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Chapter 1 - Introduction

1.1 Introduction to structural optimization

Since the I960’s, the design of mechanical components bas been greatly enhanced thanks to 
the development of numerical methods. Finite element softwares, for instance, are now of com- 
mon use in aeronautical, mechanical, naval and civil engineering. At the same time, efficient and 
fast optimization algorithms hâve arisen for solving various kinds of mathematical programming 
problems. Both trends gave birth to structural optimization, which aims at finding the best-fitted 
structure by modifying geometrical, material and/or topological parameters (the variables), the 
optimal solution being defined with respect to at least one criterion (the objective), and having to 
satisfy a set of requirements (the constraints) [PAPOO].

In this Work, the emphasis is mainly put on the optimization of mechanical components dur- 
ing the first stage of the design process, and it will be assumed that low cost reliable models are 
used (of course, this matter will be discussed thoroughly for the industrial applications studied at 
the end of the thesis). In fact, whereas lots of structural optimization techniques hâve been de- 
veloped to increase the performances at the end of the design process, fewer works hitherto are 
concemed with optimization during the first stage, though a small modification in the beginning 
can bring significant improvements to the final structure.

Therefore, before presenting the objectives (§ 1.2) and an overview (§ 1.3) of the thesis, de­
sign optimization is first replaced in the general context of structural optimization.

Structural optimization is traditionally classified in three families following the nature of the 
variables involved [BRA86] (cf Fig. 1.1) :

Fig. I.I : Distinction between design (a), shape (b) and topology (c) optimization [DUY96].
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• in design or sizing optimization, variables represent only cross-sectional dimensions 
or transversal thicknesses (the geometry and the topology remaining fixed) ;

• in shape optimization, the variables are parameters acting directly on the geometry of 
the structure (but with a fixed topology) ;

• finally, topological optimization handles variables which can modify the shape and 
the topology of the structure.

These categories are briefly illustrated below.

1.1.1 Design optimization

In the first approach - also known as “automatic dimensioning of structures” [DUY96] -, the 
only variables are cross-sectional dimensions or transversal thicknesses (the geometry and the 
topology remaining fixed). In trusses for instance, the areas of the cross sections of the rods play 
the rôle of design variables, while the objective is commonly to find the lightest structure which 
still satisfies a set of constraints (e.g. stresses and displacements must not overstep maximum 
levels : see [AZI02,GRO99]).

1.1.2 Shape optimization

In shape optimization, the variables are geometrical parameters defining the shape of the 
structure (the topology remaining fixed). In most works available in the literature, the parameters 
are the coordinates of spécifie points : the pôles. In 2D, these pôles define the contour of the 
structure as a set of curves, for instance by using Lagrangian, Bézier or B-splines interpolations 
[ AFO02,BRA84,ZHA92].

5 cm 5 cm

Fig. 1.2 : Shape optimization ofa support : définition ofthe initial geometry (lefi) 
and solution obtained after 5 itérations ofthe optimization process (right) [ZHA92J.
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The geometry can also be modelled directly via lengths of segments, radii, angles, etc., con- 
sidered thus as the design variables. This technique was illustrated by Zhang in the case of a 
support structure [ZHA92] : the objective was to minimize the mass without allowing the Von 
Mises stress to overstep a critical limit. The load case and boundary conditions are detailed in 
Fig. 1.2 (left). 10 independent variables are used, modelling the support geometry through 
lengths and arcs of circles. The structural analysis is performed thanks to a finite élément model, 
and the optimal solution found by Zhang is represented in Fig. 1.2 (right), illustrating a mass 
decrease of 69.6% in comparison with the initial structure. To perform the optimization, CON- 
LIN algorithm - based on the construction of convex linear approximations of the objective and 
constraints - was used for the computations.

1.1.3 Topological optimization

In topological optimization, the aim is to détermine the optimal shape of a structure by start- 
ing with a bulk of material, and progressively taking off the material which undergo less load- 
ings. Of course, the final structure must still satisfy the user-defined constraints (gener- 
ally related to the restriction of the maximum Von Mises stress) [DUY96,NAK01,KIM02].

53 mm<------------------------------------------- ^

Fig. 1.3 : Définition of the Michell truss problem [Boundary condition : the irmer circular hole is fixed]
(figure adapted from [REY99]).

Fig. 1.4 : Topological optimization applied to the Michell truss problem : 
results at itérations 6 (a), 42 (b), 75 (c) and 120 (d) [REY99].
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A classical benchmark of topological optimization, the Michell truss problem, is described in 
Fig. 1.3. Reynolds et al. solved it with the reverse adaptivity technique [REY99], which works as 
follows : once the initial finite élément problem is built, the method proceeds with a refinement 
of low (Von Mises) stress régions of the mesh by élément subdivision. Then, low stress subdi- 
vided éléments are removed and the process is repeated. The structures obtained after respec- 
tively 6, 42, 75 and 120 itérations of this process are represented in Fig. 1.4. At the 120*'’ itéra­
tion, only 8.8% of the whole (initial) area remains.

Topological optimization can also be achieved for trusses. For instance, Deb and Gulati de­
scribed a method to find optimal cross-sectional areas and topology of 2-D and 3-D trusses by 
using genetic algorithms [DEBOla]. Topological variables representing the presence (or not) of 
each élément in the configuration were introduced in addition to the design variables (i.e. the 
areas of the rod sections). The goal was to minimize the mass, while the stresses and displace­
ments had to stand within allowable values. Figure 1.5 shows a 3D example where the genetic 
algorithm converged to a 9-element truss (from a 39-element initial configuration).

2.225 kN I I 2.225 kN

Fig. 1.5 : Example of truss topological optimization : from a network of39 rods (left), 
the genetic algorithm converged to a 9-element truss (rig ht) [DEBOla].

Latest developments in shape and topological optimization combined with finite élément and 
boundary élément methods are collected in [MAC02].

1.1.4 Other issues

Structural optimization can be linked to other fields of computational mechanics, like error 
estimation for example [ODE03]. Indeed, when an optimization algorithm interacts with a struc­
tural model, it modifies the structure geometry at each itération and re-computes it. This raises 
the question of the model reliability (e.g. when the initial finite élément mesh is perturbated due 
to the modification of the geometry). In some applications, it can be taken into acount directly in 
the optimization scheme. For instance, in [LAC03], Lacroix and Bouillard use a coupled finite 
élément - element-free Galerkin (FE - EFG) method to improve the sensitivity analysis used in 
the optimization process, avoiding thus a mesh dégradation due to the évolution of the geometry 
at each itération.
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Beside the model vérification, another important aspect in structural optimization is related to 
the computational time. When the cost of the numerical model is high, it is profitable to use ap­
proximation methods. For example, in [VANOl], Vande Weyer used a mid-range design of ex- 
periments technique to build response surfaces, based upon the calculations of a set of points 
judiciously selected in the variable space [GOU99]. Then, instead of the complex model, the ap- 
proximate one is optimized.

1.1.5 Topic of this work : pre-design optimization

The traditional subdivision in three families (design, shape and topology optimization) has 
become somewhat rigid. Indeed, during the first stage of the design for instance, the optimization 
of a preliminary sketch could involve not only cross-sectional and transversal variables, but also 
geometrical, or even topological ones that would hâve been parameterized (as the number of 
holes in a mechanical part). That could be considered as an intermediate method, akin to design, 
shape and topology optimization.

In this context, design optimization has become synonymous with finding the optimal dimen­
sions of parameterized structures [OSY02] (where the parameters are not only cross-sectional or 
transversal variables). There are examples of design optimization in varions fields of engineer­
ing ; here are a few applications treated by optimization methods :

• concentric springs [OSY02] ;
• electromagnetic Systems [WIN95] ;
• pressure vessels [COE02] ;
• welded beams [COE02] ;
. reinforced concrète beams [SHIOO] ;
• Steel frames with semi-rigid connections [KAMOl].

Once the design optimization problem is mathematically formulated (in terms of objective(s) 
to improve and constraints to fulfil), it can be solved by an appropriate optimization algorithm : 
this will be discussed thoroughly in Chapter 2.

Consequently, the topic concemed in this work, namely the optimization at the first stage of 
the design procedure, will be referred to as “pre-design optimization” throughout this thesis : it 
will mean (implicitly) that geometrical, but also material and topological variables may be taken 
into account in the optimization scheme.

1.2 Objectives of this work

As mentioned above, in this work, automation and optimization of pre-designs are investi- 
gated.

1.2.1 Two approaches

To perform this task, two different approaches are encountered in the literature :

. optimization algorithms : after the parameterization of the problem, optimization al- 
gorithms may be used. They act like “black-box” algorithms in the sense that they do
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not use any particular knowledge of the problem, except mathematical information 
(as the dérivatives of the function in gradient-based algorithms for instance). An 
OverView of optimization algorithms is presented in Chapter 2 ;

• expert Systems : based on a set of rules, they include spécifie knowledge about a par­
ticular problem, collected among experts in a scientific field, and are therefore re- 
stricted to a few applications (see Chapter 5).

The scope of this thesis is to propose a novel method, which would take benefit of both ap- 
proaches ; being sufficiently general to be used for a large family of applications, it should still 
be able to incorporate spécifie knowledge about the problem involved.

1.2.2 Development of an original optimization method in two steps

Mechanical components can be divided in two categories : the simple parts (as screw bolts, 
joints, etc.) and the more complicated structures. In the former components, when the first 
sketches are devised “from scratch”, design and optimization are inextricably bound, whilst in 
the latter, the two stages can be distinctly separated. Fruitful discussion with engineers from 
Samtech s.a. and Techspace Aero led to the conclusion that the development of an optimization 
method applicable to complex structures (as valves, pomps, etc.) should thus be divided in two 
steps :

1. first, developing a tool to optimize the parametrical design of structures whose to­
pologies are already fixed. The idea lying behind this approach is very simple : to 
compare two different designs (i.e. with different topologies), one has to optimize 
both parameterized designs following the same criteria, to prevent from having an 
intrinsically “good” design ill optimized outperformed by a “worse” design correctly 
optimized ;

2. once the first step is accomplished, proposing a method to optimize a more general 
design, modelled by geometrical, material and also topological variables. As differ­
ent designs will be analyzed and inspected simultaneously, one way to reduce the 
search space and furnish a realistic solution is to incorporate expert rules (taking 
technological aspects into account) within the optimization process.

(a) Xs
■*-------- ►

Xi Xi

Fig. 1.6 : Examples of sheer design optimization (i.e. with only “dimensional” variables) (a) 
and of design optimization with topological variables (b).
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Both steps are illustrated in Fig. 1.6. The final goal is therefore to achieve design optimization 
with topological variables. To perform this task, the method proposed in this thesis should suc- 
ceed in finding optimal but also realistic solutions (in terms of technological requirements). As 
only the initial step of the design procedure is concerned, it is assumed that the objective func- 
tion(s) and constraints hâve a low computational time, which seems a reasonable hypothesis 
since they are generally issued from theoretical and experimental models.

1.3 OverView of the thesis

The thesis is divided in two parts : first, performing parametrical pre-design optimization, and 
then incorporating expert rules to optimize more general pre-designs.

Once the design is parameterized, a suitable optimization algorithm has to be selected. This is 
discussed in Chapter 2, where a classification of the main optimization methods is performed, 
followed by the reasons of using evolutionary algorithms (EAs) for pre-design optimization. The 
features of the standard EA are also described, and some applications in structural optimization 
are mentioned.

Then, since most industrial applications deal with multiple objectives and strong techniçal re­
quirements, the standard EA has to be adapted in order to tackle both multicriteria and con- 
strained aspects. After a review of the main techniques used to take those aspects into account, 
underlining the lack of methods specially devoted to the simultaneous handling of preferences 
and constraints, an original approach is proposed, called PAMUC {Preferences Applied to MUl- 
tiobjectivity and Constraints), presented in Chapter 3.

Afterwards, a procedure to validate PAMUC is discussed. First, single-objective constrained 
problems are treated to show PAMUC efficiency to find feasible solutions. Secondly, multiob- 
jective test cases are compared to the classical weighted sum method, thanks to a spécifie norm 
whose choice is debated thoroughly in Chapter 4.

Once PAMUC has been successfully validated for parametrical design, it can be extended to 
more general problems, i.e. dealing with topological variables. However, using a classical opti­
mization method could lead to designs which would be optimal but unrealistic for technological 
reasons (e.g. related to the machining and the assembly). Therefore, to generate solutions satis- 
fying also the technological constraints, one approach consists in incorporating expert rules 
within the algorithm. After a discussion of knowledge représentation by logical rules (as in ex­
pert Systems), and their possible insertion in an EA, an original method, called PAMUC II, is 
described, using the rules to repair unfeasible individuals among the members of the EA popula­
tion. Then, it is applied on several test cases and mechanical benchmarks, and numerical aspects 
(e.g. the computational cost) are discussed (cf. Chapter 5).

Finally, PAMUC (II) is applied to four valves designed by Techspace Aero for launcher Ari­
ane 5 to show its adequacy in solving real-life pre-design optimization problems (Chapter 6) ; 
general conclusions are drawn in Chapter 7.
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Chapter 2 - Evolutionary Algorithms Applied to 
Mechanical Design Optimization

2.1 Introduction

Once a mechanical pre-design is correctly parameterized - with a fixed topology - an effi­
cient optimization method has to be chosen. This constitutes the first step of the thesis.

Several approaches are available in the literature to handle optimization problems. Therefore, 
this chapter is divided in two parts : first, the different criteria upon which optimization problems 
are classified, as well as a brief overview of the main families of algorithms, are exposed (§ 2.2). 
Then, the emphasis is put on evolutionary algorithms (§ 2.3) : the reasons why they were se- 
lected, their working and some applications in engineering design will be discussed.

2.2 Classification of optimization problems and methods

A general optimization problem can be written as follows [FON95] :

(2.1)

(2.2)

(2.3)

(2.4)

where :
. = { X] X2 ... x„ } (vector of variables) ;
. Xi is the set of jc, (which may be continuons, discrète or integer) ;
• f(xf = {fl (x) f2 (x)... f„, (x) } (objectives) ;
• g(xf = I gi (x) g2 (x) ... gp(x) } (inequality constraints) ;
. h(xf = { hi(x) h2(x) ... h^(x) } (equality constraints).

min f(x)
X

g(x) >0,

s.L: -t h(x) = 0,

Xi € Xi for i = 1,..., n,

Note that henceforward bold letters represent vectors or matrices while plain letters stand for 
scalars. Optimization problems are classified upon varions criteria : •

• the nature of the variable sets : a variable may be continuons (e.g. a geometrical di­
mension), discrète (e.g. cross sections of beams are often available by discrète steps 
in catalogues) or integer (e.g. the number of layers in a composite material [SOROl]). 
There are often mixed variables in engineering problems (cf. [CAOOO, COSOl, SEN96, 
SHIOO]) ;
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• the nature of the constraints and the objective functions : they may be linear, quad- 
ratic, non linear or even non différentiable. For instance, gradient-based algorithms, 
based on the computation of the sensitivities, require the functions to be différentiable 
in order to compute their first-order (and sometimes also their second-order) dériva­
tives [FLE78,WRI99] ;

• the analytical properties of the functions, e.g. linearity in linear programming. Con- 
vexity or monotonicity can also be successfully exploited to converge to a global op­
timal solution [PAROO] ;

• the presence (or the absence) of constraints. Equality constraints are usually tackled 
by converting them into inequality constraints [DEBOO], using Eq. (2.5) (where the pa- 
rameters £j are chosen by the user) :

hj(x) = 0 £j -I h/x)\ >0 forj =7.....q; (2.5)

• the size of the problem : to remain applicable even when the number of variables is 
very large (more than about 10,000 for continuous problems), optimization algo­
rithms hâve to be adapted, because of limited memory or computational time 
[WRI99] ;

. implicit or explicit functions : in shape optimization for instance, when finite element 
models are needed to compute the stresses and displacements, the objective function 
(generally the mass) is almost always an implicit function of the variables. Therefore, 
the objective(s) and constraints are approximated thanks to a linear, quadratic or other 
(cubic, posynomial, etc.) model [FLE00,SAD00]. These approximations are usually 
built in order to exhibit spécifie properties, as convexity in the CONLIN method 
[REM99]. Neural networks may also be used to construct an approximation of the 
functions [RAFOl] ;

• local or global optimization : in single-objective optimization, this distinction is based 
on the following définitions (written - without limitation - in the case of minimiza- 
tion) :

• a point X* is said to be a global minimizer if (and only \f) f(x*)< f(x) for ail or g X 
(the whole design space) [WRI99] ;

Fig. 2.1 : Example of a 1-variable function with the global minimum and one local minimum.
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• a point X* is said to be a local minimizer if there exists a neighbourhood X such 
that f(x*)<f(x) for X e S. Of course a global minimum is also a local one.

Local optimization is used commonly with smooth fiinctions in order to find a local 
optimum. Note that when the functions involved are also convex, the local optimizer 
is also a global one. An example of a 1-variable function with the global minimum 
and one local minimum is illustrated in Fig. 2.1.

• single-objective or multiobjective : though the first studies in structural optimization 
used only one objective (most of time minimizing the mass), more and more studies 
deal with multiple criteria (mass, cost, spécifie performances, etc. ; see [ANDOO, 
COE96,DEB99b]). Indeed, in industrial context, optimal solutions must be good com­
promises between the different (and often contradictory) criteria (cf. [CVE00,MAS99, 
ZHAOla]).

To solve optimization problems, a huge amount of methods hâve been proposed in the litera- 
ture. They are briefly summarized below.

2.2.1 Local methods

Local methods are aimed to reach a local optimum, and offer no guarantee in finding the 
global one. The most common local methods are based on the computation of sensitivities. 
Therefore, they require the functions to be différentiable, and the variables to be continuons (or 
discrète). Nocedal et al. divided the main gradient-based algorithms in two approaches [WRI99] :

• in the line search strategy, the algorithm chooses a direction pk (e.g. the steepest- 
descent direction) and performs a search for a better point Xk along this direction (see 
Fig. 2.2). Each itération needs to solve the following one-dimensional minimization 
problem :

min f(Xk + apk). (2.6)
a

Fig. 2.2 : Principle of the line search strategy (with a 2-variable function f) : once a direction pt has been cho- 
sen, a I-dimensional minimization is performed along that direction (figure adaptedfrom [WRI99]).
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• in trust région methods, the gradient Vf(Xk) at itération k (and sometimes also the Hes- 
sian matrix B{Xk), i.e. the second dérivatives) is used to construct a model nik whose 
behaviour is a good approximation of the original function /, at least in a close neigh- 
bourhood of xt(cf. Fig. 2.3). Each itération consists in solving the sub-problem :

min mk(Xk + p), (2.7)
P

where Xk + p lies inside the trust région. Usually the model m* is defined as a quad- 
ratic function of the form :

mk(Xk + p) =f(Xk) + p^ Vf(xk) + Vi p^B(Xk)p. (2.8)

trust région

Fig. 2.3 : Principle of the trust région strategy (with a 1-variable function f) : at each itération, 
an approximated model mk is constructed in the vicinity ofxk (and reliable within the trust région) ; 

then, mk is minimized instead ofthe true objective function f (figure adaptedfrom [WR199]).

Varions instances of these techniques hâve been proposed in the literature [WRI99] : the BFGS 
algorithm, the conjugated gradient method, the sequential quadratic programming (SQP), etc. 
Though these algorithms were initially restricted to continuons unconstrained problems, they 
hâve been successfully extended to other fields of optimization :

• constrained optimization : Lagrange multipliers allow the user to take constraints 
(equalities and inequalities) into account [CIA98] ;

• discrète optimization : in this approach, the problem is solved in a dual space to deal 
with discrète variables [BEC00,HUA97,SEP86]. Some interesting applications in struc­
tural optimization (sizing of thin-walled structures, geometrical configuration of 
trusses, topological optimization of membranes or 3-D structures, etc.) are mentioned 
in [BECOO] ;

• integer or combinatorial programming : those problems can often be transformed in 
constrained continuons problems, for example by reformulating the “binary” con­
straints as follows :
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Xi = {0,1} <=^ Xi.(xi- 1) >0,0 <Xi<l Vi =1,..., n. (2.9)

Unfortunately, as mentioned above, ail algorithms based on the classical gradient techniques 
require the functions to be différentiable, which is often not the case in design optimization 
problems. Furthermore, even if the functions were différentiable, the risk is high to be trapped in 
a local minimum. Therefore, global methods seem more suited to solve general design optimiza­
tion problems. The main global approaches are summarized in the next section.

2.2.2 Global methods

Reaching the global optimum is an arduous task, which explains that varions techniques hâve 
been proposed to handle it [MAN99,VIS90,YOU01], The most popular ones are briefly described 
hereafter :

• Random search : in this basic (and time-consuming) technique, a large number of 
points JC/, X2,..., xn are randomly generated and their corresponding function values 
f(xi),f(x2),...,f(XN) computed ; the point Jc* endowed with the best function value is 
selected to be the solution [OZDOO] ;

• Approximation methods : instead of searching directly the optimum of the true fimc- 
tion, an approximated function is built in order to solve the problem more easily. This 
approximation can be a statistical function, or a response surface built upon a set of 
function values computed for a predefined sample of variables (by the design of ex- 
periments technique [GOU99,VANOl]). Neural network methods may also be used to 
approximate the objective function(s) and constraints [HUROl.RAFOl] ;

• Clustering methods : they can be viewed as a modified form of the standard multistart 
procedure, which performs a local search from several points distributed over the en- 
tire search domain. A drawback of pure multistart is that when many starting points 
are used, the same local minimum may be obtained several times, thereby leading to 
an inefficient global search. Clustering methods attempt to avoid this inefficiency by 
carefully selecting points at which the local search is initiated [FAS99] ;

• Metaheuristic methods : from the définitions collected in three dictionaries special- 
ized in mathematical programming, algorithms and data structures [GRE03, 
HOW93,NIS03], metaheuristics can be defined as general strategies which guide the 
search for optimal solutions in hard problems. In artificial intelligence, heuristic 
methods are non deterministic algorithms based on a set of rules of thumb that a hu- 
man would make following his/her intuition ; therefore, no guarantee is offered that 
the optimal solution will be found systematically. The prefix meta- is related to the 
level of abstraction of these techniques.

In evolutionary algorithms for example, it is implicitly assumed (but not proved) that 
when good potential solutions are matched, they generally produce better solutions. 
Besides, their use is not restricted to a narrow family of applications, but to a large 
class of problems [YAG96] ; hence they belong to metaheuristics.
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Additionally, lots of metaheuristics are inspired by an analogy with physical or bio- 
logical processes. Some of the most widespread metaheuristics in structural optimiza- 
tion are recapitulated below :

• Simulaîed annealing : this method dérivés from the annealing process in metal- 
lurgy, which consists of first raising the température T to a point where the atoms 
can freely move, and then to lower T to force the atoms to rearrange themselves 
into a lower energy State (crystallisation) [LAR88]. During this process, the free 
energy of the solid is minimized. By associating the objective function of an op- 
timization problem to the free energy of a material, an efficient search procedure 
has emerged. The cooling schedule is a crucial parameter of simulated annealing : 
indeed, if the solid is cooled too quickly, or if the initial température is too low, 
the solid will reach an amorphous State instead of becoming a crystal. In the lan- 
guage of programming, it means that the algorithm has converged to a local 
minimum [COE02a],

The basic simulated annealing algorithm functions as follows : a small perturba­
tion is applied to the starting point, which modifies its energy (i.e. its objective 
function) : if the change is négative (in a minimization problem), the new configu­
ration is better than the original, and is therefore accepted ; but if it were positive, 
the new point would still be accepted with a probability P given by Eq. (2.10) :

P = exp(-ÆÆT), (2.10)

where k is the Boltzmann constant, relating the température T to the variation of 
energy AE [LAR88]. This allows the algorithm to explore régions located outside 
the vicinity of local minima ;

• Tabu search : in this technique, at each itération, a feasible move is applied to the 
current point, accepting the neighbour with the smallest cost. Tabu search acts like 
a local search method, except that positions which seem not favourable may be 
allowed to prevent from converging to the same (maybe local) optimum 
[BLA98,FRA01]. Tabu search also forbids reverse moves to avoid cycling (the for- 
bidden movements are “quarantined” and compose the so-called tabu list [MACOl, 
VOU99]) ; •

• Ant colony Systems : they are based on the behaviour of real ants, observed by 
Gross et al. in laboratory in the following expérience (cited in [DOR99]) : a colony 
of Argentine ants were given access to a food source in an arena linked to the col­
ony nest by a bridge with two branches of different lengths, disposed in such a 
way that ants looking for food must choose between either branch or the other. 
After a transitory phase, most of the ants took the shorter branch. This can be ex- 
plained by the fact that ants, while going from nest to food and vice versa, deposit 
a Chemical substance (the pheromone) along the way. When an ant has to choose 
between two paths, it will instinctively be attracted by the path containing the 
larger amount of pheromone, and as the shorter branch is the smaller distance for 
the ants, they make the trip faster and therefore more pheromone is released there.
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The ant colony optimization algorithm is roughly based upon the observations 
made in this expérience, but with several adaptations following the problem to be 
solved [DOR99] ;

• Evolutionary algoriîhms (EAs) : they were originally separated into three fami- 
lies : genetic algorithms [GOL89], évolution strategies [BAC91,BAC93,MOR99] and 
genetic programming [YAN02]. Now, however, these techniques become doser 
and doser [COE99], and differ mainly in the coding of the variables and the rela­
tive importance given to each genetic operator. These methods are search tech­
niques which follow the Darwinian law of natural sélection or survival of the fit- 
test [BAC92,BAC96,GOL89] : in a random population of potential solutions, the best 
individuals are favoured and combined in order to create better individuals at the 
next génération. The implémentation of the standard EA, as well as theoretical as­
pects and applications, will be discussed in the next section.

As some identical procedures exist in different metaheuristic methods (e.g. the need of keep- 
ing in memory some data about previous results), Taillard et al proposed the use of the generic 
term adaptive memory programming to label the different families of metaheuristics mentioned 
above [TAI98]. Another aspect which is common in ail metaheuristics is the fact that they can be 
successfully combined to gradient-based algorithms to construct hybrid methods (cf. e.g. [ALOOl, 
DUL02]). In EAs for instance, a local search may be applied to improve the initial génération as 
well as the individuals obtained by recombination, to form the memetic algorithms [WIN95].

The choice of EAs for design optimization is discussed in the next section, followed by their 
implémentation and some examples of applications in structural optimization.

2.3 Evolutionary algorithms for design optimization

2.3.1 Why choosing evolutionary algorithms ?

For design optimization, the use of evolutionary algorithms seems very attractive, for the fol­
lowing reasons ;

• the nature of the variables : as mentioned in Chapter 1, design optimization problems 
may need the use of mixed variables (continuous, discrète and/or integer). This can be 
handled very easily in EAs [DEB98,REI97,ULU02], whereas gradient-based algorithms 
for instance are mainly devoted to problems with continuous variables ; discrète vari­
ables may also be used, but only in some spécifie applications [BECOO] ;

• the nature of the functions : as the fonctions (empirical formulas for example) in- 
volved in design optimization are often non différentiable, and sometimes discontinu­
ons, gradient-based techniques are once more excluded. Only 0-order algorithms 
systematically fit, because they require only the values of the fonctions, and not their 
dérivatives ; •

• exploration of the search space : as they work on a population of solutions instead of 
a single point (at each itération), EAs are less likely to be trapped in a local minimum. 
Goldberg also proved thanks to the schemata theorem [GOL89] that the way recombi-
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nation of individuals is performed allows the algorithm to explore widely the whole 
design space. EAs are thus very well suited for noisy and multimodal fonctions 
[KALOl].

Therefore, EAs are ideally adapted for structural optimization, as can be seen by the impress­
ing number of applications in engineering (see [BUR02] and other examples in § 2.3.3).

2.3.2 Description of the standard EA

The standard evolutionary algorithm (Std-EA) mentioned throughout this thesis is a genetic 
algorithm whose working is described in [MIC96a,BAC97]. It was implemented by the author in 
Matlab, and without additional procedures, it is aimed to solve single-objective unconstrained 
problems. Its basic features are briefly summarized below.

2.3.2.1 Flow-chart of the algorithm

The flow-chart of the standard evolutionary algorithm is represented in Fig. 2.4.

Fig. 2.4 : Flow-chart of the standard evolutionary algorithm (figure adapted from [MIC96a]).

After the random génération of the initial population, the individuals are selected following 
the value of their fitness function : the individuals with highest fitness values are more likely to 
be chosen to take part of the process of recombination. In the case of an unconstrained optimiza­
tion problem, the objective generally plays the rôle of the fitness function ; otherwise, a more 
sophisticated function has to be constructed to reflect correctly the quality of an individual (e.g. 
in constrained optimization, a solution with a poor value of the objective function but satisfying 
the constraints is often preferred to a unfeasible one endowed with a a better objective function).
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2.3.2.2 Coding of the variables

A crucial point in evolutionary algorithms lies in the coding of the variables. The variables of 
each individual of the population are coded in a chromosome. By analogy with genetics, the val­
ues of the variables are called the phenotype and the coding the génotype. Four different codings 
hâve been implemented in the Std-EA :

1. a (classical) binary coding [BAC97] : each variable is coded in a substring of bits whose 
number is related to the number of alleles (i.e. possible values) that the variable could 
take. This is illustrated in the case of mixed variables in Table 2.1.

Variables Type of variable Xi (Variation domains 
of xi)

Number of 
alleles

Substring size

Xj Continuons [0,10] 1024 (= 2*°) 10
X2 Continuons [0,10] 1024 (= 2'S 10
X3 Discrète {10; 12.5 ; 15; 17.5 }

<NII 2
X4 Integer {0;1} 2 (= 2') 1

Table 2.1 : Example of binary coding : construction ofa chromosome (4 design variables) [BAC97].

The chromosome of an individual is then constructed by concatenating the substrings 5, 
corresponding to each variable jc, (cf. Fig. 2.5) :

0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1

Jl____ LJ
S] S2 S3 S4

Fig. 2.5 : Example of chromosome for a four-variable individual (with binary coding) [BAC97J.

2. a Gray binary coding : the binary représentation as described above is widely used in the 
EA community, but it has some drawbacks. Indeed, it is commonly accepted that a coding 
should reflect as closely as possible the behaviour of the variables. For example, a small 
change in the value of the variable should lead to a small modification of the génotype. 
This is not systematically the case in binary coding, where subséquent alleles may hâve 
completely different chromosomes. Therefore, the Gray coding has been introduced, and 
is built in such a way that two subséquent alleles differ only ffom one bit [OSY02] (cf. Ta­
ble 2.2 for a 3-bit variable).

Allele Binary coding Gray coding
1 000 000
2 001 001
3 010 011
4 011 010
5 100 110
6 101 111
7 110 101
8 111 100

Table 2.2 : Binary and Gray codings for a 3-bit variable [OSY02].
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3. a fixed-point représentation [BAC97] : this coding is based on a décimal représentation ; 
each division of the chromosome corresponds to one figure, and the place of the décimal 
point is fixed. This is illustrated in Fig. 2.6 for a 2-variable individual.

. 1 division of the chromosome

3 9 4 5 6 1 8 6 1 0 2 4 6 1

______________ I_____________
xt = 394.5618 X2 = 6102.461

Fig. 2.6 : Fixed-point représentation for a 2-variable individual.

4. a real coding : when there are only continuons variables, a real coding is often preferred, 
because it is very close to the real search space [ANI02,OSY02]. In this représentation, each 
individual is thus coded as a vector of real values.

Though it has not been implemented in the Std-EA, it is also possible to hâve a mixed chro­
mosome représentation, combining different codings of the variables, as in the Genetic Adaptive 
Search method developed by Deb [DEB98]. Other représentations are possible, as long as they 
precisely describe the problem ; guidelines to build a suitable coding are available in [BAC97].

2.3.2.3 Création of the initial population

The first step of the Std-EA consists in generating randomly the initial population of N indi- 
viduals. A is a user-defined parameter called the size of the population.

2.3.2.4 Sélection

After the évaluation of the fitness function for each individual of the population, the sélection 
is performed. Two classical sélection schemes were implemented in the Std-EA [BAC97] :

1. the roulette wheel sélection : in this procedure, each chromosome has a given probability 
of sélection, which is a (monotonous) function of its fitness. In Fig. 2.7, the roulette wheel 
is symbolically represented for 5 individuals ii to is : each slot of the wheel has a size pro- 
portional to the probability - for the corresponding individual - of being selected.

Fig. 2.7 : Roulette wheel sélection
(example for five individuals ; the percentages indicate the probability of sélection of the individuals).

Chapter 2 - Evolutionary algorithms applied to mechanical design optimization 2-10



2. the tournament sélection : n, individuals (the knights) are randomly chosen among the 
previous génération (with n, < N), and compared following their fitness values. Then, the 
best individual is copied in the new génération [MIL95].

The sélection process is repeated until N individuals hâve been chosen. This procedure is 
called sélection with replacement [BAC97].

2.3.2.S Crossover

Once the individuals hâve been selected, they are divided in NU pairs of parents, and matched 
- with a user-defined probability - by the crossover procedure. In binary, Gray and fixed-point 
codings, three instances of crossovers were implemented in the Std-EA [HASOO] :

1. the 1-point crossover : two children are constructed by inverting the genes of their par­
ents from the (randomly determined) crossover site (see Fig. 2.8) :

Parent 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0
Parent 2 7 7 0 0 0 7 0 0 7 7 0 7 0 0 7 0 0 7 7 0 7 0 7

crossover site

Child 1 1 0 1 0 1 0 0 1 1 7 0 7 0 0 7 0 0 7 7 0 7 0 7
Child 2 7 7 0 0 0 7 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0

Fig. 2.8 : Illustration ofthe I-site crossover : 
two strings (the parents) and their offspring (figure adapted from [HASOO]).

2. the 2-point crossover : the procedure is the same as in the 1 -point crossover, except that 2 
crossover sites are randomly chosen ;

3. the uniform crossover : first, a binary string is randomly generated. Then, two children 
are constructed by inverting the genes of their parents following the value of the corre- 
sponding bit in the random string (see Fig. 2.9) :

Parent 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0
Parent 2 7 7 0 0 0 7 0 0 7 7 0 7 0 0 7 0 0 7 7 0 7 0 7

Random

String
1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0

Child 1 1 / 1 fl fl 0 fl 1 1 7 fl 1 fl 0 1 0 1 I 1 0 1 1 1
Child 2 7 0 0 0 1 7 0 fl 7 0 1 7 1 fl 7 fl 0 0 7 fl 1 0 0

Fig. 2.9 : Uniform crossover (for Child I, a value of 1 in the random string corresponds to a bit from 
Parent 1, and 0 corresponds to a bit from Parent 2, and vice versa for Child 2) (figure adapted from [HASOO]).

Chapter 2 - Evolutionary algorithms applied to mechanical design optimization 2-11



For real coding, the SBX (simulated binary crossover), proposed by Deb [DEB95,DEB96], was 
incorporated in the Std-EA. To compute two children and from two parents and 
the following technique is applied :

• create a random number u between 0 and 1 ;

• compute the following parameter :

where :

P =

(au ) i/(tjc+n

\l/(ric+l)

2-au)

a = 2-P -llc+l)

if u< a ',

otherwise,
(2.11)

(2.12)

(2)^ <n ),(x"
^ y '

(2.13)

In Eqs. (2.11) to (2.13), it is assumed that x!^^ < xf^*; modifications of the above for- 
mulae are easily made for x^’^ > x^^^. x and x" are respectively the lower and upper 
bounds of the variable, and rjc is a user-defined parameter (standard value used in 
[DEBOO] is rjc=\).

. the children solutions are then computed as follows :

=0.5 (2.14)

'=0.5 + (2.15)

2.3.2.6 Mutation

Mutation is a useful complément of crossover, for it enables to explore possibly undiscovered 
areas of the search space. Though more sophisticated mutation operators are mentioned in the 
literature [GUT99], for binary, Gray and fixed-point représentation, only the classical “flip” mu­
tation was implemented [BAC97] : with a user-defined probability, the value of one bit (or one 
division in décimal coding) is randomly changed.

In real coding, the parameter-based mutation operator is used [DEB95]. To compute the mu- 
tated solution, the following procedure is applied :

• create a random number u between 0 and 1 ;

. compute the following parameter :

S=\ -t + [^^ + (J-2u)(l-5)^'"^’ ifu<0.5, ^2 16)
\l-[2(l-u) + 2(u-0.5)(l-ô* otherwise.
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where :

ô =
mm [(x-x' ),(x“-x)] (2.17)

X -X

and Tj„, is the distribution index for mutation and takes any nonnegative value ; 

calculate the mutated child using Eq. (2.18) :

y = X + S( x“ - x' ). (2.18)

As in [DEBOO], the value of rjm is computed as foliows : 

ri„, = 100 + t,

where t is the current génération number. The mutation rate pm is given by :

/ t
Pm = —+ ------

n
fi-il
V nj

(2.19)

(2.20)

where tmax is the maximum number of générations allowed. More details about the SBX and 
parameter-based mutation operator can be found in [DEB95,DEB96].

After the operators of recombination (crossover and mutation) hâve been applied, for each 
pair of matched parents, the two best individuals among the four (i.e. among the two parents and 
the two children) are preserved to take part of the sélection scheme ; this ensures the algorithm to 
keep the best individuals during the générations.

2.3.2.1 Remarks

Other genetic operators (as niching, elitism or inversion) exist, and varions implémentations 
hâve flourished since the late 1990’s (see [COEOOd,HIN97,KOU02,LEI98]), but the Std-EA imple- 
mented in this study, albeit simple, is sufficiently general and efficient to be adapted to multicri- 
teria and constrained optimization, as well as to the introduction of expert rules, as it will be ex- 
hibited in the next chapters.

The different parameters of the Std-EA are summarized in Tables 2.3 and 2.4. It is important 
to notice that in EAs, the définition of the parameter values is crucial, and there is no systematic 
method yet to déterminé their optimal values : a tuning of these parameters has still to be done 
by the user for each application.

Parameter Définition or possible values
N Size of the population
Hgen Maximum number of générations
Type of sélection Roulette wheel or toumament

n, Number of individuals participating to a toumament (< N) (when 
the toumament sélection is performed)

Pc Probability of crossover {0<Pc< 1 )
Table 2.3 : List of parameters of the Std-EA not depending on the coding.
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Parameter Définition or possible values
Coding Binary, Gray or décimal coding Real coding
Type of crossover 1 -site, 2-site or uniform SBX
Type of mutation Flip Parameter-based mutation

Pm
Probability of mutation (defined 

by the user, with 0 < p„, < 1 )

Probability of mutation 
(fonction of the génération 
number t : cf. Eq. (2.20))

Hc - Distribution index for 
crossover (> 0)

TJ,„ - Distribution index for 
mutation (> 0)

Table 2.4 : Ust of parameters of the Std-EA depending on the coding.

