

as 1t is shcun in figure (2-8), the variable of intéegraiors (2) and

(3) are:
X (t) = e y (t) = e”~sin .t

Therefore each integrator in general can be represented as in

figure (2-9).

The function X (t) and Y (t) are replaced with their approxima-

ted interpolated value " and fj~y*

The interpolated functions fi~™ (1) and ™ () in interval

xe(xXN , Xj™Mj™N) ,as it was discussed before should use the backviard infor-

mation in the fosrm of incréments.

As it is seen from figures (2-10) and (2-11) the interpolated
ftanctions 7™ () and ™ (), Iin interva* xe(XjMNXji™MjN) , use the p back-

word points information, as following:

- 7aN VAN N
ixc () L <", 6x™,

6t. 6t co - (2-105)

-i' -1
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*ly S A= NL-2

Al_p' */\i' *1' /\i_i'_”' */\i_pJ

As 1t was discussed earlier, there are the error e. and e.
1< 1y
between the actual functions X (t), Y (1) and the interpolated func-

tion ®, fiy () in interval terddkt™as;

/
= ~Nix X (D)

(2-106)
,’\iy - /\iy VAN
if vie put the value of équations (2-105) and (2-106) in equation

(2-104), we wvill have;

i+1
X ()
s() = Y () -d— dt (2-107)
dt
i+
[T ““E. ]
[F. e, 1]d— — dt (2-108)
ly iy dt
i+1

T d-_.~ dt +
dt
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i+
E- a — /4t f , d -12L dt] (2-109)
Vi dt
I+ i+~1
a-in  at «=iv /
dt
i+l i+1
fviod 5 dt e, a—iT at (2-110)
dt iy at
The integral formula for k interval wvlll be:
s (b .. s (O (2-111)
it K
i+1 £, K r i+
s () = | dt + j; e. d"
i=I =ly at i= iy dt
i+1 ) ti+1
cix ~
at t ?i;’i d—Ii2. dt 2-=l.12)
dt
The approximated interpolated functirm of intégral in interval

>xe (xi, s
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6" s<«<(t) miy md—" dt (2-113)
dt

which instead of Y (t) and X (1) their approximated interpolated func-

tlons are used. So the approximated integration formula for
k interval wvill be:
s«(t) = | s« (1) (2-114)
i=lI
Ni+1
N
_ I » < —-> dt (2-115)
i=lI [ dt

By putting the équation (2-114) and (2-115) in équation ((2-112)

we wvill have:

s() = s*@®) + r(d (2-116)

where s (t) is the exact value of integration, s’'Mt) is the approxima-
ted value of intéegration, and r(t) is the error of method which has

the following value:

Fix<
dt

ioi di.



Ni+1 i—+I1
. Y , ix
f d dt + e, d- dt (2-117)
iy dt 1y dt
2,2.1, Integration by the general interpolation formula in unitary or

multiple incrément concutation.

As it was djscussed before the general formula of integration

s (B in interval is;
xX(®

s(b) ) 'd—— dt (2-118)
dt

and the approximated interpolated formula of integral 6~ s™(t) which

is the algorithm of machine is;

6" SAML) ™ d dt (2-119)
dt

INn order to calculate the approximated interpolated formula of

integral 6. s"(t) from équation (2-119), we should have f*f. and ¢

as following:

c(c+h C(C+1)(c+2)

- ¢ 6x. — v<a> ..
21 31
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c(c+h (2 c(c+h(c+2) 3
f=y = Yi - r<¥Yi — oy 6y
21 n 31
(2-120)

By changing the variable @& @& _ «— c¢<s:(-1,0) in équation

(2-119) we wvill have;

fi>< (O
6" S'-(t) = fiv U) *d

d¢

in order to calculate the équation (2-121) we should calculate the

Nix _ . .
d———, this value can be calculated from équation
dg¢

(2-120) as foldnwing;

L e 2 1
= —(2C+D6.X— (3C+6C+2)6 X -
dg 21 ~= i
3 2
(4c +18C +23C +6) &
&Y - (2-122)
41
fix(U
by putting the value of f. (¢)from équation (2-120) and d———— from
Iy dg¢
equation (2-122) in equation (2-121) wvill have;
-1
C(C+1) 2 C(C+D(C+2) 3
o g7 = ty/\ _ Qﬁy" _ 6y/\ i (’jy/\_,_

21 3!

——dc¢ ce(-1,0) (2-121)
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1 2 () 1 3\ 3 2
© G—- (¢+¢) 67 (€ + 35 + 2C) +
2 3 2
«Yi (2) 2c 3¢ 3 2
+— Oy. *6.x + exi (—— — [ G—— + 2¢ +c )4
2 1 n 21 N3 2 31
3 2 2 3
N A ~ AV 2¢ 3 5
Oy™N* 6exn (. 1 (—— +¢ +---- ) +
21 3 2 4 2
1 3 c 3 2
+—— BYy. *6Xx (— +¢ +4 ) + (2-123)
31
= 4 y. BX) A-"BYyN  BXN A=" By * BXN — -~ By~ * BN+,
1
 — Oy, * 6 ><-—- 6y * 6,x 4 (2-124)
24 1 i 24 A n

The approximated interpolated formula of integral s"(x) for

k interval wvill be:
1 1
= I Ly Oox. 4----—--- 6y * X, 4—— (G y™ Ox™ - 6y™ oxM1 4

S =
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t 6 Gix - 6y. -:.Fi.k + 1 (2-125)

The équation (2-125> Isthe general formula of Integration which

Is based on the Newton Interpolation formula.

2«2«2, Integration by the Interpolatedrectangular formula In unltary

or multiple Incrément computation.

By chooslng the flrst terme of équation (2-124)# the algorithm

of Integral In Interval wvill be:

oi s"= yn fix» (2-126)
the le the approximated formula of Integration whilch use the
Information of point (X™"\Ww?) In Interval ter(I™Mt™"jL™ » equation

(2-124) can ot written as:

6" s(X,¥y) = BN s«(x=y) + ~"XLY) (2-127)

where 6n s (X,y) Is the actual value of Integral™ In Interyal te:

e: (N, ™), 6N s °(X,y) Is the approximated value of ;Integral which is
the algorithm of machine, and (x,¥y) is the error of method in +-his
interval, tnar can be calculated from équations (2f*124) > (2-126) and
(2-127) as followingt

1 1 @ 2
6y *6xN +—— (6 - By 66X ) +._.

<y



a.x.
24 1 1

by using the équation (2-127) we

k interval as:

S (<.y) * I 6

The algorithms of

from

I
o

S (X,Y)

so the équation (2-120)

s(x,y) =

where s(X,y) is the actual

approximated value of

and r{x,y)

integration for ail k

S'HXfY) + r(x,y)

value of

integration which

is the error of method which

60

- By,_°* 6. XM ) +.__. (2-128)
m Bl

can find the integral formula for
s(X,y) (2-129)
s«(X,y) + [ r (x,y) (2-130)
i=lI i
interval, can be found

equation (2-126) and (2-130) as following:

S”7(X,Y) (2-131)

can be wvritten as:

(2-132)

integration, sN(X,y) is the

is the algorithmof machine,

is equal to:
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X 2\
il —-o (6y;( * 6.X - 6y. * 6,/( M

N N

1=1 2 n n 12

— B6AX - BYjr ¢ BX'®> D4e=__.. ] (2-133)

2.2.3. Intégration by the Interpolated trapézoidal formula In unltary

or multiple Incrément computation.

In trapézoidal method of Intégration, the Y (1) and X () func-

tlons are Interpolated llneary, In other words, It use the Information

Pl

of two points tj® and "1+1» In Interval ts(t™,t™"™) as It Is shcwi In
figure (2-12) and at the équation (2-134).
X () » <X*, 7y, 4"
(2-134)
Y () “ Py (yj., yi+i, o, t©h+i)
by chooslng the flrst two terme of équation (2-124) wl wlll havet
6" S«(xX) = yn ¢ +— (2-135)
2
The équation (2-124) can be wrltten as:
6" s(X) = 6" S»<(x) + (x) (2-136)

where 6" s (X) Is the actual value of Intégration, 6" s™x) Is the

approxlmated value, and (xX) Is the error of method In Interval
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><()

fig. 20l2,
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X which from équation (2-125), (2-135) and (2-136) can be

calculated as:

) — O NE

(2-137)

+—— (Ojy™. 6.X - 6.y * ijid) —+oO....
2a Oy > i i ©

The integral formula S (x) for k interval can be found from

equation (2-136) as following:

S X = | 6. s ¥ (2-138)

I 6 s=“x) + | T (2-139)

The algorithm of intégration in k interval from équation

(2-135) is:

I
o
]

Se<(x) (2-140)

= T (Vi * +—86x. *+ 6y (2-141)
N

The equation (2-139) can be written as:

S (X) = S"(X) + r(x) (2-142)
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where S (x) Is the actual intéeégration function, S"(x) is the approxi-
mated integration function and r (x) is the error of method in k inter

val which is egual to:

Kk

r o = | r. (2-143)
i=i ~

Kk

= |

i—lI

(31

67X _ 6'P) +oc« (2-144)

24
2.2.4. Integration by the interpolated three points formula in unitary

or multiple incrément computation.

In the three points interpolation method of integration, the

interpolated function ™ (t) and ™ (t) use the infoinnation of three

points INTEPN y”) and . Yi-Dh N interval xe;(x7,xAMN
as following
X (© = -« XN Xi-I>» 1) (2-145)
Voo wiy = ox <rlel- Tt YLD

By choosing the first three therms of équation (2-124), we wvill

have t
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12

by putting the value of ~y|, 6j™by its équivalent,

«<Yi - fiYi_li
2
(6g(’\ = 66X -

then the équation (2-146) can be changed to:

LI R B |

6x, - 6y~ *6iJ)
(2-146)
(2-147)
w=t1-1 -
(2-148)

The équation (2-148) is the algorithmof intéegration with three

points interpolation, which use the information of points Mi+i»YIi+X)

(Xi,yi) and incremental forms. As

it was mentionned

earlier, this algorithm has the property of smoothing effect as it is

shoun in figure ((2-5)* The actual value of integration s (X) is;

sS(X) = s-(XxX) + r(x)

(2-149)

where s-(x) is the algorithm of integration for k interval as:

) = | 64 s:

.u“z—l—*:si g FRx] x
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>> <«™1l " “="1-1 - “wyi-i ¢ “""i) (2—150)

with the error of method equal to:

GIX _ fiyr R+ (2-151)
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2c3, The error of method in incrémental computationf vhen the Indepen-

dent variable of integration Is a functlon of the Independent variable

2.3el, Error of the rectangular method of intégration in unitary or

multiple incrément computation.

As it was discussed before~the general formula of integration

which is used in incrémental computer is based on Newton interpolation

(eg,2-124) as followingi

1 1
2
SX +—6y 6Xx. +-—— «Yi 4:I)(),)4
N 2 n N 12
’ ( 3 * BX 6 * 6)((3) ) (2-152)
24 Y1 1~ Y i

In the rectangular method of integration, the interpolated
function and ™~ use one point information, in other words, the
equation

approximated formula of integration is the first term of

(2-152) as:

(2-153)

The approximated formula of intéeégration S’’(x) has the error

x,y) with the actual value of integral 6~ s as:
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6. s = 6 s" + I (x,y) 154)
where
= ,/)) = + C~"Syj» ¢« <SXN +—"y[ * 66X - O6Yy™ 1 te 3
t~Cti (2-+155)
By neglecting the second and higher terms of (x,y) with
respect to the first term, we wvill have:
(X,¥y) = +“—6x. ° ey, (2- 156)

The exact intéegration formula for k interval from équation

(2-154) wvill be:

s (x,¥) = 5 6 s (2- 157)

n _ | s» + i <,y) (2- 158)

where the approximated value of integration is!
sS" () - l 6. s-: (2- 159)

and the error of method in k interval wvill be:

K
rc) = | r. (xy) (2-160)
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so the équation (2-158) can be written as;

s (x,¥y) = S” (x,y) + r(t)

iNn équation (2-161) the actual value of integratal is s (X,y),

(2-161)

the

approximated value of integral which is the algorithm of machine

is S'Mx,y) , and the error of method r (xX) is as following;

k
ra =1 r. oy

= +i \ * By t=EIt.,t..,)
2 i=l N 1
assuming
OxXxN = X* () -+« 6t
and
6y = y'(t) * 6t

The équation (2-163) can be written as;

1 Kk 2
TGn vy XD

Il
-~

r(o

ts@, D)

INn the case of unitary incrément computer

6y = Ay and 6x = Ax =

so the équation (2-164) can be written as;

(2-162)

(2-163)

(2-164)
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1 k (t.-t
r(t) = +—— 1 _-JL _2ry" () X' (D) (2-165)
2 i=lI k2
assuming
1 k
y' U - X' (U — 1 vy ® * x (®
' ! k i=lI

The équation (2-165) can be expressed as following:

1 —t )2
r(ce) = JL_"~y. (6 “ X* (¢) et .t,) (2-166)
2 k . * 4 N

As it Is seen from équation (2-166), the error of method r (t)
in k interval dépends to the interval ts:(t"™, tj) and also to the
déerivative of functions x (t) and y (1) which are applied in the input
of integrator*

If we assume the maximum value fo y' (O as M
|

and the maximum value of X' (¢) equal to
" (¢ = M, 2-168

then the maximum error of rectangular method wvill be;

r (t) M (2-169)
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2,3.2. Error of the trapeéezoidal raethod of integration in unitary or

multiple incrément computation.

