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Résumé

Il est bien établi que des larges classes de systèmes dynamiques présentent lorsqu’ils 
sont soumis à des contraintes de non-équilibre appropriées des comportements com­
plexes associés à des bifurcations culminant en chaos déterministe. De par la sensi­
bilité aux conditions initiales une description probabiliste constitue l’approche na­
turelle des systèmes chaotiques. Le point de départ est une équation analogue à 
celle de Liouville, appelée équation de Perron-Frobenius pour les systèmes à temps 
discret, qui fait évoluer les densités de probabilité.

Le formalisme de l’équation maîtresse généralisée nous permet d’obtenir une 
décomposition spectrale généralisée de l’opérateur de Perron-Frobenius en présence 
de blocs de Jordan. Une correspondance entre la non-diagonalisabilité de l’opérateur 
de Perron-Frobeniüs et les transitions entre modes de décroissance des fonctions 
d’auto-corrélation tertiporelle est établie. Nous étudions les propriétés statistiques 
d’une classe importante de systèmes dynamiques donnant lieu à du chaos homocline, 
observé notamment dans la réaction de Belousov-Zhabotinski, et montrons que les 
fonctions d’auto-corrélation temporelle fournissent une caractérisation des différents 
types d’attracteurs homoclines.

Le problème inverse qui consiste à construire des systèmes dynamiques ayant des 
propriétés probabilistes données est considéré. Nous sommes en mesure de constru­
ire des applications chaotiques unidimensionnelles ayant une densité de probabilité 
invariante et une fonction d’auto-corrciation à une échelle de temps prescrites.

Un modèle simplifié de systèmes étendus dans l’espace connu sous le nom d’appli­
cations couplées et donnant lieu à du chaos spatio-temporel est étudié. Le cas 
de deux applications couplées de manière difîusive est résolu exactement pour des 
valeurs finies de la constante de couplage. Nous proposons un réseau d’applications 
couplées à plus proches voisins et déterminons la projection unidimensionnelle de la 
densité de probabilité invariante du système pour une large classe de fonctions.

Enfin, nous apportons de nouvelles perspectives à un vieux problème de la 
mécanique statistique en développant une thermodynamique de non-équilibre pour 
les systèmes dynamiques amenables à une description en terme d’une équation de 
Fokker-Planck. Des termes de flux et de production d’entropie dépendant des car­
actéristiques de la dynamique dans l’espace des phases, en particulier le taux de 
contraction de volume, sont identifiés et leur connexion avec la thermodynamique 
des processus irréversibles est étudiée.

Il



Summary

It is by now well-established that large classes of dynamical Systems exhibit under 
appropriate nonequilibrium constraints complex behaviors associated to bifurcations 
culminating eventually to deterministic chaos. Owing to the property of sensitiv- 
ity to initial conditions a probabilistic description constitutes the natural and most 
fruitful approach to chaotic Systems. The starting point is a LiouVille-like équation 
describing the évolution of probability densities which for discrète time Systems is 
known as the Perron-Frobenius équation.

The formalism of the generalized master équation allows us to obtain a gen- 
eralized spectral décomposition of the Perron-Frobenius operator involving Jordan 
blocks. A correspondence between the non-diagonalizability of the Perron-Frobenius 
operator and transitions between decay modes of the time autocorrélation fonctions 
is established. We investigate the statistical properties of an important class of 
dynamical Systems giving rise to homoclinic chaos, observed for instance in the 
Belousov-Zhabotinski reaction, and show that the time autocorrélation fonctions 
provide a characterization of the different types of homoclinic chaotic attractors.

The inverse problem of designing dynamical Systems with prescribed statistical 
properties is addressed. We are able to construct one-dimensional chaotic maps with 
arbitrary invariant probability density and corrélation fonction involving one time 
scale.

A simplified model of spatially extended Systems known as coupled map lattice 
and giving rise to spatio-temporal chaos is studied. The case of two diffusively 
coupled piecewise linear maps is solved exactly for finite values of the coupling con­
stant. We propose a coupled map lattice with constant nearest-neighbour coupling 
and compote the invariant one-dimensional projection of the full probability density 
for a large class of maps.

Finally, attempting to bring new perspectives to an old problem of statistical 
mechanics, we develop a nonequilibrium thermodynamics for the class of dynamical 
Systems amenable to a Fokker-Planck type of description based on the balance équa­
tion for the information entropy. Entropy flux and entropy production-like terms 
depending on the characteristics of the dynamics in phase space, particularly the 
rate of phase space volume contraction, are identified and their connection with 
irréversible thermodynamics is explored.
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Chapter 1 

Introduction

It is by now well-established that under appropriate nonequilibrium constraints large 
classes of dynamical Systems exhibit complex behaviors associated to bifurcations 
culminating eventually to deterministic chaos. Owing to the property of sensitivity 
to initial conditions chaotic Systems are to be described statistically. In this thesis 
we shall be concerned with the probabilistic description of large classes of chaotic 
Systems as well as of a simplified model of spatially extended Systems known as 
coupled map lattices which exhibits spatio-temporal chaos. On the other hand we 
develop a nonequilibrium thermodynamics of dynamical Systems. In particular we 
shall inquire whether one can relate quantitatively the thermodynamic properties of 
a System at the macroscopie level to the characteristics of phase space dynamics at 
the microscopie level, accepting at the outset full validity of the basic laws governing 
this dynamics.

In this Introduction we focus on the foundations of the probabilistic description, 
a necessary step toward understanding statistical mechanics, as opposed to the tra- 
ditional deterministic description in terms of phase space trajectories. We sort out 
the conditions under which probabilistic description becomes necessary and then in­
quire on the ways one can map, in a systematic manner, the underlying deterministic 
dynamics into such a description.

Our main thesis is the close link between the complexity of the System at hand 
and the need for a probabilistic approach. Far from being merely identified to the 
practical ” complications” arising, for instance, when dealing with a large number of 
éléments, "complexity” is viewed here as an intrinsic phenomenon generated by the 
nonlinearity inhérent in the évolution laws. Two of its principal manifestations with 
which we will be concerned are the bifurcation of multiple solutions and the onset
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of chaotic dynamics.

1.1 General formulation

It is at the macroscopie level that the most common evidence of irreversibility and 
complexity is to be found, from the well-known transport and relaxation phenomena 
to the collective behavior in multi-unit Systems giving rise to new, emergent prop- 
erties absent at the level of the constituting units such as bistability, oscillations, 
chaos, pattern formation and turbulence.

It is remarkable that in many instances macroscopic-level phenomena are de- 
scribed by a closed System of évolution équations of the form

I = F(x.A) (1,1)

where x = (xi,..., x„) is the State vector of the observables (concentrations, tempér­
ature, bulk velocity etc.) and A a set of control parameters such as the distance from 
thermodynamic equilibrium, describing the ways the System can be affected by the 
external world. The évolution operator F = (Fi, ...F„) is typically nonlinear, owing 
to the cooperativity inhérent in the interactions. It is also a dissipative operator in 
the following sense: when embedding the évolution équations (1.1) into the phase 
space spanned by the full set of the variables one has, on average, a contraction of a 
volume element each point of which follows the évolution laws. One can show that 
this very important property is équivalent to [Ni95]

div = - / dr div F(x(r), A) <0, t > to . (1.2)
t Jo

As a resuit, time going on, the trajectories eventually wind toward an invariant 
set - the attractor [Ni95] - whose dimensionality is strictly less than the phase 
space dimensionality. In other words, in macroscopic-level dynamics irreversibility 
is incorporated at the outset in the description. Notice that, in the infinité time 
limit,

div F°° = (1-3)
1

where aj are the Lyapunov exponents.
A fondamental mechanism at the origin of the complexity of a System at a 

macroscopie level is bifurcation: an initially prevailing régime loses its stability and
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is replaced by new, generally multiple stable régimes. Now, it is a fundamental 
property of nature that experiment - the process by which we communicate with a 
System - is subject to finite précision. Consider, then, a swarm of macroscopically 
indiscernible Systems below bifurcation, in the sense that they are submitted to 
the same cohstraints but differ in their initial conditions by a distance less than 
or equal to the experimental accuracy. As the ”uncertainty bail” containing this 
swarm is moved across the bifurcation point, it will split into two sub populations 
each of which will follow entirely different paths. We are, clearly, in the presence of 
a pronounced sensitivity to both the parameters and the initial conditions entailing 
the loss of uniqueness and hence of unlimited predictability. Probabilistic description 
is one natural way to cope with this fundamental limitation.

Bifurcation is far from being a unique event. Typically, one witnesses a whole 
sequence of transition phenomena often culminating in the régime of deterministic 
chaos where we are witnessing an even more unexpected form of sensitivity to initial 
conditions: for given parameter value a typical pair of initially nearby States will 
diverge, in the mean, exponentially in time. The rate of this divergence is an intrinsic 
property of the dynamics, referred as the maximum Lyapunov exponent. Once again 
two macroscopically indiscernible Systems submitted to the same constraints will 
follow entirely different paths, a property that will entail for the observer the loss 
of predictability beyond a time horizon of the order of the inverse of the Lyapunov 
exponent. Here also probabilistic description, the only one to account naturally for 
the delocalization of the System in phase space, becomes an indispensable tool.

At the basis of the probabilistic description is the Liouville équation giving the 
time évolution of the probability density p(x, t) (a non-negative normalized fonc­
tion), to which one must resort in order to account for the fact that the System at 
hand can be projected by its dynamics into widely different parts of phase space. 
The explicjt Jorm of this équation is

|^ = -divFp = £p (1.4)

where C is the Liouville operator.
The Liouville équation can also take an alternative intégral form which turns out 

to be very useful in applications. Indeed, let us write the formai solution of (1.1) as

xt = f‘(xo. A) (1.5)
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vvhere Xq is the initial condition. One obtains then straightforvvardly,

p(x,t) = j dxo^(x - f‘(xo, A))po(xo)

or
p{x,t) = po (f ‘(x, A))

Ôf-‘(x,A)
dx

(1.6)

(1.7)

where po is the initial probability density and the bars dénoté the Jacobian détermi­
nant. The advantage of eq. (1.6) on eq. (1.4) is to apply to discrète time dynamical 
Systems (mappings), which are widely used in the literature to understand the onset 
of complex behavior. In particular, for the itérative mapping

x„+i = f(x„, A) (1.8)

one has

Pn+l{x) = j dXo6{x- î{Xo,X))pn{Xo) ~ {VPn) (x) (1.9)

where V is referred to as the Perron-Frobenius operator [LaMa85, Ni95]. The basic 
différence is that f is generally not one-to-one for discrète time. Hence eq. (1.9) 
becomes

af-i(x, A)
Pn+i(x) = ^p„(f„^(x,A))

dx
(1.10)

where f^, dénotés the a-th monotone branch of f, Cq its support and Xa{^) the 
characteristic function of the set A.

There is ample awareness that complexity also appears at the microscopie level 
[Pr80]. In the classical mechanical setting the observables are now the coordinates 
Qi and the momenta Pi, i = 1,... ,N of the N particles constituting the System. 
Contrary to the macroscopie level description their dynamics, still described formally 
by évolution équations of the form of (1.1) or (1.4), is both time-reversible and 
conservative as long as the System is isolated,

div F = 0 (1.11)

It also generates varions forms of deterministic chaos which lives now in a phase 
space of much higher dimensions than the dissipative chaos associated to the évolu­
tion of macroscopie observables, of the order of the Avogadro number.

Until recently the use of probabilistic description and Liouville-like équations 
was limited to the strict realm of statistical mechanics and hence to Systems with a
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number of degrees of freedom comparable to the Avogadro number. Our discussion 
shows that probabilistic concepts now pervade the much larger class of dynami- 
cal Systems showing complex behavior such as bifurcations or chaos, even though 
these Systems may involve a small number of variables. What is more, the relative 
tractability of these Systems allows one to obtain the full solution of problems mo- 
tivated by statistical mechanics but which could never be tackled for a many-body 
System. This new field of statistical mechanics of dynamical Systems is nowadays a 
unique laboratory in which ideas, conjectures and methods can be tested.

In addition to its intrinsic interest microscopic-level analysis allows to elucidate 
the status of the macroscopie description and, whenever necessary, to provide rele­
vant improvements. The advent of super computers has made it possible to execute 
this program in a novel way, in which the équations of motion of the constituent 
particles are numerically solved through the microscopie simulation techniques of 
molecular dynamics and Monte Carlo and macroscopie observables are subsequently 
constructed by appropriate averaging. This has provided new insight on how macro­
scopie order can be generated out of microscopie disorder in, among others, hydro- 
dynamic or Chemical instabilities leading to macroscopie patterns or to rhythmic 
phenomena [MaHo92].

Notice that Systems in contact with an energy or matter réservoir and main- 
tained in a nonequilibrium steady State hâve recently been modeled successfully 
by évolution laws which, in addition to a conservative part, contain a dissipative 
contribution accounting both for the nonequilibrium constraint and for the ”ther- 
mostatting” action of the réservoir [EvMo90, PoHo97]. This description is, in certain 
ways, intermediate between the microscopie and the macroscopie ones. We corne 
back to this interesting point in Section 1.4.

A variety of Systems of growing importance (nano-structures, micelles) operate 
also on an intermediate scale between the macroscopie and the microscopie ones. 
This happens also to be the scale of many phenomena of fundamental biological 
relevance. Such mesoscopic Systems also exhibit a rich variety of complex behaviors 
like anomalous kinetics and self-assembly. Mesoscopic level analysis provides a use- 
ful, pragmatic alternative to the microscopie description by incorporating the effect 
of fluctuations in the dynamics of the macroscopie observables. This is achieved by 
augmenting eqs. (1.1) through the addition of random forces

^ = F, ({x,) , A) + JJ, (i) . (1.12)
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r

In many instances Ri (t) can be assimilated to a multi-Gaussian white noise,

where the brackets indicate averaging over the varions realizations of Ri and the 
covariance matrix {Qij} is positive definite. When Ri are taken to emulate the 
effect of microscopie dynamics Qij are linked to the évolution laws Fi by relationships 
provided by the fluctuation-dissipation theorem [DeMa62], Alternatively, Ri may 
describe the action of external random disturbances in which case Qij are assigned 
from the outside.

The presence of noise in (1.12) makes the need for a probabilistic description even 
more obvions than before. Under the conditions of (1.13) this description is afforded 
by the Fokker-Planck équation descriptive of a Markov process of the diffusion type 
[Va81]

high-dimensional deterministic chaos. In this ”thermodynamic” limit new properties 
are born, which are better accounted for by a low- dimensional Liouville équation 
augmented by a diffusion term, rather than by a high-dimensional Liouville équation.

An important feature of eqs. (1.4), (1.9) and (1.14), to be contrasted with eq. 
(1.1), is their linear character. As we see more amply in the following sections, 
this introduces substantial différences between deterministic and probabilistic de­
scriptions. It also allows us to formulate the problem of the time évolution of the 
probability density in terms of the spectrum of the Liouville, Perron-Frobenius and 
Fokker-Planck operators.

1.2 Probabilistic aspects of bifurcation

In this section we take a doser look at the statistical properties of deterministic 
dynamical Systems obeying a low-dimensional dissipative dynamics (eq.(l.l)) and 
giving rise to bifurcation. As pointed out already in Section 1.1, owing to the

(iî,(t)) = 0

{R^{t)Rj{t')) = Q,jô{t-t') (1.13)

(1.14)

We stress that the assimilation of fluctuations to ” noise” is nothing but a shortcut to
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contraction of phase space volumes such Systems will reach in time a phase-space 
manifold, the attractor, whose dimensionality d is strictly less than the phase-space 
dimensionality n. As a resuit the invariant probability density P5(x) describing 
the long-time dynamics on the attractor •will necessarily be singular in phase space 
- essentially a delta function having the attractor as its support. Considérable 
effort has been devoted to the regularization of these singular probabilities. The 
two dominant approaches consist either in adding a small noise whose strength 
is eventually made to tend to zéro, or in performing coarse-graining. They are 
discussed in Secs. 1.3 and 1.5.

To simplify the formalism as much as possible let us lirnit ourselves in the sequel 
to 0-d, point attractors describing steady-state behavior. In this setting we expect, 
then, bifurcation to be manifested in probability space by a transition from an 
invariant probability density ps in the form of a unique delta peak to one in the form 
of (typically several) coexisting delta peaks. Our purpose here will be to understand 
how Ps is approached in the course of time, and what happens in the transition point. 
In doing so we will be greatly helped by the fundamental resuit that the dynamics of 
Systems giving rise to a bifurcation at a simple eigenvalue can be cast in a universal 
normal form displaying a single variable, known as order parameter. This discussion 
follows [GaNiPrTa95]. In the particular case of supercritical pitchfork bifurcation 
the normal form équation becomes [Ni95]

dx 3
= ax — X 

dt ^
(1.15)

where p, dénotés the bifurcation parameter. The Liouville operator, eq. (1.4), re­
duces then to O

C = • (1-16)

We want to construct the eigenvalues s„ as well as the right eigenfunctions 
of this non self-adjoint operator. Let us write, formally.

— ^n0n(^)
C'^^nix) = (1.17)

where is the adjoint of C, Then, under mild conditions

— ^mn
00

(j)n{x) 0„(y) = ô{x - y) (1.18)
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and one has, for non-degenerate eigenvalues, the spectral représentation

p{xi 'y '
n

= Po) e""Vn(a:) (1.19)
n

where the parenthèses dénoté scalar product, defined here as the intégral of the 
quantities involved over the whole phase space. If the eigenvalues are degenerate an 
extension of eq. (1.19) involving Jordan blocks becomes necessary.

An alternative version of the spectral représentation, applicable when dealing 
with the évolution of an observable A should also be mentioned. Using the définition 
of the average of A and of the adjoint of an operator one has

{A)^ - j dxA{x) p{x,t) = {A, e'^po)

= (e‘^^A,po) = po) ■ (1-20)
n

This représentation is especially useful whenever (pn or pn happen to be singular, 
as is usually the case for dissipative Systems. One may then restrict the action of 
C to the space of fonctions for which {A,(pri) and/or {pn, Po) are well-defined. The 
choice of this test fonction space will hâve important repercussions on the spectrum 
of the Liouville operator itself.

With this background in mind we now corne to the spectrum of the operator in 
(1.16). We first observe that eq. (1.15) can be solved explicitly for f > 0 to yield

X = f\xQ,p) - <

Xq
+ (p - xl)e-‘^i^\

Xq

, A + t

P 7^ 0

P = 0

(1.21)

Using the first equality (1.20) along with the first part of eq. (1.6) one then has

(^)t = J Po(æ) A (/‘(x, fl)) . (1.22)

Depending on the value of p one can expand A in a way to exhibit exponen- 
tials in time with négative arguments. Upon identifying this expansion with (1.20)
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one infers, then, the eigenvalues and the left and right eigenfunctions or, more ap- 
propriately, eigendistributions. The results are summarized in the following table 
[GaNiPrTa95].

0n 4^n Sn.

P < 0 lin. comb. of
1 / X y -n\ti\

non-degenerate
+M)

P = 0 lin. comb. of (5^") sgn{x) exp
continuons in négative real axis 

doubly degenerate

P > 0 spectral représentation involves Jordan blocks

(1.23)

Two important conclusions emerge. First the spectrum is always in the négative 
real axis even when /i > 0, guaranteeing the stability of the probabilistic description 
in the sense that as t —> oo p will irreversibly attain a unique final form p^. This is 
to be contrasted with the instability prevailing at the level of the deterministic de­
scription, where for > 0 the solution x = 0 becomes unstable and gives rise to two 
new stable branches at = ± ^/Jl. Second, at and beyond bifurcation the spec­
trum becomes degenerate. This reflects the symmetry-breaking concomitant to the 
pitchfork bifurcation. These results can be extended to other types of bifurcations, 
including the birth of periodic solutions by Hopf bifurcation.

1.3 Probabilistic aspects of deterministic chaos

There is a wide variety of chaotic behaviors [Ni95, Ma97]. The simplest one is gen- 
erated by 1-d discrète time dynamical Systems (necessarily dissipative) in which the 
itérative fonction /, eq. (1.8), is everywhere expanding in the sense |/'(x,A)| > 1. 
The invariant manifold of such Systems covers a measurable part of the real line, and 
the associated invariant probability density Ps is a smooth fonction. This property 
extends to certain ”non-hyperbolic” 1-d discrète time Systems which although not
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everywhere expanding still possess nice invariant probabilities with at most inté­
grable singularities. Typical examples of these two classes are, respectively:

• the tent map

^n+l

for which Ps = 1

2 X

2(1-1)
0 < X < I

1 < X < 1
(1.24)

• the fully chaotic logistic map

Xn+l = rx„(l — Xn) 0 < X < 1

for which, at r = 4,

Ps =
T^\Jx{l — x)

• the cusp map describing intermittent behavior

(1.25)

x„+i = 1 - 2 |x„|^ / ^ -1 < X < 1 (1.26)

for which
Ps

A very different class of dissipative Systems are those possessing strange attrac- 
tors, that is to say, attractors formed by fractal or more typically multifractal sets. 
In 1-d discrète time Systems this only happens for exceptional values of the control 
parameter, like e.g. r — 3.5699... in the logistic mapping (Feigenbaum attractor 
[Fe78, Fe79]), for which the dynamics loses the property of sensitivity to the initial 
conditions (zéro Lyapunov exponent). On the other hand, continuons time dissipa­
tive Systems typically possess attractors that are both multifractal and display non 
zéro Lyapunov exponents. Their invariant distribution is thus by necessity singular. 
In the particular case of Axiom-A attractors, characterized by the coexistence of an 
attracting and an expanding direction in every point in phase space, the invariant 
distribution is of the Sinai-Bowen-Ruelle type [Ru76, EcRu85]. It is smooth in the 
expanding directions and singular in the contracting ones.

