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CHAPTER 0. INTRODUCTION 

0.1 Background 

Throughout history, thin walled structures have been classified as very common construction 
elements. Their extensive use originates probably from the trend to reduce the structural weight and to 
minimize building materials. This very natural optimization strategy constituted an important design 
principle and guided the evolution process of constructions starting from the ancient ‘trial and error’ 
approach. Early developments, aiming at idealizing and predicting structural responses, managed to 
condense a complex 3D structure to a ‘mathematically manageable’ beam model and to superpose 
principal types of mechanical behaviors: tension/compression, bending, torsion and so on… This 
simple but ingenious formulation is still extensively developed nowadays despite the existing 2D and 
3D models and the considerable growth of simulation techniques. Many extensions, such as transverse 
shear deformation, non uniform warping torsion, cross sectional distortion and further refinements 
were progressively included over the years. The multitude of efforts recently invested in this research 
area is probably justified by: 
- the complexity of thin walled structure behavior, 
- the optimization of profile geometries as much as possible in order to fit esthetics, strength and 
connectivity requirements, 
- the need for brief but accurate and reliable design methods in order to remain time competitive... 
 
0.2 Motivation and purpose of the research 

The initial motivation of this thesis was driven by the need for a reliable tool enabling an accurate 
analysis of thin walled civil engineering beam applications with arbitrary cross sections submitted to 
torsion (e.g. bridges, towers…). One of the major problems in modeling a real-life structure is the 
choice of the appropriate model. Which effects are to be taken into consideration and which are to be 
left apart? Which approximations are useful, what is admissible and what is not? Is it necessary to 
apply a shell theory and in this case, how many degrees of freedom should be included? Is it crucial to 
develop a huge amount of numerical results? A multitude of similar questions, coupled with the need 
for the a scientific background in order to use any existing commercial finite element code, initiated a 
first interest in advanced torsional kinematical formulations and the resulting numerical properties of 
thin walled beam finite elements.  
Moreover, pure scientific interest motivated other research subjects such as warping effects due to 
bending shear forces, limitations of a formulation, the influence of shear locking… Later on, the 
interest in investigating the cross sectional deformation of very thin walled beams in industrial 
applications (e.g. railroad bridges, stiffeners, diaphragms and bracing in civil, aeronautical and naval 
constructions…) led to the analysis of distortional behavior. Cold formed and welded members (such 
as steel framed houses, portal frames, purlins, racking systems…) are in expanding use due to their 
cost competitiveness, resistance and their 100% recyclable property. 
 
Therefore, this thesis introduces a theoretical background and presents detailed analyses in order to 
improve the understanding of the linear behavior and stability of thin-walled beam structures, 
particularly when exhibiting important warping due to non uniform torsion, shear bending and 
distortion. On the basis of this knowledge, an advanced beam finite element has been developed, 
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implemented into a computer program and used as a general tool for the purpose of analyzing thin 
walled structures. Despite the wide literature -as it is shown in chapter 1- concerning this general 
scope and despite the numerous “published” beam finite elements that include warping, this work 
presents original achievements, namely: 

- a detailed understanding and precise comparison of existing theories and finite elements; 
- a unified formulation that uses a single warping function for theoretical developments and 

finite element applications of a general study that covers: 
• uniform and/or non uniform torsion 
• uniform and/or non uniform distortion 
• bending shear effects 

in different cases of: 
• asymmetrical cross sectional shapes where shear centers and centroids do not coincide 
• partial warping transmission in beam assemblies 

 
While developing analytical and numerical formulations, many problems and unclear points had to be 
solved. Some were related to mechanical model decisions and others were purely due to finite element 
approximations. Solving these specific problems and inspecting the relation between a mechanical 
behavior and a mathematical equation inspired lots of research subjects that gave interesting 
concluding remarks or led to fruitful discussions. Among other problems, here are some examples: the 
interpretation of mathematical or numerical messages (like non definite symmetrical stiffness matrix), 
a large error due to a finite element discretization, the influence of the shape function… 
Another important motivation throughout all the work was an in-depth examination of existing 
mechanical models concerned with the present subject. Some unclear conclusions, unjustified links or 
non-evident remarks led to important investigations about the mechanical content or the importance of 
some assumptions or remarks (such as a dependency of degrees of freedom, determining distortional 
rotational ratio in case of asymmetrical profile…).  
 

0.3 Scope and content of the dissertation 

The primary aims of this thesis are to provide an understanding of the behavior of thin walled beams 
in engineering applications (civil, mechanical, naval…) and to produce a reliable tool for accurate 
prediction of their behavior. In order to fit this objective, a methodology is developed for the beam 
structural analysis including the identification of a possible instability by following the response of the 
structure during the deformation process. The analysis focuses on the case of a static beam within the 
framework of geometrically nonlinear elasticity by considering small deformations and neglecting 
time dependent effects –i.e. forces whose direction and intensity do not depend on the beam 
deformation. It is believed that these restrictions respect the above-stated motivation and allow an 
accurate estimation of the strength and the safety assessment of a structure. The present research could 
be used for a design analysis or as a guiding tool in an optimization process.  
 
The dissertation is organized as follows. In chapter 1, a general survey summarizes most 
representative work on the subject and concludes by positioning the thesis within its field and 
highlighting its contribution to the published material. Chapter 2 presents and compares different 
existing theories that analyze the behavior of thin-walled members submitted to axial, bending, 
torsional and distortional loads. Chapter 3 is confined to the kinematics of the present work. The basic 
assumptions are clearly defined in order to induce the displacement fields that include torsional, 
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distortional and shear bending effects. Chapter 4 introduces the principle of virtual work which is the 
basis of the present work and offers analytical solutions to some problems. Although the analytical 
methods shown in this chapter are only valid for simple structures, they constitute a very important 
part of the developments done in this work. They offer a simple tool that enables focusing on the basic 
hypotheses, reducing to the principal mechanical behavior and validating mathematical, physical and 
mechanical approximations. Besides, together with numerical shell analyses, they contribute to the 
validation of the numerical results presented in chapter 5. General conclusions are drawn in chapter 6 
while some useful calculations and non original developments are placed in appendices (such as 
matrices and calculations too detailed for text presentation, technical notes on methods, common 
developments…) since they interrupt the guiding line of the report (and the pleasure of reading!). 



 

 

PART I. OVERVIEW 
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CHAPTER 1. LITTERATURE REVIEW AND RESEARCH 
PROBLEM STATEMENT 

1.1 Goal of the chapter 

Thin-walled structures have gained a growing importance due to their efficiency in strength and cost 
(see e.g. Nowinski 1959, Davis 2000, Hancock 2003…). While significant advances have been made 
through experimental testing and theoretical work, new research is still required since many important 
questions remain partially or controversially answered such as: the importance of shear bending 
effects, lateral torsional buckling (see Braham 2001) and distortional buckling, the compatibility of 
connections, the choice of adapted and consistent types of non linear analyses (see Bažant 2000)… 
This chapter aims at synthesizing, discussing and criticizing accredited knowledge established from 
the literature according to the guiding concepts of this thesis. It concludes by highlighting the original 
contribution of this work to the overviewed research fields. 
 
1.2 Survey of modeling thin walled beam structures 

1.2.1 General considerations 

Doubtlessly, most analyzed and designed thin walled structures consist of beams and columns with 
different thin profiles. Recently, a wide variety of cross-sectional shapes have been produced in the 
market, resulting from an optimization based on strength, stiffness, connectivity and esthetics criteria 
[Mennink 2003…]. As in other engineering fields, the resulting complexity constitutes a considerable 
challenge for computational schemes. The accuracy of the structural behavior description depends to a 
large extent on the assumed approximations. 
The following ‘state of the art’ presents, at several levels of modeling, a multitude of generalizations, 
simplifications and assumptions in published research. At the geometrical level, the influence of the 
shape and dimensions of a structure is shown: beam or shell structures, open or closed profiles, 
prismatic or tapered beams… At the physical or kinematical modeling level, the theoretical 
assumptions are examined in terms of validity, efficiency and ability to describe the structural 
behavior: discretizing kinematically a beam structure by its longitudinal axis, including shear 
deformation due to bending or torsion, relaxing the planar and normality assumptions of a cross 
section, neglecting warping shear variation through the thickness of a mid-wall, taking into 
consideration the deformability of a cross section, modeling a partial or total transmission of warping 
at a connection… At the mathematical level, many questions are raised about the completeness and 
logical consistency of the chosen formulation and the resulting computations. The description of the 
deformation and the formulation of the set of equilibrium equations with boundary conditions and 
constraints are discussed: interpolation functions, shear locking, accuracy of solutions… Among these 
equations, the constitutive equations are the physical equations associated with the material or 
mechanical model. The quality and performance of thin walled analyses depend on the convergence of 
all of these multi-level challenges. 
 
1.2.2 Review at the geometrical level 

Several geometrical aspects influence the modelling of thin walled structures. The dimensional aspect 
ratios (thickness to contour length, contour length to longitudinal dimension) are often used to identify 
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and classify a structure (e.g. Batoz 1990, page 2): solid or thin; shell, plate, membrane or beam. The 
cross sectional geometry influences to a large extent the behavior of thin walled beams and 
specifically, whether the section is open or closed. The torsional analysis is generally presented by 
different methods for open and closed cross sections [Murray 1986; Gjelsvik 1981; Shakourzadeh 
1995; …]. Many researchers [De Ville 1989 §3.4; Batoz 1990 & Shakourzadeh 1995; Gjelsvick 1981 
pages 10 & 114; Musat 1996 & 1999; …] propose multiple expressions of warping functions for 
different cross sectional types (open or closed thin profiles). Although often used in order to save 
weight, non prismatic beams with ‘tapered’ cross sections are not recovered by most structural 
analyses. Specific studies have dealt with the linear and non linear behavior of thin-walled beam-
column structures with variable cross section along the longitudinal axis [Kitipornchai 1975; Bradford 
1988; Chan 1990; Rajasekaran 1994; Dube 1996; Ronagh 2000; Kim 2000…]. 
 
1.2.3 Review at the physical modeling level 

Beam modeling of a thin-walled structure 
There seems to be a general guiding concept [Gjelsvik 1981; Murray 1986; De Ville 1989; Batoz 
1990; …] for representing a thin walled structure by its longitudinal beam axis. According to Saint 
Venant principle, the local perturbation effects of concentrated loads and boundary particularities are 
neglected [Calgaro 1988 page 1-5; Murray 1986 §1.1 …]. The stresses, and thus the strains, are 
considered to depend exclusively on beam internal forces caused by the applied loading. The 
membrane force and bending moments are related to the centroidal axis while the torsional moment 
and shear forces are related to the shear center axis. One of the most important computational 
difficulties is the accurate calculation under non uniform torsional loading of the beam response when 
it exhibits a significant cross sectional warping. Shell or thin plate models offer general and well-
adapted solutions to various cases of geometry, loading and boundary conditions of thin walled 
structures. However, such an approach is not always affordable and requires powerful numerical 
methods. It generates excessive data so that the post-processing is time and energy consuming. In 
addition, it does not allow easy physical interpretations. It is unable to isolate membrane, bending, 
uniform torsion, torsional warping, distortional warping, bending shear warping or local effects (e.g. 
normal stress computations). Moreover, it does not point out the contribution of individual parts; e.g. 
the influence of stiffeners on the total resistance of the structure is not obviously highlighted. This 
explains why various researchers develop and adapt new advanced beam theories to take into 
consideration the particular behavior of a thin-walled structure and to give satisfactory results that the 
usual beam theory is unable to provide. They always have limited applications; e.g. beam theories 
stated hereafter do not take into consideration local effects. Several intermediate theories between 
beams and shells are based on enriched kinematics, e.g. finite strip method [Cheung 1996; Cheung 
1998]. Some researchers propose original ideas in order to minimize the complexity of the problem. 
Meek (1983) considered that the wall is meshed into rectangular elements. Some degrees of freedom 
are related to the beam axis and others to rectangular elements or to the nodes connecting them. This 
technique uses a shell theory for torsion and a beam theory for bending. Musat (1996;1999) introduced 
the concept of strip-plates to define macro-elements. The wall surface is divided into strip plates with 
rectangular cross sections connected along longitudinal axes. 
 
Cross-section deformation 
When a cross section is assumed to remain planar during deformation, the resulting beam model 
describes the behavior of a massive and regular cross section outside the application zone of the 
concentrated loading. However, the behavior of thin-walled beams is essentially different since shear 
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stresses and strains are large. Transversal stiffeners are required in order to minimize these effects but 
also to prevent the distortion and the local bending. 
Most researchers [Reilly 1972; De Ville 1989; Gunnlaugsson 1989; Chen 1989; Batoz 1990; Back 
1998; Frey 2000; …] generally agree on the fact that for a beam submitted to tension/compression or 
bending, the cross section remains planar. Some adopt the normality condition of the cross section, i.e. 
Bernoulli theory (De Ville 1989, page 2.2), by neglecting the strain energy due to the shear forces 
[Batoz 1990, page 80]. If the normality assumption is relaxed while the planar assumption is kept, i.e. 
Timoshenko theory, a constant shear strain is calculated [Reilly 1972; Gunnlaugsson 1982; Chen 
1989; Batoz 1990; Back 1998; …] and a shear correction factor is needed [Cowper 1966; Pilkey 1994, 
page 28; Batoz 1990, page 62; Frey 2000, page 193; …] in order to compensate the fact that the 
displacement field violates the ‘no shear’ boundary condition at the edges of open profiles. More 
detailed theories [Massonnet 1983; Reddy 1997; Wang 2000; Eisenberger 2003…] take into 
consideration the warping due to shear forces. Batoz refers to Chen (1989) and highlights that shear 
strain effects may be more important in bending than in torsion. 
When submitted to torsion, the profile exhibits a longitudinal out of plane warping. The difficulty of 
solving exactly the general torsional problem has led many researchers to formulate simplified models. 
Bredt (1842-1900) gave an approximated model in order to solve the torsional problem of hollow 
sections. Saint Venant (1855) described the well known primary torsion or uniform torsion where 
transversal shear stresses result from uniform rotation of two adjacent cross sections. According to 
Nowinski (1959), the torsional rigidity of composite thin sections was analyzed by Weber in 1924 and 
important literature work was recast by Foppl in 1928. The case of uniform torsion (uniform moment 
distribution with unrestrained warping) is not often exhibited in practice. In general cases of loading 
and boundary conditions, an additional ‘secondary torsion’ induces normal stresses. Neglecting these 
normal stresses often leads to important errors. The sum of both primary and secondary torsion, called 
‘mixed torsion’, describes the total behavior due to the applied torque. The terminology ‘primary’ and 
‘secondary’ [Trahair 1993, page 304] is also used in the literature for the torsional warping in order to 
distinguish between the contour and the thickness warping [Gjelsvik 1981, page 12] of the thin-walled 
cross section (known also as global and local respectively [De Ville 1989]). 
Many researchers have tackled the problem of non uniform torsion. The most well-known authors are 
Timoshenko (1905), Weber (1924), Reissner (1926), Wagner (1929), Vlassov (1940), v. Karman 
(1944), Argyris (1949), Benscoter (1954) [Nowinski, 1959]… Timoshenko studied the problem of non 
uniform torsion of I beams with constrained torsion by assuming linear normal stress distributions in 
the flanges. His third order differential equilibrium equation, developed in the particular case of an I 
beam, is still valid and can be deducted from all subsequent general theories.  
Considering or neglecting the strain energy associated with warping generated two principal theories 
in the non uniform torsional field: respectively Vlassov in 1940 and Benscoter in 1954. The 
terminology used for these two theories may appear as a controversy in literature. Who is the first to 
study the general theory of non uniform torsion for closed cross sections? Umanski 1939 [Nowinski 
1959; Prokić 1994; Musat 1996; …] or Benscoter 1954 as commonly assumed? Is Vlassov theory 
suitable for closed cross sections or not? The well known published work by Benscoter is a paper 
published in the ASME journal in 1954 but Umanski and Vlassov published earlier in Russian 
important works in 1939 and 1940. The names of these three researchers have been associated with 
torsional theories till today. In his interesting survey on thin walled beam references, Nowinski (1959) 
stated that the first investigations of constrained warping of a freely supported box beam is attributed 
by Ebner to Eggenschwyler in 1920. Reissner (1926) analyzed a particular case of tapered beam box 
under linearly varying torque. 
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Vlassov well known hypothesis (1961, Ch I. §2.3) consists of neglecting shear warping at the mid wall 
of an open cross section. In most literature referring to Vlassov work [Kollbrunner 1970; Reilly 1972; 
Murray 1986 page 4&115; Mottershead 1988; De Ville 1989; Batoz 1990; Razaqpur 1991; Musat 
1999; …], this assumption is used for open profiles and the gradient of torsional angle is taken as 
warping degree of freedom. Benscoter theory characterizes the warping degree of freedom by an 
independent function which is different from the gradient of torsional angle. For closed cross sections, 
this independent warping degree of freedom [Gunnlaugsson 1982; Chen 1989; Back 1998; 
Shakourzadeh 1995; …] is used instead of the derivative of torsional angle in order to include shear 
strain in kinematics. However, in other works [De Ville 1989 §3.4.1.3; …], Vlassov theory is stated as 
applicable for closed cross sections by combining the assumption of neglecting shear warping at mid-
walls for the calculation of profile warping function with Benscoter independent warping degree of 
freedom. Back (1998) used this combination. 
Massonnet (1983) generalized Saint Venant theory to the case of a linear distribution of the torsional 
moment. Without being explicitly stated, a restriction was imposed: the torsional warping must be 
free. His work is at half way between Saint Venant and Vlassov. The exact stress distribution is found 
by using Saint Venant theory but the beam equilibrium is ensured by introducing Vlassov bimoment.  
Prokić (1990) proposes an original approach using a single warping function in order to analyze both 
open and closed profiles. The main idea is to discretize a profile into transversal nodes and segments 
and to develop a new contour warping function based on a linear variation of warping between these 
transversal nodes. Vlassov hypothesis of no shear strain in mid wall is relaxed for contour warping.  
When the hypothesis of cross section non-deformability is relaxed, additional modes called 
distortional modes are added to the classical ones describing the behavior of a thin-walled beam: 
tension/compression, bending and torsion. These additional modes are related to the in-plane 
deformation of a thin-walled cross section. In some early works [Nowinski 1959; Timoshenko 1961 
page 211], this phenomenon was identified without being analyzed; Timoshenko presented the bracing 
in cross sectional planes as a solution to eliminate the distortion. Vlassov (1961, §4) presented an 
original analysis for the behavior of polygonal thin-walled closed cross sections with deformable 
contour by representing the displacements in the form of finite series. Later (1977), Trahair illustrated 
briefly the buckling accentuated by distortion of an I-beam which results in the web bending [Trahair 
1995 page 225]. In 1978, Takahashi and Hancock published articles about the distortional behavior. 
Takahashi (1978, 1980, 1982, 1987, 2003) developed analytical analyses for the distortion of 
asymmetric open cross sections constituted by the assembly of four or more thin segments without 
ramifications. He also presented a similar analysis in order to study closed thin walled cross sections 
(Takahashi 2001, 2003). Other researchers developed different experimental [Hancock 1992; Serrette 
1997; Kesti 1999…], analytical [Razapur 1991; Bradford 1992] or numerical methods [Hancock 1997; 
Ronagh 1996; Bradford 1997, 1998, 1999; Degée 2000…] in order to study the distortion. The 
‘Generalized beam theory’ has been applied extensively during the last years in order to analyze the 
distortion of prismatic members [e.g. Davies 1998, 2000; Silvestre 2002, 2003, 2004; Gonçalves 
2004…]. It is a new approach essentially based on the separation of the behavior of a prismatic 
member into a series of orthogonal displacement modes. 
 