In trapézoidal method of integration, the interpolated function
Nix and () which are replaced to x (), y () are using two
backwords points information, in other words the approximated value

of integration is the first two terms of equation (2-124) as following:

1
S" = yN o dXj* H—-OX" * ByN (2-170)

The équation (2-152) can be written ass

6i s =6" S + () (2-171)
where s Iis the actual value of intégration, 6" s” is the approxi-
mated value and (ti is the error of method in interval t

which is equal toi

® - 6y~
12

(2-172)
3
(6§/\) » _ 6y/\ * S /\I/\ ) +,
24

from équation (2-171) the actual integration formula for k interval

wvill bel

6 s

s () =
1 A (2-173)

|| —~
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= | 6.s" + | T. () (2-174)

= s»() + r(v (2-175)

where s"(t) is the approximated value of integral which is the algc
rithm of machine and the r(t) is the error of method in k interval

that is egual to:

rc = | r @ (2-176)
i=1 ~
| [— (sfy™ - 6yr e )
i=I 12 ~ n N
OBly™* 6~ - 6y™ * 6MA ) + o«o] (2-177)
24

by neglecting the second, third, . .«<paranthesisof equation (2-177)

with respect to the first one, we wvill have:
k
") - I 6" X _
i—=lI 12
(2-178)
te
by using
6Ny =y (M * 6t |, 6" X = x'* () *° Ot

<" (M) * i&t)

6(MY = vy - (01 2
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The équation (2-178) can be written as:

k (61)3
reog = I ——[oy- (@ - < (@® -y (® * x" O]
1=1 12
(2-179)
~agtitti+n
when unitary increément is used 6x = Ax and 6y = Ay, by assuitiing:
1
yiEeyrx@ = —1 y" (O » x
) ) k i=
1
YV(O*<'(g) = — | vy @® * x* @®
' ' k i=lI
and
k
the équation (2-179) can be written as following:
ree) = —2- [y" (¢ « X (O -y (¢ * X' ()]
12.k2 | | t t
(2-180)

As 1t is seen from éequation (2-180) the error of method dépends
to the first and second derivatlve of function x (t) and y (1) which

are applied to the inputs of integrator, and also to the Interval of

intégration t~ - t.
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2,3a3e Error of the three,.points method of intégration in unitary or

multiple incrément computationO

In three points interpolation formula”™ the interpolation function
fXX () and 1_:Ly () which are replaced to x (t) and y (t) are using
three backwords information points, in other word® the approximated

Nalue of Intégration is the'first three terme of équation (2-152) ast

s?'(t) » +—'6Xx"N * 6yN + )
2 12
(2-181)
the équation (2-152) can be written as followingt
6" s(t) = 6" s«(t) + () (2-182)

where 6" s (t) is the actual value of intégration, 6" S(t) is the
algorithm of intégration-and () is the error of method Iin interval
t<s(>t~_~"j"N). The error of mehtod"in interval (t) can be find from

équation .(2-152), (2-181) and (2-182) as following:
() + [m 6j"X - 6y. ) +< (2-183)
24

The value of intégral in k interval is:

k
3 (@M “ 1 6 s (D (2-184)
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k

= 1 6.s"() + 1 r. (© (2-185)
N i=lI N

where s (1) is the actual value of integral in k interval, S'v(@) is

the algorithm of intégration in k interval, and
k

rcd = | r. @
=l ~

is the error of method in k interval. The value of s-“(t) and r(t)

can be find as:

S = | 6. s«(b) (2-186)

(2-187)
1 (2)
I (6 .y GIX - GIy ¢ 1 ) 3
r® = | r,@® (2-188)
i=l i
()] 13,
= | [— (B.y » «x5x - 6.y * 6,x ) +...] (2-189)
i=lI 24 n n n n
by putting
y =y (t) « 6t = X* () * ot

y©Ui(@® r (63 = X" () (s
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iNn équations (2-188) and (2-189) we can Write;
(2-190)

(6v)
rey = | 2 O BRI G IR OIS SN GOl ERA

if we heglect the higher order terms with respect to first two terms,

the error of method in k interval wvwill be;
k (6t)**
rc) = | ——[y""' (D * x<x() - y (1) * > (D] (2-191)
i=lI 24
iNn unitary incrément computation 6t = At, 6y = Ay and 6x = AX

assuming:

1 k
V'O X (@ = — | y' T @Mt X (D)
' ' k i=lI
1
YO X = — 1 y® X7 5_~(to,V
k i=lI
e

and At =

The équation (2-191) can be written as:

(O]

(2-192)
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The équation (2-192) is the error of method r(t) in three
points interpolation formula, v/hich dépends on the first and third

dérivative of functions x (t) and y () *
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2,4,= Conclusion/

In this chapter, we calculated the error of method r(t) in
incremental computation, in the general case, where the incréments
O6x, 6y and 6s can take any values, Therefore, these computations are
valid for multiple incrémental computations, (6x = 2~ ¢ Ox, 06y = 2~ <Ay,
As = 2~ § As) as well as for unitary increémental computation (6x = AX,

Ay = Ay, 6s = As).

Unitary incremental computation, which is used in digital

differential anal™hzer (D,D,A) is a spécial case of multiple incrémental

computation (r =0 -

We have calculated the error of method r(t), for methods of
integration, when the indépendant variable of integral X is equal to

or is a function of the indépendant variable t of machinée

Conseguently, the error of method r(t) is the différence between
the value of integral s (1) and the approximated interpolated value

of integral s"(t)j

r) = s () - s-(b (2-216)

The error of method r(t) dépends on the degree of the interpol-

ation formula used for the algorithme of intégration®
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In the followlng, table, we are comparing the different algorithms
of intéegration and their respective error for unitary incremental
computation, when the indépendant variable of integral X is equal to

the indépendant variable t of machine.

Method of integration Algorithm of intéeégration Error of method

Rectangular method

k 7
(zéro degree inter- s » [ y. * r()<-"(xj™~-Xegjp) Ay
i—=lI
polation)
Trapézoidal method
s - 1 Yi O iGijx + 7
(first degree inter- i—=lI n r()=——Xieg-x ) Ay
12 ~ °
polation) +—= NNy 6 a™N%)
a. k
Three points method s (® = 1 [y- " +
i—=lI n 7
(second degree r()=——(Cx.-xn) Ay
+ N ANY 0 ANX + 12 ~ °

interpolation)

As it is seen from the table, the choice of the trapézoidal

method (first degree interpolation), instead of the rectangular method
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(zéro degree interpolation), the error of method is reduced by the
factor 1/2— Therefore» the trapezoidal method is much more accurate

than the rectangular méthode

As It is seen from the algorithm of three points method# for
unitary incrémental computationt the values of the paranthesis is
smaller than the quantum 0y of function y X)® Threrfore# in unitary
incréemental computation, it is not worthwhile to use higher degree
interpolation formula than the first one® So, the first degree inter-
polation formula, known as trapezoidal method, is good approximation

for unitary incrémental computation®

On the other hand, when we use the multiple incrémental computation,
where the step of intéeégration is 27 larger than unitary incremental
computation (6x P 2~ ° Ax, 6y = 2~ ' Ay and 6s = 2~ “ As), we should

use more accurate integration formula®

The three points method of integration (second degree interpolation)

is a more convenient one for multiple incréments computation;

. k 1
s @M = \ tyr " B +TMB.y ' BiX +
i=I ~ 2

N (i_l)/\ * '/\i/\/\ N

1T the degree of the interpolation formula increased to higher
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than two, then the integration formula wvill become more complex,
because it needs too much equipment and operating time to do the

intégration.

In the incrément computer of industrial electronic laboratory
of the Brussel University, which is devised by the author# the
algorithms of intéegration in unitary incrémental computation, can be
chosen either rectangular or trapezoidal method, and in multiple

incremental computation, i1t is the three points method.
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CHAPTER 111

THE QUANTIZATION AND ERROR IN INCREMENTAL COMPUTATION.

3,1« The quantizatlon process in increémental computation.

In incréemental computation, the résulta of a given mathematical
operation is transmitted for use in another mathematical operation
by use of quantized incréments» The operation of quantization of
continuons function y (xX) , may be done by the quantvim of independent
variable Ax, or by the dépendent variable Ay» The more naturel quan-
tization which is done in the incremental computation, is "e compléte
quantization with respect to the quantum Ax and Ay with irherent de]lay
of digital System,

As we have discussed earlier, the more general intéegration

operation Iin incrémental computer is:

X (®)
s (X Y (b) d —
dt

dt (3-1)
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We have seen in chapter 2, that the continuous functions Y (t)
and X () which have the information of infinits points, were approxXi-
mated interpolated to the functions ™ (t) and FCTtD» which have the
information of finits points g~ (=1,2, 0 ®K) ]

INn this case there wvill be an error between the actual functions
X (1), Y () and the approximated interpolated functions

equals to:

nix “ ajye O = X (®
. .M - Y ®
% iy
The functions f and fy can be represented as
Nix = [Xjin, ™ (i=>»1,2,.,, ,K) ]
gi,\_’\ = Ayiy Yy 6,8y N (1=1y2-,,9s .kK) ]

In the quantization process of incrémental computation, the
ranges of magnitude N\ () and ™ () are divided into interval k
which are not necessary equale'All the magnitude falling within each
interval are quantized (equaled) to a single value within the interval
of the analog inputs signal X (t) and Y (t), as It is shcwn in figures

(3-1) and (3-2),

Therefore the incrémental machine, instead of using the informa-
tion of points [ ™, YN » ™ (=l1,2,e,.k) ] use

the quantized points C Yig) » <N0-DOQ>» ~Ci—A)D)""*** NQ
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So the approximated interpolated functions are

quantized and converted to the approximated interpolated and quanti-

zed functions f ), Qy @W™v;hich have the error of quantization

EiQx» Ej*Qy in each points &?yj™) Vv/ith the unquantized interpolated

functions f~y as following:

ik fix ®©  aixg ®

(3-4)
I/\iQy - /\|y (t) - /\IyQ (t)
iOx O AQY (t) can be '’
® = Aox [XiQ' X(i'-l)Q
(3-5)
-iQy (t) "iQy [YiQ- A(i—Il)Q tjingj (31727~ 9 « ck) ]

As in incremental computation the quantities are represented

iNn incréments 67x, <5%Y» the équation (3-5) can be written as:

QX “ AIQX  *NQ! ¢ & agX,»r: MQ (i-1,2, C .K) ]
(3-6)
mioy (O - QY tyiQ» ~iQ™ (D A ~ig 1,2,.9»k)]

The quantization process Iin incremental computer cause the

error of quantization NQyYy is the différence: between the

quantized and unquantized /alue of function Iin each points &™,y?)

that cause the total error of quantization iNn the process of
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Incremental computation» Consldering theabove discussion, the block

diagram of incrémental computer can be represented. as in figure (3-3)

The guanii M.ation process has the influence in the.mathematical
operetions, of incrémental computer and the choice of the algorithme
of intégration. The total quantizatipn error should not exceed
from sorne acceptable IImit>» -In foregoing paragraphi we wwilll study the
quantization. process, the error of quantization and also the irhersnt

delay in process of quantization.

3.1.1. Quantization in incremental computation by the indépendant

variable X, and algorithme-of quantized points.

The- quantized point is"--the- intersection”™ between the line

-NAX,... -2ax, - AX, 0 , AX, 22ax,..-- + NnAX, and -the ™ (X)
function which is shown Iin fig» (3.4.a)« But in digital itéeration
machine, because the time of mathematical operations”~the qquantized
points have:always the delay with respect to the original continuons
fonction y (xX), the maximum of tho delay is equal to one quantum of

AXx, as It is shown Iin figure ((3.4.b).

The delay of quantizated function with respect to the continuons
function, présent an error e i1 r» each point of quantization which
is the différence oetween the continuons function Cy (x) eind quantized

function F ri that point as:



NIx

Fier.:
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3'3.
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. . . 3-7

QX *iy - *iyO L

This error may produce the phase shift between the continuous
function (x) and the guantized function i yQ (x) ¢ 1t will bc shov/n

later on~that the quantization error e™™™depend to the quant Ax and
Ay. In order to reduce the quantization error, the value of quant Ax
and Ay should be decreasedo

The algorithm of quantized points can be fcund by the équation

below;

-0 = y(i-i)o + V4

(3-8)
NQ T vy(-DHho ®iy 1
i - 1, 2,®oceK
As It is seen froiti eéquation (3-8) and figure (3-4), each point

x"Q, Yiq) is calculated by the points J<(_i)Q# quants
AgX, 6j_y and the parameters (they can be + 1 or 0O) which

détermine wether the quants ~gX, 6%y should be added to (+1), substrac-
ted form (-1) or, j*néTfe¢c™ the wvalue of G<™"™"Njg» N((-DON*

it is seen from figure (3-4), the quantized points are not determined
completely in this procedure, because the incrément 6jy is not quanti-
zed, and is un)cnown6 Therefore the quantization of function by the

only variable x is not sufficient to détermine the quantized points

y£Q>'
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3.1,20 Quantization in incrémental computation by the dépendent varia-

ble Y, and algorithm of quantized points.

