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Introduction

Markov modulated fluid flow processes are a very popular subject in 
applied probability, at least since the 1960’s, although at that time 
they were mainly called storage or dam processes (see, for instance, 
Loynes [32], Sevastyanov [47]). In this work, we study fluid processes 
and, starting with the most traditional définition, we shall expand and 
introduce new models.

A fluid process driven by a Markovian environment, also called fluid 
queue, can be briefly described as follows. Consider a buffer or réser
voir which is fllled up with fluid (water, for example) and emptied out. 
Its content varies linearly with time, and the rate of variation dépends 
on the State of some continuons time Markov process^ evolving in the 
background. The fluid queue is thus a two-dimensional Markov process, 
which we dénoté by {{X{t),(p{t)) : t € M+}:

• the first component X{-) is continuons and represents the content 
of the fluid buffer; it is usually called the level,

• the second component </?(•) is discrète and corresponds to the state 
of the underlying Markov process; it is usually called the phase.

A précisé définition of the fluid model will be given later; at this stage, 
we only provide an example to clarify the type of models that will be 
studied in this work.

'The reader not familiar with Markov processes will find in the Appendix a défini
tion of such processes, as well as some basic properties that will be useful throughout 
the text.
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Figure 1: An example of a fluid queue modulated by a 
Markov process with three States {0,1,2}.

In Figure 1, we illustrate a water réservoir which empties out at a 
constant rate c = 1. The inpnt rate of water into the réservoir is con- 
trolled by a continuons time Markov process on the three States {0,1,2). 
When the phase process is in state 0, the input rate is do = 0, when it is 
in State 1, the input rate is di = 1 and when it is in State 2, the input rate 
is di = 2. Thus, the net rate of variation of the bnfîer is ro = do — c = — 1 
when the phase process is in state 0 and in this case the buffer content 
decreases at a rate of 1; it is ri = di — c = 0 when the phase process is 
in State 1 and in this case the buffer content remains constant; and it is 
T2 = d2 — c = 1 and the buffer content increases at a rate of 1 when the 
phase process is in state 2. If the input rate is equal to — 1 for a long 
time, the buffer may become empty and, in this case, it remains at level 
zéro. On the other hand, if the réservoir is of infinité capacity and if the 
inpnt rate is equal to +1 for a long interval of time, the content increases 
without stopping. If the buffer is of finite capacity and if the input rate is 
equal to +1 for a sufficiently long period, it may happen that the buffer 
overflows; in this case, we force the level to remain at its maximum value.

The interest of the applied probability community in fluid models 
is particularly due to their applicability in télécommunication and com
puter Systems. Among the first to work in this area and to describe 
computer applications is Kosten [28]; he analyzes the statistical proper- 
ties of the content of a buffer placed at the input of a central processor 
handling messages coming from a multitude of terminais. In 1982, An- 
ick, Mitra and Sondhi [4] study a fluid process modelling a data-handling
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switch with multiple information sources which alternate independently 
and asynchronously between on and off States. The sojourn times in each 
of these States are assumed to be random and exponentially distributed. 
The switch stores in a buffer the information exceeding the maximum 
transmission rate of the output channel, the buffer being of infinité ca- 
pacity. The main questions that arise in this context are the following. 
What is the right buffer size for a predetermined number of sources and 
quality of service? How does one select the maximum number of sources 
to be allowed in the System?

In 1988, Mitra [36] considers a continuons time System where fluid 
is produced by m machines, transferred to a buffer of finite or infinité 
capacity, and consumed by n other machines. The producing and the 
consuming machines are allowed to hâve failures. Such models are well 
adapted to manufacturing applications, but also to télécommunication 
Systems, for which the machines represent sources and channels, and fail
ures represent service interruptions. The assumption of a finite buffer is 
essential in manufacturing problems, while in communication Systems, 
buffers may be assumed to be of infinité capacity since the Systems con- 
sidered hâve, in reality, relatively large buffers compared to the size of 
the packets, and the overflow probabilities are small.

Elwalid and Mitra [20, 21] in the early 1990’s use fluid processes to 
model an Asynchronous Transfer Mode (ATM) environment. This works 
well due to the fact that cells are small and hâve uniform sizes, and 
that interarrivai times between cells are constant for several contiguous 
cells. Also, the fluid approximation is well suited to circumstances where 
different time scales co-exist; here, the interarrivai time of cells is small 
with respect to the time between changes in the rate, which is a feature 
of the ATM environment.

More recently, fluid flow models were used by Van Foreest, Mand- 
jes and Scheinhardt [52, 53] and Mandjes, Mitra and Scheinhardt ]33], 
among others, to model an Internet congestion control protocol, the so- 
called Transport Control Protocol (TCP). The processes studied in this 
context are known as feedback fluid queues, and differ from the models 
described above by the fact that the behaviour of the background process 
changes according to the value of the level of the buffer.

Lately, fluid queues hâve also appeared to be useful in the analysis of 
risk processes. One may exploit the relationship between such processes 
and fluid queues to provide efficient computational algorithms, which 
allow for the détermination of the probability of ruin under different sce-
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narios. These problems will not be studied here for we concentrate our 
attention on fluid queues proper. We only mention that in Stanford et 
al. [48], we détermine the probability of ruin prior to an Erlangian hori
zon when the sizes of the daims are phase-type^ distributed, considering 
both the Spare-Andersen and the stationary risk models. Also, in Bade- 
scu et al. [6], we présent the Laplace transform of the time until ruin for 
a fairly general risk model, again by exploiting the relationship between 
risk processes and fluid queues.

Various approaches hâve been developed to study fluid models, most- 
ly to détermine the joint distribution of the buffer content and the phase 
of the background Markov process in the stationary régime:

Fj{x) = lim P[A(t) < X, ip{t) = j]t—^oo

for some nonnegative value of the level x and some phase j.
Methods using spectral analysis are probably the most traditional 

(see, for instance, Anick et al. [4], Kosten [28], Mitra [36], Stern and 
Elwalid [49], Van Foreest et al. [52, 53]). The equilibrium distribution of 
the State of the fluid process is described by a set of differential équations, 
and its solution is expressed in tenus of linear combinations of exponen- 
tials of the eigenvalues of the System. The limitation of this approach 
cornes from the fact that such eigenvalues are of both signs, and there- 
fore numerical errors, no matter how small, may lead to solutions that 
are unstable: computed probabilities become négative or grow without 
bounds.

In spite of the numerical difficulties carried by the spectral approach, 
very little material exists which discusses these problems in detail. One 
may find some results in Fiedler and Voos [22], where it is shown how sta
ble the spectral approach might perform provided that some précautions 
are taken.

Rogers [42] applies results on the Wiener-Hopf factorization of finite 
Markov chains and shows that the stationary distribution of the fluid 
buffer content has a matrix-exponential form. In order to compute it, 
one has to solve a Riccati équation, that is, a matrix équation of the 
form

XCX - AX - XD + B = 0,

where A, B, C and D are matrices and X is an unknown matrix. The 
author considers both cases of finite and infinité buffers, and explores

^The définition of a phase-type distribution is given in the Appendix.
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algorithmic issues in a subséquent paper with Shi [43]. The conclusion 
there is that spectral methods are the most efficient.

Asinussen [5] shows that the buffer content has a phase-type sta- 
tionary distribution. He obtains his results by constructing a new fluid 
queue, called the dual fluid queue, which is a stationary tiine-reversed 
version of the original one, and which we shall define later. Asinussen 
also considers fluid models with Brownian noise. He proposes an algo
rithmic procedure which is analyzed in Bean, O’Reilly and Taylor [10], 
and found there to be very efficient under spécial circumstances.

The State space of the background Markov process is usually assumed 
to be finite, except, for instance, in Van Doorn and Scheinhardt [50, 51], 
where the authors analyze fluid queues driven by an infinite-state Birth- 
and-Death process. Although the State space of the background process 
is allowed to be infinité, it has to satisfy soine other constraints, making 
the model not completely general either.

Sericola and Tuffin [46] dérivé a direct approach which leads to simple 
recursions and to a stable algorithm for the computation of the stationary 
buffer content in an infinité capacity fluid queue. Sericola ]45] generalizes 
this technique to the finite buffer case.

In her PhD Thesis, Barbot ]7] studies fluid queues both in the tran- 
sient and in the stationary régimes. For the transient case, Barbot de- 
rives the joint distribution of the infinité capacity fluid buffer level and 
the phase of the background Markov process, and studies the busy pe- 
riod of the fluid réservoir. Then, she considers a network of fluid buffers 
and détermines the marginal distributions of the levels of the buffers. 
For the stationary régime, Barbot obtains the joint distribution of the 
fluid buffer level and the state of the underlying Markov process in a 
sériés form. Then, she considers a network of fluid queues, driven by a 
common background Markov process, and obtains an expression for the 
steady state distribution of the level of each réservoir in the case where 
the fluid buffers are controlled by a unique M/M/1 queue.

More recently, in 2004, Akar and Sohraby ]3] study fluid queues with 
either finite or infinité buffers, using a novel algorithmic approach to 
solve numerically for the stationary solution of such processes. Their 
method does not rely on the computation of eigenvalues and eigenvec- 
tors, thus avoiding the numerical instability that this may create. They 
obtain a matrix-exponential form for the stationary distribution in the 
infinité buffer case, and a modified matrix-exponential form in the fi
nite buffer case. The expressions matrix-exponential form and modified 
matrix-exponential form shall become clear throughout this work.



6 Introduction

Meanwhile, in 1999, Ramaswami [39] extends the Markov-renewal ap- 
proach, which he developed for Quasi Birth-and-Death (QBD) processes, 
to fluid queues.

A QBD process is somewhat similar to a fluid queue, as it is a two- 
dimensional Markov process of which the flrst component is called the 
level, and the second one is called the phase-, one of the main différences 
is that the level of a QBD process is discrète, while the level of a fluid 
queue is continuons. The évolution of the state of a QBD process is such 
that, when in level n, the process either stays in level n, or it moves to 
levels n — 1 or n + 1. Jumps of more that one level, up or down, are not 
allowed. A more précisé définition of a QBD process will be given later.

The Markov-renewal approach applied to fluid processes lead Ra
maswami to obtain a matrix-exponential form for the joint distribution 
of the buffer content and the phase of the underlying Markov process in 
the stationary régime. Using the dual version of the given fluid process, 
he actually shows that this distribution has a phase-type représentation. 
Quite significantly, Ramaswami relates the fluid model to a discrète time, 
discrète state space QBD process, and this leads to a very efficient com- 
putational procedure based on the Logarithmic-Reduction algorithm of 
Latouche and Ramaswami [29] for QBDs. By efficient, we mean that 
the algorithm is itérative, easy to implement, numerically stable and it 
converges quadratically (Bini, Latouche and Meini [11], Guo [25], Meini 
[34, 35]).

Ramaswami’s paper, together with the idea of exploiting the similar- 
ity between fluid queues and QBD processes, are the starting point of 
our work. We further explore the relationship between the two processes 
and, avoiding the construction of a dual fluid queue, we obtain interest- 
ing results concerning simple fluid queues, with either finite or infinité 
buffers, and also more complex ones, like feedback fluid queues. We also 
study the necessary and sufficient conditions of independence between 
the two components of a fluid queue, the level and the phase, in the sta
tionary régime. In some cases, we provide new proofs for known results, 
on the hasis of renewal arguments; other results are new. Our approach 
reveals a great tractability and is always combined with a very efficient 
algorithmic procedure. Also, it leads to a unified approach of various 
fluid models. The results presented in this work hâve appeared, in large 
part, in [15, 16, 17, 18].

Building upon the probabilistic interprétation that we hâve given in 
[16] to Ramaswami’s computational procedure, Ahn and Ramaswami 
[2] establish a direct connection by stochastic coupling between infinité
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buffer fluid queues and infinité QBDs. In the finite buffer case, Afin, 
Jeon and Ramaswami [1] define a sequence of discrete-customer queues 
for which the stationary distribution of the work in the System converges 
to the stationary distribution of the fluid queue.

The Markov-renewal tool is powerful, and inany pièces of work on 
fluid models using this kind of technique hâve appeared recently. For ex
ample, Beau, O’Reilly and Taylor [9] obtain expressions for return proba- 
bilities to the same level, Laplace-Stieltjes transforms and moments of the 
time taken to return to the initial level, excursion probabilities to high or 
low levels and Laplace-Stieltjes transforms of sojourn times in specified 
sets. The authors also provide physical interprétations of their results. 
As another example, Latouche and Takine [30] use the Markov-renewal 
approach to analyze fluid queues controlled by semi-Markov processes, 
and give a characterization of the stationary distribution of such Systems.

The structure of this thesis is the following. In the first chapter, 
we focus on an infinité capacity buffer fluid queue, which will be often 
referred to as the standard model. The content of the buffer takes values 
in R"*" and varies linearly at rate rj each time the underlying Markov 
process {ip{t) : t e R"''} is in State i. We first assume without loss 
of generality that ail the rates ri are equal to -|-1 and —1 only. This 
considerably simplifies the analysis and we show how to return to the 
general setting, in Section 1.7 using normalization arguments, then in 
Section 1.8 using a direct probabilistic approach.

In Section 1.2, we dérivé the set of differential équations satisfied 
by the steady-state density vector of the fluid buffer content. Using a 
Markov-renewal approach and level-crossing type arguments, we dérivé 
an expression for the stationary density of the buffer content in Section 
1.3. It is expressed in tenus of the steady State probability mass vector 
of being in level zéro with a phase corresponding to a négative input rate, 
and of a matrix which records the expected number of visits to higher 
levels, starting from level zéro, before returning to this initial level. The 
return probabilities to the initial level turn out to play a crucial rôle in 
our analysis. These probabilities are contained in a matrix denoted by 
which is needed to déterminé the probability mass vector of level zéro, as 
well as the matrix of expected number of visits. We give expressions for 
ail these quantities and show that 'L is the solution of a Riccati équation 
for which efficient algorithms exist, as we shall see later. Some of these 
results may also be found in da Silva Soares and Latouche [16].

In Section 1.9, we déterminé performance measures for the marginal
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distribution of the level of a fluid queue with arbitrary input rates.
We briefly présent in the last three sections the approaches which 

hâve been followed by Ramaswami [39] and Rogers [42] to détermine the 
stationary distribution of the standard fluid queue. We show that these 
results are in fact the same as ours.

We discuss in Chapter 2 algorithmic issues based on the link be- 
tween fluid queues and Quasi-Birth-and-Death (QBD) processes. First, 
we formally define a QBD and recall the matrix-geoinetric property of 
its stationary distribution. We also make some comments about the 
similarity between QBDs and fluid queues.

In [39], Ramaswami présents a computational procedure to solve the 
Riccati équation for the matrix ^ of first passage probabilities to the ini
tial level, based on uniformization and on the Logarithmic-Reduction al- 
gorithm for QBD processes. We adapt in Section 2.2 this computational 
method and give it a probabilistic interprétation, which was presented in 
da Silva Soares and Latouche [16]. The algorithm in [39] is based on the 
uniformization of two Markov processes related to the fluid queue, the 
uniformization being performed using the same parameter for the two 
processes. In Section 2.3, we show that the discretization parameters 
need not to be the same and we dérivé a computational procedure in 
this case. We also show that the détermination of the stationary distri
bution of the fluid buffer content does not dépend on the way that the 
uniformization is carried out.

In Section 2.4, we give a few numerical examples. The computations 
are performed using both the methods presented in Sections 2.2 and
2.3 leading to the observation that there does not seem to be any real 
advantages in using one procedure rather than the other. We conclude by 
confirming this observation by a theoretical analysis of the effect on the 
number of itérations needed by the Logarithmic-Reduction algorithm 
produced by varying the values of the two uniformization parameters. 
These results were already presented in [14].

We describe in Section 2.6 other algorithms for solving the Riccati 
équation, as well as their probabilistic interprétation in the fluid flow 
setting. The material of this section is taken from Beau et al. [10]. From 
now on, we know that computations are entirely feasible and we may 
concentrate on the mathematical questions that arise in the different 
problems that we consider.

Having recognized the similarity between standard fluid queues and
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QBD processes, we continue in this direction and analyze finite buffer 
fluid queues along the same Unes. The main results of Chapter 3 were 
already presented in da Silva Soares and Latouche [18].

We start this chapter by defining a QBD process with finitely many 
levels. We recall the form of its stationary distribution, which is a mix
ture of two matrix-geoinetric vectors; it is expressed by means of the 
stationary probability vectors of the boundary levels and of matrices 
recording certain expected number of visits, without visiting the bound
ary levels.

In Section 3.2, we define the finite buffer fluid queue, and we dérivé 
in Section 3.3 an expression for the stationary distribution of the buffer 
content, using the same kind of arguments as those used in Section 1.3 
for the infinité buffer case. The expression obtained gives the stationary 
distribution in ternis of the probability mass vectors of the boundary 
levels and of matrices recording the average number of visits to some 
level x, without visiting the boundary levels. In Section 3.4, we show 
how to détermine these matrices, which are expressed in ternis of ma
trix exponentials. Then, in Section 3.5, we give two alternative ways of 
computing the boundary steady State probability mass vectors.

The arguments of these four sections on finite fluid queues require 
the assumption that the input rates are ail equal to -|-1 and -1 only. In 
Section 3.6, we show that this is without any loss of generality and we 
give the solution in the general case where the input rates can take any 
real value.

We détermine in Section 3.7 sonie performance measures for the mar
ginal stationary distribution of the buffer content for the general fluid 
queue with a finite buffer; we apply these results on a nunierical example 
in Section 3.8.

In Chapter 4, we study a different class of fluid niodeis, in which 
the behaviour of the underlying phase process iiiay change according 
to the value of the level of the buffer, and we détermine the stationary 
distribution of the models considered. We start by giving one motivation 
for studying such Systems, which is a model of an Internet congestion 
control protocol which iiiay be found in Van Foreest et al. [52, 53].

The results of Sections 4.2 and 4.3 were presented in da Silva Soares 
and Latouche [17]. We analyse there an infinité buffer fluid queue, in 
which the behaviour of the phase process iiiay change when the buffer 
is eiiipty, and a finite buffer fluid queue in which the behaviour of the 
phase process iiiay change when the buffer is either eiiipty or full; in other
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words, we change the behaviour of the underlying process whenever the 
level reaches the boundary levels of the bufîer. We show that it is quite 
straightforward to apply in this context the approach which we developed 
for traditional fluid queues with finite or infinité buffers. To simplify the 
analysis and the notations, we first assume that the input rates of fluid 
are equal to +1 and —1 only, and we show how to return to the general 
setting in Section 4.4. Then, in Section 4.5, we illustrate our results by 
a numerical example.

We then consider, in Sections 4.6 and 4.7, fluid queues of infinité 
capacity in which the behaviour of the phase process changes when the 
level reaches certain thresholds. The distinguishing feature between the 
models of these two sections is that in Section 4.7 we create States at the 
interior thresholds, which attract the fluid and carry a probability mass, 
and States which repel the fluid. Again, our renewal-type approach can 
be perfectly adapted to these situations.

We further exploit in Chapter 5 the similarity between fluid queues 
and QBD processes. Latouche and Taylor showed in [31] that it is always 
possible to define the boundary transition probabilities of a QBD in such 
a way that the level and the phase are independent in steady state. We 
construct here an infinité capacity fluid queue such that its two compo- 
nents, the level and the phase, are independent in the stationary régime. 
We do so by modifying in a very particular manner its behaviour at the 
boundary. The results presented in this chapter may also be found in da 
Silva Soares and Latouche |15|.

We begin by showing in Section 5.2 that, under appropriate assump- 
tions, the level of the fluid queue is asymptotically independent of the 
phase as the level goes to infinity.

In order to obtain the exact level-phase independence, we need to 
eliminate the steady state probability mass of level zéro, as we explain 
in Section 5.3. We construct such a fluid queue without steady state 
probability mass associated to level zéro and give the form of its station
ary distribution.

In Section 5.4, we give the necessary and sufficient condition to hâve 
the level-phase independence in the stationary version, and we construct 
in Section 5.5 new transition rules for the fluid queue at level zéro, which 
lead to the announced independence.

We conclude by a brief description of some perspectives for future 
research, opened by this thesis.
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The following notations will be used throughout the text. Matri
ces will be denoted by capital letters, with I standing for the identity 
matrix, of which the dimension is made clear by the context. Vectors 
will be denoted by boldface lowercase letters. We will write 0 and 1 
for vectors of zéros and ones, respect!vely, of the appropriate dimension. 
Furthermore, the reader will find the main notations used in this text in 
the corresponding table at the end of the monograph.
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Fluid Queues with Infinité Buffers

In this cliapter, we apply Markov-renewal techniques to dérivé the sta- 
tionary density of the buffer content for a fluid queue with an infinité 
capacity buffer, and show that it has a matrix-exponential form.

We start in Section 1.1 by setting the context and, in Section 1.2, we 
give the set of differential équations satisfied by the joint density of the 
level and the phase of the System in both the transient and the stationary 
régimes. We then assume that the net input rates of fluid into the buffer 
may only take the values +1 and — 1; we show later in Sections 1.7 and
1.8 how to return to the general setting.

In Section 1.3, we dérivé an expression for the stationary density 
vector of the System, and we study in Section 1.4 one of its main com- 
ponents: the matrix 'ï' of first return probabilities to the initial level, 
which we show is the solution of a Riccati équation. This matrix is 
needed for the détermination of the other ingrédients of the stationary 
density of the System: a matrix of expected number of visits to higher 
levels, starting from level zéro, before returning to the initial level, which 
is determined in Section 1.5; and the steady state probability mass vec
tor of level zéro, which is determined in Section 1.6 by relating it to the 
steady state probability vector of a censored process, which we call the 
process of downward records. In Section 1.9, we compute some perfor
mance measures of the System.

The results presented in Sections 1.3, 1.4, 1.6 and 1.7 hâve appeared, 
in large part, in da Silva Soares and Latouche [16, 18].

The last three sections are devoted to the results obtained by Ra-
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maswami in [39] and by Rogers in [42] ; we also show how these results 
relate to ours. Ramaswami obtains a matrix-exponential form for the 
stationary distribution of a fluid queue, using renewal-type arguments. 
Then, he constructs the dual fluid queue and shows that the steady state 
density of the bufller content of a fluid queue with nonzero net input rates 
has a phase-type représentation. We présent this resuit in Section 1.11 
as well as an extension for the fluid queue with arbitrary net input rates, 
obtained without constructing the dual process. The results of Rogers, 
presented in the last section, are based on the Wiener-Hopf factorization 
for finite Markov chains.

1.1 Background

We consider a Markov modulated fluid queue, that is, a two-dimensional 
Markov process {{X{t), ip{t)) : t € M+j, where

• X{t) € M'*' is called the level and represents the content of an 
infinité capacity fluid buffer at time t,

• and if{t) takes values in some finite set S and is called the phase; 
it is the State at time t of a Markov process which régulâtes the 
évolution of the buffer content.

This régulation is performed as follows: during intervals of time when 
(p{t) is constant and equal to z, the level X{t) varies linearly at the rate 
ri, which can take any real value; when X{t) =0 and the rate at time t 
is négative, the level remains at zéro. The évolution of the buffer content 
can thus be expressed by the following équations:

dXjt) f ifX(t)>0,
dt \ max(0, ifX(t) = 0.

The underlying Markov process {ip{t) : t € M"*"} is assumed to be ir- 
reducible and to hâve a finite state space S. We décomposé the set S 
into three disjoint subsets 5o, «S+ and »?_, where 5q = {z G = 0},
S+ = {i e S : Ti > 0} and = {z € 5 : < 0}. Roughly speaking, we
may say that is the subset of phases which do not lead to a change of 
the buffer content, and S+ and are the subsets of phases which make 
the level increase and decrease, respectively. Without any loss of gener- 
ality, it is assumed throughout the text that 5+ and are nonempty 
sets. We dénoté by sq, s+ and s_, respectively, the cardinalities of the 
subsets <So, <S+ and S_.
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ip{t)

X{t)

Figure 1.1: Possible évolution of the buffer content. The top 
graph depicts the évolution of the phase process, whereas 
the bottom graph depicts the évolution of the level.

Such a fluid process will often be referred to throughout the text as 
the standard fluid queue.

We illustrate one possible trajectory for the évolution of the fluid 
buffer content in Figure 1.1, which is to be interpreted as follows. The 
piecewise constant curve on the top graph shows how the phase evolves 
in time, and the piecewise linear curve on the bottom graph refers to the 
évolution of the fluid level with respect to time. In the interval (0, ti), 
the fluid level increases continuously since the phase belongs to <S+. At 
time il, there is a phase transition, but the new phase is still in S+ and 
therefore the level continnes to build up, but at a different rate. At time 

the phase changes to some phase in <So, and the level remains constant 
until time instant ts, when the phase changes to S_ and the level starts 
to decrease, etc. Observe that in the interval {t5,te), the phase is in
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5_, therefore the level decreases and eventually reaches level zéro. We 
maintain the level at zéro until the background process switches to some 
phase in «S+, at which time the level builds up again.

The infinitésimal transition generator of is denoted by T. Its
stationary probability row vector is denoted by is such that

= lim P[(p{t) = i|(^(0) = j]
t—*oo

for ail i,j E S and it is the unique solution of the System

r CT = 0 
1 Cl = 1-

1.2 Differential Equations

This section is devoted to a classical resuit in the literature about fluid 
flow models, giving a set of partial differential équations satisfied by the 
joint density of the level and the phase at time t. The proof provided 
here is inspired from the élégant one that can be found in the PhD Thesis 
of Barbot [7, Section 1.3].

For j in S and a; > 0, define the joint distribution of the level and 
the phase at time t by

Fj{x;t) = P[X{t) < x,(p{t) = j],

and its density by

= —Fj{x;t)

for X > 0, j E S, with /j(0;t) = limx-^o+ being defined by
continuity. The stationary density vector 7t(x) = (7Tj(x) : i E S) oî the 
fluid buffer content is obtained by taking the limit as t goes to infinity 
of the density function:

7Ti(x) = lim fi{x]t).t—►CXI

It exists if and only if the mean stationary drift of fluid into the buffer 
is négative, that is, if and only if < 0, where r is the column vector 
with components for i E S.

The following theorem gives the set of partial differential équations 
satisfied by the joint density of the level and the phase at time t of a 
fluid queue.
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Theorem 1.2.1 For ail j Ç: S and for x > 0, the density functions 
fj{x\t) are a solution of the System of partial differential équations

= '^fi{x;t)Tij-rj — fj{x-t). (1.1)
ies

Proof Take j E S, x > 0 and t > 0. Define

Gj{x;t) = P[X{t) > x,ip{t) = j]
= P[ip{t) = j]-Fj{x]t). (1.2)

We first show that the function Gj{x;t) is a solution of the differential 
équation (1.1).

Define, for h > 0, Nt^t+h the number of state changes of the Markov 
process {<^(t)} in the interval [t,t + h]. We clearly hâve that

P[Nt,t+h>2Ht)=j]=o{h) (1.3)

where the notation o{h) has the usual meaning lim/j^o o{h)jh = 0.
Since there is a finite number of phases in <S, there exists a real value 

mj such that
m,- = sup Irjl. 

i€S
From (1.3), we can write 

Gj {x + mjh; t + h)
= P[X {t + h) > X + mjh, (fit + h) = j, Nt^t+h = 0]

+P[X(t + h) > x + mjh, ip{t + h) = j,Nt^t+h = l]+o(h). (1.4)

The first term on the right-hand side of (1.4) yields

P[X(t + /i) > X + mjh, ip{t + h) = j, Nt^t+h = 0]
= P[max(0, A"(t) + rjh) > x + mjh, (f{t + h) = j, Ntj+h = 0]

by observing that, since the process {<,p(t)} stays in the phase j during 
the whole interval [t, t + /?,], the level X{t + h) reached at the end of this 
interval is X{t) + rjh if this quantity is positive, and zéro otherwise. We 
inay also write

P[X{t + h) > x + mjh, ip{t + h) = j, Nt,t+h — 0]
^P[X{t) > X + {mj - rj)h, <p{t) - j, Nt^t+h = 0]
= P[Nt,t+h = Ol^(t) > x + {mj - rj)h,(p{t) = j]Gj{x + {mj - rj)h\t) 
= P[Nt,t+h = 0|v?(t) = j]Gj{x + {mj - rj)h-,t).
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This last equality follows from the fact that the number of events for 
the background Markov process is conditionally independent of {^(f)} 
given the phase at time t. The probability that stays in phase
j for an interval of tinie of length at least equal to h is and we
therefore obtain

P[X(t + h) > x + rrijh, ip{t + h) = j, Nt^t+h = 0]
= (1 + Tjjh)Gj{x + {rtij — rj)h\ t) + o{h).

The second term on the right-hand side of (1.4) vérifiés the inequality

P[X(t + h) > x + rrijh, (f{t + h) - j, Ntj+h = 1]
< P[X(t) > X, ip{t + h) = j, Ntj+h = 1].

Indeed, if (p(t + h) = j and if there is only one state change of 
in the interval [t,t + h], then the net input rate of fluid into the buffer 
during this interval cannot be bigger than m,j, thus

P[X(t + h) > x + rrijh, + h) = j, Nt,t+h = 1]
< P[X(t) > X, if{t + h) = j, Ntj+h = 1].

Therefore, we may write

P[X(t + h) > x + mjh,ip{t + h) = j,Ntj+h = 1]

^ + = h^t,t+h = = i]Gi{x-,t)
ies
i¥=j

= '^TijhGi{x; t) + o{h). 
ies
i^j

On the other hand, rrij being positive,

P[X(t +h)> x + rrijh, if{t + h) = j, Ntj+h = 1]
> P[A'(t) > X + 2mjh, + h) = j, Ntj+h = 1]

= ’y^ TijhGj{x + 2mjh-, t) + o{h). 
ies

Thus, since Gj{--,t) is right-continuous, we deduce that 

lim ip[Jf(t + h) > x + mjh,ip{t + h) = j, N= 1] = '^TijGi{x]t)./i—^0+ Il i€S
i^j
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Rewriting (1.4), one finds

Gj {x + rrijh-, t + h)
— (1 + Tjjh)Gj{x + (nij — rj)h\t)

+P [X (t + /i) > X + ruj + h) = j, Nt^t+h = 1] + o(/i).

