
Multicriteria Optimization with Expert
Rules for Mechanical Design

Rajan Filomeno Coelho

Dissertation originale présentée en vue de l’obtention
du grade de Docteur en Sciences Appliquées

Année académique 2003 – 2004

UNIVERSITÉ LIBRE DE BRUXELLES

FACULTÉ DES SCIENCES APPLIQUÉES

Multicriteria Optimization with Expert
Rules for Mechanical Design

Rajan Filomeno Coelho

Co-promoteurs :

Pr. Philippe Bouillard Pr. Hugues Bersini
Structural and Material IRIDIA

Computational mechanics department (ULB) (ULB)

Thèse de doctorat financée dans le cadre de la convention FIRST Doctorat
MINOS (Moteur d’ INférence pour l’Optimisation de Structures) n° 001/4442

par la Région Wallonne et Samtech s.a.

Résumé Ré–1

RÉSUMÉ

Alors que de nombreuses méthodes numériques ont été proposées dans la littérature pour
l’optimisation de structures lors des dernières étapes de la conception, peu d’ ingénieurs concep-
teurs utilisent ces outils dès le début d’un projet. Cependant, une légère modification au début du
processus peut fournir des améliorations sensibles aux performances globales de la structure.

Pour réaliser l’optimisation d’un design en phase d’avant-projet, le choix s’est porté sur les
algorithmes évolutionnaires, notamment en raison de leur capacité à explorer largement l’espace
de recherche. Néanmoins, ils ont des difficultés à traiter efficacement des contraintes. De plus,
dans les applications industrielles, on rencontre souvent plusieurs objectifs à satisfaire simulta-
nément. Partant de ces constatations, une méthode originale a été proposée : PAMUC (Préféren-
ces Appliquées au MUltiobjectif et aux Contraintes). Dans un premier temps, l’utilisateur doit
attribuer des poids à chaque objectif. Ensuite, une fonction objectif supplémentaire est créée en
agrégeant linéairement les contraintes normalisées. Enfin, une méthode issue de l’aide multicri-
tère à la décision, PROMETHEE II, est utilisée pour classer les individus de la population de
l’algorithme évolutionnaire. PAMUC a été validée sur des cas tests multiobjectifs standards, et
implantée ensuite dans le logiciel Boss Quattro (Samtech s.a.). La méthode a été utilisée pour
l’optimisation paramétrique de vannes à clapet équipant le moteur VINCI d’Ariane 5 et dévelop-
pées par Techspace Aero (Snecma group).

La seconde partie de la thèse a consisté à incorporer un moteur d’ inférence au sein du proces-
sus d’optimisation afin de prendre en compte des règles d’expert. Au départ, l’ information
concernant la conception et le dimensionnement (ayant généralement trait à des contraintes tech-
nologiques d’usinage, d’assemblage, etc.) doit être collectée auprès d’experts dans le domaine
considéré, et traduites sous forme de règles logiques. Ensuite, chaque design potentiel généré par
l’algorithme évolutionnaire est testé et éventuellement réparé s’ il ne respecte pas les règles
d’expert. Cette approche, appliquée à des benchmarks de mécanique et aux vannes à clapet pré-
citées, s’avère efficace pour réduire la taille de l’espace de recherche et guider l’algorithme vers
l’optimum global (respectant les contraintes).

Table of Contents TC–1

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...A-1

CHAPTER 1 – INTRODUCTION...1-1

1.1 INTRODUCTION TO STRUCTURAL OPTIMIZATION ..1-1
1.1.1 Design optimization ...1-2
1.1.2 Shape optimization...1-2
1.1.3 Topological optimization..1-3
1.1.4 Other issues..1-4
1.1.5 Topic of this work : pre-design optimization...1-5

1.2 OBJECTIVES OF THIS WORK ..1-5
1.2.1 Two approaches...1-5
1.2.2 Development of an original optimization method in two steps.......................................1-6

1.3 OVERVIEW OF THE THESIS ...1-7

CHAPTER 2 – EVOLUTIONARY ALGORITHMS APPLIED TO MECHANICAL DESIGN
OPTIMIZATION..2-1

2.1 INTRODUCTION..2-1
2.2 CLASSIFICATION OF OPTIMIZATION PROBLEMS AND METHODS...2-1

2.2.1 Local methods..2-3
2.2.2 Global methods..2-5

2.3 EVOLUTIONARY ALGORITHMS FOR DESIGN OPTIMIZATION ...2-7
2.3.1 Why choosing evolutionary algorithms ?..2-7
2.3.2 Description of the standard EA ...2-8

2.3.2.1 Flow-chart of the algorithm...2-8
2.3.2.2 Coding of the variables...2-9
2.3.2.3 Creation of the initial population... 2-10
2.3.2.4 Selection ... 2-10
2.3.2.5 Crossover.. 2-11
2.3.2.6 Mutation ... 2-12
2.3.2.7 Remarks.. 2-13

2.3.3 Miscellaneous examples of applications in engineering... 2-14

CHAPTER 3 – MULTICRITERIA OPTIMIZATION IN EVOLUTIONARY ALGORITHMS....................3-1

3.1 INTRODUCTION..3-1
3.2 THEORETICAL ASPECTS ABOUT MULTIOBJECTIVE OPTIMIZATION ...3-1
3.3 CLASSIFICATION OF MULTIOBJECTIVE METHODS IMPLEMENTED IN EAS...............................3-2

3.3.1 A posteriori methods..3-3
3.3.2 Progressive methods...3-5
3.3.3 A priori methods ..3-6

Table of Contents TC–2

3.4 MULTICRITERIA DECISION AID METHODS IMPLEMENTED IN EAS..3-7
3.4.1 Introduction to multicriteria decision aid...3-7
3.4.2 Preferences in EAs...3-9

3.5 HOW TO TACKLE CONSTRAINTS IN EAS.. 3-11
3.5.1 Handling of constraints in EAs for single-objective problems..................................... 3-12

3.5.1.1 Death penalty.. 3-12
3.5.1.2 Penalization methods.. 3-12
3.5.1.3 Decoders... 3-14
3.5.1.4 Repair strategy.. 3-14
3.5.1.5 Constraint-preserving operators.. 3-15
3.5.1.6 Methods making a distinction between objective(s) and constraints..................... 3-16
3.5.1.7 Hybrid methods... 3-19
3.5.1.8 Remarks.. 3-19

3.5.2 Handling of constraints in EAs for multiobjective problems.. 3-20
3.6 PREFERENCES APPLIED TO MULTIOBJECTIVITY AND CONSTRAINTS (PAMUC).................. 3-20

3.6.1 Motivation.. 3-20
3.6.2 Description of PROMETHEE II ... 3-21
3.6.3 Description of PAMUC.. 3-23
3.6.4 Choice of the weights... 3-24

3.7 CONCLUSIONS... 3-25

CHAPTER 4 – VALIDATION OF THE PAMUC METHOD..4-1

4.1 INTRODUCTION..4-1
4.2 STRATEGY OF VALIDATION..4-1

4.2.1 Implementations of PAMUC..4-1
4.2.2 Single-objective constrained optimization (SOCO) problems..4-1
4.2.3 Multiobjective optimization (MOO) problems..4-2

4.3 VALIDATION OF MULTIOBJECTIVE OPTIMIZATION METHODS ..4-4
4.3.1 Introduction to metrics for comparing nondominated sets...4-4
4.3.2 Unary measures..4-5
4.3.3 Binary measures...4-7
4.3.4 Discussion..4-9
4.3.5 Focus on Hansen & Jaszkiewicz’s R1-norm.. 4-11

4.4 NUMERICAL RESULTS.. 4-14
4.4.1 Single-objective constrained optimization (SOCO)... 4-14

4.4.1.1 Test case P-HED... 4-14
4.4.1.2 Test case P-3EQ.. 4-17
4.4.1.3 Test case P-6ACT.. 4-19
4.4.1.4 Test case P-CRES.. 4-21
4.4.1.5 Test case P-38IC... 4-23
4.4.1.6 Test case P-0.5F.. 4-25
4.4.1.7 Test case P-HIM.. 4-26
4.4.1.8 Test case P-WBD .. 4-27
4.4.1.9 Remarks on single-objective constrained problems.. 4-29

4.4.2 Multiobjective optimization (MOO) ... 4-30
4.4.2.1 Test case M-UC... 4-30
4.4.2.2 Test case M-LOC .. 4-32
4.4.2.3 Test case M-LOQC.. 4-33
4.4.2.4 Test case M-QOC.. 4-36

Table of Contents TC–3

4.4.2.5 Test case M-DPF... 4-38
4.4.2.6 Test case M-LFS.. 4-39
4.4.2.7 Test case M-BDP... 4-40
4.4.2.8 Test case M-3OU .. 4-42
4.4.2.9 Test case M-3OC... 4-43

4.4.3 Summary of multiobjective problems... 4-44
4.4.4 Influence of parameters pi and qi... 4-45
4.4.5 Sensitivity analysis with respect to the weights wi

* .. 4-47
4.4.6 Algorithmic complexity.. 4-47

4.5 CONCLUSIONS... 4-51

CHAPTER 5 – EXPERT RULES FOR MECHANICAL DESIGN OPTIMIZATION................................5-1

5.1 INTRODUCTION..5-1
5.2 KNOWLEDGE-BASED SYSTEMS AND EXPERT RULES FOR DESIGN OPTIMIZATION....................5-1

5.2.1 Historical background ..5-1
5.2.1.1 Knowledge base..5-2
5.2.1.2 Rule base..5-3
5.2.1.3 Inference engine..5-5

5.2.2 Expert systems for design optimization...5-6
5.3 PAMUC II ..5-8

5.3.1 Preliminaries to the development of PAMUC II ..5-8
5.3.1.1 Expert systems vs. general optimization methods...5-8
5.3.1.2 How to model expert rules ?..5-9
5.3.1.3 How to incorporate expert rules within the EA ?.. 5-10

5.3.2 Description of PAMUC II... 5-10
5.4 VALIDATION OF PAMUC II ... 5-13

5.4.1 Strategy of validation ... 5-13
5.4.2 Single-objective optimization ... 5-14

5.4.2.1 First test case with rules (TCR 1) .. 5-14
5.4.2.2 Second test case with rules (TCR 2)... 5-17
5.4.2.3 Example from Hooker et al. (TCR 3) ... 5-19
5.4.2.4 Robot gripper design problem (TCR 4).. 5-20
5.4.2.5 Beam design problem (TCR 5)... 5-22
5.4.2.6 Helical spring design problem (TCR 6) ... 5-23
5.4.2.7 Multiple clutch brakes design problem (TCR 7) ... 5-26
5.4.2.8 Value of the probability of replacement ... 5-28

5.4.3 Multiobjective optimization.. 5-28
5.4.4 Consistency of the rule base... 5-30
5.4.5 Computational time.. 5-32
5.4.6 Remarks about PAMUC II ... 5-35

5.5 CONCLUSIONS... 5-36

CHAPTER 6 – INDUSTRIAL APPLICATIONS..6-1

REFERENCES ..R-1

Table of Contents TC–4

APPENDIX A ... AA-1

LIST OF FIGURES..LF-1

LIST OF TABLES...LT-1

Acknowledgements A–1

ACKNOWLEDGEMENTS

A PhD thesis is far from being a “ long and quiet river” ; actually, it could not possibly be
achieved without the help and support of several people.

First of all, I would like to thank warmly Pr. Philippe Bouillard for his help, advice and conti-
nuous support throughout the duration of my PhD. His enthousiasm and energy have been very
profitable over the past few years. I am also grateful to Pr. Hugues Bersini, for his precious sug-
gestions and comments about my work.

This thesis was supported by the Walloon Region and Samtech s.a., in the frame of a FIRST
Doctorat project called MINOS (Moteur d’ INférence pour l’Optimisation de Structures – Infe-
rence Engine for Structural Optimization) under grant n° 001/4442. I would like to thank spe-
cially Dr. Claudine Bon (Samtech) for supporting the project, and Alain Remouchamps (Sam-
tech) for helping me to make myself more familiar with Boss Quattro in particular, and optimi-
zation in general. Additional technical advice from Jérôme Coloos (Samtech) has also been dee-
ply appreciated.

At the Université Libre de Bruxelles, my thanks go to Pr. Guy Warzée for his welcome in the
Structural and Material Computational mechanics departement. I am also very thankful to
Pr. Alain Delchambre, for his support as well as his important remarks about multicriteria design
optimization, and Dr. Pierre De Lit for his help concerning the PROMETHEE II method.

I want to show my gratitude to Pr. Patrick De Wilde (Vrije Universiteit Brussel) and Pr. Pierre
Villon (Université de Technologie de Compiègne) for supporting my project, as well as Pr. Piotr
Breitkopf (UT Compiègne) for his help about genetic algorithms. Special thanks are also aimed
at Dr. Joshua Knowles (IRIDIA/ULB), for his paramount comments about multiobjective opti-
mization in evolutionary algorithms. I am also grateful to Vincent Kelner (ULg) for giving me
interesting bibliographic references.

In order to build a method applicable to real-life cases, Techspace Aero engineers provided
me much information and support. My thanks go first to Alain Navez, Mark Nott and Philippe
Nomérange for their welcome and support in the company, and to Pierre Lassarrade and Michel
Saint-Mard who worked on the VINCI engine project and made me familiar with space valves.
Special thanks are also dedicated to Michel Pierson, Christophe Promper, James Murray, Carine
Meurant, Daniel Renson, Albert Cornet, Luc Damhaut, Marc Noël, Frédéric Madon and all the
other people (engineers and technicians) who were kind enough to spend some of their time to
help me understanding the valve design.

May all the (former and current) members of the Structural and Material Computational me-
chanics dpt. who have not been cited yet be thanked for the very nice atmosphere that reigns in
this department, namely : Adrian, Arnaud, Cristina, David, Elisabeth, Erik, Frédéric, Geneviève,
Guy, Katy, Kfir, Laurent, Matthieu, Nadine, Nathalie, Olga, Raphaël, Tanguy, Thierry, Valérie,
Valéry and Vincent. Finally, I would like to thank all my relatives and friends who kindly sup-
ported me during my PhD.

Chapter 1 – Introduction 1–1

(c)

CHAPTER 1 – INTRODUCTION

1.1 Introduction to structural optimization

Since the 1960’s, the design of mechanical components has been greatly enhanced thanks to
the development of numerical methods. Finite element softwares, for instance, are now of com-
mon use in aeronautical, mechanical, naval and civil engineering. At the same time, efficient and
fast optimization algorithms have arisen for solving various kinds of mathematical programming
problems. Both trends gave birth to structural optimization, which aims at finding the best-fitted
structure by modifying geometrical, material and/or topological parameters (the variables), the
optimal solution being defined with respect to at least one criterion (the objective), and having to
satisfy a set of requirements (the constraints) [PAP00].

In this work, the emphasis is mainly put on the optimization of mechanical components dur-
ing the first stage of the design process, and it will be assumed that low cost reliable models are
used (of course, this matter will be discussed thoroughly for the industrial applications studied at
the end of the thesis). In fact, whereas lots of structural optimization techniques have been de-
veloped to increase the performances at the end of the design process, fewer works hitherto are
concerned with optimization during the first stage, though a small modification in the beginning
can bring significant improvements to the final structure.

Therefore, before presenting the objectives (§ 1.2) and an overview (§ 1.3) of the thesis, de-
sign optimization is first replaced in the general context of structural optimization.

Structural optimization is traditionally classified in three families following the nature of the
variables involved [BRA86] (cf Fig. 1.1) :

Fig. 1.1 : Distinction between design (a), shape (b) and topology (c) optimization [DUY96] .

(a)

(b)

Chapter 1 – Introduction 1–2

• in design or sizing optimization, variables represent only cross-sectional dimensions
or transversal thicknesses (the geometry and the topology remaining fixed) ;

• in shape optimization, the variables are parameters acting directly on the geometry of
the structure (but with a fixed topology) ;

• finally, topological optimization handles variables which can modify the shape and
the topology of the structure.

These categories are briefly illustrated below.

1.1.1 Design optimization

In the first approach – also known as “automatic dimensioning of structures” [DUY96] –, the
only variables are cross-sectional dimensions or transversal thicknesses (the geometry and the
topology remaining fixed). In trusses for instance, the areas of the cross sections of the rods play
the role of design variables, while the objective is commonly to find the lightest structure which
still satisfies a set of constraints (e.g. stresses and displacements must not overstep maximum
levels : see [AZI02,GRO99]).

1.1.2 Shape optimization

In shape optimization, the variables are geometrical parameters defining the shape of the
structure (the topology remaining fixed). In most works available in the literature, the parameters
are the coordinates of specific points : the poles. In 2D, these poles define the contour of the
structure as a set of curves, for instance by using Lagrangian, Bézier or B-splines interpolations
[AFO02,BRA84,ZHA92].

Fig. 1.2 : Shape optimization of a support : definition of the initial geometry (left)

and solution obtained after 5 iterations of the optimization process (right) [ZHA92] .

Chapter 1 – Introduction 1–3

The geometry can also be modelled directly via lengths of segments, radii, angles, etc., con-
sidered thus as the design variables. This technique was illustrated by Zhang in the case of a
support structure [ZHA92] : the objective was to minimize the mass without allowing the Von
Mises stress to overstep a critical limit. The load case and boundary conditions are detailed in
Fig. 1.2 (left). 10 independent variables are used, modelling the support geometry through
lengths and arcs of circles. The structural analysis is performed thanks to a finite element model,
and the optimal solution found by Zhang is represented in Fig. 1.2 (right), illustrating a mass
decrease of 69.6% in comparison with the initial structure. To perform the optimization, CON-
LIN algorithm – based on the construction of convex linear approximations of the objective and
constraints – was used for the computations.

1.1.3 Topological optimization

In topological optimization, the aim is to determine the optimal shape of a structure by start-
ing with a bulk of material, and progressively taking off the material which undergo less load-
ings. Of course, the final structure must still satisfy the user-defined constraints (gener-
ally related to the restriction of the maximum Von Mises stress) [DUY96,NAK01,KIM02].

Fig. 1.3 : Definition of the Michell truss problem [Boundary condition : the inner circular hole is fixed]

(figure adapted from [REY99]).

Fig. 1.4 : Topological optimization applied to the Michell truss problem :

results at iterations 6 (a), 42 (b), 75 (c) and 120 (d) [REY99] .

Chapter 1 – Introduction 1–4

A classical benchmark of topological optimization, the Michell truss problem, is described in
Fig. 1.3. Reynolds et al. solved it with the reverse adaptivity technique [REY99], which works as
follows : once the initial finite element problem is built, the method proceeds with a refinement
of low (Von Mises) stress regions of the mesh by element subdivision. Then, low stress subdi-
vided elements are removed and the process is repeated. The structures obtained after respec-
tively 6, 42, 75 and 120 iterations of this process are represented in Fig. 1.4. At the 120th itera-
tion, only 8.8% of the whole (initial) area remains.

Topological optimization can also be achieved for trusses. For instance, Deb and Gulati de-
scribed a method to find optimal cross-sectional areas and topology of 2-D and 3-D trusses by
using genetic algorithms [DEB01a]. Topological variables representing the presence (or not) of
each element in the configuration were introduced in addition to the design variables (i.e. the
areas of the rod sections). The goal was to minimize the mass, while the stresses and displace-
ments had to stand within allowable values. Figure 1.5 shows a 3D example where the genetic
algorithm converged to a 9-element truss (from a 39-element initial configuration).

Fig. 1.5 : Example of truss topological optimization : from a network of 39 rods (left),

the genetic algorithm converged to a 9-element truss (right) [DEB01a] .

Latest developments in shape and topological optimization combined with finite element and
boundary element methods are collected in [MAC02].

1.1.4 Other issues

Structural optimization can be linked to other fields of computational mechanics, like error
estimation for example [ODE03]. Indeed, when an optimization algorithm interacts with a struc-
tural model, it modifies the structure geometry at each iteration and re-computes it. This raises
the question of the model reliability (e.g. when the initial finite element mesh is perturbated due
to the modification of the geometry). In some applications, it can be taken into acount directly in
the optimization scheme. For instance, in [LAC03], Lacroix and Bouillard use a coupled finite
element – element-free Galerkin (FE – EFG) method to improve the sensitivity analysis used in
the optimization process, avoiding thus a mesh degradation due to the evolution of the geometry
at each iteration.

2.225 kN2.225 kN

190.5 cm 190.5 cm

190.5 cm

254 cm

254 cm

508 cm

508 cm

508 cm

508 cm

508 cm

Chapter 1 – Introduction 1–5

Beside the model verification, another important aspect in structural optimization is related to
the computational time. When the cost of the numerical model is high, it is profitable to use ap-
proximation methods. For example, in [VAN01], Vande Weyer used a mid-range design of ex-
periments technique to build response surfaces, based upon the calculations of a set of points
judiciously selected in the variable space [GOU99]. Then, instead of the complex model, the ap-
proximate one is optimized.

1.1.5 Topic of this work : pre-design optimization

The traditional subdivision in three families (design, shape and topology optimization) has
become somewhat rigid. Indeed, during the first stage of the design for instance, the optimization
of a preliminary sketch could involve not only cross-sectional and transversal variables, but also
geometrical, or even topological ones that would have been parameterized (as the number of
holes in a mechanical part). That could be considered as an intermediate method, akin to design,
shape and topology optimization.

In this context, design optimization has become synonymous with finding the optimal dimen-
sions of parameterized structures [OSY02] (where the parameters are not only cross-sectional or
transversal variables). There are examples of design optimization in various fields of engineer-
ing ; here are a few applications treated by optimization methods :

• concentric springs [OSY02] ;
• electromagnetic systems [WIN95] ;
• pressure vessels [COE02] ;
• welded beams [COE02] ;
• reinforced concrete beams [SHI00] ;
• steel frames with semi-rigid connections [KAM01].

Once the design optimization problem is mathematically formulated (in terms of objective(s)
to improve and constraints to fulfil), it can be solved by an appropriate optimization algorithm :
this will be discussed thoroughly in Chapter 2.

Consequently, the topic concerned in this work, namely the optimization at the first stage of
the design procedure, will be referred to as “pre-design optimization” throughout this thesis : it
will mean (implicitly) that geometrical, but also material and topological variables may be taken
into account in the optimization scheme.

1.2 Objectives of this work

As mentioned above, in this work, automation and optimization of pre-designs are investi-
gated.

1.2.1 Two approaches

To perform this task, two different approaches are encountered in the literature :

• optimization algorithms : after the parameterization of the problem, optimization al-
gorithms may be used. They act like “black-box” algorithms in the sense that they do

Chapter 1 – Introduction 1–6

not use any particular knowledge of the problem, except mathematical information
(as the derivatives of the function in gradient-based algorithms for instance). An
overview of optimization algorithms is presented in Chapter 2 ;

• expert systems : based on a set of rules, they include specific knowledge about a par-
ticular problem, collected among experts in a scientific field, and are therefore re-
stricted to a few applications (see Chapter 5).

The scope of this thesis is to propose a novel method, which would take benefit of both ap-
proaches : being sufficiently general to be used for a large family of applications, it should still
be able to incorporate specific knowledge about the problem involved.

1.2.2 Development of an or iginal optimization method in two steps

Mechanical components can be divided in two categories : the simple parts (as screw bolts,
joints, etc.) and the more complicated structures. In the former components, when the first
sketches are devised “ from scratch” , design and optimization are inextricably bound, whilst in
the latter, the two stages can be distinctly separated. Fruitful discussion with engineers from
Samtech s.a. and Techspace Aero led to the conclusion that the development of an optimization
method applicable to complex structures (as valves, pomps, etc.) should thus be divided in two
steps :

1. first, developing a tool to optimize the parametrical design of structures whose to-
pologies are already fixed. The idea lying behind this approach is very simple : to
compare two different designs (i.e. with different topologies), one has to optimize
both parameterized designs following the same criteria, to prevent from having an
intrinsically “good” design ill optimized outperformed by a “worse” design correctly
optimized ;

2. once the first step is accomplished, proposing a method to optimize a more general
design, modelled by geometrical, material and also topological variables. As differ-
ent designs will be analyzed and inspected simultaneously, one way to reduce the
search space and furnish a realistic solution is to incorporate expert rules (taking
technological aspects into account) within the optimization process.

Fig. 1.6 : Examples of sheer design optimization (i.e. with only “ dimensional” variables) (a)

and of design optimization with topological variables (b).

Chapter 1 – Introduction 1–7

Both steps are illustrated in Fig. 1.6. The final goal is therefore to achieve design optimization
with topological variables. To perform this task, the method proposed in this thesis should suc-
ceed in finding optimal but also realistic solutions (in terms of technological requirements). As
only the initial step of the design procedure is concerned, it is assumed that the objective func-
tion(s) and constraints have a low computational time, which seems a reasonable hypothesis
since they are generally issued from theoretical and experimental models.

1.3 Overview of the thesis

The thesis is divided in two parts : first, performing parametrical pre-design optimization, and
then incorporating expert rules to optimize more general pre-designs.

Once the design is parameterized, a suitable optimization algorithm has to be selected. This is
discussed in Chapter 2, where a classification of the main optimization methods is performed,
followed by the reasons of using evolutionary algorithms (EAs) for pre-design optimization. The
features of the standard EA are also described, and some applications in structural optimization
are mentioned.

Then, since most industrial applications deal with multiple objectives and strong technical re-
quirements, the standard EA has to be adapted in order to tackle both multicriteria and con-
strained aspects. After a review of the main techniques used to take those aspects into account,
underlining the lack of methods specially devoted to the simultaneous handling of preferences
and constraints, an original approach is proposed, called PAMUC (Preferences Applied to MUl-
tiobjectivity and Constraints), presented in Chapter 3.

Afterwards, a procedure to validate PAMUC is discussed. First, single-objective constrained
problems are treated to show PAMUC efficiency to find feasible solutions. Secondly, multiob-
jective test cases are compared to the classical weighted sum method, thanks to a specific norm
whose choice is debated thoroughly in Chapter 4.

Once PAMUC has been successfully validated for parametrical design, it can be extended to
more general problems, i.e. dealing with topological variables. However, using a classical opti-
mization method could lead to designs which would be optimal but unrealistic for technological
reasons (e.g. related to the machining and the assembly). Therefore, to generate solutions satis-
fying also the technological constraints, one approach consists in incorporating expert rules
within the algorithm. After a discussion of knowledge representation by logical rules (as in ex-
pert systems), and their possible insertion in an EA, an original method, called PAMUC II, is
described, using the rules to repair unfeasible individuals among the members of the EA popula-
tion. Then, it is applied on several test cases and mechanical benchmarks, and numerical aspects
(e.g. the computational cost) are discussed (cf. Chapter 5).

Finally, PAMUC (II) is applied to four valves designed by Techspace Aero for launcher Ari-
ane 5 to show its adequacy in solving real-life pre-design optimization problems (Chapter 6) ;
general conclusions are drawn in Chapter 7.

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–1

CHAPTER 2 – EVOLUTIONARY ALGORITHMS APPLIED TO
M ECHANICAL DESIGN OPTIMIZATION

2.1 Introduction

Once a mechanical pre-design is correctly parameterized – with a fixed topology – an effi-
cient optimization method has to be chosen. This constitutes the first step of the thesis.

Several approaches are available in the literature to handle optimization problems. Therefore,
this chapter is divided in two parts : first, the different criteria upon which optimization problems
are classified, as well as a brief overview of the main families of algorithms, are exposed (§ 2.2).
Then, the emphasis is put on evolutionary algorithms (§ 2.3) : the reasons why they were se-
lected, their working and some applications in engineering design will be discussed.

2.2 Classification of optimization problems and methods

A general optimization problem can be written as follows [FON95] :

x
min f(x) (2.1)

 g(x) ≥ 0, (2.2)

s.t.: h(x) = 0, (2.3)

xi ∈ Xi for i = 1,…, n, (2.4)

where :
• xT = { x1 x2 … xn } (vector of variables) ;
• Xi is the set of xi (which may be continuous, discrete or integer) ;
• f(x)T = { f1 (x) f2 (x) … fm (x) } (objectives) ;
• g(x)T = { g1 (x) g2 (x) … gp (x) } (inequality constraints) ;
• h(x)T = { h1 (x) h2 (x) … hq (x) } (equality constraints).

Note that henceforward bold letters represent vectors or matrices while plain letters stand for
scalars. Optimization problems are classified upon various criteria :

• the nature of the variable sets : a variable may be continuous (e.g. a geometrical di-
mension), discrete (e.g. cross sections of beams are often available by discrete steps
in catalogues) or integer (e.g. the number of layers in a composite material [SOR01]).
There are often mixed variables in engineering problems (cf. [CAO00, COS01, SEN96,
SHI00]) ;

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–2

• the nature of the constraints and the objective functions : they may be linear, quad-
ratic, non linear or even non differentiable. For instance, gradient-based algorithms,
based on the computation of the sensitivities, require the functions to be differentiable
in order to compute their first-order (and sometimes also their second-order) deriva-
tives [FLE78,WRI99] ;

• the analytical properties of the functions, e.g. linearity in linear programming. Con-
vexity or monotonicity can also be successfully exploited to converge to a global op-
timal solution [PAR00] ;

• the presence (or the absence) of constraints. Equality constraints are usually tackled
by converting them into inequality constraints [DEB00], using Eq. (2.5) (where the pa-
rameters ε j are chosen by the user) :

hj(x) = 0 → ε j –| hj(x)| ≥ 0 for j = 1,…, q ; (2.5)

• the size of the problem : to remain applicable even when the number of variables is
very large (more than about 10,000 for continuous problems), optimization algo-
rithms have to be adapted, because of limited memory or computational time
[WRI99] ;

• implicit or explicit functions : in shape optimization for instance, when finite element
models are needed to compute the stresses and displacements, the objective function
(generally the mass) is almost always an implicit function of the variables. Therefore,
the objective(s) and constraints are approximated thanks to a linear, quadratic or other
(cubic, posynomial, etc.) model [FLE00,SAL00]. These approximations are usually
built in order to exhibit specific properties, as convexity in the CONLIN method
[REM99]. Neural networks may also be used to construct an approximation of the
functions [RAF01] ;

• local or global optimization : in single-objective optimization, this distinction is based
on the following definitions (written – without limitation – in the case of minimiza-
tion) :

• a point x* is said to be a global minimizer if (and only if) f(x*)≤ f(x) for all x ∈ X
(the whole design space) [WRI99] ;

Fig. 2.1 : Example of a 1-variable function with the global minimum and one local minimum.

x

f

local
global

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–3

• a point x* is said to be a local minimizer if there exists a neighbourhood
�
 such

that f(x*)≤ f(x) for x ∈
�
. Of course a global minimum is also a local one.

Local optimization is used commonly with smooth functions in order to find a local
optimum. Note that when the functions involved are also convex, the local optimizer
is also a global one. An example of a 1-variable function with the global minimum
and one local minimum is illustrated in Fig. 2.1.

• single-objective or multiobjective : though the first studies in structural optimization
used only one objective (most of time minimizing the mass), more and more studies
deal with multiple criteria (mass, cost, specific performances, etc. ; see [AND00,
COE96,DEB99b]). Indeed, in industrial context, optimal solutions must be good com-
promises between the different (and often contradictory) criteria (cf. [CVE00,MAS99,
ZHA01a]).

To solve optimization problems, a huge amount of methods have been proposed in the litera-
ture. They are briefly summarized below.

2.2.1 Local methods

Local methods are aimed to reach a local optimum, and offer no guarantee in finding the
global one. The most common local methods are based on the computation of sensitivities.
Therefore, they require the functions to be differentiable, and the variables to be continuous (or
discrete). Nocedal et al. divided the main gradient-based algorithms in two approaches [WRI99] :

• in the line search strategy, the algorithm chooses a direction pk (e.g. the steepest-
descent direction) and performs a search for a better point xk along this direction (see
Fig. 2.2). Each iteration needs to solve the following one-dimensional minimization
problem :

�
min f(xk + α pk). (2.6)

Fig. 2.2 : Principle of the line search strategy (with a 2-variable function f) : once a direction pk has been cho-

sen, a 1-dimensional minimization is performed along that direction (figure adapted from [WRI99]).

x1

f

x2

pk

xk

α

f

xk

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–4

• in trust region methods, the gradient∇f(xk) at iteration k (and sometimes also the Hes-
sian matrix B(xk) , i.e. the second derivatives) is used to construct a model mk whose
behaviour is a good approximation of the original function f, at least in a close neigh-
bourhood of xk (cf. Fig. 2.3). Each iteration consists in solving the sub-problem :

p
min mk(xk + p), (2.7)

where xk + p lies inside the trust region. Usually the model mk is defined as a quad-
ratic function of the form :

mk(xk + p) = f(xk) + pT∇f(xk) + ½ pTB(xk) p. (2.8)

Fig. 2.3 : Principle of the trust region strategy (with a 1-variable function f) : at each iteration,

an approximated model mk is constructed in the vicinity of xk (and reliable within the trust region) ;

then, mk is minimized instead of the true objective function f (figure adapted from [WRI99]).

Various instances of these techniques have been proposed in the literature [WRI99] : the BFGS
algorithm, the conjugated gradient method, the sequential quadratic programming (SQP), etc.
Though these algorithms were initially restricted to continuous unconstrained problems, they
have been successfully extended to other fields of optimization :

• constrained optimization : Lagrange multipliers allow the user to take constraints
(equalities and inequalities) into account [CIA98] ;

• discrete optimization : in this approach, the problem is solved in a dual space to deal
with discrete variables [BEC00,HUA97,SEP86]. Some interesting applications in struc-
tural optimization (sizing of thin-walled structures, geometrical configuration of
trusses, topological optimization of membranes or 3-D structures, etc.) are mentioned
in [BEC00] ;

• integer or combinatorial programming : those problems can often be transformed in
constrained continuous problems, for example by reformulating the “binary” con-
straints as follows :

trust region

f

x

mk

xk

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–5

xi = {0,1} ⇔ xi .(xi – 1) ≥ 0 , 0 ≤ xi ≤ 1 ∀ i =1,…, n. (2.9)

Unfortunately, as mentioned above, all algorithms based on the classical gradient techniques
require the functions to be differentiable, which is often not the case in design optimization
problems. Furthermore, even if the functions were differentiable, the risk is high to be trapped in
a local minimum. Therefore, global methods seem more suited to solve general design optimiza-
tion problems. The main global approaches are summarized in the next section.

2.2.2 Global methods

Reaching the global optimum is an arduous task, which explains that various techniques have
been proposed to handle it [MAN99,VIS90,YOU01]. The most popular ones are briefly described
hereafter :

• Random search : in this basic (and time-consuming) technique, a large number of
points x1, x2,…, xN are randomly generated and their corresponding function values
f(x1), f(x2),…, f(xN) computed ; the point x* endowed with the best function value is
selected to be the solution [OZD00] ;

• Approximation methods : instead of searching directly the optimum of the true func-
tion, an approximated function is built in order to solve the problem more easily. This
approximation can be a statistical function, or a response surface built upon a set of
function values computed for a predefined sample of variables (by the design of ex-
periments technique [GOU99,VAN01]). Neural network methods may also be used to
approximate the objective function(s) and constraints [HUR01,RAF01] ;

• Clustering methods : they can be viewed as a modified form of the standard multistart
procedure, which performs a local search from several points distributed over the en-
tire search domain. A drawback of pure multistart is that when many starting points
are used, the same local minimum may be obtained several times, thereby leading to
an inefficient global search. Clustering methods attempt to avoid this inefficiency by
carefully selecting points at which the local search is initiated [FAS99] ;

• Metaheuristic methods : from the definitions collected in three dictionaries special-
ized in mathematical programming, algorithms and data structures [GRE03,
HOW93,NIS03], metaheuristics can be defined as general strategies which guide the
search for optimal solutions in hard problems. In artificial intelligence, heuristic
methods are non deterministic algorithms based on a set of rules of thumb that a hu-
man would make following his/her intuition ; therefore, no guarantee is offered that
the optimal solution will be found systematically. The prefix meta- is related to the
level of abstraction of these techniques.

In evolutionary algorithms for example, it is implicitly assumed (but not proved) that
when good potential solutions are matched, they generally produce better solutions.
Besides, their use is not restricted to a narrow family of applications, but to a large
class of problems [YAG96] ; hence they belong to metaheuristics.

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–6

Additionally, lots of metaheuristics are inspired by an analogy with physical or bio-
logical processes. Some of the most widespread metaheuristics in structural optimiza-
tion are recapitulated below :

• Simulated annealing : this method derives from the annealing process in metal-
lurgy, which consists of first raising the temperature T to a point where the atoms
can freely move, and then to lower T to force the atoms to rearrange themselves
into a lower energy state (crystallisation) [LAR88]. During this process, the free
energy of the solid is minimized. By associating the objective function of an op-
timization problem to the free energy of a material, an efficient search procedure
has emerged. The cooling schedule is a crucial parameter of simulated annealing :
indeed, if the solid is cooled too quickly, or if the initial temperature is too low,
the solid will reach an amorphous state instead of becoming a crystal. In the lan-
guage of programming, it means that the algorithm has converged to a local
minimum [COE02a].

The basic simulated annealing algorithm functions as follows : a small perturba-
tion is applied to the starting point, which modifies its energy (i.e. its objective
function) : if the change is negative (in a minimization problem), the new configu-
ration is better than the original, and is therefore accepted ; but if it were positive,
the new point would still be accepted with a probability P given by Eq. (2.10) :

P = exp(–∆E/kT), (2.10)

where k is the Boltzmann constant, relating the temperature T to the variation of
energy ∆E [LAR88]. This allows the algorithm to explore regions located outside
the vicinity of local minima ;

• Tabu search : in this technique, at each iteration, a feasible move is applied to the
current point, accepting the neighbour with the smallest cost. Tabu search acts like
a local search method, except that positions which seem not favourable may be
allowed to prevent from converging to the same (maybe local) optimum
[BLA98,FRA01]. Tabu search also forbids reverse moves to avoid cycling (the for-
bidden movements are “quarantined” and compose the so-called tabu list [MAC01,
VOU99]) ;

• Ant colony systems : they are based on the behaviour of real ants, observed by
Gross et al. in laboratory in the following experience (cited in [DOR99]) : a colony
of Argentine ants were given access to a food source in an arena linked to the col-
ony nest by a bridge with two branches of different lengths, disposed in such a
way that ants looking for food must choose between either branch or the other.
After a transitory phase, most of the ants took the shorter branch. This can be ex-
plained by the fact that ants, while going from nest to food and vice versa, deposit
a chemical substance (the pheromone) along the way. When an ant has to choose
between two paths, it will instinctively be attracted by the path containing the
larger amount of pheromone, and as the shorter branch is the smaller distance for
the ants, they make the trip faster and therefore more pheromone is released there.

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–7

The ant colony optimization algorithm is roughly based upon the observations
made in this experience, but with several adaptations following the problem to be
solved [DOR99] ;

• Evolutionary algorithms (EAs) : they were originally separated into three fami-
lies : genetic algorithms [GOL89], evolution strategies [BAC91,BAC93,MOR99] and
genetic programming [YAN02]. Now, however, these techniques become closer
and closer [COE99], and differ mainly in the coding of the variables and the rela-
tive importance given to each genetic operator. These methods are search tech-
niques which follow the Darwinian law of natural selection or survival of the fit-
test [BAC92,BAC96,GOL89] : in a random population of potential solutions, the best
individuals are favoured and combined in order to create better individuals at the
next generation. The implementation of the standard EA, as well as theoretical as-
pects and applications, will be discussed in the next section.

As some identical procedures exist in different metaheuristic methods (e.g. the need of keep-
ing in memory some data about previous results), Taillard et al. proposed the use of the generic
term adaptive memory programming to label the different families of metaheuristics mentioned
above [TAI98]. Another aspect which is common in all metaheuristics is the fact that they can be
successfully combined to gradient-based algorithms to construct hybrid methods (cf. e.g. [ALO01,
DUL02]). In EAs for instance, a local search may be applied to improve the initial generation as
well as the individuals obtained by recombination, to form the memetic algorithms [WIN95].

The choice of EAs for design optimization is discussed in the next section, followed by their
implementation and some examples of applications in structural optimization.

2.3 Evolutionary algor ithms for design optimization

2.3.1 Why choosing evolutionary algor ithms ?

For design optimization, the use of evolutionary algorithms seems very attractive, for the fol-
lowing reasons :

• the nature of the variables : as mentioned in Chapter 1, design optimization problems
may need the use of mixed variables (continuous, discrete and/or integer). This can be
handled very easily in EAs [DEB98,REI97,ULU02], whereas gradient-based algorithms
for instance are mainly devoted to problems with continuous variables ; discrete vari-
ables may also be used, but only in some specific applications [BEC00] ;

• the nature of the functions : as the functions (empirical formulas for example) in-
volved in design optimization are often non differentiable, and sometimes discontinu-
ous, gradient-based techniques are once more excluded. Only 0-order algorithms
systematically fit, because they require only the values of the functions, and not their
derivatives ;

• exploration of the search space : as they work on a population of solutions instead of
a single point (at each iteration), EAs are less likely to be trapped in a local minimum.
Goldberg also proved thanks to the schemata theorem [GOL89] that the way recombi-

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–8

nation of individuals is performed allows the algorithm to explore widely the whole
design space. EAs are thus very well suited for noisy and multimodal functions
[KAL01].

Therefore, EAs are ideally adapted for structural optimization, as can be seen by the impress-
ing number of applications in engineering (see [BUR02] and other examples in § 2.3.3).

2.3.2 Descr iption of the standard EA

The standard evolutionary algorithm (Std-EA) mentioned throughout this thesis is a genetic
algorithm whose working is described in [MIC96a,BAC97]. It was implemented by the author in
Matlab, and without additional procedures, it is aimed to solve single-objective unconstrained
problems. Its basic features are briefly summarized below.

2.3.2.1 Flow-chart of the algorithm

The flow-chart of the standard evolutionary algorithm is represented in Fig. 2.4.

Fig. 2.4 : Flow-chart of the standard evolutionary algorithm (figure adapted from [MIC96a]).

After the random generation of the initial population, the individuals are selected following
the value of their fitness function : the individuals with highest fitness values are more likely to
be chosen to take part of the process of recombination. In the case of an unconstrained optimiza-
tion problem, the objective generally plays the role of the fitness function ; otherwise, a more
sophisticated function has to be constructed to reflect correctly the quality of an individual (e.g.
in constrained optimization, a solution with a poor value of the objective function but satisfying
the constraints is often preferred to a unfeasible one endowed with a a better objective function).

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–9

2.3.2.2 Coding of the variables

A crucial point in evolutionary algorithms lies in the coding of the variables. The variables of
each individual of the population are coded in a chromosome. By analogy with genetics, the val-
ues of the variables are called the phenotype and the coding the genotype. Four different codings
have been implemented in the Std-EA :

1. a (classical) binary coding [BAC97] : each variable is coded in a substring of bits whose
number is related to the number of alleles (i.e. possible values) that the variable could
take. This is illustrated in the case of mixed variables in Table 2.1.

Variables Type of variable Xi (Variation domains
of xi)

Number of
alleles

Substring size

x1 Continuous [0,10] 1024 (= 210) 10
x2 Continuous [0,10] 1024 (= 210) 10
x3 Discrete { 10 ; 12.5 ; 15 ; 17.5 } 4 (= 22) 2
x4 Integer { 0 ; 1} 2 (= 21) 1

Table 2.1 : Example of binary coding : construction of a chromosome (4 design variables) [BAC97] .

The chromosome of an individual is then constructed by concatenating the substrings Si

corresponding to each variable xi (cf. Fig. 2.5) :

0 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1

Fig. 2.5 : Example of chromosome for a four-variable individual (with binary coding) [BAC97] .

2. a Gray binary coding : the binary representation as described above is widely used in the
EA community, but it has some drawbacks. Indeed, it is commonly accepted that a coding
should reflect as closely as possible the behaviour of the variables. For example, a small
change in the value of the variable should lead to a small modification of the genotype.
This is not systematically the case in binary coding, where subsequent alleles may have
completely different chromosomes. Therefore, the Gray coding has been introduced, and
is built in such a way that two subsequent alleles differ only from one bit [OSY02] (cf. Ta-
ble 2.2 for a 3-bit variable).

Allele Binary coding Gray coding
1 000 000
2 001 001
3 010 011
4 011 010
5 100 110
6 101 111
7 110 101
8 111 100

Table 2.2 : Binary and Gray codings for a 3-bit variable [OSY02] .

