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Introduction

This Work stands somewhere at the fringe between biology and computer science, in 
this new field called bioinformatics. This means it is an exciting new domain of research, but 
aiso that it is difficult to write to be understood by both biologists and computer scientists at 
the same time. Or even separately. For this reason, an introductory background chapter 
presenting the prerequisite for both biologists and computer scientists has been written. The 
notions presented in this chapter shall be considered as known for the rest of this work.

A few years ago, as a by-product of the sequencing effort and of the automatization of 
the biological sciences, it became possible to measure the level of expression of thousands 
of genes in parallel. This gave rise to very high hopes - it was suddenly possible to perform 
in one afternoon the experiments which would hâve taken months with classical means. It 
seemed to be possible to uncover slight différences between diseases in a few months, while 
it would hâve taken centuries of man-years, or to infer parts of the regulatory mechanisms 
which govern our cells. The numbers of publications exploded in the field, a trend which is 
not likely to subside anytime soon (figure 1).

Figure 1. Number of microarray papers published by year, 1995 to présent. Number for 2003 
is the results of the first six months times two.

It appeared however that the data were not aiways what they seemed to be. 
Microarrays were plagued by reproducibility issues, the results from one laboratory did not 
seem to fit the results from another and in some cases the identity of a large proportion of the 
genes proved to be incorrect (Knight 2001). This gave rise to some discomfort, as it was not 
clear to which extent the data were able to fulfill their promises.

But as time went by, the technology improved and some of the boldest daims were 
withdrawn, or at least amended. Some of the technology improvement came from the wet 
side of the laboratory, and some came from the data analysis. As the data proved more 
complex than previousiy thought, new, more powerfui, means of extracting the information 
présent were designed.

This thesis is a small part of this whole story. As such, it treats of the issues which 
must be tackled by anyone trying to work with those new data.

The first chapter treats of a seemingly simple point: if two groupe of samples are 
compared, how to détermine which genes are differentially expressed, and to give a 
significance level to those differential expression. The problem proved to be more complex 
than anticipated however, for two reasons. The first is the fact that the microarray 
experiments are an extreme case of multiple-testing. To appiy the classical solution for multi- 
testing proved too conservative, so another approach had to be designed. The second is the
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fact that there are information as to the confidence that could be given to the resuit for a 
gene - basically, a gene with a high expression tends to be more reproducible than a gene 
with a low expression. The question is then, how to introduce that information in the 
significance analysis, without simpiy throwing away a large part of the data.

The second chapter treats of the problem of the correction of the data. Microarray 
data are plagued with errors. The good news is that some of these errors are systematic, and 
so can be removed. To décidé which correction to appiy, and how, and to assess whether 
the correction really improves the data quality is not trivial. A general method of assessing 
the data quality, based on the significance analysis developed in the first part, was created. 
Using this method, many different options to improve the data were tested, and a general 
normalization scheme was designed. The tools developed in this part of the work were made 
public, as a Matlab toolbox.

The third chapter treats of the data storage and retrieval. It consisted in the création 
of a database, with a Web front-end. The main problem however proved to corne not from 
the database création, but from the data curation - to make sure that the data is clean, fits in 
the database format and is correctiy annotated. This proved to be a very time-consuming and 
bothersome work. As public databases seemed to be in the pipeline, from which they 
emerged recently, the project was essentially abandoned. There were aiso a few design 
choices which might hâve proven to be inefficient in the long run.

The fourth chapter treats of clustering. Clustering is a natural choice for gene 
expression data sets, because those data sets hâve an unknown structure which would be 
very usefui to uncover. Almost ail gene expression papers use clustering for their data 
analysis. The précisé point treated in this part is the finding of the different clustering of the 
samples présent in the data. For instance, the samples could be clustered in function of their 
inflammation level, or the sex of the patient, or its âge,... The hypothesis is that those 
clusterings are independent, and so could be uncovered separately. This chapter offers an 
algorithm to détermine those overlapping clustering. This algorithm can aIso be usefui for 
other types of data, which is demonstrated on a census data set where the presence of 
overlapping clustering is aiso expected.

The fifth chapter treats of complex samples. When gene expression experiments are 
performed on solid samples, comprising many cell types, the results dépend on the 
composition of those samples. Depending on the way the samples are extracted, the 
concentration of the different cell types can vary widely. If the samples are clustered, then 
the main source of variability is this variation in cell type concentration - a very real effect, 
but usually unhelpfui for biological understanding. A technique to correct for this effect is 
presented in this chapter.

The sixth chapter treats of the most ambitious hope about high-throughput gene 
expression data - the hope that it might some day allow the détermination of the regulatory 
program inside the cells. There are many difficulties on that road, one of which being that 
genes do not directiy control each other, but that there are many intermediates. The search 
for direct regulators of gene expression among the expression of other genes might be 
doomed to failure. An alternative approach is proposed here. If the number of regulators is 
relatively small, it might be possible to détermine both the value of the regulators in each 
condition and the way they regulate the genes. The way the regulators themselves are 
regulated can then be treated separately. The effectiveness of this approach is shown using 
a binary model of gene régulation, and is successfully applied on two real data sets.

1 Reference
Knight, J., (2001) “When the chips are down”. Nature, 410, 860-861.
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0 - Background

The biological and technical backgrounds needed to understand this thesis are given 
in this chapter. The first part describes the relevant biology. The second part describes the 
experimental protocols used to generate the data analyzed in this thesis. The first twa parts 
are geared towards computer scientists. The third part describes some classical analysis 
techniques commonly used in the field, and is geared towards biologists. The fourth part 
describes a data set which has been created in the IRIBHM laboratory and was used for the 
validation of the techniques developed in the first and second chapter. The analysis 
techniques described are demonstrated on this data set.

1 A short introduction to the relevant biology
The biological background is presented here. It is only a sketchy présentation of the 

current biological knowledge, based on the book “Molecular Cell Biology” (Darnell et al. 
1990).

1.1 DNA holds qenetic information
Living organisme are composed of cells. Some organisme, like yeast or bacteria, 

consiste of only one cell while others (metazoans), like humans, consist of many cells. In 
metazoans, cells can perform a variety of fonctions. They can for instance act as neurons, 
muscles or lymphocytes.

The cells could be viewed as Chemical factories, using energy and other resources in 
the environment to produce other cells or to perform a fonction usefui for the organism. The 
program of the factory is coded in DNA. DNA is a long polymer. It consista of a sugar 
phosphate backbone on which any of four different bases can be attached; adenine, 
guanine, thymine or cytosine. DNA is made of two complementary strands, with the bases 
paired: adenine with thymine and guanine with cytosine (figure 1). The program of the cells is 
coded in the succession of those bases.

Each cell possesses one or more of those polymers made of DNA, which are called 
chromosomes. The chromosomes encode ail the information the cell needs to survive.

Figure 1. The DNA structure

Su3.>rPho&phdioBôCkiXk't<t

1.2 The translation of DNA into protein
Proteins are the basic building blocks of the cells. They perform most of the fonctions 

needed for the cells. Proteins can, for instance, catalyze Chemical reactions, be used as

1



structural éléments or turn Chemical energy into mechanical energy. Proteins are polymers, 
with the mers made of any of 20 amino acids. The amino acid sequence of proteins is 
encoded in DNA.

The synthesis of proteins is a two-step process (figure 2). Firstly, the part of DNA 
containing the sequence of the protein is copied into RNA. This first step is called 
transcription. RNA is a polymer similar to DNA, the main différences being that it contains 
only one strand and that the base thymine is replaced by the base uracile. Those différences 
make RNA a less stable molécule than DNA. The RNA containing the copy of the plan of the 
protein is called a messenger RNA (mRNA). This mRNA is used as a plan for the protein 
synthesis.

The information concerning the protein sequence is coded in the mRNA. As each mer 
in a protein is one of 20 amino acids, 3 bases are needed to code the information. Hence, 
the sequence of an mRNA can be divided in 3-bases long blocks called codons. Each codon 
encode for one amino acid. As 3 bases give 4^ = 64 possibilities, the coding from codon to 
amino acid is redondant: one amino acid can be associated with more than one codon. 
Some codon can aiso hâve spécifie meaning, like start or stop transcription.

The second step of protein synthesis is translation from mRNA to protein, or simpiy 
translation. It is performed by a specialized molecular complex called the ribosome. An 
mRNA is continuousiy translated in protein until it is degraded. This means that only a very 
small amount of mRNA is needed, as one mRNA can give rise to hundreds of proteins.

Only a small part of the genome encodes proteins. Some of the rest of the genome is 
used to control when or where the genes should be expressed, that is for instance when they 
should be transcribed into mRNA. The usefulness of most of the genome remains however a 
mystery.

DNA

mRNA

Protein

ACGCGTATAGCAAAGTCAGTTAGC

TGCGCATATCGTTTCAGTCAATCG

Figure 2. The protein synthesis.

1.3 Control of transcription
In a multicellular organism, ail cells hâve the same genetic code, but can perform 

different tasks. The behavior of a neuron is very different from the behavior of a muscle cell. 
Unicellular organisme can hâve different behavior, mating, feeding or moving, depending on 
the environment and their internai State. A large part of these variations in behavior are due 
to variations in the expression level (concentration) of the proteins.

Cells hâve different ways of controlling the expression of the proteins. A large part of 
this control is done at the transcription level, that is when DNA is copied into mRNA. This 
control can for instance be made by proteins, which bind to a spécifie DNA sequence and 
activate the transcription of a nearby sequence. The DNA sequence corresponding to a
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protein plus ail its regulatory sequences is called a gene. For instance, if a cell senses a 
signal, it can activate a protein which, by binding to the genome, can activate or inhibit the 
transcription of some genes. The proteins coded by some of those genes can themselves 
alter the expression of other genes (or of themselves).

Since the behavior of a cell is largely determined by the concentration of the various 
proteins in the cell, and the concentration of those proteins is largely controlled by the 
concentration of the corresponding mRNAs, measuring the level of expression of the 
different mRNAs (an expression profile) gives a relatively comprehensive view of the 
molecular State of the cell. The advantage of working with mRNA concentrations is that those 
are much easier to detect and quantify than protein concentrations, as will be explained in 
the next section.

2 The microarrav technoloqy
In this section the microarray technology which was used to generate the data 

analyzed in this thesis is described. This technology allows a simultaneous quantification of 
the concentration of thousands of mRNAs.

2.1 Gene expression data
Ail gene profiling technologies essentially produce the same type of data. Most of the 

techniques presented in this thesis can be applied to data generated by any technology.
Gene profiling is the high-throughput quantification of mRNAs in a biological sample. 

A sample consiste of mRNAs which hâve been extracted from celle. Those celle can be 
taken from a living organism {e.g. after a tumor has been surgically removed) or from cells 
grown in laboratory. The resulting data can be organized as an array, with as many lines as 
there are genes (mRNAs) quantified and as many columns as there are samples (see figure
3 for an example). The expression of the different genes for a sample is called an expression 
profile. Those profiles give a relatively accurate measure of the molecular State of the cells. 
They can be used for many different purposes.

Firstly, it is possible to find molecular différences between groups of samples. For 
instance, one group could consist of cancerous samples and the other of normal samples. 
This can be used to classify new samples as either normal or cancerous. This can aiso be 
used to help the understanding of the molecular basis of the disease.

Secondly, it is possible to discover previousiy unknown subtypes in a disease. For 
instance, measures on a set of cancer samples can lead to the discovery that only two 
patterns really exists in the set, each sample being identified with one pattern. Clustering of 
the data is the classical mean to uncover the existence of such groups.

Thirdiy, genes which show a similar évolution through the samples (co-regulated 
genes) can be clustered. Co-regulated genes often share a similar function (Eisen et al., 
1998). Thus the discovery of co-regulated genes allows the inference of the function of 
unknown genes.

Ideally, it should be possible to ignore the details of the data generating processes 
and still make a meaningfui data analysis. Practically however, it has been found that high- 
throughput technologies lead to high-throughput errors. Those errors are often a function of 
the technology used, and can sometimes be corrected. AIso, différences between the scaling 
of the values between the techniques can lead to non-trivial effects (see chapter 5 for an 
illustration). For those reasons, some details about the experimental protocols used to croate 
the data are presented in the next few sections.
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Sample 1 Sample 2 Sample 3 Sample 4
Gene 1 10 50 12.5 32
Gene 2 1 .3 1.2 3.7
Gene 3 957 360 1456 1057

...
Figure 3. A small part of a typical high-throughput gene expression data set. Each line
corresponds to one gene measured, each column to one sample. The measures are the 
mRNA expression levels of gene A in sample B.

2.2 The hybridization propertv of DNA
DNA in the chromosomes is présent as a double stranded DNA. However, single 

stranded DNA can aiso exist. If a single stranded DNA is put in presence of another single 
stranded DNA of complementary sequence (with A replaced by T and C replaced by G), then 
the two single stranded DNA will hybridize to form a double stranded DNA. This property of 
DNA is at the base of many experimental protocole in molecular biology.

There are some enzymes (/.e. proteins) which are able to reverse-transcribe mRNA 
into the complementary DNA (cDNA). Those enzymes were isolated in RNA viruses. In those 
viruses, the genetic information is coded in RNA, and must be transcribed into DNA in the 
host celle to use the host cell machinery to replicate.

It is possible during the reverse-transcription to modify the building blocks (the bases) 
of cDNA. Typically, a fluorescent label is attached on one of those bases. The resulting DNA 
is then traceable.

This labeled cDNA can then be hybridized with some DNA of known complementary 
sequence immobilized on a surface. After washing, only the cDNA whose sequence is 
complementary to the one of the immobilized DNA remains. The amount of labels présent in 
the cDNA immobilized on the surface is then proportional to the amount of cDNA présent in 
the solution, and hence gives a measure of the concentration of a particular mRNA in the 
original sample.

Many different protocole hâve been designed which make use of those properties of 
genetic material. Two protocole, microarrays and Affymetrix oligonucleotide array, are 
essentially a high-throughput version of the experiment outlined here. They are succinctiy 
described in the next sections.

2.3 The microarrav protocol
The microarray technology (Schena et al., 1995) compares mRNAs from two different 

samples. Firstly, mRNA is extracted from the samples. It is then reverse-transcribed into 
cDNA. During the reverse-transcription process, a label is incorporated into the cDNA. Two 
different labels are used for the two samples, so that each can be detected independently. 
Schematically, one label is detected in red and the other in green. Both labeled cDNA are 
mixed and hybridized simultaneousiy on the array.

Microarrays are microscope slides on which thousands of spots are laid down. The 
DNA corresponding to one gene is présent in each of these spots. After hybridization and 
washing, the fluorescence from each spot can be measured using a specially designed 
scanner. The ratio of the fluorescence intensifies of the two labels gives the ratio of the 
abondance between the two samples, for the gene corresponding to the spot. Figure 4 
shows an example of the resuit of a microarray experiment. The intensity from one channel is 
represented in green, and from the other channel in red. If the intensity is the same in both 
channels, the resulting spot is yellow.

There are a few advantages in comparing two samples, instead of measuring just one 
sample:
1. It should Work at any mRNA or immobilized DNA concentration. If only one sample is 

measured, the amount of labeled cDNA bound to the spot is proportional to the amount in 
the solution only inasmuch as there is no saturation. By comparing two samples, the
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binding chemistry should be independent of the labeling, and so the ratio of intensity with 
one label to the intensity with the other label is independent of the Chemical details.

2. Many types of errors are correlated between the two labels, and should disappear when 
the ratio is taken. For instance, the intensity measured is proportional to the size of the 
spot. So if only one label is used, bigger spots would lead to bigger intensity values, 
independently of the mRNA concentration. As the current microarray spotting technology 
is far from perfect, this effect could ruin the data. However, taking two different labels and 
focusing on the ratio cancel the spot size effect.

The main inconvénient in using two samples is that it does not aiways fit with the 
experimental protocol. For instance, if cancer samples are compared, is it not clear what to 
use as the second sample. The usual solution is to use a reference sample, that is an 
artificial sample used only for comparison purpose. In this case, the scaling of the values for 
the genes is very dépendent on the reference sample used, and a normalization of the genes 
values may prove necessary.

As the protocol used in the IRIBHM is based on the microarray technique, some parts 
of the Work presented in this thesis are geared towards microarrays. Most of the latter parts, 
however, can be applied on microarray, Affymetrix and other gene expression data.

Figure 4. Example of a small part of a microarray slide.

2.4 The Affymetrix protocol
As a large part of the examples are based on data generated using the Affymetrix 

protocol (Lockhart et al., 1996), it is described succinctiy here.
The Affymetrix protocol is quite similar to the microarray protocol. One of the main 

différences lies in the slides. In Affymetrix slides, contrary to microarrays, the DNA in the 
spots is directiy synthesized in situ, using a process reminiscent of the one used for semi- 
conductors. This process allows the synthesis, at précisé positions and concentrations, of 
small spots containing oligonucleotides, that is stretches of DNA about 20 base-pairs long.

An advantage of this fabrication process is that the spots are much more 
reproducible. For this reason, it is possible in this protocol to use only one label, instead of 
the two used in the microarray protocol. The resulting image, after hybridization and washing 
of the sample, is quite similar to the one generated with microarrays (figure 5).

A disadvantage is that the oligonucleotides are short. This could lead to specificity 
problems, that is an oligonucleotide might hybridize with a cDNA different from the one 
expected. To address this issue, 11 oligonucleotides are used for each gene, and 11 
mismatch oligonucleotides, having just a one base différence with the main oligonucleotides, 
are aiso présent to measure the amount of non-specific hybridization. Those 22 values are 
integrated to give a unique intensity for each gene.

In conclusion, the Affymetrix protocol leads to good quality gene expression data. The 
measures made are absolute, contrary to microarrays where two samples are compared.

5



Figure 5. An Affymetrix slide, in false colors. The colors represent the intensity of the spots. 
The side-by-side layout of the oligonucleotides concerning the same gene explains the 
presence of horizontal Unes.

3 An example from the IRIBHM laboratory
A microarray experiment is described in this chapter. The aim of the study was to 

define gene expression profile in different thyroid tumors: autonomous adenomas (benign 
hyperfunctioning tumors) and papillary cancers (malignant tumors). The data produced by 
this experiment will be used in the first and second chapter to illustrate and validate the 
methods proposed. The experiments were performed in the IRIBHM laboratory, by Frédéric 
Pécasse, Agnès Burniat, Carine Maenhaut and Sandrine Wattel.

3.1 The thyroid and some of its malfunctions - a verv short summarv

3.1.1 The normal thyroid
The thyroid is a gland located in the neck (figure 10.A). Its Influence is both far- 

reaching and critical to normal body fonction. It affects heart rate, cholestérol level, body 
weight, energy level, muscle strength, skin condition, vision, menstruel regularity, mental 
State and a host of other conditions.

The thyroid gland opérâtes as part of a feedback mechanism involving the 
hypothalamus and the pituitary gland. First, the hypothalamus sends a signal to the pituitary 
gland through a hormone called TRH (thyrotropin releasing hormone). When the pituitary 
gland receives this signal, it releases TSH (thyroid stimulating hormone) to the thyroid gland. 
Upon receiving TSH, the thyroid responds by releasing two of its own hormones, T4 and T3, 
which then enter the bloodstream and affect the metabolism of the heart, liver, muscle and 
other organs. T4 is the main hormone released by the thyroid. T3 is made in the tissue after 
T4 to T3 conversion. Finally, the pituitary "monitors" the level of thyroid hormone in the blood 
and increases or decreases the amount of TSH released, which then changes the amount of 
thyroid hormone in the blood.

The thyroid tissues is mainly composed of thyroid follicular cells, the thyrocytes 
(70%), and of their supporting tissue and cells. The thyrocytes are arranged in follicles. A 
follicle (figure 10.B.) consiste in thyrocytes organized as a sphere, with an interior cavity, the 
lumen, filled with colloid. Upon stimulation by TSH, the thyrocytes ingest the colloid, digest it 
and release the products of this digestion. These products are the T3 and T4 hormones.

The main cells of interest in the thyroid are the thyrocytes.
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FoUicular
lumen

Thyroid

3.1.2 Autonomous adenomas
Autonomous adenomas (Deleu et al., 2000) are benign encapsulated tumors that 

grow and secrete thyroid hormones independently of the normal TSH control. They resuit 
from a constitutive activation of their TSH signaling cascade. This means that the thyrocytes 
behave as if there is large amount of TSH in the environment, independently of the actual 
TSH concentration. Studies hâve found activating mutations in the TSH receptor in about 
80% of the autonomous adenomas in Europe.

If untreated, autonomous adenomas cause hyperthyroidism and therefore represent 
an important medical problem.

3.1.3 Papillary thyroid carcinomas
There are different types of thyroid cancers. Papillary thyroid carcinomas (PTC) are 

the most common (70-80%) and can occur at any âge. Those are malignant tumors, showing 
papillary and follicular architecture. This cancer is the most common form of solid cancer 
associated with radiation exposure. This is due to the assimilation of radioactive iodine, 
which accumulâtes in the thyroid.

Two different sources of PTC were used in the laboratory: Chernobyl PTC, for which 
the cause and timing of the cancer are known, and sporadic PTC, which corne from western 
Europe patients for which no précisé cause can be pinpointed. It is not clear whether those 
two groups show an identical pathology. One of the goals of this study was to uncover a 
différence between those two groups, or to demonstrate that they are actually identical.

3.2 The experiments
Samples of pathological and the paired normal tissue were obtained. The mRNA was 

extracted from those samples, and reverse-transcribed in cDNA. The cDNA were marked 
using a modified labeling protocol which allows using a much smaller amount of starting 
material (Ipg RNA instead of 50-80pg - TSA methodology, Perkin-Elmer). On each slide, the 
pathological tissue was marked in one color and the normal tissue in the other color. Hence, 
two sets of numbers are obtained: one set for the normal sample and one set for the 
pathological sample. The ratio of those numbers should be proportional to the différence 
between normal and pathological samples.

The rationale in comparing each pathological sample with the corresponding normal 
sample is that there is a large variation in the gene expression between normal samples, and 
that this variation is carried over in pathological samples. However, the modifications which 
turned the normal tissue into a pathological tissue should be similar from sample to sample. 
So, it should be more efficient to compare the différences between paired normal and
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pathological samples, than to compare a group of normal samples to a group of pathological 
samples.

The goals of the experiments were to:
1. Find genes differentially regulated in autonomous adenomas (AA) and in papillary

thyroid carcinomas (PTC).
2. Détermine to which extent AA are different from PTC.
3. Détermine if AA and PTC are homogenous groups, that is if they could be divided in

logical sub-groups.
4. Détermine if there is a différence between post-Chernobyl and sporadic PTC.

The first and fourth points are treated in the chapter 1 of this thesis. The second and 
third points can be answered using the clustering techniques described.

4 A primer on clustering
The microarray technology generates a lot of data, since typically the expression of 

thousands of genes are measured in tens of conditions, that is there are hundreds of 
thousands of measurements. It is unrealistic, and inefficient, to consider those data as simpiy 
as many individual experiments. Statistical techniques must be used to uncover the 
information présent in those data.

Often, it is not known beforehand that the samples could be separated in groups. As 
microarrays are research tools, the objective of the experiments is often to distinguish 
possibly heterogeneous group of samples. In this case, the structure of the variations 
between the samples might be of the utmost interest. For this, so called non-supervised 
classification methods must be used. Those methods search a structure in the data, like for 
instance the presence of groups of similar samples.

Unsupervised techniques produce results with any data - even random data. Most 
algorithme do not give a satisfactory measure of the significance of the results. This means 
that the output of the algorithme must aiways be taken cautiousiy. They must be considered 
more as hypothèses generating algorithme than as truth givers. Their results hâve to be 
checked, using external knowledge or additional experiments.

Data has to be visualized as to highiight its structure. For this reason, it is necessary 
to use some sort of unsupervised organization technique. Those techniques are usually 
called clusterings. The most common two of those techniques, the hiérarchisai clustering and 
the K-means clustering, are presented next. A more thorough description of those algorithme 
can be found in the book of Jain and Dubes (1988).

4.1 Hierarchical clustering
Hierarchical clustering techniques organize the data as a tree, like a phylogenetic 

tree. This organization can be performed on the genes, on the samples or on both.
Figure 6 shows an example of the output of a hierarchical clustering algorithm. In this 

example, the objects A, B, C, D, E, F, G and H hâve been clustered. In gene expression 
analysis, those objects could be genes or samples. The places at the bottom of the tree, 
where the object names are written, are called leaves. The jonctions are called nodes. The 
distance between two objects is given by the height of the first node which links these two 
objects. For instance, B and H are very close. The distance between G and D is very large, 
since the lowest node linking the two is the top of the tree. The fact that they are next one to 
the other on the bottom of the tree is not relevant. The distance between G and D is the 
same than the distance between any of (B,G,H) and any of (D,C,F,E,A).

It is possible to use a hierarchical clustering algorithm to find groups in the data, by 
cutting the tree at a certain height. For instance, it might be considered than on the example 
there are two groups, (H,B,G) and (D,C,F,E,A). Or three groups, (H,B,G), (D,C) and (F,E,A). 
Or eight groups, each containing only one leaf. The number of groups is a choice from the 
user.
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Figure 6. An example of hierarchical clustering.

There are a many different hierarchical clustering algorithms. The most common ones 
are described here. Those algorithms are bottom up, in that they start by making small 
groupe and then try to merge those small groupe to form bigger groupe. They only use pair- 
wise différences (or similarities) between objects.

The input of the algorithm is a matrix of pair-wise dissimilarities between the objects 
(see figure 7 for an example). Those dissimilarities might be calculated using any fonction, 
like for instance Euclidean distance. A similarity measure, like corrélation, might aiso be used 
simpiy by multiplying ail values by -1 to turn it into a dissimilarity measure.

An example of the algorithm in motion is given figure 6. At each step, the closest two 
objects are merged. For the first step, those are the objects B and C, with a distance of only
1. A tree with the two objects linked with a node of height 1 is created. The distance matrix is 
then updated, because distances between the objects and this new node must be created. 
There are different ways to calculate those distances:

Single linkage: the distance between two nodes is the distance between the closest 
leaves from those two nodes. With single linkage, the distance between A and the group 
(B,C) would be 2.

Complété linkage: the distance between two nodes is the distance between the 
furthest leaves from those two nodes. With complété linkage, the distance between A and 
the group (B,C) would be 3.

Average linkage: the distance between two nodes is the mean of the distances 
between the leaves from those two nodes. With average linkage, the distance between A 
and the group (B,C) would be 2.5.

In this case, average linkage is chosen. This leads to an updated distance matrix 
shown in the step 2. The two closest objects are again merged, this time it is the group (B,C) 
and the object A, with a distance of 2.5. The distance matrix is again updated: for instance, 
the distance between the group (A,B,C) and the object D is (5.5*2 + 7)/3 = 6. This continues 
until ail objects are linked.

The different matrix updating schémas usually lead to different results. The single 
linkage tends to give long elongated clusters, the complété linkage small compact clusters 
and the average linkage something in-between. There are aIso other, more complex, 
updating schémas which are outside the scope of this primer. Most of the time, average 
linkage proves to be the soundest choice.
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Figure 7. Itération of a hierarchical clustering algorithm, using the average linkage algorithm. 
Upper row: distance matrices. The values hâve been rounded if needed to fit into the boxes. 
Lower row: the growing tree.

Hierarchical clustering organizes the data. This fact has been used by Michael Eisen 
(1998) to croate a visualization method which proved very popular (figure 8). The idea is to 
perform a hierarchical clustering on the genes and most of the time on the samples. The data 
is represented with the gene clustering on the side, the sample clustering on the top, and the 
reordered data in the middie using a color code, usually black for values close to one, red for 
values higher than one and green for values lower than one. As the gene expression data is 
very redondant, there is a sense of continuity in the resulting image which makes it 
understandable by human beings. This représentation method makes the following 
immediately clear:

1. There is a large différence between the autonomous adenomas (AA) and the 
papillary thyroid carcinomas (PTC), so that they cluster in two different groupe.

2. The AA group is quite homogenous. There are non-microarray-related reasons to 
believe that the two samples which do not fit the group very well, 15 and v6, hâve a 
different histology.

3. There does not seem to be a différence between the Chernobyl and the sporadic 
PTC, although this should be verified using more précisé techniques.

4. The PTC group is less homogenous than the nodule group. It might be that the PTC 
could be further divided in subgroups. The number of samples is too small to draw 
any firm conclusion.
This illustrâtes the usefulness of the clustering and visualization technique to gain a 

broad qualitative understanding of the data. Croups with a striking signature are readily 
detected, as shown by the PTC vs. AA différence.

On figure 8B the clustering of a randomized version of the data of figure 8A is 
presented. The lack of organization is striking. This highiights the fact that the gene 
expression data has indeed a non-trivial organization, and that it can be valuable to uncover 
it using non-supervised techniques.
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Figure 8. Hierarchical clustering of the thyroid expression data represented using the 
technique of M. Eisen. The tree representing the gene hierarchical clustering has been 
omitted for clarity. The samples were labeled as; black - autonomous adenomas; red - 
sporadic PTC; white - Chernobyl PTC. A. With real gene expression data. B. With 
randomized data (for each gene, the sample labels hâve been permuted randomly).

4.2 K-means
Another classical clustering algorithm is K-means. A neural network version of K- 

means, self organizing maps (SOM), was used in some of the first microarray papers {e.g. 
Tamayo et al. 1999). The version described here is the basic K-means. It is possible to give 
a précisé statistical meaning to the algorithm, howeverfor the sake of simplicity the algorithm 
will simpiy be described and some of its properties highiighted.

The K-means algorithm searches for a certain number, K, of groupe in the data. K 
must be chosen beforehand. For instance, it could be used to find two groupe of samples in 
cancer data. The assumption underlying the algorithm is that in each of the groupe, the 
objects are identical except for some random variations. Thus each object could be viewed 
as the sum of a prototype, which dépends on the group, and some random noise.
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If the group memberships were known, the prototypes could be estimated as the 
mean of the objects in the groupe. If the prototypes were known, it would be possible to 
assign each object to the group whose prototype is closest. These two ideas form the basis 
of the K-means algorithm, which works as follow:

1. Each object is assigned to a random group.
2. Each group prototype is calculated as the mean of the objects in the group.
3. The objects are moved to the group whose prototype is closest.
4. If no convergence, back to 2.

An example of the K-means algorithm in action is presented in figure 9. The upper 
line represents one run of the algorithm. It starts from a certain random initialization. The 
prototypes are then calculated. They do not seem to be very different. However, when the 
group memberships are updated, a clear séparation between the four objects on the left and 
the four objects on the right appears. The algorithm has converged, and the solution does 
seem reasonable.