A particularly thoroughly studied class of conservative chaotic Systems are Anosov 
flows. Here one has, again, the coexistence of an expanding and a contracting direc­
tion everywhere in phase space but, contrary to Axiom-A attractors, the invariant
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set is now the entire phase space. This entails the existence of smooth (even con­
stant) invariant distributions [ArAv68].

Despite the abondance of powerful qualitative results in this area there are rela- 
tively few quantitative and explicit results showing how an initial density is driven 
by the Liouville or Perron-Frobenius operator toward the invariant density. In the 
following we outline an approach to this problem based on the concept of coarse- 
graining [NiNi88].

The idea of coarse-graining stems from the observation made in Section 1.1, that 
in the presence of complex dynamics the monitoring of a phase space trajectory in 
a pointwise fashion loses much of its operational interest. We therefore partition 
the phase space into a finite number of non-overlapping cells Ci, i = 1,... ,N and 
monitor the successive cell-to cell transitions of the phase space trajectory. One may 
look at the ”states” C\...Cm as symbols of an W-letter alphabet. In this view, then, 
the initial dynamics induces on the partition a symbolic dynamics describing how 
the letters of the alphabet unfold in time.

We shall impose on the partition the condition that each élément is rnapped 
by the dynamics onto a union of cells. Furthermore, we shall restrict ourselves to 
"coarse-grained” initial probability densities having spécial properties on the parti­
tion such as being pieeewise constant, pieeewise linear or more generally pieeewise 
analytic.

The chief difhculty in handling this type of Systems is that, in the most general 
case, the action of the Liouville or Perron-Frobenius operators does not préservé 
coarse-graining. This is reminiscent of the problem of propagation of ”molecular 
chaos” stipulated by Boltzmann in deriving his celebrated équation. An interesting 
class of Systems for which this difficulty can be solved are 1-d dissipative pieeewise 
linear discrète time mappings and 2-d Anosov difïeomorphisms [Ma97]. Introducing 
the projection operator E transforming the probability density pn at time n to a 
discrète probability vector P„ = {P\^\

Pn = Epn (1.27)

and applying E on both sides of the Perron-Frobenius équation (1.9) one obtains an 
équation of the form [NiNi88]

P„+i = WP„. (1.28)

This équation maps the initial continuons dynamics into a discrète State process, 
in which transitions are mediated by the time-independent stochastic matrix VV.
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Such processes are familiar in probability theory, the best known class being that of 
Markov chains. Eq. (1.28) is referred to in this context as the Chapman-Kolmogorov 
or the master équation. This mapping gives a concrète meaning to the statement 
made often in a rather loose way, that chaos is associated with a ”randoin looking” 
évolution. There is no contradiction whatsoever between this resuit and the deter- 
ministic origin of chaos: in the probabilistic view afforded by eq. (1.28), we look 
at our System through a ”window” (phase space cell), whereas in the deterministic 
view it is understood that we are exactly running on a trajectory. This is, clearly, 
an unrealistic assumption in view of our earlier comments.

As an illustration consider the tent map, eq. (1.24). We choose the 2-cell par­
tition Cl = [0,rcii],C'2 = [a;n,l] , = \ being the non-trivial fixed point of the
map. Upon projection on this partition the Perron-Frobenius équation

.Pn+\{x)
1 •
2 .

Pn(^)+Pn(l-|)

is then mapped into

(129)

(L30)

The eigenvalues of the transition matrix are Ai = 1,A2 = —The first corre­
sponds to the discretized form of the invariant density

Pi = 1 Ui = col (1.31)

The second one, to which corresponds the eigenvector

U2 = col(-l, 1) (1.32)

describes the irréversible relaxation toward the invariant state: the instability of 
the deterministic description is here replaced by a stable, predictable one. This 
highlights once again the merits of a probabilistic approach to complex Systems.

In most real-world Systems the exact mapping leading from Perron-Frobenius 
to eq. (1.28) is no longer applicable. A number of approximation schemes around 
Markov processes hâve been developed applicable, for instance, to non- hyperbolic 
Systems of the logistic map family [AlMaGaNi96]. Generally speaking, for a Sys­
tem not belonging to these classes the process of transition between cells will be 
non-Markovian and would display long-term memory efîects. An explicit exam­
ple is provided by the cusp map, eq. (1.26). Choosing the two-cell partition
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Cl = [—1,0], C2 — [—0,1], one can dérivé the explicit form of probability dis­
tributions of various types and establish the existence of long tails-a characteristic 
signature of non-Markovianity. One such distribution is the escape time distribution 
from cell 1, behaving as [BaNiNi97]

1.4 Thermodynamic fluctuations and external noise

As stressed in Section 1.1 an important class of Systems for which probabilistic 
approach becomes the natural mode of description are dissipative Systems driven by 
noise, representing the effect of thermodynamic fluctuations or of external random 
disturbances. In the white noise limit such Systems are described by the Fokker- 
Planck équation (1.14), which differs from the Liouville équation by the addition of 
a diffusion term. A natural question to be raised is, then, to what extent this extra 
term modifies substantially the spectrum of the Liouville operator C and hence the 
approach of the probability density to its invariant form

A full answer to this question can be given for dissipative dynamical Systems 
operating around a pitchfork bifurcation, studied already in the absence of noise in 
Section 1.2. We briefly summarize the main results [GaNiPrTa95].

(i) The eigenfunctions of £, which are singular as we hâve seen in Section 1.2, are 
regularized by the presence of a diffusion term, however small Qij might be.

(ii) The nonzero eigenvalues of £ are much more robust: they are just perturbée! 
by diffusion, the correction being of 0{\Qij\).

(iii) The zéro eigenvalue sq = 0 of C, which was shown to be doubly degenerate, 
splits for /i > 0 under the effect of diffusion into a zéro eigenvalue 5oo = 0 and 
a nonzero one sqi tending to zéro exponentially with

This eigenvalue describes the slow passage of probability mass across the ”po- 
tential barrier” created by the presence of an unstable State.

(iv) In the critical case {j, = 0 the continuons spectrum of £ is transformed by the 
action of diffusion into a discrète one.

F(Ci,0; C2,n) « n~^ (1.33)
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A very interesting question pertains to the rôle of fluctuations in the presence of 
chaotic dynamics. Since fluctuations continuously perturb the System and chaos 
amplifies small initial disturbances, one may argue that fluctuations will eventually 
reach a macroscopie level and become comparable to the averages. This will signal, 
then, the breakdown of the macroscopie description.

The answer to this apparent paradox is that macroscopie behavior is associated 
to the most probable rather than the average value. When the dynamics is simple 
these two coïncide, but otherwise they may be quite different. What matters, then, 
for the validity of the macroscopie description is that the attractor remains robust 
under the effect of the fluctuations. This has been verified explicitly on a wide 
variety of Systems [GeNi93].

A class of dynamical Systems attracting increasing interest are spatially extended 
Systems. Owing to the presence of a large number of interacting modes such Systems 
may generate complexity in space as well as in time in the form of propagating 
waves, regular patterns and spatio-temporal chaos, an extreme case of which is fully 
developed turbulence. The very existence of such states requires the maintenance of 
spatial cohérence over a macroscopie scale. Yet one might argue that under the effect 
of inhomogeneous fluctuations cohérence between adjacent spatial régions would be 
destroyed by destructive interférence, thereby precluding the bifurcation to a régime 
encompassing the System as a whole.

As it turns out, the validity of this conjecture dépends on both the type of bi­
furcation considered and the spatial dimensionality of the System. An interesting 
case study is provided by the onset of Hopf bifurcation in a 1-d spatially extended 
System. Specifically, beyond a critical size fluctuations destroy the cohérent deter- 
ministic pattern by introducing space-time defects [Ba96]. Remarkably, this latter 
pattern looks very much like the spatio-temporal chaotic pattern arising when the 
periodic solution of the deterministic System loses its stability at a different param- 
eter value (Benjamin-Feir instability).

1.5 Thermodynamic characterization of nonequi- 
librium states

In this section we explore further the connection between the deterministic and 
probabilistic aspects of dynamical Systems. Our more spécifie objective is to identify 
quantities, to which we shall refer as State functionals, providing a concise charac-
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terization of the principal properties of the System at hand, largely independent of 
the details of the ongoing processes.

It is well-known that in the State of thermodynamic equilibrium entropy (for 
isolated Systems) and Helmholtz or Gibbs free energies (for Systems at constant 
température) provide a universal description of exactly this sort. Away from equilib­
rium this universality is, in principle, lost and one must resort to descriptions taking 
dynamical effects into considération. However, in the range of irréversible phenom- 
ena in which a local formulation of the évolution laws of macroscopie observables 
is still possible entropy production provides a partial substitute to thermodynamic 
State functionals since it reflects the way dissipation - a ubiquitous attribute of 
nonequilibrium States - is released within the System [Pr61].

The starting point of irréversible thermodynamics is the local equilibrium hy- 
pothesis: in a System subjected to constraints varying slowly in space and time the 
traditional equilibrium thermodynamic State fonctions can still be defined by the 
same relationships as in equilibrium, provided these relationships are applied locally. 
For instance, writing the total entropy as

5 = y drps(r,f) (1-34)

where p is the mass density and s the spécifie entropy, one has

s(r, t) = s(e(r, t), u(r, i), Ci(r, t)) (1.35)

e being the spécifie internai energy, v the spécifie volume and Ci the concentrations 
of the constituents présent. Since e, v and Cj satisfy balance équations directly 
related to the fondamental conservation laws of mass, momentum and energy eq. 
(1.35), known as Gibbs’ entropy postulate, can be used to obtain a balance équation 
for the spécifie entropy and hence, through (1.34), for the total entropy itself. The 
principal outcome of this analysis is as follows:

(i) S satisfies the balance équation

dS d(.S ^
dt dt

(1.36)

The first term in this relation is the entropy flux, refiecting the exchanges of 
energy, momentum and matter with the surroundings, whereas the second one 
is the entropy production, associated to the irréversible processes going on 
spontaneously within the System.
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(ii) While the entropy flux has no definite sign, P is a non-negative quantity 
vanishing in the State of equilibrium (second law of thermodynamics)

P>0, Peg = 0- (1.37)

Furthermore, it can be expressed as a bilinear form [Pr61, DeMa62]

P=[drY^JkXk (1.38)

where Jk are the fluxes of the irréversible processes présent and Xk the asso- 
ciated generalized forces.

Inequality (1.37) can be regarded as the very expression of irreversibility at the 
macroscopie level. Ever since the time of Boltzmann and Gibbs a major challenge 
in statistical mechanics has been to dérivé it, as well as eq. (1.38), from the time- 
reversiblé laws of microscopie physics. This requires, in turn, a définition of entropy 
in terms of microscopie quantifies which in Gibbs’ view is achieved by assuming that 
S becomes a functional of the phase space probability density p ({qj} , {pj , t), {qj} 
and {pi} being the coordinates and momenta of the particles. Under the additional 
requirement that S must be extensive one then arrives at the Gibbs définition of 
entropy

Sg =-kB J {dqi} {dpi} p({qj,{pi},t) lnp({qi},{pi},f) (1.39)

/cb being the Boltzmann constant. This définition reproduces the correct equilib­
rium properties of entropy but is unfortunately unable to provide information on 
irreversibility, since one can show trivially using the Liouville équation (eq. (1.4)) 
that in a conservative System (divF = 0, see eq. (1.11))

fî = 0, (1.40)

This is contrary to common expérience showing that if an isolated System not in 
equilibrium is left to itself it will evolve irreversibly toward equilibrium and in the 
course of this évolution energy will be dissipated.

Boltzmann proposed an alternative view based on the use of reduced probabil­
ity densifies, describing what is going on in the vicinity of a représentative particle 
within the System. In particular, denoting the one-particle position-velocity proba­
bility density by f{r,v,t) he proposes to define entropy density by

ps{r,t) = -ks / dv f \nf . (1.41)
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A balance équation for s can then be obtained by using the évolution équation for 
/. In a dilute gas f dbeys to the celebrated Boltzmann équation. In the range of 
phenomena close to local equilibrium this leads, then, exactly to eqs. (1.35)-(1.38) 
thereby establishing a highly interesting link between microscopie and macroscopie 
levels [Pr49]. Unfortunately, not vvithstanding the fact that the Boltzmann équation 
itself contains some heuristic assumptions there is so far no extension of this resuit 
to general, dense or strongly coupled Systems. Furthermore, whereas microscopie 
dynamics is implicitly présent through the équation for f, the explicit link between 
entropy production and the quantifiers of the dynamical complexity of phase space 
trajectory (Lyapunov exponents etc) heis been lost.

In Chap. 5 we shall attempt to bridge, at least partially, this gap. The starting 
point is the probabilistic description and the coarse-graining procedure introduced 
in Secs. 1.1 and 1.3 whose interest is to involve directly the observables at the level 
of which irreversrbility is the most apparent. Let Pi be the probability to be in cell 
i of the partition, which actually means that the phase space variables will then 
lie within certain limits (we stress that x may represent coordinates and momenta 
or macroscopie variables like température or concentration). We ask the following 
question: what is the information 5/, that is to say, the amount of data (normalized 
by some reference value) necessary to localize this State in phase space? The answer 
to this question turns out to be unique if one accepts a set of axioms to which we 
shall refer as the Shannon-Khinchin axioms [BeSc93]:

(i) Si dépends entirely of Pi

(ii) Si takes its maximum value for the uniform distribution P,- = T

(iii) Si remains unchanged if the State space is enlarged by an event of zéro prob­
ability

(iv) The information on a composite System A -I- B equals the information on A 
plus the conditional information on B given the State of A.

Under these conditions one has the celebrated formula for the Shannon entropy

S, = -J2p\nPi (1.42)
l

At this point it seems tempting to take the limit of infinité resolution and express 
Si in terms of probability densities p as in eq. (1.39). There is, however, a subtlety
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related to the fact that in this limit

Pi , (1.43)

AFj being the phase space cell corresponding to state i. As jAFil —> 0 eq. (1.42) 
develops, then, a logarithmic singularity. Since however the corresponding term is 
constant (state-independent) we shall in the sequel adopt it as a reference value and 
use the continuous version of eq. (1.42)

This expression looks very much like the Gibbs définition, eq. (1.39), which actually 
can also be reformulated in information theoretic terms. There are, however, two 
important différences. First, it applies most naturally to the mesoscopic level of 
description introduced in Sec. 1.1, where the state variables x are the macroscopie

(eqs. (1.12) - (1.14)). Second, at the microscopie level, as stressed recently by 
several authors [HoHoPo87, EvMo90, PoHo97], Systems maintained in nonequilib- 
rium steady States by external constraints may be modeled as dissipative dynamical 
Systems, where the dissipation accounts for the action of the constraint and for the 
thermostatting ensured by the réservoirs. As such dissipative interactions inevitably 
involve a reduced description of the réservoir, they need to be complemented by ex- 
plicit considération of the fluctuations. Under these conditions 5/ is not a constant 
of motion. The limitations pointed out in connection with Gibbs’ définition of en- 
tropy, eq. (1.39), are no longer applicable and Sj can be used as a valid alternative. 
In this respect another alternative is proposed in [Ga97a, Ga97b].

Be it as it may, the point is that Sj evolves in time through p{x,t). One is 
therefore tempted to dérivé, in the spirit of irréversible thermodynamics, a balance 
équation for 5/ [NiDa96, VoTeBr97a], explore the possibility to identify entropy 
production-like terms bearing in one way or the other some relationship with the 
quantifiers of the dynamics in phase space, and finally compare them with the en­
tropy production or irréversible thermodynamics.

(1.44)

observables driven by the deterministic évolution laws augmented by random forces

The thesis is organized as follows. In Chapter 2 we outline the generalized coarse- 
graining procedure which allows to solve the Perron-Frobenius équation for a large 
class of one-dimensional dynamical Systems. A generalized spectral décomposition
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of the Perron-Frobenius operator involving Jordan blocks is derived. We establish a 
correspondence between the non-diagonalizability of the Perron-Frobenius operator 
and transitions between decay modes of the time autocorrélation fonctions. The for- 
malism of the generalized master équation is then used to investigate the statistical 
properties of an important class of dynamical Systems giving rise to homoclinic chaos. 
We show that the time autocorrélation fonctions provide a useful characterization 
of the different types of homoclinic chaotic attractors. In Chapter 3 we address the 
inverse problem of designing dynamical Systems with required statistical properties. 
We are able to construct one-dimensional chaotic maps with prescribed invariant 
probability density and corrélation function. We turn to higher dimensional Sys­
tems in Chapter 4 where a simplified model of spatially extended Systems known as 
coupled map lattice and giving rise to spatio-temporal chaos is studied. The case 
of two diffusively coupled piecewise linear maps is solved exactly for finite values 
of the coupling Constant. We then propose a coupled map lattice with constant 
nearest-neighbour coupling and compute the invariant one-dimensional projection 
of the full probability density for a large class of maps. In Chapter 5 we develop a 
nonequilibrium thermodynamics for the class of dynamical Systems amenable to a 
Fokker-Planck type of description. In particular we relate entropy production and 
phase space volume contraction. The main conclusions and perspectives are given 
in Chapter 6.
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Chapter 2

Probabilistic description of 
one-dimensional chaotic maps: 
Jordan blocks - homoclinic chaos.

2.1 Introduction

As we stressed in Sec. 1.1 the starting point of the probabilistic description is a 
Liouville-like équation describing the évolution of the probability density, which for 
discrète time is known as the Perron-Frobenius équation and takes the form

pn+i(rr) = Vpn[x) = ^ dyô{x - f{y,fi)) pn{y) ■ (2.1)

Here Pn{x) is the probability density for the System to be in x at time n, 1 the 1-d 
phase space région available to the System and f{x,fi) the deterministic évolution 
law

Xn+l — f {Xni p) ) (2-2)

/X being the control parameter.
Traditionally, the statistical description of dynamical Systems is limited to their 

ergodic properties. In recent years progress has been achieved in extending these 
studies to the time-dependent properties [GrTh77, MoSoOsSl, NiNiSS, ArAuCv90, 
BaKe90, Ma91, KeNo92, Ga92, HaSa92, TaAn94, MaNi94, AlMaGaNi96, Ma97]. 
Still, the knowledge remains fragmentary and, although one is able to obtain some 
formai results on more general Systems for Systems as simple as piecewise linear 
maps many features still remain poorly understood.

21
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Of particular interest is the time autocorrélation function

1 1
C(tT,) lu ^ (2-3)

where x and are the mean value and the variance of x respectively. This object 
which is accessible experimentally gives qualitative as well as quantitative informa­
tions on the dynamics of the System. By Birkhoff’s theorem [LaMa85] eq. (2.3) 
can be giv^n an alternative form for ergodic transformations. Roughly speaking a 
transformation / of / to itself is ergodic if ail invariant sets under /, i.e. ail sets A 
such that

r\A) = A (2.4)

are trivial subsets of J, in other words pointlike or / itself. Birkhoff’s theorem then 
States the equality of time and ensemble averages (for almost ail initial conditions). 
Hence for an ergodic map the time autocorrélation function can be written as

C{n) = ^ j dx p{x) {x — x){P{x) - x) (2.5)

where p{x) is the invariant density.
In this chapter we dérivé for piecewise linear Markov maps an explicit expression 

for time autocorrélation functions of varions observables on the basis of the so-called 
generalized master équation [MaNi94]. This équation to which the Perron-Frobenius 
équation can be mapped reduces the statistical description to a problem of linear 
algebra.' In particular, the eigenvalues of the corresponding transition probability 
matrix are decay rates of the System.

We shall then be ihterested in i) showing the existence of Jordan blocks in 1-d 
maps, ii) computing the time autocorrélation function in that case and iii) under- 
standing the particular feature leading to Jordan blocks. The two first points are 
also addressed by Driebe in [Dr97, Dr98] where a 1-d map which admits Jordan 
blocks is identified and the corrélation function of quadratic observables is shown to 
be not purely exponential.

On the other hand, we will consider an important class of dynamical Systems 
giving rise to deterministic chaos: homoclinic Systems [Ga82, Ga87, Ni95], which 
possess for a particular combination of parameter values a structurally unstable tra- 
jectory biasymptotic to a fixed point. If the latter is of the saddle-focus type and the 
eigenvalues of the linearized équations around it satisfy a certain inequality known as
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the Shil’nikov condition, then it can be established [Sh65, Sh70] that near homoclin- 
icity the System possesses trajectories which are in one-to-one correspondence with a 
shift automorphism with an infinité number of symbols. For 3-variable Systems the 
existence of a homoclinic orbit allows one to construct a 2-d map which captures ail 
these properties. More significantly for the purposes of this investigation, in many 
instances, this map can be further reduced to a 1-d map [GaKaNiS4, ÂrArRi90] 
in the form of distinct branches whose number tends to infinity as the distance to 
homoclinicity goes to zéro. Near homoclinicity. these branches can be assimilated 
to straight line segments, an idealization that seems in particular to fit reason- 
ably well experimental data and model studies of the Belousov-Zhabotinski reaction 
[Ri87, ArArRiQO]. One therefore disposes, in this sense, of examples of realistic 
continuons time dynamisai Systems that underly the particular class of the above 
described 1-d piecewise linear mappings.

The formalism of the generalized master équation is outlined in Sec. 2.2. It 
is then used in Sec. 2.3 to compute the time autocorrélation function of general 
observables. The case of Jordan blocks is considered in Sec. 2.4. Sec. 2.5 is devoted 
to the probabilistic description of homoclinic Systems. Conclusions are drawn at the 
end of Secs. 2.4 and 2.5.

2.2 Generalized master équation

Consider a 1-d map / of the interval / to itself,

/:/->/. (2.6)

We shall be interested in maps f which are piecewise linear.

/|p. = fi \ X ^ AiX + Ai Z = 1, • • •, M (2.7)

where A,, A, are constants and is a partition of / into M non-overlapping
cells.