S1 S2 S3 S4

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–10

3. a fixed-point representation [BAC97] : this coding is based on a decimal representation :
each division of the chromosome corresponds to one figure, and the place of the decimal
point is fixed. This is illustrated in Fig. 2.6 for a 2-variable individual.

3 9 4 5 6 1 8 6 1 0 2 4 6 1

Fig. 2.6 : Fixed-point representation for a 2-variable individual.

4. a real coding : when there are only continuous variables, a real coding is often preferred,
because it is very close to the real search space [ANI02,OSY02]. In this representation, each
individual is thus coded as a vector of real values.

Though it has not been implemented in the Std-EA, it is also possible to have a mixed chro-
mosome representation, combining different codings of the variables, as in the Genetic Adaptive
Search method developed by Deb [DEB98]. Other representations are possible, as long as they
precisely describe the problem ; guidelines to build a suitable coding are available in [BAC97].

2.3.2.3 Creation of the initial population

The first step of the Std-EA consists in generating randomly the initial population of N indi-
viduals. N is a user-defined parameter called the size of the population.

2.3.2.4 Selection

After the evaluation of the fitness function for each individual of the population, the selection
is performed. Two classical selection schemes were implemented in the Std-EA [BAC97] :

1. the roulette wheel selection : in this procedure, each chromosome has a given probability
of selection, which is a (monotonous) function of its fitness. In Fig. 2.7, the roulette wheel
is symbolically represented for 5 individuals i1 to i5 : each slot of the wheel has a size pro-
portional to the probability – for the corresponding individual – of being selected.

Fig. 2.7 : Roulette wheel selection

(example for five individuals ; the percentages indicate the probability of selection of the individuals).

x1 = 394.5618 x2 = 6102.461

1 division of the chromosome

5%

11%

17%

22%

45%

i1

i2

i3

i4

i5

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–11

2. the tournament selection : nt individuals (the knights) are randomly chosen among the
previous generation (with nt � N), and compared following their fitness values. Then, the
best individual is copied in the new generation [MIL95].

The selection process is repeated until N individuals have been chosen. This procedure is
called selection with replacement [BAC97].

2.3.2.5 Crossover

Once the individuals have been selected, they are divided in N/2 pairs of parents, and matched
– with a user-defined probability – by the crossover procedure. In binary, Gray and fixed-point
codings, three instances of crossovers were implemented in the Std-EA [HAS00] :

1. the 1-point crossover : two children are constructed by inverting the genes of their par-
ents from the (randomly determined) crossover site (see Fig. 2.8) :

PARENT 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0
PARENT 2 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

CHILD 1 1 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1
CHILD 2 1 1 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0

Fig. 2.8 : Illustration of the 1-site crossover :

two strings (the parents) and their offspring (figure adapted from [HAS00]).

2. the 2-point crossover : the procedure is the same as in the 1-point crossover, except that 2
crossover sites are randomly chosen ;

3. the uniform crossover : first, a binary string is randomly generated. Then, two children
are constructed by inverting the genes of their parents following the value of the corre-
sponding bit in the random string (see Fig. 2.9) :

PARENT 1 1 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 0 1 1 0
PARENT 2 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

RANDOM

STRING
1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 0 1 0

CHILD 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1
CHILD 2 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 0

Fig. 2.9 : Uniform crossover (for Child 1, a value of 1 in the random string corresponds to a bit from

Parent 1, and 0 corresponds to a bit from Parent 2, and vice versa for Child 2) (figure adapted from [HAS00]).

crossover site

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–12

For real coding, the SBX (simulated binary crossover), proposed by Deb [DEB95,DEB96], was
incorporated in the Std-EA. To compute two children y(1) and y(2) from two parents x(1) and x(2),
the following technique is applied :

• create a random number u between 0 and 1 ;

• compute the following parameter :

� �
��

�
���

����	 +

−+

−

≤
=

,otherwise
u2

1

,uif)u(
)1c/(1

1)1c/(1

η

η

α

αα
β (2.11)

where :
,2)1(c +−−= ηβα (2.12)

[] .)xx(),xx(min
yy

2
1)2(ul)1(

)1()2(
−−

−
+=β (2.13)

In Eqs. (2.11) to (2.13), it is assumed that x(1) < x(2) ; modifications of the above for-
mulae are easily made for x(1) > x(2). xl and xu are respectively the lower and upper
bounds of the variable, and ηc is a user-defined parameter (standard value used in
[DEB00] is ηc = 1).

• the children solutions are then computed as follows :

,xx)xx(5.0y][)1()2()2()1()1(−−+= β (2.14)

.xx)xx(5.0y][)1()2()2()1()2(−++= β (2.15)

2.3.2.6 Mutation

Mutation is a useful complement of crossover, for it enables to explore possibly undiscovered
areas of the search space. Though more sophisticated mutation operators are mentioned in the
literature [GUT99], for binary, Gray and fixed-point representation, only the classical “flip” mu-
tation was implemented [BAC97] : with a user-defined probability, the value of one bit (or one
division in decimal coding) is randomly changed.

In real coding, the parameter-based mutation operator is used [DEB95]. To compute the mu-
tated solution, the following procedure is applied :

• create a random number u between 0 and 1 ;

• compute the following parameter :

�
�
−−+−−

≤−−++−=
++

++

,otherwise)1)(5.0u(2)u1(21

,5.0uif)1)(u21(u21
)1/(11

)1/(11

mm

mm

][
][

ηη

ηη

δ
δδ (2.16)

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–13

where :

lu

ul

xx

)xx(),xx(min][
−

−−
=δ (2.17)

and ηm is the distribution index for mutation and takes any nonnegative value ;

• calculate the mutated child using Eq. (2.18) :

y = x +).xx(lu −δ (2.18)

As in [DEB00], the value of ηm is computed as follows :

ηm = 100 + t, (2.19)

where t is the current generation number. The mutation rate pm is given by :

pm =
n

1
+ ��

����
−

n

1
1

t

t

max

 , (2.20)

where tmax is the maximum number of generations allowed. More details about the SBX and
parameter-based mutation operator can be found in [DEB95,DEB96].

After the operators of recombination (crossover and mutation) have been applied, for each
pair of matched parents, the two best individuals among the four (i.e. among the two parents and
the two children) are preserved to take part of the selection scheme ; this ensures the algorithm to
keep the best individuals during the generations.

2.3.2.7 Remarks

Other genetic operators (as niching, elitism or inversion) exist, and various implementations
have flourished since the late 1990’s (see [COE00d,HIN97,KOU02,LEI98]), but the Std-EA imple-
mented in this study, albeit simple, is sufficiently general and efficient to be adapted to multicri-
teria and constrained optimization, as well as to the introduction of expert rules, as it will be ex-
hibited in the next chapters.

The different parameters of the Std-EA are summarized in Tables 2.3 and 2.4. It is important
to notice that in EAs, the definition of the parameter values is crucial, and there is no systematic
method yet to determine their optimal values : a tuning of these parameters has still to be done
by the user for each application.

Parameter Definition or possible values
N Size of the population
Ngen Maximum number of generations
Type of selection Roulette wheel or tournament

nt
Number of individuals participating to a tournament (≤ N) (when
the tournament selection is performed)

pc Probability of crossover (0 ≤ pc ≤ 1)
Table 2.3 : List of parameters of the Std-EA not depending on the coding.

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–14

Parameter Definition or possible values
Coding Binary, Gray or decimal coding Real coding
Type of crossover 1-site, 2-site or uniform SBX
Type of mutation Flip Parameter-based mutation

pm
Probability of mutation (defined

by the user, with 0 ≤ pm ≤ 1)

Probability of mutation
(function of the generation
number t : cf. Eq. (2.20))

ηc − Distribution index for
crossover (≥ 0)

ηm − Distribution index for
mutation (≥ 0)

Table 2.4 : List of parameters of the Std-EA depending on the coding.

2.3.3 Miscellaneous examples of applications in engineering

The robustness of EAs has been exploited in a broad family of applications : this section pres-
ents a few examples of mechanical problems successfully treated with EAs :

• in [JEN97], the volume of a multistorey frame with truss-supported hangers is mini-
mized by acting on geometrical variables (cross sections of beams and columns and
lengths of structural elements), while constraints are defined following BS5950
(which is the principal code for the design of structural steelwork in the UK) ;

• Matouš et al. use genetic algorithms to increase the performances of composite lami-
nated structures [MAT00] ;

• Moreau-Giraud et al. study in [MOR02] a coupling with a bolted rim : a torque is
transmitted by adhesion using bolts placed at a certain radius. The (multicriteria)
problem consists in minimizing the radius, the number of bolts and the torque ;

• Périaux et al. proposed a method based on genetic algorithms to optimize the shape of
a nozzle which satisfies a prescribed pressure distribution on its boundary for a given
flow condition [PER01] ;

• in [LAG02], two space frame structures are treated, where the breadth, the height and
length of the web as well as the flange of I-shaped cross sections are the design vari-
ables, the objectives being the mass of the structure and the solution having to satisfy
Eurocode 3 ;

• in [FON95a], a low-pressure spool speed governor of a gas tubine engine is optimized ;

• Jha developed an integrated computer-aided optimal design method of a plain milling
cutter [JHA95] ;

• Pham developed an evolutionary method to optimize chemical engineering processes
as plug-flow reactors, batch processes, etc. [PHA98] ;

Chapter 2 – Evolutionary algorithms applied to mechanical design optimization 2–15

• in [WIN95], many applications are collected, in fields like aerodynamic design, aircraft
control, computational fluid dynamics, etc.

These selected examples illustrate the growing place that EAs have taken in engineering op-
timization thanks to their robustness, adaptiveness and efficiency. However, to apply EAs more
particularly to pre-design optimization, the handling of multicriteria and constrained aspects has
to be dealt with. This is discussed in the next chapter.

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–1

CHAPTER 3 – M ULTICRITERIA OPTIMIZATION IN
EVOLUTIONARY ALGORITHMS

3.1 Introduction

Though lots of optimization studies deal with only one objective, this approach is often not
realistic for industrial applications. More and more real-life cases need several objectives to be
handled simultaneously, for instance minimizing both the mass and the cost of a mechanical
structure, – which can be a dilemma, e.g. when specially machined components are lighter but
more expensive than other components, heavier but with standard pieces. Another important
aspect for the designer is to obtain a product which satisfies all the constraints, i.e. all the techni-
cal requirements (related to the mechanical working of the structure, its resistance, etc.).

Therefore, after recalling some definitions essential to fathom multiobjective optimization
(§ 3.2), this chapter focuses on multiobjective methods implemented in EAs (§ 3.3), and par-
ticularly multicriteria decision aid methods (§ 3.4). Then, the handling of the constraints is in-
vestigated (§ 3.5). Finally, after these bibliographical aspects, a new method is proposed, PA-
MUC, aiming to deal with both preferences and constraints in EAs (cf. § 3.6).

3.2 Theoretical aspects about multiobjective optimization

In industrial applications, several objectives are often pursued simultaneously (e.g. minimiz-
ing the cost and the mass of a mechanical structure, and maximizing a performance indicator at
the same time). The formulation of general multiobjective (or vector) optimization problems can
be written as follows :

x
min f(x) (3.1)

 g(x) ≥ 0, (3.2)

s.t.: h(x) = 0, (3.3)

xi ∈ Xi for i = 1,…, n, (3.4)

where :
• Xi is the set of xi (which may be continuous, discrete or integer) ;
• f(x)T = [f1 (x) f2 (x) … fm (x)] (m objectives) ;
• g(x)T = [g1 (x) g2 (x) … gp (x)] (p inequality constraints) ;
• h(x)T = [h1 (x) h2 (x) … hq (x)] (q equality constraints).

Here are a few definitions essential in multiobjective optimization [EHR97,THI03] :

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–2

• Strict Pareto dominance : a vector u is said to strictly dominate v (u ��� v) if and only if ∀
i ∈ {1,…, m}, ui < vi

(1) ;

• Pareto dominance : a vector u is said to dominate v (u � v) if and only if ∀ i ∈ {1,…, m},
ui ≤ vi and for at least one i ∈ {1,…, m} : ui < vi ;

• Weak Pareto dominance : a vector u is said to weakly dominate v (u � v) if and only if ∀
i ∈ {1,…, m}, ui ≤ vi ;

• Incomparability : two vectors u and v are incomparable if neither u � v nor v � u ;

• Pareto optimality : a design vector x*
 ∈ F is Pareto optimal if and only if there exists no

other x ∈ F such that :

fi (x)≤ fi (x
*) for i = 1,…, m, (3.5)

with fi(x) < fi(x
*) for at least one objective i. F is the feasible domain defined by :

F = { x ∈ X | gj (x) � 0 for j = 1,…, p and hk (x) = 0 for k = 1,…, q }. (3.6)

• Pareto set : the set of all the nondominated solutions is called the Pareto set P* :

P* = { x* ∈ F | � x∈ F such that x � x* }. (3.7)

• Pareto front : the image of the Pareto set P* in the objective function space is called the
Pareto front (PF). Figure 3.1 represents the Pareto front for a minimization problem. It is
also called the trade-off surface.

Fig. 3.1 : Pareto front PF (dotted line) in a 2-objective minimization example (figure adapted from [COE02a]).

3.3 Classification of multiobjective methods implemented in EAs

As the solution is generally not unique in vector optimization, the user has to provide addi-
tional information about his/her preferences in order to find the optimum solution. Three differ-
ent approaches are available in the literature [VAN98,VAN99,ZIT00] :

(1) One should be very careful about the fact that these definitions of ��� , � and � are written for a minimization problem,

which explains the “opposite” signs (e.g. u ��� v when ui < vi ∀ i).

f1

f2

PF

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–3

• preferences may be used at the end, when the Pareto front has been completely determined (a
posteriori methods) ;

• preferences may be used during the optimization process, in an interactive way (progressive
methods) ;

• preferences may be included since the beginning of the search process (a priori methods) :
the user has to assign a weight to each criterion, or at least a ranking of the m objectives.

Fig. 3.2 : A priori, progressive and a posteriori methods for multiobjective optimization.

Figure 3.2 symbolically illustrates these three approaches. Multiobjective methods combined
with evolutionary algorithms [ZIT99a] are briefly presented below, before focusing on a priori
techniques.

It should be noted that the terms “multicriteria” and “multiobjective” are often synonymous in
the literature. However, in this work, as suggested in [COE02a], the expression “multiobjective
optimization” will refer solely to the presence of multiple objectives, while “multicriteria optimi-
zation” will imply the use of an additional procedure to deal with the user’s preferences.

3.3.1 A posteriori methods

In a posteriori methods, the main step consists in drawing up the shape of the Pareto front.
There are various methods to find out the nondominated solutions using evolutionary algorithms
(see [COE02a ,VAN00a]). As three of them (VEGA, MOGA and NSGA) play an important role in
multiobjective optimization and will be mentioned again in the following of the thesis, their for-
mulation will be briefly described below.

The first a posteriori evolutionary method, VEGA (Vector Evaluated Genetic Algorithm) was
proposed by Schaffer (cited in [VAN00a]) : in this approach, the population is divided in m sub-
populations (where m is the number of objective functions). Then, during the selection step, par-
ents of each sub-population are chosen only according to the relevant objective. After that, the
sub-populations are mixed together and crossover and mutation are performed on the whole
population (cf. Fig. 3.3).

VEGA is a criterion selection technique, because fractions of population are selected upon
separate objective performance [COE02a] ; but most of a posteriori methods are based on the con-
cept of Pareto sampling, whose idea was first proposed by Goldberg [GOL89]. He suggested the
use of nondominated ranking and selection to move a population towards the Pareto front. A

A priori methods Progressive methods A posteriori methods

User Preferences
(Weights, ranking, etc.)

Search

Solution(s)

Search User

Solution(s)

Search for the
 Pareto front

Nondominated
set

User’s
preferences

Solution(s)

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–4

variation of this approach was proposed by Srinivas and Deb [SRI94] in the famous Nondomi-
nated Sorting Genetic Algorithm (NSGA), which ranks the individuals according to nondomina-
tion, as illustrated in Fig. 3.4 for the minimization of two objectives. Each layer is composed of
individuals having the same rank, hence the same fitness value, and a sharing procedure
− decreasing the fitnesses of individuals which are close one to each other in the design space −
is performed in order to avoid a premature convergence towards a particular region of the search
space.

Fig. 3.3 : Description of VEGA : the jth sub-population is created by selecting the best individuals

following the jth objective function ; then, the m sub-populations are shuffled, and crossover and

mutation operators are applied to create the new generation (figure adapted from[VAN00a]).

Fig. 3.4 : Description of NSGA (in a minimization problem) : ranking of the population

w.r.t. nondomination (figure adapted from [SRI94]).

Another prevalent a posteriori method is the Multi-Objective Genetic Algorithm (MOGA),
proposed by Fonseca and Fleming, where the rank of an individual corresponds to the number of
chromosomes in the current population which dominate it [FON95,PUR01]. For instance, if an in-
dividual xi (at generation t) is dominated by pi

(t) individuals, its rank is :

rank(xi ,t) = 1 + pi
(t). (3.8)

f1

f2

rank 3

rank 2

rank 1

Individual 1

Individual 2

…

Individual N

1st sub-

population

…

mth sub-

population

Individual 1"

Individual 2"

…

Individual N"

Individual 1'

Individual 2'

…

Individual N'

Population

(total size = N)

m sub-populations

are created

The m sub-populations

are mixed together

New population

crossover

and mutation

mixing of the m

sub-populations

selection of the m

sub-populations

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–5

Then, the fitness function is evaluated according to the following rules :

• sort population according to rank (nondominated individuals are given rank 1) ;
• assign fitness to individuals by interpolating from the best (rank 1) to the worst (rank nrank

≤ N, where N is the size of the population) ;
• average the fitnesses of individuals with the same rank, so that all of them are sampled

with the same rate.

Recent advances in a posteriori techniques include CMEA (Constraint Method-based Evolu-
tionary Algorithm [RAN01]), NPGA2 (Niched-Pareto Genetic Algorithm 2 [ERI01]), NSGA-II
(Nondominated Sorting Genetic Algorithm-II [DEB02a]), PAES (Pareto Archived Evolution
Strategy [KNO00]) and SPEA2 (Strength Pareto Evolutionary Algorithm 2 [ZIT99,ZIT01]).

Once the search process is over, the user can choose a solution among the nondominated
points. This generally requires a preliminary treatment of the solutions, which in some cases may
be computationally expensive. For example, when lots of solutions have been found on the Pa-
reto front, a filtering must be performed, to select a representative subset of the nondominated
points in order to facilitate the choice for the user [OSY02] (cf. Fig. 3.5).

Fig. 3.5 : Process of filtering of the nondominated solutions (in order to keep a representative

subset of objective vectors, 20 solutions are retained for the user) (figure adapted from [OSY02]).

3.3.2 Progressive methods

Though some methods have been developed since the 1970’s to use information from the user
within the search process, like the Surrogate Worth Tradeoff (SWT), or more recently Jahn’s,
Geoffrion’s, Fandel’s [COL02] or Tappeta’s [TAP99] methods, Coello [COE02a] underlined that
there is extremely few works dealing with interactive methods implemented in EAs, since they
require an important investment of time from the decision maker.

f1

f2

98 nondominated solutions (without filtering)

20 filtered nondominated solutions

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–6

3.3.3 A priori methods

Whereas a posteriori techniques aim to determine the shape of the whole Pareto front, and let
the user decide which solution to retain, the key idea in a priori methods is to incorporate prefer-
ences since the very start of the search process, by a ranking of the objectives, or more com-
monly through weights assigned by the decision maker to each criterion.

This can be very useful in particular when the user already has a strong idea about his/her
preferences about the objectives, or when the number of objectives exceeds three (which makes
difficult and less intuitive the choice between the nondominated solutions). As a matter of fact,
even with 2 or 3 objectives, making a choice after the determination of the trade-off surface is a
complex task, generally requiring a preliminary treatment of the nondominated solutions, as the
filtering indicated above.

Coello also noticed that there is very little work in which the preferences are explicitly han-
dled in the evolutionary multiobjective literature [COE00b]. Therefore, in the scope of this thesis,
the emphasis is put on using preferences since the beginning of the search process.

Even if it may seem redundant, it is important to dwell on the fact that there is no point in us-
ing systematically (i.e. for all multiobjective problems) either an a priori or a posteriori approach,
or in deciding which approach is the better : the method selected by the user must be chosen with
respect to his/her needs.

Here are the most popular a priori methods, and some of their implementations in EAs
[FON95b,HOR97] :

• lexicographic ordering : the user has to rank the objectives following their relative impor-
tance [COE02a]. No weight is used. The optimum is thus found by minimizing the objective
functions, starting with the most important one and proceeding according to the predefined
order of importance. The main limitation of this approach is that when the number of objec-
tives is high, it tends to optimize the most important ones. Furthermore, no quantitative pref-
erences can be added to the process. This explains the low number of studies dealing with
lexicographic ordering in EAs [COE02a] ;

• weigthed sum method : this is with no doubt the most popular a priori method in the EA
community, and also among design engineers. The m objective functions are aggregated into
one, as follows [OSY02] :

f(x) = �
=

m

1i
iw fi(x), (3.9)

where the weights are such that :

�
=

m

1i
iw = 1. (3.10)

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–7

A thorough collection of applications of linear aggregation of objectives techniques imple-
mented in EAs is available in [COE02a] ;

• min-max method : the multiobjective problem is transformed into a single-objective problem,
with [OSY02] :

 f *(x) =
{ } 0

0

i

ii

im,...,1i f

)(ff
.wmax

x−
∈

, (3.11)

where fi
0 is the separately attainable minimum of the ith objective (variants of this technique

adapt the formulation in order to deal with fi
0 equal to zero), wi are weights and f * is the ob-

jective function to be minimized. In [BAL01] for instance, a min-max fitness function is used
to optimize future land use and transportation plans for a city ;

• target vector technique : the multiobjective problem is replaced by a single-objective prob-
lem where the goal is to minimize f *(x) [COE02a] :

f *(x) =
α

1])([−− WTxf , (3.12)

where T is the target vector defined by the decision maker, W a weighting matrix accounting
for different scales of sizes between the m goals, and α is generally equal to 2 (Euclidean
distance). The most popular variances of this technique are the goal attainment and the goal
programming techniques [COL02].

Coello presents some examples of target vector techniques incorporated in EAs in [COE02a] ;
for instance, Deb uses goal programming for a welded beam design, in order to minimize
both its cost and end deflection [DEB01b].

Although the methods presented above are widespread in the EA community, and generally
easy to implement in standard EAs, there are also specific methods – based on the multicriteria
decision aid field – to pay heed to the user’s preferences. They are discussed in the next section.

3.4 Multicriteria decision aid methods implemented in EAs

3.4.1 Introduction to multicriteria decision aid

This section presents some theoretical aspects necessary to understand the choice of the mul-
ticriteria method to implement in the EA for pre-design optimization. One of the scopes of mul-
ticriteria decision aid is to rank a set of potential solutions or candidates (called the actions) fol-
lowing several criteria {G1, G2, …}. Faced to two actions a and b, a decider will react in one of
the following ways [VIN89,RUD01a] :

• a I b : indifference between a and b ;
• a P b : a is preferred to b ;
• b P a : b is preferred to a ;
• a R b : a and b are incomparable.

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–8

These three relations {P, I, R} are sufficient to form a preference structure, under the condi-
tion that P be asymmetric, I reflexive and symmetric and R irreflexive and symmetric [ROY93].
Every preference structure can be rigorously characterized by the definition of the relation S :

(a S b) iff (a P b) or (a I b). (3.13)

A total or complete preorder is defined by the fact that ∀ a, b and c pertaining to the set of
actions A, Eqs. (3.14) and (3.15) hold.

(a S b) or (b S a) → completeness, (3.14)
(a S b) and (b S c) � (a S c) → transitivity. (3.15)

In this case, all the elements of A can be ranked from the better to the worst, and there exists a
function G associated to S such that ∀ a, b ∈ A :

 (a S b) ⇔ G(a)≥ G(b). (3.16)

Note that the structure defined by S can be modified to take into account an indifference
threshold, expressing that two actions a and b, albeit different, are so close that the decider con-
siders them as equivalent. A threshold model is defined in Eqs. (3.17) and (3.18) for ∀ a, b ∈ A :

(a P b) ⇔ G(a)≥ G(b) + Q , (3.17)
(a I b) ⇔ | G(a) – G(b)| ≤ Q . (3.18)

with Q being the indifference threshold. The character relation S associated to the threshold
model is such that ∀ a, b, c and d ∈ A :

(a S b) or (b S a), (3.19)
(a S b) and (c S d) � (a S d) or (c S b), (3.20)
(a S b) and (b S c) � (a S d) or (d S c). (3.21)

When Eqs. (3.19) to (3.21) are satisfied, S defines a quasi-order structure.

Consequently, one of the tasks of multicriteria decision aid is to develop methods helping the
decider to select a solution among a set of actions, e.g. by constructing a function G (like in Eqs.
(3.16) or (3.17) and (3.18)) expressing his/her preferences over a set of potential solutions. To
address this problem, two different approaches are encountered [ROY93] :

• the American Multi-Attribute Utility Theory (MAUT) : broadly used in the USA in econ-
omy, decision making or finance problems, the fundamental idea of this approach is to as-
sume that every decider tries unconsciously to maximize a utility function U = U(G1 ,
G2 ,…) ; the role of MAUT is to estimate this function [VIN89]. It is assumed that this func-
tion can be found by an iterative process, by asking judicious questions to the decider. When
this function is unavailable, the task will be to identify a set of nondominated solutions.
Strong preferences for one solution are established if it is clearly dominating the others. For
example, Keeney and Raffia (cited in [COL02]) proposed the use of a utility function defined
by Eq. (3.22) :

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–9

f *(x) = ∏
=

m

1i

[ki ui(fi(x)) + 1] (3.22)

where ki are normalization factors (0 ≤ ki ≤ 1) and ui are strictly non decreasing functions
which can incorporate nonlinearities ;

• the so-called French school, based on the outranking concept, which is built upon pairwise
comparisons of the solutions. After quantifying the degree of preference (or indifference)
between each pair of solutions, the rank of a solution (for a given vector of weights) is com-
puted by comparing it to all the other solutions. In these methods, a complete pre-order
structure is not always constructed : incomparability between two solutions is possible, and is
part of the information given to the user to help him/her to understand the problem. The most
representative instances of this approach are ELECTRE I, II and III and PROMETHEE I and
II [ROY93].

As the user’s information about his/her preferences has to be taken into account within the
search process of EAs, it is important first to analyze the way preferences have been tackled in
the evolutionary multiobjective literature.

3.4.2 Preferences in EAs

There is very little work in which the handling of preferences is explicitly dealt with in the
evolutionary multiobjective literature [COE99b]. The most salient studies in this area are de-
scribed below :

• in [FON93], Fonseca and Fleming combined an a posteriori method, MOGA (cf. § 3.3.1), to
goal attainment (cf. § 3.3.3), in order to guide the search in a specific region of the trade-off
surface. The comparison between two individuals is modified to tackle the user’s prefer-
ences, expressed by means of goals. This procedure can be utilized in an a priori or an inter-
active way ;

• to converge towards a sub-region of the trade-off surface, Cvetkovi
�
 and Parmee [CVE02]

used weighted Pareto optimization, which is based on the weighted dominance relation, de-
fined as follows : for a given vector of weights w

T = [w1 … wm] (whose sum is equal to 1)
and a real number τ (with 0 ≤ τ ≤ 1), x is said to (w,τ)-dominate y iff :

x � τ
w y τ≥⇔ ≥

=

�
)y,x(I.w ii

m

1i
i , (3.23)

where :

Ι≥ (xi ,yi) = 1 if xi ≤ yi , (3.24)
Ι≥ (xi ,yi) = 0 if xi > yi . (3.25)

Therefore, the weighted Pareto front is the set of non dominated elements according to the
(w,τ)-dominance relation (in [CVE02], τ is set to 1). Another interesting aspect of this work is
the procedure used to compute the weights. Indeed, the user has to express his/her prefer-
ences about the criteria by unary and binary relations, as in Table 3.1 :

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–10

Relation Intended meaning
G1 ≈ G2 G1 and G2 are equally important
G1 � G2 G1 is less important than G2

G1
�

 G2 G1 is much less important than G2

 ¬ G1 G1 is not important

 ! G1 G1 is important
Table 3.1 : Preference relations [CVE02].

Then, after some operations, Warshall’s algorithm is applied to compute the weights [CVE00]
from the user’s qualitative preferences ;

• in [DEB99a], to conduct the population of the EA towards a peculiar part of the trade-off sur-
face, a biased sharing is applied. Classical sharing procedures decrease the fitnesses of indi-
viduals which are close one to each other in the variable or the function space, in order to
avoid a premature convergence towards a particular region of the search domain [BAC97]. In
[DEB99a], the difference d(i,j) between two individuals i and j is computed as follows :

d(i,j) =

2/1
m

1k
2min

k
max

k

2)j(
k

)i(
k

k
)ff(

)ff(
w ���

�����
−
−�

=
, (3.26)

where wk is the weight assigned to the kth objective function. The biased sharing was incorpo-
rated in a NSGA (cf. § 3.3.1), and produced denser parts of the Pareto front in the region
where weights guided the search ;

• Pirjanian used fuzzy rules to compute weights – whose aim is to narrow the search of the
multiobjective EA – in the context of action selection of robots [PIR98] ;

• Jin and Sendhoff converted fuzzy preferences into crisped weights, or weight intervals
[JIN02]. Then, either random or dynamic weighted aggregation is used [JIN01,JIN01a], both
techniques initially consisting in varying the values of the weights during the search process,
in order to cover the whole trade-off surface. These methods are adapted in [JIN02] to zoom
in a specific part of the Pareto front ;

• in [SAK00], Sakawa and Yauchi adapted GENOCOP III (a constraint-handling technique for
EAs : see § 3.5.1.4) to allow an interaction with the decision maker at the end of each gen-
eration of the EA. The multiobjective optimization is tackled by a min-max approach (cf. §
3.3.1) ;

• in the MAUT field, Greenwood et al. used elements of imprecisely specified multi-attribute
value theory (ISMAUT) to perform imprecise ranking of attributes (cited in [COE99b]). The
idea is to rank a set of solutions instead of explicitly rank the attributes (i.e. the objective
functions). Preference information is also used in the survival scheme of the EA ;

• while most papers mentioned here deal with the preferences of a single decision maker,
Leyva-López et al. are concerned about group decision, which is usually understood as the
reduction of different individual preferences on a given set to a single collective preference
[LEY02]. They propose an extension of the ELECTRE III multicriteria outranking methodol-

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–11

ogy (cf. § 3.4.1) combined to an EA to assist a group of decision makers, in order to achieve
a consensus on a set of possible alternatives ;

• Rekiek et al. present in [REK00,DEL01] a new method to address the hybrid assembly line
design problem with several objectives. Each potential solution is a specific way of assigning
a set of tasks to stations and selecting the resources to perform each of them. The multiob-
jective problem is solved by a grouping genetic algorithm combined with an a priori ap-
proach, PROMETHEE II (cf. § 3.4.1), wherein the user’s preferences are taken into consid-
eration by means of weights [REK01] ;

• another application of PROMETHEE II was performed by Massebeuf et al. who proposed an
a method where PROMETHEE II is applied after the use of an a posteriori technique in order
to select a subset based on the preferences of the decision maker [MAS99].

From this analysis of the state-of-the-art in the field of EAs combined with preferences, it
comes out that the general trend is to identify a sub-region of the Pareto front, corresponding to a
user-defined vector of weights, by using a particular multicriteria decision aid (MCDA) method.
Among MCDA methods, Roy pointed out that the use of outranking ones (i.e. from the “French”
school) becomes really interesting when some of the following conditions are satisfied [ROY93] :

• the criteria are heterogeneous (i.e. the functions are expressed in different scales of sizes :
mass, cost, etc.) ;

• the loss on one criterion is not directly compensated by a gain in another criterion ;
• there are pseudo-criteria : for instance when the value of the jth criterion is very close for two

design vectors (i.e. when the relative distance between the two solutions stands below a user-
defined level), one can reasonably suppose that both solutions can be considered as equiva-
lent for that criterion ;

• the number of criteria exceeds three.

As some (or all) of these conditions are often present in the context of pre-design optimiza-
tion, the outranking approach has been preferred, and more particularly PROMETHEE II. In-
deed, whilst ELECTRE I, II and III and PROMETHEE I – by allowing incomparability – do not
systematically furnish an aggregating function, preventing the user from having all the actions
sequentially classified, PROMETHEE II is characterized by an overall function (called the net
flux) which ranks all the candidates of a set, thus constructing a complete pre-order (cf. § 3.4.1).
This net flux can then play the role of a fitness function and be incorporated in a standard EA for
example, as it is performed in the PAMUC method proposed in this thesis

But before dissecting the core of PAMUC, another crucial matter that deserves much care in
EAs is the handling of constraints. This will be discussed in the next section.

3.5 How to tackle constraints in EAs

Until now no constraints have been interfering in the discussion. However, the tackling of
constraints in EAs is far from being straightforward, and circumventing this aspect is unrealistic
with industrial applications, generally characterized by many constraints (e.g. physical, technical
or economical requirements). After the review of the most common constraint-handling tech-

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–12

niques in EAs for single-objective optimization (§ 3.5.1), methods specially devoted to deal with
both multicriteria and constrained aspects in EAs are presented (§ 3.5.2).

3.5.1 Handling of constraints in EAs for single-objective problems

The different methods to handle constraints in EAs have been classified by Michalewicz
[MIC95] and Coello [COE99a], and can be summarized as follows :

1. lethalization methods (or death penalty methods) ;
2. penalization methods ;
3. methods based on a special representation of solutions and operators ;
4. repair algorithms ;
5. methods based on a separation of objectives and constraints ;
6. hybrid methods.

They are briefly described below. Although the third and fourth kinds of methods can be very
efficient, they are restricted to more specific problems (problems with linear constraints, some
combinatorial applications as the traveling salesman problem, etc.). More information about
these methods is available in [COE02,MIC96, REI96].

3.5.1.1 Death penalty

This is the most straightforward way to take the constraints into account : in the random crea-
tion of the initial population, and during the selection of the best individuals at each generation,
the unfeasible solutions are systematically eliminated.

Van Kampen et al. have insisted [VAN96] on the fact that it can furnish good results in some
applications, especially when the design space is convex, and when the rate of unfeasible solu-
tions in the whole design space is not too high. Nevertheless, the main drawback of this approach
is that all the unfeasible solutions share the same fitness value, so no useful information about
the unfeasible domain is exploited.

3.5.1.2 Penalization methods

This is the most popular approach by the EA community. A new objective function f
*(x) is

defined by adding a penalty to each unfeasible solution. Two choices can be done while esti-
mating a penalty function [COE02] :

• an individual might be penalized just because it is unfeasible, without taking the amount of
violation into account (in this case, lethalization methods can be considered as penalty meth-
ods where the probability of selection for unfeasible solutions is equal to zero) ;

• the penalty function is computed by using the distance between the individual and the
boundary of the feasible domain.

The main penalty methods are described below :

1. Static penalty : for each constraint, the corresponding penalty factor remains constant
during all the generations [COE02] :

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–13

f
* (x) = f(x) +

β
)(gk jj

k

1j

x
�

=
, (3.27)

where β is a parameter of the model (usually, β = 1 or 2). If the jth constraint is satisfied
(gj(x) ≥ 0), then no penalty function must be added for this constraint (kj = 0). Otherwise,
kj is a positive number which value must be defined by the user at the start of the process
(and remains constant throughout the generations) ;

2. Dynamic penalty : static penalty factors are difficult to choose : a too large value will lead
to a premature convergence close to the few feasible individuals of the initial population,
while a too small value will slow down the convergence. The idea of dynamic penalties is
to use low penalty factors at the earlier generations, to allow a large exploration of the
search space, then to progressively increase these factors.

For example, Joines and Houck [JOI94] proposed a technique where individuals are evalu-
ated at each generation using the following formula :

f
*(x) = f(x) + (C.t)α β

)(g j
0g j

x
�

<
, (3.28)

where t is the generation number, and C, α and β are parameters of the method (standard
values proposed in [JOI94] are : C = 1, α = 1 and β = 2) ;

3. Annealing penalties : another way to increase the importance of penalties during the proc-
ess is to use penalty factors based on the principle of simulated annealing (cf. § 2.2.2). For
instance, Carlson Skalak et al. computed the fitness of an individual by the following ex-
pression (cited in [COE02]) :

f *(x) = e – M/T. f(x) , (3.29)

where M measures the amount of violation of the constraints and T (analogous to the
“temperature” in cooling scheme process in simulated annealing) tends to zero as evolu-
tion progresses, such that the initial penalty factor is low and increases over time ;

4. Adaptive penalties : so far, no information concerning the feasibility of the solutions at
earlier generations have been introduced, though it could be useful to adapt the penalty
factors to the results. Smith and Tate (see [COE02]) proposed the following adaptive pen-
alty equation :

f
*(x) = f(x) + [fadm(t) – fpop(t)] .

c
k

1j j

j

)t(q

)(g�
= ���

����� x
, (3.30)

where :

• fadm(t) : value of the fitness function of the best feasible individual at generation t ;
• fpop(t) : value of the fitness function of the best individual at generation t ;
• qj(t) : penalties (functions of the generation t) ;
• c : parameter of the model (usually, c = 2).

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–14

The goal of these techniques is to use the information about the feasible domain collected
in the previous generations, in order to avoid the tedious task of setting the values of pen-
alty coefficients (as it is the case in most static and dynamic penalty methods).

Penalization techniques are the most common way to handle constraints, because they provide
good results without significant modification of the standard evolutionary algorithm. However,
the difficulty in the choice of the parameters constitutes their main drawback, because no general
rule can be applied to determine their values. Therefore, most recent penalization approaches use
adaptive factors and parameters [COE00a,NAN01].

3.5.1.3 Decoders

In some peculiar applications, decoders offer an efficient alternative to classical penalty-based
methods. Indeed, they lie on a decoding process, which can build automatically feasible solu-
tions, thanks to instructions stored in the chromosomes [BAC97].

Though decoders have given rise to interesting results mainly in the field of combinatorial
optimization (e.g. scheduling problems, pallet loading, traveling salesman problem, etc.), Kozieł
et al. have developed a special decoder for continuous optimization [KOZ98,KOZ99], performing
an homomorphous mapping between the original (often non convex) feasible domain and a
“dual” convex space (defined as the hypercube [–1,1]n, where n is the number of variables). Al-
though very promising hopes have grown up with this technique, it should be pointed out that the
mapping procedure can be very expensive (computationally speaking) ; furthermore, not every
kind of contraint can be treated, and so far, problems with mixed variables are also excluded
from this approach.

3.5.1.4 Repair strategy

Repair algorithms enjoy a huge popularity in some areas of optimization, as knapsack, set
covering or traveling salesman problems. The principle is to transform an unfeasible chromo-
some into an admissible one, thanks to knowledge about the problem [MIC95a]. Two different
implementations have been proposed :

• if xu is an unfeasible chromosome and xr its repaired (thus feasible) counterpart, the first ap-
proach consists in replacing the fitness function of the original individual f(xu) by f(xr) ;

• the second approach consists in replacing (with some probability) f(xu) by f(xr) but also the
chromosome of xu by the one of xr .

The first technique is related to what biologists have called the Baldwin effect, which assumes
that the continual change and improvement of individuals in a population is due to a combination
of evolution and learning. The learning (in this case the repair procedure) is transferred into the
individual by means of the modified value of the fitness function [WHI94].

The second technique has similarities with Lamarckian evolution, which makes the hypothe-
sis that each individual gets better during its lifetime, and this improvement is coded back into its
chromosome [WHI94].

Coello [COE02] mentions the works of Liepins et al. for a set of combinatorial optimization
problems, where repair algorithms surpass other approaches in speed and performance. Xiao et
al. also used a repair strategy to develop an adaptive planner/navigator for mobile robots

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–15

[XIA97] : heuristic knowledge is used to move along a feasible path. Another example is provided
in the field of quadratic assignment problems, where Tate and Smith create mechanisms to create
automatically feasible individuals [TAT95].

Whilst most repair algorithms are concerned with combinatorial optimization, Michalewicz
and Nazhiyath developed GENOCOP III for continuous optimization [MIC95b] : it is actually an
hybridized algorithm, mixing coevolution (implying the presence of two distinct populations in
the EA : see § 3.5.1.6) and repair strategy. The first population is composed of points satisfying
only the linear constraints (which may thus be unfeasible with respect to the non linear ones),
whereas only fully feasible solutions dwell in the second population.

Fig. 3.6 : Description of the repairing procedure in GENOCOP III : a feasible point x*
f is constructed from two

points xf and xu (F is the feasible domain ⊂ D).

Each unfeasible solution xu is then “repaired” with some probability (only for evaluation) by
selecting an admissible reference point xf and creating a random point xf

* located in the feasible
domain, on a segment joining xu and xf (cf. Fig. 3.6).

One important feature of repair algorithms is the replacement probability. While a low prob-
ability may be inefficient, a too large value may lead to a premature converge. Liepins et al. are
supporters of a never replacing rule (i.e. no repaired chromosome is introduced in the new
population), whereas Nakano promotes an always replacing rule (cited in [COE02]). Besides,
Orvosh and Davis (cited in [BAC97]) proposed a 5% rule in combinatorial optimization, while
Michalewicz et al. proposed a 15% replacement rule for continuous problems. As it can be seen
by these various recommendations, no systematic rule can be adopted: the replacement probabil-
ity is a supplementary parameter, eminently problem-dependent, to be tuned by the user.

3.5.1.5 Constraint-preserving operators

For some specific constraints, genetic operators of the EA (like crossover and mutation) can
be tailored to preserve the feasibility of the population [BAC97]. For example, if equality and
inequality constraints are linear, and if each variable set is connex, then uniform, boundary and
nonuniform mutations and arithmetical crossover automatically transform feasible parent(s) into
offspring automatically satisfying the constraints. Like the decoders and the repair algorithms,
this technique is applicable only in restricted applications.

xf

D

F

F

xu

xf
*

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–16

3.5.1.6 Methods making a distinction between objective(s) and constraints

In [COE02], Coello classified the methods separating the objective(s) and the constraints in
four approaches :

• coevolutionary algorithms : as already mentioned above (see GENOCOP III in § 3.5.1.4),
coevolutionary models use two populations evolving in parallel. Paredis (cited in [COE02])
proposed a rather different version of coevolution : the first population contains the con-
straints to be satisfied (constraints highly violated have also a high fitness value), and the
second one is composed of potential solutions (individuals with high fitness values repre-
sent solutions which respect a lot of constraints). The general idea is to focus the search on
constraints that are harder to satisfy [CRA01] ;

• superiority of feasible points : the key idea is to put the emphasis on the feasibility (com-
pared to the value of the objective function), specially during the selection scheme, as in
Powell and Skolnick’s penalty method (PS), whose penalized objective function f *(x) is
first computed as follows :

f *(x) = f(x) + R .
β

)(g j

p

0g
1j

j

x
�

<
=

 , (3.31)

where R must be tuned by the user (and generally β = 1 ; cited in [DEB00]). Then, the
value of f *(x) for unfeasible individuals is raised by an amount λ computed to make the
fitness of the best unfeasible solution equal to the fitness of the worst feasible solution. In
[DEB00], Deb proposed a constraint-handling method based on a tournament selection op-
erator (TS), which works as follows :

• any feasible solution is preferred to any unfeasible solution ;
• among two feasible solutions, the one having a better objective function value

is preferred ;
• among two unfeasible solutions, the one having smaller constraint violation is

preferred.

The corresponding fitness function devised by Deb is (with β =1) :

f(x) if gj(x) ≥ 0 ∀ j = 1,…, p, (3.32)
f fitness(x) =

fmax +
β

)(g j

p

1j

x
�

=
otherwise. (3.33)

These two techniques are very close, except that Deb’s method does not require the tuning
of the additional parameter R. Another technique, CONGA (COnstraint based Numeric
Genetic Algorithm), was proposed by Hinterding and Michalewicz [HIN98] : in the first
part of the process, the algorithm only looks for feasible solutions, without taking the ob-
jective function into consideration. Then, as the amount of feasible individuals increases,
the algorithm focuses on improving the best ones. To perform this operation, two selection
schemes are used : the first one choosing an individual either for mutation or as a parent
(called x1) for crossover, following the same criteria as Deb’s (see above) ; the second one

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–17

choosing a mate for x1 by selecting the individual with the least number of satisfied con-
straints in common with x1. The idea is to cross complementary individuals in order to
produce better ones ;

• behavioural memory : Schoenauer and Xanthakis proposed a method where the con-
straints are treated sequentially [SCH93]. Indeed, their algorithm works as follows :

1. set j = 1 (j being the number of the current treated constraint) ;
2. evolve the population to minimize the violation of the jth constraint ;
3. set j = j + 1 ;
4. evolve the current population to minimize the violation of the jth constraint.