The lower line of figure 9 shows what happens with a different initialization. In this 
case, there are more objects from the black group in the top rank. This has an influence on 
the prototypes, with the black prototype being much higher than the white prototype. After the 
group memberships are updated, another séparation appears, with in one group the four 
objects of the top and in the other the four objects of the bottom. The algorithm has then 
converged. This shows that the K-means algorithm can be very dépendent on its 
initialization. In this case, both clusterings are valid. The first one only seems better because 
the distances on the horizontal axis are larger than the distances on the vertical axis. If the 
two axes were put on a similar scale, it would be hard to décidé which clustering to choose. 
This aiso highiights the importance of the normalization and re-scaling of data on the 
outcome of a clustering.

The K-means algorithm can be applied to discover groups of samples in the thyroid 
data. Searching for two groups leads to one group (A/=11) containing nothing but papillary 
thyroid carcinomas (PTC), and the other (A/=25) containing ail autonomous adenomas (AA) 
plus 11 PTC. The first group corresponds to the group of tightiy correlated PTC in the 
hierarchical clustering (figure 8). Using three groups lead to a one group containing ail the 
AA but v6 plus the PTC pi2, one group corresponding to the tight cluster of PTC and one 
group containing the remaining PTCs plus the AA v6. This fits the results obtained with the 
hierarchical clustering algorithm.

Hence both algorithme gave similar results, presented differently.

RUN#1

• O • 0 • O O O ••

O* O • O* ° • o° • •

starting point Update prototypes Update group memberships

JN#2
• • _ • ^ • ^

O • O ■ • • •

O* O O O* ° O O o° O O

starting point Update prototypes Update group memberships

Figure 9. Example of a K-means algorithm in action. The black circles belong to one group, 
the white circles to the other. The squares are the group prototypes. Each line is a different 
run of the algorithm, starting from a different initialization.
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5 Conclusion
The different high-throughput gene expression quantifying technologies essentially ail 

generate the same type of data (figure 3). The resulting product is an array, with as many 
lines as there are genes and as many columns as there are samples measured. Typically, 
there are thousands to tens of thousands of genes measured, and only a dozen to a hundred 
samples.

Each value représenta, often in some arbitrary unit, the expression of a gene in a 
sample. As the behavior of a cell is largely determined by the level of expression of the 
different genes in the cell, this gives a relatively comprehensive picture of what is happening 
inside the cell.

This picture can be used for many purposes. For instance, it could be used to 
détermine the molecular différence, if any, between two samples. It could aiso be used to 
assess if a group of samples is homogeneous or not, i.e. it might lead to the identification of 
new subgroups in a known disease. It can aIso be used to identify co-regulated genes, such 
genes having often similar biological rôles.

The amount of gene expression data for even a simple experiment is such that 
automated means of analysis must be created. This is what justifies this work.
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1 - Détermination of differentially expressed genes

1 Introduction
Microarrays are primarily used to screen genes in a high-throughput fashion. This is 

done by comparing groups of samples and assessing which genes are differentially 
expressed, that is hâve a different expression level from group to group. In the thyroid data 
set presented in the background chapter, this can correspond to the finding of genes having 
a different expression level in normal thyroids compared to autonomous adenomas, or in 
autonomous adenomas compared to papillary thyroid carcinomes.

T\a^o different experimental setups are commonly used for microarray studies, which 
lead to different questions.

In the first setup, two samples belonging to two different groups are hybridized on 
each slide, with different labels. The results obtained are the ratios of the gene expressions 
in the two samples. In the thyroid data set, this corresponds to the comparison between 
normal and pathological tissue: on each slide, a pathological sample and the corresponding 
normal sample are compared. The goal is to assess whether those ratios are significantly 
different from unity.

In the second setup, each sample is hybridized on a different slide. If there are two 
groups of samples, then for each gene two sets of numbers are obtained. The goal is to 
assess whether the expression values differ significantly between the two sets. On the 
thyroid data set, this corresponds to the comparison between autonomous adenomas and 
papillary thyroid carcinomas.

The main impetus in our laboratory is on the comparison between pathological 
tissues and the corresponding normal tissues, as done with two-colors microarrays. This 
corresponds to the first setup. For this reason, most of the analyses in this chapter concem 
this case. However, the techniques presented can be readily generalized to the two-groups 
case, as is done at the end of this chapter. As the ratio distributions are skewed, the log of 
the ratios is taken. So the test is to assess if the log-ratios are significantly different from 
zéro.

The discovery of differentially expressed genes has aiways been an important part of 
the microarrray technology, and was performed from the first experiments. In the first papers, 
genes were selected using a simple fold-change requirement. For instance, ail genes whose 
average ratio was at least 2 were considered as differentially expressed. It is not clear with 
this method if the genes obtained are really differentially expressed or only the resuit of 
random variations in the data. Furthermore, it is unclear how to décidé which fold-change is 
sufficient.

It would be usefui to design a statistically sounder method to select differentially 
expressed genes. In statistics, a significance level is assigned to each resuit. This 
significance, or p-value, is the probability that the measures could be obtained by random 
variations of a null-hypothesis variable. For microarrays, the null-hypothesis is that the mean 
of the log-ratios measured for a gene is 0. The p-value is the probability that values drawn 
from such distribution could reproduce the measures. A low p-value (say < 1%) means that it 
is uniikely that the différentiel expression is due to chance alone.

Techniques hâve been developed for a century to calculate such significance levels 
(Gosset 1904, Gosset 1908), so this may seem to be a straightforward task. However, two 
difficulties complicate the matter: non-verified hypothèses of parametric tests, and multi- 
testing.

Classical parametric tests (e.g. Student t-test) can be used to assign significance 
levels. However, those tests are based on hypothèses, the most common being the normality
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of the distribution. The importance of this hypothesis decreases with the number of 
replicates. Alas, in microarrays there are typically only a handfui of experiments. A solution is 
to use non-parametric tests. Those tests however typically lack power, that is the ability to 
discern différences with a small number of replicates. Permutation techniques hâve been 
proposed as a mean to increase power while remaining non-parametric. In those techniques, 
a scoring function is used to judge the differential expression of the genes, like for instance 
the average fold-change. The null-hypothesis distribution of this scoring function is estimated 
by permutation of the samples, that is the group membership of some samples is changed. 
In our Setup, this consists in the inversion of some of the ratios measured. These 
modifications hâve no influence on null-hypothesis genes. Hence, by repeatedly inverting 
different samples, an estimate of the null-hypothesis gene distribution can be obtained. The 
significance of the resuit is measured by counting the proportion of the permutations for 
which higher scores are obtained.

The other difficulty is that the p-values obtained must be corrected for multi-testing. If 
for instance 1000 null-hypothesis genes were assessed simultaneousiy, by définition on 
average 10 would hâve a significance level of 0.01 or better. Hence, the significances 
obtained using any statistical test must be modified. This classically is achieved using the 
Bonferroni correction, which multiplies the p-values by the number of tests performed. This 
correction is usually too stringent for gene expression data: if 10000 genes are tested, an 
original p-value of lO"® is needed to reach a corrected p-value of 0.01. AIso, it is very 
dépendent on the number of tests done simultaneousiy. This can lead to non-desirable 
results. If 10% of the genes are measured with more précision than the remaining 90%, then 
the significances could be improved 10-fold simpiy by keeping only those 10%. However, 
that would mean that 90% of the results are discarded, even though they may contain usefui 
information. A lot of valuable data could be discarded just to get more significant results on 
the rest. A more graduai technique, more stringent on the badly quantified spots and less 
stringent on the well-quantified spots should be more effective.

Those two difficulties are addressed in this chapter, and solutions are proposed to 
limit their influence.

Firstly, a permutation technique is presented which is used to estimate the null- 
hypothesis distribution. The p-values are then directiy derived from this distribution. The 
limits and the advantages of the approach, compared to similar works in the literature, are 
highiighted. Different scoring fonctions are presented and compared.

Secondly, in agreement with recent literature, a different définition of the multi-testing 
corrected p-values is proposed: the false discovery rate (FDR). For a gene, this rate is the 
proportion of null-hypothesis genes which would be selected if this gene and ail better genes 
were selected. It is shown that this rate has the advantage of allowing a cohérent merging of 
data of different quality. A mean to calculate a local FDR, that is the probability for a given 
gene to be a null-hypothesis gene, is aiso proposed.

2 Détermination of the p-values

2.1 Techniques proposed in the literature

2.1.1 Classical statistics
The classical parametric technique to assess if a set of numbers is statistically 

different from 0 is to use the Student t-test (Cui and Churchill, 2003). This test is based on 
the fact that for measures drawn from a normal distribution of mean 0 and any standard 
déviation the value (called the Z-score)

a
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where // is the mean of the measures and cr their standard déviation behaves like a Student 
distribution with N-^ degrees of freedom, where N is the number of samples (up to a 
multiplicative constant). The significance level is the probability to obtain a Z-score equal or 
higher than the Z-score measured, if the measures were drawn from a normal distribution of 
mean 0. This probability can be calculated explicitly.

The t-test is correct if the data hâve a normal distribution. It remains asymptotically 
correct for any distribution if the number of replicates tends to infinity. In microarrays, the 
error distribution is not normal and the number of replicates is small, so the p-values 
obtained cannot be trusted. Other, non-parametric, ways to détermine the p-values must be 
devised.

On table 2.1 an example data set is shown. Three genes are quantified in four 
samples. The p-values calculated using the t-test on those genes show that the first could be 
considered as significantly different from 0 (p<5%) while the others cannot.

Values in t he samples Significance levels - p-values
SI S2 S3 S4 T-test Perm 1 Perm 2

Gene 1 1 2 3 4 3% 12.5% 4.2%
Gene 2 -1 1 0 2 49.5% 75% 54.1%
Gene 3 0 1 1 0 18.2% 50% 33.3%
Table 2.1 Example of p-values calcu ation. Perm 1 are he p-values with the first permutation
implémentation (Dudoit), perm 2 with the second (Efron). Z-scores were used as scoring 
fonctions for the permutations techniques.

2.1.2 Permutation techniques
The permutation techniques generate a null-hypothesis data set from the original data 

set by permuting sample labels at random. Those techniques make assumptions about the 
data, like normality, superfluous.

Different implémentations hâve been proposed.

The first implémentation was proposed by Dudoit et al. (2002). Each gene is treated 
independently. For each gene, a Z-score (eq. 2.1) is calculated. The null-hypothesis 
distribution of the Z-scores is estimated by permutation of the group labels of the samples. In 
a 2-color experiment, this means that the sign of the values are inverted for some samples. 
Ideally, ail permutations are performed.

For instance, the first gene in table 2.1 has a Z-score of 1.93. A first permutation 
might invert the value of the first sample, leading to the measures (-1, 2, 3, 4), which hâve a 
Z-score of 0.93, below the original Z-score. Ail the possible sets of samples are so 
permutated, and the Z-scores obtained are compared to the original Z-score. In this case, the 
original Z-score is the highest possible, so the number of Z-scores higher or equal to the 
original Z-score is two: the original order and the complété permutation (-1, -2, -3, -4). The 
total number of permutations is 16, so the p-value is 2/22 = 0.125. This is the lowest possible 
p-value with this technique.

Hence, a hypothesis-free test is obtained for each gene. The number of permutations 
limits the power of this test. The power of the test is its ability to reject (correctiy) the null- 
hypothesis, that is its ability to obtain low p-values if the values are different from the null- 
hypothesis. With 10 samples, 2^° permutations are possible. Because the Z-score is 
symmetric if ail values are inverted, only 2® = 512 different permutations are effectively 
available. This means that the lowest possible p-value is only about 0.002 with 10 replicates. 
Although this might seem reasonable, the massive multi-testing increases the p-values (see 
lower) so practically this is often not sufficient.
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A different implémentation was proposed (Efron et al., 2001, Storey and Tibshirani, 
2003 and Tusher et al., 2001) which improves the power at the cost of the hypothesis that ail 
genes hâve a similar distribution. In this case, the null-hypothesis distribution is inferred from 
permutations on ail genes. So if 1000 genes on 10 experiments are analyzed, the lowest 
possible p-value is 0.002 / 1000 = 2.10 ®. This large gain in power may prove useful. For the 
first gene on table 2.1, this lead to a p-value three time smaller, as expected.

The hypothesis that ail genes hâve the same distribution is however not correct. In 
particular, the distribution of differentially expressed genes after permutation is not identical 
to the distribution of null-hypothesis genes. This can lead to under-evaluated p-values. In 
order to limit the influence of those genes, only the balanced permutations are used, that is 
permutations in which half of the samples are inverted. Pan (2003) has proposed a modified 
Z-score to address this issue. This modified score essentially stabilizes the variance, so a lot 
of power is lost in the process. We argue however that this problem is not very important, 
because its influence is only noticeable when a large proportion of the genes show large 
différentiel expression. In this case précisé p-value estimâtes are useless. This point is 
further developed lower.

Another improvement proposed is to take a different scoring fonction than the Z- 
score. Jain et al. (2003) hâve proposed that a median-based Z-score could improve the 
robustness.

A weakness of the Z-score is that is relies on an estimate of the standard déviation, 
which is not précisé with a limited number of replicates. This has lead to the use of modified 
Z-scores, whose general form could be written as

Z* = H
+k(7l

(2.2)

where <r^ is the variance estimated from the gene measures and <r^ is a prior on the
variance. This prior is the expected value of the variance, before the gene measures are 
taken into account. It is estimated from the variance of ail genes, or of genes similar to the 
gene of interest, so that a different prior can be used for each gene. The constant k gives the 
relative weight to the prior and the measured variance.

Modified Z-score like (2.2) hâve been used in a large number of studies (Baldi 2001, 
Efron et al., 2001 and others). Baldi has shown that the équation (2.2) can be understood in 
a Bayesian framework if some prior information about the variance is available.

In conclusion, there are many different possible implémentations of the permutation 
technique. There is no theoretical best, as this dépends on the characteristics of the data.

2.1.3 Other techniques
Some other techniques hâve been proposed to estimate the p-values.
Cole et al. (2003) proposed a pattern analysis algorithm, which learns the conditions 

under which the genes should be considered as differentially expressed. The advantage of 
the method is that genes consistently regulated but with a large variance could be kept 
without penalty.

Dozmorov et al. (2003) proposed a method in which genes that seems to follow a null 
hypothesis distribution are taken as a reference. Other genes are then compared to this 
reference.

Those techniques are much more complex than the permutation methods proposed, 
for no obvious gain in power. They are aiso based on assumptions, which can hâve 
unexpected effects and may not hold in practice. For these reasons the technique developed 
in this thesis is based on the permutation method framework.
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2.2 The permutation technique proposée!
The technique proposed is loosely based on the SAM technique presented in Tusher 

et al. (2001). It uses a scoring function for the genes, like for instance the Z-score (eq. 2.1). 
The higher the scoring function, the most likely the gene is to be regulated. A significance 
level is assigned to the score obtained for each gene. This significance level is the probability 
to obtain a higher score from the null-hypothesis distribution.

An approximate of a null-hypothesis distribution is created by inverting the ratios in 
half of the slides. This manipulation should hâve no effect on the distribution of the non- 
differentially expressed genes, while it should prevent the differentially expressed genes from 
having a large score. If most genes are not differentially expressed, the resulting data set is 
close to the idéal null-hypothesis one. Many different data sets can be created by repeatedly 
drawing random permutations. The p-values for a gene with a score Z is the fraction of the 
permutation scores which are higher or equal to Z.

The proposed treatment is original in the following;
1. Different scoring fonctions {e.g. eqs. (2.1) and (2.2)) hâve been proposed. Those

fonctions were compared to assess their efficiencies, firstly on simulated data to
underscore their différences and then on the thyroid data set.

2. The permutation of differentially expressed genes leads to distribution far from the null-
hypothesis distribution. The possible importance of this effect is assessed.

3. The permutations are performed on intensity Windows. This allows the comparison of
genes with genes which hâve a similar distribution.

2.3 The permutation technique mav underestimate the FDR
The score distribution obtained by permutation on the differentially expressed genes 

is different from the score distribution obtained on non-differentially expressed genes. The 
importance of this fact is estimated in this section. The conclusion is that in most cases it 
should lead to small under-estimate of the p-values, which should hâve little practical 
influence. In the case where most genes are differentially expressed, the influence can be 
much larger but in this case we argue that the p-values are useless. Hence we conclude that 
trying to correct for this effect is not necessary.

There are some systematic différences between a permuted data set and the null- 
hypothesis data set. For example, let a data set hâve null-hypothesis and differentially 
expressed genes. Both types of genes hâve the same distribution, but the differentially 
expressed genes hâve a mean different from one.

After permutation, the expected mean of ail genes is zéro, differentially and non- 
differentially expressed genes alike. However, the distribution of the differentially expressed 
genes after permutation is very different from the null-hypothesis distribution; for a 
differentially expressed gene with a mean m, the non-permuted samples are taken from a 
distribution with a mean of m and the permuted samples from a distribution with a mean of - 
m. The distribution of the mean is not affected by this fact, but the expected variance of those 
permuted genes is increased by nf.

Hence the variance of the differentially expressed genes after permutation is higher, 
and possibly much higher, than it is under the null hypothesis.

The impact of this effect dépends on the scoring function. If the scoring function uses 
only the mean, then it is irrelevant and the permutation technique offers a very good estimate 
of a null hypothesis data set. However, many reasonable scoring fonctions use an estimate 
of the spread of the distribution, like the variance. If the Z-score (eq. 2.1) is used then the 
scores on the permuted data sets will be underestimated compared to the null hypothesis 
distribution. This will lead to underestimated p-values.

In the worst case, the score of the differentially expressed genes would be zéro in the 
permuted data set. In this case, the p- values inferred by permutation analysis would be 
underestimated by a factor {^-NIM), where N is the number of differentially expressed genes
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and M is the total number of genes. This means that the error is proportional to the fraction of 
differentially expressed genes (NIM). If only a small fraction of the genes are differentially 
expressed, then the error remains small. If this is not the case, then the p-values obtained 
can be significantly under-evaluated. However, this case can be easily detected (very low p- 
values for many genes). Moreover, the need for a précisé estimate of the significance levels 
in this case is not obvious. Too many genes would be deemed to be significantly differentially 
expressed for follow-up analysis, so the most usefui feat for the biologist would be to rank the 
genes by significance order, which is still possible.

In conclusion, the permutation technique works perfectiy for the non-differentially 
expressed genes as long as their distribution is symmetric. It aiso works for the differentially 
expressed genes if the scoring fonction uses only the mean. If the scoring fonction uses a 
variance estimate, it does not reflect the true null-hypothesis distribution. The divergence is 
proportional to the number of differentially expressed genes. It is expected that in most cases 
the fraction of differentially expressed genes remains small, and so error should remain 
small. For this reason, no corrections for this effect are attempted. The remaining cases 
where a large fraction of the genes are differentially expressed can be easily detected. In 
those cases, a précisé estimate of the significance levels is useless.

Furthermore, it will be shown in the second part of this chapter that the multi-testing 
issue introduces a similar overestimate of the p-values, so that the two effects can largely 
cancel each other.

2.4 Précision of expression measures is intensitv-dependent
Précision of the measures is intensity-dependent: high intensity spots are more 

reproducible than low intensity spots (Yang et al., 2002). Figures 2.1 A and B show an 
example of a corrélation between replicates for high intensity and low intensity genes. The 
corrélation is much lower for the low intensity genes (43% versus 94%).

To illustrate this differently, genes were sorted in fonction of their mean intensity 
across the samples, and the corrélation was calculated on Windows of intensity. For a given 
gene, the N genes with intensity just higher and the N genes with intensity just lower were 
kept. A corrélation was calculated on those 2N+^ genes, giving a value for the gene of 
interest. The same was done for each gene. The results are shown figure 2.2. The 
corrélation increases significantly with the gene intensities, and there is no clear cut-off. Low 
intensity genes are less reliable, but not to the point that they should be discarded. The 
decrease of the corrélation for highiy expressed genes is due to the saturation of the 
scanner.

To take into account this variation in fonction of the intensity, the permutation 
technique is applied on intensity Windows.

1 5 

1

-1

.1 5I------------ 1-------------1------------ .-------------.--------------------------- .------------ 1------------ 1
-2 -1,5 -1 -05 0 05 1 1.6 2

Log2 fâtiû experirnem 1

A B
Figure 2.1 Scatter plot of the ratios from two replicated experiments. A. The 25% genes with 
the highest intensities. B. The 25% genes with the lowest intensities.
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Figure 2.2 Corrélation as a function of the gene intensities.

2.5 The scoring functions
The permutation technique compares the score of each gene with scores obtained 

from a null-hypothesis distribution. Different scoring functions based on different assumptions 
about the data are possible. The different scoring functions proposed are:
• Absolute mean value. This is a simple fold change requirement.
• Absolute médian value. The theoretical advantage compared to the mean value is that it 

is less sensitive to outliers.
• Z-score (eq. 2.1). This is comparable to the Student t-test.
• Médian divided by the standard déviation. This could be viewed as a more robust Z- 

score.
• Médian divided by the average error. The average error is defined as e = XIn'^^Xj -//| .

J
The average error is supposedly more robust to outliers than the variance.

• Bayesian corrected Z-score (eq. 2.2).
The relative value of those different tests can then be compared on a real data set 

using the framework presented.
Some care must be taken for the évaluation of the Bayesian corrected Z-score. In this 

test the variance of the whole set of genes is used in the scoring of each gene. As shown 
before, this variance is overestimateci after permutation for differentially expressed genes. 
This means that al^scorés would be ünderestimated in the permutated data set compared to 
the real null-hypothesis.'For this reason, the prier on the variance used in the permutation 
analysis is the original variance obtained on the non-permuted data.

2.6 A simulation check
A simulation was made to check the efficiency of the framework presented and to 

assess how it compares to parametric statistical methods. This simulation underscores the 
influence of the distribution of the values in the simulated data set on the effectiveness of the 
scoring functions.

Since the hypothèses taken for the création of the simulated data set are crucial, 
three different sets were created. In the first two, the noise model was a normal distribution. 
In the first, each gene had the same variance while in the second the variance was allowed 
to vary from gene to gene. In the third data set, the noise model was a uniform distribution, to 
show that the permutation method still works in this case while the t-test loses its accuracy.

Each data set contains 10000 genes, 1000 differentially expressed (or positive) and 
9000 null-hypothesis (or négative). 6 samples were created. For each test, ail genes with p 
<0.05 were kept. The number of differentially expressed genes selected détermines the 
power of the test. The différence between the number of null-hypothesis genes selected and 
the expected number détermines the accuracy of the test. A good test should be accurate 
and hâve a high power.
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2.6.1 A data set where ail genes hâve the same variance
For the first data set, the 9000 null-hypothesis genes were drawn from a normal 

distribution of mean 0 and standard déviation 1. The remaining 1000 positive genes were 
aiso drawn from normal distributions with standard déviation of 1, but their means were taken 
as random numbers between 0.5 and 1.5.

At a significance level of 5%, it would be expected that each test would select 9000 * 
5% = 450 null-hypothesis genes.

Using the classical t-test, 953 genes were selected at the 5% level: 532 positives and 
421 négatives. The t-test is, not surprisingly, accurate.

Using the permutation technique with the Z-score, 1015 genes were selected at the 
5% level: 549 positives and 466 négatives. The permutation version of the t-test behave 
similarly to the parametric t-test, as expected. The permutation-based test selects a bit more 
genes than its classical counterpart because the positive genes do not hâve a null- 
hypothesis distribution after permutation, but the différence is lower than 10%, as expected. 
As ail genes are used to estimate the null distribution, there is no noticeable loss of power. If 
each gene were treated separately, the lowest possible p-value would hâve been 0.03.

Using the permutation technique with the absolute mean scoring function, 1136 
genes were selected: 659 positives and 477 négatives. Again, the accuracy is good. The 
power however is significantly improved compared to the t-test. This can be explained by the 
fact that ail genes hâve the same variance, which is automatically taken into account by the 
permutation technique. The test behaved like a t-test where the variance is known 
beforehand.

In conclusion, both the classical t-test and the permutation-based tests were accurate 
in this case. The power of the different tests varied because some made better use of the 
characteristics of the data set.

2.6.2 A data set where the variance of the genes varies
To underline the différence between the t-test and the absolute mean scoring 

function, another data set was created, identical to the first except that the variance was 
different for each gene, varying between 0.1 and 2. In this case, the variance must be 
estimated independently for each gene so the t-test should perform better.

The classical t-test at p<5% selected 998 genes, 519 positives and 479 négatives. 
The permutation technique using the Z-score selected 1034 genes, 528 positives and 506 
négatives. Again, the performances of both tests are similar.

In comparison, the permutation technique with the absolute mean scoring function 
selected only 540 genes, 100 positives and 440 négatives. The test remains accurate, but its 
power is much lower.

In conclusion, the permutation t-test behaves essentially like the classical t-test, even 
though it slightiy underestimated the p-values (by less than 10%, as expected). The mean 
change scoring function had low power in this case.

2.6.3 A data set with a non-gaussian noise model
This third data set was similar to the first, except that the noise model was taken as a 

uniform distribution between -2 and 2.
The classical t-test selected 906 genes, 350 positives and 556 négatives. In this case, 

the p-values inferred from the classical test are incorrect, with a discrepancy of more than 
20%. Using the permutation with the Z-score, 817 genes were selected, 315 positives and 
502 négatives. The permutation-based test is more accurate than the parametric test.

In this case the parametric t-test did not work properly, while the permutation 
technique estimated correctiy the number of false positives, up to the usual 10% correction.
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2.6.4 Conclusion
In conclusion, the permutation technique gives results similar to the classical 

parametric techniques, if the assumptions on which the parametric techniques are based 
hold. The advantage of the permutation technique is that it works even if those assumptions 
are notfulfilled.

The t-test has less power than the simple mean fold-change différence if the variance 
is the same for each gene. In this case there is no point in calculating the variance from 
single genes, an estimate from the whole set is more précisé. Hence, if for real data every 
gene has the same variance, then the permutation technique can be more powerfui than the 
t-test.

The question is whether the variance of ail genes is similar in microarray data. It is 
expected that the variance is the sum of a variance due to the technique and a variance due 
to biological variation. The variance due to the technique is probably somewhat constant for 
ail genes at a similar intensity. The biological variance can probably vary a lot from gene to 
gene. Hence it could be that the use of the global variance information in addition to the local 
gene variation, like in the Bayesian corrected Z-score, could be the most effective setup. 
Those hypothèses must be confirmed on the actual data.

2.7 Comparison of different scorinq functions on a real data set
There are many possible scoring functions. Those can be judged using two criteria: 

accuracy and power. As the permutation technique proved to be accurate with any scoring 
fonction when applied on simulated data, the power remains to décidé which scoring fonction 
is the most appropriate for microarray data.

Two different ways to measure the power can be designed. Either the number of 
genes selected at a given p-value can be maximized, or, equivalently, the p-value for a given 
number of selected genes can be minimized. The later criterion is used in the following 
analysis. For each scoring fonction, a graph of the évolution of the p-values in fonction of the 
number of genes selected is obtained. The different curves can then be compared. The 
curve with the smallest p-values is the best one. If two curves intersected, the decision would 
be harder to make but this did not happen for the best scoring functions.

The results are finally compared to those obtained using a classical parametric 
method, to underline the advantage of the permutation method.

The data set used is the 14 samples comparison between autonomous adenomas 
and normal thyroids, taken from the thyroid data set. Autonomous adenomas are 
histologically quite similar to the normal thyroid, so the number of differentially expressed 
genes should remain low. 1000 permutations were used for the permutation analysis.

The distribution of the p-values as a function of the number of genes selected with the 
different tests is shown figure 2.3. The médian divided by the average error is the worst 
performer. The mean is better than the médian, whether it is divided by the standard 
déviation or not. The average error largely underperforms the standard déviation. The best 
scoring function is the Bayesian corrected Z-score. This fact supports the idea that the 
standard déviation of a gene can be partially inferred from other genes at a similar intensity.
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Figure 2.3 p-values estimated from the permutation test as a function of the number of 
genes selected, with different scoring functions. A. With 0-300 genes, B. Zoom of A, with 0- 
50 genes. The different colors correspond to the different tests: black: absolute mean value; 
red: absolute médian value; blue: z-score; yellow: médian divided by the standard déviation; 
magenta: médian divided by the average error; green: Bayesian corrected Z-score {k=.5).

Figure 2.4 Comparison of different weights given to the prior in the Bayesian corrected Z- 
score. Red: /c=0.25; black: k=0.5; blue: k=0.75. A. Using ail 14 samples; B. Using only 6 
samples.

Different prior weight, as defined by the parameter k in the Bayesian corrected Z- 
score (eq. 2.2) were compared (figure 2.4 A). The quality does not change much with the 
prior weight, and k=0.5 seems reasonnable. With that k, the weight given to the estimate 
using the gene values is identical to the weight given to the prior. The same comparison was 
performed using only 6 samples. With a lower number of samples, it would be expected that 
the estimate of the variance from the gene itself would worsen, hence a higher k should give 
better resuit. As can be seen figure 2.4 B, the results with a higher k (blue curve) are similar 
to those with k=0.5 (black curve), while they were notably worse in the previous case. 
However, the different weights given to the prior had little influence on the results within a 
large range, so that k=0.5 is a good trade-off in general.

In conclusion, the best scoring function with this data set is the Bayesian corrected Z- 
score. The power of the function is relatively constant for a wide range of the parameter k. 
Trying to make the scoring function more robust by using the médian instead of the mean 
leads to disastrous results.

The results were then compared with the significance levels obtained using a 
parametric t-test (figure 2.5). The t-test gave lower estimâtes of the p-values compared to the 
permutation technique using the Z-score. This should be viewed in light of the results on 
simulated data sets, in which the permutation technique and the t-test gave similar results if 
the values where normally distributed. Hence the discrepancy between the two should be 
attributed to the non-normality of the log ratio distribution. This justifies the use of the 
permutation method instead of classical parametric techniques.
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Figure 2.5 Comparison between parametric t-test and permutation technique. Red: 
permutation, Z-score; Black; parametric t-test; Blue: permutation, Bayesian corrected Z- 
score.

3 Correction for multi-testinq

3.1 Introduction
The p-values as determined previousiy are designed for the case where only one 

gene is tested at a time. But microarrays are a case of massive multi-testing. This makes it 
likely that some genes hâve a small p-value just by chance. For instance, significance levais 
of 1% are obtained one time every 100 null-hypothesis genes on average. Genes with such 
significance levais should not necessarily be considered as differentially expressed. There 
are two main paths to correct the p-values for multi-testing.