Subtracting Gj{x + rrijh-, t) on both sides, dividing by h and taking the 
right lirait as h goes to zéro, we obtain

lira —{Gj{x + rrijh-, t + h) — Gj{x + rrijh-, t))
/i—^0+ /l

= lira ^{Gj{x + {rrij — rj)h;t) — Gj{x + rrijh;t)) 
/i—*0+ h
+ Gj[x-, t)Tjj + ^ ^ Gi{x-, t)Tij. 

iesijtj

It follows that

Gj{x-,t) = '^Gi{x-,t)Tij - rj—Gj{x-,t). 
iesdt

Replacing Gj{x-,t) by its expression (1.2), we raay write

|p[<p(t)=i]-^F,(x;t) = 5^P[<^(t)=
ieS ies

which yields

d d
O^Fjix-, t) = Y^ Fi{x-, t)Tij - rj—Fj{x-, t)

ies
(1.5)

because

£P[<P(<) = j] = ^P[</^(i) = j]Tij-
ies

Taking the partial dérivative with respect to x on both sides of (1.5) and 
using the fact that d/dxFj{x-,t) = fj{x-,t), the resuit follows. □

Upon letting t go to infinity in (1.1), we obtain the following irarae- 
diate corollary.
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Corollary 1.2.2 For x > 0 and for j E S, the stationary density func- 
tions 7Tj{x) solve the following System of differential équations:

, —7Tj(x) + Y^7Ti{x)Tij = 0. 
i^S

(1.6)

□

Remau-k 1.2.3 The Markov-renewal approach followed in this work is 
justified by the fact that finding the numerical solution of (1.6) by spec
tral methods is an ill-behaved problem. Indeed, rewrite (1.6) in matrix 
form as

-^7t{x) = 7t{x)TC~^
dx

where C = diag(r) is a diagonal matrix such that Cu = for ail i in <S; 
it is assumed here that ri ^ 0 for ail i in <S. The corresponding eigen- 
value problem is Au = uTC~^, where A and u dénoté an eigenvalue and 
the corresponding left eigenvector of the matrix TC~^. If the stability 
condition < 0 is satisfied, independent solutions of (1.6) are of the 
form ^■Cix'^^e^^^Ui (see Barbot [7], for instance), where the Aj’s hâve 
a strictly négative real part. The eigenvalues of the System being com- 
puted with finite précision, approximation errors may appear, leading to 
solutions that are numerically unstable and to results that do not hâve a 
physical interprétation. As we shall see later, our solution is numerically 
stable, because only eigenvalues with a non positive real part are présent.

1.3 Stationary Density

We assume that ail the net input rates of fluid into the buffer are dif
ferent from zéro and that they are ail equal to -)-l or —1. That is, we 
assume that is empty and that S is partitioned into <S = <S_,_ U <S_,
where S+ = {i E S : r^ = -|-1} and S_ = {i E S \ ri = —1}. This 
assumption is without loss of generality, for we show in Sections 1.7 and
1.8 how to obtain the distribution in the general setting, once one has 
the distribution for this simplified process.

We depict in Figure 1.2 one possible évolution of the buffer content 
in this context. This figure, as well as ail the figures throughout this 
chapter, is to be interpreted as follows. We assume that there are four 
phases in ail, with <S+ = {1,2} and S_ = (3,4). The graph is drawn
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X{t)

Figure 1.2: Possible évolution of the buffer content when the 
net input rates are equal to 1 or —1.

with a thin line when the phase is 1 or 3, with a thick line otherwise. 
We see that the process is in phase 1 at time 0, then it jumps to phase 
2, then to phase 3, at which time the level begins to decrease, then to 
phase 2 again, at which time the level starts to build up again, etc. At 
the time when the level becomes zéro with a phase in , then it remains 
at zéro until the background process switches to some phase in <S+.

We partition matrices and vectors in a manner conformant to the 
décomposition of S. Thus,

T =

that is, contains the components Tij for i,j G S+, contains the 
components Tij for i E S+ and j G 5_, and so on. Similarly, we write
^

In this setting, the stability condition can be determined by the sign 
of the différence ^^1 — 4_1, which we call the mean stationary drift of 
the fluid queue and dénoté by /r. If /r < 0, the stationary density of the 
buffer content exists and the fluid queue is positive récurrent. It is null 
récurrent if ^ = 0 and transient if /x > 0.

We now introduce a matrix ^ which plays a key rôle in what follows. 
For i in 5+ and j in <S_, we dénoté by ^ij the probability that, starting 
from (0, f) at time 0, the fluid queue returns to the level zéro in a finite 
amount of time and does so in phase j. More precisely, if we define 
6 = inf{t > 0 : A(t) = 0} as the first return time to level zéro,

< oo ip{9) - y|Ar(0) = 0, (/?(0) = i\.

If the fluid queue is récurrent, this return time is finite almost surely and 
thus we hâve that 'Fl = 1.
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The transition rates and the net input rates are indépendant of the 
value X of the level, for x > 0; this property will be referred to throughout 
the text as the spatial homogeneity of the process. It implies that, for 
any x > 0, ^ij is also the probability that, starting from (x, i) at time 
0, the fluid queue returns to the level x, in phase j, in a flnite amount 
of time.

The fluid process has a stationary density for strictly positive values 
of the buffer content, and a stationary probability mass vector for level 
zéro. Dénoté by p = (p^,p_) the steady State probability mass vector 
of the empty buffer:

Pi - lim P[A'(t) = 0, (p{t) = i],f—*CX3

for each i in S. Since the fluid queue instantaneously leaves the level 
zéro if the phase is in «S+, the sub-vector p_^_ = {pi : i E S+) is equal to 
0, and therefore p = (0,p_).

We give in the next theorem an expression for the stationary density 
vector 7t(x) of the buffer content. It is expressed in ternis of the steady 
State probability mass vector of the boundary level of the buffer and of a 
matrix recording certain expected number of visits. For readers familiar 
with QBD processes, the similarity between the stationary distributions 
of the two families of processes should now become apparent; this will 
be discussed later. We define ip{r — 0) = limt_T,i<T

Theorem 1.3.1 // p < 0, then the stationary density of the infinité 
buffer fluid queue is given by

7t{x) = p_T_+N{x) (1.7)

for X > 0, where, for i E S+ and j E S, [A^(x)]ÿ is the expected number 
of crossings of {x,j), starting from (0, i), before the first retum to the 
level zéro.

Proof Assume that A(0) = 0 and take j E S. By a décomposition based 
on the last visit to level zéro before time t, we find that {X{t),(p{t)) = 
{x,j) in one of two cases:

• either there exist some time t < t and i € «S_ such that X {t—r) = 0 
and ip{{t — t) — 0) = i, at time t — r the phase changes from <S_ to 
5+ and the fluid starts building up, and in the interval {t — T,t), it 
continuously remains above level zéro (see Figure 1.3),
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level

level

Figure 1.4: The last visit to level zéro occurs at time 0.

• or in the interval [0, t), the fluid level continuously remains above 
level zéro, wliich can only happen if (/^(O) is in <S+ (see Figure 1.4).

Hence, we hâve

= Y] f Fi{0-,t-T){T^+)^k[Hx■■,r)]kjdT
i^S- -^0

+ (1.8)

where [0(x; <)]/jj = d / dx t), with Fj,^\x\t) being the conditional
probability, given that the process starts in (0, k), that it remains above 
level zéro in the interval (0, t) and that it is at a level at most equal to 
x, in phase j G »S at time t.

The intégral [A^(x)]fcj = r)]fcjdr is then the expected number
of crossings of level x in phase j, starting from (0, fc), before the first
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return to level zéro. Since the process is ergodic, the expected return 
time to level zéro is finite, so that [^(x)]*;^ < oo for ail k and j.

This implies, on the one hand, that limt^oo so that
the second term in the right-hand side of (1.8) converges to zéro as 
t oo; on the other hand, since Fi{0;t) and (T'_+)ifc are bounded and 
limt_oo Fj(0;t) = pi exists, we hâve by the dominated convergence the- 
orem

lim [ Fi{0]t - T)(T^+)ik[(f>{x-,T)]kjdT = [ lim Fi{0;t)]{T_+)ik[N{x)]kj.
t—^OO Jq t—>CX)

Replacing this in (1.8) and using matrix notations, we obtain (1.7). □

We are now interested in showing that the quantity TV’(x) has a 
matrix-exponential form. We write N{x) = [A^++(x), A^+_(x)].

Theorem 1.3.2 For x > 0, the matrix N{x) giving the expected number 
of crossings of level x, starting from level zéro, before retuming to level 
zéro, is given by

N{x) = e^^[I,^ (1.9)

for some matrix K, which will be given later.

Remark 1.3.3 We are not concerned here with the détermination of 
the matrix K itself, but mainly on showing that the expected number 
of visits N{x) has a matrix-exponential form. A précisé expression of K 
will be given in Section 1.5.

Proof We first show that

N^^{x + y) = N^^{x)N^Ay)- (1-10)

Take x, y > 0 arbitrary but fixed, and define \V{x + y)\ij, for i,j € 
iS+, as the number of visits to {x + y, j), starting from (0, i), before the 
first return to the level zéro. We thus hâve

E[F(x-|-î/)] = N++{x + y).

Also, define \W{x + y\x)]ij, for i,j G S+, as the number of visits to 
(x -I- y,j), starting from (x, i), before the first return to the level x. 
By the spatial homogeneity of the process, [W(x -I- y\x)]ij has the saine
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distribution as the number of visits to {y,j), starting from (0, i), before 
the first return to the level 0, and therefore

E[W{x + y\x)] = E[V{y)] = N^^{y).

Starting from level zéro and in order to cross level x + y from below, 
the process has first to cross level x in a phase of <S+. We organize the 
visits to (x + y,S+), starting from level zéro, into several groups; the 
visits which occur after the first passage through (x,5+) but before the 
second, those which occur after the second passage through (x,»S+) but 
before the third, and so on. By the strong Markov property, we find that

E{[l/(x + 2/)]ÿ} = J]] E{[V(x)]ifc}E{[lV(x + y|x)]fcj}

= [^++W]ifc[^++(y)]A:j>

which, written in matrix form, yields (1.10).
Equation (1.10) shows that A^++(x) must be a matrix-exponential, 

thus, since A^+.^(0) = I, we write that

N^^ix) =

for some matrix K.
One proves in a similar manner that

N+_{x + y) = N++{x)N+_{y). (1.11)

Taking the right limit as y goes to zéro in (1.11), one obtains that

A^+_(x) = A^++(x) lim A^+_(y), 
y^o+

which gives
A^+_(x) =

since limj^_^o+ -^+- {v) is the expected number of visits to a State in 
(0,«S_), starting from (0,<S+), before the first return to the level zéro, 
and is therefore equal to This concludes the proof. □

Theorem 1.3.1 and Theorem 1.3.2 together lead to the following 
straightforward corollary.



26 Fluid Queues with Infinité Buffers

Corollary 1.3.4 If < 0, then the stationary density of the infinité 
buffer fluid queue is given by

n{x) = p_T_^e^-[I, (1.12)

for X > 0.

□

In order to actually compute 7t(x), we need to know p_, K and ’f. 
In fact, we shall see later that the first two quantities are expressed in 
ternis of the latter, thus our main purpose now is to concentrate on the 
matrix of first return probabilities to the initial level.

1.4 First Return Probabilities

We first introduce the process {D{t) : t € M"*"}, which we call the process 
of downwards records. It is a censored process obtained by restricting 

to those epochs of time during which the phase is in S_ and the 
level reaches temporary record low levels.

More precisely, let {{Y{t), ip{t)) : t € M'*'} be the unconstrained 
random walk defined by

Y{t)= fr^is)ds. (1.13)
Jo

Clearly, Y (t) takes both positive and négative values and we may think 
of it as describing the évolution of a fluid queue with a bottomless 
buffer. The process of downward records {H(<)} corresponds to the 
phase process observed only during those intervals of time in which 
Y{t) = mino<,i<t T(n).

We illustrate it in Figure 1.5, which we now explain. Take to arbi- 
trary, such that <^(to) is in 5_. Define the sequence {ykjdkfik : /c 6 N} 
as follows: yo = T(to), dk = inf{t > tk : </>(t) € 5+}, yjt+i = Yidk), 
and 4+1 = inf{t > dk : Y{t) = yk+i,ip{t) € 5_}. During the intervals 
{IkTdk), the fluid is steadily decreasing; at time dk, a temporary record 
low level yk+i is reached and the fluid begins to build up; during the 
interval (dk,tk+i), the fluid goes up and down until time tk+i when it 
reaches its previous record yfc+i. The process {D(t)} is obtained if one 
excises the intervals {dk,tk+i) and only keeps track of the phase during 
the intervals (tfc,dfc). This is the reason why in Figure 1.5 we only in- 
dicate the phase changes during the intervals (tk,dk). We project the
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X{t)

Figure 1.5: Illustration of the process of downward records.

phases on the vertical line on the right, marked with an arrow to indicate 
the direction of the flow.

Theorem 1.4.1 The matrix

17 = r__+r_+'^ (1.14)

is the infinitésimal transition generator of the process of downward re
cords {D(t) : t € M’*'}.

Proof Take i,j G S_ and assume that D{t) = i for some t. Over 
an interval of length h, the phase may directly inove froin i to j, with 
probability Tijh + o{h), or it may move to some phase k e S+, with 
probability Tn.h-\-o{h), at which time the level starts to increase. Assume 
that this happens at some level rc > 0. Later, the fluid queue returns to 
the level x in phase j, with probability Summing over ail k, we find 
that U is given by (1.14). □

Remark 1.4.2 An immédiate conséquence of Theorem 1.4.1 is the fol- 
lowing. Since U is the generator of the process of downward records, 
we hâve that {e^^fij, for i,j E S_, is the probability that, starting from 
{y,i), for any y, the process reaches level y — h in finite time, and that
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X{t)

Figure 1.6: Conditioning on the end of the first slope upward 
or on the beginning of the last downturn.

(y — is the first state visited in level y — h. Dénoté by \G_
for i,j € »S_, the first passage probability from state (.x, j) to state (0, i):

\G__{x)]ij = P[0 < oo and y}{9) = j|X(0) = x,y}{Q) = i],

with 6 being the first epoch when the fluid level becomes zéro, already 
defined in the preceding section. It follows that G__(x) = This will 
be important in the sequel.

If the fluid queue is récurrent, the bottomless process {F(t)} drifts 
to — oo. In this case, is a stochastic matrix and U is singular. If, 
on the contrary, the fluid queue is transient, the process {F(t)} drifts to 
+00, the matrix is sub-stochastic and U is nonsingular.

We dérivé in the next theorem an expression for the matrix ’i', ob- 
tained by a Markov-renewal type argument which consists on condition
ing on the first transition from a phase in S+ to a phase in S_.

Theorem 1.4.3 The matrix of first retum probabilities to the initial 
level is given by

roo
^ = / (1.15)

Jo
Proof Assume that AT(0) = 0. Starting in (0,<S+) at time 0, the fluid 
queue returns to the level zéro at a time which is positive and finite if and 
only if the following event takes place (see Figure 1.6 for an illustration): 
there exist a time r and a level y such that
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• ^{t) is in 5+ for 0 < f < r, with probabilities given by the éléments 
of the matrix e^++’^,

• = y,
• at time r, the phase changes from <S+ to 5_, with probabilities 

given by the éléments of T+_dr, and

• the queue returns to the level zéro in a finite time afterwards; this 
event has probability G__(y) by définition of this matrix.

Since = +1 for ail i E S+, necessarily r and y are equal, and

pOO

/ e^++^T+_G__(y)dy.
Jo

By Remark 1.4.2, G_(y) is equal to and the proof is completed. □

As a conséquence of this theorem, we find that the matrix 4' is the so
lution of a nonsymmetric algebraic Riccati équation, that is an équation 
of the form

XCX - AX - XD + B = 0,

where A, B, G, D and X are real matrices of sizes mx m, m.x n, nx m, 
n X n and m x n, respectively.

Corollary 1.4.4 The matrix is the solution of the Riccati équation

4'F_+4'+ T++4'-t-4'T__-hr+_ == 0. (1.16)

Proof The proof is purely algebraic. Pre-multiplying both sides of 
(1.15) by and integrating by parts, one obtains

roo

= / T++e^+^yT+^e^ydy
Jo

rOO
= [e^++^r+_e^2/]^ _ / e'^++yT+_e^yUdy

Jo
= -T+_ - W.

Indeed, limj^_oo = 0 because T++ is the infinitésimal generator of
a transient Markov process, and is finite by the interprétation of 
given in Remark 1.4.2.

Recalling that U = T_-|- T'_^.4', we obtain the announced resuit. □
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Ramaswami introduced in [39] a very efficient algorithm for the com
putation of based on QBD processes and for which we gave a prob- 
abilistic interprétation in [16]. Furthermore, several computational pro
cedures are developed in Guo [24] to solve Riccati équations, and in 
Bean et al. [10] specifically for (1.15). A discussion of the algorithm 
of Ramaswami and its probabilistic interprétation, and of some other 
algorithmic issues, is postponed to Chapter 2.

To complété tins section on first return probabilities, we dérivé an- 
other expression for the matrix , which was already given in Ramaswa
mi [39]. We shall give in Section 1.10 the approach used by Ramaswami 
to obtain this expression; our proof is similar to that of Theorem 1.4.3, 
but here we condition on the beginning of the last downturn, that is, on 
the last transition from a phase in 5+ to a phase in S_, instead of on the 

, first.

Theorem 1.4.5 The matrix il' of first retum probabilities to the initial 
level is given by

rOO
^ = I e^^T+_e^—^dz, (1.17)

Jo

where e^^ is defined in Theorem 1.3.2.

Proof Assume that A(0) = 0. Starting from (0,5+) at time 0, the 
queue returns to the level zéro in a finite time if and only if the following 
event holds (see Figure 1.6 for an illustration): there exist a time r' and 
a level 2 such that

• X(h) > 0 for 0 < h < r',

• X{t') = 2 and (/?(r' — 0) is in 5+,

• at time t' the phase changes to 5_,

• after time r', the phase remains in 5_ at least until the level returns 
to zéro.

Since = — 1 for ail i in 5_, it takes exactly 2 units of time for the fluid 
queue to become empty if it starts in (2,5_) and continuously remains 
in 5_. Therefore, we find that

rOO rOO
4'=/ / (t>{z-T')T+_e^—^dzdT\

JO Jo
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where, for i e S+ and j G S, [<p{z-, r')]ÿ = d/dz (z; t') with (2; r') 
being the conditional probability, given that the process starts in (0,z), 
that it remains above level zéro in the interval (0, r') and that it is at a 
level at most equal to z, in phase y € «S at time t'.

The intégral 4>{z; t')(1t' is the expected number of crossings of 
level z, starting from level zéro, and avoiding level zéro, and is therefore 
equal to by Theorem 1.3.2. □

1.5 Expected Number of Crossings

As shown in Section 1.3, the average number of visits N{x) to any pos
itive level X, given that the fluid process starts in level zéro, before re- 
turning to this initial level, lias the matrix-exponential form N{x) = 

for some matrix K, and for given in Section 1.4. Fol- 
lowing the same lines as in [39], we now détermine the matrix K. For 
this purpose, we need a preliminary lemma stating the Kolmogorov dif- 
ferential équations for the taboo process avoiding level zéro. Recall the 
définition of [cf){x-,t)]ij given in the proof of Theorem 1.3.1, and dénoté 
by (p+^{x,t) and (j)^_{x,t) respectively the matrices containing the com- 
ponents [(f){x-, t)]ij for i,j G 5+ and for z G 5+, j G 5_.

Lemma 1.5.1 For x > 0, we hâve

d d—(j)++{x,t) = (j)++{x,t)T++ + 4>^_{x,t)T^+-—(t>++{x,t), (1.18)

d d
—(f)+_{x,t) = <f)++{x,t)T+_+4)+_{x,t)T__ + —(t>+_{x,t).

□

In fact, we only need (1.18), but we provide the two équations here 
for the sake of completeness. We omit the proof of this lemma since it 
is similar to that of Theorem 1.2.1.

Theorem 1.5.2 The matrix K is given by

K = T++ + 'Fr_+. (1.19)

Proof Taking the intégral from 0 to -l-oo in both sides of (1.18), we 
obtain O

iV+4i)n+ - WT-+ = 0,
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since for x fixed and strictly positive, ^++(1, t) goes to zéro both as t —> 0 
and as t —> 00. Substituting 7V++(x) and N+_{x) by (1.9), we deduce 
that O

(.Kxt _ ^ ^ 0.
ox

Since dfdxe^^ = Ke^^, taking the limit as x goes to zéro in the above 
équation leads to (1.19). □

The following resuit States some spectral properties of the matrix 
K in the case where the drift of the fluid queue is négative. We only 
consider this case for the tiine being because it is in this context that 
we work in this chapter. We shall later give the corresponding spectral 
properties for the matrix K for other values of the drift.

Theorem 1.5.3 If fi < 0, then ail the eigenvalues of K hâve a strictly 
négative real part. Therefore,

lim ^ 0
x—*oo

and K is a nonsingular matrix.

Proof By the existence of the stationary distribution (1.12), we know 
that we can integrate 7r(a:)l with respect to x over (0, +00) and obtain 
something which is bounded by one. Therefore, e^^dx must be finite, 
implying that ail the eigenvalues of K hâve a strictly négative real part. 
This directly leads to the conclusion that goes to zéro as x goes to 
infinity and that K is nonsingular. □

In the sequel, we will often need to integrate with respect to x 
over the interval (0, +00). This is the ohject of the next corollary.

Corollary 1.5.4 If p <0, then

f e^^dx ^-K~\

Proof First, let us write

e^^ = I+ I Ke^^du-,f (1.20)
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to prove this, it suffices to difFerentiate both sides of the équation and to 
verify that both sides are equal at rc = 0.

By Theorem 1.5.3, we know that K is nonsingular. We can thus 
pre-multiply (1.20) by K~^ and find

px

K-^e^^ = K~^+ e^^du. (1.21)
Jo

Taking the limit as x goes to infinity in (1.21), one obtains the announced 
resuit since lim3;_ooe^^ = 0 by Theorem 1.5.3. □

1.6 Boundary Probability Vector

To actually compute the stationary density of the buffer content (1-12), 
we need to détermine the vector p_ of the steady State probability that 
the process is in the level zéro with a phase in S_. For this purpose, we 
consider the censored process when the fluid queue is at level zéro, which 
in fact has the same characteristics as the process of downward records 
{T>(t)} introduced in Section 1.4, and we show that the vector p_ is the 
equilibrium probability vector of this process.

Theorem 1.6.1 If p < 0, the vector p_ is the unique solution of the 
System

p_U = 0 
p_{l-2T_+K-^l) = 1,

(1.22)
(1.23)

where U is given by (l.lf)-

Proof We introduce the restriction {x(-)} of the process {<^(-)} observed 
during the intervals of time when the fluid level is zéro. In order to do 
this, we define the sequences of epochs {on}, when the buffer becomes 
empty, and {dn}, when it starts filling up;

oo = inf{t > 0 : X(t) = 0}, 
dn = inf{t > ün ■ X{t) > 0),

and

a„+i = inf{t > dn : X{t) = 0}
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X{t)

Figure 1.7: Intervals of time spent at level zéro.

for n > 0. Next, we introduce the lengths In = dn — of the intervals 
{an,dn) spent at level zéro (see the example depicted in Figure 1.7). The 
cumulative lengths Ln of these intervals are = X^o<i<n h, n>0. We 
define i>{t) for t > 0 by < t < taking L_i = 0. Finally, we
define

x{t) — + t —

This means that x(0 ©volves in the interval (L„_i, L„) exactly like (p{t) 
in the interval (a„, d„.) (see Freedman [23] for further details about this 
construction). The vector p_ is proportional to the steady state probabil- 
ity vector of the process {x(t)| and we need to détermine its infinitésimal 
generator.

A moment of reflection shows that it is T_+ = [/; this can
be obtained by arguing as in the proof of Theorem 1.4.1.

To prove the normalizing équation, we integrate 7t(x)1 over (0, oo), 
and add it to p_l. This must be equal to 1 and, by (1.12), we hâve

roo

p_l+ p_r_+e^'"[7,
Jo

'F]ldx = 1.

Using Corollary 1.5.4 and the fact that ^1 = 1, we readily obtain (1.23), 
which complétés the proof. □
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1.7 General Fluid Input Rates

As announced previously, we show in this section that we do not lose 
generality in restricting our analysis to fluid queues with net input rates 
equal to +1 or — 1 only.

Define the fluid queue {(Â(t), (p(t)) : t € for which the net input 
rates fi may take any real value, including zéro, and partition the set of 
phases into the subsets 5q, >S+ and <S_, with = 0 for i in Sq, fi>0 
for i in S+ and fi < 0 for f in <S_. Dénoté by T the generator of the 
underlying phase process, with

Too fo- ■
f = f+o n-

. r_o f__

and dénoté by n{x) and p respectively the stationary density of the 
buffer content and the probability mass vector of the empty bufîer for 
this process. As before, = 0 and the density vector is a solution of 
the System

■^frix)C = TflxlT, (1-24)
dx

with C = diag(fj : i E S).
We dénoté by <S, = 5+ U the subset of phases for which the input 

rate is different from zéro. We partition the infinitésimal generator T, 
the stationary vectors 7r{x) and p in the corresponding manner

f = Tqo Tb, 
T,o T„

fr{x) = (7fo(x),7f.(x)) and p = {Po-,P,)-
We separate the phases in <Sq from the others and consider the cen- 

sored process {(Â(t), (^(t))} which is the fluid queue observed only dur- 
ing those intervals of time when the phase is in «S». Using the above 
notations, it is easy to verify that the System (1.24) is équivalent to

7fo(x) = TV,{x)f,o{-foo) ^ 

^7r.(x)C. = iv,{x)f,

where C, = diag(fi : z € 5,), and

T = Ta, + r,o(—Too) ^Toa

■ ■ + ■ r+o ■
T— . T.0 _

(1.25)

(1.26)

(-foo)-' [ Tb+ fo_ ]
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is the infinitésimal generator of the censored phase process {(p{t)]. More- 
over, one shows by conditioning on the last visit to the States in (0,5_) 
that

Po = P-'î'-o{-Too)~^ ■
To obtain this, it sufîices to mimic the proof of Theorem 1.3.1.

With 7t{x) and p denoting the stationary density and probability vec- 
tors of the fluid queue {(X(t), c^(t))}, we find that they are proportional 
to n,{x) and p,, and eventually we obtain

{7r+{x),7r_{x)) = â(7r+(x),7r_(x))

and
p. = âp.

The factor à is determined in the following manner. Since
pOO

pl + / (7T+(x), 7r_(x))d3;l = 1,
Jo

it follows that
rOO

p,l + / {n+{x),-K_{x))dxl = à.
Jo

To compute the left-hand side of the above expression, it suffices to note 
that ■K+{x)dx = and p_ + ■k_{x)dx = where | is the
stationary probability vector of T, that is, = 0 and ^1 = 1. It readily 
follows that à = ^^1 + ^_1.

We hâve thus reduced the initial problem to that of finding the sta
tionary characteristics of the fluid queue {(W(t), <p(t))} for which So is 
empty.

Dénoté by \M\ the matrix obtained from a matrix M by taking the 
absolute values of ail its entries.

Define T = |C,|“^T, rj = 1 for i in S+ and rj = —1 for z in 5_. 
Note that T is still the generator of a Markov process, since it lias non- 
negative off-diagonal entries and its row sums are equal to zéro. This 
transformation reflects a change of time scale and net input rates: for 
each phase i, the length of the sojourn intervals in i are multiplied by |fi| 
and the net input rates are divided by |fj|, the fluid level changing by the 
same amount overall. The stationary density vector for this fluid queue 
is proportional to n{x)\C,\. To see this, it suffices to rewrite (1.26) in 
the équivalent form

h 0 
0

7^,{x)\C,\\C,\-^f
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where 7+ and 7_ respectively dénoté identity matrices of orders s+ and 
s_.

Denoting by {(X(t), (^(t))} the fluid queue with generator T and 
net input rates equal to +1 and —1, and by tt(x) and p its stationary 
characteristics, one has

(^+(x),7T_(x)) = â(7r+(x),7r_(x))|C.r\

and
p = o:plC.r\

To détermine a, one uses the facts that

7T_(x))l dx + pl = 1,

(1.27)

and that
rcx) roo

/ 7T+(x)dx = and / n_{x)dx + p_ =
Jo Jo

where ^ is the stationary probability vector of T, that is, ^ solves the 
System = 0 and ^1 = 1. Thus, we infer that

a
J roo

' {n+{x), 7r_(x))|C,|“^ldx + âp|C,|“^l = 1,
0

which leads to a =
Retracing our steps back, we see that one immediately obtains the 

stationary distribution of the original fluid queue {(X(t), once one
has determined that of the simpler process {(X(t), (p(t))}- Furthermore, 
one shows that | = where | is the stationary probability
vector of T, and that ^ = (4|C,|1)“^^|C,| which leads to ^1(7,1“^ 1 = 
(^1(7,11)“^ We can now compute the product 7 of the scaling factors à 
and ôr.

7 = àl\C.\l = = ^1C|1, (1.28)

the last equality following from the fact that ^o|Co| =0.
In sunmiary, the stationary marginal density of the fluid level is given 

by

■k{x) = (7ro(x),7T+(x),7r_(x))
= 7P_r-+e^'"[((7;'f+o + ^|(7_r'f_o)(-roo)-\ -FIC. -Il
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and the stationary probability mass vector of level zéro is

(p-,Po) = 7P-[ic_r\ |c_r'f_o(-Tbo)-'].

The following expressions will be useful in the sequel: the stationary 
density ^{x) = 7r(x)l is

/x(x) = 7{7r+(x)iü++ 7r_(x)îi;_}
= 7p_r_+e'^^(m+ + ^m_), (1.29)

with 7t(x) given in Corollary 1.3.4, and with

= C;Hl + TVo(-îbo)-4} (1.30)

and
W_ = |c_rHi + r_o(-fbo)-4}, (1.31)

and the probability mass at level zéro is

mo = pl = jp_w_. (1.32)

The vector p_ is given in Theorem 1.6.1.

1.8 General Fluid Input Rates by a Probabilistic 
Approach

In the preceding section, we obtained the stationary distribution of a 
fluid queue with arbitrary real valued net input rates, by relating it to 
the stationary distribution of a fluid queue with net input rates equal to 
+1 or —1, using normalization arguments. Our goal here is to show that 
the same results may be reached by a probabilistic approach [8].

We consider a fluid queue {(X(t), (p{t)) : t € M"*"} with net input rates 
which can take any real value except zéro, and with generator T. The 
reason for choosing to analyze such a System instead of a more general 
one, is that we hâve seen in (1.25) how to obtain the stationary density 
for the phases in once one has the stationary density for the phases 
in <S, = 5+ U 5_. We assume that the mean drift p in equilibrium is 
négative, so that the stationary density exists. The next theorem gives an 
expression for the steady state density vector of the buffer content
for the phases in 5,; its proof is based on probabilistic arguments.

The following quantities will be used in the proof of the theorem. We 
define the matrix ^ so that, for i 6 5+ and y G 5_, is the probability
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that, starting from level zéro in phase i, the fluid queue {(Â(t), (^(t))} 
returns to level zéro in a flnite amount of time, and does so in phase 
j. We dénoté by the square matrix of order which records the 
expected number of crossings of level x by the process {(Â(t), <p(t))}, 
starting from level zéro, before returning to this initial level. Observe 
that we use the same notations as for the fluid queue with net input 
rates equal to +1 or —1. The reason for doing so is that these quantities 
are the same for the two processes: the fact that we shrink or expand 
the lengths of the intervals of time spent in the different phases does not 
change the average number of times that the process crosses any given 
level X, nor the probability that it returns to the initial level in a flnite 
time.