During this step, the solutions which do not satisfy the j – 1 previous con-
straints are eliminated (cf. death penalty in § 3.5.1.1) ;

5. go back to step 3 as long as j < p.

Though this method requires that constraints could be ordered, which is as often as not un-
realistic, it can be well suited for some specific problems (as the generation of software
test data : see [SCH93]) ;

• multiobjective optimization techniques : in this approach, multiobjective techniques are
used to handle the constraints. The first method was proposed by Parmee and Purchase
(cited in [MEZ02]), and consisted in using VEGA (cf. § 3.3.1) by considering the con-
straints as objectives, to reach a feasible region of the search space.

Another implementation of VEGA was done by Surry et al., in the so-called COMOGA
(Constrained Optimization by Multi-Objective Genetic Algorithms) method, which func-
tions as follows [SUR95] :

1. compute the constraint violations for all solutions ;
2. perform a Pareto ranking based on constraint violation (e.g. by counting the

number of individuals of the population dominated by each solution) ;
3. compute the value of the “true” objective function (e.g. the cost of the pipes

in the gas network problem studied in [SUR95]) for each member of the
population ;

4. select a proportion pcost of individuals based on the “true” objective func-
tion, and the others on constraint ranking ;

5. apply the recombination operators (crossover, mutation) ;
6. adjust pcost to make the rate of feasible individuals become closer to the

user-defined rate of feasible solutions τ. Lowering pcost favours feasible so-
lutions, while raising pcost improves the “true” objective function (e.g. de-
creases the cost).

A third use of VEGA was performed by Coello in [COE00c], where at each generation, the
population is split into p + 1 sub-populations (with p equal to the number of constraints),
where the “true” objective function and the p constraints play the role of the 1 + p objec-
tive functions. The first sub-population is related to the objective function, and the j + 1th

sub-population uses the following fitness function :

• if gj(x) < 0 then fitness = gj(x) ;

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–18

• elseif v � 0 then fitness = – v ;
• else fitness = f(x),

where gj(x) is the jth constraint, v refers to the number of violated constraints and f is the
objective function.

In [CAM97], Camponogara et al. proposed to transform the single-objective problem into a
2-objective one, with the “true” objective function and a function Φ(x) (to be minimized)
related to the constraints :

Φ(x) = �
=

p

1j

max [0, gj(x)] . (3.34)

The multiobjective method used in [CAM97] consists in separating the current population
in layers of nondominated solutions (as in NSGA : see Fig. 3.4) ; then, from pairs of
points { xi , xj} located on different layers, a line search algorithm is applied in the direc-
tion joining both points (see Fig. 3.7).

Fig. 3.7 : Example of line search direction obtained from points si and sj in the method proposed in [CAM97] ;
f represents the “ true” objective function while Φ is related to the satisfaction of the constraints.

In [JIM99], Jiménez and Verdegay used a selection scheme close to the one proposed by
Deb in [DEB00] (see Fig. 3.7), where :

• any feasible solution is preferred to any unfeasible solution ;
• among two feasible solutions, the one having better objective function value is

preferred ;
• among two unfeasible solutions, the one having the lowest maximum violation

constraint wins.

The main difference with [DEB00] is that no additional procedure is used in [JIM99] to pre-
serve the diversity of the population.

Φ

layer i

layer j

f

si
sj

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–19

Ray et al. (cited in [COE02]) developed an approach in which solutions are ranked sepa-
rately following the value of their objective and constraints ; then, mating restrictions
(using specific information about the feasibility of each member of the population) are ap-
plied.

In [RUN00], Runarsson and Yao, noting that it is difficult to find a proper value for the
penalty parameters in penalization methods, proposed the use of a stochastic ranking : a
probability Pf of using only the objective function for comparisons while ranking unfeasi-
ble individuals is introduced. It means that given any pair of individuals, the probability of
comparing them following the objective function is equal to 1 if both are feasible, and to
Pf otherwise. This is close to the idea proposed by Surry et al. (see above ; cf. [SUR95]),
except that here Pf is not self-adaptive, and remains constant during the whole optimiza-
tion process.

In [OSY02], Osyzcka proposes to apply the constraint tournament selection method – ini-
tially devoted to multiobjective problems – to single-objective constrained optimization.
Basically, it is based on a set of selection rules near to the ones proposed in [JIM99] and
[DEB00] :

• any feasible solution is preferred to any unfeasible solution ;
• among two unfeasible solutions, the one having the lowest maximum violation

constraint wins ;
• among two feasible solutions x1 and x2 : if x1 dominates x2 (resp. x2 dominates

x1), x1 (resp. x2) is selected ; otherwise an individual is randomly chosen.

Finally, two other extensions of multiobjective a posteriori techniques were proposed to
handle constrained problems : in [AGU03], Aguirre et al. introduced the IS-PAES (In-
verted-Shrinkable Pareto Archived Evolutionary Strategy), which is an extension of the
PAES developed by Knowles and Corne [KNO00], and in [COE02c], Coello and Mezura
implemented a version of NPGA (Niched-Pareto Genetic Algorithm) adapted to tackle the
constraints.

3.5.1.7 Hybrid methods

The last category of constraint-handling methods combines evolutionary techniques with
other approaches, as Lagrange multipliers (as in gradient-based algorithms), ant colonies, fuzzy
logic, etc. They are summarized in [COE02].

3.5.1.8 Remarks

In this bibliographical overview of constraint-handling techniques in EAs, emphasis was put
on two approaches : first, the penalization methods, since they are the most widely used in the
EA realm – and specially in structural optimization –, and secondly the methods based on mul-
tiobjective optimization algorithms.

More and more techniques attempt to prune away user-defined parameters, by using self-
adaptivity, which exempts the user from tuning specific coefficients, as in penalization tech-
niques for example. Furthermore, it is well known in the EA community that incorporating spe-
cific knowledge about the domain, albeit very efficient, is applicable only in restricted problems

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–20

[COE02]. Therefore, to deal with mechanical design optimization, which can have very different
mathematical formulations, a robust tool is needed to handle the constraints.

The techniques mentioned above were mainly applied in single-objective optimization. In-
deed, in [COE02a], Coello insisted on the point that only a few papers encompass both multicrite-
ria and constrained features in EAs. This twofold aspect will be discussed in the next section.

3.5.2 Handling of constraints in EAs for multiobjective problems

The first way to handle constraints in multicriteria EAs was to add a penalty to the objective
functions of the unfeasible individuals, as in single-objective optimization (cf. Richardson et al.
[RIC89], Kundu [KUN99]). The other popular approach consists in considering the constraints as
additional objectives [COE02a] ; multiobjective EAs applied to constrained single-optimization
have been presented in § 3.5.1.6, and are easily extended to multiobjective optimization. Besides,
Kurpati et al. suggested to add specific improvements to some a posteriori multiobjective meth-
ods [KUR02].

So far, few papers deal with both constrained and preferences aspects in EAs, and it has been
emphasized in [COE02a] that there is a lack of development of constraint-handling techniques
especially devoted to multiobjective EAs. A novel method is thus presented below to tackle both
aspects.

3.6 Preferences Applied to MUltiobjectivity and Constraints
(PAMUC)

3.6.1 Motivation

The bibliographic study presented above shows the overwhelming number of methods created
to handle either multiobjective or constrained optimization with EAs. However, when the si-
multaneous tackling of both aspects is considered, very few specific methods are available. Fur-
thermore, while the amount of a posteriori methods is high, mainly because it does not require
any additional information about the user’s preferences, less techniques integrate those prefer-
ences within the search process.

As mentioned in § 3.4.2, the use of outranking methods (from the field of multicriteria deci-
sion aid) is recommended by Roy [ROY93] when at least one of the following conditions is satis-
fied :

• the criteria are heterogeneous ;
• the loss on one criterion is not directly compensated by a gain in another criterion ;
• there are pseudo-criteria ;
• the number of criteria exceeds three.

These conditions are often encountered in design optimization. Thus, to take the constraints
into account, the satisfaction of the constraints will be considered as a new objective (as in many
multiobjective approaches). From the pro and contra of the several methods cited above, it seems
obvious that the main features required to build a reliable multicriteria and constraint-handling
design optimization method are the following :

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–21

• to heed the constraints, the introduction of additional parameters, whose tuning is time-
consuming and problem-dependent, should be avoided ;

• as a very small difference for a criterion between two potential solutions does not imply
that one can be preferred to the other, indifference thresholds must be taken into account ;

• to be applicable in a wide range of problems, it should be implemented without major
modification of the standard EA.

Consequently, the idea is to use an aggregating technique (i.e. where the user assigns a weight
to each objective following its relative importance), namely PROMETHEE II, to deal with mul-
ticriteria optimization [FIL02a]. Incorporating PROMETHEE II in an EA has already been per-
formed by Rekiek ([REK01] ; see § 3.4.2), but in the particular case of an assemby line design
problem.

The goal is thus to extend this approach to any optimization problem (by integrating PRO-
METHEE II to a standard EA). Moreover, a specific technique is also required to tackle the con-
straints. Therefore, the simultaneous handling of both (multicriteria and constrained) features led
to the development of a novel method : PAMUC (Preferences Applied to MUltiobjectivity and
Constraints).

The main characteristics of PROMETHEE II are explained in the next section. Then, PAMUC
is described in § 3.6.3.

3.6.2 Description of PROMETHEE II

PROMETHEE II (Preference Ranking Organisation METHod for Enrichment Evaluations –
2nd version) is due to Brans and Mareschal [BRA86]. It is characterized by a particular scaling of
the objective functions, and by the fact that each individual a is compared to all the other solu-
tions of the set E in order to build the net flux (or preference flow), which measures the quality
of a compared to the rest of E [BRA96].

Here are the outlines of PROMETHEE II :

1. For each objective fi , a preference function Pi(a,b) is created, which allows to compare
any couple (a,b) of individuals (cf. Fig. 3.8). As in [REK01], a linear preference function
with indifference was implemented. This choice is discussed below.

Fig. 3.8 : Linear preference function with indifference threshold
(for a minimization problem) in PROMETHEE II (figure adapted from [BRA86]).

Pi(a,b)

di(a,b)

1

 – 1

0

qi– qi– pi pi

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–22

The parameters pi (preference thresholds) and qi (indifference thresholds) must be de-
fined by the user for each objective. If fi(a) ≠ 0, di(a,b) is computed as follows :

di(a,b) =
)a(f

)b(f)a(f

i

ii −
 if fi(a) ≠ 0. (3.35)

Otherwise, Pi(a,b) is computed as follows :

if fi(a) > fi(b) : Pi(a,b) = – 1, (3.36)

if fi(a) = fi(b) : Pi(a,b) = 0, (3.37)

if fi(a) < fi(b) : Pi(a,b) = 1. (3.38)

2. Then, the preference index of a over b is defined by :

π(a,b) = i

m

1i
i P.w

�
=

(a,b) (with �
=

m

1i
iw = 1). (3.39)

The weights wi reflect the relative importance assigned to each objective, and are cho-
sen by the user ;

3. Finally, to compare a solution a with the N−1 other solutions of a set E, the preference
flow φ (a) is computed as follows :

φ (a) =
1N

1

−
 . �

≠
∈

ab
Eb

π(a,b). (3.40)

Consequently, the multiobjective problem is transformed into the maximization of the prefer-
ence flow φ , which acts like the fitness function of a single-objective problem.

The theoretical framework introduced in § 3.4.1 is useful now to shed light on some charac-
teristics of PROMETHEE II. This method performs a quasi-order structure, which means that :

• indifference is taken into account, thanks to the definition for each criterion of the indif-
ference thresholds qi, whose value must be determined by the user following his/her
knowledge about the objectives ;

• compared to the other outranking methods (like ELECTRE I, II and III or PRO-
METHEE I), PROMETHEE II excludes incomparability. Incomparability appears for in-
stance when two individuals are mutually nondominated (one with respect to the other).
Though it may bring helpful information about the multiobjective problem, it is a delicate
task to integrate this concept into an aggregating method ;

• a direct consequence of the previous point is that for each pair (a,b) of individuals of the
EA population, either a S b or b S a (where S is the relation defined in § 3.4.1). At each

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–23

generation, the population of the EA can thus be ranked upon a single criterion (the pref-
erence flow) aggregating all the objectives, and playing the role of the fitness function.

Then, to take constrained and multicriteria aspects simultaneously into account, a novel ap-
proach is proposed in the next section.

3.6.3 Description of PAMUC

The aim of this original method called PAMUC (Preferences Applied to MUltiobjectivity and
Constraints) is to solve constrained multicriteria problems (with preferences defined by the user)
[FIL02b]. As in most multiobjective evolutionary methods, the constraints are considered as a
new objective ; it consists thus in using PROMETHEE II with m+1 objectives : the m objective
functions and one more related to the satisfaction of the constraints (the equality constraints are
transformed in inequalities as in Eq. (2.5) mentioned above). This latter function related to the
satisfaction of the constraints is formulated as follows :

f (m+1) �
<

)
=

0g j

j

j
k

(g x
. (3.41)

The factors kj are scaling factors which can be estimated thanks to this formula :

N

)(g
k

N

1n

)t(
j

j

�
==

x
 , (3.42)

• N : population size ;
• gj

(t)(x) : value of the jth constraint for x at generation t.

The flow-chart of the algorithm is illustrated in Fig. 3.9.

Fig. 3.9 : Flow-chart of PAMUC.

SOLUTION(S)

NO

RANDOM CREATION OF THE 1ST
GENERATION (t=1)

SELECTION FOLLOWING

m+1 OBJECTIVES

t ←←←← t + 1

CROSSOVER

& MUTATION

YES
t ≤≤≤≤ Ngen ?

UPDATING OF THE

WEIGHTS

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–24

The difference with a standard single-objective unconstrained EA lies mainly in the selection.
Before the selection scheme, the population at generation t is evaluated by using PRO-
METHEE II with m+1 objectives. The selection procedure is a binary tournament operator,
which functions as follows : when two new individuals (the children) are created by crossover
and mutation, they are compared with their parents thanks to the PROMETHEE II method. Then,
the two best individuals among the four (i.e. amid the parents and their children) are selected to
take part of the next generation.

As in any a priori method, weights (wi
*) are initially chosen by the user for the m objectives,

but in order to take into account the objective related to the satisfaction of the constraints, the
actual weights used in PROMETHEE II are computed in the following way :

wi
(t) = wi

*.RF (t) for i = 1,…, m, (3.43)

wm+1
 (t) = 1 – RF (t). (3.44)

• RF
(t) is the ratio of the population which satisfies all the constraints at the pre-

vious generation ;
• at the first generation : wm+1

(1) = 1 and wi
(1) = 0 for i = 1,…, m.

One can easily check that :

� +

=

1m

1i

)t(
iw = 1. (3.45)

The weights are adaptive (as the coefficients in adaptive penalty-based methods : see
§ 3.5.1.2) : when the number of feasible individuals is low (which is generally the case at the
first generations), the relative importance given to the m+1th objective (satisfaction of the con-
straints) is high. Then, if a growing part of the population tends to satisfy the constraints, a de-
crease of wm+1

(t)
 automatically occurs.

3.6.4 Choice of the weights

Though the decision maker usually chooses the weights intuitively, some approaches have
been developed to help the user in reflecting appropriately his/her preferences.

In [MAR89], Mareschal mentioned a family of methods where the user is asked to supply con-
straints about the weights. For example, in a 5-objective problem, if the user wants to express
that the first three criteria must not exceed in importance the last two ones, Eq. (3.46) can be
written :

w1
 + w2 + w3 ≥ w4 + w5 . (3.46)

Each time a new constraint is added, the space of potential weights progressively narrows un-
til proper values are obtained. Another approach consists in using qualitative information about
the user’s preferences, like in [CVE00] (see § 3.4.2), or in [EZZ00] with PROMETHEE I and II. A
graphical interpretation of the weights have also been developed by Brans et al. in the PROM-
CALC-GAIA software : more information can be found in [BRA94].

Chapter 3 – Multicriteria optimization in evolutionary algorithms 3–25

Nevertheless, in this work, no effort is done to incorporate an additional method to compute
weights : it is assumed that the decision maker can determine their values intuitively.

3.7 Conclusions

This chapter was first devoted to expose the way multicriteria and constrained aspects are
taken into account in EAs. The review of the litterature showed that although lots of techniques
have been developed to deal with either multicriteria or constrained aspect, few methods explic-
itly deal with both features. Therefore, a novel method was proposed : PAMUC. Its goal is to
solve multiobjective constrained problems, where the user incorporates his/her preferences about
the objectives since the very start of the search process, by means of weights. It consists in con-
sidering the satisfaction of the constraints as a new objective, and using PROMETHEE II, a
multicriteria decision aid method, to rank the members of the EA population at each generation.
Besides, adaptivity of the weights is applied in order to converge more easily towards the feasi-
ble domain.

The validation strategy, numerical results and discussion about the advantages and drawbacks
of PAMUC are presented in the next chapter.

Chapter 4 – Validation of the PAMUC method 4–1

CHAPTER 4 – VALIDATION OF THE PAMUC M ETHOD

4.1 Introduction

The PAMUC method designed to solve multicriteria constrained optimization problems was
described in the previous chapter. In order to validate it, two aspects have to be considered : its
ability to reach the feasible domain – hence to find an optimal solution satisfying all the con-
straints –, and its efficiency in reflecting correctly the user’s preferences.

The global strategy of validation will be presented in § 4.2, whence it will be concluded that
whilst comparing two solutions is straightforward in single-objective optimization, this task is
much more critical with multiobjective problems. Therefore, lots of metrics have been proposed
to express the quality of one method compared to another ; the choice of the most appropriate
metric to validate PAMUC will be discussed in § 4.3. Then, numerical results will be presented
(§ 4.4), followed by general remarks and conclusions about PAMUC (§ 4.5).

4.2 Strategy of validation

4.2.1 Implementations of PAMUC

In order to validate PAMUC, the standard evolutionary algorithm (Std-EA), implemented in
Matlab (cf. § 2.3.2), was applied on standard test cases [FIL03].

Then, PAMUC was implemented in C++ in the framework of the existing EAs of Boss Quat-
tro (Samtech s.a.), a commercial software for optimization and parametrical studies [BOS01],
which contains a real-coded and a binary-coded EA. It has been used for the parametrical opti-
mization of four valves designed by Techspace Aero (Snecma group) for launcher Ariane 5 (this
is the scope of Chapter 6).

It must be underlined that since EAs are stochastic algorithms (random numbers are used at
the creation of the initial population and in the operations of selection, crossover and mutation),
they have to be launched several times for each problem in order to make statistics about the
results.

Furthermore, all examples were applied with pi = 1 and qi = 0. These parameters define re-
spectively the (relative) preference and indifference thresholds defined by the user (for each ob-
jective) when 2 individuals are compared (cf. § 3.6.2). Those values will be discussed in § 4.4.3.

4.2.2 Single-objective constrained optimization (SOCO) problems

As shown above, PAMUC can handle single-objective as well as multiobjective problems
without major modification. Consequently, the efficiency of PAMUC in tackling the constraints
is first presented in § 4.4.1 on a set of 8 challenging single-objective constrained benchmarks :

Chapter 4 – Validation of the PAMUC method 4–2

• 3 examples from the classical test case suite from Hock and Schittkowski [HOC81], solved
by PAMUC and Joines and Houck’s penalty-based technique (implemented in the Std-EA
with parameters C = 1, α = 1 and β = 2 as proposed in [JOI94]) :

• S-HED : a heat exchanger design problem ;
• S-3EQ : a problem characterized by 3 equality constraints ;
• S-6ACT : an example where 6 constraints are active at the optimum ;

• 4 single-objective constrained test cases proposed by Deb [DEB00] :

• S-CRES : an example with a crescent-shape feasible domain ;
• S-38IC : a problem with a high number of inequality constraints (38) ;
• S-0.5F : a problem where only 0.5% of the admissible space is feasible ;
• S-HIM : Himmelblau’s problem ;

In the first three test cases (S-CRES, S-38IC and S-0.5F), results of PAMUC are com-
pared with solutions obtained in [DEB00] by two methods (cf. § 3.5.1.6) :

1. Powell and Skolnick's penalty method (PS), whose penalized objective function is
given by Eq. (3.31) ;

2. Deb’s constraint-handling method based on a tournament selection operator (TS),
which was described in § 3.5.1.6.

In the fourth example (S-HIM), results of PAMUC are compared with solutions from dif-
ferent studies collected by Coello in [COE02] ;

• 1 engineering application (S-WBD) : a welded beam design, cited in [COE02] and tested
with PAMUC and Joines and Houck’s penalty-based technique.

4.2.3 Multiobjective optimization (MOO) problems

After investigating the constrained aspect in single-objective examples, multiobjective prob-
lems have been tested.

In design optimization, the most popular a priori approach is the classical weighted sum
method [COE02a], because of its simplicity of implementation and its intuitiveness. Therefore,
PAMUC is compared to the weighted sum method (§ 4.4.2) where Joines and Houck’s penalty-
based technique is used to tackle the constraints (with parameters C = 1, α = 1 and β = 2).

If two different points za and zb obtained by two a priori multiobjective methods are compared
(i.e. for a given value of the set of weights), three situations can occur : (1) za dominates zb, (2) za

and zb are nondominated or (3) zb dominates za (cf. Fig. 4.1).

Here, as no specific combination of weights is preferred in the validation, the following pro-
cedure is applied for 2-objective optimization problems (cf. § 4.3.5 for an extension to m-
objective problems) : the EA is run nruns times – with either the weighted sum method or PA-
MUC –, each time with different values for the weights (varying from {w1

* = 1 ; w2
* = 0} to {w1

*

= 0 ; w2
* = 1} by a constant step). Then, from the sets of solutions found by both methods, the

dominated ones are discarded, and finally the Pareto sets are compared.

Chapter 4 – Validation of the PAMUC method 4–3

Fig. 4.1 : Comparison of two points za and zb (in a two-objective minimization example) : (1) za dominates zb ,

 (2) za and zb are incomparable and (3) zb dominates za (figure adapted from [ZIT03]).

In a general way, 2 nondominated sets A and B found by two different multiobjective methods
are often interwoven, i.e. some solutions from the set A can dominate solutions from the set B,
and vice versa, making the comparison not straightforward (cf. Fig. 4.2). Therefore, specific met-
rics have been developed [ZIT02], and are discussed in the next section.

Fig. 4.2 : Comparison of two nondominated sets A and B in a 2-objective minimization problem :

the sets A and B are incomparable (figure adapted from [ZIT03]).

The 9 multiobjective benchmarks treated by the weighted sum method and PAMUC are :

• 1 unconstrained example proposed by Cvetkovi� [CVE00] : M-UC (with a convex Pareto
front PF) ;

• 2 examples collected in [VAN98], and Osyczka :

• M-LOC : due to Kita, it has linear objectives and constraints (convex PF) ;
• M-LOQC : due to Osyczka, it has linear objectives and quadratic constraints

(concave PF) ;

f1

f2

zb

za

f1

f2

za

zb

f1

f2

za

zb

za � zb za || zb zb � za

f1

f2
objective vectors from set A

objective vectors from set B

point ∈ set B dominated
by a point ∈ set A

point ∈ set A dominated
by a point ∈ set B

Chapter 4 – Validation of the PAMUC method 4–4

• 3 examples taken in [DEB01] :

• M-QOC (quadratic objectives and constraints) ;
• M-DPF (discontinuous PF) ;
• M-LFS (feasible space composed of layers) ;

• 1 engineering application : BDP (the beam design problem defined in [OSY02]) ;

• 2 three-objective problems due to Viennet (collected in [COE02a]) :

• M-3OU (unconstrained test case) ;
• M-3OC (constrained test case).

The numerical results are presented in § 4.4.2.

4.3 Validation of multiobjective optimization methods

4.3.1 Introduction to metr ics for compar ing nondominated sets

Before describing the main metrics (or quality indicators) used in multiobjective optimization,
some theoretical notions are required. The definitions introduced in § 3.2 to compare two objec-
tive vectors can be extended to the comparison of two nondominated sets [ZIT03] :

• a set A strictly dominates a set B (A ��� B) iff every objective vector zB ∈ B is strictly
dominated by at least one point zA ∈ A ;

• a set A dominates a set B (A � B) iff every objective vector zB ∈ B is dominated by at least
one point zA ∈ A ;

• a set A is better than a set B (A � B) iff every objective vector zB ∈ B is weakly dominated
by at least one point zA ∈ A and A � B ;

• a set A weakly dominates a set B (A � B) iff every objective vector zB ∈ B is weakly
dominated by at least one point zA ∈ A ;

• 2 sets A and B are incomparable (A || B) iff neither A weakly dominates B nor B weakly
dominates A.

These definitions are illustrated on three nondominated sets A, B and C in Fig. 4.3, and will be
used below in the comparison of the quality indicators (cf. § 4.3.4).

Two kinds of measures have been developed in the multiobjective literature : unary metrics
and binary metrics [ZIT03]. Both categories will be described respectively in §§ 4.3.2 and 4.3.3,
and the choice of the best suited metric to compare PAMUC to the weighted sum method will be
discussed in § 4.3.4.

Chapter 4 – Validation of the PAMUC method 4–5

Fig. 4.3 : Comparison of three nondominated sets A, B and C following the definitions introduced in § 4.3.1 (in a

2-objective minimization problem) (figure adapted from [ZIT03]).

4.3.2 Unary measures

Unary quality indicators are very attractive since they can be used independently, i.e. they
give a value which does not relie on the objective vectors of another set [ZIT03]. Van Veldhuizen
et al. [VAN00] and Knowles [KNO02a] made a thorough review of all the unary metrics used in
multiobjective evolutionary optimization. The most representative metrics can be classified in
two families :

• the measures of the closeness to the Pareto front : these metrics attempt to measure how
close to the true Pareto front (denoted PFtrue) a nondominated set found by an a posteriori
method (such as VEGA, MOGA, NSGA, etc.) is. They need the user to know the theoreti-
cal Pareto front, and are often used (for validation of a new method) during the EA proc-
ess to check the convergence of the algorithm. For example, the error ratio (cf. [COE02a])
reports at each generation of the EA the finite number of vectors which are members of
PFtrue. Another metric mentioned in [VAN00b] is the generational distance GD, represent-
ing how far in average the current set PFcurrent is from PFtrue :

GD =
n

d
n

1i

2
i

�

= , (4.1)

where n is the number of vectors in PFcurrent and di is the Euclidean distance between each
objective vector of PFcurrent and the closest element of PFtrue, as depicted in Fig. 4.4. Vari-
ants of this metric are the maximum Pareto front error and the average Pareto front error
(cf. [COE02a]).

• the measures of the distribution of the objective vectors along the trade-off surface. In the
hyperarea metric (or S-metric) proposed by Zitzler and Thiele [ZIT02] for example, the
measure is defined by the area covered by the objective vectors of PFcurrent (cf. Fig. 4.5).
Schott proposed another metric for 2-objective problems – the spacing S –, computing ex-
plicitely the spread of the objective vectors throughout PFcurrent :

f1

f2 objective vectors from set A

objective vectors from set B

objective vectors from set C+
Relations between A, B and C :

A ��� B A ��� C

A � B A � C

A � B A � C B � C

A � B A � C B � C

A � A B � B C � C

�
�

Chapter 4 – Validation of the PAMUC method 4–6

Fig. 4.4 : Set of nondominated objective vectors (PFcurrent) compared to PFtrue thanks to the generational

distance GD (in a 2-objective combinatorial minimization problem) (figure adapted from [COE02a]).

S = ()�

=
−

−

n

1i

2

idd
1n

1
, (4.2)

with :
di =

j
min ()j

2
i
2

j
1

i
1 zzzz −+− , i, j = 1,…, n, (4.3)

and where n is the number of vectors in PFcurrent ,
i
αz is the αth component of zi

 (∈ PFcurrent)
and d is the mean of all di .

Fig. 4.5 : Computation of the S-metric (in a 2-objective minimization problem) : from a reference point zref

(chosen by the user), the rectangles encompassed between zref
 and each vector of the set A (resp. B) define

a shaded surface whose area is the S-metric of A (resp. B) (figure adapted from [KNO02a]).

Other unary quality indicators can be found in [COE02a] and [KNO02a].

f2 objective vectors from PFtrue

objective vectors from PFcurrent

f1

1

2

3

d1

d2

d3

objective vectors from set A
f2

f1

reference point z ref

objective vectors from set B

S-metric :
S(A)>S(B)

Chapter 4 – Validation of the PAMUC method 4–7

4.3.3 Binary measures

While an important amount of unary indicators are available in the literature, fewer metrics
are specially devoted to compare pairs of sets. The three main binary metrics are described be-
low (the other binary metrics are generally mere extensions of unary metrics : see [ZIT03]) :

• the C-metric proposed by Zitzler and Thiele [ZIT00], whose aim is to compute the relative
coverage of two nondominated sets A and B. The measure is given by a pair of indicators
C(A,B) and C(B,A), calculated as follows :

C(A,B) =
{ }

B

:AB BAAB zzzz ∈∃∈
, (4.4)

C(B,A) =
{ }

A

:BA ABBA zzzz ∈∃∈
 , (4.5)

where |A| is the cardinal of A and |B| is the cardinal of B. C(A,B) = 1 means that all deci-
sion vectors in B are weakly dominated by at least one point ∈ A, whilst C(A,B) = 0 means
that none of the points in B is weakly dominated by a point in A. Figure 4.6 illustrates the
C-metric on a 2-objective example.

Fig. 4.6 : Illustration of the C-metric on a 2-objective minimization example (figure adapted from [ZIT00]).

• in [ZIT03], Zitzler and Thiele suggested the use of a binary ε-indicator, based on the defi-
nition of the ε-dominance : for a given ε > 0, a vector zA is said to ε -dominate a vector zB

(zA � ε z
B) iff :

∀ 1 ≤ i ≤ m : zi
A ≤ ε . zi

B , (4.6)

where m is the number of objective functions (cf. Fig. 4.7). Then, the indicator Iε is de-
fined by :

�

�

objective vectors ∈ set A
f2

f1

objective vectors ∈ set B C-metric :

• |A| = 4 and |B| = 3

• Number of points of A dominated by

at least one point of B = 0

• Number of points of B dominated by

at least one point of A = 2

→ C(A,B) = 2/3 ≈ 0.666

→ C(B,A) = 0/4 = 0

Chapter 4 – Validation of the PAMUC method 4–8

Iε(Α,Β) =
∈ε
inf { ∀ zB ∈ B, ∃ zA ∈ A : zA �

ε z
B }. (4.7)

Fig. 4.7 : Illustration of the ε-dominance (figure adapted from [ZIT03]).

For example, if Iε(Α,Β) ≤ 1 and Iε(Β,Α) > 1, then the set A is better than B (A � B).

• in [HAN98], Hansen and Jaszkiewicz proposed the R1-norm, based on the computation of
the probability that a set A is better than another set B over a family of utility functions U.
It is formally defined by Eq. (4.8) :

R1(A,B,U,p) = � u∈U C(A,B,u) p(u) du , (4.8)
where :

1 if u*(A) > u*(B), (4.9)

C(A,B,u) = ½ if u*(A) = u*(B), (4.10)

0 if u*(A) < u*(B), (4.11)

with A and B are the sets to compare, U is a set of utility functions u : � m ��� which
maps each point from the objective space into a measure of utility, and u*(A) is defined as
follows :

u*(A) = { })(umax
A

z
z∈

, (4.12)

and similarly for u*(B). Finally, p(u) is the probability density of u ∈ U. A value of
R1(A,B,U,p) close to 1 would show that A outperforms B, whereas a value near 0 would
show that B is better than A. It can be easily demonstrated that :

 R1(A,B,U,p) = 1 – R1(B,A,U,p). (4.13)

Another metric presented in [HAN98] is the R2-norm, which is built directly from the value
of u* , without using the outcome function C(A,B,u) :

�

f2
objective vectors ∈ set A

Set of points of the objective space weakly dominated

by set A (i.e. ε-dominated by set A with ε = 1)

Set of points of the objective space ε-dominated by set A with ε = ε* > 1

Chapter 4 – Validation of the PAMUC method 4–9

 R2(A,B,U,p) = � u∈U (u*(A) – u*(B))p(u)du. (4.14)

A variant of this metric, the R3-norm, uses the ratio between u*(A) and u*(B) instead of the
difference.

4.3.4 Discussion

To address the problem of comparing those different metrics, the new concept of outperfor-
mance [HAN98] has to be introduced in addition to the definitions given in § 4.3.1 :

• a set A weakly outperforms a set B (A OW B) iff A ≠ B and for each objective vector zB ∈
B, zB is weakly dominated by at least one point zA ∈ A ;

• a set A strongly outperforms a set B (A OS B) iff for each objective vector zB ∈ B, zB is
weakly dominated by at least one point zA ∈ A, and ∃ zB* ∈ B such that zB* is dominated
by a point in A ;

• a set A completely outperforms a set B (A OC B) iff for each objective vector zB ∈ B, zB is
dominated by at least one point zA ∈ A.

This is illustrated in Fig. 4.8. A careful examination of these definitions shows that :

A OW B ⇔ A � B (A is better than B), (4.15)

A OC B ⇔ A � B (A dominates B). (4.16)

Fig. 4.8 : Illustrations of the weak, strong and complete outperformance definitions

in 2-objective minimization examples (figure adapted from [HAN98]).

Finally, a last couple of definitions based on these relations must be added to the collection of
concepts needed to analyze rigorously the advantages and drawbacks of the different metrics
[HAN98] :

f1

f2

objective vectors from set A objective vectors from set B+

�

f1

f2

+

f1

f2

+

+

+

A OW B A OS B A OC B

�
�

�
�

Chapter 4 – Validation of the PAMUC method 4–10

• a metric M is weakly compatible with the outperformance relation O (where O stands for
OW, OS or OC) iff for each pair of sets A and B such that A O B, M(A,B) will evaluate A as
being not worse than B ;

• a metric M is compatible with the outperformance relation O iff for each pair of sets A and
B such that A O B, M(A,B) will evaluate A as being superior to B.

An in-depth theoretical study made by Zitzler and Thiele [ZIT03] shows that unary metrics are
in general not capable of indicating whether a set is superior to another one ; it allows at best to
infer that a set is not worse than another one. Moreover, in some cases, if a set A is evaluated
superior to a set B, it can be that B actually overcomes A, even when different unary metrics are
used and give the same trend.

For example, Knowles et al. indicate in [KNO02] that results obtained with the S-metric are
strongly dependent from the reference point, as depicted in Fig. 4.9. From a more practical point
of view, unary metrics often require the knowledge of the theoretical Pareto front PFtrue, which is
seldom available, typically in industrial applications. Consequently, whereas unary metrics are
very useful to quantify the closeness to the Pareto front or the spread of the nondominated solu-
tions along the trade-off surface, using them to compare nondominated sets must be done with
great care.

Fig. 4.9 : 2-objective example illustrating the relativeness of the S-metric

 with respect to the reference point (figure adapted from [KNO02a]).

Therefore a binary metric seems more suited to compare PAMUC to the weighted sum
method. First, the C-metric is investigated. Knowles reported in [KNO02a] some of its potential
drawbacks :

• in some configurations, the C-norm can induce a cycling of the relations between 3 non-
dominated sets A, B and C, i.e. a situation where A is superior to B, B is superior to C and
C is superior to A ;

• if the sets A and B to compare are of different cardinality and/or the distribution of the
points along the set is non-uniform, the results may be unreliable ;

• it is not compatible with the weak outperformance relation OW.

The second binary measure introduced in § 4.3.3 is the binary ε-indicator. Zitzler and Thiele
note in [ZIT03] that although it can detect if a set A is better than a set B (A � B), meaning that it

f1

f2

f1

f2

Relativeness of the S-metric
w.r.t. the reference point :

• with z1
ref : S(A) < S(B)

• with z2
ref : S(A) > S(B)

 points ∈ set A

 points ∈ set B

 z1
ref

 z2
ref

Chapter 4 – Validation of the PAMUC method 4–11

is compatible with the outperformance relation OW, it is not compatible with the complete out-
performance relation OC . Moreover, it involves much computational overhead.

Finally, the last metrics investigated are Hansen and Jaszkiewic’s norms. It has been shown in
[KNO02a] that they are in general compatible with the three outperfomance relations OW, OS and
OC (the compatibility depending on the set of utility functions U used in the computation of the
norms) ; therefore their use is recommended by Knowles and Corne [KNO02]. R1-norm has been
preferred to R2- and R3-norms because it does not need to make the hypothesis that it is mean-
ingful to add the value of different utility functions of U.

The following section dissects the R1-nom applied in this work to assess PAMUC in compari-
son with the weighted sum method.

4.3.5 Focus on Hansen & Jaszkiewicz’s R1-norm

The general procedure of computing R1-norm is described in [HAN98], and it will be devel-
oped in detail in this section, including the specific options taken in this work. The purpose is to
compare two sets called SPAMUC and SWS (which are nondominated objective vectors obtained
respectively with PAMUC and the weighted sum method).

The first step is to define the set of utility functions U. A utility function u : � m→ � is a pref-
erence model which maps each point in the objective space into a value of utility (which the de-
cision maker wants to be maximized). The most convenient way to build U is to use parameter-
ized utility functions u(z,r) where r ∈ D(r) and D(r) is the variation domain of r.

When no preference of the decision maker is incorporated (which is the case since SPAMUC and
SWS are obtained by varying uniformly the weights, without giving emphasis to one part of the
trade-off surface with regard to another one), Jaszkiewicz [JAS01] suggests the use of weighted
Tchebycheff utility functions u∞ (z,z*,Λ) (where λj are the weights, for j = 1,…, m) :

u∞ (z ,z*, Λ) = –
j

max{ λj .(zj
* – zj)}, (4.17)

where z* is the ideal point with respect to SPAMUC and SWS (cf. § 3.2) :

zj
* = min { zj | z ∈ SPAMUC � SWS}. (4.18)

As no particular set of weights is preferred, U is the set defined by all combinations of
u∞(z,z*,Λ) with Λ = {λ1,…, λm} such that each component λj varies from 0 to 1 by a constant
step, and of course :

�
=

m

1i
iλ = 1. (4.19)

For example, Tables 4.1 and 4.2 indicate all combinations of weights defining u∞(z,z*,Λ) in U
in a 2-objective (with a step equal to 0.25) and a 3-objective problem (with a step equal to �) .

Chapter 4 – Validation of the PAMUC method 4–12

λλλλ1 λλλλ2222
0 1

0.25 0.75
0.50 0.50
0.75 0.25

1 0
Table 4.1 : Combinations of weights for a 2-objective problem with a constant step = ¼.

λλλλ1 λλλλ2222 λλλλ3333
0 0 1
0 � �
0 � �
0 1 0

� 0 �
� � �
� � 0

� 0 �
� � 0
1 0 0

Table 4.2 : Combinations of weights for a 3-objective problem with a constant step = � .

Then, u*(SPAMUC) and u*(SWS) are defined as follows :

u*(SPAMUC) = { }PAMUC

z
Szzz ∈∞

∈
),,(umax *

SPAMUC
Λ , (4.20)

u*(SWS) = { }WS

z
Szzz ∈∞

∈
),,(umax *

SWS
Λ . (4.21)

The construction of u* for two sets A and B is illustrated in Fig. 4.11 on a simple 2-objective
example with 3 points in each set : A = {(2,6) ; (4,4) ; (8,2)} and B = {(2,8) ; (4,6) ; (7,1)} (cf.
Fig. 4.10) and Λ = {λ1 , λ2} where λ1 (resp. λ2) varies linearly from 0 (resp. 1) to 1 (resp. 0) as
expressed in Eq. (4.22) :

Λ = {λ1 , λ2} = { t , 1 – t } ; t ∈ [0,1] . (4.22)

Fig. 4.10 : Definition of sets A and B in the objective space.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 10

Set A

Set B

Ideal point

f1

f2

Chapter 4 – Validation of the PAMUC method 4–13

Fig. 4.11 : Function u* for 2 sets A and B with respect to the parameter t defining Tchebycheff weights

(u*(A) is superior to u*(B) for every value of t from t = 0.1).

Then, an outcome function is introduced in order to compare SPAMUC and SWS :

1 if u*(SPAMUC) > u*(SWS) , (4.23)

C(SPAMUC, SWS, u) = ½ if u*(SPAMUC) = u*(SWS) , (4.24)

0 if u*(SPAMUC) < u*(SWS) . (4.25)

Finally, the R1 measure can be built to reflect the probability that SPAMUC is better than SWS, by
integrating over all the utility functions :

R1(SPAMUC, SWS,U,p) = � u∈U C(SPAMUC,SWS,u) p(u) du, (4.26)

where p(u) is the probability of u to be chosen by the user. In the validation process, each set of
weights has the same probability of being chosen by the user, thus p(u) has a uniform distribu-
tion.

The meaning of R1-norm is the following : a value of R1(SPAMUC, SWS,U,p) close to 1 would
show that SPAMUC is superior to SWS, whereas a value near 0 would lead to an opposite conclu-
sion. It can be easily demonstrated that R1-norm is symmetric (in the sense defined in [KNO02]),
i.e.:

R1(SPAMUC, SWS,U,p) = 1 – R1(SWS, SPAMUC,U,p). (4.27)

Now that the methodology of validation of PAMUC has been fully explained, it is due time
for presenting the numerical results.

-5

-4

-3

-2

-1

0

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

t

u*(A)

u*(B)

u*

Chapter 4 – Validation of the PAMUC method 4–14

4.4 Numerical results

4.4.1 Single-objective constrained optimization (SOCO)

4.4.1.1 Test case S-HED

The first single-objective constrained example is a heat exchanger design problem (test case
106 in [HOC01]), characterized by 8 variables and 6 inequality constraints :

min f(x)= x1 + x2 + x3 (4.28)

subject to : g1(x)= 1 – 0.0025 (x4 + x6) ≥ 0, (4.29)
g2(x)= 1 – 0.0025 (x5 + x7 – x4) ≥ 0, (4.30)
g3(x)= 1 – 0.01 (x8 – x5) ≥ 0, (4.31)
g4(x)= x1 x6 – 833.33252 x4 – 100 x1 + 83333.333 ≥ 0, (4.32)
g5(x)= x2 x7 – 1250 x5 – x2 x4 + 1250 x4 ≥ 0, (4.33)
g6(x)= x3 x8 – x3 x5 + 2500 x5 – 1250.10 3 ≥ 0, (4.34)
100 ≤ x1 ≤ 10000, (4.35)
1000 ≤ x2 ≤ 10000, (4.36)
1000 ≤ x3 ≤ 10000, (4.37)
10 ≤ xi ≤ 1000, i = 4,…, 8. (4.38)

The EA parameters used to solve this problem are gathered in Table 4.3.

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Real
N Size of the population 50
Ngen Number of generations 200
Ts Type of selection Tournament

nt
Number of individuals participating
to a tournament

2

pc Probability of crossover 1

Tc Type of crossover SBX
pm Probability of mutation Variable*

Tm Type of mutation PBM
ηc Distribution index for crossover 1
ηm Distribution index for mutation Variable*

Table 4.3 : EA parameters for test case S-HED (* cf. § 2.3.2.6).

The problem was tackled thanks to Joines and Houck’s and PAMUC methods. For each of
them, 10 runs were performed. First, Joines and Houck’s dynamic penalty-based method was
applied, but none of the 10 runs furnished a feasible solution. After about 140 generations, the
algorithm converges to a solution violating the 2nd and 3rd constraints (see the illustration on a
single run in Fig. 4.12), and cannot escape from it. This is due to the way dynamic penalty coef-
ficients evolve : as their value is always increasing during the generations, when the population
has not yet reached the feasible domain, the individuals with a higher level of violation of con-
straints are progressively discarded from the population, though they can bring useful informa-
tion (by matching other individuals) to create feasible individuals. Therefore, in this case, the

Chapter 4 – Validation of the PAMUC method 4–15

rigid variation of the penalties prevents the algorithm from getting away from a local (unfeasi-
ble) minimum. Only an accurate tuning of the penalties could have enabled to find an admissible
solution.

Fig. 4.12 : 2nd and 3rd constraints (sum of all individuals of the population) w.r.t. the generation

for 1 run of the EA for problem S-HED (with Joines and Houck’s penalty-based method).