Connection compatibilities 
The carrying capacity and stability of some structures with uniform cross sections are often increased 
by riveting or welding additional plates in highly stressed parts. The resulting cross section changes 
abruptly and the stiffness conditions of a connection (flexible, fully or partially rigid) modify the 
behavior of the structure. Modeling the real connection of cross sections in beam theory is a 
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complicated task since the assembled beams and columns may not have the same centroid and the 
same torsional center. The non uniform torsional warping (independent, continuous, fully or partially 
transmitted) is particularly difficult to analyze for beams connected with different orientations. The 
internal force associated with the warping is auto-equilibrated and cannot be axially projected like 
other vectors and couples. Different researchers [Gjelsvik 1981; Gunnlaugsson 1982; De Ville 1989; 
Pedersen 1991; Prokić 1993; Shakourzadeh 1999] consider that warping is partially or totally 
transmitted by the connection. In general, a transformation matrix links beam degrees of freedom to 
best ensure the compatibility. Mottershead (1988) proposed to take the most unfavorable conditions. 
Batoz (1990, page 212) refers to Sharman (1985) for the calculation of transmission coefficients and 
independent warping coefficients. 
 
 
1.2.4 Review at the mathematical level 

The analytical resolution of all these problems is possible for simple cases but remains inaccessible for 
most practical applications. The resolution of the differential equations and the calculation of 
geometrical characteristics for a complete structure require complicated and sometimes impossible 
calculations. The numerical modeling deals with this complexity by allowing simulations of physical 
problems. The finite element method is an effective method where the continuum mechanical problem 
is discretized by a finite number of unknown parameters to be determined by variational formulations. 
The unknown parameters are the nodal displacements or forces. Some authors [Krajcinovic 1970] used 
the force method to analyze thin-walled structures but the displacement finite element method is 
nowadays the most widely used. Complex engineering applications stimulated important 
developments in this field so that a wide range of different elements have been presented in the 
literature, depending on several parameters:  
-the number of nodes by element and the number of degrees of freedom by node; 
-the polynomial or hyperbolic interpolation functions used in order to relate the displacements in any 
point to the nodal displacement vector. 
Usually, polynomial interpolation functions are used in the literature for membrane and bending while 
the hyperbolic functions are often used for non uniform torsion [Gunnlaugsson 1982; De Ville 1989; 
Dvorkin 1989; Batoz 1990; Shakourzadeh 1995; …]. A discussion about the use in the literature of the 
hyperbolic functions is presented in Saadé (2004). Some numerical problems have to be solved, e.g. 
shear locking that numerically stiffens the structure [Batoz 1990; Wang 2000…].  
 
1.3 Survey of the stability behavior 

1.3.1 Increasing need for stability and post-critical behavior analyses 

Stability is a fundamental problem in structural mechanics since it must be taken into account in order 
to ensure the safety against collapse. The collapse must be analyzed for each individual structural 
member and for the whole structure in order to compute accurately the load-carrying capacity of thin 
walled structures like beams, columns, frames, trusses, etc… Once the collapse strength is reached, 
thin-walled members often stop bearing any additional load. A small disturbing force can cause large 
displacements resulting in a catastrophic collapse. The effects of this elastic instability phenomenon 
vary from influences on stable equilibrium state up to highly non linear effects as in catastrophic 
failure processes. The theory of stability or buckling [Gjelsvick 1981; Waszczyszyn 1994;…] deals 
with critical loads and deformation of structures which are associated with a sudden quantitative 
change of the structure state at a particular load level by exhibiting previously zero displacement 
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components. An interaction or coupling among bending, twisting and membrane deformations may 
occur for beam members. 
 
1.3.2 Defining non linear calculations including stability 

The difference between linear and non linear analyses lies in the formulation of the equilibrium 
equations. A linear analysis formulates these equations with respect to the undeformed structure so 
that strains are evaluated as linear functions of displacement for a linear elastic behavior. In the case of 
a non linear analysis (including stability), the displacements, rotations and/or deformations are not 
small and the deformed structure has to be used in order to express the equilibrium equations. The 
stress, load and deflection cannot be considered to be linear functions of displacements. Thus, with 
respect to a geometrical non linear behavior, several principal analyses can be distinguished in the 
literature: first order analysis, bifurcation or eigenvalue buckling analysis, second order analysis, large 
rotation analysis and large strain analysis. Stability equations, requiring the use of the current 
configuration of a structure, are nonlinear. Since the complete analysis results in a strongly nonlinear 
system of equations, the analysis of dominant factors in the geometrical nonlinearities [Hsiao 2000…] 
justify the selection of one of these different analyses. 
First-order and second order terms are used in order to distinguish between analyses that neglect or 
take into account the actual configuration (influence of deflections upon stresses or P-δ effects). When 
the non linear equations are linearized, the resulting theory is the so-called linear buckling theory 
[Murray 1986; Waszczyszyn 1994 §5…]: the structure is assumed to deform linearly till buckling 
occurs. The terms ‘first-order stability analysis’ and ‘second order stability analysis’ are used in the 
literature in order to distinguish between linearized calculations that lead to the determination of 
critical loads (i.e. eigenvalue problem) and other non linear computations that compute stresses 
induced by the generated deflections and reveal the post-buckling response of the structure. 
The non linear analysis requires a high level of numerical expertise and experience [Volokh 2001]. In 
many practical cases [Peng 1998; Chan 1995; Agyris 1978 according to Chen 1991], the assumption 
of linearity up to the critical load does not give useful results and non linear buckling analysis is 
necessary. Some researchers [Bakker 2001; Volokh 2001…] propose and discuss how to check the 
smallness of displacements, rotations and strains in order to choose the related type of geometrical 
nonlinear analysis. Volokh (2001) presented a numerical criterion which predicts the stage in which 
the non linear analysis is necessary. 
A geometrically non-linear analysis involves complex formulations. Different formulations, 
theoretically equivalent, have been proposed in the literature: total [Frey 1977; De Ville 1989; Hsiao 
2000; …] or updated [Frey 1977; Chen 1991; Yang 1986a,b; Meek 1989; Conci 1990 (see Chen 
1991); …] lagrangian formulation and corotational approach [De Ville 1989; Hsiao 2000; …]. Many 
works in the literature assumed finite rotations such that the strains remain small [Hsiao 2000]. By 
choosing adapted element sizes, numerical approaches (corotational, natural approaches) validate 
these assumptions by eliminating and separating rigid body motions from the total displacements. In 
order to solve the non linear system, several incremental and/or iterative numerical methods are 
proposed in the literature [Criesfield 1997…]. 
 
1.3.3 Historical overview on buckling analyses of  thin-walled structures  

Early work by Euler (1744) was concerned with flexural buckling of elastic pin ended columns 
submitted to compression. He used these developments to compute critical loads with various 
boundary conditions. By the end of the 19th century, many basic elastic problems of structural stability 
(Kirchhoff 1859; Engesser 1889; …) were solved. According to Nowinski (1959) who gave an 
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interesting survey on most important work on the behavior of thin walled beams, thin-walled open 
buckling beam theory was influenced by the work of Prandtl and Michell on lateral buckling of narrow 
beams in 1899. In the 20th century, the stability theory expanded significantly. An important 
contribution for the analysis of particular buckling problems including the non uniform torsion of open 
beams was given by Timoshenko [e.g. 1913; 1961 §5…]. Similarly to the major part of his work, his 
buckling analyses are still consulted today since they offer an important and clear physical way when 
approaching the subject. Among other researchers, Wagner (1929), Vlassov (1940), Goodier (1942), 
Koiter (1945) and Nowinski (1947) also contributed to the analytical study of one-member buckling. 
Wagner investigated in details the torsional buckling of open cross sections. His work is based on a 
general analysis of non uniform torsion and his creative way is still adopted in present works. In their 
published and widely used textbooks, Bleich (1952) and Timoshenko (1961) covered analytically a 
wide range of structural stability problems for columns, continuous beams, trusses and frames in 
several cases of geometry (changes in cross section), loading and boundary conditions (elastic 
supports,…). They analyzed the torsional buckling and the lateral buckling of beams and discussed 
briefly the interaction between bending and torsional buckling. Bleich treated the case of unequal 
flanges for the elastic and plastic behaviors. Gjelsvik (1981), Murray (1986), Trahair (1993,1995), 
etc., introduced the basic concepts of the stability theory, detailed the interaction phenomenon and 
developed the flexural torsional buckling of columns and the lateral torsional buckling of beams. 
Among nonlinear stability analyses, the problems of strength, general and local stability have been 
discussed by Bažant (1991) using the classical theory of non uniform torsion of thin-walled beams. 
During the following years, numerical methods were used for stability analysis [Murray 1986; Trahair 
1993; Waszczyszyn 1994]. Intensive research devoted to open thin-walled profiles stability [Ramm 
1983; Ronagh 1999; Kwak 2001; Mohri 2003…] were published in both numerical and theoretical 
procedures taking into account tapered beams [Ronagh 2000; …], joint equilibrium at connections, 
imperfections [Frey 1977; Bažant 1991; …] and composite cross sections [Bažant 1991, …]. The 
material and geometrical nonlinear behavior, the dynamic stability, the importance of non conservative 
systems, etc… were also investigated. Many papers have limited their scope to particular restrictions 
such as profile with double symmetry [Meek 1998…] or monosymmetry [Kitipornchai 1986; Trahair 
1993; Kim 2000; Hsiao 2000; Mohri 2003]. 
In most early and recent works on general analysis of structural stability, Vlassov hypotheses and 
kinematics for non uniform torsion have been adopted. The potential energy and the governing 
equations have been extensively developed in the case of linear elastic stability [Timoshenko 1961; De 
Ville 1989; Trahair 1993; Mohri 2003;…]. Nevertheless, in the particular case of lateral torsional 
buckling, current research investigations still aim at elaborating satisfactory practical rules and 
including them in design codes. Appendix F of the European Code for the Design of Steel Structures 
(1992) evaluates a critical flexural moment for different cases of profile geometry, loading and 
boundary conditions. According to Mohri (2000, 2003) and Braham (2001), most of this design rule is 
inspired from the work of Djalaly (1974). An interesting state of the art related to the formulae of the 
Eurocode has been given by Braham (2001). It is followed by a comparison between various analytical 
methods and finite element models for some bisymmetrical and monosymmetrical profiles. By 
referring to the work of Mohri (2000), Braham emphasizes on the unsafe application of the Eurocode 
formula for lateral torsional buckling in some cases. This formula and the corresponding data are 
inappropriate and require adjustments. The carrying capacities resulting from numerical and 
experimental analyses are shown to be lower than those resulting from Eurocode formula [Mohri 
2000, 2003; Braham 2001; Villette 2002; Galéa 2002…]. This problem is probably due to limited 
availability of numerical techniques at the time of earlier researchers [Djalaly 1974]. Because of the 
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general tendency to increase the slenderness, further research is required for safe and economic 
calculations and for more accurate design codes.  
 
1.3.4 Analytical and numerical methods used for stability problems 

Starting from the total potential energy expression in linear stability, most developments in the 
literature approximate the buckling loads by elaborating the equilibrium equations corresponding to 
the buckled state. Different methods are used in the literature: Ritz, Galerkin, finite differences, finite 
integral (Chan 2001)… The first two methods are extensively used in the literature in order to compute 
analytically buckling loads. Rayleigh-Ritz method is based on the stationary conditions of the total 
potential energy while Galerkin method is based on the variational formulation of equilibrium 
equations. Both methods are based on assumed deflected shapes and therefore are limited to simple 
problems where the deflected shape can be accurately assumed [Timoshenko 1961; Trahair 1993 §3, 
Murray 1986; De ville 1989 §4]. The displacement modes in bending and torsion are approximated by 
analytical functions and the solution depends on this choice. The approximation of a sinusoidal 
function is suitable for the simple case of uniform moment distribution along a beam with a 
bisymmetrical cross section. However, for general loading and arbitrary profiles, the displacements 
must be approximated by sinusoidal series. However, in the EC3 and previous works [Djalaly 
1974;…], the analytical analyses based on Vlassov warping function used only one sinusoidal term for 
the displacement functions. Recent researchers [Mohri 2003; Braham 2001…] emphasize on the 
inaccurate results obtained by this approach for general asymmetrical cases of loading and geometry. 
Since the advent of the computer in the 1950’s, research in the numerical stability field has developed 
extensively: [Frey 1977; De Ville 1989; Trahair 1993 §4 and almost all recent works]. The growth of 
computer power combined with the use of the discretization concept and the energy method induced 
intensive recent developments of non linear numerical methods. The finite element method presents 
many advantages: generality and flexibility for assigning properties, configuration, boundary and load 
conditions.  
 

1.4 Original contributions of the present work 

This paragraph aims at briefly defining the problem statement and at identifying the present work in 
the previously reviewed research state of the art (§1.2). The main purpose of this thesis is to formulate 
a unified approach for modeling the behavior of elastic 3D structures consisting of thin walled beams 
and columns with arbitrary shaped cross sections, including the important influence of warping due to 
non uniform torsion, to shear forces and to distortion.  
The present research work builds itself upon previous and ongoing work on 3D thin walled structure 
analyses. Particularly, it improves Prokić kinematic formulation (1990, 1993, 1994, 1996) in order to 
analyze the non uniform torsion of arbitrary thin walled profiles. Rather than using different warping 
functions for open and closed cross sections (Vlassov or Benscoter theories) as it is extensively done 
in the literature [Nowinski 1959; Murray 1986; Mohri 2003 … ], the present work aims mainly at 
adapting and validating a single approach to model the behavior of 3D thin walled beam structures. 
The following first three investigations (1-3) are provided relatively to Prokić work. Resulting from an 
in-depth examination of Prokić theoretical and practical research limitations, they summarize the 
original work of the present research in order to implement correctly a thin walled beam model.  
 
1- In a first and global examination of Prokić work, it is surprising to find an unjustified statement that 
the introduction of the notion of shear center is not necessary. While analyzing the torsional warping 



   1-9

of open asymmetrical profiles, no distinction was made between the centroid and the shear center 
[1990 page 73, 75 & 76; 1993; 1994; 1996]. It is therefore necessary to find out if the proposed 
kinematic formulation assumes a rotation of the cross section around the centroid which is 
inadmissible for asymmetrical and even monosymmetrical profiles. The necessity of including the 
shear center in order to uncouple torsional and bending effects is to be investigated. 
 
2- A more detailed study of Prokić work shows that the presented combination of warping degrees of 
freedom is not completely associated with the torsional warping of a thin-walled beam structure. 
Warping degrees of freedom are coupled with membrane and bending degrees of freedom even in 
linear stiffness matrix (e.g. 1990 page 28). Computations show that the stiffness matrix is not definite 
positive. In his thesis and published papers, the numerical results have been limited to pure torsional 
problems. Therefore, it is necessary to investigate the feasibility of an implementation of Prokić 
formulation in order to study the general behavior of a 3D thin-walled structure, e.g. the flexural-
torsional behavior due to a transversal load acting on a asymmetrical cross sections. The possibilities 
of adding additional kinematic relations in order to restrain the warping degrees of freedom to non 
uniform torsional behavior (as in Vlassov and Benscoter theories) must be found out. In the case of 
pure stretching or bending, does Prokić formulation detect undesirable warping (i.e. warping 
associated with pure tension/compression or flexure)?  
 
3- After finishing the first two investigations and after demonstrating the feasibility of a correct 
implementation of the previously discussed kinematic formulation, another important unfinished task 
in Prokić published research is the numerical stability analysis. In his thesis and published papers, 
Prokić presented the general guideline for non linear analyses using the finite element method without 
presenting developed details or numerical results. It was noticed in a recent review paper about non 
linear behavior and design of steel structures [Chan 2001], that, in Prokić work, ‘non linear frame 
analysis allowing for warping and bimoment has not yet been developed to a stage of practical use, 
even for relatively simple frames’. Therefore, more investigations are needed in order to analyze the 
stability of thin-walled structures.  
 
The following investigations (4-9) present general original issues in the study of thin-walled analyses: 
 
4- An interesting task is to investigate the influence of warping induced by shear forces in bending and 
particularly how it is possible to apply Prokić formulation in order to model this behavior. Is a 
complete study including warping due to bending shear forces important for the behavior analysis of 
thin-walled structures? In the case where the modified Timoshenko theory gives satisfying bending 
results, it is interesting to determine the shear correction factor for arbitrary profiles. Within the same 
guiding concept defined above, it is interesting to investigate this analysis by keeping the same 
original unified approach for arbitrary profiles. 
  
5- In the literature, the stability analysis is restricted to the case of beams or columns with open cross 
sections using Vlassov warping function. This approach is justified by the high torsional and bending 
stiffness of a closed cross section, so that collapse by local buckling or yielding is more critical than 
collapse by global instability. However, it is interesting to investigate structural elements with profiles 
which are neither totally open, nor fully closed. e.g. an open profile with one relatively small cell 
compared to the profile dimensions. 
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6- An important contribution to thin walled beam analyses is to adapt Prokić warping function in order 
to analyze some distortional modes which involve the deformation of the entire profile inducing a non 
local beam behavior. 
 