U*l,Ci = I
(2.8)

Ci 0 Cj — $ î A J •
Requiring the map to be everywhere expanding, \ f (x) \> 1 Va; G /, it is chaotic in 
the sense that it displays a positive lyapunov exponent

1 w-i

m=0
(2.9)
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In addition, we assume the map / to be Markov, i.e. such that there exists a 
partition of 1 into M non-overlapping cells which has the property that each
of its éléments is mapped by the transformation / onto a union of its éléments. This 
property is expressed as

M
Xf^c^) = E j = (2.10)

1=1

where (a;) is the characteristic fonction of the cell Ci, and the éléments Uji of the 
topological transition matrix are 1 or 0 depending on whether Ci belongs or not to 
f{Cj). Notice that the partitions {Ci}fii be identical. Hence
there can be several branches of / on a given Cj. Let us define the set a{j) as

a(i) = {û; : C'a n Cj 7^ 0} . (2.11)

We then require each of the branches fa, a 6 a(j), to map the intersection of its 
support with Cj onto the same union of intervals,

X/o(Cancj) ~ X/(Cj) Va G o:(j), j — 1, ■■ - , A4 . (2.12)

MacKernan and Nicolis [MaNi94] hâve shown that for expanding piecewise linear 
Markov maps a piecewise polynomial density of order N remains under the Perron- 
Frobenius operator piecewise on the same partition and polynomial of the same or 
lower order. The action of the Perron-Frobenius operator on such functions is thus 
équivalent to that of a finite dimensional matrix on the vector of coefficients of the 
different monomials. More explicitly, let us consider a piecewise polynomial initial 
probability density

M N
Poi^) = E E ^fiiM Xcj (^) • (2.13)

j=l(=0

The probability to find the System in cell Cj at time 0 is thus

= f dxpo{x) (2.14)
l-O

where
pj+iM = dx x^ . (2.15)

One has the normalization condition
M M N

^j+lM P'j+IM — 1 .
j=l j=l1=0

(2.16)
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The Perron-Frobenius operator V writes (cf eq. (1.10))

' ^ 1
VPn{x) = XJ Pn {îâ\^)) ■

The action of 7^ on a coarse-grained po(x) in the sense of eq. (2.13) yields

(2.17)

M M N

pii.^) = E EE
Q—1 j = l 1 = 0

cfllM Xcj • (2-18)

Note that a point x has a preimage by the branch a, i.e exista, iffa; G /(Cq).

The characteristic function X/(Ca)(^) (2.18) thus ensures that the contribution
to Pi (a:) is non-zero only when fâ^{x) exists. Consider now the other characteristic 
function ;iGj. (/qH^))- Obviously/“^(x) G Cq so that(x) G Cj iff fl Cj ^ 0, 

i.e. iff q; G a(j). The a’s G dij) are thus the only ones to contribute to the sum 
over OL in eq. (2.18) so that this latter rewrites

M N

pi(^) E E E I fi(f-i(x))
j=l aea{j) 1=0 \ J Wq

Cl-,{0)

■j+lM Xc- ■ (2-19)

Recalling eq. (2.12) we remark that the set of ail the points x whose (existing) 
preimage by the branch a G a(j) is contained in Cj is precisely f{Cj),

Xc

Hence eq. (2.19) becomes

M

Xy(c„)(^) = Xj^cj)i^) V a G a{j) (2.20)

N

piW = E E E I X,(C,)(^)
j=l aea(j) 1=0 I J yja \-^ ) ) I

(2.21)

Now eq. (2.7) yields

L\^) =
X - Aq 

Arv
1

I/'(/a H^;)) I I Aa

Using also the Markov property (2.10) gives

(2.22)

M N M

pi(3^) = EEE e
a•jx

cfllM (^), A IA't=i/=oj=i QeoO)' “ I “
(2.23)
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It follows that p\{x) is again piecewise polynomial,

M N
(1)Pi{^) = E E (^i+kM X:, (^) • (2.24)

2=1 A:=0

One bas

M N

^i+kM EE i = k = 0,---,N (2.25)
j=ii=k

where

w.(fc,/) _
ij ûj2 E C/^)

a€a{j)
l-h\ ( ^a) l-k

Aa I A'a ■
(2.26)

It is convenient to define column vectors c„, n = 0,1, • • with components c,^"^i~hkAi >
i = 1, - ■ - ,M, A: = 0, • • •, and a block upper triangular time-independent transi­
tion matrix W,

W

/ . . . y^{0,N) \

^ 0 • • • j

(2.27)

the components of each block being given by eq. (2.26). Eq. (2.25) can then
be rewritten as

Ci=Wco. (2.28)

Having in mind that the components of c„ are the coefficients of the piecewise 
monomials x'^'x^,{x) at time n (cf eq. (2.13)), we define a row vector m whose 
components are precisely these piecewise monomials,

rrii+kM = X:,(x) i = k = 0,---,N. (2.29)

Hence

Po(a;) = Co-m (2.30)

where the dot dénotés the scalar product, and

Pi(x) = Cl • m . (2.31)
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After n itérations, the density Pn{x) = V'^pa{x) is thus of the form

Pn{x) = c„ • m (2.32)

with

c„ = W"co'. (2.33)

We refer to this équation as the generalized master équation [MaNi94]. In the case 
where piecewise constant densities are considered it reduces using eq. (2.14) to the 
master équation (1.28) discussed in Sec. 1.3. Let us point out two particular cases.

i) If the two partitions considered above (cf eqs. (2.7) and (2.10)) are identical

{Ci}", = {Ci}", , M = M (2.34)

then eq. (2.11) gives

«(j) = 0'} ■ (2.35)

Hence eq. (2.26) becomes

^ ^ 1 A,- 1 A'. ■
(2.36)

ii) Suppose that each branch of / maps its support on the whole interval /,

= 1 i,j = l, - ■ ■ ,M . (2.37)

One can then choose the Markov partition as in i). Alternatively we may take 
the interval I itself as a Markov partition,

{Ci}" = {/} , M = \. (2.38)

In the case of eq. (2.37), this latter choice constitutes the minimal Markov 
partition, i.e. the Markov partition with the smallest number of éléments. Eq.
(2.11) now gives

a(i) = «(!) = {!, , (2.39)

and eq. (2.26)

w.{'=.0 _
O w 11 E('7lQ=1

(-A„)'-'=
I A. I A[, • (2.40)
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Each block appearing in eq. (2.27) contains thus only one element,
Hence the matrix W is upper triangular and the éléments on the diagonal,

are its eigenvalues.

W-yi
Q=1

1
ÏÂJÂI’

(2.41)

We are now in the position to obtain a generalized spectral décomposition for the 
Perron-Frobenius operator acting on piecewise polynomial fonctions. The eigenval­
ues of W détermine the decay rates of the System. To make them appear explicitly 
in the generalized master équation (2.28) one needs to décomposé Cq in the basis 
of the eigenvectors of W, or, in the case where the set of ail the eigenvectors is 
not sufîicient to span the whole functional space of interest, in the basis formed by 
the generalized eigenvectors. These are also referred to as root vectors of rank k 
associated with the eigenvalue and can be obtained as [GoKr69]

^ ^s,k = >^s4>s,k + (Ps,k-i = (2.42)

where ds is the dimension of the root space of and = 0. Note that the usual 
eigenvectors are root vectors of rank one. By successive itérations of W on <p^ f., the 
root vectors of rank less than k appear, modulated by a polynomial in time,

W"0.,t = èK(n)Ar‘0a-i k = l, ■■■,<!,. (2.43)
i=0

In this expression, Pi{n) is a polynomial of order i in n which turns out to be equal 
to the combinatorial factor ("). It is understood that 0^; = 0 for l < 0.

Let g be the number of linearly independent eigenvectors of W. We may write 
Cq 3-S

Co = É = B w . (2.44)
S=1j^l

Here B is the matrix of column root vectors and w is a column vector whose com- 
ponents are the weights Wsj

w = col {wi,u • • ■ ,Wi^d,,W2,u ■ ■ -,wi^d2, • • -,Wg^d,j) • (2.45)
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By the generalized master équation (2.33) and eq. (2.43), we then get for the class 
of expanding piecewise linear Markov maps the generalized spectral décomposition 
of the Perron-Frobenius operator acting on piecewise polynomial densities as [Da96]

s=lj=l 1=0

The weights Wgj are determined by inversion of eq. (2.44), namely

w = B-^Cq. (2.47)

2.3 Time autocorrélation function.

The generalized spectral décomposition (2.46) derived in the previous section enables 
one to compute the statistical properties of the above defined dynamical Systems. 
Of particular interest is the time autocorrélation function of a general observable 
6{x) of the form

M N

= X:, (^) • (2-48)
i=l k=0

This includes as a particular case the state variable x itself and piecewise constant 
observables 9{x) — Sj x which are relevant in the case of homoclinic chaos 
for instance as we shall see later. The time autocorrélation function is defined as

1 1
Ce{n) = — lim — ^ {9{xm) - 9){9{x,n+n) ~ 9) (2.49)

where 9 and Gq are respectively the mean value and the variance of 9{x). For ergodic 
transformations this expression can also be written as

Ce{n) = ^ ( dx {9{x) — 9)V^{9{x) — 9) p{x) (2.50)
Gq Ji

where p{x) is the invariant density. Proceeding as in the previous section we therefore 
Write the function {9{x) — 9)p{x), which we regard as an initial nonequilibrium 
density, as

{9{x) — 9) p{x) = Co • m. (2.51)
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For expanding piecewise linear Markov maps the invariant density is piecewise con­
stant,

M

p(x) = (2.52)
i=l

where (f)^ j is the eigenvector corresponding to the eigenvalue Ai = 1. Hence the 
function on the left handside of eq. (2.51) is piecewise polynomial of the same order 
N as the observable 6{x). Accordingly we may restrict the space on which the 
Perron-Frobenius operator acts to piecewise polynomial functions of order N. Froin 
eqs. (2.48),(2.51),(2.52) we deduce that

cf^ = - ê) î = l,---,M .2.53')
k = l,---,N .

It follows that

^"[(^(x) - 9) p(x)] = c,i ■ m . (2.54)

Substituting eq. (2.54) into eq. (2.50) and performing the intégration over x one 
gets

C'o(n) = ^Cn •(2.55) 
^0

where the vector /x is related to the vector of monomials m through

fiq = j^dx6{x)mq q = 1,-• ■ ,{N + 1)M. (2.56)

Using eq. (2.46) for c„, Cg{n) becomes

C.{n) = A Ê è w.,, Ê (") Ar‘ . M (2.57)
s=ij=\ i=o

where Wgj and fj. dépend on 9, which provides for any expanding piecewise linear 
Markov map an explicit expression for the time autocorrélation function of the 
observable 6.

2.4 Jordan blocks and transitions between decay 
modes

In this section we are interested in i) showing the existence of Jordan blocks in 
1-d maps, ii) computing the time autocorrélation function in that case and iii)
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understanding the particular feature leading to Jordan blocks. We mainly focus on 
the time autocorrélation function of the observable x, so that as discussed in the 
previous section, we can restrict the Perron-Frobenius operator to piecewise linear 
fonctions, which amounts to taking = 1 in eq. (2.29). We shall establish a 
correspondence between the non-diagonalizability of the Perron-Frobenius operator 
and transitions between decay modes of the time autocorrélation function. On the 
basis of eq. (2.10) one can make a distinction between the maps such that each cell 
Ci is sent by the transformation on the whole interval I (ail aij = 1, full map) and 
those for which at least one cell Ci is not mapped on the whole interval (some Uj-j = 0, 
incomplète map). From now on we will always take (unless explicitly specified) the 
partition on which the map is defined (eq. (2.7)) and the Markov partition (eq. 
(2.10)) to be identical. Hence, as discussed below eq. (2.33) the components 
are given by eq. (2.36).

2.4.1 Incomplète map

Consider the map

1 — r
-X + r

1 1 
-X +

1 — r 1 — r

which is such that

X e Cl = [0, r[ 

xeC2 = [r, 1[
r g]0, , (2.58)

/(Cl) = C2 

/(C2) = C1UC2 .

The corresponding transition matrix W, eq. (2.27), reads

/ 0 1 - r
r

W =

0

1 — r 
0

V
0

1 — r — 

0 

0

(1-r)^
0

1 — r \ 

l — r

•(1-

•(1-0.'i2

{2.59)

(2.60)

(1 -r)2

For r = 2 — \/3, its eigenvalues and the dimensions of the associated root spaces are

Aj — 1 d\ — 1 
A2 = —r d2 — 3 ,

(2.61)



32

so that there is a 3-d Jordan block associated to the eigenvalue —r. Computing the 
root vectors according to eq. (2.42) yields

‘^1.1 =

f 1 - r \

) 02,1 ”

l + rr
1 — 

0
V 0

1
0

f 1 \

2 - r

V 0 y

r(l — r) 
2

/ 0 \ 
1

! 02,3 “
r(l — 7’) 

2> 02,2 —

J.2
V 0 y

(2.62)

By eq. (2.57) the time autocorrélation fonction of the observable x is then

Cx(n) = (-r)^ + an +(5n{n-l) (-70"-' (2.63) ’

where

. l(l+r)(5r-2) 1
7 r 7

The presence of a Jordan block leads thus to a non purely exponential decay of the 
X autocorrélation, namely to a polynomial growth of the corrélation modulated by 
a decaying exponential which ensures the final decay of corrélations, ubiquitous in 
mixing dynamical Systems. This fonction is displayed in fig. 2.1 together with the 
numerical data obtained by computing the corrélation fonction from the trajectory 
of the dynamical System according to eq. (2.49). To emphasize the importance of 
the non purely exponential terms, the exponential (—r)" is also displayed.

Let us now regard the constant r of this example as a control parameter r- G (0, |). 
In the vicinity of r* = 2 — \/3 we can Write r as

(1 - 2r)2 . (2.64)

r = ?-* + £ I £ |<^ 1 . (2.65)

To the dominant order in £, the eigenvalues of the matrix W become

1, ~T* — £, —r* ± \T^ ■ (2.66)

Accordingly, there is a transition from distinct real eigenvalues to complex ones 
which occurs precisely at r = r* when the Perron-Frobenius operator acting on 
piecewise linear fonctions is not diagonalizable. The presence of complex conjugate 
eigenvalues r is responsible for a decaying contribution in cos(t2(^) r" in the
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C(n)

Figure 2.1: Comparison of the analytical expression of the time autocorrélation 
fonction of the observable x (solid line), the numerical data obtained by computing 
this fonction from the trajectory of eq. (2.58) for r = 2 — \/3 (dots) and the pure 
exponential (—r)" (dashed line).

time autocorrélation fonction Cx{n) while the decay is monotone or oscillatory with 
period 2 if the eigenvalue is respectively a positive or a négative real number. A 
positive leading eigenvalue (apart from 1) arises from the fact that on the average 
consecutive itérâtes of the map lie on one side of the mean value x while the itérâtes 
oscillate around the mean value with period 2 if this eigenvalue is négative or with a 
more complicated period given by the trigonométrie représentation if it is complex. 
A transition in the decay mode corresponds therefore to a significant qualitative 
change in the dynamics.

2,4.2 Full map

As an example of full map consider the tent map

fi^)
2x X G Cl = [0,

2(1 - x) X G C2 = [5,1[ .
(2.67)

In this case, the Perron-Frobenius operator restricted to pieeewise linear densities 
defined by eq. (2.29) admits a 2-dimensional Jordan block associated to a zéro
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eigenvalue;

Al = 1 di = 1
A2 = 0 Û2 — 1 
A3 = 0 d.3 = 2

The root vectors of the transition matrix W are

f M f 1\
fl] 2 2

1 -1 I 1
01,1 = 0 ) 02,1 — 0 ) 03,1 — “2 1 03,2 — ~2

l 0 1 4
l 1 J V U J

(2.68)

(2.69)

Using eq. (2.57) for the time autocorrélation fonction of the observable x one re­
covers the well-known resuit that the tent map is delta correlated

a(n) = . (2.70)

Here the presence of a Jordan block does not lead to a non purely exponential decay 
of the corrélation, the reason being that the fonction p{x){x — x) is entirely spanned 
by the single eigenvector 03 j of zéro eigenvalue, so that the single contribution to 
the corrélation fonction is purely exponential (with an infinité decay rate). As a 
corollary, the corrélation fonction of any linear observable other than x is no longer 
purely exponential. An example is provided by the observable

(2-71)

for which the autocorrélation fonction, displayed in fig. 2.2, is

Coin) = . (2.72)

As above, we may regard the nondifïerentiable point of the tent map as a control 
parameter r = i(l-|-£:),—l<e<l. In doing so, we replace the tent map by a 
skew tent map whose corrélation fonction of the observable x is'

a(n) = e” . (2.73)
'The skew tent being a full map we can use eq. (2.41) which yields the eigenvalues 1 for k = 0 

and |Â7pr for /c = 1. For any full map the associated eigenvectors correspond respect!vely
to the functions ,|(a;) (uniform invariant density) and (x — |) Aîo.i|(^)- Hence for the observable 
0 = X the function on the left hand side of eq. (2.51) is entirely spanned by the second eigenvector
(cf eq. (2.44)). Eq. (2.57) reduces thus to Ci(n) = Iâ^ât] •
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C(n)

Figure 2.2: Time autocorrélation function of the observable xXc^i'^) tbe tent 
map. The solid line represents eq. (2.72) and the dots the numerical data.

The Perron-Probenius operator acting on piecewise linear fonctions is thus nondi- 
agonalizable with respect to a zéro eigenvalue at the transition between a monotone 
and an oscillatory decay of the ^-autocorrélation function.

2.4.3 Conclusions

As the above two examples illustrate, the Perron-Frobenius operator associated to 
piecewise linear Markov maps may admit Jordan blocks when it acts on piecewise 
linear fonctions. This leads generally, i.e. as soon as the function (0(x) —9)p{x) can- 
not be spanned by the set of eigenvectors, to a polynomial growth of the corrélations 
modulated by a decaying exponential.

Furthermore, for mixing piecewise linear Markov maps with 2 branches {A4 = 2) 
and a corresponding 2-cell partition, there is a one-to-one correspondence between 
the existence of Jordan blocks for the Perron-Frobenius operator acting on piecewise 
linear fonctions and the transition between decay modes of the time autocorrélation 
function of the observable x. We conjecture that this conclusion extends to mixing 
piecewise linear Markov maps with more branches (M > 2).

To conclude, it is worth mentionning that if the Perron-Frobenius operator is not 
restricted to piecewise linear fonctions but acts on piecewise polynomial fonctions 
of order N, for the class of full mapss such that for each branch of / there is a
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branch of opposite slope the différence in algebraic and géométrie multiplicities of 
the zéro eigenvalue is proportional to N, irrespective of M. Since this latter is 
nothing but the total number of root vectors of rank greater than 1 associated to 
the zéro eigenvalue, this entails that as —> oo there is an infinité order Jordan
block or an infinité number of Jordan blocks of finite order.

2.5 Probabilistic approach to homoclinic chaos

The objective of this section is to investigate 3-d Systems possessing a homoclinic 
orbit associated to a saddle-focus and giving rise to homoclinic chaos when the 
Shil’nikov condition is satisfied. The dérivation of the 2-d Poincaré map and its 
1-d contractions capturing the essential features of the flow is outlined. At homo- 
clinicity, these 1-d maps are found to be pieeewise linear with an infinité number 
of branches. Near homoclinicity these branches can be assimilated to straight line 
segments, an idealization that seems to fit reasonably well experimental data and 
model studies of the Belousov-Zhabotinski reaction. This property allows one to 
reduce the Perron-Frobenius équation to a generalized master équation and to work 
out the probabilistic properties of the spiral- and screw-type of homoclinic chaotic 
attractors.

2.5.1 The ShiPnikov map and its 1-d contraction

Consider the 3-variable continuons time dynamical System

' X = Pf,x - u)^y + Pf,{x, y, z)
< ÿ = uj^x + p^y + Qfj,{x,y,z) (2.74)

z = -Xf,z +R„{x,y,z)

where /i is a control parameter and are analytic functions in x,y,z and
P, vanishing together with their first dérivatives in (0,0,0). We suppose that the 
origin behaves as a saddle-focus (A^ > 0,p^ > 0), that there exists for p = 0 a 
homoclinic orbit Pq biasymptotic to the origin, and that the inequality po < Aq is 
satisfied. Under these conditions Shil’nikov’s theorem [Sh65, Sh70] asserts that the 
fiow contains a subset of chaotic trajectories in the sense specified in the introduction.

Although a homoclinic orbit is structurally unstable, for parameter values near 
those characterizing the homoclinic situation a general pattern of reinjection of tra­
jectories near the saddle focus should subsist. This property allows one to construct
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a 2-d mapping capturing the essential features of the flow. To this end, we assume 
that it is possible to carry out a coordinate transformation which linearizes eqs. 
(2.74) near the origin. In a neighborhood V of this point, the équations in new 
coordinates (denoted for simplicity as the old ones) take the form

' X = Pf^x - uj^y
< ij = u!f,x + p^y (2.75)

^ i = -Xf, Z .

The local unstable manifold of the saddle-focus is now the x - y plane, whereas the 
stable one is the z axis. The Poincaré map in a plane transverse to the local stable 
manifold is then obtained as the composition of two transformations. The first one, 
which accounts for the behavior near the saddle-focus, is obtained by straightforward 
intégration of the linear eqs. (2.75), whereas the second one, which is responsible 
for the reinjection of the dynamics in the vicinity of the fixed point is assumed to 
be an isométrie transport. One arrives thus at the 2-d mapping [ArArRiQO, RiS7]

x' = + y'^ ~ cosif — sin + x^

_ y' = [\/x'^ -f x/ - X*) sin p + cosp -f y^

xpy eV

(2.76)

where ^fi = e , k = k(x, y) = t — 2A: -1- ^ arctan ^ . P is the inner domain
2— -delimited by the arc of spiral r = x^p. ", 0 < ô < 27t and the segment joigning 

its extremities. In this expression, x* and h define the points (x*,0,0) and (0,0,/r) 
where the homoclinic orbit respectively leaves and enters the neighborhood V; x 
is such that < x* < x; x^ and y^ describe the distance from homoclinicity 
(xo = 0,yo = 0); accounts for a rotation during the rigid transport and k is an 
integer which corresponds to the number of turns the tra jectory complétés around 
the saddle-focus between two successive intersections of the Poincaré plane. In the 
infinité area contraction limit (^ —> 0) and choosing for simplicity p — 0, eq. (2.76) 
reduces to the 1-d map

x' = ^x^ -I- x^^-l-x — l<x<x-t-x — 1. (2.77)

Here x,x,x and y dénoté respectively a new variable and new control parameters, 
equal to the old ones divided by x*. A detailed analysis of this globally highly 
nonlinear law reveals two qualitative different types of maps:
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(i) A map in the form of non overlapping increasing or decreasing linear branches 
whose number tends to infinity as the distance to homoclinicity, or more precisely, 
the new parameter x tends to zéro

fs{x) = 1x1 + £ - 1 < a: < £+(^-i)l±5|üW

(2.78)

Since each branch corresponds to a given even or odd number of half-turns of the 
trajectory around the origin between two crossings of the Poincaré surface, this type 
of map describes a spiral-type attractor^.