Theorem 1.8.1 ///x < 0, then the stationary density of the buffer con
tent of the process {(Â(t), (^(<))} is given by

TT,{x) = p_f_+e^^{C-\ (1.33)

The steady state probability mass vector p_ of the states (0,5_) is 
the unique solution of the System

p_U = 0 (1.34)
p_{l-T_^K-^[C:\ ^|C_|-1]1) = 1

where Ü = T_+

Proof Assume that Â(0) =0 and take i,j € S. Define

Gij{x]t) = P(o,i)[A:(t) > x,ip{t) =j],

where, for any event A, P(o,i)[A] = P[A|X(0) = 0, <^(0) = i]. Following 
the same argumentation as in the proof of Theorem 1.3.1, we condition 
on the last visit to level zéro, and obtain that

Gij{x-,t) = 'Y] [ P(o,i)[Â(< - u) = 0,:^(t - a) = fc] 

ies+
P(o,i)[<^(t — U + du) = l\ip{t — u) = k]

P{o,i)[Xit)>x,(p{t) = j,X{s)>0 VsG(t - u,t]\ip{t - u) = l] 

+ P{0,i)[^(0 > X, (p{t) = j,X{s) > 0 Vs G (0, t]]
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Define

Fij{x]t) = P[X(i) < = j|X(0) = 0,<^(0) = î].

Using the strong Markov property and the fact that {<^(t)} has infinités
imal generator T, we obtain

Gij{x;t) = / Fik{0]t-u)Tkidu (1.35)

ies+
P(o.O H > X, (p{u) = j, X(s) > 0 Vs G (0, u]]

+ P(0,i) [X{t) > x,<f{t) = j, ^ (s) > 0 Vs € (0, t]].

Furthermore, we hâve that

Gij (x; t) = P(o^i) = j] - Fij (x; t)

= Y] [ Fik{0-,t- u)fkidu 
kes. -^0
l€S+

P(0,/)[‘^(^i) = j,X{s) > 0 Vs G (0,n]]

+ P(o,i)[<^W = {s) > 0 Vs G (0,t]] - Fij{x;t),

again by conditioning on the last visit to level zéro. Replacing this in 
(1.35), we obtain

Fij{x-,t)

= Y f Fik{0-,t-u)TkiduP(oj)[if{u) ^ j,X{s) > 0\/s e {0,u]] 
kes- -^0
l€S+

- Y i Fik{0;t - v)fkidu

ies+
P(0,;) [X{u) > X, if{u) = j, X(s) > 0 Vs G (0, u]]

+ P(o,i) b(i) = y, ^(s) > 0 Vs G (0, t]]

- P(o,o[X(i) > x,m = j,X{s) > 0 Vs G (0,t]].

Taking the limit as t goes to infinity, we see that the last two ternis 
vanish because the drift is négative and the fluid process is récurrent.
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Defining Fj{x) = limt_.oo P[-^(i) < 2:, = j], we may therefore write
that

J
rOO _

P(0,i) [X{u) < X, Ip{u) = j, X(s) > 0 Vs e (0, u]] du

les+
(1.36)

where, for /c € <S_, pfc = Ffc(O) is the steady state probability mass of 
State (0, k).

Since we are interested in the stationary density of the buffer content, 
we take the dérivative of (1.36) with respect to x and find

nj{x)
°°d -
—P(o,/) [X(u) < X, (p{u) = j, A(s) > 0 Vs € (0, u\]dU

ies+

= '^PkTki / P(o,i)[X(u)G(x,x+dti),(p(u) = j,J\:(s)>0 Vsg(0,u]]
keS-
/G*S+

= / P(0,/)[3^e A(u,u+^),<p(u) = j, A(s)>0 Vs€(0,u]]
fc65- -^0 Pjl
l€S+

since, in order for X{u) to be in (x, x + du), we must hâve that Â(-) 
crosses level x in the interval of time {u, u + du/\rj\); this is expressed by 
the notation x G X(u,u + du/|rj|). This interval of time is determined 
by taking into account the fact that, since (p(u) = j, the level varies 
linearly at a rate \vj\ (see Figure 1.8). We therefore obtain that

_^ _ CO
= X] PkTkl / [0(x; u)]ij d.u- (1.37)

keS-
l€S+

where [4>{x] u)]ij is the conditional density of state {x,j), given that 
the process starts from (0, Z), and avoiding level zéro. The intégral 
/q°°[0(x; u)]ijdu is then the expected number of visits to level x in phase 
j, starting from level zéro in phase Z, and without returning to level zéro. 
From what we hâve seen before, we know that this quantity is e^^[7, ^']. 
Writing (1.37) in matrix notation yields

7T.(x)4']|ar^ (1.38)
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X{t)

Figure 1.8: For X{u) to be in {x,x + du) when (p{u) = j, 
the process X(-) must cross level x in the interval of time 
{u,u + du/\rj\).

which proves our first daim.
To show that p_Ü = 0, we might mimic the proof of Theorem 1.6.1 

and show that p_ is the steady State probability vector of the censored 
process in (0,5_), which has geherator Ü. Instead of doing so, we provide 
a different approach, which is purely algebraic.

Integrating 7t,(x) with respect to x from zéro to infinity, we obtain 
the vector ~ P-)i where \ is the steady state probability vector
of T. Therefore, if we take the intégral of both sides of (1.38), we find 
the two expressions

and
l_-p_=p_f_,{-K)-^^CA-\

Substituting the first one into the second, we obtain

p_=l_-l,C^'Ü\CA-\ (1.39)

Thus,

= (|_-|^c.,^|c_i-i)(r__+r_+^)

- |+c+^'|C'_r^r__ -c+c+5'|c_r^r_+^.

p_u
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Since T = \C,\T where T is the generator of the fluid queue with net 
input rates equal to +1 or —1, one finds

P^ü = +

From the Riccati équation (1.16), we hâve + = -T+_—,
hence

P-Ü =

which is indeed equal to zéro since C+T+_ = TV_, C+T++ = T++ and 
= 0. The nornializing équation for p_ is obtained by imposing that 

the total probability mass should be equal to one. □

1,9 Performance Measures

We now turn to the détermination of some performance measures for 
the marginal distribution of the fluid level of the process {(X(t), 
with arbitrary net input rates. These performance measures may also be 
obtained using the phase-type représentation of the marginal distribution 
of the fluid level, which will be derived later.

We start by computing the stationary distribution function

F{x) = lim P[X(t) < x].
f—*oo

We assume throughout that the stability condition is satisfied, that is, 
we assume that // < 0, so that the matrix K of the fluid queue with net 
input rates equal to -|-1 and — 1 is nonsingular. As before, the vector p_ 
and the matrices T and are, respectively, the steady State probability 
mass vector, the phase transition generator, and the matrix of first return 
probabilities to the initial level, for the fluid queue with rates equal to 
+1 and —1.

Proposition 1.9.1 If n <0, the stationaTy distribution function of the 
buffer content of the process {{X{t), ip{t))} is given by

F{x) = rùo + ^p_T_+{-K)~^{I - e‘^^){w+ -h

where niQ is given by (1.32), 7 by (1.28) and w+, w_ by (1.30, 1.31).
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Proof The stationary distribution F{x) is given by

F{x) = mo + / fi{u)du.
Jo

Using (1.29), we obtain that

F(x) = mo + 7P_T_+ / du{w++
Jo

By (1.21), JJ du — —K~^{I — and the resuit follows. □

The stationary mean and second moment of {{X{t), <f{t))} are given 
next.

Proposition 1.9.2 7/p < 0, the mean M and second moment V of the 
buffer content of the process {(X(t), (^(t))} in equilibrium are given by

M = 'yP-F-+{—K)~‘^{w+ + ^'m_) (1-40)

and
V = 2^p_T^+{-K)-^{w+ + 'Üw_), (1.41)

where 7 is given by (1.28) and by (1.30, 1.31).

Proof The expected value of the buffer content of {(X(t), <p(t))} in 
equilibrium is

M

dx{w+ + 'ï'iü_),

using the fact that p,{x) is given by (1.29). By following the same argu
ment as in Corollary 1.5.4, one shows that the indefinite intégral J e^^dx 
is equal to + M where M is an arbitrary matrix. It is then easy
to establish (1.40) through intégration by parts.

The proof of (1.41) goes along the same lines, and is therefore omit- 
ted. □

We now déterminé the Laplace-Stieltjes transform of the buffer con
tent in equilibrium. We dénoté by 'R{s) the real part of a complex 
number s.
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Theorem 1.9.3 If fi < 0, the Laplace-Stieltjes transform (j){s) of the 
buffer content of the process {(A(t), f>{t))} in equilibrium is given by

4>{s) = rho + 'yp_T_^A{s){w+ + (1-42)

for TZ{s) > 0, where
A{s) =-{K - sI)-\ (1.43)

and where rho is given by (1.32), 7 by (1.28) and w+, w_ by (1.30, 
1.31).

Proof The Laplace-Stieltjes transform of P is given by
roo

<p{s) = rho + / e~^^ fj,{x)dx
Jo

for TZ{s) > 0, where p,{x) is given by (1.29). This is clearly seen to be 
équivalent to (1.42) where

We hâve seen in Theorem 1.5.3 that ail the eigenvalues of K hâve a 
strictly négative real part, leading to the conclusion that the eigenvalues 
of K—si also hâve a strictly négative real part since P{s) > 0. Therefore, 
K — si is nonsingular and (1.43) is established. □

/

1.10 A Closely Related Expression

We présent in this section the article by Ramaswami [39], which was the 
starting point of our work. The main différence between this section and 
the preceding ones lies in the approach used. Ramaswami introduces 
the arguments based on Markov-renewal theory, but does not use to the 
fullest the probabilistic interprétations of the matrices K and 4».

It is assumed in [39] that the net input rates r^ of fluid into the buffer 
can take any real value, except zéro. We use the saine notations as before 
and consider an infinité buffer fluid queue {{X(t), ip{t)) : t G R+} with 
phase transition generator T. The set of phases S is decomposed into 
5+ U 5_. We dénoté again by ^ the steady State probability row vector 
associated with the generator T.

The next theorem gives the stationary distribution of the buffer con
tent of such a fluid queue. We shah see later that it is équivalent to 
Theorem 1.8.1.
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level

Figure 1.9; The last epoch at which the process crosses the 
level X before t.

Theorem 1.10.1 The stationary distribution of the fluid queue has a 
mass at the level zéro and a continuons density for strictly positive values.

i. There exist a matrix Z of order s+ and a matrix T with dimensions 
s+ X s_ such that the stationary density vector is given by

Tt,{x) = -l^Ze^^[I, T], for x > 0. (1.44)

ii. Dénoté by p = {pi : i & S) the stationary probability mass vector 
of the empty buffer. It is given by

P={0,L-l^T). (1.45)

Proof To prove the first part of the theorem, assume that X(0) = 0. 
For X, 7/ > 0 and j 6 S, we hâve that (X(t), (p{t)) = {x + y,j) if and only 
if there exist some time t < t and some phase i € S such that:

• at time t — t the fluid queue is in state (x, i), and

• in the time interval {t — r.t), it continuously remains above the 
level X.

This holds due to the skip-free upward property of the fluid level process 
and we illustrate it on Figure 1.9.

Denoting by /j(x; t) the density of state (x,j) at time t, we may write 
that

fj{x + y;t) x; t - t)[^{x, X + y; r)]^ dr (1.46)
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where x + y; r)]jj is the probability density, given that the process 
starts in (x, i), of being at (x + y, j) at time r and remaining above level 
X in the interval (0, r). Since the density fi{x;t) is continuons and goes 
to zéro as t goes to oo, it is uniformly bounded and thus we can take the 
lirait as t ^ oo in both sides of (1-46) to obtain

Ttj{x + y) = ^ ^i(x)[$(x, X + y)]ij (1.47)
ies

where 7Tj(x) - hmt^oo fj{x-,t) and [^(x,x+y)]ÿ = /g°°[(/)(x, x+y; r)]ijdr 
is the average nuraber of visits to the State (x + y,j) before returning to 
level X given that the process starts in State (x,z). Equation (1.47) raay 
also be written in matrix notation as

7t(x + y) = 7r(x)$(x,x + y). 

The spatial horaogeneity of the System implies that

4>(x,x + y) = 4>(0,y).

By the skip-free upward property again, we know that for x, y > 0, the 
taboo process avoiding level 0 cannot reach level x + y before reaching 
level X. Hence, we raay write

</>(0, X + y; 0(0, x; t — n)0(O, y; u) du

by conditioning on the last epoch of visit to level x, and tins directly 
yields

$(0,x + y) = $(0,x)$(0,y), x,y>0. (1.48)

The matrix ^(0, x) can be written as

4>(0,x) = 4>++(0, x)
0

$+_(0,x)
0 X > 0. (1.49)

The last s_ rows of $(0, x) are equal to zéro because starting from level 
zéro and from a phase in the process stays in level zéro, violating 
the taboo at once.

Putting (1.48) and (1.49) together, we obtain

4>++(0, X + y) = $++(0, x)$++(0, y)

and
$+_(0,x + y) = $++(0,x)4>+_(0,y)
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leading to
4»++(0,x) = (1.50)

since 4>++(0,0) = I, and

4>+_(0,x) = (1.51)

where T - lim3,_o+ 4>+_(0, x). Therefore

7t(x) = a[e^^,e^^T] (1.52)

where a is a row vector of order s+.
To détermine a, one can integrate the first s+ components of (1.52) 

from 0 to oo; this should be equal to since the steady State probability 
of (0, î) is equal to zéro for i E S+. Thus,

ae^^dx = a{—Z)~^ =

which gives a = and complétés the proof of the first statement.
To détermine p_, we integrate the last components of (1-44) and 

obtain that

i-l^Z)e^^Tdx = -l^Z{-Z)-^T

=

The steady state probabilities for the last s_ phases are thus equal 
to ^_^T + p_, and we finally obtain

P_=|_-|+T. (1.53)

□

Remru'k 1.10.2 To obtain the matrix-exponential form of the station- 
ary buffer content, the assumption of finiteness of S is in fact not nec- 
essary; S can be infinité as long as 5+ is of finite size. Indeed, suppose 
that I (S oo but | <S+ |< oo. Recall Equation (1.46) and observe that 
[4>{x^ X + y\ T)]ij = 0 if i G <S_. Thus, Equation (1.46) becomes

fj{x + y,t)= [ V /j(x;t-T)[^(x,x + y;T)]ijdr 
■^0 ie5+

and we are in the same situation as when S is finite. We can therefore 
use the same arguments to dérivé the matrix-exponential form of the 
stationary density of the System.
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Dénoté by C the diagonal matrix diag(rj : i G S,). It will be parti- 
tioned in the following way:

C+ 0
0 c_

(1.54)

The following resuit is a reformulation of Lemma 1.5.1 in the case 
where the net input rates take arbitrary values except zéro. Its proof is 
therefore omitted.

Lemma 1.10.3 For x > 0, we hâve

d d
—0++(O,x;t) = (/)++(0,x;f,)r++ + ^+-(0,3;;t)f’_+ - —çi++(0, x; t)C+,

(1.55)
d d

= (/>++(0,x;t)r+_ + 4>+_{0,x-t)f__ + —0+_(O,x;t)|C_|.
(1.56)

□

The next theorem gives expressions for the matrices Z and T, similar 
to (1.19) and (1.17).

Theorem 1.10.4 The matrices Z and T are given by

Z = (r+^ + Tr_+)c;i (1.57)

and
roo

T = / e^^r+_|C_r^e^—(1.58)
Jo

Proof The proof of (1-57) is similar to the proof of (1.19), but we 
integrate (1.55) instead of (1.18).

To obtain (1.58), we take the intégral of both sides of (1.56) for t 
going from 0 to +oo, and this yields

O

$++(0,x)T.,_ + 4>+_(0,x)T__ + — $+_(0,.t:)|C_| = 0.

Using (1.50) and (1.51), the équation above reduces to
O

eZxf^_ ^ ^ ^ Q
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which is équivalent to

T+_+ TT__+ ZT|C_| = 0. (1.59)

Now, one can prove that the matrix T given by (1.58) is actually a 
solution of (1.59). Indeed, multiply both sides of (1.58) on the left by Z, 
and perform intégration by parts; this leads to

roo

ZT^ Ze^î^r+_|C_r^e^—^dy
Jo

The only minor difficulty is to compute the limit as y goes to oo of the 
expression in brackets. In fact, we hâve that \C^\~^T_is the infinités
imal generator of a transient Markov process, since (|C_|''^T'__)1 < 0 
and (|C_|“^r_)“^ exists. Thus,

lim = lim =0.
y—*oo y—^00

On the other hand, limy_oo = 0, and therefore the first tenu on the 
right-hand side of (1.60) reduces to —T+_\C-\~^. Thus,

ZT = -f+_ 1C_ - TT__ 1C_

which is indeed équivalent to (1.59). □

As before, we can write a Riccati équation for the matrix T : 

TV_|C_r^ +TT__|C_r^ +r++C“^T + TT_+C;^T = 0. (1.61)

To see this, it suffices to substitute (1.57) in (1.59).

RemcU'k 1.10.5 We now show how the results in this section relate to 
Theorem 1.8.1.

Let T be the infinitésimal transition generator of the fluid queue with 
net input rates equal to -)-l and —1, and let K and 'I' be the matrices 
satisfying (1.19) and (1.16), respectively.

We first show that
T = C+^|C_ -1 (1.62)
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and
Z = C+KC~^ (1.63)

where C is defined in (1.54).
Since T = we hâve by (1.16) that

C“^T+_ + + ^|C_ r^T_+^ = 0.

Multiplying on the left by C+ and on the right by this reduces
to

+ r++4'|c_r^ + c+^|c_r^r_+^'|c_r^ =0,

which, using (1.61), gives (1.62).
To prove (1.63), replace T by its expression (1.62) in (1.57) to obtain

Z = + c+4'|c_r^r_+c'-^

Multiplying on the left by C~^ and on the right by C+, this yields

c~^zc+ = + ^ic_r^T_+

which immediately gives (1.63) by (1.19) and using the relation between 
T and T.

Second, note that to verify that (1.45) is in agreeinent with (1.34), it 
sufiices to consider (1.39) and to see that it is équivalent to (1.45), with 
T given by (1.62).

Finally, we show that équation (1.44) is the same as (1.33). By (1.45), 
we hâve that

= (L-I+T)r_^

using (1.57). Since \ is the asymptotic distribution of T, one finds that

p_T_+ = -CZC+.

Replacing this in the right-hand side of (1.33) and using (1.62) and (1.63), 
we obtain

= -UZe^^[I, T]

which is indeed the right-hand side of (1.44).



52 Fluid Queues with Infinité Buffers

We will need later the following expression

(1-64)

for the steady State probability vector of level zéro of a standard fluid 
queue with net input rates equal to +1 and —1 only. To see that this 
holds, recall that p = â~^p|C',| by (1-27), with â = Thus,

P_ = (^|C.|-4)(L-|+ï)|C_|

using (1.53) and, since | and T =
we find that

1.11 Phase-type Représentation

To obtain a phase-type représentation for the stationary distribution of 
the fluid queue, Ramaswami introduces the dual fluid queue, which is 
defined in the following manner.

Dénoté by A the diagonal matrix diag(^i : i E S) and by M' the 
transpose of some matrix M. Define the generator T = A~^T'A, and 
consider a fluid queue with phase transition generator T and net input 
rates —ri < 0 for i E S+ and —ri > 0 for i € »S_. This queue is in fact 
the time reversed stationary version of the fluid process with generator 
T; it is still a two-dimensional Markov process, which we dénoté by

To analyze the dual fluid queue, we adopt a purely algebraic ap- 
proach.

For X > 0, define the matrix 4>(x, 0) = A“^($(0, x))'A, where $(0, x) 
is defined in Section 1.10. As usual, we write it as

$(x,0)
è++(x,0) 0
$_+(x,0) 0

The presence of zéros in the last s_ columns of $(x, 0) is justified by the 
presence of zéros in the last rows of $(0, x), see (1.49). Define also 
A+ = diag(|j : i E and A_ == diag(fj : i E S_). The proof of the 
following resuit is straightforward.
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Theorem 1.11.1 We hâve

$++(x,0) = e^", (1.65)

where Z = and

6_+(x,0) = Te^^, (1.66)

where T = A“^T'A+. The matrices Z and T satisfy the following équa
tions:

Z = C;i(T’++ + t+_T) (1.67)

and fOO
T = / e'^-l '^—y\C_\-^f_^e^ydy. (1.68)

Jo
Proof Recall that 0) = Transpose both sides of this équa
tion and multiply on the left by A~^ and on the right by A_,_:

A;1($++(0,x))'A^ =
Al’Z'A+x= e + 

=

which proves (1.65). Similarly, transpose both sides of (0, x) = e^^T, 
multiply on the left by Al^ and on the right by A+ to obtain (1.66).

We next consider (1.57). Transposing both sides of that équation 
yields

Z' = + C"^T’!+T'.

Multiplying again on the left by A“^ and on the right by A^., we get

A;^Z'A+ - A;iC;ir;^A++ A;iC-^T’:^T'A+

which reduces to (1.67) as C+ and A+ commute since they are diagonal 
matrices.

Perform the same kind of algebraic manipulations on (1.58) to obtain
(1.68). □

Assume that Â(0) = x with x > 0 and dénoté by 0 the first epoch 
when the dual fluid level becomes zéro. Thus, d = inf{t > 0 : Â(t) = 0}. 
Define the matrices G++(x,0) and G_+(x,0), with dimensions x 
and s_ X s+ respectively, by

[G++(x, 0)]ij = P[0 < oo and <p(û) = j € S+ j X(0) = x, (p(0) = i G 5+]



54 Fluid Queues with Infinité Buffers

and

[G_+(x, 0)]ij = F[6 < oo and <p{6) = j e S+ \ Â'(O) = x, <^(0) = i € »S_].

The following theorem gives the relationship between the matrices 
G4.+ (x,0) and G_+(x, 0) on the one hand, and 6++(x, 0) and $_+(x, 0) 
on the other; this leads to a probabilistic interprétation of the latter.

By a change of time scale, we define S = |G|“^T, and observe that 
S is the generator of a Markov process since it has négative diagonal 
entries, nonnegative off-diagonal entries and its row sums are equal to 
zéro. We consider the fluid queue with phase transition generator S and 
net input rates equal to +1 and —1.

Theorem 1.11.2 The matrices G++{x,0) andG_+(x, 0) are respectively 
the minimal nonnegative solutions of the équations

G++(x,0) = e^++^ (1.69)
px ^ roo

+ / / e^--'^S.+G++{z + y,0)dydz
Jo Jo

and
roc

G_+(x,0) = / e^—^5_+G++(x + z,0)dz. (1.70)
Jo

Moreover, G+^.(x,0) = $++(x, 0) and G_+(x,0) = #_+(x, 0).

Proof Due to the skip-free downward property of the fluid level process, 
G++(x, 0) has a matrix-exponential form.

In order to obtain (1.69), we condition on the fluid level 2 at the epoch 
of first increase and on the quantity y by which the fluid level increases 
before the queue begins to empty out again. The first tenu in (1.69) 
corresponds to the case where the x initial units of fluid are drained out 
of the buflfer without an increase of the content at any time; in the second 
term, we first hâve that x — z units of fluid are drained out of the buffer, 
then the dual modulating Markov process enters in a State of <S_ and y 
units of fluid arrive into the buffer; the phase changes again to a State 
in 5+ and we finally hâve to take into account the probability that the 
fluid level empties out, starting from level z -\- y, and this probability is 
given by G++(2 + y,0).

Multiply both sides of (1.69) by e“‘^++^ on the left and take the 
dérivative with respect to x to get

—G++(x,0) = 5++G++(x, 0) + 5+_ J e^“~^5_+G++(x + z,0)dz.
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This équation admits the solution G++(x,0) = with Z given by 
(1.67). Indeed, replacing G++(a;, 0) by and letting x go to zéro in 
the above équation, we obtain that

f) - - . r°° -
lim —= 5++H-5+_ / ^S^+e^^dz.
x^o dx Jo

Since the left-hand side is equal to Z, we find (1.67) and thus we conclude 
that G+4.(x,0) = 4>++(x,0).

To obtain (1.70), we condition on the fluid level z that has been 
added until the first epoch when the dual phase process enters 5+. Next, 
we take the dérivative with respect to x:

—G_+(x,0) = J e^—^S^+-^G++{x + z,0)dz

e^—^S_+e^^e^^Zdz

and thus we find that G_+(x,0) = = $_+(x,0). □

The next resuit gives a phase-type characterization for the station- 
ary buffer content of the original fluid queue; it allows one to use the 
machinery available for these distributions and to perform numerical 
computations with great accuracy.

Theorem 1.11.3 The stationary distribution of the fluid level of the 
queue {(X(t), (^(t))} is phase-type with représentation {à, Z) where 6t =

Proof First, observe that the matrix Z in (1.67) is a defective generator. 
Indeed, it has nonnegative off-diagonal éléments and

ZI = Cf^{f++-\-t+^AZ^T'A+}l 
= c;'A;i(r;^ + r:^T')A+i

by (1.53); since = 0, we find that

ZI =
< 0.
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By adding the components of 7t,(x) given by (1-44), we obtain the 
stationary density for the fluid level:

Take transposes on both sides of this équation to get

/» = -[l’ + l'r]A^A-^e^'-A^A-^Z'A^A-%

= -[l' + l'T']A+e^^Zl

= -âe^^Zl,

where â = [1' + l'T']A+. Since T = Al^T'A+, we hâve A_T = T'A+, 
so that â = + |_T, which concludes the proof. □

As was shown in [16], the phase-type représentation derived by Ra- 
maswami in [39] and presented above easily extends to the fluid queue 
with net input rates that can take any real value, including zéro.

To see this, consider again the general fluid queue {{X(t), (f{t)) : t G 
R’’'} introduced in Section 1.7, with phase transition generator T. The 
stationary marginal density of its fluid level is given by (1.29), which we 
recall here;

/x(x) = 7p_T_+e^"^(u;+ +

with 7 given by (1.28) and w+, w_ given by (1.30, 1.31). By (1.64), we 
know that p_ = — ^+4', thus

using the fact that K = T++ -|- ^'T_+. Since = 0, we obtain that

P_T_+ = (1.71)

and we can rewrite the stationary density of the level of the fluid queue 
as

p{x) = (1-72)

Theorem 1.11.4 The stationary marginal distribution of the level of 
the general fluid queue {(Â(t), <p(t))} is phase-type with représentation 

of order s+, with

(3 = ’y{A+[w+, 4'iü_]}'
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and
5 =

where A.,. = diag(^_^), and where 7 is given by (1.28) and w^, w_ by 
(1.30, 1.31).

Proof We first establish that the matrix B is a defective generator. 
Indeed, it bas nonnegative off-diagonal entries and

Bi - a;1(t++ + «'T_+)a+i 

by (1.64); since = 0, we obtain

Bi = -A;^r:^p'_ < 0.

By transposing both sides of (1-72), we obtain

/i(x) = -l[w+,

1.12 Wiener-Hopf Factorization

Rogers [42] obtains the équation (1.12) through the Wiener-Hopf factor
ization of finite Markov chains. We summarize his results in this section 
without giving the proofs, and show how they relate to ours.

Rogers assumes almost throughout his analyzis that the net input 
rates of fluid into the buffer are equal to 4-1 and —1. We dénoté by T 
the infinitésimal generator of the phase process, and by V the square 
matrix of order 4- s_ such that

-7[m+, ^m_]'A+A;^e'^'^A+A;'R'A+A;^^;
—7{A_,.[iü+, ^wJ\}'e^^Bl,

which is the announced resuit. □

where 7+ and 7_ dénoté identity matrices of orders and s_, respec- 
tively.
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Définition 1.12.1 A Wiener-Hopf factorization ofV is a quadruple 
, Q__) such that

■ ■ h ■ ■ Q++ 0 ■
0 -Q__

(1.73)

where and are matrices of dimensions s_ x and s+ x s_, 
respectively, and Q++, Q-- are square matrices of orders and s_, 
respectively, with nonnegative off-diagonal éléments and non positive row 
sums.

In order to give an expression for the stationary distribution of the 
fluid queue, Rogers uses two additional Markov processes. Consider the 
additive functional Y defined in (1.13), which may be seen as describing 
the évolution of a fluid queue with a bottomless buffer. Let rf' and rf 
dénoté the following time-changes

rf' = inf{u : Y{u) > t} and = inf{n :Y{u)< —t},

and define the time-changed processes

^ <7’(r'^) and D“(t) = (p{rf).

Note that {£)“(t)} coincides with the process of downward records de
fined in Section 1.4. The process {D'*'(t)} can also be interpreted in a 
similar inanner, by considering the level reversed version of {D”(t)}; we 
call it the process of upward records.

Theorem 1.12.2
i. The quadruple (^, {7; 4/, {/) is always a Wiener-H opf factorization 

ofV~^T, where

(a) the matrices U and U are the infinitésimal transition gener- 
ators of the Markov processes {D“(t)} and {D"''(t)}, respec
tively;

(b) the matrices ’ï' and ^ are defined by

'I' = P[tq < oo, ip{TQ ) = j\g>{0) = i], for i e S+, i € 

and

# = P[t^ < oo, ip{r^ ) = i|<^(0) = î], for i € <S_, je S+.

ii. If the phase process is transient, then the Wiener-Hopf factorization 
is unique.

□
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The reason for the choice of the notations U and in Theorem 1.12.2 
above cornes from the fact that these matrices hâve the same probabilistic 
interprétation as the matrices U and 4' defined in Sections 1.4 and 1.3. 
Moreover, using (1.73), Theorem 1.12.2 leads to the four équations

r__ + = u, (1.74)

+ T++4' + 4'T__ + 'Fr_+^' = 0, (1.75)

r++ + r+_4- = ü, (1.76)

+ r__4' + 4'T++ + = 0. (1.77)

Equations (1.74, 1.75) are the same as (1.14, 1.16). While we obtain 
these expressions through the probabilistic interprétation of the quanti- 
ties involved, Rogers obtains them through a purely algebraic approach. 
Similar comments apply to équations (1.76, 1.77), as we shall see later.

The next resuit gives the characterization of ail possible solutions of 
(1.76, 1.77) in the case where the phase process is not transient.

Theorem 1.12.3 Suppose that the phase process is récurrent and that

V-iT ---
-1

__
1

L J 1

+
1

N__
l

Q,

for some matrix Z_+ of dimension s_ x and some square matrix Q++ 
of order s^, with nonnegative off-diagonal éléments and non positive row 
sums.

i. IfQ++ is transient, then Q++ = Ü and Z_+ = 

ii. If Q++ is récurrent and Ü is récurrent, then Q++ = Ü and Z_+ =
4'.

iii. If Q++ is récurrent and U is transient, then Q++ = U — (Ul)u, 
where u is the left eigenvector of U whose eigenvalue has largest 
real part, and u is normalized by the condition ttl = 1.