7- The physical and pure kinematical separation between different mechanical effects 
(tension/compression, bending, torsion and distortion) is achieved in this work by imposing restraining 
conditions on the displacement field. This kinematical step, usually achieved in the literature by 
imposing restraining conditions on equilibrium equations and stresses, has the advantage of presenting 
a correct and well-defined kinematical formulation without any restriction on the material law. 
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CHAPTER 2. BACKGROUND INFORMATION 

2.1 Beams with bending shear effects 

Beam analyses have been performed by implementing different kinematic formulations for bending 
shear deformation. The developments given hereafter are limited to the case of elastic behavior, where 
E and G are respectively Young’s and shear modulus. The principal axes are used to uncouple bending 
effects (xy & xz). For simplicity only, the bending of beams in the (xz) plane is analyzed in this 
session. Similar developments can be identically made for bending in the (xy) plane.  

Figure 2.1 Principal axes of a beam profile 
 
2.1.1 Bernoulli 

The simplest beam theory is the Euler-Bernoulli theory in which it is assumed that the cross section 
remains planar and normal to the longitudinal axis after bending deformation. The rotation angle of the 
cross section is thus equal to the slope (w,x). This assumption neglects transverse shear. 
This beam theory is based on the displacement field: 
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where q(x,y,z) is an arbitrary point of the beam (figure 2.1). 
 
and the expression of linear part of the strain tensor is reduced to: 
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The strain energy per unit length of the beam is given by: 
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where A is the cross-sectional area. The strain energy associated with the shearing strain is zero.  
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The bending moment can be expressed in terms of generalized displacements and the shear force must 
be found from the equilibrium equation (2.4). The shear stresses, strains and shear internal forces 
( xz xzGτ = ε , z xz

A

T dA= τ∫ ) cannot be found from the kinematic formulation (2.1, 2.2), because if 

done so, they would be zero. 
 

y x x y ,xx
A A

M z dA  E z dA EI w= σ = ε = −∫ ∫  

 
x,yz MT =  (2.4) 

where EIy is the bending stiffness of the beam. 
 
2.1.2 Timoshenko 

The Timoshenko beam theory is based on the following displacement field: 
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where the longitudinal displacement uq is no more proportional to the gradient w,x of transverse 
displacement but to a new parameter θy that denotes the rotation of the cross section. The normality 
assumption of Bernoulli theory is thus relaxed and a constant transverse shear strain over the cross 
section (w,x + θy) is assumed. 
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The strain energy includes a term associated with the shearing strain: 
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The bending moment and the shear force can be expressed in terms of generalized displacements:  
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where ky is the shear correction factor. 
 
It is important to note that, from the kinematics (2.5&2.6) and the constitutive equations, shear stresses 
are found to be uniform over the cross section (2.8, ky = 1). However, when a cross-section is subject 
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to a shear force Tz, the shear strain 2εxz = τ xz /G should vary through the height of the cross section 
and vanish at free edges. Consequently, the cross section does not remain plane: it warps. The warping 
is the largest at the neutral axis and vanishes at the extreme fibers. This physical behavior is not 
compatible with the kinematics (2.5) that assumes a constant transverse shear strain distribution (2.6) 
and thus constant shear stress distribution. Therefore, the Timoshenko theory requires corrections. To 
compensate the fact that the displacement field violates the ‘no shear’ boundary condition at the edges 
of open profiles, approximate modifications are introduced by a shear correction factor ky (equation 
2.8).  
 
Shear correction factors: 
When the above described warping varies along the longitudinal (x) axis, the associated deformation 
increases the bending transversal displacements. These shear effects on deflection, which are 
significant for bending of short beams, are described by the shear correction factor ky. In the case of 
loading in the xz plane, this factor can be evaluated by an energy approach ([Frey, 2000, page 193]; 
[Pilkey, 1994, page 28 ]; [Batoz, 1990, page 62]…): 
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t is the thickness and Sy is the first moment in Jouravski formulation.  
The shear correction factor may be viewed as the ratio of total beam cross-sectional area to the 
effective area resisting shear deformation. Equation (2.9) gives an approximate value [Pilkey, 1994, 
page 28]. Other determinations of shear correction factors can be made by using the theory of 
elasticity ([Cowper, 1966]…). The inverse of the shear correction factor, called the shear deflection 
constant, is often required as an input in general purpose finite element analysis software. It is 
important to note that the computation of the shear correction factor necessitates the determination of 
the first moment distribution over the profile contour by choosing appropriate methods usually 
different for open and closed cross sections ([Calgaro, 1988, Chapter 2]…) 
 
2.1.3 High-order theories 

In high-order theories, the planar assumption is not kept. The following Reddy-Bickford displacement 
field was used by Wang [2000, page 14]: 
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where α = 4/(3h2) for rectangular cross sections. 
 
The strain-displacement relations of Reddy-Bickford beam theory are: 
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where β = 4/h2 for rectangular cross sections. 
 
Since the transverse shear strain is quadratic through the height of the beam and satisfies the ‘no shear’ 
boundary condition (values of α and β depend on the profile geometry), there is no shear correction 
factor in the Reddy-Bickford beam theory. The boundary conditions and the stress resultants for this 
theory differ from the others theories. Wang et al. [2000] developed the complicated equilibrium 
equations, generated solutions for some simple examples of rectangular cross sections, and developed 
a finite element model free from shear locking phenomenon. The deflections, slopes/rotations, shear 
forces and bending moments resulting from this theory are compared to those of Bernoulli and 
Timoshenko (available in most text books on mechanics of materials). Simple cases of simply 
supported beam with rectangular cross sections are analyzed analytically in the following paragraph 
and in chapter 4 while the associated numerical computations are done in chapter 5. 
 
2.1.4 Applications 

The theories presented in (§2.1.1, §2.1.2 & §2.1.3) are used hereby to evaluate the influence of shear 
deformation effects on the displacement of simply supported beams: Bernoulli beam theory (BBT), 
Timoshenko beam theory (TBT) that could be modified by introducing the shear correction factor 
(TBTM) and high order theories as Reddy-Bickford beam theory (RBT) [Wang, 2000]. 
 
Simply supported beam under uniformly distributed load 
Consider a simply supported beam under uniformly distributed load q0. Deriving the equilibrium 
equations with Bernoulli kinematic formulae (starting from equations 2.1-2.4), the maximal deflection 
of the Euler-Bernoulli beam (BBT) is: 
 

4
0

BBT
q L5w

384 EI
=  (2.12) 

 
By doing the same calculations for Timoshenko beam theory (starting from equations 2.5-2.8), the 
maximal deflection of the Timoshenko beam (TBT) is modified by introducing (equation 2.8) the 
shear correction factor k  (TBTM): 
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= +  (2.13) 

 
The shear correction factor for a rectangular cross section is 5/6 (equation 2.9, Cowper 1966, Pilkey 
1994…). 
In case of higher order theories [Wang, 2000, page 33], the expression of the deflection is much more 
complicated : 
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Where, for a rectangular cross section,  
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For a simply supported beam with a rectangular cross section submitted to uniform loading, the effect 
of shear deformation beam is thus proportional to the square of the ratio height to length: 
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w
ww
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2

BBT

BBTTBTM υ+=
−  (2.16) 

 
Figure 2.2 shows numerical results from the application of (2.12), (2.13) and (2.14) for different 
values of length to height ratio of the simply supported beam (L/h). E=210GPa, G= 84GPa. The 
TBTM is taken as a reference and the difference between its results and those of other theories is 
plotted in figure 2.2. It should be noted that the curve (RBT) is nearly on the horizontal axis. RBT and 
TBTM theories give similar results for this simple example. The difference is 0.001% as value for L/h 
= 8 and 9.10-07 % for L/h = 50. 

Figure 2.2 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection of 
rectangular beams submitted to a uniformly distributed load 
 
 
Simply supported beam with concentrated force P applied at mid span 
Similarly, for a concentrated force P applied at mid span of the beam: 
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3

TBTM
1 PL 1 PLw
48 EI 4 kGA

= +  (2.18) 
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As it is expected from equation (2.19), the difference between (BBT) and (TBTM) depends mostly on 
the square of the ratio L/h.  

Figure 2.3 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection of 
rectangular beams submitted to a concentrated force P at mid span 
 
It can be seen in figure 2.3 (where E=210GPa, G= 84GPa) that, for rectangular cross sections, 
neglecting shear deformation effects will lead to errors superior to 5% for short beams where h/L > 
1/8. The curve (RBT) is nearly on the horizontal axis. RBT and TBTM give also similar results for this 
simple example. The difference between the two theories is 0.061% for L/h = 8 and 0.00026% for 
L/h = 50. 
 
A numerical application is considered for a simply supported beam (L = 2m) with rectangular cross 
section 0.002 x 0.25m submitted to a concentrated force P = 10kN. The shear force and bending 
moment distributions [equations (2.4) and (2.8)] along the span coincide for TBT and BBT. The 
rotation computed with TBT theory is equal to the slope of BBT (4.57 10-03 rad). However, for RBT, 
the rotation (θy = 4.54 10-03) is different from the slope (w’ = 4.71 10-03). This is due to the higher-
order theory where both functions (θy and w’) along z describe the quadratic nature of the warped 
cross section (equation 2.11). It is interesting to note that for statically indeterminate structures, 
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different bending moments and shear forces result from (BBT), (RBT) and (TBT) since displacements 
(and hence stress resultants) are not the same for these theories. 
 
Comparison of shear deformation effects for some thin walled profiles 

Figure 2.4: (a) Square tubular cross section (b = 0.1m, t = 0.001m), (b) open I cross section 
(b = 0.08m, tf = 0.01m, h = 0.38m, tw = 0.0035m), (c) tubular cross section (b = 0.3m, tf = 0.008m, h = 
0.8m, tw = 0.001m) and (d) T cross section (b = 0.4m, tf = 0.01m, h = 0.4m, tw = 0.01m) 
 
The influence of shear bending effects is analyzed for different cross sections (a), (b), (c) and (d) of a 
simply supported beam where E=210GPa, G= 84Gpa. Two loading cases are considered: uniformly 
distributed load (table 2.1 and figure 2.5a) and concentrated load at mid length (table 2.2 and figure 
2.5b). Shear correction factors are calculated for the cross profiles in figure 2.4 by using the results of 
Cowper [Cowper, 1966] who considered the influence of geometrical and material properties of the 
cross section. The difference between the modified Timoshenko and Bernoulli deflections calculated 
((2)/(1)) in tables 2.1 and 2.2 show the influence of shear deformations (2) by comparing it to bending 
moment effects (1) on the maximal deflection. The difference between simple and modified 
Timoshenko deflections ((3)/(1)) calculated in the seventh column of tables 2.1 and 2.2 show the 
influence of the shear correction factor. It could be seen from table 2.2 that short beams are sensitive 
with respect to shear deformation effects. The influence of shear deformation on deflections reaches 
10% for L/h smaller than 10. In general, this percentage is smaller for a uniformly applied loading 
(table 2.1) than for a concentrated load (table 2.2). In particular, the influence is smaller for the T 
section than for the I and tubular cross sections in figure 2.4. It could be concluded that the deflection 
due to shear deformations is small compared to the deflection due to flexure. 
 
 
 
 
Table 2.1 Shear deformation effects on the maximal deflection [m] of beams (Figure 2.4) submitted to 
a unit uniformly distributed load 

(a) (b) (c) (d) 
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Profile L/h wTBTM (1) wTBTM-wBBT (2) (2)/(1) wTBTM-wTBT (3) (3)/(1)

(a) 1.57E-06 3.47E-08 2.2% 1.97E-08 1.3%
(b) 20 2.76E-06 6.07E-08 2.2% 3.23E-08 1.2%
(c) 5.25E-06 1.15E-07 2.2% 8.60E-08 1.6%
(d) 1.90E-06 2.38E-08 1.2% 1.19E-08 0.6%

(a) 5.05E-07 1.95E-08 3.9% 1.11E-08 2.2%
(b) 15 9.08E-07 3.41E-08 3.8% 1.81E-08 2.0%
(c) 1.73E-06 6.44E-08 3.7% 4.84E-08 2.8%
(d) 6.16E-07 1.34E-08 2.2% 6.68E-09 1.1%

(a) 1.05E-07 8.68E-09 8.3% 4.92E-09 4.7%
(b) 10 1.88E-07 1.52E-08 8.1% 8.06E-09 4.3%
(c) 3.57E-07 2.86E-08 8.0% 2.15E-08 6.0%
(d) 1.25E-07 5.94E-09 4.8% 2.97E-09 2.4%

(a) 4.48E-08 5.56E-09 12.4% 3.15E-09 7.0%
(b) 8 8.04E-08 9.71E-09 12.1% 5.16E-09 6.4%
(c) 1.53E-07 1.83E-08 12.0% 1.38E-08 9.0%
(d) 5.26E-08 3.80E-09 7.2% 1.90E-09 3.6%

(a) 3.84E-09 1.39E-09 36.1% 7.88E-10 20.5%
(b) 4 6.84E-09 2.43E-09 35.5% 1.29E-09 18.8%
(c) 1.30E-08 4.58E-09 35.3% 3.44E-09 26.5%
(d) 4.00E-09 9.51E-10 23.8% 4.75E-10 11.9%  

 
Table 2.2 Shear deformation effects on the maximal deflection [m] of beams (Figure 2.4) submitted to 
a unit concentrated load at mid span 

Profile L/h wTBTM (1) wTBTM-wBBT (2) (2)/(1) wTBTM-wTBT (3) (3)/(1)

(a) 1.26E-06 3.47E-08 2.8% 1.97E-08 1.6%
(b) 20 5.97E-07 1.60E-08 2.7% 8.49E-09 1.4%
(c) 5.40E-07 1.43E-08 2.7% 1.08E-08 2.0%
(d) 3.87E-07 5.94E-09 1.5% 2.97E-09 0.8%

(a) 5.44E-07 2.60E-08 4.8% 1.48E-08 2.7%
(b) 15 2.57E-07 1.20E-08 4.7% 6.37E-09 2.5%
(c) 2.32E-07 1.07E-08 4.6% 8.06E-09 3.5%
(d) 1.65E-07 4.46E-09 2.7% 2.23E-09 1.3%

(a) 1.71E-07 1.74E-08 10.2% 9.85E-09 5.8%
(b) 10 8.06E-08 7.98E-09 9.9% 4.24E-09 5.3%
(c) 7.28E-08 7.16E-09 9.8% 5.38E-09 7.4%
(d) 5.06E-08 2.97E-09 5.9% 1.48E-09 2.9%

(a) 9.24E-08 1.39E-08 15.0% 7.88E-09 8.5%
(b) 8 4.36E-08 6.39E-09 14.7% 3.40E-09 7.8%
(c) 3.94E-08 5.73E-09 14.5% 4.30E-09 10.9%
(d) 2.68E-08 2.38E-09 8.9% 1.19E-09 4.4%

(a) 1.68E-08 6.94E-09 41.4% 3.94E-09 23.5%
(b) 4 7.84E-09 3.19E-09 40.7% 1.70E-09 21.6%
(c) 7.07E-09 2.86E-09 40.5% 2.15E-09 30.4%
(d) 4.24E-09 1.19E-09 28.1% 5.94E-10 14.0%  
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The same results are illustrated in figure (2.5) where the difference between TBTM and BBT is shown 
for a uniform distributed load and a mid-length applied concentrated load. It could be seen that the 
amount of shear effect of the T section (d) is different from the others. The curves corresponding for 
(a), (b) and (c) nearly coincide. Again, it is noted that the shear effects are important for short beams. 
 

Figure 2.5 Variation [(wTBTM-wBBT)/ wBBT] of shear deformation effects on maximal deflection [m] of 
beams (Figure 2.4) submitted to a uniformly distributed load (a) and to a unit concentrated load at mid 
length (b) 
 

2.2 Uniform and non uniform torsion (Mixed torsion) 

2.2.1 General overview 
The torsional behavior of a beam is mainly described by twisting angles (θx) of its cross sections with 
respect to the longitudinal axis (x) passing through the torsional center C (yc, zc). The angle of twist 
per unit length at a particular position is calculated as a function of the torsional moment Mx resulting 
from the applied load. However, when submitted to a torsional deformation, a cross section does not 
remain planar: it generally warps. This warping is measured by an axial displacement u. 
The total external torque is balanced by the torsional moment Mx that includes: 
- a first part (Mx

st), well known in the engineering text books of Strength of Materials, characterizes 
the uniform torsion of Saint Venant and is presented in the paragraph 2.2.2; 
- a second part (Mx

ω), caused by the prevented warping of the cross section, characterizes the non 
uniform torsion and is presented in paragraph 2.2.3. 
If both Mx

st and Mx
ω are different from zero, the torsion is known to be mixed: 

Mx = Mx
st + Mx

ω (2.20) 
 
2.2.2 de Saint Venant torsion (uniform torsion) 
Assumption 
The particular case of uniform torsion (Saint Venant) is based on the following assumption: 
HYPSV: the warping (u) is constant along the longitudinal axis (x) of the beam. 
Kinematics 
The axial displacement of any point q of the cross section under Saint Venant torsion is: 
u = - ω(y,z) θx,x(x) (2.21) 
where θx,x is the rate of twist and ω(y,z) is the warping function of the cross section.  
The expression of the displacement field is: 
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When the assumption HYPSV (uniform warping along x) is adopted, ωθx,x is assumed to be a constant 
rate with respect to x. Thus, its derivative ωθx,xx vanishes and the linear strain vector deduced from 
(2.22) is: 
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Equilibrium equation 
The torsional equation (2.26) is usually deduced from equilibrium considerations. Alternatively, the 
principle of virtual work can be used with Hooke’s law and strain expressions (2.23). The differential 
equilibrium equation (2.26), relating the rate of twist θx,x to the torsional moment Mx (2.24) and to the 
torsional stiffness GK (2.25), is obtained after integrating and isolating the virtual twisting angle θx

*. 
The torsional resultant is found to be: 
 

∫ τ−−τ−=
A

xyCxzCx dA])zz()yy[(M  (2.24) 

 
Let the torsional constant K be given by the expression (2.25):  

 

∫ −+−+−+−−=
A

2
C

2
CCy,Cz, dA])zz()yy()zz()yy([(K ωω  (2.25) 

 
then 
 

GK
Mx

x,x =θ  (2.26) 

 
Equation (2.25) shows that the cross section warping influences the value of K. The warping function 
(ω) must first be computed in order to determine the torsional stiffness and to solve the Saint-Venant 
torsional problem. The evaluation of ω is different for each cross section and depends on the boundary 
conditions of the shear stresses and on the geometrical shape of the profile, especially whether the 
cross section is open or closed. Batoz et al. [1990, page 170] developed approximate expressions for 
the warping function (ω) of some thin-walled cross sections so that K can be explicitly evaluated. 
However, they insisted on the fact that, for open thin walled profiles, approximated values of (ω) lead 
to an incorrect value of K if directly substituted in (2.25). Deducing the torsional constant from 
explicit values of ω is detailed in [Batoz, 1990, page 171]. 
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The Saint Venant theory (with assumption HYPSV) is exact in the case of uniform torsional moment 
distribution without restrained warping of the cross sections. Similarly, for some particular profiles (   , 
+, …) which, due to their radial symmetry, do not warp, the Saint Venant theory of torsion is always 
exact, even if the torsional moment distribution is not uniform. For other particular geometries (⊥, ∠, 
…), the contour warping vanishes and, if the thickness warping is neglected, the de Saint Venant 
theory is used. For all these particular cases, equation (2.26) solves exactly the torsional problem. In 
other general cases, the Saint Venant torsional theory describes only a part of the problem (equation 
2.20) and the term Mx in (2.26) must be substituted by Mx

st: 
 

GK
Mst

x
x,x =θ  (2.26’) 

 
Stress computations 
In this case of pure uniform torsion, the beam is only twisted and each thin walled member resists to 
this uniform torsion by components of shear stresses τxs

st. s is the coordinate along the contour profile 
line. There are no longitudinal stresses σx directly associated with this torsion. The behavior depends 
to a large extent on the cross sectional geometry and specifically, whether the section is open or 
closed. When the cross section is an open profile, shear stresses due to the Saint Venant torsion (τxs

st) 
vary linearly through the thickness of the walls with zero value on the midline. The maximal value of 
these stresses, which occurs at upper and inner skins, is proportional to the torsional moment Mx

st and 
to the thickness ‘e’ and is inversely proportional to the uniform torsional stiffness K. 
 