INn this case the continuons function (X) is quantized with
the quantum of dépendent variable Ay, So for,quantization process, we
should choose the value of quantum Ay and the initial point (Xqg, Yq),
This process is shown in figure (3-5)

The quantized points are the intersectionof continuons function
fy (X)), with the Unes -iAy, - (i-1) Ay,,-, ,-Ay, 0O, +A/, +2Ay,,, ,*tiAy,

As 1t was mentioned earlier, in digital itération machine,
because of time which is spend to calculate the mathematical operations,
the quantlzeu points h&ve some delay with respect to the continuons
function,

The inharenx lelay of digital quantization with respect to Ay"
introduce an error in each point between the continuons function fjy(x)

and the quantized function fiyQ (x) eaual toT

uliQy cc /\iy 77 /\IyQ (3—9)

The delay whicn introduce the error produce the phase
shift and the amplitude deformation of gaam,ized function fji*yQ
with respect te mwx» original continuons function fy (X), as 1t is
shown in figure (3-6),

Each quantized point x™q, yj.Q can be find by its backward infor-

mations y(i-DO>» following:
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NQ = NA-DOQ + Nix
(3-10)
NQ = y(-hQ iy ?
1 “ Iy 2|osea)?
In équation (3-10), the X*gf quantized point, which
should be determined by the point Nj=AN T paitfaxieter an™™, av\"

(equal to + 1 or 0), the quant A"y and the unquantized increment 67Xa
As it is seen, the incrément 6™"x is not quantized and is variable in
the process of quantization>» Therefore the machine can not calculate
the value of A”™X which is not known, in other words, the qquantization
procedures are not conplet®

The équation (3-10) can be written with the information of

iNnitial point (Xg, y»™) and the incréments §j™x, A%y, as followings

k
'==iQ = *OQ + «l== ~Nix
(3-11)
k
QT r0Q «<iy
INn éeéquation (3-11) the point nNeN determined by the

iNnitial quantized point (Xqgqq, Yaq) which isdelaid with respect to
the original point (X, Yq)» the parameter quantums

6™, A”ycC
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3«le3, Quantization of the continuous function Y (X) Iin incrégmental
computation by variables y and t, when the independent variable of
intégration X is the independent varieUDle t of machine, and algorithm

of quantized points*

When the independent variable x of integral is equal to the

independent variable t of machine, then, the formula of intégration

s (O y (x) dx (3-12)
X,
wvill bel
X =t
s(t) y O*d (© (3-13)
As it was discussed earlier the continuous function y (1) is

replaced by the interpolated function ™y (t) which gives the approxi-

mated value of integration s*“(t) as:
Kk
o = ] fiyy (©H“d (0 (3-14)

by this approximation there wvill be the error of method r (t) , which
is the difféeérence between the actual value of integration s (t) and

the approximated value s”’(t),
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r(t) = -s«<(@®) + s (b) (3«15)

In digital machine ail the guantltles are discrete values or
quantlzed, within an Interval, so the continuons Interpolated functlon
fi~ry(@d) Is quantlzed wilth the variable of machine t, and the dépendent

variable vy,

The actual operation oE quantizatlon Is done In figure (3-7),
with the quantum:at = LX, Ay® The curve (1) Is the quantizatlon of
functlon fj*y (X) with respect to quant Ay which has accompanled with
Inhérent delay of digital machine”

The Xs aiso quantlzed with respect to Ax = At, but
there Is no delay, -~ N “ 1), so the quantlzed points are
on the contJnuous functxon,

The actuax points of quantlzatlon should be In curve (1), and
also the Unes UX, so they are In the Intersections of curve (1) and

the Unes Ax as It Is shown figure (3““8)*"

The quantlzed functilon Is comblned wilth quantlzed points by
consldering tne delav between the continuons functlon and quantlized

functlon, figure (3-~7i The quantlzatlon error "*""Qy> each point

Is deflned asi

NMiQy My
(3-15)
NQy Ny 7 AlyQ
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The quantization of function The quantization of y(x) by
x(t) by At At and Ay

fig® 308 fig® 3090
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The cause the total guantization error It will be seen that
the actual value of integral is equal to the approximated quantized
value of integra! s” (x) (algorithm of machine) plus the error of method

r(t) and the error of guantization so:

s () =s* 0 + [r() + (D] (3-22)

Because of the delay of guantization process, there is an error
of phase, between the continuons function and discrete quantized function,
italso cause the deformation-of amplitude>» The error of phase and

guantization, dépends onthe quantums AXx, Ay»

By taking into account the*above discussion, the block diagram

of incrémental computer can be drawn in figure (3»10)o

As i1t is seen from figure (3cl0), the function y (X)) is first

the error of Ej®y, which cause the total error of method r(x)>» Then the

approximated function is™"quantized by the variable of machine t and

cause the error of guantization and the delay e”’P/"™for;7" < At

The algorithm of quantized points can be found from backward

quantized points as it is shown in figure ((3dl) and éequation (3-23)»

(3-23)
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interpolated and

approximation

input |
"information

NiX

F sa.-. 3-i0.

The block diagramof

ruantization

process

incrémental

computer
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As It is seen from équation (3-23) and figure (3-11) each point

NiQ/ YiQ) is calculated by the points yv(-)Q)>»> the quants
AgX, and the parameters (they can be + 1 or O) which

détermines wether the quant UgX, Agy should be added to (+1) subs-

tracted from (-1) or ineffected to the value of ~NA-1HoN*

If we have b input of Ay ih integrator then the éequation (3-23)

can be wvritten as:

nein — N((-DQ  ®ix °©
b (3-24)

= "(-DQ ~

Normally in incrémental machine, there are 4 or 10 Ay inputs
of integrator depending.onthe construction of machine, in incremental
computer of our xéu”™wratory b =» 7,

The équation (3-24) can be-also written in the following form:

Hn “ *00 + B} "IxX
i<l
(3-24af
k b
TKQ /\OQ * ] I _|
i=1 j<<I

As it is seen from éequation [3-24f, the quantized points are
determined by the quantum Ax. Ay, the parameters ®iy

iNnitiaal point (X™, y™g)«
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independent variable of integration x Is the Independent variable t*

\S we have discussed earlier, the continuous function y (x) in
interval x was replaced by the approximated interpolated
continuous function which cause the error of method r(x), between
the actual value of intéegration s ?<x) and the approximated interpola-

ted value s*v(x) as following:

s () = S"C) + r(x) (325)
5 41
= = . d 3-26
S**(X) iL| .iy X ( )
fiy = fiy vy, 67X, 6~x, 67y900al
(3-27)

ceoeo 6 9 *SAyD

But in digital machine ail the quantities [X©, y©, <S%, Oy 0»®
600 a 6j°y] are quantized within an interval by the wvariable of

machine t® Therefore instead of the quantities [X™, Yy, S™X, <5}¥,0coo0

i"x, 6jNy], there wvill be their quantized values tXjQ, y IQX'
6NgX, So the quantized function ™" which use the
quantized quantities yrQ, O"NQy,RRE®® ¢$j*qX, " Qy] wvill bes

*i0Oy “ *iOy NiQ! *107
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X INFET (3-28)

Therefore there wvlll be an error e_,Q between the approximated
QLY

interpolated function and the approximated interpolated quantlzed

function .f as followings
(3=29)
~MQy

by putting .the équation (3-26)i (3=28) and (3“?29) in equation (3-25)

we wvwill have:
K N+
s (X | ) dx + r(x) (3-30)
i==I N TIQY?
. Xi
X1 i+1 (3-3D)
[ ) dx + | ) dx + r (x)
i—=I miQy i—I Qy
N
= s" ) + )+ rG) (3-32)

in equation :3-30),(3-31) and ((3-32), the s" (x) is the approximated

interpolated and quantized value of integral wwhichis the algorithm

of machine equal to:
N+

) ) | NQY dx (3-33)



e"Q (x) is the quantization error In the processof integration

equal to:

ui+l

"t (=) = e. ° dx (3-34)

and r (x) is the error of methodyiwhich we have caleulated in chapter

(21, for different method of integrationo

As it is seen from équation (3-30),(3-31) and (3-32), the actual
value; of integral s (x) 1s equal to the approximated interpolated
quantized value of integral s™(x), plus the error of method r(x) and
the quantization error xX)® In foregoing paragraphe we; will calcu-

late;the quantization error for different method of integrationo
3020i« Qucuitization error in rectangular method of: integrationt
The interpolated function ™ (X) which. is replaced to the y (X)
iNn interval xe(XJN,X™MjN) Iin the rectangular method is:
(3-35)
and the interpolated quantized function is:

f 3-36
iIQy ( )

Therefore the equation:(3-291 canbewritten as:
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ANOQY Ao (3-37)
The approxlmatea formula of integration s»(x) is:
ceq
s«(x) = | - AX (3-38)
S *ly
i—lI n
o
by putting the value of from équation (3-35) and (3-37) in équation
(3-38) , ,we wvill have;
-1
Kk
S (X) i;I AX /\/\iQ /\iQy/\ (3'39)
,O
k k
| ] ANX + | ) ANX (3-40)
i=1 Q i=1 iQy
= s" (X)) + (3-41)

from équation (3-39),(3-40) and (3-41) it is clear that the approxi-
raated quantized value of integratior (X) which is the algorithm of

machine, is equal to:

<" = TiQ 1 "i* (3-42)

and the e"Q is the error of quantization which is the différence bet-

ween the quantized and unquantized integration function as;
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= s«<(X) - s" (X (3-43)
from équation (3-40) and (3“»41), the CcUi be find as;
- . - (3-44)
tQ 1“1 iC3y [
as It was diseussed in the process of integration, the -~ Ay

sO the équation (3-44) can be written as following:

o © i|I Ay * GAX (3-45)

or
3-46
o - - (3-26)

or
(3-47)

tQ " "y /\/\Q ce /\OQ/\

Therefore, the errorof quantization e”q dépends to the quant Ay
and the interval of integration x ~"(Xqg, Xj") : In ordertorreduce this

error we should reduce the quant Ayo

30202« Quantization error in the trapezoidalmethod of intégrationo

In trapézoidal method of inteoration, the interpolated function

Yy, which is replaced to y (), is as following:

- (3-48)

mjy i - « i
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As the quantized point do not coincide with the iinquantlzed

pointsy”™ therefore, there wwlll be an error whilch is defined as:

HOy = ™1 - yiQ =3-<«)

by putting the value of équation (3-49) Iin équation (3—48), we wvill

have:

/\iy cc /\/\IQ N\ ®|Qy/\ 7 N /\1 _/\IQ/\ /\IQy/\ (3_50)
A 1y + Aen_ ) (3-51)
~NOQ ®IQy ~ A 1Q iQy

because the Independent Tvari6éd=le >0f integral Is-.thet Independent varia-

ble. o£ machine, so

/\iQ cc ~ij (3—52)

then the approximated £ormulao£ integral £rom equation (3-38) can be

£ind as:

£iy (O dC (3-53)

;e(-1l, O or xXs(CXXJnN, Ni+Hin

by putting: the équations (3-51) and (3-752) in equation (3-53), we wvill

have:
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1 (3-54)
h “EMQ N fIQY’ =t AN/ “'1Oy ™’
= X . . ) 3-55
o NQ  ~iQy j (3-5%)
¢ (1.0
6" s'"=
(yiQ ‘ ‘ " NiQy ¢ '
®iQy X <5:(Xi, 3"i+i> (3-56)
The approximated interpolated formula of integral s** (x) for k
interval wvill be:
s x) = |1 s s (3-57)
i—I n
= J1 “="Q &1 “iQ’" | B [ @ 20 e
(3-58)
Kk 1
+ 1 (e~ ° AA~X +=—-Ae, o A.NX)
iQy iQ 2

in the équation ((3-58),

and quantized value of integral s

chine as following:

the first sum

(x) which

is the approximated interpolated

is the algorithm of ma-
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s ) (3-59)
Q iii ‘ . i

and the second bracket is the error of quantization in the process of

integration”™ as following:

Ny 1 tio=5

I
-

sO the équation (3-58) can be written as:
s"(X) = Sa (x) + (3-61)

where s'"'(X) is the approximatedinterpolated continuons function,
Sqg (x) is the approximated interpolated quantizedfunetionof intégral

and is the error of quantization.

INn equation (3-60), the second term can be neglected with respect

to the first one, so the équation (3-60) can be written as;

o oy o (3-62)

as we have seen Iin the process-of quantization Cj"Qy so the

equation (3-"62) can be written as;

c < | Ay +« angX (3-63)
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or
ay * 1 NQX (3-64)
Q i=lI
as = Xg - X so.
i=I
tQ ay Xa - X (3-65)

The équation (3-65) gives the value of quantizationerror that

dépend to the quantxim Ay and ithe interval &™-Xj™) o

3'2»3« Quantization error in the’three points method of integration.