On the contrary, all runs performed with PAMUC gave feasible solutions. The rate of feasible
individuals at each generation is illustrated in Fig. 4.13, and shows that after about 50 genera-
tions, approximately 95% of the population satisfies all the constraints.

Fig. 4.13 : Rate of feasible individuals at each generation for 1 run of the EA for S-HED (with PAMUC method).

For the 10 runs of the EA, the mean of the objective function value of the best (feasible) indi-
vidual (at each run) is equal to 9612.9, while the best value is 8509.8 (standard deviation =
979.4). Figure 4.14 depicts a sharp decrease of the objective function until the 80th generation,
where the algorithm seems to have converged.

Chapter 4 – Validation of the PAMUC method 4–16

Fig. 4.14 : Objective function of the best feasible individual at each generation for 1 run of the EA

(with PAMUC method) from the 43th generation for problem S-HED

(the populations of the first 42 generations did not contain any feasible solution).

The results can be seriously improved by increasing the size of the population to 80 and the
number of generations to 1000. Deb studied the same problem with the tournament selection
method (cf. § 3.5.1.6), and the corresponding results [DEB00] are mentioned below and compared
to PAMUC results (cf. Table 4.4).

Value of the objective function
Method

Number of
generations

Mutation Niching Feasible runs
Best Median Worst

TS [DEB00] 1000 No No 50 7063.377 8319.211 13738.276
TS [DEB00] 1000 No Yes 49 7065.742 8247.830 10925.165
TS [DEB00] 4000 Yes Yes 50 7060.221 7220.026 10230.834
PAMUC 1000 Yes No 50 7061.231 8193.820 10280.148

Table 4.4 : Comparison of PAMUC and TS methods for problem S-HED (50 runs).

The niching used in TS method is a genetic operator intended to increase the diversity of the
population by favouring the individual whose Euclidean distance with the rest of the population
is greater, in order to prevent the algorithm from converging too quickly to a narrow part of the
domain. It works as follows : when comparing two feasible solutions x(i)

 and x(j), if the Euclidean
distance between them is smaller than a critical distance d , the solutions are compared with re-
spect to their objective function values ; otherwise, they are not compared and another x(j) is cho-
sen. If nf feasible individuals are checked and none is such that the corresponding Euclidean dis-
tance to x(j) is greater than d , x(i) wins the tournament. The parameters nf and d have to be tuned
by the user.

Numerical results show that the best solution found by PAMUC is very close to the tourna-
ment selection’s optimal values.

Chapter 4 – Validation of the PAMUC method 4–17

Fig. 4.15 : Rate of feasible individuals and objective function of the best feasible individual

at each generation for 1 run of the EA applied to test case S-HED (with PAMUC method, Ngen = 1000).

Figure 4.15 illustrates the rate of feasible individuals and the evolution of the objective func-
tion value with respect to the generation. After the 20th generation, the rate of feasible individuals
remains close to 60%, which means that a part of the population, albeit unfeasible, is very im-
portant, for it brings crucial genetic information to admissible individuals to progress towards the
optimum. Adaptivity of the weights enables a continual equilibrium between the satisfaction of
the constraints and the improvement of the objective function.

4.4.1.2 Test case S-3EQ

The second example is test case 80 in [HOC01] :

min f(x)= exp(x1 x2 x3 x4 x5) (4.39)

subject to : h1(x)= x1
2 + x2

2 + x3
2 + x4

2 + x5
2 = 10, (4.40)

h2(x)= x2 x3 – 5 x4 x5 = 0, (4.41)
h3(x)= x1

3 + x2
3 = – 1, (4.42)

– 2.3 ≤ xi ≤ 2.3, i = 1, 2, (4.43)
– 3.2 ≤ xi ≤ 3.2, i = 3, 4, 5. (4.44)

In this example, equality constraints are transformed into inequalities as indicated in Eq.
(4.45) :

hj(x) = 0 → δ – |hj(x)| ≥ 0 for j = 1,…, 3, (4.45)

with δ set to 10
–3 to allow some room to the EA to work. The optimal solution is [DEB00] :

x* = (–1.717143 ; 1.595709 ; 1.827247 ; – 0.7636413 ; – 0.7636450), (4.46)

with an objective function value f(x*) = 0.053950.

Joines and Houck’s method (implemented in the Std-EA) and PAMUC have been used ; the
EA parameters of the study are collected in Table 4.5.

Chapter 4 – Validation of the PAMUC method 4–18

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Real coding
N Size of the population 50
Ngen Number of generations 1000
Ts Type of selection Tournament

nt
Number of individuals participating
to a tournament

2

pc Probability of crossover 1

Tc Type of crossover SBX
pm Probability of mutation Variable*

Tm Type of mutation PBM
ηc Distribution index for crossover 1
ηm Distribution index for mutation Variable*

Table 4.5 : EA parameters for test case S-3EQ (* cf. § 2.3.2.6).

While 13 runs (of 20) of the EA combined with Joines and Houck’s method furnished a feasi-
ble point, each run performed with PAMUC found a solution satisfying the whole set of con-
straints. Furthermore, 7 runs found the global optimum x* .

The corresponding results are mentioned in Table 4.6. Figures 4.16 and 4.17 depict the rate of
constraint satisfaction of the population, as well as the evolution of the objective function value
of the best feasible individual, at each generation (for one run of the EA combined respectively
with Joines and Houck’s and PAMUC methods). Results obtained by Joines and Houck’s tech-
nique show that the rate of feasible members in the population oscillates from larger periods
where it is very low to peaks of high level of admissibility ; this explains the discontinuous shape
of the best feasible objective function (indeed, periods where no admissible solution is generated
are of course not represented). On the contrary, with PAMUC, the number of feasible individuals
remains globally beyond a level of 50%. For both methods, it appears that using a large number
of generations leads to an improvement of the solution. One can suppose by considering Fig.
4.17 [right] that using Ngen larger than 1000 would have certainly improved the solution. Never-
theless, a fixed value of Ngen (= 1000) was used to compare PAMUC and Joines and Houck’s
techniques with the same number of function evaluations.

Fig. 4.16 : Rate of feasible individuals and objective function of the best feasible individual at each generation

for 1 run of the EA applied to test case S-3EQ (with Joines and Houck’s method implemented in the Std-EA).

Chapter 4 – Validation of the PAMUC method 4–19

Value of the objective function
Method

Feasible runs
(over 20) Best Mean

Joines and Houck 13 0.35432 0.87655
PAMUC 20 0.05395 0.35433

Table 4.6 : Results of Joines and Houck’s method (implemented in the Std-EA) and PAMUC for S-3EQ.

Fig. 4.17 : Rate of feasible individuals and objective function of the best feasible individual

at each generation for 1 run of the EA applied to test case S-3EQ (with PAMUC method).

4.4.1.3 Test case S-6ACT

The third example is test case 113 in [HOC01], and is defined by Eqs. (4.47) to (4.56) :

min f(x)= x1
2 + x2

2 + x1 x2 – 14 x1 – 16 x2 + (x3 – 10)2 + 4(x4 – 5)2

+ (x5 – 3)2 + 2(x6 – 1)2 + 5 x7
2 + 7(x8 – 11)2 + 2(x9 – 10)2

+ (x10 – 7)2 + 45 (4.47)

subject to : g1(x)= 105 – 4 x1 – 5 x2 + 3 x7 – 9 x8 ≥ 0, (4.48)
g2(x)= – 10 x1 + 8 x2 + 17 x7 – 2 x8 ≥ 0, (4.49)
g3(x)= 8 x1 – 2 x2 + 17 x7 – 2 x8 ≥ 0, (4.50)
g4(x)= – 3(x1 – 2)2 – 4(x2 – 3)2 – 2 x3

2 + 7 x4 + 120 ≥ 0, (4.51)
g5(x)= – 5 x1

2 – 8 x2 – (x3 – 6)2 + 2 x4 + 40 ≥ 0, (4.52)
g6(x)= – x1

2 – 2(x2
 – 2)2 + 2 x1 x2 – 14 x5 + 6 x6 ≥ 0, (4.53)

g7(x)= – 0.5(x1 – 8)2 – 2(x2 – 4)2 – 3 x5
2 + x6 + 30 ≥ 0, (4.54)

g8(x)= 3 x1 – 6 x2 – 12(x9 – 8)2 + 7 x10 ≥ 0, (4.55)
– 10 ≤ xi ≤ 10, i = 1,…, 10. (4.56)

The optimal solution is [DEB00] :

x* = (2.171996 ; 2.363683 ; 8.773926 ; 5.095984 ; 0.9906548 ;
1.430574 ; 1.321644 ; 9.828726 ; 8.280092 ; 8.375927), (4.57)

with an objective function value f(x*) = 24.3062091.

Chapter 4 – Validation of the PAMUC method 4–20

Joines and Houck’s and PAMUC methods have been used ; the EA parameters of the study
are collected in Table 4.7.

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Real coding
N Size of the population 100
Ngen Number of generations 100
Ts Type of selection Tournament

nt
Number of individuals participating
to a tournament

2

pc Probability of crossover 1

Tc Type of crossover SBX
pm Probability of mutation Variable*

Tm Type of mutation PBM
ηc Distribution index for crossover 1
ηm Distribution index for mutation Variable*

Table 4.7 : EA parameters for test case S-6ACT (* cf. § 2.3.2.6).

Table 4.8 presents the performance of the EA with Joines and Houck’s and PAMUC methods,
showing better results for PAMUC.

Value of the objective function
Method Feasible runs

Best Mean Std deviation
Joines and Houck 20 35.9251 86.6529 39.9731
PAMUC 20 33.7940 74.2710 33.9380

Table 4.8 : Comparison of Joines and Houck’s method (implemented in the Std-EA)

and PAMUC for problem S-6ACT (20 runs).

Fig. 4.18 : Boundary (B) between feasible (F) and unfeasible (U) points in the variable space for a 1-constraint

problem, and illustration of crossover between an unfeasible parent (xP1) and a feasible parent (xP2),

creating a child closer to the boundary B (with x* being the global optimum).

xP1

(parent 1)

xP2 (parent 2)

B ≡ g(x)=0

xC (child)

x*

F ≡ g(x)≥ 0

U ≡ g(x)<0

Chapter 4 – Validation of the PAMUC method 4–21

It should be noticed that in this example, the first 6 constraints are active at the optimum, i.e.
gi(x

*)= 0 for i = 1,…, 6. In this case, using adaptive weights is a fruitful option, as depicted in
Fig. 4.18. Indeed, as unfeasible individuals are accepted in the population with PAMUC (unlike
some other constraint-handling techniques, as the death penalty [cf. § 3.5.1.1], which discard
unfeasible points), when one (or several) constraint(s) is (are) active at the optimum (i.e. gi(x

*) =
0 for at least one i), they can generate – by matching feasible points – new individuals closer to
the boundary separating admissible and inadmissible domains, on which lies the optimal solution
x* .

4.4.1.4 Test case S-CRES

This is the first test case proposed by Deb in [DEB00]. It is characterized by 2 constraints
which reduce the feasible domain F to approximatively 0.7% of the total search space (cf. the
crescent shape of F in Fig. 4.19 zoomed in Fig. 4.20). The problem is defined as follows :

min f(x) = (x1
2 + x2 – 11)2 + (x1 + x2

2 – 7)2 (4.58)

subject to : g1(x) = 4.84 – (x1 – 0.05)2 – (x2 – 2.5)2 ≥ 0, (4.59)
g2(x) = x1

2 + (x2 – 2.5)2 – 4.84 ≥ 0, (4.60)
0 ≤ x1 ≤ 6 ; 0 ≤ x2 ≤ 6. (4.61)

The constrained optimum solution is [DEB00] :

x* = (2.246826 ; 2.381865) with f(x*) = 13.59085. (4.62)

Fig. 4.19 : Crescent shape of the feasible domain F in test case S-CRES in the variable space (x1 , x2)

(contours are isovalues of the objective function f) (figure adapted from [DEB00]).

x1

x2

x*

F ↑↑↑↑ isovalues
of f(x)

zoom in Fig. 4.20

Chapter 4 – Validation of the PAMUC method 4–22

Fig. 4.20 : Zoom of the feasible domain F in test case S-CRES in the variable space (x1 , x2)

in the vicinity of the global feasible optimum x* (figure adapted from [DEB00]).

Parameters of the study PS (R=0.01)
[DEB00]

PS (R=1)
[DEB00]

TS
[DEB00]

PAMUC

Number of feasible runs (of 50) 31 39 50 50
Best feasible solution 13.58958 13.59108 13.59085 13.59104
Median feasible solution 24.07437 16.35284 13.61673 13.65329
Worst feasible solution 114.69033 172.81369 117.02971 118.45128

Table 4.9 : Results for test case S-CRES for 50 runs.

In Table 4.9, solutions obtained with PAMUC are compared to results given in [DEB00] for PS
and TS methods discussed above (cf. § 4.2.2). The following parameters are used : real coding of
the variables, binary tournament and simulated binary crossover.

It should be noted now that the distribution index ηc, which controls the SBX operator (see
§ 2.3.2.5) with real coding, is equal to 1 in all cases treated in this work. As described in [DEB95],
a small value of ηc (ηc � 1) allows solutions far away from parents to be created, whereas a large
value of ηc (ηc � 1) restricts only near-parent solutions to be created as children. The crossover
probability pc is equal to 0.9, and no mutation is performed ; the number of generations Ngen = 50
and the size of the population N = 20.

In Fig. 4.21, the average Euclidean norm of the variables (compared to the theoretical solution
x*) illustrates the convergence of PAMUC towards the global optimum. Table 4.9 shows that
PAMUC and TS methods both provide very close results.

x*

Chapter 4 – Validation of the PAMUC method 4–23

Fig. 4.21 : Average Euclidean norm of the feasible individuals of the population

 at each generation for test case S-CRES (with PAMUC).

4.4.1.5 Test case S-38IC

This problem has 5 variables and a high number of constraints (38 inequality constraints ; cf.
test case 2 in [DEB00]).

min f(x) = 0.1365 – 5.843.10 -7 y17 + 1.17.10 -4 y14 + 2.358.10 -5 y13

+ 1.502.10 -6 y16 + 0.0321 y12 + 0.004324 y5 + 10 -4 c15 /c16

+ 37.48 y2 /c12 (4.63)

subject to : g1(x) = 1.5 x2 – x3 ≥ 0, (4.64)
g2 (x) = y1 (x) – 213.1 ≥ 0, (4.65)
g3 (x) = 405.23 – y1 (x) ≥ 0, (4.66)
g j+2 (x) = yj(x) – aj ≥ 0 for j = 2,…, 17, (4.67)
g j+18 (x) = bj – yj (x) ≥ 0 for j = 2,…, 17, (4.68)
g36 (x) = y4(x) – 0.28/0.72 y5 (x) ≥ 0, (4.69)
g37 (x) = 21 – 3496.0 y2 (x)/c12 (x) ≥ 0, (4.70)
g38 (x) = 62212.0/c17 (x) – 110.6 – y1 (x) ≥ 0, (4.71)
704.4148 ≤ x1 ≤ 906.3855, (4.72)
68.6 ≤ x2 ≤ 288.88, (4.73)
0 ≤ x3 ≤ 134.75, (4.74)
193 ≤ x4 ≤ 287.0966, (4.75)
25 ≤ x5 ≤ 84.1988. (4.76)

The terms yj(x) and the parameters aj and bj are defined in Appendix A. The optimal solution
found in [DEB00] is :

Chapter 4 – Validation of the PAMUC method 4–24

x* = (707.337769 ; 68.600273 ; 102.900146 ; 282.024841 ;
84.198792), (4.77)

with the corresponding value of the objective function f(x*) equal to – 1.91460.

At this solution, none of the constraints is active (i.e. the solution lies inside the feasible do-
main). In Table 4.10, solutions obtained with PAMUC are compared to results given in [DEB00]
for PS-a (with parameter a such that R = 10a : cf. § 3.5.1.6) and TS methods. The parameters
used in this example are the same as in the previous case, except that the number of generations
Ngen = 1000 and the size of the population N = 50.

Parameters of the study PS-0
[DEB00]

PS-2
[DEB00]

PS-6
[DEB00]

TS
[DEB00]

TS
[DEB00]

PAMUC

Mutation No No No No Yes Yes
Niching No No No Yes Yes No
Number of runs (out of 50)
which found a feasible
solution

12 50 50 50 50 50

Best feasible solution – 1.86365 – 1.89845 – 1.91319 – 1.91410 – 1.91460 – 1.90563
Median feasible solution – 1.69507 – 1.65156 – 1.65763 – 1.85504 – 1.91457 – 1.88615
Worst feasible solution – 1.35910 – 1.00969 – 1.11550 – 1.30643 – 1.91454 – 1.42366

Table 4.10 : Results for problem S-38IC for 50 runs.

Results of PAMUC are illustrated on Fig. 4.22 and 4.23. Fig. 4.22 [left] shows the fast con-
vergence of the population towards the feasible domain, and Fig. 4.22 [right] depicts the conver-
gence to the feasible optimum x* . The average Euclidean norm on the variables (compared to the
theoretical solution) also illustrates the convergence towards x* (see Fig. 4.23). Table 4.10 shows
that results obtained by PAMUC are better than those obtained by PS-a, except for a = 6 (R =
106), but PAMUC has provided good result without requiring any tuning of parameters. TS
method outperforms both methods (PS and PAMUC).

Fig. 4.22 : Rate [left] and minimum and mean value of the objective function [right] of feasible individuals of the

population at each generation for one run for test case S-38IC (with PAMUC).

— Feasible minimum

… Mean value of f (on the feas. ind.)

Chapter 4 – Validation of the PAMUC method 4–25

Fig. 4.23 : Average Euclidean norm (on the variables) of the feasible individuals of the population

at each generation for one run for test case P-IC38 (with PAMUC).

4.4.1.6 Test case S-0.5F

This problem has 7 variables and 4 nonlinear constraints (test case 5 in [DEB00]).

min f(x) = (x1 – 10)2 + 5(x2 – 12)2 + x3
4 + 3(x4 – 11)2 + 10 x5

6

+ 7 x6
2 + x7

 4 – 4 x6 x7 (4.78)

subject to : g1(x) = 127 – 2 x1
2 – 3 x2

4 – x3 – 4 x4
 2 – 5 x5 ≥ 0, (4.79)

g2(x) = 282 – 7 x1 – 3 x2 – 10 x3
 2 – x4 + x5 ≥ 0, (4.80)

g3(x) = 196 – 23 x1 – x2
 2 – 6 x6

 2 + 8 x7 ≥ 0, (4.81)
g4(x) = – 4 x1

 2 – x2
 2 + 3 x1 x2 – 2 x3

 2 – 5 x6 + 11 x7 ≥ 0, (4.82)
–10 ≤ xi ≤ 10 for i = 1,…, 7. (4.83)

The optimal solution is :

x* = (2.330499 ; 1.951372 ; – 0.4775414 ; – 0.6244870 ;
1.038131 ; 1.594227), (4.84)

with the corresponding value of the objective function f * equal to 680.63. Only about 0.5% of
the search space is feasible [DEB00]. The parameters used in the study are the same as in the pre-
vious example, save that the size of the population N = 70. In Table 4.11, solutions obtained with
PAMUC are compared to results given in [DEB00]. It is interesting to note that the presence of
niching (in TS method with the critical distance d = 0.1 and nf = 0.25 N : cf. § 4.4.1.1) or muta-
tion (in PAMUC) enables to find better solutions by creating diversity among the population.

Parameters of the study TS [DEB00] TS [DEB00] PAMUC PAMUC
Mutation No No No Yes
Niching No Yes No No
Number of runs (out of 50) which found
a feasible solution

50 50 50 50

Best feasible solution 680.800720 680.659424 680.810394 680.729460
Median feasible solution 683.076843 681.525635 684.139966 682.344782
Worst feasible solution 705.861145 687.188599 706.238773 689.122543

Table 4.11 : Results for problem S-0.5F for 50 runs.

Chapter 4 – Validation of the PAMUC method 4–26

4.4.1.7 Test case S-HIM

The last single-objective problem taken from [DEB00] is Himmelblau’s nonlinear optimization
problem. This problem has 5 variables and 6 inequality constraints (test case 6 in [DEB00]) :

min f(x) = 5.3578547x3² + 0.8356891x1 x5 + 37.293239 x1

– 40792.141 (4.85)

subject to : g1(x) = 85.334407 + 0.0056858 x2 x5 + 0.0006262 x1 x4

– 0.0022053 x3 x5 ≥ 0, (4.86)
g2(x) = 92 – 85.334407 – 0.0056858 x2 x5 – 0.0006262 x1 x4

+ 0.0022053 x3 x5 ≥ 0, (4.87)
g3(x) = 80.51249 + 0.0071317x2 x5 + 0.0029955x1 x2

+ 0.0021813x3
2
 – 90 ≥ 0, (4.88)

g4(x) = 110 – 80.51249 – 0.0071317x2 x5 – 0.0029955x1 x2

– 0.0021813x3
2 ≥ 0, (4.89)

g5(x) = 9.300961 + 0.0047026 x3 x5 + 0.0012547 x1 x3

+ 0.0019085 x3 x4 – 20 ≥ 0, (4.90)
g6(x) = 25 – 9.300961 – 0.0047026 x3 x5 – 0.0012547 x1 x3

– 0.0019085 x3 x4 ≥ 0, (4.91)
78 ≤ x1 ≤ 102, (4.92)
33 ≤ x2 ≤ 45, (4.93)
27 ≤ xi ≤ 45 for i = 3,…, 5. (4.94)

The parameters used with PAMUC are the same as in the previous example, except that the
number of generations Ngen = 100 and the size of the population N = 50. Both penalty-based
methods used a GA with a binary representation, two-point crossover, tournament selection and
uniform mutation.

Parameters of the study
Static penalty

(Homaifar et al.)

Dynamic penalty
(Joines & Houck with

C = 0.5 and α α α α = β β β β = 2)

MGA
(Coello)

PAMUC

Crossover probability pc 0.8 0.8 self-adapted 0.8
Mutation probability pm 0.005 0.005 self-adapted dynamic
Best feasible solution – 30790.27159 – 30903.877 – 31005.7966 – 30946.2155
Mean feasible solution – 30446.4618 – 30539.9156 – 30862.8735 – 30598.6437
Worst feasible solution – 29834.3847 – 30106.2498 – 30721.0418 – 30310.6035
Standard deviation 226.3428 200.035 73.240 163.718

Table 4.12 : Results for problem S-HIM for 50 runs.

The PAMUC method provided very good results with the same number of fitness function
evaluations, compared to penalty-based methods, while the MGA (multi-objective genetic algo-
rithm), based on a nondominance approach [COE00a], gives better results (see Table 4.12). It can
also be mentioned that the coevolutionary penalty method proposed by Coello [COE02], which
has furnished the best solution so far for this problem, needs a considerably higher number of
function evaluations (900 000 instead of 5000 in results cited in Table 4.12).

Chapter 4 – Validation of the PAMUC method 4–27

4.4.1.8 Test case P-WBD

The last single-objective test case is the welded beam design problem, formulated as follows
[COE00a] (see Fig. 4.24) :

min f(x) = 1.10471 x1
2 x2 + 0.04811 x3 x4 (14 + x2) (4.95)

subject to : g1(x) = τ(x) – τmax ≤ 0, (4.96)
g2(x) = σ(x) – σmax ≤ 0, (4.97)
g3(x) = x1 – x4 ≤ 0, (4.98)
g4(x) = 0.10471 x1

2 + 0.04811 x3 x4 (14 + x2) – 5 ≤ 0, (4.99)
g5(x) = 0.125 – x1 ≤ 0, (4.100)
g6(x) = δ(x) – δmax ≤ 0, (4.101)
g7(x) = P – Pc(x) ≤ 0, (4.102)

where : τ(x) = () ()222 "
R2

x
"'2' ττττ ++ , (4.103)

τ' =
21xx2

P
, (4.104)

τ" =
J

MR
, (4.105)

M = P
������

+
2

x
L 2 , (4.106)

R =
2

31
2
2

2

xx

4

x ���	
� ++ , (4.107)

J = 2 �
���

���� � ���
�

���� ������ ++
2

31
2
2

21 2

xx

12

x
xx2 , (4.108)

σ(x) =
2
34 xx

PL6
 , (4.109)

δ(x) =
4

3
3

3

xEx

PL4
 , (4.110)

Pc(x) = ��
!""#$ −

G4

E

L2

x
1

L
36

xx
E013.4

3
2

6
4

2
3

 , (4.111)

expressions in which P = 6000 lb, L = 14 in, E = 30.106 psi, G = 12.106 psi, τmax = 13600 psi,
σmax = 30000 psi and δmax = 0.25 in.

Chapter 4 – Validation of the PAMUC method 4–28

Fig. 4.24 : Welded beam design problem [COE00a].

Joines and Houck’s method (implemented in the Std-EA with C = 1, α = 1 and β = 2) and
PAMUC were used ; the EA parameters of the study are collected in Table 4.13. Table 4.14 pre-
sents the performance of the EA with both methods, showing better results for PAMUC. Once
again PAMUC outperforms Joines and Houck’s method.

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Gray binary coding
Nbit Numbe of bits per variable 8
N Size of the population 80
Ngen Number of generations 150
Ts Type of selection Tournament

nt
Number of individuals participating
to a tournament

2

pc Probability of crossover 1

Tc Type of crossover 2-point
pm Probability of mutation 0.01

Tm Type of mutation Flip
Table 4.13 : EA parameters for test case P-WBD (* cf. § 2.3.2.6).

Fig. 4.25 : Rate of feasible individuals and objective function of the best feasible individual

at each generation for 1 run of the EA applied to test case P-WBD (with Joines and Houck’s method).

Chapter 4 – Validation of the PAMUC method 4–29

Fig. 4.26 : Rate of feasible individuals and objective function of the best feasible individual

at each generation for 1 run of the EA applied to test case P-WBD (with PAMUC).

Value of the objective function
Method Feasible runs

Best Mean Std deviation
Joines and Houck 50 7.439418 8.313480 0.904600
PAMUC 50 8.785876 9.270780 0.484904

Table 4.14 : Comparison of Joines and Houck’s and PAMUC results for problem P-WBD (50 runs).

Fig. 4.25 and 4.26 show that with Joines and Houck’s method, after a boom, the rate of feasi-
ble members of the population decreases drastically, whilst in PAMUC results it oscillates
around 50%.

4.4.1.9 Remarks on single-objective constrained problems

A recapitulatory table gathers the results of PAMUC compared to other methods investigated
in this study :

Test case
(SOCO)

Name of the
problem

PAMUC Joines and
Houck

PS [DEB00] TS [DEB00]

1 S-HED 7061.231 (no feasible
solution)

(results not
available) 7065.742

2 S-3EQ 0.05395 0.35432 (results not
available)

(results not
available)

3 S-6ACT 33.7940 35.9251 (results not
available)

(results not
available)

4 S-CRES 13.59104 (results not
available) 13.58958 13.59085

5 S-38IC – 1.90563 (results not
available) – 1.91319 – 1.91460

6 S-0.5F 680.729460 (results not
available)

(results not
available) 680.659424

7 S-HIM – 30946.2155 – 30903.877 (results not
available) – 31005.7966

8 P-WBD 7.439418 8.785876 (results not
available)

(results not
available)

Table 4.15 : Best feasible solutions found by PAMUC and other methods mentioned in this study

(for a same number of function evaluations).

Chapter 4 – Validation of the PAMUC method 4–30

Although PAMUC was dedicated to multiobjective (constrained) problems, results mentioned
in Table 4.15 show that it provides very good results compared to methods specially devoted to
single-objective contrained optimization. This is mainly due to the adaptivity of the weights,
which seems to be more efficient than a “blind” evolution of the penalty coefficients, which does
not take into account the results of the EA during the generations (in terms of rate of feasible
individuals in the population). Furthermore, PAMUC does not require any parameter tuning,
unlike most penalty-based techniques.

However, it should be underlined that when one is only interested in solving single-objective
problems, Deb’s tournament selection technique seems the most appropriate approach, since it
generally gives better results than PAMUC for the same number of function evaluations, and for
less computational overhead (in comparison with the use of PROMETHEE II in PAMUC).
Moreover, for arduous problems, Coello’s coevolutionary method [COE02] is the best way to
reach the feasible optimal solution, though it needs a considerably higher number of function
evaluations. Finally, as already mentioned in §§ 3.5.1.3 and 3.5.1.4, for some specific applica-
tions, the use of decoders or repair strategy (related to the coding of the variables or the defini-
tion of the genetic operators) also provide very satisfactory results in tackling the constraints.

Now that the ability of PAMUC to deal with constraints in single-objective examples has
been demonstrated, the next section will present multiobjective problems.

4.4.2 Multiobjective optimization (MOO)

4.4.2.1 Test case M-UC

The first multiobjective example is an unconstrained problem taken from Cvetkovi � [CVE00]
and is characterized by 2 variables and 2 objective functions :

 f1(x) = sin(x1
2 + x2

2 – 1) (4.112)
max

f2(x) = sin(x1
2 + x2

2 + 1) (4.113)

with 0 ≤ x1 ≤ 3π/4 and 0 ≤ x2 ≤ 3π/4. (4.114)

The procedure consisting in varying the weights in order to check that corresponding results
correctly depict the user’s preferences is illustrated in Fig. 4.27, which shows different points (in
the objective space) obtained by PAMUC for 8 values of the weights. The EA used here is the
same as in test case S-CRES (cf. § 3.4.1.4) save that Ngen = 40 and N = 40.

To analyze PAMUC more rigorously and compare it to the weighted sum method (WS), the
following procedure is applied : 20 processes were launched, with each process consisting in
running the EA with both methods (PAMUC and the WS) 30 times, with a set of weights vary-
ing from { w1

* = 0 ; w2
* = 1} for the first run to { w1

* = 1 ; w2
* = 0} for the last run, by a constant

step.

Chapter 4 – Validation of the PAMUC method 4–31

 f1

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

-0,45 -0,3 -0,15 0 0,15 0,3 0,45 0,6 0,75 0,9 1,05

Theoretical PF

Solutions by PAMUC

Fig. 4.27 : Nondominated solutions obtained by PAMUC method for M-UC

(for 8 values of the weights, with w2
* = 1 – w1

*).

Fig. 4.28 : Nondominated solutions obtained with the weighted sum and PAMUC methods

for M-UC (for one process).

Statistics on the 20 processes show that the mean value for R1(PAMUC,WS) is equal to 0.74
(with a standard deviation of 0.28), which should mean that PAMUC outperforms the weighted
sum method (see § 4.3.5). However, Fig. 4.28 (illustrating nondominated solutions obtained by
both methods for one process) does not confirm this statement : the results obtained by both
methods seem quite similar. As a matter of fact, performing the computations with much higher
numbers of processes (1000 instead of 20) and of runs by process (100 instead of 30) shows that
PAMUC and the weighted sum method are almost equivalent, since the mean of
R1(PAMUC,WS) is equal to 0.51 (see Table 4.16). The misleading results obtained with only 20
processes illustrate some weakness of R1-norm to provide meaningful information when the
nondominated sets to be compared are very close one to another. Mathematically speaking, this
can be easily explained by the way R1-norm is calculated : when the nondominated points of a
set A are slightly better than those of a set B over a large region of the trade-off surface (which

 f2

w1
* = 0

 f1

 f2

w1
* = 0.05

w1
* = 0.4

w1
* = 0.2

w1
* = 0.6

w1
* = 0.1

w1
* = 0.8

w1
* = 1

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–32

seems to be the case here with PAMUC w.r.t. WS), this small advantage is amplified because the
outcome function C(SPAMUC,SWS,u) is equal to 1 when u*(SPAMUC) > u*(SWS) [see Eq. (4.23)] ;
since R1-norm is computed by integrating C(SPAMUC,SWS,u) over all the utility functions u, the
outperformance of PAMUC is exaggerated. This trend is corrected with higher number of points
in the trade-off surface.

R1(PAMUC,WS)
Problem

Number of
processes

Number of runs
for each process Mean

Standard de-
viation

20 30 0.74 0.28
M-UC 1000 100 0.51 0.12

Table 4.16 : Comparison of the weighted sum method and PAMUC for problem M-UC.

4.4.2.2 Test case M-LOC

The second example is due to Kita (cf. [VAN98]) :

 f1(x) = – x1
2 + x2 (4.115)

max
f2(x) = x1/2 + x2 + 1 (4.116)

subject to : g1(x) = x1/6 + x2 – 13/2 ≤ 0, (4.117)
g2(x) = x1/2 + x2 – 15/2 ≤ 0, (4.118)
g3(x) = 5 x1 + x2 – 30 ≤ 0, (4.119)

with 0 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. (4.120)

The EA used here is the same as in test case S-CRES (cf. § 3.4.1.4) except that N = 40. The
process was launched 20 times. Each process consists in running the EA with both methods
(PAMUC and WS) 10 times, with a set of weights varying from { w1

* = 0 ; w2
* = 1} for the first

run to { w1
* = 1 ; w2

* = 0} for the last run, by a constant step. Fig. 4.29 illustrates nondominated
solutions obtained by both methods for one process.

Fig. 4.29 : Nondominated solutions obtained with the weighted sum and PAMUC methods

for M-LOC (for one process).

 f1

 f2

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–33

Numerical results are mentioned in Table 4.17, and show that PAMUC outperforms the
weighted sum method, although none of them is able to cover efficiently the left side of the PA-
reto front (i.e. the region such that –20 < f1(x) < 0).

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
20 0.88 0.11

M-LOC
100 0.86 0.09

Table 4.17 : Comparison of the weighted sum method and PAMUC for problem M-LOC.

Those results are confirmed when a higher number of processes is used. All runs (launched
with both methods) furnished feasible solutions.

4.4.2.3 Test case M-LOQC

The third test case is due to Osyczka (cited in [VAN98]), and is formulated as follows :

 f1(x) = x1 + x2
2 (4.121)

max
f2(x) = x1

2 + x2 (4.122)

subject to : g1(x) = 12 – x1 – x2 ≥ 0, (4.123)
g2(x) = x1

2 + 10 x1 – x2
 2 + 16 x2 – 80 ≥ 0, (4.124)

2 ≤ x1 ≤ 7 and 5 ≤ x2 ≤ 10. (4.125)

The EA used here is the same as in the previous example (with the same parameters). The
process was launched 20 times, each process consisting in running the EA with PAMUC and the
weighted sum method 10 times, with a set of weights varying from { w1

* = 0 ; w2
* = 1} for the

first run to { w1
* = 1 ; w2

* = 0} for the last run, by a constant step. All solutions (found by both
methods) were feasible.

Fig. 4.30 : Nondominated solutions obtained with the weighted sum and PAMUC methods

for M-LOQC (for one process).

 f1

 f2

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–34

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
M-LOQC 20 0.93 0.05

Table 4.18 : Comparison of the weighted sum method and PAMUC for problem M-LOQC.

Statistics on the 20 processes are gathered in Table 4.18, showing that PAMUC gives better
results than the weighted sum method. One can also observe in Fig. 4.30 that the points obtained
by the weighted sum method are concentrated at the extreme sides of the Pareto front, while the
solutions of PAMUC are better distributed along the Pareto front.

At first sight, this result may seem astonishing. Indeed, Jin et al. showed in [JIN01] that most
aggregation methods were not capable to represent concave Pareto fronts (as the concave PF of
this 2-objective maximization problem). Their explanation is based on the following statement :
the ability to converge towards a Pareto solution is related to its stability with respect to a given
combination of weights. This concept is illustrated in Fig. 4.31 for a 2-objective minimization
problem characterized by a convex trade-off surface front.

Fig. 4.31 : Convex Pareto front (in a minimization problem).

Fig. 4.32 : Seeking the minimum of w1 f1 + w2 f2 with w1 = w2 = 0.5 (in a minimization problem).

f1

f2

FP

C

f1

f2

FP

C

45°

C f1f2

45°

Chapter 4 – Validation of the PAMUC method 4–35

Each network of parallel lines is associated with a slope corresponding to a set of weights
{ w1, w2} . If w1 = w2 = 0.5 for instance, a 45° rotation of axes f1 and f2 transforms the multiobjec-
tive problem into a single-objective one (cf. Fig. 4.32).

With the weighted sum method for example, when the Pareto front is convex, all weight com-
binations lead to stable nondominated solutions. On the contrary, when it is concave, only points
located on extreme sides of the Pareto front (A and B in Fig. 4.33 ; see also Fig. 4.30 for test case
M-LOQC) can be reached.

Fig. 4.33 : Seeking the minimum of { f1 f2}
T with w1 = w2 = 0.5 with a concave Pareto front

(in a minimization problem).

Why has PAMUC found points scattered along the trade-off surface ? To answer this ques-
tion, a careful examination of PROMETHEE II has to be done. Eq. (3.40) giving the preference
flux φ(a) of an individual a (which acts as the fitness function of the EA in PAMUC : see §
3.6.2) can be developed as follows :

φ(a) = [π(a,b) – π(b,a)] = [wi Pi(a,b) – wi Pi(b,a)] (4.126)

⇔ φ(a) = wi [Pi(a,b) – Pi(b,a)] (4.127)

where φi are single-criterion fluxes [MAR89]. When there are no constraints, applying PAMUC is
equivalent to perform a weighted sum not directly on the objectives, but on the single-criterion
fluxes φi . Here lies the difference with classical linear aggregation methods : instead of a linear
combination of the objectives, which is done independently for each individual of the EA, the
preference flux φ takes the other solutions of the population into account, making the procedure
nonlinear. Theoretical results valid for linear aggregation techniques are therefore unapplicable :
the intrinsic nonlinearity of PAMUC allows it to find solutions even if the Pareto front is con-

f1

f2

FP
C 45° C

f1
f2

45°

A B

φi

�

b

�

b

�

i

�

i

�

i

�

b

�

b

Chapter 4 – Validation of the PAMUC method 4–36

cave, though it should be emphasized that a uniform distribution along the Pareto front is not
guaranteed for every problem characterized by a concave trade-off surface. This matter will be
discussed below.

4.4.2.4 Test case M-QOC

The fourth multiobjective problem is due to Srinivas and Deb [DEB01], and is defined as fol-
lows :

 f1(x) = – [2 + (x1 – 2)2 + (x2 – 1)2] (4.128)
max

f2(x) = – [9 x1 – (x2 – 1)2] (4.129)

subject to : g1(x) = x1
2 + x2

2 – 225 ≤ 0, (4.130)
g2(x) = x1 – 3 x2 + 10 ≤ 0, (4.131)
– 20 ≤ x1 ≤ 20 and – 20 ≤ x2 ≤ 20. (4.132)

Figure 4.34 depicts 10,000 points of the search space randomly created (only feasible points,
i.e. satisfying g1(x) ≤ 0 and g2(x) ≤ 0, are represented).

The EA used here is the same as in test case S-CRES (cf. § 3.4.1.4) save that N = 100. The
process was launched 20 times. Each process consists in running the EA with both methods
(PAMUC and WS) 10 times, with a set of weights varying from { w1

* = 0 ; w2
* = 1} for the first

run to { w1
* = 1 ; w2

* = 0} for the last run, by a constant step. Statistics on the 20 processes are
mentioned in Table 4.19.

Fig. 4.34 : Feasible solutions (amidst 10,000 points randomly generated) in the objective space for M-QOC.

Figure 4.35 shows nondominated solutions obtained by both methods for one process. While
WS results are gathered in a very narrow zone close to (0 ; 0), the solutions obtained by PAMUC
cover larger zones at the extreme sides of the Pareto front. Nervertheless, the central part of the
trade-off surface is not reached by the EA, whatever combination of weight is used. This illus-
trates the warning made in previous section, hence a limitation of PAMUC.

 f1

 f2

Chapter 4 – Validation of the PAMUC method 4–37

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
M-QOC 20 0.97 0.09

Table 4.19 : Comparison of the weighted sum method and PAMUC for problem M-QOC.

Fig. 4.35 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-QOC

(for one process).

All runs made with PAMUC gave feasible solutions, while 91% of runs made with Joines
Houck’s method gave birth to solutions satisfying all the constraints. Figure 4.36 shows the rate
of feasible individuals with respect to the generations for one run of the EA (with w1

* = w2
* =

0.5) ; once again PAMUC enables a faster convergence towards the feasible domain, whilst the
dynamic penalty method has some hindrances to keep enough admissible individuals during the
generations.

Fig. 4.36 Rate of feasible individuals w.r.t. the generation for M-QOC

(with weighted sum [left] and PAMUC [right] methods).

 f1

 f2

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–38

4.4.2.5 Test case M-DPF

As already underlined before (cf. § 3.5.2), there are rather few studies specially devoted to
constrained and multiobjective evolutionary optimization, though it is encountered very com-
monly in industrial applications.

In order to validate techniques dealing with constrained optimization with multiple criteria in
EAs, an important breakthrough was brought by Deb [DEB99,DEB01], who developed tunable test
cases, from which examples M-DPF and M-LFS were taken.

The test generator is defined as follows :

 f1(x) = x1 (4.133)
min

f2(x) = g(x) [1 – f1(x)/g(x)] (4.134)

subject to : c(x) = cos(θ) [f2(x) – e] – sin(θ) f1(x) ≥
a | sin(bπ(sin(θ)(f2(x) – e) + cos(θ)f1(x))c)|d (4.135)

0 ≤ xi ≤ 1 for i = 1,…, 5, (4.136)

with : g(x) = x1
2 + x2

2 + x3
2 + x4

2 + x5
2, (4.137)

where g(x) can actually be any multimodal function. Different levels of difficulty can be ob-
tained by changing g(x). De Jong’s function with 5 variables [WHI96] was chosen.

The following parameters were used : θ = – 0.2π, a = 0.2, b = 3, c = 1, d = 6 and e = 1. The
EA used here is the same as in the previous example (with the same parameters, except that Ngen

= 100). The process was launched 20 times. Each process consists in running the EA with PA-
MUC and the weighted sum method 10 times, with a set of weights varying from { w1

* = 0 ; w2
*

= 1} for the first run to { w1
* = 1 ; w2

* = 0} for the last run, by a constant step. Statistics on the 20
processes show that the mean value for R1(PAMUC,WS) is equal to 0.86 (see Table 4.20). All
solutions (found by both methods) were feasible.

In Fig. 4.37, a set of feasible solutions (among 10,000 objective vectors randomly generated)
illustrates the fact that the Pareto front is discontinuous, and that solutions found by PAMUC are
closer to the Pareto front, in comparison with the weighted sum method. It should be noted that
both methods found objective vectors on each of the four parts composing the discontinuous
trade-off surface.

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
20 0.86 0.13

M-DPF 100 0.83 0.08
Table 4.20 : Comparison of the weighted sum method and PAMUC for problem M-DPF.

Chapter 4 – Validation of the PAMUC method 4–39

 f1

Fig. 4.37 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-DPF

(for one process).

4.4.2.6 Test case M-LFS

The functions, constraints, variables and parameters of the study are the same as in the previ-
ous example, save that θ = 0.1π, a = 40, b = 4, c = 1, d = 2 and e = – 1. The process was
launched 20 times. Each process consists in running the EA with PAMUC and the weighted sum
method 10 times, with a set of weights varying from { w1

* = 0 ; w2
* = 1} for the first run to { w1

* =
1 ; w2

* = 0} for the last run, by a constant step.

Figure 4.38 shows a set of admissible solutions (among 10,000 objective vectors randomly
created), illustrating that the feasible domain is a discontinuous space composed of 8 layers. The
nondominated solutions are located on layer L1. Statistics on the 20 processes are collected in
Table 4.21. Once again it shows a better distribution of the points along the trade-off surface, as
well as a better behaviour in terms of handling of the constraints.

Parameters of the study Mean Standard Deviation
R1(PAMUC,WS) norm 0.82 0.14
Rate of feasible individuals per process (PAMUC) 0.96 0.18
Rate of feasible individuals per process (WS) 0.76 0.16
Rate of feasible ind. located on layer L1 (PAMUC) * 0.65 0.12
Rate of feasible ind. located on layer L1 (WS) * 0.31 0.09

Table 4.21 : Results for M-LFS

(* : ratio between the total number of feasible solutions and the number of feasible solutions on layer L1).

 f2

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–40

Fig. 4.38 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-LFS (for one

process).

Computations have been made for test cases M-DPF and M-LFS by using a more challenging
function g(x), namely Rastrigin’s function (instead of De Jong’s function) :

g(x) = [1+ xi
2 – cos(2π xi)]. (4.138)

Numerical results show that PAMUC and the weighted sum method both have difficulties
whilst endeavouring to find solutions close to the Pareto front : when feasible objective vectors
are found, they are generally far from it. In those cases, an a posteriori method should be used to
determine the trade-off surface, and a multicriteria decision aid method applied only at the end of
the search process.