2.3.3 Miscellaneous examples of applications in engineering

The robustness of EAs has been exploited in a broad family of applications : this section prés­
ents a few examples of mechanical problems successfully treated with EAs :

• in [JEN97], the volume of a multistorey frame with truss-supported hangers is mini- 
mized by acting on geometrical variables (cross sections of beams and columns and 
lengths of structural éléments), while constraints are defmed following BS5950 
(which is the principal code for the design of structural steelwork in the UK) ;

• Matous et al. use genetic algorithms to increase the performances of composite lami- 
nated structures [MATOO] ;

. Moreau-Giraud et al. study in [MOR02] a coupling with a bolted rim : a torque is 
transmitted by adhesion using bolts placed at a certain radius. The (multicriteria) 
problem consists in minimizing the radius, the number of bolts and the torque ;

• Fériaux et al. proposed a method based on genetic algorithms to optimize the shape of 
a nozzle which satisfies a prescribed pressure distribution on its boundary for a given 
flow condition [PEROl] ;

• in [LAG02], two space frame structures are treated, where the breadth, the height and 
length of the web as well as the flange of I-shaped cross sections are the design vari­
ables, the objectives being the mass of the structure and the solution having to satisfy 
Eurocode 3 ;

• in [FON95a], a low-pressure spool speed governor of a gas tubine engine is optimized ;

• Jha developed an integrated computer-aided optimal design method of a plain milling 
cutter [JHA95] ; •

• Pham developed an evolutionary method to optimize Chemical engineering processes 
as plug-flow reactors, batch processes, etc. [PHA98] ;
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. in [WIN95], many applications are collected, in fields like aerodynamic design, aircraft 
control, computational fluid dynamics, etc.

These selected examples illustrate the growing place that EAs hâve taken in engineering op- 
timization thanks to their robustness, adaptiveness and efficiency. However, to apply EAs more 
particularly to pre-design optimization, the handling of multicriteria and constrained aspects has 
to be dealt with. This is discussed in the next chapter.
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Chapter 3 - Multicriteria Optimization in 
Evolutionary Algorithms

3.1 Introduction

Though lots of optimization studies deal with only one objective, this approach is often not 
realistic for industrial applications. More and more real-life cases need several objectives to be 
handled simultaneously, for instance minimizing both the mass and the cost of a mechanical 
structure, - which can be a dilemma, e.g. when specially machined components are lighter but 
more expensive than other components, heavier but with standard pièces. Another important 
aspect for the designer is to obtain a product which satisfies ail the constraints, i.e. ail the techni- 
cal requirements (related to the mechanical working of the structure, its résistance, etc.).

Therefore, after recalling some définitions essential to fathom multiobjective optimization 
(§ 3.2), this chapter focuses on multiobjective methods implemented in EAs (§ 3.3), and par- 
ticularly multicriteria decision aid methods (§ 3.4). Then, the handling of the constraints is in- 
vestigated (§ 3.5). Finally, after these bibliographical aspects, a new method is proposed, PA- 
MUC, aiming to deal with both preferences and constraints in EAs (cf. § 3.6).

3.2 Theoretical aspects about multiobjective optimization

In industrial applications, several objectives are often pursued simultaneously (e.g. minimiz­
ing the cost and the mass of a mechanical structure, and maximizing a performance indicator at 
the same time). The formulation of general multiobjective (or vector) optimization problems can 
be written as follows :

min f(x)
X

g(x) >0,

s.L: -< h(x) = 0,

Xi € Xi for i = 1.....n.

(3.1)

(3.2)

(3.3)

(3.4)

where :
. Xi is the set of Xj (which may be continuons, discrète or integer) ;
• f(xf = [f](x) f2(x)... fn,(x) J (m objectives) ;
• g(x)^ = I g] (x) g2 (x) ... gp (x) J (p inequality constraints) ;
. h(xf=[h](x) h2(x)... hq(x) ] (^ equality constraints).

Here are a few définitions essential in multiobjective optimization [EHR97.THI03] :
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• Strict Pareto dominance : a design vector u is said to strictly dominate v (u >->- v) if and 
onlyifV/e {1,..., m}, m, < v,-;

• Pareto dominance : a design vector u is said to dominate v (m v) if and only if V / e
/w}, M, < V, and for at least one / e {1,..., m} ; m, < v,;

• Weak Pareto dominance : a design vector u is said to weakly dominate v (m > v) if and 
onlyifVie {1,..., m}, m, < v,-;

• Incomparability : two design vectors « and v are incomparable if neither u > v nor v > u ;

• Pareto optimality : a design vector x* e F is Pareto optimal if and only if there exists no
other X e F such that :

fi(x)<fi(x*) for i= 1,..., m, (3.5)

with/(x) < fi{x*) for at least one objective i. F is the feasible domain defined by :

F = {X e X \ gj(x) > 0 for j = 1,..., p andhk(x) = 0 fork = 1,..., q }. (3.6)

. Pareto set : the set of ail the nondominated solutions is called the Pareto set P :

P* = { X* e F \ ^ xe F such thatx > x* }. (3.7)

. Pareto front : the image of the Pareto set P* in the objective function space is called the 
Pareto front {PF). Figure 3.1 represents the Pareto front for a minimization problem. It is 
also called the trade-off surface.

Fig. 3.1 : Pareto front PF (dotted line) in a 2-objective minimization example (figure adaptedfrom [ COEOla]).

3.3 Classification of multiobjective methods implemented in EAs

As the solution is generally not unique in vector optimization, the user has to provide addi- 
tional information about his/her préférences in order to find the optimum solution. Three differ­
ent approaches are available in the literature [VAN98,VAN99,zrr00] :

One should be very carefui about the fact that these définitions of >■ and >= are written for a minimization problem, 
which explains the “opposite” signs (e.g. « >->- v when < v, V /).
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• preferences may be used at the end, when the Pareto front bas been completely determined (a 
posteriori methods) ;

. preferences may be used during the optimization process, in an interactive way (progressive 
methods) ;

• preferences may be included since the beginning of the search process (a priori methods) : 
the user has to assign a weight to each criterion, or at least a ranking of the m objectives.

A priori methods Progressive methods A posteriori methods

User ------► Preferences Search ◄—► User Search forthe
(Weights, ranking, etc.)

1
Pareto front 

1
▼

Search
1

Nondominated
set
L User’s
▼ preferences

Solution(s) Solution(s) Solution(s)

Fig. 3.2 : A priori, progressive and a posteriori methods for multiobjective optimization.

Figure 3.2 symbolically illustrâtes these three approaches. Multiobjective methods combined 
with evolutionary algorithms [ZlT99a] are briefly presented below, before focusing on a priori 
techniques.

It should be noted that the terms “multicriteria” and “multiobjective” are often synonymous in 
the literature. However, in this work, as suggested in [COE02a], the expression “multiobjective 
optimization” will refer solely to the presence of multiple objectives, while “multicriteria optimi­
zation” will imply the use of an additional procedure to deal with the user’s preferences.

3.3.1 A posteriori methods

In a posteriori methods, the main step consists in drawing up the shape of the Pareto front. 
There are varions methods to fmd out the nondominated solutions using evolutionary algorithms 
(see [COE02a ,VAN00a]). As three of them (VEGA, MOGA and NSGA) play an important rôle in 
multiobjective optimization and will be mentioned again in the following of the thesis, their for­
mulation will be briefly described below.

The first a posteriori evolutionary method, VEGA (Vector Evaluated Genetic Algorithm) was 
proposed by Schaffer (cited in fVANOOa]) : in this approach, the population is divided in m sub­
populations (where m is the number of objective fonctions). Then, during the sélection step, par­
ents of each sub-population are chosen only according to the relevant objective. After that, the 
sub-populations are mixed together and crossover and mutation are performed on the whole 
population (cf. Fig. 3.3).

VEGA is a criterion sélection technique, because fractions of population are selected upon 
separate objective performance [COE02a] ; but most of a posteriori methods are based on the con­
cept of Pareto sampling, whose idea was first proposed by Goldberg [GOL89]. He suggested the 
use of nondominated ranking and sélection to move a population towards the Pareto front. A
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variation of this approach was proposée! by Srinivas and Deb [SRI94] in the famous Nondomi- 
nated Sorting Genetic Algorithm (NSGA), which ranks the individuals according to nondomina- 
tion, as illustrated in Fig. 3.4 for the minimization of two objectives. Each layer is composed of 
individuals having the same rank, hence the same fitness value, and a sharing procedure 
— decreasing the fitnesses of individuals which are close one to each other in the design space — 
is performed in order to avoid a prématuré convergence towards a particular région of the search 
space.

Individual 1 1®'sub­
population

Individual T Individual 1"

Individual 2 Individual 2' Individual 2"

w
sélection of the m 

sub-populations

w
mixing of the m 

sub-populations

W
crossover 

and mutation
sub­

populationIndividual N Individual N Individual N"

Population m sub-populations The m sub-populations New population
(total size = N) are created are mixed together

Fig. 3.3 : Description ofVEGA : the /* sub-population is created by selecting the best individuals 
following the objective function ; then, the m sub-populations are shuffled, and crossover and

mutation operators are applied to create the new génération (figure adaptedfromjVANOOa]).

Fig. 3.4 : Description ofNSGA (in a minimization problem) : ranking of the population 
w.r.t. nondomination (figure adaptedfrom [SRI94]).

Another prévalent a posteriori method is the Multi-Objective Genetic Algorithm (MOGA), 
proposed by Fonseca and Fleming, where the rank of an individual corresponds to the number of 
chromosomes in the current population which dominate it [FON95,PUR01]. For instance, if an in­
dividual x, (at génération t) is dominated by individuals, its rank is :

rank(Xi,t) = 1 + pl'K (3.8)
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Then, the fitness function is evaluated according to the following rules :

• sort population according to rank (nondominated individuals are given rank 1 ) ;
• assign fitness to individuals by interpolating from the best (rank 1) to the worst (rank rirank 

< N, where N is the size of the population) ;
• average the fitnesses of individuals with the same rank, so that ail of them are sampled 

with the same rate.

Recent advances in a posteriori techniques include CMEA (Constraint Method-based Evolu- 
tionary Algorithm [RANOl]), NPGA2 (Niched-Pareto Genetic Algorithm 2 [ERIOl]), NSGA-II 
(Nondominated Sorting Genetic Algorithm-II [DEB02a]), PAES (Pareto Archived Evolution 
Strategy [KNOOO]) and SPEA2 (Strength Pareto Evolutionnary Algorithm 2 [ZIT99,ZIT01]).

Once the search process is over, the user can choose a solution among the nondominated 
points. This generally requires a preliminary treatment of the solutions, which in some cases may 
be computationally expensive. For example, when lots of solutions hâve been found on the Pa­
reto front, a filtering must be performed, to select a représentative subset of the nondominated 
points in order to facilitate the choice for the user [OSY02] (cf. Fig. 3.5).

fl
A

i

P
i

« 98 nondominated solutions (without filtering)

» 20filtered nondominated solutions

fl

Fig. 3.5 : Process of filtering ofthe nondominated solutions (in order to keep a représentative 
subset of objective vectors, 20 solutions are retainedfor the user) (figure adaptedfrom [OSY02]).

3.3.2 Progressive methods

Though some methods hâve been developed since the 1970’s to use information from the user 
within the search process, like the Surrogate Worth Tradeoff (SWT), or more recently Jahn’s, 
Geoffrion’s, Fandel’s [COL02] or Tappeta’s [TAP99] methods, Coello [COE02a] underlined that 
there is extremely few works dealing with interactive methods implemented in EAs, since they 
require an important investment of time from the decision maker.
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3.3.3 A priori methods

Whereas a posteriori techniques aim to détermine the shape of the whole Pareto front, and let 
the user décidé which solution to retain, the key idea in a priori methods is to incorporate préfér­
ences since the very start of the search process, by a ranking of the objectives, or more com- 
monly through weights assigned by the decision maker to each criterion.

This can be very useful in particular when the user already has a strong idea about his/her 
preferences about the objectives, or when the number of objectives exceeds three (which makes 
difficult and less intuitive the choice between the nondominated solutions). As a matter of fact, 
even with 2 or 3 objectives, making a choice after the détermination of the trade-off surface is a 
complex task, generally requiring a preliminary treatment of the nondominated solutions, as the 
filtering indicated above.

Coello also noticed that there is very little work in which the preferences are explicitly han- 
dled in the evolutionary multiobjective literature [COEOOb]. Therefore, in the scope of this thesis, 
the emphasis is put on using preferences since the beginning of the search process.

Even if it may seem redundant, it is important to dwell on the fact that there is no point in us­
ing systematically (i.e. for ail multiobjective problems) either an a priori or a posteriori approach, 
or in deciding which approach is the better : the method selected by the user must be chosen with 
respect to his/her needs.

Here are the most popular a priori methods, and some of their implémentations in EAs 
[FON95b,HOR97] :

• lexicographie ordering : the user has to rank the objectives following their relative impor­
tance [COE02a]. No weight is used. The optimum is thus found by minimizing the objective 
functions, starting with the most important one and proceeding according to the predefined 
order of importance. The main limitation of this approach is that when the number of objec­
tives is high, it tends to optimize the most important ones. Furthermore, no quantitative pref­
erences can be added to the process. This explains the low number of studies dealing with 
lexicographie ordering in EAs [COE02a] ;

. weigthed sum method : this is with no doubt the most popular a priori method in the EA 
community, and also among design engineers. The m objective functions are aggregated into 
one, as follows [OSY02] :

m
f(x) = ^ W,. fi(x), (3.9)

where the weights are such that :

m
(3.10)

Chapter 3 - Multicriteria optimization in evolutionary algorithms 3-6



A thorough collection of applications of linear aggregation of objectives techniques imple- 
mented in EAs is available in [COE02a] ;

• min-max method : the multiobjective problem is transformed into a single-objective problem, 
with [OSY02] :

(3.11)

where/;^ is the separately attainable minimum of the objective (variants of this technique 
adapt the formulation in order to deal with fj’ equal to zéro), w, are weights and / is the ob­
jective fonction to be minimized. In [BALOl] for instance, a min-max fitness fonction is used 
to optimize future land use and transportation plans for a city ;

• target vector technique : the multiobjective problem is replaced by a single-objective prob­
lem where the goal is to minimize f*(x) [COE02a] :

f*(x) = \[f{x)-T]W-^ (3.12)

where T is the target vector defmed by the decision maker, W a weighting matrix accounting 
for different scales of sizes between the m goals, and a is generally equal to 2 (Euclidean 
distance). The most popular variances of this technique are the goal attainment and the goal 
programming techniques [COL02].

Coello présents some examples of target vector techniques incorporated in EAs in [COE02a] ; 
for instance, Deb uses goal programming for a welded beam design, in order to minimize 
both its cost and end deflection [DEBOlb].

Although the methods presented above are widespread in the EA community, and generally 
easy to implement in standard EAs, there are also spécifie methods - based on the multicriteria 
decision aid field - to pay heed to the user’s preferences. They are discussed in the next section.

3.4 Multicriteria decision aid methods implemented in EAs

3.4.1 Introduction to multicriteria decision aid

This section présents some theoretical aspects necessary to understand the choice of the mul­
ticriteria method to implement in the EA for pre-design optimization. One of the scopes of mul­
ticriteria decision aid is to rank a set of potential solutions or candidates (called the actions) fol- 
lowing several criteria {Gi, G2, ...}. Faced to two actions a and b, a décider will react in one of 
the following ways [VIN89,RUD01a] :

• a 1 b : indifférence between a and b ;
• a P b : a is preferred to b ;
• b P a : b is preferred to a ;
• a R b : a and b are incomparable.
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These three relations {P, I, R} are sufficient to form a preference structure, under the condi­
tion that P be asymmetric, I reflexive and symmetric and R irreflexive and symmetric [ROY93]. 
Every preference structure can be rigorously characterized by the définition of the relation S :

(a S b) iff (a P b) or (a 1 b). (3.13)

A total or complété preorder is defined by the fact that y a, b and c pertaining to the set of 
actions A, Eqs. (3.14) and (3.15) hold.

1
 (a S b) or (b S a) completeness, (3.14)

(a S b) and (b S c) => (a S c) transitivity. (3.15)

In this case, ail the éléments of A can be ranked from the better to the worst, and there exists a 
fonction G associated to S such that V a, b e A :

(aSb) G(a)>G(b). (3.16)

Note that the structure defined by S can be modified to take into account an indifférence 
threshold, expressing that two actions a and b, albeit different, are so close that the décider con- 
siders them as équivalent. A threshold model is defined in Eqs. (3.17) and (3.18) for V a, & e A :

(aPb) <^G(a)>G(b) + Q, (3.17)
(alb) <^\G(a)-G(b)\< Q. (3.18)

with Q being the indifférence threshold. The character relation S associated to the threshold 
model is such that y a, b, c and d e A :

fa S b) or (b S a), (3.19)
■ (a S b) and (c S d) => (a S d) or (c S b), (3.20)

(a S b) and (b S c) => (a S d) or (d S c). (3.21)

When Eqs. (3.19) to (3.21) are satisfied, S defines a quasi-order structure.

Consequently, one of the tasks of multicriteria decision aid is to develop methods helping the 
décider to select a solution among a set of actions, e.g. by constructing a fonction G (like in Eqs. 
(3.16) or (3.17) and (3.18)) expressing his/her preferences over a set of potential solutions. To 
address this problem, two different approaches are encountered [ROY93] : •

• the American Multi-Attribute Utility Theory (MAUT) : broadly used in the USA in econ- 
omy, decision making or finance problems, the fondamental idea of this approach is to as­
sume that every décider tries unconsciously to maximize a utility fonction U = U(Gi, 
G2,...) ; the rôle of MAUT is to estimate this fonction [VIN89]. It is assumed that this fiinc- 
tion can be found by an itérative process, by asking judicious questions to the décider. When 
this fonction is unavailable, the task will be to identify a set of nondominated solutions. 
Strong preferences for one solution are established if it is clearly dominating the others. For 
example, Keeney and Raffia (cited in [COL02]) proposed the use of a utility fonction defined 
by Eq. (3.22) :
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(3.22)f(x) = fl [ki Ui(fi(x)) + 1]
i=l

where ki are normalization factors (0 < ki < 1) and m, are strictly non decreasing functions 
which can incorporate nonlinearities ;

• the so-called French school, based on the outranking concept, which is built upon pairwise 
comparisons of the solutions. After quantifying the degree of preference (or indifférence) 
between each pair of solutions, the rank of a solution (for a given vector of weights) is com- 
puted by comparing it to ail the other solutions. In these methods, a complété pre-order 
structure is not always constructed : incomparability between two solutions is possible, and is 
part of the information given to the user to help him/her to understand the problem. The most 
représentative instances of this approach are ELECTRE I, II and III and PROMETHEE I and 
II [ROY93].

As the user’s information about his/her preferences has to be taken into account within the 
search process of EAs, it is important first to analyze the way preferences hâve been tackled in 
the evolutionary multiobjective literature.

3.4.2 Preferences in EAs

There is very little work in which the handling of preferences is explicitly dealt with in the 
evolutionary multiobjective literature [COE99b]. The most salient studies in this area are de- 
scribed below :

• in [FON93], Fonseca and Fleming combined an a posteriori method, MOGA (cf. § 3.3.1), to 
goal attainment (cf. § 3.3.3), in order to guide the search in a spécifie région of the trade-off 
surface. The comparison between two individuals is modified to tackle the user’s prefer­
ences, expressed by means of goals. This procedure can be utilized in an a priori or an inter­
active way ;

• to converge towards a sub-region of the trade-off surface, Cvetkovic and Parmee [CVE02]
used weighted Pareto optimization, which is based on the weighted dominance relation, de- 
fined as follows : for a given vector of weights = [wj... ] (whose sum is equal to 1)
and a real number r(with 0 < r< 1), x is said to (»v,T)-dominatey iff :

i=J

where :

I>(xi,yi) = l ifxi<yi,
l>(xi,yi) = 0 if Xi >yi.

(3.23)

(3.24)
(3.25)

Therefore, the weighted Pareto front is the set of non dominated éléments according to the 
(w, rl-dominance relation (in 1CVE02J, ris set to 1). Another interesting aspect of this work is 
the procedure used to compute the weights. Indeed, the user has to express his/her prefer­
ences about the criteria by unary and binary relations, as in Table 3.1 :
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Relation meaiwiv: ~
G,^G2 Gj and G2 are equally important
G] Gi G] is less important than G2
G] G2 G] is much less important than G2
^G, G] is not important
\G, G] is important
Table 3.1 : Preferen.ee relations [CVE02],

Then, after some operations, Warshall’s algorithm is applied to compute the weights [CVEOO] 
from the user’s qualitative preferences ;

• in [DEB99a], to conduct the population of the EA towards a peculiar part of the trade-off sur­
face, a biased sharing is applied. Classical sharing procedures decrease the fitnesses of indi- 
viduals which are close one to each other in the variable or the function space, in order to 
avoid a prématuré convergence towards a particular région of the search domain [BAC97], In 
[DEB99a], the différence d(ij) between two individuals i and j is computed as follows :

d(ij) =
m

^k=J

U) \2 \
1/2

y r max r min ^2
\ Jk ~ Jk 1 J

(3.26)

where w* is the weight assigned to the k'^ objective function. The biased sharing was incorpo- 
rated in a NSGA (cf. § 3.3.1), and produced denser parts of the Pareto front in the région 
where weights guided the search ;

• Pirjanian used fuzzy rules to compute weights - whose aim is to narrow the search of the 
multiobjective EA - in the context of action sélection of robots [PIR98] ;

• Jin and Sendhoff converted fuzzy preferences into crisped weights, or weight intervals 
[JIN02]. Then, either random or dynamic weighted aggregation is used [JlN0l,JlN0la], both 
techniques initially consisting in varying the values of the weights during the search process, 
in order to cover the whole trade-off surface. These methods are adapted in [JIN02] to zoom 
in a spécifie part of the Pareto front ;

• in [SAKOO], Sakawa and Yauchi adapted GENOCOP III (a constraint-handling technique for 
EAs : see § 3.5.1.4) to allow an interaction with the decision maker at the end of each gén­
ération of the EA. The multiobjective optimization is tackled by a min-max approach (cf. §
3.3.1);

• in the MAUT field, Greenwood et al. used éléments of imprecisely specified multi-attribute 
value theory (ISMAUT) to perform imprécise ranking of attributes (cited in [COE99b]). The 
idea is to rank a set of solutions instead of explicitly rank the attributes (i.e. the objective 
fonctions). Preference information is also used in the survival scheme of the EA ;

• while most papers mentioned here deal with the preferences of a single decision maker, 
Leyva-Lopez et al. are concerned about group decision, which is usually understood as the 
réduction of different individual preferences on a given set to a single collective preference 
[LEY02]. They propose an extension of the ELECTRE III multicriteria outranking methodol-
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ogy (cf. § 3.4.1) combined to an EA to assist a group of decision makers, in order to achieve 
a consensus on a set of possible alternatives ;

• Rekiek et al. présent in [REKOO.DELOl] a new method to address the hybrid assembly line 
design problem with several objectives. Each potential solution is a spécifie way of assigning 
a set of tasks to stations and selecting the resources to perform each of them. The multiob- 
jective problem is solved by a grouping genetic algorithm combined with an a priori ap- 
proach, PROMETHEE II (cf. § 3.4.1), wherein the user’s preferences are taken into consid­
ération by means of weights [REKOl] ;

• another application of PROMETHEE II was performed by Massebeuf et al. who proposed an 
a method where PROMETHEE II is applied after the use of an a posteriori technique in order 
to select a subset based on the preferences of the decision maker [MAS99].

From this analysis of the state-of-the-art in the field of EAs combined with preferences, it 
cornes out that the general trend is to identify a sub-region of the Pareto front, corresponding to a 
user-defined vector of weights, by using a particular multicriteria decision aid (MCDA) method. 
Among MCDA methods, Roy pointed out that the use of outranking ones (i.e. from the “French” 
school) becomes really interesting when some of the following conditions are satisfied [ROY93] :

• the criteria are heterogeneous (i.e. the functions are expressed in different scales of sizes : 
mass, cost, etc.) ;

• the loss on one criterion is not directly compensated by a gain in another criterion ;
• there are pseudo-criteria : for instance when the value of the criterion is very close for two 

design vectors (i.e. when the relative distance between the two solutions stands below a user- 
defined level), one can reasonably suppose that both solutions can be considered as équiva­
lent for that criterion ;

• the number of criteria exceeds three.

As some (or ail) of these conditions are often présent in the context of pre-design optimiza- 
tion, the outranking approach has been preferred, and more particularly PROMETHEE IL In- 
deed, whilst ELECTRE I, II and III and PROMETHEE I - by allowing incomparability - do not 
systematically furnish an aggregating function, preventing the user from having ail the actions 
sequentially classified, PROMETHEE II is characterized by an overall function (called the net 
flux) which ranks ail the candidates of a set, thus constructing a complété pre-order (cf. § 3.4.1). 
This net flux can then play the rôle of a fitness function and be incorporated in a standard EA for 
example, as it is performed in the PAMUC method proposed in this thesis

But before dissecting the core of PAMUC, another crucial matter that deserves much care in 
EAs is the handling of constraints. This will be discussed in the next section.

3.5 How to tackle constraints in EAs

Until now no constraints hâve been interfering in the discussion. However, the tackling of 
con.straints in EAs is far from being straightforward, and circumventing this aspect is unrealistic 
with industrial applications, generally characterized by many constraints (e.g. physical, technical 
or economical requirements). After the review of the most common constraint-handling tech­
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niques in EAs for single-objective optimization (§ 3.5.1), methods specially devoted to deal with 
both multicriteria and constrained aspects in EAs are presented (§ 3.5.2).

3.5.1 Handling of constraints in EAs for single-objective problems

The different methods to handle constraints in EAs bave been classified by Michalewicz 
[MIC95] and Coello [COE99a], and can be summarized as follows :

1. léthal ization methods (or death penalty methods) ;
2. penalization methods ;
3. methods based on a spécial représentation of solutions and operators ;
4. repair algorithms ;
5. methods based on a séparation of objectives and constraints ;
6. hybrid methods.

They are briefly described below. Although the third and fourth kinds of methods can be very 
efficient, they are restricted to more spécifie problems (problems with linear constraints, some 
combinatorial applications as the traveling salesman problem, etc.). More information about 
these methods is available in [COE02,MIC96, REI96].

3.5.1.1 Death penalty

This is the most straightforward way to take the constraints into account : in the random créa­
tion of the initial population, and during the sélection of the best individuals at each génération, 
the unfeasible solutions are systematically eliminated.

Van Kampen et al. hâve insisted [VAN96] on the fact that it can fumish good results in some 
applications, especially when the design space is convex, and when the rate of unfeasible solu­
tions in the whole design space is not too high. Nevertheless, the main drawback of this approach 
is that ail the unfeasible solutions share the same fitness value, so no useful information about 
the unfeasible domain is exploited.

3.5.1.2 Penalization methods

This is the most popular approach by the EA community. A new objective function f*(x) is 
defined by adding a penalty to each unfeasible solution. Two choices can be done while esti- 
mating a penalty function [COE02] :

. an individual might be penalized just because it is unfeasible, without taking the amount of 
violation into account (in this case, lethalization methods can be considered as penalty meth­
ods where the probability of sélection for unfeasible solutions is equal to zéro) ;

• the penalty function is computed by using the distance between the individual and the 
boundary of the feasible domain.

The main penalty methods are described below :

1. Static penalty : for each constraint, the corresponding penalty factor remains constant 
during ail the générations [COE02] :
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where is a parameter of the model (usually, = \ ox 2). If the constraint is satisfied 
{gj(x) > 0), then no penalty function must be added for this constraint {kj = 0). Otherwise, 
kj is a positive number which value must be defined by the user at the start of the process 
(and remains constant throughout the générations) ;

2. Dynamic penalty : static penalty factors are difficult to choose : a too large value will lead 
to a prématuré convergence close to the few feasible individuals of the initial population, 
while a too small value will slow down the convergence. The idea of dynamic penalties is 
to use low penalty factors at the earlier générations, to allow a large exploration of the 
search space, then to progressively increase these factors.

For example, Joines and Houck [JOI94] proposed a technique where individuals are evalu- 
ated at each génération using the following formula :

f(x) =f(x) + (C.tf Y,\g^(x\\ (3.28)
Sj<0

where t is the génération number, and C, or and are parameters of the method (standard 
values proposed in [JOI94] are : C = 1, or= 1 and p=2)\

3. Annealing penalties : another way to increase the importance of penalties during the proc­
ess is to use penalty factors based on the principle of simulated annealing (cf. § 2.2.2). For 
instance, Carlson Skalak et al. computed the fitness of an individual by the following ex­
pression (cited in [COE02]) :

f(x) = e-^^.f(x), (3.29)

where M measures the amount of violation of the constraints and T (analogous to the 
“température” in cooling scheme process in simulated annealing) tends to zéro as évolu­
tion progresses, such that the initial penalty factor is low and increases over time ;

4. Adaptive penalties : so far, no information concerning the feasibility of the solutions at 
earlier générations hâve been introduced, though it could be useful to adapt the penalty 
factors to the results. Smith and Tate (see [COE02]) proposed the following adaptive pen­
alty équation :

where ;

f*(x) =f(x) + [ fadmit) -fpopit)] .
k

Z
/=/

f' /
gj(x)

qji t )
(3.30)

• /admit) : value of the fitness function of the best feasible individual at génération t ;
• fpopit) : value of the fitness function of the best individual at génération t ;
• q/t) : penalties (functions of the génération t) ;
• c : parameter of the model (usually, c = 2).
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The goal of these techniques is to use the information about the feasible domain collected 
in the previous générations, in order to avoid the tedious task of setting the values of pen­
alty coefficients (as it is the case in most static and dynamic penalty methods).

Penalization techniques are the most common way to handle constraints, because they provide 
good results without significant modification of the standard evolutionary algorithm. However, 
the difficulty in the choice of the parameters constitutes their main drawback, because no general 
rule can be applied to détermine their values. Therefore, most recent penalization approaches use 
adaptive factors and parameters [COE00a,NAN01].

3.5.1.3 Decoders

In some peculiar applications, decoders offer an efficient alternative to classical penalty-based 
methods. Indeed, they lie on a decoding process, which can build automatically feasible solu­
tions, thanks to instructions stored in the chromosomes [BAC97].

Though decoders hâve given rise to interesting results mainly in the field of combinatorial 
optimization (e.g. scheduling problems, pallet loading, traveling salesman problem, etc.), Koziet 
et al. hâve developed a spécial décoder for continuons optimization [KOZ98,KOZ99], performing 
an homomorphous mapping between the original (often non convex) feasible domain and a 
“dual” convex space (defmed as the hypercube [-1,1]", where n is the number of variables). Al- 
though very promising hopes hâve grown up with this technique, it should be pointed out that the 
mapping procedure can be very expensive (computationally speaking) ; furthermore, not every 
kind of contraint can be treated, and so far, problems with mixed variables are also excluded 
from this approach.

3.5.1.4 Repair strategy

Repair algorithms enjoy a huge popularity in some areas of optimization, as knapsack, set 
covering or traveling salesman problems. The principle is to transform an unfeasible chromo­
some into an admissible one, thanks to knowledge about the problem [MIC95a]. Two different 
implémentations hâve been proposed :

• if Xu is an unfeasible chromosome and Xr its repaired (thus feasible) counterpart, the first ap­
proach consists in replacing the fitness fimction of the original individual/(jc„) by/fxj ;

• the second approach consists in replacing (with some probability) /(jc„) by f(Xr) but also the 
chromosome of by the one of Xr.

The first technique is related to what biologists hâve called the Baldwin ejfect, which assumes 
that the continuai change and improvement of individuals in a population is due to a combination 
of évolution and learning. The learning (in this case the repair procedure) is transferred into the 
individual by means of the modified value of the fitness fonction [WHI94].

The second technique has similarities with Lamarckian évolution, which makes the hypothe- 
sis that each individual gets better during its lifetime, and this improvement is coded back into its 
chromosome [WHI94].

Coello [COE02] mentions the works of Liepins et al. for a set of combinatorial optimization 
problems, where repair algorithms surpass other approaches in speed and performance. Xiao et 
al. also used a repair strategy to develop an adaptive planner/navigator for mobile robots
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[XIA97] : heuristic knowledge is used to move along a feasible path. Another example is provided 
in the field of quadratic assignment problems, where Tate and Smith create mechanisms to create 
automatically feasible individuals [TAT95].

Whilst most repair algorithms are concerned with combinatorial optimization, Michalewicz 
and Nazhiyath developed GENOCOP III for continuons optimization [MIC95b] : it is actually an 
hybridized algorithm, mixing coevolution (implying the presence of two distinct populations in 
the EA : see § 3.5.1.6) and repair strategy. The first population is composed of points satisfying 
only the linear constraints (which may thus be unfeasible with respect to the non linear ones), 
whereas only fùlly feasible solutions dwell in the second population.

Fig. 3.6 : Description of the repairing procedure in GENOCOP III : a feasible point x f is constructed front two
points Xf and XU (F is the feasible domain œD).

Each unfeasible solution jc„ is then “repaired” with some probability (only for évaluation) by 
selecting an admissible reference point Xf and creating a random point Xf located in the feasible 
domain, on a segment joining and x/(cf. Fig. 3.6).

One important feature of repair algorithms is the replacement probability. While a low prob­
ability may be inefficient, a too large value may lead to a prématuré converge. Liepins et al. are 
supporters of a never replacing rule (i.e. no repaired chromosome is introduced in the new 
population), whereas Nakano promotes an always replacing rule (cited in [COE02]). Besides, 
Orvosh and Davis (cited in [BAC97]) proposed a 5% rule in combinatorial optimization, while 
Michalewicz et al. proposed a 15% replacement rule for continuons problems. As it can be seen 
by these varions recommendations, no systematic rule can be adopted: the replacement probabil­
ity is a supplementary parameter, eminently problem-dependent, to be tuned by the user.

3.5.1.5 Constraint-preserving operators

For some spécifie constraints, genetic operators of the EA (like crossover and mutation) can 
be tailored to preserve the feasibility of the population [BAC97]. For example, if equality and 
inequality constraints are linear, and if each variable set is connex, then uniform, boundary and 
nonuniform mutations and arithmetical crossover automatically transform feasible parent(s) into 
offspring automatically satisfying the constraints. Like the decoders and the repair algorithms, 
this technique is applicable only in restricted applications.
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3.5.1.6 Methods making a distinction between objective(s) and constraints

In [COE02], Coello classified the methods separating the objective(s) and the constraints in 
four approaches :

• coevolutionary algorithms : as already mentioned above (see GENOCOP III in § 3.5.1.4), 
coevolutionary models use two populations evolving in parallel. Paredis (cited in [COE02]) 
proposed a rather different version of coevolution : the first population contains the con­
straints to be satisfied (constraints highly violated hâve also a high fitness value), and the 
second one is composed of potential solutions (individuals with high fitness values repre- 
sent solutions which respect a lot of constraints). The general idea is to focus the search on 
constraints that are harder to satisfy [CRAOl] ;

. superiority offeasible points : the key idea is to put the emphasis on the feasibility (com- 
pared to the value of the objective function), specially during the sélection scheme, as in 
Powell and Skolnick’s penalty method (PS), whose penalized objective fonction/ (x) is 
first computed as follows :

f*(x) =f(x) + /?. X \Sj(x , (3.31)

where R must be tuned by the user (and generally y? = 1 ; cited in [DEBOO]). Then, the 
value of f (x) for unfeasible individuals is raised by an amount À computed to make the 
fitness of the best unfeasible solution equal to the fitness of the worst feasible solution. In 
[DEBOO], Deb proposed a constraint-handling method based on a tournament sélection op- 
erator (TS), which works as follows :

. any feasible solution is preferred to any unfeasible solution ;
• among two feasible solutions, the one having a better objective function value 

is preferred ;
• among two unfeasible solutions, the one having smaller constraint violation is 

preferred.

The corresponding fitness function devised by Deb is (with fi=l) :

P'”‘(x) =
if g/x) >0 Vj = p. (3.32) 

otherwise. (3.33)

These two techniques are very close, except that Deb’s method does not require the tuning 
of the additional parameter R. Another technique, CONGA (COnstraint based Numeric 
Genetic Algorithm), was proposed by Hinterding and Michalewicz [HIN98] : in the first 
part of the process, the algorithm only looks for feasible solutions, without taking the ob­
jective function into considération. Then, as the amount of feasible individuals increases, 
the algorithm focuses on improving the best ones. To perform this operation, two sélection 
schemes are used : the first one choosing an individual either for mutation or as a parent 
(called X/) for crossover, following the same criteria as Deb’s (see above) ; the second one
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choosing a mate for x/ by selecting the individual with the least number of satisfied con- 
straints in common with xj. The idea is to cross complementary individuals in order to 
produce better ones ;

• behavioural memory : Schoenauer and Xanthakis proposed a method where the con- 
straints are treated sequentially [SCH93]. Indeed, their algorithm works as follows :

1. set y = 1 (/ being the number of the current treated constraint) ;
2. evolve the population to minimize the violation of the constraint ;
3. sety=y+l;
4. evolve the current population to minimize the violation of the /* constraint. 

During this step, the solutions which do not satisfy the j - 1 previous con- 
straints are eliminated (cf. death penalty in § 3.5.1.1) ;

5. go back to step 3 as long as j < p.

Though this method requires that constraints could be ordered, which is as often as not un- 
realistic, it can be well suited for some spécifie problems (as the génération of software 
test data : see [SCH93]) ;

• multiobjective optimization techniques : in this approach, multiobjective techniques are 
used to handle the constraints. The first method was proposed by Parmee and Purchase 
(cited in [MEZ02]), and consisted in using VEGA (cf. § 3.3.1) by considering the con­
straints as objectives, to reach a feasible région of the search space.

Another implémentation of VEGA was done by Surry et al, in the so-called COMOGA 
(Constrained Optimization by Multi-Objective Genetic Algorithms) method, which fonc­
tions as follows [SUR95] :

1. compute the constraint violations for ail solutions ;
2. perform a Pareto ranking based on constraint violation (e.g. by counting the 

number of individuals of the population dominated by each solution) ;
3. compute the value of the “true” objective fonction (e.g. the cost of the pipes 

in the gas network problem studied in [SUR95]) for each member of the 
population ;

4. select a proportion pcost of individuals based on the “true” objective fonc­
tion, and the others on constraint ranking ;

5. apply the recombination operators (crossover, mutation) ;
6. adjust Pcost to make the rate of feasible individuals become doser to the 

user-defined rate of feasible solutions T. Lowering pcost favours feasible so­
lutions, while raising pcost improves the “true” objective fonction (e.g. de- 
creases the cost).

A third use of VEGA was performed by Coello in [COEOOc], where at each génération, the 
population is split into p + 1 sub-populations (with p equal to the number of constraints), 
where the “true” objective fonction and the p constraints play the rôle of the 1 -l- p objec­
tive fonctions. The first sub-population is related to the objective fonction, and the j -l- 1^'’ 
sub-population uses the following fitness fonction :

. ifg/x)<0 then fitness = g/x) ;
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. elseif vi^O then fitness = - v ;

. else fitness =f(x),

where gj(x) is the /* constraint, v refers to the number of violated constraints and/is the 
objective function.