(ii) A map which at homoclinicity exhibits two infinité sequences of decreasing 
and increasing branches. At finite distance from homoclinicity, these two family of 
branches are finite and separated by a quadratic well which becomes deeper as the 
System evolves to homoclinicity.

fv{^) X arctan ^ X^^ — 1<X<£—1

(2.79)

As this map allows for reinjection on both sides of the origin, it describes a screw 
type attractor.

Notice that at homoclinicity both maps turn out to be piecewise linear. In 
the sequel the statistical properties of the two types of attractors generated by the 
dynamical System (2.77) will be explored by adopting the simplification that the 
piecewise linear character of the maps extends in a certain vicinity of homoclinicity 
as well.

As shown in Sec. 2.2, in addition to the requirement of piecewise linear maps, the 
réduction of the Perron-Frobenius équation to a generalized master équation relies 
on the property that the phase space partition be Markov, i.e. such that each of its 
éléments is transformed by the deterministic dynamics into a union of its éléments. 
In this section we build models of spiral and screw-type attractors compatible with 
these properties and dérivé subsequently the generalized master équation and the 
behavior of the time autocorrélation fonction of two classes of observables: the 
observable x and a piecewise constant observable 6{x) = ^jXc where the

^At homoclinicity, the réinjections of the dynamics in the x — y plane are made along a line 
passing by the origin. By définition, for the spiral-type attractor the réinjections occur on one side 
of the origin, whereas for the screw-type they occur on both sides.



39

Symbol Sj corresponds to the number of half-turns that the trajectory performs 
around the origin. Hereafter, we consider separately the cases of spiral and screw- 
type attractors.

2.5.2 Spiral-type attractor

Let us consider the map (2.78) when limited to three branches corresponding to 1, 
3 and 5 half-turns of the trajectory around the origin (fc = 1,2,3). The 1-d map fs 
reads then

where the partition considered is the one defined by the points of discontinuity. 
Ci =] bi-i,bi ]. One can easily check that these relations irnply

fs{x) ^ bi.i<x<bi Z = 1,2,3. (2.80)

We choose

fsiCr) = C1UC2 

fs{C2) = Ci U C2UC, 

fsiCz) = C'2UC'3

(2.S1)

f ~ 0.67546
x = i-e{i+î){i+e)
bo = + X - 1 (2.82)

Using eq. (2.36) the block of the transition matrix W writes

(2.83)

0 ^

The eigenvalues of and thus of W are, for = 0,1, ail real

= 1 a'i'’ = -0.552
A^°^ = 0.244 = -0.050
A^“^ = -0.120 A^‘^ = 0.031 .

(2.84)
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The eigenvector of W associated to the eigenvalue unity yields for the stationary 
density

p,{x) = 1.87xe,(x) + 1.97 + 0.70 XC3W (2-85)

which enables one to compute the average value of various quantities and deduce for 
instance that the 1-d map (2.80) displays sensitivity to initial conditions with a Lya­
punov exponent equal to 0.681. The other eigenvectors of W allow us as discussed 
in Sec. 2.3 to compute time-dependent properties such as the time autocorrélation 
functions which we consder now.

The observable 6{x) = x

From eq. (2.57) we deduce that the time autocorrélation fonction of the observable 
X decays as

C'(n) = EÈ4‘’+’" (2-86)
j = l fc=0

where

cS°^=0 = 0.927
= 0.180 = 0.024 (2.87)
= -0.128 = -0.003 .

In fig. 2.3 the comparison is made between the analytical expression of eq. (2.86) 
and the numerical data obtained by computing the time autocorrélation fonction 
from the trajectory according to eq. (2.49).

The observable 9{x) = Sj {x)

A discrète observable of interest in the context of homoclinic Systems is the number 
of half-turns the trajectory complétés in the vicinity of the saddle-focus between 
two successive intersections of the Poincaré plane. For the map fs, this observable 
is expressed as

= 1 Xbi (2;) + 3 {x) + 5 Xc3 (a;) . (2.88)

Its time autocorrélation fonction, which is given by eq. (2.57), is found to decay as

C(n) = E4°’^rj=l
(2.89)
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C(n)

Figure 2.3: Comparison between the analytical expression of the time autocorré­
lation fonction of the observable x (solid line) and the numerical data obtained 
by computing this fonction from the trajectory (dots) for the spiral-type attractor 
(2.80).

where

= 0
4°^ = 0.768 (2.90)
4°^ = 0.232 .

In fig. 2.4 the comparison is made between the analytical expression of eq. (2.89) 
and the numerical data obtained from eq. (2.49).

2.5.3 Screw-type attractor

Let us restrict the 1-d map /„ given by eq. (2.79) to two branches k ~ 1 and one 
well k = 2. We also choose

Â(Ci) = Cl U C2 U C3 U C4 

UC2) = C4 

Â(C3) = C4
(2.91)

fv{Ci) — Cl U C2 U C3 U C4

— - 2
where fy dénotés the piecewise linear map obtained by neglecting the terms in K
in the two branches of fy and by replacing the well by two segments of straight line



42

Figure 2.4: Comparison between the analytical expression of the time autocorré­
lation fonction of the piecewise constant observable (2.88) (solid line) and the nu- 
merical data obtained by computing this fonction from the trajectory (dots) for the 
spiral type-attractor (2.80).

C(n)

going through its minimum. As above, the partition is determined by the points of 
discontinuity, Ci =] ]• The map fv{x) reads then

fv{x)

-2x - 1
2/3-1

P-l ^ 6(/3-l) 

^ 12/3

4x — 1

bo < X < 

b\ < X < b2 

b2 < X < 63 

bz < X < b4

(2.92)

where

bo

bi

62 ____________ 13 ln2 ___________
1927r(H-(i^)2)î 2" ïïfs P = \ - 4b2 .

(2.93)

By construction this map is Markov so that densities evolve according to the gener- 
alized master équation (2.33). Taking into account eqs. (2.91) to (2.93), the block
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y^(k,k)^ /c = 0,1, of the transition matrix W is

( (-1)*

w =

O/c+1

(kOk+l
(-1)^
Ok+l
(-1)^

0

0

0

0

0

0

1 \
4^+1

1
4/E+1

1
^fc + 1 

1

The transition matrix W admits now one pair of complex eigenvalues,

A

= 1 II

(0) _ 1 
‘2 - “4 A2 —

11 0 1—
*

il

0II II

The stationary density is

(2.94)

(2.95)

(2.96)Ps{^) = 5 [Ac, (3;) + Ac2 (^) + Ac3 i^) + 2 Xc, (^)] 

which gives a Lyapunov exponent of 0.952. Turning to the time autocorrélation 
functions we consider two observables as above.

The observable 9{x) = x

From eq. (2.57) we deduce that the autocorrélation fonction of the observable x is

CW=î:ÈcWAf" (2.97)
j=l fc=0

where

4"> == 0 JD _ ^1 — 0.608 -0.016 Z

= -0.216 JD _C2 — 0.608 + 0.016 Z

0 II= 0 JD _ 
C3 — 0

0 II= 0 JD _ 
C4 — 0 .

In fig. 2.5 the comparison is made between the analytical expression of eq. (2.97) 
and the numerical data obtained from the trajectory according to eq. (2.49).
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Figure 2.5: As in fig. 2.3, but for the screw-type attractor (2.92). 

C(n)

The observable 9(x) = Sj Xcj (^)

Let us consider the observable that gives the number of half-turns the trajectory 
complétés around the origin between two intersections of the Poincaré plane, or 
explicitly in the case of map (2.92)

9{x) =AXc,{^) + ‘2Xc^i^) + ‘^Xc^i^) • + 4Ab,,(.x) (2.99)

For such an observable, the time autocorrélation function given by eq. (2.57) is

where

J = 1
(2.100)

= 0

cf = 1

4°^ = 0

c-.O.

(2.101)

In fig. 2.6 the comparison is made between the analytical expression of eq. (2.100) 
and the numerical data obtained from eq. (2.49).
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Figure 2.6: As in fig. 2.4, but for the screw-type attractor (2.92) and the observable 
(2.99).

C(n)

2.5.4 Conclusions

In this section a probabilistic description of homoclinic Systems bas been carried 
out. In particular, the time autocorrélation fonctions of observables such as the 
State variable x hâve been derived for models of the spiral and screw-type attractors 
associated to homoclinic chaos. In addition to giving quantitative information on 
the way the dynamics loses its memory, the decay modes of the time autocorré­
lation fonction of the x-observable provide a useful characterization of spiral-type 
versus screw-type attractor. For the spiral-type attractor, the leading decay rate 
of the time autocorrélation of the x-observable is determined by a négative eigen- 
value. This means that the point of reinjection of the flow on the Poincaré plane 
oscillâtes around the mean value x with period two. For the screw-type attractor, 
there is also a négative leading eigenvalue, so that the point of reinjection of the 
flow still oscillâtes around the mean value x with period two. But, in addition, 
there exist complex eigenvalues. The point of reinjection oscillâtes then, in the av­
erage, from one side to the other with a more complicated period obtained from 
the trigonométrie représentation of the complex eigenvalues. Furthermore, for the 
examples considered here, the decay modes of the screw type of attractor interféré 
in a destructive way whereas for the spiral type they reinforce the oscillation of the 
leading one . This trend is conflrmed by the study of further examples involving
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higher number of branches. It turns out that several négative eigenvalues of about 
the same amplitude may exist for both types of attractors. But, in the case of the 
spiral-type, their effect seems to reinforce that of the leading eigenvalue whereas for 
the screw-type these négative eigenvalues, eventually together with complex ones, 
seem to cancel the effect of the leading one. We believe this is due to the coexistence 
of increasing and decreasing branches which occurs in the 1-d map of the screw but 
not in that of the spiral type of attractor and so finally to the topology of the at- 
tractor itself. Furthermore, when every branch is mapped on the whole interval the 
corrélation function is determined by a single non-trivial eigenvalue: Z!il/Ai|Ai|, 
the magnitude of which is then smaller in the case of the screw-type attractor. This 
property would extend to the leading eigenvalue when every branch is not mapped 
onto the interval. Owing to the destructive interférence between the decay modes 
of the screw-type attractor, the time autocorrélation fonctions of these attractors 
appear less organized. As a conséquence the power spectra of screw-type attrac­
tors hâve a more pronounced broad band component than those of the spiral-type 
where characteristic frequencies emerge. This is corroborated by power spectrum 
computation of continuons time dynamical Systems generating as the parameters 
vary spiral and screw chaos [FaCrFrPaShSO].



Chapter 3

Inverse problem: designing 
one-dimensional chaotic maps with 
prescribed statistical properties.

3.1 Introduction

In the previous chapter we hâve been concerned with the statistical properties of 
given dynamical Systems in the form of piecewise linear Markov maps. The airn 
of this chapter is to address the inverse problem of tayloring dynamical Systems 
with prescribed probabilistic properties, namely invariant density and corrélation 
function. In this sense, we deal here with the general problem of the control of 
chaos, that finds applications in varions fields. On the other hand, we will hâve 
access to more general dynamical Systems like non-Markov piecewise linear maps 
and smooth maps. The basic idea is to use a class of piecewise linear Markov maps 
for which ail statistical properties are known as a System of reference and transform 
these maps by conjugacy or some other transformations to be defined below into 
maps with the prescribed statistical properties, which are typically non-Markov and 
smooth maps.

In Sec. 3.2, we consider the class of 1-d piecewise linear full maps and compile 
their statistical properties. We then address the inverse problem of designing a map 
with a prescribed corrélation function. In Sec. 3.3, we define a transformation from 
this class into a larger one including non-Markov maps and compile the statistical 
properties of these maps. Secs. 3.4 and 3.5 are devoted to the design of 1-d maps 
with prescribed invariant measure and corrélation function. Conclusions are drawn

47
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in Sec. 3.6.

3.2 Statistical properties of piecewise linear full 
maps

Let K{4>) be the class of 1-d piecewise linear maps <j) \ X X given by

(f)\ci= aiX-^hi (3.1)

where {Cj =]ci_i, is a partition of the closed interval = [—1,1]

= a:

Ci n Q = 0 Vz # ; . (3.2)

It is assumed that each element of the partition is mapped by the transformation 4> 
on the whole interval A

<j)i : CiX Vz

implying

I 2 Cj—i + Cj
ai — ±----------- Di = ±-----------  .

Ci Ci—\ Q —1

For m > 2 the maps (f) are everywhere expanding

I ^(a;) |> 1 €. X
dx

and therefore [LaMa85] there is a function p{x) such that 

(i) p{x) > 0

(3.3)

(3.4)

(3.5)

(ii) p{x) dx = 1

(iii) p(x) = where (l)-\x) is the preimage of X.

One can readily check that this function - the invariant density of the Perron- 
Frobenius operator - is equal to that is, the sequence (x„} generated by the 
1-d dynamical System

X-n — (j^{Xn—\') (3.6)
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is uniformiy distributed on X. The invariant density p détermines the 0-Lebesgue 
measure p.{A) of any measurable set ^4 C X

p{A) = [ dxp{x) (3.7)
J A

which is invariant under 4>. As maps (j) are everywhere expanding and ergodic, they 
display sensitivity to initial conditions with a Lyapunov exponent given by

m
0 < Inp(Ci) < Inm . (3.8)

i=l

In order to study the chaotic dynamics of the maps 4> we consider their time 
autocorrélation fonction

1 ^ H-l _
C<t,{n) = — jim — {xi - x) (x,+n - x) (3.9)

where x and are respectively the mean value and the variance of x. Using 
Birkhoff’s ergodic theorem, this expression is rewritten as

C^{n) = \ [ p{dx)x(f)'^{x) 
ux

x^ (3.10)

Taking into account the piecewise character of 0 together with p.{dx) = \dx and 
X = 0, we get

1 ^ r
C^{n) = 7^ Y. dx X 4>^-\(t)i{x))

i = l
(3.11)

or with the change of variable 4>{x) = z

1 ^
C,(r.) = ^

m 1 r r+1
Y-------- /~^l\cii\ üi U-1

dzz4A ^ {z) -bi j dz4A ^ [z) (3.12)

where we used eq. (3.1). Note that the last term vanishes as it is proportional to x. 
For n = 1, the remaining term in eq. (3.12) becomes

Q(i) = E
1=1 (Xi di

Ysgn{a^).p,^{Ci) . 
i=l

(3.13)

Thus, eq. (3.12) can be rewritten in the recursive form

Cÿ(n) = C^(n - 1) C^(l) (3.14)
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or, repeating the procedure

C*(n) = |C*(1)|” . (3.15)

Note that the following inequalities hold
m m

i=l i=l
(3.16)

so that the maps p are mixing.
Depending on the sign and value of C^{1) one may now 

of corrélation functions
distinguish three types

O exponential (0 < C^{1) < 1)

C4n) = (3.17)

« delta-type (C^(l) = 0)

C*(n) = C (3.18)

• periodically modulated exponential (—.1 < C^{1) < 0)

C^{n) — cosnTT . (3.19)

Given any (p 6 K{4>) only one of these behaviors will be realized. Alternatively, 
if one of these types of corrélation function is to be obtained, a map p yielding 
exactly the required corrélation function can be constructed using eq. (3.13). For 
example, one way to get the first type of corrélation function is to consider a map 
with a uniform phase space partition, = /i(Cj) Vz, j and only positive slopes, 
Oi > 0 Vi. From eq. (3.13) we then obtain

C^(n)= = . (3.20)

Note from eqs. (3.8) and (3.13) that for given m, i.e. given number of branches, 
this realization corresponds to a maximal exponential decay of corrélation together 
with a maximal Lyapunov exponent. The second type of corrélation function, cor- 
responding to 5-correlated process occurs according to eq. (3.13) whenever

m
^sgn(oi)/i^ (Ci) = 0 . 
i=l

(3.21)
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This condition is satisfied if to every branch there corresponds a branch, defined on a 
segment of equal measure, whose slope bas the same absolute value but the opposite 
sign. However, it is important to note that this "symmetry” is not necessary to hâve 
a 5-correlated process. Regarding the third type of corrélation function, one way to 
obtain it is to consider, for the first case, a uniform partition but with ail slopes 
négative, < 0 Vz. The corrélation function reads then

C^{n) = = cosnTT. (3.22)

Having at our disposai the analytic expression for the corrélation function of any 
map (f) Ç. K{(f)) we can compute its power spectrum, defined by

1 °°
S4,{lü) =—{1+ 2 J2C<jy{r) cos ruj) (3.23)

Using eq. (3.15) we obtain

~ 27t 1 - 2Q(1) cos eu + Cl(l) • ^ ’

By varying C^{1) in the range ] - 1,1[ eq. (3.24) spans the class of reproducible 
spectral densities. Fig. 3.1 shows the évolution of the power spectrum of c/) for 
different values of

Example

Let us design a map (j) such that

Q(l) = 1-2(5 0 < (5 < 1 . (3.25)

The motivation is that the corresponding power spectrum behaves in the low fre- 
quencies région according to a power law

S^{u)
2 (5(1 - (5)
7T(u2(1-2(5) + 4(52

(3.26)

where we hâve approximated cos eu by the first two terms of its Taylor expansion 
around eu = 0. This behavior, which is typical of flicker noise, is observed in many 
physical situations. At the level of the map, it arises because long laminar régions



52

Figure 3.1: Power spectra of the maps 0 € K{4>) for different values of

S«(6J) C<f(l)=-0.1 S0(w) Cÿ(l)=0.1

occur. Choosing a map with two branches (m = 2), we hâve to détermine Ci using 
eq. (3.13) which yields

=
(1 + ci)^ 

4
(3.27)

from which we deduce the map (f)

(f>{x)

1
1 - 5

X +
5

1-5
1 - ô 

5

-1 < a: < 1 - 25 

1 — 5 < X < 1 .
(3.28)

Actually, it is a skew tent map whose non-differentiable point is 1 — 25.
It is clear that the maps </> e do not reproduce ail the known corréla­

tion fonctions of 1-d maps, as, for instance, corrélation fonctions displaying several
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competing decay modes or behaviors other than purely exponential as obtained in 
Chap. 2. In the next section, we introduce a class of maps yielding richer correla- 
tional properties.

3.3 Statistical properties of a class of piecewise 
linear non-Markov maps

Let us define a transformation of any map cf) G K{(f)) such that cj) is shifted by the 
quantity ô inside [-1,1] and the part of the last branch exceeding 1 is reinjected 
from —1. This transformation S is given by

S : (j) —> v{x)

*
Ul(x) = -5 + 2)

<

^ Vi+i{x) = (pi{x- 5)

X e Qi

X e Qi+i i = 1,. . . ,m

(3.29)

where Qi =]gi_i,Çi], ço = -1, Qi = Ci-i + 5, Qm+i = 1 and 5 is a shift parameter 
such that 0 < 5 < 1 — Cm-i- We shall dénoté by K{4>,S) the set of ail the maps v 
obtained by <S-transforming the maps 4> of Obviously, K{4>, S) includes K{(j)).

The new map v lias the same invariant measure and mean value as map 0. It is 
also ergodic with respect to the Lebesgue measure, except when 4> is the tent or skew 
tent map. To show this we détermine the conditions under which the map v = So(p 
is not ergodic with respect to the Lebesgue measure, that is, the conditions to hâve 
non-trivial invariant subsets of X

v-\l) = I 0</u(/)<l. (3.30)

First, we note that since (f) : Ci X Vz, there exist at most 2 such invariant sets

7i = [—1, a] a G Q2

h = [5,1] 5 G Qm (3.31)

For the same reason, for these non-trivial invariant sets to exist, it is necessary that

sgn(ai) = sgn(om-i) = -sgn(a„i) = 1 . (3.32)

As these sets may not hâve preimages outside themselves there cannot be any branch 
of V between them, so that m = 2 and a = 6. It follows that the nontrivial invariant
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subsets II and I2 exist if and only if the corresponding map is given by

2

(j){x) = <
1 + 

1 -

1 + û; 
2

l — a

{x — a) —l<x<a
- 1 < a < 1 (3.33)

{x — a) a < X < l

which is the tent or skew tent map. As a conséquence, for ail <j) e K{(p) except the 
skew tent map, the map v = S ocp is ergodic with respect to the Lebesgue measure. 