3
i i

1K l e
3

= ∑  (2.27) 

st
st x
xs

M
e

K
τ =  (2.28) 

 
When the cross section is a closed profile consisting of one or more cells, uniform shear stresses flow 
through the periphery without changing sign across the thickness of the thin walls. The stiffness is 
calculated from Bredt formulae ([Kollbrunner, 1970], [Murray, 1986], …). Equations (2.29) are given 
in case of unicellular cross sections: 

 
24AK ds

e

=
∫

 (2.29) 

st
st x
xs

M
2Ae

τ =  (2.30) 

where A is the area enclosed by the cell. The mean value of these shear stresses at a point of the 
contour is proportional to the torsional moment Mx

st and inversely proportional to the thickness and to 
the area limited by the contour of the cross section. 
 
Theoretically, a closed profile resists to torsion by a global stiffness (2.29) in case of unicellular 
profile) related to the circulation of a constant flow along contour (2.30) and by a local stiffness 
specific to each element of the section (2.27) as if the beam was constituted by the assembly of 
longitudinal strips. For thin profiles, the local stiffness is negligible when compared to the global one. 
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The associated stresses whose distribution is linear through the thickness (equation 2.28) are also 
negligible when compared to those associated to the global stiffness (2.30). At this stage, it is 
important to emphasize the fact that the behavior of closed profiles (comprising one or more cells) 
constitutes a problem entirely different from that of open cross sections. Many studies ([Kollbrunner, 
1970], [Murray, 1986]…) presented detailed descriptions of the calculation of the torsional stiffness 
and the stress distribution depending on the type of thin-walled profiles (open or closed). The basic 
formulae are found in text books on Strength of Materials and are commonly used by engineers in 
beam analyses regardless of the validity of their application. An interesting analogy between non 
uniform torsion and shearing flexure has been highlighted by De Ville [1990, page 3.54]), showing the 
similitude between analyses including shear deformation effects and non uniform torsional warping 
effects. 
 
Application: uniform torsion of open and closed profiles 
Two thin cylindrical tubes (figure 2.6) with identical dimensions (radius = 200mm and thickness = 
8mm) differ by a slit so that the cross section of the second tube is an open profile. An exterior torque 
induces uniform torsion for both closed and open cross sections with the same torsional moment 
distribution. The strength and stiffness of both open and closed cross sections are compared by using 
equations (2.27) and (2.29). The tube with open cross section resists to torsion by its local stiffness and 
behaves as a narrow rectangular section whose dimensions are equal to the length of the developed 
average line (2пr) and to the thickness. However, for the close tubular section, an additional stiffness 
(global stiffness, equation 2.29) is proportional to the square of the entire surface (пr2)2. The stresses 
resulting from the same torque are 75 times larger in the open than in the closed cross section. The 
twisting angle is 1875 times larger in the open profile.  
For closed cross sections, the global stiffness is much higher than the local one. When the local 
stiffness is not taken into account the error on the value of twisting angle is 0.05%.  
It should however be noted that for this particular geometry, in arbitrary loading or boundary 
conditions, the closed cross section is always submitted to uniform torsion since it does not warp. 
However, the open cross section warps and the computations for the open profile should include 
warping effects. 
 

Figure 2.6 Closed and open cross sections 
 
In general, the difference between the behavior of open and closed profiles is more important for Saint 
Venant torsion (free warping of beams) than for non uniform torsion (prevented warping). Boundary 
conditions with prevented warping modify considerably the behavior of open profiles which are 
somehow strongly stiffened. The influence of this phenomenon is much less marked on the closed 
boxes and the massive sections than on open profiles. Comparisons between the influence of these 
effects on open and closed cross sections will be shown in paragraph 2.2.3. 

400 400 mm
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2.2.3 Non uniform torsion 
For arbitrary profiles, loading cases and boundary conditions, an important non uniform torsional 
warping occurs so that the Saint Venant torsional theory, strictly restricted to uniform torsion, is no 
longer sufficient and the equilibrium equation (2.26) no longer valid. A thin walled member resists to 
non uniform warping by both normal and shear stresses. The stress resultant, i.e. the torsional moment, 
is divided into two parts (equation 2.20). Shear stresses τxs

st, as presented in paragraph 2.2.2 (equation 
2.28), derive from the Saint Venant part (Mx

st) and both warping normal stresses σx
ω

 and warping 
shear stresses τxs

ω
 derive from the non uniform part (Mx

ω). Usually, the kinematic formula (2.21) is 
generalized to study the non uniform torsion for a thin walled cross section for arbitrary variation of 
twisting rate θx,x. The analysis of torsional behavior of thin walled sections is generally presented by 
different methods for open and closed cross sections (e.g. [Murray, 1986], [Gjelsvik, 1981], 
[Shakourzadeh, 1995], …).  
 
2.2.3.1 Vlassov theory for open cross sections 
Assumptions 
The simplest non uniform torsional theory of a thin walled open cross section is derived from Vlassov 
theory by neglecting: 
-HYPV1: the shear strain εxe, characterizing the change of angle between longitudinal and thickness 
coordinate lines; x and e are the coordinates along the longitudinal axis and through the thickness of 
the mid wall respectively. 
-HYPV2: the shear strain εxs on the mid wall, characterizing the change of angle between longitudinal 
and contour coordinate lines; x and s are the coordinates along the longitudinal axis and the contour 
line.  
The first assumption results from the equilibrium conditions and the geometry of the profiles. The 
component τxe of shear stresses (τxe would be perpendicular to the contour) vanishes at the external 
fibers in case of absence of surface loading. Since the walls are very thin, the shear stresses inside a 
thin-walled member are nearly parallel to the contour; τxe is neglected and the non zero remaining 
component is τxs. The non zero shear strain component is εxs. An open thin walled beam is thus 
assimilated to a shell with undeformed section. 
The second assumption introduced by Vlassov [1961, Ch I. §2.3.] considers that warping shear strains 
at the midline are of a secondary nature and are neglected in the kinematic description. Two coordinate 
lines along x and s (for e = 0), initially perpendicular before loading, are supposed to remain 
perpendicular after deformation. This is exact for open profiles when the warping is the same along the 
longitudinal axis x (the torsional moment is constant along the length of the beam with free warping 
boundary conditions). However, when this is not the case, this assumption is kept to simplify the 
developments of open profiles.  
 
Kinematics 
In Vlassov kinematic formulation, similarly to Saint Venant kinematic formulation (2.21), the 
displacement field is: 
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The axial displacement u is assumed to be proportional to the rate of the twisting angle θx,x; the 
warping is then calculated by (2.21) where θx,x is no longer constant. The explicit value of Vlassov 
warping function ω (2.32) is usually deduced [Gjelsvick 1981 §1.1; Murray 1984 page 71; Batoz 1990 
page 193; …] from the above assumptions (HYPV1, HYPV2) neglecting shear deformations and is 
divided into contour warping (or first order warping, ω1 in 2.33) and thickness warping (second order 
warping, ω2 in 2.33). ω1 (Vlassov 1961 Ch. I §4; Calgaro 1988 page 75… ) is called the sectorial area 
and is generally used in the literature.  

∫ +=
s

0
nehhdsω  (2.32) 

∫=
s

0
1 hdsω  ehn2 =ω  (2.33) 

where h is the distance from the shear center C to the tangent to the mid wall at the given point q. hn is 
the distance from the normal at the given point to the shear center C (figure 2.7). 
 
De Ville (1989, §3.4.2) deduced a general expression (ω*) for an arbitrary open profile from the 
expression of shear stresses computed with the exact warping function of a thin rectangular profile. He 
assumed that each open profile behaves similarly to a thin rectangular profile with the same 
dimensions. His warping function is also divided into a contour warping found to be exactly the 
sectorial coordinate ω1 and a second order warping ω2

*. 
 
The thickness warping function ω2 was also introduced by Gjelsvik [1981, page 12], Batoz [1990, 
page 193] and Prokić [1990, 1993, 1994 and 1996] by assuming that the warping varies linearly 
through the thickness and vanishes along the mid-line. This second order warping derives from 
HYPV1 (developments are detailed in paragraph 3.2). 
The warping function ω can be written in initial Cartesian system (x,y,z): 
 

c cd (y y )dz (z z )dyω = − − −  (2.34) 

 
Figure 2.7 Cross sectional geometry 
 
For open profiles, the linear elastic strain expression is deduced from (2.31): 
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 (2.35) 

 
The above listed equations (2.31 - 2.35) are limited to open profiles since: 
- The warping function ω is a continuous function with respect to the contour coordinate s of the 
profile. Equations (2.32), (2.33) and (2.34) allow the computation of an increment dω with respect to s 
starting from an arbitrary origin for which ω is equal to zero. The resulting warping function is 
therefore discontinuous along the contour of a cell without a slit; and this discontinuity is physically 
inadmissible.  
-These explicit expressions of ω cannot describe at all the behavior of a closed profile since they are 
developed from hypothesis (HYPV2). This assumption (zero shear strain at the mid wall), acceptable 
for open profiles, is not admissible at all for closed profiles. It has been seen in paragraph 2.2.2 that 
even in the case of uniform torsion, shear stresses associated to important shear strains flow through 
the periphery of a cell.  
 
Equilibrium equations 
The torsional equilibrium equation is deduced from the principle of Virtual work by using Hooke’s 
law and expressions (2.35). The following equation is obtained after integration and isolating the 
virtual twisting angle θx

*: 
 

0mmGKEI xx,xxx,xxxxx,x =++θ+θ− ωω  (2.36) 

with ∫ −−−=
A

vycvzcx dA)f)zz(f)yy((m  and  ∫=ω
A

vxx dAfm  ω  

fvx, fvy and fvz are the components of external volume forces. 
 

st
x x,xM GK= θ  (2.37) 

ω x,xxB EI= − θ  (2.37’) 

where EIω is the non uniform torsional stiffness. 
 
Thus, by using (2.37) and (2.37’), equation (2.36) can be transformed to (2.38): 
 

st
,xx x,x x ,x xB M m m 0ω+ + + =  (2.38) 

 
A first part (Mx

st) of the torsional moment arises from the uniform torsion (Saint Venant torsion). A 
second part (Mx

ω) of the total torsional moment arises from the restraint of warping when the 
bimoment, a new internal equivalent force (B), varies along a beam. B is proportional to the second 
derivative of the rotation angle (eq. 2.37’). 
 
In most analyses using the hypotheses of thin walled beams (assumption HYPTW: thickness << 
contour length), the thin wall is reduced to a contour line and the second order warping (across the 
thickness, ω2) is neglected. The distribution of the warping function is often calculated along the 
centerline. Kinematics does not include second order warping and the resulting longitudinal 
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equilibrium equation does not include the part of Saint Venant. The term Mst
x,x is not present in (2.38) 

and the Saint Venant term (GKθx,xx) is eliminated from equation 2.36. The torsional moment is thus 
assumed to induce entirely non uniform warping stresses while the part of uniform torsion is not 
included in the equilibrium equation. This is in general theoretically inaccurate since when the element 
twists, a part of the torque is obtained from the theory of Saint Venant (equation 2.20). The error 
resulting from this assumption (HYPTW) depends on the cross section profile, the loading and the 
geometry of the structure. In analyses using the kinematical hypotheses of thin walled beams 
(HYPTW), the results are often adjusted by introducing the Saint Venant part in the equilibrium 
equation (GKθx,x in 2.36) or in the strain energy (GKθx,x

2) in order to better describe the phenomenon 
[Murray, 1986, page 66; Calgaro 1988 page 80; Mohri, 2003, equation (11a); …]. 
Kolbrunner [1970, page 195] establishes a classification for some profiles and bridge sections. 
Neglecting Saint Venant term is less important for cold formed steel profiles and orthotropic steel 
deck bridges than for rolled profiles and concrete bridges. 
 
Stress computations 
When a thin-walled beam is submitted to non uniform torsion (θx,xx≠0), normal warping stresses σx

ω 
arise from the elongation of longitudinal fibers. These normal stresses, non uniform along the 
longitudinal axis and inducing τxs

ω, can be found from the associated deformations (by applying 
Hooke’s law to the first row of 2.35). However, it is the equilibrium of an element of a thin-walled 
beam that enabled Vlassov to find the value of warping shear stresses τxs

ω as they equilibrate the 
variation of σx

ω. Their distribution shape over the contour is found to be parabolic along straight 
segments of a profile. These shear stresses τxs

ω cannot be determined at mid walls directly from the 
associated shear deformations (by using Hooke’s stress-strain relation with the second and third rows 
of 2.35) because if done so, they would be equal to zero (2.39). 
 
The shear strains εxs and εxe , evaluated by using the complete warping function (2.32), are found to 
vanish at the mid wall so that: 
 
2εxy

 = 0  
2εxz = 0 (2.39) 
 
The equalities (2.39) are expected since they constitute the hypotheses HYPV2 and HYPV1 
respectively. In (2.35), normal strains (εx) are due to torsional warping while shear strains are those of 
Saint Venant uniform torsion kinematics. By using (2.32) as warping function, the Saint Venant 
strains vanish at the midwall. This is compatible with the second assumption of Vlassov (HYPV2) and 
shows that the warping function (2.35) is not exact since it does not include the entire warping effects 
(the resulting shear wrongly vanishes at the midwall). 
Once again, the application of the assumption HYPV2 is shown to be restricted for the torsion of open 
cross sections. It cannot be kept for contours composed of closed cells because both Saint Venant 
shear stresses (nearly uniformly distributed across the wall of a cell) and warping shear stresses do not 
vanish through the thickness and their associated shear strains cannot be ignored.  
General equilibrium equations are needed to calculate the shear stresses while the normal stresses can 
be directly derived from Hooke’s law. Shear stresses (found equal to zero if computed from 2.35) can 
be deduced from the equilibrium equation in the longitudinal equation where the longitudinal stresses 
are calculated from the kinematic formulae. 
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Analogy between Vlassov non uniform torsion and Bernoulli beam theory 
The theories of bending and torsion are often compared in the literature by pointing out an analogy 
between Bernoulli bending theory and Vlassov torsional theory for open cross sections([Kollbruner 
1970 chapter 5]; [De Ville 1989 page 3.54] by referring to the work of Massonet and Cescotto…).. De 
Ville established an original analogy between Timoshenko and Benscoter theories for closed cross 
sections. Van Impe (2001) inspected another one between the differential equations for flexural 
buckling and torsional buckling in order to solve the torsional buckling problem by using the flexural 
buckling solutions available in the literature. 
Hereafter, this interesting similitude is highlighted by showing the analogy between the non uniform 
torsional part of Vlassov theory and Bernoulli simple beam theory (The comparison between 
Benscoter and Timoshenko theories is developed in the following paragraph):  
 
 Non uniform part of Vlassov Torsion theory  Bernoulli beam theory 
 (bimoment) B  My (bending moment) 
 (non uniform torsional moment) Mω

x  Tz (shear force) 
 (twisting angle) θx  w (bending displacement) 
 (rate of twist as warping variation along x) θx,x   w,x (tangent taken as the slope) 
 (warping function) ω  z (bending distribution over the profile) 
 xx,xEIB θ−= ω   xx,EIwM −=  

 x,x BM =ω   x,MT =  

Analogy between the non uniform part of Vlassov torsion theory and Bernoulli beam theory  
 
- Bernoulli assumed zero bending shear strains (and thus zero bending shear stresses) since his theory 

is based on the normality hypothesis: the cross section remains planar and normal to the longitudinal 
beam axis. Similarly, Vlassov assumption (HYPV2) neglects warping shear strains (and thus 
warping shear stresses). He described the warping of thin walled structures by a longitudinal 
elongation (according to x) of the midwall of a thin shell with a rigid undeformable section without 
allowing any deformation of this midwall in the (xs) plane. Thus, both bending shear stresses and 
strains are neglected in Bernoulli theory (equation 2.3) and both shear warping stresses and strains 
(2.35) are not included in Vlassov theory. 

 
- Since Bernoulli theory does not allow for shear calculations, shear stresses must be deduced from 

equilibrium in the longitudinal direction of the element according to the Jourawsky ‘engineering’ 
approach. Hooke’s law cannot be used with kinematic formula (2.2) to derive shear stresses due to 
the shear force because if done so, they would be equal to zero. Similarly, determining torsional 
warping resultants by using Hooke’s law with (2.35) leads to incorrect results. The equilibrium in the 
longitudinal direction of the element must be considered as in most works based on Vlassov warping 
function [Batoz, 1990, page 215; De Ville, 1989, page 3.56; …]. 