In [CAM97], Camponogara et al. proposed to transform the single-objective problem into a 
2-objective one, with the “true” objective function and a function <^>(x) (to be minimized) 
related to the constraints :

<î>(x)=Y, max fO, gj{x)J. (3.34)
j=i

The multiobjective method used in [CAM97] consists in separating the current population 
in layers of nondominated solutions (as in NSGA : see Fig. 3.4) ; then, firom pairs of 
points {jc;, Xj} located on different layers, a line search algorithm is applied in the direc­
tion joining both points (see Fig. 3.7).

Fig. 3.7 : Example ofline search direction obtainedfrom points Si and Sj in the method proposed in [CAM97] ; 
frepresents the "true" objective function while 0is related to the sati^action ofthe constraints.

In [JIM99], Jiménez and Verdegay used a sélection scheme close to the one proposed by 
Deb in [DEBOO] (see Fig. 3.7), where :

• any feasible solution is preferred to any unfeasible solution ;
. among two feasible solutions, the one having better objective function value is 

preferred ;
• among two unfeasible solutions, the one having the lowest maximum violation 

constraint wins.

The main différence with [DEB(X)] is that no additional procedure is used in [J1M99] to pré­
serve the diversity of the population.
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Ray et al. (cited in [COE02]) developed an approach in which solutions are ranked sepa- 
rately following the value of their objective and constraints ; then, mating restrictions 
(using spécifie information about the feasibility of each member of the population) are ap- 
plied.

In [RUNOO], Runarsson and Yao, noting that it is difficult to find a proper value for the 
penalty parameters in penalization methods, proposed the use of a stochastic ranking : a 
probability Pf of using only the objective function for comparisons while ranking unfeasi- 
ble individuals is introduced. It means that given any pair of individuals, the probability of 
comparing them following the objective function is equal to 1 if both are feasible, and to 
Pf otherwise. This is close to the idea proposed by Surry et al. (see above ; cf. [SUR95]), 
except that here Pf is not self-adaptive, and remains constant during the whole optimiza- 
tion process.

In [OSY02], Osyzcka proposes to apply the constraint toumament sélection method - ini- 
tially devoted to multiobjective problems - to single-objective constrained optimization. 
Basically, it is based on a set of sélection rules near to the ones proposed in [J1M99] and 
[DEBOO] :

. any feasible solution is preferred to any unfeasible solution ;
• among two unfeasible solutions, the one having the lowest maximum violation 

constraint wins ;
• among two feasible solutions xj and X2 : if X; dominâtes X2 (resp. X2 dominâtes 

X/), Xi (resp. X2) is selected ; otherwise an individual is randomly chosen.

Finally, two other extensions of multiobjective a posteriori techniques were proposed to 
handle constrained problems : in [AGU03], Aguirre et al. introduced the IS-PAES (In- 
verted-Shrinkable Pareto Archived Evolutionary Strategy), which is an extension of the 
PAES developed by Knowles and Corne [KNOOO], and in [COE02c], Coello and Mezura 
implemented a version of NPGA (Niched-Pareto Geentic Algorithm) adapted to tackle the 
constraints.

3.5.1.7 Hybrid methods

The last category of constraint-handling methods combines evolutionary techniques with 
other approaches, as Lagrange multipliers (as in gradient-based algorithms), ant colonies, fuzzy 
logic, etc. They are summarized in [COE02].

3.5.1.8 Remarks

In this bibliographical overview of constraint-handling techniques in EAs, emphasis was put 
on two approaches : first, the penalization methods, since they are the most widely used in the 
EA realm - and specially in structural optimization -, and secondly the methods based on mul­
tiobjective optimization algorithms.

More and more techniques attempt to prune away user-defined parameters, by using self- 
adaptivity, which exempts the user from tuning spécifie coefficients, as in penalization tech­
niques for example. Furthermore, it is well known in the EA community that incorporating spé­
cifie knowledge about the domain, albeit very efficient, is applicable only in restricted problems
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[COE02]. Therefore, to deal with mechanical design optimization, which can hâve very different 
mathematical formulations, a robust tool is needed to handle the constraints.

The techniques mentioned above were mainly applied in single-objective optimization. In- 
deed, in [COE02a], Coello insisted on the point that only a few papers encompass both multicrite- 
ria and constrained features in EAs. This twofold aspect will be discussed in the next section.

3.5.2 Handling of constraints in EAs for multiobjective problems

The first way to handle constraints in multicriteria EAs was to add a penalty to the objective 
functions of the unfeasible individuals, as in single-objective optimization (cf. Richardson et al. 
[RIC89], Kundu [KUN99]). The other popular approach consists in considering the constraints as 
additional objectives [COE02a] ; multiobjective EAs applied to constrained single-optimization 
hâve been presented in § 3.5.1.6, and are easily extended to multiobjective optimization. Besides, 
Kurpati et al. suggested to add spécifie improvements to some a posteriori multiobjective meth- 
ods [KUR02].

So far, few papers deal with both constrained and preferences aspects in EAs, and it has been 
emphasized in [COE02a] that there is a lack of development of constraint-handling techniques 
especially devoted to multiobjective EAs. A novel method is thus presented below to tackle both 
aspects.

3.6 Preferences Applied to MUltiobiectivity and Constraints 
(PAMUC)

3.6.1 Motivation

The bibliographie study presented above shows the overwhelming number of methods created 
to handle either multiobjective or constrained optimization with EAs. However, when the si- 
multaneous tackling of both aspects is considered, very few spécifie methods are available. Fur- 
thermore, while the amount of a posteriori methods is high, mainly because it does not require 
any additional information about the user’s preferences, less techniques integrate those prefer­
ences within the search process.

As mentioned in § 3.4.2, the use of outranking methods (from the field of multicriteria deci­
sion aid) is recommended by Roy [ROY93] when at least one of the following conditions is satis- 
fied :

• the criteria are heterogeneous ;
• the loss on one criterion is not directly compensated by a gain in another criterion ;
• there are pseudo-criteria ;
• the number of criteria exceeds three.

These conditions are often encountered in design optimization. Thus, to take the constraints 
into account, the satisfaction of the constraints will be considered as a new objective (as in many 
multiobjective approaches). From the pro and contra of the several methods cited above, it seems 
obvious that the main features required to build a reliable multicriteria and constraint-handling 
design optimization method are the following :
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• to heed the constraints, the introduction of additional parameters, whose tuning is time- 
consuming and problem-dependent, should be avoided ;

• as a very small différence for a criterion between two potential solutions does not imply 
that one can be preferred to the other, indifférence thresholds must be taken into account ;

. to be applicable in a wide range of problems, it should be implemented without major 
modification of the standard EA.

Consequently, the idea is to use an aggregating technique (i.e. where the user assigns a weight 
to each objective following its relative importance), namely PROMETHEE II, to deal with mul- 
ticriteria optimization [FlL02a]. Incorporating PROMETHEE II in an EA has already been per- 
formed by Rekiek ([REKOl] ; see § 3.4.2), but in the particular case of an assemby line design 
problem.

The goal is thus to extend this approach to any optimization problem (by integrating PRO­
METHEE II to a standard EA). Moreover, a spécifie technique is also required to tackle the con­
straints. Therefore, the simultaneous handling of both (multicriteria and constrained) features led 
to the development of a novel method : PAMUC (Preferences Applied to MUltiobjectivity and 
Constraints).

The main characteristics of PROMETHEE H are explained in the next section. Then, PAMUC 
is described in § 3.6.3.

3.6.2 Description of PROMETHEE II

PROMETHEE II (Preference Ranking Organisation METHod for Enrichment Evaluations - 
2nd version) is due to Brans and Mareschal [BRA86]. It is characterized by a particular scaling of 
the objective functions, and by the fact that each individual a is compared to ail the other solu­
tions of the set E in order to build the net flux (or preference flow), which measures the quality 
of a compared to the rest of E [BRA96].

Here are the outlines of PROMETHEE H :

1. For each objective/}, a preference function Pi(a,b) is created, which allows to compare 
any couple (a,b) of individuals (cf Fig. 3.8). As in [REKOl], a linear preference function 
with indifférence was implemented. This choice is discussed below.

Fig. 3.8 : Linear preference function with indifférence threshold 
(for a minimization problem) in PROMETHEE II (figure adaptedfrom [BRA86]).
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The parameters pi (preference thresholds) and (indifférence thresholds) must be de- 
fined by the user for each objective. lif,ia) ^0, di(a,b) is computed as follows :

Otherwise,

(■

•<

di(a,b) - iffi(a)^0. (3.35)

Pi(a,b) is computed as follows :

iffi(a) >fi(b) : Pi(a,b) = -l, (3.36)

iffi(a) =fi(b) : Pi(a,b) = 0, (3.37)

iffi(a) <fi(b) : Pi(a,b) = 1. (3.38)

2. Then, the preference index of a over b is defined by ;

n(a,b) = ^ w-.P^ (a,b) (wiîh ^ w,. = J). (3.39)
i=l i=I

The weights w, reflect the relative importance assigned to each objective, and are cho- 
sen by the user ;

3. Finally, to compare a solution a with the N-1 other solutions of a set E, the preference 
flow <t>(a) is computed as follows :

(^(û) = —^ . I Ma,b). (3.40)
N-1 beE

Consequently, the multiobjective problem is transformed into the maximization of the prefer­
ence flow (f), which acts like the fitness function of a single-objective problem.

The theoretical framework introduced in § 3.4.1 is useful now to shed light on some charac- 
teristics of PROMETHEE II. This method performs a quasi-order structure, which means that :

. indifférence is taken into account, thanks to the définition for each criterion of the indif­
férence thresholds qi, whose value must be determined by the user following his/her 
knowledge about the objectives ;

• compared to the other outranking methods (like ELECTRE I, II and III or PRO­
METHEE I), PROMETHEE II excludes incomparability. Incomparability appears for in­
stance when two individuals are mutually nondominated (one with respect to the other). 
Though it may bring helpful information about the multiobjective problem, it is a délicate 
task to integrate this concept into an aggregating method ; •

• a direct conséquence of the previous point is that for each pair (a,b) of individuals of the 
EA population, either a S b or b S a (where S is the relation defmed in § 3.4.1). At each
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génération, the population of the EA can thus be ranked upon a single criterion (the pref- 
erence flow) aggregating ail the objectives, and playing the rôle of the fitness function.

Then, to take constrained and multicriteria aspects simultaneously into account, a novel ap- 
proach is proposed in the next section.

The aim of this original method called PAMUC (Preferences Applied to MUltiobjectivity and 
Consîraints) is to solve constrained multicriteria problems (with preferences defined by the user) 
[nL02b]. As in most multiobjective evolutionary methods, the constraints are considered as a 
new objective ; it consists thus in using PROMETHEEII with m+1 objectives : the m objective 
functions and one more related to the satisfaction of the constraints (the equality constraints are 
transformed in inequalities as in Eq. (2.5) mentioned above). This latter function related to the 
satisfaction of the constraints is formulated as follows :

3.6.3 Description of PAMUC

(3.41)

The factors kj are scaling factors which can be estimated thanks to this formula :

N

N
(3.42)

• N : population size ;
• gj^'^(x) : value of theconstraint forx at génération t.

The flow-chart of the algorithm is illustrated in Fig. 3.9.

Random Création OF THE 1*^ Génération (#=l)

SELECTION FOLLOWING 
m+1 OBJECTIVES

t ^ t + 1

UPDATING of THE 
WEIGHTS

CROSSOVER 
& Mutation

YES

SOLUTION(S)

Fig. 3.9 : Flow-chart of PAMUC.
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The différence with a standard single-objective unconstrained EA lies mainly in the sélection. 
Before the sélection scheme, the population at génération t is evaluated by using PRO- 
METHEE II with m+1 objectives. The sélection procedure is a binary tournament operator, 
which functions as follows : when two new individuals (the children) are created by crossover 
and mutation, they are compared with their parents thanks to the PROMETHEE II method. Then, 
the two best individuals among the four (i.e. amid the parents and their children) are selected to 
take part of the next génération.

As in any a priori method, weights (w* ) are initially chosen by the user for the m objectives, 
but in order to take into account the objective related to the satisfaction of the constraints, the 
actual weights used in PROMETHEE II are computed in the following way :

Wi^'^ = Wi*.RF^‘^ for i = 1,..., m, (3.43)

(3.44)

. RF^'^ is the ratio of the population which satisfies ail the constraints at the pre-
vious génération ;

• at the first génération : Wm+i = 1 and w, = 0 for / = 1,..., m.

One can easily check that :

m+l

(3.45)
i=I

The weights are adaptive (as the coefficients in adaptive penalty-based methods : see 
§ 3.5.1.2) : when the number of feasible individuals is low (which is generally the case at the 
first générations), the relative importance given to the m+l'^ objective (satisfaction of the con­
straints) is high. Then, if a growing part of the population tends to satisfy the constraints, a de- 
crease of w,„+j automatically occurs.

3.6.4 Choice of the weights

Though the decision maker usually chooses the weights intuitively, some approaches hâve 
been developed to help the user in reflecting appropriately his/her preferences.

In [MAR89], Mareschal mentioned a family of methods where the user is asked to supply con­
straints about the weights. For example, in a 5-objective problem, if the user wants to express 
that the first three criteria must not exceed in importance the last two ones, Eq. (3.46) can be 
written :

W/ + W2 + Wj > W4 + Ws. (3.46)

Each time a new constraint is added, the space of potential weights progressively narrows un- 
til proper values are obtained. Another approach consists in using qualitative information about 
the user’s preferences, like in [CVEOO] (see § 3.4.2), or in [EZZOO] with PROMETHEE I and IL A 
graphical interprétation of the weights hâve also been developed by Brans et al. in the PROM- 
CALC-GAJA software : more information can be found in [BRA94].
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Nevertheless, in this work, no effort is donc to incorporate an additional method to compute 
weights : it is assumed that the decision maker can détermine their values intuitively.

3.7 Conclusions

This chapter was fîrst devoted to expose the way multicriteria and constrained aspects are 
taken into account in EAs. The review of the littérature showed that although lots of techniques 
hâve been developed to deal with either multicriteria or constrained aspect, few methods explic- 
itly deal with both features. Therefore, a novel method was proposed : PAMUC. Its goal is to 
solve multiobjective constrained problems, where the user incorporâtes his/her preferences about 
the objectives since the very start of the search process, by means of weights. It consists in con- 
sidering the satisfaction of the constraints as a new objective, and using PROMETHEE H, a 
multicriteria decision aid method, to rank the members of the EA population at each génération. 
Besides, adaptivity of the weights is applied in order to converge more easily towards the feasi- 
ble domain.

The validation strategy, numerical results and discussion about the advantages and drawbacks 
of PAMUC are presented in the next chapter.
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Chapter 4 - Validation of the PAMUC Method

4.1 Introduction

The PAMUC method designed to solve multicriteria constrained optimization problems was 
described in the previous chapter. In order to validate it, two aspects hâve to be considered : its 
ability to reach the feasible domain - hence to find an optimal solution satisfying ail the con- 
straints -, and its efficiency in reflecting correctly the user’s preferences.

The global strategy of validation will be presented in § 4.2, whence it will be concluded that 
whilst comparing two solutions is straightforward in single-objective optimization, this task is 
much more critical with multiobjective problems. Therefore, lots of metrics hâve been proposed 
to express the quality of one method compared to another ; the choice of the most appropriate 
metric to validate PAMUC will be discussed in § 4.3. Then, numerical results will be presented 
(§ 4.4), followed by general remarks and conclusions about PAMUC (§ 4.5).

4.2 Strategy of validation

4.2.1 Implémentations of PAMUC

In order to validate PAMUC, the standard evolutionary algorithm (Std-EA), implemented in 
Matlab (cf § 2.3.2), was applied on standard test cases [HL03].

Then, PAMUC was implemented in C++ in the framework of the existing EAs of Boss Quat­
tro (Samtech s.a.), a commercial software for optimization and parametrical studies [BOSOl], 
which contains a real-coded and a binary-coded EA. It has been used for the parametrical opti­
mization of four valves designed by Techspace Aero (Snecma group) for launcher Ariane 5 (this 
is the scope of Chapter 6).

It must be underlined that since EAs are stochastic algorithms (random numbers are used at 
the création of the initial population and in the operations of sélection, crossover and mutation), 
they hâve to be launched several times for each problem in order to make statistics about the 
results.

Furthermore, ail examples were applied with p, = 1 and qi = 0. These parameters define re- 
spectively the (relative) preference and indifférence thresholds defined by the user (for each ob­
jective) when 2 individuals are compared (cf § 3.6.2). Those values will be discussed in § 4.4.3.

4.2.2 Single-objective constrained optimization (SOCO) problems

As shown above, PAMUC can handle single-objective as well as multiobjective problems 
without major modification. Consequently, the efficiency of PAMUC in tackling the constraints 
is first presented in § 4.4.1 on a set of 8 challenging single-objective constrained benchmarks :
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• 3 examples from the classical test case suite from Hock and Schittkowski [HOC81], solved
by PAMUC and Joines and Houck’s penalty-based technique (implemented in the Std-EA 
with parameters C = 1, a= 1 and P=2d& proposed in [JOI94]) :

. S-HED ; a beat exchanger design problem ;
• S-3EQ : a problem characterized by 3 equality constraints ;
. S-6ACT : an example where 6 constraints are active at the optimum ;

. 4 single-objective constrained test cases proposed by Deb [DEBOO] :

• S-CRES : an example with a crescent-shape feasible domain ;
• S-38IC : a problem with a high number of inequality constraints (38) ;
• S-0.5F : a problem where only 0.5% of the admissible space is feasible ;
• S-HIM : Himmelblau’s problem ;

In the first three test cases (S-CRES, S-38IC and S-0.5F), results of PAMUC are com- 
pared with solutions obtained in [DEBOO] by two methods (cf. § 3.5.1.6) :

1. Powell and Skolnick's penalty method (PS), whose penalized objective function is 
given by Eq. (3.31) ;

2. Deb’s constraint-handling method based on a tournament sélection operator (TS), 
which was described in § 3.5.1.6.

In the fourth example (S-HIM), results of PAMUC are compared with solutions from dif­
ferent studies collected by Coello in [COE02] ;

. 1 engineering application (S-WBD) : a welded beam design, cited in [COE02] and tested
with PAMUC and Joines and Houck’s penalty-based technique.

4.2.3 Multiobjective optimization (MOO) problems

After investigating the constrained aspect in single-objective examples, multiobjective prob­
lems hâve been tested.

In design optimization, the most popular a priori approach is the classical weighted sum 
method [COE02a], because of its simplicity of implémentation and its intuitiveness. Therefore, 
PAMUC is compared to the weighted sum method (§ 4.4.2) where Joines and Houck’s penalty- 
based technique is used to tackle the constraints (with parameters C = 1, a= 1 and p = 2).

If two different points Za and Zh obtained by two a priori multiobjective methods are compared 
(i.e. for a given value of the set of weights), three situations can occur : (1) Za dominâtes Zh, (2) z« 
and Zh are nondominated or (3) Zb dominâtes Za (cf. Fig. 4.1 ).

Here, as no spécifie combination of weights is preferred in the validation, the following pro­
cedure is applied for 2-objective optimization problems (cf. § 4.3.5 for an extension to m- 
objective problems) : the EA is run riruns times - with either the weighted sum method or PA­
MUC -, each time with different values for the weights (varying from jw; = 1 ; W2 = 0} to {w/ 
= 0 ; W2* = 1} by a constant step). Then, from the sets of solutions found by both methods, the 
dominated ones are discarded, and fmally the Pareto sets are compared.

Chapter 4 - Validation of the PAMUC method 4-2



f à ^ Zfl Z/) ^ Zfl II Zh ^ Zh ^ Za

,2.

•

Zh •

• Za
•

Zh

----------------------------^
f,

P
fl

w
fl

Fig. 4.1 : Comparison oftwo points z„ and Zh (in a two-objective minimization example) : (1) Za dominâtes Zh, 
(2)Za andZb are incomparable and(3)Zh dominâtes Za (figure adaptedfrom [ZIT03]).

In a general way, 2 nondominated sets A and B found by two different multiobjective methods 
are often interwoven, i.e. some solutions from the set A can dominate solutions from the set B, 
and vice versa, making the comparison not straightforward (cf. Fig. 4.2). Therefore, spécifie met- 
rics bave been developed [ZIT02], and are discussed in the next section.

Fig. 4.2 : Comparison oftwo nondominated sets A and B in a 2-objective minimization problem : 
the sets A and B are incomparable (figure adapted from [Z1T03]).

The 9 multiobjective benchmarks treated by the weighted sum method and PAMUC are ;

• 1 unconstrained example proposed by Cvetkovic [CVEOO] : M-UC (with a convex Pareto
front PF) ;

. 2 examples collected in [VAN98], and Osyczka :

. M-LOC : due to Kita, it has linear objectives and constraints (convex PF) ;

. M-LOQC : due to Osyczka, it has linear objectives and quadratic constraints 
(concave PF) ;
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3 examples taken in [DEBOl] :

. M-QOC (quadratic objectives and constraints) ;
• M-DPF (discontinuons PF) ;
. M-LFS (feasible space composed of layers) ;

• 1 engineering application : BDP (the beam design problem defined in [OSY02]) ;

• 2 three-objective problems due to Viennet (collected in [COE02a]) :

. M-30U (unconstrained test case) ;

. M-30C (constrained test case).

The numerical results are presented in § 4.4.2.

4.3 Validation of multiobjective optimization methods

4.3.1 Introduction to metrics for comparing nondominated sets

Before describing the main metrics (or quality indicators) used in multiobjective optimization, 
some theoretical notions are required. The définitions introduced in § 3.2 to compare two objec­
tive vectors can be extended to the comparison of two nondominated sets [ZIT03] :

• a set A sîrictly dominâtes a set B {A >->- B) iff every objective vector e B is strictly 
dominated by at least one point G A ;

• a set A dominâtes a set B (A y B) iff every objective vector z^ e B is dominated by at least 
one point z^ e A ;

• a set A is better than a set B (A > B) iff every objective vector z^ g B is weakly dominated 
by at least one point z^ g A and A^B ;

• a set A weakly dominâtes a set B {A > B) iff every objective vector z* g B is weakly 
dominated by at least one point z^ g A ;

• 2 sets A and B are incomparable (A || B) iff neither A weakly dominâtes B nor B weakly 
dominâtes A.

These définitions are illustrated on three nondominated sets A, B and C in Fig. 4.3, and will be 
used below in the comparison of the quality indicators (cf. § 4.3.4).

Two kinds of measures hâve been developed in the multiobjective literature : unary metrics 
and binary metrics [ZIT03]. Both categories will be described respectively in §§ 4.3.2 and 4.3.3, 
and the choice of the best suited metric to compare PAMUC to the weighted sum method will be 
discussed in § 4.3.4.
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Fig. 4.3 : Comparison ofthree nondominated sets A, B and Cfollowing the définitions introduced in § 4.3.1 (in a 
2-objective minimization problem) (figure adapted from [ZIT03]).

4.3.2 Unary measures

Unary quality indicators are very attractive since they can be used independently, i.e. they 
give a value which does not relie on the objective vectors of another set [ZIT03]. Van Veldhuizen 
et al. [VANOO] and Knowles [KNO02a] made a thorough review of ail the unary metrics used in 
multiobjective evolutionary optimization. The most représentative metrics can be classified in 
two families :

• the measures of the closeness to the Pareto front : these metrics attempt to measure how 
close to the true Pareto front (denoted PF,rue) a nondominated set found by an a posteriori 
method (such as VEGA, MOGA, NSGA, etc.) is. They need the user to know the theoreti- 
cal Pareto front, and are often used (for validation of a new method) during the EA proc- 
ess to check the convergence of the algorithm. For example, the error ratio (cf. [COE02a]) 
reports at each génération of the EA the finite number of vectors which are members of 
PF,rue- Another metric mentioned in [VANOOb] is the generational distance GD, represent- 
ing how far in average the current set PFcurrem is from PF,rue '■

n

n
(4.1)

where n is the number of vectors in PFcurrem and d, is the Euclidean distance between each 
objective vector of PFcurrem and the closest élément of PF,rue, as depicted in Fig. 4.4. Vari­
ants of this metric are the maximum Pareto front error and the average Pareto front error 
(cf. [COE02a]).

• the measures of the distribution of the objective vectors along the trade-off surface. In the 
hyperarea metric (or 5-metric) proposed by Zitzler and Thiele [Z1TÜ2] for example, the 
measure is defined by the area covered by the objective vectors of PFcurrem (cf. Fig. 4.5). 
Schott proposed another metric for 2-objective problems - the spacing S -, computing ex- 
plicitely the spread of the objective vectors throughout PFcurrem '■
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fl M objective vectors front PFmie

Fig. 4.4 : Set of nondominated objective vectors (PFcurrent) compared to PF,rue thanks to the generational 
distance GD (in a 2-objective combinatorial minimization problem) (figure adapted front [COEOla]).

s = (4.2)

with :
di = min

j
1,..., n, (4.3)

and where n is the number of vectors in PFcurrem , z'„ is the (P component of z' (e PFcurrent) 
and d is the mean of ail d,.

fl

D-

□ objective vectors front set A 

■ objective vectors front set B 

B reference point z

S-metric : 
S(A)>S(B)

fl
►

Fig. 4.5 : Computation of the S-metric (in a 2-objective minimization problem) :from a reference point 
(chosen by the user), the rectangles encompassed between z"^and each vector of the set A (resp. B) define 

a shaded surface whose area is the S-metric ofA (resp. B) (figure adapted from [KNO02a]).

Other unary quality indicators can be found in [C0Eü2a] and [KNO02a].
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4.3.3 Binary measures

While an important amount of unary indicators are available in the literature, fewer metrics 
are specially devoted to compare pairs of sets. The three main binary metrics are described be- 
low (the other binary metrics are generally mere extensions of unary metrics ; see [ZIT03]) :

• the C-metric proposed by Zitzler and Thiele [ZITOO], whose aim is to compute the relative 
coverage of two nondominated sets A and B. The measure is given by a pair of indicators 
C(A,B) and C(B,A), calculated as follows :

C(A,B)

C(B,A) =
e A\3z^ e B :z^> z'^]

(4.4)

(4.5)

where |A| is the cardinal of A and |5| is the cardinal of B. C(A,B) = 1 means that ail deci­
sion vectors in B are weakly dominated by at least one point e A, whilst C(A,B) = 0 means 
that none of the points in B is weakly dominated by a point in A. Figure 4.6 illustrâtes the 
C-metric on a 2-objective example.

f2 □ objective vectors € set A

--■q
□ objective vectors € set B

Di}}}î
'■'f" □{

i f t f
f t

"1“

+ J L 4 ’
‘-‘"" TI ! 

i ! I !
! I fl

►

C-metric :
• \A\=4 and |fî| = 3
• Number of points ofA dominated by 

at least one point ofB = 0
• Number of points of B dominated by 

at least one point ofA = 2

^ C(A,B) = 2/3 = 0.666 
C(B,A) = 0/4 = 0

Fig. 4.6 : Illustration ofthe C-metric on a 2-objective minimization example (figure adaptedfrom [ZITOO]).

• in [ZIT03], Zitzler and Thiele suggested the use of a binary e-indicator, based on the défi­
nition of the £‘-dominance : for a given £ >0, a vector is said to s -dominate a vector z^ 
(z^ >eZ^) iff:

V1 < i <m : zf^ ^ £. Z/^ , (4.6)

where m is the number of objective fonctions (cf Fig. 4.7). Then, the indicator Ig is de- 
fined by :
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(4.7)le(A,B)= inf { € A:z® }.
ee. R

fl
D objective vectors € set A

J

L..Z /

Z Set of points of the objective space weakîy dominated 
by set A (Le. £-dominated by set A with €= 1)

Z
py set /

Set of points of the objective space e-dominated by set A with £ = € > 1

►
Fig. 4.7 : Illustration of the E-dominance (figure adapted front [ZIT03J).

For example, if Ie(A,B)< 1 and Ie(B,A) > 1, then the set A is hetter than B (A > B).

• in [HAN98], Hansen and Jaszkiewicz proposed the ^7-norm, based on the computation of 
the probability that a set A is better than another set B over a family of utility functions U. 
It is formally defined by Eq. (4.8) :

RI(A,B,U,p) == iueU C(A,B,u)p(u) du, (4.8)
where :

' I if U (A) > U (B), (4.9)

C(A,B,u) = V2 if U (A) = U (B), (4.10)

if U (A) < U (B), (4.11)

with A and B are the sets to compare, t/ is a set of utility functions u OS"' -^0$ which
maps each point from the objective space into a measure of utility, and u(A) is defined as 
follows :

U (A) = max\u(z )}, (4.12)ze/4

and similarly for u(B). Finally, p(u) is the probability density of m e U. A value of 
RJ (A,B,U,p) close to 1 would show that A outperforms B, whereas a value near 0 would 
show that B is better than A. It can be easily demonstrated that :

Rl(A,B,U,p) = 1-RI (B,A,U,p). (4.13)

Another metric presented in [HAN98] is the /î2-norm, which is built directly from the value 
of U , without using the outcome fonction C(A,B,u) :
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R2(A,B,U,p) = iueu(u*(A) - u(B))p(u)du. (4.14)

A variant of this metric, the /?i-norm, uses the ratio between u*(A) and u*(B) instead of the 
différence.

4.3.4 Discussion

To address the problem of comparing those different metrics, the new concept of outperfor- 
mance [HAN98] has to be introduced in addition to the définitions given in § 4.3.1 :

• a set A weakly outperforms a set B (A Ow B) iffA^B and for each objective vector e
B, is weakly dominated by at least one point e A ;

• a set A strongly outperforms a set B (A 0$ B) iff for each objective vector z^ e B, z^ is
weakly dominated by at least one point e A, and 3 z^* g B such that z^* is dominated
by a point in A ;

• a set A completely outperforms a set B (A Oc B) iff for each objective vector z ^ B, z is 
dominated by at least one point z^ e A.

This is illustrated in Fig. 4.8. A careful examination of these définitions shows that :

A OwB <=>A> B (A is better than B), (4.15)

A Oc B <=^A> B {A dominâtes B). (4.16)

I

f2
A Ow B

f2
A Os B

O objective vectors front set A

f2
A OcB

! i L i
O °

æ O

À O O
-1
J

e ®
4 fl fl

------------------------------------► -----------------------------------► L.

+ objective vectors front set B

Fig. 4.8 : Illustrations of the weak, strong and complété outperformance définitions 
in 2-objective rninimization examples (figure adapted from [HAN98]).

f,

Finally, a last couple of définitions based on these relations must be added to the collection of 
concepts needed to analyze rigorously the advantages and drawbacks of the different metrics 
[HAN98] :
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. a metric M is weakly compatible with the outperformance relation O (where O stands for 
Ow, Os or Oc) iff for each pair of sets A and B such that A O B, M(A,B) will evaluate A as 
being not worse than B ;

• a metric M is compatible with the outperformance relation O iff for each pair of sets A and 
B such that A O B, M(A,B) will evaluate A as being superior to B.

An in-depth theoretical study made by Zitzler and Thiele [ZIT03] shows that unary metrics are 
in general not capable of indicating whether a set is superior to another one ; it allows at best to 
infer that a set is not worse than another one. Moreover, in some cases, if a set A is evaluated 
superior to a set B, it can be that B actually overcomes A, even when different unary metrics are 
used and give the same trend.

For example, Knowles et al. indicate in [KNO02] that results obtained with the 5-metric are 
strongly dépendent from the reference point, as depicted in Fig. 4.9. From a more practical point 
of view, unary metrics often require the knowledge of the theoretical Pareto front PF,rue, which is 
seldom available, typically in industrial applications. Consequently, whereas unary metrics are 
very useful to quantify the closeness to the Pareto front or the spread of the nondominated solu­
tions along the trade-off surface, using them to compare nondominated sets must be done with 
great care.

/2

■ points € set A

a points € set B

i'
1“-' 6----- J

/2

I

T
Relativeness of the S-metric 
w.r.t. the reference point :

• withz,'^ : S(A)<S(B)

J
• withzf^ : S(A}> S(B)

fl fl

Fig. 4.9 : 2-objective example illustrating the relativeness of the S-metric 
with respect to the reference point (figure adaptedfrom [KNOOla]).

Therefore a binary metric seems more suited to compare PAMUC to the weighted sum 
method. First, the C-metric is investigated. Knowles reported in [KNO02a] some of its potential 
drawbacks :

• in some configurations, the C-norm can induce a cycling of the relations between 3 non­
dominated sets A, B and C, i.e. a situation where A is superior to B, B is superior to C and 
C is superior to A ; •

• if the sets A and B to compare are of different cardinality and/or the distribution of the 
points along the set is non-uniform, the results may be unreliable ;

• it is not compatible with the weak outperformance relation Ow-

The second binary measure introduced in § 4.3.3 is the binary f-indicator. Zitzler and Thiele 
note in [ZIT03] that although it can detect if a set A is better than a set B (A > B), meaning that it
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is compatible with the outperformance relation Ow, it is not compatible with the complété out- 
performance relation Oc ■ Moreover, it involves much computational overhead.

Finally, the last metrics investigated are Hansen and Jaszkiewic’s norms. It bas been shown in 
[KNO02a] that they are in general compatible with the three outperfomance relations Ow, Os and 
Oc (the compatibility depending on the set of utility fonctions U used in the computation of the 
norms) ; therefore their use is recommended by Knowles and Corne [KNO02]. i?/-norm has been 
preferred to R2- and /?5-norms because it does not need to make the hypothesis that it is mean- 
ingful to add the value of different utility fonctions of U.

The following section dissects the Rl-nom applied in this work to assess PAMUC in compari- 
son with the weighted sum method.

4.3.5 Focus on Hansen & Jaszkiewicz’s i?7-norni

The general procedure of computing i?7-norm is described in [HAN98], and it will be devel- 
oped in detail in this section, including the spécifie options taken in this work. The purpose is to 
compare two sets called and (which are nondominated objective vectors obtained
respectively with PAMUC and the weighted sum method).

The first step is to define the set of utility fonctions U. A utility fonction u : /S""—is a préf­
érence model which maps each point in the objective space into a value of utility (which the de­
cision maker wants to be maximized). The most convenient way to build U is to use parameter- 
ized utility fonctions u(z,r) where r e D(r) and D(r) is the variation domain of r.

When no preference of the decision maker is incorporated (which is the case since and
are obtained by varying uniformly the weights, without giving emphasis to one part of the 

trade-off surface with regard to another one), Jaszkiewicz [JASOl] suggests the use of weighted 
Tchebyeheff utility fonctions Uoa (z,Z*,A) (where Àj are the weights, for j = \ :

u^(z,z. A) = - max{ Àj.(zj* - Zj)}, (4.17)
j

where z* is the idéal point with respect to and (cf. § 3.2) :

* ■ f \ ^ C.PAMUC , , çiWS, (A 1 QXZj - mm {Zj\Z€ S OS}. (4.1 o)

As no particular set of weights is preferred, U is the set defined by ail combinations of 
UoJ[z,z ,A) with A = {À,},..., À„J such that each component Àj varies from 0 to 1 by a constant 
step, and of course :

m
= (4-19)

i=I

For example. Tables 4.1 and 4.2 indicate ail combinations of weights defining UoJ(z,Z*,A) in U 
in a 2-objective (with a step equal to 0.25) and a 3-objective problem (with a step equal to ’/s).
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X, X3 ' '
0 1

0.25 0.75
0.50 0.50
0.75 0.25

1 0

Table 4.1 : Combinations of weights for a 2-objective problem with a constant step =

X, X2 X3

0 0 1
0 ‘A %
0 % ^3
0 1 0
’A 0 %
’A ‘A ‘A
‘A % 0
% 0 A
% 'A 0
1 0 0

Table 4.2 : Combinations of weights for a 3-objective problem with a constant step - 'A.

Then, and are defined as follows :

z,z , A )\ze S

u*(S^^)= max\u^( z,Z* ,A)
zeS"'-' L J

(4.20)

(4.21)

The construction of u* for two sets A and 5 is illustrated in Fig. 4.11 on a simple 2-objective 
example with 3 points in each set : A = {(2,6) ; (4,4) ; (8,2)} and B = {(2,8) ; (4,6) ; (7,1)} (cf. 
Fig. 4.10) and A = {Ài, À2} where Àj (resp. Â2) varies linearly from 0 (resp. 1) to 1 (resp. 0) as 
expressed in Eq. (4.22) :

A={Àj,À2j = {t,l-t};te[0,l]. (4.22)

9 ------------------ ------------------ --------- --------- --------- ------------------ ---------

8----------- il--------------------------------- J=_L_p
♦ Set A

7----------------------------------------------------------------------------------
■ Set B

6-------------------------<>-----------------------Il----------------------------------------------
A Idéal point

5-------------------------------------------------------------------------- I I —

3

2

1

0123456789 10

Fig. 4.10 : Définition of sets A and B in the objective space.

♦ Set A 

■ Set B

i Idéal yooint
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Fig. 4.11 : Function u for 2 sets A and B with respect to the parameter t defming Tchebycheff weights 
(u‘(A) is superior to u(B) for every value oftfrom t = 0.1).

Then, an outcome function is introduced in order to compare and 5’^'^ :

C(SPAMUC cWS, U) = <

■ r */nPAMUC, . //cWSi IJ U [b ) > U (b ) ,

1/ -f */ç'PAMUC<,V2 ifu (S ) = U (S ) ,

0 ■r *.ç,PAMUC, ^ifu (S )<U (S ).

(4.23)

(4.24)

(4.25)

Finally, the RI measure can be built to reflect the probability that S‘ 
integrating over ail the utility functions :

,PAMUC is better than 5''^'^, by

j^j^fAMuc^ y ^ ç^^PAMUC^^WS (̂4 26)

where p(u) is the probability of « to be chosen by the user. In the validation process, each set of 
weights has the same probability of being chosen by the user, thus p(u) has a uniform distribu­
tion.

The meaning of /?/-norm is the following : a value of S^^,U,p) close to 1 would
show that is superior to whereas a value near 0 would lead to an opposite conclu­
sion. It can be easily demonstrated that /?7-norm is symmetric (in the sense defrned in [KNO02]), 
i.e.:

rJ(SPAMUC^ S'VS jjp) ^

Now that the methodology of validation 
for presenting the numerical results.