4.4.2.7 Test case M-BDP

The 7th multiobjective test case is a mechanical benchmark : the beam design problem (cf.
Fig. 4.39), defined in [OSY02] :

 f1(x) = b.l. xn (4.139)

min

f2(x) = ���
����� −−+ �

=

6

2n n

33

1

3

I

)1n(n

I

1

E2

Fl
(4.140)

where f1(x) is the volume of the beam and f2(x) is the displacement under the force F and In is the
moment of inertia for each part of the beam :

 f1

 f2

�
=

5

1i

�
=

6

1n

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–41

In =
12

bx3
n for n = 1,…, 6. (4.141)

The variables xn are the thicknesses of the beam components. It is a discrete programming
problem, since :

Xn ∈ {12,14,16,18,20,22,24,26,28,30,32} [mm] for n = 1,…, 6. (4.142)

The first 6 constraints express that the normal stress must lie under the maximum authorized
level σg = 360 N/mm2, and the last ones impose a linear restriction on the thicknesses :

cn = g2
nbx

Fnl6 σ≤ for n = 1,…, 6, (4.143)

cn+6 = xn+1 – xn ≥ 0 for n = 1,…, 5. (4.144)

Fig. 4.39 : Osyczka beam design problem.

Fig. 4.40 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-BDP

(for one process).

l l l l l l

x6 x5 x4 x3 x2 x1

F

b

 f1

 f2

 x Weighted sum method
 ° PAMUC

Chapter 4 – Validation of the PAMUC method 4–42

Table 4.22 gathered the EA parameters used for the study.

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Gray
N Size of the population 50
Ngen Number of generations 50
Ts Type of selection Tournament

nt
Number of individuals participating
to a tournament

5

pc Probability of crossover 0.8

Tc Type of crossover 2-point
pm Probability of mutation 0.05

Tm Type of mutation Flip
Table 4.22 : EA parameters for test case M-BDP.

The process was launched 20 times. Each process consists in running the EA with both meth-
ods (PAMUC and WS) 10 times, with a set of weights varying from { w1

* = 0 ; w2
* = 1} for the

first run to { w1
* = 1 ; w2

* = 0} for the last run, by a constant step. Statistics on the 20 processes
are gathered in Table 4.23. Figure 4.40 shows nondominated solutions obtained by both methods
for one process. All results (whatever method used) produced feasible solutions.

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
M-BDP 20 0.79 0.18

Table 4.23 : Comparison of the weighted sum method and PAMUC for problem M-BDP.

4.4.2.8 Test case M-3OU

So far only 2-objective optimization have been investigated. In fact, as Deb pointed out in
[DEB02], many multiobjective algorithms are validated only on test cases characterized by two
criteria. However, of course, real-life applications may contain more than 2 objectives.

Therefore, the 8th and 9th multiobjective problems will test examples with 3 objectives. They
are due to Viennet (cited in [COE02a]), and the first one is formulated as follows :

 f1(x) = x1
2 + (x2 – 1)2 (4.145)

max f2(x) = x1
2 + (x2 + 1)2 + 1 (4.146)

 f3(x) = (x1 – 1)2 + x2
2 + 2 (4.147)

with : – 2 ≤ x1 ≤ 2 and – 2 ≤ x2 ≤ 2. (4.148)

Figure 4.41 illustrates a set of 10,000 objective vectors randomly generated drawn in the ob-
jective space.

Chapter 4 – Validation of the PAMUC method 4–43

Fig. 4.41: Random population of 10,000 individuals in the objective space for M-3OU.

The process was launched 10 times. Each process consists in running the EA with both meth-
ods (PAMUC and WS) 210 times, with varying weights as explained in § 4.3.5. Statistics on the
10 processes are shown in Table 4.24.

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
M-3OU 10 0.60 0.23

Table 4.24 : Comparison of the weighted sum method and PAMUC for problem M-3OU.

4.4.2.9 Test case M-3OC

The second 3-objective problem is also due to Viennet (cf. [COE02a]), and has three con-
straints :

 f1(x) = (x1 – 2)2/2 + (x2 + 1)2/13 +3 (4.149)

max f2(x) = (x1 + x2 – 3)2/175 + (2 x2 – x1)
2/17 – 13 (4.150)

 f3(x) = (3 x1 – 2 x2 + 4)2/8 + (x1 – x2 +1)2/27 + 15 (4.151)

subject to : g1(x) = – 4 x1 – x2 +4 > 0, (4.152)
g2(x) = x1 + 1 > 0, (4.153)
g3(x) = x2 – x1 +2 > 0, (4.154)

with : – 4 ≤ x1 ≤ 4 and – 4 ≤ x2 ≤ 4. (4.155)

 f1

 f3

 f2

Chapter 4 – Validation of the PAMUC method 4–44

Figure 4.42 illustrates a set of objective vectors (among 10,000 points randomly generated)
drawn in the objective space.

The process was launched 10 times. Each process consists in running the EA with both meth-
ods (PAMUC and WS) 210 times, with different weights as explained in § 4.3.5. Statistics on the
10 processes are mentioned in Table 4.25.

Fig. 4.42 : Feasible population (among 10,000 individuals randomly generated)

in the objective space for M-3OC.

R1(PAMUC,WS)
Problem Number of processes

Mean Standard deviation
M-3OC 10 0.80 0.29

Table 4.25 : Comparison of the weighted sum method and PAMUC for problem M-3OC.

A summary of the numerical results will take place at § 4.4.3, and conclusions will be drawn
about the pertinency of using PAMUC to solve multiobjective contrained problems in design
optimization. Afterwards, three important computational aspects still have to be considered : the
influence of PAMUC parameters pi and qi on the results (§ 4.4.4), the sensitivity of the solutions
with respect to the user’s weights wi

* (§ 4.4.5) and the computational time (§ 4.4.6).

4.4.3 Summary of multiobjective problems

The multiobjective test cases presented above were aimed to show that PAMUC can reflect
correctly the user’s preferences. In order to demonstrate PAMUC efficiency for various situa-
tions, they had to present different peculiarities (as prescribed by Deb in [DEB99]) ;

 f1 f2

 f3

Chapter 4 – Validation of the PAMUC method 4–45

• convexity of the trade-off surface (e.g. M-UC, M-LOC) ;
• concavity of the trade-off surface (e.g. M-LOQC) ;
• discontinuity of the trade-off surface (e.g. M-DPF) ;
• presence of “ local” Pareto fronts, i.e. dominated regions which attract the individuals

of the EA (cf. M-LFS) ;
• n-dimensional objective spaces with n ≥ 3 (e.g. M-3OU, M-3OC).

Table 4.26 recapitulates the comparative results between the weighted sum method and PA-
MUC for the multiobjective test cases. PAMUC clearly outperforms the weighted sum method.

R1(PAMUC,WS) M-UC M-LOC M-LOQC M-QOC M-DPF M-LFS M-BDP M-3OU M-3OC

Mean 0.74 0.88 0.93 0.97 0.86 0.82 0.79 0.60 0.80

Std. deviation 0.08 0.11 0.05 0.09 0.13 0.14 0.18 0.23 0.29

Table 4.26 : Comparison of PAMUC and WS methods for 9 multiobjective methods :

values of the mean and standard deviation of R1-norm.

Jin et al. explained in [JIN00] why linear aggregation methods are not capable of finding other
solutions than points located at the extreme sides of the Pareto front. However, PROMETHEE II
– hence PAMUC – does not imply a pure linear addition of the criteria, since preference func-
tions have to be computed first, comparing each individual to the rest of the population. This
explains why objective vectors can be found along the trade-off surface, even when it is concave.
The other a priori methods, as the goal programming or the min-max method (cf. § 3.3.3), have
not been compared to PAMUC since they demand a different kind of information from the user :
instead of (or in addition to) weights, they require the user to define a specific point in the objec-
tive space (e.g. the target in goal programming methods).

It is important to emphasize that no claim is done that PAMUC is able to cover the whole Pa-
reto front in all cases, i.e. whatever shape it may have (cf. M-DPF and M-LFS with g(x) equal to
Rastrigin’s function). In very hard problems, an a posteriori method should thus be used first
(e.g. NSGA-II [DEB02a] or NPGA2 [ERI01]), and a solution chosen among the nondominated
points after the search process.

Before drawing the general conclusions about PAMUC, the following paragraphs will focus
on three aspects : the influence of parameters pi and qi on the results, the sensitivity of the
weights and the computational time.

4.4.4 Influence of parameters pi and qi

As exposed in the description of PAMUC, two additional parameters pi and qi are needed to
run the algorithm (for each criterion). In industrial applications, they can be determined by the
decision maker, with respect to his/her knowledge about the objectives, but when such informa-
tion is not available – which is the case in the mathematical examples presented above –, values
of pi = 1 and qi = 0 have been used systematically, and provided good results. In order to validate
this choice, example M-UC will be treated with different values of pi and qi to investigate their
influence on the results.

Chapter 4 – Validation of the PAMUC method 4–46

w1
* = 0 w1

* = 0.25 w1
* = 0.5 w1

* = 0.75 w1
* = 1

pi
f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt

0.2 – 0.4075 0.9825 0.3088 0.7108 0.5237 0.4825 0.6973 0.3266 0.9627 – 0.4128

0.5 – 0.3715 0.9886 0.3186 0.6899 0.5039 0.5082 0.6947 0.2937 0.9889 – 0.3753

1 – 0.3718 0.9762 0.3427 0.6746 0.5856 0.4167 0.7092 0.3225 0.9644 – 0.3872

2 – 0.4003 0.9892 0.2785 0.7344 0.5194 0.5211 0.6952 0.3118 0.9978 – 0.4203

5 – 0.3664 0.9364 0.3018 0.6809 0.5355 0.5123 0.6732 0.3198 0.9751 – 0.3819

10 – 0.4020 0.9666 0.3081 0.7238 0.5276 0.5265 0.6650 0.2377 0.9740 – 0.3990

Table 4.27 : Analysis of the influence of parameter pi (with qi = 0) on results for example M-UC,

with different values of the weights – each number represents the mean on 50 runs of the algorithm.

w1
* = 0 w1

* = 0.25 w1
* = 0.5 w1

* = 0.75 w1
* = 1

pi
f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt

0.2 0.1296 0.1182 0.1992 0.1512 0.1681 0.2820 0.1866 0.0987 0.2259 0.1503

0.5 0.1438 0.0738 0.2136 0.2124 0.2473 0.1950 0.2314 0.1712 0.0958 0.1359

1 0.2123 0.1117 0.1310 0.2730 0.1141 0.3545 0.1537 0.1503 0.1284 0.2340

2 0.1367 0.0503 0.2051 0.1301 0.2179 0.1665 0.2018 0.1042 0.0140 0.0535

5 0.2293 0.2831 0.2624 0.2774 0.0366 0.2200 0.2746 0.1335 0.1126 0.2173

10 0.1458 0.1814 0.1534 0.0944 0.1486 0.1878 0.2963 0.3004 0.1294 0.1942

Table 4.28 : Analysis of the influence of parameter pi (with qi = 0) on results for example M-UC,

with different values of the weights – each number represents the standard deviation on 50 runs of the algorithm.

w1
* = 0 w1

* = 0.25 w1
* = 0.5 w1

* = 0.75 w1
* = 1

qi
f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt

0 – 0.4187 0.9995 0.3034 0.6863 0.4747 0.5512 0.6577 0.2838 0.9315 – 0.4143

10 -5 – 0.3987 0.9808 0.3134 0.7078 0.4970 0.5188 0.7260 0.3230 0.9496 – 0.4074

10 -4 – 0.4206 0.9845 0.2953 0.7157 0.5173 0.5218 0.6704 0.2918 0.9874 – 0.4071

10 -3 – 0.4005 0.9869 0.3116 0.6958 0.5405 0.5397 0.7216 0.2944 0.9398 – 0.3945

10 -2 – 0.4129 0.9985 0.2931 0.7289 0.5840 0.4430 0.6702 0.3273 0.9980 – 0.4243

10 -1 – 0.4249 0.9842 0.2981 0.7339 0.5304 0.4944 0.7177 0.3287 0.8825 – 0.3577

Table 4.29 : Analysis of the influence of parameter qi (with pi = 1) on results for example M-UC,

with different values of the weights – each number represents the mean on 50 runs of the algorithm.

w1
* = 0 w1

* = 0.25 w1
* = 0.5 w1

* = 0.75 w1
* = 1

qi
f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt f1

opt f2
opt

0 0.0275 0.0034 0.2252 0.2818 0.2751 0.1036 0.3031 0.2194 0.3069 0.1950

10 –5 0.1864 0.1262 0.1775 0.1734 0.2267 0.2083 0.0096 0.0131 0.1994 0.2089

10 –4 0.1172 0.0834 0.1908 0.1900 0.1969 0.0969 0.2871 0.1423 0.0682 0.1497

10 –3 0.1494 0.0528 0.1097 0.1937 0.0241 0.0243 0.0515 0.1964 0.2142 0.2821

10 –2 0.0490 0.0069 0.1931 0.0921 0.1125 0.2951 0.2655 0.1343 0.0071 0.0540

10 –1 0.0924 0.1030 0.1441 0.0796 0.1699 0.2184 0.0633 0.0911 0.4157 0.2807

Table 4.30 : Analysis of the influence of parameter qi (with pi = 1) on results for example M-UC,

with different values of the weights – each number represents the standard deviation on 50 runs of the algorithm.

Chapter 4 – Validation of the PAMUC method 4–47

The parameters of the EA are the same as in § 4.4.2.1. Tables 4.27 to 4.30 show the results of
PAMUC with different values of the user’s weights and of pi (resp. qi). In all cases, p1 = p2 , q1 =
q2 , and of course w2

* = 1 – w1
*. The values of pi are greater than (or equal to) 0.2, and the values

qi remain less than (or equal to) 0.1.

The numerical results clearly indicate that whichever values of pi or qi are used (within the
given range), the solutions are within the range defined by the standard deviation. Therefore,
when no additional information is known about the criteria, values of pi = 1 and qi = 0 are rec-
ommended.

4.4.5 Sensitivity analysis with respect to the weights wi
*

Another aspect is related to the sensitivity of the weights. It is well known that EAs are robust
against noise, but in the particular case of PAMUC, it is important to check whether a slight
modification of the set of weights would induce an important variation of the results. Therefore,
a sensitivity analysis on the weights wi

*
 was performed, by comparing results obtained for 5 dif-

ferent values of the weights (w1
* ∈ { 0 ; 0.25 ; 0.5 ; 0.75 ; 1}) with results furnished for corre-

sponding perturbated weights (w1
* ∈ { 0.01 ; 0.26 ; 0.51 ; 0.76 ; 0.99}). Table 4.31 depicts the

mean and standard deviation over 100 runs, with the same EA parameters as above.

Though a more in-depth sensitivity analysis can be done (cf. approach proposed in [WOL95]
for instance), this is meaningless here since a quick examination of Table 4.31 shows that the
standard deviation of the solutions and the variations of the results have the same range. It can
thus be concluded that solutions are not sensitive to small variations of the weights.

w1
* = 0 w1

* = 0.25 w1
* = 0.5 w1

* = 0.75 w1
* = 1

f1
opt f2

opt f1
opt f2

opt f1
opt f2

opt f1
opt f2

opt f1
opt f2

opt

w* – 0.4075 0.9825 0.3088 0.7108 0.5237 0.4825 0.6973 0.3266 0.9627 – 0.4128
Mean

w*
pert – 0.3715 0.9886 0.3186 0.6899 0.5039 0.5082 0.6947 0.2937 0.9889 – 0.3753

w* 0.1296 0.1182 0.1992 0.1512 0.1681 0.2820 0.1866 0.0987 0.2259 0.1503Std.
Dev. w*

pert 0.1438 0.0738 0.2136 0.2124 0.2473 0.1950 0.2314 0.1712 0.0958 0.1359

Table 4.31 : Influence of the variation of weights on the solutions for example M-UC

(each number represents the mean or the standard deviation over 100 runs).

4.4.6 Algorithmic complexity

This section is devoted to the calculus of PAMUC computational complexity. Its differences
with the traditional weighted sum method (WS) – Joines and Houck’s penalty method being used
to handle the constraints – lie in 3 parts of the algorithm (cf. Fig. 4.43) :

• during the selection scheme :
• all individuals are compared thanks to PAMUC following m+1 objectives ;
• additionaly, an elitist selection procedure is applied wherein each 4-member set of 2

parents and their corresponding children are compared by PROMETHEE II ;
• the weights have to be updated at each generation, hence the number of feasible individu-

als computed.

Chapter 4 – Validation of the PAMUC method 4–48

Fig. 4.43 : Flow-chart of PAMUC

(the modules having differences with WS are characterized by dash-dotted lines).

A decomposition of the different parts of the standard EA (cf Fig. 4.43) combined with the
weighted sum method leads to the following formula :

WS
gen1T = N.[Tsel + Tcross + Tmut + Tobj + Tconstr + K] , (4.156)

where :
•

WS
gen1T is the computational time needed for one generation of the EA with the weighted

sum method ;
• N is the size of the population ;
• Tsel is the average time (for one member of the population) to perform selection ;
• Tcross is the average time (for one member of the population) to perform crossover ;
• Tmut is the average time (for one member of the population) to perform mutation ;
• Tobj is the time needed to compute the values of the m objective functions (for one in-

dividual) ;
• Tconstr is the time needed to compute the values of the p+q (equality and inequality)

constraints (for one individual) ;
• K is a second-order term for remaining (low cost) computations of the algorithm.

For PAMUC, similar developments lead to Eq. (4.157) :

PAMUC
gen1T = N.[Tsel_PROM_II + Tcross + Tmut + Tobj + Tconstr + (N+1).(m+1).

TPROM_II + K'] , (4.157)

SOLUTION(S)
NO

RANDOM CREATION OF THE 1ST GENERATION (t=1)

SELECTION FOLLOWING

m+1 OBJECTIVES

t ←←←← t + 1

CROSSOVER

& MUTATION

YES
t ≤≤≤≤ Ngen?

UPDATING OF THE

WEIGHTS

Chapter 4 – Validation of the PAMUC method 4–49

where :
•

PAMUC
gen1T is the computational time needed for one generation of the EA with PAMUC ;

• Tsel_PROM_II is the average time (for one member of the population) to perform selection
(by an elitist selection procedure using PROMETHEE II for each pair of parents and
their corresponding children) ;

• m is the number of objective functions ;
• TPROM_II is the time needed to compute (for a couple of individuals (a,b)) the prefer-

ence functions Pi(a,b) and the preference indexes π(a,b) needed to rank the individuals
in PROMETHEE II ;

• K' is a second-order term for remaining (low cost) computations of the algorithm.

Tcross and Tmut are functions of the coding and the number of variables. With increasing sizes
of population, number of generations and of objectives, the asymptotic complexity AC of the EA
are given by the following expressions :

ACWS = o(Ngen . N . m), (4.158)

ACPAMUC = o(Ngen . N 2.m), (4.159)

where the notation f = o(g) means that :

)x(g

)x(f
lim
x ∞→

= 0 . (4.160)

Though this theoretical result demonstrates that PAMUC is more expensive than a simple lin-
ear aggregation of the weights for large computations (with high numbers of generations Ngen

and members in the population N), it must be underlined that in most cases, in pre-design opti-
mization, EAs are used with N ≤ 200 and Ngen ≤ 1000, making the differences between both
methods very reasonable. The calculations presented below aim to illustrate the fact that the use
of PAMUC, besides from giving better results than the weighted sum method, needs only a mi-
nor supplementary CPU time to perform it.

Indeed, Tables 4.32 to 4.34 present the CPU times of the EA for 3 emblematic test cases (in
which N and Ngen are variable whereas the other EA parameters are the same as in §§ 4.4.1 and
4.4.2) :

• S-38IC (characterized by 5 variables, 1 objective and 38 inequality constraints) ;

• M-BDP (characterized by 6 variables, 2 objectives and 11 inequality constraints, w1
* =

w2
* = 0.5) ;

• M-3OC (characterized by 2 variables, 3 objectives and 3 inequality constraints, w1
* =

w2
* = w3

* = �).

Chapter 4 – Validation of the PAMUC method 4–50

CPU time (s)
N Ngen Joines and

Houck
PAMUC

Relative differ-
ence (%)

50 50 8.6 9.4 8.5%

50 100 17.2 18.9 8.6%

50 1000 282.8 302.0 6.4%

100 50 16.0 17.4 8.1%

100 100 29.1 35.0 16.8%

100 1000 529.0 567.8 6.8%

200 50 34.6 41.5 16.5%

200 100 56.8 70.7 19.7%

200 1000 1034.2 1190.3 13.1%

Table 4.32 : CPU time for different values of the number of generations Ngen

and the size of the population N (for test case S-38IC).

CPU time (s)
N Ngen WS + Joines

and Houck
PAMUC

Relative differ-
ence (%)

50 50 4.9 6.5 24.5%

50 100 9.7 12.7 23.4%

50 1000 184.0 185.0 0.5%

100 50 12.9 14.2 8.6%

100 100 18.2 30.7 40.8%

100 1000 299.6 374.2 19.9%

200 50 32.1 40.7 21.3%

200 100 35.5 61.7 42.5%

200 1000 572.4 848.6 32.5%

Table 4.33 : CPU time for different values of the number of generations Ngen

and the size of the population N (for test case M-BDP).

CPU time (s)
N Ngen WS + Joines

and Houck
PAMUC

Relative differ-
ence (%)

50 50 6.9 7.3 5.9%

50 100 11.0 13.6 19.1%

50 1000 179.0 194.4 7.9%

100 50 11.7 13.6 13.9%

100 100 20.1 27.9 28.0%

100 1000 316.5 395.4 19.9%

200 50 26.5 31.1 15.0%

200 100 38.4 63.6 39.7%

200 1000 614.2 872.4 29.6%

Table 4.34 : CPU time for different values of the number of generations Ngen

and the size of the population N (for test case M-3OC).

Chapter 4 – Validation of the PAMUC method 4–51

Those results (obtained on a PC with freq. = 900 MHz in MS Windows 2000 environment)
corroborate the trend given by the theory, i.e. when the size of the population (all other parame-
ters remaining equal) increases, the relative difference between both methods (in terms of com-
putational cost) also increases ; however, in all test cases analyzed here, even for a rather high
number of individuals (N = 200), this gap remains reasonable (less than 50% of supplementary
CPU time needed).

4.5 Conclusions

This chapter was devoted to a rigorous validation of PAMUC. The test cases were divided in
two categories :

• single-objective test cases : they demonstrate that PAMUC, though initially developed
for multicriteria optimization, is an efficient tool in comparison with specific con-
straint-handling techniques. The good results are mainly due to the adaptivity of the
weights, which guarantees a compromise between the search for a “better” solution
(following the objectives and the given combination of weights) and the feasibility of
the individuals ;

• multiobjective test cases : to validate PAMUC, a reflexion had first to be done about
the norm to use to compare two nondominated sets (obtained by PAMUC and a classi-
cal weighted sum method, the latter approach being widely spread in industrial appli-
cations). Then, after R1-norm was chosen, 9 multiobjective problems were tested, and
showed that PAMUC clearly outperforms a linear aggregation of the criteria. This is
due to the fact that the fitness function of each individual is not computed independ-
ently from the other members of the population, but takes them into account for their
ranking. Additionally, considering the satisfaction of the constraints as a new objective
and adapting weights at each generation seem to be a suitable way to tackle the con-
straints. Nevertheless, possible users of PAMUC must be reminded that though per-
forming better than the classical weighted sum method, no claim is made ensuring that
it systematically finds solutions distributed along the trade-off surface for varying
weights.

These various examples illustrate the robustness and efficiency of PAMUC in small size ex-
amples (number of variables ≤ 20, number of constraints ≤ 50), constituting thus a well adapted
tool for pre-design optimization. The application of PAMUC to industrial mechanical compo-
nents (namely : space valves) will be presented in Chapter 6.

One of the most interesting advantage of PAMUC is that no tuning of parameters is required.
Indeed, after discussion (cf. § 4.4.4), when no additional information is provided by the user,
values of pi = 1 and qi = 0 are recommended for all criteria i = 1,…, m (or m+1 if there are con-
straints). Furthermore, the method has demonstrated to be robust with respect to small variations
of the weights (cf. § 4.4.5). It is also important to underline that this improvement of the results
obtained thanks to PAMUC needs only a reasonable supplementary amount of time in compari-
son with the weighted sum method (less than 50% in the most unfavourable example treated in
this work : cf. § 4.4.6).

Chapter 4 – Validation of the PAMUC method 4–52

Finally, the methodology of conceiving PAMUC still remained general, i.e. no particular hy-
pothesis had to be done about the nature of the variables (hence the codings), the objectives or
the constraints, letting the door open to the next step : the incorporation of expert rules within the
optimization procedure.

Chapter 5 – Expert rules for mechanical design optimization 5–1

CHAPTER 5 – EXPERT RULES FOR M ECHANICAL DESIGN
OPTIMIZATION

5.1 Introduction

The second part of this work adresses the pre-design optimization problem where not only
geometrical and material variables are involved, but also topological ones. As it implies a dra-
matic increase of the size of the search space – since designs with very different configurations
are shuffled altogether within the evolutionary algorithm –, a standard evolutionary algorithm,
without using any additional knowledge, would have hindrances to reach the feasible domain.
More fundamentally, when engineers have to choose the best design among a set of proposals,
they do not use merely numerical models of the physical behaviour of structures and materials.
They also take technological requirements into account, which can seldom be modelled by
mathematical equations, but are often predominent in the final choice for one design against an-
other. Those technological constraints are more naturally translated in terms of rules.

Considering knowledge as rules has been used since the late sixties in expert systems, which
gather a collection of expert rules from scientists in a specific field. Though they have provided
outstanding results in some applications, they have severe limitations, and are restricted to nar-
row domains of applications (§ 5.2). Therefore, a general approach, PAMUC II, mingling multi-
criteria evolutionary optimization (the PAMUC method introduced in Chapter 3) and expert
rules will be presented in § 5.3.

Then, PAMUC II will be validated for single-objective and multiobjective examples with
rules, in particular on mechanical benchmarks, and special issues (computational time, consis-
tency of the rule base) will be discussed (§ 5.4), followed by the conclusions (§ 5.5).

5.2 Knowledge-based systems and exper t rules for design optimi-
zation

5.2.1 Histor ical background

In order to take into account knowledge from experts, programmers have developed since the
late sixties softwares called expert systems. Their aim is to reproduce the reasoning that human
experts would make in a specific domain, enabling thus to solve complex problems.

The birth of expert systems has to be replaced in a more general stream : artificial intelligence
(AI). Artificial intelligence is a constituent part of computer sciences that appeared in the 1950’s.
Charniak and McDermott consider that modern AI was born in 1956 [CHA85], when the Dart-
mouth conference (organized by John McCarthy and Marvin Minsky) took place, wherein the
expression “artificial intelligence” was used for the first time. Following Savory, AI is the set of
computer techniques simulating some of the human natural abilities [SAV88]. AI deals with
problems as :

Chapter 5 – Expert rules for mechanical design optimization 5–2

• automatic theorem proving [FIT90] ;
• natural language understanding ;
• speech processing ;
• vision and robotics ;
• expert systems and knowledge acquisition ;
• representation of knowledge.

AI is based on the fundamental hypothesis that what human brain does can be considered, un-
til a certain level, as a computation [TEL88]. In expert systems, knowledge is based on logics, e.g.
propositional or predicate calculus. The first and most representative expert systems are DEN-
DRAL, MACSYMA, PROSPECTOR, etc. [HAY83,OLS92]. As MYCIN illustrates many features
of expert systems, it will be briefly discussed hereafter.

Though the particular goal of MYCIN is to make easier the diagnosis of infectious diseases,
its approach was used in many other expert systems. The context of MYCIN development is the
following : when patients have just undergone a surgical operation, they may become victims of
infections which have to be eliminated immediately. In such a situation, asking advice to one (or
several) physicians(s) is not always possible. Therefore, to provide an expert opinion in any case,
MYCIN was created.

The principle of MYCIN is based on the backward-chaining algorithm [SAV88] : it means that
it starts from the goal to be obtained (in this case : the antibiotic to be prescribed) ; then, a ther-
apy hypothesis is chosen, and an induction reasoning is performed to find the conditions which
have to be verified in order to validate the prescription. From the knowledge acquired thanks to
answers given by the user (to judicious questions asked by the software), MYCIN is able to de-
duce new information (by forward-chaining). This combination of induction and deduction is
called mixt-chaining.

Besides, each rule has an uncertainty, which depends on statistics related to the diagnoses.
Each solution proposed by the program is therefore given with a certain probability of exactness.

Though MYCIN did furnish excellent results, this approach has never been completely ac-
cepted by members of the medical community, and it is interesting to note why they were so
reticent to use it. First, the computational cost related to 1970 computers restricted the practical
application in a real-life context. Moreover, even if many parameters were taken into account in
MYCIN, its behaviour was still over-simple in comparison with the complexity of human
symptoms and the huge families of medical treatments. This limitation is crucial, since it under-
lines that once developed, an expert system is applicable only to a very restricted field, and in
specific conditions.

The architecture of classical expert systems is divided in three parts [DEL87,DEL88] :

• the knowledge base, contains the values of the variables (§ 5.2.1.1) ;
• the rule base, composed of all the rules synthetizing the expert knowledge (§ 5.2.1.2) ;
• the inference engine, manipulating the rules (§ 5.2.1.3).

5.2.1.1 Knowledge base

The knowledge base contains the values of the facts (i.e. the variables), which can be :

Chapter 5 – Expert rules for mechanical design optimization 5–3

– boolean : e.g. VARIABLE 1 ≡ PRESENCE OF A HOLE = TRUE ;
– symbolic : e.g. VARIABLE 2 ≡ JOINT MATERIAL = “POLYMER” ;
– integer : e.g. VARIABLE 3 ≡ NUMBER OF BOLTS = 5 ;
– discrete : e.g. VARIABLE 4 ≡ AREA OF CROSS-SECTION OF 2ND

BEAM = 10 cm2 (value taken from a catalogue for instance) ;
– real : e.g. VARIABLE 5 ≡ DIAMETER = 12.5 cm.

5.2.1.2 Rule base

The rule base contains the knowledge in terms of expert rules, generally coded as logical ex-
pressions written as :

IF condition THEN action.

The shortest way to model expert rules is to use the propositional calculus. In its syntax, rules
are fixed, i.e. it is assumed that their content is not modified during the process. Rule grammar
was precisely defined under Backus normalized form [DEL87] defined in Tables 5.1 and 5.2. Ta-
ble 5.1 presents its final elements, used in the fundamental definitions gathered in Table 5.2.
Both tables describe thus a complete grammar, based on the propositional calculus, and suffi-
cient to model it. Its keywords are :

{ IF, AND, THEN, NOT },

and two symbols have a specific meaning :

::= indicates that the term preceding this symbol is defined by what follows it ;
/ indicates the alternative.

Final elements

<BOOLEAN VARIABLE> the list of boolean variables is provided by the expert

<SYMBOLIC VARIABLE> the list of symbolic variables is provided by the expert

<INTEGER VARIABLE> the list of integer variables is provided by the expert

<DISCRETE VARIABLE> the list of discrete variables is provided by the expert

<REAL VARIABLE> the list of real variables is provided by the expert

<POSSIBLE SYMBOLIC VALUE> a symbolic value

<INTEGER NUMBER> an integer number

<DISCRETE NUMBER> a discrete number

<REAL NUMBER> a real number

Table 5.1 : Final elements of the Backus grammar [DEL87] .

Definitions

<RULE> ::= IF <CONDITION> THEN <CONCLUSION>

<CONDITION> ::= <PREMISS> /

<PREMISS> AND <CONDITION>

Chapter 5 – Expert rules for mechanical design optimization 5–4

<PREMISS> ::= <BOOLEAN VARIABLE> /

NOT <BOOLEAN VARIABLE> /

<SYMBOLIC VARIABLE> = <SYMBOLIC VALUE> /

<SYMBOLIC VARIABLE> ≠ <SYMBOLIC VALUE> /

<INTEGER VARIABLE> <COMPARATOR> < INTEGER VALUE>

<DISCRETE VARIABLE> <COMPARATOR> <DISCRETE VALUE>

<REAL VARIABLE> <COMPARATOR> <REAL VALUE>

<SYMBOLIC VALUE> ::= <SYMBOLIC VARIABLE> /

<POSSIBLE SYMBOLIC VALUE>

<REAL VALUE> ::= <REAL VARIABLE> /

<REAL NUMBER> /

<REAL VALUE> <OPERATOR> <REAL VALUE>

<DISCRETE VALUE> ::= <DISCRETE VARIABLE> /

<DISCRETE NUMBER> /

<DISCRETE VALUE> <OPERATOR> <DISCRETE VALUE>

<INTEGER VALUE> ::= <INTEGER VARIABLE> /

<INTEGER NUMBER> /

<INTEGER VALUE> <OPERATOR> <INTEGER VALUE>

<COMPARATOR> ::= < /

> /

≤ /

≥ /

= /

≠

<OPERATOR> ::= + /

– /

* /

etc.

<CONCLUSION> ::= <ACTION> /

<ACTION> AND <CONCLUSION>

<ACTION> ::= <BOOLEAN VARIABLE> /

NOT <BOOLEAN VARIABLE> /

<SYMBOLIC VARIABLE> = <SYMBOLIC VALUE> /

<INTEGER VARIABLE> = <INTEGER VALUE> /

<DISCRETE VARIABLE> = <DISCRETE VALUE> /

<REAL VARIABLE> = <REAL VALUE> /

Table 5.2 : Fundamental definitions in the Backus grammar [DEL87] .

Each rule is divided in two parts :

Chapter 5 – Expert rules for mechanical design optimization 5–5

• the condition, which corresponds to tests determining whether a rule is susceptible
to be applied ;

• the action, which is related to assignments of values to variables.

For example, here is a rule with four variables involved :

IF (VAR1 = 0.3 AND VAR2 > 10) THEN (VAR3 = 4 AND VAR4 = TRUE)

5.2.1.3 Inference engine

Finally, the third constitutive part of expert systems is the inference engine, which manipu-
lates the rules to feed the work memory of the session, by deducing new facts (deduction) or by
retrieving the conditions that led to a given situation (induction).

As already introduced in MYCIN, in propositional systems, three different kinds of inference
engines have been developed [DEL88] : backward-chaining (to perform induction), forward-
chaining (deduction) and mixt-chaining (combination of forward- and backward-chaining). As in
design optimization problem with expert knowledge, one is mostly interested in deducing what
rules to apply for a specific design (to check if it respects some technological requirements for
instance), a deeper insight will be made on forward-chaining.

The forward-chaining algorithm is based on the MODUS PONENS, a general principle of de-
duction written as follows :

IF F1 AND F2 AND … AND FN ARE TRUE,
AND IF THE RULE “ if F1 and F2 and … and FN, then F” IS TRUE,

THEN F IS TRUE

The corresponding algorithm is converted in pseudo-code in Fig. 5.1.

Fig. 5.1 : Forward-chaining algorithm (in pseudo-code) [DEL87] .

PREMISS 1 PREMISS 2 CONCLUSION 1 CONCLUSION 2

CONDITION ACTION

begin
{ initialization}
declare active all the rules in the rule base
while (some rules have their conditions satisfied)

determine the first rule to apply
execute the rule
if (the conclusion of the rule does not contradict

any element in the work memory)
then execute the conclusion of the rule

desactivate the rule
else

base not consistent
end

end
end

Chapter 5 – Expert rules for mechanical design optimization 5–6

From the initial data, the forward-chaining algorithm will try to find all the facts that can pos-
sibly be deduced. To illustrate the working of this algorithm on a simple example, a graphical
representation may be useful : the AND-OR trees, where facts are represented by nodes. An ex-
ample of AND-OR tree is depicted in Fig. 5.2, to symbolize the 6 rules below :

Rule R1 : B � A
Rule R2 : C � A
Rule R3 : (D AND E) � B
Rule R4 : (F AND G) � C
Rule R5 : H � G
Rule R6 : I � G

For example, if facts F and I are true, the algorithm will progressively deduce that G, C and
finally A are true. It will be shown below that the order following which the rules are applied
have no consequence on the results (cf. § 5.3.1.2). Incidentally, it is interesting to notice the ad-
vantage of the expert system approach, which overtly separate the codings of the knowledge
(data and rules) and the inference engine, which allows the user to delete, modify or add rules
without changing the whole software, as long as there is no contradiction in the rule base. The
consistency of the rule base will be discussed in § 5.4.4.

Fig. 5.2 : Illustration of forward-chaining in an AND-OR tree :

from the facts stating that F and I are true, one can deduce that G, C and A are also true.

At the end of the process, the memory has reached a saturated state, i.e. all the rules whose
condition parts were satisfied were applied : no other facts could be deduced anymore.

5.2.2 Exper t systems for design optimization

The previous section was specially devoted to expound the basics of expert systems, namely
what they are able to do and how they work. Here, the emphasis is put on expert systems dedi-
cated to engineering sciences, and particularly structural optimization.

A
OR

B
AND

D E

C
AND

F G
OR

H I

Chapter 5 – Expert rules for mechanical design optimization 5–7

As a matter of fact, most expert systems used for industrial applications have been contrived
for scheduling or operations processes, production systems, system planning, etc. [KLE96,

MAC02a], because in these fields knowledge can quite easily be modelled by logical rules. Fewer
expert systems are directly concerned with structural design optimization. The most emblematic
studies in this field are mentioned below.

In [ABE96], Aberšek et al. described an expert system (called STATEX) to design and manu-
facture a gear box. In the first stage of the process, genetic algorithms are used to determine the
optimal dimensions of a gear box (with special requirements) ; then, the expert system take tech-
nological requirements into account, related to the selection of cutting tool and cutting condi-
tions, the special sequence of machining, the tolerances, etc.

Chau et al. also described a knowledge-based system for mechanical design [CHA03], but for
liquid-retaining structures. In their expert system, symbolic knowledge based on engineering
heuristics in the preliminary stage (e.g. about crack width control) is needed for three types of
liquid-retaining structures (a rectangular shape with one compartment, a rectangular shape with
two compartments and a circular shape). Thanks to interactive graphical interfaces, the user is
directed throughout the design process, which includes preliminary design, load specification,
model generation, finite element analysis, code compliance checking and member sizing optimi-
zation.

Jiang et al. developed another expert system, for the design of scroll compressors used in re-
frigeration and air conditioners [JIA00]. Indeed, the authors created a visualised solid model of
the compressor, which was enhanced by the use of an optimization system. Finite element analy-
sis and expert system strategy were used to study the model, which is useful for improving the
quality of manufacturing and assembly accuracy at the later stages. Manufacturability, process
planning and cutting tool path code generation were also taken into consideration.

In [KIM99], Kim et al. proposed a patchwise optimal layup design method for composite lami-
nates, where the optimal solution is obtained by using an expert system environment combined
with a genetic algorithm and a finite element code. In this approach, the weight of composite
laminates with ply drop under different loadings is minimized by acting on the stacking se-
quences and the number of plies in each patch. In this case, the aim of the expert system is to
check the number of plies in each patch.

In [NET97], Netten and Vingerhoeds implemented EADOCS (Expert Assisted Design of
Composite Sandwich panels) to perform the conception of laminate structures in three phases :
the selection of prototype solutions, the selection of concept solutions and their modification. To
support these phases, knowledge is necessary. For instance, when designs satisfying the con-
straints are generated, some rules of thumb can be applied to improve their properties.

Expert systems have also been applied in civil engineering. In [RAM96], in the context of de-
signing industrial roofs, Ramasamy and Rajasekaran compared results obtained by an expert
system to solutions given by a genetic algorithm. The expert system contained rules related to
the loadings, the temperature, the proportion of the structure in contact with the atmosphere, etc.,
for various truss structures. Numerical computations showed that in that case, both methods pro-
vided very similar results.

Chapter 5 – Expert rules for mechanical design optimization 5–8

The examples cited above are restricted to specific applications. However, in [JON00], Jonson
et al. addressed the problem of integrating a motion analysis code in a computer-aided design
system. It involved the use of a common data model and a special procedure to automate the
exchange of data between CAD and motion analysis : this was done thanks to a language based
on predicate logic. The authors applied their methodology to a piston-crank mechanism. Logic
structure enabled to represent rules acting on the different components of the piston and the
crank. The database gathered all the information needed to describe the geometric and functional
characteristics of the design.

Finally, in [LEE96], Lee and Kim proposed a unified approach combining a knowledge-based
system and a multiobjective hybrid genetic algorithm. The knowledge base plays the role of pre-
and post-processor, storing a set of 147 rules separated in 4 categories :

• general rules for input data generation of optimization ;
• rules for input data generation for genetic algorithm and direct search method (ex.:

size of the initial population in the GA) ;
• control rules for the GA ;
• rules to select a point among Pareto solutions found by the a posteriori optimiza-

tion procedure.

This method was applied to the design of a liquefied natural gas carrier ship, and the objec-
tives were to minimize the building and operating costs. The method implemented by Lee and
Kim enabled significative enhancements of the design, whilst reducing the computational time.

Thanks to this overview of how expert information was incorporated so far in design prob-
lems, the limitations of knowledge-based approaches will be discussed in the next section, com-
pared to classical optimization methods. Then, to solve mechanical pre-design optimization
problems, the second version of PAMUC will be presented thoroughly.

5.3 PAMUC I I

5.3.1 Preliminar ies to the development of PAMUC I I

5.3.1.1 Expert systems vs. general optimization methods

The bibliographical study about expert systems devoted to design optimization illustrates their
intrinsic limitations. Indeed, their use is generally restricted to narrow applications, making diffi-
cult their extension to other problems.

More fundamentally, in optimization context, rules of thumb to guide a search towards a
“pseudo-optimal” solution (following some expert rules) may not be efficient, since the algo-
rithm will prefer designs similar to previous ones, instead of exploring the whole search space.
Therefore, only expert rules related to constraints that must be satisfied by the design (e.g. for
technological reasons) should be kept in the set of rules.

On the other part, general optimization algorithms presented in Chapter 2 – and specially
metaheuristics – are well designed to solve larger categories of pure optimization problems, but
it is well known that they perform better when additional information is furnished about the

Chapter 5 – Expert rules for mechanical design optimization 5–9

problem to solve. Davis summarized this statement in the case of genetic algorithms : “I believe
that genetic algorithms are the appropriate algorithms to use in a great many real-world applica-
tions. I also believe that one should incorporate real-world knowledge in one’s algorithm by
adding it to one’s decoder or by expanding one’s operator set.” (cited in [MIC95a]).

This compromise between the efficiency of a method and its applicability to a wide set of
problems is enlightened by the No Free Lunch theorem introduced by Wolpert and Macready
[WOL97]. In their study, they proved that if a “black-box” optimization algorithm performs well
for a family of problems, it will statistically perform poorer for another one ; in other words,
when averaged over all possible optimization problems defined over some search space, all
black-box algorithms will perform equal [COR03]. This statement has given rise to much contro-
versial debates among the optimization community, mainly based on the classes of functions
over which the No Free Lunch theorem holds, and the definition of the set of all functions
[IGE03].

However, the following conclusion of this theorem suffers no contradiction : the best way to
solve specific applications is to incorporate some knowledge within the optimization process.
To take benefit of this statement in design optimization, the idea proposed in this thesis is to en-
able the user to incorporate knowledge about a particular problem without making the algorithm
unapplicable to a larger family of problems. By integrating expert rules as constraints to guide
the search, the size of the feasible domain would be reduced, but the core of the algorithm (an
EA combined with an expert module able to integrate the user’s rules) would still remain gen-
eral.

The way rules will be modelled is described in § 5.3.1.2, followed by their integration within
EAs in § 5.3.1.3.

5.3.1.2 How to model expert rules ?

To take expert knowledge into account, the methodology is inpired from expert systems. In-
deed, the procedure is also separated in three components :

• the knowledge base, containing the values of the variables ;
• the rule base, i.e. the set of expert rules defined by the user ;
• the inference engine (a forward-chaining algorithm).