□

Consider now the dual fluid queue {{X{t), ip(t)) : t € M"*"}, already 
defined in Section 1.11 except that now the net input rates ri are equal 
to +1 for i in <S_ and to — 1 for z in 5+. Its phase process has generator 
T = A~^T'A, where A = diag(^). Define the matrices Ù = Az^U'A_ 
and ^ they hâve the same interprétation for the dual
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process as U and for the original fluid queue. It is a matter of simple 
manipulations to verify that

t/ = r++ + TV_^

and
r_++ 4'TV++ = 0.

Rogers obtains the following expression for the stationary distribu
tion of the fluid queue.

Theorem 1.12.4 For x > 0 and j in S,

lim P[X (t) > X, ip{t) = j] =
t—>oo j€S_.

□

This gives the following expression for the jth component of the 
stationary density vector 7t(x):

jes^
jes_

Let us show that this is in fact équivalent to (1.12). We only consider 
the case where j is in 5+ because the computations are similar in the 
other case.

First, we show that Ù = A~^K'A+, where K is given by (1.19). 
Indeed,

ü = TV+ + r+_^

= Al^T[^A+ +A~^T'_^A_AZ^'i>'A+

by définition of T and 4', and therefore

Ü = + ^r_+)'A+= a;^r:'a+

by (1.19). Thus, for j € S+, we hâve

= -e,(A;'X'A+A;'e''""A+l),-.
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Transposing both sides of this équation, we obtain

using the facts that A+1 == and that K and commute, 
is a diagonal matrix, we can write that

=

because = (A+)jj. Using (1-71), we find that

= {P-T-+e^'')j,

Since

which is indeed the jth component of (1-12), for j in S+.





2

Algorithms

We recall in the first section the définition of a QBD process and the 
matrix-geometric form of its stationary distribution, as well as soine 
key quantities for the analysis of QBDs. We point ont the similarities 
between the stationary distributions of fluid queues on the one hand, 
and of QBD processes on the other hand.

In Section 2.2, we présent the very efficient algorithmic procedure 
introduced by Ramaswami [39], which is based on QBD processes and 
which allows to compute the solution of the Riccati équation (1.16), 
leading to the complété stationary distribution of fluid queues with in
finité buffers. We give the probabilistic interprétation of Ramaswami’s 
algorithm, and we give in Section 2.3 a generalization of this algorithm 
which is interesting froin a theoretical point of view, but which does not 
really improve the efficiency of the original procedure, as we see in Sec
tion 2.4 through a numerical exainple and in Section 2.5 through a brief 
convergence analysis.

The results exposed in Section 2.2 were presented in da Silva Soares 
and Latouche [16].

We conclude this chapter by presenting some other algorithms for 
solving the Riccati équation (1.16) and their probabilistic interprétation 
on the fluid flow setting; this material cornes from Beau et al. ]10].



64 Algorithms

2.1 Discrète-Time Homogeneous QBDs

A discrete-time QBD process is a Markov chain {{Lt, Jt) '■ t € N} on the 
two-dimensional State space {{n, j) : n E N,1 < j < m}, where m may 
be either finite or infinité. The first component Lt is called the level, and 
the second one Jt is called the phase. We dénoté by i{n) the subset of 
States in level n, that is, £{n) = {(n,j) : 1 < j < m}. For n € N and for 
1 < j, j' < 'm, the only transitions allowed are:

• from State (n, j) to state

• from State (n, j) to state (n + 1,/);

• from State (n,y) to state (n — provided that n > 1.

The process is said to be homogeneous because we assume that the transi
tion probabilities are independent of the level except for the transitions 
starting from level zéro. The transition matrix thus has the following 
block tridiagonal form:

■ B ^0 0 0 ... ■
A2 Al ^0 0 ...
0 A2 Ao ...
0 0 A2 Al ...

where B, Aq, A\ and A2 are m x m matrices.
Assume that the process is aperiodic and positive récurrent. We 

dénoté by tt its stationary probability vector; it is the unique solution 
of the System ttP = tt, ttI = 1. We partition the vector tt by levels as 
(tto, 7Ti, ..., 7r„,...) where each subvector ttj, r > 0, has m components. 
The following resuit is known as the matrix-geometric property of the 
equilibrium vector tt. We refer the reader to [29, Chapter 6] for the 
proofs of the results presented in this section.

Theorem 2.1.1 If the QBD is positive récurrent, then

TTn = TToP"^ for n > 0,

where R is the matrix such that, for any n > 0 and I < i,j < m,, Rij is 
the expected number of visits to (n -|- 1, j), starting from {n,i), before a 
retum to £(0) U ... U £(n).

□
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Remeirk 2.1.2 For 1 < < m, the nth power is such that its
(î,j)th entry gives the expected number of visits to (n,y), starting from 
(0,i), before a return to level zéro. Thus, the stationary probability 
vector TTji of level n is expressed in ternis of the stationary probability 
vector 7To of level zéro and of the matrix iî” recording the expected 
number of visits to level n, starting from level zéro, under the taboo of 
this initial level.

Recall the form (1.12) of the stationary density vector 7t(x) of a fluid 
qneue. It is also expressed in ternis of the steady state probability vector 
of level zéro and of a matrix power which records the expected number of 
visits to level x, starting from level zéro, before returning to the initial 
level. The siniilarity between the stationary distributions of the two 
processes is striking.

Together with the matrix R, there are two other matrices, denoted by 
U and G, which are closely related to the dynamics of the QBD process, 
the matrix G being of particular interest for us, as we shall see later.

Assume that the QBD process starts from level one. Define r as the 
first epoch of visit to the level zéro and 6 as the first epoch of return to 
the level one; thns

T = inf{t > 0 : Lt = 0}

and

6 = iiif(t > 1 : Lt = 1}.

The matrix U records the probability that, starting from level 1, the 
process returns to level 1 before visiting level 0:

Uij = P[d < T, {Le, Je) = (l,j)|(Lo, Jo) = (1,*)].

The matrix G records the probability that, starting from level 1, the 
process visits level 0 in a finite time:

Gij = P[r < CO, {Lr,Jr) = (0, j)|(Lo, Jo) = (!,?:)]•

The matrices R, U and G are related to each other and, once one 
knows one of the three, one can détermine the other two. This is ex
pressed in the next theorem.
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Theorem 2.1.3 If any one ofthe matrices U, G, or R is known, then we 
may détermine the other two by applying one of the following équations:

R = Ao{I-U)-\
G = {I-U)-^A2,
U = Al + AqG,
U = A1 + RA2.

□

The following resuit is a direct conséquence.

Theorem 2.1.4 The matrices U, G and R, respectively, satisfy the fol
lowing équations:

U = Ai-\-Ao{I-U)-^A2,

G = A2 + AiG AoG^, (2.2)

R = Aq + RAi + R? A2-

□

There exist simple and very efficient computational algorithms for 
the détermination of G, and tlius also for the détermination of U and 
R] it is the case, for instance, of the Logarithmic-Reduction algorithm of 
Latouche and Ramaswami [29, Section 8.4]. This algorithm is itérative, 
easy to implement, numerically stable and it converges quadratically fast 
(Bini, Latouche and Meini [11], Guo [25], Meini [34, 35]).

In order to hâve the complété stationary distribution of the QBD, 
one needs to détermine ttq; this is the object of the next theorem.

Theorem 2.1.5 The stationary distribution ttq of the boundary level is 
the unique solution of the System

+ AqG) = TTq

7To(/-R)-'1 = 1.

□

Remcirk 2.1.6 We observe again a close similarity between fluid queues 
and QBDs. The vector ttq is proportional to the steady state probability
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vector of the process with transition matrix B + AqG, which is in fact 
the censored process on the States of level zéro. This is also the case for 
a fîuid queue, for which we saw in Theorem 1.6.1 that the steady State 
probability mass vector p_ of level zéro is proportional to the stationary 
vector of the restricted process to the States of level zéro, with generator
[/= r__+T_+^>.

Theorem 2.1.1 is conditioned on the fact that the QBD process is 
positive récurrent. We give next two necessary and sufficient conditions 
for the positive récurrence of the QBD, in the case where the number m 
of phases is finite. We dénoté by ex the row vector which is the unique 
solution of the System ex A = a, al = 1, with A = Aq + Ai + A2- The 
notation sp(M) stands for the spectral radius of some matrix M.

Theorem 2.1.7 For a QBD with transition matrix (2.1), we hâve the 
following characterizations.

i. If m is finite, then the process is positive récurrent if and only if 
sp{R) < 1.

a. If m is finite, if the QBD is irreducible, and if the stochastic matrix 
A is irreducible, then the process is positive récurrent if and only 
if pL = exAol — a^2l < 0. The process is null récurrent if p, = 0, 
and it is transient if p, > 0.

□

2.2 Uniformization and Interprétation

We shall now return to the fluid setting and describe the computational 
procedure proposed in [39] for the détermination of the matrix of first 
passage probabilities to the initial level, which, as we hâve seen, is the 
key quantity for obtaining the stationary distribution of any given fluid 
queue. We also expose the probabilistic interprétation of this algorithm, 
which we presented in [16].

We consider a fluid queue, with phase transition generator T and 
with net input rates equal to +1 and —1. This is not at ail restrictive, 
since we hâve already seen how to obtain the stationary distribution of a 
completely general fluid queue once we hâve the stationary distribution 
of the simpler one.
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Figure 2.1: Uniformization.
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The starting point is the uniformization of the équation relating 
and the generator U = T__ -h of the process of downward records:

roo
qi= e^++*'T+_e^^dy. (2.3)

Jo
First, we transform the phase process by uniformization and we define 

P = I + l/yT-, where > maxiç5 \Tu\-, we décomposé P in a manner 
conformant to the partition of T. With these, we hâve that

o'^++y
= E<

fc>0
k\ ^

Since U > T__, we may use the same parameter /i to discretize the
process of downward records and write that

n>0

-My
ni

■ V^

where

V = I+-U

= P__ + (2.4)

using (1.14). We write that V is the transition matrix of the discretized 
process of downward records.

Using this uniformization, (2.3) becomes

«= (2.5)

and the right-hand side is a discretized version of the fluid/phase process, 
which we interpret as follows. One considers the epochs of a Poisson 
process with rate and a phase process which starts in <S+. Equation 
(2.5) States that is equal to the probability matrix of the following 
event (see Figure 2.1 for an illustration): there exist y, k and n such 
that
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Figure 2.2; The Poisson epochs before the first
passage to <S_, and the Poisson epochs {T'],T2,...} after- 
wards.

• a Poisson epoch occurs at time y, k epochs occur in (0, y) and n 
epochs occur in (y, 2y);

• the epoch at time y is the first at which the phase enters S_ ;

• at each epoch in (0, y), a transition occurs from <S+ to S+ with 
probabilities given by transition matrix P++',

• at each epoch in (y,2y), a transition occurs from to S_ with 
probabilities given by transition matrix V.

Next, one wites (2.5) as

= E (2.6)
fc,n>0

where

Tfcn — g-2/iî/
k\n\

ydy =
• ./c+Tl+1_____

/e!n!
e-^t^Vyk+n^y

Perform fc + n + 1 intégrations by parts to obtain

'ykn — {k + n)\ k+n+i
k\n\ ^

\ fc+TT+l CD
which is the probability of n failures before the k + Ist success in a 
Bernoulli sequence with probability 1/2 of success.

This, in turn, may be interpreted as follows. Dénoté by {ti, t2, ■ ■ ■} 
the Poisson epochs before the first passage to S_ and by {Ti,T2,...} 
the Poisson epochs afterwards; this is depicted in Figure 2.2. Since 
they occupy the non overlapping intervals (0, y) and (y, 2y), they are 
independent. Therefore, one may replace the Poisson process over two 
disjoint intervals by two independent processes over the saine interval
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Figure 2.3; The Poisson process Vt U Vt = {0i : i > 0).

and consider Vt {U '■ i > 0} and Vt = {Ti : î > 0}, both with 
intensity fi and with to = Tq = 0.

The superposition Vt U Vt = > 0} forms a Poisson process
with intensity 2/i which is illustrated in Figure 2.3; each epoch 9i belongs 
to Vt or to Vt with probability 1/2, independently of the others.

In (2.6), we count the number n of epochs of Vt which occur before 
the epoch which marks the first passage to 5_.

The second transformation consists in completely disconnecting the 
discretized process from any reference to the fluid buffer. Here, we write 
(2.6) as

n>0 k>0
and the nth tenu in the right-hand side is interpreted as follows. We 
consider a Bernoulli process with probability 1/2 of success, we start 
with a phase in 5+ and a counter D initialized to 1, and we perform the 
operations described below:

• in the case of a failure, we increase the counter Z) by 1 and do not 
change the phase;

• in the case of a success, either we make a transition to S+ with 
probabilities given by the éléments of the matrix and we keep 
D constant.

• or we make a transition to S_ with probabilities given by the élé
ments of F+_ and we décrément by 1;

• once the phase has moved to , we stop the Bernoulli process, we 
systematically apply the transition matrix V and we décrément D 
by 1 at each step until it becomes zéro.

The counter and the phase now evolve like in a discrète time QBD process 
with transition matrices

An = -2I
r 1

Al = 2^++ 0
0 and A2 =

0 iP,. 
0 V
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Here, is a matrix of first passage probabilities to lower levels; specif- 
ically, '^ij is the conditional probability of eventually reaching (0,jf), 
before any other state in (0,»S), given that the process starts from (l,f) 
at time 0, with i in 5+ and j in 5_.

Of course, we do not know V, so that we need to pursue the matter 
a little further. In view of the interprétation we hâve given to (2.4) 
tells us that there are two ways to reduce D by one, starting from :

• either one does it directly, using the transition probabilities given 
by the éléments of P_ _,

• or a transition is made to with probabilities given by the élé
ments of P-+, in wlîich case one must recursively apply the same 
procedure in order to eventually reduce D by one, with probability 
matrix

Thus, we finally interpret 'I' as the matrix of first passage probabilities 
from (1,5+) to (0,5_) for the QBD with transition matrices

^0 - 0 0 Al
2^++ 0
P_+ 0

and A2
0 iP+_
0 P__

(2.7)

and we hâve that

G =
0 ^
0 1/ ’

(2.8)

where G is the matrix of first passage probabilities to lower levels, solu
tion of (2.2), for the QBD process defined by (2.7). As already stated 
in Section 2.1, one can compute G using the Logarithmic-Réduction 
algorithm, and thus obtain the matrix 'î' through this very efficient pro
cedure.

Note that the Riccati équation (1.16) for 'I',

P++^' + ^T__ -t- T+_ -I- = 0,

together with (1.14), is équivalent to the statement that G is a solution 
of (2.2); indeed, if we replace G by its expression (2.8) and use Aq,A\ 
and A2 given by (2.7), we obtain the équations

R = P__ + P_+^'

which are équivalent to (1.16), using P = I + 1/fiT.
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2.3 Uniformization Using Different Parameters

The computational procedure described in Section 2.2 brings up a natural 
and interesting question: is it really necessary to perform the uniformiza- 
tions of T and U using the saine parameter? The answer is négative and 
we show that the preceding development holds true if ones uses different 
parameters for the two uniformisations.

We choose fj.i such that > maxjg^^ \Ta\ to uniformize the phase 
process and define P = I + l/niT. Thus,

cT++y
= E<

ik>0

-Miy
k\ ++■

Next, we discretize the process of downward records with a parameter 
H2 such that p.2 > maxje5_ \Uu\ and write

Py
= E'

n>0

-M2ÿ (M2y)”
ni

yn

where V — I + I/H2U. Therefore, defining W = I + I//LI2T, we hâve

V = W__ + (2.9)

Equation (1.15) becomes

5'= /” (2.10)
A é; “ ^20

A probabilistic interprétation of this équation goes along the saine lines 
as the interprétation given in Section 2.2. We consider two Poisson 
processes : t € R'*'} and {N2{t) : t G R"*"} with rates fj,i and ^2,
respectively, and a phase process which starts in S+. Equation (2.10) 
States that 'ï' is the matrix recording the probability of the following 
event: there exist y, k and n such that

• an epoch of {Ni{t)] occurs at time y, k epochs of {Ni{t)} occur 
in (0, y) and n epochs of {A2(t)} occur in (y, 2y);

• the epoch at time y is the first at which the phase enters *S_ ;

• at each epoch of Ai in (0, y), a transition occurs from <S+ to 5+ 
with probabilities given by the entries of the transition matrix P++;



2.3 Uniformization Using Different Parameters 73

• at each epoch of N2 in (y,2y), a transition occurs froin S_ to S_ 
with transition matrix V.

One may write (2.10) as

where

"Yfcn -

:1:1 : ; is the probability of n failures before the fc+lst success in a Bernoulli 
sequence with probability + fj.2) of success.

Once again, we dénoté by {ti,t2, ■ ■ ■} the Poisson epochs before the 
first passage to and by {ri,T2,...} the Poisson epochs afterwards. 
By the same arguments as before, we may replace these Poisson epochs 
by two independent processes over the same interval and consider Vt = 
{ti : i > 0} with intensity p,i and Vt = {7) : î > 0} with intensity 
and with to = Tq = 0.

The process Vt U Vt = : î > 0} is Poisson with intensity p,i + H2

and each epoch 0i belongs to Vt with probability + /i2) or to Vt

with probability /i2/(A^i + M2)> independently of the others.
In (2.11), we count the number n of epochs of Vt which occur before 

the epoch which marks the first passage to <S_.
Just as we did previously, we disconnect the discretized process from 

the fluid queue and write (2.11) as

^ = (212) 
n>0 fc>0

We consider a Bernoulli process with probability + P2) of success
and a counter D initialized to 1. By performing the same operations as 
in Section 2.2, we can interpret the nth tenu in the right-hand side of 
(2.12) exactly as before.

Since V = W__ + W_+'ï', and since the probabilities of success and 
failure of this Bernoulli process are /zi/(/ii + /j,2) and /X2/(mi + ti-2), re- 
spectively, we find that is the matrix of first passage probabilities from

fe,n>0
(2.11)

I. ..
{k + n)! / /il

-/iie
n!

dy

k\n\ \/ii + fj.2

fc+1
M2

Ml + M2



74 Algorithms

(1,<S+) to (0,5_) for the QBD process with transition matrices:

-^0
^2

M1+M2
0

I 0'
0

Al

and we hâve that

M1+M2 +■*■ 0
0

and A2
0
0

P
1*1+M2 "*■

w__
(2.13)

G =
0
0 V ’

(2.14)

where G is the matrix of first passage probabilities to lower levels for the 
QBD process defined by (2.13).

Here, (2.2) turns into the pair of équations

0 = T+_ + T++^ + 4»r__ +

and
F = 7 + —(T__ +T_+^).

The first équation is the saine as (1.16) and it is therefore perfectly 
clear that the détermination of the matrix ^ is independent of the pa- 
rameters /j,i and H2, hence on the way the uniformization is carried out. 
On the other hand, one can observe that the matrix V only dépends 
on the parameter fi2 and not on /xi; thus, fii can take any real value 
provided that it satisfies /xi > maxig5^ |îii|, leaving V unchanged.

Another observation is that the matrix V converges to the identity 
matrix / as /X2 goes to infinity. In Section 2.5 we will show how the 
parameter jj.2 détermines the rate of convergence of the Logarithmic- 
Reduction algorithm.

2.4 Numerical Illustration

We consider a random environment which cycles through three periods: 
one during which the fluid builds up at the constant rate c, followed by 
one where the fluid level remains constant and finally the third period 
during which the fluid decreases at the constant rate 0.5. After the 
third period, the cycle repeats. The first period lasts 1 unit of time, on 
average, and the second and third periods last 2 units of time each, on 
average. The traffic intensity p is the ratio of the amount of fluid going 
in the bufîer to the amount going out. The process is positive récurrent if 
P < 1; this is équivalent to the stability condition < 0, which reduces 
here to c < 1.
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Figure 2.4: Distribution function of the stationary buffer 
content for a fluid queue driven by a Markov process with 
parameters s+ = 2 and sq = s. = 4. The traffic intensity c 
varies from 0.5 to 0.95.

The generator T has the following structure

—Al Al
—A2 A2

—As-i As_i
A5 A5

where s = sq + s+ + s_, and the Aj’s and ri s are defined as follows:

s+, n = c, for 1 < î < s+,
so/2, Ti = 0, for + 1 < X < + soi
s_/2, n = -0.5. for s.,. + so + 1 < * < 5+ + so + S-

The System is thns fully paraineterized by sqi and c.
We use the results of Section 1.9 to compute several performance 

measures. We show on Figure 2.4 the steady state distribution function 
for the fluid queue with s+ = 2 and sq = S- = 4 in four different cases: 
c = 0.5, c = 0.75, c = 0.9 and c = 0.95. We observe three effects 
resulting from increasing the rate c: the probability mass inoves to the 
right and is spread over a larger interval, both resulting from the fact 
that the fluid reaches higher values at the end of the first period, and.
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c 0.50 0.75 0.90 0.95
mo 0.2000 0.1000 0.0400 0.0200
M 0.4395 1.2133 3.4768 7.2312
V 0.4036 2.9162 23.8791 103.7814

Table 2.1: Stationary probability mass ttiq of level zéro and 
stationary mean M and second moment V of the buffer con
tent for a fluid queue driven by a Markov process witH pa- 
rameters s+ = 2 and sq = s_ = 4. The trafhc intensity c 
varies from 0.5 to 0.95.

case a b c d
M 8.6400 4.5042 3.4768 2.4680
y 155.5200 40.6570 23.8791 11.3009

Table 2.2: Stationary mean M and second moment V of the 
buffer content for fluid queues driven by Markov processes 
with increasingly regular cycles. The trafhc intensity c is 
equal to 0.9.

furthermore, the probability of an empty buffer decreases, because of 
shorter intervals at the end of each cycle where the fluid Iras returned to 
zéro.

The stationary probability mass mo of level zéro, as well as the fîrst 
two moments M and V in steady state are given in Table 2.1.

For the examples in Figure 2.5, we fix c = 0.9 and analyze four fluid 
queues for which we vary the number of phases:

case a b c d

s+ 1 2 2 4
so 1 2 4 4
s_ 1 2 4 4

By increasing the Sj’s while keeping the average lengths of the three 
periods constant, we make the System more regular (the probability dis
tribution of the intervals of time spent in S+, S_ and 5o is more con- 
centrated around the mean). We observe that the effect is to make the 
fluid density more concentrated around its mean as well. The first two 
moments are reported in Table 2.2. One may also notice that the mean 
decreases when the parameters^Sj increase. In fact, our numerical in-
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Figure 2.5: Density function of the stationary buffer content 
for fluid queues driven by Markov processes with increasingly 
regular cycles. The traffic intensity c is equal to 0.9.

vestigations lead to the observation that the more we increase the Sj’s, 
the more the mean gets close to the value 0.614 that we would find in a 
purely deterininistic System.

2.5 Convergence Analysis

We now analyse the speed of convergence of the Logarithmic-Reduction 
algorithm as a function of the uniformization parameters. As already 
stated in Section 2.3, m does not influence the computation of the matrix 
G, thus we only need to take into account the value of /v.2.

We hâve observed on a few examples that the number of itérations 
increases with ^2- Consider case c of the preceding example. If fii = 
fi2 — 4, the number of itérations of the algorithm is equal to 10. Fix 
/^i and define v as the minimum possible value for fj.2, which is 4 in this 
example. The number of itérations of the algorithm versus the values of 
P2 are given below:

P2 V 2v 5v lOu lOOu lOOOu
Itérations 10 11 12 13 13 20

This is a typical example. Actually, it seems that this is not only true for 
this particular example, but that it is a general property holding in ail
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cases. Unfortunately, we hâve not proved it, but we hâve an argument 
to support our daim that the number of itérations increases with

As discussed in [29, Section 8.1], the number of itérations needed 
to compute the matrix G of first passage probabilities to lower levels 
of a QBD process is closely related to the maximum level reached by 
the QBD when it starts from level 1 and before it goes down to level 
0. In the case of the Logarithmic-Reduction algorithm, the number of 
itérations is equal to K if the maximum level visited is the level 2^ with 
significantly high probability. Thus, K is an increasing function of the 
maximum level reached by the process.

Let {Lt, Jt) dénoté the level and the phase at time t for the QBD 
with transition matrices Aq, A\ and A2 given by (2.13). Recall that, for 
t € N, we hâve Lt € N and Jt € »S = «S+ U 5_. Define 7(n), n > 0, as 
the first passage time to level n and

N = max{Lt : 0 < f < 7(0)}

as the maximum level reached by the QBD process before the first visit 
to level zéro. Also, define the matrix G{n) by

(G(n)l)i = P[7(n) > 7(0) | Lq = 1, Jo = i]

= P[Ar<n|Lo = 1, Jo = f],

for ail i Çi S. One may fînd in Latouche and Ramaswami [29, Section 8.1] 
that the simplest itérative algorithm stops when

max(l — G(k)1), < e < max(l — G{k - l)l)i.

The number of itérations K of the Logarithmic-Reduction algorithm is 
log2 K, and K is determined by the two following conditions:

Vf € S, {G{K)l)i > 1 - e

and
3i E S such that {G{k — l)l)i < 1 — £. 

These are équivalent to

Vf E S, P[N <K|Jo = f]>l — e

and
3i E S such that P[7V < «■, — 1 | Jq = f] < 1 — £•
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For i Ç. S, define Bi through the inequalities

P[N <Bi-l\Jo = i]<l-e< P[N < | Jq = i].

The number of itérations k is then determined by maxjg^ B^.
If we could show that P[N < x \ Jq = i], which is a function of i, x 

and /J.2, is a decreasing function of 112 for any given x and i, then the Sj’s 
would increase with /X2 and so would k. We now présent our arguments 
supporting the daim that the number of itérations increases with p,2- 

First, we show that maxig5 Bi is reached for i G by proving that

€ <S+ such that P[A < x \ Jq = i] < P[A < x | Jq = y], Vy € S_.
(2.15)

To prove (2.15), take y in S_ and write 

P[1V < X I Jo = y] = ((d2)__l),. + 5] ((Ai)_+)P[A < :r I Jo = k].
kÇ.S-\-

This holds because, starting from a phase in S_, the process either stays 
in a phase of S_ and therefore makes a transition to level zéro with the 
transition probabilities in A2, or the phase changes to and then we 
hâve to take into account the probability that the maximum level reached 
is below level x starting from a phase in S+. Now, suppose that there 
exists some y in <S_ such that P[7V < x | Jq = i] > P[A < x | Jo = y] for 
ail i in S+. Then, for this value of y and for ail i in <S+,

P[iV<x|Jo = t] > ((d2)__l),.+ ((Ai)_+)^.fcP[A<x| Jo = A:]

by définition of Ai and A2- Now, choose û in <S+ such that it achieves 
the minimum of the quantity P[A < x | Jq = fc] among ail k in S+. 
Thus,

p[N < X I Jo = i] > (1 + —r__i)j + (—r_+i)jP[A < XI Jo = û]
fJ-2 M2

for ail i in »S+. In particular, the inequality holds for î*, and it follows 
that

P[A < X I Jo = î*] > (1 + —r__l),- + (—T_+l),P[iV < X I Jo = ù].
M2 M2
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Using the fact that T’_+l = —T__l, we find that

(1 + —T__l)^P[iV < X I Jo = û] > (1 + —T-l)j 
^2

leading to
P[N < X I Jo = ù] > 1

which contradicts the fact that the left-hand side is a probability. The 
statement (2.15) is thus proved.

Now, let us concentrate on the case where Jq is in Recall the 
form of the QBD transition matrices Aq, Ai and A2 defined by (2.13). 
Starting from a phase in »S+, the process can make transitions

• to upper levels, with probabilities given by the éléments of the
matrix + M2)-f,

• to the same level, with probabilities given by the éléments of the
matrix + M2)-P++,

• or to lower levels, with probabilities given by the éléments of the
matrix + fi2)P+--

The transition probabilities to upper levels increase with /X2, while the 
others decrease. One thus expects that the process will reach higher and 
higher levels if the value of H2 increases, and it is reasonable to believe 
that the number of itérations should increase with fj,2-

2.6 Other Algorithms

We briefiy describe in this section some other algorithms available to 
numerically solve the Riccati équation (1.16) for the matrix of first 
passage probabilities to the initial level in a fluid queue; we also describe 
their physical interprétations. The material presented in this section can 
be found in Bean et al. [10]. In that paper, the authors compare sev- 
eral algorithms, including the one based on the Logarithmic-Réduction 
algorithm described in Section 2.2. They conclude that, in principle, 
Newton’s method described in Section 2.6.2 below is the most reliable, 
but its implémentation is more difficult. The performance of the algo
rithms dépend on the physical properties of the processes considered, 
and the authors give some recommendations concerning which method 
is best in which circumstances.
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2.6.1 First-Exit Algorithm

First, note that the Riccati équation (1.16) may be written as 

T++'î> + ^(T__ + = -r+_,

which gives the following functional itération: starting with = 0, the 
équation

T++4>n+i + ^n+i(r__ + T_+4'„) = -T+_

allows to compute the successive values of 4>n, for n > 1. In [10], the 
authors show that this itération is équivalent to

/*0O
= / e'^++!^r+_e(^—

Jo

The matrix records the first passage probabilities from level zéro back 
to level zéro under a restricted set of sample paths. Dénoté by Ùn the 
set of sample paths which contribute to 4'n- The matrix 4'i gives the 
probability that the process returns to its initial level in finite time, and 
that there is exactly one transition from to S_. For i in 5+ and j in 
5_, the (î,j/)th entry of 5'n+i has the following interprétation: starting 
from level zéro in phase i at time 0,

• an upward process with generator takes place, until the fluid 
reaches some level y;

• next, a transition from to 5_ occurs;

• finally, a downward process with generator T__+TL+4'„ brings the
fluid down to level zéro in some phase j in S_. This process can 
include a transition from S_ to <S+, say at some level x, but the 
sample path between this point and the subséquent return to level 
X must be in fin.

In [10], the authors introduce another algorithm, the Last-Entrance 
Algorithm, which is very similar to this one; the physical interprétation 
of its nth itération is obtained via time reversai of the interprétation of 
the nth itération of the First-Exit algorithm.

2.6.2 Newton’s Method

Finding the solution of the Riccati équation (1.16) is équivalent to solving 
the équation F{X) = 0, where F{X) = T++X + XT__ + XT_+X -|- T+_.
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Newton’s method can be used to approximate the solution of F{X) = 0, 
using the itération

Xfc+i = Xk- [F'{Xk)]-^F{Xk).

Guo shows in [24] that this is équivalent to the itération

{T++ + + + ^'n+l(T"-- + T_+^n) — ~^+- + ^nT- + '^n^

and it is shown in [10] that this is équivalent to

/•OO
= / eiT+++^uT- + )y^j.^_ _ +

Jo

As for the First-Exit algorithm, we hâve that starting from 4*0 = 0, the 
first itération gives the probability that the process returns to its 
initial level in finite time, and that there is exactly one transition from 
5+ to S_. For i in S+ and j in 5_, the probabilistic interprétation of the 

entry of ^'n+i is the following: is the probability mass
of ail distinct sample paths contributing to '^ij in which, starting from 
level zéro in phase i,

• first, an upward process with generator + takes place,
and the fluid moves to some level y;

• then, a phase transition from 5+ to 5_ occurs;

• finally, a downward process with generator T__+T_+^n brings the
level down to zéro, in some phase j in <S_.