1 - RliS'^^ fAMUc^ y (4 27)

of PAMUC has been fully explained, it is due time
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4.4 Numerical results

4.4.1 Single-objective constrained optimization (SOCO)

4.4.1.1 Test case S-HED

The first single-objective constrained example is a beat exchanger design problem (test case 
106 in [HOCOl]), characterized by 8 variables and 6 inequality constraints :

min f(x)= xj + X2 + xs (4.28)

subject to : gj(x)= 1 - 0.0025 (x4 + Xô) ^0, (4.29)
g2(x)= 1 - 0.0025 (xs -H X?-X4) >0, (4.30)
g3(x)= 1 - 0.01 (XS-X5) >0, (4.31)
g4(x)= X, X6 - 833.33252 X4 - 100 xi 83333.333 > 0, (4.32)
gs(x)= X2X7 - 1250 X5 -X2X4 -t- 1250 X4 >0, (4.33)
g6(x)= X3X8-X3X5 + 2500X5- 1250.10^ >0, (4.34)
100 <xi <10000, (4.35)
1000 <X2 <10000, (4.36)
1000 <X3 <10000, (4.37)
10 <Xi <1000, i = 4,..., 8. (4.38)

The EA parameters used to solve this problem are gathered in Table 4.3.

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Real
N Size of the population 50
Hxen Number of générations 200
T Type of sélection Toumament

n,
Number of individuals participating 
to a toumament

2

Pc Probability of crossover 1

Te Type of crossover SBX

Pm Probability of mutation Variable

T„ Type of mutation PBM

Tic Distribution index for crossover 1

Vm Distribution index for mutation Variable*
Table 4.3 : EA parameters for test case S-HED (* cf. § 2.3.2.6).

The problem was tackled thanks to Joines and Houck’s and PAMUC methods. For each of 
them, 10 runs were performed. First, Joines and Houck’s dynamic penalty-based method was 
applied, but none of the 10 runs fumished a feasible solution. After about 140 générations, the 
algorithm converges to a solution violating the 2"‘* and 3"^** constraints (see the illustration on a 
single run in Fig. 4.12), and cannot escape from it. This is due to the way dynamic penalty coef­
ficients evolve ; as their value is always increasing during the générations, when the population 
has not yet reached the feasible domain, the individuals with a higher level of violation of con­
straints are progressively discarded from the population, though they can bring useful informa­
tion (by matching other individuals) to create feasible individuals. Therefore, in this case, the
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rigid variation of the penalties prevents the algorithm from getting away from a local (unfeasi- 
ble) minimum. Only an accurate tuning of the penalties could hâve enabled to find an admissible 
solution.

Fig. 4.12 :2”^ and 3^‘‘ constraints (sum ofall individuals ofthe population) w.r.t. the génération 
for 1 run ofthe EAfor problem S-HED (with Joines and Houck’s penalty-based method).

On the contrary, ail runs performed with PAMUC gave feasible solutions. The rate of feasible 
individuals at each génération is illustrated in Fig. 4.13, and shows that after about 50 généra­
tions, approximately 95% of the population satisfies ail the constraints.

Fig. 4.13 : Rate of feasible individuals at each génération for 1 run of the EA for S-HED (with PAMUC method).

For the 10 runs of the EA, the mean of the objective fiinction value of the best (feasible) indi- 
vidual (at each run) is equal to 9612.9, while the best value is 8509.8 (standard déviation = 
979.4). Figure 4.14 depicts a sharp decrease of the objective function until the 80‘*' génération, 
where the algorithm seems to hâve converged.
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Fig. 4.14 : Objective function ofthe best feasible individual at each génération for 1 run ofthe EA 
(with PAMUC method)from the 43“'' génération for problem S-HED 

(the populations ofthe first 42 générations did not contain any feasible solution).

The results can be seriously improved by increasing the size of the population to 80 and the 
number of générations to 1000. Deb studied the same problem with the tournament sélection 
method (cf. § 3.5.1.6), and the corresponding results [DEBOO] are mentioned below and compared 
to PAMUC results (cf. Table 4.4).

Method Number of 
générations Mutation Niching Feasible runs

Value of the objective function
Best Médian Worst

TS [DEBOO] 1000 No No 50 7063.377 8319.211 13738.276
TS [DEBOO] 1000 No Yes 49 7065.742 8247.830 10925.165
TS [DEBOO] 4000 Yes Yes 50 7060.221 7220.026 10230.834
PAMUC 1000 Yes No 50 7061.231 8193.820 10280.148

Table 4.4 : Comparison of PAMUC and TS methods for problem S-HED (50 runs).

The niching used in TS method is a genetic operator intended to increase the diversity of the 
population by favouring the individual whose Euclidean distance with the rest of the population 
is greater, in order to prevent the algorithm firom converging too quickly to a narrow part of the 
domain. It works as follows : when comparing two feasible solutions and if the Euclidean 
distance between them is smaller than a critical distance d , the solutions are compared with re­
spect to their objective function values ; otherwise, they are not compared and another x^^ is cho- 
sen. If rif feasible individuals are checked and none is such that the corresponding Euclidean dis­
tance to x^' is greater than d , x^‘^ wins the tournament. The parameters rif and d hâve to be tuned 
by the user.

Numerical results show that the best solution found by PAMUC is very close to the touma- 
ment selection’s optimal values.
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Fig. 4.15 : Rate offeasible individuals and objective function ofthe best feasible individual 
at each génération for 1 run ofthe EA applied to test case S-HED (with PAMUC method, Nge„ = 1000}.

Figure 4.15 illustrâtes the rate of feasible individuals and the évolution of the objective fiinc- 
tion value with respect to the génération. After the 20*'' génération, the rate of feasible individuals 
remains close to 60%, which means that a part of the population, albeit unfeasible, is very im­
portant, for it brings crucial genetic information to admissible individuals to progress towards the 
optimum. Adaptivity of the weights enables a continuai equilibrium between the satisfaction of 
the constraints and the improvement of the objective function.

4.4.1.2 Test case S-3EQ

The second example is test case 80 in [HOCOl] :

minf(x)= exp(x] X2 xs X4 X5) (4.39)

subject to : hi(x)= xj^ X2^ + x/ + x/ + = 10, (4.40)
h2(x)= X2X3-5 X4X5 = 0, (4.41)
h3(x)= x/ + X2^ = - 1, (4.42)
- 2.3 <Xi <2.3, i = 1, 2, (4.43)
- 3.2 <Xi <3.2, i = 3, 4, 5. (4.44)

In this example, equality constraints are transformed into inequalities as indicated in Eq.
(4.45) :

hj(x) = 0 â-\h/x)\>0forj = ],...,3, (4.45)

with ^set to 10 ^ to allow some room to the EA to work. The optimal solution is [DEBOO] :

X* = (-1.717143 ; 1.595709 ; 1.827247 ; - 0.7636413 ; - 0.7636450), (4.46)

with an objective function value f(x*) = 0.053950.

Joines and Houck’s method (implemented in the Std-EA) and PAMUC hâve been used ; the 
EA parameters of the study are collected in Table 4.5.
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Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding ofthe variables Real coding
N Size ofthe population 50
^een Number of générations 1000
T. Type of sélection Toumament

n, Number of individuals participating 
to a toumament

2

Pc Probability of crossover 1
T, Type of crossover SBX

Pm Probability of mutation Variable

T.„ Type of mutation PBM

Pc Distribution index for crossover 1
Pm Distribution index for mutation Variable*

Table 4.5 : EA parameters for test case S-3EQ (* cf § 2.3.2.6).

While 13 runs (of 20) of the EA combinée! with Joines and Houck’s method furnished a feasi- 
ble point, each run performed with PAMUC found a solution satisfying the whole set of con- 
straints. Furthermore, 7 runs found the global optimum x .

The corresponding results are mentioned in Table 4.6. Figures 4.16 and 4.17 depict the rate of 
constraint satisfaction of the population, as well as the évolution of the objective fonction value 
of the best feasible individual, at each génération (for one run of the EA combined respectively 
with Joines and Houck’s and PAMUC methods). Results obtained by Joines and Houck’s tech­
nique show that the rate of feasible members in the population oscillâtes from larger periods 
where it is very low to peaks of high level of admissibility ; this explains the discontinuons shape 
of the best feasible objective fonction (indeed, periods where no admissible solution is generated 
are of course not represented). On the contrary, with PAMUC, the number of feasible individuals 
remains globally beyond a level of 50%. For both methods, it appears that using a large number 
of générations leads to an improvement of the solution. One can suppose by considering Fig. 
4.17 [right] that using Nge„ larger than 1000 would hâve certainly improved the solution. Never- 
theless, a fixed value of Nge„ (= KKK)) was used to compare PAMUC and Joines and Houck’s 
techniques with the same number of fonction évaluations.

100

i
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•Si

;

1̂ 0.965 -
•C:
-c:
i'

;

'S, 0.96-%

1
t

0.955

uJL
400 600

Génération
800 1000 200 400 600

Génération
800 1000

Fig. 4.16: 
for 1 run

Rate of feasible individuals and objective function of the best feasible individual at each génération 
ofthe EA applied to test case S-3EQ (with Joines and Houck ’s method implemented in the Std-EA).
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Method Feasible mm 
(over 26)

Value of the objective function
Best Mean

Joines and Houck 13 0.35432 0.87655
PAMUC 20 0.05395 0.35433

Table 4.6 : Results ofJoines and Houck’s method (implemented in the Std-EA) and PAMUCfor S-3EQ.

Génération

0.6663 -

0.6663 '

^ 0.6662 -

^0.6662-
I 0.6661 -

£, 0.6661 ■ O*
■S, 0.666- 

I 0.666

® 0.6659 -

0.6659 ■

0.6658 - 
0

Fig. 4.17 : Rate offeasible individuals and objective function of the best feasible individual 
at each génération for 1 run of the EA applied to test case S-3EQ (with PAMUC method).

4.4.1.3 Test case S-6ACT

The third example is test case 113 in [HOCOl], and is defined by Eqs. (4.47) to (4.56) :

2 2 2 2 min f(x)= X] + X2 + xjX2 - 14 xj - 16 X2 + (x3 - 10) + 4(x4 - 5)
+ (X5 - 5/ + 2(X6 - 1 )^ +5 X7^ + 7(X8 - 7 // + 2(X9 - 10)^
+ (xio-7)^ + 45 (4.47)

subject to : gi(x)= 105 - 4 xj - 5 X2 + 3 xj — 9 xs ^ 0, (4.48)
g2(x)= - 10X] + 8X2 + 17xy - 2 xs ^0, (4.49)
gs(x)-8 Xi - 2 X2 + 17X7-2 xs >0, (4.50)
g4(x)= - 3(xi - 2f - 4(x2 -3f-2 X3 + 7 jc^ + 120 >0, (4.51 )
gs(x)= -5 xi^ -8x2- (x3-6)^ + 2 X4 + 40 >0, (4.52)
gô(x)= -x/ - 2(x2-2)^ + 2 Xi X2- 14 X5 + 6 xo >0, (4.53)
g7(x)= - 0.5(xi - 8)^ - 2(x2 -4)^-3 xs^ + X6 + 30>0, (4.54)
gs(x)= 3 Xi-6x2- 12(xç - 8)^ + 7 xw > 0, (4.55)
- 10 <Xi <10, i = 10. (4.56)

The optimal solution is [DEBOO] :

X* = (2.171996 ; 2.363683 ; 8.773926 ; 5.095984 ; 0.9906548 ;
1.430574 ; 1.321644 ; 9.828726 ; 8.280092 ; 8.375927), (4.57)

with an objective function value/(x*) = 24.3062091.
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Joines and Houck’s and PAMUC methods hâve been used ; the EA parameters of the study 
are collected in Table 4.7.

Symbol Parametef - ' Value
Env Environment Std-EA Matlab
Cod Coding of the variables Real coding
N Size of the population 100
^een Number of générations 100
T. Type of sélection Toumament

n,
Number of individuals participating 
to a toumamenî

2

Pc Probability of crossover 1

Te Type of crossover SBX

Pm Probability of mutation Variable

T„, Type of mutation PBM

ric Distribution index for crossover 1

n,„ Distribution index for mutation Variable’
Table 4.7 : EA parameters for test case S-6ACT (* cf. § 2.3.2.6).

Table 4.8 présents the performance of the EA with Joines and Houck’s and PAMUC methods, 
showing better results for PAMUC.

Mélhod Feasible runs Value of the objective Jfunction
Best Mean Std déviation

Joines and Houck 20 35.9251 86.6529 39.9731
PAMUC 20 33.7940 74.2710 33.9380

Table 4.8 : Comparison of Joines and Houck’s method (implemented in the Std-EA) 
and PAMUC for problem S-6ACT (20 runs).

Fig. 4.18 : Boundary (B) between feasible (F) and unfeasible (U) points in the variable spacefor a I-constraint 
problem, and illustration of crossover between an unfeasible parent (x’’’} and a feasible parent (x’’~), 

creating a child doser to the boundary B (with x' being the globcd optimum).
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It should be noticed that in this example, the first 6 constraints are active at the optimum, i.e.
gi(x*)= 0 for i = 1,..., 6. In this case, using adaptive weights is a fruitful option, as depicted in
Fig. 4.18. Indeed, as unfeasible individuals are accepted in the population with PAMUC (unlike
some other constraint-handling techniques, as the death penalty [cf. § 3.5.1.1], which discard
unfeasible points), when one (or several) constraint(s) is (are) active at the optimum (i.e. gi(x ) =
0 for at least one /), they can generate - by matching feasible points - new individuals doser to
the boundary separating admissible and inadmissible domains, on which lies the optimal solution *
JC .

4.4.1.4 Test case S-CRES

This is the first test case proposed by Deb in [DEBOO]. It is characterized by 2 constraints 
which reduce the feasible domain F to approximatively 0.7% of the total search space (cf. the 
crescent shape of F in Fig. 4.19 zoomed in Fig. 4.20). The problem is defined as follows :

minf(x) = (xj^ + X2-llf +(xi+X2-7f (4.58)

subject to : gi(x) = 4.84 - (xi - 0.05f — (x2 - 2.5f >0, (4.59)
g2(x) = X/ " + (X2 - 2.5f - 4.84 >0, (4.60)
0 <xj <6 ; 0 <X2<6. (4.61)

The constrained optimum solution is [DEBOO] :

X* = (2.246826 ; 2.381865) with f(x*) = 13.59085. (4.62)

Fig. 4.19 : Crescent shape of the feasible domain F in test case S-CRES in the variable space (Xj, Xi) 
(contours are isovalues of the objective function f) (figure adaptedfrom [DEBOO]).
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Fig. 4.20 : Zoom of the feasible domain F in test case S-CRES in the variable space (x/, X2) 
in the vicinity ofthe global feasible optimum x* (figure adapted from [DEBOO]).

Parameters of the study PS (R=O.OI) 
[DESmi [DEBOO] [DEBOO]

PAMUC

Number of feasible runs (of 50) 31 39 50 50
Best feasible solution 13.58958 13.59108 13.59085 13.59104
Médian feasible solution 24.07437 16.35284 13.61673 13.65329
Worst feasible solution 114.69033 172.81369 117.02971 118.45128

Table 4.9 : Resultsfor test case S-CRES for 50 runs.

In Table 4.9, solutions obtained with PAMUC are comparée! to results given in [DEBOO] for PS 
and TS methods discussed above (cf. § 4.2.2). The following parameters are used : real coding of 
the variables, binary tournament and simulated binary crossover.

It should be noted now that the distribution index île, which Controls the SBX operator (see 
§ 2.3.2.S) with real coding, is equal to 1 in ail cases treated in this work. As described in [DEB95], 
a small value of rje (ric<^\) allows solutions far away from parents to be created, whereas a large 
value of rjc restricts only near-parent solutions to be created as children. The crossover
probability pc is equal to 0.9, and no mutation is performed ; the number of générations Ngen = 50 
and the size of the population N = 20.

In Fig. 4.21, the average Euclidean norm of the variables (compared to the theoretical solution 
JC*) illustrâtes the convergence of PAMUC towards the global optimum. Table 4.9 shows that 
PAMUC and TS methods both provide very close results.
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Fig. 4.21 : Average Euclidean norm of the feasible individuals of the population 
at each génération for test case S-CRES (with PAMUC).

4.4.1.5 Test case S-38IC

This problem bas 5 variables and a high number of constraints (38 inequality constraints ; cf. 
test case 2 in [DEBOO]).

minf(x) = 0.1365 - 5.843.10'^yi7+ 1.17.10'' yi4 + 2.358.10-^ y,3

+ 1.502.10-^ y16 + 0.0321 y,2 + 0.004324 ys + 10 C5/C16

+ 37.48 y2/ci2 (4.63)

subject to : gi(x) = 1.5 X2 -X3 >0, (4.64)
g2(x) =yi(x)-213.1 >0, (4.65)
g3 (x) = 405.23 - y J (x) >0, (4.66)
g j+2 (x) = y/x) -aj>0 forj = 2,..., 17, (4.67)
g j+18(x) = bj-yj(x) >0 forj = 2,..., 17, (4.68)
g36 (x) = y4(x) - 0.28/0.72 ys (x) >0, (4.69)
g37(x) = 21 - 3496.0 y2 (x)/cn (x) >0, (4.70)
g38(x) = 62212.0/c,7(x)-110.6-y,(x)>0, (4.71)
704.4148 <xj <906.3855, (4.72)
68.6 <X2 <288.88, (4.73)
0<X3< 134.75, (4.74)
193 <X4 <287.0966, (4.75)
25 <X5 <84.1988. {A.16)

The terms yfx) and the parameters aj and bj are defined in Appendix A. The optimal solution 
found in [DEBCX)] is :
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JC* = (707.337769 ; 68.600273 ; 102.900146 ; 282.024841 ;
84.198792), (4.77)

with the corresponding value of the objective function/(x*j equal to - 1.91460.

At this solution, none of the constraints is active (i.e. the solution lies inside the feasible do­
main). In Table 4.10, solutions obtained with PAMUC are compared to results given in [DEBOO] 
for PS-a (with parameter a such that R = ICf : cf. § 3.5.1.6) and TS methods. The parameters 
used in this example are the same as in the previous case, except that the number of générations 
Ngen = 1000 and the size of the population N = 50.

Parameters of the study PS-0
[DEBOO]

PS-2
[DEBOO]

PS-6
[DEBOO] [DEBOO]

TS
[DEBOO] PAMUC

Mutation No No No No Yes Yes
Niching No No No Yes Yes No
Number of runs (out of 50) 
which found a feasible 
solution

12 50 50 50 50 50

Best feasible solution - 1.86365 - 1.89845 - 1.91319 - 1.91410 - 1.91460 - 1.90563
Médian feasible solution - 1.69507 - 1.65156 - 1.65763 - 1.85504 - 1.91457 - 1.88615
Worst feasible solution - 1.35910 - 1.00969 - 1.11550 - 1.30643 - 1.91454 - 1.42366

Table 4.10 : Results for problem S-38IC for 50 runs.

Results of PAMUC are illustrated on Fig. 4.22 and 4.23. Fig. 4.22 [left] shows the fast con­
vergence of the population towards the feasible domain, and Fig. 4.22 [right] depicts the conver­
gence to the feasible optimum jc*. The average Euclidean norm on the variables (compared to the 
theoretical solution) also illustrâtes the convergence towards x* (see Fig. 4.23). Table 4.10 shows 
that results obtained by PAMUC are better than those obtained by PS-a, except for a = 6 (7? = 
10^), but PAMUC has provided good resuit without requiring any tuning of parameters. TS 
method outperforms both methods (PS and PAMUC).

Fig. 4.22 : Rate [left] and minimum and mean value ofthe objective function [ right] of feasible individuals of the 
population at each génération for one runfor test case S-38IC (with PAMUC).
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Fig. 4.23 : Average EucUdean norm (on the variables) of the feasible individuels ofthe population 
at each génération for one runfor test case P-IC38 (with PAMUC).

4.4.1.6 Test case S-0.5F

This problem bas 7 variables and 4 nonlinear constraints (test case 5 in [DEBOO]).

minf(x) = (x] - 10)^ + 5(x2- 12)^ + + 3(x4~ 11)^ + 10xs^
A 7 X6^ A Xy'*-4 X6X7 (4.78)

subject to : gi(x) - 127-2 xi^ -3X2‘^ -X3-4 X4^ - 5X5 >0, (4.79)
g2(x) = 282 - 7X] - 3 X2 -10x3^-X4+ xs>0, (4.80)
g3(x) = 196-23X]-X2^ -6x6^ A 8x7>0, (4.81)
g4(x) = - 4 X]^ -X2^ A 3 X1X2 - 2 X3^ - 5 X6 A 11 X7 >0, (4.82) 
-10 <Xi < 10 for i = 1,..., 7. (4.83)

The optimal solution is :

JC* = (2.330499 ; 1.951372 ; - 0.4775414 ; - 0.6244870 ;
1.038131 ; 1.594227), (4.84)

with the corresponding value of the objective function / * equal to 680.63. Only about 0.5% of 
the search space is feasible [DEBOO]. The parameters used in the study are the same as in the pre- 
vious example, save that the size of the population = 70. In Table 4.11, solutions obtained with 
PAMUC are compared to results given in [DEBOO]. It is interesting to note that the presence of 
niching (in TS method with the critical distance J = 0.1 and rif = 0.25 A : cf. § 4.4.1.1 ) or muta­
tion (in PAMUC) enables to find better solutions by creating diversity among the population.

Parameters of the study TS [DEBOOJ TS [DEBOOJ PAMUC PAMUC
Mutation No No No Yes
Niching No Yes No No
Number of runs (out of 50) which found 
a feasible solution 50 50 50 50

Best feasible solution 680.800720 680.659424 680.810394 680.729460
Médian feasible solution 683.076843 681.525635 684.139966 682.344782
Worst feasible solution 705.861145 687.188599 706.238773 689.122543

Table 4.11 : Results for problem S-0.5F for 50 runs.

Chapter 4 - Validation of the PAMUC method 4-25



4.4.1.7 Test case S-HIM

The last single-objective problem taken from [DEBOO] is Himmelblau’s nonlinear optimization 
problem. This problem has 5 variables and 6 inequality constraints (test case 6 in [DEBOO]) ;

minf(x) = 5.3578547x3^ + 0.8356891x] xs + 37.293239 X]
-40792.141 (4.85)

subject to : gi(x) = 85.334407 + 0.0056858 X2X5 + 0.0006262 xjX4

- 0.0022053 X3 X5 >0, (4.86)
g2(x) = 92 - 85.334407 - 0.0056858X2X5 - 0.0006262 xjX4

+ 0.0022053 X3X5>0, (4.87)
g3(x) = 80.51249 + 0.0071317x2X5 + 0.0029955xj X2

+ 0.0021813x3^ -90 >0, (4.88)
g4{x) = 110 - 80.51249 - 0.0071317x2X5 - 0.0029955xiX2

-0.0021813x3^ >0, (4.89)
g5(x) = 9.300961 + 0.0047026x3X5 + 0.0012547 x,X3

+ 0.0019085 X3X4 -20 >0, (4.90)
g6(x) = 25 - 9.300961 - 0.0047026x3X5 - 0.0012547x,X3

- 0.0019085 X3X4>0, (4.91)
78 < X, <102, (4.92)
33 < X2 <45, (4.93)
27 < X/ <45 for i = 3,..., 5. (4.94)

The parameters used with PAMUC are the same as in the previous example, except that the
number of générations Nge„ = 1(X) and the size of the population N = 50. Both penalty-based 
methods used a GÀ with a binary représentation, two-point crossover, tournament sélection and 
uniform mutation.

Param^rs of the study > Statie penalty 
{Homoifar et aL)

Dynamic penalty 
(Joines & Hoiuh with 

C = 0.5 and a = 8 = 2)

(, MGA 
(Coello)

; paMuc

Crossover probability Pc 0.8 0.8 self-adapted 0.8

Mutation probability p„, 0.005 0.005 self-adapted dynamic
Best feasible solution -30790.27159 - 30903.877 -31005.7966 -30946.2155
Mean feasible solution -30446.4618 -30539.9156 - 30862.8735 - 30598.6437
Worst feasible solution - 29834.3847 -30106.2498 -30721.0418 -30310.6035
Standard déviation 226.3428 200.035 73.240 163.718

Table 4.12 : Results for problem S-HIM for 50 runs.

The PAMUC method provided very good results with the same number ôf fitness fiinction 
évaluations, compared to penalty-based methods, while the MGA (multi-objective genetic algo- 
rithm), based on a nondominance approach [COEOOa], gives better results (see Table 4.12). It can 
also be mentioned that the coevolutionary penalty method proposed by Coello [COE02], which 
has fumished the best solution so far for this problem, needs a considerably higher number of 
fonction évaluations (900 000 instead of 5000 in results cited in Table 4.12).
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4.4.1.8 Test case P-WBD

The last single-objective test case is the welded beam design problem, formulated as follows 
[COEOOa] (see Fig. 4.24) :

minf(x) = 1.10471 X2 -t 0.04811 xs X4 (14 + X2) (4.95)

subject to : gi(x) = x(x) - w ^0, (4.96)
g2(x) = 0(x) - Gmax ^0, (4.97)
gsix)- X1-X4 <0, (4.98)
g4(x) = 0.10471 jc/ -I- 0.04811 X3 X4 (14 + X2) - 5 <0, (4.99)
gs(x)= 0.125-xi<0, (4.100)
gô(x)= Ô(X)- ômax^O, (4.101)
g7(x)= P-PAx)<0, (4.102)

where : T(x) = +2t'T"-^+(r"y ,

t' =

■j2x,X2

MR

M = P

J
f

V
Lj +

Xj+Xj

'
2 f 1 > 2 1

7 = 2 42x,X2
Xj + JC^

12 l 2 J J
o(x) =

S(x} =

6 PL
X4X2

4PÜ
Exjx,

4.013 E
Pc(x) = J

x]xl
36

f
-----

2L\4G y

(4.103)

(4.104)

(4.105)

(4.106)

(4.107)

(4.108)

(4.109)

(4.110)

(4.111)

expressions in which P = 6000 Ib, L = 14 in, £ = 30.10^ psi, G = 12.10^’ psi, Tmax = 13600 psi, 
Oinax = 30000 psi and = 0.25 in.
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Fig. 4.24 : Welded beam design problem [COEOOa].

Joines and Houck’s method (implemented in the Std-EA with C = 1, a= 1 and /? = 2) and 
PAMUC were used ; the EA parameters of the study are collected in Table 4.13. Table 4.14 pré­
sents the performance of the EA with both methods, showing better results for PAMUC. Once 
again PAMUC outperforms Joines and Houck’s method.

Symbol Parameter.. Value
Env Environment Std-EA Matlab
Cod Coding ofthe variables Gray binary coding
Nm, Numbe of bits per variable 8
N Size ofthe population 80
^eett Number of générations 150
Ts Type of sélection Toumament

n,
Number of individuals participating 
to a toumament

2

Pc Probability of crossover 1
T Type of crossover 2-point

Pm Probability of mutation 0.01
T4 m Type of mutation Flip

Table 4.13 : EA parameters for test case P-WBD (* cf. § 2.3.2.6).

45r

150
Génération

Fig. 4.25 : Rate offeasible individuals and objective function of the best feasible individual 
at each génération for I run of the FIA applied to test case P-WBD (with Joines and Houck’s method).
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Fig. 4.26 : Rate offeasible individuals and objective function ofthe best feasible individual 
at each génération for 1 run ofthe EA applied to test case P-WBD (with PAMUC).

Feasible runs ^ Vidue ofthe objective j Sanction
Best Mean Std déviation

Joines and Houck 50 7.439418 8.313480 0.904600
PAMUC 50 8.785876 9.270780 0.484904

Table 4.14 : Comparison ofJoines and Houck’s and PAMUC results forproblem P-WBD (50 runs).

Fig. 4.25 and 4.26 show that with Joines and Houck’s method, after a boom, the rate of feasi­
ble members of the population decreases drastically, whilst in PAMUC results it oscillâtes 
around 50%.

4.4.1.9 Remarks on single-objective constrainedproblems

A recapitulatory table gathers the results of PAMUC compared to other methods investigated 
in this study ;

Test case 
(SOCO)

Nome of the * 
problem PAMÜC Joines and 

Houck PS[DEB00] TS [DEBOO]

1 S-HED 7061.231 (no feasible 
solution)

(results not 
available) 7065.742

2 S-3EQ 0.05395 0.35432 (results not 
available)

( results not 
available)

3 S-6ACT 33.7940 35.9251 (results not 
available)

(results not 
available)

4 S-CRES 13.59104 (results not 
available) 13.58958 13.59085

5 S-381C -1.90563 (results not 
available) -1.91319 -1.91460

6 S-0.5F 680.729460 (results not 
available)

( results not 
available) 680.659424

7 S-HIM - 30946.2155 - 30903.877 (results not 
available) -31005.7966

8 P-WBD 7.439418 8.785876 (results not 
available)

(results not 
available)

Table 4.15 : Best feasible solutions found by PAMUC and other methods mentioned in this study 
(for a same nurnber of function évaluations).
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Although PAMUC was dedicated to multiobjective (constrained) problems, results mentioned 
in Table 4.15 show that it provides very good results compared to methods specially devoted to 
single-objective contrained optimization. This is mainly due to the adaptivity of the weights, 
which seems to be more efficient than a “blind” évolution of the penalty coefficients, which does 
not take into account the results of the EA during the générations (in terms of rate of feasible 
individuals in the population). Furthermore, PAMUC does not require any parameter tuning, 
unlike most penalty-based techniques.

However, it should be underlined that when one is only interested in solving single-objective 
problems, Deb’s toumament sélection technique seems the most appropriate approach, since it 
generally gives better results than PAMUC for the same number of function évaluations, and for 
less computational overhead (in comparison with the use of PROMETHEE II in PAMUC). 
Moreover, for arduous problems, Coello’s coevolutionary method [COE02] is the best way to 
reach the feasible optimal solution, though it needs a considerably higher number of function 
évaluations. Finally, as already mentioned in §§ 3.5.1.3 and 3.5.1.4, for some spécifie applica­
tions, the use of decoders or repair strategy (related to the coding of the variables or the défini­
tion of the genetic operators) also provide very satisfactory results in tackling the constraints.

Now that the ability of PAMUC to deal with constraints in single-objective examples has 
been demonstrated, the next section will présent multiobjective problems.

4.4.2 Multiobjective optimization (MOO)

4.4.2.1 Test case M-UC

The first multiobjective example is an unconstrained problem taken from Cvetkovic [CVEOO] 
and is characterized by 2 variables and 2 objective fonctions :

f fi(x) = sin(X] ^ +X2^ - 1) (4.112)
max j

1 f2(x) = sin(X]^ + X2^ + 1) (4.113)

with 0 <X] <3t!/4 and 0 <X2 <3n/4. (4.114)

The procedure consisting in varying the weights in order to check that corresponding results 
correctly depict the user’s preferences is illustrated in Fig. 4.27, which shows different points (in 
the objective space) obtained by PAMUC for 8 values of the weights. The EA used here is the 
same as in test case S-CRES (cf. § 3.4.1.4) save that Ngen = 40 and N = 40.

To analyze PAMUC more rigorously and compare it to the weighted sum method (WS), the 
following procedure is applied : 20 processes were launched, with each process consisting in 
running the EA with both methods (PAMUC and the WS) 30 times, with a set of weights vary­
ing from {w}* - 0 ; W2* = 1} for the first run to [wj* = 1 ; W2* = 0} for the last run, by a constant 
step.
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Fig. 4.27 : Nondominated solutions obtained by P AM UC method for M-UC 
(for 8 values of the weights, with W2* = 1 - w*).
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Fig. 4.28 : Nondominated solutions obtained with the weighted sum and PAMUC methods
for M-UC (for one process).

Statistics on the 20 processes show that the mean value for R1(PAMUC,WS) is equal to 0.74 
(with a standard déviation of 0.28), which should mean that PAMUC outperforms the weighted 
sum method (see § 4.3.5). However, Fig. 4.28 (illustrating nondominated solutions obtained by 
both methods for one process) does not confirm this statement : the results obtained by both 
methods seem quite similar. As a matter of fact, performing the computations with much higher 
numbers of processes (1000 instead of 20) and of runs by process (100 instead of 30) shows that 
PAMUC and the weighted sum method are almost équivalent, since the mean of 
R1(PAMUC,WS) is equal to 0.51 (see Table 4.16). The misleading results obtained with only 20 
processes illustrate some weakness of Rl-norm to provide meaningful information when the 
nondominated sets to be compared are very close one to another. Mathematically speaking, this 
can be easily explained by the way Rl-norm is calculated : when the nondominated points of a 
set A are slightly better than those of a set B over a large région of the trade-off surface (which
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seems to be the case here with PAMUC w.r.t. WS), this small advantage is amplifiée! because the 
outcome function is equal to 1 when > u*(S'^^) [see Eq. (4.23)] ;
since Rl-norm is computed by integrating ,S'^^,u) over ail the utility functions u, the
outperformance of PAMUC is exaggerated. This trend is corrected with higher number of points 
in the trade-off surface.

Probkm
Number of 
processes

Number Mruns 
for each jpecevs

RKPAMUC.WS)

Mean
Standard dé­

viation

M-UC
20 30 0.74 0.28

1000 100 0.51 0.12
Table 4.16 : Comparison of the weighted sum method and PAMUC for problem M-UC.

4.4.2.2 Test case M-LOC

The second example is due to Kita (cf. [VAN98]) :

fl(x) =-Xi^ A X2 (4.115)
max •

f2(x) = X[/2 + X2 + 1 (4.116)

subject to : gi(x) = xj/6 + X2- 13/2 <0, (4.117)
g2(x)= x,/2 +X2-15/2 <0, (4.118)
g3(x) = 5x]+X2-30<0, (4.119)

with 0 <X] <100 and 0 <X2 <100. (4.120)

The EA used here is the same as in test case S-CRES (cf. § 3.4.1.4) except that A^ = 40. The 
process was launched 20 times. Each process consists in running the EA with both methods 
(PAMUC and WS) 10 times, with a set of weights varying from {wy* = 0 ; W2* = 1} for the first 
run to {wy* = 1 ; W2* = 0} for the last run, by a constant step. Fig. 4.29 illustrâtes nondominated 
solutions obtained by both methods for one process.

8.8
X Weighted sum method

8.6 O PAMUC

8.4

8.2

Î2 ■> ,
8

7.8 ............ : .

7.6 :
è

'do -15 -10 -5 0 5 10

fl

Fig. 4.29 : Nondominated solutions obtained with the weighted sum and PAMUC methods
for M-LOC (for one process).
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Numerical results are mentioned in Table 4.17, and show that PAMUC outperforms the 
weighted sum method, although none of them is able to cover efficiently the left side of the PA- 
reto front (i.e. the région such that -20 <fi(x) < 0).

Problem Number of processes
RI(PAMUC,WS)

Mean Standard déviation

M-LOC 20 0.88 0.11
100 0.86 0.09

Table 4.17 : Comparison ofthe weighted sum method and PAMUC for problem M-LOC.

Those results are confirmed when a higher number of processes is used. Ail runs (launched 
with both methods) fùrnished feasible solutions.

4.4.2.3 Test case M-LOQC

The third test case is due to Osyczka (cited in [VAN98]), and is formulated as follows :

fi(x) — X} + X2^ (4.121)
max '

f2(x) = Xi ^ +X2 (4.122)

subject to : gi(x) = 12 - xj - X2 >0, (4.123)
g2(x) = xi^ + 10Xi-X2^ + 16X2 - 80 >0, (4.124)
2 <xi <7 and 5 <X2 < 10. (4.125)

The EA used here is the same as in the previous example (with the same parameters). The 
process was launched 20 times, each process consisting in running the EA with PAMUC and the 
weighted sum method 10 times, with a set of weights varying from {wi = 0 ; vv2 = 1} for the 
first run to {wi* = 1 ; W2* = 0} for the last run, by a constant step. Ail solutions (found by both 
methods) were feasible.
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Fig. 4.30 : Nondominated solutions obtained with the weighted sum and PAMUC tnethods

for M-LOQC (for one process).
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Problem Number ofprocesses Rl(PAMUQWS)
Mean Standard déviation

M-LOQC 20 0.93 0.05
Table 4.18 : Comparison ofthe weighted sum method and PAMUCfor problem M-LOQC.

Statistics on the 20 processes are gathered in Table 4.18, showing that PAMUC gives better 
results than the weighted sum method. One can also observe in Fig. 4.30 that the points obtained 
by the weighted sum method are concentrated at the extreme sides of the Pareto front, while the 
solutions of PAMUC are better distributed along the Pareto front.

At first sight, this resuit may seem astonishing. Indeed, Jin et al. showed in [JINOl] that most 
aggregation methods were not capable to represent concave Pareto fronts (as the concave PF of 
this 2-objective maximization problem). Their explanation is based on the following statement : 
the ability to converge towards a Pareto solution is related to its stability with respect to a given 
combination of weights. This concept is illustrated in Fig. 4.31 for a 2-objective minimization 
problem characterized by a convex trade-off surface front.

Fig. 4.31 : Convex Pareto front (in a minimization problem).

Fig. 4.32 : Seeking the minimum ofwjfi + \V2f2 with w/ = = 0.5 (in a minimization problem).
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Each network of parallel lines is associated with a slope corresponding to a set of weights 
{w/, W2}. If w/ = W2 = 0.5 for instance, a 45° rotation of axes/i and/2 transforms the multiobjec- 
tive problem into a single-objective one (cf. Fig. 4.32).

With the weighted sum method for example, when the Pareto front is convex, ail weight com­
binations lead to stable nondominated solutions. On the contrary, when it is concave, only points 
located on extreme sides of the Pareto front (A and B in Fig. 4.33 ; see also Fig. 4.30 for test case 
M-LOQC) can be reached.

Fig. 4.33 : Seeking the minimum of {fj with W; = Wj = 0.5 with a concave Pareto front
(in a minimization problem).

Why has PAMUC found points scattered along the trade-off surface ? To answer this ques­
tion, a careful examination of PROMETHEE H has to be done. Eq. (3.40) giving the preference 
flux (ffa) of an individual a (which acts as the fitness function of the EA in PAMUC : see §
3.6.2) can be developed as follows :

<tfa) = X /Ma,h) - 7i(b,a)] = I/Im Pi(a,b) -Z WiPi(b,a)] (4.126)
h h i /

<fi(a) = Yj ['H Pi(a,b) - Y Pi(b,a) J
i h h

(4.127)

4>i

where (pi are single-criterion fluxes [MAR89]. When there are no constraints, applying PAMUC is 
équivalent to perform a weighted sum not directly on the objectives, but on the single-criterion 
fluxes ^i. Here lies the différence with classical linear aggregation methods ; instead of a linear 
combination of the objectives, which is done independently for each individual of the EA, the 
preference flux p takes the other solutions of the population into account, making the procedure 
nonlinear. Theoretical results valid for linear aggregation techniques are therefore unapplicable : 
the intrinsic nonlinearity of PAMUC allows it to find solutions even if the Pareto front is con­
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cave, though it should be emphasized that a uniform distribution along the Pareto front is not 
guaranteed for every problem characterized by a concave trade-off surface. This matter will be 
discussed below.