The rules are written in accordance with the propositional calculus, by means of Backus
grammar (cf. § 5.2.1.2). This syntax, albeit simple, is rich enough to express a large variety of
information. Furthermore, in comparison with predicate logic, modal logic [RAM88,THA90], or
non-monotonic logic [BRE98], propositional (or 0-order) logic provides some interesting theoreti-
cal results based on a set of useful theorems [KLE67, RAM88] :

• the completeness and soundness theorems, stating the Backus grammar is a cor-
rect language for propositional calculus ;

• the decidability theorem, demonstrating that there is always a mechanical proce-
dure – to apply the rules – that gives a solution ;

• the confluence theorem, showing that whatever order of rules is followed, the final
result (i.e. the values of all variables at the end of the process) is the same ;

Chapter 5 – Expert rules for mechanical design optimization 5–10

• each application of the rules is performed in a finite time, and the asymptotical
complexity of a computation is an O(number of rules multiplied by the number of
conditions), where the notation f = O(g) means that :

∃ c > 0 and x0 ∈
�

 such that : ∀ x ≥ x0 : f(x)≤ c.g(x). (5.1)

These results guarantee that the application of an expert module dealing with the rules can be
safely incorporated in the evolutionary algorithm, with no risk of lack of convergence or wrong
answer.

5.3.1.3 How to incorporate expert rules within the EA ?

Now that a proper way to model the rules has been proposed, they have to be integrated in the
EA. As explained above, the expert rules are considered as requirements which must be fulfilled
by the design. In the frame of optimization, it means that rules are supplementary constraints.

Constraint-handling techniques in EAs have been thoroughly discussed in Chapter 3. A fam-
ily of techniques also dealing with rules is the repair strategy, where unfeasible individuals are
repaired (with a given probability) following a set of rules. The bibliographical study exposed in
§ 3.5.1.4 showed that :

• two approaches were encountered in the literature : either the fitness value of the
repaired individual is used instead of the fitness of the original one, or the whole
individual is replaced (i.e. also its chromosome) ;

• most repair algorithms were designed to solve very restricted applications, by
taking specific rules into account, directly depending on the problem, hence re-
lated to the coding, the EA parameters, etc. ;

• an additional parameter is introduced : the probability of replacement (prep), which
indicates the rate of members of the population that will be repaired after the gen-
eration of new individuals. The contradictory results obtained by different authors
clearly demonstrate that no “optimal” value of prep can be proposed, for it is
problem-dependent.

The idea proposed here is to select a subset of Nsubset members of the population at each gen-
eration (with Nsubset ≈ prep.N since each individual undergoes the expert module with probability
prep, N being the size of the population). Among the Nsubset individuals, the “bad” ones (i.e. the
members of the population which violate the rules defined by the user) are corrected, and re-
placed in the population. The whole procedure is incorporated in an EA combined with PAMUC,
and is described below.

5.3.2 Descr iption of PAMUC I I

The key idea in PAMUC II (i.e. PAMUC with an expert module to deal with the rules) is to
repair individuals, with a user defined probability. The flow-chart of PAMUC II is shown in Fig.
5.3.

PAMUC II was implemented in the Std-EA written in Matlab (cf. Ch. 4).

Chapter 5 – Expert rules for mechanical design optimization 5–11

Fig. 5.3 : Flow-chart of PAMUC II.

The architecture is the same as in the PAMUC method, except that after the creation of new
individuals (either at the end of the first generation or after the crossover and mutation opera-
tors), an expert module is applied for each individual. The algorithm is written in Fig. 5.4 in
pseudo-code.

Fig. 5.4 : Expert module in pseudo-code (prep is the probability for an individual of being repaired)

SOLUTION(S)

 NO

 RANDOM CREATION OF THE 1ST GENERATION (t=1)

SELECTION FOLLOWING

m+1 OBJECTIVES

t ←←←← t + 1
CROSSOVER

& MUTATION

 YES t ≤≤≤≤ Ngen?

UPDATING OF THE

WEIGHTS

EXPERT MODULE

EXPERT MODULE

begin
create a random number 0 ≤ rand ≤ 1
if rand < prep

declare active all the rules in the rule base

while (some rules still have their conditions satisfied)
determine the first rule to apply
execute the rule
desactivate the rule

end
end

end

Chapter 5 – Expert rules for mechanical design optimization 5–12

The expert module is still composed of three parts (as in expert systems) :

• the knowledge base, containing the values of the variables (coded in the chromo-
some), which may change due to the application of the rules ;

• the rule base, containing the rules defined by the user in the beginning of the pro-
cess ;

• the inference engine – a forward-chaining algorithm –, integrated in the core of
the algorithm (and thus remaining unchanged whatever rules are added).

A simple example with 2 variables, 2 objectives, 1 constraint and 1 rule will illustrate how
PAMUC II works :

 f1(x) = x1
2 + x2

2 (5.2)
max

f2(x) = x1 x2 (5.3)

subject to : g1(x) = sin(x1
 + x2) > 0, (5.4)

Rule 1 ≡ if x1 ≥ 5 then x2 = 4 (5.5)

with 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. (5.6)

The multiobjective and constrained aspects are tackled by PAMUC, while Rule 1 is handled
by the expert module. As soon as an individual violates the rule, it is corrected and its repaired
version replaced it in the population (cf. Fig. 5.5).

Fig. 5.5 : Expert module applied to a constrained multiobjective problem with one rule : the first individual

 of the population is repaired according to Rule 1 (a real-coding is used to build the chromosomes).

Chapter 5 – Expert rules for mechanical design optimization 5–13

5.4 Validation of PAMUC II

5.4.1 Strategy of validation

To validate PAMUC II in solving design optimization problems, it will be compared to the
most traditional technique used to deal with the constraints : penalization.

First, to analyze the efficiency of PAMUC II in tackling the rules, it will be compared to sin-
gle-objective problems with rules. Except for test cases 1 and 2, each single-objective problem
will thus be solved by 2 methods :

• the Joines and Houck’s penalty method (§ 3.5.1.2), where rules are transformed
into mathematical (equality and inequality) constraints ;

• PAMUC II, where the PAMUC procedure is applied for the mathematical con-
straints and the expert module is used to tackle the rules.

In PAMUC II, as the probability of replacement is a parameter whose value is problem-
dependent, computations will be performed with prep varying from 0 to 100% with a constant
step of 5%. If prep = 35% for instance, 35% of the population (at each generation) will be treated
by the expert module whereas PAMUC will be applied to the remaining 65% (with rules trans-
formed into mathematical constraints).

Most of the single-objective problems chosen to validate PAMUC II are taken from mechani-
cal design optimization field. As constraints are very seldom expressed in terms of rules in
benchmarks (though it is very common in industrial context), supplementary rules have been
added to some examples to increase their complexity. This will be clearly noticed in the presen-
tation of the test cases.

The 7 single-objective problems used to validate PAMUC II are the following :

• two original (mathematical) examples : they are meant to illustrate how PA-
MUC II works in comparison with PAMUC ;

• one test case due to Hooker et al. [HOO00] ;

• four design optimization problems due to Osyczka :

• a robot gripper [OSY99] ;
• a beam divided in 6 logs [OSY02] ;
• a helical spring [OSY02] ;
• multiple clutch brakes [OSY02].

A comprehensive report of the numerical results is presented in § 5.4.2.

Then, PAMUC II will be applied to three multiobjective problems with rules, in order to
check the ability of the method to handle multicriteria optimization as well as constraints and
rules. This will be discussed in § 5.4.3.

Chapter 5 – Expert rules for mechanical design optimization 5–14

5.4.2 Single-objective optimization

5.4.2.1 First test case with rules (TCR 1)

The first mathematical example built to validate PAMUC II is formulated as follows :

max f(x)= x1
2 + x2

2 – (x3 – x4)/x6 + exp(x5 /x7) (5.7)

subject to : g1(x)= x1
2 – x3 – x5

3 – x6 + x7 ≥ 0, (5.8)

rule 1 ≡ if (x1
2 – x2 + x3) > 5 then x4 = 5, (5.9)

rule 2 ≡ if ((x3 < 4) � (x4 = 5)) � A(R1) then x5 = 2, (5.10)

rule 3 ≡ if (x5 = 2) � (x7 ∈ {1,3,5}) � A(R1,R2) then x7 = 3,(5.11)

rule 4 ≡ if (x5 < 4) � A(R1,R2) then x6 = 3, (5.12)
with : xi ∈ { 1, 2, 3, 4, 5 } pour i = 1, ... , 7. (5.13)

and where A(Ri) means that rule Ri either is not applicable or is desactivated (this guarantees that
a rule that can modify a variable xj is evaluated before rules which use xj in their condition part).

To apply PAMUC or Joines and Houck’s method to the rules, the latter ones must be con-
verted into mathematical constraints. For example, rule 1 is transformed into an inequality con-
straint (where g2(x) must be ≥ 0) as expressed in Eq. (5.14). The fact that g2(x) depends on the
value of expression “(x1

2 – x2 + x3) > 5” is not a problem for the EA since only the value of g2(x)
is required (and not its sensitivities for instance).

rule 1 → if (x1
2 – x2 + x3) > 5 then
g2(x)= |x4 – 5|

else
g2(x) = 0

end (5.14)

The optimum was found by enumeration (in 57 = 78125 evaluations) : x* = (5 ; 5 ; 1 ; 5 ; 2 ;
3 ; 2) with f(x*) = 54.0516. The parameters of the study are gathered in Table 5.3. The algorithm
was launched 50 times for each of the 21 values of prep (from prep = 0 to prep = 100% with a con-
stant step of 5%).

Symbol Parameter Value
Env Environment Std-EA Matlab
Cod Coding of the variables Decimal
N Size of the population 50
Ngen Number of generations 50
Ts Type of selection Tournament

nt
Number of individuals participating
to a tournament

2

pc Probability of crossover 1

Tc Type of crossover Uniform
pm Probability of mutation 0.05

Tm Type of mutation Flip
Table 5.3 : EA parameters for test case TCR 1.

Chapter 5 – Expert rules for mechanical design optimization 5–15

Fig. 5.6 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line]

of the feasible individuals (right) w.r.t. the generation with prep = 0 (for one run) for test case TCR 1.

Fig. 5.7 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line]

of the feasible individuals (right) w.r.t. the generation with prep = 0.1 (for one run) for test case TCR 1.

Fig. 5.8 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line]

of the feasible individuals (right) w.r.t. the generation with prep = 0.5 (for one run) for test case TCR 1.

 Generation Generation

 Generation Generation

 Generation Generation

Chapter 5 – Expert rules for mechanical design optimization 5–16

Fig. 5.9 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line]

of the feasible individuals (right) w.r.t. the generation with prep = 1 (for one run) for test case TCR 1.

Figures 5.6 to 5.9 exhibit the behaviour of PAMUC II for 4 values of the probability of re-
placement prep. The use of the expert module, even with low values of prep, leads to a faster con-
vergence of the population towards the admissible domain than treating the rules as mathemati-
cal constraints, as depicted in Fig. 5.10. Furthermore, the lower value of the best feasible objec-
tive function obtained for prep = 0 is due to the fact that without repair, the algorithm sometimes
converges to a local maximum (as in Fig. 5.6 [right]).

Fig. 5.10 : Mean of the best feasible objective function (over 50 runs)

w.r.t. the probability of replacement for test case TCR 1.

Figure 5.11 illustrates the average generation (over 50 runs) needed to reach the global opti-
mum (known exactly because it was calculated by enumeration) with respect to the probability
of replacement.

 Generation Generation

Probability of replacement (%)

No repair

Chapter 5 – Expert rules for mechanical design optimization 5–17

Fig. 5.11 : Average generation (over 50 runs) needed to reach the global optimum

w.r.t. the probability of replacement for test case TCR 1.

Increasing prep enables to diminish drastically the number of generations required to reach the
global (admissible) optimum, even if one must keep in mind that the use of the expert module is
more expensive than PAMUC alone. A more detailed analysis of the computational time will be
performed in § 5.4.5.

5.4.2.2 Second test case with rules (TCR 2)

The second test case with rules is defined as follows :

max f(x)= x1
2 + x2

2 – (x3 – x4)/x6 + exp(x5 /x7) (5.15)

subject to : g1(x)= x1
2 – x3 – x5

3 – x6 + x7 ≥ 0, (5.16)
g2(x)= 1 – (x9 + x10 x3 – x8 – 1)2 ≥ 0, (5.17)

rule 1 ≡ if (x1
2 – x2 + x3) > 5 then x4 = 5, (5.18)

rule 2 ≡ if ((x3 < 4) � (x4 = 5)) � A(R1) then x5 = 2, (5.19)

rule 3 ≡ if (x5 = 2) � (x7 ∈ {1,3,5}) � A(R1,R2) then x7 = 3,(5.20)

rule 4 ≡ if (x5 < 4) � A(R1,R2) then x6 = 3, (5.21)

rule 5 ≡ if (x7 < x8) � A(R1,R2,R3) then x9 = x8 , (5.22)

rule 6 ≡ if (x6 is an odd number) � A(R1,R2,R4)
then x10 = x9 + 1, (5.23)

rule 7 ≡ if (x6 is an even number) � A(R1,R2,R3)
then x10 = x9 , (5.24)

with xi ∈ { 1, 2, 3, 4, 5, 6 7, 8, 9 } for i = 1, ... , 10. (5.25)

The goal of this test is to illustrate PAMUC II behaviour on a problem similar to TCR 1, but
with a larger size of the search space, as well as an increased number of rules and constraints.

Probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–18

The EA parameters are the same as in the previous example. Figure 5.12 shows the objective
function of the best feasible individual for different values of prep (mean over 50 runs), whereas
Fig. 5.13 depicts the average generation (over 50 runs) needed to reach the level f(x) = 160 with
respect to prep.

Fig. 5.12 : Mean of the best feasible objective function (over 50 runs)

w.r.t. the probability of replacement for test case TCR 2.

Fig. 5.13 : Average generation (over 50 runs) needed to reach level f(x)=160

w.r.t. the probability of replacement for test case TCR 2.

Once again, it shows that large values of prep give better results in terms of convergence to-
wards the optimum.

Probability of replacement (%)

No repair

 f(x) = 160

Probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–19

5.4.2.3 Example from Hooker et al. (TCR 3)

The third test case is taken from Hooker et al. [HOO00], whose work is mostly devoted to con-
straint satisfaction problems.

max f(x)= – (4 x1
 + 3 x2

 + 5 x3) (5.26)

subject to : g1(x)= 4 x1 + 2 x2 + 4 x3 – 17 ≥ 0, (5.27)
and { x1 , x2 , x3 } all different, (5.28)

with xi ∈ { 1, 2, 3, 4, 5 } for i = 1, ... , 3. (5.29)

The EA parameters are the same as in the previous example, except that N = 10 and Ngen = 10.
The rules compel the variables to be different one from another, hence satisfying automatically
the second constraint. Low values of N and Ngen were chosen to illustrate the evolution of the
results w.r.t. prep ; indeed, due to the simplicity of the problem (linear constraint and objective
function, small search domain), larger values of N and Ngen lead to a systematic convergence
towards the global optimum x* (with f(x*)= – 23).

Fig. 5.14 [right] exhibits a monotonous increase of the averaged best feasible objective func-
tion (over 1000 runs).

Fig. 5.14 : Evolution of the number of feasible runs (over 1000 runs) [left] and mean of the best feasible objec-

tive function (over the feasible runs) [right] w.r.t. the probability of replacement for test case TCR 3.

Results obtained by using only Joines and Houck’s penalty method (to deal with both con-
straints) furnished only about 10% of feasible runs (over 1000 runs), with an average objective
value for the best individual (over the feasible runs) of – 32.4, i.e. less than PAMUC alone (cf.
Table 5.4).

Joines and
Houck

PAMUC
(no repair)

PAMUC II
(prep = 100%)

Theoretical
Solution

Number of feasible runs (over 1000 runs) 112 967 1000 –
Best feasible objective function at each run
(mean over the feasible runs)

– 32.4 – 29.25 – 25.7 – 23

Table 5.4 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 3.

Probability of replacement (%) Probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–20

5.4.2.4 Robot gripper design problem (TCR 4)

The first benchmark taken from mechanical engineering was devised by [OSY99] (cf. Fig.
5.15).

Fig. 5.15 : Robot gripper design problem [OSY99] .

The initial benchmark is characterized by 7 continuous variables (a, b, c, e, f, l, δ) and 6 geo-
metrical constraints (relations between angles and lengths, etc.). To make the problem harder to
solve, 2 additional constraints (expressed as rules) were introduced by the author (cf. Eqs. (5.37)
and (5.38)).

min fobj(x)=
z

maxFk(x,z) –
z

minFk(x,z) (5.30)

subject to : g1(x)= Ymax – y(x,Zmax) ≥ 0, (5.31)
g2(x)= y(x,Zmax) ≥ 0, (5.32)
g3(x)= y(x,0) – Ymin ≥ 0, (5.33)
g4(x)= YG – y(x,0) ≥ 0, (5.34)
g5(x)= (a + b)2 – l2 – e2 ≥ 0, (5.35)
g6(x)= (l – Zmax)

2 + (a – e)2 – b2 ≥ 0, (5.36)
rule 1 ≡ if (a < 4b and c < a+b) then f = 2e +10, (5.37)
rule 2 ≡ if (a < 4b and c ≥ a+b) then f = e +50, (5.38)

with : 10 ≤ a ≤ 250, 10 ≤ b ≤ 250, 100 ≤ c ≤ 300, (5.39)
0 ≤ e ≤ 50, 10 ≤ f ≤ 250, 100 ≤ l ≤ 300, (5.40)
1.0 ≤ δ ≤ 3.14, (5.41)

and where :

 y(x,z) = 2 [e + f + c.sin(β+δ)] , (5.42)

Fk =
α

βα
cos.c2

)sin(.Pb +
, (5.43)

α = arccos ���
����� −+

ag2

bga 222

 + φ , (5.44)

Chapter 5 – Expert rules for mechanical design optimization 5–21

β = arc cos ���
����� −+

bg2

agb 222

 – φ , (5.45)

φ = atan ���	
�
− zl

e
 , (5.46)

g = 22 e)zl(+− , (5.47)

P = 100 [N] ; (5.48)

Ymin = 50 [mm] ; Ymax = 100 [mm] ; (5.49)

YG = 150 [mm] ; Zmax = 50 [mm]. (5.50)

The objective is to minimize the difference between the maximum and minimum gripping
forces needed for the assumed range of gripper end displacement. To compute the minimum and
maximum of the forces (which is a 1-variable continuous optimization problem), Nelder and
Mead’s algorithm (based on the simplex method) from the Matlab toolbox is used [NEL65].

Expert rules are designed in such a way that repaired individuals automatically have con-
straint 5 and rules 1 and 2 satisfied. The EA parameters are the same as in test case TCR 2, ex-
cept that a Gray coding is used with 10 bit per variable, and Ngen = 100. With Joines and Houck’s
method, no feasible point was found, whilst results of PAMUC II are greatly enhanced when the
probability of replacement is high (cf. Fig. 5.16 and Table 5.5).

Fig. 5.16 : Evolution of the number of feasible runs (over 50 runs) [left] and mean of the best feasible objective

function (over the feasible runs) [right] w.r.t. the probability of replacement for test case TCR 4.

Joines and
Houck

PAMUC
(no repair)

PAMUC II
(prep = 100%)

Number of feasible runs (over 50 runs) 0 34 50
Best feasible objective function at each run
(mean over the feasible runs)

(no feasible
solution)

 129.8 31.8

Table 5.5 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 4

(robot gripper design problem).

Probability of replacement (%) Probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–22

5.4.2.5 Beam design problem (TCR 5)

This problem is based on test case S-BDP, already encountered in Chapter 4 (cf. § 4.4.2.7).
Here, only the first objective function is optimized (i.e. minimizing the volume of the beam), and
2 supplementary constraints have been added by the author to increase the problem difficulty :

rule 1 ≡ if (x6 > 28 mm) then x5 = x6 , (5.51)
rule 2 ≡ if (x5 = x6) then x4 = x5 – 2 mm. (5.52)

The other constraints impose that the normal stress must not overstep a critical level, and that
each piece of beam should be inferior in height to the following one (cf. Fig. 5.17). Expert rules
used with PAMUC II enable to fulfil those latter constraints, as well as rules 1 and 2.

Fig. 5.17 : Beam design problem (adapted from [OSY02]).

The EA parameters are the same as in the previous example, except that N = 100 and Ngen =
150. Furthermore, to build the chromosomes, a binary coding was used.

Fig. 5.18 : Evolution of the number of feasible runs (over 50 runs)

w.r.t. the probability of replacement for test case TCR 5.

l l l l l l

x6
x5 x4

x3 x2 x1

F

b

Probability of replacement (%)

x

Joines and Houck (without repair)

PAMUC (without repair)

Chapter 5 – Expert rules for mechanical design optimization 5–23

Figure 5.18 illustrates that for values of prep above 20%, all runs are feasible. Numerical re-
sults are gathered in Table 5.6.

Joines and
Houck

PAMUC
(no repair)

PAMUC II
(prep = 100%)

Number of feasible runs (over 50 runs) 35 37 50
Best feasible objective function at each run
(mean over the feasible runs)

4.22.105 3.8.105 3.8.105

Table 5.6 : Comparison of the Joines and Houck’s method and PAMUC (II)

for problem TCR 5 (beam design problem).

To realize how efficient PAMUC II is – compared to a dynamic penalty method without re-
pair –, a plot of the violation rate of the 8th constraint is drawn in Fig. 5.19 for both methods
(with prep = 0.8 in PAMUC II) for one run (constraint 8 imposes x2 to b greater than x1). One can
see that the number of individuals violating constraint 8 is much smaller when the expert module
is applied.

Fig. 5.19 : Evolution of the rate of individuals violating constraint 8 w.r.t. the generation for test case TCR 5

(for one run), using Joines and Houck’s method [left] and PAMUC II with prep = 0.8 [right].

5.4.2.6 Helical spring design problem (TCR 6)

Test case TCR 6 deals with the optimization of a helical spring [OSY02] (cf. Fig. 5.20). Four
discrete variables are involved (x1, x2, x3 and the number of coils x4), and the goal is to minimize
the volume. Formulae giving the constraints are based upon Polish Standard PN-85/M-80701-3,
describing the procedure to design springs.

Fig. 5.20 : Helical spring design problem (adapted from [OSY02]).

Chapter 5 – Expert rules for mechanical design optimization 5–24

The optimization problem is written as follows :

min f(x)= 2
2
1

2
3

2
4

2
2

2
1

2

xx
4

xxxx
2

ππ ++ (5.53)

subject to : g1(x)= sf τdop – k
3
1

2

x

Px8

π
 ≥ 0, (5.54)

g2(x)= ∆c.c –
4

3
2

4
1

xx8

Gx
c − ≥ 0, (5.55)

g3(x)= x3 –
4
1

4
3
2

Gx

Pxx8
 – x1 x4 (1 + α) ≥ 0, (5.56)

g4(x)= ηdop –
4
13

4
3
2

xGx

Pxx800 ≥ 0, (5.57)

g5(x)= 7 x1 – x2 , (5.58)

g6(x)= 60 – x2 , (5.59)

where : τdop = 605.0 [N/mm2] = allowable shear stress, (5.60)

P = 1850 [N] = load, (5.61)

k = 1 + ��
����

w

1

4

5
+

2

w

1

8

7 ��
�	
�

+
3

w

1 �
����

= Wahl factor, (5.62)

sf = 1.12 = coeff. of allowable changes in shear stress, (5.63)

w = x2/x1 = index of the spring, (5.64)

c = 20.55 [N/mm] = required stiffness of the spring, (5.65)

∆c = allowable deviation of the stiffness = 3% , (5.66)

G = 81400 [N/mm2] = modulus of rigidity, (5.67)

α = – 3.10 –5 w3 + 0.25.10 –2
 w

2 – 0.027 w
+ 0.139 if x1 < 0.8, (5.68)

α = – 2.10 –5 w3 + 0.2.10 –2
 w

2 – 0.18.10 –2 w
+ 0.0627 if x1 ≥ 0.8, (5.69)

λ = x3/x2 = spring slenderness ratio, (5.70)

ηdop = spring allowable flexibility ratio
 = 2.10 –5 λ6+ 0.0033 λ5 – 0.0399 λ4 + 0.087 λ3

 +0.8587 λ2 + 0.9852 λ + 71.203, (5.71)

Chapter 5 – Expert rules for mechanical design optimization 5–25

x1 ∈ { 4 ; 4.5 ; 5 ; 5.5 ;… ; 12 }, (5.72)
x2 ∈ { 30 ; 31 ; 32 ; 33 ;… ; 90 }, (5.73)
x3 ∈ { 100 ; 102 ; 104 ; 106 ;… ; 300 }, (5.74)
x4 ∈ { 5 ; 5.5 ; 6 ; 6.5 ;… ; 14 }. (5.75)

Two additional constraints have been introduced by the author to make the problem harder to
solve :

g7(x)= 4 x2 – x3 ≥ 0, (5.76)
rule 1 ≡ if (λ < 2 or λ > 5) then x4 ∉ [6,10]. (5.77)

Individuals undergoing a trip in the expert module automatically respect constraints 5 to 7 and
rule 1. The EA parameters are the same as in the previous example except that N = 50 and Ngen =
100. Statistics on 50 runs are gathered in Table 5.7, and show that Joines and Houck’s technique
furnished 10% of feasible runs, while PAMUC II gave 100% of feasible runs. Figure 5.21 shows
that even without repair, PAMUC is still better than the dynamic penalty method. It is also clear
that the quality of the solution increases with prep.

Fig. 5.21 : Evolution of the best feasible objective function (over 50 runs)

w.r.t. the probability of replacement for test case TCR 6.

Joines and
Houck

PAMUC
(no repair)

PAMUC II
(prep = 100%)

Number of feasible runs (over 50 runs) 5 50 50
Best feasible objective function at each run
(mean over the feasible runs)

10.3.104 5.65.104 4.13.104

Table 5.7 : Comparison of the Joines and Houck’s method and PAMUC (II)

for problem TCR 6 (helical spring design problem).

Probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–26

5.4.2.7 Multiple clutch brakes design problem (TCR 7)

The last single-objective example with rules presented in this study is a multiple clutch brakes
design problem [OSY02] (cf. Fig. 5.22).

Fig. 5.22 : Multiple clutch brakes design problem (adapted from [OSY02]).

Five discrete variables describe the design : Ri , R0 , A, δ and Z (i.e. the number of friction sur-
faces). The problem is formulated as follows :

min f(x)= π (R0
2 – Ri

2) A (Z + 1) ρ (5.78)

subject to : g1(x)= R0 – Ri – ∆R ≥ 0, (5.79)
g2(x)= Lmax – (Z + 1)(A + δ) ≥ 0, (5.80)

 g3(x)= pmax – prz ≥ 0, (5.81)
g4(x)= pmax νsr max – prz νsr ≥ 0, (5.82)
g5(x)= νsr max – νsr ≥ 0, (5.83)
g6(x)= tmax – th ≥ 0, (5.84)
g7(x)= Mh – s Ms νsr ≥ 0, (5.85)
g8(x)= th ≥ 0, (5.86)

where : ∆R = 20 [mm] = minimum difference between radii, (5.87)
Amax = 3.0 [mm] = maximum disc thickness, (5.88)
Amin = 1.5 [mm] = minimum disc thickness, (5.89)
Lmax = 30 [mm] = maximum length, (5.90)
Zmax = 10 = maximum number of discs, (5.91)
νsr max = 10 [m/s] = max. relative speed of the lipstick, (5.92)
µ = 0.5 = coefficient of friction, (5.93)
ρ = 7.8.10 -6 [kg/mm3] = density of material, (5.94)
s = 1.5 = factor of safety, (5.95)
Ms = 40 [Nm] = static input torque, (5.96)
Mf = 3 [Nm] = frictional resistance torque, (5.97)
n = 250 [rpm] = input speed, (5.98)
pmax = 1 [MPa] = max. allowable pressure on the disc, (5.99)
Jz = 55 [kg.mm2] = moment of inertia, (5.100)
tmax = 15 [s] = maximum stopping time, (5.101)

Chapter 5 – Expert rules for mechanical design optimization 5–27

Fmax = 1000 [N] = maximum actuating force, (5.102)
Ri min = 55 [mm], (5.103)
R0 max = 110 [mm], (5.104)

and : Mh = braking torque =
2
i

2
0

3
i

3
0

RR

RR
ZF

3

2

−
−µ , (5.105)

prz = F/S =
)RR(

F
2
i

2
0 −π

 , (5.106)

vsr =
()

)RR(90

RRn2
2
i

2
0

3
i

3
0

−
−π

 , (5.107)

th =
)MM(30

nJ

fh

z

+
π

 (5.108)

with : Ri ∈ { 60 ; 61 ; 62 ; … ; 80 }, (5.109)
R0 ∈ { 90 ; 91 ; 92 ; … ; 110 }, (5.110)
A ∈ { 1 ; 1.5 ; 2 ; 2.5 ; 3 }, (5.112)
δ ∈ { 600 ; 610 ; 620 ; … ; 1000 }, (5.113)
Z ∈ { 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 }, (5.114)

Two supplementary rules were added to increase the difficulty of the problem :

rule 1 ≡ if F ≤ 800 N then R0 > Ri +30 mm, (5.115)

rule 2 ≡ if A/Ro < 2 or A/Ro > 5 then Z∈ [6,10] (5.116)

The expert module compel the individuals undergoing repair to respect constraint 1 and rules
1 and 2. To satisfy rule 1 for instance, when F ≤ 800 N and R0 value is less than Ri + 30 mm (cf.
Eq. (5.116)), it is replaced by R0

repaired, which is created randomly such that R0
repaired ∈ { 90 ;

91 ; … ; 110 } and :
 Ri + 30 mm ≤ R0

repaired
 ≤ R0 max = 110 mm (5.117)

The EA parameters are the same as in the previous example except that Ngen = 50. Statistics
on 50 runs are gathered in Table 5.8, and show that Joines and Houck’s technique furnished 10%
of feasible runs (among which the average best objective function is equal to 0.9649), while
PAMUC II gave 100% of feasible runs. Furthermore, as illustrated in Figure 5.23, the results are
better with values of prep above 50%.

Joines and
Houck

PAMUC
(no repair)

PAMUC II
(prep = 100%)

Number of feasible runs (over 50 runs) 5 50 50
Best feasible objective function at each run
(mean over the feasible runs)

0.9649 0.516 0.357

Table 5.8 : Comparison of the Joines and Houck’s method and PAMUC (II)

for problem TCR 7 (multiple clutch brakes design problem).

Chapter 5 – Expert rules for mechanical design optimization 5–28

Fig. 5.23 : Evolution of the best feasible objective function (over 50 runs)

w.r.t. the probability of replacement for test case TCR 7.

5.4.2.8 Value of the probability of replacement

Although a thorough analysis of the results obtained thanks to PAMUC II for single-objective
problems with rules will take place in § 5.4.6, some remarks can already be made about the new
parameter introduced in PAMUC II, namely the probability of repair prep. Indeed, numerical re-
sults presented above showed that in all test cases, a value of 100% gave the best results, in
terms of feasibility and quality of the solution (i.e. the value of the objective function for the best
feasible individual).

However, in repair algorithms, no optimal value of prep suits in all situations (cf. § 3.5.1.4).
Indeed, in some applications, a too large value of prep is likely to prevent the algorithm from ex-
ploring widely the search space, guiding it too early towards a narrow region. Therefore, even if
PAMUC II seems to perform better with prep = 100%, a tuning of this parameter should always
be done when new examples are investigated.

5.4.3 Multiobjective optimization

So far only single-objective optimization test cases with rules have been studied. The final
aim of this validation is to demonstrate that PAMUC II is relevant for multiobjective problems
with expert rules.

Three multiobjectives examples will be analyzed by applying two methods :

• a classical weighted sum method, combined with Joines and Houck’s penalty
technique to deal with both mathematical constraints and expert rules. This choice
was guided by the fact that in industrial context, to solve this kind of problem, this
would be the most general and widely used approach ;

Probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–29

• PAMUC II, i.e. PAMUC to handle the multiple objectives and mathematical con-
straints, and the expert module to tackle the rules.

As in Chapter 4, both methods will be applied for different values of the weights, and com-
pared thanks to R1-norm (cf. § 4.3). The three applications are 2-objective variants of mechani-
cal component design problems mentioned above :

• the robot gripper design (cf. § 5.4.2.4), with the second objective function being
the force transmission ratio (to be minimized) :

f2(x)=
)z,(Fmin

P

kz
x

; (5.118)

• the beam design (§ 5.4.2.5), where the second objective function is the displace-
ment at the right extremity of the beam :

f2(x)= ���
����� −−+ �

=

6

2n n

33

1

3

I

)1n(n

I

1

E2

Fl
, (5.119)

with : In =
12

bx 3
n for n = 1, 2, …, 6, (5.120)

E = Young modulus = 2.06.10 5 [N/mm2] ; (5.121)

• the multiple clutch brakes design (§ 5.4.2.7), where objective 2 is the stopping
time th [s] (to be minimized).

To solve them, within the expert module, prep is chosen equal to 100%, since this value gave
the best results for the single-objective counterparts of these three examples. Each process was
launched 50 times, a whole process consisting in running the EA with both methods with a set of
weights varying from {w1

* = 0 ; w2
* = 1} for the first run to {w1

* = 1 ; w2
* = 0} for the last run,

by a constant step. Numerical results are gathered in Table 5.9.

Number of feasible runs (over 50) R1(PAMUC II,WS)
Problem Weighted sum method

(with Joines and Houck)
PAMUC II Mean Std. deviation

Robot gripper design 17 50 0.977 0.1415
Beam design 42 50 0.958 0.1559
Multiple clutch brakes 50 50 0.821 0.3283

Table 5.9 : Comparison of PAMUC II and the weighted sum method for the 3-objective test cases.

Once again, those results confirm that PAMUC II clearly outperforms the weighted sum
method (combined with Joines and Houck’s method) : the simultaneous application of the expert
module (to handle the rules) and of PAMUC (to tackle multicriteria and constrained aspects) is
very effective.

Chapter 5 – Expert rules for mechanical design optimization 5–30

Before drawing general remarks about PAMUC II (§ 5.4.6), two topics still have to be con-
sidered : the consistency of the rule base (§ 5.4.4) and the computational time (§ 5.4.5).

5.4.4 Consistency of the rule base

Some useful theorems have been mentioned in § 5.3.1.2, which guarantee that the expert
module furnishes one (and only one) solution, in a finite time. Those theorems are applicable
only if the rule base is logically consistent.

For example, if the following rules (see Eqs. (5.121) and (5.122)) are included in the rule
base, their application would lead to a contradiction :

rule 1 ≡ p ⇔ q (5.122)

rule 2 ≡ p ⇔ ¬ q (5.123)

→ rules 1 and 2 : p ⇔ ¬ p (contradiction !) (5.124)

Lots of algorithms to check logical consistency of rule bases were developed in the logical
programming field. The main one is Davis and Putnam’s algorithm [LLO84], for which different
implementations have been proposed [ZHA94]. In the frame of this work, it was implemented in
Matlab (cf. flow-chart in pseudo-code in Figure 5.24). The first step consists in converting the
rule base S rules into a set S cl of clauses, each clause being (by definition) a disjunction of a finite
number of propositions (i.e. under the form : p1 � p2 � … � pn). To perform this transformation,
the following rules are applied [THA90] :

1°) replace all (X ⇔ Y) by (X � Y) � (Y � X) (5.125)

2°) replace all (X � Y) by (¬ X � Y) (5.126)

3°) use Morgan laws : ¬ (X � Y) is converted into (¬ X � ¬ Y) (5.127)

¬ (X � Y) is converted into (¬ X � ¬ Y) (5.128)

4°) finally, apply distributivity laws :

X � (Y � Z) is converted into (X � Y) � (X � Z) (5.129)

(X � Y) � Z is converted into (X � Z) � (Y � Z) (5.130)

Then, a recursive procedure is applied, where the verification of S cl consistency is replaced by
the checking of the consistency of two smaller subsets which do not contain a proposition p
(resp. ¬ p).

The rule bases of test cases TCR 1 to TCR 7 have been checked by Davis and Putnam’s algo-
rithm, which proved that all of them were logically consistent.

Chapter 5 – Expert rules for mechanical design optimization 5–31

Fig. 5.24 : Flow-chart of Davis and Putnam’s algorithm (adapted from [LLO84]).

Nevertheless, one should be careful about the fact that the content of the propositions consti-
tuting the rules does not intervene in Davis and Putnam’s algorithm : only logical expressions are
taken into account. For example, if propositions p, q and r are defined as follows :

p ≡ x1 = 3, (5.131)
q ≡ x2 = 5, (5.132)
r ≡ x1 = 6, (5.133)

and if the rule base contains :

rule 1 ≡ p � q, (5.134)
rule 2 ≡ q � r, (5.135)

the inference engine will deduce that p � r (i.e. (x1 = 3) � (x1 = 6)), which is logically consis-
tent with the rule base but mathematically false. To check at once logical and “mathematical”
consistency, a constraint satisfaction program should be solved.

Constraint satisfaction programming (CSP) aims at predicting, from a set of constraints,
whether the admissible domain (i.e. the set of points respecting all the constraints) either exists
or is empty [BOW90]. While efficient algorithms were developed for specific cases (linear con-
straints for instance [HOO02]), CSP with rules, handling general mathematical expressions (as it
is often the case in design optimization, e.g. with empirical formulas), is still an open area. By
the way, it is interesting to notice that genetic algorithms, thanks to their robustness, have been
used to solve this kind of problem (cf. [LAU99]).

However, as the scope of PAMUC II is to tackle pre-design optimization problems, with a
quite low number of rules (≤ 50), one can reasonably assume that the user can himself/herself
detect any “mathematical” contradiction in the rule base ; hence only a verification of the con-
sistency is performed numerically.

begin
transform the original rule base S rules into a set of clauses S cl

if rule base S = { } then
S is consistent

elseif S = { False } then
S is inconsistent

else
- select a proposition p intervening in S
- calculate Sp , S¬ p and S″ = S \ (Sp

�
 S¬ p)

- calculate Sp' (whose clauses are clauses of Sp without p)
- calculate S¬ p' (whose clauses are clauses of S¬ p without ¬ p)
- S is inconsistent iff both (Sp'

�
 S″) and (S¬ p'

�
 S″) are

inconsistent
end

end

Chapter 5 – Expert rules for mechanical design optimization 5–32

5.4.5 Computational time

The computational time of PAMUC II is investigated in this section. A decomposition of the
different costs leads to the following formula :

PAMUC
gen1T = N.[Tsel_PROM_II + Tcross + Tmut + Tobj + Tconstr + Nrules

2.prep

+ (1 – prep).Nrules + (N+1).(m+1).TPROM_II + K"] , (5.136)

where :
•

IIPAMUC
gen1T is the computational time needed for one generation of the EA with PA-

MUC II ;
• Tsel_PROM_II is the average time (for one member of the population) to perform selection

(by an elitist selection procedure using PROMETHEE II for each pair of parents and
their corresponding children) ;

• m is the number of objective functions ;
• Nrules is the number of rules ;
• prep is the probability of replacement ;
• TPROM_II is the time needed to compute (for a couple of individuals (a,b)) the prefer-

ence functions Pi(a,b) and the preference indexes π(a,b) needed to rank the individuals
in PROMETHEE II ;

• K" is a second-order term for remaining (low cost) computations of the algorithm.

With a classical weighted sum method (combined with Joines and Houck’s penalty technique
to handle both mathematical constraints and expert rules), the computational cost for one gen-
eration is equal to :

WS
gen1T = N.[Tsel + Tcross + Tmut + Tobj + Tconstr+rules + K*

] , (5.137)

where :
•

WS
gen1T is the computational time needed for one generation of the EA with the weighted

sum method ;
• N is the size of the population ;
• Tsel is the average time (for one member of the population) to perform selection ;
• Tcross is the average time (for one member of the population) to perform crossover ;
• Tmut is the average time (for one member of the population) to perform mutation ;
• Tobj is the time needed to compute the values of the m objective functions (for one in-

dividual) ;
• Tconstr+rules is the time needed to compute (for one individual) the values of the p+q

(equality and inequality) constraints, as well as the Nrules converted into mathematical
constraints ;

• K* is a second-order term for remaining (low cost) computations of the algorithm.

Whilst the weighted sum method performs faster than PAMUC II, it was shown above that it
often has hindrances to find a feasible solution, even with a rather low number of rules. Further-
more, the theoretical results mentioned in Eqs. (5.135) and (5.136) focus on the computation of a
single generation, whilst convergence towards the optimum can be reached in less generations
with PAMUC II, hence diminishing the total calculation time.

Chapter 5 – Expert rules for mechanical design optimization 5–33

First, a deeper insight will be made about the cost due to the expert module in PAMUC II.
Therefore, a computational time analysis (enlightening the role of the probability of replacement)
is done on test cases TCR 1 and TCR 2 (with the same EA parameters as in §§ 5.4.2.1 and
5.4.2.2), beginning with a closer look at the number of generations. Figures 5.25 and 5.26 exhibit
the maximum number of generations that can be computed for a given computational time CT.
That means that in test case TCR 1, when 15 generations can be performed for prep = 0, only 13
generations can be accomplished during the same time.

Fig. 5.25 : Computational time study for TCR 1 : diamonds represent the maximum number of generations

that can be computed in a given computational time CT (it logically decreases when prep increases),

whereas squares depict the actual number of generations needed to reach the global optimum x*.

Fig. 5.26 : Computational time study for TCR 2 : diamonds represent the maximum number of generations that

can be computed in a given computational time CT (it logically decreases when prep increases),

whereas squares depict the actual number of generations needed to reach the global optimum x*.

0

2

4

6

8

10

12

14

0 10 20 30 40 50 60 70 80 90 100

Max. number of generations (CT fixed)
Number of generations to reach the optimum

probability of replacement (%)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Max. number of generations (CT fixed)
Number of generations to reach the optimum

probability of replacement (%)

Chapter 5 – Expert rules for mechanical design optimization 5–34

One can also see that the number of generations needed to reach the optimum decreases (ap-
proximatively) linearly w.r.t. prep : in TCR 1, while 30 generations are necessary to reach the
optimum with prep = 0, only 19 are sufficient to find it when prep = 100%. But as the calculation
cost of one generation increases with prep, one must compare directly the CPU times spent to find
x* : this is exhibited in Fig. 5.27, showing that in TCR 1, the cost decreases w.r.t. prep, whereas
no correlation can be made in TCR 2.

Fig. 5.27 : CPU time needed to reach the optimum with PAMUC II w.r.t. prep

(for test cases TCR 1 and TCR 2) .

Now PAMUC II and the weighted sum method are compared following the CPU time needed
for one run of the EA (with the same EA parameters as in § 5.4.2, and prep = 100% in the expert
module ; results were obtained on a PC with freq. = 900 MHz in MS Windows 2000 environ-
ment). Numerical results for TCR 3 to TCR 7 are indicated in Table 5.10. One should insist on
the fact that although PAMUC II generates an additional time, it is still very reasonable since it
furnishes much better results in terms of admissibility and quality of the solution (cf. results in §
5.4.2).

CPU time (s)

Problem
Name of the

problem
Nrules Nconstr Joines and

Houck
PAMUC II

Relative

difference (%)

TCR 3 Hooker et al. 4 1 0.501 0.521 3.8%

TCR 4 Robot gripper 3 6 238.2 240.6 1.0%

TCR 5 Beam design 2 11 58.5 76.5 23.5%

TCR 6 Helical spring 4 7 61.1 66.3 7.8%

TCR 7
Multiple

clutch brakes
3 9 23.2 30.1 22.9%

Table 5.10 : CPU time (for one run of the EA) for test cases TCR 3 to TCR 7

(the high CPU time for TCR 4 is due to the fact that Nelder and Mead’s algorithm is utilized

twice for each individual in order to compute its objective function : cf. § 5.4.2.4).

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

Probability of replacement (%)

C
P

U
 ti

m
e

to
 r

ea
ch

 th
e

op
tim

um
 (

s)

TCR 1 TCR 2

Chapter 5 – Expert rules for mechanical design optimization 5–35

5.4.6 Remarks about PAMUC II

The development of a novel optimization method, like PAMUC II, is traditionally divided in
three parts : first, the bibliographical study of the field concerned, followed by the theoretical
justification of all the options taken when devising the method. Then, the proposed approach
must be tested on variegated benchmarks, in order to validate it and surround its possible defi-
ciencies. And finally comes the drawing of the conclusions, to derive the advantages and caveats
of the method. It is the scope of this section.