The first is to keep the classical meaning of significance, and to correct the 
significance levais. The corrected p-values are the probabilities to select at least one null- 
hypothesis gene. Those p-values are called the family-wise error rate, or FWER (Dudoit et 
al., 2002). Different corrections exist to control this FWER. The most well know is the 
Bonferroni correction, which multiplies every significance values by the number of tests. So if 
1000 genes are tested, an original significance levai of 10‘® is needed to reach a corrected 
significance levai of 0.01. The Bonferroni correction is overly conservative, although the 
différence with more powerfui schémas is not very large. With this correction the significance 
levais are a direct fonction of the number of genes tested. This is especially relevant if it is 
possible to know in advance that some genes are less reproducible than others. If low-quality 
genes are removed without testing, the significance levai of the other genes improves. As 
high intensity genes are more reproducible than low intensity genes, an efficient way to 
improve the significance levais is to discard the data on the low intensity genes.

The second path to address the multi-testing issue is to redefine the significance. The 
most used redefined significance is the false discovery rate (Cui and Churchill, 2003, Efron et 
al., 2001, Dudoit et al., 2002, Storey and Tibshirani, 2003). For a gene with a given non- 
corrected p-value p, the false discovery rate (FDR) is

FD/?(p)= y - (3.1)
LPi<P

i

that is the expected number of null-hypothesis genes having a lower p-value, that is the 
product of the number of tests {M) by the significance levai (p), divided by the effective 
number of genes having a lower p-value, that is the number of calculated p-values {Pi) lower 
than the significance levai (p).

More intuitively, if a threshold is set on the p-values so that ail genes with a p-value 
below this threshold are selected as differentially expressed, the FDR is the expected 
number of null hypothesis genes selected (false positive) divided by the total number of 
genes selected.
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The FDR is more adapted to microarray data, since there are usually a large number 
of differentially expressed genes, which means that it is possible to hâve reasonable FDRs 
even though the Bonferroni-corrected significance levels are too large.

Another important advantage of the FDR is that it allows to set different criteria on 
badly and well quantified genes in a cohérent manner. With FWER, lo\A/er quality data raises 
the p-values on the higher quality data, because the correction is applied on ail genes 
simultaneousiy. If FDRs are calculated on Windows of intensity, low intensity genes are not 
directiy compared with high intensity genes. Hence independent FDRs are obtained on the 
different intensity Windows, which can then be merged. This part of the work is original.

3.2 Correction to the real number of null-hvpothesis genes
The définition of the FDR by the équation (3.1) is not accurate. The expected number 

of false positive is the product of the number of null-hypothesis genes (and not the total 
number of genes) by the significance level:

^Pi<P M
(3.2)

where FDR* is the true FDR and N is the number of null-hypothesis genes. The FDR 
calculated using (3.1) are overestimated by a factor {M-N)IM.

Storey and Tibshirani (2003) hâve proposed to estimate the number of null- 
hypothesis genes from the p-values distribution. This distribution is to sum of the distribution 
of differentially expressed genes, whose shape is arbitrary but should be concentrated on 
low p-values, and the distribution of null-hypothesis genes, which should be fiat. Hence, the 
distribution of the highest p-values can be used to détermine the number of null-hypothesis 
genes.

Figure 3.1 A shows an example on an artificial data set with 80% null-hypothesis 
genes. The p-values were calculated using the parametric t-test, which is exact on this data 
set. The distribution of the p-values is as expected: some genes with low p-values (the 
differentially expressed genes) on top of a background of null-hypothesis genes. The mean 
of the frequency for the p-values frorh 0.5 to 1 is 0.802, so the proportion of null-hypothesis 
genes is estimated at 80.2%, which is very close to the correct value.

This method is based on the availability of accurate p-values, especially at low 
significance. However, it has been shown before in this chapter (section 2.3) that the 
permutation method can lead to incorrect p-values, because differentially expressed genes 
hâve a very low score after permutation. This had a limited effect on genes having a low p- 
value, but can hâve a more dramatic effect on the genes having a high p-value. The score of 
those genes, even if very low by null-hypothesis gene standard, can still be large compared 
to the score of permuted differentially expressed genes. So large p-values are less frequent 
than expected.

Figure 3.1 B shows the distribution of the p-values on the same data set as figure 3.1 
A, except that the p-values were calculated using the Z-score permutation method. The 
distribution at low p-values remains similar, but for higher p-values instead of being fiat, the 
frequency decreases gradually. The number of null-hypothesis genes is estimated at 67% in 
this case, which is largely incorrect. Estimâtes of the number of null-hypothesis genes based 
on the shape of the distribution are unreliable if the permutation method is used to calculate 
the p-values.

A saving grâce is that the permutation method tends to underestimate the p-values, 
by a factor of at most {M-N)IM, as shown before (section 2.3). Hence, if no correction is 
applied the two effects will to a certain extent cancel each other. The end resuit is that the 
non-corrected FDRs are higher than the real FDRs by a factor strictiy inferior to M/{M-N), 
which should remain small and on the conservative side.

12



In conclusion, the effect of the two inaccuracies which are difficult to correct - the 
estimate of the number of null-hypothesis genes and the permutation of differentially 
expressed genes - are close to cancel each other. For this reason, no attempt is made to 
correct for any of them.

Figure 3.1 Histogram of the p-value distribution of an artificial exemple. The frequency scale 
has been chosen to hâve a mean of 1. In red is the mean of the proportion for the p-values 
from 0.5 to 1, used to estimate the number of null-hypothesis genes. A. Using the parametric 
t-test. B. Using the permutation method, with the Z-score.

3.3 FDR on intensitv Windows

3.3.1 Introduction
As stated before, the reproducibility (or quality) of the genes is fonction of their 

intensity. If the FDRs are calculated on ail genes at the same time, the low quality genes will 
hâve an effect on the values obtained for the high-quality genes, increasing their apparent 
FDRs. The usual solution is to discard a significant proportion of the data, in order to 
increase the significance on the rest. However, those data can still contain interesting 
information. A more subtie and graduai approach would be préférable. The FDR allows such 
an approach in a natural and efficient manner.

The solution is to estimate FDR on intensity Windows. That is, for each gene the N 
genes with the closest intensities are kept, and the analysis is performed on those genes. 
This way, the FDRs at high intensity are independent of the FDRs at low intensity. This leads 
to different stringencies at different gene qualities, as desired. The only difficulty is to merge 
the FDRs obtained at different intensities in a cohérent fashion.

3.3.2 Merging FDRs on different Windows
Résulta obtained on different Windows must be compared. This is not straightforward, 

different criteria could be used. The most natural is to maximize the power of the test, that is 
to hâve the lowest possible FDR for a given number of genes selected (positives).

To illustrate the point, say the genes are separated in two different groupe. Let the 
number of false positive (null-hypothesis genes selected) as a fonction of the number of 
positive be FPj(Pj) in the first group, PP2(P2) in the second group. The total number of 
positive is P=P?+P2 and the total number of false positive is FP=FPi+FP2. The number of 
positive in both groupe should be selected as to minimize the FDR, for a given number of 
positive. Hence, the fonction

PP + PP

P^+P2
should be minimized under the constraint that P=Pi+P2. Using the Lagrange multipliers 
technique, the fonction
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F P, + FP^ 
P,+P,

must be minimized with respect to Pi, P2 and À. After some developments, the following 
relation is obtained:

dFP, _ dFP^ 
dP, ~ dP^

(3.3)

The number of positive should be chosen so that the dérivative of the number of false 
positive by the number of positive is the same in both groupe. However, estimating those 
dérivatives is a difficult task and to use such noisy values to choose thresholds is tricky.

It is possible to sidestep the problem by noting that the number of false positive is the 
product of the number of positive by the false discovery rate:

FP{P) = P ■ FDR{p)
If the false discovery rate could be considered as varying slowly with P, the dérivative

dFDR
~^p could be neglected and eq. (3.3) simplifies to

FDR^ = FDR, (3.4)
so the condition would be to hâve identica! FDRs in both groupe, which is easy to ensure.

A more reasonable hypothesis is that the FDR is proportional to the number of
dFDR

positive genes, P. If this is the case, then —can be considered as a constant. So, at a
dP

level of positive P, we hâve
dFDR

FDR = P-
dP

Putting that équation in équation (3.3)
dFP, diP. FDRAP,)) r.dFDR, „ ^^^2------ L - ^ + />--------- L = pdr^ + --------L = --------L
dp dP, dP

which aiso lead to eq. (3.4).
For those reasons, and for simplicity, the thresholds are chosen so that the FDRs are 

identical in ail Windows, even though this might not be optimal. With this criterion, the global 
FDR is the same than the local FDRs. In practice, the dependence between the FDR and the 
number of positive can aiways be linearized, but with the more complex équation 

FDR = aP + b
With this form of dependence, eq. (3.4) does not guarantee an optimal choice 

anymore.

The criterion (3.4) only Works if FDRs can be calculated on each window. If at a 
certain FDR positive are only found is some Windows, the effect of the other Windows has to 
be estimated. As different criteria are applied on the different Windows, this cannot be done 
exactiy. A conservative estimate must be calculated.

The first possibility is to estimate that as many false positive genes are selected in the 
other Windows than in the Windows of interest, but that no true positive are selected. This 
effectively amount to divide the FDR by the fraction of Windows which hâve no FDR higher 
than the FDR of interest.

The second possibility is to take the best gene in each window for which normally no 
gene would be taken, and to modify the FDR accordingly.

As an example, say there are two intensity Windows. The best gene in the first 
window has a FDR of 1%, and the best gene in the second window a FDR of 10%. Using the 
first possibility, the FDR would be corrected to 0.01 x 2 = 0.02. Using the second possibility, 
the FDR would be corrected to (0.01+0.1) / (1+1) = 0.55.
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As both methods are conservative, the one giving the lowest estimate is used.

3.3.3 Estimate of the improvement
An estimate of the expected improvement is given here. In order to make this 

estimate, some assumptions must be made concerning the dependence between the FDR 
and the number of positive. In line with the previous section, two different Windows are taken. 
In each window, the FDR is supposed to be proportional to the number of positive genes:

FDR,{P) = aA (3.5)
where a, (/=1,2 is the window membership) is a constant and P, the number of positive genes. 
The FDR can aiso be calculated directiy from the définition

FDR,(P,) =
P,(P,)N

P. (3.6)

where p,(P) is the significance level of the gene P and N is the number of null-hypothesis 
genes. This leads to a direct dependence between p, and Pi

If the FDRs are calculated independently and then merged, the FDRs on the two 
groupe are identical, so with eq. (3.4): 

a^P^ = «2^
So for a total number of positive P=Pi+P2, the FDR using Windows {FDRw) is 

FDR,{P)^^^
a, +«2

(3.8)

If the FDR is calculated on the whole set of genes, a limit is set on the significance 
level of ail genes simultaneousiy. Hence the significance level of the less significant gene in 
both group is the same, so using (3.7) the following equality can be written:

_ ^2 ^2
N N

Introducing the total number of positive, the following second order équation in Pi is 
obtained:

(a, - Ü2 ) + 2a2PP, -P^a2=0 

Solving the équation for Pi leads to
P^[â^

^Tr^2
The FDR using ail genes {FDRg) can be calculated using its définition and (3.6), (3.9)

fOR, (P)=ieiUhh. =
P

P = (3.9)

(3.10)

The gain (g) in FDR is the ratio of the two FDR, that is (3.10) divided by (3.8)

g = 2- a^ +Ü2 (3.11)

As this is difficult to understand, say one of the group has a reproducibility e as good 
as the other, that is a, = ü2£ ■ In this case, (3.11) simplifies to

l + e
g = 2 (3.12)

This fonction is plotted figure 3.2. With the assumptions taken, the merging of 
different Windows has a large effect only if the différence of quality between them is quite 
large. In practice, this is usually the case for the most differentially expressed genes, but the
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différence becomes tamer when the number of selected genes is increased. This means that 
the technique of the intensity Windows can hâve a large effect, but only on a small subset of 
genes.

Figure 3.2 Effect of the différence of quality between the two Windows (^) on the gain in 
FDR obtained when using the intensity Windows.

If the dependence between the FDR and the number of positive is set to the more 
realistic linear dependence FDR{P)=a+bP (with a<0 and b>0), the calculation is much more 
complicated. For a given total false discovery rate f, the number of genes selected using the 
windowed method is

P - I ^2^
f-b,N f-b,N

while the number of genes selected using ail genes at once is (both the numerator and the 
denominator are négative)

P 2A'(6|g, +t,a|)

' (i,+6,)/-2JV*A
The différence between the two is

/(^i ~^2X/(^2 -a,)-N{b^a, -6, a J)
K>Q

which is not a very readable expression. It is necessary to make a further approximation to 
make it understandable. In general, a, seems to be roughiy proportional to bf. ai = -kb,. Using 
this approximation, the équation can be rewritten

K>0
So there is aiso an improvement in this case. It is of course possible to find spécifie 

values of the parameters for which this does not hold, but in general the windowed method 
improves, or at least does not deteriorate, the power of the test.

3.3.4 An illustration of the importance of intensity Windows
The influence of intensity Windows on the FDR is illustrated on an artificial data set. 

This artificial data set consiste of 100000 good quality genes, drawn from a normal 
distribution of standard déviation 0.8 and 100000 bad quality genes, drawn from a normal 
distribution of unity standard déviation. 10% of the genes in both groupe were taken as 
differentially expressed, and a value randomly drawn between 0.5 and 1.5 was added to their 
values. 10 samples were simulated. Such a large number of genes were simulated to get 
stable estimâtes. The p-values were calculated using the parametric t-test, which is 
applicable in this case. Two Windows were used, one containing only the good quality genes 
and the other only the bad quality genes.
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On figure 3.3, the FDRs calculated using ail genes or only genes in quality Windows 
are compared. On figure 3.3 A, the FDRs for the differentially expressed good quality genes 
are represented. When those FDRs are calculated using only the good quality genes and not 
ail genes, an improvement is noted: the FDRs are smaller. So without intensity Windows an 
efficient way to improve the FDR is to discard bad quality data. On the bad quality genes 
(figure 3.3 B), the discarding of the good quality genes has the opposite effect of raising the 
FDR. This highiights the fact that calculating the FDR on intensity Windows imposes different 
stringencies on the genes depending on their intrinsic reproducibility.

If the FDRs are calculated separately and then merged, as proposed, the power of 
the test is increased. It is possible to select more genes at a similar FDR or the same number 
of genes with a lower FDR. For instance, at a FDR of 1%, 1663 genes (1151 good quality, 
512 bad quality) were selected with FDRs calculated on ail genes at once, compared to 1850 
genes (1654 good quality, 196 bad quality) with FDRs calculated on the two groupe 
separately. In this case there is an improvement, although it is not very large.

Using a more stringent FDR raises the différence. At a FDR of 0.005, the différence is 
between 630 and 420 genes, a 50% improvement. At a FDR of 0.003, the différence is 
between 237 (among which 2 bad quality genes) and 15 genes, a more than ten-fold 
improvement. Using less stringent FDR lowers the différences. At a FDR of 0.05 the two 
methods behave similarly, the version on ali genes selecting 2% more genes.

In this case, the différence in quality between the two Windows was quite small, which 
explains the relatively small improvement.

A B
Figure 3.3 Comparison of the FDR calculated using ail genes or only the genes from the 
group on A the 10000 differentially expressed good quality genes or B the 10000 
differentially expressed bad quality genes (cropped).

3.3.5 Conclusion
The use of intensity Windows FDR leads to a sizeable increase in the power of the 

tests for the most differentially expressed genes. With this technique, it is not necessary to 
discard low-quality data to improve inference on the high quality data anymore. The results 
obtained on data of different qualities are merged in a cohérent manner. Other quality 
measures than the crude intensity could be used, like the one proposed in Wang et al. 
(2003). This improvement is another argument for the use of the FDR instead of the FWER 
for microarray data, as no similar correction could be applied with the FWER.

3.4 Goinq from global to local
The FDR of a gene gives an estimate of the fraction of null-hypothesis genes in the 

group comprising this gene and ail better genes. However, it is not in general the probability 
for the gene to be a null-hypothesis gene. As by définition the other genes in the group are 
better than the gene of interest, this probability is higher than the average of the group, and 
so is higher than the FDR. For this reason, it would be usefui to assign a probability of being 
a null-hypothesis gene (a local FDR) to each gene, instead of using aggregate values. This
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point was raised in Efron et al. (2001), in which they used a binning technique. We propose 
here a continuous implémentation of the same idea.

Let FP{P) be the estimated total number of null-hypothesis genes selected (false 
positive) as a function of the total number of genes selected (positive). The probability f{P) for 
a gene to be a false positive must be derived from this number. For the most significant gene 
the local FDR is the same as the total number of false positive, that is 

f(1)=FP(1)
For the following genes, the local FDR is the incrémental increase in the aggregate 

number of false positive, that is
f{i)^FP{i)-FP{i-l) (3.13)

An artificial data set was created to illustrate the local FDR. This data set had 10000 
genes and 6 samples. Each gene was drawn from a normal distribution of standard déviation 
of 1. 8000 genes had a mean of zéro (null-hypothesis genes) and 2000 had a mean 
randomly drawn between 0.5 and 1.5 (differentially expressed gene). The scoring function 
was the absolute mean. The resuit of the calculation of f{P) is shown figure 3.4 A, black 
curve. As can be seen, the différences FP(i)-FP{i-1) in eq. (3.13) lead to a very noisy 
estimate of f{P), which cannot be used directiy. A smoothing with a window of size 101 lead 
to a more reasonable-looking function, as shown figure 3.4 A, red curve. The local FDR is 
close to zéro for the first genes, then increases steadily to finally settle at a constant level for 
the last 7000 genes. This level is 1.25 and not 1 because the values should be multiplied by 
the fraction of null-hypothesis genes (80%).

As an artificial data set was used, the real number of false positive is known, and can 
be compared with the estimate obtained. The local number of false positive for a gene was 
estimated by counting the number of false positive présent in a window of 101 genes 
centered on the gene of interest. The results are shown on figure 3.4 B. The estimated local 
FDR multiplied by the fraction of null-hypothesis genes (blue curve) fits the measured 
number of false positive (red curve). Without the correction, the local FDR (black curve) is 
overestimated by a factor 1.25, as expected. On this example, the framework presented is 
effective, up to the correction for the fraction of null-hypothesis genes.

As stated before, if the permutation method does not give a perfect image of the null- 
hypothesis data set because the scoring function uses the variance, the correction for the 
fraction of null-hypothesis genes can be almost automatic. To illustrate what happens in this 
case, a similar artificial data set was used, except that the mean of the differentially 
expressed genes was taken between 0.5 and 5. The Z-score was used as the scoring 
function. The results are shown figure 3.5. As can be seen, for the first 2500 genes or so the 
estimate is correct: the two sources of inaccuracies cancel each other. For the following 
genes, this is not the case and the probability rises above one. This is of no concern because 
the p-values on those genes are useless. Hence, the two effects of the limited number of 
null-hypothesis genes effectively cancel each other if the Z-score is used.

To finally illustrate the method, it was applied on the thyroid autonomous adenomas 
data set, using the Bayesian corrected Z-score method. The results are shown figure 3.6. 
The first 245 genes could be chosen as positive with a very high confidence (local FDR<1%), 
but that for about 1000 genes there is a différence between the autonomous adenomas and 
the normal thyroids, although with a low confidence. This underlines the fact that given a 
sufficient number of replicates, many genes can be demonstrated as being differentially 
expressed. For the last 1200 genes or so, the probabilities are much higher than 1, probably 
because of the effect of the differentially expressed genes on the permutation.
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between a non-smoothed (black curve) and a smoothed (red curve) estimate. B Comparison 
between the estimated (black curve) and the measured (red curve) local FDR. Blue curve; 
estimated local FDR multiplied by the fraction of null-hypothesis genes.

Figure 3.5 Illustration of the compensation of the two sources of inacurracies in the 
calculation of the local FDR, when using the Z-score permutation method. The estimated 
(black curve) and the measured (red curve) local FDR are compared.

Figure 3.6 Estimated local FDR for the autonomous adenoma data set.

4 Application to the thvroid data set
The statistic framework described was applied on the thyroid data set. As this data 

set contains different groups, the following type of differentially expressed genes can be 
searched for;

1. Autonomous adenomas (AA) vs. normal thyroids.
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2. Papillary thyroid carcinomas (PTC) vs. normal thyroids.
3. Autonomous adenomas vs. papillary thyroid carcinomas.
4. Sporadic PTC vs. Chernobyl PTC.
For the first two questions, the comparisons were made directiy in the experiments, 

so the measured ratios should be compared to 1. This corresponds to what was presented 
so far in this chapter. For the last two questions, ratios obtained from two different 
experiments must be compared, so a different scoring fonction must be used which uses two 
groups instead of one. A modification of the technique to take this into account is presented 
below.

4.1 Sinqie-qroup comparisons
The framework is applied as described previousiy on the AA and on the PTC data 

sets, to identify differentially expressed genes.
There are 2400 genes on the slides. 1000 permutations were randomly drawn.
The first comparison is between autonomous adenomas and the corresponding 

normal thyroids. 342 genes had a FDR below 1%, which is more than 10% of the genes. 170 
of those had a FDR below 10'^. The number of differentially expressed genes is large, 
probably too large to allow a follow-up analysis of each significant resuit. Autonomous 
adenomas are very different from normal thyroids, and the différences are reproducible.

The second comparison is between papillary thyroid carcinomas and the 
corresponding normal thyroids. 214 genes had a FDR below 1%, and 61 genes a FDR below 
10'^. The number of differentially expressed genes is lower than in the AA case, which is 
quite surprising as histologically PTCs are more different from normal thyroid than AAs are. 
The FDRs are higher because the PTCs are a less homogeneous group than the AAs. There 
are large différences between normal thyroids and PTCs, but those variations are less 
reproducible than for the AAs.

In both cases, the number of differentially expressed genes obtained is too large to be 
of any real use: any meaningfui mean to select interesting genes, like for instance a simple 
fold-change requirement, would select significantly differentially expressed genes. The 
advantage of the statistical analysis is to validate the résulta, but it might make more sense 
to select interesting genes for follow-up analysis based on biologically motivated reasons 
than on the significance levels.

4.2 Two-qroup comparisons
The résulta from two groups of experiments are compared. Two such comparisons 

are performed: the first between AA and PTC, and the second between sporadic PTC and 
Chernobyl PTC.

For two-group comparisons, a two-group scoring fonction must be used. A naturel 
choice is the value used in the calculation of the two-sample t-test with equal variance:

where //j is the mean of the gene if the first group, rii is the number of samples in the first
group, crf is the variance of the gene calculated in the first group and similarly for the 
second group.

The estimate of the variance can be improved with a prier, as in the one-group case: 

^k({n^ -iK +(«2 -\)a^)+{\-k)(7l

where is the prier on the variance and k gives the relative importance of the prier and the 
estimate on the gene itself.
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For the comparison between AAs and PTCs, 139 genes had a FDR below 1%, and 
52 below 10'^. This confirms that AAs and PTCs are different diseases.

The comparison between sporadic and Chernobyl PTCs lead to a different resuit. 
Using the prior on the variance, the lowest FDR found was 31%. So with this function, no 
différence between the two types of PTCs was found. Without the prior on the variance, the 
lowest FDR found was 2%, which is significant. Only one other gene had a FDR below 10%, 
at 7%. The other genes had a FDR over 20%. In this case, the prior hindered the discovery 
of differentially expressed genes, as the genes found had a very small variance. The finding 
of those two differentially expressed genes suggests that there is a différence between 
Chernobyl and sporadic PTC, albeit tenuous. In this case, the statistical analysis lead to 
significant results which would hâve been difficult to trust otherwise.

Two different biologists hâve performed the experiments on the PTCs. Applying the 
same statistical analysis to the grouping in function of this criterion, nine genes with a FDR 
below 10% were found, the lowest being 2%. This means that the choice of experimentalist 
had more influence on the results than the origin of the tumor. The fact that different persons 
dissected the two types of tumors might be the main reason for the différences observed 
between Chernobyl and sporadic PTCs. This means that no definitive biological conclusion 
could be drawn, except that the différence, if any, between the two types of PTCs is very 
faint. This however underlines the ability of the technique presented to detect and statistically 
validate small différences.

5 Conclusion
A framework for the détermination of the significance level of the genes in a replicated 

microarray experiment has been presented. This framework allows for the détermination of 
the false discovery rate in a robust fashion.

This Work highiighted the advantages and disadvantages of different scoring 
fonctions. The choice of function dépends largely on the distribution of the data. However, in 
the framework presented, accuracy of the p-values is kept even with an inferior scoring 
function, although power might be limited. The best overall function on the thyroid data set 
was the Z-score with a prior on the variance. It performed better than the other fonctions, and 
proved to be résilient to changes in the weight given to the prior within a large range.

It was shown that one of the advantages of working with the FDR instead of the 
family-wise error rate is that it is possible to use different stringencies for different genes. 
This is important for microarray data, as usually the reproducibility of the genes can be 
estimated using their intensity or a more complex quality criterion. Without the variation in 
stringency, the lower quality genes must be discarded in order to improve the p-values on the 
others. With the technique presented in this work, this is no more necessary. The lower 
quality genes can be incorporated without hurting the results on the better genes.

The main issue with this work is that the significance level is usually not what the 
biologists are interested in. The fact that a powerfui algorithm can select 200 genes while 
another can only select 100 is usually not relevant. The number of differentially expressed 
genes is often too large to be treated effectively by biologists on a gene-by-gene basis. AIso, 
biologists tend to prefer a gene with a large mean, even if it has a large variance, to a gene 
with a smaller mean with a low variance. The rationale is that a gene with a large différentiel 
expression is more likely to produce biologically interesting effects. This means that it might 
make sense to use the absolute mean instead of Z-score in order to select the genes most 
likely to interest the biologists.

The significance levels are aiso largely meaningless: the microarray technique is only 
a rough estimate of the reality. Many technical issues make it possible that what is measured 
is not what is expected. This means that even a large FDR (say 5%) can remain small
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comparée! to the chance that the measures do not correspond to the gene. This is highiighted 
by the low level of confirmation obtained on microarray data. The quoted level of confirmation 
in the literature is usually 90% at most, and the non-confirmed genes cannot be explained by 
statistical variability alone. As long as the microarray remains what it is, elaborate statisticai 
analysis will remain a largely useless feat.

The main interest in this statistical analysis is as a criterion to assess the efficiency of 
the data cleansing algorithme. Corrections of the data could be considered as positive if they 
improve the false positive rate. This fact is used in the next chapter to compare and assess 
different normalization algorithme.
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2 - Data quality improvement

1 Introduction
Gene expression data can be improved by making the right technical choices in the 

data génération process and by removing spécifie biases.

Different choices can be made for the experiments and the quantification of the 
resulting images. There are many parameters which can be tuned in the quantification 
program, and a mean to choose the optimal set is needed.

AIso, microarrray data must be corrected after quantification, as has been 
acknowledged from the first microarray papers {e.g. DeRisi, 1997). This is because the 
magnitude of the measurements is proportional to the amount of biological material and to 
the scanning gain. If for instance the volume of the sample is doubled, then roughiy every 
value measured is multiplied by two. As those effects are artifacts of the technique and not 
an interesting signal, they are removed through a correction. For instance, the values of each 
experiment were divided by a constant, usually the mean or the médian of the values of the 
experiments. More complex schemes to choose those constants, based on the fitting of the 
gene distributions, were aiso proposed (Zien et al., 2001). Those types of corrections are 
called normalizations in the field.

Later, it appeared that more complex biases existed (Yang et al., 2002), and methods 
were proposed to correct for them. The modifications made seemed to improve the quality of 
the data, as judged visually, but no quantitative measure of the improvements was made. 
The need for a criterion to judge the effectiveness of a normalization was only acknowledged 
recently (He et al., 2003, Tsodikov et al., 2002, Wang et al., 2003), but no definitive quality 
criterion was found. Ideally, the criterion should give just one number, which would represent 
the quality of the data. However, such criteria are often biased by the fact that the quality of a 
spot is correlated with its intensity: brighter spots give better results. This means that a 
normalization procedure which amount to discard low intensity spots can seem very good for 
some data quality measures.

Anyway, the optimal choices are clearly platform-dependent. Hence, the different 
possibilities must be tested on the data generated in our laboratory in order to décidé how to 
treat them.

This chapter focuses on this data quality improvement. It firstly describes two 
measures of data quality, which are more complex than those usually proposed but give a 
more faithfui impression of what the normalizations achieve. The use of two different quality 
measures is important, as each of those can lead to biases. A normalization which improves 
only one measure should be regarded with suspicion. For the normalizations tested, only one 
lead to a discrepancy between the two measures. This discrepancy is explained by a 
shortcoming in one of those.

Secondly, different technical choices and normalizations were tested using the quality 
measures described. This testing was done on the autonomous adenomas part of the thyroid 
data set generated locally in our laboratory and described previousiy. This allowed the 
création of a data correction protocol which could be applied systematically to ail our data.

2 Assessinq the effect of a modification
In order to compare different treatments of the data, a measure of the data quality 

should be defined. Ideally, such measure should give a single number, which could be used 
directiy. This is the approach in the literature. However, we argue that such a criterion leads 
to biases which can, and does, lead to aberrant normalization choices.
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The problems stem from the dependence between the quality of microarray data and 
the intensity of the spots; the higher the intensity, the better the quantification. If a global 
quality criterion is taken, like for instance the corrélation calculated on the ratios, then an 
effective mean to improve the corrélation is to lessen the importance of the low-intensity 
genes. This can be done for instance by adding a constant k to each value. With such 
modification, the ratios calculated on low-quality spots are close to unity and hâve little 
influence on the corrélation. The quality measure is improved, although the accuracy of the 
data (/.e. how close it is to reality) is decreased. This example seems to be overly simplistic, 
however similar problems appear in the literature.

The quality of the data was assessed in the first papers using fairly general principles. 
Tseng et al. (2001) used only a biologically motivated criterion. Yang et al. (2002) assessed 
the quality of the data by seeing how it behaves in plots, and by analysis its distribution 
properties. They aiso verified the ability of the data to give the expected biological results. 
Those two criteria are not quantitative, and cannot be used for a systematic analysis of 
normalization procedures.