INn three points method of intéeégration, the interpolated function

Ny which is replaced to vy (X)) is:

C(c+1)

. vi - ¢ AY - (3-66)
4 21

by putting the value y" from equation (3-49) in équation (3-66), we

wvill have:

Aly = "N Oy> m <<i “TiQ ~AQy> "

ac+D (3-67)

- “1i ‘viQ + N\

LA /\I\iQ /\iQy/\
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C(CG+1)

21 viQ ~ Hoy=> (3-68)

As the Independent variable of Integral X Is the indépendant

variable tof machine so:

(3-69)
A
Then the approximated interpolated formula of integration
s* in intervax X "X\, Fi+in "NiNitten  as:
-1
6, S = - A_X f (C) * dg (3-70)
iQ
R (o N <yiQ  ®iQyi QA N NQyn
(3-71)
C(C+1)
1 oy
X cNn;G VA e x* < 3 VAN *
iQ iQ 1IQy=> <"IQy i "Qy=>
3-72)
*77 NQ 'iOy=>
or
«<i =" = (Yig * °“iQ> &——— /1> *>—— TIiQ « “lQ*> +
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ioy “io=" *

1o 1= =1Qy> S-73)

The approxiroated interpoiated intéegral formuola s’*(x) for k

interval wvill be;

s**(x) = | 6. s” (3-74)
i=lI N
k 1
ii—, <YIQ -+ fIQ* +oTriQ* - tiQn
k

v | (CiQy - +——A"gX > ej*Qy +
i=lI
(3-75)

12 7 1Qy=>

The approxiroated interpoiated and quantized function of integral

sN(x) whioh is the algorithroof machine is equaltothe content of
first bracket as following:

(3-76)

11
s" (X)) = (Yigq - + n" “Igl « “IQ=">

The content of second'bracket is the error'of quantization which
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Is equal to:

Q iii ™MiQy " 2 ° ~
1 3-77)
= AX all t
12 iQy”

we can neglect the second and third terms of éequation (3-77) with

respect to the flrst one® So the error of quantization wvill be;
k
"Q = ®iQy " (3-78)
As It was discussed in the process of quantization the
< Ay, so the eéequation (3-78) can be written as:
k
e < 'y’ -
o ) | ay (3-79)
i=lI
k
as ]
--IQ* cc *k - *O
SO
“tQ - cy *Kk - *0> (3-80)
The équation (3-80) gives the error of quantization in the three
points method of integration® As 1t is seen, the dépend to the

value-Of quant Ay, and to the interyal X - xn)
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3s3» The quantization error in unitary incrément computationwhen the
independent variable of Integration X is a function of the indépendant

variable 1)

If we have the contdJnuous function X () and Y ((t) which are
replaced -by .their approximated interpolated function f () and

then the intégral Iin interval te™MCt™» t7) Is;

X (1)
s (b Y (© d dt (3-88)
dt

As we have discussed earlier, this integral formula.is replaced
by the approximated interpolated formula of integration s-*(x) as

following;

i+
s«<@® = | 7 @ * d dt (3-89)
i—lI iv dt
where
f — fy tyjr# A N-=IN/08000 N _Q* OO0(I““I1»2,000k) 3
(3-90)
f o — Fe><~f 6~%J 5 _j~x/ 00860 Ao 80 ok) ]
k - <«

The error of this approximation is calied the error of method

r () which is equal tot
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() (3«91)

ra =s @®

The éqquation (3-90) can be wriltten as:

~Niy ~Nj—a ~NQ ]
(3-92)

7Q (=If2yooK) ]

As It Is seen £rom eéequation (3-92); the Interpolated function
f£jc» fy>» have the Iinformation of Cx™, y», YN I>> » e »

But in digitalmachine- ail the value are quantized with the
variedile .of machine t, so instead of Cx», y», ~(L->x) " NA-1) " “° °NQ
(=1,2,.0k)], we wwill have-the quantlzed points Cx"q, Yy*"Q, *(1-1)Q°'
v(-DOQ'® ° ®*“NQ O.ck)l, therefore, the approximated interpola-
ted functions ™' ~\"\y* with the approximated Interpola-

ted and quantlzed function. NQY' with the ;informatlon of quanti*

zed points tx™MQ, yr"Q# N((-DO* y (-DON°" °NOQ Gi““l1# 22 0» 0K) Jo

S0, in each pointfWwe have the quantlzed error e, ,
ciQy vhich are the difference-ibetween the quantlzed- and unqucintized

value of .functlon as following:

“AQX “~ *ix - *1QX
(3-93)

Qy 7 *ty - *ioy

Eor instant, if the X @& “c“ie"™”, and Y () “ sin ut, fig. (30l3)



121

FiGr. - 3-i3.
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the NOQX* NQy shovm in following figxires (3-14) and
(3-15)c¢

As we Jiave dIscussed earlier, the quantized points of function

., are the intersection of the curve b and the line At= consto with
ix
the quantized error iNn each pointe

INn order to quantize the function it is sufficient to find
the Iintersection of (curve;2) with the linesAt = consto as before» Thé

procedure isshown Iin figure (3-15)

The quantization of function e™ « sin ut with respect to the
quantums Ax and Ay, can be find by the intersections of (curve 1 and 2)

as It is shown Iin figure (3-16)

The quantized points XN\, y are delaid with the actual
continuons function y x)O The différence between these quantized points
and correspondent points of continuons function y (x) is the error of
quantization NQY should not be greater than Ax and Ay

as It is shown in figure ((3-17) and in équation (3-94)»

So

"iQX =
(3-94)
NiQy = CB < Ay

The approximated interpoiated intégration function o67s"(t) is:
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The quantized points of f
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i+1 f. (©)
S"(b) (3-95)

if we put the value of the functions “—~F r— <« > r » m équation (3-93) in

équation (3-95), then we wvill have

“Aj+]
6% s™(D = »iQy ~ A (3-96)
ty
NN i+1
iQy iy ATt
ty ty (3-97)
H+1 i+1 -
) - NMOX
miOy d-ig——dt iQy dt dt
ty

The first term of équation (3-97) is the approximated interpolated quanti

zed formula of intégration 6™ s*““(t) which is the algorithm of machine as follo-

wing

S () niQx (3-98)

The other terms of équation (3-97), are the error of quantization



126

in interval te(t, "i+1” which is equal to:

nQ iQy dt

(3-98)

+1 +1

i d- — dt +
Qy dt dt

So the équation (3-97) can tbe written as:
s«(t) = s-(t) + eQ (O te (e, (3-99)

By summing the équation (3-99)' for k interval/ we wvill héve:

s* ()= ~ 6. () (3-100)
i=l ~
T «i Sq@ + 1T _ (3-101)
= N i=l iQ
(3-102)
=Q * Sa
where () is the approximatedr-interpolated and quantized formula

of integration which iS ithe algorithm of machine, equal to:

K i+1
s | « d——dt (3-103)
i—=lI iQy dt
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and Is the total quantization error In Interval t©™~t™, t™) In

the process of integration as following ;

QL QM (3-109
i+1
| f @ -+ d il dt +
i=lI M/ dt
i+1
+ I (3-105)
i=I
i+1 .
6iOx(t)
+ 5 o - d— dt
i=I IQy dt

INn équation (3-102), the s**(t) Iis the approximated interpolated
continuons function of integration, Sqgq (1) is the approximated interpo-
lated quantized function of integration which is the Algorithm of ma-
chine, and e™Q(() is the error of quantizationthat is the difféeérence
between the approximated quantized and unquantized integration functions.
The delay which exist in the process of quantization cause the phase
shift between the continuons function and quantized function, It also
cause the deformation of amplitude and the error of quantization>» The

error of quantization dépends to the quantums of Ax, Ay, At which should
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take iNnto considération in the debi™ning of incrémental computero In
some caseSy the error of quantization may dominate. ail others errors.
INn order to reduce the errorof quantization, It is sufflcient to
reduce the value of auantVviar,. , Ay, and At-

By considering the above discussion, the block diagram of

incrémental computer can be drawn as in the figure (3-18)o

As It is seen from figure; (3-18), the function y (X)) is first
interpolated and approximated to the functions ™, and ™, Iin inter-
val X si1(Xj|*,- Xj*+3™), with the error of which cause the total
error of method r(t)o Then this approximated function is quantized by
the wvariable, t of machine, and cause the error of quantization er,ax,

e™"Qy, Iin™ each. point that cause the total error of quantization c/MCt) ,

it also introduce the deiay e“P~where |t"| < AXo

3«3.1* Quantization error in the rectangular method of integration*

As 1t was shown in chapter: 2* the interpolation functions Ff

and F. iNn rectangular method of intéegration are:

(3-106)

INn the. quantizatlon process, there are the errors

between the actual unquantize”™ point (7, y?) and their.correspondent
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interpolation and
approximation
N\

quantization

intéegration

fICs/.S "18,

The block diagram of

incréemental

computer*
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quantized points xNQ/ -as following:
NOX = m *iQ
(3-107)
®=iQy ““ Vi “ Yiqg

by putting 7the équations ; (3-106);> (3-107) in the integral équation 67s’™:

-1
6 s (3-108)
i
we wvill have:
-1
6, ST T - (X Asy,) NQ * IQy ="
(Ai.QX + Aei.QX) | X\Ia + eiQy (3-110)
or
@ = yiQ « "iQ* + <yiQ + “HOx + 'iQy " “iQ~*
“iQx * 'ioyn (3-111)
The Iinterpolated quantized function of integral sN in

intexrval XA (Xj», 2i+1n

‘0 “ O a1 ABX (3-112)
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Then the équation (37111) canbe written as:

«1Q + «iQt (3-113)
where is the quantization error in interval X &« 'Ni+In
NQt “C NIQ . MBIX ®NiQy ° NQ’T Migx ° ®iQy
(3-114)

The approximated interpolated-formula s*(x) for k interval can

bei found from; équations ; (3-112) * (3-7113) and (3*114) as following:

S”(X) = 1 6L 3 (3-115)

cc I<r:_l «iQ s* + iL_I -IQt (3—116)
NQ " I A NQ T TTIOXx *
(3-117)
®iQy ANIQx ¢ QY
= sg X)) + (3-118)

from equations ((3-115), ((3-116), (3-117) and (3-rlI8) , 1t can be seen
that the! approximated interpolated quantized funetion ;of integral

sN (X)), which'is the algorithim of machine, is:

®Q <« - noQ * <iQ* (3-119)
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and the quantization error is:

(3-120)
iQ “ ~MiOx *=iQy “ AI/\@X + AeIQX ° ei-Qy)

-
(]

o

In éeéquation (3-120) the third tenn can be neglected with
respect to;the two firstoneso'So the quantization error is equal

to:

(3-121)

tQ “ A®IQX  ®IQy ° NN

As e.n < AX so
iQy

iii Hoy ° Ny <*k - Xo> (3-122)
The Ffirst term of équation ((3-121) is:
IR Te) ASox O - NG-HooxnN (3-123)
=

£ < Ax and e AX, the eauation (3-.123) can be transformed

iv'X (i-Ho>:"
flo:
) ) (3-124)
Ji i * * “= - yo>

ifT we put the value of equation (3-122) euid (3-124) Iin équation ((3-121),

we wvill have:
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.tQ * “y ‘*kQ - *OQ> ‘/\kQ ™ y0Q> (3—125)

The eéequation (3—125) glvesi™™the quantizatlon error in the
rectangulari method of integration”™ As it is seen™ the quantization
errorvENQ dépends to the .quantums: Ax<i Ay, and the interval of integra>

tion Xx *

303«20 Quantization error ini the trapezoidal method iof integrationo

Xn the jtrapezoidal method of integration, the approximated

interpolated functions ™~ and are:
mixX = -« 0>
(3-126)
by putting the équation (3r>1017)- iNn équation (3-126) > we wvill have:
-1
4X dg = - + AQN)
m-1
((yio + =iQy) —-T ‘N A \r “*IQy>> << <3-127)
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==1IQ=* * ='1OX> ~=TIQ + 'iOy= * oericoy T
(3-128)
1
i “1Q* - 1 TUCIQX ¢ (3-129)

+ =IQy - CIQ* A CIQ* - <Oy " *1QX ' “iQy +

iy B T "

The formula of trapeéezoidal method of integration in Interval

XG.<Xjn, Ni—+D

i . _ (3-130)
I e R (e o ° io

from equation (3-129) and (3-130), we can write the following équation

H s*= e~ sg + (3—131)

where is the quantizationuerror”in interval X s(x™, xX*_j_j, which

Is equal to:

ANQt  NQ T ARNQX MIQY ° Aot fAIQAN ° AMIQy (3-132)
NOX + IOy IOX * Oy ETOy ¢ on
1
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INn éequation (3*>132), the terms InNn the bracket are neglectable

iNn comparing with the first two termso Therefore, the quantization

error in interval xs:(xn, "N+1" wvill be;

oot ° N0 . * “i0Oy 1 “iQ*
The approximated interpolated formula of integral for k interval

can be found from équation (3-131) as:

k
s»«<(x) = | 6. sM (3-134)
i—=lI n
k
I 6 S 4 | i (3-135)
i=1 Q i=1 1t
3-136
- "o ( )
where (X)) is the interpolated quantized integration formula that

can be found from eéequation (3—130), (3-135) and (3-136) as following:

(3-137)

sg (X) _| «iqgs’= % “IQ* F_T7NNOQ* 1 QY

and the total quantization error e™Q in k interval from équations

(3-133), (3-135) and (3-136) wvill be:

(3-138)

tQ i
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(3-139)

(3-140)

It is seen from éequations (3-121) and (3-140) that, the quanti-
zation error in trapéezoidal methodof integration is same as the rec-
tangular method» Therefore, from équations ((3-122), ((3-124) and (3-140)

the quantization error enNQ is:

X (3-141)
TQ "y - 70Q> + <yko = yoQ=>

As It is seen from équation (3-141), the quantization error

dépends to the quar.tums AXx, Ay and the interval of integrationo

303.30 Quantization error in the three points method of integrationo
INn the three points method of integration, the approximated
interpolated functions fard ™ which are replaced to the functions

X () and Y () are:

fiyy () = Yi “ ¢ ~iv o

 — A G)x (3-142)

H 3 H (]



As we have dlscussed,

the approximated

interpolated formula

of Integral iNn interval te(t™m™”™ Ni+1N
-1
6~ f_. (&) d-JiL__ dc (3-143)
miy dc

(3-144)

c(c+l) 2 2C+1/ »

~Yy o, n -vy] C-A X ——A.X] dg¢
n 21 N n 21~

By putting the équation (3-107)

have:

-1
6 S« =
i NQy”
(@]
€(c+1D)
21
MIQ ®IQXN

iNn équation ((3-144)" we wvill

(3-145)

2C+1
dg
21
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X =
NQ - Tl 1 A=
(3-146)
o © MIRX + MOx c +
1 1
i 6 Ae._. +—— A.-X ° AE.™ +«<™, AL X ° +
"TQX 1QyY ion iQy
000e0
6. SsS* + e. (3-147)
iQ 10t
As we have Aalscussea before in thiree points inethod#™,-:

quantized formula of intéegral 6™ s”in interval tCGE{t", iss
1
"o ® i N
(3-148)
“rA-DQY ¢
and the quantization error iNn this interval of integration from
equations (3-146) and (3-147) is;
ot MIQ ¢ "NIOX N NQyY T NQEMN iQx ““leiQy  +
(3-149)
1 1
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+o00e00

INn équation (3-149), ail tems can be neglected with respect

to the two first oneo Therefore the quantization error iNn iNnter-
val ts (7, wvill bes

3-150

NiQt “C y+xQ T 10Ox ANQy ° NOQ* ( )

The approxiinated interpolated formula of£ Integration s (X)

for k Interval wvill bes
s"() = | s« (X) (3-151)
i=lI
k
s** 4+ ] ) (3-152)
L “iQ _] iQt
i—=lI i=lI
s» (X) ~ (3-153)

The: approximated interpolated and quantized formula of integra-

tion: (xX) which is the algorithm of machine is:

| YiR miQn ~NQA NiIQy
(3-154)

1, QY * UG-DQN - N-DQY
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and—the quantizatlon error e*Q can be found from équations (3—150),

(3-152). euid ((3-153) as following:

MQ AlIQ T AMMIQRX Noy  ° (3-154)

As we héave seen before”™ the~équation (3-154) can betransformed

to the équation (3-155).