4.4.2.4 Test case M-QOC

The fourth multiobjective problem is due to Srinivas and Deb [DEBOl], and is defined as fol- 
lows :

' fi(x) = -[2 + (XI - 2f + (X2 - if] (4.128)
max '

J2(x) = -[9xi-(x2-lf] (4.129)

subject to : gi(x) = xi^ + X2^ -225 <0, (4.130)
g2(x) = xi-3x2+ 10<0, (4.131)
- 20 <xi <20 and - 20 <X2 < 20. (4.132)

Figure 4.34 depicts 10,000 points of the search space randomly created (only feasible points, 
i.e. satisfying gi(x) < 0 and g2(x) < 0, are represented).

The EA used here is the same as in test case S-CRES (cf. § 3.4.1.4) save that N =■ 100. The 
process was launched 20 times. Each process consists in running the EA with both methods 
(PAMUC and WS) 10 times, with a set of weights varying from {wj* = 0 ; W2* = 1} for the first 
run to {w/ = 1 ; VV2 = 0} for the last run, by a constant step. Statistics on the 20 processes are 
mentioned in Table 4.19.

250 r

-'%o -250 -200 -150 -100 -50 0 fl

Fig. 4.34 : Feasible solutions (amidst 10,000 points randomly generated) in the objective space for M-QOC.

Figure 4.35 shows nondominated solutions obtained by both methods for one process. While 
WS results are gathered in a very narrow zone close to (0 ; 0), the solutions obtained by PAMUC 
cover larger zones at the extreme sides of the Pareto front. Nervertheless, the central part of the 
trade-off surface is not reached by the EA, whatever combination of weight is used. This illus­
trâtes the waming made in previous section, hence a limitation of PAMUC.
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Problem Number of processes
î RJ(PAMVC,WS)

Mean Standard déviation
M-QOC 20 0.97 0.09

Table 4.19 ; Comparison ofthe weighted sum method and PAMUC for problem M-QOC.
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Fig. 4.35 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-QOC
(for one process).

Ail runs made with PAMUC gave feasible solutions, while 91% of runs made with Joines 
Houck’s method gave birth to solutions satisfying ail the constraints. Figure 4.36 shows the rate 
of feasible individuals with respect to the générations for one run of the EA (with wj = W2 = 
0.5) ; once again PAMUC enables a faster convergence towards the feasible domain, whilst the 
dynamic penalty method has some hindrances to keep enough admissible individuals during the 
générations.

Fig. 4.36 Rate of feasible individuals w.r.t. the génération for M-QOC 
(with weighted sum [left] and PAMUC fright] methods).
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4.4.2.S Test case M-DPF

As already underlined before (cf. § 3.5.2), there are rather few studies specially devoted to 
constrained and multiobjective evolutionary optimization, though it is encountered very com- 
monly in industrial applications.

In order to validate techniques dealing with constrained optimization with multiple criteria in 
EAs, an important breakthrough was brought by Deb [DEB99,DEB0l], who developed tunable test 
cases, from which examples M-DPF and M-LFS were taken.

The test generator is defined as follows :

f](x) = X] (4.133)
min '

. f2(x) = g(x) [ 1 -fi(x)/g(x)] (4.134)

suhject to : c(x) - cos(6 ) [ f2(x) - e] - sin(6 ) fi(x) >
a I sin(b7V(sin(d)(f2(x) - e) + cos(6)fi{x)f)\’ (4.135)

0<x,<l for i = 1,..., 5, (4.136)

with : g(x) = X]^ + X2^ + X3^ + X4^ + X5^, (4.137)

where g(x) can actually be any multimodal function. Different levels of difficulty can be ob- 
tained by changing g(x). De long’s function with 5 variables [Wffl96] was chosen.

The following parameters were used : 0 = - 0.2k, a = 0.2, b = 3, c=\,d = 6 and e = l. The 
FA used here is the same as in the previous example (with the same parameters, except that Nge„ 
= 100). The process was launched 20 times. Each process consists in running the FA with PA- 
MUC and the weighted sum method 10 times, with a set of weights varying from {wj* = 0 ; W2 
= 1} for the first run to {w/ = 1 ; W2* = 0} for the last run, by a constant step. Statistics on the 20 
processes show that the mean value for R1(PAMUC,WS) is equal to 0.86 (see Table 4.20). Ail 
solutions (found by both methods) were feasible.

In Fig. 4.37, a set of feasible solutions (among 10,000 objective vectors randomly generated) 
illustrâtes the fact that the Pareto front is discontinuons, and that solutions found by PAMUC are 
doser to the Pareto front, in comparison with the weighted sum method. It should be noted that 
both methods found objective vectors on each of the four parts composing the discontinuons 
trade-off surface.

Problem, Number ofprocesses
RI(PAMUC,WS)

Mean Standard déviation

M-DPF 20 0.86 0.13
100 0.83 0.08

Table 4.20 : Comparison of the weighted sum method and PAMUC for problem M-DPF.
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Fig. 4.37 : Nondominated solutions obtained with the weighted sum and P AM UC methods for M-DPF
(for one process).

4.4.2.Ô Test case M-LFS

The functions, constraints, variables and parameters of the study are the same as in the previ- 
ous example, save that 0 = O.lTt, a = 40, b = 4, c=l, d = 2 and e = -\. The process was 
launched 20 times. Each process consists in running the EA with PAMUC and the weighted sum 
method 10 times, with a set of weights varying from {w/* = 0 ; W2* = 1} for the first run to {w; = 
1 ; W2* = 0} for the last run, by a constant step.

Figure 4.38 shows a set of admissible solutions (among 10,000 objective vectors randomly 
created), illustrating that the feasible domain is a discontinuons space composed of 8 layers. The 
nondominated solutions are located on layer Lj. Statistics on the 20 processes are collected in 
Table 4.21. Once again it shows a better distribution of the points along the trade-off surface, as 
well as a better behaviour in terms of handling of the constraints.

Parameters of thk study ................ , Mean "^ Staiidard Déviation
R1(PAMUC,WS) norm 0.82 0.14
Rate of feasible individuals per process (PAMUC) 0.96 0.18
Rate of feasible individuals per process (WS) 0.76 0.16
Rate of feasible ind. located on layer h\ (PAMUC) * 0.65 0.12
Rate of feasible ind. located on layer Li (WS) 0.31 0.09

Table 4.21 : Results for M-LFS
(* : ratio between the total nutnber of feasible solutions and the number offeasible solutions on layer L1 ).
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Fig. 4.38 : Nondorninated solutions obtained with the weighted sum and PAMUC methods for M-LFS (for one
process).

Computations hâve been made for test cases M-DPF and M-LFS by using a more challenging 
function g(x), namely Rastrigin’s function (instead of De Jong’s function) :

5

g(x) = ^[1+ xf - cos(2irxi)]. (4.138)
i=l

Numerical results show that PAMUC and the weighted sum method both hâve difficulties 
whilst endeavouring to find solutions close to the Pareto front : when feasible objective vectors 
are found, they are generally far from it. In those cases, an a posteriori method should be used to 
détermine the trade-off surface, and a multicriteria decision aid method applied only at the end of 
the search process.

4.4.2.7 Test case M-BDP

The 7*'’ multiobjective test case is a mechanical benchmark : the beam design problem (cf. 
Fig. 4.39), defmed in [OSY02] :

6

f](x) = b.l.^ x„ (4.139)
n—1

min <

fiix) =
Fl^( 1
2E

Zn — I At 
—^

.U -2 /„

(4.140)

where//(x) is the volume of the beam and/2(x) is the displacement under the force F and /„ is the 
moment of inertia for each part of the beam :
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for n = 1,..., 6. (4.141)/« =
12

The variables x„ are the thicknesses of the beam components. It is a discrète programming 
problem, since :

Xn € {12,14,16,18,20,22,24,26,28,30,32} [mm]forn = 1,..., 6. (4.142)

The first 6 constraints express that the normal stress must lie under the maximum authorized 
level = 360 N/mm^, and the last ones impose a linear restriction on the thicknesses :

6Fnl
bxl

^ <y„ for n = 1,..., 6, (4.143)

Cn+6 = x„+i-x„ >0 forn = 1,..., 5. (4.144)

l l l l l

Fig. 4.39 : Osyczka beam design problem.
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Fig. 4.40 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-BDP
(for one process).
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Table 4.22 gathered the EA parameters used for the study.

Symbol Parametef ‘ s <- ^ Value
Env Environment Std-EA Matlab
Cod Coding ofthe variables Gray
N Size ofthe population 50
^een Number of générations 50
E Type of sélection Toumament

n, Number of individuals participating 
to a toumament

5

Pc Probability of crossover 0.8
T Type of crossover 2-point

Pm Probability of mutation 0.05
T Type of mutation Flip

Table 4.22 : EA parameters for test case M-BDP.

The process was launched 20 times. Each process consists in running the EA with both meth- 
ods (PAMUC and WS) 10 times, with a set of weights varying from [wj* = 0 ; W2 = 1} for the 
first run to {w/ = 1 ; W2* = 0} for the last run, by a constant step. Statistics on the 20 processes 
are gathered in Table 4.23. Figure 4.40 shows nondominated solutions obtained by both methods 
for one process. Ail results (whatever method used) produced feasible solutions.

Probkm Number of processes
Rl(PAMUQWS)

Mean Standard déviation
M-BDP 20 0.79 0.18

Table 4.23 : Comparison ofthe weighted sum method and PAMUC forproblem M-BDP.

4.4.2.S Test case M-30U

So far only 2-objective optimization hâve been investigated. In fact, as Deb pointed out in 
[DEB02], many multiobjective algorithms are validated only on test cases characterized by two 
criteria. However, of course, real-life applications may contain more than 2 objectives.

Therefore, the 8* and 9'*' multiobjective problems will test examples with 3 objectives. They 
are due to Viennet (cited in [COE02a]), and the first one is formulated as follows :

fl(x) = X]^ + (X2- if (4.145)

tnax . flix) = Xi^ + (X2 + if 4- 1 (4.146)

fiix) = (X] - if -i- X2^ + 2 (4.147)

with : - 2 <X] <2 and — 2 <X2 ^ 2. (4.148)

Figure 4.41 illustrâtes a set of 10,000 objective vectors randomly generated drawn in the ob­
jective space.
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Fig. 4.41: Random population of 10,000 individuels in the objective space for M-30U.

The process was launched 10 times. Each process consists in running the EA with both meth- 
ods (PAMUC and WS) 210 times, with varying weights as explained in § 4.3.5. Statistics on the 
10 processes are shown in Table 4.24.

Problem Number of processes
Rl(PAMUQWS)

Mean Standard déviation
M-30U 10 0.60 0.23

Table 4.24 : Comparison of the weighted sum method and PAMUC for problem M-30U.

4.4.2.9 Test case M-30C

The second 3-objective problem is also due to Vienne! (cf. [COE02a]), and has three con- 
straints :

f,(x) = (xi-2f/2 + (X2 + lf/13 +3 

max f2(x) = (x] + X2 — Sf/l 75 + (2 X2~ xj f/l 7-13

fs(x ) — (3 xj — 2 X2 3- 4 f /8 + (x) — X2 3-1 f /2 7-1-15

subject to : gi(x) = —4 xj — X2 3-4 > 0, 
g2(x) =X, 3- 1 >0, 
gj(x) =X2-Xj 3-2 > 0,

with : -4 <X] <4 and — 4 <X2 ^4.

(4.149)

(4.150)

(4.151)

(4.152)
(4.153)
(4.154)

(4.155)
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Figure 4.42 illustrâtes a set of objective vectors (among 10,000 points randomly generated) 
drawn in the objective space.

The process was launched 10 times. Each process consists in running the EA with both meth- 
ods (PAMUC and WS) 210 times, with different weights as explained in § 4.3.5. Statistics on the 
10 processes are mentioned in Table 4.25.

fs

Fig. 4.42 : Feasible population (among 10,000 individuals randomly generated) 
in the objective space for M-30C.

12

10

8

6

4

2

0
2

Problem Number ofprocesses
Rl(PAMUQWS)

Mean Standard déviation
M-30C 10 0.80 0.29

Table 4.25 : Comparison ofthe weighted sum method and PAMUC for problem M-30C.

A summary of the numerical results will take place at § 4.4.3, and conclusions will be drawn 
about the pertinency of using PAMUC to solve multiobjective contrained problems in design 
optimization. Afterwards, three important computational aspects still hâve to be considered : the 
influence of PAMUC parameters p, and qi on the results (§ 4.4.4), the sensitivity of the solutions 
with respect to the user’s weights w,* (§ 4.4.5) and the computational time (§ 4.4.6).

4.4.3 Summary of multiobjective problems

The multiobjective test cases presented above were aimed to show that PAMUC can reflect 
correctly the user’s preferences. In order to demonstrate PAMUC efficiency for varions situa­
tions, they had to présent different peculiarities (as prescribed by Deb in [DEB99]) ;
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• convexity of the trade-off surface (e.g. M-UC, M-LOC) ;
• concavity of the trade-off surface (e.g. M-LOQC) ;
• discontinuity of the trade-off surface (e.g. M-DPF) ;
• presence of “local” Pareto fronts, i.e. dominated régions which attract the individuals 

of the EA (cf. M-LFS) ;
• n-dimensional objective spaces with n > 3 (e.g. M-30U, M-30C).

Table 4.26 récapitulâtes the comparative results between the weighted sum method and PA- 
MUC for the multiobjective test cases. PAMUC clearly outperforms the weighted sum method.

R1(PAMUC,WS) M-UC 'WÊ&i M-LOQC M-QOe M-DPF M-LFS M-BDP M-30U M-30C

Mean 0.74 0.88 0.93 0.97 0.86 0.82 0.79 0.60 0.80

Std. déviation 0.08 0.11 0.05 0.09 0.13 0.14 0.18 0.23 0.29

Table 4.26 : Comparison of PAMUC and methods for 9 multiobjective methods : 
values of the mean and standard déviation of RI -norm.

Jin et al. explained in [JINOO] why linear aggregation methods are not capable of finding other 
solutions than points located at the extreme sides of the Pareto front. However, PROMETHEE II 
- hence PAMUC - does not imply a pure linear addition of the criteria, since preference fonc­
tions hâve to be computed first, comparing each individual to the rest of the population. This 
explains why objective vectors can be found along the trade-off surface, even when it is concave. 
The other a priori methods, as the goal programming or the min-max method (cf. § 3.3.3), hâve 
not been compared to PAMUC since they demand a different kind of information from the user : 
instead of (or in addition to) weights, they require the user to define a spécifie point in the objec­
tive space (e.g. the target in goal programming methods).

It is important to emphasize that no daim is done that PAMUC is able to cover the whole Pa­
reto front in ail cases, i.e. whatever shape it may hâve (cf. M-DPF and M-BDP with g(x) equal to 
Rastrigin’s fonction). In very hard problems, an a posteriori method should thus be used first 
(e.g. NSGA-II [DEB02a] or NPGA2 [ERIOl]), and a solution chosen among the nondominated 
points after the search process.

Before drawing the general conclusions about PAMUC, the following paragraphs will focus 
on three aspects : the influence of parameters p, and qi on the results, the sensitivity of the 
weights and the computational time.

4.4.4 Influence of parameters pi and qi

As exposed in the description of PAMUC, two additional parameters pi and qi are needed to 
run the algorithm (for each criterion). In industrial applications, they can be determined by the 
decision maker, with respect to his/her knowledge about the objectives, but when such informa­
tion is not available - which is the case in the mathematical examples presented above -, values 
of Pi = 1 and qi = 0 hâve been used systematically, and provided good results. In order to validate 
this choice, example M-UC will be treated with different values of pi and qt to investigate their 
influence on the results.
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Pi
9

H-l = 0 0.2.5 w;-= 0.5 *
. Wi = 0.75 w,* = ]

fop, f..", fOp, fOp. fOp, fop, fr
fop, fop, J •

0.2 -0.4075 0.9825 0.3088 0.7108 0.5237 0.4825 0.6973 0.3266 0.9627 - 0.4128

0.5 -0.3715 0.9886 0.3186 0.6899 0.5039 0.5082 0.6947 0.2937 0.9889 - 0.3753

1 -0.3718 0.9762 0.3427 0.6746 0.5856 0.4167 0.7092 0.3225 0.9644 - 0.3872

2 - 0.4003 0.9892 0.2785 0.7344 0.5194 0.5211 0.6952 0.3118 0.9978 - 0.4203

5 - 0.3664 0.9364 0.3018 0.6809 0.5355 0.5123 0.6732 0.3198 0.9751 -0.3819

10 -0.4020 0.9666 0.3081 0.7238 0.5276 0.5265 0.6650 0.2377 0.9740 - 0.3990

Table 4.27 : Analysis ofthe influence ofparameterPi (with qi = 0) on resultsfor example M-UC, 
with different values ofthe weights - each number represents the mean on 50 runs ofthe algorithm.

•
H”/ = 0 : = 0.25 W, = Wi = 0.75 *w, = J

pi fop, fOp,
fr

fop,
fr fr fr fl"' ■1 •1

0.2 0.1296 0.1182 0.1992 0.1512 0.1681 0.2820 0.1866 0.0987 0.2259 0.1503

0.5 0.1438 0.0738 0.2136 0.2124 0.2473 0.1950 0.2314 0.1712 0.0958 0.1359

1 0.2123 0.1117 0.1310 0.2730 0.1141 0.3545 0.1537 0.1503 0.1284 0.2340

2 0.1367 0.0503 0.2051 0.1301 0.2179 0.1665 0.2018 0.1042 0.0140 0.0535

5 0.2293 0.2831 0.2624 0.2774 0.0366 0.2200 0.2746 0.1335 0.1126 0.2173

10 0.1458 0.1814 0.1534 0.0944 0.1486 0.1878 0.2963 0.3004 0.1294 0.1942

Table 4.28 : Analysis of the influence ofparameter pi ( with qi - 0) on results for example M-UC, 
with different values ofthe weights — each number represents the standard déviation on 50 runs ofthe algorithm.

w; -0 •
H'; = 0,25 = 0.5 > w; = 1

fr
fop,

fr f^op. fr fl'” fr fr fr fOp,

0 - 0.4187 0.9995 0.3034 0.6863 0.4747 0.5512 0.6577 0.2838 0.9315 - 0.4143

10-^ - 0.3987 0.9808 0.3134 0.7078 0.4970 0.5188 0.7260 0.3230 0.9496 - 0.4074

10-^ - 0.4206 0.9845 0.2953 0.7157 0.5173 0.5218 0.6704 0.2918 0.9874 - 0.4071

- 0.4005 0.9869 0.3116 0.6958 0.5405 0.5397 0.7216 0.2944 0.9398 - 0.3945

10'^ -0.4129 0.9985 0.2931 0.7289 0.5840 0.4430 0.6702 0.3273 0.9980 - 0.4243

10 -0.4249 0.9842 0.2981 0.7339 0.5304 0.4944 0.7177 0.3287 0.8825 - 0.3577

Table 4.29 : Analysis ofthe influence ofparameter ç,- ( with Pi-1) on resultsfor example M-UC, 
with different values ofthe weights - each number represents the mean on 50 runs ofthe algorithm.

Çi
■■'-y wj* = 6 w/ = 0.25 w/ = 0.5 w,” = 0.75 w/ = J

fr
f^op,

fr
fOpi

fr fr fr
fop, fr

fOp,

0 0.0275 0.0034 0.2252 0.2818 0.2751 0.1036 0.3031 0.2194 0.3069 0.1950

10'^ 0.1864 0.1262 0.1775 0.1734 0.2267 0.2083 0.0096 0.0131 0.1994 0.2089

10^ 0.1172 0.0834 0.1908 0.1900 0.1969 0.0969 0.2871 0.1423 0.0682 0.1497

10-^ 0.1494 0.0528 0.1097 0.1937 0.0241 0.0243 0.0515 0.1964 0.2142 0.2821

10~- 0.0490 0.0069 0.1931 0.0921 0.1125 0.2951 0.2655 0.1343 0.0071 0.0540

10-' 0.0924 0.1030 0.1441 0.0796 0.1699 0.2184 0.0633 0.0911 0.4157 0.2807

Table 4.30 : Analysis of the influence ofparameter qi ( with Pi = I) on resultsfor example M-UC, 
with different values ofthe weights — each number represents the standard déviation on 50 runs of the algorithm.
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The parameters of the EA are the same as in § 4.4.2.I. Tables 4.27 to 4.30 show the results of 
PAMUC with different values of the user’s weights and of pi (resp. qi). In ail cases, pi = P2, qi - 
q2, and of course wz* = 1 - w*. The values of pi are greater than (or equal to) 0.2, and the values 
qi remain less than (or equal to) 0.1.

The numerical results clearly indicate that whichever values of p, or qi are used (within the 
given range), the solutions are within the range defined by the standard déviation. Therefore, 
when no additional information is known about the criteria, values of p, = 1 and qi = 0 are rec- 
ommended.

4.4.5 Sensitivity analysis with respect to the weights w,

Another aspect is related to the sensitivity of the weights. It is well known that EAs are robust 
against noise, but in the particular case of PAMUC, it is important to check whether a slight 
modification of the set of weights would induce an important variation of the results. Therefore, 
a sensitivity analysis on the weights w* was performed, by comparing results obtained for 5 dif­
ferent values of the weights (w;* e { 0 ; 0.25 ; 0.5 ; 0.75 ; 1}) with results furnished for corre- 
sponding perturbated weights (vv;*e { 0.01 ; 0.26 ; 0.51 ; 0.76 ; 0.99}). Table 4.31 depicts the 
mean and standard déviation over 100 runs, with the same EA parameters as above.

Though a more in-depth sensitivity analysis can be done (cf. approach proposed in [WOL95] 
for instance), this is meaningless here since a quick examination of Table 4.31 shows that the 
standard déviation of the solutions and the variations of the results hâve the same range. It can 
thus be concluded that solutions are not sensitive to small variations of the weights.

M-,* = 0 •
11 w* = 0.75 w;=i

fr
fop,

fr
f^op, fr

fOp, fr
fOp, fr fOp,

Mean
*

W - 0.4075 0.9825 0.3088 0.7108 0.5237 0.4825 0.6973 0.3266 0.9627 - 0.4128

^ pen - 0.3715 0.9886 0.3186 0.6899 0.5039 0.5082 0.6947 0.2937 0.9889 - 0.3753

Std
Dev.

W 0.1296 0.1182 0.1992 0.1512 0.1681 0.2820 0.1866 0.0987 0.2259 0.1503

^ pert 0.1438 0.0738 0.2136 0.2124 0.2473 0.1950 0.2314 0.1712 0.0958 0.1359

Table 4.31 : Influence ofthe variation of weights on the solutions for example M-UC 
(each number represents the mean or the standard déviation over 100 runs).

4.4.6 Algorithmic complexity

This section is devoted to the calculas of PAMUC computational complexity. Its différences 
with the traditional weighted sum method (WS) - Joines and Houck’s penalty method being used 
to handle the constraints - lie in 3 parts of the algorithm (cf. Fig. 4.43) :

• during the sélection scheme :
• ail individuals are compared thanks to PAMUC following m+\ objectives ;
• additionaly, an elitist sélection procedure is applied wherein each 4-member set of 2 

parents and their corresponding children are compared by PROMETHEE II ;
• the weights hâve to be updated at each génération, hence the number of feasible individu­

als computed.
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& Mutation

YES

Solution (s)

Fig. 4.43 : Flow-chart of PAMUC
(the modules having différences with WS are characterized by dash-dotted Unes).

A décomposition of the different parts of the standard EA (cf Fig. 4.43) combined with the 
weighted sum method leads to the following formula :

• is the computational time needed for one génération of the EA with the weighted 

sum method ;
• N is the size of the population ;
• Tseï is the average time (for one member of the population) to perform sélection ;
• Tcross is the average time (for one member of the population) to perform crossover ;
• Tmut is the average time (for one member of the population) to perform mutation ;
• Tohj is the time needed to compute the values of the m objective functions (for one in- 

dividual) ;
• Tconstr is the time needed to compute the values of the p+q (equality and inequality) 

constraints (for one individual) ;
• /f is a second-order term for remaining (low cost) computations of the algorithm.

For PAMUC, similar developments lead to Eq. (4.157) :

(4.156)

where :

constr + (N+l).(m+l).

(4.157)
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where :
• the computational time needed for one génération of the EA with PAMUC ;

• TseLPROMji is the average time (for one member of the population) to perform sélection 
(by an elitist sélection procedure using PROMETHEE II for each pair of parents and 
their corresponding children) ;

. m is the number of objective functions ;
• TpROMji is the time needed to compute (for a couple of individuals (a,b)) the prefer- 

ence functions Pi(a,b) and the preference indexes 7t(a,b) needed to rank the individuals 
in PROMETHEE II ;

. K'is a second-order term for remaining (low cost) computations of the algorithm.

Tcross and Tmut are functions of the coding and the number of variables. With increasing sizes 
of population, number of générations and of objectives, the asymptotic complexity AC of the EA 
are given by the following expressions :

Though this theoretical resuit demonstrates that PAMUC is more expensive than a simple lin- 
ear aggregation of the weights for large computations (with high numbers of générations Nge„ 
and members in the population AO, it must be underlined that in most cases, in pre-design opti- 
mization, EAs are used with N < 200 and Ngen ^ 1000, making the différences between both 
methods very reasonable. The calculations presented below aim to illustrate the fact that the use 
of PAMUC, besides from giving better results than the weighted sum method, needs only a mi- 
nor supplementary CPU time to perform it.

Indeed, Tables 4.32 to 4.34 présent the CPU times of the EA for 3 emblematic test cases (in 
which N and Nge„ are variable whereas the other EA parameters are the same as in §§ 4.4.1 and
4.4.2) :

. S-38IC (characterized by 5 variables, 1 objective and 38 inequality constraints) ;

. M-BDP (characterized by 6 variables, 2 objectives and 11 inequality constraints, wy* =

= o(Nge„. N. m), 

A(f^^^^ = o(Ngen. N\m),

(4.158)

(4.159)

where the notation /= o(g) means that :

(4.160)

W2* = 0.5) ;

M-30C (characterized by 2 variables, 3 objectives and 3 inequality constraints, wj
* * 1/ \W2 = Wj = 1/3).
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' 'V '
.V

CPU time (s)

Joines and 
Houck PAMUC

Relative différ­
ence (%)

50 50 8.6 9.4 8.5%

50 100 17.2 18.9 8.6%

50 1000 282.8 302.0 6.4%

100 50 16.0 17.4 8.1%

100 100 29.1 35.0 16.8%

100 1000 529.0 567.8 6.8%

200 50 34.6 41.5 16.5%

200 100 56.8 70.7 19.7%

200 1000 1034.2 1190.3 13.1%

Table 4.32 : CPU time for different values ofthe number of générations Ng^, 
and the size ofthe population N (for test case S-38IC).

N Ne»

CPU time (s)

WS + Joines 
andHouck PAMUC

Relative différ­
ence (%>)

50 50 4.9 6.5 24.5%

50 100 9.7 12.7 23.4%

50 1000 184.0 185.0 0.5%

100 50 12.9 14.2 8.6%

100 100 18.2 30.7 40.8%

100 1000 299.6 374.2 19.9%

200 50 32.1 40.7 21.3%

200 100 35.5 61.7 42.5%

200 1000 572.4 848.6 32.5%

Table 4.33 : CPU time for different values ofthe number of générations Nga, 
and the size ofthe population N (for test case M-BDP).

' N ... Ne»

CPU dme (s)

WS + Joines 
andHouck PAMUC

Relative différ­
ence (%c)

50 50 6.9 7.3 5.9%

50 100 11.0 13.6 19.1%

50 1000 179.0 194.4 7.9%

100 50 11.7 13.6 13.9%

100 100 20.1 27.9 28.0%

100 1000 316.5 395.4 19.9%

200 50 26.5 31.1 15.0%

200 100 38.4 63.6 39.7%

200 1000 614.2 872.4 29.6%

Table 4.34 : CPU time for different values ofthe number of générations Nge„ 
and the size of the population N (for test case M-30C).
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Those results (obtained on a PC with freq. = 900 MHz in MS Windows 2000 environment) 
corroborate the trend given by the theory, i.e. when the size of the population (ail other parame- 
ters remaining equal) increases, the relative différence between both methods (in teims of com- 
putational cost) also increases ; however, in ail test cases analyzed here, even for a rather high 
number of individuals {N = 2(X)), this gap remains reasonable (less than 50% of supplementary 
CPU time needed).

4.5 Conclusions

This chapter was devoted to a rigorous validation of PAMUC. The test cases were divided in 
two categories :

• single-objective test cases : they demonstrate that PAMUC, though initially developed 
for multicriteria optimization, is an efficient tool in comparison with spécifie con- 
straint-handling techniques. The good results are mainly due to the adaptivity of the 
weights, which guarantees a compromise between the search for a “better” solution 
(following the objectives and the given combination of weights) and the feasibility of 
the individuals ;

• multiobjective test cases : to validate PAMUC, a reflexion had first to be donc about 
the norm to use to compare two nondominated sets (obtained by PAMUC and a classi- 
cal weighted sum method, the latter approach being widely spread in industrial appli­
cations). Then, after /?7-norm was chosen, 9 multiobjective problems were tested, and 
showed that PAMUC clearly outperforms a linear aggregation of the criteria. This is 
due to the fact that the fitness function of each individual is not computed independ- 
ently from the other members of the population, but takes them into account for their 
ranking. Additionally, considering the satisfaction of the constraints as a new objective 
and adapting weights at each génération seem to be a suitable way to tackle the con­
straints. Nevertheless, possible users of PAMUC must be reminded that though per- 
forming better than the classical weighted sum method, no daim is made ensuring that 
it systematically finds solutions distributed along the trade-off surface for varying 
weights.

These various examples illustrate the robustness and efficiency of PAMUC in small size ex­
amples (number of variables < 20, number of constraints < 50), constituting thus a well adapted 
tool for pre-design optimization. The application of PAMUC to industrial mechanical compo- 
nents (namely : space valves) will be presented in Chapter 6.

One of the most interesting advantage of PAMUC is that no tuning of parameters is required. 
Indeed, after discussion (cf. § 4.4.4), when no additional information is provided by the user, 
values ofp, = 1 and qi = 0 are recommended for ail criteria / = 1,..., w (or m-v\ if there are con­
straints). Furthermore, the method has demonstrated to be robust with respect to small variations 
of the weights (cf. § 4.4.5). It is also important to underline that this improvement of the results 
obtained thanks to PAMUC needs only a reasonable supplementary amount of time in compari­
son with the weighted sum method (less than 50% in the most unfavourable example treated in 
this work : cf. § 4.4.6).
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Finally, the methodology of conceiving PAMUC still remained general, i.e. no particular hy- 
pothesis had to be done about the nature of the variables (hence the codings), the objectives or 
the constraints, letting the door open to the next step : the incorporation of expert rules within the 
optimization procedure.
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Chapter 5 - Expert Rules for Mechanical Design

Optimization

5.1 Introduction

The second part of this work adresses the pre-design optimization problem where not only 
geometrical and material variables are involved, but also topological ones. As it implies a dra- 
matic increase of the size of the search space - since designs with very different configurations 
are shuffled altogether within the evolutionary algorithm -, a standard evolutionary algorithm, 
without using any additional knowledge, would hâve hindrances to reach the feasible domain. 
More fundamentally, when engineers hâve to choose the best design among a set of proposais, 
they do not use merely numerical models of the physical behaviour of structures and materials. 
They also take technological requirements into account, which can seldom be modelled by 
mathematical équations, but are often prédominent in the final choice for one design against an- 
other. Those technological constraints are more naturally translated in terms of rules.

Considering knowledge as rules has been used since the late sixties in expert Systems, which 
gather a collection of expert rules from scientists in a spécifie field. Though they hâve provided 
outstanding results in some applications, they hâve severe limitations, and are restricted to nar- 
row domains of applications (§ 5.2). Therefore, a general approach, PAMUC II, mingling multi- 
criteria evolutionary optimization (the PAMUC method introduced in Chapter 3) and expert 
rules will be presented in § 5.3.

Then, PAMUC II will be validated for single-objective and multiobjective examples with 
rules, in particular on mechanical benchmarks, and spécial issues (computational time, consis- 
tency of the rule base) will be discussed (§ 5.4), followed by the conclusions (§ 5.5).

5.2 Knowledge-based Systems and expert rules for design optimi- 
zation

5.2.1 Historical background

In order to take into account knowledge from experts, programmers hâve developed since the 
late sixties softwares called expert Systems. Their aim is to reproduce the reasoning that human 
experts would make in a spécifie domain, enabling thus to solve complex problems.

The birth of expert Systems has to be replaced in a more general stream : artificial intelligence 
(AI). Artificial intelligence is a constituent part of computer sciences that appeared in the 1950’s. 
Charniak and McDermott consider that modem AI was born in 1956 [CHA85], when the Dart- 
mouth conférence (organized by John McCarthy and Marvin Minsky) took place, wherein the 
expression “artificial intelligence” was used for the first time. Following Savory, AI is the set of 
computer techniques simulating some of the human natural abilities [SAV88]. AI deals with 
problems as :
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. automatic theorem proving [FIT90] ;
• natural language understanding ;
• speech processing ;
• vision and robotics ;
• expert Systems and knowledge acquisition ;
• représentation of knowledge.

AI is based on the flindamental hypothesis that what human brain does can be considered, un- 
til a certain level, as a computation [TEL88], In expert Systems, knowledge is based on logics, e.g. 
propositional or predicate calculas. The first and most représentative expert Systems are DEN- 
DRAL, MACSYMA, PROSPECTOR, etc. [HAY83,OLS92]. As MYCIN illustrâtes many features 
of expert Systems, it will be briefly discussed hereafter.

Though the particular goal of MYCIN is to make casier the diagnosis of infectious diseases, 
its approach was used in many other expert Systems. The context of MYCIN development is the 
following : when patients hâve just undergone a surgical operation, they may become victims of 
infections which hâve to be eliminated immediately. In such a situation, asking advice to one (or 
several) physicians(s) is not always possible. Therefore, to provide an expert opinion in any case, 
MYCIN was created.

The principle of MYCIN is based on the backward-chaining algorithm [SAV88] : it means that 
it starts from the goal to be obtained (in this case : the antibiotic to be prescribed) ; then, a ther- 
apy hypothesis is chosen, and an induction reasoning is performed to find the conditions which 
hâve to be verified in order to validate the prescription. From the knowledge acquired thanks to 
answers given by the user (to judicious questions asked by the software), MYCIN is able to de- 
duce new information (by forward-chaining). This combination of induction and déduction is 
called mixt-chaining.

Besides, each rule has an uncertainty, which dépends on statistics related to the diagnoses. 
Each solution proposed by the program is therefore given with a certain probability of exactness.

Though MYCIN did furnish excellent results, this approach has ne ver been completely ac- 
cepted by members of the medical community, and it is interesting to note why they were so 
réticent to use it. First, the computational cost related to 1970 computers restricted the practical 
application in a real-life context. Moreover, even if many parameters were taken into account in 
MYCIN, its behaviour was still over-simple in comparison with the complexity of human 
symptoms and the huge families of medical treatments. This limitation is crucial, since it under- 
lines that once developed, an expert System is applicable only to a very restricted field, and in 
spécifie conditions.

The architecture of classical expert Systems is divided in three parts [DEL87,DEL88] :

• the knowledge base, contains the values of the variables (§ 5.2.1.1 ) ;
• the rule base, composed of ail the rules synthetizing the expert knowledge (§ 5.2.1.2) ;
• the inference engine, manipulating the rules (§ 5.2.1.3).

5.2.1.1 Knowledge base

The knowledge base contains the values of the facts (i.e. the variables), which can be :
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- boolean : e.g. VARIABLE 1 = PRESENCE OF A HOLE = TRUE ;
- symbolic : e.g. VARIABLE 2 s JOINT MATERIAL = “POLYMER” ;
- integer : e.g. VARIABLE 3 = NUMBER OF BOLTS = 5 ;
- discrète : e.g. VARIABLE 4 = AREA OF CROSS-SECTION OF 2^*^ 

BEAM = 10 cm^ (value taken from a catalogue for instance) ;
- real : e.g. VARIABLE 5 - DIAMETER = 12.5 cm.

5.2.1.2 Rule base

The rule base contains the knowledge in terms of expert rules, generally coded as logical ex­
pressions written as :

IF condition THEN action.

The shortest way to model expert rules is to use the propositional calculus. In its syntax, rules 
are fixed, i.e. it is assumed that their content is not modified during the process. Rule grammar 
was precisely defined under Backus normalized form [DEL87] defined in Tables 5.1 and 5.2. Ta­
ble 5.1 présents its final éléments, used in the fundamental définitions gathered in Table 5.2. 
Both tables describe thus a complété grammar, based on the propositional calculus, and suffi- 
cient to model it. Its keywords are :

{ IF, AND, THEN, NOT }, 

and two symbols hâve a spécifie meaning :

::= indicates that the term preceding this symbol is defined by what follows it ;
/ indicates the alternative.

Final dements

<BOOLEAN VARIABLE> the list of boolean variables is provided by the expert

<SYMBOLIC VARIABLE> the list of symbolic variables is provided by the expert

<INTEGER VARIABLE> the list of integer variables is provided by the expert

<DISCRETE VARIABLE> the list of discrète variables is provided by the expert

<REAL VARIABLE> the list of real variables is provided by the expert

<POSSIBLE SYMBOLIC VALUE> a symbolic value

<INTEGER NUMBER> an integer number

<DISCRETE NUMBER> a discrète number

<REAL NUMBER> a real number

Table 5.1 : Final éléments ofthe Backus grammar [DEL87J.

Définitions

<RULE> ::= IF <CONDITION> THEN <CONCLUSION> 

<CONDITION> ::= <PREMISS> /

<PREMISS> AND <CONDITION>
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<PREMISS> ::= <BOOLEAN VARIABLE> /

NOT <BOOLEAN VARIABLE> /

<SYMBOLIC VARIABLE> = <SYMBOLIC VALUE> /

<SYMBOLIC VARIABLE> <SYMBOLIC VALUE> /

<INTEGER VARIABLE> <COMPARATOR> < INTEGER VALUE> 

<DISCRETE VARIABLE> <COMPARATOR> <DISCRETE VALUE> 

<REAL VARIABLE> <COMPARATOR> <REAL VALUE> 

<SYMBOLIC VALUE> ::= <SYMBOLIC VARIABLE> /

<POSSIBLE SYMBOLIC VALUE>

<REAL VALUE> ::= <REAL VARIABLE> /

<REAL NUMBER> /

<REAL VALUE> <OPERATOR> <REAL VALUE>

<DISCRETE VALUE> ::= <DISCRETE VARIABLE> /

<DISCRETE NUMBER> /

<DISCRETE VALUE> <OPERATOR> <DISCRETE VALUE> 

<INTEGER VALUE> ::= <INTEGER VARIABLE> /

<INTEGER NUMBER> /

<INTEGER VALUE> <OPERATOR> <INTEGER VALUE> 

<COMPARATOR> ::= < /

> /

< /

> /

= /

<OPERATOR> ::= + /

- /

* / 

etc.