Different measures of data quality were proposed in later papers. Tsodikov et al. 
(2002) proposed to use a statistical test to rank the genes, and to measure how many of the 
N best genes (supposedly known) are among the N genes ranked first. This test cannot be 
used on real data, were the real ranking of the genes is not known. As the effectiveness of 
normalization is very dépendent on the properties of the data, a test which can only be used 
on simulated data is of little value.

He et al. (2003) proposed two different quality measures, based on two different uses 
of microarrays. The first measure is based on gene screening: microarrays should be able to 
detect differential expression. So the criterion used is the number of false positive detected in 
an experiment divided by the total number of positive. The number of false positives is 
estimated by performing null-experiments. This criterion is global, which as explained before 
can lead to biases, and the use of real null-experiments can be costly. It must aIso be 
ensured that null-experiments are performed exactiy like the real experiments. The second 
criterion is based on clustering: the.discrepancies between the known clustering and the 
clustering obtained are recorded. This criterion is again based on the existence of a very 
peculiar data set. In most cases, it proved too insensitive to variation in the data to be used in 
practice.

Wang et al. (2003) proposed two different criteria, based on differentially expressed 
genes (DEGs). DEGs are defined as the 2.5% most extreme genes. The first criterion is the 
corrélation coefficient between the DEGs on the different slides. The second is the 
concordance rate, which is the number of DEGs in common between two slides. Those two 
methods are again global. In this paper, this lead to a biased resuit. One of the normalization 
methods divides the log ratios by a fonction of the spot quality, so that the ratios of low 
quality spots are made doser to unity. This normalization leads to the best values of the two 
criteria. This however is to be expected, as the results from the worse spots are effectively 
discarded or at least largely tamed. Hence, those two criteria cannot be used to obtain 
unbiased data quality estimate.

The data quality estimators proposed in the literature being insufficient, new criteria 
had to be designed. Two different schemes are proposed. Both give an évaluation of the 
data quality in function of the data intensity. Hence, a curve is obtained instead of a single 
number. This way, a more comprehensive picture of the data quality is obtained at the cost of 
having a quality curve and not just a number. A normalization which improves the data at 
only some intensities should be considered with suspicion.

The first criterion is based on corrélation. The second is based on the number of 
genes selected as differentially expressed at a certain level (as defined in the previous 
chapter). The use of two unrelated method ensures that no bias is introduced. A good 
normalization method should produce improvements in both methods. One of the
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normalization proposée! leads to improvements with only one of the two errteria. This 
discrepancy is explained because of limitations in one of the criteria.

2.1 The windowed corrélation method
Corrélation can be used to quantify the reproducibility, but it should only compare 

genes of similar quality. For this reason, a windowed version is used. In this method, the 
genes are sorted in fonction of their intensity. For each gene, a window of 401 genes (the 
size is arbitrary), comprising the 200 genes with an intensity just higher and the 200 genes 
with an intensity just lower than the gene of interest are kept. The corrélation of the logarithm 
of these ratios is then calculated. The end resuit is a curve which shows the corrélation as a 
fonction of gene intensity (figure 2.1 A). The higher intensity genes (higher gene number) 
hâve a larger average corrélation, of about 45% in this case. The corrélation remains positive 
even for genes with a very low intensity, showing that information in présent at ail levais. In 
this case, the two normalizations shown seem to hâve similar quality, with only a slight 
advantage for the one represented in black.

A B
Figure 2.1. Example of (A) the windowed corrélation method and (B) the false discovery rate 
method. Two different normalization are shown, in red and black. Genes with a higher gene 
number hâve a higher intensity.

2.2 The false-positive method
The technique designed in the previous chapter in order to détermine the false 

discovery rate can be used to assess the reproducibility of the data. A good treatment of the 
data should lower the false discovery rate for a given number of positive, or should increase 
the number of positive at a given false discovery rate.

In the following, the ratio of positive is kept constant, at 10%. The false discovery rate 
is then calculated, using the permutation method described in the previous chapter. The 
scoring function used is the Bayesian correction Z-score, with k=0.5 and 100 permutations. 
The false discovery rate is calculated on intensity Windows of 201 genes (the size is 
arbitrary). The resuit is a graph showing the false discover rate if the top 10% of the genes 
are considered as positive in function of the intensity.

As the false discovery rate is (as was shown before) an effective mean to merge 
information at different intensity levels, it would be possible obtain just one number 
describing the quality using this technique. However, to highiight the possible presence of 
blases and to visualize the data quality the intensity dependence is displayed.

This leads to curves like those shown figure 2.1 B. The false discovery rate is much 
lower at high intensity (high gene number) than at low intensity where it is close to 1. In this 
case, the normalization shown in red is of a much better quality than the one presented in 
black.
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3 Merqinq of scans of different gains

3.1 Introduction
Genes are expressed at widely different levels in the sample studied. It is usually 

admitted that the most abundant genes are expressed at levels of about 10,000 mRNA 
copies per cell, while the least expressed genes are présent at only a few copies per cell. 
Since the intensity of a spot is roughiy proportional to the àmount of mRNA in the sample, 
the intensities may vary by four orders of magnitude on a microarray. This is the same order 
as the dynamic range of ail common scanners. Therefore, either the brighter spots saturate 
the detector, or the fainter spots are not quantified accurately.

Most scanners permit to choose their gain. This gain, the photomultiplicator voltage in 
the case of the Affymetrix 418 array scanner, Controls their sensitivity. When this gain is too 
high, the fainter spots are visible but the brighter spots are saturated. When it is too low, the 
brighter spots are correctiy quantified, but the fainter spots are invisible. The usual advise is 
to make sure that the brighter spots are expressed slightiy belo>w the saturation limit in order 
to avoid saturation while keeping the dynamic range as high as possible (Axon and Genome 
Systems sales représentatives). This solution is cumbersome and error-prone - thousands of 
spots must be checked on each slide - and cannot be easily automated. Furthermore, with 
this scanning gain the dimmer spots are usually too weak to be accurately quantified.

The issue of the saturation in microarrays has been addressed in several 
publications. Different types of solutions hâve been proposed. The first methods proposed 
amounted to the détection of the saturated spots and their removal from the analysis (Wang 
et al. 2001, Hsiao et al. 2002). This was done either at an early stage or by analysis of their 
effect on data mining algorithme. However, while those methods can be effective in the 
removal of saturated spots, they do so at the expense of throwing away some information. 
They tried to correct a problem which should be avoided altogether.

We propose here a method to address the issue of saturation by using a combination 
of scans done with varions gains. This combination allows a précisé quantification of both the 
brighter and the fainter spots, by choosing for each spot the best scan available. The 
proposed method simpiy consiste in the addition of a final step after the scanning and 
quantification. Furthermore, the technique is easy to automate, and could be incorporated 
directiy in the scanning and quantification programs, making the process invisible to the user.

A similar method has been proposed recently (Dudley et al., 2002). However, our 
method has several advantages which makes it at the same time mathematically sounder 
and more résilient to certain types of noise in the data.

3.2 Effect of the photomultiplicator gain
A slide was scanned twice, using two different photomultiplicator gains and the 

resulting images were quantified. As shown on fig. 3.1A, the values obtained with a high 
scanning gain were proportional to the values obtained with a lower gain as long as the 
scanner was not saturated. For saturated spots, the values at the highest gain remained 
around 60,000 intensity units, close to the maximum achievable by the scanner (65,535 i.u. - 
16 bits). This means that, as expected, the quantified value of a spot is proportional to the 
amount of fluorescent material présent in the spot, uniess this spot is saturated. Hence, the 
value of the non-saturated measurement Mjj of the spot / in the scan y can be expressed as

(3.1)
where v, is the amount of material bound to the spot / and a; the gain of the scan y.

This is valid for spots at relatively high intensities. However, experiments hâve shown 
that the results at one gain are not directiy proportional to the results at another gain, but that 
a certain constant must be added (fig. 3.IB). Hence, équation (3.1) must be rewritten as

+ b J (3.2)
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where bj is the additive constant for the scan y. The origin of this constant is not clear. It is 
probably a resuit of the scanning process, as it seems to exist with the GMS scanner but not 
with the more recently acquired Axon scanner. This additive constant is problematic, as it 
suggests that additive constants should be used for the normalization, while most algorithme 
only take into account multiplicative constants. Practically, équation (3.2) is used. Most of the 
time, the constant bj proved to be relatively small, of the order of a few hundreds on a scale 
of 64,000.

Figure 3.1. A. Effect of the photomultiplicator gain on the quantified values. Each point 
représente a spot quantified with two different gains. The red line is the linear régression on 
the linear part. B. is a zoom on the lower left part.

3.3 Merqinq the scans
In order to precisely quantify a spot, the gain of the photomultiplicator should be 

chosen such that the intensity of the spot lies at a reasonable level, i.e. a level as high as 
possible but below saturation. This optimal gain is different for each spot, making the 
simultaneous quantification of ail spots on a microarray in one scan problematic. For any 
gain chosen, some spots are far from their optimal condition. The goal of the technique 
presented here is to quantify most spots at gains close to their optimum.

The method can be described as follows: A slide is scanned a few times using 
different gains. The gains should vary from very low (to ensure that no spot is saturated) to 
very high (to clearly see the fainter spots). As demonstrated, the measured values are a 
function of the amount of fluorescent material bound to the spot as long as there is no 
saturation (eq. 3.2). The actual value of each spot is the amount of material bound v,. These 
real values, along with the scanning gains aj and the biases bj, can be evaluated from the 
measurements Mjj. This is done by minimizing a least squares error criterion on the set of 
non-saturated spots NS:

(3.3)
iJeNS

There is an indétermination in this minimization, the values of the gains being given 
relatively to some unknown base State. In order to lift this indétermination, the value of ai is 
set to 1 and the value of bi is set to 0. This means that the values of v, hâve the same 
magnitude as the values of the first scan. This is of course arbitrary, the measures being only 
defmed up to a multiplicative and an additive constant. The data must be normalized, for 
instance by dividing them by the mean of the values, or by using some other normalizing 
scheme as those described later.

The main difficulty is to détermine which spots should be considered as saturated. 
Taking ideas from robust régression, non-saturated the spots are those for which

My>v.aj+bj-Sej (3.4)
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where ey is the médian error for the scan y:
e, = medianflv,a+ b, - MA) (3.5)

■' i.MNS 1 ^ ^ -'I'

The idea is that values which are at least 8 times the médian error lower than the 
predicted value are statistically uniikely to be due to chance. This gives a test to détermine 
which spots are saturated.

A problem with the équation (3.4) is that it is non-symmetric, that is only outliers on 
one side are considered. This can lead to biases, especially for the détermination of v. In 
order to avoid such biases, two different sets of non-saturated spots are defined, NS1 and 
NS2. A spot belongs to NS1 if (2.4) holds. A spot belongs to NS2 if

|A/ÿ - v^Qj - bj\ < 6eJ (3.6)
This set NS2 is used for the robust détermination of v. As précision is needed and a 

lot of points are available compared to the détermination of a and b, the criterion (3.6) can be 
made more stringent than (3.4), hence the différence in the factor.

The détermination of a, b, v, NS1 and NS2 is done iteratively:
1. NS1 and NS2 are initialized as the whole set of spots. Le. ail spots are considered as 

non-saturated. v, is initialized to the scan value, that is v,. = M,,.
2. (3.3) is minimized for a and b using the current v and NS1.
3. (3.3) is minimized for v using the current a and b NS2.
4. If no convergence on a, b and v, back to step 2.
5. e is calculated using (3.5).
6. NS1 and NS2 are the sets of spots for which (3.5) or (3.6) holds, respectively.
7. If no convergence, or too many itérations, back to step 2.

As for other robust évaluation schéma, the algorithm can cycle if some spots are on 
the verge of saturation. Hence, the algorithm must be stopped after a certain number of 
itérations even if convergence is not obtained. We found that the fact that the algorithm 
cannot détermina if some borderline spots are saturated has very little influence on the 
results.

3.4 Influence of the method on æproducibilitv
In order to assess the effectiveness of the method, a set of two duplicated 

experiments were taken from the'thyroid data set. Only two experiments were taken in order 
to highiight the effect of the technique. Thè slides corresponding to those experiments where 
scanned at three gains: one as would hâve been chosen normally (the medium gain), one 
much lower and one much higher. The data quality was assessed at those gains using the 
two measures described before. It was then compared to the data obtained by merging the 
scans using the technique described.

The influence of the method on the windowed corrélation between two duplicated 
experiments is shown figure 3.2A. As expected, for the high intensity genes, the corrélation is 
better with a low scanning gain (red curve), which avoids saturation. The last 700 genes 
show decreased corrélations in the case of the highest scanning gain, and the last 200 in the 
case of the medium scanning gain. For the 1500 genes with the lowest intensities, the 
corrélation is lower when a low scanning gain is chosen. For some unknown reason, the best 
choice here seems to be an intermediate scanning gain, but the results with the two higher 
gains are quite similar. The results after merging the three gains are shown on figure 2.2A as 
the black curve. This curve behaves like the low gain curve (red) for high intensity genes, like 
the average gain curve (green) for average intensity genes and like the high gain curve 
(blue) for low intensity genes. This means that every spot is quantified like if it has been 
scanned at a gain close to its optimum.

The influence of the method on the false discovery rate on the same data is shown 
figure 3.2B. The plot has been smoothed using the Matlab (Matworks inc., MA) function
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idfilt for visualization purpose. With the lowest gain (red curve), the 1000 genes with the 
lowest expression hâve much higher false discovery rate than what could be obtained with a 
better gain. Would this scan be effectively used, 300 genes would not even be measured 
above background and would hâve to be thrown away. For a large part of those low intensity 
genes, the false discovery rate can be reduced to around 25% by using the highest scanning 
gain. For highiy expressed genes, the higher scanning gains lead to saturation on the last 
600 genes in the case of the highest gain, and on the last 200 genes in the case of the 
average gain. With a false discovery rate of about 10%, at least 10% of the data should be 
thrown away because of saturation. With the merging of the three scans (black line), the 
quantification is done with the highest gain for the dim spots, and the lowest gain for the 
bright spots. This leads to a précisé quantification on the whole range of intensity, usually 
with a quality close to the best available. The false discovery rate is reduced to less than 
25% for most of the spectrum, which means that usable information is available at almost ail 
intensity levels.

A B
Figure 3.2. (A) Corrélation and (B) false discovery rate in fonction of the relative gene 
intensity. Genes with a higher gene number hâve a higher intensity. Red: low gain. Green: 
medium gain. Blue: high gain. Black: merged results.

3.5 Comparison with the “masliner” method
Dudley et al. (2002) hâve proposed a comparable method, “masliner”, to merge the 

values obtained by scans at different gains. However, our method is different from theirs in 
the following aspects:
1. The masliner method proper uses two scans. With three or more scans, it is proposed to 

merge the two lowest scans, and then to merge that resuit with the next lowest scan and 
so on. This is numerically less efficient than the least squares criterion (3.3) that we use.

2. The spots are considered in the masliner method as being saturated if their intensity is 
higher than a threshold, 40,000 being the suggested value. However, our expérience 
hâve shown that many spots with intensity higher than such threshold are not saturated, 
so that valuable information would be discarded, and that spots with low intensities can 
be saturated. This can happen if only a small part of the spot is saturated (when a spot is 
very inhomogeneous) or if the spot is very saturated. In that case, the spot may 
contaminate the background, whose intensity can get quite high. Subtracting the high 
intensity of the background from the high intensity of the spot can lead to a small 
resulting intensity. On the web site with the supplementary information for Dudley et al. 
(http:/arep.med.harvard.edu/masliner/supplement.htm) that problem is acknowledged, 
although no solutions are given.

For those reasons, we believe our technique is more robust and numericaily sounder.
In practice, the results given by both methods are similar, except if some genes are 

saturated at a low intensity. In that case, the error on those genes can be much larger with 
the masliner method than with ours.
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3.6 Conclusion
A method which dramatically improves the dynamical range of a scanner was 

presented. This method permits précisé quantification of ail spots on a microarray slide with 
scanning gains close to optimum. This effectively solves the problem of saturation in the 
quantification of DNA microarrays as long as saturation is due to the scanner. When 
saturation is caused by something eise {e.g. Chemical saturation, quenching...) the method 
proposed is of course useless, and another solution should be found.

The précisé numerical improvements given are spécifie to the particular experiments 
performed here. The corrélation and the false discovery rate obtained are fonctions of the 
experimental setup, as are the importance of saturation and of weak spots. Nevertheless.'the 
general trend remains constant: with a high scanning gain, the brighter spots are saturated. 
With a low scanning gain, the fainter spots are not quantified accurately. Our technique 
usually offers results close to the best possible choice of scanning gains for every spot on 
the array.

The algorithm has been implemented as a stand-alone application. This application, a 
MatLab (Matworks inc, MA) script, must be run after the quantification of the scans in order 
to merge the data.

The method proposed can be integrated seamiessly into the actual software 
packages, with minimal effort. The scans of a slide with multiple gains could be run 
automatically, and saved as a multi-layer tiff image by the scanning software. Such 
composite image can be quantified in a manner similar to regular tiff images by the 
quantification software. The same software can then do the fusion of the data immediately. 
This would improve the results in a way totally transparent to the user, except for longer 
scanning and quantification times.

4 Effect of color-flip
In the experiments performed in our laboratory a control sample {e.g. a normal 

thyroid) is labeled with one fluorophore {i.e. Cy3) while a non-control sample {e.g. an 
autonomous adenoma) is labeled with another fluorophore {i.e. Cy5), both being then 
hybridized on the same slide. The value of interest is the relative expression of the genes in 
both samples. It is usefui to détermine which genes are differentially expressed in the non- 
control sample compared to the corresponding control sample. A possibility however is that 
in addition to the différence in the samples, the différence in the fluorophore could hâve a 
substantial effect. This could be due for instance to structural différences in the Chemical 
structure (steric hindrance). For instance, a gene could hâve a systematically higher 
fluorescence with one fluorophore than with the other. This means that the resuit of an 
experiment with the control sample labeled with Cy3 and the non-control sample labeled with 
Cy5 could be different from an experiment where the two fluorophores are inverted (which is 
called a color-flip experiment).

From the autonomous adenomas (AA) part of the thyroid data set, there are 39 slides. 
Those slides can be divided in two groups: a first group of 19 slides with the normal tissue 
labeled with Cy3 and the AA with Cy5, and a second group of 20 slides with the normal 
tissue labeled with Cy5 and the AA with Cy3. The corrélations between those experiments 
were calculated.

The average corrélation (the results are summarized table 4.1) between the 19 slides 
in the first group was 39% and 27% for the 20 slides in the second group. The corrélation 
between the slides of the first and the second group was only 22% on average. However, the 
corrélation can vary widely from slide to slide so this différence is very significant but not as 
significant as the différence between the corrélation in the first and the second group.

In order to correct for the slide-to-slide variability, the corrélation matrix was modified 
as follow. Firstly, the mean corrélation was subtracted from each value. Then, the éléments 
of the matrix were modified as follow:

CC^J = CCjj — ^ CCf^j - ^ CCj!^ 
k k
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With this modification, the mean of the corrected corrélations for each slide is zéro. 
This way, the corrected corrélations are the compensons between the corrélation expected 
from the estimate of the slide quality and the actuel corrélation.

Using those modified corrélation, the average corrélation between the slides of the 
first group was 3.3%, between the slide of the second group 4.5% and the average 
corrélation between the slides of the first and the second group was -7%. The différence 
between the first intra-group corrélations is not significant (P=0.34), while the différence 
between the intra-group corrélations and the cross-group corrélations was extremely 
significant (P<10‘^®).

In conclusion, there is a bias due to the fluorophore. For this reason, each experiment 
is performed at least twice, once with the control labeled with one fluorophore and once with 
the control labeled with the other fluorophore. The ratio of the two is the correct ratio 
squared.

Group 1 Group 2
Group 1 3.3% -7%
Group 2 4.5%

Group 1 Group 2
Group 1 39% 22%
Group 2 27%

Before correction After correction
Table 4.1 Average corrélation between the slides intra-group and inter-group. Group 1: 
normal labeled with Cy3; group 2; normal labeled with Cy5.

5 Backqround correction
The spots are quantified using a program which detects them and measure their 

average intensity (mean or médian). It has appeared however that some background signal 
was présent everywhere on the slide, even where there are no spot. It has been proposed 
that this background part of the signal is an additive error, which can be inferred from the 
signal measured outside of the spot. It is not clear, however, if this hypothesis is correct. The 
Chemical properties of the slide are very different from the Chemical properties of the spots. 
Hence it is not possible to décidé a priori if the subtraction of the background values from the 
spot value improves the quality of the measurements.

The only way to décidé if the background should be subtracted from the spot intensity 
measurements is to check the results on real data. The conclusions are of course limited to 
the data produced locally, with the local protocol, scanner and quantification program.

A first empirical reason seems to point to the usefulness of the background removal, 
at least with an Axon scanner. The same slide was scanned twice with this scanner, at two 
different scanning gains. The scatter plots of the quantification at low gain versus the 
quantification at high gain are shown figure 5.1. On figure 5.IA, no background correction is 
applied. The dimmer spots hâve a positive value. The best-fit line, shown in red, does not 
cross the origin, so a constant dépendent on the scanning gain is added to the values. On 
figure 5.1 B, the background is subtracted. The dimmer spots hâve now an intensity of about 
zéro. Moreover, the best-fit line passes almost exactiy through the origin. Hence the 
scanning gain acts only as a multiplicative effect in this case, as it should. So the behavior of 
the scanner seems more reasonable with background subtraction.

The background subtraction is a typical case in which the criterion used to assess the 
quality of the modification is extremely important. The subtraction of the background 
decreases the measured values. Hence for low intensity genes, the variability on the ratios 
tends to be increased. If a global corrélation is used as the quality criterion, then this 
increase in variability would be the most important effect, and the background subtraction 
would seem to decrease the quality of the data.

The effect of background subtraction was assessed using the two criteria presented 
before. The results for the windowed corrélation are shown figure 5.2A. The corrélation does 
not change much with the background subtraction. However, if anything holds then the 
subtraction of the background improves the corrélation. Among the 45 possible pair-wise 
corrélation, in 31 cases the médian corrélation improved while in 14 cases it decreased. This
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is significant at the 1% level. Hence correlation-wise, the subtraction of the background 
seems beneficiary.

The results for the false discovery rate are shown figure 5.2B. The différences are 
much more dramatic using this quality measure. In this case, at about any intensity level, the 
background subtraction notably improves the reproducibility.

In conclusion, the subtraction of the background has a positive effect on our data, in 
both the corrélation and the false discovery rate tests. The background is subtracted in ail 
subséquent analyses.

Figure 5.1. Scatter plot of low photomultiplicator gain scans versus high gain scans, using an 
Axon scanner. The parts shown are zooms on the low-intensity values. A. Without 
background correction. B. With background correction.

A B
Figure 5.2. A. Windowed corrélation and B. false positive rate in fonction of the gene 
intensity. Red: without background correction; black: with background correction. Genes with 
a higher gene number hâve a higher intensity.

6 Normalization
The microarray technology leads to measurements which hâve certain biases, or 

systematic errors. The removal of such errors is called normalization in the field. In the 
following, techniques for the removal of two different types of biases are presented.

6.1 Spatial dependence
It can happen that the ratios are not evenly distributed on the slide. For instance, the 

signal can be higher in the green channel than in the red channel on the left side of the slide, 
and the other way around on the other part of the slide. See figure 6.IA. for an example.
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The main normalization proposée! for this effect is the one from Yang et al. (2002). 
They normalize separately in each sub-array. Because their arrays are divided in many 
smaller arrays this can be used as an approximation of spatial dependence. In our case, the 
arrays are only divided in 4 quarters and the effect does not seem to follow the limit of sub- 
arrays. So, a new technique had to be designed.

Different means could be used to remove this dependence. The technique which v\/as 
implemented is to calculate the médian ratio in a neighborhood around each spot. The 
intensity of one of the channel is then multiplied by the square root of this médian and the 
intensity in the other channel is divided by the square root of this médian.

The shape and the size of the neighborhood are arbitrary. A circular neighborhood 
with a radius of 7 pixels was chosen because it seem to be small enough to pick the 
geometrical variations but big enough to average the spot to spot variations.

Figure 6.1B shows the correction factor calculated using the algorithm. Figure 6.1C 
shows the resulting image after correction. On most of the image, the results are satisfying. 
On the lower left corner, the results are worse because the red signais are very faint. This is 
a case were there is an interplay between a dependence of the ratios on the intensity and on 
the geometry. The same effect appears, although in a much tamer way, on the right part of 
the slide. In general, the resulting image seems to be more reasonable than the original 
image. On most slides, the effects are less pronounced and easier to correct.

To validate the method, the influence of the spatial normalization on the windowed 
corrélation and on the false discovery rate was measured (figure 6.2). The non-linear 
normalization, which is described in the next chapter, was applied. Both the corrélation and 
the false discovery rate are largely improved by the spatial normalisation, at ail intensity 
levels. This normalization is an important improvement on our data and is applied in ail the 
following analyses.

AB C
Figure 6.1. A. The ratios on a slide with a pronounced geometrical dependence. B. The 
calculated correction factor in false colors. C. The corrected ratios.
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0.55

Figure 6.2. Effect of the spatial normalization on A. the windowed average corrélation and B. 
the false discovery rate. Red: without spatial normalization. Black: with spatial normalization. 
Genes with a higher gene number hâve a higher intensity.

6.2 Intensity dependence
Yang et al. (2002) hâve discovered that the ratios measured by the microarrays 

showed an unexpected intensity dependence. For instance for highiy expressed genes the 
intensity could be higher in one channel than in the other (e.g. the signal in green is 
systematically higher than in red) while the opposite holds for less expressed genes.

This can be seen by plotting, for a given slide, the log ratio {R/G) in fonction of the log 
intensity (R*G) (figure 6.3A). If no intensity dependence existed, the genes should be 
disposed symmetrically around the horizontal axis. In this case, there is an intensity 
dependence and the genes are disposed in a typical “banana” shape.

There are no biological reasons for the most expressed genes to behave differently 
than the least expressed genes: the différentiel expression (the ratio) should be independent 
on the intensity. This means that this dependence is a systematic error, which should be 
corrected. Of course, it could happen that this dependence is a genuine signal, but this 
possibility seems uniikely in general.

The proposed mean to normalize the data is to fit a curve through the cloud of points, 
using a robust algorithm. Loess (Cleveland and Grosse, 1991) has been proposed in the 
literature (Yang et al., 2002), and is the one implemented and used here (figure 6.3A). The 
results of the loess fit must be checked by eye, as it can happen that it overfit or underfit the 
data, although this is rare in practice. In the case shown, there seems to be an overfitting on 
the low intensity part of the graph, which is not too problematic because those data are badly 
quantified anyway. At each intensity, the value of the loess fit is subtracted from the ratio 
value. The intensity/ratio pair of values are then turned back into a red/green pair of values. 
On figure 6.3B, the corrected values are superimposed on the original values to show the 
effect of the intensity-dependent normalization. The corrected data are much doser to the 
45° line than the original data.

The improvement in reproducibility given by this normalization was assessed using 
the windowed corrélation and the false discovery rate (figure 6.4). The corrélation is 
marginally decreased by the normalization. This lack of improvement is due to the fact that 
the corrélation is a pair-wise measure, performed on intensity Windows. For genes of similar 
intensifies, the corrections are similar. Hence, Inside an intensity window, ail genes are 
modified in a similar fashion. This means that the cloud of point is only translated in a log-log 
graph, which has little effect on the corrélation (e.g. figure 6.5). On the example shown, the 
médian ratio value is much doser to zéro for the intensity-dependent normalized values (- 
0.03 and 0.02) than for the non-normalized values (-0.15 and 0.03). This différence however 
has no effect on the corrélation measure.
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Testing for the false discovery rate gives a completely different picture. The FDR is 
dramatically decreased by the non-linear normalization, proving the usefulness of this 
normalization.

This shows that the choice of the quality criterion to détermine the effectiveness of a 
normalization is paramount. It is important to be aware of blases which they might hâve. The 
use of two very different criteria is usefui to highiight those blases and to insure that the 
normalization improves the data and is not simpiy optimizing the data with regard to any bias 
the quality criteria might hâve.

In conclusion, the intensity-dependent normalization improves the reproducibility of 
the data and is used in ail following analyses.

Non-ünear notmabzan on of the data 
8|------------------- .-------------------1--------------------1------------------- 1--------

0
Log red

A B
Figure 6.3. A. Ratio vs intensity plot and loess fit of the data (red). B. Plot of the red versus 
the green channel values for each spot. Original data shown in black, corrected data in red.

Figure 6.4. Effect of the intensity-dependent normalization on A. the windowed average 
corrélation and B. the false discovery rate. Red: without intensity-dependent normalization. 
Black: with intensity-dependent normalization. Genes with a higher gene number hâve a 
higher intensity.
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Figure 6.5. Effect of the intensity-dependent normalization on the measure in a window of 
intensity. Black: with intensity-dependent normalization; red: without intensity-dependent 
normalization.

6.3 Normalization order
The two normalization steps, spatial and non-linear, are performed independently. As 

the origin of the blases those normalizations eliminate are not clear, there are no theoretical 
reasons to believe that the normalization order is important. The testing framework presented 
was used to compare the reproducibility obtained with the two normalization orders (figure 
6.6). The results are not strikingly different, but if anything the order with the spatial 
normalization first seems a bit better. This seems to show that the two normalizations act in a 
largely indépendant way.

Figure 6.6. Effect of the normalization order on A. the windowed average corrélation and B. 
the false discovery rate. Red: non-linear first. Black: spatial first. Genes with a higher gene 
number hâve a higher intensity.

7 Conclusion
When dealing with microarray data, there is a wide array of technical choices 

possible, and many different data correction procedures can be applied. Those are data 
dépendent, the same choice could improve the data on one platform but not on another. This 
means that the different normalizations proposed in the literature had to be tested on the 
data generated in our laboratory to be validated.

The design of a sound data quality measure is complicated by the différence in quality 
from spot to spot: the quality of the quantification is correlated with the spot intensity. This 
explains the shortcomings of the data quality measures proposed in the literature, which 
made them unfit for our purpose. Indeed, it is possible to improve those quality measures by 
making trivial modifications of the data, like for instance by adding a constant to each value. 
This decreases the importance of the low-intensity genes, which improves the data quality
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measure. For this reason, two new measures were defined; the windowed corrélation and 
the false discovery rate. Those two methods display a measure of the data quality in function 
of the gene intensities. The advantage of this graphical display is that genes are only 
compared with genes of a similar intensity, and hence quality, and that the effect of the 
improvement is better visualized. Two different measures are used with the expectation that 
if by accident one would be unfit to properly detect the effect of a data modification, the other 
would. The discrepancy between the two measures would prompt attention. The importance 
of this was made clear with the non-linear normalization, on which the windowed corrélation 
measure was unable to correctiy quantify the improvement, because it is based on pair-wise 
comparisons. In general, the false discovery rate method was more résilient and more 
sensitive to the data quality.