~MQ N - Xgq) + Ax Yi"Q - Yaqaq) (3-155)

It is seen from équation (3-155), the quantization error c/q

dépends on.>the quantums AXx, Ay, ;and;the interval:of intégrationo
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3ade:The quantization error In Mmultiple Incrément cempntation, when

the Indépendant variable of Integration X Is the Indépendant variable

T

When~the Indépendant variable X of Integral Is equal to the

Indépendant variable t of machine/ then the formula of Intéegration Is+1

s (X)) = y (X) dx (3-166)

or;.lts; approximated Interpoiated- formula for Interval t e (tjn, M1+17

Is:

-1+1

6" s«<(t) = fiy () dt (3-167)

As It was dilscussed earller y (t) Is replaced by the Interpola-

ted functlon fj_y () which glves the approximated value of Integral

S”7’(t) so:

ffy “ Ay ~NO'

fAy (D) dt (3-168)
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By this approximation, there wvill be an error of method r(t),
whichisthe différence betweentheactual value of integration s (t)

and the approximated interpolated value s’ “ (1) like:

r(o

- s«x(@) + s (D (3-169)

r(t) rCx”n, 67X, 67y]

INn digital machine ail the quantifies are in discret value or
are quantizedwithin an interval, so the continuons interpolated
function "y () is quantized with the quantum of variable of the ma-

chine Ot and the dépendent variable My.

An example 1s the génération of a sine waVe as figure (3-19) o

As we have seen the continuons funetion ™ (X)) is quantized
with respect to the quantums At, Ay with the inséerent delay of digital
machine (is shown in figure 3>»20)» The quantized points of continuons
function "y (x) are the intersection of curve (1) with the line
At = consti (it is shown in figure 3020).

As we Work with multiple increéments, in this case we assume

-2 2
6x = 3 At and 2 < 6y < 2 , so the only quantized points which are

available in the machine are the points Iin interval Ax = 3 At, that

are shown in figure (3.-20) by the points &<

As the independent variable of integral is the independent
variable of machine, ™ () = x () = t, so there is no quantifica-

tion error for function F in each point, i=e : e,. = 0o
ix
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sin ut.

«*U o [ - y

BAr—

R, AW

6t==2"-At St=2""At

y=sin ut

Fia.-. 3

cos ut

AX

Ay
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But as i1t is seen from figure (3-20) and (3-21), in each
quantized point there is an error of quantization which is the
différence betweenthe continuons function ™ and the quantized func-

tion ffQy as followingi

Oty = *lIy <> m *IQy > (3-170)

the quantization error e™y Iin points &, y"™) is smaller than the

quantum Ay so:

A 3-171
Oy y ( )

Therefore the quantization error in each point &, y?)

wvill be:

iQx

HOy =~ *ly <> - *IQy "*> XA, N+l (3-172)

by putting the value of "£y fi“"om équation (3-172) into éequation

(3*~167) , we wvill have:

i+

67 s« [flQy (@ + dt (3-173)

XS (XN, Ni+1N

The approximated formula of integral in k interval wvill be;
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ST(x) = s (3-174)
= n
/\'+1
K i
R (3-175)
111 B TiQy”n
1+1
K 1+1
| f.n (W dt + y . dt (3-176)
1=1 ~Qy iAi IQy
= Sg (M) + e™Q (3-177)
where Sqg (1) Is the approxlinated Interpolated and quantlzed functlon
of£ Integral which Is the algorithm of£ machine and egual to:
N +1
@ = |1 miOy dt (3-178)
1=1
and the Is the error of quantizatilon In k Interval which
to;

Is equal

"tQ |

(3-179)
from equations (3-169) and (3-177),

It can be seen that the actual
Intéeégration

Is the sum of the approximated

Interpolated
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quantized funetlon of Intéegral Sqg (x), plus the errer of method r(x)
and the errer ef quantizatien as fellewing:
s (X) = Sa (<) + [reco + (€3] (3-180)

As we have dilscussed already, because ef delay ef quantizatien
precess, there'is an errer ef phase betxeen the centinueus functien
éuid the discret quantized functien. The errer ef phase and quantiza-
tien dépends te the value ef quantums AX, éty, As, and aise te the
Mmultiple incréments 6x = 2n ¢ AX, & = 2N ¢« Ay and 6s = 2~ “ As,

( O < X < h). By reducing the value ef gquantums Ax, Ay, As, and the

incréments 6x, 6y, 6s, the quantizatien errer wlIl11l reduce tce.

By taking intc acceunt'the errers and delay ef incremental
system=> the bleck diagramcf integraticn wvillbe as figure (3-10),

It is seen frem figure (3-10) that the functien y () is first
interpelated te the functien Yy (X) in interval xe , with
the errer which cause the total errer of method r(x) , then the
approximated functien 1s quantizedvby the variable of machine t, and
cause the errer e, iNn each point which cause the total errer of

iQy n
quantizatien ¢;.,Q (), and aise i1t introduce the délay of e”’P™or

7'< At



148

30406lé Quantlzatlon error in the rectangular method of Integratlono

The approximated interpolated function which is replaced
to the function y () Iin intexyal xe in the rectangular

method of integration is:
fiy = X<e(xX”, Ni+1N (3-181)

and the approximated interpolated formula of intéegral 62 in inter-

val x,e(Xjn, x™M.2Y is:

6 S« dc¢ (3-182)

INn theT guantization process’', there is the error betweén
ther actual unquantized points X" y”™) and their correspondent queui

tized points; (Xj*"Q, NN as following:

. ) (3-183)
=iQy = ~1 * ~NQ

Cy putting the équations (3-181) and (3-183) in équation (3-182)

we wvill have:

£ dc (3-184)
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= »  ENQyY (3-185)
= 6~ Sgq + 6™ 0§ ®IQy (3-186)
The approximated formula of integral for k Interval wvilll be:
k
s«(x) “ | 6i s«(X) (3-187)
i—=lI
k k
= yiQ -« “lQ=' + 'TQy - <3-188)
= s“ (X)) + (3-189)

INn equations (3-187), (3-188) and (3-189), the approximated
quantized function of integral Sqg (x) which is the algorithm of machine

is:

<> = ,2 yiQ - «iQX (3-190)
i=lI
where
27N 0 AX
and the quantization error e™qg is equal to:
(3-191)

as the incrément N"gX is the multiple incrément «S™x = 22 Ax, and
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the is smaller than the quantvun Ay soi
= 2 s ax
. A
miQy Y

by putting the values of équation ((«ri92) Iin équation

(3-192)

(3-191), we

wvill have:
k
e < | ay
R =
(3-193)
h > r >0
as the maximum value of rmax = 4 h so the é/guation (3-193) can be
written as:
(3-194)
or
=tQ < — (3-195)
or
“ 'y s 2 (kQ - -oq) (3-196)

It is seen from équation (3-196), that the quantization error

dépends to the quantum Ay to the number of bit (h) which is

chosen for multiple increment 6£x= 2~ ° AX, and also to the duration
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of integral XX - xN)

3ed4e20 Quantization error in the::trapezoidal method of integrationo

INn the trapezoidal method of integration# the approximated
interpolated function which is replaced to the function y ()

is as following:

fty “ 71 - « « «ly (3-197)

where

By putting the value ofy~from équation (3-183) into the

equation <3*197), we wvill have:

ly * fyiQ =lQy> - ° i “iQy>

Therefore the approximated interpolated formula of integral

3N S"Ofrom éequation (3-182) canbe written as:

-1
en ” =-6jn -
s” (X) JAX *iy/ (3-199)
(3-200)
*6™\X A
AL N “ioy! « "1 " N 'iBy)"N <<
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yiQ - ° HQy +
(3-201)
1
2
6. s’ + E._, (3-202)
iQ iQt

The approximated interpolated formula of integral b'"(x) for

k interval is:

s»<(X) = | 6. s«(X) (3-203)
i=lI n
‘/\iQ - ‘iQ* _/\iQ* . ‘iQ/\v ~n
(3-204)
* “iQ* <*ioy
— x) F (3-205)

from équations (3=203), ((3-204) and (3-205), itcanbe seen that, the
approximated;interpolated quantized formula of integration Sqg (<) which

is algorithmeof machine” is equal to:

) <i1Q + «iQX . «icy) (3-206)

6 6j"x = 2n

(=)
>
~+
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6 Ay
iQ/\ cc

and the total quantizationerror is:

i ) (3-207)
Sq “ ih "NQ MiQy

iNn ©quation (3-207), the second term can be neglected with respect to

the Tfirst one> so wvill be;
k
\
3-208
tQ NQy ( )
as X = 2 ¢ AX
iQ i
and ] < Ay
iQy
so the équation (3-208) canbewritten as:
2/ Y 6. xX® Ay (3-209)
Sa T =i 2
h > r > O
The maximum value=o£ r is equal to h, le: rmax h, so the
equation (3<‘<209) is expressed as following:
Etc < 2 =+ Ay | A x (3-210)
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° O Ay (X*"Q - Xqaq) (3-211)

The éeqquation (3-211) givesthe value ofquantizatlon error
INn Mmultiple Incrément intégrationy™as It Is seenf the—quantization
error iNn trapezoidal method Mof Integrationis"same"as the quanti-

zatlon error'ofrectangulariintegration (équation 3-196)

3» 413, Quantization error’' in the>three points method of'integrationo

INn the three points-formula of'integration, the*y (x) function

is replaoed wlith the interpolated function F as:
c(5+1)
*i = - f <«iT (3-212)
d 21

by putting the value of y" from équation (3-183) into. the equation

(3-212), we wvill have:

fFCO = (YiQ + HQy> =“ ~» tyiQ + "iQyT

c(Ec+1) TI (3-213)

(3-214)
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Therefore, the approxixnated interpolated formula of intégration

iNn interval x ~"(xx™, Ni+1" wvill be:
-1
6 S ®= - f. * d 3-215
i iQ Iy ¢ ( )
-1
« _ ion [(YiQ + Eioy) -G
(3-216)
e(c+i) 11 ir
(6,"y + 6 e~Qy)] d¢
21 Q
“MNIQ T TIO™ f «iQy «<iQ* '«"NToy] +
(3-217)
+ [6/MagX VerQy +  Sj'gX » OENy +—— 6°gX » «<™MANQy]

The approximated interpolated formula of integral s'™* (x) for

k intervai wvill be:

I
o
mﬂ

i<<(X) (3-218)

«<iIQT « «IQ* NQYy ¢ «1Q*1 +

= T (y<n -+ «<lo* +
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12

s3 (X) + C™Q

(3-219)

(3-220)

The approximated Interpolated'quantized “"funotilon'of Integral

(x) whiGh 8 algorilthra ~of niachlne;“from équations |3<7218) , (3-219)

and (3«220)/ can be expressed ass

<> 4 ‘NQ * «<IQF — IO 7

31 1 “iO*

6N X =2 0 At
SNy = 2N « Ay

and the: error 'Of quantizatlon-TENQ Is equal

S L o ey o

12

(3-221)
1
*10* 15 CIQT 7 wIQ=* >

ssiQ/\

(3-222)

to:

IQy

(3-223)
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INn équation (3-223) , the second and'third ternis can be neglected with

respect ito the first one”™ therefore”™ the équation (3-223) can be written

as:

3-224
etQ 111 *"le ( )

As-1t was dilscussed earller, 1 < and = 2N °

the équation (3-224) can'“be expressed as following:

e~ < |1 28 * Ax . ay (3-225)

h > r > 0O

as the maximum value of r equal to h 1. e r = h> so the équation
max

(3-225) canbe-wrltten as:

Hg * N (3-226)
or
(3-227)
"t -
The equation (3-227> glves the quantizatlon error In

the process of Intégration;» As It Is seen, the: querntizatlon error
dépends . tOT*the quantum Ay> the nurober of Incréeément bits h, and the

duration of Integral X - xXM™).
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3b50 The quantlzation error InNn mMmultiple Incrément computation# when

the Independent variable of integral X Is a function of the Independent

variable t«

As we have seen in chapter 2, the contlnuous functlons X (t),

and Y () are replaced with the approximated interpoiated functions

and Then the integral formula s (©)*
T
X (D)
s (© Y (©) d——— dt (3-239)
dt
Jto

is replaced by its approximated interpoiated value of integral s’ (t)

with the error of£ method r(t) as follovingj

~Ni+

k
S" (b) | f ¢« d 1 dt (3-240)
i=I dt

s = s77(@ + r(b)

But in digital machine, the approximated interpoiated function

Ny () and M (1) are quanti2ed with the variable of machine t®

As It was mentioned earlier,” because of the time of mathemati-
cal operation in digital machine>there is an inhérent delay in quan-

tized functions fi*yQ () and () , with respect to the continuons
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functions () and () , which cause the error of quantizationo

This effect Is shown in figures (3-22), (3-23) and ((3-24)

The quantization errors and e™Qy which are the différences
between the quantized and unquantized functions in point &xn, » are

deflned as following:

n ®
1Qx (3-241)