First, the satisfactory results obtained by the expert module in PAMUC II can be explained
thanks to an original concept taken from CSP, namely epistasis, inspired by genetics, and can be
defined as “the interaction between different genes in a chromosome” [LAU99]. In other words,
as standard EAs act as black-box and do not use any specific knowledge about the problems they
try to solve, they have hindrances in applications where there are interwoven relationships be-
tween the variables, which are difficult to detect by a mere blind search [TRO97]. In those prob-
lems, the harmful effects of epistasis may be alleviated by incorporating additional knowledge
into the algorithm. This explains why PAMUC II succeeds in converging towards the optimal
solution even when the size of the admissible domain is narrow in comparison with the whole
search space.

The other advantages of PAMUC II are the following :

• new rules may be added to the rule base without changing the structure of the algo-
rithm, as long as the base of rules is not contradictory. The verification of the base
consistency has been discussed in § 5.4.4, leading to the implementation of Davis and
Putnam’s algorithm to check the logical consistency. However, “mathematical” con-
sistency is not automatically analyzed, and must be verified by the user. For example,
it should be noticed that no loops or retroactivity in the rules are tolerated, since it
would lead to misleading results (the rule base must always be transformed into an
AND-OR tree as exposed in § 5.2.1.3) ;

• as the language used to model the rules is based upon propositional calculus, a unique
solution is guaranteed to be found each time the expert module is launched ;

• the discussion about the value to assign to the new parameter prep led to the conclu-
sion that prep = 100% gave the best results, also because the problem with rules are
often epistatic (i.e. there are relationships between the variables). However, when a
new problem is tested, a tuning of prep should always be performed, because giving a
too large value to prep may accelerate the convergence to a small part of the search
space, without letting time enough to the EA to explore the whole domain ;

• the study of computational cost showed that PAMUC II needs only a minor additional
time compared to the cheap weighted sum method combined to Joines and Houck’s
technique (less than 50% for all the examples treated in this work) ;

• the implementation of PAMUC II into the standard EA is quite easy, even if the
writing of the rule requires the user to be able to change the chromosome of the
members of the population, hence to act on the coding.

Chapter 5 – Expert rules for mechanical design optimization 5–36

In addition to those remarks related to the expert module, it can be underlined that the inter-
action of PAMUC (to deal with multiple objectives and mathematical constraints) and the expert
module works efficiently, whence all the advantages of PAMUC can be reminded, namely :

• several objectives with different scales of sizes may be used ;

• no tuning of parameters is required (except prep as discussed above, and the traditional
parameters of the EA as the size of the population N, etc.) ;

• it was able to find solutions distributed along concave Pareto fronts (by varying the
weights), whereas the weighted sum method was attracted next to extreme parts of the
trade-off surface. However, the possible user of PAMUC II must be aware that this
property may not appear systematically ;

• both PAMUC and PAMUC II have proven to be robust and efficient on a large set of
test cases and mechanical design optimization problems, and the validation was made
by a rigorous use of R1-norm for multiobjective problems. Industrial applications will
be handled in the next chapter.

5.5 Conclusions

This chapter was devoted to the use of expert rules within the optimization process, in order to
generate optimal solutions satisfying also technological (or other) requirements. A preliminary
bibliographic survey about expert systems used in engineering applications showed that their
lack of flexibility makes them difficult to use as a pre-design optimization tool.

However, adding knowledge in EAs is an elegant way to guide the algorithm towards the fea-
sible global optimum, instead of letting it groping for the admissible domain. Therefore, a novel
approach was proposed, called PAMUC II, consisting in modelling expert rules thanks to the
propositional calculus, and using them (with a user-defined probability of replacement prep) to
repair the members of the population violating those rules.

It was validated for various single-objective and multiobjective benchmarks (in which sup-
plementary rules were introduced in some cases in order to increase the complexity of the prob-
lems), and PAMUC II gave excellent results in comparison with a weighted sum method (with a
dynamic penalty technique to tackle the constraints).

Furthermore, Davis and Putnam’s algorithm was implemented to check the logical consis-
tency of rule bases ; mathematical consistency is not investigated since it requires as much com-
putational overhead as the optimization process. In any case, for most pre-design optimization
problems, the number of rules is generally restricted to small or medium values (≤ 50), thus the
user can check by himself/herself whether there is a contradiction in the rule base.

Then, a computational time study exhibited a slight difference between PAMUC II and a clas-
sical weighted sum – penalty method, which makes PAMUC II very effective, robust and rather
cheap.

Chapter 5 – Expert rules for mechanical design optimization 5–37

Finally, some remarks have underlined the role of the probability of replacement, whose op-
timal value in the test cases cited above is equal to 100%, but which must be tuned for every new
example in order to be sure that the EA will not be trapped in the vicinity of a local optimum.

Now that PAMUC II has been thoroughly validated and its behaviour dissected, its applica-
tion on industrial designs, which has been hived off from the last three chapters, will be pre-
sented in the next chapter.

Chapter 6 – Industrial applications 6–1

CHAPTER 6 – INDUSTRIAL APPLICATIONS

This chapter – concerning Techspace Aero (Snecma group) valves – is strictly confidential.

Chapter 7 – Conclusions 7–1

CHAPTER 7 – CONCLUSIONS

7.1 Pre-design optimization with exper t rules

The goal of this thesis was to contrive an efficient and robust method to perform the optimi-
zation of mechanical components during the first stage of the design process. This is a crucial
subject, since a minor modification in the pre-design may bring significant improvements to the
final structure, whilst an “ill” design, even efficiently optimized at the very end of the dimen-
sioning, will perform poorly. However, most algorithmic methods in structural optimization are
concerned with the last stage of the design process. This is partly due to the fact that in industrial
contexts, for complex mechanical components (as valves, pomps, etc.) already characterized by
several parts (springs, piston, bellows, screw bolts, etc.), engineers choose the best preliminary
design among different configurations, not only with respect to quantitative requirements of per-
formance or cost, but also by allowing for technological considerations.

Those latter requirements are more easily translated in terms of logical rules (≡ IF condition
THEN conclusion), like in expert systems. These algorithms use knowledge collected amid ex-
perts in a specific field to work out complex problems. Nevertheless, the building of an expert
system is a tedious task, and its use is confined to very restricted applications. Thence, the scope
of this work was to set forth a method able to optimize mechanical components for a wide range
of applications, but by taking expert knowledge into account.

To accomplish this task, the development of the optimization method was divided in two
steps : first, one should be able to optimize parameterized designs, for which the topological con-
figuration is fixed and only geometrical and material variables are involved. Then, the method
should be extended to more general applications (with topological variables), by handling also
expert rules. This division in two steps is related to the simple statement that it is pointless to
compare an intrinsically “poor” design whose geometry would have been correctly optimized to
a “better” design not parametrically optimized. Of course, it should be emphasized that this sepa-
ration is more particularly adapted to components endowed with a certain complexity (as valves,
compressors, turbines for instance), and less to simpler mechanical parts (like bolts, seals, etc.)
which can be sketched “from scratch” and directly compared without undergoing an optimiza-
tion step.

7.2 PAMUC for parametr ical design optimization

Once a design has been parameterized, its most significative geometrical and material vari-
ables must be determined by the user, whereafter technical requirements are considered (the con-
straints), as well as the objective function(s). As soon as the problem is formulated mathemati-
cally, an appropriate algorithm has to be chosen among the huge amount of methods proposed in
the literature. They branch off in two categories : local methods, generally based on the compu-
tation of the sensitivities, and global methods, incorporating metaheuristics, whose most wide-
spread instances are evolutionary algorithms (EAs). They are based on the Darwinian model of
“survival of the fittest”, wherein the best members of a population of potential solutions are fa-
voured and combined in order to create better individuals at the next generation.

Chapter 7 – Conclusions 7–2

EAs need only the values of the functions, and not their derivatives, which makes them very
attractive for design optimization, which deals as often as not with mixed variables and non dif-
ferentiable functions, banishing de facto the use of gradient-based algorithms. They have proven
to furnish remarkable results for single-objective unconstrained problems ; nevertheless, it is also
well-known that they have hindrances to tackle constraints. Furthermore, in industrial context,
more than one objective have to be considered.

To understand multiobjective optimization, the concept of Pareto solution was introduced, de-
fining x* as a nondominated vector if and only if there exists no other x in the feasible domain
such that ∀ i ∈ {1,…,m}, fi(x) ≤ fi(x

*) and for at least one i ∈ {1,…, m} : fi(x) < fi(x
*) (for a

minimization problem). This fundamental definition led to separate the multiobjective methods
in three approaches :

• in a posteriori methods, preferences are used at the end, when the Pareto front (i.e. the
image in the objective space of the nondominated vectors) has been completely deter-
mined ;

• in progressive methods, preferences are used during the optimization process, in an
interactive way ;

• in a priori methods, the decision maker’s preferences about the objectives are ex-
pressed before the search process, in terms of weights or a ranking.

In this work, an a priori approach was chosen. Indeed, so far, most researchers focus on a
posteriori techniques, while – as Coello underscored it – few studies are explicitely concerned
with the simultaneous handling of the preferences and the constraints within EAs, though it can
be a suitable tool for pre-design optimization. Therefore, a novel method was proposed for pa-
rametrical optimization : PAMUC (Preferences Applied to MUltiobjectivity and Constraints). Its
main features are the following : after having considered the satisfaction of the constraints as a
m+1th objective (m being the number of objectives) , all individuals of the population are selected
following those m+1 criteria thanks to an outranking method, PROMETHEE II, developed by
Brans and Mareschal in the multicriteria decision aid field. Moreover, adaptive weights are used
to compel the population to progressively converge towards the feasible domain : the weight
wm+1

(t) assigned to the m+1th objective is proportional to the number of admissible individuals at
current generation t, and the other weights are computed in such a way that the relative propor-
tion between them (initially defined by the user) are preserved, and that all weights add up to 1.

The validation of PAMUC was performed in two stages : first, single-objective constrained
problems have been analyzed, in order to check the efficiency of the method in tackling con-
straints. Numerical results showed that PAMUC gives very satisfactory solutions in comparison
with constraint-handling techniques specially devised for 1-objective problems.

Then, a special procedure had to be selected to validate PAMUC on multiobjective applica-
tions. As the most widespread approach in industrial context is the linear aggregation of the cri-
teria, a set of standard test cases were applied to PAMUC as well as the classical weighted sum
(combined with a dynamic penalty technique to deal with the constraints). The key idea of the
validation was thus to compare the nondominated solutions obtained by both methods for differ-
ent values of the weights.

After a thorough discussion about the different indicators exposed in the literature to compare
multiobjective sets, propping itself against the theoretical works of Knowles and Corne, and

Chapter 7 – Conclusions 7–3

Zitzler et al., it resulted that the most appropriate norm to compare two sets was R1-norm, pro-
posed by Hansen and Jaszkiewicz. It consists in using a set of utility functions (here : weighted
Tchebycheff functions) and defining an indicator describing the outperformance of one set over
another with respect to each utility function. Then, an overall norm R1 is computed, by integrat-
ing the indicators over the whole set of utility functions. Multiobjective test cases (with Nvar =
number of variables ≤ 20 and Nconstr = number of constraints ≤ 50) were analyzed hereby, and
showed very clearly that PAMUC outperforms the traditional penalized weighted sum method,
to reach the feasible domain and to find optimal solutions.

One of the most interesting advantage of PAMUC is that no tuning of parameters is required.
Indeed, the only parameters related to PAMUC are the preference and the indifference indexes
from PROMETHEE II. Normally they should be defined by the user for each criterion. However,
when this information is not available, values of 1 for the preference indexes pi and of 0 for the
indifference indexes qi gave very satisfactory results in all the applications mentioned in this
thesis. Furthermore, the method has demonstrated to be robust with respect to small variations of
the weights. Finally, it is also important to underline that this enhancement of the results ob-
tained thanks to PAMUC needs only a reasonable supplementary amount of time in comparison
with the weighted sum method (less than 50% in the most unfavourable example treated in this
work).

A caveat which a potential user of PAMUC should pay heed to is that some multiobjective are
hard to solve, i.e. the nondominated points found with different values of the weights may be
located in the extreme sides of the trade-off surface, instead of being distributed uniformly all
along it. In those cases, an a posteriori method must be used first in order to locate the Pareto
front, and then a multicriteria decision aid method applied to the nondominated points found
during the search process.

Once the methodology was validated, it has been implemented in Boss Quattro (Samtech
s.a.), a commercial software for parametrical studies and optimization. In this environment, PA-
MUC was used for the parametrical optimization of two industrial applications, namely two
poppet valves designed by Techspace Aero (Snecma group) for the VINCI engine from launcher
Ariane 5. The first application was characterized by strong technical requirements that restricted
drastically the size of the admissible space. In this case, whereas two constraint-handling tech-
niques (a dynamic penalty technique and a method separating feasible from unfeasible solutions)
were inefficient to find admissible solutions, PAMUC bore out to the assertion that it was a ro-
bust tool since it found a solution satisfying all the constraints.

The study of the second valve, dealing with two objectives (minimizing the volume whilst
maximizing the performance), also showed better results for PAMUC in comparison with a tra-
ditional weighted sum method (combined with a dynamic penalization to tackle the constraints).

7.3 PAMUC I I for design optimization with exper t rules

As soon as the first step was achieved, the development of the second step might begin,
namely incorporating expert rules within the optimization process, in order to optimize more
general models with topological variables and having to respect technological (or other) re-
quirements.

Chapter 7 – Conclusions 7–4

Expert knowledge can often be interpreted as logical rules. When an important amount of in-
formation has been collected among experts, specific algorithms can be developed to manipulate
the knowledge and solve specific problems : expert systems. However, a preliminary biblio-
graphic survey about expert systems used in engineering applications illustrated their lack of
flexibility, which makes them ill adapted for pre-design optimization.

Nevertheless, adding knowledge to EAs is well adapted to guide the algorithm towards the
feasible global optimum, instead of letting it seeking “blindly” the admissible domain, as shown
by Michalewicz. This is also confirmed by the No Free Lunch theorem, introduced by Wolpert
and Macready, which states that there exists no general “black-box” algorithm able to give opti-
mal solutions for all families of problems ; it means that solving efficiently specific problems
requires to add knowledge within the optimization procedure.

Therefore, a novel approach was proposed, called PAMUC II, extending the multicriteria op-
timization method developed during the first step. It consists in modelling expert rules thanks to
the propositional calculus, and using them (with a user-defined probability of replacement prep)
to repair the members of the population violating those rules.

PAMUC II was validated on a set of standard single-objective and multiobjective bench-
marks, either purely “mathematical” or mechanical (in which supplementary rules have been
introduced in some cases in order to increase the complexity of the problems), and gave excel-
lent results in comparison with a weighted sum method (with a dynamic penalty technique to
tackle both the constraints and the rules). Moreover, PAMUC II has the following advantages :

• new rules may be added to the rule base without changing the structure of the algo-
rithm, as long as the rule base is not contradictory. It should be noticed that no loops
or retroactivity in the rules is tolerated, since it would lead to misleading results ;

• as the language used to model the rules is based upon propositional calculus, a unique
solution is guaranteed to be found each time the expert module is launched ;

• the discussion about the value to assign to the new parameter prep led to the conclu-
sion that prep = 100% gave the best results. However, when a new problem is tested, a
tuning of prep should always be performed, because assigning a too large value to prep

may accelerate the convergence to a small part of the search space, without letting
time enough to the EA to explore the whole domain ;

• the computational cost study showed that PAMUC II needs only a minor additional
time compared to the weighted sum method combined to Joines and Houck’s tech-
nique (less than 50% for all the examples treated in this work) ;

• the implementation of PAMUC II into the standard EA is quite easy, even if the
writing of the rule requires the user to be able to change the chromosome of the
members of the population, hence to act on the coding.

Furthermore, Davis and Putnam’s algorithm was implemented to check the logical consis-
tency of rule bases. “Mathematical” consistency – dealing with the content of the propositions –
is not investigated in the frame of this thesis, because the possible presence of complex expres-
sions in the propositons implicate that no general algorithm can be built to verify systematically
the rule base consistency : a constraint satisfaction program is to be solved for each particular

Chapter 7 – Conclusions 7–5

rule base. As in most pre-design optimization problems the number of rules is generally re-
stricted to quite small values (≤ 50), it is assumed that the user can check immediately the con-
sistency of the rule base.

The last task to achieve was to confront PAMUC II with industrial applications, namely the
valves mentioned above, and a third one, which are all poppet valves designed by Techspace
Aero (TA – Snecma group) for the VINCI engine from launcher Ariane 5. The first step was to
collect information among TA engineers about the methodology of design and dimensioning of
poppet valves. The corresponding knowledge was translated in terms of expert rules, directly
written as logical expressions. Then, a general poppet valve model was built, synthetizing differ-
ent configurations of valves by means of topological variables. Finally, PAMUC II was applied
and compared to a penalized weighted sum method. Numerical results clearly demonstrated that
for all valves, PAMUC II outperformed the penalized weighted sum technique, by furnishing
optimal solutions satisfying technical requirements as well as technological constraints.

It follows therefrom that PAMUC II has demonstrated on many examples to be an efficient
tool for pre-design optimization of mechanical components. Future prospects could take toler-
ances of the variables into account, for example by means of fuzzy rules, or by statistical vari-
ables.

Another possible future development of this work could be to study PAMUC II behaviour in
other fields of engineering, since no physical hypothesis was assumed in the algorithm. Further-
more, in order to handle more complex representation of the knowledge, e.g. with contradictory
rules (for which the user would be able to rank the relative importance of the rules, indicating
that rule 1 must be applied in priority w.r.t. rule 2 for instance), a higher level logical language
could be used. However, it should be underscored that it would involve a risk of non conver-
gence and a higher computational time, whereas propositional calculus – as used in PAMUC II –
is often sufficiently rich to model complex knowledge.

7.4 Or iginal contr ibutions of the thesis

The main original contributions of this thesis are summarized hereafter :

• a novel multicriteria optimization method (PAMUC) is proposed for parameterized
pre-designs, considering the satisfaction of the constraints as a new objective and
using a multicriteria decision aid method (PROMETHEE II) to rank the objectives.
The use of adaptive weights (related to the rate of feasible individuals at each gen-
eration) seems efficient to obtain admissible results, whilst the outranking performed
by PROMETHEE II furnishes better solutions than a traditional – albeit widespread
in industrial context – weighted sum method ;

• numerical results obtained by PAMUC and the weighted sum method are preceded
by a thorough discussion about the indicator to be used to compare both methods ; to
the author’s knowledge, it is the first time that this rigorous approach (i.e. finding
nondominated solutions for different values of the weights and using Hansen and
Jaszkiewicz’s R1-norm to compare them) was applied to validate an a priori method
(i.e. using the user’s preferences since the very start of the seach process) ;

Chapter 7 – Conclusions 7–6

• the second version of PAMUC, incorporating logical rules in the design process, is
an original approach to heed expert knowledge. PAMUC II integrates an inference
engine within the EA, whose purpose is to verify whether each individual (with a
user-defined probability) satisfies some expert rules (e.g. representing technological
requirements) ; if not, it is repaired according to them. Test cases, mechanical
benchmarks and industrial applications all show that it gives very satisfactory results
in comparison with a “blind” search handling the constraints solely by penalization,
and it is also worth mentioning that it needs only a reasonable additional computa-
tional time ;

• for the industrial applications, namely the valves designed by Techspace Aero (TA)
for launcher Ariane 5, a general poppet valve model was built, synthetizing different
possible configurations. Furthermore, expert rules concerning the valve design were
collected among TA engineers, and the quality of PAMUC II results obtained on
three valves confirmed the benefits of using it as an automation and optimization tool
for pre-designs.

References R–1

REFERENCES

References are classified by alphabetical order (of the first author).

[ABE96] B. Aberšek, J. Flašker & J. Bali � , Expert System for Designing and Manufacturing of a Gear
Box, Expert Systems with Applications, vol. 11 (3), pp. 397-405 (1996).

[AFO02] S.M.B. Afonso, C.M.H. Macedo & D.A.P. Oliveira, Structural Shape Optimization Under Multi-
criteria Conditions, WCCM V – Fifth World Congress on Computational Mechanics, July 7-12
(2002).

[AGU03] A.H. Aguirre, S.B. Rionda, G.L. Lizárraga, C.A.C. Coello, IS-PAES: A Constraint-Handling
Technique Based on Multiobjective Optimization Concepts, Second International Conference on
Evolutionary Multi-Criterion Optimization (EMO 2003), pp. 73-87 (2003).

[ALO01] P. Alotto & M.A. Nervi, An efficient hybrid algorithm for the optimization of problems with
several local minima, International Journal for Numerical Methods in Engineering, vol. 50, pp.
847-868 (2001).

[AND00] J. Andersson, A Survey of Multiobjective Optimization in Engineering Design, Technical report
LiTH-IKP-R-1097, Department of Mechanical Engineering, Linköping University, Linköping,
Sweden, 34 pp. (2000).

[ANI02] W. Annicchiarico & M. Cerrolaza, Comparison of Binary and Real Coded Genetic Algorithms in
the Solution of Difficult Shape Optimization Problems, WCCM V – Fifth World Congress on
Computational Mechanics, July 7-12 (2002).

[AZI02] I.A. Azid, A.S.K. Kwan & K.N.Seetharamu, A GA-based technique for layout optimization of
truss with stress and displacement constraints, International Journal for Numerical Methods in
Engineering, vol. 53, pp. 1641-1674 (2002).

[BAC91] Th. Bäck, F.H. Hoffmeister & H.-P. Schwefel, A Survey of Evolution Strategies, Proceedings of
the 4th International Conference on Genetic Algorithms, pp. 2-9 (1991).

[BAC92] Th. Bäck, Evolutionary Algorithms, ACM SIGBIO Newsletter, pp. 26-31 (1992).
[BAC93] Th. Bäck, G. Rudolph & H.-P. Schwefel, Evolutionary Programming and Evolution Strategies :

Similarities and Differences, Proceedings of the Second Annual Conference on Evolutionary
Programming, Evolutionary Programming Society, San Diego CA pp. 11-22 (1993).

[BAC96] Th. Bäck & H.-P. Schwefel, Evolutionary Computation : An Overview, Proceedings of 1996
IEEE International Conference on Evolutionary Computation (ICEC '96), May 20-22, 1996,
Nayoya University, pp. 20-29 (1996).

[BAC97] Th. Bäck, D.B. Fogel & Z. Michalewicz (eds.), Handbook of Evolutionary Computation, Oxford
University Press, New York, 988 pp.(1997).

[BAL01] R. Balling & S. Wilson, The Maximum Fitness Function for Multi-objective Evolutionary Com-
putation: Application to City Planning, in L. Spector, E. Goodman, A. Wu, W.B. Langdon, H.-
M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon & E. Burke (eds.), Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 1079-1084, Mor-
gan Kaufmann Publishers, San Francisco, California, July (2001).

[BEC00] M. Beckers, Dual methods for discrete structural optimization problems, International Journal for
Numerical Methods in Engineering, vol. 48, pp. 1761-1784 (2000).

[BLA98] J.A. Bland, A memory-based technique for optimal structural design, Engineering Applications
of Artificial Intelligence, vol. 11 (3), pp. 319-325 (1998).

[BOS01] BOSS-Quattro v4.1, Manuel d'utilisation, Samtech S.A. 8, rue des Chasseurs Ardennais, 4031
Angleur (2001).

[BOW90] J. Bowen & D. Bahler, Constraint Processing and Logic Programming, AAAI Workshop on
Constraint Directed Reasoning, July (1990).

[BRA84] V. Braibant & Cl. Fleury, Shape optimal design using B-splines, Computer Methods in Applied
Mechanics and Engineering, vol. 44, pp. 247-267 (1984).

References R–2

[BRA86] J.-P. Brans & B. Mareschal, How to select and how to rank projects : The PROMETHEE method
for MCDM, European Journal of Operational Research, vol. 24, pp. 228-238 (1986).

[BRA94] J.-P. Brans & B. Mareschal, The PROMCALC and GAIA decision support system for Multicri-
teria decision aid, Decision Support Systems, North Holland, vol. 12, pp. 297-310 (1994).

[BRA96] J.-P. Brans, The space of freedom of the decision maker – Modelling the human brain, European
Journal of Operational Research, vol. 92, pp. 593-602 (1996).

[BRE98] G. Brewka & J. Dix, Knowledge Representation with Logic Programs, Logic Programming and
Knowledge Representation, Springer LNAI 1471, p. 1-55 (1998).

[BUR02] T. Burczy� ski & P. Orantek, Evolutionary Algorithms in Computational Mechanics : Applica-
tions in Optimization and Identification, WCCM V – Fifth World Congress on Computational
Mechanics, July 7-12 (2002).

[CAM97] E. Camponogara & S.N. Talukdar, A Genetic Algorithm for Constrained and Multiobjective
Optimization, 3rd Nordic Workshop on Genetic Algorithms and Their Applications (3NWGA),
J.T. Alander, editor, Vaasa, Finland, University of Vaasa, pp. 49-62 (1997).

[CAO00] Y.J. Cao, L. Jiang & Q.H. Wu, An evolutionary programming approach to mixed-variable opti-
mization problems, Applied Mathematical Modelling, vol. 24 (12), pp. 931-942 (2000).

[CHA85] E. Charniak & D. McDermott, Introduction to Artificial Intelligence, Addison-Wesley Series in
Computer Science, Reading, Massachusetts, USA, 699 pp. (1985).

[CHA03] K.W. Chau & F. Albermani, A coupled knowledge-based expert system for design of liquid-
retaining structures, Automation in Construction, Vol. 12 (5), pp. 589-602 (2003).

[CIA98] Ph.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation, Editions Dunod,
Paris (1998).

[COE96] C.A.C. Coello, An Empirical Study of Evolutionary Techniques for Multiobjective Optimization
in Engineering Design, Thèse de doctorat, Department of Computer Science, Tulane University,
Mexique (1996).

[COE99] C.A.C. Coello, A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization
Techniques, Knowledge and Information Systems, An International Journal, 1(3), pp. 269-308
(1999).

[COE99a] C.A.C. Coello, A Survey of Constraint Handling Techniques used with Evolutionary Algorith-
ms, Technical Report Lania-RI-99-04, Laboratorio Nacional de Informática Avanzada (1999).

[COE00a] C.A.C Coello, Use of self-adaptive penalty approach for engineering optimization problems,
Computers in Industry 41, pp. 113-127 (2000).

[COE00b] C.A.C. Coello, Handling Preferences in Evolutionary Multiobjective Optimization : A Survey,
2000 Congress on Evolutionary Computation, volume 1, pages 30-37, Piscataway, New Jersey
(2000).

[COE00c] C.A.C. Coello, Treating Constraints as Objectives for Single-Objective Evolutionary Optimiza-
tion, Engineering Optimization, vol. 32 (3), pp. 275-308 (2000).

[COE00d] C.A.C. Coello, A Micro-Genetic Algorithm for Multi-Objective Optimization, Lania-RI-2000-
06, Laboratorio Nacional de Informática Avanzada (2000).

[COE02] C.A.C. Coello, Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms : a survey of the state of the art, Computer Methods in Applied Mechanics and Engi-
neering, 191, pp. 1245-1287 (2002).

[COE02a] C.A.C. Coello, D.A. Van Veldhuizen & G.B. Lamont, Evolutionary Algorithms for Solving
Multi-Objective Problems, Kluwer Academic/Plenum Publishers, New York, 576 pp. (2002).

[COE02c] C.A.C Coello & E. Mezura-Montes, Handling Constraints in Genetic Algorithms Using Domi-
nance-Based Tournaments, In I.C. Parmee (ed.), Proceedings of the Fifth International Confe-
rence on Adaptive Computing Design and Manufacture (ACDM) (2002).

[COL02] Y. Collette & P. Siarry, Optimisation multiobjectif, Eyrolles ed., Paris, 322 pp. (2002) .
[COR03] D.W. Corne & J.D. Knowles, No Free Lunch and Free Leftovers Theorems for Multiobjective

Optimization Problems, Evolutionary Multi-Criterion Optimization (EMO 2003), Second Inter-
national Conference, Faro, Portugal, Proceedings, pp. 327-341 (2003).

[COS01] L. Costa & P. Oliveira, Evolutionary algorithms approcah to the solution of mixed integer non-
linear programming problems, Computers and Chemical Engineering 25, pp. 257-266 (2001).

[CRA01] G.W. Craenen, A.E. Eiben & E. Marchiori, How to Handle Constraints with Evolutionary Algo-
rithms, Practical Handbook of Genetic Algorithms, Second Edition, L. Chamber ed., Chapmann
& Hall/CRC Press, Ch 10, pp. 341-361 (2001).

References R–3

[CVE99] D. Cvetkovi � & I.C. Parmee, Use of preferences for GA-based multi-objective optimization,
GECCO-99 : Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp.
1504-1509, Orlando, Florida, USA (1999).

[CVE00] D. Cvetkovi � , Evolutionary Multi-Objective Decision Support Systems for Conceptual Design,
PhD Thesis, School of Computing, Faculty of Technology, University of Plymouth (2000).

[CVE02] D. Cvetkovi � & I.C. Parmee, Preferences and their Application in Evolutionary Multiobjective
Optimisation, IEEE Transactions on Evolutionary Computation, vol. 6 (1), pp. 42-57 (2002).

[DEB95] K. Deb & R.B. Agrawal, Simulated binary crosssover for continuous search space, Complex
Systems vol. 9, pp. 115-148 (1995).

[DEB96] K. Deb & M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design,
Computer Science and Informatics vol. 26 (4), pp. 30-45 (1996).

[DEB98] K. Deb & M. Goyal, A robust optimization procedure for mechanical component design based
on genetic adaptive search, Transactions of the ASME: Journal of Mechanical Design, 120(2),
pp.162-164, (1998).

[DEB99] K. Deb, Multi-Objective Genetic Algorithms : Problem Difficulties and Construction of Test
Problems, Evolutionary Computation, vol. 7 (3), pp. 205-230 (1998).

[DEB99a] K. Deb, Multi-Objective Evolutionary Algorithms : Introducing Bias Among Pareto-Optimal
Solutions, KanGAL report 99002, Indian Institute of Technology, Kanpur, India (1999).

[DEB99b] K. Deb, Evolutionary Algorithms for MultiCriterion Optimization in Engineering Design, In
Proceedings of Evolutionary Algorithms in Engineering and Computer Science (EUROGEN'99)
(1999).

[DEB00] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in
Applied Mechanics and Engineering, 186, pp. 311-338 (2000).

[DEB01] K. Deb, Constrained Test Problems for Multi-Objective Evolutionary Optimization, First Inter-
national Conference on Evolutionary Multi-Criterion Optimization, pp. 284-298 (2001).

[DEB01a] K. Deb & S. Gulati, Design of truss-structures for minimum weight using genetic algorithms,
Finite Elements in Analysis and Design 37, pp. 447-465 (2001).

[DEB01b] K. Deb, Nonlinear goal programming using multi-objective genetic algorithms, Journal of the
Operational Research Society, Vol. 52 (3), pp. 291-302 (2001).

[DEB02] K. Deb, L. Thiele, M. Laumanns & E. Zitzler, Scalable Multi-Objective Optimization Test Pro-
blems, Proceedings of the 2002 IEEE Congress on Evolutionary Computation (CEC 2002), May
(2002).

[DEB02a] K. Deb, A. Pratap, S. Agarwal & T. Meyarivan, A Fast and Elitist Multiobjective Genetic Algo-
rithm: NSGA–II, IEEE Transactions on Evolutionary Computation, vol. 6(2), pp. 182-197
(2002).

[DEL01] P. De Lit, P. Latinne, B. Rekiek & A. Delchambre, Assembly planning with an ordering genetic
algorithm, International Journal of Production Research, vol. 39 (16), pp. 3623-3640 (2001).

[DEL87] J.P. Delahaye, Systèmes Experts : Organisation et Programmation des Bases de Connaissance en
Calcul Propositionnel, Ed. Eyrolles, Paris (1987).

[DEL88] J.P. Delahaye, Outils logiques pour l'intelligence artificielle, Ed. Eyrolles, Paris (1988).
[DOR99] M. Dorigo & G. Di Caro, The Ant Colony Optimization Meta-Heuristic, In D. Corne, M. Dorigo,

and F. Glover (eds.), New Ideas in Optimization, McGraw-Hill, pp. 11-32 (1999).
[DUL02] G.S. Dulikravich, B.H. Dennis, T.J. Martin & I.N. Egorov, Multi-Disciplinary Hybrid and Evo-

lutionary Optimization, WCCM V – Fifth World Congress on Computational Mechanics, July 7-
12 (2002).

[DUY96] P. Duysinx, Optimisation topologique : du milieu continu à la structure élastique, PhD Thesis,
Université de Liège (1996).

[EHR97] M. Ehrgott, Multiple Criteria Optimization : Classification and Methodology, Shaker Verlag
(Berichte aus der Mathematik), Aachen (1997).

[ERI01] M. Erickson, A. Mayer & J. Horn, The Niched Pareto Genetic Algorithm 2 Applied to the De-
sign of Groundwater Remediation Systems, In E. Zitlzler, K. Deb, L. Thiele, C.A.C. Coello and
D. Corne (eds.), First International Conference on Evolutionary Multicriterion Optimization, pp.
681-695, Springer-Verlag, Lecture Notes on Computer Science No. 1993 (2001).

[EZZ00] M. Ezzegaf & B. Mareschal, Utilisation d'échelles qualitatives dans les méthodes PROMETHEE,
Université Libre de Bruxelles, Institut de Statistique et de Recherche Opérationnelle (2000).

[FAS99] D. Fasulo, An Analysis of Recent Work in Clustering Algorithms, University of Washington,
Seattle, Department of Computer Science and Engineering, Technical Report 01-03-02, 23 pp.
(1999).

References R–4

[FIL02a] R. Filomeno Coelho, Ph. Bouillard & H. Bersini, Multiobjective Optimization of a Purge Valve
Using a Genetic Algorithm, WCCM V – Fifth World Congress on Computational Mechanics,
7th – 12th July 2002, Vienna University of Technology, Austria, Proceedings, ISBN 3-9501554-
0-6 (2002).

[FIL02b] R. Filomeno Coelho, Ph. Bouillard & H. Bersini, PAMUC – A New Method to Handle with
Constraints and Multiobjectivity in Evolutionary Algorithms, IUTAM Symposium on Evolutio-
nary Methods in Mechanics, 24th–27th September 2002, Cracow University of Technology,
Cracow, Poland (2002).

[FIL03] R. Filomeno Coelho, H. Bersini & Ph. Bouillard, Parametrical Mechanical Design with Cons-
traints and Preferences : Application to a Purge Valve, Computer Methods in Applied Mechanics
and Engineering, 192/39-40, pp. 4355-4378 (2003).

[FIT90] M. Fitting, First-Order Logic and Automated Theorem Proving, Texts and Monographs in Com-
puter Science, Springer-Verlag, New York (1990).

[FLE78] Cl. Fleury, Le dimensionnement automatique des structures élastiques, PhD Thesis, Université
de Liège (1978).

[FLE00] Cl. Fleury & W.H. Zhang, Selection of appropriate approximation schemes in multi-disciplinary
engineering optimization, Advances in Engineering Software 31, pp. 385-389 (2000).

[FON93] C.M. Fonseca & P.J. Fleming, Genetic Algorithms for Multiobjective Optimization: Formula-
tion, Discussion and Generalization, In S. Forrest editor, Proceedings of the Fifth International
Conference on Genetic Algorithms, pp. 416-423, San Mateo, California, University of Illinois at
Urbana-Champaign, Morgan Kauffman Publishers (1993).

[FON95] C.S Fonseca & P.J. Fleming, Multiobjective Optimization and Multiple Constraint Handling
with Evolutionary Algorithms I : A Unified Formulation, University of Sheffield, UK, Research
Report 564, 37 pp. (1995).

[FON95a] C.S Fonseca & P.J. Fleming, Multiobjective Optimization and Multiple Constraint Handling
with Evolutionary Algorithms II : Application Example, University of Sheffield, UK, Research
Report 565, 24 pp. (1995).

[FON95b] C.S Fonseca & P.J. Fleming, An Overview of Evolutionary Algorithms in Multiobjective Opti-
mization, Evolutionary Computation, vol. 3 (1), pp. 1-16 (1995).

[FRA01] Fr. Franzè & N. Speciale, A tabu-search-based algorithm for continuous multiminima problems,
International Journal for Numerical Methods in Engineering, vol. 50, pp. 665-680 (2001).

[GOL89] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-
Wesley Longman, New York, 412 pp. (1989).

[GOU99] J. Goupy, Plans d'expériences pour surfaces de réponse, Editions Dunod (1999).
[GRE03] H.J. Greenberg, Mathematical Programming Glossary, World Wide Web, http://www.cu-

denver.edu/~hgreenbe/glossary/ (1996-2003).
[GRO99] A.A. Groenwold, N. Stander & J.A. Snyman, A regional genetic algorithm for the discrete opti-

mal design of truss structures, International Journal for Numerical Methods in Engineering, vol.
44, pp. 749-766 (1999).

[GUT99] W. Gutkowski, Z. Iwanow & J. Bauer, Minimum Weight Design Using Genetic Algorithm with
Controlled Mutation, 3rd World Congress on Structural and Multidisciplinary Optimization
(WCSMO-3), May 17-21 1999, Buffalo, New York (1999).

[HAN98] M.P. Hansen & A. Jaskiewicz, Evaluating the quality of approximations to the non-dominated
set, Technical Report IMM-REP-1998-7, Technical University of Denmark, March, 31 pp.
(1998).

[HAS00] O. Hasançebi & F. Erbatur, Evaluation of crossover techniques in genetic algorithm based opti-
mum design, Computers and Structures, vol.78, pp. 435-448 (2000).

[HAY83] F. Hayes-Roth, D.A. Waterman & D.B. Lenat (eds.), Building Expert Systems, Addison-Wesley
Publishing Company, Inc., Teknowledge Series in Knowledge Engineering, 444 pp. (1983).

[HIN97] R. Hinterding, Z. Michalewicz & A.E. Eiben, Adaptation in Evolutionary Computation : A Sur-
vey, Proceedings of The IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence (1997).

[HIN98] R. Hinterding & Z. Michalewicz, Yours brains and my beauty: Parent matching for constrained
optimization, In Proceedings of the 5th International Conference on Evolutionary Computation,
Anchorage, AK, pp. 810-815 (1998).

[HOC81] W. Hock & K. Schittkowski, Test examples for nonlinear programming codes, Springer Verlag ,
Berlin, 177 pp. (1981).

References R–5

[HOO00] J.N. Hooker, G. Ottosson, E.S. Thornsteinsson, H.-J. Kim, A scheme for unifying optimization
and constraint satisfaction methods, Knowledge Engineering Review, vol.15, pp.11-30 (2000).

[HOO02] J.N. Hooker, Logic, optimization and constraint programming, INFORMS Journal on Compu-
ting, vol.14, pp.295-321 (2002).

[HOR97] J. Horn, Multicriteria Decision Making and Evolutionary Computation, In Th. Bäck, D.B. Foge,
Z. Michalewicz (eds.), The Handbook of Evolutionary Computation, Institute of Physics Publis-
hing, Bristol, UK (1997).

[HOR97a] J. Horn, The Nature of Niching : Genetic Algorithms and the Eovolution of Optimal Cooperative
Population, PhD Thesis, University of Illinois at Urbana Champaign, Urbana, Illinois, 242 pp.
(1997).

[HOW93] D. Howe, Free On-Line Dictionary Of Computing (FOLDOC), Copyright 1993 by Denis Howe,
World Wide Web, http://foldoc.doc.ic.ac.uk/foldoc/ (1993-2003).

[HUA97] M.-W. Huang & J.S. Arora, Optimal design with discrete variables : some numerical experi-
ments, International Journal for Numerical Methods in Engineering, vol. 40, pp. 165-188 (1997).

[HUR01] J.E. Hurtado & D.A. Alvarez, Neural-network-based reliability analysis : a comparative study,
Comput. Meth. Appl. Mech. Engrg. 191, pp. 113-132 (2001).

[IGE03] C. Igel & M. Toussaint, On Classes of Functions for which No Free Lunch Results Hold, Infor-
mation Processing Letters, 86(6), pp. 317-321 (2003).

[JAS01] A. Jaszkiewicz, Multiple objective methaheuristic algorithms for combinatorial optimization,
Habilitation thesis, Poznan University of Technology (2001).

[JEN97] W.M. Jenkins, On the application of natural algorithms to structural design optimization, Engi-
neering Structures, vol. 19 (4), pp. 302-308 (1997).

[JHA95] N.K. Jha & K. Hornik, Integrated computer-aided optimal design and finite element analysis of a
plain milling cutter, Appl. Math. modelling, vol. 19 (6), pp. 343-353 (1995).

[JIA00] Z. Jiang, K. Cheng & D.K. Harrison, A concurrent engineering approach to the development of a
scroll compressor, Journal of Materials Processing Technology, Vol. 107 (1-3), pp. 194-200
(2000).

[JIM99] F. Jiménez & J.L. Verdegay, Evolutionary techniques for constrained optimization problems, In
7th European Congress on Intelligent Techniques and Soft Computing (EUFIT'99), Aachen,
Germany, Springer-Verlag (1999).

[JIN01] Y. Jin, M. Olhofer & B. Sendhoff, Evolutionary Dynamic Weighted Aggregation (EDWA) :
Why Does It Work and How ?, Proceedings of Genetic and Evolutionary Computation Confe-
rence, San Francisco, USA, pp.1042-1049 (2001).

[JIN01a] Y. Jin, T. Okabe & B. Sendhoff, Adapting weighted aggregation for multi-objective evolution
strategies, First International Conference on Evolutionary Multi-criterion Optimization, Lecture
Notes in Computer Science, Springer, Zurich, pp. 96-110 (2001).

[JIN02] Y. Jin & B. Sendhoff, Incorporation of Fuzzy Preferences into Evolutionary Multiobjective Op-
timization, in Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Lear-
ning (SEAL'2002), vol.1, pp. 26-30, Singapore (2002).

[JOI94] J.A. Joines & C.R. Houck, On the use of non-stationary penalty functions to solve nonlinear
constrained optimization problems with GAs, Proceedings of the First IEEE International Confe-
rence on Evolutionary Computation, pp. 579-584, IEEE Press (1994).

[JON00] D. Jonson, J. DeBeer & N. Diya, Motion analysis using a logic-based modeling approach, Com-
putational Mechanics : Techniques and Developments, Civil-Comp Press, Edinburgh, pp. 1-8
(2000).

[KAL01] L. Kallel, B. Naudts, A. Rogers, G. Rozenberg, T. Bäck, A.E. Eiben, J.N. Kok, H.P. Spaink
(Eds.), Theoretical Aspects of Evolutionary Computing, Springer Verlag, 1st edition, 497 pp.
(2001).

[KAM01] E.S. Kameshki & M.P. Saka, Optimum design of nonlinear steel frames with semi-rigid connec-
tions using a genetic algorithm, Computers and Structures 79, pp. 1593-1604 (2001).

[KIM99] J.-S. Kim, C.-G. Kim & C.-S. Hong, Optimum design of composite structures with ply drop
using genetic algorithm and expert system shell, Composite Structures, vol. 46 (2), pp. 171-187
(1999).

[KIM02] I.Y. Kim & B.M. Kwak, Design space optimization using a numerical design continuation me-
thod, International Journal for Numerical Methods in Engineering, vol. 53, pp. 1979-2002
(2000).

[KLE67] S.C. Kleene, Mathematical Logic, John Wiley and Sons, New York, 413 pp. (1967).

References R–6

[KLE96] F. J. Kleinschrodt, III & J. D. Jones, Industrial vision for process optimization, Computers &
Chemical Engineering, vol. 20, Supplement 1, pp. S473-S483 (1996).

[KNO00] J.D. Knowles & D.W. Corne, Approximating the Nondominated Front Using the Pareto Archi-
ved Evolution Strategy, Evolutionary Computation, vol. 8 (2), pp. 149-172 (2000).

[KNO02] J.D. Knowles & D.W. Corne, On Metrics for Comparing Non-Dominated Sets, Proceedings of
the 2002 Congress on Evolutionary Computation Conference (CEC02), pp. 711-716. IEEE Press
(2002).

[KNO02a] J.D. Knowles, Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization, PhD
Thesis, Department of Computer Science, University of Reading, UK, 335 pp. (2002).

[KOU02] V.K. Koumousis & C.P. Katsaras, The Effect of Oscillating Population Size and Re-initialization
on the Performance of Genetic Algorithms, Proceedings of the Third International Conference on
Engineering Computational Technology, Civil-Comp Press, Scotland (2002).