Different technical choices were compared. In the scan quantification process, the 
subtraction of the background improved the quality of the data. The labeling was shown to 
hâve a large effect, so that experiments hâve to be performed twice, with the labels inverted 
in the duplicate. The saturation of the scanner had a négative effect on the data quality, and 
a technique based on the merging of scans at different gains was designed to correct this 
effect.

Once the data are quantified, different normalizations can be applied to improve their 
quality. On our slides, two normalizations are paramount. The first removes the dependence 
between the intensity and the ratios. The second removes the dependence between the 
spatial localization of the spots and the ratios. These two normalizations were shown to 
dramatically improve the quality of the data.

This Work has allowed the création of a systematic data treatment program, which 
automatically corrects the data produced in our laboratory. Changes in slides or in protocol 
can make some of the choices non-optimal, so the effectiveness of the normalization 
procedure should be tested on any new platform.
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3 - A database for microarray data

1 Introduction
High-throughput gene expression technologies generate a large amount of data. 

However, although many data sets are readily available on the Internet, it is hard even for 
specialists to collect, standardize and use them. For the bench biologist, these data are 
available in theory, but are not used in practice.

Publicly available data are scattered on different Web sites, and now databases. This 
System présents many inconveniences: the sites are not aiways as stable as they should be 
and the results are presented in a non-standard form (plain text, or HTML, or presented as a 
database,...), sometimes indexed by gene, sometimes by EST (Image ID or Genbank ID 
or...) and finally the numerical data are either non-normalized or normalized in a certain, and 
often unique, way. Because of this, extracting an information of interest in these data is a 
daunting task.

In order to make gene expression information intelligible, we, and other (Aach et al., 
2001) hâve developed databases, allowing to store and retrieve those data. Moreover, a 
biologist-friendly web-based interface allowing querying the data was created.

This database project was conducted at the beginning of this thesis. It proved very 
difficult and time consuming to clean and enter data in the database, for a non-obvious 
return. Moreover, it was expected that other databases would soon be created by much 
larger groups (EBI and NCBI, essentially) during the course of this work. Moreover, some 
design choices might hâve proven to be incorrect. For those reasons, no work has been 
performed on this database since the end of 2001. This explains some shortcomings, like for 
instance in the normalization options. It would not hâve been very difficult to improve the 
database, but it did not seem worthwhile.

2 One size fits it ail
Gene expression data coming from different studies had to be standardized in order 

to be introduced in our database.
The main point in common between ail gene expression studies, that justifies the 

création of the database, is that they are measuring amounts of mRNA in different 
conditions. This puts the measurements at the center of our scheme. The database structure 
can be viewed as a generalized two-dimensional array comprising many empty cells, with the 
experiments on one ordinate and the genes on the other.

From there, ail had left to do was to find standard ways to store the experimental 
conditions, to décidé how to store the information describing the genes and finally to 
normalize the values obtained so that they could be compared to each other.

2.1 Storinq of the experiments
We considered that experiments are a set of manipulations which share the same 

experimental protocol except for the parameter that is modulated in the experiment. 
Examples are measures of the response of a cell as a fonction of the time in certain condition 
(kinetics), e.g. after growth factor, hormone or drug treatment, comparisons of different 
lineages of cells or comparison between normal and diseased tissues.

There are different kinds of experiments, depending on the nature of the parameter of 
interest. One important characteristic we took into considération is the fact that the parameter 
might be ordered (i.e. the order of the manipulation matters) or not. If an experiment is 
ordered, then the variable can be expressed as a number in a certain unit. This différence led 
us to design two groups of experiments, ordered and unordered, each comprising two sub- 
groups.
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1. Ordered experiments
These are the experiments for which the parameter can be expressed as a number. 

Two sub-types of experiments belong to this group:
1.a. Kinetic studies, where the parameter is the time (e.g. measures taken at different 

intervals during the cell cycle of the yeast.)
1. b. Experiments where the parameter is a value expressed in a non-temporal unit 

(e.g. concentration/response curves.)
Of course, kinetic studies could be considered just as a particular case of type 1b. We 

could thus consider that we hâve only one kind of experiment, or we could as well hâve as 
many kinds of experiments as there are different ways to generate ordered manipulation. We 
chose to make a spécial case of kinetic studies firstly because it is a very common and 
important case and secondly because facilities are aiready built in the SQL standard 
regarding time variables, so reprogramming it would be a waste of time for a probably lower 
quality.
2. Unordered experiments

These are the experiments for which the changing variable cannot be considered as a 
numerical value. Again, two sub-kinds of experiments were defined:

2. a. Comparison of cellular types (e.g. measures of normal versus cancer tissues, 
comparisons between different cell lineages.)

2.b. Everything eise. This would include the experiments that could not be ascribed to 
any of the previous classes.

The rationale behind the type 2a is to use a standardized way to store sample 
information. The type 2b is used when only a text description would make sense.

Each experiment was stored with ail the relevant information except for the 
independent parameter, which is stored in the description of the manipulations. This leads to 
a concise and ordered présentation of the experiments, with no data duplication.

There is a great deal of information that may be relevant to describe the experiments, 
and until now there was not consensus as to what is important and what is not. We chose to 
keep as little as we thought we could. The idea is not to bury the important data beneath a 
vast amount of unnecessary information. An interested person can aiways look in the 
publication if he needs more details.

We chose to store only the following data to describe the experiments;
1. The origin of the experiments, i.e. the publication.
2. The technology used (mostly its type (oligonucleotide arrays or microarray or SAGE) and 

its manufacturer, e.g. oligochip mu6500 from Affymetrix.
3. The strains, cells or samples used.
4. A text description describing the experiment performed.

Everyone will probably not consider this information as sufficient, but we think it 
should suffice in order to make sense of the data. We deliberately chose not to tackie this 
issue more deepiy than was necessary, since there is an international working group devoted 
to doing so, the Microarray Gene Expression Database Group.

2.2 Standardization of the values
The expression studies vary a lot depending on the technologies used, but 

nevertheless some characteristics remain identical. By stressing these, it is possible to 
reduce the data to a common standardized form to be used in our database. The raw 
numerical values must be normalized in order to make them comparable from study to study.

Three technologies were considered: microarrays, oligonucleotide chips (Affymetrix) 
and serial analysis of gene expression (SAGE). We had to define a normalization for each of 
these technologies.
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2.2.1 Microarrays
In this technology (Schena et al., 1995 and 1996), the sample of interest is reverse 

transcribed and marked with a fluorescent dye. A control target is made in parallel with 
another dye. The two labeled targets are hybridized simultaneousiy to an array of spotted 
cDNA (typically corresponding to an EST). The fluorescence of both dye are quantified. In 
each experiment, two measures are taken for each spot: one for the control sample and one 
for the sample of interest.

In most microarrays, the précision of the spotting is not good enough to permit uses 
of these two absolute values in a reliable way. Moreover, the different lengths of the spotted 
cDNA, as well as their different composition and therefore hybridization introduce other 
sources of variability. By taking the ratio of the two measures, the systematic errors cancel 
each other and the précision of the technique is raised. Hence, for each measured gene 
there are two values, of which only the ratio is meaningful.

Each channel in each experiment was normalized by dividing its measures by the 
mean of the values for each gene measured in the experiment, effectively putting the mean 
to 1. This insured that ail the experiment values were in a comparable range. More complex 
normalization schémas hâve been described since this database was finished, but were not 
implemented.

2.2.2 Oligonucleotide chips
This technology (Lockhart et al., 1996), developed by Affymetrix (Santa Clara, CA), 

uses slides with oligonucleotides being directiy synthesized by using a combination of 
photolithography and oligonucleotide chemistry.

Each gene is represented by several 20 to 25 base oligonucleotides. Next to each of 
these oligonucleotides lies another one with one mismatch in the center, serving 1o 
détermine the background hybridization. The arrays are hybridized with labeled antisense 
mRNA, synthesized In vitro from cDNA reverse transcribed from the sample mRNA. The 
fluorescence is then quantified on each pixel of the arrays. The amount of a particular mRNA 
can be measured by taking the average of the différence in the fluorescence of the perfect 
match probe to the single base mismatch probe.

This technique leads to a direct estimate of the amount of a particular mRNA présent 
in the target. Therefore values should hâve a meaning by themselves; no comparison has to 
be made like in the microarrays. Nevertheless, the absolute value is generally meaningless, 
depending on the efficiency of the labeling, on the amount of mRNA présent... In each 
experiment, the values can be multiplied (or divided) by a constant without changing their 
meaning.

A natural way to normalize such values would be to turn them into concentrations by 
dividing them by an estimation of the total amount of mRNA présent, i.e. the sum of the value 
of every gene. But only certain genes are quantified, so if we used the sum of the measured 
genes as an estimation of the amount of mRNA, we would hâve had different normalization 
depending of the number of genes assessed. To address this issue, we chose to normalize 
each experiment by dividing each of its measures by the mean (not the sum) of ail the 
values, effectively equating this mean to 1. Each resulting value is a pseudo-concentration, a 
value of 1 corresponding to an average concentration.

2.2.3 SAGE
This technique (Velculescu et al., 1995) works by sequencing small “tags” of a dozen 

nucléotides extracted at spécifie points in the mRNA. These short tags are usually long 
enough to be assigned to a unique gene. Tens of thousands of these tags are so sequenced. 
By counting the number of tags corresponding to each gene their concentration can be 
inferred. The values obtained are a direct estimate of the concentration of each mRNA in the 
sample. Therefore, even though the experimental protocol is very different from 
oligonucleotide chips, the type of resuit is similar, hence we hâve used the same kind of 
normalization for both.
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2.2.4 The final format
As previousiy seen, the SAGE and the oligonucleotide chips give one value for each 

measure, while the microarrays give two values. These two values are usually only 
meaningfui when being compared to each other. Because of this différence of design, the 
data were stored differently depending of the technology: for SAGE and oligonucleotide 
chips, normalized values were stored, while for microarrays both measured values alongside 
with the ratio were stored.

It should be noted that the différence between the two kinds of storage is deepiy 
grounded, because it reflects an important différence between microarray and 
SAGE/Affymetrix data. The formera are aiways a comparison, while the latter are absolute 
values. This has an important impact as to the ways to query the data, since microarray data 
are directiy meaningfui (typically meaning an up or down régulation in an experimental 
condition) and can be queried directiy. This raises questions like “Which measures are up- 
regulated by a factor 2.5 in this experiment?”. In contrast, SAGE/Affymetrix data is usually 
only usefui when comparing one experiment with another. This would raise questions like 
“Which genes are 2.5 times more expressed in condition a than in condition b?" Note that 
even though it may be possible to transform every SAGE/Affymetrix experiment to a 
comparison of two conditions (by taking one condition as the control), this is often not 
recommended. As an example, we could take the data from Golub et al. who were 
measuring bone marrow of patients with ALL or AML leukemia. The comparison here would 
be between the set of measures of ALL with the set of measures of AML, but there is no 
such thing as a pair-wise comparison permitting the storage of the data in a format similar to 
the microarrays.

As for the normalization, the ruie is to store the normalized data. The normalization 
factors are stored along with the manipulation descriptions. The rationale is to use them as 
requested by the user, simpiy by changing the query parameters and the printed values. 
Other kinds of normalization could be added in the same way, would the need eventually 
arise.

2.3 The genes
As stated before, the expression studies consist in measuring the level of expression 

of thousands of genes in diverse conditions. We had aiready categorized the condition and 
standardized the level of expression, so we reach now the last part of the question: what was 
meant when we said we were measuring the level of expression of a gene?

The answer to this question dépends on the technology, but nevertheless one thing 
remains: something is measured and there is a meaning attached to it, which is obtained by 
linking with information coming from another source.

In a typical microarray experiment, DNA corresponding to an EST is spotted, and so 
the corresponding mRNA is quantified. By extension, we call EST whatever is measured, 
being a real EST or something eise. The meaning we give to this EST is the gene to which it 
corresponds. In the human case, this could be readily understood by visualizing the EST as 
the EST, and the gene as the UniGene cluster comprising this EST. The link between gene 
and EST may change as our understanding of the genome deepens, but the identity of the 
measured EST will not change.

In the case of the yeast, most of the data is taken by open reading frame (ORF, 
presumably coding for a protein), assigning a value to each of these ORF. So we would say 
an ORF is an EST, and aiso a gene. But sometimes measures are taken not only by ORF, 
but aIso by exon inside each ORF. In this case, the gene is still the ORF, but the EST is the 
exon measured.

We hâve thus defined an EST as the measured object. The meaning we assign to 
this EST is the gene, and it may change. A gene may comprise more than one EST, and an 
EST may belong to more than one gene (such things happen in UniGene). The link between 
the EST and the gene is obtained with a database that clusters the EST by genes and gives
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a meaning (i.e. a description) to each gene. Such databases were statically linked with ours. 
The chosen ones were UniGene for the human and SGD for the yeast. This information will 
hâve to be updated on a regular basis from the source databases.

Figure 1. Diagram of the database, slightiy simplified for clarity.

2.4 The final diaaram
The complété diagram of the database, reflecting the discussion of the last few 

paragraphe, was finally drawn (fig. 1).
Some parts were not implemented as shown for efficiency purpose. For instance, the 

IS_A relationship between the different kinds of experiments (see figure) leads to too many 
queries to the database server just to know the type of experiment, so it had to be changed.
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Nevertheless, this diagram captures the philosophy behind the database.

2.5 Critics on the scheme used
After the implémentation was performed, it was obvious that the performance of the 

database was barely satisfying for typical queries.
One type of typical query would be to find the level of expression of a certain gene in 

a certain experiment. With the database scheme as it is, this implies a search in the entity 
Measurel or Measure 2 on two different fields - ID_EST and ID_MANI. Double indexes are 
not very efficient, and the indexing of only one of the two proved to be no better.

Another type of typical query would be to find ail genes in a certain experiments which 
hâve certain values. If a double indexing was created it would be useless in this case. Even if 
a single index on ID_MANI was created, the search of ail the measurements proved to take 
quite a long time (a second or so when everything is in cache).

It might be than those performance issues were caused by the database System 
used. It could be possible that a System which is more geared towards queries and less 
towards data integrity like mySQL could prove more efficient than postgres. If I had to do it ail 
again however, I believe I would hâve created a completely different framework. The 
coercion of the microarray data into a 3'^'' normal form might be something counter- 
productive. As the data are effectively presented as arrays, which can be queried extremely 
efficiently, it might be préférable to keep to main numerical data that way, and to only store 
the gene and the experiments description in a database format. This would mean that more 
bookkeeping should be performed and that an API should be designed to manage the 
database, but it might prove to be effectively the best option.

3 The database
Since the database was meant to be publicly accessible, we implemented it on a 

server and created a Web interface to query it. For reasons of cost, quality and availability, 
we implemented the database using only free software. We used embedded SQL/C on a 
gnu-Linux computer, with postgres (www.DostreSQL.com) as the relational database and 
Apache (www.apache.org) as the Web server. Graphie display was implemented using 
GnuPlot. The CGI interface was implemented using three free libraries, fastCGI, yaegi and 
cgicc.

The query interface of the database was based as much as possible on the KIS 
principle (keep it simple). One big difficulty was to define natural ways to query the data, the 
questions asked being often imprécise and ill defined. As a parallel we could see the 
research of these natural ways to be somewhat like the création of BLAST for the EST 
databases. Without such query tools, it would be much harder to make sense of the available 
information. What we offer presently in our database should only be considered as a first 
glimpse of what we think any fortheoming gene expression database should offer.

3.1 The queries
When a user connecte to the database, the Web interface shows a form offering 

many different search criteria (fig. 2). Depending on what the user chooses, two different 
kinds of queries can be performed.

If the user selects one or more criteria relative to the genes, the database is searched 
for genes matching them. If some genes are found, the measures for these genes are 
shown, for every experiment in which they appear if the user was not spécifie about the 
experiments, or only for some experiments if the user added some search criteria regarding 
the experiments.

If no criterion was entered about the genes, the experiments matching the search 
criteria for the experiments are shown (fig. 3). It is then possible for the user to de-select the 
experiments he is not interested in, and more importantly to enter any new search criterion 
based on the measured values in the experiments.
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Experiment
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Results formatting
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ègnd; | Rèset I

Figure 2. The first search screen. The example query shown is “Show the values for 
every gene having “actin” and “alpha” in his description, in experiments involving homo 
sapiens fibroblasts where “cycloheximide” appears in the description of the experiment”. The 
resuit of this query is shown on fig. 4.

This is done in two different ways, depending on whether the experiments are 
microarrays (hence comparisons) or SAGE/Affymetrix (hence absolute values). In the former 
case, a simple threshold might be meaningfui, for example asking for every ratio over 2 in a 
certain experiment will give every gene which is up-regulated by a factor of two or more in 
this experiment. In the latter, using a simple threshold would make much less sense, as it will 
only give the least or most expressed genes in a certain condition. The interface offers the 
possibility to compare any two values, asking for an n-fold différence between them.

Ail these search criteria may be combined on a per EST basis or on a per gene basis. 
This is especially usefui when comparing results from different laboratories, where a given 
gene is generally represented by different EST.

3.2 Présentation of the results
The results obtained can be shown either as an HTML document or as a tab delimited 

text document for easy exporting to another application.
When presented in HTML, the gene descriptions act as hyperlinks to the Unigene or 

the YPD database, while the EST act as hyperlinks to GenBank. The one-line descriptions of 
the experiments are hyperlinks too, offering access to a more complété description. For the 
microarray experiments, the numbers are colored according to their level of up or down 
régulation: red for the most up-regulated ones, green for the most down-regulated, and 
everything in between for the modulations in between.

In the case of ordered experiments, it is possible to select some genes and to ask for 
a graphical représentation of the experiments.

3.3 Data mininq options
The results of the queries, even if they are much smaller than the whole set of data, 

can still be large, often tens of genes in tens of conditions. To make the visualization of such 
data easier, an implémentation of a hierarchical clustering algorithm (as found in Eisen et al., 
1998) is offered.
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Figure 3. Search screen permitting to search for certain expression patterns (A.) for 
microarray data (the example query shown is “Show the genes which are upregulated by a 
factor of 2 at 1 hour and downregulated by a factor of 2 at 4 hours”) (B.) for SAGE/Affymetrix 
data (the example query shown is “Show the genes which are 3 times more expressed in 
condition aa than in condition a, and four times less expressed in condition x than in 
condition xx”).

The idea behind this algorithm is to reorder the data in such a way that genes whose 
expression signatures are close are shown next to each other. This orders the genes in a 
logical order if such an order exists. If there were clusters in the data, the algorithm would 
hopefully bring together the genes belonging to the same cluster. The end resuit is that the 
genes are shown in a more logical order, making it easier to find a particular pattern of 
expression.

Clustering can aiso be performed on the experimental conditions. This can be usefui 
to see if some conditions cluster together, e.g. if the différence between cancer and normal 
tissue appears naturally from the data, or if different kinds of cancers would cluster together.
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Figure 4. Resuit of the search shown on fig. 1, presented with the gene ordered (A.) 

by UniGene cluster ID or (B.) by clustering.

The opportunity to find the genes whose expression patterns are similar to a gene of 
interest is aiso offered, permitting firstly to find other genes of interest, and secondly to 
assign a tentative biological fonction to the gene if it is unknown.

These few data mining tools should be considered as a first draft, to be completed as 
the State of the database as well as the state-of-the-art of gene expression analysis improve.
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4 Discussion
A database centralizing information from many expression studies, performed on 

different species with different technologies has been presented. To obtain this resuit, it was 
necessary to standardize the data. This standardization had to be performed not only on the 
numerical values, but aiso on the experimental protocols. To détermine what was important 
and what was not in every experiment was not an easy task, especially when the expertise in 
the field was lacking. To make expression data globally avaiiable in their most pristine 
condition, a standard for the description of the experimental protocol should be created. This 
would make the curation of any expression database infinitely easier, and avoid the problem 
of the biological compétence of the curator in the précisé domain of the experiment.

Many options should still be implemented to make this database really complété. For 
instance, it would be usefui to be able not only to search for genes differing from one 
experiment to another, but aIso to search for genes that discriminate best between two 
groups of experiments, for instance between cancerous and normal tissue (e.g. Student’s t 
test). This would give a much more “averaged out” criterion to select the genes of interest, 
probably leading to more interesting findings than to compare systematically each pair of 
experiments. It could aiso be usefui to include other clustering algorithme (e.g. K-means, 
self-organizing maps) which might be more adapted to the problem than the phylogenetic 
tree reconstruction algorithm actually used.
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4 - Discovery of overlapping clustering

1 Introduction
One of the most usefui statistical analysis technique for gene expression data is 

clustering. The clustering of the samples groupe them together on the basis of their 
expression profile. It reveals différences between groupe of samples, like for instance 
between previousiy unidentified sub-types of cancer.

There can be more than one meaningfui way to cluster the samples. For instance, in 
a study about tumors, samples could be clustered according to their pathological status or 
their inflammation level. If the complété data set, with ail genes, is clustered, the resuit could 
be any of those clustering, or a chimerical clustering where some samples are grouped 
based on one concept and others based on some other concept. Getz et al. (2000) hâve 
shown that by clustering on only a subset of genes, different clusterings of the samples 
appear, each with its own biological interprétation.

The problem is to get the appropriate clustering for the application at hand. A first 
approach is to keep ail genes. In this case, the clustering which appears is the one supported 
by the largest number of genes. This might be a reasonable strategy if it is expected that 
most of the variation in the data is due to the phenomenon of interest. However, if the 
appropriate clustering is not the most prominent, it is likely to be missed.

A related approach is to select a set of genes on which a well defined clustering can 
be found (Dash et al. 1997, Devney and Ram 1997, Xing and Carp 2000). Those techniques 
are based on the idea that some genes are irrelevant, that is, consist of noise. But as Getz et 
al. hâve shown, the problem is not so much the presence of noise than the existence of 
different organizations of the data. The genes which are irrelevant for one clustering can be 
relevant to another. The methods working by feature sélection are not well adapted to such 
case.

Another approach is to select the genes based on some knowledge of the data 
(Alizadeh et al. 2000). Alizadeh et al. selected a cluster of genes using some biological 
insights (they selected genes which defines germinal centre B-cell signature), and performed 
their analysis using only this subset of genes. This might be an effective method for data 
where the genes are clearly defined, so that the choice of genes détermines the question 
asked. For instance, a clustering made on genes expressed only in lymphocytes could 
separate the samples according to their inflammation level. In high-throughput gene 
expression experiments however, the genes are usually only succinctiy annotated. This 
means that this approach can bias the results, as the choice of genes might be made to 
obtain the clustering expected by the investigator. It can aiso hide important, unexpected, 
features of the data.

Getz et al. (2000) proposed to search for tight groupe of highiy correlated genes, and 
to cluster the samples on those groupe. This approach has two weaknesses: firstly, the 
sample clustering is done on only a handfui of genes which hâve essentially ail the same 
values. Secondly, it only works for correlated genes, hence showing a linear dépendance, 
while relationships that are more complex can exist. For instance, some genes oscillate with 
time during the cell cycle, hence they show a similar profile. However, two oscillating genes 
with a 90° phase différence are not correlated.

Von Heydebreck et al. (2001) proposed to search for sets of genes for which a clear 
binary séparation of the samples can be found. This technique searches only binary 
séparations. The algorithm must be extended to find more complex clustering.

We présent here a completely different framework for the détermination of the 
different clusterings présent in the data, which is based on two main hypothesis about the 
structure of the data. The first hypothesis is that there are a limited number of elementary 
clusterings, that is clusterings that cannot be simplified. For instance, a clustering between 
two cancer types cannot be simplified. Complex clusterings can be created using two or
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more elementary clusterings, for instance a four-groups clustering could be created as the 
combination of two two-groups clustering. The second hypothesis is that each feature is 
relevant only to one elementary clustering. With those hypothèses, it is naturel to try to group 
the genes, so that each group of genes is relevant only to one of the elementary clusterings. 
Doing this is akin to try to cluster the genes according to the clustering they are relevant to, 
hence the name MetaClustering.

It is possible to view results of the MetaClustering algorithm differently. A clustering 
could be understood as the assignation of a certain value to each sample. This value can be 
a discrète number, as in a k-means, or a more complex structure, as in a hierarchical 
clustering. A gene fitting a clustering must be a function of those values. Since ail genes 
fitting a clustering are functions of the same values, they must dépend on each other in some 
complex, possibly not univocal, way. This means that the détermination of the different 
possible clusterings is a way to find groups of non-linearly related genes.

2 Methods
In order to clarify the présentation, we define in the following clustering as being a 

partition of the samples (observation) and grouping as being a partition of the genes 
(features). The goai of the method is to find a grouping (on the genes), each group (of genes) 
defining a clustering (on the samples).

2.1 Outline
The goal of the MetaClustering algorithm is to find groups of genes, so that each 

gene fits as well as possible the clustering of the samples calculated on its group. This is 
done as follow:
1. Start with some random group membership for ail genes.
2. Calculate a clustering of the samples on each group.
3. Calculate the “fit” of each gene to each clustering, using some fitness function to be 

defined.
4. Move each gene to the group whose clustering it fits best.
5. Repeat steps 2-4 until convergence occurs.

The number of groups is a user-defined input of the algorithm; it sets the trade-off 
between variance and bias, as in the k-means algorithm. If the number of groups is too small, 
then a group of genes might support more than one elementary clustering. if the number of 
groups is too large, there is a risk of overfitting the data, giving small groups of genes which 
are determined mostly by the noise.

Different clustering algorithme and different fitness functions can be used in this 
framework. In this thesis, a version based on the average linkage hierarchical clustering 
algorithm and a version based on the neural network k-means are shown.

2.2 The hierarchical clustering version
This first version of the algorithm uses the average linkage hiérarchisai clustering.

2.2.1 Quantifying the fitness of a gene to a clustering
The algorithm goal is to group together genes relevant to the same sample clustering, 

so a choice of clustering algorithm must be made. Those clusterings are used only to 
represent their group structure, they do not hâve to be biologically interprétable. They only 
hâve to organize the data in a completely unsupervised fashion. As they are used 
intensively, they aiso hâve to be computationally efficient. We opted for average linkage 
hierarchical clustering (Jain and Dubes 1988) because it fulfills this criterion and is commonly 
used in gene expression analysis. It can aIso be efficient if properly implemented, taking a 
couple of seconds for the clustering of 2000 genes.
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A measure of the fit of a gene expression pattern to a hierarchical clustering on the 
samples, i.e. a measure of the fit between a variable and a clustering, must be defined. Only 
a couple of such measures exist in the literature. However, those were made to compare 
varions clusterings on the same data, not to estimate the relevance of a variable with respect 
to a given clustering. We chose to define a new measure of fit in parallel with the average 
linkage hierarchical clustering algorithm.

In that algorithm, at each step the two closest nodes are merged to form a new node. 
The distance d{L,R) between two nodes L and R is defined as the mean of the distances 
between the leaves of each of those two nodes:

S.
d{L,R) = X__ !__y y(

s{L)s{R) k&S(L)leS(R)
(1)

where Ng is the number of genes, S{L) is the set of samples at the leaves of the node 
L, s{L) is the cardinal of S(L) and x,a is the value of the gene / in the sample k. This means 
that at each jonction a certain criterion is minimized in a greedy fashion. This criterion can be 
used to assess the fit of a gene to a clustering.

Practically, the fitness F(i,c) between a gene / and a clustering c is defined as
Nn 1 ___ ___

Z (2)
7=1 keS{LU))l^S(R{j))

where Nn is the number of nodes in the clustering and L{n) and R{n) are the left and 
right children of node n.

The fitness (2) is a weighted sum of every sample différences. The weight for a 
différence between two samples can be understood as follow. The lowest node which 
contains both samples is taken. Somewhere in his left child tree is one of the sample, while 
the other is somewhere in his right child tree. The weight is the product of the number of 
leaves in those two child trees. The number of leaves joined by a node is higher if the node is 
higher in the tree. Hence, the weights are larger for the différences between samples joined 
by a node lower in the tree than for samples joined by a higher node. Since the éléments 
linked by the lower nodes should be very close, while the higher nodes may link very 
different groups of observations, the fonction indeed quantifies the fitness of a gene to a 
clustering.

2.2.2 The quality function
The quality of the solutions obtained must assessed. A good method should group 

together genes which fit the same clustering. This is quantified using the quality function Qo.

Q„=f,F{i,C{G{i))) (3)
i

where C(G(/)) is the clustering calculated on the group G(i) to which the gene / 
belongs. The algorithm should maximize Qo with respect to G{i). An issue with the quality 
function (3) is that the fitness between a gene and the clustering calculated on its group can 
be influenced more by the gene itself than by the rest of the group. This effect is more 
pronounced in small groups. In order to really assess if a gene fits its group, a modified 
quality function is used:

/

where G*(/) is the set of genes of the group G(/), with the gene / excluded. With this 
modification, the quality function is computationally heavier but more meaningful. This aiso 
means that, for the calculation of the quality function, there are as many clusterings in each 
group as there are genes in the group. In practice, a few genes are excluded together in 
order to speed up the calculations.

The direct maximization of (4) does not lead to satisfying results, firstly because it is 
very heavy to calculate and secondly because of the presence of numerous local maxima.
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Thus, the quality function is not directiy maximized. A stochastic version is used instead. In 
that version, the following is done for each gene:

1. The clustering for the group to which the gene belong is re-calculated after the 
removal of the gene.

2. The fitnesses between the gene and the clusterings of each group are calculated.
3. The gene is moved to the group whose clustering it fits best.
See Figure 1 for an illustration. This version neglects the effect of the switching of a 

gene from one group to another on the quality of the other genes. This allows for a much 
faster calculation and permits to avoid many local maxima.

Figure 1. Scheme of the algorithm. Each point is a gene, the ovals are the groupe and the 
trees are the clusterings. The gene / belongs to group 1. A clustering is calculated for the 
group 1 without the gene /. The fitness of the gene to this clustering is compared to its fitness 
to the clusterings of the other groupe, and the gene / is moved to the group it fits best.