 
- For the same reason, the torsional moment (2.24) cannot be calculated directly from (2.35) as a stress 

resultant by using shear-strain Hooke’s law because if done so, the warping contribution is wrongly 
considered to vanish at the mid wall and the torsional moment is wrongly reduced to the uniform 
torsional moment. To solve this problem, equilibrium equations are used to determine shear warping 
internal forces as in simple Bernoulli beam theory where shear forces Ty and Tz are calculated from 
the equilibrium equations and not as stress resultants because if so, they would be found to be equal 
to zero. 
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The equilibrium of on an element (ds dx) in the longitudinal axis x (figure 2.8) must be considered in 
order to evaluate the tangential stresses and the corresponding resultants:  

Figure 2.8 Internal stresses acting on the edges of an element (ds dx) 
 

xs x
vx

( t) ( t) tf
s x

ω∂ τ ∂ σ
= − −

∂ ∂
 (2.40) 

So that: 
 

xs
x,x x

s A

( t)ω ds ω dA m
s

ω

ω
∂ τ

= − σ −
∂∫ ∫  (2.40’) 

 
By integrating by parts (2.40’) and taking into account that shear stresses at the extremities of the 
contour are zero, 
 

x xs ,x x
s

M hds B mω ω
ω= τ = +∫  (2.41) 

or in term of displacements: 
 

ω
x ω x,xxx xM EI m ω= − θ +  (2.41’) 

 
By inserting (2.41) into (2.36) and then by using equation (2.20), the following equations are found : 
 

s
x,x x,x xM M m 0ω + + =  so that x,x xM m 0+ =  (2.42) 

 
 
2.2.3.2 Benscoter theory 
Warping function for closed cross sections 
The non uniform torsional analysis of closed cross sections is complicated by the fact that torsional 
shear strains (2εxs) are not negligible at the mid wall and must be included. As stated before, even in 
the case of uniform torsion, shear stresses vanish on the mid wall of an open cross section but flow 
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along the mid wall of a cell in a closed cross section (eq 2.30). The assumption of Vlassov theory 
HYPV2 is no longer acceptable and the calculations presented in the previous paragraph are no longer 
valid. For Benscoter theory, the warping function is calculated by an approximate theory assuming 
that only Saint Venant shear strain (uniform torsion) is considered [Murray, 1986, page 72-73]. 
Similarly to the case of open cross section calculations with Vlassov, non uniform shear stresses 
(which are considered to be of secondary nature) are neglected and Saint Venant shear stresses are 
taken into account. However, since the behavior of closed cross sections is different from that of open 
cross sections, the developments are more complex. The warping function is found to be different for 
each case. For closed cross sections, after changing and adapting the notations of [Murray, 1986], the 
warping function is found to vary along the contour as: 
 

∫
λ

−=
s

0

i ds)
e

h(ω  (2.43) 

 
λi are the unknowns that result from the geometry of the closed cross section and determine the Saint 
Venant torsion constant of multi-celled profile ([Murray, 1986], [Kollbrunner, 1970],…). The second 
order warping is neglected in (2.43). 

 
Kinematics of Benscoter theory 
Benscoter [1954] presented a theory for contours which are composed of closed cells where the out of 
plane displacement of the cross section is assumed to be proportional to the warping function ω(y,z) 
and to the rate of a deformation parameter χ(x) that is found to be a function of the angle of rotation 
θx: 
 
u = - ω (y,z) χ,x(x)  (2.44) 
 
The axial displacement is no longer assumed to be proportional to the gradient of the torsional angle as 
in Vlassov theory, but to χ,x.  
The kinematic description of the displacement field can be formulated as follows: 
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 (2.45) 

 
The strain displacement relations (2.46) are deduced from the displacement field (2.45) in case of 
linear analysis: 
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 (2.46) 

 
This theory is more general than the previous one since it takes into account the effects of non uniform 
warping in shear strains, contrary to Vlassov formulation. If χ,x is taken equal to θx,x, the strain-
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displacement relations (2.46) are reduced to those of Vlassov or Saint Venant transverse shear strain 
(2.35). So that for the same cross section (the shape of warping function along the contour ω is the 
same), Benscoter degenerates into Vlassov theory. These two theories degenerate into Saint Venant 
theory if χ,xx and θx,xx are assumed to be equal to zero. Indeed, in (2.46), normal strains (εx) and shear 
strains (εxy and εxz) are found to include warping effects. De Ville [1989] transformed (equation 2.46) 
to (equation 2.47) so that the Saint Venant part can be explicitly found. The additional warping effects 
can be found from the difference between twisting angle gradient θx,x and warping degree of freedom 
χ,x. 
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 (2.47) 

 
Equilibrium equations 
The simplest way to solve the torsional problem is to evaluate χ as a function of the twist θx. The 
principle of virtual displacements (χ*, θx

* ) is used and the resulting equations can be written in terms 
of displacements and transformed (as in [Murray, 1986, page 132]) to (2.49) or (2.50).  
The equation relating χ to θx is found to be: 
 

2
c

x
xxx,2

2

x,x,x GI
m1
η

+χ
α
η−

−χ=θ ω  (2.48) 

 

where 
c

2

I
K1−=η , 

ω
η=α

EI
GK22 . 

K is the constant torsion, Ic is the polar constant. 
 
Therefore, one equilibrium equation can be written either with respect to χ (2.49) or to θx (2.50). 
 

0
I

KImm
I

KIGKEI
c

c
xx,xxx,x

c

c
xxxx,x =

−
++χ

−
+χ− ωω  (2.49)  

or 
 

0
)KI(G

EImmmGK
KI
IEI

c
xx,xxx,xxx,xxxxx,x

c

c =
−

−++θ+θ
−

− ω
ω

ω  (2.50)  

 
The internal forces are also computed as in equations (2.40 and 2.41) : 
 

x,x
s
x GKM θ=  

xxx,xx EImM χ−= ωω
ω  

xx,EIB χ−= ω  (2.51) 

 
It is important to note that the torsional moment (2.52), calculated from kinematics (2.43) as a stress 
resultant (from 2.24), does not include second order warping effects.  
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Mx = x,xcGI θ x,c )KI(G χ−−  (2.52) 

 
If second order warping effects are taken into account, the equilibrium equation can be written with 
respect to θx as follows: 
 

0
)KI(G

EImmm)KK(G
KI

)KI(EI

c
xx,xxx,xxx,xoxxxx,x

c

oc =
−

−++θ++θ
−
+

− ω
ω

ω  (2.53)  

Ko is the local rigidity specific to each element of the section and calculated by (2.27). 
 
Limitations of Benscoter theory and bending – torsion analogy 
It is important to note that the formulation (2.45) is not exact since the approximate warping function 
(ω) (2.43) is calculated by assuming that the shear stresses are those of uniform torsion. The 
kinematics, more general than in Vlassov analysis, takes into account more non uniform warping 
effects but they still approximate the real torsional state. As shown below, the associated warping 
shear strains (2.46) and stresses result from an approximate analysis of a very complex stress state. 
More developments are required for more accurate theories.  
 
As stated in paragraph 2.3.1, an analogy between Timoshenko bending beam theory and Benscoter 
torsional theory is highlighted by DeVille (1989, page 3.54) and is developed hereafter: 
 
 Non uniform part of Benscoter Torsion theory  Timoshenko beam theory 

 (bimoment) B   M (bending moment) 
 (non uniform torsional moment) Mω

x  T (shear force) 
 (twisting angle) θx   w (bending displacement) 

 (warping parameter variation along x) χ,x   -θy (tangent different from the slope) 
 (warping function) ω  z (profile bending distribution ) 

 xx,EIB χ−= ω   xx,EIwM −=  

 x,cx )KI(GM χ−−=ω   )w(GAT x,y +θ=  

Analogy between the non uniform part of Benscoter torsion theory and Timoshenko beam theory 
 
- The normality assumption of Bernoulli is relaxed in Timoshenko beam bending theory so that shear 
effects and a constant state of transverse shear strain is included. Similarly, Vlassov assumption 
HYPV2 is relaxed in Benscoter formulation. The shear strains εxs in the mid wall are not neglected.  
 
- In bending, constant shear stresses and strains with respect to the cross section are computed with 
Timoshenko kinematics. They violate boundary conditions and require shear correction factors to 
compensate for this inexactitude. In torsion, shear strains and stresses computed from approximate 
Benscoter kinematics are found to be constant along a prismatic wall. By using Hooke’s law and (2.46 
or 2.47), an approximate distribution for torsional warping shear stresses is found to be constant along 
a straight part of a contour (ω is linear with respect to s for prismatic thin walled cross sections). 
Besides, the kinematics gives non zero constant shear strain εxe across the thickness: 
 

)(h2 x,xx,xnxe χ−θ=ε  (2.54) 
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This constant non zero value (2.54) of εxe across the thickness violates the boundary condition and is 
not taken into account in the developments that lead to (2.50 – 2.51). Both (τxs and τxe) stress states 
violate the zero boundary condition since, as explained in paragraph 2.2.3.1 (HYPV1), the component 
of shear stresses which is normal to the outer contours should vanish in case of absence of surface 
loading.  
 
- For bending, Jourawsky engineering approach is needed to calculate the shear stresses and force by 
considering an equilibrium equations. Similarly, the exact parabolic shaped distribution of torsional 
stresses should be deduced from the equilibrium equation (2.55) in the longitudinal direction. 
 

)s,x(p
x

e
s

−
∂
σ∂

−=
∂
φ∂  (2.55) 

where φ is the flow of the shear stresses through the thickness and p(x,s) is a distributed surface load 
acting along the longitudinal axis x. 
 
2.2.3.3 Application: Non uniform torsion of open and closed profiles 
In this application, Vlassov and Benscoter theories (developed in paragraphs 2.2.3.1 and 2.2.3.2) are 
applied to the case of non uniform torsion of asymmetrical closed and open cross sections and the 
effects of second order warping on Vlassov and Benscoter formulations are computed. In Vlassov 
formulation, the warping is proportional to the gradient of the twisting angle (equation 2.31) while in 
Benscoter formulation, the warping is proportional to a new parameter (2.45).  
Two cross sections, open (figure 2.9b) and closed (figure 2.9c), are submitted to a non uniform 
torsional loading (figure 2.9a). The closed cross section is introduced by Kolbrunner [1972, page 195]. 
A uniform distribution of torque mx = 500kN/m is applied along the entire length of the beam.  
L = 20m, t0 = 0.01m. (E = 206GPa, G = 82.4GPa). The cross sections at both ends are prevented from 
twisting but are free to warp.  

Figure 2.9 Open (b) and closed (c) asymmetrical cross sections submitted to non uniform torsion 
 
Analysis of Open profile 
Warping function 
The open cross section in figure 2.9b is analyzed by using the kinematics based on Vlassov 
assumption (eq. 2.31 and 2.32). For the thin-walled open cross section (0.01m << 2m), the warping 
function is calculated at the contour. As explained in paragraph 2.2.3.1, Vlassov assumption HYPV2 
of zero shear strain at mid walls gives the warping function in equation 2.34. The principal warping 
function that uncouples torsional effects from bending and tension (details are given in equation 3.21) 
is shown in figure 2.10. 
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Figure 2.10 Principal warping function [m2] of open cross section figure 2.9b 
 

Figure 2.11 Torsional moment Mx = Mx
st + Mx

ω [Nm], bimoment B [Nm2] and twisting angle teta [rad] 
of an open asymmetrical thin walled beam for x varying from 0 (left support) till 10m (midspan) 
 
Torsional calculations based on Vlassov theory 
The torsional computations are governed by equation (2.36) where the influence of second order 
warping (across the thickness: term GKθx,x) is included. The twisting moments, bimoments and 
twisting angle are plotted (figure 2.11) for x varying from zero to L/2 since the loading and the 
geometry are symmetrical with respect to the mid span. Figures (2.11a) and (2.11b) show the variation 
of Mx and Mx

st with respect to the longitudinal axis part (Mx = Mx
st + Mx

ω). The non uniform part (Mx
ω) 

of the twisting moment varies between 99.24% for x = 0 (remaining 0.76% is for Saint Venant part 
Mx

st) and 98.86% for x = 9.99m (remaining 1.14% is for Saint Venant part). Figure (2.11d) shows the 
variation of the twisting angle by solving equation (2.36). If the part of Saint Venant (GKθx,x) is 
neglected, the solution gives an error of 0.934% for the maximal twisting angle. Thus, this profile can 
be analyzed according to the theory of non uniform torsional theory. The Saint Venant part can be 
neglected. However, applying the Saint Venant theory which is strictly restricted to uniform torsion, as 
it is done in elementary torsional analysis, is not appropriate in this case. 
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Comparison between Vlassov and Benscoter theories 
It is interesting to see that Benscoter formulation does not give additional accuracy on the previous 
results for which the thickness is very thin (0.01m << 2m). If a warping parameter χ,x different from 
the gradient of the twisting angle θx,x is considered with the warping function in figure 2.10, two 
equilibrium equations are found from the principle of virtual displacements by isolating χ* and θx

*. 
The resulting equilibrium equations can be written either with respect to χ,x (2.49) or θx,x (2.50). In this 
particular case of open profile, the ratio of the Saint-Venant torsional constant (K) to the sectorial 
moment of inertia (Ic) is negligible: 0.0005 in this example. Since K/Ic <<1, both (2.49) and (2.50) are 
found to converge to equation 2.36 (with Vlassov formulation). Shear stresses at the mid wall, given 
by 2.56, vanish in this case at the mid wall.  
 

xxx
xs hh

G ,, χϑτ
−=  (2.56) 

The difference in the amount of the ratio (K/Ic) usually justifies the well known difference of torsional 
behavior between closed and open cross sections. Thin open sections have very small torsional rigidity 
and exhibit large amount of warping effects. 
 
Analysis of Closed profile 
Warping function 
The closed cross section (figure 2.9c) is now considered. The principal warping function along the 
contour is deduced from equation 2.43: Vlassov kinematics (2.35) is adopted with strains resulting 
from Hooke law and shear stresses of uniform torsion (Bredt formulae 2.30). The resulting warping 
function is represented in figure 2.12. 

Figure 2.12 Principal warping function [m2] of closed cross section in figure 2.9c 
 
Torsional calculations based on Benscoter theory 
The structure in figure 2.9a is analyzed by using the kinematics of Benscoter (equations 2.49 or 2.50). 
The diagrams of θx, Mx and Mx

st are represented in Figure 2.13 by neglecting second order warping. It 
can now clearly be observed (figure 2.13b) that the largest part of the torsional moment is the Saint 
Venant part (it varies between 95.89% and 100%). This is a major difference with the previous 
example that analyzes the same dimensioned cross section with a split. 
The bimoment is 158 times larger in the open than in the closed cross section (figure 2.11c and 2.13c). 
By using Vlassov kinematics (equation 2.36) with the same warping function (figure 2.12), the 
maximal twisting angle is found to be the same; the maximal bimoment is 0.0004% larger; the 
maximal warping part of the torsional moment is 36.28% larger and the maximal Saint Venant part of 
the tosional moment is 1.55% smaller. For this unicellular profile, the Saint Venant part in equation 

0.483 

0.237 -0.238 

-0.475 
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(2.51) has the major importance. If this part is neglected, the solution gives an error of 13268% while 
it was 0.934% for the maximal twisting angle of the open cross section! 
By using second order warping effects (2.53), the maximal twisting angle is 0.0007% larger; the 
maximal bimoment is 0.109% smaller; the maximal warping part of the torsional moment is 0.08% 
smaller and the maximal Saint Venant part of the tosional moment is 0.0034% larger. These small 
differences were expected since the local rigidity for a closed cross section is very small compared to 
the global rigidity (0.108% in this case). 
 

Figure 2.13 Rotating angle teta [rad], torsional moment Mx = Mx
st + Mx

ω [Nm], and bimoment B  
[Nm2] of closed asymmetrical thin walled beam for x varying from 0 (left support) till 10m (midspan) 
 
2.2.3.4 Prokić warping function 
Prokić [1990, 1993, 1994 and 1996] kept the assumption that the thickness warping ut (second order 
warping) varies linearly across the thickness and vanishes along the mid-line. In his work, the 
thickness warping ut is proportional to the derivative of the torsional rotation angle θx,x, to the distance 
to the midline e, and to the perpendicular distance hn to the normal issued from the centroïd.  
 
ut = -ωθx,x (2.57) 
 
The first order warping uc is also considered in his work as varying linearly along each polygonal 
segment of the contour. However, he used a different approach than that of Vlassov and Benscoter by 
taking longitudinal displacements (ui) at selected points of the contour called hereafter “transversal 
nodes” as additional parameters. The combination of linear functions Ωi (varying along the profile 
contour between adjacent transversal nodes) with these additional parameters describes the contour 
warping of the cross section. Ωi is a linear function along walls having a unity value at the transversal 
node (i). 
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uc = ∑Ωiui (2.58) 
 
This warping function u = uc +ut has been applied by Prokić to arbitrary shapes of thin-walled cross 
sections, without any distinction between open and closed profiles. In his thesis [1990] and papers 
[1990, 1993, 1994 and 1996], Prokić stated that the shear center notion is not necessary even in 
studying asymmetrical profiles.  
However, a deep examination of the work of Prokić shows that the proposed kinematics is very 
general and not restricted to torsional warping as it was stated in the scope and conclusions of his 
publications. The warping function represents a longitudinal displacement which is supposed to be 
piecewise linear along the contour. This general formulation, as presented by Prokić, is not 
specifically associated with the torsional behavior and produces non zero warping when normal forces, 
bending moments or shear forces are applied. Besides, the kinematic formulation assumes definitely 
that the cross section rotates around the centroid. Within these limitations, his theory is limited to pure 
uncoupled torsional problems for bi-symmetrical cross sections where the centroid and the shear 
center coincide. His calculations are for instance not valid for beams with asymmetrical cross sections 
submitted to a transversal load acting along the centroidal axis, since this load induces torsion coupled 
with bending. In his published articles and thesis, numerical results are indeed limited to uncoupled 
linear torsional problems. 
The purpose of the present work is to contribute to the validation of this new approach of modeling the 
torsional behavior of thin walled beams by enhancement of Prokić kinematic formulation and by 
illustration of its application to practical problems not considered by Prokić. In order to define, 
characterize and uncouple warping effects due to shear forces, torsion and distortion, additional 
equations are required to adapt this general formulation (2.58) to each specific problem. Detailed 
analyses and results are given in the following chapters for arbitrary cross sections by discretizing the 
profile (warping parameters ui). The second assumption of Vlassov HYPV2 is relaxed so that normal 
and shear strains include the effects of non uniform warping. They include uniform and non uniform 
torsional effects. As in Vlassov or Benscoter theories, the exact distribution of normal stresses, which 
is linear along straight segments of the contour, is found by using Hooke law. In addition, the 
distribution of shear stresses which is parabolic along straight segments of the contour, is also found 
by using Hooke law. It is hereby assumed to be constant between two transversal nodes. Therefore, the 
shape of this distribution is obtained more accurately when the number of transversal nodes increases. 
This formulation is applied and validated for the complicated behavior of thin walled beams. 
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2.3 Distortion 

2.3.1 General overview 

A single thin rectangular plate is very flexible when loaded perpendicularly to its plane and behaves 
very stiffly if bended in its plane. However, when connected to other thin plates with different 
orientations (e.g. assembling plates at 90° as shown in figure 2.15), advantageous effects make this 
assembly an optimal way for carrying transverse loading. An assembly of thin “walls” or plates along 
their longitudinal axes constitutes a thin walled beam for which local and global deformations can be 
distinguished as follows: 
 
- A deformation is noted ‘global’ when the whole member length is involved and when the cross 
section is assumed to maintain its shape without any distortion (e.g. figure 2.14a). The accuracy of this 
assumption depends on the stiffness of the transverse frame constituting the shape of the beam profile 
contour and on the beam loading acting along the longitudinal axis and within the cross sectional 
plane. A high stiffness resulting from the assembly of all the individual plates is required in order to 
resist to a loading by tension/compression, bending and/or torsion global beam behaviors. 