LHQY ®

As 1t Is shown Iin figure ((3-22), the quantized point is the
INntersection between the quantized function wilth respect to Ly (curve 1)
and the line 6X = 3 o6t, (they are shown in figures (2) and (3) by the

signe

The quantized points of f~» () *“ ™" (1) = e ‘sin ut, are
determlined in figure ((3-24) As It is seen, the quantlzed points are
found "by theaintersectlon of curve (1) and (2) which are quantilzed
function with respect to’the quantums Ax and Ayo But the only inter-
section points are the real quantized points of the System which have
the dist™mce of 6™ = 2~ » AX, in our case it Iis supposed that,

6N = AX, “ 2A>, "™M+23?7 = 3Ax, = 4Ax, = 5BAX,

The unquantized interpolatediapproximated formula of integration

iNn interval ™G, » as 1t was mentionned before, is;
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the quantized Point;s /.]
with multii: le 1ncr€ :me/u

6Xx=3 At
71
,
i3t is-2.11 e
|
/|
the quaitized Pointa/l
PN IM ¢f-q nrTam™nh r
AX
Co
L
y*
:he <3ont Lnuo IS |
. —-——-»
:uncl:ioh
f \p
I VA

6>:=3A1" sx=3 it 6x=3 At 6 X=3At 6> =341
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6" S«(H) fly (b (3-242)

If we put the value of£ the fxinctlons Ff. () and T (O Iin interval
1< iy
t=s @™, from équation (3-241) in équation (3-242), then 1t can

be expréssed as:

i1 (3-243)
B/ () if J. . A 0/ ®iQx
MOy N Hoy)
i+
loy <> « A7 A
i1 (3-244)
c - N iQx .
®l i
Qy Ot "
Ni+1 Ni+1
e « d dt + ¥ » dt
iQy "iQy
~j ~ij

The first term of équation r(3-244) t-is the interpolated quantized

formula of integration which is «the algorithm of machine in interval

TG @, Ni+1n
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. d—-eUE— dt 3-245
o NQyYy at ( )

The others terms of£ équation (3-244) are equal to the quantlza-

tion error of intégrale In the Interval t©™~t™, Ni+1™ equal tot
i+1 i+
- d_uU21. dt +
ot - -ioy d dt + O _
dt dt
(3-246)

"i—-rl

: d—i2/ L dt
*iQy dt

so the équations (3-243) and (3-244) ceui be wvritten as:

6” s** () = 6~ ®Q teda, VD (3-247)

®ngt
By suinming the équation «(3-247) in k interval, we wvill have

the approximated interpolated Integral formula In interval t £, M)

as:

s*R() < | s>'() (3-248)

@ + (3-249)
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®Q ®tQ (3-250)
where (9]
k
S« (t) (3—25 1)

L e

K i+1

| R at (3-252)
1=1 1Qy dt

Is the approximated interpolated and guantized value of integral which

is the algorithm of machine® and the total quantization error e™Q Iin

interval t<c (t_, t) is expressed as following:
k
o - Ot (3-253)
“1+1
T fioy () » ot dt t
i—=lI
(3-254)
i+1
+
i=lI
i+
"TOXx
A ) @ ° d- dt
“i0Oy
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The équations (3-253) and (3-254) give the total quantilzation
error which is the difference between the unquantized and quantiz-

ed function of integral in the process of digital integration.

The delay which existin;the process of quantization operation
cause the phase shift between the continuous approximated function,
and the quantized approximated function. 1t also cause the error of

queuitization e. which dépends on the quantums AXx, Ay, and on the

number of bit h of multiple increment.

From the above discussion, the block diagram of the incremental

computer can be represented ias iNnNfigure (3.18). So, we can see from

the figure (3,18), that the functions X () and Y () are first inter-

polated approximated to the functions ™ eind ™ INn Iinterval xe (XN,X™M0) ,

with the errors of and -which cause the total error of method
r(t) . Thenothe approximated interpoiated functions are quantized by
the wvariable Of machine ((t) and cause the quantization errors

iNn each point, which= cause the total error of quantization

and also introduce the delay e“P™with It"l < Ax.

3,5,1. Quantization error in the rectangular method pf integration.

The interpolation functions"fj¢ and iNn the rectangular

method of intégration, are:

*iy = T1



We have discussed earlier,

the variable tof machine tothe quantized point (XiQ»

error of quantization

that each point

iNn that point
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Y™

and

is quantized by

YNqg) with the

e"Qy as:

"TNX T N C NIQ
(3-259)
~iQy i yiQ
so iFf we put the values &, yj") of équation (3-259) in equation
(3*108)r we wvill have:
-1
6" s ric ®iQy~ i ®iQx" (3-260)
(0]
- YiQ « 'iOQON™ + NQ * "MNiOX NOY * k10N N
(3-261)
NQy ¢ "MBIQX
= yiQ * H(3* + <"iQy * + yiQ © "HQx +
(3-262)
/\iQy o /\'/\iQX/\
= 67s" () + te ™, (3-263)
The approximated interpolated integral formula s*“(t) for k
interval can be find from équations (3-260), (37?261), ((3-262) and

(3-263) as:
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i. s7@® | fi. s« () (3-264)
n i=I n
Il fir sg @ + | (3-265)
i—lI ~NQ i—=lI
ifiQ 7 "*10* * "“iOy ¢ "*10* +
(3-266)
m yio *Hox » Hoy -+« ~HOx>
iNn the éeqquation ((3-266), thefirstterm is the approximated interpo-
latedquantiZedfunctionof intéegration Sqg () which is the algorithm
of machine, equal tox
S in _
Q Tio . *1O* tG (to, tjn) (3-267)

and the other terms of équation (3-266)are the total
zation e"Q equal to:
~to © ““"loy " *10* + yio ¢« *Hox +

iNn equation (3-268) , the e<third term
First one, therefore i1t can be neglected, so the total
error wvill bex
k
tQ A®IQY V NIQM NIQ T AMIQXN

error of quanti-

(3-268)

'ioy *=10x>

is small with respect to the two

quantization

(3-269)
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As we have seen already:

uf
"iQy=>
(3- 270)
ioxt < AX
67X ““ 2 0 AXx
(3- 271)

then, from équations (3-269), (3-270) and (3-271) wwewvill haves

_ , 272)
tTQ - ,Zi' "'iloy o i * ""kKQ - yoQ> “3-
1=
(3- 273)
as
° AX < 2 y e._ ° AX
i=l iQy i i—i n
h > r >0O
and Hoyl - \4
so
I- 2~ « ciQy * < 2 - Ay 0 ANX (3- 274)
i—=lI
or
~o2n “iQy ¢ Aix ¢ 9N v Any (X0 -Xoaq) (3- 275)
i—=lI
From équations (3-275) and (3-2*2 , the quantization error (tQ

wvill be:
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®tQ N QY “ roQN (3-276)

The eéequation (3-276) glves the quantlzatlon error of inte-
gration "with multiple incrément in the rectangular method of integra-

tioNn0 As iit is seen, the e._ dépends to the quantums AX, Ay, to the
duration of integral “i"q) and (yji© ' and also to the nuinber of

bits h for the multiple IncrementSo

3,5«2c Quantlzatlon error in the trapéezoidal method of integration,

INn the trapéezoidal method of integration, the approximated
Interpolated functions ™ and "y which are replaced to the functions

X () and Y () are:

*ty = Vi - « <I7
(3-277)

*Ix = *1 - « <«iX

and the approximated interpolated integral function 67s** for interval

™ (7, t™M)N) wvill be:

-1

£ds vi ¢ firy) "X dg ce(o,-D (3-278)

by putting the value of &> yj) from equation (3-259) Iin equation
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(3-278), we wvill have:

(3-279)
/\n/\IQ -IQy> cc w * ‘ioy,, ‘ + ‘iQy"A'
1 (3-280)

6e,«, +

(YiQ ¢ «iQ* + *IQy “ «iQ*) +

®NiQy  * "NQy ¢ M®IX

1

+ 6

e
2 iQy 1 “iQ* * 2

The approximatedinterpoiated formula of integration s <(x)

in k interval wvill be:

S*(x) = 6" s’ (3-281)

Kk 1

I , /\/\IQ * /\iQ*- -AT’Ale “ (3—282)

+ _I CYiQ “ «NX + "iQy “ «iQMN + "iQy * «"iQx

1 1
+ 5 y + 6e.n +—""6e
2 iQ-" iQx 2 iQy “ NN T AMNNIQY 7 MNNIQQXN
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The équations (3-281), and (3r282) can be wvritten as:

s»“(X) » s« (X) + (3-283)

where (xX) Is'the approximated/NInterpolated formula of Integration,
(X)) . Is'the approxixnated'jinterpoiated quantlzéd: formula of Integra-

tion-whicb’'lsr~the algorlthm-of machine, equal to:

k 1
3« X) - r YrQ “ «IQ* +"Niy 1 «IgX) (3-284)

The, quantizatlon error c™-;InNn the process-of INntegration

can be findr.from équations 43-282" >and (3-283) as:

(3-285)
Kk
mtQ 1l1 AO ®elox * ®iQy oraX * €9y ANIQX
— = — — =
0 +—fienQy ° 6jgX ° ANQX

In-eéquation (3-285) the ?third; fourth and other terms, are
very small wilth respect to the flrst two terms” therefore, they can

be negleotedtf So -Uie ecan.—be;written as:

k
Sqg < Ji "IQ - "iQy (3-286)
as It Is seen from éequation; (3-266), the e INn trapézoidal method of

Intéeégration, isi practicaliy equal”ito'the of rectangular method of
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integration (équation 3°27a>o0 So wilth the same reason whilch was dis>»
cussed ™"n xectangular méthode the équation (3»°286) can be transformed

to the—followlng équationo

TQ A * <y (MKQ -: *0Q> + N\ <"kQ m yoQ> (3-287)

INn order to reducenNTthetsquantizatipn errort we should
decreaae the value of£ quantunisr Ax» ay™ and the nunZLE>er of increment

bits ho

3a5c36 Queintization errorvin the ‘three points methodof integrationo

The approximated interpoiated functions and which are

replacedv to the functions X (t) and Y ((t) ares

C(C+1) 2
ejx = I=I — 5 ' 6’X
21 n
(37°288)
c(c+h 2
- < TI - « 1 «iY
| \V4 [} | \y 21

Therefore the apprixomatedrinterpolated integral function

6" s?* Cx> for interval ts(x ™= wvill be;

6 S«= ¥ - d— d ¢ (3=289)

z
&
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“1
i 2
6N £« B " cle*rD ) 6iX -
(3=289)
2C+1 (2)
it N~ X dC
21
K

The eéequation (3-289) glves the value of the approximated,

interpolated formula of Integral In Interval t£:(t, "1+17°

INn order to fiInd the approximated Interpolated quantized value

J
of integral 6~ Sqg, we should replace the value x7, with its quanti-
c
2ed value xNQ, from équation (3-259) in équation (3-289) » So the

#
equation (3-289) can be written as:

-1
o) s (3=290)
c(c+Dh 2
2C+1 p,
1 i Ao ecioxr  9¢

(3-291)

> <

~NQ «iQy 3 Nleol -1
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The approximatedinterpoiated formula of

k interval wvill be:,
S»«<X) = | 6. s-
i=I N
k
| ~Q
i=I
k
+ 1 _
—, NiQy

= Sg (X) +

from equations (3-292) §

approximated interpolated'quantized value of

is the algoritbm of machine>

o

(3-293)> and (3-294) ,
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+ yiQ “ «NOX + NQy AMNIQX
1
MIQX 2 QN «oocoe

QN A—NiQy

I\in\ o

is~"equal to:

integral s’’(x) for

(3-292)
~ord-Don
~G-hnn
+ e S e+
iQy 1Qx
(3-293)
iy mion 10001
(3-294)

it can be seen that the

integral s” (x), which
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sg GO = 1 yiQ ¢ v

(3-295)

1

-+ (B6MNgY " 6(@(_1D)OX- 6.gX » «(i_DHQY)
12

and from the same éequation, we can find the value of the total quan’

tization error iNn interval t £, tn) as followings

Kk
90 T ', Qv ot NQ NQy ° QX

(3-296)

+——0iQy —«iQy §&* *o0lo0al

iNn equation ((3-296), the third, fourth and other terras are very sraall
with respect to the first two terras, so they can be neglected>» There-

fore, the total quantizatipn error iNn k interval wvill be:

Sq ©  wiQy * NQ T AIQXA (3290

As we have already seen in the rectangular and trapezoidal
method of. integration, the équation (3-297) can be transformed to the

following éequation:

“tQ < c 4y x"Q - X)) + 4x (Y*Q - y~g) (3-298)

It can be seen from équation (3-269), (3-286).and (3-297),
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that the quantization error in the process of integration does not
dépend on themethod of integration”™ but it dépends on the quantums
ax, Ay> on the dxiration of integral

number of bits h of multiple increémento



178

306, Conclusion,

INn this chapter, we have calculated, for different methods
of integration”™ the quantization error for unitary and multiple
incremental computation, when the indépendant variable of integral X

is equal to, or is a function of the indépendant variable t of machinée

The quantization error e”Q is the difféerence between the
approximated interpolated integration function s?<(t) and the approxi-

mated interpolated quantized function o)

erQ = s - (09

The values pf quantization errors for different methods of

integration, in the case of unitary and multiple incrément computation,

are shown in the belowing table (3,1),
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TABLE 3.1

Method of integration Quantization error Quantization error e
iNn unitary incrémental in Mmultiple incremental
computation computation