<CONCLUSION> ::= <ACTION>/

<ACTION> AND <CONCLUSION>

<ACTION> : := <BOOLEAN VARIABLE> /

NOT <BOOLEAN VARIABLE> /

<SYMBOLIC VARIABLE> = <SYMBOLIC VALUE> /

<INTEGER VAR1ABLE> = <INTEGER VALUE> /

<DISCRETE VARIABLE> = <DISCRETE VALUE> /

________________ <REAL VARIABLE> = <REAL VALUE> /___________________________

Table 5.2 : Fundamental définitions in the Backus grammar [DEL87].

Each rule is divided in two parts :
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• the condition, which corresponds to tests determining whether a rule is susceptible 
to be applied ;

• the action, which is related to assignments of values to variables.

For example, here is a rule with four variables involved :

IF ( VARl = 0.3 AND VAR2 > 10 ) THEN ( VAR3 = 4 AND VAR4 = TRUE )
'------- V------- ' '-------V------ ' '------y------' "---------^^

PREMISS 1 PREMISS 2 CONCLUSION! CONCLUSION 2

CONDITION ACTION

5.2.1.3 Inference engine

Finally, the third constitutive part of expert Systems is the inference engine, which manipu­
lâtes the rules to feed the work memory of the session, by deducing new facts {déduction) or by 
retrieving the conditions that led to a given situation (induction).

As already introduced in MYCIN, in propositional Systems, three different kinds of inference 
engines hâve been developed [DEL88] : backward-chaining (to perform induction), forward- 
chaining (déduction) and mixt-chaining (combination of forward- and backward-chaining). As in 
design optimization problem with expert knowledge, one is mostly interested in deducing what 
rules to apply for a spécifie design (to check if it respects some technological requirements for 
instance), a deeper insight will be made on forward-chaining.

The forward-chaining algorithm is based on the MODUS PONENS, a general principle of dé­
duction written as follows ;

IF Fl AND F2 AND ... AND FN ARE TRUE,
AND IF THE RULE “if Fl and F2 and... and FN, then F” IS TRUE,

THEN FIS TRUE

The corresponding algorithm is converted in pseudo-code in Fig. 5.1.

begin
{initialization)
déclaré active ail the rules in the rule base 
while (some rules hâve their conditions satisfied)

détermine the first rule to apply 
execute the rule
if (the conclusion of the rule does not contradict 

any element in the work memory)
then execute the conclusion of the rule 

desactivate the rule
else

base not consistent
end

end
end

Fig. 5.1 : Forward-chaining algorithm (in pseudo-code) [DEL87].
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From the initial data, the forward-chaining algorithm will try to fmd ail the facts that can pos- 
sibly be deduced. To illustrate the working of this algorithm on a simple example, a graphical 
représentation may be useful : the AND-OR trees, where facts are represented by nodes. An ex­
ample of AND-OR tree is depicted in Fig. 5.2, to symbolize the 6 rules below :

Rule RI B=>A
Rule R2 C=>A
Rule R3 (DAND E) =>B
Rule R4 (F AND G) =>C
Rule R5 H=>G
Rule R6 I=>G

For example, if facts F and I are true, the algorithm will progressively deduce that G, C and 
finally A are true. It will be shown below that the order following which the rules are applied 
hâve no conséquence on the results (cf. § 5.3.1.2). Incidentally, it is interesting to notice the ad- 
vantage of the expert System approach, which overtly separate the codings of the knowledge 
(data and rules) and the inference engine, which allows the user to delete, modify or add rules 
without changing the whole software, as long as there is no contradiction in the rule base. The 
consistency of the rule base will be discussed in § 5.4.4.

A
OR

B C
AND

D E

AND

F G
OR

H I

Fig. 5.2 : Illustration of forward-chaining in an AND-OR tree : 
from the facts stating that F and 1 are true, one can deduce that G, C and A are also true.

At the end of the process, the memory has reached a saturated State, i.e. ail the rules whose 
condition parts were satisfied were applied : no other facts could be deduced anymore.

5.2.2 Expert Systems for design optimization

The previous section was specially devoted to expound the basics of expert Systems, namely 
what they are able to do and how they work. Here, the emphasis is put on expert Systems dedi- 
cated to engineering sciences, and particularly structural optimization.
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As a matter of fact, most expert Systems used for industrial applications hâve been contrived 
for scheduling or operations processes, production Systems, System planning, etc. [KLE96, 
MAC02a], because in these fields knowledge can quite easily be modelled by logical rules. Fewer 
expert Systems are directly concerned with structural design optimization. The most emblematic 
studies in this field are mentioned below.

In [ABE96], Abersek et al. described an expert System (called STATEX) to design and manu­
facture a gear box. In the first stage of the process, genetic algorithms are used to détermine the 
optimal dimensions of a gear box (with spécial requirements) ; then, the expert System take tech- 
nological requirements into account, related to the sélection of cutting tool and cutting condi­
tions, the spécial sequence of machining, the tolérances, etc.

Chau et al. also described a knowledge-based System for mechanical design [CHA03], but for 
liquid-retaining structures. In their expert System, symbolic knowledge based on engineering 
heuristics in the preliminary stage (e.g. about crack width control) is needed for three types of 
liquid-retaining structures (a rectangular shape with one compartment, a rectangular shape with 
two compartments and a circulât shape). Thanks to interactive graphical interfaces, the user is 
directed throughout the design process, which includes preliminary design, load spécification, 
model génération, finite element analysis, code compliance checking and member sizing optimi­
zation.

Jiang et al. developed another expert System, for the design of scroll compressors used in ré­
frigération and air conditioners [JIAOO]. Indeed, the authors created a visualised solid model of 
the compresser, which was enhanced by the use of an optimization System. Finite element analy­
sis and expert System strategy were used to study the model, which is useful for improving the 
quality of manufacturing and assembly accuracy at the later stages. Manufacturability, process 
planning and cutting tool path code génération were also taken into considération.

In [KIM99], Kim et al. propwsed a patchwise optimal layup design method for composite lami­
nâtes, where the optimal solution is obtained by using an expert System environment combined 
with a genetic algorithm and a finite element code. In this approach, the weight of composite 
laminates with ply drop under different loadings is minimized by acting on the stacking sé­
quences and the number of plies in each patch. In this case, the aim of the expert System is to 
check the number of plies in each patch.

In [NET97], Netten and Vingerhoeds implemented EADOCS (Expert Assisted Design of 
Composite Sandwich panels) to perform the conception of laminate structures in three phases : 
the sélection of prototype solutions, the sélection of concept solutions and their modification. To 
support these phases, knowledge is necessary. For instance, when designs satisfying the con- 
straints are generated, some rules of thumb can be applied to improve their properties.

Expert Systems hâve also been applied in civil engineering. In [RAM96], in the context of de- 
signing industrial roofs, Ramasamy and Rajasekaran compared results obtained by an expert 
System to solutions given by a genetic algorithm. The expert System contained rules related to 
the loadings, the température, the proportion of the structure in contact with the atmosphère, etc., 
for varions truss structures. Numerical computations showed that in that case, both methods pro- 
vided very similar results.
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The examples cited above are restricted to spécifie applications. However, in [JONOO], Jonson 
et al. addressed the problem of integrating a motion analysis code in a computer-aided design 
System. It involved the use of a common data model and a spécial procedure to automate the 
exchange of data between CAD and motion analysis : this was done thanks to a language based 
on predicate logic. The authors applied their methodology to a piston-crank mechanism. Logic 
structure enabled to represent rules acting on the different components of the piston and the 
crank. The database gathered ail the information needed to describe the géométrie and fimctional 
characteristics of the design.

Finally, in [LEE96], Lee and Kim proposed a unified approach combining a knowledge-based 
System and a multiobjective hybrid genetic algorithm. The knowledge base plays the rôle of pre- 
and post-processor, storing a set of 147 rules separated in 4 categories ;

• general rules for input data génération of optimization ;
• rules for input data génération for genetic algorithm and direct search method (ex.: 

size of the initial population in the GA) ;
. control rules for the GA ;
. rules to select a point among Pareto solutions found by the a poseteriori optimiza­

tion procedure.

This method was applied to the design of a liquefied natural gas carrier ship, and the objec­
tives were to minimize the building and operating costs. The method implemented by Lee and 
Kim enabled significative enhancements of the design, whilst reducing the computational time.

Thanks to this overview of how expert information was incorporated so far in design prob- 
lems, the limitations of knowledge-based approaches will be discussed in the next section, com- 
pared to classical optimization methods. Then, to solve mechanical pre-design optimization 
problems, the second version of PAMUC will be presented thoroughly.

5.3 PAMUC II

5.3.1 Preliminaries to the development of PAMUC II

5.3.1.1 Expert Systems vs. general optimization methods

The bibliographical study about expert Systems devoted to design optimization illustrâtes their 
intrinsic limitations. Indeed, their use is generally restricted to narrow applications, making diffi- 
cult their extension to other problems.

More fundamentally, in optimization context, rules of thumb to guide a search towards a 
“pseudo-optimal” solution (following some expert rules) may not be efficient, since the algo­
rithm will prefer designs similar to previous ones, instead of exploring the whole search space. 
Therefore, only expert rules related to constraints that must be satisfied by the design (e.g. for 
technological reasons) should be kept in the set of rules.

On the other part, general optimization algorithms presented in Chapter 2 - and specially 
metaheuristics - are well designed to solve larger categories of pure optimization problems, but 
it is well known that they perform better when additional information is furnished about the
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problem to solve. Davis summarized this statement in the case of genetic algorithms : “I believe 
that genetic algorithms are the appropriate algorithms to use in a great many real-world applica­
tions. I also believe that one should incorporate real-world knowledge in one’s algorithm by 
adding it to one’s décoder or by expanding one’s operator set.” (cited in [MIC95a]).

This compromise between the efficiency of a method and its applicability to a wide set of 
problems is enlightened by the No Free Lunch theorem introduced by Wolpert and Macready 
[WOL97]. In their study, they proved that if a “black-box” optimization algorithm performs well 
for a family of problems, it will statistically perform poorer for another one ; in other words, 
when averaged over ail possible optimization problems defined over some search space, ail 
black-box algorithms will perform equal [COR03]. This statement has given rise to much contro- 
versial debates among the optimization community, mainly based on the classes of functions 
over which the No Free Lunch theorem holds, and the définition of the set of ail functions 
[IGE03].

However, the following conclusion of this theorem suffers no contradiction : the best way to 
solve spécifie applications is to incorporate some knowledge within the optimization process. 
To take benefit of this statement in design optimization, the idea proposed in this thesis is to en- 
able the user to incorporate knowledge about a particular problem without making the algorithm 
unapplicable to a larger family of problems. By integrating expert rules as constraints to guide 
the search, the size of the feasible domain would be reduced, but the core of the algorithm (an 
EA combined with an expert module able to integrate the user’s rules) would still remain gen­
eral.

The way rules will be modelled is described in § 5.3.1.2, followed by their intégration within 
EAs in §5.3.1.3.

5.3.1.2 How to model expert rules ?

To take expert knowledge into account, the methodology is inpired from expert Systems. In- 
deed, the procedure is also separated in three components :

. the knowledge base, containing the values of the variables ;
• the rule base, i.e. the set of expert rules defined by the user ;
• the inference engine (a forward-chaining algorithm).

The rules are written in accordance with the propositional calculus, by means of Backus 
grammar (cf. § 5.2.1.2). This syntax, albeit simple, is rich enough to express a large variety of 
information. Furthermore, in comparison with predicate logic, modal logic [RAM88,THA90], or 
non-monotonie logic [BRE98], propositional (or 0-order) logic provides some interesting theoreti- 
cal results based on a set of useful theorems [KLE67, RAM88] :

• the completeness and soundness theorems, stating the Backus grammar is a cor­
rect language for propositional calculus ;

. the decidability theorem, demonstrating that there is always a mechanical proce­
dure - to apply the rules - that gives a solution ; •

• the confluence theorem, showing that whatever order of rules is followed, the final 
resuit (i.e. the values of ail variables at the end of the process) is the same ;
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• each application of the mies is performed in afinite time, and the asymptotical 
complexity of a computation is an 0(number of mies multiplied by the number of 
conditions), where the notation/= 0(g) means that :

3c > 0 andxo s ÜSsuch that : Vx >xo : f(x)<c.g(x). (5.1)

These results guarantee that the application of an expert module dealing with the mies can be 
safely incorporated in the evolutionary algorithm, with no risk of lack of convergence or wrong 
answer.

5.3.1.3 How to incorporate expert rules within the EA ?

Now that a proper way to model the mies has been proposed, they hâve to be integrated in the 
EA. As explained above, the expert mies are considered as requirements which must be fulfilled 
by the design. In the frame of optimization, it means that mies are supplementary constraints.

Constraint-handling techniques in EAs hâve been thoroughly discussed in Chapter 3. A fam- 
ily of techniques also dealing with rules is the repair strategy, where unfeasible individuals are 
repaired (with a given probability) following a set of rules. The bibliographical study exposed in 
§ 3.5.1.4 showed that :

• two approaches were encountered in the literature : either the fitness value of the 
repaired individual is used instead of the fitness of the original one, or the whole 
individual is replaced (i.e. also its chromosome) ;

• most repair algorithms were designed to solve very restricted applications, by 
taking spécifie rules into account, directly depending on the problem, hence re- 
lated to the coding, the EA parameters, etc. ;

• an additional parameter is introduced : the probability of replacement iprep), which 
indicates the rate of members of the population that will be repaired after the gén­
ération of new individuals. The contradictory results obtained by different authors 
clearly demonstrate that no “optimal” value of Prep can be proposed, for it is 
problem-dependent.

The idea proposed here is to select a subset of Nsubset members of the population at each gén­
ération (with Nsuhset -Prep-N since each individual undergoes the expert module with probability 
Prep, N being the size of the population). Among the Nsubset individuals, the “bad” ones (i.e. the 
members of the population which violate the rules defined by the user) are corrected, and re­
placed in the population. The whole procedure is incorporated in an EA combined with PAMUC, 
and is described below.

5.3.2 Description of PAMUC II

The key idea in PAMUC II (i.e. PAMUC with an expert module to deal with the rules) is to 
repair individuals, with a user defined probability. The flow-chart of PAMUC II is shown in Fig. 
5.3.

PAMUC II was implemented in the Std-EA written in Matlab (cf. Ch. 4).
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Random Création of the Génération (^=1)
*’----------------'------------------1
! Expert Module \

Fig. 5.3 : Flow-chart ofPAMUC IL

The architecture is the same as in the PAMUC method, except that after the création of new 
individuals (either at the end of the first génération or after the crossover and mutation opera- 
tors), an expert module is applied for each individual. The algorithm is written in Fig. 5.4 in 
pseudo-code.

begin
create a random number 0 < rand < 1 
if rand < prep

déclaré active ail the rules in the rule base

while (some rules still hâve their conditions satisfied) 
détermine the first rule to apply 
execute the rule 
desactivate the rule

end
end

end

Fig. 5.4 : Expert module in pseudo-code (prep is the probability for an individual ofbeing repaired)
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The expert module is still composed of three parts (as in expert Systems) :

• the knowledge base, containing the values of the variables (coded in the chromo­
some), which may change due to the application of the rules ;

• the rule base, containing the rules defined by the user in the beginning of the pro- 
cess ;

• the inference engine - a forward-chaining algorithm -, integrated in the core of 
the algorithm (and thus remaining unchanged whatever rules are added).

A simple example with 2 variables, 2 objectives, 1 constraint and 1 rule will illustrate how 
PAMUC II Works :

' fi(x) ^ xi^ + X2^ (5.2)
max •

f2(x) = Xi X2 (5.3)

subject to : gi(x) = sin(X] + X2) > 0, (5.4)

Rule 1 =if Xj >5 then X2 = 4 (5.5)

with 0 <xi < 10 and 0 <X2 < 10. (5.6)

The multiobjective and constrained aspects are tackled by PAMUC, while Rule 1 is handled 
by the expert module. As soon as an individual violâtes the rule, it is corrected and its repaired 
version replaced it in the population (cf. Fig. 5.5).

> the ftrsl rule is applied

the chromosome of the first 
individual is transformed :

7.553 4.0

Fig. 5.5 : Expert module applied to a constrained multiobjective problem with one rule : the first individual 
of the population is repaired according to Rule 1 (a real-coding is used to build the chromosomes).
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5.4 Validation of PAMUC H

5.4.1 Strategy of validation

To validate PAMUC II in solving design optimization problems, it will be compared to the 
most traditional technique used to deal with the constraints : penalization.

First, to analyze the efficiency of PAMUC II in tackling the rules, it will be compared to sin­
gle-objective problems with rules. Except for test cases 1 and 2, each single-objective problem 
will thus be solved by 2 methods :

. the Joines and Houck’s penalty method (§ 3.5.1.2), where rules are transformed 
into mathematical (equality and inequality) constraints ;

• PAMUC II, where the PAMUC procedure is applied for the mathematical con­
straints and the expert module is used to tackle the rules.

In PAMUC II, as the probability of replacement is a parameter whose value is problem- 
dependent, computations will be performed with prep varying from 0 to 100% with a constant 
step of 5%. If Prep = 35% for instance, 35% of the population (at each génération) will be treated 
by the expert module whereas PAMUC will be applied to the remaining 65% (with rules trans­
formed into mathematical constraints).

Most of the single-objective problems chosen to validate PAMUC II are taken from mechani- 
cal design optimization field. As constraints are very seldom expressed in tenus of rules in 
benchmarks (though it is very common in industrial context), supplementary rules hâve been 
added to some examples to increase their complexity. This will be clearly noticed in the présen­
tation of the test cases.

The 7 single-objective problems used to validate PAMUC II are the following :

. two original (mathematical) examples : they are meant to illustrate how PA­
MUC II Works in comparison with PAMUC ;

. one test case due to Hooker et al. [HOOOO] ;

• four design optimization problems due to Osyczka :

. a robot gripper [OSY99] ;
• a beam divided in 6 logs [OSY02] ;
• a helical spring [OSY02] ;
• multiple clutch brakes [OSY02].

A comprehensive report of the numerical results is presented in § 5.4.2.

Then, PAMUC II will be applied to three multiobjective problems with rules, in order to 
check the ability of the method to handle multicriteria optimization as well as constraints and 
rules. This will be discussed in § 5.4.3.
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5.4.2 Single-objective optimization

5.4.2.1 First test case with raies (TCR 1 )

The first mathematical example built to validate PAMUC II is formulated as follows :

2 2maxf(x)= Xi ■¥ X2 - (X3-X4)/X6 + exp(xs/x7) (5.7)

subject to : gi(x)= xj^-X3-xs^- X6 + xj > 0, (5.8)

raie 1 = if (xj^ - X2 + X3) > 5 then X4 = 5, (5.9)

raie 2 =if((x3 < 4) V (x4 = 5)) A A(R]) then X5 = 2, (5.10)

raie 3 =if(xs= 2) A (xye {1,3,5}) A A(R],R2) thenx?= 5,(5.11)

rule 4 =if (xs< 4) A A(Ri,R2) thenx6= 3, (5.12)
with : Xi e { 1, 2, 3, 4, 5 } pour i - 1, ..., 7. (5.13)

and where A(/?, ) means that rule /?, either is not applicable or is desactivated (this guarantees that 
a rule that can modify a variable xj is evaluated before rules which use xj in their condition part).

To apply PAMUC or Joines and Houck’s method to the rules, the latter ones must be con- 
verted into mathematical constraints. For example, rule 1 is transformed into an inequality con- 
straint (where g2(x) must be > 0) as expressed in Eq. (5.14). The fact that g2(x) dépends on the 
value of expression “(x/^- JC2 + X5) > 5” is not a problem for the EA since only the value of g2(x) 
is required (and not its sensitivities for instance).

rule 1 —> if(x/-X2 + X3) > 5 then 
g2(x)= \X4 - 5\

else
g2(x) = 0

end (5.14)

The optimum was found by énumération (in 5^ = 78125 évaluations) : x* = (5 ; 5 ; 1 ; 5 ; 2 ; 
3 ; 2) with/(x*j = 54.0516. The parameters of the study are gathered in Table 5.3. The algorithm 
was launched 50 times for each of the 21 values of prep (from prep = 0 to prep = 1(X)% with a con­
stant step of 5%).

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding ofthe variables Décimal
N Size ofthe population 50
^een Number of générations 50
T Type of sélection Toumament

n,
Number of individuals participating 
to a toumament

2

P, Probability of crossover 1
F Type of crossover Unifonn

Pm Probability of mutation 0.05

T Type of mutation Flip
Table 5.3 : EA parameters for test case TCR 1.
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Fig. 5.6 : Rate offeasible individuals (left) and objective function of the best [plain Une] and mean [dotted Une] 
of the feasible individuals (right) w.r.t. the génération with Prep = 0 (for one run) for test case TCR 1.
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s,,
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oa

Génération
Fig. 5.7 : Rate offeasible individuals (left) and objective function ofthe best [plain line] and mean [dotted line] 

of the feasible individuals (right) w.r.t. the génération with prq, = 0.1 (for one run) for test case TCR 1.

Fig. 5.8 : Rate offeasible individuals (left) and objective function ofthe best [plain line] and mean [dotted line] 
of the feasible individuals (right) w.r.t. the génération with prep = 0.5 (for one run) for test case TCR 1.
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Fig. 5.9 : Rate offeasible individuals (left) and objective function ofthe best [plain line] and mean [dotted line] 

of the feasible individuals (right) w.r.t. the génération with Prep = 1 (for one run)for test case TCR 1.

Figures 5.6 to 5.9 exhibit the behaviour of PAMUC II for 4 values of the probability of re­
placement Prep. The use of the expert module, even with low values of prep, leads to a faster con­
vergence of the population towards the admissible domain than treating the rules as mathemati- 
cal constraints, as depicted in Fig. 5.10. Furthermore, the lower value of the best feasible objec­
tive function obtained for prep = 0 is due to the fact that without repair, the algorithm sometimes 
converges to a local maximum (as in Fig. 5.6 [right]).

Fig. 5.10 : Mean ofthe best feasible objective function (over 50 runs) 
w.r.t. the probability of replacement for test case TCR 1.

Figure 5.11 illustrâtes the average génération (over 50 runs) needed to reach the global opti­
mum (known exactly because it was calculated by énumération) with respect to the probability 
of replacement.
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Fig. 5.11 : Average génération (over 50 runs) needed to reach the global optimum 
w.r.t. the probability of replacement for test case TCR 1.

Increasing prep enables to diminish drastically the number of générations required to reach the 
global (admissible) optimum, even if one must keep in mind that the use of the expert module is 
more expensive than PAMUC alone. A more detailed analysis of the computational time will be 
performed in § 5.4.5.

S.4.2.2 Second test case with raies (TCR 2)

The second test case with rules is defined as follows ;

maxf(x)= X]^ + X2^ - (xs- X4)/x6 + expixs/xy) (5.15)

subject to : gi(x)= xj^-x^- xs^-X6 + X7 > 0, (5.16)
g2(x)= 1 -(xç + XJ0X3 -X8- if >0, (5.17)

raie 1 =if(xj^-X2 + xs)> 5 thenX4 = 5, (5.18)

raie 2 =if((x3 < 4) W (X4= 5)) A A(Ri) then X5 = 2, (5.19)

raie 3 =if(xs= 2) A (x?e {1,3,5}) A A(Rj,R2) îhenx7= J, (5.20) 

raie 4 =if(xs< 4) A A(R],R2) thenx6 = 3, (5.21)

raie 5 =if(x7 < xs) A A(Ri,R2,R.^) then xg = xs, (5.22)

raie 6 =if(x6 is an odd number) A A(Rj,R2,R4)
then X}o = Xg + 1, (5.23)

rule 7 =if(x6 is an even number) A A(Rj,R2,R3)
then xjo = xg, (5.24)

with Xi e { 1,2, 3, 4, 5, 6 7,8,9 j for i = /,..., 10. (5.25)

The goal of this test is to illustrate PAMUC II behaviour on a problem similar to TCR I, but 
with a larger size of the search space, as well as an increased number of rules and constraints.
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The EA parameters are the same as in the previous example. Figure 5.12 shows the objective 
function of the best feasible individual for different values of prep (mean over 50 runs), whereas 
Fig. 5.13 depicts the average génération (over 50 runs) needed to reach the level/(xj =160 with 
respect to prep-

Fig. 5.12 : Mean ofthe best feasible objective function (over 50 runs) 
w.r.t. the probability of replacement for test case TCR 2.
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Fig. 5.13 : Average génération (over 50 runs) needed to reach level f(x)= 160 
w.r.t. the probability of replacement for test case TCR 2.

Once again, it shows that large values of prep give better results in terms of convergence to- 
wards the optimum.
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The third test case is taken from Hooker et al. [HOOOO], whose work is mostly devoted to con-

5A.2.3 Example front Hooker et al. (TCR 3)

straint satisfaction problems.

maxf(x)=-(4xj + 3x2+5x3) (5.26)

subject to : gi(x)= 4 xj + 2 X2 + 4 X3 - 17 > 0, (5.27)
and { Xi , X2, X3 } ail different, (5.28)

with Xi € { 1, 2, 3, 4, 5 } for i = 7, ..., 3. (5.29)

The EA parameters are the same as in the previous example, except that TV = 10 and Ngen = 10. 
The rules compel the variables to be different one from another, hence satisfying automatically 
the second constraint. Low values of TV and Ngen were chosen to illustrate the évolution of the 
results w.r.t. Prep ; indeed, due to the simplicity of the problem (linear constraint and objective 
function, small search domain), larger values of TV and Ngen lead to a systematic convergence 
towards the global optimum x (with f(x )= - 23).

Fig. 5.14 [right] exhibits a monotonous increase of the averaged best feasible objective func­
tion (over 1000 runs).

ns

ĥ 980
K.

S

«« -26

.5»

i -2S.S

Seg Jî'

ProbabilUy of replacement (%) ProbabilUy of replacement (%)

Fig. 5.14 : Evolution of the number of feasible runs (over 1000 runs) [left] and mean of the best feasible objec­
tive function (over the feasible runs) [right] w.r.t. the probability of replacement for test case TCR 3.

Results obtained by using only Joines and Houck’s penalty method (to deal with both con- 
straints) furnished only about 10% of feasible runs (over 1000 runs), with an average objective 
value for the best individual (over the feasible runs) of - 32.4, i.e. less than PAMUC alone (cf. 
Table 5.4).

Joines and 
Houck

PAMUC 
(no repair)

PAMUC II
(Pr^=100%)

Theoretical
Solution

Number of feasible runs (over 1000 runs) J12 967 1000 -

Best feasible objective function at each run 
(mean over the feasible runs)

-32.4 -29.25 -25.7 -23

Table 5.4 : Comparison of the Joines and Houck’s method and PAMUC (11) for problem TCR 3.
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S.4.2.4 Robot gripper design problem (TCR 4)

The first benchmark taken from mechanical engineering was devised by [OSY99] (cf. Fig. 
5.15).

Fig. 5.15 : Robot gripper design problem [OSY99].

The initial benchmark is characterized by 7 continuons variables (a, b, c, e, f l, â) and 6 geo- 
metrical constraints (relations between angles and lengths, etc.). To make the problem barder to 
solve, 2 additional constraints (expressed as rules) were introduced by the author (cf. Eqs. (5.37) 
and (5.38)).

minfohj(x)= maxFk(x,z) - minFk(x,z)
Z Z

subject to : gl(x)= Y^ax - y(x,Zmax) > 0, 
g2(x)= y(x,Z™,J > 0, 
g3(x)= y(x,0) - Ymin > 0, 
g4(x)= Yc-y(x,0) >0, 
g5(x)=(a + bf-f-e^>0, 
g6(x)= (l - Z^f + (Û - ef -b^>0, 
rule 1 =if (a < 4b and c < a+b) thenf= 2e +10, 
rule 2 =if (a < 4b and c >a+b) thenf = e +50,

with : 10 <a <250, 10 <b <250, 100 <c <300, 
0 <e <50, 10 <f<250, 100 <l <300,
1.0 <ô <3.14,

and where :

y(x,z) = 2 [e + f + c.sin(/3+S)], 
Pb.sin( a + P )

Fk =
2c. cos a

t' 2 , 2 Ia +g -b 
2ag

a — arccos
2 ^

+

(5.30)

(5.31)
(5.32)
(5.33)
(5.34)
(5.35)
(5.36)
(5.37)
(5.38)

(5.39)
(5.40)
(5.41)

(5.42)

(5.43)

(5.44)
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P = arc cos 

f
^ = atan

b^+g^-a^

V 2bg

kI-Zj

-0> (5.45)

(5.46)

g = ^(l-zf+e^ , (5.47)

P = 100 [N] ; (5.48)

Ymin = 50 [mm] ; Y^ax = 100 [mm] ; (5.49)

Yg = 150 [mm] ; Z^ax = 50 [mm]. (5.50)

The objective is to minimize the différence between the maximum and minimum gripping 
forces needed for the assumed range of gripper end displacement. To compute the minimum and 
maximum of the forces (which is a 1-variable continuous optimization problem), Nelder and 
Mead’s algorithm (based on the simplex method) from the Matlab toolbox is used [NEL65].

Expert rules are designed in such a way that repaired individuals automatically hâve con- 
straint 5 and rules 1 and 2 satisfied. The EA parameters are the same as in test case TCR 2, ex- 
cept that a Gray coding is used with 10 bit per variable, and Ngen =100. With Joines and Houck’s 
method, no feasible point was found, whilst results of PAMUC II are greatly enhanced when the 
probability of replacement is high (cf. Fig. 5.16 and Table 5.5).
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Fig. 5.16 : Evolution of the number of feasible runs (over 50 runs) [left] and me an of the best feasible objective 
function (over the feasible runs) [right] w.r.t. the probability of replacement for test case TCR 4.

Joines and 
Houck

PAMUC 
(no repair)

PAMUC II
(Pr^ = 100%)

Number of feasible runs (over 50 runs) 0 34 50
Best feasible objective function at each run 
(mean over the feasible runs)

(no feasible 
solution)

129.8 31.8

Table 5.5 : Comparison of the Joines and Houck*s method and PAMUC (II) for problem TCR 4
(robot gripper design problem).
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This problem is based on test case S-BDP, already encountered in Chapter 4 (cf. § 4.4.2.7). 
Here, only the fïrst objective function is optimized (i.e. minimizing the volume of the beam), and 
2 supplementary constraints bave been added by the author to increase the problem difficulty :

rule I =if (X6 > 28 mm) then xs = X6, (5.51)
rule 2 =if(xs = Xô) then X4 = xs-2 mm. (5.52)

The other constraints impose that the normal stress must not overstep a critical level, and that 
each piece of beam should be inferior in height to the following one (cf. Fig. 5.17). Expert rules 
used with PAMUC II enable to fiilfil those latter constraints, as well as rules 1 and 2.

5.4.2.5 Beam design problem (TCR 5)

◄------------ -----------------------------------------------------------------------------► ◄------ ►
////// b

Fig. 5.17 : Beam design problem (adaptedfrom [OSY02]).

The EA parameters are the same as in the previous example, except that A = 100 and Ngen = 
150. Furthermore, to build the chromosomes, a binary coding was used.

Fig. 5.18 : Evolution ofthe number offeasible runs (over 50 runs) 
w.r.t. the probability of replacement for test case TCR 5.
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Figure 5.18 illustrâtes that for values of prep above 20%, ail runs are feasible. Numerical re- 
sults are gathered in Table 5.6.

Joines and 
Houck

PAMUC 
(no repair)

PAMUC 11 
(Preo = 100%)

Number of feasible runs ( over 50 runs) 35 37 50
Best feasible objective function at each run 
(mean over the feasible runs) 4.22. l(f 3.8. lOr^ 3.8. la'

Table 5.6 : Comparison of the Joines and Houck’s method and PAMUC (II) 
for problem TCR 5 (beam design problem).

To realize how efficient PAMUC II is - compared to a dynamic penalty method without re­
pair -, a plot of the violation rate of the 8^*' constraint is drawn in Fig. 5.19 for both methods 
(with Prep = 0.8 in PAMUC II) for one run (constraint 8 imposes X2 to b greater than xj). One can 
see that the number of individuals violating constraint 8 is much smaller when the expert module 
is applied.

Fig. 5.19 : Evolution of the rate of individuals violating constraint 8 w.r.t. the génération for test case TCR 5 
(for one run), using Joines and Houck’s method [left] and PAMUC II with Prep — 0.8 [right].

5.4.2.6 Helical spring design problem (TCR 6)

Test case TCR 6 deals with the optimization of a helical spring [OSY02] (cf. Fig. 5.20). Four 
discrète variables are involved (xj, X2, xj and the number of coils X4), and the goal is to minimize 
the volume. Formulae giving the constraints are based upon Polish Standard PN-85/M-80701-3, 
describing the procedure to design springs.

Fig. 5.20 : Helical spring design problem (adapted from [OSY02]).
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The optimization problem is written as foliow s :

mm• J'/ \ ^ 2 I 2 ’ 2" ^ 2mj(x)- —Xj ^X2X^ +JCj + — XjX2

8x P
subject to : gi(x)= Sf Tdop - k —^ > 0,

TtX,

where

g2(x)= Ac.c- c —
gjc;

8X2X4
>0,

. . Sx^x.P ,, , . „
g3(x)= Xs----------------- xi X4 (1 + a) > 0,

Gxj

84(^)~ ^dop
800X2X4 P ^ ^

Gxjx‘1
g5(x)= 7 X,-X2, 

g6(x)= 60-X2,

Tdop = 605.0 [N/mrr^] = allowable shear stress,

P = 1850 [N] = load,

V 7 V
= Wahl factor,

Sf = 1.12 = coeff. of allowable changes in shear stress, 

w = X2/X1 = index ofthe spring, 

c = 20.55 [N/mm] = required stiffness ofthe spring, 

Ac = allowable déviation ofthe stiffness = 3% ,

7 ro
2

H— — + —
WJ 8 ^wj

G = 81400 [N/mm^] = modulas of rigidity,

-3.10-^w^ + 0.25. U 
+ 0.139 if X] < 0.8,

a= - 3.10~^ w^ ^ 0.25.10~W-0.027 w

a= -2.10~^w^ + 0.2.10~W -0.18.10-^ w 
+ 0.0627 if X] >0.8,

À = X3/X2 = spring slendemess ratio,

tjdop = spring allowable flexibility ratio
= 2.10'^ àU 0.0033 - 0.0399 + 0.087 /l’

+0.8587 + 0.9852 ;i + 71.203,

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

(5.70)

(5.71)
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x,€{4;4.5;5;5.5;...;12}, (5.72)
X2€{ 30 ; 31 ; 32 ; 33 ; 90 }, (5.73)

e { 100 ; 102 ; 104 ; 106 ; 300 }, (5.74)
X4C{ 5; 5.5 ; 6 ; 6.5 ;... ; 14 }. (5.75)

Two additional constraints hâve been introduced by the author to make the problem barder to 
solve :

g7(x)= 4x2-X3> 0, (5.76)
rule 1 =if(À < 2 or À> 5) then X4 ^ [6,10]. (5.77)

Individuals undergoing a trip in the expert module automatically respect constraints 5 to 7 and 
rule 1. The EA parameters are the same as in the previous example except that N = 50 and Nge„ = 
100. Statistics on 50 runs are gathered in Table 5.7, and show that Joines and Houck’s technique 
furnished 10% of feasible runs, while PAMUC II gave 100% of feasible runs. Figure 5.21 shows 
that even without repair, PAMUC is still better than the dynamic penalty method. It is also clear 
that the quality of the solution increases with prep.
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Fig. 5.21 : Evolution ofthe best feasible objective fonction (over 50 runs) 
w.r.t. the probability of replacement for test case TCR 6.

Joines and 
Houck

PAMUC 
(no repair)

PAMUC II 
(Prev = 100%)

Number of feasible runs (over 50 runs) 5 50 50
Best feasible objective function at each run 
(mean over the feasible runs)

I0.3.l(f 5.65. l(f 4.13.1&

Table 5.7 : Comparison ofthe Joines and Houck's method and PAMUC (II) 
for problem TCR 6 (helical spring design problem).
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5.4.2J Multiple clutch brakes design problem (TCR 7)

The last single-objective example with rules presented in this study is a multiple clutch brakes 
design problem [OSY02] (cf. Fig. 5.22).

Fig. 5.22 : Multiple clutch brakes design problem (adapted from [OSY02]).

Fivediscrète variables describe thedesign : /?,, Ro,A, <5'and Z(i.e. the number of friction sur­
faces). The problem is formulated as follows :

minf(x)= 7T(Ro^-Ri^)A(Z+ 1) P (5.78)

subject to : gi(x)= Ro - Ri - AR > 0, (5.79)
g2(x)= Lmax -{Z+ 1)(A + S) >0, (5.80)
gs(x)= Pmax-Prz^ 0, (5.81)
g4(x) = Pmax Vsr max ~ Prz Hr ^ 0, (5.82)
gs(x)= Vsrmax ~ 0, (5.83)
gô(x) = tmax -th>0, (5.84)
g7(x)= Mh-sMs Vsr> 0, (5.85)
g8(x)= th > 0, (5.86)

where : AR = 20 [mm] = minimum différence between radii, (5.87)
Amax = 3.0 [mm] = maximum dise thickness, (5.88)
Amin = 1-5 [mm] = minimum dise thickness, (5.89)
Lmax = 30 [mm] = maximum length, (5.90)
Zmax = 10 = maximum number of dises, (5.91)
Fsrmax = 10 [m/s] = mox. relative speed ofthe lipstick, (5.92) 
P - 0.5 = coefficient of friction, (5.93)
P = 7.8.10 [kg/mm^] = density of material, (5.94)
s = 1.5 = factor of safety, (5.95)
Ms = 40 [Nm] = static input torque, (5.96)
Mf= 3 [Nm] =frictional résistance torque, (5.97)
n = 250 [rpm] = input speed, (5.98)
Pmax = 1 [MPa] = max. allowable pressure on the dise, (5.99) 
J Z = 55 [kg.mrr  ̂] = moment of inertia, (5.100)
tmax = 15 [s] = maximum stopping time, (5.101)
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Fmax = 1000 [N] = maximum actuating force. (5.102)
min — [fflttl]. (5.103)

Romax= 110 [mm], (5.104)

and :
2 R^_

Mh — braking torque = — fl F Z—^ (5.105)

F
Prz = F/S = ,

n(Rl-R^)
(5.106)

. 2xn(E^-Ri) 
'' 90(Rl-R^) ’

(5.107)

J .Ttn
~ 30(M, + M^)

(5.108)

with : Ri € [60; 61 ; 62 ; ... ; 80 }, (5.109)
Ro€{90;91;92;...;110}, (5.110)
A e { 1 ; 1.5; 2 ; 2.5 ; 3 }, (5.112)
Se { 600 ; 610 ; 620 ; ... ; 1000 }, (5.113)
Z e ! 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }, (5.114)

Two supplementary rules were added to increase the difficulty of the problem :

rule 1 = if F <800 N then Ro > Ri +30 mm. (5.115)

rule 2 =ifA/Ro < 2 orA/Ro > 5 then Ze [6,10] (5.116)

The expert module compel the individuals undergoing repair to respect constraint 1 and rules 
1 and 2. To satisfy rule 1 for instance, when F < 800 N and Ro value is less than /?,• + 30 mm (cf.
Eq. (5.116)), it is replaced by Ro which is created randomly such that Ro repmred ^ { qQ ;

91 ; ... ; 110 } and :
Ri + 30 mm <Ro""’’‘‘'""‘‘ <Romax = HO mm (5.117)

The EA parameters are the same as in the previous example except that Nge„ = 50. Statistics 
on 50 runs are gathered in Table 5.8, and show that Joines and Houck’s technique fumished 10% 
of feasible runs (among which the average best objective function is equal to 0.9649), while 
PAMUC II gave 100% of feasible runs. Furthermore, as illustrated in Figure 5.23, the results are 
better with values of prep above 50%.