Figure 2.14 (a) A global behavior: bending of an I beam; (b); a local behavior that involves one plate 
of a Z beam; (c) a distortional behavior 
 
- A ‘local’ deformation induces ‘plate’ displacements which are localized on a small area of one thin 
wall without being extended to other walls or plates (e.g. figure 2.14b). It involves the out-of-plane 
flexibility of the corresponding plate element and does not include the cross-sectional stiffness. 
- A distortional behavior is associated with a change in the shape of the cross section that concerns 
usually the entire cross section geometry (figure 2.14c). The effects of this deformation vary relatively 
slowly along the member length. It is classified between the previous deformation types (‘global’ and 

(a) (b)
 
 
 
 
 
 
 
 
  
(c) 
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‘local’) considered as two limit cases: the first limit case prevents entirely the distortion and describes 
the deformation of a rigid cross section that maintains its shape. The second limit case assumes that 
the beam plates are hinged along their longitudinal edges so that the cross section is no longer forced 
to maintain its shape and its stiffness is entirely neglected. In the second case, the walls must be loaded 
in their planes as isolated members. 
For instance, a load (figure 2.15a) acting in the cross section plane as shown in figure 2.15 induces not 
only bending and torsion (2.15b) but also distortion (2.15c). Similarly to the torsional behavior 
overviewed in section 2.2, the distortion depends to a large extent on the cross sectional geometry and 
specifically, whether the section is open or closed. A ‘non uniform’ distortion of the cross section, 
accompanied by an out-of-plane plate bending, induces non uniform shear and axial stresses together 
with a non uniform warping of the cross section. 

Figure 2.15 A transversal load (a) separated into: flexural & torsional loading (b) and distortional 
loading (c) (after Takahashi 1978) 
 
The effects of such a distortion, usually significant for very thin walled open sections (and for thin 
walled closed sections with high distortional loadings), have to be analyzed in order to optimize the 
design of beams and columns and to determine an economical use of diaphragms and bracing in real 
life structures. Recent experiments ([Serrette 1997]; [Kesti 1999]…) as well as theoretical 
investigations ([Takahashi 1978]; [Hancock 1978]; [Bradford 1992]; [Hancock 1998]; [Gonçalves 
2004]; [Silvestre 2004]…) have shown the influence of the contour distortion on the behavior of thin 
walled beams (depending on the wall thickness, profile shape …). Because of the general tendency to 
increase the slenderness and to optimize the shape, further research is still required for simple, safe 
and economical calculations. 
 

2.3.2 Problem definition 

In this research work, the mechanical type of distortion is mainly derived from the work of Takahashi 
et al. [1978; 1980; 1982; 1987; 2001; 2003]. Takahashi developed analytical formulations [1978, 
1980, 1982, 1987] for open profiles with a warping function based on the well known Vlassov 
assumptions (HYPV1, HYPV2). Furthermore, he studied the distortion of closed profiles (2001) in a 
similar approach to that done by Vlassov (1961, chapter IV).  
The distortion of a profile induces relative rotations of transversal segments separated by transversal 
nodes behaving as joints or hinges (figures 2.17, 2.18a…). By taking an arbitrary transversal node as a 
reference in the cross sectional plane, it is clear that the relative position of the other nodes changes 
during this type of deformation. In addition, these inner segments, initially straight before loading, 
bend and become curved (figure 2.17).  
A cross sectional distortion results therefore in: 
-relative rotations of contour parts in the cross sectional plane, 

= + 

(a) (b) (c) 
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-local bending of inner transversal segments, 
-non uniform warping (beam longitudinal displacement or an out-of-cross-sectional-plane 
displacement).  
In case of pure distortion (neither stretching, nor bending or torsion), the specific point around which 
each contour part rotates is called the associated distortional center. 
 

Figure 2.16 ‘yz’ beam axes and ‘se’ local axes 
 

Figure 2.17 Distortional modes 
 
The beam, considered as an assembly of thin plates connected by longitudinal axes, resists to the 
transverse loading that results from distortion (i.e. loading in figure 2.15) by membrane stiffening at 
the connecting axes. Each inner plate bends in the se or yz plane (i.e.  in figure 2.16) since it is 
located between two ‘rigidifying’ connections. This plate bending accompanies the relative rotation of 
inner plates (  and  in figure 2.16) in the (yz) plane around the longitudinal axis ( ) 
considered to be partially ‘hinged’. However, an outer plate is submitted to the restraining effects at 
only one connection axis and resists to these effects by rotating ‘freely’ since it has a free edge. 
 

Figure 2.18 (a): Two cross section blocks (1-2-3 & 3-4-5) associated with the distortional joint 3; (b) 
cross section with no distortional modes  
 
Thus, the bending of transversal edge segments (1/2 & n-1/n of an open profile without ramifications 
where n is the number of transverse nodes separating straight segments of a profile) is considered to be 
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a local phenomenon and is not taken into account in the cross sectional distortion studied afterwards. 
For the same reason, the distortion of particular profiles such as (⊥, ∠, +, z , I…) will not be analyzed 
within this beam theory since the associated cross sectional deformation is classified to be ‘local’. A 
classified ‘local’ out-of-plane bending of a single plate (plate  in figure 2.18b) occurs without any 
significant relative plate rotations around an associate transversal node (such as that in 2.18a for 
example). Consequently, the distortional contour warping function of similar profiles is assumed to be 
zero in this study. 
In order to formulate mathematically the distortional behavior, a superposition of m (m = n-3 for open 
profiles without ramifications) distortional modes is considered. Each distortional mode “I” is related 
to a transversal node or joint which divides the cross section into rigid blocks of two or more 
transversal segments (blocks 1-2-3 & 3-4-5 in figure 2.18a). Each distortional mode is characterized 
by the relative rotation of these blocks around the corresponding distortional centers (two distortional 
centers in figure 2.18a). Similarly to torsion, the geometrical location of the distortional centers is 
determined by ensuring the decoupling of the stretching/bending/torsion/distortion effects. The 
distortional centers, related to a specific distortional mode “I”, are defined by setting that the rotations 
of the associated rigid parts do not induce any axial, bending, torsional or other distortional (except 
“I”) behaviors. For the clarity of the dissertation, these centers are presumed to be designated. Their 
determination is developed in §4.4.3 (analytically) and §5.4.3 (numerically). 
A transversal node that belongs to an edge transversal segment (1, 2, 4 & 5 in figure 2.18a; 1, 2, 3 & 4 
in figure 2.18b) cannot be selected to be a distortional joint. The selection of an edge node (1 & 5 in 
figure 2.18a; 1 & 4 in figure 2.18b) corresponds to a torsional behavior since there is a one-rigid-
cross-sectional rotation. The inner transversal nodes of edge segments are not considered hereby as 
distortional joints since the associate deformation deals with a classified local phenomenon as 
explained upwards. A relative rotation of rigid blocks separated by an inner node of edge segments 
(nodes 2 and 3 in figure 2.18b, 2 and 4 in figure 2.18a) is neglected since it is considered to be 
insignificant and leading to local out-of-plane bending of individual plates.  
 
2.3.3 Assumptions for Takahashi model 
The distortion analyzed by Takahashi [e.g. 1980] is based on the following assumptions: 
HYPT1- εxe. Similarly to Vlassov assumption in the case of torsion (cf. HYPV1 in §2.2.3), the change 
of angle between longitudinal (x) and thickness (e) coordinate lines is considered to be equal to zero. 
The no-shear boundary condition implies zero shear stresses at the exterior fibers in case of absence of 
surface loading. Due to the geometry of very thin profiles, shear stresses (and thus strains) inside a 
thin-walled member are nearly parallel to the contour. 
HYPT2- εxs at the mid wall of open profiles. Similarly to HYPV2 in §2.2.3, the change of angle 
between longitudinal (x) and contour (s) coordinate lines is neglected at the midwall of an open profile 
or branch. Two coordinate lines along x and s on a mid wall, initially perpendicular before loading, are 
supposed to remain perpendicular after deformation. Similarly to torsional calculations (equation 2.33 
in §2.2.3), the warping function used by Takahashi is calculated by an approximate theory considering 
only uniform distortional shear strain. 
In addition, other assumptions are considered below: 
HYPT3- The present distortional computations include the local plate bending of the inner plates in 
the (se) plane. Due to the dimensions of each thin plate constituting the beam (Lx >> Ls), the other 
plate bending (xe plane) is classified as a local phenomenon and is not taken into account in this study. 
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HYPT4- The Poisson effects are neglected since normal stresses σs, associated with a local bending 
phenomenon vanishing at the mid wall, have small effects compared to those of σx. So that for an 
elastic material: 
σx = E εx (2.59) 
σs = E εs (2.60) 
HYPT5- The out-of-plane local bending of thin plates is governed by the normality assumption. A 
local surface (xe) is assumed to remain planar after deformation and perpendicular to the material 
points located on the axis (s) before deformation. 
 

2.3.4 Kinematics 

Global displacement field 
Takahashi [1978, 1980, 1982, 1987] studied the distortion of an open profile without ramifications 
(e.g. figure 2.19). The ‘global’ displacement field at any point q(x,y,z) of the cross section associated 
with the distorsional modes (I = 1…m) is given by: 
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 (2.61) 

 

Figure 2.19 Open cross section without ramifications 
 
Each distortional degree of freedom θxI is associated with a distortional joint I (I = 1…m) and is taken 
as the rotation of the right part of the contour (I-I+1-…-n) around the right distortional rotation center 
CIR. The rotation of the left part of the contour (1-2-…I) around the left distortional rotation center CIL 
is measured by µθxI. µ is the specific rotating ratio between right and left sectional parts. For a 
monosymmetrical profile (i.e. profile in figures 2.18), µ is equal to -1. Iω , depending on s, is the 
distortional warping function calculated from (HYPT1 and HYPT2) and found to be: 
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s

I
0

hds= ∫ω  (2.62) 

For an arbitrary point q, the function h (s) is calculated as the distance from the associated distortional 
center (right or left part distortional center) to the tangent to the mid wall at q. 
For each distortional mode I, Iµ , CIy  and CIz  are functions of the contour length (s). 
At the right part (I - I+1 - … - n) of the contour of an open profile without ramifications (e.g. figure 
2.19), Iµ  is equal to 1, CIy  is equal to the y ordinate of the right distortional rotation center and CIz  is 
equal to the z ordinate of the right distortional rotation center. At the left part (1 - 2 - … - I) of the 
contour, Iµ  is equal to the specific rotating ratio µ, CIy  is equal to the y ordinate of the left 
distortional rotation center and CIz  is equal to the z ordinate of the left distortional rotation center.  
 
Additional ‘local’ displacement field 
In addition, for each of the (m = n-3) distortional modes, the relative rotation of the associated cross 
sectional blocks (mathematically formulated by 2.61) induces a local “out-of-plane” bending of the 
inner plates. The associated displacement field is localized in the (se) plane. Since the plate bending in 
the other transversal direction (xe plane) is neglected (HYPT3), it is possible to isolate a unit length 
strip (figure 2.20a). The local contour system (x,s,e) shown in figure 2.16 is used and the transversal 
(s,e) displacements associated with a (se) plate bending are: 
 

I xI(x,s) (s) (x)eξ = Γ θ  (2.63) 

I(x,s) (x,s)η = η  (2.64) 

IΓ , a function of (s), depends in general on the profile geometry and on the material behavior and 

results from the membrane stiffening of the assembled plates for each distortional mode I associated 
with block rotations. 
 
The normality assumption through the thickness of the wall is kept (HYPT5) for this local bending, so 
that the material points, located on a normal to a surface (xe) remain on a line normal to the deformed 
middle surface. The change in angle between (s) direction and (e) direction is assumed to vanish: 
 

se I xI I,s(s) (x) (x,s) 0ε = Γ θ + η =  (2.65) 

so that: 

I,s I xI(x,s) (s) (x)−η = Γ θ  (2.66) 

 
If the material is assumed to be elastic and the Poisson effects are neglected (HYPT4), the strain and 
stress εss and σss are thus related by Hooke law:  
 

ss ,ss I,s xIeε = ξ = Γ θ  (2.67) 

ss ss I,s xIE E eσ = ε = Γ θ  (2.68) 
 
The corresponding bending moment is calculated by using a variable separation (s and x dependent 
variables) as a resultant of the above stresses: 
 

3
s
xI xI ss I,s xI
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θ = σ = Γ θ∫  (2.69) 
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so that 
s
xI xI

ss 3
M

12 e
t

θ
σ =  (2.70) 

 
θxI(x) measures the amount of twist. Similarly to IΓ , Ms

xI(s) (=Et3
I,sΓ /12) results from the membrane 

stiffening that rigidifies the internal transversal segments during a relative ‘unit’ twist of the blocks 
around the associated joint. This function vanishes at the outer edge segments of an open profile. 
Ms

xI(s) (e.g. figure 2.20c) is calculated by taking the profile shape (figure 2.20b) as a frame with 
simple supports at inner transversal nodes and free boundary conditions at the edges. A ‘unit’ relative 
rotation (1-µ) is applied at the rigid joint I as an imposed relative rotation. The distribution of Ms

xI(s) 
along the profile contour is determined by any standard force or displacement method for determining 
the bending moment distribution in statically indeterminate frames. 

Figure 2.20 (a) An isolated unit length strip; stiffening effects represented by the distribution of Ms
xI 

along the profile contour (c) depending on the profile geometry (b) 
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Distortional centers and joint dependency: 
For each distortional mode, the associated joint and rotation centers are geometrically dependent. A 
joint I divides the cross section into kI rigid parts. The joint I is the intersection point that belongs to all 
of these parts. The rotation of a point q of a specific rigid part (kI) around its own rotational center 

I ICk Ck(y ,z )  is measured by 
Ik xIµ θ so that: 

 

I Iq Ck k xIv (z z )= − − µ θ  (2.72) 

I Iq Ck k xIw (y y )= − µ θ  (2.73) 

 
Since the point I belongs to all of these parts, the two following equations are valid for all values of kI: 
 

I II I Ck k xIv (z z )= − − µ θ  (2.74) 

I II I Ck k xIw (y y )= − µ θ  (2.75) 

 

I II CL k I Ckz z (z z )− = µ −  (2.76) 

I II CL k I Cky y (y y )− = µ −  (2.77) 

 
From equations (2.76 and 2.77), it is concluded that: 

- the distortional centers CkI and joint I are aligned; 
- the ratio ICkI /ICI (distances between distortional joint and distortional centers, one distortional 

part is taken as reference) is equal to µk. 
 

2.4 Buckling of elastic thin walled columns 

In a linear analysis (paragraphs 2.1, 2.2 and 2.3), beams and columns deflect according to their applied 
loading. A beam-column loaded longitudinally through its centroidal axis is supposed to be submitted 
to pure tension or pure compression without any bending or torsion. However, since thin-walled 
structures may have low lateral bending and/or torsional stiffnesses, elements may fail in a flexural or 
flexural-torsional buckling mode. When the load increases, the response of the beam or column 
remains theoretically linear until the value of the critical load is reached. The element suddenly 
deflects laterally or/and twists out of the plane of loading. This buckling occurs when the second-order 
moments caused by the product of the applied axial compression P with the transvesal displacements 
are equal to the internal bending or torsional resistances (2.78, 2.79 and 2.80). The criterion to 
determine the buckling state is the singularity of the system of structure equilibrium equations [De 
Ville 1989 page 4.12; Waszczyszyn 1994 page 45; …]. 
In this paragraph, the instability analysis of elastic structures originated by the interaction of buckling 
modes is presented with two different warping functions. Distortion is not considered. 
 
2.4.1 Using Vlassov warping function 

For small deflections of arbitrary cross sections, the general governing equations may be obtained in a 
simple manner by studying the static load-deflection behavior equations (e.g. [Murray, 1986, page 
172]): 
 

z ,xxxx ,xx C x,xxEI v P(v z ) 0+ + θ =  (2.78)  
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y ,xxxx ,xx C x,xxEI w P(w y ) 0+ − θ =  (2.79)  

 
For open cross sections, the third equation (2.80) may be obtained by using Vlassov warping function 
[Murray, 1986, page 175]: 
 

2
x,xxxx C x,xx C ,xx C ,xxEI (GK Pi ) Pz v Py w 0ωθ − − θ + − =   (2.80) 

 
where i0

2 = (Iy+Iz)/A, ic
2=io

2+yC
2+zC

2, Iz and Iy are the principal moments of inertia of the cross section 
about the axes of bending, GK is the torsional rigidity, and Iω is the warping rigidity computed by 
using Vlassov theory. 
It can be easily seen that, for doubly symmetrical cross sections whose centroid and shear center 
coincide (yC = zC = 0), equations (2.78, 2.79 and 2.80) are uncoupled. Buckling occurs either in a 
flexural or in a torsional mode. Only the transversal displacement v (or w) is involved in the flexural 
buckling of equation 2.78 when zC = 0 (or equation 2.79 when yC = 0). The torsional buckling involves 
the twisting rotation θx of the cross-section in equation 2.80 when yC = zC = 0. For monosymmetrical 
cross sections, torsion interacts with bending in the symmetric plane to initiate a flexural-torsional 
buckling while the other flexure is uncoupled and initiates a pure flexure buckling. In general, for 
asymmetrical cross sections, the centroid and the shear center do not coincide and the three 
equilibrium equations are coupled: the column buckles in a flexural-torsional mode. It twists and 
bends simultaneously and the corresponding buckling mode involves both lateral displacements (v,w) 
out of the plane of loading and twisting rotation θx; buckling is therefore resisted by a combination of 
bending and torsional resistances.  
The system of three equations (2.78), (2.79) and (2.80) represents an eigenvalue problem. The solution 
of the system is given by solving the previous set of equations and by giving buckling shapes 
satisfying the boundary conditions. Three sets of discrete values of buckling loads are obtained. Only 
the lowest critical load is of practical interest. 
 