3

Fluid Queues with Finite Buffers

Some domains of application of fluid models need buflfers of finite capac- 
ity; it is the case, for instance, of nianufacturing Systems. To analyze 
finite buffer fluid queues, we adopt again a matrix-analytic approach, 
combined with Markov-renewal type arguments. Our motivation cornes 
from the observation that the stationary distribution of a fluid queue 
with an infinité buffer is similar to that of a QBD process with infinitely 
many levels, as we hâve seen in the previous chapters. It is known that 
the stationary distribution of a finite QBD may be expressed as a linear 
combination of two matrix-geometric vectors; the question is whether we 
can dérivé an expression for the equilibrium distribution of a fluid queue 
with a finite buffer as a linear combination of two matrix-exponential 
tenus. The answer turns out to be positive, as we show in this chapter.

We start by defining a QBD process with a finite number of levels, and 
we give the expression of its stationary distribution. Its basic éléments 
are the steady State probability vectors of the boundary levels, and two 
matrices recording taboo expected number of visits.

After these preliminaries, we define in Section 3.2 a finite buffer fluid 
queue and, using the same kind of renewal arguments as in Chapter 1, 
we dérivé an expression for its stationary distribution, which is expressed 
in tenus of the steady state probability mass vectors of the boundary 
levels of the buffer, determined in Section 3.5, and of two exponentials 
of matrices giving expected number of visits to some levels, under taboo 
of the boundary levels, determined in Section 3.4. We first assume that 
the net input rates of fluid into the buffer are equal to +1 and —1 only
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and show in Section 3.6 how to return to the general setting.
The results exposed in Sections 3.2 to 3.6 were presented in da Silva 

Soares and Latouche [18].
We conclude this chapter by determining some performance measures 

in Section 3.7 and by providing a numerical illustration in Section 3.8.

3.1 Finite QBDs

A finite QBD process is similar to an infinité one, except that its State 
space is restricted to the set {{n,j) '■ 0 < n < M,l < j < m}, where n 
takes integer values and M is finite. For 0 < n < M and for 1 <j,j' < m, 
the only transitions allowed are:

• from State (n,y) to State

• from State (n,y) to State (n + 1,/), provided that n < M — \ \

• from State (n,y) to State (n — 1,/), provided that n > 1.

We assume that the transition probabilities do not dépend on the level, 
except near the boundary levels 0 and M, so that the process is said to 
be homogeneous. In the discrete-time case, its transition matrix has the 
following block tridiagonal form:

■ Bo Ao 0 ... 0 0 0
A2 Al Ao ... 0 0 0
0 M Al ... 0 0 0

0 0 0 ••• Al Ao 0
0 0 0 ... A2 Al Ao
0 0 0 ... 0 A2 Bm

where Bq, Bm, Aq, Ai and A2 are m x m matrices.
We dénoté by tt = (tto, tti, ..., ttm) the stationary probability vector 

of the QBD; to give its expression, we need to introduce another QBD, 
called the level-reversed process. Like the QBD defined in Section 2.1, 
the level-reversed process has infinitely many levels, and its transition
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matrix is given by

B A2 0 0 ... ■
^0 Al A2 0 ...
0 ^0 Al A2 ...
0 0 Ao ...

so that the events which lead to an increase of level for the original 
process with transition matrix (2.1) lead here to a decrease and vice 
versa. We define R, U and G as the matrices having the saine interpré
tation for the level-reversed process as R, U and G for the original QBD. 
Thus R and G satisfy the following équations

R = A2 -l- RA\ -|- R?Aq

and
G = Aq + AiG -|- A2G^ 1

respectively, and Û is defined as Û = Ai + RAq = Ai + A2G.
Recall the définition of the vector a: aA = a, al = 1, with A =

Ao Al + A2-

Theorem 3.1.1 If olAq\ ^ otA2^, tÂen the stationary distribution of 
the QBD with transition matrix (3.1) is given by

7Tj = XoR^ + XmRM—i 0<i<M,

where [xq,xm) is the solution of the System 

(aiQ, 31m)
B0 + RA2-I R^{Bm-I) + R^-^Ao 

R^{Bo-I) + R'^-^A2 Bm + RAo-I

and
Xo ^ RA + xm ^ R*1 = 1.

0<i<M 0<i<M

(3.2)

= 0

□

We refer the reader to Hajek [26] or Latouche and Ramaswami [29] 
for a detailed proof of this resuit.

By (3.2), we may write that

7To = aio + XMR^ and tz m = XqR’^ + xm ■
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Under the assumption that a^ol 7^ «^2!, the matrix

■ / '

I

is nonsingular, and we thus hâve the following expression relating the 
vectors (xo,Xm) and (ttojTTm):

{xq, xm) = (tto, t^m)
I

R^
(3.3)

With (3.2) and (3.3), we see that the stationary distribution of a fi
nite QBD is a linear combination of two matrix-geometric vectors; it 
is expressed via the stationary probability vectors ttq and itm ol the 
boundary levels, and via the powers of the matrices R and R recording 
expected number of visits to some level above zéro, starting from level 
zéro, befpre returning to the initial level, for the original QBD and the 
level-reversed one, respectively.

3.2 Finite Buffer Fluid Queues: Background

We consider a fluid queue with a finite buffer, of which the maximum 
capacity is h. We dénoté by {(A'(*’)(t), (^(t)) : t G R"'"} the resulting 
Markov process; its State space is [0,6] x S, where 5 is a finite set. 
The évolution of the level is controlled by the phase ip{t) in the
following way: during the intervals of time when tp{t) is constant and 
equal to some i in 5, we hâve

dt

n,
max(0,rj), 
min(0, ri),

if 0 < X^^\t) < b, 
if X('’)(t) = 0, 
if X('')(t) = 6.

The évolution of the level of a finite fluid queue is therefore similar to the 
évolution of the fluid queues we hâve studied so far, except that when 
the level reaches 6, if the phase at that time belongs to 5+, then the level 
remains equal to 6. Once more, it is very useful to assume that the net 
input rates rj are ail equal to -1-1 or —1; this assumption is without loss 
of generality, as we show in Section 3.6. Figure 3.1 depicts one possible 
trajectory for the évolution of the fluid queue with finite capacity; this 
figure is to be interpreted like the figures in Chapter 1.

We use the same notations as before; we dénoté by T the infinitésimal 
transition generator of the phase process {tp{t) : t € K"*"} and by ^ the
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Figure 3.1: Possible évolution of the bufFer content for a 
finite fluid queue with net input rates equal to +1 or —1.

corresponding steady State probability vector. Since the bufîer is of finite 
capacity, we hâve that the fluid queue is positive récurrent for any value 
of the drift /r = ^^1 — ^_1.

For j Çl S and for 0 < x < 6, we define the joint distribution of the 
level and the phase at tiine t by

= P[X^^\t) < = j],

and its density by

= ^Ff\x-t)

for 0 < X < 6, with

\\m ff\x\t) à\\d = lim ff\x\t)
■' x~^0+ ■' ■' x^b-

being defined by continuity. We are mainly interested in the State of the 
System when it reaches equilibrium, and we dénoté by

7r(^^(x) = (7t]*^(x) : j e S)

the stationary density vector of the level of the fluid buffer, with

•' t—>oo •'

The stationary probability mass vector of the empty buffer is denoted 
by = limf^oo = Ü]. As in tlie infinité buffer case, the
fluid queue cannot remain at level zéro with a phase in and thus 
we hâve = (0,pL*^^). Similarly, p^^^ limf.^ooP[Ar^^^(t) = b] is the 
probability mass vector of level b in the stationary régime, and p^^^ = 
{p+ \ 0) since it is not possible to keep a full buffer with a phase in 5_.
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3.3 Stationary Density

We dérivé in this section an expression for the stationary density vec- 
tor 7T^^^(x) of the buffer content of a finite capacity fluid queue. As 
announced previously, it is expressed in ternis of the steady state prob- 
ability mass vectors of the boundary levels of the buffer and of matrices 
recording certain expected number of visits. We thus need to introduce 
the following quantities: for ij 6 S, 0 < X < b and 0 < y < b, N^j\x, y) 
is the expected number of crossings of level y in phase j, starting from 
(x,i), before the first visit either to level zéro or to level b. We group 
separately these quantities into the matrices N^\x,y), for i E S+, and 
N^\x,y), for i E S_. Note that N^\x,y) and N^\x,y) hâve dimen
sions s+ X s and s_ x s, respectively. We observe that N^\b^y) = 0 
because if the process starts from {b, i) at time 0, with f € <S+, it remains 
at level b, violating the taboo; similarly, N[^\o,y) = 0.

Theorem 3.3.1 ForO < x < b, the stationary density vector Tr^^\x) of 
the buffer content of the finite fluid queue {{X^^\t), (/^(t))} is given by

= {P+\p-'’)
0 n- ■ ■ Tvf (0,x) ■

. 0 N[^\b,x)
(3.4)

Proof We use the same argument as in Theorem 1.3.1, with the différ
ence that we must now take two boundary levels into considération (zéro 
and b) instead of one.

Assume without loss of generality that = 0. The state at
time t is {x, k) with 0 < x < b and k E S \n one of the following cases:

• either the fluid queue is in state (0, f) with f 6 at some time 
t — T < t, when there is a phase transition from i € 5_ to jf € <5+, 
and during the interval {t — r, t) the process goes from state {0,j) 
to State {x, k), avoiding both levels zéro and b (see Figure 3.2),

• or the fluid queue is in state (h, i) with i € >S+ at some time t — 
T < t, when there is a phase transition from i E S+ to j E S_, and 
in the interval {t — r,t) the process goes from state {b,j) to state 
{x,k), avoiding both levels zéro and b (see Figure 3.3), •

• or in the interval [0, t), the fluid queue continuously remains be- 
tween levels zéro and 6, which may only occur if </3(0) is in S+ (see 
Figure 3.4).
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level

Figure 3.2: The last visit to the boundary levels occurs at 
level zéro.

level

time

Figure 3.3: The last visit to the boundary levels occurs at 
level b.

Thus, the density function at time t is such that

jes+

+ ^ “ T){T+-)ij-îfki^^ F T)dT

jes-

where, for i G 5+, Gf"\b-,t) = = b,(p^^\t) = i], and '^f^{y,x\T)
is the taboo conditional density of (x, k) at time r, avoiding both levels 
zéro and b in (0, r), given that the initial state is (y,j)-
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level

Figure 3.4: The fluid queue remains strictly between levels 
zéro and b in the interval [0, t).

Since we are interested in the System in equilibrium, we take the limit 
as t —> oo in the above expression, use the saine argument as in the proof 
of Theorem 1.3.1, and eventually establish that the stationary density of 
(x, k) is

ieS- i&S+
j€S+ ^£*5-

where N-j'^{y, x) = 7^1^(y, x; t)(It is the expected number of crossings
of level I in phase j, avoiding both levels zéro and b, given that the initial 
State is (y, f). Writing tins équation in matrix form yields (3.4). □

If we rewrite (3.4) as

7r(^^(x) = (0,x) +pi''V+_iv!''^(6,x),

we note the similarity between the first term of this expression and the 
stationary density (1.7) of the infinité buffer fluid queue. Our approach 
thus leads to a unified characterization of the equilibrium distribution of 
both finite and infinité capacity fluid queues.

3.4 Expected Number of Crossings

In order to dérivé an expression for the matrices (0, x) and (b, x) 
of taboo expected number of crossings, we need to introduce another fluid 
queue,- called the level-reversed fluid queue.
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Consider the standard fluid queue {(X(t), : t € R'*'} with an
infinité capacity buffer, defined in Section 1.3. Its phase process has 
transition generator T and its net flow rates are = +1 for i in S+ and 
rj = -1 for i in S_. The level-reversed fluid queue, which we dénoté by 
{(X(t),(p(t)) ; t G R+}, has the same phase transition generator T, but 
its net flow rates are fi = —ri, for all i in S. Thus, X{t) increases during 
the intervals of time where (p{t) is in 5_, and decreases when ip{t) is in

For the fluid queue {{X(t), ip{t))}, we define the matrices K and 
U with the same interprétation for the level-reversed process as X 
and U for the original flüid queue; we obviously hâve that

K = T__ + 4>T^_, (3.5)

Û = + (3.6)

and 4» is the solution of the following Riccati équation;

T_+ -I- + T__4> + = 0. (3.7)

Note that U and ^ were already defined in Theorem 1.12.2. With these, 
the matrices n[^\o,x) and N^\b,x) can be computed using the next 
two lemmas.

Lemma 3.4.1 For 0 < x < b, the matrices n[^\o,x) and N[^\b,x) 
satisfy the following System of équations:

I ' ■ Tvf (0,x) ■ ■ ^Kx 0 ■ I 'F ■

N[^\b,x) 0 gK{b-x) I

(3.8)

Proof We only focus on the first équation

x) + e^'‘^'i>N[^\b, x) = e^^[I, «'J (3.9)

since the second one can be derived in a similar manner by considering 
the level-reversed process. In order to simplify our équations, we shall 
use the notations

P(x,oN = PN^(o) = x,</p(o) = z]

and
E(,,,)H = e[-|x(o) = x,<^(o)-7;].
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Consider the standard infinité buffer fluid queue {(X(t), y;(t))}, and 
assume that it starts from a State in (0,<S+). Let x and j be arbitrary 
but fixed, with 0 < x < 6 and j € S, and let Zj be the number of visits 
to (x,j) in the interval (0,r), where t = inf{t > 0 : X(t) = 0} is the 
epoch of first passage to level zéro after time 0. For i in 5+ and j in 
S, E(o,î)[^j] is the expected number of visits to the State {x,j), starting 
from (0, i), before the first return to the level zéro, and

by Theorem 1.3.2. This is on the right hand-side of (3.9).
One may organize the visits to (x, *S) into several groups: the visits 

which occur before the first passage to (6,5+), those which occur after 
the first but before the second passage through (6, <S+), the visits which 
occur after the second but before the third passages, and so on. Formally, 
we define 0 < < 62 the successive epochs of visit to a state
in (b,S+): starting with = 0,

di = inf{t > : X{t) = b, ip{t) 6 >S+} for i > 1.

Let be the number of visits to (x,j) in the interval (0n, min(r, 0tï+i))>
with = 0 if > r.

We may write that

= E + E
n>0 n>l

since = 0 < r. This équation may also be written as

+ E E
n>l

and therefore, for any i in

+E EP(0.9 < r, = s]E(0,i) \6n < T, ^(0n) = ^].
n>ls6S+

By the strong Markov property, we hâve that

< r,^{en) = s] = E(b,,)[W,],
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where Wj is the number of visits to (x, j) before min(T, ^i), and we obtain 

E(0,i) [Zj] = E(0,i) [Wj] + X] X! P(0,i) < r, ^{On) = s]E(fc,^) [Wj]
n>ls65+

= E(0,i) [IV,] + ^ E(0,i) iX; I{Ôn < r, ^{On) = s}]E(6.s) [IV,]
se5+ n>l

= E(0,i)[lV,]+ XlE(0,)[E,]E(fc,,)[H/,] (3.10)
sÇ.S^

where Vg is the number of visits to (6, s) in the interval (0, r), that is, 
before the first return to level zéro.

The matrix ^ gives the conditional distribution of the first State vis- 
ited in (b,S_), given that the process starts in a State of (6,5+). There- 
fore, E(5s)[lVj] = N[^\b, x))sj- indeed, startingfrom astatein (b,S+),
the queue first needs to return to level b with a phase in S_ before we 
start counting visits to level x.

Since E(o,i)[lV,] = N-j\o,x) by définition and E(o,j)[Vs] = [e^^)is by 
Theorem 1.3.2, we may rewrite (3.10) as

s€S+

which, in matrix notations, is (3.9). □

In the sequel, we shall need varions first passage probabilities between 
the levels zéro and b:

is the probability, starting from (0, i) with i in of reach- 
ing level b in phase j in before returning to level zéro,

• and (4'+l)jfe, with k in S_, is the probability of returning to level 
zéro in phase k, without reaching level b.

• Similarly, with i and k in S_, is the probability, starting
from {b, i), of reaching down to (0, k) without returning to level b

• and (4'[.^|)ij, with j in 5+, is the probability of returning to (b,j) 
before reaching down to level zéro.

The following lemma is purely technical and will be useful in the 
sequel. Namely, it shows that the coefficient matrix of the System (3.8) is
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nonsingular if the drift fj, of the fluid queue is different from zéro, leading 
in that case to a complété characterization of the expected number of 
crossings n[^\o,x) and N[^\b,x).

Lemma 3.4.2 If fj, ^ 0, then the following properties hold. 

i. The sériés E = converges,

a. The matrix

M =
I

e^'b^ I

is nonsingular.

iii. The matrix

M' =
I <He^^ 

#6^'’ /

is nonsingular.

(3.11)

Proof We only prove the three assertions of the lemma under the as- 
sumption that p, < 0, the arguments being easily adapted to the reversed 
inequality.

Consider a fluid model for which the level is allowed to range from 
—oo to +00. Take i in »S_ and j in 5+. In view of Remark 1.4.2, we hâve 
that is the probability that, starting from (b,i), the process
eventually reaches down to level zéro, spends some time in the négative 
levels and then returns to level zéro in (0, j).

Similarly, for j in <S+ and k in 5_, is the probability that,
starting from (0, j ), the process eventually moves above level b and then 
returns to {b, k).

Thus, records the probabilities of a first return to (6,5_),
starting from (6,5_), after a passage through level zéro, and the sériés 
S gives the expected number of such returns. If ^ < 0, meaning that 
the drift goes to the négative levels, then E is finite because the doubly 
infinité process is transient and the total number of visits to any State is 
finite. The first statement is thus established.

To prove the second statement, first note that

I
e^'b^

ef<b^

I = E(-i)‘
k>0

0
ei<b^

eKbq,

0
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if the sériés converges, which occurs if and only if the sériés

S = (3.12)
fc>0

converges.
The matrix records the expected number of visits to the States

in (6, 5_), before the first return to level zéro, starting from a state in 
(0,»S+). It may be expressed as follows in ternis of first passage proba- 
bilities:

+ (4'^'’!^')^ + ...]. (3.13)

To justify this, we observe that the first factor gives the probability that, 
starting from (0, <S+), the process does reach (6,5+) before returning 
to level zéro. The second factor gives the probability, thereafter, of 
returning in finite time to (6,5_). Similarly, gives the probability,
starting from {b, 5_), of returning to {b, 5_), after passing through (6, 5+) 
but before visiting level zéro; the expected number of such returns is 
/ -P + (^L^l^')^ + ..., which justifies the third factor in (3.13).

Silice is finite, the sériés in (3.13) converges and we hâve
^Kbq, ^ aW4t(/ _ Similarly, so
that

= Ai''|4'(Gi/)'=-^G(/-(3.14)

where G = (/-and H = {I-. Thus, the 
sériés S in (3.12) converges if and only if the sériés S converges, which 
is the case by the first statemeiit of the leiiima if /x ^ 0.

The proof of the third statenient follows the sanie steps as the proof 
of the second one and is therefore oniitted. □

In the case not covered by Lenima 3.4.2, that is, when /x = 0, the 
matrices and are both stochastic, 4/1 = 1 and 4»1 = 1, and 
one shows that the matrix M defined in (3.11) is singular, so that the 
System (3.8) does not completely characterize the matrices A^|*’^(0, x) and 
N[''\b,x).

The daim that M is singular when /x = 0 follows from the observation 
that zéro is an eigenvalue of A4 :

gÂ'64,A^ ^<1 - e^^4'A^''|4'l
M = 0.
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Indeed,

= A^+lm-A^+l^GHl. (3.15)

The first equality follows from (3.14) and the second one from the déf
inition of H. Since /x = 0, G and H are both stochastic matrices, and
(3.15) is equal to 0.

We summarize the two lemmas above in one theorem, showing that 
the density vector is a mixture of two matrix exponential terms. The 
simple, short proof is omitted.

Theorem 3.4.3 If 0, the stationary density of the finite buffer fluid 
queue {{X^^\t),(p{t))} is given by

= (u+,u_)

for 0 < X < b, where

(u+,u_) = ip\\p_ )

gKx
^k{b-x)^ ^k{b-x)

0 ■

.
0

I e^^<H 
I

T -1

(3.16)

□

3.5 Boundary Probability Vectors

We now concentrate on determining the steady State probability mass 
vectors ^ and p^^^ of the boundary levels. Once we hâve these vectors, 
we are able to compute the whole stationary distribution of the buffer 
content of the finite capacity fluid queue {(X^^^(t), </?(t))}. As in the 
infinité buffer case, we obtain the stationary probability vectors of the 
boundary levels by considering the censored process which only sees the 
sojourn intervals in the boundary States. The main différence is that 
now we hâve to consider the boundary states (0,5_) and (b,S+), instead 
of (0,»S_) only.
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Theorem 3.5.1 The vector is the unique solution of the sys-
tem

(pi"\pL°V = 0 (3.17)

and
pWl_p(o)i^^^l_^_l^ (3.18)

where

W =
T++ + T+_¥^1 T+_k^^l

T_+A^+l T__ +

Proof To détermine p+^ and pL°\ we consider the censored process
which only sees the sojourn intervals in the boundary States (0,5_) and 
(6,5+). Its equilibrium probability vector is proportional to 
and its infinitésimal generator is easily seen to be given by W, with ^+1, 

A+l and defined in Section 3.4. We hâve thus proved (3.17). 
We need an additional équation in order to properly norinalize the 

stationary distribution. Firstly, we note that

= f 7T+^(x)dx + and ^_ = + [ n^^\x)dx.
JO Jo

Secondly, we hâve

f Tr^^\x)ldx = f 7T^^\x)ldx 
Jo Jo

since the fluid queue spends as much time going up in the intermediary 
levels as going down. A simple subtraction yields (3.18), which complétés 
the proof. □

Remark 3.5.2 Let us dénoté by 7r^^^(0) the right limit of 7t(*)(x) as x 
goes to zéro. By Theorem 3.3.1, we hâve

Tvf (0,0) ■
N[^\b,0) J ’

where (0,0) = lim3-^o+ (Oî ^■nd (6,0) = lim2,^o+ x).
It is quite easy to see that a|^^(0, 0) = [7, 4'+!] and that N[^\b,0) = 
[0, ÀL'’!]. Therefore,

(7ri^^(0),7rL''^(0)) = + + p^''¥+_ÀL'’!).

(7ri'^^(0),7rL'')(0)) ! (b) (0)s
= (pV ,P- ) T_

+-

0
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Similarly, with 7t(x), we find that

using the facts that N^\o,b) = TVj*^(0, x) = [A+|, 0] and
N[^\b,b) = N[‘’\b,x) = [#L+, /]. By (3.17), we get

= (pl°V_+, -p'“V__) (3.19)

and
{7r[^\b),n^^\b)) = (-pf n+,pi'’V+_), (3.20)

as was already observed in [42].
To see the analogy with the finite QBD case, rewrite the steady State 

density of the finite fluid bufîer as

7t(''^(x) = t;+e^'^[7, /],

and use (3.19), (3.20) to rewrite (3.16) as

{v+,v_) = {7T^^\0),n^^\b))
I

(3.21)

(3.22)

The similarity between (3.21, 3.22) on the one hand, and (3.2, 3.3) on 
the other hand is striking.

In order to solve the System (3.17), we need to know the matrices 
^+1, ^-^1, A+l and Using probabilistic arguments, we now dérivé 
some expressions for these matrices.

Theorem 3.5.3 The matrices of first passage probabilüies '^+1, 
A+l and satisfy the following System:

r A^") I ■ g(76

àL"! _ I 'î' gt/6 (3.23)

the coefficient matrix of the System being nonsingular i/ p ^ 0.

Proof The matrix gives the distribution of the phase in S_, upon 
return to the level zéro, starting from (0, <S+), for the standard fluid
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queue. Two cases are possible: either this return occurs before the first 
passage to level 6, or it occurs later. Therefore, we hâve

+ a^+Ig^+1

where G+1 records the probability of eventually being in a state in (0,5_) 
given that the initial State is in {b,S+). Now, starting from (6,<S+), 
the queue must first return to (6,<S_), with probability given by it 
must then move down to level zéro, with probability given by as we 
mentioned in Remark 1.4.2. Altogether, we find that

^ (3.24)

Next we consider There are two ways of visiting (0, <S_), starting 
from {b, S_): either the visit occurs before a return to level b, or it occurs 
later. This décomposition gives us

gt/6 ^ ^{b)_ ^ ^3 25)

Together, (3.24, 3.25) justify the équations corresponding to the last 
column in (3.23); the other équations are obtained by applying the saine 
arguments to the level-reversed queue.

By Lemma 3.4.2, the coefficient matrix is nonsingular in case is 
different from zéro. □

We note for future reference that (3.24) and (3.25) together lead to 
the following équation:

(3.26)

Some algebraic manipulations of the System in (3.23) lead to explicit 
expressions for the matrices of first passage probabilities.

Corollary 3.5.4 If ^ 0, then the matrices 4'+!, A+| and
are given by

= (4/- e^'’4'e^*)(/-(3.27)

= (4'-e^''4'e^'')(/-4'e^'’4'e'^'')“^ (3.28)

A^+l = (7-^^)e^'’(/-4'e^''^e^^)-i (3.29)

ÂL'’! = (7-4'4')e^'’(/-4'e^''^e^'')“^ (3.30)
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Proof We only prove the first équation, the others being obtained in a 
similar manner. From (3.23) we bave

We post-multiply by use (3.24), and obtain

<^^+1 (/ - (3.31)

We need to show that (/—is nonsingular. From Lemma 3.4.2, 
we know that the sériés E converges, so that the sériés

^(4'e'^''4'e^'’)'= = 7 + ^(#e^''«'e^'’)*=
k>0 fc>l

= 7 +

also converges, which implies that ~ (7—
and we see that (3.27) follows from (3.31). D

The next resuit is équivalent to Rogers [42, équations (4.4)] but our 
proof is different. Note that Rogers also needs the assumption n ^ 0.

Theorem 3.5.5 If n 0, then the steady state probability mass vectors 
and p+^ of the boundary levels 0 and b, are given by

pf = Î.A?>

and

(3.32)

(3.33)

Proof We start from (3.17) and write the System as

■ 0
-1-

0 n- ■
0 T__ 0

i (b) (0).
(P+ ,P- )

We post-multiply this équation by the matrix

'P (à) ^{b)_ = 0.

7
7
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and obtain, by Theorem 3.5.3, the System

/ {b) (0)s
(P+ ,P- )

L ++ U

0 T_
I

+ '■ +-

0

- \ùb ^ ■ 1
_

= 0

or

T++ + T+A (r+_ + T++^)e^'’ 
{T_++T_A)e^^ T__+T_+'^

( {b) (0)x
(P+ ,P- )

By (1.14) and (1.16), we hâve that

= 0. (3.34)

T+_ + T++'^ = -<i>U

and, for the level-reversed queue,

T_+ + T__^ = -'îfÛ.

Thus, (3.34) becomes

/ {b) (0)^
(P+ ,P- )

(3.35)

U

f (b) (0).
= (P+ , P- )

I
I

■ Û 0 ■
0 U _

0

since M and commute for any matrbc M. We write separately the 
two équations:

{p^+^= 0 (3.36)

(p^_°^-pi''^«'e^'')C/ = 0. (3.37)

Assume that p, < 0. The infinité bufîer fluid queue is récurrent, and, by 
Remark 1.4.2, the generator U of the process of downward records is non- 
singular. Since the phase process is irreducible, U is also irreducible, and 
thus has a unique eigenvector for the eigenvalue zéro, up to a multiplica
tive constant. This implies that, by Theorem 1.6.1, = cp_
for some constant c, where p_ is the steady State probability mass vector
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of level zéro in the standard fluid queue. Moreover, by Remark 1.4.2, 
is stochastic; on the other hand, ^'1 = 1. Thus,

cp_l = = pL^^l — p+^1 = ^_1 — ^+1

by (3.18). Since p_ = by (1.64), we conclude that c = 1 and
that

p(_o) _ = p_ = (3.38)

The level-reversed process is transient, so that U is nonsingular (see 
Remark 1.4.2) and, therefore, (3.36) implies that

pW =p(0)^gf>t_ (3.39)

Post-multiplying both sides of (3.39) by and replacing the resulting 
expression in the left-hand side of (3.38), we obtain that

• pL“^(/ - = C -

so that
pW = (^_ - ^^'!')(/ - ^e^'’'1'e^*)-', (3.40)

since I — is nonsingular (see the proof of Corollary 3.5.4).
Using the fact that p_U = 0, we hâve p_e^^ = p_ and the équation 
above may be written as

p)°) = (^_ - ^^^-)e^^(7 - (3.41)

Observe that

UÛ = by(3.6),

= —^_T_+ — ^_T__4* since = 0,

-

by (3.35), so that (^^ — ^_'Î’)Ù = 0. The matrix Û being nonsingular, 
this proves that Using this relation, (3.41) becomes

which, combined with (3.30), gives (3.33).
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We replace in (3.39) by the right-hand side of (3.40) and obtain 
that

= ^_^{I -

which, together with (3.29), proves (3.32).
The argument is easily adapted to the case where p > 0. □

3.6 General Fluid Input Rates

We briefly indicate in this section how to obtain the solution for finite 
buffer fluid queues with arbitrary net input rates once we hâve the solu
tion using net input rates equal to +1 or —1.

Dénoté by {(X^*’^(t), (p(t))} a finite buffer fluid queue with arbitrary 
real-valued net input rates fi and with phase transition generator T.

We follow the same steps as in Section 1.7 and obtain the following 
expressions for the probability mass vectors p^°^ = (Po°\o,pL°^) and 
pW = (pj,'’\p^'’\0):

p(0) =^pW(|C_|-if_o(-T’oo)-\0,|C_|-i)

and
p{6) Toor\C;\0),

where 7 is given by (1.28) and the vectors p(0) and p+^ are a solu
tion of the System (3.17), normalized by (3.18). The stationary density
7r^*^(x) = (7fQ”^(x), 7T+^(x), 7rlL'''(x)) is such that{b).

7f+^(x) = ^ \

7T^^\x) — -t-7i;_e^1“^

and

= fti^\x)f^o(-Too)-^ + ft^‘’\x)f_o(-Toor'
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where is given by (3.16). As before, the matrix gives the first
return probabilities to the initial level for an infinité buffer fluid queue 
with phase transition generator T and corresponding net input rates 
equal to +1 and —1, and solves the Riccati équation (1.16); the matrix 
K is defined hy K = T++ + The matrices 4* and K hâve the same
interprétation as ^ and K but for the level-reversed fluid queue.

3.7 Performance Measures

We are interested in computing some performance measures for the mar
ginal distribution of the fluid level, in a System with a finite buffer and 
arbitrary net input rates, denoted as before by {(À’^*’^(t), (^(t))}.