[KOZ98] S. Kozieł & Z. Michalewicz, A Decoder-based Evolutionary Algorithm for Constrained Para-
meter Optimization Problems, Proceedings of the 5th Parallel Problem Solving from Nature, T.
Bäck, A.E. Eiben, M. Schoenauer & H.-P. Schwefel (Editors), Amsterdam, September 27-30,
Springer-Verlag, Lecture Notes in Computer Science, pp.231-240 (1998).

[KOZ99] S. Kozieł & Z. Michalewicz, Evolutionary Algorithms, Homomorphous Mappings, and Cons-
trained Parameter Optimization, Evolutionary Computation, vol. 7 (1), pp. 19-44 (1999).

[KUN99] S. Kundu, A Note on Optimizality vs. Stability - A Genetic Algorithm based approach, 3rd World
Congress on Structural and Multidisciplinary Optimization (WCSMO-3), May 17-21 1999, Buf-
falo, New York (1999).

[KUR02] A. Kurpati, S. Azarm & J. Wu, Constraint handling improvements for multiobjective genetic
algorithms, Struct. Multidisc. Optim. (23), Springer-Verlag, pp. 204-213 (2002).

[LAC03] D. Lacroix & Ph. Bouillard, Improved sensitivity analysis by a coupled FE-EFG method, Com-
puters and Structures, vol. 81, pp. 2431-2439 (2003).

[LAR88] P.J.M. van Laarhoven, Theoretical and computational aspects of simulated annealing, Centrum
voor Wiskunde en Informatica, Erasmus Universiteit Rotterdam, 168 pp. (1988).

[LAG02] N.D. Lagaros, M. Papadrakakis & G. Kokossalakis, Structural optimization using evolutionary
algorithms, Computers and Structures, vol.80, pp. 571-589 (2002).

[LAU99] T.L. Lau, Guided Genetic Algorithm, PhD Thesis, Department of Computer Science, University
of Essex, Colchester, United Kingdom (1999).

[LEE96] D. K. Lee & S.-Y. Kim, A Knowledge-Based Expert-System as a Pre-Post Processor in Enginee-
ring Optimization, Systems with Applications, vol. 11, N° 1, pp. 79-87 (1996).

[LEI98] J.P.B. Leite & B.H.V. Topping, Improved genetic operators for structural engineering optimiza-
tion, Advances in Engineering Software, vol. 29 (7-9), pp. 529-562 (1998).

[LEY02] J.C. Leyva-López & E. Fernándex-González, A new method for group decision support based on
ELECTRE III methodology, European Journal of Operational Research, vol. 148 (1), pp. 14-27
(2003).

[LLO84] J.W. Lloyd, Foundations of logic programming, Springer-Verlag, New York, 124 pp. (1984).
[MAC01] J.M. Machado, Y. Shiyou , S.L. Ho & N. Peihong, A common Tabu seach algorithm for the

globzal optimization of engineering problems, Comput. Meth. Appl. Mech. Engrg. 190, pp.
3501-3510 (2001).

[MAC02] J. Mackerle, Topology and shape optimization of structures using FEM and BEM : a bibliogra-
phy (1999-2001), Finite Elements in Analysis and Design, vol. 39, pp. 243-253 (2003).

[MAC02a] Th. McAvoy, Intelligent "control" applications in the process industries, Annual Reviews in
Control, vol. 26 (1), pp. 75-86 (2002).

[MAN99] S. Manoharan & S. Shanmuganathan, A comparison of search mechanisms for structural optimi-
zation, Computers and Structures, vol.73, pp. 363-372 (1999).

[MAR89] B. Mareschal, Aide à la décision multicritère : développements théoriques et applications (le
système d'évaluation industrielle BANK ADVISER et le système expert CHRONOS pour la
prévision), PhD Thesis, Université Libre de Bruxelles (1989).

[MAS99] S. Massebeuf, C. Fonteix, L.N. Kiss, I. Marc, F. Pla & K. Zaras, Multicriteria Optimization and
Decision Engineering of an Extrusion Process Aided by a Diploid Genetic Algorithm, Congress
on Evolutionary Computation, pp. 14-21, Washington, D.C., July 1999, IEEE Service Center
(1999).

[MAT00] K. Matouš, M. Lepš, J. Zeman & M. Šejnoha, Applying genetic algorithms to selected topics
commonly encountered in engineering practice, Comput. Meth. Appl. Mech. Engrg. 190, pp.
1629-1650 (2000).

References R–7

[MEZ02] E. Mezura-Montes & C.A.C. Coello, A Numerical Comparison of some Multiobjective-Based
Techniques to Handle Constraints in Genetic Algorithms, Technical Report EVOCINV-03-2002,
Evolutionary Computation Group at CINVESTAV, Sección de Computación, Departamento de
Ingeniería Eléctrica, CINVESTAV-IPN, México (2002).

[MIC95] Z. Michalewicz, A Survey of Constraint Handling Techniques in Evolutionary Computation
Methods, Proc. of the 4th Annual Conf. on Evolutionary Programming, pp. 135-155 (1995).

[MIC95a] Z. Michalewicz, Heuristic Methods for Evolutionary Computation Techniques, Journal of Heu-
ristics, vol.1 (2), pp.177-206 (1995).

[MIC95b] Z. Michalewicz & G. Nazhiyath, Genocop III: A co-evolutionary algorithm for numerical opti-
mization problems with nonlinear constraints, In D. B. Fogel (Ed.), Proceedings of the Second
IEEE International Conference on Evolutionary Computation, pp. 647--651. IEEE Press (1995).

[MIC96] Z. Michalewicz, D. Dasgupta, R.G. Le Riche, M. Schoenauer, Evolutionary algorithms for cons-
trained engineering problems, Computers & Industrial Engineering Journal, Vol.30, No.2, pp.
851-870 (1996).

[MIC96a] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer Verlag,
387 pp (1996).

[MIL95] B.L. Miller & D.E. Goldberg, Genetic Algorithms, Tournament Selection, and the Effects of
Noise, Complex Systems, vol. 9, pp. 193-212 (1995).

[MOR99] L. Moreau-Giraud & P. Lafon, Evolution strategies for optimal design of mechanical systems, 3rd

World Congress on Structural and Multidisciplinary Optimization (WCSMO-3), May 17-21
1999, Buffalo, New York (1999).

[MOR02] L. Moreau-Giraud & P. Lafon, A comparison of evolutionary algorithms for mechanical design
components, Engineering Optimization (34) pp. 307–322 (2002).

[NAK01] Y. Nakanishi, Application of homology theory to topology optimization of three-dimensional
structures using genetic algorithms, Comput. Meth. Appl. Mech. Engrg. 190, pp. 3849-3863
(2001).

[NAN01] P. Nanakorn & K. Meesomklin, An adaptive penalty function in genetic algorithms for structural
design optimization, Computers and Structures 79, pp. 2527-2539 (2001).

[NEL65] J.A. Nelder & R. Mead, A simplex method for function minimization, Computer Journal, vol. 7,
pp. 308-313 (1965).

[NET97] B.D. Netten & R.A. Vingerhoeds, EADOCS: Conceptual Design in Three Phases – An Applica-
tion to Fibre Reinforced Composite Panels, Engineering Applications of Artificial Intelligence,
vol. 10 (2), pp. 129-138 (1997).

[NIS03] National Institute of Standards and Technology, Dictionary of algorithms and data structures
(2003), World Wide Web, http://www.nist.gov/dads/HTML/metaheuristic.html (1997-2003).

[NOT02] M. Nott, R. Filomeno Coelho & A. Remouchamps, Automated Valve Design, 4th International
Conference on Launcher Technology, Space Launcher Liquid Propulsion, Liège, Belgium, 3rd –
6th December (2002).

[ODE03] J.T. Oden, T. Belytschko, I. Babuska & T.J.R. Hughes, Research directions in computational
mechanics, Computer Methods in Applied Mechanics and Engineering, vol. 192 (7-8), pp. 913-
922 (2003).

[OLS92] D.L. Olson & J.F. Courtney Jr., Decision Support Models and Expert Systems, Maxwell Mac-
millan International Editions, New York, 418 pp. (1992).

[OSY99] A. Osyczka, S. Krenich & K. Karas, Optimum Design of Robot Grippers using Genetic Algo-
rithms, Proceedings of the Third World Congress of Structural and Multidisciplinary Optimiza-
tion (WCSMO), Buffalo, New York (1999).

[OSY02] A. Osyczka, Evolutionary Algorithms for Single and Multicriteria Design Optimization, Studies
in Fuzzyness and Soft Computing, Physica-Verlag, Heidelberg, 218 pp. (2002).

[OZD00] L. Özdamar & M. Demirhan, Experiments with new stochastic global optimization search tech-
niques, Computers & Operations Research 27, pp. 841-865 (2000).

[PAP00] M. Papadrakakis, N.D. Lagaros & G. Kokossalakis, Evolutionary algorithms applied to structural
optimization problems, High Performance Computing for Computational Mechanics, Saxe-
Cobourg Publications, Topping & Lämmer Editors, Edinburgh, pp. 207-233 (2000).

[PAR00] P.M. Pardalos, H. Edwin Romeijn & Hoang Tuy, Recent developments and trends in global
optimization, Journal of Computational and Applied Mathematics, vol. 124 pp. 209-228 (2000).

[PER01] J. Périaux, H.Q. Chen, B. Mantel, M. Sfriou & H.T. Sui, Combinig game theory and genetic
algorithms with application to DDM-nozzle optimization problems, Finite Elements in Analysis
and Design 37, pp. 417-429 (2001).

References R–8

[PHA98] Q.T. Pham, Dynamic optimization of chemical engineering processes by an evolutionary me-
thod, Computers. Chem. Engng., vol. 22 (7-8), pp. 1089-1097 (1998).

[PIR98] P. Pirjanian, Multiple Objective Action Selection & Behavior Fusion using Voting, PhD thesis,
Faculty of Technical Sciences, Aalborg University, Denmark (1998).

[PUR01] R.C. Purshouse & P.J. Fleming, The Multi-Objective Genetic Algorithm Applied to Benchmark
Problems – An Analysis, Technical Report No. 796, Departament of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield, UK, August (2001).

[RAF01] M.Y. Rafiq, G. Bugmann & D.J. Easterbrook, Neural network design for engineering applica-
tions, Computers and Structures 79, pp. 1541-1552 (2001).

[RAM88] A. Ramsay, Formal Methods in Artificial Intelligence, Cambridge Tracts in Theoretical Compu-
ter Science 6, Cambridge University Press, New York (1988).

[RAM96] J.V. Ramasamy & S. Rajasekaran, Artificial neural network and genetic algorithm for the design
optimization of industrial roofs – a comparison, Computers and Structures, vol.58, pp. 747-755
(1996).

[RAN01] S. Ranji Ranjithan, S. Kishan Chetan & Harish K. Dakshima, Constraint Method-Based Evolu-
tionary Algorithm (CMEA) for Multiobjective Optimization, First International Conference on
Evolutionary Multi-Criterion Optimization, Springer-Verlag, Lecture Notes in Computer Science
No. 1993, pp. 299-313 (2001).

[REI96] D.J. Reid, Genetic Algorithms in Constrained Optimization, Mathl. Comput. Modelling, Vol. 23,
n° 5, pp. 87-111 (1996).

[REI97] D.J. Reid, Enhanced genetic operators for the resolution of discrete constrained optimization
problems, Computers Ops. Res., vol. 24 (5), pp. 399-411 (1997).

[REK00] B. Rekiek, P. De Lit, F. Pellichero, Th. L'Eglise, E. Falkenauer & A. Delchambre, Dealing With
User's Preferences in Hybrid Assembly Lines Design, Proceedings of the Management and
Control of Production and Logistics Conference (2000).

[REK01] B. Rekiek, Assembly Line Design : Multiple Objective Grouping Genetic Algorithm and the
Balancing of Mixed-Model Hybrid Assembly Line, PhD thesis, Service de Mécanique Analyti-
que et CFAO, Université Libre de Bruxelles (2001).

[REM99] A. Remouchamps & Y. Radovcic, BOSS-Quattro : theoritical aspects about optimization me-
thods and algorithms, Samtech S.A. 8, rue des Chasseurs Ardennais, 4031 Angleur, (1999).

[REY99] D. Reynolds, J. McConnachie, P. Bettess, W.C. Christie & J.W. Bull, Reverse adaptivity – A
new evolutionary tool for structural optimization, International Journal for Numerical Methods in
Engineering, vol. 45 (5), pp. 529-552 (1999).

[RIC89] T. Richardson, M.R. Palmer, G. Liepins & M. Hilliard, Some Guidelines for Genetic Algorithms
with Penalty Functions, In J.D. Schaffer (ed.), Proceedings of the Third International Conference
on Genetic Algorithms, George Mason University, Morgan Kaufman Publishers, pp. 191-197
(1989).

[ROY93] B. Roy & D. Bouyssou, Aide Multicritère à la Décision : Méthodes et Cas, Collection Gestion,
Série : Production et Techniques quantitatives appliquées à la gestion, Economica ed., Paris, 695
pp. (1993).

[RUD01a] G. Rudolph, Evolutionary Search under Partially Ordered Fitness Sets , Proceedings of the Inter-
national NAISO Congress on Information Science Innovations (ISI 2001), ICSC Academic
Press : Millet/Sliedrecht, M.F. Sebaaly (ed.), pp. 818-822 (2001).

[RUN00] Th.P. Runarsson & X. Yao, Stochastic Ranking for Constrained Evolutionary Optimization,
IEEE Transactions on Evolutionary Computation, vol. 4 (3), pp. 284-294 (2000).

[SAD99] S.J. Sadjadi & K. Ponnambalam, Advances in trust region algorithms for constrained optimiza-
tion, Applied Numerical Mathematics 29, pp. 423-443 (1999).

[SAD02] A.W. Sadek & M.K. Swailem, A Knowledge Based Expert System for Seismic Assessment of
Existing Reinforced Concrete Buildings, Proceedings of the Third International Conference on
Engineering Computational Technology, Civil-Comp Press, Scotland (2002).

[SAK00] M. Sakawa & K. Yauchi, Interactive decision making for multiobjective nonconvex program-
ming problems with fuzzy numbers through coevolutionary genetic algorithms, Fuzzy Sets and
Systems 114, pp. 151-165 (2000).

[SAL00] E. Salajegheh & J. Salajegheh, Optimum design of structures with discrete variables using ap-
proximation concepts, Identification, Control and Optimization of Engineering Structures, Civil-
Comp Press, Edinburgh, pp. 85-93 (2000).

[SAV88] S. Savory (ed.), Artificial Intelligence and Expert Systems, Ellis Horwood Books in Computing
Science, Chichester, UK, 278 pp. (1988).

References R–9

[SCH93] M. Schoenauer & S. Xanthakis, Constrained GA Optimization, Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms (1993).

[SEN96] N. Senin, D.R. Wallace & M.J. Hakiela, Mixed continuous variable and catalog search using
genetic algorithms, Proceedings of the 1996 ASME Design Engineering Technical Conferences
and Computers in Engineering Conference, August 18-22 (1996).

[SEP86] A. Sepúlveda & J.H. Cassis, An efficient algorithm for the optimum design of trusses with dis-
crete variables, International Journal for Numerical Methods in Engineering, vol. 23, pp. 1111-
1130 (1986).

[SHI00] C.J. Shih & Y.C. Yang, Mixed discrete and integer structural optimization using generalized
Hopfield network based sequential unconstrained minimization technique with additional penalty
strategy, Identification, Control and Optimization of Engineering Structures, Civil-Comp Press,
Edinburgh, pp. 73-78 (2000).

[SOR01] G. Soremekun, Z. Gürdal, R.T. Haftka & L.T. Watson, Composite laminate design optimization
by genetic algorithm with generalized elitist selection, Computers and Structures 79, pp. 131-143
(2001).

[SRI94] N. Srinivas & K. Deb, Multiple Objective Optimization Using Nondominated Sorting in Genetic
Algorithms, Evolutionary Computation, vol. 2 (3), pp. 221-248 (1994).

[SUR95] P.D. Surry, N.J. Radcliffe & I.D. Boyd, A Multi-Objective Approach to Constrained Optimisa-
tion of Gas Supply Networks : The COMOGA Method, In Terence C. Fogarty, editor, Evolutio-
nary Computing. AISB Workshop, Selected Papers, Lecture Notes in Computer Science, pages
166-180. Springer-Verlag, Sheffield, U.K. (1995).

[TAI98] E.D. Taillard, L.-M. Gambardella, M. Gendreau & J.Y. Potvin, Adaptive Memory Program-
ming : A Unified View of Meta-Heuristics, EURO XVI Conference Tutorial and Research Re-
views booklet (semi-plenary sessions), Brussels (1998).

[TAP99] R.V. Tappeta & J.E. Renaud, Interactive Multiobjective Optimization Procedure with Local
Preferences, 3rd World Congress on Structural and Multidisciplinary Optimization (WCSMO-3),
May 17-21 1999, Buffalo, New York (1999).

[TAT95] D.M. Tate and A.E. Smith, A Genetic Approach to the Quadratic Assignment Problem, Compu-
ters and Operations Research, vol. 22, pp. 73-83 (1995).

[TEL88] E. R. Tello, Mastering AI Tools and Techniques, Howard W. Sams & Company, Indianapolis,
USA, 543 pp. (1988).

[THA90] A. Thayse, A. Bruffaerts, P. Dupont, E. Henin & Y. Kamp, Approche logique de l'intelligence
artificielle, vol.1 : De la logique classique à la programmation logique, Bordas, Paris, 386 pp.
(1990).

[TRO97] K. Trojanowski & Z. Michalewicz, Evolutionary Algorithms and the Problem-Specific Kno-
wledge, Proceedings of the 2nd National Conference on Evolutionary Computation and Global
Optimisation, Rytro, Poland, Warsaw Univ. of Technology Press, pp. 281-292 (1997).

[ULU02] A.F. Ulusoy & F. Erbatur, Discrete and Continuous Structural Optimisation Using Evolution
Strategies, Proceedings of the Third International Conference on Engineering Computational
Technology, Civil-Comp Press, Scotland (2002).

[VAN96] A.H.C. van Kampen, C.S. Strom, & L.M.C. Buydens, Lethalization, Penalty and Repair Func-
tions for Constraint Handling in the Genetic Algorithm Methodology, Chemometrics and Intelli-
gent Laboratory Systems, pp. 55-68 (1996).

[VAN98] D.A. Van Veldhuizen & G.B. Lamont, Multiobjective Evolutionary Algorithm Research : A
History and Analysis, Department of Electrical and Computer Engineering, Graduate School of
Engineering, Air Force Institute of Technology, Wright-Patterson AFB (1998).

[VAN99] D.A. Van Veldhuizen & G.B. Lamont, Multiobjective Evolutionary Algorithm Test Suites, Pro-
ceedings of the 1999 ACM Symposium on Applied Computing, San Antonio, Texas, eds. J.
Carroll, H. Haddad, D. Oppenheim, B. Bryant & G.B. Lamont, pp. 351-357 (1999).

[VAN00] D.A. Van Veldhuizen & G.B. Lamont, On Measuring Multiobjective Evolutionary Algorithms
Performance, Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 204-
211 (2000).

[VAN00a] D.A. Van Veldhuizen & G.B. Lamont, Multiobjective Evolutionary Algorithms : Analyzing the
State-of-the-Art, Evolutionary Computation vol. 8 (2), pp. 125-147 (2000).

[VAN00b] D.A. Van Veldhuizen & G.B. Lamont, Evolutionary Computation and Convergence to a Pareto
Front, Late Breaking Papers at the Genetic Programming 1998 Conference, University of Wis-
consin, Madison, Wisconsin, USA (1998).

References R–10

[VAN01] F. Vande Weyer, Méthodes globales d'Optimisation de Structures par Plans d'Expériences (Projet
OSPEx), activity reports, Continuum Mechanics Department, Université Libre de Bruxelles
(2000-2001).

[VIN89] Ph. Vincke, L'aide multicritère à la décision, Editions de l'Université de Bruxelles, 179 pp.
(1989).

[VIS90] V. Visweswaran & C.A. Floudas, A global optimization algorithm GOP for certain classes of
nonconvex NLPs : II. Application of theory and test problems, Computers and Chemical Engi-
neering, vol. 14 (12), pp. 1419-1434 (1990).

[VOU99] C. Voudouris & E. Tsang, Guided local search and its application to the travelling salesman
problem, European Journal of Operational Research, vol. 113 (2), pp. 469-499 (1999).

[WHI94] D. Whitley, V.S. Gordon & K. Mathias, Lamarckian Evolution, The Baldwin Effect and Func-
tion Optimization, In Y Davidor, H.-P. Schwefel & R. Männer (Eds.), Lecture Notes in Compu-
ter Science, 866, pp. 6-15, Springer-Verlag (1994).

[WHI96] D. Whitley, K. Mathias, S. Rana & J. Dzubera, Evaluating Evolutionary Algorithms, Artificial
Intelligence, Journal, 85, pp.1-32 (1996).

[WIN95] G. Winter, J. Périaux, M. Galán & P. Cuesta, Genetic algorithms in engineering and computer
science, John Wiley and Sons Ltd, Baffins Lane, Chichester, England, 480 pp. (1995).

[WOL95] W.T.M. Wolters & B. Mareschal, Novel types of sensitivity analysis for additive MCDM me-
thods, European Journal of Operational Research, vol. 81, pp.281-290 (1995).

[WOL97] D.H. Wolpert & W.G. Macready, No Free Lunch Theorems for Optimization, IEEE Transactions
on Evolutionary Computation, vol. 1 (1), pp. 67-82 (1997).

[WRI99] S. Wright & J. Nocedal, Numerical Optimization, Springer Series in Operation Research, Sprin-
ger-Verlag New York (1999).

[XIA97] J. Xiao, Z. Michalewicz, L. Zhang & K. Trojanowski, Adaptive Evolutionary Planner/Navigator
for Mobile Robots, IEEE transactions on evolutionary computation, vol. 1 (1), pp. 18-28 (1997).

[YAG96] M. Yagiura & T. Ibaraki, Metaheuristics as Robust and Simple Optimization Tools, Proc. Inter-
national Conference of Evolutionary Computation (ICEC'96), pp. 541-546 (1996).

[YAN02] Y. Yang & C.K. Soh, Automated optimum design of structures using genetic programming,
Computers and Structures 80, pp. 1537-1546 (2002).

[YOU01] H. Youssef, S.M. Sait & H. Adiche, Evolutionary algorithms, simulated annealing and tabu
search : a comparative study, Engineering Applications of Artificial Intelligence 14, pp. 167-181
(2001).

[ZHA92] W.H. Zhang, Calcul des sensibilités et optimisation de forme par la méthode des éléments finis,
PhD Thesis, Université de Liège (1992).

[ZHA94] H. Zhang & M. Stickel, Implementing Davis-Putnam's method , Technical Report, University of
Iowa (1994).

[ZHA01a] W.H. Zhang, M. Domaszewski & Cl. Fleury, An improved weighting method with multibounds
formulation and convex programming for multicriteria structural optimization, International
Journal for Numerical Methods in Engineering, vol. 52, pp. 889-902 (2001).

[ZIT99] E. Zitzler & L. Thiele, Multiobjective Evolutionary Algorithms : A Comparative Case Study and
the Strength Pareto Approach, IEEE Transactions on Evolutionary Computation, vol. 3 (4), pp.
257-271 (1999).

[ZIT99a] E. Zitzler, Evolutionary Algorithms for Multiobjective Optimization : Methods and Applications,
PhD Thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, November 1999.

[ZIT00] E. Zitzler, L. Thiele & K. Deb, Comparison of Multiobjective Evolutionary Algorithms : Empi-
rical Results, Evolutionary Computation, vol. 8 (2), pp. 173-195 (2000).

[ZIT01] E. Zitzler, M. Laumanns & L. Thiele. SPEA2 : Improving the Strength Pareto Evolutionary Al-
gorithm, In K. Giannakoglou, D. Tsahalis, J. Périaux, P. Papailou, and T. Fogarty (eds.), EU-
ROGEN 2001, Evolutionary Methods for Design, Optimization and Control with Applications to
Industrial Problems, Athens, Greece, September 2001.

[ZIT02] E.Zitzler, M. Laumanns, L. Thiele, C.M. Fonseca & V. Grunert da Fonseca, Why Quality As-
sessment of Multiobjective Optimizers Is Difficult, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2002), July 2002, pp. 666-674 (2002).

[ZIT03] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca & V. Grunert da Fonseca, Performance As-
sessment of Multiobjective Optimizers : An Analysis and Review, IEEE Transactions on Evolu-
tionary Computation, vol. 7 (2), pp. 117-131 (2003).

Appendix A AA–1

APPENDIX A

The terms yj(x) and cj(x) necessary to compute the objective function and the constraints for
test case S-38IC (cf. § 4.4.1.5) are given below [DEB00] :

y1 (x) = x2 + x3 + 41.6, (A.1)
c1 (x) = 0.024 x4 – 4.62, (A.2)
y2 (x) = 12.5 / c1 (x) + 12.0, (A.3)
c2 (x) = 0.0003535 x1

2 + 0.5311 x1 + 0.08705 y2 (x) x1 , (A.4)
c3 (x) = 0.052 x1 + 78.0 + 0.002377 y2 (x) x1, (A.5)
y3 (x) = c2 (x) / c3 (x), (A.6)
y4 (x) = 19.0 y3 (x), (A.7)
c4 (x) = 0.04782 (x1 – y3(x)) + 0.1956 (x1 – y3(x))2 / x2 + 0.6376 y4(x) + 1.594 y3(x), (A.8)
c5 (x) = 100.0 x2, (A.9)
c6 (x) = x1 – y3 (x) – y4 (x), (A.10)
c7 (x) = 0.95 – c4 (x) / c5 (x), (A.11)
y5 (x) = c6 (x) c7 (x), (A.12)
y6 (x) = x1 – y5 (x) – y4 (x) – y3 (x), (A.13)
c8 (x) = 0.995 (y4 (x) + y5 (x)), (A.14)
y7 (x) = c8 (x) / y1(x), (A.15)
y8 (x) = c8 (x) / 3798.0, (A.16)
c9 (x) = y7 (x) – 0.0663 y7 (x) / y8(x) – 0.3153, (A.17)
y9 (x) = 96.82 / c9 (x) + 0.321 y1 (x), (A.18)
y10 (x) = 1.29 y5 (x) + 1.258 y4 (x) + 2.29 y3 (x) + 1.71 y6 (x), (A.19)
y11 (x) = 1.71 x1 – 0.452 y4 (x) + 0.58 y3 (x), (A.20)
c10 (x) = 12.3 / 752.3, (A.21)
c11 (x) = 1.74125 y2 (x) x1, (A.22)
c12 (x) = 0.995 y10 (x) + 1998.0, (A.23)
y12 (x) = c10 (x) x1 + c11 (x) / c12 (x), (A.24)
y13 (x) = c12 (x) – 1.75 y2 (x), (A.25)
y14 (x) = 3623.0 + 64.4 x2 + 58.4 x3 + 146312.0 / (y9 (x) + x5), (A.26)
c13 (x) = 0.995 y10 (x) + 60.8 x2 + 48.0 x4 – 0.1121 y14 (x) – 5095.0, (A.27)
y15 (x) = y13 (x) / c13 (x), (A.28)
y16 (x) = 148000.0 – 331000.0 y15 (x) + 40 y13 (x) – 61.0 y15 (x) y13 (x), (A.29)
c14 (x) = 2324.0 y10 (x) – 28740000.0 y2 (x), (A.30)
y17 (x) = 14130000.0 – 1328.0 y10 (x) – 531.0 y11 (x) + c14 (x) / c12 (x), (A.31)
c15 (x) = y13 (x) / y15 (x) – y13 (x) / 0.52, (A.32)
c16 (x) = 1.104 – 0.72 y15 (x), (A.33)
c17 (x) = y9 (x) + x5 . (A.34)

The values of a[i] and b[i] for i = 1,…,18 are given below :

a[i] = { 0, 0, 17.505, 11.275, 214.228, 7.458, 0.961, 1.612, 0.146, 107.99, 922.693,
926.832, 18.766, 1072.163, 8961.448, 0.063, 71084.33, 2802713.0 }, (A.35)

b[i] = { 0, 0, 1053.6667, 35.03, 665.585, 584.463, 265.916, 7.046, 0.222, 273.366, 1286.105,
1444.046, 537.141, 3247.039, 26844.086, 0.386, 140000.0, 12146108.0 }. (A.36)

List of Figures LF–1

LIST OF FIGURES

Figure 1.1 : Distinction between design (a), shape (b) and topology (c) optimization [DUY96]. 1-1

Figure 1.2 : Shape optimization of a support : definition of the initial geometry and solution obtained after 5 iterations

of the optimization process [ZHA92]. ... 1-2

Figure 1.3 : Definition of the Michell truss problem [Boundary condition : the inner circular hole is fixed]

(figure adapted from [REY99]). .. 1-3

Figure 1.4 : Topological optimization applied to the Michell truss problem : results at iterations 6 (a), 42 (b), 75 (c)

and 120 (d) [REY99]. ... 1-3

Figure 1.5 : Example of truss topological optimization : from a network of 39 rods (left), the genetic algorithm

converged to a 9-element truss (right) [DEB01a]. .. 1-5

Figure 1.6 : Examples of sheer design optimization (i.e. with only “dimensional” variables) (a) and of design

optimization with topological variables (b).. 1-6

Figure 2.1 : Example of a 1-variable function with the global minimum and one local minimum. 2-2

Figure 2.2 : Principle of the line search strategy (with a 2-variable function f)... 2-3

Figure 2.3 : Principle of the trust region strategy (with a 1-variable function f).. 2-4

Figure 2.4 : Flow chart of the standard evolutionary algorithm. .. 2-8

Figure 2.5 : Example of chromosome for a four-variable individual (with binary coding). ... 2-9

Figure 2.6 : Fixed-point representation for a 2-variable individual. ... 2-10

Figure 2.7 : Roulette wheel selection. .. 2-10

Figure 2.8 : Illustration of the 1-site crossover : two strings (the parents) and their offspring. 2-11

Figure 2.9 : Uniform crossover.. 2-11

Figure 3.1 : Pareto front (PF, in dotted line) in a two-objective example. .. 3-2

Figure 3.2 : Functioning of a priori, progressive and a posteriori methods for multiobjective optimization. 3-3

Figure 3.3 : Functioning of VEGA... 3-4

Figure 3.4 : Description of NSGA (minimization problem). ... 3-4

Figure 3.5 : Process of filtering of the nondominated. .. 3-5

Figure 3.6 : Description of the repairing procedure in GENOCOP III. .. 3-15

Figure 3.7 : Example of searching direction obtained from points si and sj .. 3-18

Figure 3.8 : Linear preference function with indifference threshold (for a minimization problem) in PROMETHEE II. .. 3-21

Figure 3.9 : Flow-chart of PAMUC. .. 3-23

Figure 4.1 : Comparison of two points za and zb (in a two-objective minimization example) : (1) za dominates zb, (2) za

and zb are incomparable and (3) zb dominates za... 4-3

Figure 4.2 : Comparison of two nondominated sets A and B in a 2-objective minimization problem : the sets A and B

are incomparable. ... 4-3

Figure 4.3 : Comparison of three nondominated sets A, B and C. .. 4-5

Figure 4.4 : Set of nondominated objective vectors(PFcurrent) compared to PFtrue thanks to the generational distance GD. 4-6

Figure 4.5 : Computation of the S-metric (in a 2-objective minimization problem). ... 4-6

Figure 4.6 : Illustration of the C-metric on a 2-objective minimization example. ... 4-7

Figure 4.7 : Illustration of the ε-dominance.. 4-8

Figure 4.8 : Illustrations of the weak, strong and complete outperformance definitions in 2-objective minimization

examples.. 4-9

Figure 4.9 : 2-objective example illustrating the relativeness of the S-metric with respect to the reference point. 4-10

Figure 4.10 : Definition of sets A and B in the objective space.. 4-12

Figure 4.11 : Function u* for 2 sets A and B with respect to the parameter t defining Tchebycheff weights (u*(A) is

superior to u*(B) for every value of t from t = 0.1). .. 4-13

List of Figures LF–2

Figure 4.12 : Amount of violation of 2nd and 3rd constraints (sum of all unfeasible individuals of the population) w.r.t.

the generation for 1 run of the EA for problem S-HED (with Joines and Houck’s penalty-based method). ... 4-15

Figure 4.13 : Rate of feasible individuals at each generation for 1 run of the EA (with PAMUC

method). .. 4-15

Figure 4.14 : Objective function of the best feasible individual at each generation for 1 run of the EA (with PAMUC

method) from the 43th generation for problem S-HED.. 4-16

Figure 4.15 : Rate of feasible individuals and objective function of the best feasible individual at each generation for 1

run of the EA applied to test case S-HED (with PAMUC method, Ngen = 1000). .. 4-17

Figure 4.16 : Rate of feasible individuals and objective function of the best feasible individual at each generation for 1

run of the EA applied to test case S-3EQ (with Joines and Houck’s method). ... 4-18

Figure 4.17 : Rate of feasible individuals and objective function of the best feasible individual at each generation for 1

run of the EA applied to test case S-3EQ (with PAMUC method). .. 4-19

Figure 4.18 : Boundary (B) between feasible (F) and unfeasible (U) points in the variable space for a 1-constraint

problem, and illustration of crossover between an unfeasible parent (xP1) and a feasible parent (xP2),

creating a child closer to the boundary B (with x* being the global optimum). .. 4-20

Figure 4.19 : Crescent shape of the feasible domain F in test case S-CRES in the variable space (x1, x2) (contours are

isovalues of the objective function f). .. 4-21

Figure 4.20 : Zoom of the feasible domain F in test case S-CRES in the variable space (x1, x2) in the vicinity of the

global feasible optimum x*. .. 4-22

Figure 4.21 : Average Euclidean norm of the feasible individuals of the population at each generation for test case

S-CRES (with PAMUC)... 4-23

Figure 4.22 : Rate [left] and minimum and mean value of the objective function [right] of feasible individuals of the

population at each generation for one run for test case S-38IC (with PAMUC). .. 4-24

Figure 4.23 : Average Euclidean norm (on the variables) of the feasible individuals of the population at each generation

for one run for test case S-38IC (with PAMUC). ... 4-25

Figure 4.24 : Welded beam design problem [COE00a]... 4-28

Figure 4.25 : Rate of feasible individuals and objective function of the best feasible individual at each generation for 1

run of the EA applied to test case S-WBD (with Joines and Houck’s method). ... 4-28

Figure 4.26 : Rate of feasible individuals and objective function of the best feasible individual at each generation for 1

run of the EA applied to test case S-WBD (with PAMUC)... 4-29

Figure 4.27 : Nondominated solutions obtained by PAMUC method for M-UC. ... 4-31

Figure 4.28 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-UC. 4-31

Figure 4.29 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-LOC...................... 4-32

Figure 4.30 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-LOQC. 4-33

Figure 4.31 : Convex Pareto front (in a minimization problem). ... 4-34

Figure 4.32 : Seeking the minimum of w1 f1 + w2 f2 with w1 = w2 = 0.5 (in a minimization problem). 4-34

Figure 4.33 : Seeking the minimum of { f1 f2}
T with w1 = w2 = 0.5 with a concave Pareto front. 4-35

Figure 4.34 : Feasible solutions (amidst 10,000 points randomly generated) in the objective space for M-QOC. 4-36

Figure 4.35 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-QOC. 4-37

Figure 4.36 : Nondominated solutions obtained with the weighted sum [left] and PAMUC [right] methods for M-QOC. . 4-37

Figure 4.37 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-DFP. 4-39

Figure 4.38 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-LFS....................... 4-40

Figure 4.39 : Osyczka beam design problem.. 4-41

Figure 4.40 : Nondominated solutions obtained with the weighted sum and PAMUC methods for M-BDP. 4-41

Figure 4.41: Random population of 10,000 individuals in the objective space for M-3OU.. 4-43

Figure 4.42 : Feasible population (among 10,000 individuals randomly generated) in the objective space for M-3OC. 4-44

Figure 4.43 : Flow-chart of PAMUC (the modules having differences with WS arecharacterized by dashed-dotted lines). 4-46

Figure 5.1 : Forward-chaining algorithm (in pseudo-code). .. 5-5

List of Figures LF–3

Figure 5.2 : Illustration of forward-chaining in an AND-OR tree : from the facts stating that F and I are true, one can

deduce that G, C and A are also true. ... 5-6

Figure 5.3 : Flow-chart of PAMUC II. ... 5-11

Figure 5.4 : Expert module in pseudo-code (prep is the probability for an individual of being repaired) 5-11

Figure 5.5 : Expert module applied to a constrained multiobjective problem with one rule : the first individual of the

population is repaired according to rule 1 (a real-coding is used to build the chromosomes). 5-12

Figure 5.6 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line] of

the feasible individuals (right) w.r.t. the generation with prep = 0 (for one run) for test case TCR 1. 5-15

Figure 5.7 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line] of

the feasible individuals (right) w.r.t. the generation with prep = 0.1 (for one run) for test case TCR 1. 5-15

Figure 5.8 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line] of

the feasible individuals (right) w.r.t. the generation with prep = 0.5 (for one run) for test case TCR 1. 5-15

Figure 5.9 : Rate of feasible individuals (left) and objective function of the best [plain line] and mean [dotted line] of

the feasible individuals (right) w.r.t. the generation with prep = 0.5 (for one run) for test case TCR 1. 5-16

Figure 5.10 : Mean of the best feasible objective function (over 50 runs) w.r.t. the probability of replacement for TCR 1. 5-16

Figure 5.11 : Average generation (over 50 runs) needed to reach the global optimum w.r.t. prep for test case TCR 1......... 5-17

Figure 5.12 : Mean of the best feasible objective function (over 50 runs) w.r.t. the probability of replacement for TCR 2. 5-18

Figure 5.13 : Average generation (over 50 runs) needed to reach level f(x)=160 w.r.t. the prep for test case TCR 2. 5-18

Figure 5.14 : Evolution of the number of feasible runs [left] and mean of the best feasible objective function (over 1000

runs) [right] w.r.t. the probability of replacement for test case TCR 3. .. 5-19

Figure 5.15 : Robot gripper design problem [OSY99]. ... 5-20

Figure 5.16 : Evolution of the number of feasible runs [left] and mean of the best feasible objective function (over 50

runs) [right] w.r.t. the probability of replacement for test case TCR 4. .. 5-21

Figure 5.17 : Beam design problem. .. 5-22

Figure 5.18 : Evolution of the number of feasible runs (over 50 runs) w.r.t. the probability of replacement for TCR 5...... 5-22

Figure 5.19 : Evolution of the rate of individuals violating constraint 8 w.r.t. the generation for test case TCR 5 (for one

run), using Joines and Houck’s method [left] and PAMUC II with prep = 0.8 [right].................................... 5-23

Figure 5.20 : Helical spring design problem... 5-23

Figure 5.21 : Evolution of the best feasible objective function (over 50 runs) w.r.t. prep for test case TCR 6. 5-25

Figure 5.22 : Multiple clutch brakes design problem. .. 5-26

Figure 5.23 : Evolution of the best feasible objective function (over 50 runs) w.r.t. prep for test case TCR 7. 5-28

Figure 5.24 : Flow-chart of Davis and Putnam’s algorithm 5-31

Figure 5.25 : Computational time study for TCR 1... 5-33

Figure 5.26 : Computational time study for TCR 2... 5-33

Figure 5.27 : CPU time needed to reach the optimum with PAMUC II w.r.t. prep (for test cases TCR 1 and TCR 2) 5-34

List of Tables LT–1

LIST OF TABLES

Table 2.1 : Example of binary coding : construction of a chromosome (4 design variables)... 2-9

Table 2.2 : Binary and Gray codings for a 3-bit variable. ... 2-9

Table 2.3 : List of parameters of the SEA not depending on the coding. ... 2-13

Table 2.4 : List of parameters of the SEA depending on the coding. ... 2-14

Table 3.1 : Preference relations [CVE02]. ... 3-10

Table 4.1 : Combinations of weights for a 2-objective problem with a constant step = ¼... 4-12

Table 4.2 : Combinations of weights for a 3-objective problem with a constant step = � ... 4-12

Table 4.3 : EA parameters for test case S-HED.. 4-14

Table 4.4 : Comparison of PAMUC and TS methods for problem S-HED (50 runs).. 4-16

Table 4.5 : EA parameters for test case S-3EQ... 4-18

Table 4.6 : Results of Joines and Houck’s method (implemented in the Std-EA) and PAMUC for S-3EQ........................ 4-19

Table 4.7 : EA parameters for test case S-6ACT. ... 4-20

Table 4.8 : Comparison of Joines and Houck’s method (implemented in the Std-EA) and PAMUC for problem

S-6ACT (20 runs).. 4-20

Table 4.9 : Results for test case S-CRES for 50 runs.. 4-22

Table 4.10 : Results for problem S-38IC for 50 runs.. 4-24

Table 4.11 : Results for problem S-0.5F for 50 runs... 4-25

Table 4.12 : Results for problem S-HIM for 50 runs. ... 4-26

Table 4.13 : EA parameters for test case P-WBD... 4-28

Table 4.14 : Comparison of Joines and Houck’s and PAMUC results for problem P-WBD (50 runs)................................. 4-29

Table 4.15 : Best feasible solutions found by PAMUC and other methods mentioned in this study (for a same

number of function evaluations)... 4-29

Table 4.16 : Comparison of the weighted sum method and PAMUC for problem M-UC... 4-32

Table 4.17 : Comparison of the weighted sum method and PAMUC for problem M-LOC... 4-33

Table 4.18 : Comparison of the weighted sum method and PAMUC for problem M-LOQC.. 4-34

Table 4.19 : Comparison of the weighted sum method and PAMUC for problem M-QOC. ... 4-37

Table 4.20 : Comparison of the weighted sum method and PAMUC for problem M-DPF. .. 4-38

Table 4.21 : Results for M-LFS... 4-39

Table 4.22 : EA parameters for test case M-BDP... 4-42

Table 4.23 : Comparison of the weighted sum method and PAMUC for problem M-BDP... 4-42

Table 4.24 : Comparison of the weighted sum method and PAMUC for problem M-3OU... 4-43

Table 4.25 : Comparison of the weighted sum method and PAMUC for problem M-3OC... 4-44

Table 4.26 : Comparison of PAMUC and WS methods for 9 multiobjective methods : values of the mean of R1-norm...... 4-45

Table 4.27 : Analysis of the influence of parameter pi (with qi = 0) on results for example M-UC, with different values

of the weights – each number represents the mean on 50 runs of the algorithm. ... 4-46

Table 4.28 : Analysis of the influence of parameter pi (with qi = 0) on results for example M-UC, with different values

of the weights – each number represents the standard deviation on 50 runs of the algorithm........................... 4-46

Table 4.29 : Analysis of the influence of parameter qi (with pi = 1) on results for example M-UC, with different values

of the weights – each number represents the mean on 50 runs of the algorithm. ... 4-46

Table 4.30 : Analysis of the influence of parameter qi (with pi = 1) on results for example M-UC, with different values

of the weights – each number represents the standard deviation on 50 runs of the algorithm........................... 4-46

Table 4.31 : Influence of the variation of weights on the solutions for example M-UC.. 4-47

Table 4.32 : CPU time for different values of the number of generations Ngen and the size of the population N

(for test case S-38IC)... 4-50

List of Tables LT–2

Table 4.33 : CPU time for different values of the number of generations Ngen and the size of the population N

(for test case M-BDP).. 4-50

Table 4.34 : CPU time for different values of the number of generations Ngen and the size of the population N

(for test case M-3OC).. 4-50

Table 5.1 : Final elements of the Backus grammar [DEL87]... 5-3

Table 5.2 : Fundamental definitions in the Backus grammar [DEL87]. ... 5-4

Table 5.3 : EA parameters for test case TCR 1... 5-14

Table 5.4 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 3. 5-19

Table 5.5 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 4

(robot gripper design problem)... 5-21

Table 5.6 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 5 (beam design problem). 5-23

Table 5.7 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 6 (helical spring design

problem). .. 5-25

Table 5.8 : Comparison of the Joines and Houck’s method and PAMUC (II) for problem TCR 7 (multiple clutch

brakes design problem).. 5-27

Table 5.9 : Comparison of PAMUC II and the weighted sum method for the 3-objective test cases. 5-29

Table 5.10 : CPU time (for one run of the EA) for test cases TCR 3 to TCR 7.. 5-34