2.4.2 Using Benscoter warping function 

Usually, in the literature, flexural torsional buckling is restricted to the case of beams or columns with 
open cross sections. Due to its high torsional and bending stiffnesses, a column with a closed cross 
section will generally not collapse by global instability but rather by local buckling or yielding. 
Therefore, to study the flexural torsional buckling of a structural element with the kind of cross section 
represented in figure 2.21 which is neither totally open, nor fully closed, the following governing 
equations of flexural torsional buckling are developed hereby by using Benscoter torsional theory. 

Figure 2.21 Cross sections containing one or more than one cell 
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The governing equation for torsion of a beam about the x-axis by using Benscoter warping function 
[Benscoter, 1954] is given by: 
 

x,xxxx x,xx x x,x
C

ECEC GK m m 0
GI

− θ + θ + − =  (2.81) 

where 2
IC
η

= ω , 
c

2

I
K1−=η , ∫= edsrI 2

c   

Ic is the polar constant where r is the distance from the shear center to the tangent to the midline of the 
profile. Iω is the warping rigidity. 
 
By considering the twisting effect of the elementary loads during the buckling of a cross section and 
by integrating over the whole cross-section [Murray, 1986, page 175], the second-order torque caused 
by the applied compression P is expressed as: 
 

2
x ,xx C ,xx C ,xx Cm P( v z w y i )= − + − θ  (2.82) 

 
By substituting (2.82) into (2.81), the governing equation for torsional buckling based on Benscoter 
theory is found: 
 

2 2
C x,xxxx C x,xx c ,xx c ,xxxx c ,xx c ,xxxx

c

EC(EC P i ) (GK Pi ) Pz v Pz v Py w Py w 0
GI

− θ − − θ + + − − =  (2.83) 

 

2.5 Lateral buckling of elastic thin walled beams 

When beams are designed to carry very large loads in their main plane (e.g. vertical plane of an I 
beam), small lateral or twisting disturbances can cause buckling out of the main plane of loading. The 
lateral torsional buckling mode combines torsion and minor axis bending. The torsion is accompanied 
by an important warping that influences the overall analysis. In the literature, the governing equations 
are elaborated by using Vlassov warping function [Murray, 1986, De Ville 1989, Trahair and Bradford 
1995…]. In this paragraph, the lateral buckling is analyzed by using Benscoter warping function.  
A simply supported beam loaded by equal but opposite end moments Mz is considered; y and z are the 
principle axes of the profile. In the case of small deformations and arbitrary cross section, Mx1, My1 
and Mz1 are the resolved components of the twisting and bending moment acting about the deformed 
axes x1, y1 and z1 (figure 2.22): 
 

z1 z ,x zM M cos (w ) M=  (2.84) 

y1 z x z xM M sin(θ ) M θ= − −  (2.85) 

2yr
x1 z ,x z C x,x

z

I
M M w M ( 2y )

I
= − + − θ  (2.86) 
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A

22
yr dA)zy(yI 2  

 
y ,xx y1EI w M= −  (2.87) 
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z ,xx z1EI v M= −  (2.88) 

Figure 2.22 Lateral torsional buckling of a beam 
 
The governing equation for twisting is deduced from (2.51) after setting mxω equal to zero: 
 

x,xxx x,x x1 x1,xx
c

ECEC GK M M
GI

− θ + θ = −  (2.89) 

where 2
IC
η

= ω , 
c

2

I
K1−=η  . K is the torsional constant, ∫= edsrI 2

c  is the polar constant. 

By substituting (2.84), (2.85) and (2.86) in (2.87), (2.88) and (2.89), the following equations are 
obtained: 
 

z ,xx zEI v M= −  

y ,xx z xEI w M= θ  

2 2yr yr
z C x,xxx z C x,x z ,x z ,xxx

z z C

I I EC( EC M ( 2y ))θ (GK M ( 2y ))θ M w M w 0
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− + − + − − + − =  (2.90) 

 
The critical elastic moment is given by the solution of (2.91) deduced from the set of equation (2.90): 
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Equation (2.91) has a general form similar to that obtained classically for open cross sections [Murray 
1986, page 184] and its solution is thus given by: 
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The constants A1…A4 are determined by setting that (2.92) must satisfy the boundary conditions. For a 
simply supported beam, each end is free to warp (θx = 0, θx,xx = 0) and the following equations are 
obtained: 
 
A2 = 0 
A3 = -A4 

0)nLsinh(A2)mLsin(A 41 =−  
0)nLsinh(nA2)mLsin(mA 2

4
2

1 =+−  (2.93) 
 
In order to obtain a non trivial solution, the determinant of the system of equations (2.93) should be 
zero and the solution is: 
 

)mxsin(A1x =θ  (2.94) 
 
The lowest buckling mode occurs for: 
 

L
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and the lowest buckling moment is then solution of: 
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CHAPTER 3. KINEMATICS OF THE PRESENT ANALYSIS OF 
THIN WALLED BEAMS 

3.1 Geometric description and assumptions 

A fixed right-handed cartesian coordinate system (X,Y,Z) is used for the analysis of three dimensional 
structures with beam elements composed of thin plates. The thickness is smaller than the other 
dimensions. Each beam element is prismatic and has a local x axis parallel to its longitudinal direction. 
The intersection of a plane normal to the x axis with the middle surface is a polygonal line called 
“contour” of the cross section. The vertices of the polygonal contour are called hereafter “transversal 
nodes”. Let G be the centroid, C the shear center and y and z the principal axes of the cross section. A 
right handed local curvilinear coordinate system (e,s,x) is placed in the middle surface with (e) normal 
to and (s) following the contour (figure 3.1). 

Figure 3.1 General form of a cross section 
 
The theory of torsion and flexure of thin walled beams is based on the following kinematic 
assumptions: 
HYP1. In the analysis of torsion and bending of thin walled beams and columns, the contour of a cross 
section is considered as undeformed in its own plane. The local distortion, flexure or plate buckling 
are not taken into account. This assumption, which is critical in the case of very thin cross sections, 
requires in practice rigid diaphragms placed at short distances along the length of the beam. This 
assumption is relaxed when the distortion is studied (paragraph 3.4). 
HYP2. The cross section remains plane when subjected to pure tension/compression or pure bending; 
warping due to torsion is analyzed in paragraph 3.2, warping due to shear bending is analyzed in §3.3 
and warping due to distortion is analyzed in paragraph 3.4. 
HYP3. The warping is assumed to vary linearly along each branch of the contour between two 
transversal nodes (contour warping). 
HYP4. The material points, located before deformation on a normal to the surface (xs), are assumed to 
remain on a line normal to the deformed middle surface. This normality assumption allows the 
determination of the second order warping (through the thickness of the thin wall) of the thin ‘plates’. 
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3.2 Torsional warping of the cross section 

As introduced at the end of §2.2.3, Prokić warping function is modified in this chapter in order to 
study the behavior of arbitrary thin walled cross sections. The torsional warping of an arbitrary point q 
of the cross section (figure 3.1) is equal to the sum of a contour warping uc and a thickness warping ut. 
 
uq

T = uc + ut (3.1) 
 
3.2.1 Contour warping function 

If the cross section is composed of polygonal segments, the contour torsional warping uc is linear 
along each branch. At mid wall, this axial displacement (uc) due to torsional warping is computed as a 
sum of combinations of linear contour functions and displacement parameters (ui) at transversal nodes 
(figure 3.2).  
 
uc = ∑Ωiui (3.2) 
 
The unknowns ui are the longitudinal displacements of the transversal nodes (i=1,…n) due to the 
torsional warping. The functions Ωi (i=1,…n) represent the shape of the distribution of the contour 
warping along the branches of the contour between transversal nodes (i=1,…n). Since the contour 
warping is assumed to be linear between two longitudinal nodes (HYP3), a function Ωi describes a 
linear variation between node (i) and its adjacent transversal nodes. Ωi varies linearly along the 
branches between the transversal node i where Ωi = 1 and the adjacent nodes where Ωi = 0 and 
vanishes along the other segments (figure 3.2 b & c ). 

Figure 3.2 (a): Warping along the contour of the profile; (b) & (c): functions Ω1 and Ω2 
 

3.2.2 Thickness warping function 

The thickness torsional warping ut varies linearly through the thickness and vanishes along the mid 
wall (figure 3.3). It is proportional to the derivative of the torsional rotation angle θx,x, to the distance 
to the midline e, and to the perpendicular distance hn to the normal issued from the shear center.  
 
ut = -ωθx,x (3.3) 
where ω(y,z) = hn(s).e, figure 3.1. hn is positive when the normal to the midline rotates 
counterclockwise around the shear center (hn is negative in the case of figure 3.1). 
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It is shown hereafter that equation (3.3) results directly from hypothesis HYP4. The local contour 
system (e, s, x) shown in figure (3.1) is used. The torsional displacements of a point q are described 
with respect to this contour coordinate system by ( uq

T(x,s,e), ξq
T (x,s,e) , ηq

T (x,s,e)).  

Figure 3.3 Thickness warping function, cut A-A of figure 3.1 
 
When the cross section is submitted to torsion, it twists with respect to the shear center axis. For small 
values of torsional rotation θx, the transversal displacements are found by simple geometrical 
descriptions as being proportional to the distance to the shear center. In the principal axes system (y,z), 
the expressions of vq

T and wq
T are given in equation (2.22). By using the local system axis (e,s), the 

transversal displacements ηq
T and ξq

T are found to be: 
T
q n x(x,s) hη = θ  
T *
q x(x,s) hξ = θ  (3.4) 

 
According to the normality assumption (HYP4) through the thickness of the wall, the normal to the 
surface (xs) remains normal during deformation. The shear deformation εxe (3.5) is neglected. A 
straight line through the thickness (e) normal to the surface (xs) is assumed to remain straight and 
normal so that the rotation is equal to the slope (3.6). 

T T T
xe q ,x q ,e2 uε = η +  (3.5) 
T T T
xe q ,e q ,x2 0 uε = ⇒ = −η  (3.6) 

 
By substituting the transversal component of displacement ηq

T by its expression (3.4) in equation 
(3.6), the derivative of the longitudinal displacement with respect to the thickness coordinate is given 
in (3.7). 

T
q ,e n x,xu h= − θ  (3.7) 

 
The displacement uT of any point q is thus given by: 

T
T T Tq
q n x,x

(x,s)
u (x,s,e) u (x,s) e u (x,s) eh

x
∂η

= + = − θ
∂

 (3.8) 

 
The first term uT (x,s) in (3.8) describes the variation of the longitudinal displacement along the mid 
wall. By comparing (3.8) to (3.1), this term represents the contour warping (uc) given in equation (3.2). 
The second term is the thickness warping (ut) in equation (3.3). 
Once again, an analogy between Bernoulli bending beam kinematics or Kirchhoff bending plate 
kinematics and torsional kinematics is highlighted through the normality assumption HYP4. The 
theory of Kirchhoff for thin plates is based on the assumption that straight lines normal to the mid 
plane before deformation remain normal after deformation. This implies that shear transversal 
deformations are negligible; the slope and the tangent coincide. 

A-A 
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3.2.3 Torsional warping function and decoupling equations: 

Complete kinematic formulation 
As stated before, Prokić warping function is very general but must be restrained adequately in order to 
study a specific problem. In this paragraph, the theory is developed in order to study the torsional 
behavior of a 3D beam structure. In a general loading with tension-compression, biaxial bending and 
torsion, equation (3.9) gives the displacement of any point q(x,y,z) of the cross section for each of 
these loading effects: 
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 (3.9) 

 Total = axial 
 + bending(xz)  
 + bending(xy) 
 + torsion. 
On the right hand side of equation (3.9), the first bracket {u0,0,0} denotes the in-plane compression or 
tension, the second bracket {zθy,0,w} refers to in-plane (xz) bending by using Timoshenko beam 
theory for shear effects, and the third bracket {-yθz,v,0} refers to (xy) bending. The fourth bracket of 
(3.9) gives the warping uT

 = -ωθx,x +∑Ωiui and the transverse displacements {-(z-zC)θx , (y-yC)θx} 
related to the torsion. θx,x is the rate of twisting angle and u1…un are n unknowns, where n is the 
number of transversal nodes. These parameters are additional axial displacements that introduce for 
each transversal node the quantity of the warping displacement (ui) to that induced by 
tension/compression (u0) and bending (zθy-yθz) and represented by the centroidal degrees of freedom. 
As presented in (3.9), the kinematic expression of uT is more general than the usual torsional warping 
theory of thin walled beams: it is not limited to the torsional warping and can describe any general 
displacement of the cross section constituted by linear combination of ui. Thus, to satisfy HYP2 
(paragraph 3.1), it is necessary to prescribe additional constraints in order to restrain the parameters ui 
to the modeling of torsional warping. This separates warping from tension-compression and bending 
effects and ensures the uncoupled axial/bending/torsional warping: when subject to pure 
tension/compression or flexure, the cross section does not warp (HYP 2). 
 

Uncoupling of tension/compression and bending effects 
The dissociation of the axial displacement into three parts (a constant mean value u0 and linear values 
zθy et yθz ) corresponds to the separation of tension/compression and (xy & xz) bending effects. It is 
well known that these three effects are uncoupled if the centroid (G) of the cross section is used as 
origin and if the principal axes are used as reference axes.  
 
Uncoupling of pure torsion and bending 
It is also well known that pure torsion and pure bending are defined by introducing the shear center 
and the torsional center as particular points of a profile. A transversal load P passing through the shear 
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center does not induce a torsional torque. However, if this transversal load P acts within a non zero 
distance rC from C, a torsional torque Cx = P rC is induced. Alternatively, if a torque twists the cross 
section with respect to the torsional center axis, a pure torsion occurs about this “natural” axis of 
rotation without involving bending displacements. The torsional center is found ([Kollbrunner, 1970, 
page 112],…) to be identical to the shear center. 
 
Uncoupling of torsional warping and tension/compression 
The average axial displacement of the cross section must be reduced to the term (u0): a tension or 
compression of the whole cross section must only derive from the centroidal degree of freedom (u0). 
Within the present beam theory, a cross section resists to stretching (figure 3.4a) by a “rigid” extension 
(figure 3.4b) and remains planar and perpendicular to the longitudinal axis. The configuration 
represented in figure 3.4c with non zero values of ui (relative longitudinal displacement with respect to 
the displacement of the centroid u0) is undesirable since warping degrees of freedom (ui) are related to 
torsion. 
 

0
A

q

average u
A

dAu

u ==
∫

 (3.10) 

Figure 3.4 (a) Tension of an I beam; (b) extension u0 of the beam with ui vanishing; (c): possible 
configuration when uncoupling is not satisfied: warping (-ui) related to tension.  
 
The numerator of (3.10) is found to be: 
 

∑∫
=

Ω+=
n

1i
i0

A
q uSAudAu i  (3.11) 

 
The first equation that ensures the uncoupled tension-compression and torsional warping effects is 
thus deduced from (3.10): 
 

T
warping

A
u dA 0=∫  (3.12) 
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or 

0uS
n

1i
ii =∑

=
Ω  (3.13) 

 
Uncoupling of torsional warping and pure bending 
The average bending displacement must also be reduced to the flexural terms (zθy) and (-yθz). The 
rotation along the axis Oz (or Oy) must be limited to θz (or θy) and the displacements associated with 
this rotation are only represented by the term -yθz or (zθy) (figure 3.5). 
In the case of (xy) plane flexure, Timoshenko bending equilibrium equation includes a term θz which 
is the mean angle of rotation of each cross section about the neutral axis. As in equation (2.5), 
Timoshenko kinematics gives the expression of the longitudinal displacement: 
 

F
q zu y= − θ  (3.14) 

Figure 3.5 Pure bending of an I beam 
 
θz has been given various definitions and interpretations (after [Cowper, 1966]). If the cross section 
remains planar as the beam bends, θz is exactly equal to the angle of rotation of the whole cross 
section. However, if a cross section warps in addition to rotating, θz is then the angle of inclination of 
the plane that most nearly coincides with the position of the warped cross section. Cowper [1966] 
defined the quantity θz by the following relation: 
 

z q
z A

1 yu dA
I

θ = − ∫  (3.14’) 

 
Equation (3.14’) is found by mutliplying Timoshenko kinematics (3.14) by y and by integrating over 
the cross section. 
To uncouple the torsional warping from bending effects, the first line of the fourth bracket of (3.9), 
related in this paragraph to torsional warping effects, must be separated from bending warping which 
is not taken into account hereby. The flexural mean rotation θz must be related to the flexural degrees 
of freedom and not to the warping degrees of freedom ui. 
 

T
q

A
yu dA 0=∫  (3.15) 

 
(3.15) gives the second transformation equation to satisfy: 
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0uII
n

1i
iyx,xy i =+θ− ∑

=
Ωω  (3.16) 

 
In the case of plane flexure (xz), a similar transformation equation is found by the same method by 
setting that the warping resulting from bending (xz) is not taken into account. 
 

T
q

A
zu dA 0=∫  

0uII
n

1i
izx,xz i =+θ− ∑

=
Ωω  (3.17) 

 
Illustration of torsional warping uncoupling 
Equations (3.12, 3.15 and 3.17) represent respectively the separation of warping effects from 
tension/compression, (xy) bending and (xz) bending. This separation is alternatively illustrated by 
plotting the axial displacement over the cross section. When a plot shows a strong relationship 
between two variables (y,f), the regression line is a line drawn through a plot so that it comes as close 
to the points (y,f) as possible. The regression line (f’ in figure 3.6a) is the best fitting straight line for a 
given set of points in a plot and is defined by a f-intercept (f(y=0)) and a slope. More technically, the 
regression line is obtained by minimizing, for a function f(y), the sum of the squared differences 
between (f’) and (f). The slope and the f-intercept may be thus determined by setting that the sum of 
these squared differences ∑⏐f-f’⏐2 is smaller than it would be for any other straight line through the 
data. 