Joines and 
Houck

PAMUC 
(no repair)

PAMUC II
(Pren = 100%)

Numher of feasible runs (over 50 runs) 5 50 50
Best feasible objective function at each run 
(mean over the feasible runs)

0.9649 0.516 0.357

Table 5.8 : Comparison of the Joines and Houck’s method and PAMUC (II) 
for problem TCR 7 (multiple clutch brakes design problem).
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Fig. 5.23 : Evolution ofthe best feasible objective fonction (over 50 runs) 
w.r.t. the probability of replacement for test case TCR 7.

S.4.2.8 Value ofthe probability of replacement

Although a thorough analysis of the results obtained thanks to PAMUC II for single-objective 
problems with rules will take place in § 5.4.6, some remarks can already be made about the new 
parameter introduced in PAMUC II, namely the probability of repair prep- Indeed, numerical re­
sults presented above showed that in ail test cases, a value of 100% gave the best results, in 
terms of feasibility and quality of the solution (i.e. the value of the objective function for the best 
feasible individual).

However, in repair algorithms, no optimal value of prep suits in ail situations (cf. § 3.5.1.4). 
Indeed, in some applications, a too large value of prep is likely to prevent the algorithm from ex- 
ploring widely the search space, guiding it too early towards a narrow région. Therefore, even if 
PAMUC II seems to perform better with prep = 100%, a tuning of this parameter should always 
be done when new examples are investigated.

5.4.3 Multiobjective optimization

So far only single-objective optimization test cases with rules hâve been studied. The final 
aim of this validation is to demonstrate that PAMUC II is relevant for multiobjective problems 
with expert rules.

Three multiobjectives examples will be analyzed by applying two methods :

• a classical weighted sum method, combined with Joines and Houck’s penalty 
technique to deal with both mathematical constraints and expert rules. This choice 
was guided by the fact that in industrial context, to solve this kind of problem, this 
would be the most general and widely used approach ;
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. PAMUC II, i.e. PAMUC to handle the multiple objectives and mathematical con- 
straints, and the expert module to tackle the rules.

As in Chapter 4, both methods will be applied for different values of the weights, and com- 
pared thanks to Rl-norm (cf. § 4.3). The three applications are 2-objective variants of mechani- 
cal component design problems mentioned above :

• the robot gripper design (cf. § S.4.2.4), with the second objective function being 
the force transmission ratio (to be minimized) :

f2(x)= .-------:
minFj x,z)

(5.118)

. the beam design (§ 5.4.2.5), where the second objective function is the displace-
ment at the right extremity of the beam :

, Fl'( 1 ^n^-(n-lf'\
dt 'ylj „=2 I„ ^

(5.119)

bx'
with : In - —— for n = 1, 2, ..., 6,

i. ‘2/
(5.120)

5 2E = Young modulas = 2.06.10 [N/mm ] ; (5.121)

the multiple clutch brakes design (§ 5.4.2.7), where objective 2 is the stopping
time th [s] (to be minimized).

To solve them, within the expert module, prep is chosen equal to \00%, since this value gave 
the best results for the single-objective counterparts of these three examples. Each process was 
launched 50 times, a whole process consisting in running the EA with both methods with a set of 
weights varying from {w/ = 0 ; W2* = 1} for the first run to {wy = 1 ; W2 = 0} for the last run, 
by a constant step. Numerical results are gathered in Table 5.9.

Problem
Number offeasible rum (over 50) Rl(PAMUCIEWS)

Weighted sum method 
(with Joines and Houck)

PAMUC II Mean Std. déviation

Robot gripper design 17 50 0.977 0.1415
Beam design 42 50 0.958 0.1559
Multiple clutch brakes 50 50 0.821 0.3283

Table 5.9 : Comparison of PAMUC II and the weighted sum methodfor the 3-ohjective test cases.

Once again, those results confirm that PAMUC II clearly outperforms the weighted sum 
method (combined with Joines and Houck’s method) : the simultaneous application of the expert 
module (to handle the rules) and of PAMUC (to tackle multicriteria and constrained aspects) is 
very effective.
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Before drawing general remarks about PAMUC II (§ 5.4.6), two topics still hâve to be con- 
sidered : the consistency of the rule base (§ 5.4.4) and the computational time (§ 5.4.5).

5.4.4 Consistency of the rule base

Some useful theorems bave been mentioned in § 5.3.1.2, which guarantee that the expert 
module furnishes one (and only one) solution, in a finite time. Those theorems are applicable 
only if the rule base is logically consistent.

For example, if the following rules (see Eqs. (5.121) and (5.122)) are included in the rule 
base, their application would lead to a contradiction :

rule 1 =p (5.122)

rule 2 =p ^—,q (5.123)

rules 1 and 2 : p <^—ip (contradiction !) (5.124)

Lots of algorithms to check logical consistency of rule bases were developed in the logical 
programming field. The main one is Davis and Putnam’s algorithm [LL084], for which different 
implémentations hâve been proposed [ZHA94]. In the frame of this work, it was implemented in 
Matlab (cf. flow-chart in pseudo-code in Figure 5.24). The first step consists in converting the 
rule base S into a set of clauses, each clause being (by définition) a disjunction of a finite
number of propositions (i.e. under the form : pi V p2 V ... V p„). To perform this transformation, 
the following rules are applied [THA90] :

1°) replace ail (X <=> Y) by (X => Y) A (Y => X) (5.125)

2°) replace ail (X ^Y)by(-^XV Y) (5.126)

3°) use Morgan laws : —i (X A Y) is converted into (—i X V —i Y) (5.127)

—1 (X V Y) is converted into (—i X A —i Y) (5.128)

4°) finally, apply distributivity laws :

X V (Y A Z) is converted into (X V T) A (X V Z) (5.129)

(X A y) V Z is converted into (X V Z) A (T V Z) (5.130)

Then, a recursive procedure is applied, where the vérification of consistency is replaced by 
the checking of the consistency of two smaller subsets which do not contain a proposition p 
(resp. -1/7).

The rule bases of test cases TCR 1 to TCR 7 hâve been checked by Davis and Putnam’s algo- 
rithm, which proved that ail of them were logically consistent.
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begin
transform the original rule base S into a set of clauses S'^‘ 
if rule base 5 = { } then 

S is consistent 
elseif S = { False } then 

S is inconsistent
else

- select a proposition p intervening in S
- calculate Sp, 5_,p and S"=S \ {Sp U S^p)
- calculate Sp (whose clauses are clauses of Sp without p)
- calculate S^p' (whose clauses are clauses of S^p without -i p)
- S is inconsistent iff both (5p'U S") and (5_,p'U S") are 

inconsistent
end

end

Fig. 5.24 : Flow-chart of Davis and Putnam ’s algorithm (adaptedfrom [LL084]).

Nervertheless, one should be careful about the fact that the content of the propositions con- 
stituting the rules does not intervene in Davis and Putnam’s algorithm : only logical expressions 
are taken into account. For example, if propositions p, q and r are defined as follows :

p =X] = 3, (5.131)
q=X2 = 5, (5.132)
r =jc/ = 6, (5.133)

and if the rule base contains :

rulel=p=>q, (5.134)
rule2=q=>r, (5.135)

the inference engine will deduce that p ^ r (i.e. (xj = 3) (xy = 6)), which is logically consis­
tent with the rule base but mathematically false. To check at once logical and “mathematical” 
consistency, a constraint satisfaction program should be solved.

Constraint satisfaction programming (CSP) aims at predicting, from a set of constraints, 
whether the admissible domain (i.e. the set of points respecting ail the constraints) either exists 
or is empty [BOW90]. While efficient algorithms were developed for spécifie cases (linear con­
straints for instance [HOO02]), CSP with rules, handling general mathematical expressions (as it 
is often the case in design optimization, e.g. with empirical formulas), is still an open area. By 
the way, it is interesting to notice that genetic algorithms, thanks to their robustness, hâve been 
used to solve this kind of problem (cf. [LAU99]).

However, as the scope of PAMUC II is to tackle pre-design optimization problems, with a 
quite low number of rules (< 50), one can reasonably assume that the user can himself/herself 
detect any “mathematical” contradiction in the rule base ; hence only a vérification of the con­
sistency is performed numerically.

Chapter 5 - Expert rules for mechanical design optimization 5-31



5.4.5 Computational time

The computational time of PAMUC II is investigated in this section. A décomposition of the 
different costs leads to the following formula :

Y PAMVC 
^ J gen N.[Tsel_PROM_ll TcfQss Tmut Tconstr Nrules •prep

+ (1 — Prep)-Nrules+ (N+1 ).(m +1 ).TpROM_II + K"], (5.136)

where :
• is the computational time needed for one génération of the EA with PA­

MUC II ;
• Tsei_pROMji is the average time (for one member of the population) to perform sélection 

(by an elitist sélection procedure using PROMETHEE II for each pair of parents and 
their corresponding children) ;

• m is the number of objective functions ;
• Nruies is the number of ru les ;
• prep is the probability of replacement ;
• TpROMji is the time needed to compute (for a couple of individuals (a,b)) the prefer- 

ence functions Pi(a,b) and the preference indexes n(a,b) needed to rank the individuals 
in PROMETHEE II ;

• K" is a second-order term for remaining (low cost) computations of the algorithm.

With a classical weighted sum method (combined with Joines and Houck’s penalty technique 
to handle both mathematical constraints and expert rules), the computational cost for one gén­
ération is equal to :

where :
TZen = + Tcross "1“ Tmut Tghj + Tconstr+rules K ], (5.137)

is the computational time needed for one génération of the EA with the weighted 
sum method ;
N is the size of the population ;
Tseï is the average time (for one member of the population) to perform sélection ;
Tcross is the average time (for one member of the population) to perform crossover ;
Tmut is the average time (for one member of the population) to perform mutation ;
Tohj is the time needed to compute the values of the m objective functions (for one in- 
dividual) ;
Tconstr+rules is the time needed to compute (for one individual) the values of the p+q 
(equality and inequality) constraints, as well as the Nmies converted into mathematical 
constraints ;
K* is a second-order term for remaining (low cost) computations of the algorithm.

Whilst the weighted sum method performs faster than PAMUC II, it was shown above that it 
often has hindrances to find a feasible solution, even with a rather low number of rules. Further- 
more, the theoretical results mentioned in Eqs. (5.135) and (5.136) focus on the computation of a 
single génération, whilst convergence towards the optimum can be reached in less générations 
with PAMUC II, hence diminishing the total calculation time.
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First, a deeper insight will be made about the cost due to the expert module in PAMUC IL 
Therefore, a computational time analysis (enlightening the rôle of the probability of replacement) 
is done on test cases TCR 1 and TCR 2 (with the same EA parameters as in §§ 5.4.2.1 and
S.4.2.2), beginning with a doser look at the number of générations. Figures 5.25 and 5.26 exhibit 
the maximum number of générations that can be computed for a given computational time CT. 
That means that in test case TCR 1, when 15 générations can be performed for prep = 0, only 13 
générations can be accomplished during the same time.

2
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0

m

♦ Max. number of générations (CT fixed)
■ Number of générations to reach the optimum

0 10 20 30 40 50 60 70 80 90 100

probability of replacement (%)

Fig. 5.25 : Computational time study for TCR 1 : diamonds represent the maximum number of générations 
that can be computed in a given computational time CT (it logically decreases when prep increases), 

whereas squares depict the actual number of générations needed to reach the global optimum x* *.
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♦ Max. number of générations (CTfixed)
* Number of générations to reach the optimum

10 20 30 40 50 60 70 80

probability of replacement (%)
90 100

Fig. 5.26 : Computational time study for TCR 2 : diamonds represent the maximum number of générations that 
can be computed in a given computational time CT (it logically decreases when prep increases), 
whereas squares depict the actual number of générations needed to reach the global optimum x .
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One can also see that the number of générations needed to reach the optimum decreases (ap- 
proximatively) linearly w.r.t. prep : in TCR 1, while 30 générations are necessary to reach the 
optimum with prep = 0, only 19 are sufficient to find it when prep = 100%. But as the calculation 
cost of one génération increases with prep, one must compare directly the CPU times spent to find 
JC : this is exhibited in Fig. 5.27, showing that in TCR 1, the cost decreases w.r.t. prep, whereas 
no corrélation can be made in TCR 2.

Probability of replacement (%)

Fig. 5.27 : CPU time needed to reach the optimum with PAMUCII w.r.t. Prep 
(for test cases TCR 1 and TCR 2) .

Now PAMUC II and the weighted sum method are compared following the CPU time needed 
for one run of the EA (with the same EA parameters as in § 5.4.2, and prep = 100% in the expert 
module ; results were obtained on a PC with freq. = 900 MHz in MS Windows 2000 environ­
ment). Numerical results for TCR 3 to TCR 7 are indicated in Table 5.10. One should insist on 
the fact that although PAMUC II générâtes an additional time, it is still very reasonable since it 
furnishes much better results in terms of admissibility and quality of the solution (cf. results in §
5.4.2).

j; Probîem
Name ofthe 

problem

—

^emattr

CPU time (s)

Joines and 
Houck PAMUC II

Relative 

différence (%)

TCR 3 Hooker et al. 4 I 0.501 0.521 3.8%

TCR 4 Robot gripper 3 6 238.2 240.6 1.0%

TCR 5 Beam design 2 11 58.5 76.5 23.5%

TCR 6 Helical spring 4 7 61.1 66.3 7.8%

TCR 7 Multiple 
clutch brakes 3 9 23.2 30.1 22.9%

Table 5.10 : CPU time (for one run of the EA) for test cases TCR 3 to TCR 7 
(the high CPU time for TCR 4 is due to the fact that Nelder and Mead’s algorithm is utilized 

twicefor each individual in order to compute its objective function : cf. § 5.4.2.4).
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5.4.6 Remarks about PAMUC II

The development of a novel optimization method, like PAMUC II, is traditionally divided in 
three parts : first, the bibliographical study of the field concerned, followed by the theoretical 
justification of ail the options taken when devising the method. Then, the proposed approach 
must be tested on variegated benchmarks, in order to validate it and surround its possible defi- 
ciencies. And finally cornes the drawing of the conclusions, to dérivé the advantages and caveats 
of the method. It is the scope of this section.

First, the satisfactory results obtained by the expert module in PAMUC II can be explained 
thanks to an original concept taken from CSP, namely epistasis, inspired by genetics, and can be 
defined as “the interaction between different genes in a chromosome” [LAU99]. In other words, 
as standard EAs act as black-box and do not use any spécifie knowledge about the problems they 
try to solve, they hâve hindrances in applications where there are interwoven relationships be­
tween the variables, which are difficult to detect by a mere blind search [TR097]. In those prob­
lems, the harmful effects of epistasis may be alleviated by incorporating additional knowledge 
into the algorithm. This explains why PAMUC II succeeds in converging towards the optimal 
solution even when the size of the admissible domain is narrow in comparison with the whole 
search space.

The other advantages of PAMUC II are the following :

. new rules may be added to the rule base without changing the structure of the algo­
rithm, as long as the base of rules is not contradictory. The vérification of the base 
consistency has been discussed in § 5.4.4, leading to the implémentation of Davis and 
Putnam’s algorithm to check the logical consistency. However, “mathematical” con­
sistency is not automatically analyzed, and must be verified by the user. For example, 
it should be noticed that no loops or retroactivity in the rules are tolerated, since it 
would lead to misleading results (the rule base must always be transformed into an 
AND-OR tree as exposed in § 5.2.1.3) ;

• as the language used to model the rules is based upon propositional calculus, a unique 
solution is guaranteed to be found each time the expert module is launched ;

. the discussion about the value to assign to the new parameter prep led to the conclu­
sion that Prep = 100% gave the best results, also because the problem with rules are 
often epistatic (i.e. there are relationships between the variables). However, when a 
new problem is tested, a tuning of prep should always be performed, because giving a 
too large value to prep may accelerate the convergence to a small part of the search 
space, without letting time enough to the EA to explore the whole domain ;

• the study of computational cost showed that PAMUC II needs only a minor additional 
time compared to the cheap weighted sum method combined to Joines and Houck’s 
technique (less than 50% for ail the examples treated in this work) ;

. the implémentation of PAMUC II into the standard EA is quite easy, even if the 
writing of the rule requires the user to be able to change the chromosome of the 
members of the population, hence to act on the coding.
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In addition to those remarks related to the expert module, it can be underlined that the inter­
action of PAMUC (to deal with multiple objectives and mathematical constraints) and the expert 
module works efficiently, whence ail the advantages of PAMUC can be reminded, namely :

• several objectives with different scales of sizes may be used ;

• no tuning of parameters is required (except prep as discussed above, and the traditional 
parameters of the EA as the size of the population N, etc.) ;

• it was able to find solutions distributed along concave Pareto fronts (by varying the 
weights), whereas the weighted sum method was attracted next to extreme parts of the 
trade-off surface. However, the possible user of PAMUC II must be aware that this 
property may not appear systematically ;

• both PAMUC and PAMUC II hâve proven to be robust and efficient on a large set of 
test cases and mechanical design optimization problems, and the validation was made 
by a rigorous use of 7?7-norm for multiobjective problems. Industrial applications will 
be handled in the next chapter.

5.5 Conclusions

This chapter was devoted to the use of expert rules within the optimization process, in order to 
générale optimal solutions satisfying also technological (or other) requirements. A preliminary 
bibliographie survey about expert Systems used in engineering applications showed that their 
lack of flexibility makes them difficult to use as a pre-design optimization tool.

However, adding knowledge in EAs is an élégant way to guide the algorithm towards the fea- 
sible global optimum, instead of letting it groping for the admissible domain. Therefore, a novel 
approach was proposed, called PAMUC II, consisting in modelling expert rules thanks to the 
propositional calculas, and using them (with a user-defined probability of replacement prep) to 
repair the members of the population violating those rules.

It was validated for various single-objective and multiobjective benchmarks (in which sup- 
plementary rules were introduced in some cases in order to increase the complexity of the prob­
lems), and PAMUC II gave excellent results in comparison with a weighted sum method (with a 
dynamic penalty technique to tackle the constraints).

Furthermore, Davis and Putnam’s algorithm was implemented to check the logical consis- 
tency of rule bases ; mathematical consistency is not investigated since it requires as much com- 
putational overhead as the optimization process. In any case, for most pre-design optimization 
problems, the number of rules is generally restricted to small or medium values (< 50), thus the 
user can check by himself/herself whether there is a contradiction in the rule base.

Then, a computational time study exhibited a slight différence between PAMUC II and a clas- 
sical weighted sum - penalty method, which makes PAMUC II very effective, robust and rather 
cheap.
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Finally, some remarks hâve underlined the rôle of the probability of replacement, whose op­
timal value in the test cases cited above is equal to 100%, but which must be tuned for every new 
example in order to be sure that the EA will not be trapped in the vicinity of a local optimum.

Now that PAMUC II has been thoroughly validated and its behaviour dissected, its applica­
tion on industrial designs, which has been hived off from the last three chapters, will be pre- 
sented in the next chapter.
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Chapter 6 - Industrial Applications

6.1 Introduction

Whereas previous chapters were devoted to the development and validation of a general opti- 
mization method to be applied during the first stage design - PAMUC (II) -, this chapter aims to 
analyze the efficiency of the proposed approach on real-life mechanical components.

As this thesis was accomplished with Samtech s.a. support, the çhoice of the industrial appli­
cations follows from Samtech s.a. partnership with Techspace Aero (Snecma group). The me­
chanical components studied hereafter are space valves specially designed by Techspace Aero 
for launcher Ariane 5

Â I ^

After a short introduction replacing the space valve desigi|in îts^context (§ 6.2), the présenta­
tion of the applications will be divided in two steps : first, tne parlmetrical design optimization 
of three poppet valves will be described (§ 6.3). Then. the whole optimization process with ex­
pert rules will be illustrated on the valves mentioned above, plus a chamber valve (§ 6.4). Con­
clusions about the results obtained by PAMUC (II) wiJltake place in § 6.5.

6.2 Space valves from launcher Ariane 5
J i

Ariane 5 is developed by the Europe^ Space Agency (ESA) to launch satellites for varions 
purposes, e.g. ensuring more secure air traffic control, providing accurate weather reports, giving 
timely wamings of environmental hazards,^developing telecoms, etc. [ESA03]. To satisfy varie- 
gated requirements, a “building block strategy” is followed by the ESA : the éléments constitut- 
ing a launcher (the engine and the different stages) can be assembled in different ways to build a 
set of launchers adapted to meet spécifie market needs. It gives birth to a range of launchers, 
each one suited for a particular application.

f
This implies to dispose of a robust pre-design optimization method, able to build mechanical 

components fulfilling several criteria (reliability, cost, etc.). The procedure must also be flexible, 
i.e. slight modifications in the technological requirements should not lead to the re-calculation of 
a whole design. In this context, PAMUC (II) will be applied to the particular cases of 4 cryo­
génie valves in order to analyze its relevance as a pre-design optimization tool.

Those industrial cases are ail poppet valves from the VINCI rocket engine, which is part of 
Ariane 5 ESC-B cryogénie upper stage. Figure 6.1 shows Ariane 5 on its launch pad (and the 
location of the launcher upper stage). The VINCI engine uses liquid oxygen (LO2) as oxidizer 
and liquid hydrogen (LH2) as fuel [SNE02]. The energy necessary to drive the turbines is pro- 
vided by heating the hydrogen, which flows through the regenerative cooling circuit around the 
combustion chamber and the upper part of the nozzle.

The information related to Techspace Aero valves is strictly confidential.
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upper stage 
of VINCI
engine

Fig. 6.1 : Ariane 5 on its launch pad : photo (S. Corvaja) and eut open view (D. Ducros) 
[Crédits : ESAi/CNES/Arianespace]

LOX

TPH

TPO

Fig. 6.2 : Upper stage ofthe VINCI engine and zoom The ellipses indicate purge valves VP H and VPO 
(resp. for LH2 and LO2) and chamber valve VCH (for hydrogen) analyzed by PAMUC IL 

[Crédits : Techspace Aero (Snecma group)]
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Two valves control propellant supply to the combustion chamber (the chamber valves for hy- 
drogen and oxygen), while two other turbine bypass valves regulate turbopump power, which 
Controls mixture ratio and thrust (cf. Fig. 6.2). Besides, two purge valves (for LO2 and LH2) were 
added to the System, in order to :

1. get open when the command pressure is admitted, to relieve engine of high flow during 
start-up and shut down transient phases ;

2. evacuate the ergols (i.e. respectively LH2 or LO2) used for chilling down the turbopomps ;
3. enable emergency purging of propellant in case of aborted launch, after disconnection of 

the ground feeding and purging pipes.

In this Work, three types of poppet valves designed by Techspace Aero for the VINCI engine 
will be optimized thanks to PAMUC II (the first two from the upper stage depicted above, the 
last one from another stage of the engine).

• the purge valves VPH {Vanne Purge Hydrogène) and VPO {Vanne Purge Oxygène)
(respectively for LH2 and LO2) ; C

• the chamber valve VCH for hydrogen {Vanne Chambre Hydrogène) ;
. a feed valve VA {Vanne d’Alimentation) of the VENCI engine located downstream 

from the turbopomps. - '
'f'

As described in previous chapters, PAMUC II wîfâ ekiborated in two steps : first, PAMUC 
was developed to perform parametrical optimization of designs whose topological configuration 
was already fixed ; this will be illustrated on valves VPH, VPO and VA (cf. § 6.3). Then, expert 
rules gathered among engineers from Techspace Aero hâve been incorporated within the optimi­
zation process, thanks to PAMUC II expert module. The whole procedure was applied to a gen­
eral model of poppet valve, and used for valves VPH, VPO, VA and VCH (cf. § 6.4).

■
•• ^

6.3 Parametrical desmn optimization

6.3.1 Purge valves. VPH and VPO

The purge valves for oxygen and hydrogen share similar technical requirements ; hence, only 
one design was proposed by Techspace Aero engineers for both valves (see Fig. 6.3) [NOT02].

Fig. 6.3 : Purge valve of the VINCI engine (3D eut open view) 
[Crédits : Techspace Aero (Snecma group)].
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The different components of the valve are described in Fig. 6.4. It is a poppet valve, whose 
working is imposed by the technical requirements. It should be normally closed, but must open 
up when the pressure of hélium relieved by the actuator oversteps a critical level (defined by the 
ESA). To accomplish this task, a piston upon which the hélium gas acts is fixed to the poppet by 
means of a piston located in the centre of the valve ; when the piston moves, the piston shifts the 
poppet, which lets the flow go downstream. Against this movement of opening of the valve act 
the stiffnesses of the spring and of the bellows, as well as the influence of the pressure drop and 
the friction forces.

As shown in Fig. 6.4, the ergol flow (i.e. LH2 or LO2) makes an elbow in the valve, whose 
protection against internai leakages is secured by the presence of 2 seals and bellows (indeed, 
hélium gas must absolutely not corne into contact with ergol). The major part of the extemal 
leakages is collected thanks to a venting port.

The general configuration of the poppet valve is fixed : the actuator part is placed downstream 
from the flow, the angle between incoming and outcoming flows is equal to 90° and the poppet 
must be pushed to open the valve. The work of parameterization consisted in choosing the most 
représentative geometrical and material variables defining the valve (cf. Table 6.1).
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Component Symbol Possible values Tolérance

PISTON

Diameter [mm] ^pist [ 60; 61 ; 62; ... ; 90 } + 0,5%

BELLOWS .

Presence of the bellows Phel [ 0 ; 1 } (0 = no/1 - yes) -

Diameter [mm] dbel { 2;3;4;...;9 } + 10%

Initial stroke [mm] ^heU {-7;-6;-5;..;0} ±20 %

Stiffness [N/mm] Kbel [ 0; 1 ;2; ... ;40 } ±20 %

POPPETSEAL ,

Material of the poppet seal ^pop (Steel ; polymer} -

Diameter [mm] dpop [ 16; 16.5; 17; ... ; 40 } ± 0,5 %

SPRING :

Initial compression [N] F* spr,t ; [400; 2000] ± 10%

Maximal stroke [mm] ^spr.num ; : {3;4;5;6;7;8;9} ±20 %

Stiffness [N/mm] { 10;20;30; ... ;500 } ±5 %

ACTUATOR VENTING-PORT :

Hélium flow at the opening [g/s] i f. fl ;2;3;...;8] -

Hélium flow at the closing [g/s] 4 ;■ { 1 ;2;3 ; ... ; 8 } -

Table 6.1 : aran^erized purge valve VP.

I *
There are 12 mixed variables (continuoos,*?dSécrete, integer and even symbolical). The first 

constraints prescribed in the technicatee<|HBF^ents are related to the mechanical working of the 
valve. The pressure of heliunîsc@ilfiffîg^ffOî#iie actuator is imposed at the opening and closing 
phases (cf Table 6.2). Tho^ imply that the valve be monostable closed, i.e. when the
hélium pressure vanishesïthe valve must automatically close.

Fr à ï ' .5

% 1 ~ -.. Actuatorpressure Flow pressure
Opening >4.10^Pa [40bar] < 18.10^Pa[180bar]
Closing' <0.5.UfPa [5 bar] < 12.10'’ Pa[120bar]
Table 6.2 : Actuator and flow pressure at the opening and closing phases.

The displacement of the piston (which Controls the opening and closing of the valve) is gov- 
erned by the following equilibrium équation (the fluid is supposed to be non-viscous) :

piston — Fspr.i "f" Kspr Cspr + f^hel(CsprA' CheU ) Perpol.upstrSpop 
Pergol.downstri Sc! S bel) ~~ Pacl ^pist "t" Ffrict • (6.1)

By convention, a load is positive when it tends to close te valve. Here is the physical meaning 
of each term appearing in Eq. (6.1):
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• Fpiston : résultant of ail the forces acting on the valve piston when the valve is open 
(or contact force when the valve is closed) ;

• Fspr.i '■ force due to the initial compression of the spring. This force keeps the valve 
closed as long as the actuator pressure stands below 4.10^ Pa [40 bar] (whatever 
value the ergol pressure may amount to) ;

• Kspr Cspr : force due to the stiffness of the spring : it tends to close the valve {Cspr is 
the current stroke ; 0 < Cspr"^ Cspr.mwd

• Kbei Cspr '■ force due to the stiffness of the bellows (it tends to close the valve) ;
• Khei Cheu force due to the initial stress in the bellows (it tends to open the valve) ;
• Pergol.upstr S pop : force due to the ergol flow acting upon the poppet (upstream) : it 

tends to close the valve [ Spop = n.dpop^/4 ] ;
• Pergol.donwstr Spop : force due to the ergol flow acting upon the poppet (downstream) : 

it tends to open the valve ;
• Pergol.downslr Shei ■ force due to the ergol flow acting oa tbe inferior bottom of the bel­

lows ; it tends to close the valve [ Shei = K.dhei^/4 ] ;
• ~ Pad Spist : force due to the hélium pressure on the piston (of course it tends to open 

the valve) ;
• Ffrici : friction forces (mainly due to the friction at the piston seal).

When there is no bellows, Eq. (6.1) holds with Km æ 0 and with PergoUownstrSbei (which repre- 
sented the contribution of the ergol acting on the inferior bottom of the bellows) replaced by Per- 
golMoy^fistr Sboitom (where Sbouom is the surface peipêndiculàr to the piston and upon which the ergol 
flow pushes, in the sense of the valve closing). '^he, meaning of dépends on its sign :

oj^Fpi\t€tn , Working of the valve

Fpiston ^ ^
The valve is çloséd F,pis,on represents the contact force on the
poppet S^ii % ^

mston — 0
Equtlibmoâ bf the internai forces intermediary position be-
fore the operùng or the closing of the valve.

Fpiston ^ ^
The valve is open -> represents the contact force against
the cpening thrust.

Table 6.2 : Mechankal working ofthe valve w.r.t. the sign ofFfpistotf

A careful examination of this équation shows that four mechanical constraints hâve to be 
taken into account in orderto satisfy the technical requirements :

. check that the valve gets open for Paa = 4.10^ Pa [40 bar] (for the maximum pressure 
of ergol = 18.10^ Pa [ 180 bar]) ;

• check that the valve gets open for Paa = 4.10^ Pa [40 bar] (without any ergol pres­
sure) ;

• check that the valve gets closed for Paa ^ 0.5.10^ Pa [5 bar] (for the maximum pres­
sure of ergol = 12.10^ Pa [120 bar]) ;

• check that the valve gets closed for Pact ^ 0.5.10^ Pa [5 bar] (without any ergol pres­
sure).

Three assumptions hâve been used [FlLOl] :

a) the pressure drop was neglected in the mechanical working of the valve (i.e. in Eq.
(6.1));
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b) the friction is supposée! to be constant (and of course, it always acts againt the displace­
ment) ;

c) the downstream ergol pressure is computed as follows :

. when the valve is closed, the downstream pressure is equal to zéro ;
• when the valve begins to open, it is assumed that the downstream pressure bas a 

quadratic évolution w.r.t the stroke (cf. Fig. 6.5) [FTLOl] :

C
ergol,downstream — ^ergoUupstream •

spr

Cspr/nax

(6.2)

. when the valve is completeîÿ ôpen, the downstream ergol pressure is equal to the up- 
stream pressure (the pressure drop îs negJected).

To deal with the tolérances, the most unfavourable case has been taken for each of the four 
constraints mentioned above, Thîs ensures fhat the valve will work even in the worst case (note 
that it is possible to détermine thelmost unfavourable value of each variable in this particular 
application, because of tJte linear |or quadratic] relation of Fpiston w.r.t. each variable).

The other constraints defîned in the technical requirements are the following [FILOl] (the for­
mulas will not be described thoroughly in this study ; only physical explanations about the con­
straints are given below) :

. the leakages of LH2 and LO2 through the poppet seal (when the valve is closed) are 
limited (cf. Table 6.3). The estimation of leakages is a very arduous task, since the 
physical phenomenon is complex to model, and needs to make lots of hypothèses to 
describe it correctly.

Max. leakage flow allowed [g/sj

VPH 0.5

VPO 2.5

Table 6.3 : Maximum leakage flow allowed.
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In this case, the calculations are based on semi-empirical models built by Techspace 
Aero engineers upon several experiments interpreted thanks to tbe work of G.F. Tel- 
lier (Poppet and seat design data for aerospace valves, July 1966, Edwards, Califor­
nia). In this approach, two kinds of géométrie imperfections are considered :

• the average roughness Ra ;
• the waviness 0 (characterizing the rippled shape of the contact surface 

of the seal).

Therefore, the computations of the leakages is a function of :

• the contact pressure ;
• the roughness; j
• the waviness ; «
• the Young modulus and Poisson ceeflKient of the poppet and its seat 

(as mentioned above, the material ttsed for the poppet seal [either Steel 
or polymerJ is a design variable). **

. the manœuvre times MTO and MTC (r^pectively at tttô opening and the closing) 
hâve to fulfill the following requirements : * ^

0.15 s <MTO <0.20 s, f Tl ^ " (6.3)
0.15 s <MTC <0.20 s, ■ J . 
0% <AMTO/MTO <10%, -tT î"

(6.4)
(6.5)

0% <AMTC/MTC^moL- Il (6.6)

Furthermore, the consutrption of hélium gas must not exceed 30g for the whole 
flight. A standardized flight i^efined in Table 6.4.

'4

Phase
^ ''M

Ac&vity Ten^rature
Valve position 

(J : open iO : chsed)
Maximum
duration

A
waiting time mi the launch pad 

(v(4th propellant in tanks) ambient (20°C) 0 12 hours

B engine chill-down
20°C ^ 20K (VPH) 

20°C ^ 90 K (VPO)
0^1 10 minutes

C engine start-up 20K (H) or 90K (0) I ^ 0 10 seconds

D engine firing 20K (H) or 90K (O) O 1(X)0 seconds

E engine shut-down and purging 20K (H) or 90K (O) 0^1 10 seconds

F ballistic phase (stand-by) ambient (20°C) O 6 hours

Table 6.4 : Sequence of operations in a standardized flight.

As phases B to F are composed of two activation steps (1 activation = 1 opening + 1 
closing), and as they can be repeated four times more during the flight, the overall 
number of activations is equal to 10.
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Thus, by taking thermodynamical laws into account and assuming that hélium is a 
non-viscous gas, the manœuvre time can be computed, as well as the hélium con- 
sumption (which détermines the hélium flow, hence guides the final choice of the 
venting port for the actuator) ;

• the pressure drop (between the entry and the exit of the valve) is limited to 3.10'^ Pa. 
[3 bar]. As it is a three-dimensional flow with a complex geometry and obstacles, a 
numerical model should be used. This was performed by NUMECA company thanks 
to a computational fluid dynamics (CFD) software, but only a posteriori (i.e. after the 
first dimensioning, in order to check that the pressure drop did not exceed 3.10'*’ Pa 
[TECOO]). An experimental model in plexiglass was also built at the Université de 
Liège and confirmed that the proposed design satisfied this constraint. Nevertheless, 
to take it into account within the optimization process, an approximated model was 
constructed, based on Idelcik abacuses used in Techspace Aero [IDE69]. These aba- 
cuses give the values of pressure drop coefficients w!.r.t. géométrie dimensions for a 
huge amount of configurations (e.g. elbow with obstacle, diaphragms, etc.). Al- 
though this is a very loose approximation of the physical phenomenon, it has shown 
to give satisfactory results (in comparison with the CEO and experimental models) in 
the case of poppet valves. Therefore, thiS model, albeït simple, has been used in the 
optimization procedure (N.B.: a critical discussion of this choice will take place in 
§6.3.2). ^ '

The pressure drop is computed by n^Lng a décomposition of the flow in 5 parts (cf. 
Fig. 6.6), and by using approximated formulas to characterize the contribution of

Fig. 6.6 : Décomposition of the flow in 5 parts [FILOl].
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. the résistance of the poppet seal (at ambient température and under cryogénie condi­
tions) : the maximum Hertz stress a;„ax at the contact surface between the poppet and 
the seal must not exceed a critical value. cTmax dépends on the geometry of the contact 
between the poppet and the seal. For a sphere-cone contact (as in VPH and VPO), it 
is computed as follows :

<^n^=0.798. (6.7)

with : P = contact pressure by unit of length, (6.8)

Kd ~2.Rs (where R s is the radius of the splièric seal).

C =
1-v poppet

poppet

1-v 2

(6.9)

(6.10)

The objective functions are the volume and the cost indic^tois (to be minimized), defined in 
partnership with Techspace Aero engineers : ;

SÏJ: |ss ÿSSî

fi(x)= [ dpis,/20 + dpop/20 + F,prj/10001 (6.11 )

f2(x)= [ dpis,/20 -I- dp^/20 + Fspr,i/Î0Œ) + nipop J. (6.12)

As indicated in Eqs. (6.11) and (6.î2)pbotti ohgeGtive functions hâve almost the same défini­
tion. Therefore, in this particularxase, cmTÿ/y(ar) will be used as objective function in the optimi- 
zation task (the problem becorraes single-objective). Values of 1 for p, (cf. § 4.4.4) and 0.01 for qi 
were chosen for ail criteria (which means that for each objective, a différence less than 1 % be­
tween two indivduals is neglected in thelcomputation of the preference functions). The EA pa- 
rameters used for the study are gathered in Table 6.5.

Symbol Barameter Value '
Env Environment Boss Quattro JCO_Bin2Dec
Cod Coding of the variables Binary (8-bit per variable)
N Site of the population 70

^een Number of générations 100

T̂ s
W’ Type of sélection Binary toumament

Pc Probability of crossover 1

Te Type of crossover 2-point

Pm Probability of mutation 0.01

T„, Type of mutation Flip
M̂ ' constr Number of constraints 12
Ni » var Number of variables 12

Table 6.5 : EA parameters used for VPH and VPO.
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To solve this problem, three approaches were used : Joines and Houck’s (§ 3.5.1.2), Deb’s 
(§ 3.5.1.6) and PAMUC methods. The environment used to perform the computations was Boss 
Quattro v. 4.3-01 (for MS Windows 2000), a software developed by Samtech s.a. and dedicated 
to optimization and parametrical studies.