We now turn to the corrélation fonction of the map (p which is given by

C„(n) = 5^ ^ xv’'{x) (3.34)

As V is piecewise linear, for n > 1 eq. (3.34) can be written

m+l
Cv{n) = ^ E ^k[n) (3.35)

fc=i

where

fQk
Ck{n) = / dx {vk{x))

Jqk-i
(3.36)

Let us carry the change of variable z = Vk{^) ^k- Then using eq. (3.29) for Vk{^)
we obtain

• k = 1

Ci{n) = ^ \ r dz zv^'\z) + {{6 - 2) am - bm) [ dzv'^ \z) (3.37)
Ub

• k = 2,... ,m

Ck{n) =
Q/t-i I

J dzzv^ ^{z) + {5ak-i — bk-i) j ^ dzv'^ ^{z) (3.38)

• k = m+ l

a±
dzzv'^~\z) + {5am-b^) j dzv'^ \z) (3.39)
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where P = Vi{-1) = s — 5 a-m and s = sgn(am). Let us define the quantity ln-i{P) 

by

In-M = r dzv^-\z) = - /' dzv^-\z) (3.40)

where the second equality holds because of dzv'^~^{z) = 0. Then, using eqs. 
(3.37) and (3.39), it follows that

4^ [£,(n) + £„+,(n)l = ) , C„(n - 1) + ■ (3.41)2cr2 ^ T V /J 1 1

As the second term of the right hand side of eq. (3.38) for Ck vanishes, it follows 
that ÎOT k = 2,... ,m

-------------- C,(n-1) .
ûit-i 1 ûfc-i

Therefore, eq. (3.35) for Cy(n) becomes

(3.42)

C„(n) = C^(l)C„(n - 1)+P—Xn-M (3.43)
fj

To evaluate ln-i{P) one has to know to what cell p belongs. Actually, there are 
two cases to consider.

• /? € Qi 

Then
I„_i(/3) = f^dzv--\v,{z)) (3.44)

or through the change of variable x = Vi{z)

J„_i(/3) = — — / da:o""'^(x) 4------/ dxv'^~‘̂ {x) (3.45)
^771 ^TTl

where we hâve decomposed the intégral from P to v\{P) into two intégrais. 
From eq. (3.40) it follows that

In-M = Xn-2(/3) + —Xn-2MP)) .
dm dm

(3.46)
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• ^ G Qi+i, i = 1,.. .,m 

Then

în-i(/3) = [ dzv^-^{vi(z)) + ^ dzv^-^{vk+i{z)) + dzv'^-^(vi+i{z)) .

(347)

As every contribution to the sum over k vanishes, one is left with only two 
terms. Carrying the change of variable x = vi(z) and x = Vi+i{z) in the first 
and second term respectively, we obtain

In-i{P) = — f dxv'^~‘^{x) + — [ ^ dxv'"-~'^{x) (3.48)
dm Jp ai ./-sgn(a,)

or, taking into account eq. (3.40)

In-M = -i-I„_2(/?) + il„_2(u(/3)) . (3.49)

The general équation for In-i{P) takes then the recursive form

I„_i(/3) = J„_2(/?) + -Xn-2{vm P e (3.50)
Û-m Û-2

Z = 0,..., m

where ao = and, from eq. (3.40), Io{P) = \{P'^ ~ follows that eq. (3.43)
enables one to compute analytically the corrélation fonction of any map v. This 
équation calls for some comments. Indeed, substituting eq. (3.50) into eq. (3.43) 
one sees that due to the term in Xn-\{P) the corrélation fonction Ci,(n) is a fonction 
of the 0 to (n— l)-th itérâtes of /?. If the map v is Markov the itérâtes of P are finite 
in number and the knowledge of this limited set, say 0 to A:, is sufficient to compute 
exactly the corrélation fonction for any n. But, if v is not Markov, which is typically 
the caae, to obtain the exact corrélation fonction from 0 to n we need to know the 
full set of (n — 1) first itérâtes of p. Alternatively, one can truncate this set and 
define an approximate Markov'' partition which then leads to a rapidly convergent 
approximation [Ma92]. However we emphasize that our resuit here is exact. As 
demonstrated by the following example, non-Markov maps typically display richer 
correlational properties.
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Example

Let us consider the map

^ —2x — 1 -1 < x < 0
<j){x) = l

I 2a; — 1 0<x<l.
(3.51)

Transforming it as described above yields the new map

2(a; — 5) + 3 —l<a:<5 — 1

v{x) = -2(x - S) - 1 ô - 1 < X < ô

2(x-â)-l 6 <x<l

0<6 < 1 . (3.52)

As the branch reinjected from —1 has a positive slope, (5 = ui(—1) may belong to 
any of the cells Qi\ i = 1,2,3, depending on <5. We choose ô — so that /? G Q2- 
With a few lines of symbolic computing one can obtain its exact itérâtes and check 
that they do not fall on each other up to any given time. The first few are displayed 
in fig. 3.2 and write explicitly

/3 = 2- \/5 € Q'2

v{p) = 3V3-6 S Qa

v'^iP) = 5\/5 — 12 G Qi

v^{P) = 9^5-20 E Q2

v\p) = 38 - 17n/5 E Q2

v^iP) = 35\/5 - 78 S Q2

v^p) = 154 - 69\/5 E Q2

v\p) = 139v/5 - 310 S Qs

v^{P) = 277\/5- 620 E Q\

v\P) = 553\/5 - 1236 E Q2

v^°{P) = 2470 - 1105\/5 E Q\

The corrélation fonction of this non-Markov map is given by eq. (3.43) where from 

eq. (3.13) C^{1) vanishes

C„(n) = . (3.54)
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Figure 3.2: Exact itérâtes of /3 by the map v of eq. (3.52) for 6 = 

u^U3)

The quantities Xn-i{P) are deduced from the recursion of eq. (3.50). The first few 
are

loiP) = 4 - 2^/5 

XPP) = 10^5-22 

X2{P) = ^n/5 - f 

XM = 7y/5-f 

X,{p) ^

UP) = W'^-'-¥
X,{P) = ^

MP) = ^\/5 - w 

MP) = ^ -

Xg(^) = ^y5-^
'T _ 2817703 2520273 . /E- ~m---------- 256~V O ■

(3.55)

The theoretical corrélation function is shown in fig. 3.3. It consists essentially 
of pseudo-period 2 oscillations modulated by a slowly decaying oscillating envelope. 
The numerical corrélation function computed from the trajectory of eq. (3.52) is also 
displayed in fig. 3.3. Notice the poor agreement which is due to the perturbation of



59

Figure 3.3: Comparison between the analytical corrélation function of the map v 
given by eq. (3.52) for <5 = (solid line) and the numerical data obtained by 
computing this function from the trajectory (dashed line).

C(n)

the original System required to prevent the numerical trajectory from being trapped 
because of the slope 2. As a resuit the recurences of the numerical corrélation 
function are diminished. The main features of the theoretical corrélation function 
are nevertheless observed numerically.

3.4 Analytic construction of maps with prescribed 
invariant measure

We begin by recalling the notion of topological équivalence of maps [ShMaRo84]. 
The maps -ip : Y Y and (/9 : Z Z are topologically équivalent if there is a 
homeomorphism h : Z Y such that

h O (p = -ip O h . (3.56)

In other words, the itérâtes of the 1-d dynamisai Systems

Un = ■0(2/n-l) Vn^Y (3.57)

Zji — (p(Zfi^i) Zfi G Z

are related for ail n through

y„ = h(zn) . (3.58)
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We assume that map tp possesses a uniform probability measure on a single interval 
Z = [0,1], i.e. p^{A) = J^dz VA C Z, entailing that the itérâtes Zn = V"'(-2o) ^•re 
uniformly distributed on Z. It follo-ws that the variable F~^{zn) has a cumulative 
probability distribution function given by F. Therefore, taking the fonction F~^ as 
the homeomorphism h, the composition

F~^ O P O F = ip (3.59)

produces a map ijj with probability measure = jQdF{y) VB C Y. Alter-
natively, the itérâtes y„ = ip^ivo) are characterized by the probability distribution 
function F{y). To construct a map ■0 with a prescribed probability measure m 
it suffices therefore to introduce in the functional composition eq. (3.59) any map 
V? with uniform density on Z. It is convenient to choose this map p in the class 
K{(f),S) introduced in Sec. 3.3 because of the relatively simple structure of these 
maps and the possibility to control their statistical properties.

Obviously, the map p conjugate to the map 0 with known probability measure 
/iÿ is not necessarily piecewise linear. For example, the map p conjugate to the cusp 

map 0

0(?/) = 1 - 2y/\ÿ~\ - 1 < y < 1 (3.60)

is piecewise smooth. The invariant measure /i^ of the cusp map is linear: p^,{dy) — 
^(1 — y)dy. The cumulative distribution function is therefore given by

F{y) = Pt{dy) = ^(1 + y)(3 - y) (3.61)

and its inverse by

F~\z) = 1 - 2VÏ^ Q<z<l . (3.62)

Using the functional composition eq. (3.59) to find the map with uniform proba- 
bilistic measure we obtain the piecewise smooth map p

p{z) = <
2(1 - v^TTz)

2^/l^

0 < 2 < I

r < 2 < 1 .

(3.63)

Generally, the synthesized map 0 is also piecewise smooth. Let us compile some 
of its characteristic properties
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O The Lebesgue measure is invariant under ïjj

yBcY . (3.64)

O The map 'ip is ergodic with respect to

Vp G = J /^y-Wi/Cy) (3.65)
°° î=i ^

The ergodicity of ip with respect to results from the ergodicity of (p with 
respect to The map ip satisfies ail conditions of a lemma by Kosyakin and 
Sandler [KoSa72] about ergodicity with respect to the Lebesgue measure of 
piecewise smooth transformations of an interval to itself, namely

1. </> is regionally transitive as for any nonempty sets Zi and Zj G Z

(p{Zi) n Zj 0 .

2. (p{z) is twice smooth différentiable on intervals Zi = (o:î_i,cvi) and there 
are one-sided first dérivatives at points a,.

3. There exists constants K, d and c such that

K>\^{z)\ = \di\>d>l, c>\^(z)\=0 \fzeZi,i=l,...,m .

4. 0 < ^p{z) <1 yz e Z 

Therefore V/ G Ci{Z,fx^) the equality

(3-66)
N-¥oo J Z

holds almost everywhere. As F{y) is a smooth distribution fonction, according 
to (3.59), (p is conjugate with tp by smooth one-to-one invertible homeomor- 
phism F~^ : Z Y. It is clear that F~^ G Ci{Z,iJ,^). If p € Ci{Y,p^) 
then p(F~^(z)) G Ci{Z,p^). Let us take this fonction as fonction / of (3.66). 
Substituting into (3.66) and taking into account F~\(p^{z)) = 4>^{y) we hâve

J™N-^oo /V Jz
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As F ^ : Z y , the change of variable F~^(z) = y yields

1 ^ • r
H di'fP'ivo)) =) = fj^Ady) g(y) (3.68)

which proves the statement.

• The Lyapunov exponents of ip and ip are equal

To show this we first calculate the first dérivative of tp using the chain rule for 
the dérivative of implicit functions

, %{ny))-%{y)
(3.69)

The Lyapunov exponent of ip becomes 

= j^dF{y) \n \ ^(y) |

= (3.70,

Because of the previous property, the first two terms in the right handside 
cancel each other, so that with the change of variable F{y) = z, we obtain

which is the Lyapunov exponent of the map p.

(3.71)

• If a map 7 is conjugate to ip then 7 and ip are topologically équivalent and the 

previous properties hold.

Let us give some examples of construction of maps with required probability 
measure, chosing p to be the tent map

2z 0 < Z < ^

2(1 - z) 1 < 2 < 1 .
p{z) = - (3.72)
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Example 1

Let us require that the itérâtes yn are distributed on [0,1] according to Simpson’s 
law, i.e.

^(y) =-ysgn(y) + y + ^ ■ 0<y<l. (3.73)

Then according to eq. (3.59) we get

V'(y) =
-l+2y/ly’-|s|+i

I y l< a

a <1 y |< 1
(3.74)

where a = 1 — This map is shown in fig. 3.4.

Figure 3.4: Map ip of eq. (3.74) for which the itérâtes are distributed according to, 
Simpson’s law.

Example 2

Let the invariant density of the 1-d System eq. (3.57) be

P(y) = ^(l + i/) -l<y<l (3.75)
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modelling molecular scattering of photons in the atmosphère [ErMi82]. Then F{y) 
will be

= + (3.76)

Let us calculate its inverse by solving the cubic équation F{y) — z = 0

F~\z) = ^4z-2 + a + ^4z -2-a 0<z<l (3.77)

where

a = -l6z + 5 . (3.78)

Taking the composition (3.59) of the obtained fonctions we hâve

^(y) = 1 y I y^ - 3 I y 1 +2 + 5 + 1 y 1 y^ - 3 | y 1 +2 - 6 (3.79)

where
b= ^J5 + y(l + y)(y'* - + 7y2 - 3y + 12) . (3.80)

Example 3

Let

p(y)
1
TT \/y(i - y)

Using eq. (3.59) we obtain, as expected, the well-known logistic map

V'(y) = 4y(l - y) 0 < y < 1 .

(3.81)

(3.82)

3.5 Analytic construction of maps with prescribed 
invariant measure and corrélation fonction

As we hâve seen in. Sec. 3.4, the construction of a map tp, having a given probability 
measure, requires the use of an arbitrary map (p with uniform invariant density. We 
hâve already emphasized the reasons to take the latter in the class K{4>,S). Let us 
Write the general expression of as

p{x) = >pi{x) = OLiX-P X G Fj = [7i_i,7i] i = l,...,m (3.83)
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where {Fi}™! is a partition of the closed interval [0,1], As cp is arbitrary, we can 
choose it such as to provide other desired probabilistic properties, for instance, the 
time autocorrélation function.

The ergodicity of tp implies that its corrélation function can be written as

C*(n) = ^ plH(.ày)ÿll/'‘{y) - ÿ‘‘ (3.84)

where ÿ and are respectively the mean value and the variance of y. In order 
to solve the problem of synthesis of a map 'tp with the required invariant measure 

and corrélation function C^{n) it is necessary to find a map as a solution 
of the intégral équation eq. (3.84) in which V' has been substituted from eq. (3.59). 
Setting F{y) = z one obtains

L./0
dzF-\z)F-\^'^{z))-ÿ‘ (3.85)

In its general form, this équation is analytically unsolvable with respect to (/?. Let 
us consider this problem at the level of a piecewise linear approximation of F~^[z)

F ^ {z) = F^ ^ {z) - hi Z ^ Qi Z G Fi 1,... ,m, (3.86)

where

F-H7i)-i"~H7i-i)fli — --------------------------
li -li-\

9i = —Ji-iK + F ^(7i) .

(3.87)

This approximation is given on the same partition of [0,1] as for cp. Therefore, let 

us choose the partition {Fj}(^i so that

dist(F-i,F-i) = F-i(z) - F-\z) < £ . (3.88)

Substituting eq. (3.86) into eq. (3.85) and denoting by î> the composition F~^oipoF 

we hâve

Cf(n) =
7U «-y.

^ / dzFf^{z)F-^(<p^-^Mz)))-f (3.89)

or through the change (p(z) — v

~ O
i=l -^V>>(7i-l)

{v)) F-\^^-\v)) - ïy (3.90)
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As iPi ^(i;) = eq. (3.90) becomes

+{ai gi - Pi hi) d'uF“^((p"~^(t»))|- (3.91)

We introduce the following notation for the quantity in the first term of eq. (3.91)

Jn-l = /'
JO

dvv F ^((/?" ^(î;)) .

Through the change of variable <f{v) = z, Jn-i becomes

m Y
3n—\ ~ z_j 1 i

jTi I «J I
' f'dz Z F-\ip^-\z)) - Pj C dz F-^gj'^-^z)) 
Jo JO

(3.92)

(3.93)

Let be a map </> from K{(f)) rescaled to [0,1]. From Sec. 3.2 we know that 

rn— = CJl). It follows thatlajloj '

m P.

Jn-l = C,(l) A-2 - Ë I ^, I ^. ÿ ■ (3.94)

The second term of the right hand side of eq. (3.91) can be simplified using

F~^ O ^ O F-i O = ^n-i O p-\ (3.95)

so that setting F~^{v) = y we hâve

C dv F-\^^-\v)) = [ dF-\y)r~\y) = ÿ ■ (3.96)
JQ JY

For the sake of simplicity, let us assume ÿ = 0. Taking into account eqs. (3.94),(3.96), 
eq. (3.91) becomes

C^{n) = [C^(l)f . (3.97)

Thus, if a pieCewise linear map (p is given on a partition of [0,1] such that

dist(F“^, F~^) < £ ,

the itérâtes of ip are characterized by the corrélation fonction of g). Therefore, the 
problem of designing a map ip with given invariant measure and corrélation fonction
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amounts in a first step to design a piecewise linear map with the required C,p(l) 
and such that dist(F~^, < e and in a second step to use the homeomorphism 
F~^ to obtain by conjugacy the map 'ip with the required invariant measure and 
corrélation fonction.

Example

Let us design a map ip ; [—|, |] —> [“fia] that its invariant measure

= 2 (?/ + ^) dy (3.98)

and its corrélation fonction
C^{n) = (3.99)

where r is the golden mean. The first step is to design a map : [0,1] —>• [0,1] with
uniform invariant measure and the same corrélation fonction as -ip, at least in the 
sense of eq. (3.88). Let it be a map from K{(p) rescaled to [0,1]. We choose m = 4 
and without loss of generality Oj < 0 VL Then according to eq. (3.13) we hâve

C^a) = -è4 = -È('fi-7i-if (3.100)
i=l “i i=l

where 70 = 0, 74 = 1 and 71, 72, 73 are to be determined. It is clear that the solution 
of this problem is not unique. Let us use an algorithm yielding straightforwardly 
a particular solution. Considering this équation as a quadratic équation for 71 we 

hâve

71 = y ± - ^'13 + '«7273 + 473 - 2C^(1) - 2 . (3.101)

The positivity of the radical implies the following limitations for 72

I 72 - ^73 1< ^y2(-47l + 673 - 3C4l)-3) , (3.102)

which in turn imply limitations for 73

I 73 - J l< i^-3(c,(l) + i) . (3.103)

Substituting C^{1) by its value - the golden mean - and taking the equality sign in 
eq. (3.103) we déterminé 73. Having taken the equality sign in eq. (3.103) implies
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that the right hand side of eq. (3.102) vanishes. Taking also the equality sign in this 
équation we obtain 72 = 573 together with 71 = I72. The map (p with C,^(l) = r is 
then

(p{x) = x-li 
7i-i - li

7i_i < X < 7i z = l........4 (3.104)

where 70 = 0, 71 = | - - ^), 72 = 271, 73 = 371, 74 = 1. The second step
to obtain the map 'ip with the given invariant measure and corrélation function is to 
perform the functional composition F~^ o ipo F where

2.2
F{y) = = (î/ + ^) 0 < y < 1

F-\z) = ^z-^- 0 < Z < 1

Therefore, we obtain 

ijj{x) -
(y+i)2-7i 2

7i-i - 7i

2 2 
3 ^ ^ ^ 3

(3.105)

i = l,...,4 .

(3.106)

This map is shown in fig. 3.5. The prescribed and numerical corrélation functions

Figure 3.5; Map ip of eq. (3.106) with the prescribed invariant measure and corré­
lation function.

3

are compared in fig. 3.6. Note that the agreement can be improved by increasing 

the number of branches m.
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Figure 3.6: Comparison between the prescribed corrélation function (dashed line) 
and the numerical data obtained by computing the corrélation of the map ^ of fig. 
3.5 from the trajectory (solid line).

C(n)

3.6 Conclusions

In this chapter, the inverse problem of designing dynamical Systems with prescribed 
statistical properties has been addressed. We hâve developed methods enabling one 
to design piecewise linear full maps with exponential, periodically modulated expo- 
nential or delta decay of corrélations. More complicated behaviours were also ob­
tained by introducing a transformation of piecewise linear full maps. These complex 
behaviours include for instance the coexistence of several competing decay modes 
or the presence of a slowly decaying oscillating envelope. The first possibility arises 
only for incomplète maps, in which at least one of the éléments of the partition of 
the invariant interval is not mapped by the transformation on the whole interval, 
whereas the second one may occur when the map is non-Markov. Tackling the in­
verse problem for these maps is more involved because of their more complicated 
structure and will be the subject of further investigations.

We hâve also considered the design of maps with any prescribed invariant mea- 
sure independently of, or together with a prescribed corrélation function. Though 
the first task is achieved exactly, the second requires an approximation since the 
map obtained by conjugacy is generally smooth. As the conjugate map with uni- 
form invariant measure is arbitrary, by a judicious choice, this approximation can
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be improved up to any accuracy.
In addition to giving means to deal with applications, the results of this chapter 

enable one to identify in a given dynamical System the features that are responsible 
for a given corrélation fonction or equivalently for a given law governing the loss of 
memory of the chaotic signal.

Recently, a great deal of interest has been devoted to the control of chaos through 
slight perturbations of the évolution law [OtGrYoQO]. Our approach suggests a new 
way to look at this problem, in which emphasis is placed on the probabilistic prop- 
erties of the dynamics rather than the detailed structure of the trajectories. Since 
the probabilistic viewpoint is natural in Systems undergoing chaotic dynamics, it 
may be reasonably expected that this approach is worth exploring in the future.



Chapter 4

Statistical properties of coupled 
map lattices: exact results

4.1 Introduction

Spatially extended Systems are described by partial differential équations. Owing to 
their difficulty, till recently the main rigorous results concerned the détermination of 
simple solutions, their stability analysis or the estimation of attractors dimensions 
[Te88, Co96]. This has motivated the introduction at the beginning of the eighties 
of a simplified model of spatially extended Systems known as coupled map lattices 
(CML’s) [Ka84, WaKa84a, WaKa84b, De84],

CML’s are dynamical Systems with discrète time, discrète space and continuons 
or uncountable local phase space. The State of the System at time n, n = 0,1, ■ • 

can thus be represented as

x" = (4.1)

where s is a site of a lattice L and x" G /«, the local phase space. In the sequel we
shall consider only Td lattice, finite with periodic boundary conditions or infinité. 
The global phase space is the direct product of the local phase spaces, which we 
dénoté The State evolves according to

= (4.2)

where 4> is usually taken as the composition of two transformations

^ = AoF. (4.3)

71
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The transformation F evolves each site of the lattice independently,

{Fx)s = fs{Xs) (4.4)

where

/s ( A —^ A ; (4.5)

and A is a spatial interaction between the sites

{Ax)s = a,(x) (4.6)

where

(4.7)

The functions fs and a^, are choosen depending on the problem one is interested 
in. For instance two phases in compétition via a diffusive process can be modeled 
by bistable maps [Fe96, FeRa97] whereas spatio-temporal chaos is investigated with 
chaotic maps [Ka93]. In both cases one considers a spatial interaction which mimics 
diffusion

a^(x) = Xçj-I-- 2x5-t-Xs+i) sGL (4.8)

where 0 < e < 1 is the coupling parameter. This leads to the most popular and 
well-studied example of CML

(ï.x"). = ir‘ = (i-£)/«) + f l/K-i) + /W+.)l (4.9)

where the maps are identical at each site. This CML is generally called diffusive as 
it is reminiscent of the Laplacian of a diffusion équation.