Rectangular, trape-

zoidal and three points

- 'kQ-* Et © 2 ='kQ-=
method when Y = f (X) ha y <>kQ-*oQ> Q <='kQ-=0Q>
X =t
Rectangular, trape-
zoidal and three points o A ANKQ-"0OT1 StQ < (k,,Q->=0Q) +
method, when X = X (t) + UX (YKQ-YoQ) + (Ykg-YoQ)

y Y (©

As 1t is seen fromthis table, the quantization error is the

same in the rectangular, trapéezoidal, and three points method» In the

case of multiple incremental computation, this error dépends on the

quantums AX, Ay and on the number of bits h in 6X registero

INn incremental computation, by choosing the more accurate

interpolation formula, we can increase the step of integration from
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AX to 6x = 2N * AX; this increases the speed of integration by 27
But as it is seen in table (3ol), we also increase the quantization

error e"Q by the same factor™

INn the chapter (6) » we shall see what is the greatest admissible
h, for different methods of integration, so that, the errors don't

exceeding a certain limit®

In order to reduce the quantization error we should decrease
the values of quantums Ax = Ay = 2 where n is the number of bits
iNn the y register>» By increasing n, we can decrease the quantums Ax
and Ay, but 1t is not interestingto increase n too much, because the

machine speed will decrease, and the amount of equipment wvill increase”

So, thereis a compromise between the choice of bits n Iin the Y regis-
ter, and the quantization error 0 Usually, the wvalue of n is between

ten and twenty, so Ax = Ay = (2"'"N° to 2"N°).,

INn incregmental computer of industrial electronics of the
Brussel University, which is designed by the author, n can be chosen

as ten or sixteen.
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CHAPTER IV

THEIi ROUND OFF, TRANSMISSION ERROR AND: NONLINEARITY

IN THE INCREMENTAL COMPUTERO

As we have seen beforev the continuons functions X (1) and

Y (t) are replaced by the approximated interpoiated functions

which have the errors between the actual functions X (t)
Y (), and the approximated interpoiated functions Ny as:
Nix = Nix - X ()
(4-1)
Hy = fiy - Y (©
rho errors ey» cause the total error of the method of

,rior r () , v/hich is the différence between the actual integra-
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tion function s (t), and the approximated interpolated intéegration

function s*““(t) as:

s () = S"() + r( “4a-2)
INn the quantization process, each point Cj”™, yiD » Vi-17™ »
000®] is replaced by the quantized points C YiQ) » MNG-DO>»
v((_DQ,»06 »] which have the error of quantization "+Qyf that
is the différence between the quantized functions Ny Q'
unquantized functions f ), (1), as following:
NQX T NIX NIXQ
“4-3)
NOy = Ny m NiyQ
The e QOx» NQy total quauitization error in

the process of intégration>» that is the diffence between the approxi-
mated interpolated function of intéeégration s’*(t) and the approximated

interpolated quantized function of integration s“ (1o

sS«(t) = sg () + “a-a)

The sg (1) is the approximated interpolated quantized function
of integral which is the algorithm of the incrémental machinée There-
fore the relation between the actuai function of integral s () and

the approximated interpolated quantized function of integral sg (@) isi

s () = Sa (O + [r( + (4-5)
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As we have seen the blook dlagran of Incremental computer

Is shown In figure 4ol)o

INn incremental computer, the results of a given mathematical
operation is transmitted for use iNn another mathematical operation
by the use of quantized incréeémentso
If the number of bits of y register is n, and the number
eq
of bits of6x register is h, then the number of bits of Sqg (1) register

is (h+n) as:

s" () = y™q - 6x 4-6)

By the convention the absolute value of y register is arreinged
by scale factor in such a way that i1t is always less than one, so the
less significant bit of y register has the weight of 2~ which is
equal to the quantum Ay so Ay = The weight of S register has

exactly the same weight as y register, as it is shown in figure (4o02)*

Therefore, S register has one fractlonal part Sq with n less
significant bits whose content is less than one, and the other most
significant parts 6s which have h bits, and the content is greater
or equal to one. As i1t is seen from figure 4.2), the most significant
bit of S register has the weight of 2, and the maximum value of

H ko
®Ot is

'm®Qt"max 4=
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interpolation
process quantization process

UrO 4ol®

Block diagram of incrémental computer:
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S regieter

n bit

figo 402
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the less significant bit of S register has the weight of 2’ which

Is the gucintuin of As, so:

As = 2"~
iNn incremental computer, using the unitary increment h = /, the
maximum value of is equal to one, in other words, when the content
of S register bécomes greater than one, there wvill be an overflow,

equal to one iINn 6 s, and the rest of integral is accvimulated in

part of S register. In incrémental computer, using mMmultiple incréments,
the maximum value of Sgn can be equal to 2- =1 or 2 , 2 , ... 2°¢

So there wvill be an overflow when the value of Sg” becomes greater
than one, and the rest of integral wvill be Iin register. Therefore,

we can Write in any itéeration the following relation.
Sg () - s™M(@®) + sk “4-8)

where s (1) is the approximated interpolated quantized value of

integral; for instcuice Iin the trapéezoidal formula equal to:

|
e

\0
and s M(t) is the sum of incréement of integral at the h most signifi-

cant bit of S register, which is the output of incremental machine.
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k
s t 6. s” 4-11
om ® % Sy ( )
In équation 4-11), is the quantized increment of
integral (the h more significant bits of S register) , is the n less

|

significant bit of S register or is the rest of integral Sqg ((t), which
is neglected in that iteration for output information, but is accumu-
lated in the memory for adding to the value of integral in the next

itération.
Therefore the value of intéegral which is output of incremen-
tal machine s (1) is equal to:

®OM | 6. s 4-12)

= Sqg () - Sq (4-13)

iNn equations 4-?712) and 4-13)" the 6% Sqgj* is the incrément of the
approximatedinterpolated quantized and roundedoff of integral, and

Sq is the round off error of the process of integration.

The actual value of integral S (1) can be found from equations

4a4-5), 4-12) and 4-13) as:
(4-14)

S (O « s (O + [r () + eQ () + Sa (D]

where r(t) and () are the errors of method and quantization, SQ(t)

is the round off error and ssCt) Ila the approximated interpolated
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quantized rounded off value of the integ”™tiono Froih équation

we have:

The algorithm of£ machine which is equal to Sg () in the
rectangular™ trapezoidal and::threec™points interpolation formula of

integration is:

iNn rectangular method:

SQk ‘fl.l vi (4-16)
1=
iNn trapezoidal method:
SQk N <yi ¢ «l= X 6-y) (4-17)
1=
iNn -three points method:
st o> = 1, 64X + 6jX - 67y +
i=1 2
(4-18)
+—— (64y “ <<i-IX

12

and the approximated interpolated quantized, round off value of inte-

gral Sqgi™ () which is output;of incrémental machine, can be found

from equations 4-15), 4-16) / (4-17) and (4-18)
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INn rectangular method:

@ = t)
i=lI
(4-19)
Vi o «1* -
INn trapezoidal method:
S QMK = 1 wiQM
1=1
4-20)
1
= §ili “~1 - 2 ook
INn three points method:
®QMk t
Q 1=1 oM (©
“4-21)
k 1 1
lll '/\yi * /\1/\ I*I 2 /\i"l\ " /\l/\ 12 I\*iy * I\l_l/\

- 6i_iy + O7™>)]- Sai,

I we flInd the Sg™ for Iteration.k by the rectangular method, we wwilll

have :

SQMJIt  <=> 4a-22)

I
-
[

. - =ok
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and the () for iteration (k*=I) by the same method wvill bej
®QM(k>I) yvi * N ~ok-D
Therefore, the incrément of integra! 61 omiC () wvill be

the difference of ®QM(k-D) equations »=22) and 4-23),

It can be expressed as:

P owk © = ® - Somaen © (4»24)

-
I

= . “k x~ ®O(k_|) gk 4a-25)

The équation (4-25) can be wvritten as:

/\Ok/\/\/\ ce /\k * */\k/\ /\o(k“l) (4026)

The expression (4°“26) gives the exact operation of integration

iNn incrémental machine,, That means in each itéeration, the value of

Yk 1 is calculated and added to the rest of integral of the pre=

vious iteration so

it gives the output 6~ ®gm|c which is

the approximated interpolated quantized rounded off of incrément at

the output of machine, and it also gives the new value of the rest of

Integral Sjjk INn the n less significant bit of S register which

goes to memory for memorization in order to use for the next interval>»

The wvalue of 6 ®gm]¢ can be found easily with the same

method for trapeéezoidal and three points formula as following:
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In the trapézoidal method:

(4-27)
1
Al ®Snk * ®ok S LA
In three points method:
(4-28)
"i ®OMK ®ok “ Cik «k* +—*k* «<kKT («<kT *(k-D)**

- “(k-Dy ¢+ *k*>" + So(k-1) <t)

The same conclusion of équation (4-26) can be taken for the
équations ((47"27) and (4-28)« For Instance, In the trapézoidal method of

Intégration, the value o£f (yj* * 6j"x +-~"—ij*x" 6j"y) Is added to the

rest of Intégral £rom former Itération r and there wvlllbe an
Incrément output 5% also a new value of the restof
Intégral () which wvlll go to the memory for the nextlitération.

The same operation Is done for three points method, In thls case, the
value of CYk " \/ ‘ +412 ° NMNk-1L)* "t Nk-DN A
Is calculated and added to the rest of Intégral of the preceedlng
Itéeration J. The resuit will be the output ®QMk

new value of the rest of Intégral which will go to the memory for

using the next Itération,

In general the round offerror—eklneach Itération Is a

functlon-pf e « ¥ Cshn, Sokk-D) "“e°r and'In our case> the round

off -error'e™In* each Iteratlon’'ls ek- = - SAN,
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4 eloia Upper bound of round off error of integration in unitajfy

incremental computer.

As we have seen in the former paragraphe the relation between

the output increment of machine 66" ®Qnk and the algorithm of
machine Yggj® is as following:
®ok + «1 «QMk “ yeg.k 1 "*k== N So(fc.i) 4-29)
or
«i ®QMkK “ neqg.k ¢ 'k* * <So(k-1) - Sok> «-30>
where iNn the rectangular method, and Y~g = Yi +-"*£Y in the

trapézoidal method.

INn incremental computer, with unitary incrément; the incréement
of integrale the dépendent variable and the indépendant variable are
equal to the quantums ASeAy and AX. So the eéequation »29) can be

written as:

A ®QMkK = req.k * ~r®o(k-1) *“ "ok~ (4»31)

iT we consider the value of () and A*Xe equal to the logical
+ 1 or Oe then we should introduoe the factor 2*" in the value of
A Sqiii® () . In other words, the significant of A Sqgj* (t) is 2" time

greater than;: the logical t 1. iSo the équation (4-30) Iin the coded

form can. be expressed as:

N ®QMkK » req.k ¢ kN ~®o(k-) " "ok~ 4-32)
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in equation 4-"32), 1 we neglect thé round off error Yo Sgl™)
we wvill have the familiar équation of incrémental machine as;
1
i we use the équation 4-32), for first, second and k iterations
we wvill have the following équation:
“4-34)
2" A = yeq() ° + Mo(0o) " ~eN itération
(4-35)
2" N eQME2fN) 4 Ne0(2) ¢ - SAM2)T 277N jitération
by putting from egj~"Jaon (4-34)in equation 4-35), we wvill have;
2" A ABA(L ) + 2~ A = Ax + y AX +
@ @ Yeq eq(2)
(4-36)
So(@) "~ ~0(2)
iT we find the équation 4-36) for k iteration, we wvill haves
k
2~ A s - . . Ax + S 4-37
i;| QM(i) eq() 0(0) °co(k) ( )
The équation (A4-37) can be written as following;
(4-38)
N ®QM(K) 2n "o(k)J

The wvalue Ofrlf\ is the round off error e.

T Roco) ~o(k) )

of the process of intégration>» By neglecting ej¢g, we wvill have the
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normal équation of incremental computer with unitary incrément as

following:

k k 1
(4-39)
N ®QM(K) e 2~ ~eq(k)
so the round off error is equal to;
1
®k = TANO(0) m No(KN (4-40)

as the nuinber of bits of S register is one bit greater than Y register

therefore, the number ofbits'of S register is (n+1)» So the logical

weight of S register for nN—+I™bit is equal to 2*" - 1 which we call
N so:

N = 2w - 1 (4-41)

DINIAN (4‘42)

by putting the value of N from équation (4-42) in éequation (4-40) , we

wvill have:

2

®k == AnO(O) “ ~o(k) ! 4-43)

iNn order, to détermine the'upper bound of round off error, we consider

its absolute value [ejN) so:

2

N AO(O) /\O(k) (4'44)
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since ®0(0) “ ®o(k) < SO ’(max)x = N (4-45)

so < 2 (4-46)

N
ifT we put the initial condition of S register to-~(the most signifi-

cant bit) ,

o) (4-47)

then, by putting the value of équation 4-47) Iin équation 4-44), we

wvill have:
2 N
ek = —— - ~o(k) (4-48)
N
since N > SAK) > 0O (4-49)
N N
th
en o)
2 (4-50)
by putting the value of (4-50) Iin équation (4—48), we wvill have;
i®ki " 1 (4-51)
Therefore>= by choosing the appropriated initial condition
S (o3 = 4 , we wvi;ill ha/e the round off error ek which is smaller than
o(o

one, i, e, or smaller than the less significeint bit of S register.
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On the other hand, the less slgnificant bit of S register has the

weight'of which is equal to=the quantums Ax or As SoO;

lejl < As or |ej™ < AXo

4 6lo20 Upper bovind of round off error of integration with multiple

incremental computero

INn Mmultiple incremental computer, the incréments AXx, Ay,

and As are:

2r »
6X = AX
_ 2r .
6y = Ay h > r > O (4-52)
6s = 27 As

We can use the general éequation (4-29) for the quantized

increment 6 () as :

}  QM(K)

N®QM(K) " req(k) ° ~kA Arok-D Tt ro(kN (4-53)