Since the algorithm is not maximizing a global criterion, convergence is not 
guaranteed. However, because the algorithm is deterministic, markovian and the search 
space is finite, it has to converge either to a fixed solution or to a cycle. If the number of 
genes or the number of groupe of genes is small, then the cycles might be short enough to 
be detected. Otherwise, the algorithm can either be stopped after a determined number of 
itérations, or the quality (4) of the solutions can be monitored, and the algorithm can be 
stopped when no improvement is noted for a sufficient number of itérations. In our 
implémentation, we stopped the algorithm after convergence, after détection of a cycle, or 
after a hundred itérations, whichever occurred first.

2.2.3 Complexity and algorithmic improvements
A first improvement is based on the fact that the fitness needed is not between a 

gene and a clustering, but between a gene and a group of genes on which a clustering is 
calculated. Hence, it is possible to reduce the variance of the calculation of the fitness by 
creating a few slightiy perturbed clusterings. This is done using k-fold cross-validation: (K-1) 

of the genes of the group are selected K times for the calculation of the fitness. The 
results are then averaged. This leads to a better and more stable estimation of the fitness of 
a feature to a group of genes.

The complexity of the algorithm is quite high. Let the number of genes be M, the 
number of samples N, the number of groupe of genes G and K-fold cross-validation be used. 
Typical values for those constants could be M=2000, N=50, G=5 and K=5.

During an itération, each gene is taken in turn. For each gene, a clustering is 
calculated on the samples with ail the genes in its group except itself (complexity: 0{MN^/G) 
for the distance matrix and 0(AP) for the clustering). The fitness between the gene and the 
clusterings must then be calculated (complexity: O(GAF)). This is done K times for the cross- 
validation. If the gene is moved to another group a clustering must be calculated for the 
original and the new group (complexity: 0{MhP/G) + 0(/\F)). So the complété complexity of 
an itération is 0{KI\/PN^/G) + O(KMlsP) + 0(KGMN^). Since usually M/G»N, the effective 
complexity is 0{KI\/PN^IG). The dominant term is the calculation of the distance matrices.
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It is possible to reduce the complexity of the cross-validation. The distance matrix of 
each of the genes can be calculated separately. The distance matrices for the cross- 
validation are sums of those matrices. This way, the complexity of the calculation of the 
distance matrices is reduced to 0{KMhPIGK) + O(K^AP), that is 0{MhPIG) if K^«MIG. AIso, 
the fitness of a gene to a clustering is simpiy a weighted average of the values of the 
distance matrix of the gene. The weights are identical for each gene, so they can be 
calculated only once. The complexity of the calculation of the fitness of X genes can be 
reduced to 0{KF\P) for the weights plus 0{XtsP) for the distances, that is O(XAP) if X»K. With 
those tricks the cross-validation cornes at a low cost.

It is possible to make “cheaper” itérations by neglecting the effect of the removal of a 
gene from its group on its fitness, that is by using (2) as the quality fonction instead of (3). 
Those itérations hâve a reduced complexity of O(GMN^) + 0{KGhP). A couple of those 
itérations are performed before each complété itération to fasten convergence.

Since the number of genes in any group is large, the removal of some genes should 
not hâve a large effect on the fitness of the others. Practically, the genes of each group are 
separated in F parts (e.g. 10). Ail the genes of each part are considered simultaneousiy (see 
Figure 2B). This way only GF distances and clusterings hâve to be calculated instead of M. 
Those improvements reduce the complexity of an itération to 0{FMhP) + 0{GMhP) + 
O(KFGAF). This is comparable to the complexity of an average linkage hierarchical clustering 
(/.e. O(yWAF) + 0(AF)), but of course the constant in front of the complexity is much higher and 
many itérations must be performed. Altogether, the running time of the algorithm is 
reasonable, being about 10 seconds per full itération on an Athlon 650 workstation with 2000 
genes, 72 samples and 5 groups.

2.3 Neural networks version
The two-level clustering presented can easily be written in neural network form. This 

is done by taking a neural network clustering algorithm - a K-means in this case - and by 
adding a first layer which dispatch the features to one clustering or another.

An example of such architecture is presented in figure 2. Three K-means, with the 
neurons W, are on the right part of the figure. Each of those K-means clusters the 
observation in two groups. The Z neurons on the left of the figure are used to give a weight to 
each feature for each clustering.

The neurons Zk and Wjk hâve M weights, where M is the number of features, noted Z* 
and Wijk. With those notations, the équations of the network can be written:

As the clustering algorithm is a K-means, the supposition that only one neuron fires in 
each clustering is added. That means that for each k, the highest Ojk is set to 1 and the others 
to 0.

The quality function for this network can be written as

where b(m,k) is the neuron which fires in the map k when the observation m is presented. In 
order to avoid trivial solutions, some normalization constraints must be added:

(5)
(6)

(7)
ikm

Z,, e [0,1] (8)

(9)
k

A quick calculation leads to the stochastic gradient:

(10)
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# = 2(z,fï^ - k. -1- Z(za. - k. (11)
dZ-k K ,

where K is the number of self-organizing maps. This gradient is used for learning the 
weights.

Figure 2. Scheme of the neural network version of the MetaClustering algorithm, with four 
features separated in three groups. The observation clusterings are two-groups K-means. 
The circles are the neurons and the boxes are the input/output values, x, are the input, Z the 
neurons which perform the features grouping, the input values for each clustering, W the 
neurons which perform the K-means observation clustering and o,y the outputs.

3 Results

3.1 Simulated data
An artificiel data set including non-linearly linked genes has been created in order to 

show the power of the MetaClustering compared to more usual methods.
The data set consiste of 20 genes and 50 samples. The 20 genes are organized in 4 

groups of 5 genes. In the first three groups, the genes are linked together in a similar fashion. 
The last five genes are simpiy random noise.

For each of the first three groups, a random permutation s of the numbers 1 to 50 is 
drawn. This permutation gives a value from 1 to 50 to each sample. The genes F1-F5 are 
related to s as follow; F1 = s ; F2 = {s-25f ; F3 = sin(9s / 50) ; F4 = sin(12s / 50) ; F5 = -s. 
The permutation is different for each of the first three groups. Each gene is centered and 
normalized, then gaussian noise with a standard déviation of .3 is added and the resulting 
genes are centered and normalized again. The random genes are drawn from a gaussian 
distribution of unity standard déviation. This data set is constructed so that although the 
genes are linked, the corrélation between some of them remains small. In particular, the 
second and third genes of each group (F2, F3) are hardiy correlated to the other genes (F1, 
F4 and F5) of their group.

As shown in figure 3, some genes can be correctiy grouped by a single linkage 
hierarchical clustering algorithm using an Euclidean distance, especially those which are 
linearly related {e.g. genes 1 and 5). However, only some small parts of the grouping are 
correct and the dendrogram does not give an accurate représentation of the gene structure. 
Similar or worse results are obtained with other classical hierarchical clustering algorithme 
and K-means.
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Figure 3. Dendrogram of a single linkage hierarchical clustering of the genes in the 
simulation data set, the distance being one minus the absolute corrélation. The genes 1-5, 6- 
10 and 11-15 should be grouped together. The genes 16-20 are random.

A classical way to group together non-linearly related genes is to use a non-linear 
metric, mutual information being the most common choice. Mutual information can only be 
calculated on discrète data, so the continuons values must be discretized first. The values for 
each gene were discretized to 3, 4, 5 or 6 levels. The mutual information was then calculated 
between ail genes, and the genes were clustered using one of the three classical hierarchical 
clustering algorithms: single linkage, average linkage or complété linkage. We then checked 
if the clusterings had captured the right structure. A clustering was considered as correct if it 
was possible to find 3 nodes such that the leaves in each of these nodes contained ail the 
genes of one of the non-random group and no genes of any of the other non-random group. 
100 simulated data set were drawn. The results are summarized on table 1. The hierarchical 
clustering using the mutual information was often able to pick the right structure, but this was 
not aiways the case. Even in the best case scénario (discretization in 4 levels and average 
linkage), only 70% of the data sets were correctiy clustered. So the mutual information is not 
able to robustly recover the known structure. Moreover, it is not trivial to décidé how many 
discrète levels are optimal for a particular data set.

The MetaClustering algorithm was then used to group the genes. A hundred data sets 
were randomly drawn along the scheme given. The algorithm was run twenty times for each 
data set, with different random initialization. The number of discrepancies between the 
known grouping and the obtained grouping were recorded, as well as the quality of the 
results as measured by (4). It is not expected for each run to give the right solution, as the 
algorithm is sensitive to its initialization. However, the solution with the highest quality, in the 
sense of (4), should be the correct one.

The hierarchical clustering version converged in 65% of the runs to the right solution 
(see table 2). The run with the best quality (4) was consistently the right solution, showing the 
effectiveness of the algorithm.

The results of the neural network version were less convincing, as the right solution 
was found less often and it happened that the run with the highest quality (7) was not the 
right one. However, the results could be considered as promising, as a few runs were still 
usually enough to find the right solution. The K-means algorithm used is the simplest, and 
more complex type of clustering like self-organizing maps could improve the resuit. The 
number of clusters in the K-means part of the network has a certain effect on the resuit: 
when this number is too small, the K-means is too coarse and the network is unable to 
uncover the real structure, when this number is too large the algorithm tends to hâve some 
trouble converging. However, the algorithm remained much more effective than the 
hierarchical clustering using a mutual information metric.

The last five genes, which are purely random, were split between the groupe since 
the MetaClustering algorithm aiways keeps ail features. Their presence did not compromise 
the ability of the algorithm to correctiy group the other genes.
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In conclusion, the MetaClustering algorithm proved to be able to robustly group genes 
which are non-linearly related, contrary to more classical approaches. The hierarchical 
clustering version seems more effective. It leads more consistently to good solutions and is 
computationally more efficient. The hierarchical version is systematically used in the next 
applications.

Number of discrète levels 3 4 5 6
Single linkage 1% 64% 31% 20%
Average linkage 8% 70% 43% 38%
Complété linkage 2% 2% 10% 8%
Table 1. Percentage of the simulated data sets in which hierarchical clustering using mutual 
information metric was able to find the expected structure, in function of the number of levels 
used for the discretization.

Hierarchical Neural network version, K-means with
2 groups 3 groups 4 groups 5 groups 6 groups 7 groups

Runs with
right
solution

65% 0% 14% 31% 29% 23% 18%

Data sets 
with at 
least 1 
right 
solution

100% 0% 70% 100% 99% 99% 98%

Data sets 
with an 
error in 
the best 
solution

0% 100% 32% 4% 3% 2% 7%

Table 2. MetaClustering of the simulated data sets.

3.2 Leukemia data
Golub et al. (1999) hâve studied with oligochips the différences between two types of 

leukemias: acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). This last 
type of leukemia can further be separated into T-lineage ALL and B-lineage ALL. They 
showed that the distinction between ALL and AML could be inferred directiy from the data 
with a clustering technique. We hâve discovered that this was indeed true, but depended on 
the normalization and filtering scheme used and on the initialization of the clustering 
algorithm.

The normalized data (see appendix for details) were clustered using an average 
linkage hierarchical clustering algorithm (Figure 4A). The leaves were ordered, as for ail 
hierarchical clusterings shown, using the technique of Bar-Joseph et al. (2001). The images 
displayed were obtained using TreeView (Eisen et al. 1998). Some parts of this clustering 
were close to the ALL/AML séparation, but other parts seemed unrelated. Since hierarchical 
clustering is based on local similarities, some samples were merged because they were 
close on one set of genes, others because of another set of genes.

We tried to cluster the samples in two groups using a k-means algorithm (Jain and 
Dubes 1988) with random initialization. This was done 1000 times, leading to 324 different 
solutions. We define 6 as being the number of différences between a clustering and the 
ALL/AML labels. As shown Figure 5A, solutions close to the ALL/AML séparation were 
obtained in only 4% of the runs. The sum of the square distances between the samples and 
their cluster center is a measure of the quality of a k-means clustering. As shown in Figure 
5B, this criterion does not point to the solution closest to the ALL/AML séparation. So the
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ALL/AML séparation might be obtained through k-means, but if it was not known beforehand, 
it could be missed.

nnnnpannnnnnnnnnnnnnnnnpapannnnnnnnnpannHHHHHHHH h

Bl I I l^l^l^l I I I I I I I I I

Figure 4. Clusterings obtained on the ALL/AML data set. A. With ail the genes. B. With the 
genes from a group determined by MetaClustering in three groups. The samples are color- 
coded; white for AML, black for ALL-B and red for ALL-T.

MetaClustering allows the détermination of the different elementary sample 
clusterings. Since the ALL/AML séparation is expected to be one of those clusterings, it 
should be prominent on one of the group of genes determined by the algorithm. Indeed, this 
was often the case after MetaClustering in three groups {e.g. Figure 5C). Furthermore, the k- 
means error criterion did often point to the ALL/AML séparation {e.g. Figure 5D). In the 
following analysis, the k-means algorithm was aiways run 100 times, and the solution with 
the lowest k-means error was kept.

Since different initialization of the MetaClustering can lead to different results, the 
algorithm was run 200 times with random initialization, with two or three groups. Among the 
runs with two groups, 61% had a Ô below 6. With three groups, this fraction raised to 77%. It 
is possible to décidé which of the MetaClustering run should be chosen by using the quality 
function (4). The solution with the highest quality (4) had indeed a low ô (Figure 5E and 5F), 
showing that it is possible to use (4) to décidé which MetaClustering to keep. With the 
highest quality MetaClustering, ô was 1 with two groups and 2 with three groups. On the 200 
runs, the algorithm converged to the best two groups solution 4 times and to the best three 
groups solution 3 times. This means that, as with k-means, it may be necessary to perform a 
hundred or so runs with random initialization to pick the best one.

Our results compare favorably with the technique of Xing and Karp (2001), which 
used a feature sélection algorithm and obtained a S of 3. Getz et al. (2000) hâve determined 
a cluster of 60 correlated genes on which they daim that a clustering close to the ALL/AML 
séparation appears. Using a k-means on that group of genes, the resuit was disappointing as 
6 was 6. This shows the importance of using more than one pattern of genes for the 
clustering.

In the original paper, a test was created to détermine the most informative genes for 
the ALL/AML séparation. We picked 50 genes using the same test. The group on which the 
ALL/AML séparation appears indeed concentrated many of those genes, with on average 
74% in the two groups MetaClustering and 70% with three groups. The grouping with the 
highest quality concentrated a larger number of those genes than average, that is 86% with 
two groups and 72% with three groups, showing again that (4) is an effective criterion to 
judge the quality of the MetaClusterings.
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E F
Figure 5. A. Histogram of the number of différences between the known ALL/AML séparation 
and the k-means clustering (ô), using different random initializations. B. Mean square error of 
those clusterings. The best clusterings error-wise do not hâve the lowest ô. C. and D. are 
similar results obtained on one of the groups after MetaClustering in two groups. Results with 
low ô appear much more often and correspond to the minimum error of the k-means. E. and 
F. Number of différences between the known ALL/AML séparation and the best k-means 
clustering (8), as a function of the MetaClustering quality. The MetaClustering was done with 
two (E) or three (F) groups.

The séparation of the samples in AML, T-ALL and B-ALL should aiso be found by 
clustering of the samples using one of the groups of genes obtained by MetaClustering. This
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was assessed by k-means clustering in 3 clusters. We define ô as being the number of 
différences between a clustering and the T-ALL/B-ALL/AML labels. Again, clustering the 
whole data set lead to a large 5, 14. However, after MetaClustering, the results were doser 
to the expected séparation. For the MetaClustering with the highest quality, 8 was 10 using 
two groups of genes and 3 using three groups. In this case, three groups seemed necessary 
to recover the known structure.

The genes of the right group in the 3 groups MetaClustering with the highest quality 
were clustered using a hierarchical clustering algorithm (Figure 4B). This clustering is much 
doser to the known séparation than the one obtained on the whole set of genes (Figure 4A). 
There were three main clusters: AML, T-ALL and B-ALL. This explains the presence of good 
quality MetaClusterings in three groups which hâve a 8 with the ALL/AML séparation of 10 
(Figure 4F): the k-means algorithm being biased towards equivaient-sized groups, a solution 
with one tight B-ALL cluster and one loose T-ALL and AML cluster may compare favorably to 
a solution with one tight AML cluster and one not-so-tight B-ALL and T-ALL cluster.

The meaning of the clustering obtained on the other groups of genes is harder to 
understand. On one of the remaining groups the samples coming from one of the sources 
(CALGB) were tightiy clustered together, which corresponded to one of the clusters found by 
Getz et al. This shows that other clustering are indeed présent in the data, and that would the 
détermination of the source be the important parameter it could hâve been found by 
MetaClustering. The other clusters were not intelligible with available biological information.

3.3 Yeast cell cycle data
Spellman et al. analyzed cell cycle in yeast using microarrays in 1998. In those 

experiments, yeast cells were synchronized at a certain point in their cycle. They were then 
released and began to cycle while keeping their synchrony. The expression levels of many 
genes, the cell cycle regulated genes, showed a periodic behavior. However, other genes 
showed different profiles, like for instance steady increase or decrease with time. Spellman 
et al. used a method based on Fourier transform to identify cell cycle regulated genes. Since 
those genes are not ail correlated, it is impossible to cluster them together using classical 
clustering algorithme like hierarchical clustering or k-means (results not shown). The 
MetaClustering method groups together genes which support the same organization of the 
data. Since cell cycle genes hâve a spécifie periodic organization, they should be grouped 
together.

The data from one of the cell cycle experiments were taken (see appendix for details). 
The genes were clustered in two groups using our algorithm. The first group (Figure 6A) 
contained genes which showed a periodical behavior, that is cell cycle genes. The second 
group (Figure 6B) was not as cohérent, but its main feature seemed to be a large variation 
from one time point to the next. Clustering the samples using the genes of the second group 
lead to a suprising two clusters resuit, one cluster comprising the odd time points (70 mins, 
90 mins...) and the other the even time points (80 mins, 100 mins...). We hâve no 
explanation for this fact. However, by Visual inspection, the grouping of the cell-cycle 
regulated genes seems reasonable.

Spellman et al. hâve determined 800 genes to be cell cycle regulated. Among the 569 
of those genes which survived our sélection process, 458 (80%) were in the first group. The 
remaining 20% of the genes seem to show large fluctuations from one time point to the next, 
which is a characteristic of the second group (Figure 6C). On the other hand, 601 genes 
were grouped with the cell cycle regulated genes while they were not considered as such by 
Spellman et al. As judged visually (Figure 6D), a large part of those genes could indeed be 
considered as cell cycle regulated. Since every gene must be assigned one group, even if it 
does not fit any group well, the presence of a certain percentage of non cell cycle regulated 
genes in the cell cycle group was expected.
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In conclusion, the MetaClustering algorithm was able to group together cell cycle 
regulated genes in an unsupervised fashion, leading to results similar of those of Spellman et 
al., who used a specialized algorithm. Since cell cycle regulated genes are not ail correlated, 
this is a resuit that could not hâve been obtained by clustering algorithme based on pair-wise 
similarity (like hierarchical clustering) nor by algorithms based on prototypes defined in the 
original space (like k-means).

Figure 6. Groupe of genes obtained by MetaClustering the "cell cycle" experiment. Genes 
were clustered using average linkage hierarchical clustering and ordered for the display. A. 
Cell-cycle genes group. B. Non cell-cycle genes group. C. Genes of group B considered by 
Spellman et al. to be cell-cycle regulated. D. Genes of group A not considered by Spellman 
étal, to be cell-cycle regulated.

3.4 IPUMS census data
To further demonstrate the power of the MetaClustering algorithm, it was applied on a 

completely different data set, in which the cohabitation of different sample clustering is likely. 
This data set is the IPUMS census data. The IPUMS data set is a subset of the American 
census data in the Los Angeles région, were the features hâve been standardized and some 
secondary features hâve been added. Each observation in the data set concerne an 
individual. The data set has many features, which can be relative to very different types of 
information - like for instance income and family status. The idea is to see if groupe of 
features exist on which different individual clusterings can be found.

The data from the year 99 were taken. The house value and renting price were 
Consolidated as one feature. The features which showed little variation were discarded. After 
that sélection, there remained 40 features, 25 being continuous and 15 discrète. As the

12



algorithm makes a very intensive use of the hierarchical clustering algorithm, the number of 
observation must be limited. For that reason, only a random subset of 1000 observations 
was kept. The results do not seem to be very sensitive to the choice of subset.

For the hierarchical clustering algorithm to work, the distance between two 
observations must be defined. The difficulty is that observations hâve both discrète and 
continuons features. In order to render the relative contribution of each feature similar, the 
continuons features were normalized to a mean of zéro and a standard déviation of one. The 
distance between two observations was then calculated as

where MC (resp. MD) is the number of continuons (resp. discrète) features, xcid (resp.

if a is different from b and 0 otherwise and w* is the weight for the feature k, calculated as

where A/* is the number of discrète values in the feature k and fki is the frequency of 
the value / in the feature k. With those choices, the average contribution of each feature 
(discrète or continuous) to the distance between two randomly chosen observations is 2.

The features were separated in two groups using the hierarchical version of the 
MetaClustering algorithm (see table 3). The first group of features seems to be relative to 
the weaith of the individuel. This group comprises ail the income features (e.g. ftotinc, family 
total income) and other money or job related features. The second group of features seems 
to be related to the family status of the individual, with features like the number of mothers in 
the household (nmothers), the family size (famsize) and the marital status (marst). Hence the 
grouping found seems reasonable.

The quality of each feature in each group, calculated as the contribution of the feature 
to the quality function (4) would it be in the group, is aiso given in table 2. With the 
normalization used, this quality would be 2 if the feature does not fit the group and close to 0 
if it fits perfectiy. Those quality can be used to assess whether the hypothesis that the groups 
are independent holds or not. If the groups of features were really independent, the quality of 
the features in the group they are not part of should be around 2. For instance, the incbus 
feature (income from business) seems to fit only in group 1, as its quality in group 2 is quite 
close to 2. The raceg feature (race) however has qualities close to 2 in both groups, so it 
seems that neither weaith nor family status are very informative for the race, although the 
first group seems somewhat more appropriate. Some features, like âge, can fit in both group: 
the wage income is informative for the âge, as is the marital status or the number of children. 
Hence, the independence hypothesis does not completely hold in this case. However, this 
does not prevent the algorithm from giving a meaningfui grouping.

(12)

xdkj) is the continuous (resp. discrète) feature k in the observation /, the value of {a Z?) is 1

2
(13)

1=1
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Feature name Group membership Quality in group 1 Quality in group 2
Value/rent 1 1.4293 1.7302
Ftotinc 1 0.9227 1.7595
Incwage 1 0.3489 1.6265
Incbus 1 0.8609 1.9631
Incss 1 0.0295 0.7758
Incwelfr 1 0.0263 0.765
Nfams 2 1.8694 1.0953
Ncouples 2 1.7006 0.5037
Nmothers 2 1.6178 0.6472
Nfathers 2 1.5982 0.4594
Famsize 2 1.3495 0.5011
Nchild 2 1.6149 0.4885
NchItS 2 1.9512 1.3082
Famunit 2 1.9949 0.5626
Nsibs 2 1.5412 0.5971
Age 2 0.6553 0.5977
Chborn 2 1.4609 0.7348
Educrec 1 0.648 1.0658
Occscore 1 0.3697 1.2575
Sei 1 0.546 1.4513
Wkswork2 1 0.5091 1.3424
Hrswork2 1 0.3953 1.4128
Inctot 1 0.3528 1.56
Poverty 1 0.8789 1.5082
Movedin 2 1.3236 0.492
Ownershg 1 1.4978 1.6398
Momrule 2 1.1764 0.3113
Poprule 2 1.2488 0.2132
Sprule 2 1.5024 0.2607
Relateg 1.4282 0.4608
Sex 2 1.7274 1.0621
Raceg 1.834 1.9385
Marst 2 1.4184 0.6216
Belg________________ 1 1.6938 1.7702
Schitype 1 1.3408 1.3524
Empstatg 1 0.292 1.2584
Classwkg 1 0.4233 1.3896
MigplacS 2 1.711 1.5985
Vetstat 1 0.5408 0.9649
Tranwork 1 0.523 1.4776
Table 3. MetaClustering of the IPUMS data set.

4 Conclusion
A new framework allowing to uncover the overlapping clusterings of the samples has 

been presented. The algorithm Works as well for discrète structures (e.g. cancer type, as in 
the leukemia data) than for continuous structures (e.g. cell cycle phase, as in the yeast data). 
The outputs of the algorithm are groupe of genes which hâve a similar sample structure. This 
means that any clustering algorithm can then be used on those groupe of genes, be it 
hierarchical clustering, k-means, or anything eise. This flexibility makes the MetaClustering a 
powerfui tool for the discovery of the different structures présent in the data.

This Work could aiso be viewed as a means to perform feature sélection: the features 
are selected so that each group gives a tight clustering. The main idea which allows for this
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feature sélection is that ail features are informative, but not to answer the same question. 
Hence, features can be selected according to the question asked, i.e. according to the 
clustering obtained on the samples. It could be possible to further select the features, by 
excluding those which do not really fit any group. We are investigating this possibility.

In conclusion, the algorithm presented here is able to find groups of linearly or non- 
linearly linked genes. Any clustering algorithm can then be used to extract the type of 
relationship between the samples on those groups of genes. We demonstrated that it 
uncovered the expected results when applied to an artificial and two real-world data sets.

5 Appendix - normaiization procedures
For the leukemia data set, the complété data set (72 samples, 7129 genes) was 

taken from the original paper companion web site. The “présent” calls were neglected. The 
values below zéro were put to zéro. The data were normalized so that the mean gene 
expression level was 1 in each sample. The genes having a normalized mean intensity 
across the samples lower than .2, having more than 25% of their values at zéro or having a 
coefficient of variation (standard déviation divided by the mean) less than .5 were excluded. 
1990 genes passed this filter. The remaining data were normalized to a mean of 0 and a 
standard déviation of 1 across each gene and sample.

For the cell-cycle genes, there are different experiments in the study, which differ in 
the method used to synchronize the cells. The one discussed is the growth arrest of a cdc15 
temperature-sensitive mutant (24 time points), but similar results were obtained on other 
experiments. Since the data contain many very noisy measurements, genes with a low signal 
to noise ratio had to be discarded first. The data were log transformed and normalized so 
that each sample and each gene had an average log-intensity of zéro. A smoothed version of 
the data was obtained using a Butterworth filter (Matlab Signal Processing Toolbox, 
MathWorks inc.). The 2067 genes for which at least 80% of the variation remained after 
smoothing and for which no more than 3 measures were missing were kept, in their non- 
smoothed form. The remaining genes were normalized to a mean of zéro and to a standard 
déviation of one across the genes and across the samples.
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5 - Mathematical dissection of heterogeneous samples

1 Introduction
One difficulty with the analysis of gene expression data is the sample composition. 

The most convincing works hâve been conducted on pure samples, i.e. samples containing 
only one type of cells. When more than one cellular type is présent, a situation which is 
encountered in solid tumors and tissues, it is much more difficult to draw any conclusion. Any 
cellular type présent in the tissue contributes differently to the measured expression of a 
given gene. Two samples containing precisely the same cellular types (e.g. coming from the 
same tissue in the same patient) can hâve two different profiles of gene expression simpiy 
because the proportions of these cellular types are different.

Two methodological solutions are commonly used to address this issue: in situ 
hybridization, to check where a given gene is expressed; and micro-dissection, to isolate one 
particular cellular type before performing the experiment. Both of these methods are time 
consuming. Moreover, the first one cannot be realistically performed for every gene 
measured. We propose here a completely different approach. The idea is to start directiy 
from the gene expression data obtained on the composite samples to détermine 
mathematically the profile of expression of the cellular types présent.

We will show in this chapter that, with certain assumptions, the problem of the 
identification of the cellular types is tractable. We will présent an algorithm able to perform 
the séparation and présent briefly other approaches. The algorithm will then be applied to 
simulated résulta to show that it actually works. The problem of the corrélation between 
cellular types will be addressed. We will finally appiy the techniques developed to real-world 
data and will show that they permit to identify cellular types which seem mathematically and 
biologically meaningful.

2 General framework for the solution

2.1 Formulation of the problem
Each measured tissue sample is composed of a mix of cells of different types {e.g. 

fibroblasts, épithélial cells...). We are quantifying the total mRNA coming from this pool. 
Since the mRNA quantities from each cellular type (CT) simpiy add up (considering the 
measurement System as linear), the measures made are simpiy a mix (linear combination) of 
the measures we would hâve with each CT alone. The relative importance given to each CT 
is proportional to its concentration in the sample.

We will suppose that we hâve a set of measures concerning many samples (where 
many is much more that the number of CT) which contain the same CT in various 
concentrations. These variations in the concentrations will allow us to infer the signature 
(profile of gene expression) of the pure CT. We will aiso suppose, in ail of the following, that 
we know the number of CT.

The problem is formalized using three concepts, expressed as three matrices {e.g. 
see table 1):

M : matrix of measures, containing as many lines as there are genes and as many 
columns as there are measures.

G : signature of the cellular types. It is a matrix with as many lines as there are genes, 
and as many columns as there are cellular types.

C : concentration matrix, with as many lines as there are cellular types and as many 
columns as there are measures.

Définition A cellular type (CT) is a column of the matrix G.
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Table 1 Example data.
Example of G (2 cellular types, 3 qenes):

Cellular type 1 Cellular type 2
Gene 1 30 80
Gene 2 50 10
Gene 3 20 10

Example of C 2 cellular types, 4 samples);
Sample 1 Sample 2 Sample 3 Sample 4

Cell. Type 1 50% 20% 30% 70%
Cell. Type 2 50% 80% 70% 30%

Example of M (4 samples, 3 qenes):
Sample 1 Sample 2 Sample 3 Sample 4

Gene 1 55 70 65 45
Gene 2 30 18 22 38
Gene 3 15 12 13 17

The measurements for each sample are only meaningfui to a multiplicative constant. 
If for instance the amount of material measured varied, every resuit would be multiplied by a 
certain value. This multiplication is biologically meaningless. To remove this un- 
determination, we decided to normalize the measures such that the sum of the values for 
every sample is N, the number of genes:

±M,=N
i=l

We can write each measure as a fonction of the signature of the CT and of their 
concentrations in the samples:

Na

Ws = Z<î,A (1)
*

where M.j is the measure of the gene i in the sample j, is the expression of gene i in cell

type k, is the concentration of the cellular type k in sample j and Net is the number of CT.
This can aiso be written in matrix notation:

M = GC
The goal is to infer the matrices G and C from the matrix M. Stated as it is, this 

problem is under-determined. However, the matrices G and C hâve to obey certain physical 
constraints.