CML’s are very convenient to implement numerically. As the control parameters 
are varied, they exhibit a variety of complex behaviors in time and space culminating 
in spatio-temporal chaos [Ka89a]. At the theoretical level, one of the goals is to 
show that the CML’s generated by the weak spatial interactions of local dynamical 
Systems with strongly chaotic dynamics such as eq. (4.9) hâve the property of 
space-time mixing

\ j go^'^hdiJL — j gdiJ, j hdij\<Csi\\ 7>0, (4.10)

where, skipping the details, g and h are functions supported on the subset B and 
D of the lattice, g is the invariant measure and d{B, D) is the distance between 
B and D. This property, introduced by Bunimovich and Sinai in [BuSi88], means



73

that there is a decay of the corrélations in time and space and is precisely what is 
understood by the terms spatio-temporal chaos. In eq. (4.10) this decay is expo- 
nential. One is also interested in constructing nontrivial solutions for these Systems. 
Another direction of research is to explore the possibility of setting up a reduced 
type of description for these simple models of spatially extended Systems. The first 
rigorous results were obtained by Bunimovich and Sinai [BuSi88] who hâve proven 
space-time mixing for expanding maps of the interval with a spécial type of coupling 
which is state-dependent. This spécial coupling is introduced to preserve the exis­
tence of Markov partitions that are otherwise destroyed by the spatial interaction. 
A clear présentation and some clarifications can be found in [Gi94]. Bricmont and 
Kupiainen [BrKu95, BrKu96, BrKu97] hâve proven the space-time mixing property 
for a more general class of spatial interactions in the case of circle maps if the cou­
pling parameter e is sufîiciently small. The existence of so-called Sinai-Ruelle-Bowen 
measures for weak interactions of general type on a 1-d infinité lattice was proven by 
Keller and Künzle again for small e [KeKu92, Ku93]. Some results on the existence of 
Sinai-Ruelle-Bowen measures for coupled maps on lattices of arbitrary finite dimen­
sion were obtained by Volevich [Vo93, Vo94]. Blank [B193, B197] has constructed 
examples of pathological behavior for coupled non-smooth maps with arbitrarily 
weak coupling. Losson and Mackey [LoMa94a, LoMa94b, Lo94, LoMiMa95] hâve 
highlighted the presence of coupling induced statistical cycling. Sensitivity to ini­
tial conditions in Systems of large spatial extension giving rise to spatio-temporal 
chaos has been shown to obey a subexponential law by Nicolis, Nicolis and Wang 
[NiNiWa92]. Op de Beeck, Nicolis and Nicolis [Op94, NiOpNi97] hâve studied trun- 
cation schemes and proposed new ways to probe the dynamics of spatially extended 
Systems using coarse-grained observables. Just [Ju98] has an interesting approach, 
although it does not apply to diffusive coupling, in which he fixes a Markov partition 
and then require the map to be linear on this partition.

The objective of this chapter is to study CML’s in which themaps are coupled to 
their nearest neighbours with a finite coupling constant e. In Sec. 4.2 we consider a 
System of two difîusively coupled piecewise linear maps. We show that under a simple 
condition a 2-d Markov partitions can be constructed on the basis of 1-d Markov 
partitions for two particular mappings defined below. A class of such partitions is 
obtained for dyadic coupled maps. The case of a Bernoulli and an anti-Bernoulli 
map coupled with e = ;| is then studied in detail. In particular the 2-d probability 
density and its 1-d projection are obtained explicitly using a generalized master
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équation for the coupled System. In Sec. 4.3 we propose a CML with constant 
nearest-neighbour coupling. For this System the invariant 1-d reduced probability 
density is computed for ail e when the maps belong the class of piecewise linear full 
maps. Conclusions are drawn in Sec. 4.4.

4.2 Two diffusively coupled piecewise linear maps

In this section we consider two maps

/: [0,1] ^[0,1], 5 : [0,1] ^ [0,1] (4.11)

which are piecewise linear

f \Ci= +

g\ri^ 9i'V^ + (4-12)

and expanding
|Ai| > 1 , |A^| > 1 , (4.13)

and being partitions of [0,1]. These maps are diffusively coupled

according to eq. (4.9)

x' = (1 - e) f{x) + e g{y) o<e<-

y' = {l-e)g{iy) + ef{x) ^
(4.14)

The Perron-Frobenius operator V of the coupled System is thus given by

Pn+i{x,y)= Vpn{x,y)
= j du j dv pn{u,v) 5{x-[{! - e) f{u) + e g{v)]) 6 {]/- [{I - e) g{v) + £ f{u)]) .

(4.15)

Hence one obtains

M

Pn+i{x,y)= ^E^(i_2e)|AJ|A7l

' (r^ ^ (r^ ^ ’
(4.16)
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where $(Cq ® F^) dénotés the image of the direct product of the cells Ca and F^ 
under the mapping $ of eq. (4.14).

In the next section we dérivé a generalized master équation for the coupled 
System $ assuming there exists a 2-d Markov partition. Explicit examples of Markov 
partitions will be constructed in the subséquent sections.

4.2.1 Generalized master équation for the coupled System

Let {Si}f^i be a partition of the unit square [0,1] (8> [0,1] which is Markov in the 
sense that

M
= E j = . (4.17)

2 = 1

Here $ dénotés the mapping of eq. (4.14) and the éléments aji of the topological 
transition matrix are 1 or 0 depending on whether Si belongs or not to 4(5'^). We 
assume that on each element Sj of the partition there is only one branch of / and 
one branch of g, which we dénoté and gp^ respectively. This amounts to having

S^cCa,^Tp. Vj. (4.18)

Consider now a 2-d piecewise polynomial density

M N

Pn{x,y) = j2 E cÿi x'^y^ Xs^{x,y) . (4.19)
j=lk+l=0

By eq. (4.16), under the action of the Perron-Frobenius operator it becomes

M
Pn+i{x,y)= E

M N

E E
a,P=l I II I j=i k+l=

-jkl

fà
-1 1 - £ £

1 - 2e 1 - 2e ^ 
1 - e e

k
g~p

1 - e
1 - 2e 

1 - e

V

l-2eW’^^ U-2e^ I - 2£^J )

1 - 2e 
e

X

(4.20)

From eq. (4.18) the sums over a and P reduce to the contribution with a = Qj and 
f3 — 13j. Notice also that Vj

1 — e 
1 - 2e

X —
1 - e 

1 - 2e y-
e

1 - 2e Xj.(Sj)y) •
(4.21)



76

Eq. (4.20) becomes then

M N 2

[{1 - s)x - ey - {I - 2e) A^j]^ [{1 - e)y-ex - {1 - 2e) a^i Xs, y) ■

(4.22)

Hence, as in the 1-d case, p„+i is again piecewise polynomial

M N

pn+i(x,y) = J2Y1 ■
i=l p+Q=0

(4.23)

Arranging the éléments in a column vector c„ rather than a tensor and defining a
time-independent transition matrix W one obtains the generalized master équation 
for the 2-d coupled System $

Cn+l — C71 . (4.24)

The case N = 0 yields
/ A") \<-100

(n)
\ ^A^OO J

and

1

W =

(1 — 2e) I AQ^Ap^ 

1
V (1 ^ff) 1 AqjA/3j

For = 1, one has

ail

0-12

(1 - 2e) 1 AajA/Sj 

1
(1 - 2e) I Aa^A

^21

022
P2

( J") ^ woo

Cn — 'ilO

(n)
y 4i )

(4.25)

(4.26)

(4.27)
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and

1 ^Clj
(l-2e)|A,^.A,^. (1 - 2e) A,, 1 AaAp, \ (1 - 2e)Xp^ I AajXp. 1

0
1 - £ £

(1 - 2£)2A„. I A^.X^. 1 (1 - 2e)‘^Xp. 1 Aa.Xp. 1

0
£ 1 — £

(1-2£)2A,JA.,A,J (1-2£)2A,JA.^.A^J

(4.28)

where i,j = 1, • • •, A4.

4.2.2 Two 1-d mappings for the coupled System

We hâve seen in Chap. 2 that for individual piecewise linear maps of the form of 
eq. (4.12) the supports of the invariant density are determined by the itérâtes of 
the extremities of the support of each branch, i.e. by the itérâtes of the points Cj; 

7i defined by
Ci = [ci_i,Ci] , Ti = [7i-i,7i] > (4-29)

with co = 7o = 0 and Cm = 7a^ = 1- For a System of coupled piecewise linear maps 
of the form of eq. (4.14) the supports of the invariant density are also expected, 
because of monotonicity to be determined by the itérâtes under of the boundaries 
of the support of the branches of the coupled System. These boundaries are now 
segments of straight Unes whose parametric équations are

j x = 9 

[y = 71

for those parallel to Ox and

X = Ci

y = 9
\

(4.30)

(4.31)

for those parallel to Oy, 9 G [0,1] being the parameter.
This motivâtes us to consider explicitly the first itérâtes by $ of the segment

X = 9 

y = Q
(4.32)
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where q G [0,1] is fixed and 6 is running through [0,1]. The first iterate of eq. (4.32) 
is

Eliminating 6 yields

= (1 -e)/(^) + £5(g) 

y' = (1 - e)g{q)-\-£f(9) .
(4.33)

/ ^ / 1 f 2e ^

y = + i_, sW- (4.34)

Notice that eq. (4.34) holds for any / and c/, not only piecewise linear maps. This 
straight line will be partially run through as many times as there are branches in /, 
i.e. M times. Indeed let 9 go through the support of the l-th branch,

= [q_i,q] l = (4.35)

Hence J{9) goes strictly-monotonically from /;(cj_i) to /((q) so that for each l as 9 
increases the straight line (4.34) is run from

x'i_ = (1 - e) /i(Q_i) + e g{q) (4.36)

to

= (1 - ^) fi{ci) + ^ 9{q) ■ (4-37)

Notice that the straight line is run in the positive x-direction for A; > 0 and in the 
négative direction for A; < 0. Let us rewrite eq. (4.34) in the form

x' = 9\
1 - 2e

where beiongs to the interval delimited by eqs. (4.36) and (4.37), namely

(4.38)

ç I A; > 0

\ \x'i_^ , x'I^] A) < 0 .

Now the second iterate by $ of eq. (4.32) is

x” = \l - s) f{9[) + e g + \ _ ^(g))

^ y" = (1 - e) 5 3{q)) + e f{9[) .

<

(4.39)

(4.40)



79

We can hâve a more explicit form if we let

and

ô[ e Ck

^ »; + s(«) e ■1 ‘ 1 -£
Then using eq. (4.12), eq. (4.40) becomes 

/ ^2 \

(4.41)

(4.42)

1 - 2ex" — ( (1 — e) A/; + - ^ - Xj j û'i + (1 — e) Ak + £ Sj + £ ■ ^ ^ Xj g(g)

^ y" — ^ (Afc + Aj) 0'i + (1 — 2e) Xj g{q) + (1 — e) ôj + e A*, . 

Eliminating 6[ one gets

(4.43)

y” — ^ (1 ~ s) i^k + Aj)
x'I - e (1 - e) Afc - e 5j - e ~ ^ Xj g{q)

(1 - e)2 q-e^Aj
+(1 — 2e) Aj g[q) + (1 — e) 5j + e A*, . (4.44)

Now one notices that if the maps / and g are choosen such that

Aj = -Afc = A V j, /c (4.45)

then eq. (4.44) reduces to

y" = (1 - 2e) A g{q) + (1 - e) ôj + e Afc . (4.46)

We recall that the indices k and j appearing in eq. (4.46) are determined from eqs. 

(4.41)-(4.42).
The condition (4.45) means that all the branches of / hâve the same slope A 

and those of g the same slope A = —A. Under this condition the second iterate of a 

parallel to Ox
y = q ge[0,l], (4.47)

is itself a parallel to Ox,

y” = ( [1 - 2e] A g{q) + [1 - e] ôj + e A*, ) |[o,ij • (4.48)
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Here we hâve taken the restriction to [0,1] which amounts to satisfy eqs. (4.41), 
(4.42) but has the advantage to be self-defined and thus true for any k and j. One 
can define a mapping

G: [0,1] ^[0,1] (4.49)

taking the right handside of eq. (4.47) to that of eq. (4.48)

G ; 9 ( [1 - 2e] A9(ç) + [1 - e]5j+e Afc ) |[o.i] . (4.50)

Notice that since k and j run from 1 to M and g itself has M branches, this 
mapping has up to branches, which generally overlap each other, meaning that 
it is multivalued. The support of a given branch is the intersection of the interval 
which is mapped by this branch into [0,1] with the supports of g. Remark that for 
e —f 0, G{q) reduces to g{g{q))- This mapping is displayed in fig. 4.1 for e = | in 
the case where g is the Bernoulli map. Roughly speaking it is the superposition of 
two maps g {g{q)) translated vertically by a distance e.

G(x)

Figure 4.1; Mapping G of eq. (4.50) for e = 9 being the Bernoulli map.

Obviously one can reproduce this procedure for the segments of straight line 
parallel to Oy. The mapping

F : [0,1] ^ [0,1] (4.51)

taking the abscissa p € [0,1] of a parallel to Oy to the abscissa of the second iterate 
of this segment is

F : P ( —[1 — 2e:] A /(p) + [1 — e] Aj + e ) |[o,i] . (4.52)
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Now suppose we can find a set of points which is invariant under the mapping 
G and another one, possibly the same, which is invariant under the mapping F. 
This corresponds to identifying a Markov partition for the mapping G or F. We 
emphasize that these mappings are not the usual type of mappings one is considering 
in dynamical Systems theory since they are multivalued. Nevertheless it is a well- 
posed problem to look for a Markov partition. Such a partition then implies that 
there exists a set of segments parallel to one of the axis which is mapped to itself 
after two itérations of the coupled System $ of eq. (4.14). After just one itération of 

this set yields a new set of segments whose slope is (or the inverse in the case 
of F). This new set of segments is itself also invariant under two itérations of (4.14). 
As a conséquence, the union of these two sets is invariant under $. Since this is true 
in the direction x as well as in the direction y, we hâve a 2-d Markov partition for 
the coupled System $ of eq. (4.14). In the next sections we will construct explicitly 
such 2-d Markov partitions.

4.2.3 2-d Markov partitions for coupled dyadic maps

In this section we focus on piecewise linear maps with two branches (M = 2 in eq.
(4.12)). Our objective is to identify Markov partitions for the mapping G defined 

in eq. (4.50).
To start with, the condition (4.45) which is necessary for the mapping G to inake 

sense has to be satisfied. Hence

We want to remain with only one parameter, A, for the maps / and g, so we require 
first that the supports of the branches of both / and g are of length | and second 
that each branch maps one extremity of its support to zéro. Using eq. (4.12) one 

then obtains

Al = A2 — ““Al — ~f\.2 — A > 0 . (4.53)

— Ax -l- A

(4.54)
1

^(x) = <
Ax 0<x<-
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The parameter A satisfies

1 < A < 2 . (4.55)

The lower bound implies that the individual maps are chaotic and the upper one 
that no trajectory escapes [0,1]. Notice that for X = 2, g ïs the Bernoulli map. The 
coupled System also displays another parameter, the coupling constant e

0 < £ < ^ . (4.56)

The mapping G, eq. (4.50), writes here

G,{q) = A^(l — 2e)q + Xe 0 <q < 1— -£ —_A^(l-2e)

^2(9) = A^(l — 2e)q + X
2^ 0 <Q < 1-A£

A2(1-2£)

G{q) = < Gsiq) = A2(l - 2e)g - - 3e) 1
2A < Q < 1

2

GM ■■= A^(l - 2e)g - -2e) 1-3£
2A(1-2e) < Q < 1

2

g{ç-
D'

1
2 < q < 1 .

We now show that there exists a set of points which is invariant under G, and 
delimits thus a Markov partition for this mapping. In particular the points of the 
form

qk = — /c = 0, ...,m, (4.58)
m

constitutes, under a condition to be specified below, such a set. To prove this we 
hâve to show that a point qk of the form (4.58) remains after one itération of the 
mapping G of this form, generally with a different k. Notice first that a given point 
belonging to the support of G\ and to the support of G2 has two images (as a resuit 
of the overlapping of the branches) that will differ by the quantity Hence the 
latter has to be of the form (4.58)

A e 
2^ m

(4.59)

where e is a positive integer satisfying eq. (4.56). Secondly, for a point belonging at 
the same time to the support of G2 and to the support of G3 the différence in the 
images now implies that | also be of the form (4.58)

A n
2 m

(4.60)
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where n is a positive integer such that eq. (4.55) is satisfied. Notice that dividing 
eq. (4.59) by eq. (4.60) one gets

e = - . (4.61)
n

Third and last, the part A^(l - 2e)çfc appearing in eq. (4.57) also has to be of the 
form (4.58)

4,—d - 2-)— --- 
m? n m m

(4.62)

Now eq. (4.62) is to be satified for k = 0,..., m. The necessary and sufficient 
condition is that it be true for A: = 1

(l-2-) = p (4.63)

where p is a positive integer. The constraints (4.55) and (4.56) imply that

4.77,^
P < -V < 4 . (4.64)

So to proceed we hâve to show that there exists, within the appropriate ranges, 
integers e, n and m such that p is an integer. Solving eq. (4.63) for ^ one gets

(4.65)

Suppose the solution for e = lis n = n*,m = m*

n* = 1 + (4.66)

so that the parameters A and e take on the value

(4.67)

Now the solutions for e = 2, 3,... are n = en*, m = em*. Hence the parameters 
A and e are still given by eq. (4.67). Accordingly we can limit ourselves to e = 1 
and from eq. (4.64) to p = 1,2 and 3. The following table lists the solutions of eq.
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(4.66) for m < 10000.

P m* n* A* e*

2 4 4 2 0.25

2 24 18 1.5 0.055555

2 140 100 1.4286 0.01

2 816 578 1.4166 0.001730

2 4756 3364 1.4146 0.000297

3 8 8 2 0.125

3 30 27 1.8 0.037037

3 112 98 1.75 0.010204

3 418 363 1.7368 0.002755

3 1560 1352 1.7333 0.000740

3 5822 5043 1.7324 0.000198

Notice that the value A*, e* appearing in this table ail satisfy

e <
1
2 4Â ■

(4.69)

implying that the eigenvalues of the jacobian of this transformation are greater than 
one in absolute value, and thus that the mapping $ is expanding in ail directions. 
Let us also mention that there exists Markov partitions for G corresponding to 
chaotic repellers as is the case for instance for m* = 2, n* — 3 (A* — 3, e* = |).

4.2.4 Bernoulli and anti-Bernoulli maps for s = ^

In this section we consider in detail the case A = 2, e = |, for which the mapping 
G admits a Markov partition delimited by the points

A = 0,..,,4. (4.70)
4

Our aim is first to construct explicitly the 2-d Markov partition for the coupled 
System $ of eq (4.14). We then détermine the topological transition matrix and the 
transition matrix W of the generalized master équation which enables us to compute



85

explicitly the invariant density of the coupled System as well as time-dependent 
properties.

In section 4.2.2 we hâve seen that the first iterate of a segment

y = Qk (4.71)

is a collection of M segments of the straight line

1 -2e 
1 - £

(4.72)

where M is the number of branches of /. Here M — 2 and these segments coincide 
as can be seen from eqs. (4.36)-(4.37) because the map / has the property

/(^) =
1
- <x <l . 
2 - -

(4.73)

The following table gives the independent term of eq. (4.72) for each element 
delimiting the Markov partition.

q ^ a (a) ^ qAq)
l-E

0 0

1 1
4 3
1 2

0
2 3
3 1
4 3

2
1 —

3

(4.74)

Now the iterate of eq. (4.72) is the second iterate of eq. (4.71) which, by définition 

(eq. (4.50)), is given by the mapping G

y" = G{q,) = {çj . (4.75)

Notice that since G is multivalued l takes on a number of values which is equal to
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the number of supports of the branches of G that ç*. is on. Eq. (4.57) for G becomes

G{q) =

Gi(q) = 2, + i 

G2M = 2g 

Gz{q) = 2g - ~ 

G^tig) = 2g - -

0<ç<-

3
0<.<3

8 ^ - 2 
1 1
4^-2 

i < g < 1 .

(476)

This mapping is displayed in fig. 4.2 and leads to the following table.

q G,{g) ^2(9) ^3(9) <^4(9)

0
1 1
2 4

1 3 1
4 4 4

1 3 1
2~ 4 2
1
2+

1 1
2 4

3 3 1
4 4 4

1
3 1
4 2

(4.77)

Here means that we take the point 5 to be in the cell which is on its left whereas 
4+ stands for the right hand side.

Let us turn to the segments

x = Qk , (4-78)

the first iterate of which is

X =
1 — e

1 - 2e ^
X2 + ------- /(<7fc)1 — e

(4.79)
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G(x)

Figure 4.2: Mapping G of eq. (4.76). 

One has the following table.

Notice that the set of independent terms is the same as for g but because of the 
négative slope of / it is gone through in the reverse order. The second iterate of eq. 
(4.78) by $ is now given by the mapping F

x“ = F{q,) . (4.81)

It turns out that for A = 2 the mapping F and G are identical

F = G ifî A = 2 , (4.82)
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entailing that the points of eq. (4.70) also delimit a Markov partition for F and 
that the table (4.77) is valid for F as well.