For this purpose, we will need the following expressions: the proba- 
bility masses rho at level zéro and at level b are

rho = and (3.42)

with

, = lC_rHl + T_o(-fbo)"'l}

and

and the density {x) between zéro and b is

= 7r^^^(a;)l = 7{7r+^(x)îi;+ + 7t-^^\x)w-}, (3.43)

where 7r^*')(x), p+^ and pL°^ are determined in Sections 3.3 to 3.5.
A first performance measure is the probability that the buffer over- 

flows in the stationary régime, it is equal to rhh given by (3.42).
In order to compute other performance measures, like the stationary 

distribution fonction or the moments, we will need to express the inté
grais Jq e^^dx and in a simple manner. This is the reason
why we now introduce generalized matrix inverses, because either K or 
K or both are singular as we show in Theorem 3.7.2 below. We use the 
group inverse, which we now deflne.

Définition 3.7.1 The group inverse of a matrix M, when it exists, is 
the unique matrix such that MM^^M = M, Mand 
MM* = M*M.
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A useful property, which makes it easy to compute, is that , when 
it exists, is the unique solution of the System

/ M*M = I-vu 
{ M*v = 0

where u and v respectively dénoté the left and right eigenvectors of M 
for the eigenvalue 0, normalized by uv = 1, ul = 1. We refer the reader 
to Campbell and Meyer [12] for details and for more properties about 
generalized inverses.

Theorem 3.7.2

i. If fl < 0, the matrix K is nonsingular and the matrix K is singular. 
The group inverse of K exists.

ii. > 0, the matrix K is nonsingular and the matrix K is singular. 
The group inverse of K exists.

iii. If fl = 0, then both K and K are singular matrices and their group 
inverse exist.

Proof We only prove the first assertion because the other two are 
obtained in a similar manner. We hâve already proved in Theorem 1.5.3 
that if P < 0, then K is nonsingular. Nevertheless, we provide here a 
different proof for this resuit, based on the relationship between fluid 
queues and QBD processes.

Consider the QBD process obtained by restricting the infinité buffer 
fluid queue to those epochs when the level is a multiple of h. Its transition 
matrices are

Aq — 0
0 0 ) Al —

'ï'
0 4»
(6)

{b)

0
and A2

0 0

0 A ib) , (3.45)

where A+^j, and are defined in Section 3.4. The R matrix
of this QBD, that is, the matrix which records the expected number of 
visits to level one, starting from level zéro, before the first return to level 
zéro, is given by

R =
eKb -

0 0

because is the matrix of expected number of visits to level b, for the 
infinité buffer fluid queue, starting from level zéro, before the first return
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to level zéro (see Theorem 1.3.2). Since jj- < 0, the drift is downwards 
and it follows from Theorem 2.1.7 that the spectral radius of R, denoted 
by sp{R), is strictly less than one. Therefore, sp(e^*') < 1. This implies 
that ail the eigenvalues of K must hâve a strictly négative real part, 
leading us to the conclusion that K is nonsingular.

To show that K is singular and that its group inverse exists, consider 
the QBD process obtained from (3.45) by reversing the levels. For this 
process, the matrix R of expected number of visits is given by

R =
0 0

^kb

For the level-reversed process, the drift is upwards, and it follows from 
[29, Corollary 7.1.2 and Theorem 7.2.2] that sp(.R) = 1 and that the 
eigenvalue 1 has multiplicity one. Therefore, sp(e-^^) = 1, zéro is an 
eigenvalue of K and K is singular; ail the other eigenvalues of K hâve 
a strictly négative real part. Since the eigenvalue 0 has multiplicity one, 
the group inverse of K exists (see [12, Section 7.2]). □

The following indefinite intégrais will be useful in the sequel. 

Lemma 3.7.3 If M is nonsingular, then

!■
+ Ml— l„Mx (3.46)

where M\ is an arbitrary matrix.
If M is singular and its group inverse exists, then

j e^^dx - M*e^^ + xvu + Ms (3.47)

where Ms is an arbitrary matrix and u and v respectively dénoté the left 
and right eigenvectors of M for the eigenvalue 0, normalized by uv = 1,
ul = 1.

Proof To prove (3.46), we may write that

J e^^dx = J
•' n>0

^n+1 

(n + 1)!
n>0 '' ’
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for some arbitrary matrbc C. If M is invertible, then

(n+1)!/' n>0

{MxY
+ C

n>l 
r —1 f ^Mx

n\

where M\ is an arbitrary matrix.
If M is singular and its group inverses exists, we hâve by (3.44) that 

I = 4- vu and we may write that

, ~n+l ____ ™n+l
= V--------_M”+'M*+V^-------^hf'vu + C

é; ("+')! s; (" + !)!

E
n>l

(xM)^
+ xvu + C

ni

since Mv = 0. This finally reduces to

e^^dx = - I)M* + XVU + C

= + xvu + M2,

where M2 is an arbitrary matrix, and (3.47) is established.

/'

□

We now hâve ail the preliminary results needed to compute the sta- 
tionary distribution fonction F^^\x) = limf^oo < x], We as
sume throughout that p. < 0, so that K is nonsingular and K is singular; 
the équations hâve to be changed in an obvions manner in case p > 0. 
The proof is sirailar to the proof of Lemma 3.7.3 and is omitted.

Proposition 3.7.4 7/p < 0, the stationary distribution function of the 
buffer content of the process {(X^*^(t), <p(t))} is given by

F^^\x) = rho + ^ |u+T(x)(iü+-|-4'tü_)-|-î;_5(x)(4'iu+-t-îu_)| (3.48)

for 0 < X < b, where

A{x) = {I - e^^)i-K)-^ (3.49)
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and
B{x) = - e^^){-K)* + xvû, (3.50)

and where û and v respectively dénoté the left and right eigenvectors of 
K for the eigenvalue 0, normalized by ûv = 1, ûl = 1.

□

The stationary mean and second moment of (^(t))} are
given next.

Proposition 3.7.5 If fi < 0, the mean M and second moment V of 
Xib) in stationary régime are given by 

M = brhb + "f ^^y+C{w+++ v_D{4>w++ w_)'^ (3.51)

and

V = 6^77ib + 7 |u+£^(ii;++ ^m_) + u_F(^iü++ tü_)| (3.52)

where

C = {-K)-\{-K)-\l-e^^)-be^^] (3.53)
u2

D = {-k)*[bl-{l-e^^){-k)*] + —vû (3.54)

E = 2{-K)-^C-{-K)-^b^e^^

F = 2k*D + h^{-k)* + 

and where û and v are defîned in Proposition 3.7.4-

Proof The expected value of the stationary buffer content is

fb
M — brhb + j xp^^\x)dx.

JO

Since

{-K^t\x),-K^!f\x)) = (U+,U_)
gKx

gÂ:(6-i)^ ^k{b-x) (3.55)

and by (3.43), we hâve that M is given by the right-hand side of (3.51), 
where C = Jq xe^^dx and D = xe^^^~^^dx.

Equations (3.53, 3.54) are easily proved by part intégration, using 
Lemma 3.7.3, and keeping in mind that = 0.

One proves (3.52) in a similar manner. □
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We finally turn to the Laplace-Stieltjes transform of the buffer con
tent in equilibrium. We need to define the set è of eigenvalues of K and 
the set Â = {—A : A G â, A 0}.

Theorem 3.7.6 If fj, < 0, the Laplace-Stieltjes transform (f){s) of the 
buffer content in equilibrium is given by

4>{s) = mo -b

-1-7 |ü+C'(s)(n;+ -b -b v_D{s){'^w+ -b w_)|, (3.56) 

for 'R-(s) > 0, where

C{s) = -{K - sl)-\l - (3.57)

and

D{s) = {-k)*{e-^‘^I - sK*)-^ - e-^’’I)vû (3.58)

if s ^ A, D{s) being defined by continuity on A.

Proof The Laplace-Stieltjes transform of the stationary buffer content 
is given by

rb

(f>{s) = rhçj-\-e~^^rhb/ e~^^pk*\x)dx
Jq

which, by (3.43) and (3.55), is clearly seen to be équivalent to (3.56), 
where

rb

C{s) = / e^^-^^^dx
Jo

rb

D{s) = /
Jo

We hâve seen in the proof of Theorem 3.7.2 that ail the eigenvalues 
of K hâve a strictly négative real part, leading to the conclusion that 
the eigenvalues oi K — si also hâve a strictly négative real part since 
IZ{s) > 0. Therefore, K — si is nonsingular and (3.57) is proved.

We integrate by parts the expression for D{s) and, keeping in mind 
the fact that K and commute, we find after some simple but tedious 
manipulations that

D{s){I + sk*) = {-!<)*{e-^^I - + -(/ - e-^^I)vù.
s

If s is not in Â, then I -b sk"^ is invertible and, using the fact that k 
and k"^ commute and û(I -b sk'^ff^ = û, we finally obtain (3.58). □
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3.8 Numerical Illustration

To illustrate the results obtained in Section 3.7, we consider the same 
example as in Section 2.4, consisting in a random environment cycling 
through three periods, except that we now impose that the buffer has a 
finite capacity b. We only consider the case where = 2 and sq = =
4, and we first fix the traffic intensity c to be equal to 0.9. In Figures 3.5

Figure 3.5: Distribution function of the stationary buffer 
content for finite fluid queues with capacities b = 1, 5,10,50. 
The value of c is 0.9.

6 1 5 10 50
rho 0.1448 0.0516 0.0422 0.0400
rhb 0.2283 0.0259 0.0049 3.7904e-08
M 0.5446 1.9931 2.9217 3.4768
V 0.4342 6.0089 14.4139 23.8779

Table 3.1: Steady State probability masses of levels zéro and 
b, mean M and second moment V of the réservoir content, 
for finite fluid queues with capacities b = 1,5,10,50. The 
value of c is 0.9.

and 3.6 we illustrate the stationary distribution function F^^\x) and the 
stationary density function (x), respectively, for four different values 
of the buffer capacity: 6=1, 6 = 5, 6 = 10 and 6 = 50. Note that, 
for the sake of clarity, we hâve scaled the horizontal axis of Figure 3.6
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Figure 3.6: Density function of the stationary buffer content 
for finite fluid queues with capacities b = 1,5,10, 50, plotted 
in units of the buffer size. The value of c is 0.9.

by the factor b. The steady State probability masses of the boundary 
levels and the first two moments are given in Table 3.1. Comparing 
these results with those presented in Table 2.1 and corresponding to the 
case c = 0.90, we observe, as expected, that we obtain the saine values 
when 6 = 50 as in the infinité buffer case. Also, we observe that the 
probability masses of levels zéro and b decrease when we increase the 
size of the buffer. In Figures 3.7 and 3.8 we illustrate the stationary

6 1 5 10 50
mo 0.1362 0.0312 0.0168 0.0054
rhb 0.2587 0.0544 0.0256 0.0028
M 0.5704 2.5474 4.8828 19.6518
V 0.4642 8.7380 32.4000 577.7344

Table 3.2: Values of mo, fhb, M and V for finite fluid queues 
with capacities 6 = 1,5,10, 50. The value of c is 0.99.

distribution and density functions for the saine values of 6 in the case 
where c = 0.99, and the steady State probability masses of the boundary 
levels, as well as the first two moments, are reported in Table 3.2. We 
see that one of the effects of increasing the traffic intensity c is that the 
fluid reaches higher levels, and the steady state probability mass of the 
full buffer when 6 = 50 is greater than in the case where c = 0.9. Also,
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with c = 0.99, the stationary density is nearly uniform over the interval 
(0, b). This is due to the fact that, if b were infinité, the queue would be 
close to be transient; with b finite, the stationary distribution tends to 
spread evenly over the whole state space. Note that the horizontal axis 
of Figure 3.8 is also scaled by the factor b.

Figure 3.7: Distribution function for fluid queues with ca- 
pacities b = 1,5,10, 50. The value of c is 0.99.

Figure 3.8: Density function for fluid queues with capacities 
b = 1, 5,10, 50, plotted in units of the buffer size. The value 
of c is 0.99.



4

Feedback Fluid Queues

We focus in this chapter on the analysis of different classes of fluid queues, 
in which the behaviour of the phase process may change according to the 
value of the level of the buffer.

Our interest for such processes first came from a fluid model of an 
Internet protocol (see van Foreest et al. [52], [53]), that we explain in 
Section 4.1. We do not concentrate on tliis practical model of which 
the description serves only as a motivation for feedback fluid queues 
and, after this first preliminary section, we analyze the processes from a 
general mathematical point of view.

We first consider in Section 4.2 an infinité buffer fluid queue, in which 
we change the behaviour of the phase process at level zéro, and déter
mine its stationary density vector. Our approach developed in Chapter 1 
shows here its great tractability since we can détermine the stationary 
distribution of the modified fluid queue from that of the original, prac- 
tically at no cost.

We then treat in Section 4.3 the fini te buffer case, by changing the = 
behaviour of the phase process at the two boundary levels. Again, we 
assume in Sections 4.2 and 4.3 that the net input rates of fluid into 
the buffer are equal to -1-1 and —1 only, and show in Section 4.4 how 
to détermine the stationary distribution of the general model once one 
has the stationary distribution of the simplified process. We présent in 
Section 4.5 a numerical illustration of the results obtained in this context. 
The results for both the infinité and the finite buffer cases were presented 
in da Silva Soares and Latouche |17j.
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Finally, the last two sections are devoted to the analysis of fluid 
queues in which the phase process changes each time the bufFer level 
reaches certain thresholds, the change being carried on in two different 
manners. The models considered become more and more complex, and 
we treat them successively from the simplest to the more complex, in 
order to allow the reader to detect the ingrédients of the solution. Note 
that similar processes were studied in Elwalid and Mitra [21]; there, the 
authors model a System with loss priorities using a finite buffer fluid 
queue with a finite number of thresholds, such that the net input rates 
change their values from one région of the buffer to another. Transient 
results for similar models as those considered in Section 4.7 hâve been 
obtained by Chen, Hong and Trivedi in [13].

Observe that the fluid queues constructed in this chapter are not of 
the canonical type, since the marginal phase processes are not continuons 
time Markov chains.

4.1 Fluid Model of TCP

Our motivation for studying feedback fluid queues is the analysis of an 
Internet congestion control protocol, namely the Transport Control Pro
tocol (TCP), which is based on feedback. We briefly describe in this 
section the main characteristics of TCP Reno, which is one of the most 
popular implémentations in the Internet today. Our description is based 
on van Foreest et al. [52]: the authors construct a fluid model for the 
mathematical analysis of TCP, however, their approach is based on spec
tral methods, leading to the necessity of numerically computing an eigen- 
vector, with eigenvalue zéro, of an ill-conditioned matrix. When buffers 
are large, or when there is a large number of States, the numerical éval
uation becomes unstable. On the contrary, as for the fluid models in the 
first three chapters of this work, our approach leads to a stable and very 
efficient computational procedure.

The Internet transfers data packets from sources to destinations over 
a network of links and routers with buffers. The main rôle of TCP is to 
adapt the sending rate of a source to the capacity of the network. The 
flow control of TCP is based on a window mechanism, which consists in 
limiting the number of packets sent by the source and not acknowledged 
yet by the receiver. The control algorithm roughly works as follows.

The sender maintains a State variable, the congestion window, which 
bounds the number of packets between the source and the destination. 
The congestion window is initialized to one, and a packet is sent. Wlien
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the destination reçoives it correctly, it sends an acknowledgement (ack). 
When the sender reçoives the ack, it incréments the congestion window 
from one to two, and two packets can be sent. When each of these two 
packets are acknowledged, the congestion window is increased to four. 
Thus, the window size is doubled every round-trip time (RTT), that is, 
every time interval between the sending of a packet and the réception of 
the corresponding ack. This first phase of the algorithm is called slow 
start.

At some point in time, buffers along the network path start to fill 
and may overflow, resulting in the loss of packets. The sender detects 
this loss by means of either timeouts or duplicate acks, and it has to slow 
down its sending rate. If the congestion is indicated hy a timeout, the 
sender sets the window size to one, and performs the slow start phase 
until half of the congestion window previous to the loss is reached. After 
this, the System enters in the congestion avoidance phase, during which 
the sender may only increase the window at a linear rate. The congestion 
avoidance phase will also be entered after réception of three duplicate 
acks; this is known as fast recovery. The sender reduces the window size 
by half, instead of setting it to one as in the slow start phase.

The fluid model proposed in [52] to analyze a single TCP source is 
the following. The State of the source that transmits fluid into a buffer 
is described by a Markov process : t G R"*"} on the State space
>S = {1,2,..., A^}. The buffer content at time t is denoted by X{t) and 
it takes its values in the bounded interval [0,6]. When ip{t) = i, the 
source sends fluid into the buffer at the rate ir\ the buffer empties out at 
the rate l. Therefore, the net input rate vector is (r —Z, 2r— , Nr — l).
To ensure that the buffer is not continuously overloaded, we assume that 
r < Z; on the other hand, in order to ensure that congestion occasionally 
occurs, we assume that Z < Nr.

If X{t) < 6, that is, if the buffer is not full, it sends positive signais to 
the source. When the source receives such a signal, ip{t) increases by one, 
provided that it is strictly smaller than N, leading to an increase of the 
sending rate. When X{t) = 6, the buffer sends négative signais notifying 
that fluid is lost. As a response, when ip{t) > 1, it becomes \}p{t)/2\ to 
indicate that the source decreases its rate by half. The time intervals 
between two consecutive positive and négative signais are assunied to be 
independent and identically distributed exponential random variables, 
with parameters A and //, respectively.

The source process {<y9(t)} has two generators. When X{t) < 6, the 
source transition generator, denoted by T, implements linear increase; it
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is given by
■ -A A 

-A

T =

A

0
-A A

0 0

When X{t) = b, the source makes multiplicative décréments according 
to a generator , which is such that

• = -fiîoTl<i<N,

• = fl for l < i < N and j = [i/2j,

ail the other entries being equal to zéro. As an example, for a source 
with N — 5, we hâve that

j^{b) _

0 0 0 0 0
fl —fl 0 0 0
fl 0 —fl 0 0
0 /r 0 —fl 0
0 fl 0 0 —fl

This model can be justified in the TCP context in the following way. 
The parameter r corresponds to the increase of the congestion window 
during the congestion avoidance phase. The source State N may then 
be interpreted in two ways: either it may correspond to the physical 
capacity Nr of the access link, or it is the maximum window size which 
détermines the peak rate of the source. The random time between two 
consecutive positive or négative signais models the sum of the transmis
sion, propagation and queueing delays of the packets at other routers in 
the network, and randomness of the operating Systems at the sender and 
receiver. Thus, 1/A is the average round-trip time. In [52], the authors 
consider two types of négative feedback; either fi = A or Ijfi= l/\ + b/l. 
In the first case, it is assumed that the RTT is not affected by buffer over- 
flow, while in the second, the négative rate is an explicit function of the 
buffer size, and is chosen to be the largest possible RTT.

4.2 Infinité Buffer and Feedback Control

Let {{Xf{t),<pf{t)) : t € be an infinité buffer fluid queue with
feedback; we suppose that the generator of the phase process {<Pf{t)} is
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T when Xf{t) > 0, but that it is when the buffer is empty, with

^(0) _ Jjn(O) jn(0)j

Observe that we do not need to define for i in since Xf{t) cannot 
remain equal to zéro when the input rate ri is strictly positive. Apart 
from the fact that the phase process has two generators, the character- 
istics of the fluid quene are the same as in Section 1.3.

We assume again without loss of generality that the net input rates 
are ail equal to +1 or —1, and we show in Section 4.4 how to return to the 
general setting. The mean drift of fluid into the buffer /x = ^^1 — ^_1 is 
assumed to be négative, so that the stationary density 7t{x) of the buffer 
content exists. We dénoté by p = (0,p_) the steady State probability 
mass vector of the empty buffer.

Theorem 4.2.1 //p < 0, then the stationary density of the buffer con
tent of the process {{Xf{t),(pf{t))} is given by

n{x) ~ N{x) (4-1)

for X > 0, where {N{x))ij is the expected number of visits to (x,y), under 
taboo of level zéro, starting from (0, x), for ail j and for i in S+. This 
may also be written as

7?{x) ÿü] (4.2)

where and K are given by (1.16, 1.19), respectively. The vector p_ is 
the unique solution of the System

=

P_{1-2t[^}k-'^1) =

where
lj{0) _ j'W

is the infinitésimal generator of the censored Markov process on the States 
(0,5_).

Proof To prove (4.1), we repeat the same sequence of arguments as in 
Theorem 1.3.1, keeping in mind the fact that the transition rates at level 
zéro are not the same as elsewhere. The matrix N{x) only deals with the 
System behaviour when the level is strictly above zéro; therefore, (4.2) 
immediately follows by Theorem 1.3.2. To obtain (4.3), we mimic the 
proof of Theorem 1.6.1, again using the fact that the transition generator 
at level zéro is instead of T. □

(4.3)
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We would like to point ont the fact that the stationary distribution 
of the feedback fluid queue is again completely determined once we hâve 
the matrix of first passage probabilities, and this matrix does not 
dépend on . Therefore, we may change the behaviour at level zéro of 
an infinité buffer fluid queue and obtain the new stationary distribution 
at no cost.

4.3 Finite Buffer and Feedback Control

We now consider a feedback fluid queue : t G M"*"}
with a buffer of finite capacity b. It difîers from the process defined in 
Section 3.2 by the fact that the rates of the phase transitions change 
each time the buffer is either empty or full.

• When the buffer is empty, that is, when = 0 and ipf{t) is

in 5_, the phase transition generator is T^}]',

• when it is full, that is, when X^j\t) = h and is in 5+, the

generator is

Note that we need not define for i in 5+ since it is not possible 
that the buffer remains empty when the input rate is strictly positive. 
Similarly, it is not necessary to define for i in »S_ because Xj{t) 
cannot remain equal to b when the input rate rj is strictly négative.

We dénoté by and the stationary probability vectors of lev
ais zéro and b for this process. As before, = (0,pL°^) and p^^^ = 
(p+\o). The stationary density vector of the buffer content is denoted 
by 7t(^^(x) = : i € S)- since the buffer is of finite capacity,

(x) exists for any value of the drift p.

Theorem 4.3.1 For 0 < x < b, the stationary density vector of the 
finite buffer fluid queue with feedback is given by

7t('’'(x) = {p+\p^-'^)

If P 0, this may also be written as 

7t('')(x) = (v+,U_)

O
 

1___ ■ Tvf (0,x) ■

0 N[^\b,x)
(4.4)

~Kx
gÂ'(6-x)^ ^K(b-x) (4.5)
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where

(v+,v_) = —
—
1 

O fl ___
1

/ '
t(9) 0 e^b^ I (4.6)

the matrices K, are given by (1.19, 1.16), and K, ^ are given by (3.5,
3.7).

Proof To prove (4.4), we follow the steps in Theorem 3.3.1. The matri
ces n[^\o,x) and N[^\b,x) only dépend on the System behaviour when 
the bufïer content is strictly between levels zéro and b; therefore, they 
are the saine as for the process {(X^*^(t), y?(t))} defined in Section 3.2, 
and we apply Lemmas 3.4.1 and 3.4.2 to conclude the proof. □

The following theorem gives a procedure to détermine the steady 
State probability vectors (p+\pf.°^) of the States {b, <S+) and (0, »S_) when 
the drift /x is strictly négative. The resuit has to be adapted in a obvious 
manner in case n is strictly positive.

Theorem 4.3.2 The vector is equal to c{x^,x_), where c is
a normalizing constant and (æ+, æ_) is the unique solution of the System

j {x+,x_)W — 0 
( x+1 -I- æ_l = 1

with

W =
rib) ^ ^w rfjÂL'’!

j^io) ^

where T'+l, A+| and are defined in Section 3.4.
If P < 0, then the normalizing factor c is given by

c = {x+1 + x_l + z^.A{b)l + z_B{b)l} ^

(4.7)

where A{-), B{-) are given by (3.49, 3.50), and where

0 rib)

0
I

ei<b^
^Kb T»
I

(z+,z_) = (x+,x_)
-\ -1

(4.8)



120 Feedback Fluid Queues

Proof We mimic the proof of Theorem 3.5.1. The vector 
is proportional to the steady State probability vector of the restricted 
process obtained by observing the feedback fluid queue (pf{t))}
only at those intervals of time where it is in (0, <S_) or in {b,S^). It is 
easy to see, using the définition of the matrices ’I'+l, A+| and
that the generator of the censored process is W.

The normalizing factor c is given by

c = {x+1+ æ_l+

where, using (4.5, 4.6),

y{x) ={z+,z_)
eKx

^K[b-x)^ ^K(b-x) > (4.9)

with (z+,z_) defined in (4.8). Thus,

rb

c={x+l + x_l + z+ f e^^dx[I, <if]l + z_ [
Jo Jo

By Theorem 3.7.2, if /r < 0 we hâve that K is nonsingular and K is 
singular. Using Lemma 3.7.3, we obtain the announced resuit. □

We point out the fact that the simple, direct expressions for the 
vectors (p+\pL*^^) obtained in Theorem 3.5.5 are no longer available in 
this context.

4.4 General Fluid Input Rates

The expressions relating the stationary distribution of the feedback fluid 
queue with a finite buffer and with net input rates equal to +1 or — 1 
to that of the same process with arbitrary net input rates are obviously 
very similar to those exposed in Section 3.6 for the finite buffer fluid 
queue without feedback. It is straightforward to obtain that the proba
bility mass vectors = (Pq°\0îP-°^) ^'Hd p^^^ = {pq̂\p+\o) and the 
density 7t^^^(x) = {7t^\x), tï^^\x),-k^^\x)) in the stationary régime are 
given by:
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= 7y+(x)C+\ = iy_{x)\C_\ ^

and
irÿ\x) = ni^\x)f^o{-foo)-^ + ir^^\x)f_o{-foo)-\ 

where x+, x_ solve the System (4.7) and where y{x) is given by (4.9). 
The normalizing constant 7 is given by

pb
7 = + / {y_^{x)w++ y_{x)w^)dx}~^ (4-10)

Jo
where

= |c_ri{i + T’!?(-T£V'i}
w+ = C';Hl + r+o(-Tbo)“4} (4.11)

= |C_rHl + T_o(-Tbo)-4}. (4.12)

Note the similarity to c in Theorem 4.3.2. To integrate y{x), one uses 
again Theorem 3.7.2 and Lemma 3.7.3.

The following expressions are useful for computational purposes: the 
probability masses ttiq at level zéro and nih at level b are

~(0)i (0)mo = p^ ^1 = 'yx_w_ (4.13)

and
(b)mi) = = 7æ+iüX , (4.14)

and the density p^^\x) for 0 < x < h is

p^^\x) = 7r^''^(x)l = 7{y_^(x)m+ + y_(x)m_} (4.15)

where y{x) is given by (4.9).

In the infinité buffer case, the density is

jj,{x) = a{7r+(x)it?+ + 7r_(x)u;_} 

and the probability mass at level zéro is
(0)mo = ap_w_ ,

where 7t(x) and p_ are given in Theorem 4.2.1. The normalizing factor 
a is given by

a= + J {tt+{x)w+ + 7r_{x)w_)dx

with w+ and being defined in (4.11, 4.12).
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4.5 Numerical Illustration

We illustrate the results obtained in the last section for a feedback fluid 
queue with a finite buffer of capacity b. We conipute the stationary prob- 
ability masses mo at level zéro and mi, at level b given by (4.13, 4.14), 
and the stationary density fonction given by (4.15). We adapt the per
formance measnres obtained in Section 3.7 and illustrate the stationary 
distribution fnnction, as well as the mean and second moment in the 
stationary régime.

The System that we choose to illustrate lias a stationary mean drift n 
strictly positive. In this case, we obtain that the stationary distribution 
fonction is given by

= mo -H 7 i^^z+A{x){w+ -t- ^'m_) -j- z^B{x){'^w+ -|- m_)| 

for 0 < X < 6, where

A{x) = - e^^){-K)* + xvu

and
B{x) = {I-e^^){-K)-\

and where u and v respectively dénoté the left and right eigenvectors of 
K for the eigenvalue 0, normalized by uv = 1, ul = 1. The normalizing 
constant 7 is given by (4.10), mo is given by (4.13), (z+,z_) are given 
by (4.8) and w+, w_ are given by (4.11, 4.12).

By the same arguments as in Proposition 3.7.5, we find that the 
stationary mean M and second moment V are given by

M = brhh + 7 |z+C(it;+ -|- 'tm_) -t- z^V{i>w+ + w_)|

and
V = b^rhb + 7 ^z+£{w+ -|- ^'m_) -|- 2_.7^(4'îi;+ -i- tn_)|

where

J,2
C = {-K)*[bI-{I-e^‘’){-K)*] + —vu

£ = 2K*C + y{-K)* + —vu
O
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and where u and v are defined above.
Consider a water réservoir of capacity b. There are N processes which 

consume water from the réservoir. Each process is either idle or it taps 
water at a constant rate c; it stays in the idle state for an exponentially 
distributed amount of tiine, with parameter (3, then it enters in the active 
State and taps a quantity of water which is exponentially distributed, 
with parameter a/c. Under normal circumstances, therefore, a process 
leaves its active state at the constant rate a.

When the level of water is strictly between zéro and 6, the réservoir 
is normally filled at a constant rate R.

When the réservoir is full, it overflows and the excess water is wasted; 
there is a trigger which reacts after a random interval of time, and which 
reduces the rate at which the réservoir is filled, from R io R/2. If the 
réservoir remains full, a second trigger reacts, the input rate is reduced 
to zéro and the réservoir stops being filled. The filling rate returns to 
R when another trigger reacts to the fact that the réservoir is not full 
anymore. The reaction time of each trigger is exponential with parame
ter 7.

For the réservoir to be empty, it is necessary that the number i of 
active processes should be such that i > R/c. At such a time, we assume 
that the incoming water is equally shared among the active processes. 
The conséquence is that each process needs more time to accumulate the 
amount of water that it requests and the rate of transition to the idle 
State is {aR)/{ic) for each active process. When a probe detects this 
situation, the input rate is increased and becomes aR, where a > 1. At 
a later time, the level becomes positive again, and the filling rate returns 
to R when a trigger reacts to the fact that the réservoir has started 
filling.

We illustrate four different cases:

1. There is no feedback effect, the matrices and are equal to 
T.

2. Each process reduces its tapping rate at level zéro, and there is no 
probe to detect that the réservoir is empty or full. In this case,

is different but T and are still equal.

3. This is the saine as Case 2, but now there are probes to detect that 
the réservoir is full. In this case, T, and are different.

4. This is the saine as Case 3, with an additional probe to detect that 
the réservoir is empty.
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Figure 4.1: Stationary distribution function

The parameters chosen are the following: a = 1 and c = 1, so that 
the unit of volume is fixed to be the expected quantity of water which 
is taken by a process and the unit of time is the expected duration of 
the active state, under normal conditions; the number of processes is 
N = 20; we set R = 1.01Nf3c/{a + j3) so that the normal filling rate of 
the réservoir is slightly above what is required by the processes, on the 
average, and the drift p is positive; finally, /3 = 0.1, 7 = 10, a = 2 and 
b = 2R.