Constraints on G:
G. >0

Vt;f;G.=iV
1=1

(2a), (2b)

(2a) States that the expression for each gene should be non-negative. (2b) States that 
a measure on the pure CT should hâve the same normalization as the matrix M.

Constraints on C:

(3a), (3b)
*

(3a) States that the concentrations should be non-negative. (3b) States that the sum of 
the concentrations of the cell types should be equal to 1 for every sample, i.e. that there is 
nothing in the samples but the cell types considered.
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We add two assumption to this in order to obtain a better-defined problem. These 
assumptions should not be a problem in real cases:
1. The CT (i.e. columns of G) are linearly indépendant.
2. Their is a square sub-matrix of C of size equal to the number of CT which is invertible.

With these assumptions, we hâve a first lemma:
Lemma 1 Let there be a real solution, M = GC respecting the two assumptions.
Then each calculated CT of any solution of (1) is a linear combination of the real CT. 
Proof In this proof, we will only keep the samples corresponding to the invertible part 

of C. On this sub-part, we hâve G=M/C. Let G*, C* be another solution to the same problem. 
We hâve G=G* C*/C. The columns of G are a linear combination of the columns of G*. Since 
the columns of G are linearly indépendant, so must be the columns of G. So C*/C must be 
invertible. Hence G* = GC/C* = GT, which is to say that the CT of G* can be expressed as a 
linear combination of the CT of G.

2.2 Conditions to hâve unicitv of the solution
It would be convenient to hâve only one solution to the problem. We will now show 

under which conditions this unicity is guaranteed.

Définition A marker is a gene which is présent only in one CT. We suppose that each 
CT has at least one marker:

Vy3/1 Gy ^ 0 and =0 if k ^ j
Lemma 2 Let there be a real solution, M = GC 
Let each CT hâve at least one marker.
Then each calculated cellular type of any solution of (1) is a linear combination with 

positive coefficient of the real CT.
Proof Using lemma 1, we can Write any solution G* as a linear combination of G:

Nci

g;=
*=i

Where Net is the number of CT. Considering the marker for the CT m (say gene n);
G , = G T ,nj nm tnj iW

Since G„„ > 0 and G„j >0, has to be non-negative for every m and j.

so

Theorem Let there be a real solution, M = GC 
Let each CT hâve at least one marker.
Let the corrélation between the CT of G be zéro.
Then for any solution G* of (1) with non-correlated CT

Net

g;='Zo^t,
k

the matrix T is a permutation of the identity.
Proof Applying (2b) to (4)

Zg; = ZZgA = Zî’(,ZG« = = N
1=1 i k k i k

Net

Zr.; = 1
*=1

We supposed that the CT of G are not correlated:

(4)

(5)
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hence
Z (g« g,-g„-g,+\)=Y.(g,(i^)-n-n + n = o

SO
I(G.,G,)=iV if i j (6)

We can now write the no-correlation condition on G*:

Replacing with (4)

k \ l 
f

= 0

(7)I ZG.,nG,,r,.-XG„r„ -ZG..7;, + l =0
k \ Im l m J

We will calculate each term of (7) successively. First term of (7);

Z[ZG«r„G,.r,.'|=Zî;,r.,ZG.A. = Xî’«t;Zg« +Z7’,,7’.,Xg„g,
k \ Im J

km
Im l^m

Using (6)
= I,t,t,'Eg« + Y.t,t.jN = +'Lt„t.jN

t k l^m l k Im l

=Zî’.^sZ(g«-i)+a'Zt;,Zî'^

Applying (5)
'EV,n<tI, + n

where rjg,. is the variance of the cellular type i.
We can now calculate the second term of (7), using (2b) and (5):

ZZ^^r,, = Z^.Zg» =Y.t,n = N
kl I k l

The third term of (7) gives the same resuit as the second, so we can put everything 
together:

k \ Im
Z ZG«^A.r„-2G„r„-ZG,.r.,+i\=Y.t„t,N(t‘,+n-n-n+n

I m J I

= ZW<^»=0

By the lemma 2, every value in T has to be positive. By the lemma 1, T must be non- 
singular; hence, each line and column of T contains at least one non-null entry. Say >0;

The only way to respect this is to hâve T^j =0 for j m. So each line of T contains
one and only one value. Since each column contains at least one value and T is a square 
matrix, each column contains one and only one value. With (5), the sum of the values of a 
column of T, Le. the only value présent, is 1. Hence, T is a permutation of the identity matrix.

3 Alqorithms
Many different approaches can be used to solve our problem. We will présent a direct 

method and discuss two other methods we hâve tried but seemed less satisfactory.
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3.1 Direct solution
The idea is to solve the problem by using a least square criterion: we search two 

matrices G and C which minimize the norm of the reconstruction error
||M-GCf (8)

subject to the constraints (2a), (2b), (3a) and (3b).
The algorithm is simple:

1. Considering G as known, calculate C minimizing (8) subject to (3a) and (3b)
2. Considering C as known, calculate G minimizing (8) subject to (2a) and (2b)

These two steps are performed sequentially until convergence. This algorithm is 
guaranteed to converge to a minimum (local or global) because the error (8) decreases at 
each step and there is a lower limit for the value of the error.

We take into account the positivity constraints (2a) and (3a) by solving (8) with the 
Matlab fonction nnis, non-negative least squares. The normalization constraints (2b) and (3b) 
are applied by dividing each column of either G or C after each itération. These 
normalizations could affect the convergence of the algorithm, but in practice their effects are 
small enough.

It remains to add the uncorrelation constraint. Since the uncorrelation is a strong 
unproven hypothesis, we introduce this constraint in a relatively soft fashion. After each 
calculation of G, we subtract from each CT a fraction of the values of every other CT to which 
it is correlated. This fraction is proportional to the corrélation and to a constant alpha to be 
chosen:

G' = G - oG{corrcoef[G) -1)
this will tend to de-correlate the calculated CT. Alpha is a key parameter as the following will 
show. The convergence is not guaranteed anymore with this new step since it usually lead to 
a raise in the error (8), but this is usually not a problem in practice when a is sufficiently 
small. The solutions obtained with this new step do not minimize (8) anymore, but hopefully 
are doser to the real ones.

3.2 Other possibilities

3.2.1 Principal component and factor analysis
We could view the séparation in CT as a kind of dimensionality réduction: a certain 

number of samples are described as a linear combination of a smaller number of CT. Two 
main approaches exist in the literature for dimensionality réduction: principal component 
analysis and factor analysis. Both find a set of orthogonal vectors whose linear combinations 
fit optimally the data in a certain sense. The CT will then be the linear combination of these 
vectors which respects as well as possible the conditions (2a), (2b), (3a) and (3b).

Algorithms based on these techniques présent the following shortcomings:
1. The positivity constraints (2a) and (3a) are not directiy taken into account, while they are 

important for the unicity of the solution.
2. In real life, we expect other effects to be superimposed to the séparation in CT - e.g. the 

fact that the samples are not the same or the presence of a cluster of beat shock 
proteins. These effects probably cannot be expressed as a CT with only positive 
coefficients, but could explain a relatively important proportion of the variance and hence 
be much more detrimental if the positivity constraints are not directiy taken into account.

3. The assumption of orthogonality, which is central to these techniques, is probably most 
often incorrect.

On simulated results with uncorrelated CT, an algorithm based on principal 
component analysis gave results of a quality comparable to the first algorithm, although 
much faster. With very noisy data, or with correlated CT, the quality of the solutions 
degraded faster than with the direct method.
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alpha Real values

A. B.
Fig 1 .A. Mean square différence between the known and the recovered CT. B. Plot of the 
recovered values against the real values. Each point represent a gene in a CT, the x-axis is 
the expression of the gene in the real CT while the y-axis is the recovered expression of the 
gene in the calculated CT.

3.2.2 Projected gradient
The idea here is to start with a first solution respecting (2a), (2b), (3a) and (3b) with 

uncorrelated CT and to try to minimize the error (8) while still respecting the conditions and 
the no-correlation.

We did not use this technique because, although it looks promising, it takes âges to 
converge and tends to get stuck in local minimum. In addition, the strict no-correlation 
hypothesis, without which this technique is similar to the direct method, is probably too 
strong.

We think this type of technique should be the most effective, would the technical 
problems be solved. In the mean time,' we refrain from using it.

4 Simulation
The CT were taken from the data in (Pérou 2000) concerning five breast cancer cell 

lines (T47D, RPMI-8226, 184A1, HUVEC, NB4+ATRA). These cell lines were chosen 
because they are relatively uncorrelated, with corrélation ranging from -12.2% to +15%. 
1000 genes out of the 8999 were kept. The values for each cell lines were normalized to a 
mean of 1. An artificial mixing matrix for these 5 CT was created. It was supposed that 40 
samples were measured. The values for the mixing matrix were generated from a uniform 
distribution [0 1[. Each column of the matrix was then multiplied by a constant in order to 
satisfy (3b). The artificial measure matrix was generated as the product of these two 
matrices. Noise was then added as a sum of a multiplicative noise (for the biological 
variations, which we suppose are proportional to the values) and an additive noise (for the 
measurement errors, supposedly indépendant of the quantity measured): 

v'=viV(l,0.3)+A^(0,0.2)
where v is the original value, v' the noised value, and N{a,b) is a value drawn from a 
normal distribution of mean a and standard déviation b. The resulting values below 0 were 
put to 0 and the columns of the resulting matrix were normalized to a mean of 1. With this 
Setup, the average absolute value of the error introduced is 29% of the mean of the original 
values.

The séparation in CT was then performed as described previousiy with the direct 
method, with various alpha. The quality of the séparation, expressed as the mean squared 
différence between the recovered CT and the real CT, is shown in figure 1 .a. as a function of 
alpha. A small alpha can dramatically improve the quality of the séparation. This amelioration
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can be linked to the unicity resuit. If the solution is uncorrelated the forcing via alpha assure 
the unicity of the solution. The algorithm is bound to find a solution doser to the real one. 
When alpha is too high, the decorrelation gets too stringent. The algorithm tries to overly 
decorrelate the CT, which are slightiy correlated. Would the CT be more correlated, the 
influence of alpha would start to be detrimental for a lower value of alpha.

In figure 1.b. we show the recovered values for every gene in every CT compared 
with the real values for the best alpha. Even in this very noised setup, the algorithm is able to 
recover for a large part the signature of the CT.

5 Corrélation
As shown before, the no-correlation hypothesis is very helpfui to assure the unicity of 

the solution. Besides, ail algorithms but the direct method necessitate un-correlated CT to 
function properly. The questions asked here are whether this hypothesis is valid or not, and 
how to handle the case where it is not.

5.1 Validitv of the no-correlation hypothesis
The corrélation between CT is affected by two things, the technology used for the 

measurements and the normalization used.

Gene expression measurements can be absolute or relative, depending of the 
technology used. Absolute values are a direct quantification of the mRNA for each gene 
(such as in Affymetrix technology), while relative values are the ratio of the absolute values 
by the absolute values of another sample, the standard (such as in microarrays). The 
corrélations are affected by this différence. In absolute values, it is expected that the genes 
necessary for the functioning of any cell (“housekeeping genes”) are expressed at a 
comparable level in every CT. Hence, the CT are usually correlated in absolute value. In 
relative value, corrélation is a function of the standard used. If the standard is unrelated to 
two CT, the corrélation between them will be raised by the application of the standard. If the 
standard is related to at least one of two CT, the corrélation between these two CT will be 
lowered.

Since the genes are not ail expressed at a similar level, it is tempting to normalize the 
values. A common mean of normalization is to divide the values for each gene by the mean 
of the values for this gene across ail experiments. The resuit obtained is similar to the use of 
a standard consisting of a mean of the samples. Since by hypothesis the samples are a 
linear combination of the CT, this standard can aiso be considered as a mix of the CT. Hence 
the normalized CT are anti-correlated on average, even though the corrélation might hâve 
been positive before.

In conclusion, the corrélation between the CT should be;
• Positive if the measures are absolute (SAGE or oligochips experiments).
• Undetermined if the measures are relative to a standard (microarray experiments).
• Négative if the measures are normalized.

5.2 Experimental vérification
To check if our hypothèses about the corrélation between CT were correct, we 

applied the direct method algorithm to separate real absolute value data (Alon 1999) into CT. 
The resulting CT were correlated to each other, with a mean corrélation of 22%. We 
normalized the measures gene-wise, and separated again. This time, the corrélation 
between the calculated CT where négative, with a mean corrélation of -25%. This shows 
that the corrélations between the CT, as captured by the first algorithm, behave as expected: 
they are positive on average for absolute measures, and négative after normalization.
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5.3 De-correlation of the CT
When tackling the problem of the corrélation of the CT, we are facing the following

facts:
1. The CT in the original data are usually correlated.
2. If the data are normalized gene-wise, the resulting CT are anti-correlated.
3. The séparation in CT using the direct method gives an estimate of the corrélations 

between the real CT.
We hâve a disease (the positive corrélations), a scalpel (the normalization) and a 

visualization apparatus (the séparation in CT using the direct method). A treatment is 
possible.

To blindly de-correlate the CT, we try to find a normalization of the data gene-wise for 
which the mean corrélation between the recovered CT is minimum. The idea is to normalize 
using a standard which looks like the mean of the samples (to de-correlate the CT) but not 
too much (to avoid the anti-correlation). The following transformation was chosen:

fNSample 'v'’

I".
V <=i y

where the constant v détermine the transformation. For v=0, no transformation is 
applied while for v=1 the values are normalized with the mean. In order to de-correlate the 
CT, we search for the value of v between 0 and 1 for which the average corrélation between 
the recovered CT is zéro.

5.4 Simulation results
We generated a set of 5 CT, with the corrélation between the CT varying between 

22% and 61% with a mean of 43%. We generated a matrix of concentration, calculated the 
matrix of measures and noised this matrix. We then calculated the de-correlation 
transformation.

Applying this transformation to the real CT, the modified corrélations ranged between 
-32% and +24%, with a mean of -5%. Therefore, on average the modified CT were not 
correlated anymore, even though relatively large single corrélation could still be found.

We tried to separate with the direct method the original data and the de-correlated 
data. The mean square error on the recovered CT was 0.49 on the original data, and 0.35 on 
the de-correlated data. This improvement in the quality of the séparation can be linked to the 
unicity resuit. If the CT are uncorrelated, the algorithm can be told (via alpha) to find 
uncorrelated CT. The séparation is then unique, which helps the algorithm.

6 Results with real data

6.1 Colon cancer data
Alon et al. 1999 hâve generated data with the Affymetrix technology (absolute 

measures) on varions colon cancers and adjacent tissues. In order to see if a distinction 
between cancer and normal tissue was apparent from such data, they set up a séparation, 
but this séparation was mostly a fonction of the presence of muscle cells. Those cells were 
highiy présent in the normal samples but not in the cancer samples. Based on known 
biological markers, they designed a “muscle index” which gives an estimation of the amount 
of muscle tissue présent in any sample. This muscle index was indeed usually higher in the 
normal samples.

In order to validate our technique on these data, we tested three things:
1. That the séparation was numerically meaningfui, which was checked through 

bootstrapping.
2. That the séparation was biologically meaningfui.
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3. That we could retrieve the muscle index as determined by Mon et al.

6.1.1 Numerical validation 
Table 2 Numerical validation of he method: number of séparations with one CT per cluster
Number of CT Original data De-correlated data Random data
3 80% 96% 21%
4 80% 87% 8%
5 51% 69% 4%

The real data consist of measurements of 1988 genes on 62 samples. In order to see 
if the séparation in CT was a property of the data or just an artifact, we separated these data 
100 times using only random subsets of 500 genes. The idea is that the matrices of 
concentration (C) obtained in ail these séparations should be close. To check that, we 
clustered them. If the séparation was meaningfui, we should hâve one CT per cluster for 
each séparation. We looked at the fraction of the runs for which this was the case.

As a comparison, we generated a random measurement matrix with sample 
corrélations of about the same magnitude than for the real data, and performed the same 
calculations.

The séparations were done on 3, 4 and 5 CT, with the direct method algorithm. They 
were performed on the original data, the de-correlated data (with the algorithm presented 
supra) and the random data. The results are shown in table 2.

This validation shows that the séparations are really a property of the measurement 
matrix. It shows as well that the blind de-correlation of the CT seems to hâve a positive effect 
on the séparation of real-world data.

Table 3 Markers found in the cellular types.
Cellular type 1 Cellular type 2 - muscle
L33930 b-cells X86693 SPARC-like 1 (mast9, hevin)
H81864 rénal tumor antigen M63391 muscle cells
M26383 released in response to an inflammatory stimulus L05144 liver-kidney-adipocytes
D78152 annexin A4 U25138 potassium large conductance calcium-activated channel
T56940 ritx)somal protein S5 M26683 chemotactic factor - attracts monocytes and basophils
H87344 ferritin, light polypeptide X74295 integrin, alpha 7
T49647 — H06524 phagocytic-platelets-fibroblasts-nonmuscle-muscle
M19045 lysozyme (rénal amyloidosis) M36634 vasoactive intestinal peptide
J02763 calcium-binding protein A6 (calcyclln) M64110 smooth muscles
D00760 protéasome U19969 heart and skeletal muscle
H17897 mitochondrial carrier R48303 dermatopontin
M86553 cathepsin S H77597 metaltothioneins
T70062 interleukin enhancer binding factor 2 XI6356 carcinoembryonic antigen-related cell adhesion mol 1
H17969 galectin 6 binding protein X12369 muscle contraction
R44770 — D31716 transcription factor
T54303 keratin 8 H43887 adipsin
X80507 — R44301 aldostérone receptor
T58861 ribosomal protein L30 X68277 dual specificity phosphatase 1
M26481 tumor-associated calcium signal transducer 1 DI 5049 protein tyrosine phosphatase, receptor
M25108 integrin, beta 3 (platelet plycoprotein Ilia, antigen CD61) T92451 tropomyosin 2
Cellular type 3 - leukocyte Cellular type 4
J00231 immunoglobulin gamma 3 Z25521 very broadly distributed on normal adult tissues
M87789 immunoglobulin gamma 3 U26312 chromobox homolog 3
R62549 protein kinase D00596 thymidylate synthetase
M27749 expressed only in pre-b-cells and a spécial b-cell line H17434 nucleolin
T51558 fibrils of tendon, ligaments and bone R62945 decay accelerating factor for complément
XI2876 keratin 18 R11485 protéasome (prosome, macropain) subunit
T72175 Immunoglobulin kappa constant X13482 small nuclear ribonucleoprotein polypeptide A'
T54767 regui cell growth-morphogenesis-remodeling-wound repair L38951 karyopherin (importin) beta 1
T57780 immunoglobulin lambda locus X56597 fibrillarin
DI 3665 osteoblast spécifie factor 2 X53586 predominantly expressed by epithelia
Z46389 vasodilator-stimulated phosphoprotein U04953 isoleucine-tRNA synthetase
M60335 inflamed vascular endothélium - macrophage-like - dendritic R75843 eukaryotic translation Initiation factor 2G
U30498 preferentially expressed in adult hematopoietic tissues Z29677 Ras homolog enriched in brain 2
T57780 immunoglobulin lambda locus X70040 kératinocytes
T41204 normal alveolar macrophages and granulocytes X01060 transferrin receptor
T56350 nucledin M31516 decay accelerating factor for complément
R39010 — H92195 RAN binding protein 7
T62067 — X54942 CDC28 protein kinase 2
L26494 POU domain, class 3, transcription factor 1 M58050 expressed by almost ail cells
L20688 egulates gdp/gtp exchange reaction of the rho proteins M31516 decay accelerating factor for complément
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6.1.2 Biological identification
In order to identify the biological significance of the found CT, we tried to identify 

which genes could be used as markers. We relaxed the définition of a marker used in part 3. 
A marker here is a gene that is expressed mostly in one CT. To find them, we divided each 
row (i.e. gene) of the matrix G (containing the signature of the CT) by the sum of its values. 
After this transformation, the resulting values are between 0 and 1, a value close to 1 
meaning that the gene is expressed mostly in one CT, and so is a good marker. The genes 
with the highest marker score for each CT could then be identified, and with the information 
relative to these genes in the literature we tried to assign a meaning to the CT.

Among the various CT recovered, some could be given a clear meaning. In table 3, 
the 20 genes with the highest marker score for the CT obtained with a séparation in 4 CT are 
shown. The identifications for every gene were obtained with GeneCard (Rebhan 1997).

We looked at the occurrences of patterns in the gene descriptions which could be 
considered as pertinent to identify certain biological CT: “muscle” or “fibroblast” for the 
“muscle” cells and “immunoglobulin”, “b/t-cell”, “hematopoietic” or “macrophage” for the 
leukocytes. We tried to assess if the distribution of these patterns could be random via a 
Monte-Carlo simulation (random permutations of the labels). See table 4 for the resullts.
These probabilities show that the results cannot reasonably be due to pure chance. So, at 
least some expression profile can be assigned clearly to a cell type.

Table 4 Distribution of certain patterns in the markers of the CT for a séparation in 4 CT.
Pattern CTI CT2 CT3 CT4 Probability
“muscle” or “fibroblast” 0 5 0 0 0.24%
“immunoglobulin” or “b/t-cell” or 
“hematopoietic” or “macrophage”

1 0 9 0 0.002%

6.1.3 Link with the muscle index
Since we were able to identify one of the CT as représentative of muscle tissue, we 

could compare our results with the muscle index of Alon. This index estimâtes the amount of 
muscle tissue in a sample, so it should be correlated with the concentration of the muscle CT 
through the samples as determined by our algorithm. We plotted our concentration against 
the index (see fig. 2). The corrélation between both is 89%, so there is a good agreement 
between our results and those from Alon.
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Fig 2. Concentration of the calculated muscle CT as a function of the muscle index given in 
(Alon 1997).
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6.2 Ovarian cancer data
Weish et al. 2001 hâve measured 27 ovarian cancer samples with the Affymetrix 

technology (absolute measures). These samples contained a variable fraction of stromal 
tissue, as well as infiltrated lymphocytes sometimes. A part was taken from each of these 
tumors for histological analysis, which permitted to estimate the tumor composition. We tried 
to see if our algorithm could recover these estimâtes.

The data concerning the tumors were separated in 4 CTs. The numerical stability of 
the solutions is comparable to the one obtained with the colon tumors. With the descriptions 
of the genes, it was possible to identify one CT as leukocyte and another one as smooth 
muscle, although the statistical significance of those results was lower than for the colon 
cancer data.

The concentrations in leukocyte were given in the paper as “abundant”, “rare” or “0”. 
The average concentrations as given by our algorithm for these three categories were 18%, 
17% and 11%, respectively. However, huge discrepancies could be found, for instance a 
sample in the “abundant” category had a concentration of only 11%, while a sample in the 
“rare” category had a concentration of 69%. The estimâtes in Weish were based on the 
quantity of cells, and not of mRNA, and the samples examined were not exactiy the same as 
the samples on which gene expression profiling were performed, so it might be that our 
estimâtes are indeed correct. To check that, we created a (very rough) leukocyte index, as 
the mean expression of ail the genes with “immunoglobulin” in their description. This index 
presented larger discrepancies with Welsh’s estimâtes than our concentrations. Our 
concentrations were however correlated to this index, with a coefficient of 75%.

The concentration of stromal tissue is given as a percentage in Weish. The 
corrélation between our concentrations, after suppression of the effect of the leukocytes, and 
theirs is 69%. To see again if estimâtes based on gene profiles would be more closely 
related to our concentrations, we created an estimator as the mean of the expression of ail 
the genes belonging to the “stromal” cluster in Weish. This new estimator correlates 
reasonably with the concentrations in Weish (corrélation; 69%) but the corrélation is much 
better with our concentrations (corrélation: 85%).

7 Conclusion
An approach and a set of algorithms are presented allowing to mathematically 

separate samples consisting of many cellular types into their constituants. This advance 
should make it possible to treat experimental cases which seem out of reach without 
complex biological methods.

The techniques shown hâve some weaknesses that should be addressed in the 
future. The blind de-correlation of the CT is an important part of the techniques and is 
presently only a very rough method which can certainly be improved. An algorithm should be 
developed to automatically détermine the number of CT out of the data.

A more thorough biological validation of the technique could aiso be carried out, by 
verifying if the genes predicted as being markers were really only expressed in the predicted 
CT. This could be checked using in situ hybridization.

Nevertheless, even with those limitations and uncertainties, the techniques presented 
can aiready be an important help for researchers having to deal with complex cases of cell 
populations composition, where it is never clear in which cellular type a given gene is 
expressed.

We view this work as a step toward applying mathematical théories and computer 
sciences techniques to biology, and allowing to extract hidden relevant information from the 
huge set of data produced by modem biology.

8 Biblioqraphv
Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick 

J.C., Sabet H., Tran T., Yu X., Powell J.I., Yang L., Marti G.E., Moore T., Hudson J., Lu L.,

11



Lewis D.B., Tibshirani R., Sherlock G., Chan W.C., Greiner T.C., Weisenburger D.D., 
Armitage J.O., Warnke R., Staudt L.M., et al 2000. Distinct types of diffuse large B-cell 
lymphoma identified by gene expression profiling. Nature 403: 503—11.

Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D. and Levine A.J. 
1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal 
tissues probed by oligonucleotide arrays. Proc NatI Acad Sci USA 96: 6745—6750.

Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. 1998. Cluster analysis and 
display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95: 14863—14868.

Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., Coller 
H., Loh M.L., Downing J.R., Caligiuri M.A., Bloomfield C.D. and Lânder E.S. 1999. Molecular 
classification of cancer: class discovery and class prédiction by gene expression monitoring. 
Science 286: 531—537.

Pérou C.M., Sorlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack 
J.R., Ross D.T., Johnsen H., Aksien L.A., Fluge O., Pergamenschikov A., Williams C., Zhu 
S.X., Lonning P.E., Borresen-Dale A.L., Brown P.O., Botstein D. 2000. Molecular portraits of 
human breast tumours. Nature 406: 747—52

Rebhan, M., Chalifa-Caspi, V., Prilusky, J., Lancet, D.; GeneCards: encyclopedia for 
genes, proteins and diseases. Weizmann Instituts of Science, Bioinformatics Unit and 
Genome Center (Rehovot, Israël), 1997. World Wide Web URL: 
http://bioinfo.weizmann.ac.il/cards

Weish, J.B., Zarrinkar, P.P., Sapinoso, L.M., Kern, S.G., Behling, C.A., Monk, A.J., 
Lockhart, D.J., Burger, R.A., Hampton, G.M. 2001. Analysis of gene expression profiles in 
normal and neoplastic ovarian tissue samples identifies candidate molecular markers of 
épithélial ovarian cancer. Proc Natl Acad Sci USA 98: 1176—1181.

12

http://bioinfo.weizmann.ac.il/cards


' ' ' .? '■' •"’ - •' “ "■% - '.



6 - Genetic network inference

1 Introduction
The availability of a large amount of gene expression data has raised the hope that a 

complété regulatory network in a cell type could be inferred in a systematic and 
comprehensive way. Different models of such networks exist. The most common ones are 
Boolean networks [1,8], qualitative model [14], Bayesian networks [12], weight matrices 
[4,7,15], Systems of linear or non-linear différentiel équations [3,16] and hybrid models [2,10]. 
This Work focuses on Boolean networks.

In the Boolean network model, each gene has only two possible States, “on” and “off”. 
The State of every gene is a Boolean function of the States of some other genes. Usually, the 
number of genes necessary to détermine the State of a gene is limited in order to avoid 
overly complex solutions.

This model, like most other models of gene régulation, has an important limitation. 
The variables which control the expression of the genes are supposed to be gene 
expressions themselves. In real biological Systems, this is often not the case. Gene 
expressions can aiso be controlled by the concentration and the activity of proteins, or by 
properties of the cell environment (glucose concentration, température...). Those parameters 
are hard to introduce in the framework of a Boolean network in a clean and consistent 
manner. They can sometimes be estimated using a priori knowledge of the experimental 
conditions, but this is not aiways possible. For instance, in a study relative to the temporal 
évolution of gene expression during the cell cycle, the experimental conditions should be 
labeled as a function of state of the cells. Such labeling is hard to do, and prone to error and 
bias.

We propose here a modification of the Boolean network paradigm which addresses 
this issue while still keeping its inhérent simplicity (figure 1). In a Boolean network (figure IA), 
each gene is a binary function of other genes, or of an external parameter like température. 
In order to find the corresponding “binary switch model”, the éléments controlling the network 
(genes or external) are singled out, and called “switches”. The évolution of the System is by 
définition controlled by, and only by, those switches. This model is a generalization of the 
Boolean network model. When,,the network model is applicable, the switches can be 
assimilated to the expression of particular gefies. This generalization allows the treatment of 
a much wider panel of experimentS' in' a systematic fashion, as external parameters can be 
included naturally.

The identification of this model is a three-fold process: first the genes which dépends 
on the same switches must be grouped. The is equivalently to a clustering. Setting a model 
of gene régulation imposes the existence and the mathematical form of this clustering. The 
values of the switches and the dependence between switches and groups of genes are then 
determined. FInally, if possible, the switches can be identified with genes.
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Figure 1. A. Boolean network. A, B, C, D and E are genes, T° is température. B. The 
corresponding binary switch model. The switches are on the upper line, the controlled genes 
on the lower line.

In order to appiy the binary switch model to real biological data, a binarization must 
be performed. The same applies of course to other models which use discrète values, like 
Boolean and Bayesian networks. Such discretization is usually done by another, 
indépendant, algorithm [12]. We show here that the binarization can be performed at the 
same time than the détermination of the régulations. This approach leads to a better 
définition of the problem, and potentially to better solutions.

We firstly présent the binary switch model in more detail and discuss some of its 
implications. Secondly, we show a technique to infer the parameters of the model from the 
data. Thirdiy, we demonstrate this technique on simulated data. Finally, the models are 
determined for two real data sets, showing the applicability of the method.

2 The binary switch model
The binary switch model describes the régulation of the genes in a simple and 

understandable way. We présent here the hypothèses behind this model in some detail.
Gene expression data can be organized as a matrix, G. A value g,ÿ of this matrix 

corresponds to the level of expression of the gene / in the experimental condition j. A first 
hypothesis is that the matrix G can be reduced to a binary matrix, B. This means that there is 
a threshold f, for each gene that can be used to binarize the matrix G:

by=gy>ti (1)
where by is the binary expression of gene / in condition j. Its value is “1” if g,y, the real valued 
expression of gene / in condition y, is higher than a gene spécifie threshold t, and “0” 
othenA/ise.