The coded équation (@4-53) can be find easily with the same

reason that“"the équation (4-32) Iin the form:

A EQMEK) T req(k) r@o(k-) ¢ ®o(k)" (4-54)

For.k interval we can findthe following eéequation:
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1 2n> S5.¢) ® = ! * X F (SoGs - SLGs (4-55)
1—X 1=X
By dividing the équation (4-55) to 2" we will have;
(4-56)
" 20 k
®oMk) @© = A "ea%@ s 6x +—— (S ~ ~
2n  i-,1 eqtK] oA o(o) o(k)
the second term of équation (4-56) is the round off error e of the
process of integration with multiple increment which is equal to:
eu = - J 4-57
2n ( o(o) o(k) ( )
By neglecting the round off error in éequation 4-56) , we wvill
have the operation équation of incrémental computer with multiple
increment as following;
~i ®QM(K) req(k) * Ak~ (4-58)
or
2h
; t —_— -
~i @omk) @ 2n  areqk) K (4-59)

As we have seen in the preceding paragraphe N *“

2NN 50

we can write the équation (4-57) as following;

,h—+l1

®k N ~no(o) T ~o(k) (4-60)



19P.

as ~o(0) 7 ~o(k) (4-61)
so the round off error ek wvill be:
e, < 21 (4-62)
= 2

iNn S register, like

condition
its upper bound as following;

By putting the

the round off error ej® reduce to half of

oh+1 N
4-63)
N
since N > S > 0
o(k)
(4-64)

so I®kKI on

The équation (4-64) gives the upper bound of round off error
by using the appropriate initial

ej® IiNn Mmultiple incrémental computer,
- N
condition S_ = —
O 2

incréments 5x and 6s are h

As the maximum bits of
SO the équation (4-64) can be written as;

( (6s) = (6x) = 2 ),
max max
lejrl < |6s]| (4-65)
from eéquation (4-65), it is seen that the absolute value of round off
the incrément 6s iNn Multiple incrémental compu-

error is smaller than

ter
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4.2, The transmission errors In unltary or multiple Incrégmental

computers,

INn the integral operation of incremental computers, the informa-
tions which are needed Iin interval NN expressed as

following:

X NMEx Mot NN NQ
(4-66)
ANQY ¢ NQy 6 MYy, 62gY00»00 ~NOAT AN
i+1
6. s” =
i Q ~NOT

dt

As It is seen in chapter (1), because the iterative nature
of incregmental computer, the only informations which exist are the
informations of former itérations, 1, 2, 3,..,>»> , ((-1), which we find
iNn the memory, Therefore, the data has a delay of one machine cycle T
with respect to the quantized value of information. The delay T is
produced in the input lata of incremental computer, which are the out-
put of the other integrators in the former itéerations. This effect can
be shown by figure ((4.3). The delay cause the error of transmission
Ex><x» *"Ty each interval x€'(xn, that is the différence between

the approximated interpolated quantized functions Ff NQY!

approximated Interpolated quantized delajfed functions NQDyY!



200

fig. 403,
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as following:

NTX ~ NOX t]
NQDx  *-MoQ! 620X, ...., t]
(4-67)
cc "iQDy /\2qY>__ *(i_l)Q[\l
xXs: (XN, Ni+1N
The e and e cause the total transmission error e
Tx Ty Tr
As 1t was discussed earlier, the approximated interpolated
guantized value of integral ™ Sqg (x) is equal to:
i+1
)
6. s (D) (4-68)
Q iQy
by putting the value NQYy equation 4-67) in équation
(4-68), we wvill have:
i+1
6 t
i ® MNiQDy

(4-69)
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i+ i1
NODXx
"TQDy > NQDy
i+1 (4-70)
" Tx Aj
d dt + e IQDx dt *
dt ~ dt

i+

e - d ~NfL dt

dt

The équations (4-69) and (4-70),

' i = "i ®QD  ~Tir

where 67 Sqgj® is the approximated

and delayed which

interpolated quantized,

can be written as following;

“4-71)

rounded off

is claculated by the incremental computer as follow-
iNng:
i+1 ®
6 QDX dt
_ ANOD
i QD iQDy dt
. t
iQDx “ AQDx *-"0Q' 1
“a-72)
iQDy (mt) “ NQDy MoQ' «iQYr «2qY/ ®» xu: t]

~G-DRN
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and the is the total transmission error in interval tA£" (t ~NieD)
which is equal to:
“4-73)
i+ N+
Tix .iopx M
"Tir iQDy y dt
ti
i+
~ T
, X“ d.t
Ty dt

from équations A4-71), 4-72) and 4-73), the integration formula

Sg () Iin interval te(™, t™) wvill be;
k
Sj @® | 6i ® “4a-74)
i=lI
k
I o« @ + 1 e__ 4-75)
i—1 i ®QD i—1 Tir
= s»i3 (1) + 4-76)

in the équations 4-74) , (4-75) and (4—76), the s~ (1) is the appro-
Ximated interpolated quantized formula of integration, which is equal

to;

sq 3 T o (4-77)
“ i=lI *IQy <« -
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The Sqgqqg () is the approximated interpolated quantized delayed
formula of integration in interval tj) which is calculated by

the Iincréemental computer and is expressed as;

i+1
k
®0D = 1 nioDy ® (4-78)
and the c is the total transmission error in interval t™@&E&E™, tn)
which is equal to;
Tr = | "Tir
i=lI
K +1
|
i=lI
i+
K NQDx
+ | e o« d——  dt + 4-79)
i=lI ~ dt
K i+
NTX
+ | AT ‘
i=lI ¥ dt

ifT the input dx of incremental computer is dt, then;
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*IQDx <t) = t

o) (4-80)

the total transmission error, when the indépendant variable of inte-
gral is egual to the independent variable of machine t, can be find

from équation 4-79) by putting = 0 as following;

e 1 (4-81)

From the above discussion, the block diagram of incrémental
computer which was shpwn in figure (@4,2) can be developed as in fig\are

“.a).

It is seen from figure 4.3), in transmitting the data
between the iIintegrators in incremental computers, 1t is introduced the

delay T which cause the error of transmission

Example: the solution of second order differential équation,

dryY
—r + Y =0 (4-82)
dt

is Y = cos t

This problem is programmed in incregmental computer as figure

(4.5)



206

input inter-
information polation quantization intégration

fig. 4.4
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fig, 4.5
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In itération n, the following différence éequation can be

writtenin each integrator;

Il
<

Q

~+

(V13
) . 1 n
N Integrator
1) (4-84)
¥n = Xp=d * "Xp

i i YAD= =
N INntegrator

) (4-85)

as the incrémental computer is the parallel type, the incréments VI®
and VIj which are available in'the n*" itération”™ in the input of each

integrator, are from former itération n-1 so:

(4-86)
by putting the value from equation (4-86) Iin éqquations (4-84) and
(4-85), we wvill have;

(71)). at

(4-87)

Tn-1 *

k nQby =
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(4-88)
Wy = = \VI -
But the right expression of équations (4-87) and (4-88)
should have the information of N itéeration as following;
(4-89)
mioy = “ TnNn-1 <TT2>
(4-90)
fiQy = ~n = ~n.l “
As 1t was discussed earlier in this case, the transmission
error in interval t4A&A”, Mn+1N
ATx = ©
(4-91)
oty « ~xQpy (O ne+i
from équations 4-88), (4-90) and 4-91), the and e,py in interval
t e={", ™)) wvill be:
enx « ©
(4-92)
e™ = - Vil
Ty I NNl ¢ *) n
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which wvill cause the total error in the process of intéeégration®
By taking the z transformed froiti eéquations (4-89) and (4-90),

we wwill have;

Y @ = (4-93)
Z"2(1+€2) - 2z + 1

The inverse Z transforme of the éequation (4—93), can be

calculated. from the contour intéegration arovind the uwunit circle,

Y (nT) = jurl t y J2) dz (4-94)
2Tij
! Nn-1
. (4-95)
2nj z*2(1+x2) - 2zl + 1
The solution of the équation (4-95) wvill be;
\1 ~
Y (nT) =y * log i| 1+T A arc Tan T) (4-96)

The solution of diffential équation (4-82) is the éequation
(4-r96) , it means that the transmission error e™ has acoodinulated in
n log\li+T2

each itéeration and caused:the exponentiel terms e iNn équation

(4-96).
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4.3a The nonlinearlty at the Input of Increémental computers, euid cholce

of scale factorsc

Any computation machine has a limitation in the magnitude
of the numbers which 1t can handle. A desk calculator, for example,
has an accumulator of fixed size. An electronic analogue computer
opérates over some limited voltage range and a digital machine has
a maximxim capacity of its register. In order to assure that the inter-
mediate resulta stay within specified linear range during running of
a problem, Iin incremental computer, the problem should be scaled.
This means that the capacity of register must not exceed of its maxi-
mum capacity, otherwise, it wvill be saturated and the System becoraes
nonlinear. Therefore, the incrémental computer has two zones, linear,
and nonlinear part.

As 1t was discussed earlier ail the guantities Iin incremental
computer, are in the form of incréemental, and any function is obtained

by suraming of its incréement as followings

Kk
x @ = | a * 6x @
i=I1
t 4-97
y (© ETIETr ( )
k
w @ = | )
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zZ () = a. + 6.2 (O

| =x

When the incremental computer works as an integrator, the

dépendent variable of integral y (1) is found by summing its incrégments

6j"y in the summator | as it is shown in figure (@4,6) and équation
(4-98) .
Ni+1
6i y () * dx ()
Ti
(4-98)
Ly ®iy -« “iy <t

The value of y () is stored in the memory of the machine,
but the length of memory register is finite, there are a maximum
number of incréeéments which it can accumulate, and so the value of y (t)
is limited by the capacity of Y register of memory and arithmatic
unit, IFf the sum of incréments passes the capacity of Y register of

incremental computer, the Y register wv/ill be saturated.

Therefore, the input block of incrémental computer can be

determined as figure (4,6) ,

A primary purpose of scaling in incremental computer is
to assure that the intermediate results of y function, stay within the

specified linear range (xA) of incremental computer, The problem of
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fig>» 4060

Block diagram of serial loC
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scaling in incrégmental computer, is similar to that of scaling in
analogue computer. The control of scale may be achieved in a number of
ways, By providing a facility that allows a choice of the number of
significant digits employed in any integrator, the use of constant
multiplier, and digital serves with gain etc, The Tfirst step up in
scaling a problem is to estimate the maximum values of each variable
which is likly to attain during the course of computation, The more

accurate is this estimation, the better is the solution.

IT the estimation is too low, the integrators wvill oyerflow, and the
problem wvill have to be rescaled. If the estimation is too high, more
significant places wvill be used than reguired, and it wvill take longer
than necessary to attain a solution, Of course, i1t is deésirable to

have ail scales as great as possible for the maximiim capacity of register

Although a scale factor can be any number within a machine
range, restricting scale factors to integral power of the machines
radix allows the product of scale factors, to be obtained by summing
the exponents, So to each quantity in the machine, there corresponds

a certain scale,

where 2 is the radix of bLneary numbers, and m is the power to which
the radix 2 must be raised in order to equal M. The scale M indicates
the number by which one unit of the qquantity is represented in the

machine. For example, i a quantity B is insertedinto the Y register
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3
of the machine with a scale M = 2 , this signifies that one unit of

quantity B is represented in the machine in the form of 8 pulseso

Now we explain the appropriate choice of scale factor which
permits the operation of incremental computer Iin its linear part, with

the maximum accuracyO

WeNassume that the physical quantities are represented in the

sarae notation as the mathematical numberso For the unitary incremental

machine we have:
ds-= 2"~ ° y ° dx

where n is the number of bits in Y register of the integratoro Assviming
¢, V, r, are physical quantities> represented by the mathematical numbers

X/ vy, s respectivelyO Then, the équation (4-09 ) can be wvritten as:

v (4-100

As the integrators have to simulate the relation between physical

quantities of the form
dr = ¢ “ dv (4-101)
Then the condition must be-satisfied in (4-100) is

+S¢ -n-Sp =0 (4<402)
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expression A4-"®N)is the scale relation betweenthefoundemental

quantittes INn’unitary incremental computation.
In Mmultiple incremental computation, we have:

2/\
6s = — y * AX (4-103)

5=
with the same reasoning, the-scale relation between the quantities

of Mmultiple incrémental computation wvill be:
S+Sc—n+h—S=O (4-104)

A further considération is taken iNnto account in choosing the
value of scale factors. If in the course of variation, some physical
quantity V attains some maximum value, the quantity which is represented

in the machine by the convention is:

< 1 (4-105)
2% iax

where m™”» is the exponent’of-2 in such a way that, the value which

is represented in the machine-becomes smaller than one. So the quantity
which is represented in themmachine is |v| ' 2~ax”™ and taking into

g

account the scale factor 2 , this value is represented in the machine

vl * 2~~~ ¢ 22" The maximum capacity of Y register of the integrator
is 2n, for avoiding the overflow of Y register, the following relation

should be''satisfied:
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or
max

The équations (4 102) ~4-104) and détermine the, scale

factor of-each integrator-+n unitary and multiple incrémental computer»

In order to increase'the accuracy of the problem, the scale
factors should be chosen in such away, to use the fTull capacity of the
Y register provided that the"machine works in linear zone and doeS not

saturate
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4.4. Conclusion.

We have seen in this chapter that, by using the appropriate
iNnitial condition at S register™ in unitary incrément computation, the
round off.error becomes smallér than one, and Iin Mmultiple incrémental

computation, becomes smaller than 27.

Wealso calculated, the;transmission error in incrément
computers, and in the next chapter,cwe wvill study the way of minimiz-

ing this error.

As it is shovm, the:nonlinearity at the input of incrémental

computers, can be avoided by a.good choice of scaling.