The probability masses rho and of levels zéro and b, and the first 
two moments are given in Table 4.1 below, and the distribution function 
of the content of the réservoir in stationary régime is given in Figure 4.1.

The différence between the first two cases is due to the fact that, at

Case 1 2 3 4
mo 0.1500 0.4171 0.4202 0.1040
thb 0.1764 0.1210 0.0784- 0.1126
M 1.7574 1.2053 1.0607 1.7460
V 5.1293 3.5177 2.9635 5.0432

Table 4.1: Steady State Probability Masses of Levels 0 and 
b, Mean M and Second Moment V of the Réservoir Content

level zéro, each process receives water at a lower rate and this créâtes a
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Figure 4.2; Stationary density fuuction

positive feedback loop: the processes remain active longer, this in turns 
give more opportunities for idle processes to become active, which further 
increases the time spent by each process in its active state, etc.

In Case 4, the probe at level zéro is fast (7 = 10) and the input rate 
to the réservoir is quickly doubled, so that the System spends little time 
at level zéro. By increasing a, we may force rho to be even smaller.

The comparison of Cases 2 and 3 shows, as expected, that the prob- 
ability of overflowing decreases when there are probes to detect that the 
réservoir is full. It appears that the idea of reducing the inflow by one 
half before cutting it altogether might not be very efficient.

The density function of the réservoir content in stationary régime is 
given in Figure 4.2. One clearly sees that the density is nearly uniform 
over most of the interval (0,6).

4.6 Fluid Queues with Thresholds

We consider now a more complex fluid model {(A'(t), v?(t)) : t G in 
which the behaviour of the background phase process changes when the 
content of the buffer reaches certain thresholds; more specifically, it is 
the transition generator of the phase process that changes when the level 
of the buffer crosses the thresholds. Assume that the buffer is of infinité 
capacity and, for 0 < i < n, let Cj dénoté the values of the thresholds.
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oo

Figure 4.3: The fluid buffer with thresholds.

with
0 = Co<Ci<C2<...<C„<00.

The transition generators of the phase process {(/’(t)} are denoted by

• when Ci < X{t) < Cj+i for 0 < i < n — 1,

• and when X{t) > Cn-,

where X{t) is the buffer content at time t (see Figure 4.3). We define bi 
as the différence q+i — q, forO<z<n—1.

In order to analyze such a System, we need to consider several other 
fluid processes and to introduce new notations. In order to simplify the 
présentation, we assume throughout that the net input rates of ail the 
fluid queues considered are equal to +1 or —1.

For 0 < i < n, we dénoté by {{Xi{t),ipi(t)) : t € the stan
dard fluid queue with phase transition generator The matrix 
gives the first return probabilities to the initial level; by the results of 
Section 1.4, is the solution of the Riccati équation
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and we hâve presented in Chapter 2 several procedures to solve it nu- 
merically. The matrix recording the expected number of visits
to level X > 0, starting from level zéro, before returning to the initial 
level, for the fluid queue {(A’,(t), is equal to

(4.16)

by Theorem 1.3.2, where = T^l + The generator of the
process of downward records of this fluid queue is = t!:1 +
We dénoté by and the matrices having the same interpré
tations as and but for the level-reversed version of this
process.

For 0 < f < n — 1, let <Pi{t)) : t G R"*"} be the fluid queue
with a finite buffer of capacity bi = q+i — q and with phase transition 
generator independently of the buffer content. We respectively 
dénoté by A^+^(0, x) and N['’\bi,x) the matrices recording the expected 
number of visits to level x in between zéro and bi, starting from a state 
in (0,5+) or (hj,5_), under the taboo of both levels zéro and bi. By 
Lemmas 3.4.1 and 3.4.2, we hâve that

ivf (0,x)
r(0N^y(h,x)

-1

gÂ'(*>(6i-i)^(z) gÂ'(»>{6i-x) (4.17)

under the condition that the drift of the zth fluid queue is different from 
zéro. We will also need the matrices of first passage probabilities

A++ and which may be determined using (3.27 - 3.30) by 
respectively replacing 4', U and Û by 17^*^ and

The buffer content of the fluid queue with thresholds has a mass at 
level co = 0 and a continuons density for strictly positive values of the 
buffer content. The next theorem gives the expression for this stationary 
density; it is expressed in tenus of matrices recording expected numbers 
of visits and of the stationary density vectors evaluated at the threshold 
levels. These will be determined afterwards.

Theorem 4.6.1 The stationary density of the buffer content of the fluid 
queue {(X(t), v^(t))} with thresholds t) — co<c\<C2<...<Cn<oois 
given by

7t(x) 7r+(cn)W^"-^(x - Cn), (4.18)
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for X > Cn, and

7t(x) = 7T_^(ci)N+^(0,x - Ci) + 7r_(ci+i)ivl'^(6j,x - Ci), (4.19) 

for Ci < X < Ci+i and 0 < i < n — 1.

Proof Assume throughout the proof and without loss of generality that 
X{0) = 0.

Take x > c^ and j in S. By décomposition based on the last Crossing 
of level Cji from below, we hâve that X (t) 6 {x,x + h) and (p{t) = j if 
and only if there exist some time r < t and some phase i in «S+ such 
that the process crosses level Cn at time t — t with ip{t — r) = z, and it 
continuously remains above level Cn in the interval {t — r,t). Thus,

fj{x;t)h= [ V/i(cn;t-r)dr[ç!)(”)(x;r)]ij/i + o(li)
165+

where [(f)^'^\x; r)]ijh is the conditional probability, given that the process 
starts in {cn,i), that it remains above level Cn in the interval (0, r) and 
that, at time r, the level is in {x,x + h) and the phase is j. Dividing 
both sides of the above expression by h, taking the limits as h goes to 
zéro and as t goes to infinity, and using the saine kind of arguments as 
in Theorem 1.3.1, ive find

where the intégral is the expected number of crossings of level x in phase 
j, starting from state (c„,z), before the first return to level Cn. This 
number of crossings has the same distribution as the number of crossings 
of level X — Cn, starting from level zéro, under taboo of level zéro, for the 
fluid queue {(A„(t), (/?„(t))}. Therefore, its expected value is N^'^\x—Cn) 
given by (4.16); thus, (4.18) is proved.

Now, take Ci < x < Cj_|_i with 0 < z < n — 1, and j in S. We hâve 
that X{t) € (x, X + h) and ip{t) = j in one of two cases:

• either there exist some time t < t and some k in 5+ such that the 
process crosses level Cj from below at time t — r, with (p{t — r) = k,

or there exist some time r < t and some k in 5_ such that the 
process crosses level Ci+i from above at time t—r, with (p{t—T) = k,
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and in the interval {t — T,t) it continuously remains between levels Cj 
and Cj+i without Crossing either. Following the same steps as in the first 
part of the proof, we eventually obtain

^ 7rk{ci)[^^"\ci,x)]kj + ^ Trk{ci+i)[^^'-'>{ci+i,x)]kj
h^S-\- hçS—

where x)]fcj dénotés the expected number of visits to state {x,j),
starting froin state (q, k), remaining strictly between levels Ci and Q+i- 
This number of visits has the same distribution as the number of vis
its to {x — Ci,j), starting from (0, k), under taboo of levels zéro and bi, 
in the fluid queue with finite capacity hj. Therefore,
4>^*^(ci,x) = A''+^(0,a: — Cj) and, similarly, ^^^\ci+i,x) — N[^\bi,x — Cj). 

Expressions for these matrices are given in (4.17), and the proof is com
plété. □

In the sequel, we will need the following matrices of first return prob- 
abilities. For 0 < i < n, we dénoté by II+l the matrix giving the first 
return probability to level Ci for the fluid queue {(X(t), c^(t))}. More 
precisely, denoting by 9i the first return time to level Cj,

6i = inf{t > 0 : X{t) = c,},

which is finite almost surely in the présent context, we hâve that, for j 
in <S+ and k in S_,

njfc = 'P[&i < oo and (X(0i), (p(6>i)) = (ci,/c)|(X(0), (/:>(0)) = (cj,jf)].

The following lemma states how to détermine the matrices II+l. Note 
the similarity between équation (4.20) below and équation (3.26); we 
also point ont that the two équations are obtained by a similar sequence 
of arguments.

Lemma 4.6.2 For 0 < z < n — 1, the matrices fI+1 are given by

n« = (4.20)

and
n+"_^ =
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Proof The fact that 11+’!.^ = is obvious. 
fi)To détermine for 0 < i < n — 1, we consider two cases: either 

the return to level Cj occurs before the first passage to level c,+i, or it 
occurs later. Therefore, we hâve that

where records the probability of eventually being in a state in
(ci,S_) given that the initial state is in (q+i,5+). Now, starting from
(ci+i,»S+), the queue must first return to (ci+i,5_), with probability 
given by and it must then move down to level q. Thus,

n« = (4.21)

with giving the probability of eventually being in (c,,5_), starting
from (ci-|-i,5_). There are two ways of visiting (q,5_), starting from 
(ci-|-i,5_): either the visit occurs before a return to level Cj+i, or it 
occurs after. This décomposition leads to

which is équivalent to

g^i+i) ^ ^^6dnb+i)^-i^{60 ^4 22)

since is a sub-stochastic matrix. Equations (4.21) and (4.22)
together give the announced resuit. □

To déterminé the stationary density of the buffer content, it remains 
for us to déterminé the vectors (7r+(ci), 7r_(ci)) for 0 < i < n. These 
vectors are obtained by solving the System of équations given in the next 
theorem.

Theorem 4.6.3 The vectors (7r+(cj), 7r_(ci)) for 0 < i < n are the 
solution of the System

■K_{Cn) = 7T+(c„)4'^”^

7T+(ci) = 7r+(ci_i)A^+-'^ + 7t_(cî)#LV'\ l <i<n 

7T_(ci) = 7T+(ci)4'^^l^ + 7r_(ci+i)ÂL^l\ 1 < ?: < n - 1

(4.23)

(4.24)

(4.25)



4.6 Fluid Queues with Thresholds 131

and

(4.26)

where is the steady state probability mass vector of the States in 
(0,iS_). It is equal to cæ_, where x_ is the unique solution of the system

æ_l = 1.

The matrix + is the generator of the censored process to the
States in (0,*S_). The normalizing factor c is given by

where y{x) is obtained using Theorem 4-6.1 and replacing by x_ in
(4-26).

Proof The proof is again based on level Crossing arguments. To prove 
(4.23) we condition on the last Crossing of level 0^; we hâve that X{t) € 
(ct) , Cn + h) and y3(t) = j £ if and only if there exist a time t < t 
and /c G 5+ such that the process crosses level Cn from below at time 
t — T, with y>{t — t) — k, and continuously remains above level Cn in the 
interval (t — r, t). Thus,

eW(r) == P[0„ < r, <p(0„) = j|X(0) = Cr,, <p(0) = k] (4.27)

with On being the first return time to level c„. Dividing by h and taking 
the limits as h goes to zéro and as t goes to infinity, we eventually find 
that

where the intégral gives the first return probability to level and is 
therefore equal to

Next, take j € 5+. We hâve that X{t) G (cj, c, + h) and ip{t) = j if 
and only if

fj{cn] t)h = X] ^

where
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• either there exist some time t < t and k in 5+ such that the process 
crosses level Cj-i from below at time t — t, with (f{t — t) = k,

• or there exist some time t < t and k in «S_ such that the process 
crosses level ci from above at time t — t, with ip{t — t) = k,

and in the interval {t — r, t) it continuously remains between levels Ci_i 
and Ci without Crossing either. Thus,

fj{ci\t)h = f J]] /fc(ci_i;t - T)/irg(dr) 
kes+

+ [ ^ fk{ci\t- T)heÿ{dr) + o{h)
•^0 kes-

where

rg(^) = P[^i < = il^(o) = ci-i, <^(0) = k]

with Oi being the first passage time to level Cj, and (r) is defined like 
in (4.27). By the saine sequence of steps as in the first part of the proof, 
we obtain

/
OO fOO

Kfco+ keS-

= TTk{Ci)¥^Y^
kes+ k&S-

since the intégrais rf*^(dr) and ©^*)(dr) give respectively the first 
passage probability to level Cj, starting from level Cj_i, without returning 
to this initial level, and the first return probability to level q, starting 
from level q, under taboo of level Cj_i.

Equation (4.25) is obtained along the saine fines and we omit the 
proof. To prove (4.26), we write

Y F,{0-t)Tlfh + o{h)
k€S-

which is easily seen to give the announced resuit.
The remainder of the proof follows from the same kind of arguments 

which lead to the détermination of the steady State probability mass vec- 
tor in Theorem 4.2.1, with a slight and obvions modification concerning 
the generator .
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In order to show that the solution of the System (4.23-4.25) is unique, 
we show that its coefficient matrix 0 is sub-stochastic. For 1 < i < n and 
1 < j < ïî, dénoté by n((ci,<S*); {cj,Sl)) the sub-matrix of Cl containing 
the entries fî(cj,fc),(c ,/) for ^ iir <S* and l in 5', where 5* and are either 
<S+ or iS_.

For 1 < Z < n — 1, we hâve that

= and Q((q, 5+); (q+i, 5^)) -

ail the other entries Cl{{ci,S+);y) are equal to zéro, for y ^ {ci,S_) and 
(cj+i, <S+).

Siniilarly, for 1 < f < n — 1,

n((Q+i,<S_);(Q,5_)) = AL'’i^ and Q((ci+i,5_); (q+i, 5+)) =

ail the other entries Q((ci+i,<S_);y) are equal to zéro, for y ^ (c,,5_) 
and (ci+i,5+).

For the States in (c„,(S+), we hâve that

fi((c„,5J;(c„,,5_)) = ^(fo,

the entries fl((c„, 5+); y) being equal to zéro for y ^ (c„,<S_).
Finally, for the States in (ci,5_), we find

Q((ci,5_);(ci,5+)) = 4'L'’^^

and ail the other entries n((ci,5+);y) = 0 for y / (ci,5+).
As an example, if n = 3, the matrix Cl lias the following structure

(Cl, 5-) (ci,5+) (C2,5_) (c2,5+) (C3,5_ ) (C3,5+)

0
^{bo)

0 0 0 0

(ci,*5+) 0 0
A(fci)

0 0

(C2,5_) 0 0 0 0

(C2.5+)
0 0 0 0

A(''2)
•'r++

(C3,5_)
0 0

^i_b.)
0 0

(C3,<5+)
0 0 0 0 ^(3) 0

Post-multiplying the matrix fl by a column vector 1, we obtain that

n((c,+i,5_); -)1 = ^-+1 + = 1,
and
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for 1 < Z < n — 1. For the States in (c„,<S+), we hâve that 

Lastly, for the States in (ci, <S_ ), we find

The matrix Çï is thus sub-stochastic and is the transition matrix of 
a defective Markov chain, since the fluid queue is irreducible; therefore, 
there is a path to level zéro from any State in the levels ci to c„, and we 
conclude that I — 0. is non singular. The proof is therefore completed.

□

4.7 Sticky and Répulsive Thresholds

We make the model of Section 4.6 somewhat more complex by consid- 
ering a fluid queue in which the behaviour of the phase process changes 
in two ways when the buffer content reaches certain thresholds: first, 
there are different phase transition generators when the level is in be- 
tween different thresholds, as in Section 4.6; second, the rate associated 
to any given phase may change, so that it is possible that it switches 
from making the level increase below the threshold to making the level 
increase above the threshold, and vice-versa. Again, in order to simplify 
the présentation, we assume that the net input rates are equal to +1 and 
-1.

Consider a fluid queue {(A (t), <^(t))} with a buffer of infinité capacity, 
and assume again that there are n thresholds such that 0 = co < ci < 
... < Cn < oo. As in Section 4.6, the phase transition generators of 
the process {v^(t)} are denoted by when Ci < X{t) < Cj+i, for 
0 < f < n - 1, and by when X{t) > Cn- The state space of the 
phase process is denoted by S.

When X{t) = 0, 5 is decomposed into two disjoint subsets: Su^ 
which contains the phases that make the level increase and which 
contains the phases that make the level decrease, and thus force the level 
to remain equal to zéro.

For 0 < A (t) < Cl, <S is decomposed into U , where and 
contain the phases corresponding to positive and négative fluid net 

input rates, respectively.
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At the threshold ci, the fluid net input rates corresponding to some of 
the phases in may become négative, and the rates corresponding to 
some of the phases in may become positive. Thus, at the threshold 
Cl, 5 is potentially decomposed into four disjoint subsets of phases:

• which contains the phases such that the corresponding net 
input rates are equal to +1 both below and above the threshold 
Ci; the fluid queue is pushed upward through the threshold ci;

• 5^^ which contains the phases such that the corresponding net 
input rates are equal to — 1 both below and above Ci; the fluid 
queue is pushed downward through the threshold Ci;

• which contains the phases such that the corresponding net 
input rates are equal to — 1 below ci and equal to +1 above ci; 
these phases are called répulsive at the threshold ci since they 
cannot be reached either from above or from below;

• which contains the phases such that the corresponding net 
input rates are equal to +1 below ci and equal to —1 above ci; 
the fluid queue remains stuck at the threshold ci until there is a 
change of phase to either of the sets <5^^ or

Some of these sets may be empty. In between the thresholds ci and C2, 
the State space S is decomposed as usual into the two disjoint subsets 

and We repeat this construction at each threshold, and thus 
we hâve the following décompositions of S in ternis of the buffer level:

• S = Su'^ Uat level zéro;

• S = Su^ U U <si'^ U at each threshold Cj, for 1 < i < n;

• S = U for Ci < X{t) < Cj+i, for 0 < 1 < n — 1;

O S = U above level Cn-

This is illustrated in Figure 4.4 in the case where n = 2. The symbols
(i) (i) (î)O, «, 0 and ♦ respectively indicate phases belonging to Su , Ss , Sr and

, for some i.

If the process reaches the State (q, j) with j in 5^*^ from above or 
from below, it stays there as long as the phase remains in The
net input rates and the generators are defined by continuity from below,
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Figure 4.4: The fluid buffer with sticky and répulsive thresh- 
olds, for n = 2.

thus, for example, if there is a phase transition from some j in Ss ^ to 
some j' in sl’’\ then the fluid level increases.

The stationary distribution of this System has probability masses 
associated to the States for 0 < i < n, and a continuons density
for the other States. We dénoté by the steady State probability 
mass vectors of the States for 0 < i < n, and by 7t(x) the
stationary density vector of the queue. This vector is decomposed into
7t(x) = (7T_,.(x), 7T_(x)) for values of x different from Ci, 1 < i < n. At

(0the thresholds, 7r(cj) = (7t+(cî), 7t_(c,)) for 1 < z < n, denoting by S+ 

the subset <Su ^ U and by the subset U .
We define again {{Xi{t), (pi{t)) : t E K’*'}, for 0 < i < n, as the stan

dard fluid queue with phase transition generator , and, for 0< i < n—1,
as the finite buffer fluid queue with capacity 

= Ci+i — Cj. We use similar notations as in Section 4.6, replacing the 
indices + and - by the indices u, d, s and r, where applicable.

We define
7T(y+ 0) = lim7r(x)

x>y

and, similarly,
7r(y-0) = hni7r(x). 

x<y

At the thresholds Ci with 1 < * <n, we may hâve that Tr{ci + 0)ÿ^ 7r(cj —0), 
due to the influence of the States in We give in the next theorem
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the density vector of the fluid queue in equilibrium, expressed in terms 
of 7r„(ci + 0) and nd(ci — 0), for 1 < i < n.

Theorem 4.7.1 The stationary density vector of the fluid queue with 
sticky and répulsive thresholds is given by

n{x) = TT^icr, + 0)7VW(x - c„) +pWrW7V(")(x - c„), (4.28)

for X> Cn,

7t(x) = 7t„(q + 0)7V(')(0, X - q) + p«T«iV(*)(0, x - a) (4.29)

+ 7Td(ci+i - 0)N^"\bi,x- Ci), 

for Ci < X < Cj+i and 1 < i < n — 1, and

7t(x) = pfri°)Ar(0)(0, x) + rrflci - 0)ivf (6o, x), 

for 0 < X < Cl.

Proof The arguments are similar to those of the proof of Theorem 4.6.1, 
but we now hâve to take into considération the fact that the stationary 
density vector may no longer be continuons and that there are States 
at the threshold levels, corresponding to the phases in where the 
process may remain for a certain amount of time.

To détermine the stationary density vector 7t(x) for x > Cn, we con
dition on the last visit to level Cn- This visit might hâve happened in 
two different ways: either the process starts in level Cn with a phase of 

which eventually leads to the first term in (4.28), with left-most 
factor TTu{Cn -h 0); or the process is in a sticky State of (c„,5i"^), which 
eventually leads to the second term in (4.28), with left-most factor 
the probability mass vector of these States.

For Ci < X < Ci+i with l<f<n — 1, we condition on the last visit 
to levels Ci and Cj+i. We hâve three cases: either the process starts in 
level Ci with a phase of or it is glued in a state of (cj,5i*^), or it 
starts in level q+i with a phase of

Finally, for 0 < x < ci, we condition on the last visit to levels zéro 
and C]. Either the process is at level zéro with a phase of or it 
starts in level ci with a phase of 5^^. □

The expressions for the vectors 7Tu(ci -|- 0) and nflci — 0), for 1 < 
i < n, are given next.
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Theorem 4.7.2 The vectors 7r„(ci + 0) and TTd{ci — 0), for 1 < i < n, 
are the solution of the System

Mon - 0) = + p(")rw^(ÿ + Mon + o)^2

Mcr + 0) = p«r« + (4.30)

+ TTu{ci-i + + TTd{ci - for2<i<n

7rd(c,-0)=p«r^+p«rW^ÏÏ)

+ 7Tu(ci + + 7Td(ci+i - forl <i<n-l

and

Mci + 0) = pi'^rW + pi°)r^A(i°^ + Mci -

The expressions forp^f \ 0 < i < n, will be given later.

Proof We only dérivé (4.30) because the other équations are obtained 
using similar arguments.

First note that

T^u{Ci + 0) = + TVu{Ci - 0). (4.31)

This is obtained by observing that, in order to be in Cj + 0 with an 
increasing phase, either the process was in a state of (cj,5i*^) and then 
there was a phase transition from to Su^, or the process crossed level 
Ci Corning from below, which gives rise to the tenu 7Tu(ci — 0).

To détermine 7Ty(cj — 0), we take the limit as x goes to q, æ < Cj, in 
(4.29). We find

Moi-0) = Mci-i + 0)N^Û^\0,biM + pt^^TiM^N^i-^\0,b,^i)

(4-32)

= 7r„(ci_i + 0)Ai^r‘^ +

+7rrf(c-0)4^îr^

by Remark 3.5.2. The équations (4.31, 4.32) together lead to the an- 
nounced resuit. □

To completely characterize the stationary distribution of the System,
(i)it remains for us to give expressions for the vectors pi , for 0 < i < n;
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tliese are obtained through the construction of the censored Markov chain 
which only sees the transitions among the States 0 < i < n.
We now proceed with such a construction.

First, consider the jump Markov chain on the States (ci,j), for 
0 < i < n, where j belongs to U if i = 0, and to Su^ U U
<5^*^ U S},'' iî l < i < n. Let $ dénoté its transition matrix and, for;

0 < i < n, define PiP = 7 + P^r> = A~^T^l'T^(^) d(0 p(0 _ A—lrpii)

and P^^J = Aj being the diagonal matrix diag(-ris^). For

i = 0, we obviously only need to define and Psu . We recall that 
when the process starts from a state in (cj,5r*^), 1 < i < n, it is repelled 
upwards, which justifies the entries corresponding to these States in the 
matrix Using the same notations as in the preceding section for the 
blocks of the matrix we hâve the following non-null blocks.

For 1 < i < n — 1,

$((q,5«);(q,5«)) =

$((q,5«); (c+i,5(^+1))) =

$((Q,5«);(Q,5l'^)) = pi:\ 

where the subscript * is either u, s, r or d,

,(0)

«(ta,sf);te-i.5r‘>)) = Â'*r‘'

ibi-i) 
ds >

and

provided that i > 1 in the last case.
For i = 0, we hâve that

4.((co,5W);(co,5W)) = 4'(';o),

#((co,5W);(ci,5W)) = A(M, $((co,5W);(ci,5ii))) ^ A(',°), 

$((co,5W);(co,5W)) = PW, 4.((co,5i°));(co,5i°))) = P^.
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Finally, for z = n, we find that

= Pi.”’,

where the subscript =1= is either u, s, r or d,

*((c„,5<"’);(c„,5W)) = *2:-’’, î.((c„,S«);(c„,5(">)) =
[ (^n 
^ds

As an example, if n = 2, we hâve that

and

$ =

0 ^(60) 
^ us

A((>o)
^^uu

\{bo)
■‘‘-us 0 0 0 0 0 0

p(0)4 su
p(0)

0 0 0 0 0 0 0 0
0 0 0 ^us 0 A(6i) 

i ^uu ^^us 0 0
0 0 p(l)

su
pW
4 SS

pW 
 ̂sr

p(l) 
 ̂sd 0 0 0 0

0 0 0 ^rs 0 A(bi)
i^ru

A(6i)
iVrs 0 0

0 Àj») ■^{bo)
as 0 0 0 0 0 0

0 0 0 0 0 0 0 ^ us 0

0 0 0 0 0 0
p(2) p(2)

SS
p(2) p(2)

^sd

0 0 0 0 0 0 0 0
0 0 0 A£’ 0 0 0

Next, we censor ont the States in En = <Sr"^ U 5^”^ obtain
an embedded Markov chain with transition matrix

EuEC

where = 4> and where is the complementary of En and contains 
ail the States at the thresholds cq to Cn-i plus the sticky States at level
Cn-

We then censor out the States in En-i = Sr^ U Su U 
and obtain another embedded Markov chain with transition matrix
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Now, contains ail the States at the thresholds cq to Cjj_2 plus the
sticky States at levels Cn-\ and Cn-

We repeat this construction until we are left with a Markov chain on 
the States U U ... U only. Its transition matrix is denoted 
by and is easily obtained by repeating the steps above.

Finally, in order to obtain the steady State probability mass vector

'm =

of the fluid queue, we need first to compute the invariant vector

X = ...,

of the discrète time Markov chain with transition matrix this vector 
is such that

= X.

The fluid queue being time continuous, we hâve the following resuit, 
which gives the relationship between x and m.

Theorem 4.7.3 The probability mass vector m of the fluid queue with 
sticky and répulsive thresholds is equal to cxA~^, where c is a normaliz- 
ing factor and A is the block diagonal matrix

■ -ri°^ 0 ... 0 ■

.0 ... -rir^ .

The factor c is obtained via normalization: ml + 7r{x)ldx = 1.





5

Level-Phase Independence

We examine in this chapter whether it is possible to design a fluid queue 
such that its two components, the level and the phase, are independent 
under the stationary distribution. The answer turns out to be positive, 
for any given fluid queue, provided that one changes in a very spécifie 
manner its transition rules at the boundary level.

Our interest in this question arises from a similar resuit for QBD 
processes: Latouche and Taylor [31] show that it is always possible to 
define the boundary transition probabilities of a QBD process in such a 
way that the level and the phase are independent under the stationary 
distribution.

We show in Section 5.2 that the level and the phase of a standard 
fluid queue are asymptotically independent. In order to obtain the exact 
independence in Section 5.4, we need to eliminate the probability mass 
of level zéro, as we explain in Section 5.3. Finally, we construct in 
Section 5.5 a fluid process that lias the desired level-phase independence 
property.

The results of this chapter may also be found in da Silva Soares and 
Latouche [15].

5.1 Introduction

Consider a feedback fluid queue : t G K"*"} with an infinité
capacity bufîer. When the phase process {v?(Q} is in state i, the net rate
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of input into the fluid buffer is given by r,, which can take any real value 
except zéro. At the end of Section 5.5, we shall formulate the main resuit 
of this chapter in the general case where the net input rates are allowed 
to take the value zéro. Let C dénoté the diagonal matrix diag(r), with 
rj 0 for ail i. We assume that the infinitésimal transition generator of 
the phase process is Q when X{t) > 0, and that it is when X(t) = 0 
and (p(t) is in «S_. Recall that the stationary density vector 7t(x) of the 
buffer content of this fluid queue satisfies the set of difîerential équations

+ ^7Ti(x)Qÿ = 0; (5.1)

it exists if and only if the drift /i = of the fluid queue is
négative. This condition is assumed throughout the chapter.

As we hâve seen in Sections 4.2 and 4.4, 7t(x) is given by

7t(x) = (5.2)

for X > 0, where solves the Riccati équation

4'T_+^' + r++4' + 4'T__ + r+_ =0 (5.3)

and gives the first return probabilities to the initial level, and where

A = + ^T_+, (5.4)

with T = C~^Q being the phase transition generator of the restricted 
process with net input rates equal to +1 and —1. The steady State 
probability mass vector p_ of level zéro is the unique solution of the 
System

P_(g^°l + Q^-|«') = 0 (5.5)

p_{i - Q-Ik-^[c;\ ^\c.\-^]i) = 1,

where + is the infinitésimal generator of the censored Markov
process obtained by observing {(A(t),y5(t))} only when it is in (0,5_).

We choose in this chapter to directly analyze a fluid queue with ar- 
bitrary non-null net input rates because general net input rates do not 
complicate matters much in this context. On the one hand, there are 
matrices that hâve a probabilistic interprétation, like K and for ex
ample, and play a major rôle; on the other hand, there are matrices that 
are only présent for normalization purposes, like C+ and |C_|, and are 
not much intrusive.
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5.2 Asymptotic Independence

To prove the main resuit of this section, we first need a preliminary 
lemma.

Lemma 5.2.1 There exists an eigenvalue ^ of K, which is real, strictly 
négative and which has géométrie and algebraic multiplicities equal to 
one. It is maximal in the sense that every other eigenvalue of K has a 
real part strictly less than (.

Furthermore, there exist real, strictly positive, left and right eigenvec- 
tors of K for the eigenvalue Ç, which we dénoté by w and z respectively, 
and which are normalized by w\ = wz = 1.

Proof Consider the QBD process defined in the proof of Theorem 3.7.2 
and obtained by restricting the infinité buffer fluid queue to those epochs 
when the level is a multiple of some quantity b. We hâve seen there that 
the R matrix of this QBD is

R =
^Kb ^Kb^ - 

0 0 (5.6)

and that, since g < 0, R has a maximal eigenvalue which is strictly less 
than one. Also, since the phase process of the fluid queue is irreducible, 
the matrix Aq + Ai + A2, with Aq, Ai and A2 given by (3.45), is also 
irreducible, and the maximal eigenvalue of R has géométrie and algebraic 
multiplicities equal to one (see Neuts [37] and Latouche and Taylor [31]). 
Therefore, by (5.6), the matrix also has a maximal eigenvalue which 
is real, strictly less than one and which has géométrie and algebraic 
multiplicities equal to one.

The Perron-Frobenius theory ensures the existence of the vectors w 
and Z with the stated property; this complétés the proof of the lemma.