In Boss Quattro, the optimization algorithms (gradient-based algorithms and EAs) act like a 
black box which do not interact with the models, except through the values of the variables and 
the functions (cf. Fig. 6.7). This enables to use any structural model (defined in codes like 
SAMCEF, MSC NASTRAN, etc.) or other model (built in CATIA, MS-Excel, etc.) as long as 
the appropriate driver is used (in order to exchange information between Boss Quattro and the 
model). For the purge valves VPH and VPO (as well as the feed valve VA described in § 6.3.3), 
the constraints and objectives are computed via a MS-Excel file.

Fig. 6.7 : Task manager window of Boss Quattro 4.3-01 [BOSOIJ.

Only PAMUC has been implemented by the author (in C-H-) in Boss Quattro ; Deb’s and 
Joines and Houck’s constraint-handling techniques were already implemented in the software. 
The latter two methods did not give any feasible solution, while PAMUC converged quickly to 
the admissible domain (cf. Fig. 6.8 [left]).

The non convergence of the first two methods towards an admissible solution can be ex- 
plained by the size of the feasible domain, which is very small in comparison with the whole 
search space.
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w.r.t. the génération (for one run with PAMUCjforthepurge valve.

Figure 6.8 [right] illustrâtes that after about 60 générations, the algorithm has converged to a 
solution. The EA was launched 50 times : each run led to tte same admissible solution, whose 
value of the objective fiinction is equal to 5.3, while the inftial design proposed by Techspace 
Aero was characterized hyfi(x)= 5.68. PAMUC offers a gahi of 6.7%, which is satisfactory but 
not very salient : this can be easily explained by the narrow size of the feasible domain, which 
strongly reduces the possibility for an EA (or any othcr algorithm) to roam around a large space 
and lead to significative gains.

6.3.2 Critical remarks about thé valve model
A Z

As mentioned in § 6.3.1, the i^dei used for the purge valves VPH and VPO is based on :

. theoretical equattore (é.g. the mechanical working of the valve) ;

. semi-empiricaî formuïae, namely the pressure drop, the manœuvre time and the leak- 
ages.

The semi-empirical ihodels may sometimes be quite far firom the behaviour of the structure. In 
particular, the use of al^uses for the estimation of the pressure drop is a loose approximation of 
the real physical phenomena, since the compressibility of the fluid and the complex geometry of 
the flow are not taken into account.

Therefore, to increase the accuracy of the model, a more reliable method would hâve con- 
sisted in running a CFD model for a set of (geometrically different) designs (chosen by the de­
sign of experiments technique), and building the corresponding response surface [VANOl]. Other 
approximation techniques could also hâve been used, as neural networks for instance [HUROl].

6.3.3 Feed valve VA

The second parametrical design treated thanks to PAMUC is the feed valve from the VINCI 
engine (cf. Fig. 6.9).
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Fig. 6.9: 3D and2D vieHst afthefeed valve from the VINCI engine 
[Credifs; Teckspace Aero (Snecma group)].

À IW ^' '
Its working is similar to valvses Vïfi and VPO, except that the poppet must be pulled to open 

the valve. The technical reqffiri^Tî^s are aiso quite the same as in the purge valves, except that 
the ergol pressure values at theop^lng and the closing are much lower (cf. Table 6.6).

Actuator pressure Flow presmre

Opening >4.10^Pa [40bar] < 0.5.10® Pa [5 bar]
Closing < 0.5.10® Pa [5 bar] < 10® Pa [10 bar]

Table 6.6 : Actmator andflow pressure at the opening and closing phases for feed valve VA. 

The main différence lies in the définition of the objective functions :

fi(x) — ^volume (dpisî jdpop jFspr,i)i 

f2(x) — Iperformance (Ph e.max ergol près.

(6.13)

(6.14)

The first objective is a volume indicator (related to the room occupied by the valve), whereas 
the second one is a performance factor, related to the actuator pressure needed to open the valve 
at the maximum ergol pressure, which détermines the minimum power needed for the actuator, 
hence its cost. Both hâve to be maximized.

Chapter 6 - Industrial applications 6-13



To solve this optimization problem, two techniques were used : the classical weighted sum 
method (combined with Joines and Houck’s technique to tackle the constraints) and PAMUC. To 
compare both methods, the Rl-norm proposed by Hansen and Jaszkiewicz [HAN98] was used, as 
in Chapter 4.

Paramcter Value
Env Environment Boss Quattro JCO_Bin2Dec
Cod Coding ofthe variables Binary (8-bit per variable)
N Size ofthe population 50
^een Number of générations 100
T, Type of sélection Binary toumament

Pc Probability of crossover 0.8

E Type of crossover 2-point

Pm Probability of mutation 0.01

Tn. Type of mutation Y Flip

Pi Preference indexes 1

________ Indifférence indexes fi I 0.01
Table 6.7 : EA parameters usedfojr^feed valve (VA).

Fig. 6.10 : Nondominated points obtained with PAMUC and Joines and Houck ’s methods (for one process).

The EA parameters are collected in Table 6.7. The process was launched 20 times, each proc­
ess consisting in running the EA 15 times with weights varying from {wy* = 0 ; W2 = 1} to {w; 
= 1 ; W2* = 0} by a constant step. Statistics are gathered in Table 6.8. The rather high level of 
feasible runs with the dynamic penalization technique is due to the size of the feasible domain, 
much larger because of the low levels of ergol pressure specified in the technical requirements 
(cf. Table 6.6). Furthermore, the mean of R1(PAMUC,WS) is equal to 0.83, illustrating very 
clearly that PAMUC outperforms the traditional weighted sum method (cf. Fig. 6.10).

Problem , Feasible mm 
(PAMUQ

Feasible mm 
(WS-JH)

RI(PAMUQWS) ^
Mean Standard déviation

U4 100% 65% 0.83 0.07

Table 6.8 : Comparison ofthe weighted sum method and PAMUC for thefeed valve (VA).
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For example, if the user considers the first objective as 4 times more important than the sec­
ond one, the weights will take the following values ; w* = 0.8 and W2* = 0.2. Numerical results 
obtained by PAMUC for this choice of the weights are illustrated in Fig. 6.11 (left : évolution of 
the rate of feasible individuals - right : value for the second objective fonction of the best and 
mean among the feasible individuals at each génération). Compared to the solution fumished by 
the weighted-sum method, the design found by PAMUC is better for both objectives (there is a 
gain of 13.3% on the first objective and 22.2% on the second one). Moreover, in comparison 
with the inital design proposed by Techspace Aero, PAMUC provides a gain of 27.5% on the 
first objective and 30.8% on the second one. The improvement of the performances is more im­
portant than in the purge valve (cf. § 6.3.1) because the relative size of the feasible domain (in

among the feasible individuals at ecu^ génération (for one run of the EA with PAMUC).

6.4 Design optimizatidÉ witti expert rules
A6.4.1 General poppet valve model

* ‘I
So far only parameterized valves hâve been treated ; no change of the topology was allowed. 

However, it would be useful for the designer to be able to optimize more general models, by 
shuffling simultaneously different configurations in the evolutionary algorithm.

In fact, the poppet valves designed by Techspace Aero are characterized by a small number of 
topological variables, which détermine completely their mechanical behaviour :

• the way the poppet moves to open the valve (either pushed or pulled) ;
• the position of the actuator with respect to the ergol flow (upstream or downstream) ;
• is there a double barrier against the leakages (i.e. are there one or two seals separat- 

ing the ergol from the hélium) ? ;
• the geometry of the contact between the poppet and its seat (cone-cone, cone-sphere 

or plane-plane) ;
. the direction of the ergol flow (single-axis or with an 90° elbow).
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A general model for poppet valves was thus constructed, which take those supplementary 
topological variables into account.

However, applying this general model directly to a particular valve could generate solutions 
respecting ail the technical requirements defined by the client, but unrealistic, e.g. typically for 
technological reasons (assembly, etc.). Therefore, other constraints, as important as the 
“mechanical” ones, bave to be handled. They are mainly related to technological aspects, and are 
more appropriately modelled by expert rules. This is discussed in the next section.

6.4.2 Expert rules from Techspace Aero

Technological constraints related to poppet valves were collaeted among engineers from 
Techspace Aero specialized in valve design and dimensioning. This expert knowledge was coded 
under the shape of logical rules, as described in Chapter 5 (i.e. 7F condition THEN action).É

Here is an example of 3 rules related to the choice of the leakages ;

IF (îhere is no double barrier against the leakages) THEN (use bellows), (6.15)
IF (îhere is bellows AND PergoUpstream max > I(f Pa) THEN (use ^ydroformed bellows), (6.16)
IF (there is bellows AND Pergoi.upsiream max ^ 10^ Pa) THEN (uséa welded bellows). (6.17)

The two latter rules can be expressed graphically as an AND-OR tree, as depicted in Fig. 
6.12. It means that if a design undergoes the expert module, and if it has bellows, the algorithm 
will check the ergol pressure condition, and according to the resuit, it will either leave the design 
unchanged or modify it in order to respect the raies determining the nature of the bellows.

w bellows bellows

Fig. 6.12 : Graphical représentation of rules (6.16) and (6.17).

The general poppet valve model is thus characterized by :

• 20 (mixed) variables ;
• 1 or 2 objective function(s) (the volume indicator for ail valves [cf. Eq. (6.13)], to 

which the performance factor [cf. Eq. (6.14)] was added for the feed valve VA, both 
to be maximized) ;

• 39 constraints ;
• 17 rules.
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It should be underlined that since different configurations are handled together in a unique
model, the expressions of the mathematical constraints may be somewhat different for each fam-
ily of designs. For example, the sense of the poppet displacement during the opening of the valve
(either pushed or pulled) influences the way the equilibrium équations of the piston are written.
This leads to mathematical constraints of the following form :

»

if design e { f family of designs } 
constraint_i = ...

elseif design e { 2"'^ family of designs } 
constraintj. = ...

else
constraintji = ...

end

The non-uniqueness of the définitions of the constraints is not a problem at ail for the evolu- 
tionary algorithm since it needs only the values of the functions (and neither their dérivatives nor 
any other information).

W, Mi ’MÊM-Ms-
In the next sections the general poppet valve model will be optîmized for 4 designs (VPH, 

VPO, VA and VCH) thanks to PAMUC II and Üie wei^ted sum method (combined to Joines 
and Houck’s penalization to tackle ail the constraiirts), following the same methodology as in 
Chapter 5.

6.4.3 Application to the purge yàlv^ VPH and VPO

The first valves studied by PAMUC Ita^foàcHâre the purge valves. While the configuration 
was fixed in § 6.3.1, here the geometiyraâithé topology hâve to be determined by the optimiza- 
tion process. The EA parameters'are tihe sain^ as in § 6.3.1 except that the Std-EA implemented 
in Matlab was used with N =50 and = 50 .

Due to the highly constrained aspect of the technical requirements, no solution has been found 
by Joines and Houck’s method |*AMUC II is illustrated in Fig. 6.13, showing the évolution of 
the number of feasible runs [left) and the mean of the opposite of the best feasible objective 
fonction (over 50 runs) Irigbt} with respect to the probability of replacement. The levels indi- 
cated in dashed and dash-dotted lines depict respectively the solution proposed initially and the 
solution obtained by applying PAMUC to the parameterized corresponding poppet valve model. 
For values of the probabüky of replacement higher than 50%, using the poppet valve model with 
PAMUC II gives a significant increase of the rate of feasible runs. Moreover, it furnishes a better 
solution in terms of the objective fonction : f(x pamuc ii) = 4.95 whilst f(x TA.initial design ) ~ 5.68, 
i.e. a gain of 12.9%.

Even if the general configuration of the valve is the same as the one proposed by Techspace 
Aero engineers (90° elbow ergol flow direction - actuator placed downstream - poppet pushed), 
an appréciable improvement is enabled by the possibility of considering different designs simul- 
taneously, showing here that the removal of the bellows can alleviate the valve without being 
harmful to the leakages, as long as a double barrier (i.e. 2 separate seals) is provided.
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Fig. 6.13 : Evolution of the numher offeasible runs [left] and meanicf: the opposite ofthe best feasible objective 
function (over 50 runs) [right] w.r.t. the probability qf replacement for VPH-VPO.

To illustrate the relevance of using an expert module to deaï xvith the technological con- 
straints, its working is dissected on the following rules [FILOll :

Rule 6 = IF (contact_poppet_seat = cone-cone) THEN (d,ighi = dpop),
Rule 7 = IF (contact_poppet_seat = cone-sphere) THEN (dùght - dpop + 2mm), 
Rule 8 = IF (contact_poppet_seat - plane-plane'^HEN (d„ght = dp„p.I.I),

where : |k

(6.18)
(6.19)
(6.20)

contact_poppet_seat is a varialip^efîning the geometry of the contact between the 
poppet and its seat ;

. dpop is the diameter of the poppet ;

. d,igh, is the actual diamet^ of tightness (used in the computation of the ergol leak- 
ages). ^

When Joines and Houck’s technique or PAMUC (without expert rules) is applied, those rules 
hâve to be converted into equality constraints (and then into inequality constraints, where in a 
first step fis chosen equal to 0.01 ) :

Rule 6 if (contact_poppet_seat = cone-cone) then
Sequivalent_ruleô(7^) — £ \dtighl dpop |,

else
Sequivalent_rule6(7t) — 0,

end (6.18)

Rule 7 —> if (contact_poppet_seat = cone-sphere) then
Sequivalent_rule7(X) — £— \diighi — dpop ~ 2\,

else
Sequivalent_rule7(x) — 0,

end (6.19)
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Rule 8 —> if (contact_poppet_seat = plane-plane) then
Sequivalent_rule8(x) — £— \dtigfn — dpop. 1. l\,

else
§equivalent_rule8(x) — 0,

end (6.20)

The EA combined with Joines and Houck’s technique or PAMUC does not succeed in finding 
designs satisfying those rules, even when a “relaxation” of the equality constraints is performed 
by increasing évalue from 0.01 to 0.1. On the contrary, thanks to its expert module, PAMUC II 
is able to satisfy exactly the equalities. The rate of application of,rules 7 and 8 is depicted in 
Fig. 6.14 with respect to the génération, showing the increasing number of individuals undergo- 
ing rule 7 (which shows indirectly that the population tends towards a solution with a cone-

Fig. 6.14: jRcÊe cfappUmtion of rule 7 [left] and rule 8 [right] with PAMUC II 
(mth = 1€0%) w.r.t. the génération (for VPH-VPO).

6.4.4 Application to the feed valve VA

The second industriel mechanical component for which PAMUC II was applied is the feed 
valve VA, already presented in § 6.3.3, with two objectives (the volume and performance indi- 
cators to be maximized).

In this case, the weights chosen by the decision makers are w/ = 0.75 and W2* = 0.25 (re- 
flecting that the minimization of the volume is intuitively considered as three times more impor­
tant than the improvement of the performance indicator).

The EA parameters are the same as in the previous example except that Nge„ = 200. 20 runs 
were applied for both PAMUC II and the penalized weighted sum method (WS). Whereas only 3 
runs are admissible with the latter approach, ail results obtained with PAMUC II are feasible. 
This is shown in Fig. 6.15 : after about 20 générations, the rate of feasible individuals remains 
around 45%.
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Fig. 6.15 : Rate offeasible individuals w.r.t. the génération with PAMUCIIfor VA 
(with wf = 0.75 and W2* = 0.25 = lOO^o).

Furthermore, the best solution found by PAMUCII strictly dominâtes the best one discovered 
by WS ;

f(x*PAMucn) = (9.13 ; 4.26) ^ (8.76 ; 2.36), (6.21)
:|| il M f

i.e. a gain of 5.0% for the first objective and Of 44.6% for the second one. The convergence of 
the first objective fonction is exhibited in Fig. 6.16.

Fig. 6.16 : Evolution ofthe second objective function f2 ofthe best feasible individual w.r.t. the génération 
(results obtainedfor VA with PAMUC II ; wf = 0.75, W2* = 0.25 andPrep = 100%).

Moreover, the CPU time required for one run with PAMUC II is equal to 80.2s, whilst a run 
with WS costs 77.3s (on a PC with freq. = 900 MHz in MS Windows 2000 environment), 
whence a very reasonable relative différence (3.6%).
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Finally, it can be underlined that the design found by PAMUC II bas exactly the same topo- 
logical configuration as the design initially proposed by Techspace Aero engineers. It is the oc­
casion to stress that the expert rules act like constraints which must be satisfied (for technologi- 
cal reasons), and are not rules of thumb guiding the EA towards a région of the search space 
which is known by the experts to hâve given good results in previous applications.

6.4.5 Application to the chamber valve VCH

This last application illustrâtes not only PAMUC II as an optimization procedure, but also as 
an automatic design tool, since no preliminary sketch was proposed by Techspace Aero engi­
neers. The only demands were that the valve should be a poppet valve (instead of a butterfly 
valve, a throttle valve, etc.), and that it should satisfy - of course - âll the technical requirements 
defined by the client. The objective was to maximize the volumeindïcator.

Therefore, PAMUC II and Joines and Houck’s methot^ were applied to the general poppet 
valve model. The EA parameters were the same as in § 6.4.4, ejocept that the number of généra­
tions Ngen = 100. While Joines and Houck’s technique Ôtd not provide any feasible solutions, 
PAMUC II gave 1(X)% of feasible solutions (whatever value of prep was used), and showed once 
again that increasing prep improved the results (cf. Fig. 6.17). The bcst configuration was thus a 
poppet valve with the following characteristics :

• the actuator is located downstreaift from the hydrogen flow ;
. there is a 90° elbow in the direction of the hydrogen flow ;
• the poppet has to be pushed toopen the valve
• no bellows. , ^

I
'Æ:m

•2.35

-2.4

.1 wO%

O
^ -2.65
5

■2.85 '------------^^^------------ “------------ '------------^ '̂------------ '
0 10 20 30 40 50 60 70 80 90 100

Probahilüy of replacement (%)

Fig. 6.17 : Evolution of the best feasible objective fonction (over 50 runs) 
w.r.t. the probability of replacement for VCH.
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Fig. 6.18 : Rate of feasible individuaLs [left] and rate of violation of constraint 2 [right] 
w.r.t. the génération for one run with PAMUC Hfpref— J 00%).

Figure 6.18 [left] shows the rate of feasible individuals obtained with one run of the EA (with 
PAMUC II). The rather low level of the rate of admissible members in the population (= 35%) is 
partly due to the difficulty for the EA to satisfy the first two constraints (cf. the rate of violation 
of constraint 2 w.r.t. the génération in Fig. 6.18 [right]). Those constraints impose the opening 
and the closing of the valve under the conditions pfeseribed in Table 6.9.

Aetuator pressure FUfw pressure
Opening > 4.5.10'^Pa[45 bar] <9.10® Pa|90 bar]
Closing È 0.5. 10® Pa [5 bar] < 0.6.10® Pa [6 bar]

Fig. 6.19 : Evolution of the best feasible objective function 
w.r.t. the génération for one run with PAMUC II (prep = 100%).
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Figure 6.19 depicts the évolution of the best feasible objective function w.r.t. the généra­
tion (also with prep = 100%) : after less than 60 générations the algorithm has converged to an 
admissible solution.

An examination of these four examples (VPH, VPO, VA, VCH) immediately shows the ad- 
vantages of using PAMUC II. It provides a simple and efficient method for pre-design automa­
tion and optimization, mostly thanks to the incorporation of rules which enables to take spécifie 
expert knowledge into account, hence reducing strongly the search space explored by the algo­
rithm by means of the repair process.

In this chapter industrial applications were analyzed by the methodology presented in the pre- 
vious chapters of this thesis. Those examples are ail poppet Éalfts jàesigned by Techspace Aero 
for launcher Ariane 5.

(Samtech s.a.), wherein PAMUC was implemented by the author. The numerical results clearly 
demonstrated that PAMUC outperforms a claslicàl weighted sum method (with penalization), 
although this latter approach is still the most widespread a priori multiobjective technique in the 
engineers community. PAMUC behaviour conceming the constraints is particularly interesting, 
since the adaptive weights seem to enable a quick convergence to the feasible domain, which is a 
crucial task in real-life cases since mâny technical requirements hâve to be fulfilled at the same 
time.

Then, the extended version of PAMUC was Japplied to a general model of poppet valve. To 
create realistic designs, expert knowledge was Incorporated within the optimization in order to 
pay heed to technological aspects, as the choice of the seals for instance. While PAMUC II gave 
very satisfactory results for the pur^e valves and the feed valve, it also demonstrated to be a con­
veniez way to automate the design-procedure when applied to a general model synthetizing dif­
ferent configurations (cf. ail the valves presented in § 6.4, and particularly the chamber valve 
VCH since no preliminary sketch was proposed by Techspace Aero engineers).

6.5 Conclusions

First, the PAMUC method was used to perform th# esign optimization of two
purge valves and a feed valve. The environment uîfed for the cbrlputations was Boss Quattro

J
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Chapter 7 - Conclusions

7.1 Pre-design optimization with expert rules

The goal of this thesis was to contrive an efficient and robust method to perform the optimi­
zation of mechanical components during the first stage of the design process. This is a crucial 
subject, since a minor modification in the pre-design may bring significant improvements to the 
final structure, whilst an “ill” design, even efficiently optimized at the very end of the dimen- 
sioning, will perform poorly. However, most algorithmic methods in structural optimization are 
concerned with the last stage of the design process. This is partly due to the fact that in industrial 
contexts, for complex mechanical components (as valves, pomps, etc.) already characterized by 
several parts (springs, piston, bellows, screw bolts, etc.), engineers choose the best preliminary 
design among different configurations, not only with respect to quantitative requirements of per­
formance or cost, but also by allowing for technological considérations.

Those latter requirements are more easily translated in ternis of logical rules (= IF condition 
THEN conclusion), like in expert Systems. These algorithms use knowledge collected amid ex­
perts in a spécifie field to work out complex problems. Nevertheless, the building of an expert 
System is a tedious task, and its use is confined to very restricted applications. Thence, the scope 
of this work was to set forth a method able to optimize mechanical components for a wide range 
of applications, but by taking expert knowledge into account.

To accomplish this task, the development of the optimization method was divided in two 
steps : first, one should be able to optimize parameterized designs, for which the topological con­
figuration is fixed and only geometrical and material variables are involved. Then, the method 
should be extended to more general applications (with topological variables), by handling also 
expert rules. This division in two steps is related to the simple statement that it is pointless to 
compare an intrinsically “poor” design whose geometry would hâve been correctly optimized to 
a “better” design not parametrically optimized. Of course, it should be emphasized that this sépa­
ration is more particularly adapted to components endowed with a certain complexity (as valves, 
compressors, turbines for instance), and less to simpler mechanical parts (like bolts, seals, etc.) 
which can be sketched “from scratch” and directly compared without undergoing an optimiza­
tion step.

7.2 PAMUC for parametrical design optimization

Once a design has been parameterized, its most significative geometrical and material vari­
ables must be determined by the user, whereafter technical requirements are considered (the con- 
straints), as well as the objective fimction(s). As soon as the problem is formulated mathemati- 
cally, an appropriate algorithm has to be chosen among the huge amount of methods proposed in 
the literature. They branch off in two categories : local methods, generally based on the compu­
tation of the sensitivities, and global methods, incorporating metaheuristics, whose most wide- 
spread instances are evolutionary algorithms (EAs). They are based on the Darwinian model of 
“survival of the fittest”, wherein the best members of a population of potential solutions are fa- 
voured and combined in order to create better individuals at the next génération.
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EAs need only the values of the functions, and not their dérivatives, which makes them very 
attractive for design optimization, which deals as often as not with mixed variables and non dif­
férentiable functions, banishing de facto the use of gradient-based algorithms. They hâve proven 
to furnish remarkable results for single-objective unconstrained problems ; nevertheless, it is also 
well-known that they hâve hindrances to tackle constraints. Furthermore, in industrial context, 
more than one objective hâve to be considered.

To understand multiobjective optimization, the concept of Pareto solution was introduced, de- 
fining x as a nondominated vector if and only if there exists no other x in the feasible domain 
such that V i e [l,...,m},f,ix) < f(x*) and for at least one i e {1,..., m} : f(x) <f,ix*) (for a 
minimization problem). This fundamental définition led to separate the multiobjective methods 
in three approaches :

• in a posteriori methods, preferences are used at the end, when the Pareto front (i.e. the 
image in the objective space of the nondominated vectors) has been completely deter- 
mined ;

• in progressive methods, preferences are used during the optimization process, in an 
interactive way ;

• in fl priori methods, the decision maker’s preferences about the objectives are ex- 
pressed before the search process, in terms of weights or a ranking.

In this Work, an a priori approach was chosen. Indeed, so far, most researchers focus on a 
posteriori techniques, while - as Coello underscored it - few studies are explicitely concemed 
with the simultaneous handling of the preferences and the constraints within EAs, though it can 
be a suitable tool for pre-design optimization. Therefore, a novel method was proposed for pa- 
rametrical optimization ; PAMUC {Preferences Applied to MUltiobjectivity and Constraints). Its 
main features are the following : after having considered the satisfaction of the constraints as a 
m+l'^ objective (m being the number of objectives), ail individuals of the population are selected 
following those m+\ criteria thanks to an outranking method, PROMETHEE II, developed by 
Brans and Mareschal in the multicriteria decision aid field. Moreover, adaptive weights are used 
to compel the population to progressively converge towards the feasible domain : the weight

assigned to the m+f^ objective is proportional to the number of admissible individuals at 
current génération t, and the other weights are computed in such a way that the relative propor­
tion between them (initially defined by the user) are preserved, and that ail weights add up to 1.

The validation of PAMUC was performed in two stages ; first, single-objective constrained 
problems hâve been analyzed, in order to check the efficiency of the method in tackling con­
straints. Numerical results showed that PAMUC gives very satisfactory solutions in comparison 
with constraint-handling techniques specially devised for 1 -objective problems.

Then, a spécial procedure had to be selected to validate PAMUC on multiobjective applica­
tions. As the most widespread approach in industrial context is the linear aggregation of the cri­
teria, a set of standard test cases were applied to PAMUC as well as the classical weighted sum 
(combined with a dynamic penalty technique to deal with the constraints). The key idea of the 
validation was thus to compare the nondominated solutions obtained by both methods for differ­
ent values of the weights.

After a thorough discussion about the different indicators exposed in the literature to compare 
multiobjective sets, propping itself against the theoretical works of Knowles and Corne, and
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Zitzler et ai, it resulted that the most appropriate norm to compare two sets was /?7-norm, pro­
posée! by Hansen and Jaszkiewicz. It consists in using a set of utility functions (here : weighted 
Tchebyeheff functions) and defining an indicator describing the outperformance of one set over 
another with respect to each utility function. Then, an overall norm RI is computed, by integrat- 
ing the indicators over the whole set of utility functions. Multiobjective test cases (with N^ar = 
number of variables < 20 and Nconstr = number of constraints < 50) were analyzed hereby, and 
showed very clearly that PAMUC outperforms the traditional penalized weighted sum method, 
to reach the feasible domain and to find optimal solutions.

One of the most interesting advantage of PAMUC is that no tuning of parameters is required. 
Indeed, the only parameters related to PAMUC are the preference and the indifférence indexes 
from PROMETHEE IL Normally they should be defined by the user for each criterion. However, 
when this information is not available, values of 1 for the preference indexes pi and of 0 for the 
indifférence indexes qi gave very satisfactory results in ail the applications mentioned in this 
thesis. Furthermore, the method has demonstrated to be robust with respect to small variations of 
the weights. Finally, it is also important to underline that this enhancement of the results ob- 
tained thanks to PAMUC needs only a reasonable supplementary amount of time in comparison 
with the weighted sum method (less than 50% in the most unfavourable example treated in this 
Work).

A caveat which a potential user of PAMUC should pay heed to is that some multiobjective are 
hard to solve, i.e. the nondominated points found with different values of the weights may be 
located in the extreme sides of the trade-off surface, instead of being distributed uniformly ail 
along it. In those cases, an a posteriori method must be used first in order to locate the Pareto 
front, and then a multicriteria decision aid method applied to the nondominated points found 
during the search process.

Once the methodology was validated, it has been implemented in Boss Quattro (Samtech 
s.a.), a commercial software for parametrical studies and optimization. In this environment, PA­
MUC was used for the parametrical optimization of two industrial applications : a purge valve 
and a feed valve, both designed by Techspace Aero (Snecma group) for the VINCI engine from 
launcher Ariane 5. The first application was characterized by strong technical requirements that 
restricted drastically the size of the admissible space. In this case, whereas two constraint- 
handling techniques (a dynamic penalty technique and a method separating feasible from unfea- 
sible solutions) were inefficient to find admissible solutions, PAMUC bore out to the assertion 
that it was a robust tool since it found a solution satisfying ail the constraints.

The study of the feed valve, dealing with two objectives (minimizing the volume whilst 
maximizing the performance), also showed better results for PAMUC in comparison with a tra­
ditional weighted sum method (combined with a dynamic penalization to tackle the constraints).

7.3 PAMUC II for design optimization with expert rules

As soon as the first step was achieved, the development of the second step might begin, 
namely incorporating expert rules within the optimization process, in order to optimize more 
general models with topological variables and having to respect technological (or other) re­
quirements.
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Expert knowledge can often be interpreted as logical rules. When an important amount of in­
formation bas been collected among experts, spécifie algorithms can be developed to manipulate 
the knowledge and solve spécifie problems : expert Systems. However, a preliminary biblio­
graphie survey about expert Systems used in engineering applications illustrated their lack of 
flexibility, which makes them ill adapted for pre-design optimization.

Nevertheless, adding knowledge to EAs is well adapted to guide the algorithm towards the 
feasible global optimum, instead of letting it seeking “blindly” the admissible domain, as shown 
by Michalewicz. This is also confirmed by the No Free Lunch theorem, introduced by Wolpert 
and Macready, which States that there exists no general “black-box” algorithm able to give opti­
mal solutions for ail familles of problems ; it means that solving efficiently spécifie problems 
requires to add knowledge within the optimization procedure.

Therefore, a novel approach was proposed, called PAMUC II, extending the multicriteria op­
timization method developed during the first step. It consists in modelling expert rules thanks to 
the propositional calculas, and using them (with a user-defined probability of replacement prep) 
to repair the members of the population violating those rules.

PAMUC II was validated on a set of standard single-objective and multiobjective bench- 
marks, either purely “mathematical” or mechanical (in which supplementary rules hâve been 
introduced in some cases in order to increase the complexity of the problems), and gave excel­
lent results in comparison with a weighted sum method (with a dynamic penalty technique to 
tackle both the constraints and the rules). Moreover, PAMUC II has the following advantages :

. new rules may be added to the rule base without changing the structure of the algo­
rithm, as long as the rule base is not contradictory. It should be noticed that no loops 
or retroactivity in the rules is tolerated, since it would lead to misleading results ;

. as the language used to model the rules is based upon propositional calculas, a unique 
solution is guaranteed to be found each time the expert module is launched ;

. the discussion about the value to assign to the new parameter prep led to the conclu­
sion that Prep = 100% gave the best results. However, when a new problem is tested, a 
tuning of prep should always be performed, because assigning a too large value to prep 
may accelerate the convergence to a small part of the search space, without letting 
time enough to the EA to explore the whole domain ;

• the computational cost study showed that PAMUC II needs only a minor additional 
time compared to the weighted sum method combined to Joines and Houck’s tech­
nique (less than 50% for ail the examples treated in this work) ;

. the implémentation of PAMUC II into the standard EA is quite easy, even if the 
writing of the rule requires the user to be able to change the chromosome of the 
members of the population, hence to act on the coding.

Furthermore, Davis and Putnam’s algorithm was implemented to check the logical consis- 
tency of rule bases. “Mathematical” consistency - dealing with the content of the propositions - 
is not investigated in the frame of this thesis, because the possible presence of complex expres­
sions in the propositons implicate that no general algorithm can be built to verify systematically 
the rule base consistency : a constraint satisfaction program is to be solved for each particular
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rule base. As in most pre-design optimization problems the number of rules is generally re- 
stricted to quite small values (< 50), it is assumed that the user can check immediately the con- 
sistency of the rule base.

The last task to achieve was to confront PAMUC II with industrial applications, namely the 
purge and feed valves mentioned above, and a chamber valve, which are ail poppet valves de- 
signed by Techspace Aero (TA - Snecma group) for the VINCI engine from launcher Ariane 5. 
The first step was to collect information among TA engineers about the methodology of design 
and dimensioning of poppet valves. The corresponding knowledge was translated in terms of 
expert rules, directly written as logical expressions. Then, a general poppet valve model was 
built, synthetizing different configurations of valves by means of topological variables. Finally, 
PAMUC II was applied and compared to a penalized weighted sum method. Numerical results 
clearly demonstrated that for ail valves, PAMUC II outperformed the penalized weighted sum 
technique, by furnishing optimal solutions satisfying technical requirements as well as techno- 
logical constraints.

It follows therefrom that PAMUC II has demonstrated on many examples to be an efficient 
tool for pre-design optimization of mechanical components. Future prospects could take tolér­
ances of the variables into account, for example by means of fuzzy rules, or by statistical vari­
ables.

Another possible future development of this work could be to study PAMUC II behaviour in 
other fields of engineering, since no physical hypothesis was assumed in the algorithm. Further- 
more, in order to handle more complex représentation of the knowledge, e.g. with contradictory 
rules (for which the user would be able to rank the relative importance of the rules, indicating 
that rule 1 must be applied in priority w.r.t. rule 2 for instance), a higher level logical language 
could be used. However, it should be under.scored that it would involve a risk of non conver­
gence and a higher computational time, whereas propositional calculus - as used in PAMUC II - 
is often sufficiently rich to model complex knowledge.

7.4 Original contributions of the thesis

The main original contributions of this thesis are summarized hereafter :

• a novel multicriteria optimization method (PAMUC) is proposed for parameterized 
pre-designs, considering the satisfaction of the constraints as a new objective and 
using a multicriteria decision aid method (PROMETHEE II) to rank the objectives. 
The use of adaptive weights (related to the rate of feasible individuals at each gén­
ération) seems efficient to obtain admissible results, whilst the outranking performed 
by PROMETHEE II fumishes better solutions than a traditional - albeit widespread 
in industrial context - weighted sum method ;

. numerical results obtained by PAMUC and the weighted sum method are preceded 
by a thorough discussion about the indicator to be used to compare both methods ; to 
the author’s knowledge, it is the first time that this rigorous approach (i.e. finding 
nondominated solutions for different values of the weights and using Hansen and 
Jaszkiewicz’s /?/-norm to compare them) was applied to validate an a priori method 
(i.e. using the user’s preferences since the very start of the seach process) ;
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• the second version of PAMUC, incorporating logical rules in the design process, is 
an original approach to heed expert knowledge. PAMUC II intégrâtes an inference 
engine within the EA, whose purpose is to verify whether each individual (with a 
user-defined probability) satisfies some expert rules (e.g. representing technological 
requirements) ; if not, it is repaired according to them. Test cases, mechanical 
benchmarks and industrial applications ail show that it gives very satisfactory results 
in comparison with a “blind” search handling the constraints solely by penalization, 
and it is also worth mentioning that it needs only a reasonable additional computa- 
tional time ;

• for the industrial applications, namely the valves designed by Techspace Aero (TA) 
for launcher Ariane 5, a general poppet valve model was built, synthetizing different 
possible configurations. Furthermore, expert rules conceming the valve design were 
collected among TA engineers, and the quality of PAMUC II results obtained on 
three valves confirmed the benefits of using it as an automation and optimization tool 
for pre-designs.
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Appendix a

The terms y/x) and c/x) necessary to compute the objective function and the constraints for 
test case S-38IC (cf. § 4.4.1.5) are given below [DEBOO] :

yj (x) =X2 + xs + 41.6, (A. 1 )
c,(x) = 0.024 X4 - 4.62, (A.2)
V2(x) = 12.5/c,(x) + 12.0, (A.3)
C2 (x) = 0.0003535 x, * + 0.5311 x, + 0.08705 y. (x) x,, (A.4)
C3(x) = 0.052X, + 78.0 + 0.002377y2 (x)x,, (A.5)
y3(x) = C2 (x) / C3 (x), (A.6)
y4 (x) = 19.0 y3 (x), (A.7)
C4(x) = 0.04782 (x, - y3(x)) + 0.1956 (x, - y3(x)f /X2 + 0.6376 y4(x) + 1.594 y/xj, (A.8)
cs(x) = 100.0x2, (A.9)
C6 (x) = x,-y3 (x) - y4 (x), (A. 10)
Cy (x) = 0.95 - C4 (x) / Cs(x), (A.ll)
y5 (x) = C6 (x) Cy (x), (A. 12)
yrt (x) = x,-ys (x) - y4 (x) - y3 (x), (A. 13)
Cs (x) = 0.995 (y4 (x) + yj (x)), (A. 14)
yy(x) = Cs (x) /y,(x), (A. 15)
ys(x) = cs(x)/3798.0, (A. 16)
Cç (x) = yy (x) - 0.0663 yy (x) /ys(x) - 0.3153, (A.17)
yp (x) = 96.82/cç (x) + 0.321 y, (x), (A. 18)
yio(x) = 1.29 ys(x) + 1.258y4(x) + 2.29y3(x) + 1.71 ytix), (A. 19)
yii{x) = 1.71 X, - 0.452 y4 (x) + 0.58 y3(x), (A.20)
c,o(x) = 12.3/752.3, (A.21)
c,i(x) = 1.74125 y2(x) X,, (A.22)
c,2 (x) = 0.995 y,o(x) + 1998.0, (A.23)
y 12 (x) = c,o (x) X, + C], (x) / c,2 (x), (A.24)
y,3 (x) = c,2 (x) - 1.75 y2 (x), (A.25)
y,4(x) = 3623.0 + 64.4x2 + 58.4x3 + 146312.0 / (yg (x )+xs), (A.26)
c,3(x) = 0.995y,o(x) + 60.8x2 + 48.0X4-O.1121 y,4(x) -5095.0, (A.27)
y 15 (x) = y 13 (x) / c,3 (x), (A.28)
y,6(x) = 148000.0 - 331000.0y,six) + 40y,3(x) - 61.0y,5{x) y,3(x), (A.29)
c,4 (x) = 2324.0 y,o(x) - 28740000.0 y. (x), (A.30)
ynix) = 14130000.0- 1328.0y,o(x) -531.0y,, (x) + c,4(x)/c,2(x), (A.31)
cisix) = y,3{x) /y,s(x) -yi3{x) /0.52, (A.32)
c/6 (x) = 1.104-0.72 y,s (x), (A.33)
c,y(x) = yp (x) + xs. (A.34)

The values of a[i] and b[i] ^ox \= 8 are given below :

a[i] = {0,0, 17.505, 11.275, 214.228, 7.458, 0.961, 1.612, 0.146, 107.99, 922.693,
926.832, 18.766, 1072.163, 8961.448, 0.063, 71084.33, 2802713.0 }, (A.35)

bfi] = (0,0, 1053.6667, 35.03, 665.585, 584.463, 265.916, 7.046, 0.222, 273.366, 1286.105,
1444.046, 537.141, 3247.039, 26844.086, 0.386, 140000.0, 12146108.0 }. (A.36)
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