We are now in the position to détermine the 2-d Markov partition of the full 
mapping $ of eq. (4.14). Let us dénoté respectively by Xk, Yk, Ui and Vi the 
segments contained in the unit square of the following straight lines

y=7 fc = 0,---,4
4

y=^x + ^ 1 = 0,1,2. (4.83)

From the tables (4.74),(4.77),(4.80) we know that the set of ail these segments is 
invariant under

$ : {X,, n, Uu y,} -> {Xk, Yk, Ui, Vi} k = 0,l, 2,3,4

/ = 0,1,2. (4.84)

X = —

X =

k
4 ’
1 / 
3^”^ 3 ’

The domains Si delimited by these segments are thus mapped onto each other under 
$ and constitute the éléments of the 2-d Markov partition (cf eq. (4.17)). This 
partition is displayed in fig. 4.3. The topological transition matrix can now be 
determined up to some permutations depending on the way we order the éléments 
of the 2-d partition. Notice that we need only consider the 22 éléments that are in 
the rhomb delimited by Ko, V2, Uq, U2 since it is the image of the unit square under 

$. Tables (4.74),(4.80) yield directly

$ : Xq —> U2

$ : X2_ -> Uo 

$ : X2+ —y U2 

$ : X3 f/l 

$ : X4 -> t/o

$ : Yô —> Vq

$ : Tl ^ Kl 

$ : K2_ K2 

$ : K2+ -> Ko 

$ '. Y3 —^ Kl

$ ; n K2 .

(4.85)

From the table (4.77) one deduces that the image of Ui is contained in two Xk- On 
the other hand the image of Ui restricted to one quadrant is a segment of just one 
Xk- The value of k can be determined from eq. (4.85). Indeed it suffices to find a 
point of Ui which is also on, say, X{ and Yj. Xk must then go through the image of
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y

Figure 4.3; 2-d Markov partition for the mapping of eq. (4.14) where g is the 
Bernoulli map, / the anti-Bernoulli map and £ = \-

Xi and Yj. Idem for Vi. With the following shorthand notation

RR = [0, ® [0, i]

RL = [0,l]^[ll]

= , (4.86)

one has

^ : Uo\rr —> X3 

^ '• Uo\rl X2

: Ui\rr Xi

^ : I'oUr Yi

•I* ■ YoIlr Y2

: 1^1 Uh —> Y3
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^ : U\\ll A'a $ ; V\\ll Yi

^ : U2\lr —> X2 <E> : V2\ri —> Y2

^ : U2\ll -> ATi $ : V2\ll ■ (4.87)

Consider for instance the element Si delimited by Vb, Yi, Uq, Xi. From eqs. 
(4.85),(4.87) it follows that

•ï* : {^oIhr, ^1, î/oIrr, A^i} -> {Yi, Vi, X3, Ui, } , (4.88)

which according to our numbering (see fig. 4.3) delimits the 3 éléments of the 
partition S7, Ss, S12. According to eq. (4.17) this yields the first line of the following 
topological transition matrix

/0000001100010000000000\ 
0000010000000000000000 
0000100000000000000000 
000000000001 1000000000 
0000000000000000100000 
0000000000100011000000 
0000000001000100000000 
0000000000000000110011 
0000000 000000001000100 
0000000000000000000010 

. ^ 0000000000000000001100 
0011000000000000000000 
0100000000000000000000 
0010001000000000000000 
110 0 110000000000000000 
0000000010001000000000 
0000001100010000000000 
0000010000000000000000 
0000000001100000000000 
0000000000000000010000 
0000000000000000100000 

VOOOOOOOOOOlOOOllOOOOOOy

(4.89)

Notice that it contains only 44 non-zero éléments. The transition matrix W of the 
generalized master équation (4.24) for pieeewise constant densities is given by eq.
(4.26),

W =
2 (4.90)
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where T stands for the transpose. Its eigenvalues are

\/2 1 i
l,± — ,±-,±-,0 . (4.91)

It is worth mentionning that there is a Jordan block of order 2 associated to the 
eigenvalue — Hence time corrélation functions are to be computed as discussed in 
Sec. 2.4. Note that for linear observables one has to resort to the transition matrix 
W given by eq. (4.28) which yields here

1 1 1
- Aaj Clji

0
3 1

-g -g a,.

0
1 3

-g

Its eigenvalues are in addition to eq. (4.91)

3 ^ 3 ^
8’ 16 ’ 16’ 16 ■

The eigenvector associated to the eigenvalue unity of eq. (4.91) is

(4.92)

(4.93)

c = col (1.2, 2, 2,3, 2, ^,2^,^, 2. ^,2,^, 3, 2. ^,2, 2,1) . (4.94)

It yields according to eq. (4.19) an analytical expression for the invariant density 
p{x,y) which is displayed in fig. 4.4. From eq. (4.94) one deduces that p{x,y) is 
symmetric with respect to both y — x and y = \ — x. This leads to the following 
expression for the invariant Td reduced probability density p[x)

p{x) =

8
3^
17 1
— X------
3 4
11 1
— X ------
3 12

1 19
— a: H--------

9 12
10--X + 2

p(l - x)

12 - 6 
1 / 1
6 4
1 / 5- < X < —
4 - 12
5 ^ 1
12 - 2

- < X < 1 .
2 - -

(4.95)
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Figure 4.4; Invariant probability density p{x,y) for the mapping of eq. (4.14) where 
g is the Bernoulli map, / the anti-Bernoulli map and s = ^.

It is displayed in fig. 4.5. Notice that although we are coupling two fully chaotic 
maps with uniform invariant density the resulting 1-d marginal is not uniform on 

[0,1].

4.3 Couple 1 map lattices

Our aim here is to consider a CML with an arbitrary number N of éléments. We 

propose the following CML

Z?*'=/i (4 +1 i^r-i+*ii) (4.96)
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P (x)

Figure 4.5: Invariant 1-d reduced probability density p{x) given by eq. (4.95) for 
the mapping of eq. (4.14) where g is the Bernoulli map, / the anti-Bernoulli map 
and e = T.4

where zf G [0,1], e G [0,1], n being the discrète time and i = 1,... ,N a site of a 
1-d ring. The maps fi hâve the following property

Ml + z) = fi{z) ^6[0,1]. (4.97)

As above we are interested in individual maps fi that are chaotic and such that no 

trajectory escapes [0,1].
In the next section we define reduced distribution functions and dérivé their 

évolution équations which take the form of a BBGKY type of hierarchy. We then 
show for a class of fully chaotic maps with uniform invariant density that the 1-d 
reduced probability density of the coupled System remains uniform for ail values of 
the coupling constant e

4.3.1 Reduced probability densities and BBGKY hierarchy

In the framework of a statistical description of the CML (4.96) the central object is 
the Perron-Frobenius operator which evolves the probability density pn{zi,..., 2/v) 
according to

Pn+l i^l ) • • • ) Pn) Pn (•^1 ) • • • > )
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— dyi ■ ■ ■ dVN Pn(yi) • • ■ ) Un) ^ — f\ (v\ + 2 [^2 + Vn]^ ^

.. .6 — fl (yN + - [yN~i + 2/1]^ j • (4.98)

Now since N - the size of the ring - is arbitrary the full probability density is a 
high-dimensional object, possibly infinite-dimensional. As a conséquence, one is 
interested in reduced distribution fonctions also called marginals

p^{zi,...,Zs) = j^dZs+i... j^dzN S = 1,.. .,N ~ 1 . (4.99)

For the sake of notation we shall not indicate s explicitly in the left handside of eq.
(4.99). Its value is clear from the number of arguments of p. In particular, for s = 1 
one has

P„(zi) = j^dZ2... j^dzN Pn{zu-.., z^) . (4.100)

The équations of évolution of these s-point distribution fonctions are obtained 
by integrating the Perron-Frobenius équation (4.98) for the full probability density 
over ail variables but z\,... ,Zg. One obtains in this way a hierarchy of équations, 
each involving a higher order reduced probability density

Pn+l ('^1 > ■ • • ) ^s) ” '^s Pn (■^1) • • ■ >

= j^dyi... dys dys+i dy^ p„ (2/1,..., y^+i, yyv)

5 ^^1 - /i (yi + I [2/2 + Vn]^^ ■ ■ - S (^Zs - fs (vs + 2 + 'Ps+i])) ’
(4.101)

where Vs is the s-point Perron-Frobenius operator. This hierarchy is of the type of 
the BBGKY hierarchy encountered in statistical mechanics [Ba75]. In the sequel we 
shall focus on the Td reduced distribution fonction whose évolution eqution is

Pn+i(^i) ^ Jj^y^ Jj ^^2 dyN p„(yi, y2, vn) (5 (^2:1 - fl (^yi + | [y2 + vn] 

Hence taking into account eq. (4.97)

(4.102)

Pn+l (i(^0 = E I// (/-i(zïj) I h h + yw], y2rVN^

+pn (^1 + fû\zi) - |[y2 -k yw], V2, yw) I X/i(Cc)(2i) , (4.103)

where /i„ dénotés the a-th monotone branch of /i and Cq its support.
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4.3.2 Invariant 1-d marginal for piecewise linear full maps

In this section we consider the case where the maps fi are piecewise linear full mapss 
with an arbitrary number of branches Mi > 1. For this class of maps, including for 
example the Bernoulli or the tent map, we show that the invariant 1-d reduced 
distribution function p{zi),

Vi p{zi) = p{zi) (4.104)

is uniform on [0,1] V e

p(zi) = X[o,i](^i) ■

To prove this let us assume that

(4.105)

pn{zi,Z2,ZN) XlO,l]{Zl)X{0,l]{Z2)X[0,l]izN) , (4.106)

which entails that
Pn{zi) = X[o,i](^i) • (4.107)

Notice first that of the two terms appearing in the right hand side of eq. (4.103), 
for any a, only one will contribute since both arguments ffj^(zi) — f [î/2 + Vn] and 
1 + /ü^(^i) - §[2/2 + Vu] cannot be in [0,1] at the same time (except when the first 
one is 0). Suppose now that Vt/2, î/at G [0,1] one of these arguments is in [0,1]. 

Hence, Va, using eq. (4.106)

j^dy2 J^dyN Pn (fuizi) - + î/n], 2/2, 2/n

+Pn (1 + - |[y2 + VnI V2, y N

It follows from eq. (4.103) that

= 1 .

Ç jy,

Now for a piecewise linear full map /i one has

1

Ç|/[(/ubi))l

Ml 1

(i)i

(4.108)

(4.109)

(4.110)

where is the slope of the k-th branch of /i- As a conséquence

Pn+l — X[0,l](-2l) • (4.111)
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It remains thus to show that V j/2, Un £ [0,1] there will be a yi in [0,1]. This is what 
we do in the rest of this section. Let us dénoté by 6 the quantity + | (j/2 + Un) 

which is the argument of /i in eq. (4.102),

^ = yi + I (y2+ yyv) (4.112)

Since the variables yi, y2 and vary from 0 to 1, 0 ranges from 0 to 1 + e,

0 < 9 < 1+ e . (4.113)

We shall distinguish the case 0 < 0 < 1 from the case 1 < 0 < 1 + e where use has 
to be made of eq. (4.97).

• 0 < 0 < 1 :

Substracting the quantity (y2 + Un) from 0 one gets the following inequalities

-£ < é>-|(y2 + yyv) < 1- (4.114)

Since the quantity which is bounded above and below is precisely yi and yi G [0,1], 

eq. (4.114) is to be replaced by

0 < 0 — - (y2 + y/v) < 1- (4.115)

This can be rewritten as

< i(»2 + !/«) < - . (4.116)
£ Z £

Now | (y2 + y^v) € [0,1] so that the lower bound is to be replaced by zéro and the 

upper one by 1 for 0 > e. One thus gets

1 / N ^ ^0 < 0 < e : 0 < -(y2 + yv) < -

ê: < 0 < 1 : 0 < - (y2 + yv) < 1
« ^

This means that for a given 0 as ^ (y2 + Vn) varies in the appropriate range there 
will be a yi in [0,1] (cf eq. (4.115)). Now 0 enters eq. (4.102) via the Dirac delta 
distribution. This entails that /i (0) = so that 0 itself is the preimage of Zi by 

the branch a of /i.
(4.118)
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Since /i is a full map such a preimage exists for any zi G [0,1] and is contained in 
[0,1]. It follows that given a G [0,1] eq. (4.117) becomes

0 < fu{zi) < e : 0 < i(y2 + y/v) < ~
< ^ ^ (4.119)

^ < 1 : 0 < -(ya + î/w) < 1

O 1 < 0 < 1+e :

Substracting — | (ya + Vn) from 9 one gets now

i-£ < 6-^{y2 + yN) < 1, (4.120)

which can be rewritten as

-(0-1) < \{y2 + yN) < -(0-i) + i. (4.121)
£ ^ £

In this expression the upper bound is greater than or equal to 1 so that it can be 

replaced by 1. Let us define 9' through

9'= 9-1. (4.122)

Eq. (4.121) becomes then

- < 1 (ÿ2 + ÿ«) < 1 . (4-123)
£ 2

where
0 < 0' < e . (4.124)

Now because of property (4.97) one has

/i(0) = /i(0-l) = /i(0')- (4-125)

It follows from eq. (4.102) that

ff = ■ ('‘■126)

Hence eq. (4.123) becomes

< ^(y2 + yw) < 1 (4.127)
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for

0 < fr^\zi) < e .

Combining eqs. (4.119) and (4.127) yields

0 < ^{y2 + VN) < 1 if 0 < /i~^(2i) < 1.

(4.128)

(4.129)

For a full map this is the case V a and Vzi G [0,1]. We thus arrive at the conclusion 
that VG [0,1] the variables y2, Un are both integrated over the whole interval 
[0,1], which is what was left aside to prove that the invariant 1-d projection of the 
full probability density is uniform on [0,1].

4.4 Conclusions

In this chapter we hâve constructed Markov partitions for two diffusively coupled 
piecewise linear maps enabling us to cast the Perron-Frobenius équation into a 
generalized master équation. We havé introduced a CML of the form

^r' = fi (^r +1 +*ii) i e i. (4-130)

with fi satisfying
fi{l + z) = fi{z) 2 G [0,1]. (4,131)

Here the lattice L is infinité or finite with periodic boundary conditions. Contrary 
to the diffusively coupled maps considered above, this CML has the nice property 
that the invariant 1-d marginal of the coupled System is uniform when the individ- 
ual piecewise linear maps hâve uniform invariant density. It can be written in an 
alternative form through the change of variables

x" = Dz" (4.132)

where the matrix D is given by

Dij — ôjj — (ôij—i -l- <5jj+i) î,j G L ■ 

In the new variables the CML (4.130) becomes

= M^?) + I

(4.133)

i e L . (4.134)
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This form is reminiscent of the standard diffusive coupling considered in Sec. 4.1 
eq. (4.9). It differs in two ways. First the domain of définition here is not (g)ieL[0,1] 
in the x but in the z variables which is smaller. Outside this domain there are new 
branches of the maps which ensure that the property (4.131) is satisfied. Secondly, 
there is no factor (1 — e) in front of fi in eq. (4.134). A conséquence of this is that 
summing over i the left and right hand sides of eq. (4.134) one gets an e-dependent 
right hand side which implies that there is nothing like the conservation of mass 
here contrary to the standard diffusive coupling.

It is remarkable that one can go from a représentation like eq. (4.130) to one 
like eq. (4.134) by a simple change of variables sinçe, at first sight, they seem to 
correspond to different physical pictures. Indeed, in (4.130) diffusion occurs first and 
then the new state is transformed by the local dynamics whereas the two processes 
occur in the reverse order for eq. (4.134).

Notice that this change of variables can be done for standard diffusive coupling 
as well provided one takes now the usual diffusion matrix. The interest is that 
*^ieL[0,1] in the z variables is invariant under the mapping and that the reduced 
distribution fonctions now invôlve intégrations in different directions. This results 
in objects that are in some sense less singular. However it is not sufficient to get 
uniform invariant 1-d marginal for the coupled System as is the case for the type of 
CML proposed here.

At présent only the 1-d projection of a coupled System involving one class of maps 
has been computed . It would be désirable to extend this work to phenomenologically 
richer maps such as the logistic maps as well as to higher order projections, in 
particular in connection with the possibility to set up reduced, mean field types of 

description, free of heuristic approximations.
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Chapter 5

Nonequilibrium thermodynamics 
of dynamical Systems: entropy 
production and phase space 
volume contraction

5.1 Introduction

Recently, a number of relationships linking phase-space dynamics to thermodynamic 
quantifies like entropy production and Onsager coefficients hâve been put forward 
[EvCoMo90, GaCo95, Ga96, Ru96]. In their general setting they are concerned 
with an initially isolated conservative System subjected subsequently to a dissipa- 
tive perturbation, describing the combined effect of an external constraint and of a 
thermostat. As such a System possesses a (generally multifractal) attractor it will 
undergo on average a contraction of the phase space volume,

J
lim In APft) = < 0 (5.1)

where fTj are the (mean) Lyapunov exponents [Ot93]. The rate of this contraction 
d In Ar(t) / dt is then defined by some authors as the entropy production of the 

dynamical System on the grounds of its positivity. Alternatively in certain types of 
thermostatted Hamiltonian Systems it is shown to be equal in the nonequilibrium 
steady State to the work per unit time performed on the System by the external con- 
straints, which is in turn formally identical to the expression of entropy production 
as given by irréversible thermodynamics [EvMo90].
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As well known phase space contraction is also given by the time dérivative of the 
Gibbs entropy,

Sg = - J dx p(x, t) In p(x, t) (5.2)

where x = {xj} dénotés the set of phase space coordinates, provided that the rate 
of change of the probability density p is evaluated from the Liouville équation,

ISSo ^ = T. <0- (5.3)
i

One is then led immediately to the paradoxical conclusion that in such Systems Gibbs 
entropy decreases without limit for long times and becomes eventually unbounded 
thereby precluding the existence of a steady state value, limj_>oo 5/ = —oo. This is 
to be related to the singularity of the invariant density ps, confined on an object 
- the attractor - whose dimensionality is strictly less than that of the embedding 
phase space.

Inasmuch as irréversible thermodynamics, in particular the distinction between 
entropy flux and entropy production, must be generated from a balance équation 
desçribing how entropy evolves in time, the resuit summarized in (5.3) seems to pre- 
clude the possibility to build a self-consistent thermodynamics of the above defined 
thermostatted Systems. It is indeed not clear why one can plainly use the expression 
of entropy production of classical irréversible thermodynamics, which finds its ori- 
gin in quite different assumptions such as local equilibrium and the Gibbs entropy 
postulate. One is thus led to inquire whether the connection between entropy pro­
duction and phase space volume contraction (or equivalently Lyapunov exponents) 
stipulated in recent literature is an intrinsic property, a matter of définition or the 
resuit of the particular algorithm devised for thermostatting the System. One might 
even argue that under the setting of eqs. (5.1)-(5.3) there is no place for entropy 
production at ail : as the System collapses toward the attractor it merely expériences 
a (négative) entropy flux, reflecting the fact that time going on its localization in 
phase space becomes increasingly sharper.

The difficulties summarized above are sufficiently compelling to warrant an al­
ternative approach and a complementary viewpoint. Our objective in the présent 
work is to outlinê a step in this direction accounting for the following features ;

- to provide a link between phase-space dynamics and thermodynamic-like quan- 

tities.
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- to be free of the singularities of the entropy pointed out in connection with 
eq. (5.3),

- to generate, in a self-consistent manner, a thermodynamic formalism bearing 
a direct link with the entropy production of classical irréversible thermody- 
namics.

The general formulation, based on the introduction of fluctuating forces along 
with the action of the dissipative perturbation, is laid down in Sec. 5.2. In Sec.
5.3 a balance équation for the information entropy is derived, from which two al­
ternative forms of (information) entropy production are identified. A more explicit 
form of these terms is derived in Secs. 5.4 and 5.5 for the particular classes of ther- 
mostatted and mesoscopic Systems respectively, leading to an explicit relation with 
thermodynamic entropy production. The main conclusions are drawn in Sec. 5.6.

5.2 Setting

In what follows we shall be concerned with Systems whose state vector x = (xj,..., x„) 
satisfies the following generic form of évolution équations

. ^ = F(x,^) + R(t) . (5.4)

The évolution operator F , the control parameter p and the stochastic forcing R are 
designed to account for the following situations ;

i) the évolution operator F is a dissipative operator, in the sense of

dh^‘ <0 t > to . (5.5)

It may describe the évolution of a set of macroscopie observables, or the évo­
lution of microscopie degrees of freedom of an initially conservative System 
put subsequently in contact with a thermostat and subjected to a dissipative 
perturbation removing it from equilibrium.

ii) the control parameter fj, monitors the thermodynamic behavior of the System,

fj, = He -t- h , (5-6)

fie being the equilibrium value and h the déviation from equilibrium.
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iii) the stochastic forcing R may

- be of external origin, its rôle being solely to regularize the singularities 
of the invariant density associated to the dissipative character of F,

- account for the thermodynamic fluctuations around the average values of 
the observables associated vvith the dissipative perturbation added to the 
initial conservative dynamics, in which case it should satisfy appropriate 
fluctuation-dissipation relationships,

- account for the interaction between the System and external réservoirs 
(beat baths, etc).

In either case, R will be modeled as a multi-Gaussian white noise,

im)) = 0
(R,(t)Rj(t'))=eQijâ(t-t'), (5.7)

Qij being a positive definite matrix and e a strength parameter.