□

We immediately conclude that we may write

asymptotically as x goes to infinity (see, for example, Seneta [44, The
orem 2.7]). Replacing this expression in (5.2), the next theorem readily 
follows.
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Theorem 5.2.2 For the fluid queue {(J\T(<), (/?(i))}, we hâve

7t(x) = {p_Q^^U)e^^w[C;\ + o(e^^)

asymptotically as x goes to infinity, where ^ is the eigenvalue of K de- 
fined in Lemma 5.2.1, and w, z are the corresponding left and right 
eigenvectors.

□

This means that the level is asymptotically independent of the phase 
as X goes to infinity: the conditional density vector (tt (x)l) ^7t(x) of 
the phase, given the level x, is asymptotically equal to

w[C-\ ^\C.\-^]l{w\C-\

independently of x, as x becomes large.

5.3 Censoring Out Level Zéro

Note that we cannot expect to hâve independence between the level and 
the phase under the stationary distribution if there is some steady state 
probability mass at level zéro; indeed, when the level is zéro, the phase 
cannot be in »S+, it must be in <S_.

Thus, we need to eliminate that mass and, in order to better under- 
stand what happens in such circumstances, we begin by censor out the 
intervals of time spent at level zéro. We consider a standard fluid queue 
with an infinité buffer and we define the sequences of epochs {a„} at 
which the buffer becomes empty and at which it starts filling up:

ao = inf{t > 0 : X{t) = 0}, 

dn = inf{t > an : X{t) > 0},

and

Un+i = inf{t > dn : X{t) — 0},

for n > 0. We define the matrix II_+ which records the conditional 
distribution of ip{dn), given y>{an). Thus, for i in and j in 5+, we 
hâve that

= F[ip{dn) = j\g^{an) = i][n_+]zj

(5.7)
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Next, we observe that the process {y„ = ^{dn) ; n > 0} is a discrete- 
time homogeneous Markov chain on the States of »S+. The (z, j)th entry 
of its transition matrix P is given by

Pij = P[Yn+l = j\Yn = i]

— ^ ^ P[v^(On+l) — f^\Yn = z] P[y^,-(-i = j\ip{a,n+l) — k,Yn = z]
keS-

keS-

where T» is given by (5.3). The matrix P might not be irreducible but, 
owing to the assumption that the fluid queue is irreducible, it has a 
unique irreducible class, so that it has a unique stationary probability 
vector. Here, however, we only need an invariant measure, which we 
dénoté by a; it is the solution of the System aP = a and is defined up 
to a multiplicative constant.

We can easily show that the left-most factor in the right-hand
side of (5.2) is proportional to a, as follows. By (5.5), it follows that

and, using (5.7), we immediately obtain

This is an important observation for what follows because it shows 
that the vector dépends only on the matrix Il_+ and not on the
spécifie behaviour of the phases at level zéro; we show in Section 5.5 that 
we may choose that matrix (or, equivalently, the boundary behaviour) in 
a way which leads to the independence between the level and the phase 
of the fluid queue.

To censor out the intervals of time spent at level zéro is équivalent 
to instantaneously switching to a phase in 5+ as soon as the fluid queue 
reaches level zéro, with probabilities given by the transition matrix Il_+, 
making the level increase immediately.

5.4 Exact Independence

We dénoté by {(X*(t), (/?*(t)) : t € R"*"} a fluid queue such that, when 
the process reaches level zéro, with a phase in 5_, the phase immedi
ately switches to 5+, with probabilities given by some matrix T_+. It 
is a process without probability mass at level zéro. Note that the con- 
structed fluid queue is not of the canonical type in that the marginal
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phase process is not a continuous time Markov chain; also, for the spé
cial case where T_+ = Il_+, {(X*(t), is équivalent to the condi-
tional fluid process, given that the level is strictly positive. We give the 
stationary distribution of {(X*(t), (/?*(t))} in the following lemma.

Lemma 5.4.1 Dénoté by : t € M"*"} the fluid process
with rate vectorr and infinitésimal generatorQ, which is instantaneously 
restarted at level zéro with the matrix T_+.

Its stationary distribution has no mass at zéro and its stationary 
density is given by

n{x) = cxe^-[C;\

for X > 0, with
a = a'ï’T_+

normalized by a{—K) ^]1 = 1.

□

We now give a necessary and sufhcient condition for the level-phase 
independence of the fluid queue without probability mass at level zéro.

Theorem 5.4.2 For the fluid queue {(X*(t), (p*(t))}, the level and the 
phase are independent under the stationary distribution and

7t(x) =

for some row vector l, if and only if ex = cw, where c is a constant, ex is 
a stationary measure of the matrix 4'T_+ and w is the left eigenvector 
of K corresponding to its maximal eigenvalue Ç. The constant c is equal 
to-ç/{w[C;\ ^|C_|-1]1).

Proof Recall that the process {(A"*(t), has no probability mass
at level zéro, thus p_ = 0.

It is easy to verify that, if ex is proportional to w, then 

7t(x) = cwe^'^[Cf\

= ce‘^^w[Cf\

for some constant c, which shows that the level is independent of the 
phase. To compute the factor c, we integrate 7t(x)1 with respect to x 
over (0, -l-oo); this intégral must be equal to one, and hence
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The intégral converges because C < 0 (see Lemma 5.2.1) and thus we 
obtain c = —(,/{w\C~^, and we hâve proved the sufficiency
part of the daim.

Consider now the measure r(x) = ce^^w\C~^, for which
the level is independent of the phase. We show tliat it is an invariant 
measure for the fluid queue, that is, it satisfies the set of differential 
équations (5.1).

Replacing 7t(x) by r(x) in the left-hand side of (5.1) yields the ex
pression

i€S

which is equal to zéro if and only if

— C^^|C'-l~^]diag(r)-H = 0.

This is équivalent to

[—Cîw, -b iü4'lC_p^]Q = 0

since C = diag(r). Using the fact that T = C~^Q, we see that this holds 
if and only if the two vectors

—C,w + + iü4'r_+

and
+ wT^_ -b w^T__

are equal to zéro. The first one is equal to zéro since (P w) is an (eigen- 
value, eigenvector) pair of K by assumption. The second vector may be
written as w{T+_ + __-b K^), which is equal to zéro by (5.3, 5.4).
The proof is therefore complété. □

If one should take T_+ = lie, then clearly a would be equal to 
w and Theorem 5.4.2 would apply. In that case, successive excursions 
above level zéro would be independent since the phase upon restart is 
selected anew according to the distribution w.

In the next section, we give another, less elementary example, where 
the phases before and after the restart are related in a way which is, 
to the extent possible, determined by the dynamics of the original fluid 
queue.
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5.5 Construction

We now construct a fluid queue with no probability mass associated to 
the boundary level, and with a behaviour at level zéro which makes the 
level indépendant of the phase. This construction is based on the one in 
Latouche and Taylor |31], and we start by recalling their construction, 
which serves as our inspiration.

Consider a homogeneous QBD process, with transition matrix

B Aq 0 0
A2 Ao 0
0 Aq 4ll ^0
0 0 A2 Al

Let R be the matrix recording the expected number of visits to level 1 
before a return to level zéro, given that the process starts from level zéro, 
already defined in Section 2.1. Assomption 1 in [31] requires that the 
transition matrix

Al Ao 0 0
A2 Al ^0 0
0 A2 Al Ao

0 0 A2 Al

of the doubly infinité process on the set {(n,y) : n € Z, 1 < y < m) is ir- 
reducible. This assumption suffices to ensure the existence of a maximal 
eigenvalue t] for the matrix R, such that 0 < 77 < 1 and with algebraic 
and géométrie multiplicities equal to one. We call 77 the Perron-Frobenius 
eigenvalue of R, and we dénoté by u the unique normalized left eigen- 
vector of R, corresponding to 77.

It is shown in Ramaswami and Taylor [40] that, for a QBD process, 
the level is exactly independent of the phase if and only if

TTo = (1 - T7)U,

where ttq is the steady State probability row vector of level zéro. This is 
équivalent to our Theorem 5.4.2.
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We hâve recalled in Theorem 2.1.5, that ttq is a solution of the System 
tzq[B + AqG) = ttq where G is the minimal nonnegative solution of the 
matrix équation

G = A2 + AiG + AqG‘^.

Thus, we hâve the exact level-phase independence if and only if

u{B + AqG) = U.

This will be used in the proof of the next theorem.
In [31], the QBD process for which the level is independent of the 

phase is obtained by choosing the transition matrix B within the States 
of level zéro in the following way:

B = Al + A2[H + {I - H)lh], 

where H is the minimal nonnegative solution of

H = Aq + AiH + A2H'^ (5.9)

and h is the normalized Perron-Frobenius eigenvector of with the 
saine maximal eigenvalue r] as R. The matrix H has the following inter
prétation: assume that the level of the QBD is allowed to take négative 
as well as positive values and that its transition matrix is given by (5.8); 
the matrix H records the first passage probabilities from level -1 to level 
zéro.

Now, take the QBD process associated in Chapter 2 to our fiuid 
queue. Its transition matrices are

^0
\I 0 
0 0 5 M

0
0 and A2 —

0
0 P__

(5.10)

where P = I + 1/yuT for some jj. > maxjg^ \Tn\. We know from Sec
tion 2.2 that the matrix G of this process is

0
0 V

where is defined by (5.3), and V = P__ + 
this QBD is given in the following lemma.

(5.11)

The matrix H of

Lemma 5.5.1 For the QBD process with transition matrices (5.10), we 
hâve that

W 0
F 0

H = (5.12)
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where F is the minimal nonnegative solution of

T_+ + r__r + rr++ + rr+_r = o (5.13)

and
W = l/2[7- 1/2P++ - l/2P+_r]-\ (5.14)

The Perron-Frobenius eigenvector h of H is given by h = (h.+,0), 
where is the Perron-Frobenius eigenvector of W for the eigenvalue rj,
that is, h+W = r)h+.

Proof In view of the value of Aq, it is obvious that the columns of H 
with indices in S_ must be equal to zéro. This proves that H has the 
structure (5.12).

If we replace H by, its expression (5.12) in (5.9), we find after some 
simple manipulations that

It now suffices to verify that F and W given by (5.13, 5.14) are indeed 
a solution of (5.15, 5.16). We omit the details and only recall that 

+ P+-F is a sub-stochastic matrix, so that its spectral radius is at 
most 1, which implies that 7—1/2 — 1/2P+_F is nonsingular.

The structure of h is an immédiate conséquence of the structure of 
77, and simple computations lead to h= r)h+. □

We can now State the main resuit of this chapter.

Theorem 5.5.2 Let and F be the minimal nonnegative solutions of 
the équations (5.3) and (5.13), respectively. Define the matrix

where is such that h+W = r]h+ and h^l = 1.
Consider the fiuid queue {{X*(t), ip*{t))} with phase transition gen- 

erator Q, which is instantaneously restarted at level zéro with the matrix 
T_+ = F*. The level and the phase of the process {(W*(t), v?*(t))} are 
independent under the stationary distribution.

Proof By Lemma 5.4.1 and Theorem 5.4.2, we need to show that the 
eigenvector a of ^'F* is also an eigenvector of K. This we do by com
puting the Perron-Frobenius eigenvector u = (w+,w_) of the matrix R

[7-1/2P++- 1/2P+_F]W = 1/2 7

F = P_+W-|-P__FW.

(5.15)

(5.16)

F* = F + (1 - Fl)h+ (5.17)
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for the QBD with transition matrices (5.10), and by proving that u+ is 
an eigenvector of both K and 4'F*.

By Theorem 2.1.3, the matrix R is given by iî = Aq{I — A\- AqG)~^ . 
Using (5.10, 5.11), we obtain that

I-Ai- AoG =
-P-^ I

To compute its inverse, we use the fact that

■ A B ' -1 OO

r 7
G D 0 p»-i +

1---
--

1 to 1 O
where A[) = A — BD ^G is called the Schur complément of D (see |27, 
Section A.l]) and we obtain, after simple computations, that

{I-Ai-AoG)-^ =

(7-i(P++ + 'FP_+))-i i(/-i(F.,^ + ^P_+))-i^
.P_+(7 - i(P++ + ^P-+))-i 7+fp_47 - i(P^+ + ^P_+))->^ _ •

Pre-multiplying by Aq, we finally get

R =

using the fact that

0 0
(5.18)

P++ + 4'P_+ = 7 + 1/tiK (5.19)

by (5.4) and since P = 7 + 1//LiP.
The équation uR = rju, with u = (ti^_,it_), is decomposed into two 

équations: U+R++ = t?u+, where

P++ = (7-1/m7F)-\ (5.20)

which shows that u+ is also a left eigenvector of K, and

-u+'ï' = u_ (5.21)

which we will use later.
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Take the QBD process with transition matrices (5.10) and choose B 
such that

B = Al + A2[H + {I - H)lh]

\P++ 0 \

I 0 1 _1 ■ VF + (1 - iyi)h+ 0 ■
P_+ 0

*r ----
1

1

0_
1

r + (l-Fl)h+ 0

^ ■ ^(p++ + p+_r*) 0'
p_+ + p__r* 0 ■

This QBD process bas the level-phase independence property and, there- 
fore, we know that u satisfies u{B + AqG) = u, with

B+ AoG =
i(p++ + p+_r*)

p_+ + p__r* 0

in the présent context. We thus obtain a System of two équations, one 
of which is

^u+(P++ + P+_r) + rx_(P_+ + P__r) = u+ (5.22)

and the other is (5.21) which we had before. After replacing u_ in (5.22) 
by the left-hand side of (5.21) and rearranging some terms, one gets

it+[p++ + 'SP_+ + (P+_ + «'P__)r*] = 2u+.

This is équivalent to

[P++(P++ + ^P_+) + P++(P+- + 'î'P-)r] = 2n+, (5.23)
V

using the fact that = l/rjU+R+^.. From (5.19, 5.20), we obtain

M ^ H'

= 2{I --K)-^ - I

= 2P++ - I. (5.24)

Furthermore, RA2 = AqG by Theorem 2.1.3, which gives us the équation

P++(P+_ T^-P-) = (5-25)
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Combining (5.23, 5.24, 5.25), we find that

-u+{2R++- I + ÿi>r*) = 2u+,
V

which leads to
u+'bT* = u+. (5.26)

This complétés the proof. □

In order to take care of the general case, we must allow in addition 
to 5+ and S_ a subset Sq of phases such that the fluid remains constant: 
Tj = 0 for i in <So. The infinitésimal generator for the phase process away 
from the boundary now becomes

Q++ Q+- Q+o
Q = Q- Q-o

,Qo+ Qo- <5oo_
(5.27)

Except for minor changes, the previous results are preserved and we state 
the following general version of our main theorem.

Theorem 5.5.3 Consider the fluid queue uuith phase transition genera
tor (5.27) and net input rates rj > 0 for i in S+, ri < Q for i in S_, and 
ri = 0 for i in Sq. Deflne the matrix T on S+U S_ as

T= °
L 0

Q++ + Q+o(—Qoo) ^Qo+ Q+- + <5+o(—Qoo) ^Qo- 
Q-+ + <5-o(-Qoo)“’Qo+ Q— + Q-o(—Qoo)~^Qo-

where C = diag(rj : i G U 5_). Deflne the matrices K, F, W and
F* respectively by (5-4, 5.3, 5.13, 5.14) and (5.17).

If, whenever the process reaches level zéro, the phase immediately 
switches to >S+ with probabilities given by F*, then the level and the phase 
are independent under the stationary distribution and its stationary den- 
sity is given by

[7T+(x), 7T_(x), 7To(x)]

= e^"a[C-i, [C-iQ^o + ^|C_|-iQ_o](-Qoo)-'],

where Ç is the eigenvalue of maximal real part of K and a is the station- 
ary probability vector of the matrix F*, normalized by

+ ^\C_\-^1 + [Cf^Q+o + ^|C_|-iQ_o](-(5oo)‘'l} = 1.
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Proof The proof is quite simple. By censoring out the phases in «Sq, we 
find that

7ro(x) = [7r+(x)Q+o + 7r_(x)<5_o](-Qoo)“^

so that, if the vectors 7t+(x) and 7t_(x) are factored into a scalar function 
of X multiplied by a constant vector, so is 7To(x). Then, we only need to 
replace, in the définition of T, the matrix Q by the transition matrix of 
the censored process. □



Appendix A

Markov Processes and PH Distributions

We recall here the définitions of both discrète time and continuons time 
Markov processes, as well as some related properties ^vhich are often used 
throughout the text. We also define PH random variables. The interested 
reader may find material on this topics in Latouche and Ramaswami [29], 
Norris [38] or Resnick ]41], among others.

A.l Markov Processes

Consider a discrète time stochastic process {Xn : n € N}; it is a family 
of random variables, indexed by N and such that 6 5 for ail n G N. 
The set S is called the State space of the process and is assumed to be 
denumerable.

Définition A.1.1 The stochastic process {Xn : n E N} is a Markov 
chain if and only if it satisfies the Markov property

P[^n+l — j\Xo^ Al, . . . ,Xn] = P[A„,+i = j\Xn]

for a// n G N and j G S.
The Markov chain is homogeneous if

P[Xn+l = j\Xn = i] = P[Ai - j\Xo = i]

for ail n G N and i.j G S.
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In the continuons time case, we consider a collection of random vari
ables {X(t) : t € R'*'} where for ail t € R"*", X{t) € S. The state space 
S is assumed to be denumerable.

Définition A.1.2 The stochastic process {A(t) ; t 6 R"*"} is a Markov 
process if and only if it satisfies the Markov property

P[X{t + s) = jlA(a),0 <u<t] = P[X{t -I- s) = j\X{t)] 

for ail s,t E R"*" and j € S. It is homogeneous if, in addition,

P[X{t + s)= j\X{s) = i] = P[X{t) = j|A(0) = i] 

for ail s,t € R"*" and i,j € S.

Throughout this work, we essentially deal with continuons time Mar
kov processes, and they are ail homogeneous. This is the reason why we 
only consider this case from now on.

Let {X{t) : t € R"*"} be a homogeneous Markov process. The vector 
ot = {Oi : i E S) such that Oj = P[A(0) = i] for i in S is called the initial 
probability vector of the process.

For i,j in S and t E R"*”, the transition functions

Pij{t) = P[X{t)=j\X{0) = i] 

are the solution of the forward Kolmogorov équations:

= P{t)Q.

with P(0) = I, where the matrix P{t) contains the éléments Pij{t) for 
ail i,j E S and where the coefficient matrix Q is called the infinitésimal 
transition generator of the process. The interprétation of the entries of 
the matrix Q is the following.

• For i 7^ j, Qij is the instantaneous transition rate from state i to 
State j. In other words,

Qijh = P{X{t + h)= j\X{t) = f] + o{h),

where o{h) has the usual meaning lim/i_+o o(/r)//i = 0, thus Qijh 
is the probability that the process leaves state i before time t + h, 
starting from state i at time t, and enters j. The entries Qij are 
nonnegative and are strictly positive if it is possible to move from 
i to j in one step.
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• The process stays is state i during an interval of time which is 
exponentially distributed with parameter qi — —Qu- If Qi = 0, 
then the process stays forever in State i once it has reached this 
State; i is then called an absorbing State. On the diagonal, Qu = 

Qij'

Dénoté by Nt^t+h the number of State changes of the Markov process 
{A(t)} in the interval [t, t + h]; one has the following characterization:

P[Nt,t+h = OlX(t) = i] = l-qih + o{h),

P[Nt,t+h = = i]= qih + o{h)

and

P[A^M+/* > 2|A(t) = i] = o(/i),

for some small h and for any i in S. These are easily proved using the 
fact that the sojourn time in any state i is exponentially distributed with 
parameter qi.

We associate an oriented transition graph to a Markov process in the 
following way. The nodes of the graph represent the States of the Markov 
process, and there is a directed arc from state i to state j, denoted by 
{i,j), if and only if Qij > 0. A path from i to j is a finite sequence of 
directed arcs {i, fi), (ii, 12); • • • ) {in,j)-

Example A. 1.3 Birth-and-Death process
We give here an example of a k^arkov process on the state space 5 = N. 
Consider a population such that, when there are i individuals présent in 
the population:

• a new individual is born after a random interval of time exponen
tially distributed with parameter Xi,

• one individual will die after an interval of time which is random 
and exponentially distributed with parameter np, we set fiQ = 0.

The infinitésimal transition generator Q of such a Markov process is

Q =

—Xq Ao 0 0
P'i — (A]-l-p.i) Al 0
0 P2 — (A2 + /^2) A2
0 0 Hz -(A3 + Hi) A3

One may associate with this process the following oriented transition
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graph:

We say that State l is accessible from State k if tliere is a path that 
leads from fc to / in the transition graph.

Définition A.1.4 The Markov process {X{t) : t € on the state
space S is irreducible if, for ail i,j in S, i is accessible from j and j is 
accessible from i.

For j in S, we dénoté by Tj the first passage time to state j, that is,

Tj = inf{t > 0 : X{t) = j,X{t~) i=- j}

where X{t—) = limu_^t, u<tX{u). The first passage probability from 
State i to state j is

Fij = P[Tj < oo|A(0) = i].

Définition A.1.5 A state j is positive récurrent if and only if 1
and E[Tj\X{0) = j] < oo.

Corollary A.1.6 If the Markov process {X(t) : t E M'*'} is irreducible 
and if one ofits states is positive récurrent, then ail the states are positive 
récurrent and Fij = 1 for ail i,j in S. In that case, the process itself is 
said to be positive récurrent.

□

Remark A. 1.7 A positive récurrent Markov process is sometimes also 
called ergodic.

The following theorem gives a necessary and sufficient condition for 
the process to be positive récurrent.
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Theorem A.1.8 Assume that the Markov process {A(f) ; t G M'*'} is 
irreducible and non exploding, and dénoté by Q its transition generator. 
It is positive récurrent if and only if there exists a probability row vector 
TT such that TTj > 0 for ail i in S, and such that tt salves the System

( ttQ = 0 
\ 7t1 = 1 ■

This vector tt is unique and is such that

■Kj = lim P[X{t) = j|A(0) = i],
t OO

for ail i and j in S.

□

The vector tt is called the stationary probability vector of the process. 
Other ternis used are invariant, steady state, equilibrium or asymptotic. 

In case the process is not positive récurrent, we hâve that

lim P[A(t) =j\X{0) = i] = 0
t—»oo

for ail i,j G S.

A. 2 Poisson Processes and the M/M/1 Queue

Consider a continuous-time stochastic process {N{t) : t G M"*"} with state 
space <S = N. One définition of a Poisson process {N{t)} with parameter 
A is that it is a Markov process such that

• A(0) = 0,

• the only transitions allowed are from some state i to i + 1, with
î € N,

• the sojourn tiraes in each state are exponentially distributed with 
parameter A, independently of the state.

The generator of {N{t)} is thus given by

-A A
-A A
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An important feature of the Poisson process is that the number of events 
of the process in the interval (0, t) is Poisson distributed. More specifi- 
cally, for the process {N{t)}, we hâve that

P[W(() = k] =

for k > 0, thus the number of events in (0, t) is Poisson distributed with 
parameter Xt.

The Poisson process is widely used to model customer arrivais to a 
queueing System. The simplest one is the so-called M/M/1 queue which 
can be described as follows. Customers arrive in the System according 
to a Poisson process with rate A. There is one server who serves at rate 
fl, that is, service times are independent and identically distributed ex- 
ponential random variables with parameter fi, independent of the arrivai 
process. The generator of the M/M/1 queue is

'-AA
fl —{X + fi) A

fl -{X + fi) X

Note that it is a spécial case of the Birth-and-Death process defined in 
Example A. 1.3.

A.3 Censored Markov Processes

Consider now two proper subsets A and B oi S, that is, S = AU B and 
A n B = 0. We partition the generator Q accordingly as

Q = Qaa Qab 
Qba Qbb

Thus, Qa4 contains the components Qij such that i,j € A, Qab con- 
tains the components Qij such that i E A and j E B, and so forth. We 
also partition the stationary probability vector tt according to the dé
composition of S, and write that tt = (tt^, ttb) where tt^ = {tti ■. i E A) 
and TTg = (ttî : Z G B).

Theorem A.3.1 Assume that the Markov process {X{t) : t E M''"} is 
irreducible and let tt be its stationary probability vector. Let A and B be
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two proper sets of S. One has

= t^aQabNb

where Ns records the expected sojoum Urne in the states of B given an 
initial state in B, before the first visit to A.

□

Définition A.3.2 The censored process restricted to the set A is ob- 
tained by removing front the original Markov process ail the intervals of 
time during which it is in B; it is denoted by : t € M"*"}.

The following theorem gives the characterization of the censored 
process restricted to the set A.

Theorem A.3.3 Let {A(t) : t € IR"*"} be an irTeducible and positive 
récurrent Markov process on the state space S, with generator Q. Let A 
and B be two proper subsets of S.

The restricted process : t € R'*"} is an irreducible and positive
récurrent Markov process on the states of A. Its generator is given by

Q* = Qaa + Qab{-Qbb)~^Qba-

Its stationary probability vector is proportional to thus

ttaQ* = 0.

□

A.4 Phase-Type Distributions

Consider a Markov process on the state space S = {0,1,..., n} with 
initial probability vector (tq, t) and infinitésimal generator

where r is 1 x n, T is n x n and t is n x 1. The state 0 is absorbant, 
while ail the other states are transient and lead to 0.
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Définition A.4.1 The distribution of the Urne X until absorption into 
the absorbing state 0 is called a phase-type distribution with représenta
tion (t,T). IVe say that X is PH{t,T).

The following theorem gives the distribution and density functions 
of a PH random variable, as well as its moments.

Theorem A.4.2 Assume that X is PH{r,T). Its distribution function 
is given by

F{x) = 1 — re^^l, for x > 0, 

and its density function is given by

/(x) = re^^t, for x > 0.

Its moments are given by

E{X^] = for k>l.

□

Remark A.4.3 The matrix exponential is defined as e^ = X^n>o



Conclusion and Perspectives

It is now apparent that the renewal approach to fluid queues, based on 
the analogy with QBD processes, allows for the unified and straightfor- 
ward analysis of models which exliibit a variety of features.

Very interesting questions arise from the results presented in this 
Work. The first one is to study feedback fluid queues with thresholds, 
as those presented in Sections 4.6 and 4.7, but allowing the net input 
rates to take any real value. The development is quite straightforward 
regarding the model of Section 4.6, but somewhat more involved for the 
model of Section 4.7.

In Chapter 5, we constructed a fluid queue with stationary indepen- 
dence between the level and the phase; we obtained this at the cost of 
removing the probability mass at level zéro. One can construct other 
fluid queues which may exhibit the same independence property, for 
example by adding some probability mass on the States (0,5+). This 
construction requires a major modification of fluid queues.

We hâve exploited in [6] and [48] the relationship between risk pro
cesses and fluid queues, and obtained efficient algorithms for computing 
the probability of ruin under different scénarios. The method developed 
there also applies to more general jump processes: we hâve shown in 
Dzial et al. [19] how to associate a fluid queue with a jurnp process and 
dérivé some interesting results about the latter, at least in cases where 
transitions are level-independent. It would be interesting to investigate 
more complex situations.

A line of enquiring which has recently opened and which we hâve
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not mentioned earlier is the so-called transient analysis of fluid queues, 
whereby one analyses quantities such as first passage time distributions.

Finally, even the analogy to QBD processes is far from being thor- 
oughly exploited; one might for instance analyse fluid queues with a pos
itive drift and détermine if there exists an invariant measure for the dif- 
ferential équations, following a similar development for QBD processes.



Notations

X(-) : level of a fluid queue
: level of a fluid queue with finite capacity b 

{(/?(<) : f G £■•■} : Markovian phase process 
T : infinitésimal transition generator of
^ : steady State probability vector corresponding to the generator T
S : State space of {ip{t)}

rf. net input rate of fluid when the phase is i
r = {ri : i e S)

: mean stationary drift 
5o = {i G 5 : rj = 0}

= {i e S : Ti > 0}
= {?■ G <S : rj < 0}

5, = 5+ U 5_

so, s+, s_ : cardinalities of <So, «S+ and S_, respectively 
Fi{x]t) : joint distribution fonction of State (x,i) at time t 
fi{x\t) : joint density fonction of State {x,i) at thne t 
■Ki{x) = fi{x\t) : stationary density of state {x,i)
n{x) = {TTiix) : i e S)
fx{x) = 7t(x)1 ; stationary density of level x
P, : steady state probability mass vector of the empty buffer 

: steady state probability mass vector of the full buffer
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g/Cx . expected number of crossings of (x,5+), starting from (0,«S+), 
before returning to level zéro 

'I' : matrix of first return probabilities to the initial level

’I'+l : first return probabilities to the initial level, before reaching 
level b

A+1 : first passage probabilities to level 6, starting from level zéro, 
before returning to the initial level

N^\o,x) : expected number of visits to level x, starting from (0, <S+), 
before visiting levels 0 and b

N[^\b,x) : expected number of visits to level x, starting from (b,S_), 
before visiting levels 0 and b 

{£)(<)} : Markov process of downward records 
U : infinitésimal transition generator of {D{t)}
K,^,Û \ équivalent to K, 4^, U for the level-reversed fluid queue 

: équivalent to for the level-reversed fluid queue 

: équivalent to A+| for the level-reversed fluid queue

Ao, A\, A2 : transition matrices of a QBD process 
G : first passage probabilities to lower levels for a QBD process 
R : expected number of visits to level one, starting from level zéro, 

before returning to level zéro, for a QBD process 

G, R : équivalent to G, R for the level-reversed QBD

sp(M) : spectral radius of a matrix M 
M* : group inverse of a matrix M 
TZ{s) : real part of a complex number s
0 : vector of zéros
1 : vector of ones 
I : identity matrix
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Fluid Queues

Building Upon the Analogy with QBD Processes 

Ana dà Silva Soares

Markov modulated fluid queues are two-dimensional Markov 
processes, of which the first component, the level, represents 
the content of a réservoir and takes real values, and the 
second component, the phase, is the state of some Markov 
process evolving in the background. The level varies linearly 
with tiine, at a rate which dépends on the phase.

In this thesis, we apply Markov renewal techniques to fluid 
queues and we explore the analogy with Quasi Birth-and- 
Death (QBD) processes. Our approach leads to a unifled and 
straightforward analysis of ail the fluid models considered, 
and is always combined with a very efficient computational 
procedure.

We first consider a fluid queue with an inflnite capacity 
buffer, and we détermine its stationary distribution; we 
observe that it is very similar to that of a QBD process. We 
further exploit this similarity by determining the stationary 
distribution of a flnite capacity fluid queue following the 
same kind of arguments.

We then consider more complex models, of either flnite 
or infinité capacities, in which the behaviour of the phase 
process may change whenever the buffer is empty or full, 
or when it reaches certain thresholds. We show that the 
techniques developed for the simpler models can be extended 
quite naturally in this context.

Finally, we study the necessary and sufficient conditions that 
lead to the stationary independence between the level and 
the phase of an infinité capacity fluid queue. These results 
are based on similar developments for QBD processes.