A second hypothesis is the existence of N binary switches. The switch k has the value 
swjk in condition y. Those switches describe the regulatory state of the cells. They could be a 
fonction of the presence or absence of a given protein, or of its activity, or of high 
température, or of anything eise.

Finally, the model implies that the binarized values of gene expression are Boolean 
fonctions of the switches:

bÿ = fi (■SW,7» ) (2)
where f| is the fonction linking the value of the gene / to the switches.

This model is a generalization of the Boolean network model. In the network model, it 
is supposed that the States of the genes are a fonction of the state of other genes. When the 
Boolean network model is applicable, the switches can be assimilated to the expression of 
certain genes. The binary switch model generalizes the Boolean network model to the case 
where the variables responsible for the évolution of the profile of gene expression are not 
measured. Since this is often the case, the binary switch model is more realistically 
applicable than the Boolean network model.
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Table 1. Example of genes respecting the binary switch model. "Val" are the real values 
measured. "Bin" are the binarized values: “1” if the real value is over the gene’s threshold 
("Thresh") and “0” othenwise. Gene 1 is Switch 1. Gene 2 is NOT(Switch 1 AND Switch 2).

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8
Switch 1 1 1 1 0 0 0 1 0
Switch 2 1 0 1 0 1 0 1 0

Val Bin Val Bin Val Bin Val Bin Val Bin Val Bin Val Bin Val Bin Thresh.
Gene 1 4.1 1 3.5 1 5.1 1 2.0 0 1.5 0 .23 0 2.7 1 1.1 0 2.35
Gene 2 .5 0 1.3 1 .21 0 1.2 1 .9 1 2.1 1 .17 0 1.5 1 0.7
Gene 3 .5 0 1.2 1 .8 0 .4 0 1.7 1 .7 0 .8 0 .1 0 1
Gene 4 1 0 1.3 1 .5 0 1.4 1 .3 0 8.2 1 .1 0 1.5 1 1.2

The inference of the switches from the data makes it possible to détermine a large 
part of the regulatory network. In order to détermine the rest of this network, the switches 
must be tentatively identified with an underlying biological reality. If this biological reality is 
not among the quantities measured, then no identification is possible.

In the spécial case of a kinetic study (temporal évolution), if a régulation is performed 
via a gene regulated at the mRNA level, then it should be possible to identify a switch with 
this gene. In that case, the switch represents the activity of a transcription factor while the 
gene expression measured is the corresponding mRNA level. The évolution of the activity of 
a gene should be similar to the évolution of its mRNA level, with a certain delay caused by 
the time taken for the translation, the folding and sometimes the activation of the 
corresponding protein. Since the activity of a transcription factor should be represented as a 
switch, such switch should be correlated with the level of expression of the gene, with a 
certain delay. Hence, the gene could be identified using its delayed corrélation with a switch.

Methods similar to this one hâve been proposed to identify Boolean networks. In 
these approaches, the complexity of the identification is much higher, since many possible 
links are taken into considération. AIso, the delays between the cause and the effect are 
usually arbitrarily set to the time between the measurements taken, which limite the 
applicability of the techniques. And of course, those methods are not résilient at ail to missing 
values.

The model presented has implications concerning the maximum possible number of 
different experimental conditions and gene profiles. For a given number N of switches, there 
are at most 2'^ different experimental conditions. The same limitation applies to Boolean 
network models as a fonction of the number of transcription factors. This maximum number 
of conditions could be considered as too high or too low, depending on the point of view.

In the framework presented here, the experimental conditions which hâve the same 
combination of switches must be grouped for the détermination of the switches. This is done 
by clustering the samples in at most 2'^ groups. In order to render this clustering meaningfui, 
the number of experimental conditions should be much higher than the number of groups, 
hence usually higher than 2^ This means that the number of experiments needed to identify 
the parameters of the model grows exponentially with the number of switches, and so must 
be quite large for even a moderate number of switches.

However, taking a different point of view, the maximum number of conditions can be 
considered as low. Each experiment being done in a different setup, the results are different. 
If the switches are supposed to explain the cell's entire behavior, their number should be 
such that 2^ is higher than the number of experiments. But then, no identification is possible 
using the framework presented.

In this Work, we consider that the number of switches is such that 2'^ is much smaller 
than the number of experimental conditions. The hypothesis is that there existe a sufficient 
amount of similarity between the conditions with the same values of the switches for those 
switches to predict the behavior of many genes. We do not consider that we are in a situation
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where everything can be deduced from the measurements, but that switches nevertheless 
exist, which explain a large part of the cell’s behavior.

The model does not constrain at ail the functions linking the switches and the genes. 
For a given number of switches N, the number of possible different gene functions is 2^". 
This number rises very fast with N. Four switches are enough to allow every gene in the 
human genome to hâve a different behavior. Since the expressions of many genes are 
correlated, this level of freedom seems too high. The gene functions should probably be 
constrained somehow. Such constraints would aiso allow the détermination of N switches 
with less than 2'^ experimental conditions.

The binary switch model can aIso be viewed as a high-level description of the state of 
the cells. The switches often represent understandable experimental conditions, like 
température or starvation. Our technique may then offer an explanation of a large part of the 
gene expression measurements in terms of simple concepts. Such simplicity makes it a 
usefui tool for biological understanding.

3 Identification of the model
The binary switch model implies that ail experimental conditions sharing the same 

combination of switches hâve the same binarized profiles of expression. This means that the 
conditions can be grouped according to their switch configuration. However, there is an 
indétermination in the values of the switches. Once the conditions are grouped, any solution 
for which each group has a different combination of switches fits as well the model. The 
switches are not determined by the data, only the grouping of the conditions is. This is due to 
the lack of constraint put on the form of the Boolean functions linking the switches and the 
genes. A criterion will be defined later in order to choose the “right” switches among ail 
possible combinations.

The model does not détermine the number of groupe of samples. The only limitation 
is that this number is at most 2'^, where N is the number of switches. The number of groupe 
is expected to be lower than this maximum, because usually not every combination of 
switches is experimentally available. lf for instance one switch is relative to excessive beat 
and another to excessive cold, it is uniikely that there existe an experimental condition where 
both of these conditions are simultaneousiy “on”. As the number of switches increases, the 
number of missing combinations increases as well. The choice of the optimal number of 
groupe and switches has to be done by judging the solutions obtained and by using 
biological insights concerning the data.

The détermination of the parameters of the model is divided in two parts: firstly, the 
thresholds and the groupe are determined, such that a maximum of genes has a constant 
value inside each group. Secondly, the best values of the switches for each group are 
determined.
3.1 The thresholds and the qroups

3.1.1 Function to maximize
We show here how the grouping of the samples and the binarization of the data are 

done. A quality function is defined whose maximum should correspond to the best possible 
groupe and thresholds. Those are then determined by maximizing the function.

Trivial solutions for which every gene respects the model aiways exist. For instance, if 
the thresholds are sufficiently low ail binary values become “1" and any grouping gives a 
solution which perfectiy fits the model. The quality function should be very low for such trivial 
solutions. A more interesting solution should be more informative concerning the régulation 
of the cells.

It is not expected anyway that every gene fit the model. Many reasons can prevent a 
gene from doing so. The binarization of the values might not be a reasonable hypothesis for 
certain genes. Some genes could be regulated by other, less important, switches which
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control only small groups of genes in the experiments performed. Noise can aiso prevent 
certain genes from following the model. A gene which fits the model is called a predicted 
gene. By définition, the binarized values of the predicted genes are constant inside each 
group of experimental conditions.

The solution should maximize the number of predicted genes while keeping their 
profiles as interesting as possible. There are many different ways to quantify the relevance of 
a profile. This could be done using an information fonction:

PG

l = ~Yu)) *
i

where the sum is on the PG predicted genes. pf/ is the fraction of “1” in the predicted gene / 
and pO/ the fraction of “0”. This fonction effectively sets a trade-off between the number of 
genes predicted and the information each of those carries.

In practice, it is necessary to modify the information fonction (3). The penalty for less 
informative genes in (3) is not large; with 10 samples, a gene with five “1” and five “0” is only
2.1 times more informative than a gene with nine “1” and one “0”. The fits on small groups 
being likely to emerge from random fluctuations, this penalty seems too small. In order to 
widen the différence, the cube of the information is taken:

PG

/ = -^ (p/, log(p7, ) + pO, \og[p0, ))^ (4)
/

This modification increases the importance of the information in the trade-off between 
the number of genes predicted and the information they carry. Even with this modification, 
solutions with groups formed of just one experimental condition are still a concern. To 
address this issue, the genes for which only one condition has a different binary value than 
the others are excluded from the calculation of the information fonction.

Parent 1 Parent 2

14234232 31432321

..2 3.2 3 2 
3.43.3..

________________ I________________
Renumbering to keep the group’s IDs unique

..2 3.2 3 2
1.41.1. .

11234232

Figure 2. Example of the création of a child in the grouping genetic algorithm

The maximum of (4) lies on top of a narrow hill. The fonction decreases very fast 
when the grouping is not perfect because one bad group may be enough to render the
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information predicted null. Any non-exhaustive search algorithm will tend to converge to a 
local maximum, consisting of many groups containing just one sample. In order to help the 
search for the global maximum, a widening function is added to the information fonction to 
soften the base of the hill. The idea is to evaluate not only the quality of a complété solution, 
but aiso the quality of the groups forming the solution.

Certain genes may follow the model, i.e. hâve constant values inside each group, 
only on some subsets of groups. The value of the widening function for each gene is the 
information function obtained on these subsets. This information is multiplied by the fraction 
of the conditions which appears in that subset, in order to lower the values for the solutions 
based on few groups. The best possible subset is kept for each gene. This leads to the 
following widening function;

where the sum is on the NPG non-predicted genes. S, are the varions possible subsets of 
groups for which the gene / is correctiy predicted, iii(Si) is the number of experimental 
conditions in the groups in S„ and p1,{Si) (resp. pO/(Si)) is the number of “1” (resp. “0”) in the 
binarized gene / while keeping only the groups in S,.

The function maximized is the sum of the information function (4) and the widening 
function (5), multiplied by a constant alpha:

F = I + aW (6)
Alpha should be small enough so that the maximum of (6) corresponds to the 

maximum of (4), but large enough so that aW is larger than the values of (4) obtained with a 
solution comprising many small groups.

It is of course necessary to check that the maximum of (6) found is indeed a 
maximum of (4). If it is not the case, a new search is performed with a lower alpha.

3.1.2 Maximization of the function
Two different things must be determined in order to maximize (6): the thresholds for 

the binarization of the genes, and the clustering of the experimental conditions. The 
thresholds are determined, for a given clustering, by an exhaustive search. The clustering is 
determined using a grouping genetic algorithm [5].

For this algorithm, a population of individuals is created. Each individual is encoded 
as a vector, with as many éléments as there are experimental conditions. The values of the 
individuels represent the group membership of the conditions. For instance, an individual 
encoded as [ 1 2 1 2 ] has a first group consisting of the first and third conditions, and a 
second group consisting of the second and fourth conditions. At each round, the best 
individuels are selected using a tournament. Offspring is created from the best individuels. 
The offspring replaces the worst individuals from the last round. Mutations are then applied 
to the population.

The success of such algorithm dépends on the choice of the mutation and crossover 
operators. Its effectiveness can be raised with the use of an appropriate heuristic. Since the 
problem is a modified clustering, k-means is chosen as the heuristic. It is used for the 
création of the starting individuals. For the création of a child, two parents are chosen (see 
figure 2). Some randomly chosen groups from each parent are inherited in the child, the 
groups being renumbered so that each group has a unique identifier. Conditions which 
belong to groups inherited from both parents are set to the first parent’s group. The number 
of groups being a parameter of the problem, if the number of groups in the child is too low, 
one randomly chosen condition among the ones which are not assigned to any group is 
assigned to each missing group. The conditions which do not belong to any group are 
assigned to the closest group, i.e. the group whose members hâve on average the highest 
corrélation with the condition to assign. Another child is made with the parents inverted.
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In order to widen the search, mutations are made on randomly chosen individuals. 
Two types of mutations are used. In the first, three groupe are randomly selected. The 
samples belonging to those groupe are clustered into three new groups using a k-means. In 
the second type of mutation, the group membership of a sample is randomly modified.

The number of groups is not determined by the model. When this number is too high, 
the solutions found tend to overfit the data. Insights concerning the experiments must be 
used to detect such overfitting and détermine the real number of groups.

3.2 The switches
Many different combinations of switches can fit the clustering found. Using Occam’s 

razor, the simplest solution should be favored. Simplicity here lies in the fonctions linking the 
switches and the predicted genes.

Those fonctions are, in general, in the form of équation (2):

Often, bij does not explicitly dépend upon ail switches. A subset of switches can be 
enough to détermine b,y. We introduce simplicity here as the number of switches necessary to 
predict the value of gene. In the most extreme case, bjj can be a value of just one switch,
SWjs.

The solution should présent as many of those simple fonctions as possible.
In practice, the information predicted directiy by the switches is maximized. This 

information is calculated in a fashion similar to (4), except that here only the directiy 
predicted genes are taken into account. Directiy predicted genes are genes whose values 
correspond to the values of a switch, up to a “NOT” transformation. For example, in table 1, 
the switch 1 directiy détermines gene 1 and the switch 2 directiy détermines gene 4.

In complex cases, when the number of switches is very high, no gene is determined 
by a single switch anymore. In that case, some other type of simple fonctions (e.g. 
conjonctions of a few switches) should be considered. We suppose here that the situation is 
simple enough for a large number of genes to be directiy determined by each switch.

For the search of the switches, the data can be simplified. Since the thresholds are 
known from the grouping, the data matrix can be considered as being binarized. Only the 
genes fitting the model are kept. The switches being only determined up to a “NOT” 
transformation, their values can be set to “0” in an arbitrary group. It remains then to find for 
each other group the values of the switches.

In a valid solution, each group of samples must hâve a different combination of 
switches. This constraint is stronger when the number of groups is the maximum possible for 
a given number of switches. In that case, among other things, every switch must hâve as 
many groups with “1” as groups with “0”. These strict constraints are a reflection of the 
uniikeness of having the maximum possible number of groups, especially when the number 
of switches is high.

Since the switches should maximize the information directiy predicted, they 
necessarily correspond to the binarized values of a gene or its opposite. The information 
directiy predicted by each of these switches is easy to calculate. The different possible 
switches are then sorted in fonction of the information they predict, in order to try the most 
likely solutions first. See the first part of figure 3 for an example of possible switches with the 
corresponding information.

The solution is calculated using a branch and bound algorithm (see figure 3 for an 
example). This is done by firstly creating partial solutions consisting of just one switch, 
starting from the most informative switch. The validity and the quality of these partial 
solutions are checked. If by completing a partial solution with any other switch it is impossible
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to create a valid solution of a better quality than the best actual solution, the partial solution 
can be discarded. Otherwise, another switch is added to generate a new, more complété, 
partial solution and the process is started again. When a generated partial solution is indeed 
a full solution, it replaces the current best solution. Its quality can then be used as a new 
bound on the quality of the partial solutions.

A partial solution is valid only if it can be part of a complété solution in which each 
group has a different combination of switches. This implies that the largest number of groupe 
sharing the same combination of switches in the partial solution should be at most 2^, where 
N is the number of switches which still hâve to be determined.

Groups 1 2 3 4 5 6 Number Info
SW1 1 1 0 0 0 0 30 6.45
SW2 1 1 1 0 0 0 15 5.00
SW3 1 0 0 1 0 0 17 4.38
SW4 1 1 0 1 1 0 12 3.09
SW5 1 0 1 0 1 0 5 1.67
SW6 1 0 0 0 0 0 15 1.37
Possible switches information data. Each group is supposed to hâve the same number of 
conditions. “Number” is the number of genes directiy determined by the switches. “Info” is 
the total information predicted by a switch: it is the product of the information of the switch 
with the number of genes directiy determined. The switches are sorted in fonction of “info”.

Current switches in 
the partial solution

Best possible 
quality

Commente

1 19.35 OK
1,2 - Not valid, backtrack
1,3 - Not valid, backtrack
1,4 12.63 OK
1,4, 5 11.21 New best solution
1,5 9.79 Insufficient quality, backtrack
2 15 OK
2,3 13.76 OK
2, 3,4 12.47 New best solution
2,4 11.18 Insufficient quality, backtrack
3 13.14 OK
3,4 10.56 Insufficient quality, backtrack
4 9.27 Insufficient quality, finished
Trace of the program.

Figure 3. Example of the détermination of the switches on an artificial data set.

4 Application: artificial data
The algorithme were applied on artificial data sets, in order to check that they 

effectively deterrhine the switch structure when such structure existe in the data. In those 
data sets, as is expected in the real data sets, there are three categories of genes: random 
genes, genes directiy determined by one switch and genes which are a Boolean fonction of 
more than one switch.

The grouping algorithm was applied to a first artificial data set, consisting of 100 
experimental conditions organized in 16 groups using 4 switches. 10 genes are directiy 
determined by each switch, 60 genes are determined by a combination of switches and 900 
genes act as noise. The algorithm was able to recover the right grouping and thresholds in a
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few hours. This setup being much more difficult that what is expected with real data, the 
performance of the grouping algorithm seems satisfying, although a faster version is certainly 
désirable. The switch détermination algorithm was able to recover the switches from the 
grouping very quickly.

Secondly, a more reasonable case was created. In this setup, there are 1000 genes 
and 50 experimental conditions clustered into 6 groups using 3 switches. 20 genes are 
directiy determined by each switch, 240 are determined by a combination of switches and the 
700 remaining are random.

In this setup, when the algorithm is asked to find six groups in the data, it does so in a 
relatively short time (a couple of minutes). The switches are correctiy recovered from the 
group information. When the algorithm is asked to find seven or eight groups, the best 
solutions hâve single conditions as new groups, the rest fitting the real solution. The quality 
of the solutions as estimated by (4) does not raise much when the number of groups is 
increased. When the algorithm is asked to find four or five groups, it finds solutions similar to 
the real one, except that some groups are merged. The quality of these solutions is much 
lower than the quality of the correct solution.

We expect that on real data, the quality of the solutions will keep raising as the 
number of groups is increased, because there are probably many “small” switches which 
explain small parts of the data. Nevertheless, the pattern of small groups should still appear, 
showing the likeliness of overfitting. We use this as a due that the number of groups is too 
high.

5 Application: real data
We présent here two applications of the technique to real world data. We hâve not 

tried to make breath-taking new discoveries, but simpiy to show that the binary switch model 
can be used to explain a large part of real regulatory networks. The switches discovered are 
aiso identified with simple, high level concepts, showing the power of the technique as a tool 
for biological understanding.

5.1 Cell cycle
The first set of data cornes from the study of Spellman et al. [13] concerning the cell 

cycle in the yeast. There are a few different experiments in that study, which differ in the 
technique used to synchronize the cells. The one discussed here is alpha factor. Similar 
results were obtained with cdc15.

The data being very noisy, some pre-processing had to be done before the 
identification of the parameters of the model could be performed. Firstly, a low-pass filter was 
used in order to remove some noise from the data. The filter was an acausal, zero-phase 
filter of order 10, determined from a Butterworth filter [11]. The cutting frequency was half of 
the Nyquist frequency. This filtering rendered the data much smoother. Secondly, certain 
genes were excluded from the data set. The sélection criteria were that at least 30% of the 
gene’s dérivative was conserved after smoothing, and that the smoothed gene had at least a 
2-fold variation across the samples. Using this filter, only 608 genes were kept.

The identification of the parameters of the model was performed with four groups and 
two switches. The results can be seen in table 2. The first switch could be understood as 
standing for genes which are controlled by the arrest of the cell cycle necessary to 
synchronize the cells. The second switch is relative to the cell cycle itself. This shows that 
the technique is able to recover the expected structure in the data.

Among the 608 genes taken into considération, 251 (41%) fit the groups. 45 genes 
are directiy determined by the first switch, 36 by the second. Group 1, which is Switch 1 AND 
Switch 2, has quite a lot of success. This could be due to random fitting of noise (it is a small 
group) or to the Sharp raises or falls which seem to be présent for many genes in the first 
time points.
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Table 2. Resul ts obtained wi th the cel cyc e ex périment.
Time-min 0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 105 112 119
Group 1 1 4 4 4 2 2 2 2 2 3 3 3 2 2 2 2 2
Switch 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Switch 2 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1

Table 3. Results obtained with the métal experiments.
WT
Zn-

WT
Zn=

WT
Zn+

Zap
Zn-

Zap
Zn=

Zap
Zn+

Mac
C

Mac
B

WT
Cu-

Cu+
30

Cu+
60

3 groups 1 2 2 1 2 2 2 2 3 3 3
4 groups 1 4 4 1 3 3 2 2 1 1 1
Switch 1 1 0 0 1 0 0 0 0 0 0 0
Switch 2 1 0 0 1 0 0 0 0 1 1 1

In order to deduce the régulation network of the 41% of the genes which fits the 
model, it would only remain to identify the switches with biological counterparts. This task 
might be performed using gene expression alone if these counterparts are gene expressions. 
For the others, like probably for the switch relative to the cell cycle arrest, no identification is 
possible using only the data available. The limits of the déductions that can be made using 
gene expression data alone are reached.

5.2 Métal work
We hâve taken two 2-colors microarray data sets concerning the reactions of yeast to 

variations in the concentration of zinc [9] and copper [6] in the environment. These two data 
sets were chosen because the experimental conditions are somewhat similar, raising the 
hope to find some common trends. Nevertheless, the strains of yeast as well as the details of 
the experimental protocole are different. This demonstrates the applicability of the technique 
on heterogeneous data.

After some transformations, it is possible to reduce the measures of the first data set 
to six experimental conditions and the measures of the second to five other conditions. The 
two data sets are then merged (see table 3). WT is the wild type yeast, different in the two 
experiments. Zap is a WT yeast with the ZAP gene knocked out. This reduces its reaction to 
the lack of zinc. Mac is a WT yeast, with the gene MAC1 constitutively expressed. MAC1 
régulâtes the expression of high affinity copper intake genes. There are two Mac 
experiments, based on two different strains: MacC, taken from yeast strain CM66J grown 
exponentially, and MacB, taken from yeast strain BRIO grown to late log phase. In the zinc 
experiment, WT and Zap cells were cultivated in deplete zinc (Zn-), replete zinc (Zn=) and 
excess zinc (Zn+) conditions. In the copper experiment, Mac cells were cultivated in normal 
condition and WT cells were cultivated in deplete copper medium (WT Cu-), and in excess 
copper medium for 30min (Cu+ 30) and 60min (Cu+ 60).

Since the standards in the two groups of experiments are not identical, the genes 
were normalized separately in each group. This was done by dividing, separately in the zinc 
and the copper experiment, the values for each gene by the mean of its values across the 
conditions of the experiment.

The group search algorithm was applied to the data set, with three and four groups. 
As shown in table 3, with four groups the best solution has three groups made of pairs of 
conditions. The experimental conditions in those pairs are very similar. The excess zinc 
condition is similar to the replete zinc condition, and the two Mac experiments are aiso 
similar. This solution can be considered as having groups formed of essentially the same 
samples, and so is probably due to overfitting. The solution with three groups was kept.

The switch détermination algorithm was then run on those three groups, leading to 
the two switches shown in table 3. It is possible to assign a simple meaning to these 
switches. The first one is “on” only in the two experiments where the cells are lacking zinc. 
This switch could be understood as a “zinc starvation” signal. The second switch is “on” in
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the experiments where the cells are in a difficult situation, lack or excess of something. This 
switch could be understood as a “sickness” signal. The excess of zinc is not very harmfui for 
the yeast, which explains why those conditions are in the same group than the replete zinc 
conditions.

Among the 960 genes which are expressed at a reasonable level in ail experiments 
and show more than 3-folds variation across the conditions, 369 (38%) fit the simple 
explanation given. Among those genes, 161 (44%) are directiy determined by the “sickness” 
switch and 203 (55%) by the “zinc starvation” switch. Since the algorithm is sensitive to 
noise, as one noisy measurement is sufficient to consider a gene as not explained, and since 
the experiments were done using different standards, those are quite high figures, showing 
that a large part of the behavior of a cell can be understood with simple concepts.

The switches found are explained here in a “high-level” way, but we expect that some 
biologicai means exist in the yeast which pilot the régulations described. The identification of 
these means is impossible with gene expression data alone. However, the distribution of the 
switches provides some dues which might prove usefui for such identification.

In a case like the one shown here, where one switch is included in the other, a 
hiérarchisai clustering algorithm should give a comparable resuit (see Figure 4). 
Nevertheless, the clustering algorithm does not offer a high-level explanation like the 
technique outlined here does, nor does it establish a link between the variation of the 
expression of the genes and the clustering. Besides, in this case, the clustering algorithm 
does not discover the “zinc starvation” switch.

Figure 4. Clustering of the métal experiments.

To our knowledge, this is the first time two different data sets are compared in order 
to deduce something about the samples. Such comparisons hâve only been done in order to 
predict gene’s fonctions using clustering or classification techniques. We hâve shown here 
that such comparison can be performed and be meaningful. The distribution of the switches 
and the links established between those switches and the expression of certain genes might 
prove usefui for a biologist. For instance, to an observer interested in the resuit of a lack of 
zinc in the environment, the genes which react in a similar way to a lack of copper may be of 
little interest. A comparison between the two experiments permits to spot such genes and 
thus to suggest unsuspected relations.

6 Conclusion
The model presented here allows the description and détermination from the data of a 

large part of the gene expression regulatory network in a simple and consistent fashion. The 
rest of the network can be determined by identifying the switches with biologicai realities and 
discover how they are regulated. This complex task is simplified by the pattern of expression 
of the switches, which should permit to identify them with measured genes when such 
identification is possible.

We hâve demonstrated here that it is possible to deduce the value of the variables 
which regulate gene expression even when those variables are not measured. This 
identification is possible because a small number of causes create a large number of
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different effects, and because the possible links between the causes and the effects are 
modeled precisely. This is performed here with régulations modeled as Boolean fonctions, 
but the same could certainly be done for other, more realistic, models of régulation of gene 
expression.

We hâve aiso demonstrated that it is possible to perform the binarization of the data 
using the same framework as the one used for the détermination of the gene régulations. 
Such method should lead to better solutions than a discretization based on some pre- 
processing algorithm.

The binary switch model, like any Boolean model, is only a very simplistic description 
of the possible links between the regulators and the genes regulated. Nevertheless, we hâve 
shown here that this simplicity does not preclude the ability of the model to fit real data and to 
suggest interesting links. Simpler models hâve the advantage of being more understandable 
and less prone to overfitting. As long as they are expressive enough to describe the Systems 
studied, they usually outperform more complex models. This may explain the maybe 
surprising success of the real world applications presented.

With the technique presented, it is possible to perform a comparison of different data 
sets. This way, an explanation of common traits between them can be obtained. As shown in 
the métal work example, this could be usefui to focus the search on genes whose régulations 
are spécifie to certain experiments. The simplicity and understandability of the explanations 
given by the switches should prove usefui for the sélection of the most interesting genes.

A limitation of the model is that the links between the switches and the predicted 
genes must be perfect. As the number of samples increases, the likeliness of having at least 
one measure which does not fit because of the noise raises dramatically. This prevents the 
application of the framework on large data sets. A better version should allow for errors in the 
prédictions, for instance by using a probabilistic Bayesian model instead of the Boolean 
model presented here.

In order to compare data sets obtained by different laboratories, with different 
protocole, it might be better to discretize independently each group of experiments. It our 
framework, that could be done by using a different threshold for each group of experiments. 
This should make the comparison of heterogeneous experiments less dépendent upon the 
normalization of the gene expressions. This shows as well the importance of performing the 
discretization as a part of the estimation of the régulations, and not as a separate process.

Finally, the détermination of the groupe and the détermination of the switches are 
done independently, which is probably not optimal. The simultaneous détermination of the 
clustering, the thresholds and the switches should lead to better-defined problems.

Even with those limitations, the technique presented here is aiready applicable to real 
data sets, offering some interesting results. Would those limitations be lifted, it might be a 
usefui tool for the discovery of régulation networks and the interprétation of biological 
processes.
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Conclusion
The analysis of microarray data proved to be a very challenging task, in part because 

of the sheer size of the data. This made such simple things as the détermination of p-values 
and clustering complicated enterprises. The other difficulty lied in the imprécision of the 
questions asked. The biologists often hâve qualitative questions, which are not aiways easy 
to formulate mathematically. AIso, they often do not correctiy assess what is possible and 
what is not. For these reasons, it has often been necessary to détermine what a biologist 
might be interested in and could be obtained from the data. This can be the hardest part of a 
Work.

The Works presented in this thesis span a large spectrum. The first half was mainly 
concentrated on technical issues: how to estimate significance levels, how to improve the 
data quality and how to store the data. For these parts, the questions where quite clear, and 
most of the difficulties came from the size of the data and its particularities. In this first half, 
the techniques presented are mostly improvements of existing techniques. The main original 
points were:

1. In the statistical chapter, the comparison of different scoring fonctions, the merging 
of false discovery rates determined on different intensity Windows and the 
détermination of a local false discovery rate.

2. In the data improvement chapter, the création of two efficient data quality criteria. 
The merging of different scans to avoid saturation was original at the time it was 
created, although it has been published by others since. The assessment of the 
different modifications in a thorough and consistent manner is obvious but 
surprisingly unusual.

3. The data storing chapter présent a model of database which is essentially the 
development of simple design ideas.

The second half was concerned with questions which the biologists did not ask 
directiy, but could be inferred from their frustrations. Since the problems those chapters try to 
solve are original, the techniques used tend to be original also. The three original points 
raised in those chapters were:

1. The discovery of the composition of complex samples. The expression profile of 
complex samples can dépend more on their composition than on their pathological 
status. A mean to mathematically dissect those samples was proposed. This work 
is completely original.

2. The discovery of different clustering. The samples in an experiment can often be 
organized in more than one way, depending on the criterion chosen. A mean to 
cluster the gene in function of the clustering they give on the samples is given. The 
idea of this work stems from a paper showing the existence of different 
superimposed clusterings. The re-definition of this problem as a clustering problem 
on the genes is original, as is the algorithmic means to perform said clustering.

3. The last chapter is concerned about the link between genetic network and 
clustering. It is shown that to suppose the existence of a form of genetic network 
implies the existence of a clustering, whose form is determined by the form of the 
genetic network. This is illustrated with a Boolean network, showing that its 
identification can be separated in two tasks, a clustering and an identification of the 
clustering with the network. This way of linking clustering and genetic network is 
original, as are the algorithme proposed.
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