Eqs. (5.4) and (5.7) define a Markov process of the diffusion type and induce a 
Fokker-Planck équation [DeMa62] for the évolution of the probability density p{x, t)

dp ^ d ^
Tt - "Çfe

d^p

dxi
d'^ P 

dxidxj

2 dxidxi
(5.8)

where C is the Liouville operator.
We will often be interested in the properties of eq. (5.8) in the ”weak noise” 

limit £ —> 0. It is well known that in this limit one may seek for solutions of the 

form [Va81]

P = Z ^ exp -H o(l) (5.9)

where Z is the normalization factor and (p is referred to as the stochastic potential. 
Substituting into (5.8) and keeping only dominant terms in e one obtains in the 

steady State

-.EQ
V

d(ps 9(ps

dxi dxj -EFi
d<t>,
dxi

(5.10)

It can be shown for large classes of Systems that 4>s and hence the invariant density 
Ps are smooth as long as e is not strictly zéro. This reflects the regularizing action 
of the stochastic forcing anticipated earlier in the présent section.
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5.3 The information entropy and its balance

As was stressed in Sec. 1.5 in a discrète State stationary stochastic process entropy 
can be defined uniquely once the Shannon-Khinchin postulâtes are adopted [BeSc93]. 
It represents the information (amount of data) necessary to localize the State of the 
System in a phase space cell of linear dimension 5 and is given by

= InPi (5.11)
i

where the index i stands for the State and Pi for its probability. As the resolution 
ô gets finer Pi tends to pô where p is the corresponding density. Eq. (5.11) shows 
then that Sj contains a singular part in In | , plus a regular contribution depending 
solely on p. As the singular part is independent of the dynamics it can be used as 
reference value and one obtains the continuons version of (5.11),

5/= — y dxp(x, f) In p(x, f) . (5.12)

Having a définition of (information) entropy Si and an évolution équation for p one 
can now dérivé a balance équation for 5/, identify entropy production-like terms 
bearing the signature of dynamics in phase space and compare them with the entropy 
production of irréversible thermodynamics. We first observe from (5.8) and (5.12)

that
dSi
dt = -/* +

d^p 
dxidxj

In p (5.13)

The right hand side of this relation can be transformed by performing partial in­
tégrations. Dropping boundary terms (a legitimate procedure since the probability 
density tends rapidly to zéro as (x( —> oo ) one obtains after some straightforward 
manipulations the following form of information entropy balance

dSj
dt j dxpdWF + J 1 dp dp 

p dxi dxj
(5.14)

The second term in (5.14) is positive definite on the grounds of the positive defi- 
niteness of the matrix Qij, while the first one has no definite sign. This suggests 
to identify the latter to (information) entropy flux and the former to (information) 
entropy production P/, given by the relation

Pi = f /dx^
^ ij ■> P

dp dp 
p dxi dxj

(5.15)
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A more explicit représentation of P/ can be obtained in the steady State and in 
the limit e <C 1 using expressions (5.9)-(5.10). We obtain

or, after a partial intégration,

P/= - dx pjdiv F =-div F°° = - ^ (Ji + 0{e) > 0 (5.17)

where ai are the Lyapunov exponents of the deterministic System (eqs. (5.4) in 
the absence of noise). We hâve thus shown that information entropy production as 
defined by (5.15) is equal to the négative sum of Lyapunov exponents or equivalently 
(cf. eq. (5.1)) to the rate of phase space volume contraction, plus a correction 
vanishing with the noise strength [NiDa96]. This resuit is rather remarkable since it 
would seem at first sight from (5.15) that P; should tend to zéro as e —> 0. The fact 
that it nevertheless gives a finite contribution in this limit refiects the non-analytic 
dependence of the probability density in e, eq. (5.9).

In short we hâve established, through P/, a link between thermodynamically 
inspired quantities and the quantifiers of the underlying dynamics in phase space, 
free of the difficulties outlined in the Introduction. Still, no connection with the 
entropy production of irréversible thermodynamics has been made at this stage 
since the distance from equilibrium has not been explicitly displayed. To achieve 
this we décomposé the diffusion term in the Fokker-Planck équation (eq. (5.8)) in a 
new way exhibiting the equilibrium distribution pe, using the identity

dxidxj P +
d dp

dXi dXj Pe
(5.18)

The information entropy balance, eqs. (5.13) and (5.14) now yields

= - [ dx\n P
dt J

^ d e ^ d (ainpe ^
- E Q^.^iP + ô EP

ij dxi \ dxj

d dp 
pe

-iy^Qjdxp(^\n^] (Aln^
2 « 2 P,J \dxj Pc

(5.19)
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We notice that the first, second and third terms in this relation are respectively 
of zeroth, first and second order with respect to the déviation from equilibrium. 
Performing partial intégrations as before one obtains

dSi
dt divF + ^ J2Qij I dxp

b

d In pe d\n Pe ^dlnpdln p^ 
dxi dxj dxi dxj

(5.20)

This new décomposition of the rate of change of information entropy features now 
a part P'j (the third term in the r.h.s.) which is both positive definite and of second 
order in the déviation from equilibrium, thereby fulfilling the principal condition 
required on entropy production. Neglecting terms of order higher than two by 
approximating

5p being the déviation from equilibrium, one obtains

On the other hand, the first term in the r.h.s. of (5.20) has no definite sign and 
contains, in principle, contributions of ail orders in the déviation from equilibrium. 
In the steady State dSi/dt = 0 and the contribution of this term and of the second 
one in (5.20) must cancel that of P[. The rôle of the second term in this balance is, 
then, to remove the contributions of ail but second orders in ôp contained in divF. 
We may therefore write, in the steady state

P' 1 = — div — (terms of Oth and Ist order in 5p) (5.23)

or (cf (5.17))

— (terms of Oth and Ist order in 5p) . (5-24)

In = In 
pe \ Pe

ô_p_

Pe
(5.21)

This establishes a connection between irréversible thermodynamics on the one side, 
and phase space dynamics on the other. At this stage this connection cannot be 
made more explicit, as our analysis encompasses a very wide class of dynamical 
Systems. In the next two sections more explicit forms of entropy balance are derived 
for the spécifie cases of thermostatted Systems and mesoscopic Systems.
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5.4 Thermostatted Systems

Thermostatted Systems hâve recently attracted considérable attention since they 
provide an interesting way to incorporate the nonequilibrium constraints in the 
form of an external "mechanical” force added to the équations of évolution of the 
microscopie degrees of freedom [Ho85, HoHoPo87, EvMo90, PoHo97].

To express the action of a thermostat in our formulation we décomposé the 
deterministic part F in eq. (5.4) into the sum of a contribution Fq = F(x,/ie) to 
which F reduces in the absence of nonequilibrium constraint (/i = 0 in eq.(5.6)) and 
of a contribution = ^Fi associated to the action of the constraint. Eq.
(5.4) becomes then

dx
dt

Fq (x) + hFi (x) + R(t) . (5.25)

The variables Xi now represent the coordinates Qi and moment pi of a System of 
particles in contact with a réservoir. The equilibrium part Fq together with the 
fluctuating forces R ensure that in the limit h = 0 the System is driven irreversibly 

to canonical equilibrium.
The Fokker-Planck équation associated to (5.25) reads

(5.26)

where the contribution of the diffusion part has been decomposed as in eq. (5.18). In 
equilibrium h = 0 and p = Pe- The second and third term in the r.h.s. of eq. (5.26) 
vanish then identically, entailing that the first term must also vanish. This imposes 
a relation between the parameters appearing in the functions Foi and the matrix 
Qij, which can be looked at as the manifestation of a fluctuation-dissipation type 
of theorem (we assume for simplicity that Qij is not affected by the nonequilibrium 

constraint). More explicitly, one has

- Pe = 0
, dxi

(5.27)

where the "effective” vector field 0i governing the dynamics around equilibrium is 

given by

4>i-Foi 2^ Qij ■ (5.28)
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Now, Eq. (5.27) must be compatible with the equilibrium limit of the full-scale 
(microscopie) Liouville équation in the absence of constraint

Pe ~ exp{-PH) , (5.29)

H being the total energy. We conclude that 4'i must hâve a symplectic structure 
and, in particular, be divergence-free,

div4> = 0 . (5.30)

The underlying dynamics associated with the drift term in eq. (5.26) is therefore 
phase space volume-conserving, and the modified diffusion term in this équation 
provides the proper way to account for the fluctuations around such an equilib­
rium conservative dynamics. Finally, the term in h in (5.26), expresses the non- 
equilibrium part of the dynamics, which will be inodeled as a dissipative (phase 
space volume-contracting) process,

dîTFT' <0 t > to . (5.31)

We corne now to the information entropy balance. Difîerentiating eq. (5.12) with 
respect to time and using eq. (5.26) we obtain

9 P 
dXj Pe

(5.32)

The new element is now that in isoenergetically thermostatted Systems the first term 
vanishes identically, owing to the conservation of the mean value of total energy H 
(cf. (5.29)). The remaining part of (5.32) is then automatically of second order in 
the déviation from equilibrium, in particular since the action of — on Pe
gives zéro : the zeroth and first order terms in (5.24) are therefore absent. We may 
give to this part a more explicit form by expanding the logarithm to first order in 
hôp = P — Pe and by performing partial intégration. Noticing that the action of the 
part in 4>i gives a vanishing resuit one obtains

(5.33)
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We thus recover the entropy production term P[, eq. (5.22), together \vith a more 
explicit expression of the remaining, entropy flux like terms, J), as compared to eq. 
(5.20),

~J'i = jdx ôpdivFi -dxÇFii . (5.34)

Here the first part represents the rate of phase-space volume contraction to the 
second order, whereas the second part can be viewed as the average of the work per 
unit time of the external forcings acting (tangentially) along the different degrees of 
freedom i. In the steady State

P'i = -J'i (5.35)

providing an explicit relation between irréversible thermodynamics and phase space 
dynamics.

As a first illustration of the foregoing we consider Brownian motion in an external 
field [DeMa62],

(jo)
m— = —Çv P eE -\- R{t) (5.36)

where m is the mass, e the charge and the coefficient Ç expresses the efîect of 
friction exerted on the particle by the host fluid, which acts like a beat bath at 
constant température T. The correspondence with the general form (5.25) leads to 
the identification Fq = (-C/m)u, F\ = The flux term J) in eq. (5.34) becomes

= / dveEvôp (5.37)
kl J—oo

where the integrand represents the work per unit time performed on the particle by 

the external force.
The Fokker-Planck équation corresponding to (5.36) can be solved straightfor- 

wardly, yielding , V 1 / '? « ___rp
(5.38)

/ m \W 2 meE
JËP'

where use was made of the fluctuation-dissipation relation [DeMa62, Va81] Q — 
Inserting into eq. (5.37) one obtains in the steady State

J'i CfcT ’ P'i -J'i C/cT
(5.39)

which is exactly the entropy production of irréversible thermodynamics for this 

System.
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It is worth noting that the ” effective” vector field 0 corresponding to this dy- 
namical System is trivial. Indeed, using the above given explicit forms of Pe and Q 
one finds from eq. (5.28)

,___C
^dv i 2kT

0 . (5.40)

This at first sight surprising resuit is due to the absence of inertial terms in the 
field-free limit of eq. (5.36) . The Fokker-Planck équation for this System reduces 
thus actually to the last two terms of eq. (5.26),

dp _ eE dp ÇkT d dp
dt m dv rri^ dv dv p^

(5.41)

A similar structure will arise in ail problems involving purely dissipative évolution 
laws.

We next consider the more involved case of the Sllod équations modelling shear 
flow [EvMo84], as applied to two coupled degrees of freedom :

dx

dt
= Vy

dvx
dt

= Fx- 'yvy - avx

(5.42)

Here x,y dénoté the coordinates and Vx, Vy the associated velocities (we take for 
simplicity m = 1). 7 stands for the shear, a accounts for the interactions with the 
réservoir and Fx, Fy are conservative forces of internai origin. We do not consider, 
at this stage, the fluctuating forces accompanying the dissipative perturbation.

The divergence of the vector field associated to eqs. (5.42) is

dx dv dvx di)y
------ 1—- ------- H------- ■ —2a .
dx dy dvx dvy

(5.43)

Requiring that the total energy | (yl + Vy + (J)j (with Fx = ^tc) remains con­
stant one finds that a is related to the nonequilibrium constraint 7 ,

a (vl + vl) = -7 {Fxy + Vx ■Wy) • (5.44)
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The equilibrium part of eqs. (5.42) consists thus entirely of "inertial” contributions 
and is described by a conservative vector field. It is the analog, for this problem, 
of the "effective” vector field (f) ( eq. (5.28) which contrary to the Brownian motion 
case is now non-trivial. The entropy flux term (eq. (5.34)) reads

J'i = —2a — — J dx dy dv^ dvy y^ - Q^y^ Sp (5.45)

or, using (5.44) and (5.35),

J'i = -2â = 27 (F^y + V:,Vy) / (vl + = -P'/ (5.46)

where the average is taken with ôp. The computation of this correction to Pe requires 
an explicit modelling of the fluctuating forces and hence of the diffusion part of the 
Fokker-Planck équation (5.26) and is beyond the scope of the présent work. Suffice 
it to observe here that the numerator in eq. (5.46) is nothing but the définition 
of the momentum flux of the System. Eq. (5.46) exhibits therefore the product of 
the average of this flux multiplied by the shear 7. This is just minus the entropy 
production of irréversible thermodynamics for this System. We hâve therefore here a 
clearcut connection between thermodynamic and phase space quantities in the form 
of a strict equality between entropy production and phase space volume contraction.

5.5 Mesoscopic Systems

We next turn to the case where x stands for a set of macroscopie observables and 
R for the thermodynamic fluctuations. In the small noise limit e —> 0 considered in 
Sec. 5.3 P is expected to be peaked sharply around the attractor of the deterministic 
(noiseless) évolution équations. We express this by decomposing x as

X = X-t-(5x , qirr 1 (5-47)
|x|

and by limiting the expansion of the rate fonction F(x, p) in eq. (5.4) around x to 

its linear terms,
5x = l(5x-kR(t) (5.48)

where

lij (5.49)
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Here x is the macroscopie State (average or more generally most probable value of 
the probability density) evolving according to

x = F(x,;u).

The Fokker-Planck équation induced by (5.48) reads then

dt = -E lijôxjp + ^2 Qt]
^ ijIJ dôxi dôxi d5xj

(5.50)

(5.51)

Inasmuch as the macroscopie steady State Xg is stable, eq. (5.51) admits a stationary 
solution in the form of a multivariate Gaussian distribution

p{5x,t) = exp
(27t)"/'

where the matrix g is given by [NiPr77]

lg“^ + =-Q

^ ^ pijôXiôXj 
ij

(5.52)

(5.53)

g being its déterminant.
So far we hâve not specified the thermodynamic status of our System and, in par- 

ticular, its distance from thermodynamic equilibrium. Operationally this distance 
is monitored by the control parameter p présent in the évolution laws (eq. (5.4)), 
which may account for the interaction of the System with external réservoirs and/or 
for the direct action of an external field. At equilibrium {p = pe) eq. (5.52) reduces 

to

Pe (SXe) = exp (5.54)
(27t)"/^

where is related to the déviation A5 of thermodynamic entropy from its equilib­
rium value due to a fluctuation through [DeMa62]

9ti =
d^AS

(5.55)
^dôxi dôxj ^

We are here interested in the linear response to a weak nonequilibrium constraint h,

P = Pe hSp -t- o{h'^')

U ^P = Pe + n < < 1. (5.56)
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As a rule, the effect of the constraint will be twofold :
(i) The macroscopie State x is shifted from the equilibrium value Xg,

X = Xg + hx^^^ + ... (5.57)

hence
5x = 5xg — (5.58)

Substituting (5.57) in eq. (5.50) and expanding around Xg and /Xg to first order in h 

yields

(5.59)x<» = -C‘

(ii) The matrix g and its déterminant g will deviate from their equilibrium values

g = gg + /ig(‘)

g = ge + hg^^'> (5.60)

as a resuit of the nonequibrium corrections to the Jacobian matrix 1 and to the noise 
corrélation matrix Q in eq. (5.53)

1 = lg + /il(^) + ...

Q = Qg + /iQ(‘) + ... . (5.61)

Carrying out these expansions s}'’stematically in eqs. (5.52) and (5.53) we finally 
obtain

(èr ^ ^ Pg . (5.62)

We are now in the position to evaluate the information entropy production P/, eq. 
(5.22). Adopting the Onsager définition of the thermodynamic force Xi associated 
to Xi,

X, =
dXS

E 9Îk^>^ (5.63)
dx •

and noting that the part of Q,j is twice the Onsager matrix Lij of phenomeno- 
logical coefficients [Va81] we obtain, to the leading order in the noise strength e

P'r = - + (5.64)
O

This is nothing but the Gibbsian form of entropy production of irréversible thermo- 
dynamics [Va81]. Notice that the factor ^ accounts for the extensivity of entropy 
production as it is proportional to the volume of the System.
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5.6 Conclusions

We hâve developed a thermodynamic approach to the class of dynamical Systems 
amenable to a Fokker-Planck type of description based on the balance équation of 
information entropy. Entropy flux and entropy production-like terms depending on 
the characteristics of the dynamics in phase space, particularly the rate of phase 
space volume contraction, hâve been identifled. Their connections with irréversible 
thermodynamics hâve been explored on two case studies pertaining to thermostatted 

and to mesoscopic Systems.

Our principal motivation for augmenting the deterministic description by the 
addition of stochastic forcings is that nonequilibrium constraints reflect the inter­
action of a System with external réservoirs. Such an interaction involves, as a rule, 
a reduced description of the réservoirs; it is therefore most naturally modeled by a 
dissipative term, in which case it needs also to be complemented by explicit considér­
ation of the fluctuations. This procedure which in many respects resembles classical 
coarse-graining leads, for free, to the regularization of the invariant probabilities and 
introduces a source term in the entropy balance, counteracting in the steady state 
the sink term which was the only one appearing in eq. (5.3). Furthermore, in the 
absence of the nonequilibrium constraint this description générâtes quite naturally 
the correct canonical equilibrium limit. This important condition, at the basis of 
the very concept of ”thermostatting”, is usually not fulfilled in the work reported 
in the literature where at equilibrium one obtains the microcanonical distribution. 
In this respect the case of the Sllod équations shouid be investigated further. In 
our view thermostatting shouid already be active in equilibrium, and this can only 
be achieved if the évolution operator F(x,/ie) is dissipative. It is only at the level 
of the "effective” vector field 4>, eq. (5.28), that the conservative character of the 
underlying microscopie dynamics will show up.

Future work in this area shouid aim at establishing the link between irréversible 
thermodynamics and phase space dynamics for more représentative Systems and on a 
still more explicit basis. For instance, in most realistic Systems, Lyapunov exponents 
and contraction rates fluctuate considerably along the invariant manifolds. The 
repercussions of these fluctuations on thermodynamic properties would certainly be 
worth elucidating. Of spécial interest are also are multivariate, spatially extended 
Systems possessing a large number of Lyapunov exponents. The extent to which ail 
the exponents contribute to macroscopie level properties like entropy production is
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largely unknown, and one might advance that only a few of them - presumably the 
slowest ones - would play an important rôle.



Chapter 6

Conclusions and perspectives

In this thesis we hâve been concerned with the probabilistic description of a wide 
class of dynamical Systems emulating a variety of situations of interest. The gen- 
eralized spectral décomposition of the Perron-Frobenius operator has been derived 
when it involves Jordan forms and a connection with transitions in the decay modes 
has been established. We hâve computed time corrélation fonctions for models of 
homoclinic Systems whose relevance is confirmed by experimental data and showed 
that they provide a characterization of the different types of homoclinic attractors.

We hâve also addressed the inverse problem of designing dynamical sj^stems with 
prescribed probabilistic properties. One-dimensional chaotic maps with arbitrary in­
variant density and corrélation fonction featuring one time scale can be constructed. 
It would be very useful to extend these results to corrélation fonctions with two time 
scales which are frequently observed.

Simple models of spatially extended Systems in the form of coupled map lattices 
giving rise to spatio-temporal chaos hâve been studied. In addition to having con­
structed Markov partitions for two coupled piecewise linear maps we hâve proposed 
a model for which the invariant one-dimensional reduced probability density for a 
lattice of arbitrary size can be computed. In this context, one direction of research 
is to explore the possibility of setting up reduced, mean field types of description, 
free of heuristic approximations for these Systems.

On the other hand, in this thesis we hâve attempted to bring new perspectives to 
an old problem of statistical mechanics which has the strange privilège to stimulate 
and nourish passionate discussions related to its foundations, particularly in con­
nection with irreversibility. Ever since the time of Boltzmann it has been customary 
to see the scientific community vacillating between extreme, mutually contradicting
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positions. To day, in one end of the spectrum one will find researchers asserting 
that the problem of irreversibility has found its definitive solution in the hands of 
Boltzmann, and that its connection with the complexity of the underlying dynamics 
is rather tenuous. In the opposite end other researchers point to the need to extend 
classical and quantum dynamics in order to incorporate explicitly irreversibility - a 
fundamental, everyday reality.

We hâve adopted a ”middle of the road” attitude which amounts to inquiring 
whether one can relate quantitatively the thermodynamic properties of a System at 
the macroscopie level to the characteristics of phase space dynamics at the micro­
scopie level, accepting at the outset full validity of the basic laws governing this 
dynamics. Starting from a probabilistic description a thermodynamic approach has 
been developed based on the balance équation of information entropy for the class 
of dynamical Systems amenable to a Fokker-Planck type of description. Entropy 
flux and entropy production-like terms containing information on the characteris­
tics of the dynamics in phase space hâve been obtained, and their connections with 
irréversible thermodynamics hâve been explored.

Future work in this area should aim at establishing the link between irréversible 
thermodynamics and phase space dynamics for more représentative Systems and on 
a still more explicit basis. Of spécial interest are multivariate, spatially extended 
Systems. The number of Lyapunov exponents of these Systems is very large, and 
one may wonder whether only a few "dominant” such exponents-presumably the 
slowest ones - would count for macroscopic-level properties like entropy production. 
Furthermore, in most real-world Systems Lyapunov exponents and contraction rates 
fluctuate considerably along the invariant manifolds. The repercussions of these 
fluctuations as far as irréversible thermodynamics is concerned would be worth elu- 

cidating.
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