Figure 3.6 Regression lines of plots (a): (y,f) and (b): (y,u) 
 
In the case of bending (xy), the axial displacement of a point q (uq = uT + uF) varies with (y) and is 
plotted against this cross section co-ordinate. The plane uF

 = yθz is a straight plane (a line in figure 
3.6b) associated with the rotation of the whole cross section around the z axis (θz) that most nearly 
coincides with the position of the warped cross section (uq). The additional displacement function uT 
represents the torsional warping and is not related to the flexural bending of the cross section. Even if 
the statistical notion of regression line does not give an exact demonstration as it was done in the 
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previous paragraph (equations 3.14-3.16), it is presented hereby to illustrate physically the nature and 
the importance of the uncoupling phenomenon. The axial displacement of the points q of the cross 
section ( uq = -yθz +uT ) is separated into an arbitrary straight distribution line (yθ) and a function u. 
The regression line minimizes the function g(θ) constituted of squared differences, when the slope θ 
varies. 
 

∫ θ−=θ dA)yu()(g 2
q  (3.18) 

 
Mathematically, to limit the average rotation of the cross section to θz, g(θ) must be a minimum when 
θ equals -θz: 
 

∫ θ−=θ dA)yu()(g 2
q  

T 2
q zg( ) (u ( )y) dAθ = − θ + θ∫  
T 2 2 2 T
q z z qg( ) (u ) dA ( ) y dA 2( ) yu dAθ = + θ + θ − θ + θ∫ ∫ ∫  

2 T
z q

dg( ) 2( ) y dA 2 yu dA
d

θ
= θ + θ −

θ ∫ ∫  (3.19) 

 
By setting g’(θ) zero for θ=-θz, the second expression to ensure the uncoupled bending (xy) and 
warping effects is found to be (3.15). Equation (3.17) can be obtained similarly by considering the 
case of bending (xz). 
The transformation equation (3.12) can be illustrated by the same method by setting that, since the 
warping resulting from axial effects is neglected and not included hereby, the x-intercept (y=0, z=0) of 
the regression plane (uq = u0 + zθy  - yθz - ωθx,x + ∑Ωiui) must be prescribed to u0 (centroid axial 
displacement). 
 
Torsional transformation equations 
Thus, as the additional parameters (ui) should only describe the torsional warping of the cross section 
associated with torsion and should not induce global elongation or bending of the whole cross section, 
these n degrees of freedoms (ui) must therefore satisfy the three equations (3.20). 
 

T

A
u dA 0=∫ , T

A
yu dA 0=∫ , T

A
zu dA 0=∫  (3.20) 

where A denotes the area of a cross section. 
If n is the number of transversal nodes of a cross section, from the 6+n degrees of freedom, only 3+n 
degrees of freedom are thus independent: three translations (u,v,w), three rotations (θx,θy,θz) and n-3 
relative longitudinal displacements.  
This step (equations 3.20), that supplements the use of centroïd, shear center and principal axes, 
transforms arbitrary coordinate system (1, x, y, ∑Ωiui/θx,x,…) to a particular one that ensures the 
uncoupling between ∑Ωi ui/θx,x

  and the others. It is similar to the well-known selection of the principal 
sectorial warping function (ω, ψ) when using the models of Vlassov and Benscoter respectively to 
study the non uniform torsion. The principal sectorial pole is found to be the shear center and the 
sectorial origin is a particular point obtained by satisfying the following equations ([Gjelsvik,1981, 
page 49], [Murray, 1986, page 86-87]…):  
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0dA
A

=∫ω , 0dAy
A

=∫ ω , 0dAz
A

=∫ ω  for open profiles, Vlassov theory  (3.21) 

∫ =
A

0dAψ , ∫ =
A

0dAyψ , ∫ =
A

0dAzψ  for closed profiles, Benscoter theory  (3.22) 

 
Note that the equations listed above (3.21-3.22) are needed to determine the location of the tortional or 
shear center according to Vlassov and Benscoter theory. Equations (3.21-3.22) are found in the 
literature by setting that Vlassov and Benscoter torsional kinematics must not produce any axial force 
or bending moment. 
 

3.3 Warping associated with bending shear effects 

3.3.1 Problem presentation 

When a beam is submitted to bending, a varying bending moment is necessarily accompanied by a 
shear force resulting from the equilibrium of rotation. An accurate study of the influence of the shear 
force is very complicated. Similarly to the case of shear effects induced by a torsional loading, the 
cross section does not remain plane when submitted to a shear force. Shear stresses resulting from a 
shear force acting along a principal axis (eg. z) of the beam cannot be uniformly distributed over the 
cross section. It is not possible to find a simple kinematic description allowing their calculation (see 
also Frey 2000). 
The configuration (a b’ c’ d) assuming uniform sliding of the profile is impossible (the change in 
angles (ab,ab’) and (dc,dc’) must vanish in figure 3.7) since the equilibrium condition of a solid 
requires the vanishing of transverse shear stress (and hence shear strain) on the free edges of the beam 
(ab and cd in figure 3.7). 

Figure 3.7 A beam submitted to a shear force 
 
The variation of the angle (2εxz) (figure 3.8c) is thus not uniform across the cross section. The cross 
section does not remain plane but warps. In figure 3.8, 2εxz is maximal at the neutral axis of the 
rectangular profile and vanishes at the extreme fibers. 
When the distribution of the shear force is uniform along the x axis and without restraining conditions, 
the shear warping is also uniform along the longitudinal axis (fig. 3.8c). In a general case, warping is 

  

z 

y

Tz 

b 

a 

c 

d 

b’ 

c’ 
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not free or uniform and the mean sliding angle (θy) is the angle of inclination of the plane that best 
coincides with the warped cross section. 

Figure 3.8 (a): Beam cross section; (b): shear stresses; (c): warping of the cross section with a constant 
shear force (after Frey 2000) 
  
3.3.2 Warping function with shear bending effects 

Advanced kinematics is presented in this paragraph in order to adequately describe shear deformations 
and to improve the results obtained from approximate Timoshenko kinematics violates the ‘no shear’ 
boundary conditions at the edges of open profiles by assuming a constant state of transverse shear 
strain through the cross section. The planar assumption of Bernoulli and Timoshenko theories is 
removed and the formulation is based on an enriched description of the shear bending warping by 
discretizing the contour of the thin walled profile. The bending warping is presented hereby in the case 
of (xz) flexure and is based on the following displacement field: 
 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧ Ω+θ

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧ ∑

w

0

uz

w

v

u i
i

y

q

q

q 

 (3.23) 

 
Similarly to the case of torsional warping, the parameters ui at transversal nodes are the longitudinal 
displacements at selected transversal nodes (i=1,2,…n). The functions Ωi (i=1,…n) represent the shape 
of the distribution of the contour warping along the branches of the contour between transversal nodes 
(i=1,…n).  
By using the additional term ∑Ωi ui, the warping induced by shear deformation is included and the 
cross section does not remain plane after deformation. θy does not represent any longer the rotation of 
a plane cross section but rather the slope at particular points of the cross section where the warping 
vanishes (for a rectangular cross section, θy is the slope at z=0). θy and ui (i=1,n) capture together the 
non planarity nature of the deformed cross section. 
 
The expression of strains is written as follows: 
 

θy 

1 
 
 
 
 
2 
 
 
 
 
3 

z 

τxz = 0 

τxz max 

2εxz max 

2εxz = 0 

(a) (b) (c) 
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⎪
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⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

Ω+θ+

Ω

Ω+θ

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

ε

ε
ε

∑

∑

∑

iz,
i

yx,

iy,
i

x,i
i

x,y

xz

xy

x

uw

u

uz

2

2  (3.24) 

 
w,x+θy is considered to be an approximate average deformation of the cross section as in Timoshenko 
beam theory and the additional terms ∑Ωi,y ui and ∑Ωi,z ui are given to improve this approximation by 
including local deformation due to the warping.  
 
3.3.3 Additional equations 

In order to achieve the kinematic description of the displacement field and to adapt the general 
formula uwarping = ∑Ωi ui in (3.23) to describe bending shear effects of a thin walled-cross section, 
additional equations are required to satisfy the boundary conditions setting that the transverse shear 
stresses (and therefore strains) must vanish at free edges of open profiles and to restrain the additional 
degrees of freedom to the above described phenomenon. 
 
Similarly to developments of the kinematics of torsional warping (§3.2.3), additional kinematic 
conditions must be satisfied in order to uncouple the (xz) warping bending effects from axial, (xy) 
bending and torsional effects. The condition (3.17) is relaxed in order to relate the n degrees of 
freedom (ui) to the (xz) warping bending effects. Regarding axial and (xy) bending effects, the 
following kinematical equations must be satisfied: 
 

0dAu
A

warping =∫  => 0uS
n

1i
ii =∑

=
Ω  (3.25) 

 

0dAyu
A

warping =∫  => 0uI
n

1i
iy i =∑

=
Ω  (3.26) 

 
For closed profiles, no boundary conditions are required. For an open profile, the zero shear boundary 
conditions give additional constraints on the parameters ui by prescribing that at the edge, εxs vanishes 
and thus: 
 
εxs = 0 (3.27) 
 
Since the variation of transverse shear strain is not linear but quadratic, non linear functions Ωi are 
necessary to accommodate exactly a quadratic variation of the transverse shear strain with a minimum 
profile discretization. However, for simplicity, the functions Ωi are hereby considered as linear and the 
discretization of the profile is refined.  
(3.27) is developed by using (3.24) and is reduced to the following condition: 

 
-ue+ud=0 (3.28) 
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where e is the edge transversal node (it represents all nodes related to only one segment of the profile; 
e.g. nodes 1 and 3 in figure 3.8) and d is the adjacent node (node 2 in figure 3.8). ue and ud are the 
corresponding degrees of freedom. 
 
Furthermore, to uncouple the (xz) warping effects considered in this paragraph from the (xy) bending, 
an additional equilibrium condition is required setting that ui do not represent a warping resulting from 
shear forces along the perpendicular direction (y). For an elastic behavior and a homogeneous profile: 

 

0dAG
A

xy =ε∫  => 0uS
n

1i
iy,

i =∑
=

Ω  (3.29) 

 

3.4 Distortional warping 

3.4.1. Introduction 

The warping function presented in §3.2 is adapted in order to adequately describe the distortional 
behavior introduced in §2.3. Depending on the beam geometry, m distortional modes are associated 
with m joints separating the cross section into two or more parts. Each distortional mode is 
characterized by the rotation of each part around its own specific center and by an out of plane 
bending of the inner plates constituting the beam. Each part is assumed to remain rigid and 
undeformable regarding the associated distortional mode. 
 
3.4.2 Warping function and displacement field 

Similarly to the developments presented in §3.2, the distortional warping function is divided into two 
terms: the contour warping function uc and the thickness warping function ut. The general Prokić 
warping function, for which the warping is assumed to vary linearly along straight branches of the 
contour, is adapted in order to determine uc. The thickness distortional warping (or second order 
distortional warping) ut is considered to vary linearly through the thickness and to vanish along the 
midwall. For each distortional mode I (I = 1…m), ut is proportional to θxI,x the derivative of the 
distortional rotation angle, to the distance to the midline e, and to the perpendicular distance hnI to the 
normal issued from the associated distortional center. 
A distortional degree of freedom θxI is associated with a distortional joint I (I = 1…m) and is taken as 
the rotation of a specific part of the contour (I-I+1-…-n) around the associated distortional rotation 
center. For open profiles without ramifications, the rotation of the left part of the contour (1-2-…j) 
around the left distortional rotation center CIg is measured by µIθxI. µ I is the specific rotating ratio 
between the right and the left sectional parts. For a monosymmetrical profile with one distortional 
mode, µ is found to be equal to -1. For arbitrary profiles, Iµ , CIy  and CIz  are functions of the contour 
length (s) for a distortional mode I. CIy (s) and CIz (s) represent, for each value of s, the coordinates of 
the distortional rotation center of the associated part. At the reference part, θxI is the distortional 
rotational angle and Iµ is equal to 1. For the other parts of the contour, Iµ represents the rotating ratio.  
 
utI = - Iω  Iµ θxI,x (3.30) 

where ωI(y,z) = hnI(s).e. hnI is positive when the normal to the mid line rotates counterclockwise 
around the distortional center. 
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The displacement of any point q(x,y,z) of the cross section associated with the distortional mode I (I = 
1…m) is given by: 
 

n iD
I I xI,x iq

i 1

D
q CI I xI

D
q CI I xI

uu

v (z z )

w (y y )

=

⎧ ⎫⎫⎧
− ω µ θ + Ω⎪ ⎪⎪⎪

⎪ ⎪⎪⎪
⎪ ⎪⎪⎪ = − − µ θ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

− µ θ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

∑

 (3.31) 

 

3.4.3 Kinematics decoupling 

In this section, similarly to the work developed in §3.3 and §3.4.3, the distortion is separated from 
axial, bending and tortional effects. The general function (equation 3.2) must be adapted in order to 
associate the additional longitudinal displacements ui (i = 1,n) of the transversal nodes with the 
distortional behavior. Kinematic conditions that must be satisfied in order to uncouple the distortional 
warping (uD = uc +ut) from axial, bending, torsional effects (uT computed in §3.2) are: 
 

D

A
u dA 0=∫  (3.32) 

D

A
yu dA 0=∫  (3.33) 

D

A
zu dA 0=∫  (3.34) 

T D

A
u u dA 0=∫  (3.35) 

 
This step (equations 3.32-3.35), that ensures the uncoupling between the distortional degrees of 
freedom and the others, is similar to the selection of the principal distortional sectorial warping 
function ωI when using the models of Takahashi [1978, 1980…]. The principal sectorial poles are 
found to be the distortional centers and the sectorial origin is a particular point obtained by satisfying 
the following equations:  
 

I
A

dA 0ω =∫  (3.36) 

I
A

y dA 0ω =∫  (3.37) 

I
A

z dA 0ω =∫  (3.38) 

0 I
A

dA 0ωω =∫  (3.39) 

where ω0 is the torsional warping function. 
 
Note that the four equations listed above (3.36-3.39) contribute to the determination of the distortional 
centers and the rotating ratio according to Takahashi theory. These equations were found by Takahashi 
by setting that the distortional degree of freedom θxI must not be associated to any axial force, bending 
moment or torsional bimoment [Takahashi 1978]. 
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CHAPTER 4. ANALYTICAL DEVELOPMENTS 

4.1 Introduction 

The analysis of engineering structures requires the formulation of theoretical models. Due to the 
complexity of the physical problem, many assumptions are elaborated and the mathematical model has 
to be formulated carefully in order to provide an acceptable description of the structural behavior 
during the loading process. A structural analysis problem consists of solving a set of equations with 
boundary conditions and prescribed constraints. When available, analytical solutions are the most 
convenient for modeling a structure. They enable clear analyses, physical interpretations and 
illustrated applications of an intricate theory on a simple structure. However, it is obvious that they do 
not respond to all complex requirements of a designer: simply supported beams are seldom found in 
practice. 
In structural mechanics problems, it is thus usually preferred to formulate an approximate approach: 
instead of analyzing the whole structure as a continuous model, a corresponding discrete system with a 
finite number of parameters is used. This transition is required when the complexity of the structure 
necessitates the use of computer techniques.  
Analytical developments for a linear elastic behavior of a structure are presented in paragraphs 4.2, 4.3 
and 4.4 in order to take into account separately the warping due to torsion, bending and distortion 
respectively. In paragraph 4.5, a structural stability analysis is developed with torsional warping 
effects. These analytical analyses introduce and contribute to validate the numerical methods that will 
be presented in Chapter 5. 
 
4.2 Linear elastic analysis with torsional warping effects 

4.2.1 Deformations 

The expression of linear strains can be written in a matrix notation as: 

x q,x

xy q,y q,x

q,z q,xxz

u

2 u v
u w2

⎫⎧ ⎧ ⎫ε
⎪⎪ ⎪ ⎪

ε = +⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪+ε ⎩ ⎭⎩ ⎭

 (4.1) 

In order to study the torsional warping problem, equations (3.9) developing uq, vq and wq are 
substituted in (4.1). 

n i
x,xx i,x

i 1z,xx y,x0,x n i
xy ,x z ,y c x,x ,y i

i 1
n,x yxz i

,z c x,x ,z i
i 1

u
yzu

2 0 0 v ( z z ) u
0 0w2

( y y ) u

=

=

=

⎧ ⎫
−ωθ + Ω⎪ ⎪⎧ ⎫⎫⎧ − θ⎧ ⎫⎧ ⎫ε ⎪ ⎪θ ⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ε = + + − θ + − ω + − θ + Ω⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ θε ⎪ ⎪⎩ ⎭⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎩ ⎭ −ω + − θ + Ω⎪ ⎪
⎩ ⎭

∑

∑

∑

 (4.2) 

total   =  axial  + bending (xz)  + bending (xy)  + torsion & warping 
 

4.2.2 Hooke law 

If a linear elastic behavior is assumed, the strains are related to the stresses by: 
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)z,y,x(E)z,y,x( xx ε=σ  

)z,y,x(2G)z,y,x( xyxy ε=τ  
)z,y,x(2G)z,y,x( xzxz ε=τ  (4.3) 

 
4.2.3 Principle of virtual work 

The equilibrium is considered for a thin-walled member with volume V. Virtual functions are denoted 
by the superscript *.  
The principle of virtual work expression is: 
 
W=Wint-Wext=0 ∀ *

0u , *v , *w , *
xθ , *

yθ , *
zθ , *

x,xθ , *
iu (i=1,..n). (4.4) 

 
The internal virtual work is: 
 
 Wint= dV)22( xz

*
xzxy

*
xyx

V

*
x τε+τε+σε∫  (4.5) 

 
By considering virtual kinematics that has the same form of (3.9) and by substituting the 
corresponding strain-displacement relations (4.2) into (4.5), the virtual internal work becomes: 
 

Wint= )uyzu([
n

1i

*i*
xx,x

*
x,z

*
x,y

*
x,0x

V
x,i∑∫

=

Ω+ωθ−θ−θ+σ )u)zz((
n

1i

*
y,

i*
x,xcy,

*F
xyxy i∑

=

Ω+θ−+ω−γτ+

dV)]u)yy((
n

1i

*
z,

i*
x,xcz,

*F
xzxz i∑

=

Ω+θ−+ω−+γτ+  (4.6) 

 
The external virtual work is: 
 
Wext= * * *

q vx q vy q vz
V

(u f v f w f )dV+ +∫  (4.7) 

where fvx, fvy and fvz are the components of applied volume forces.  
 

Wext= ]uyzu[f{
n

1i

*i*
x,x

*
z

*
y

*
0

V
vx i∑∫

=

Ω+ωθ−θ−θ+ ])zz(v[f *
xC

*
vy θ−−+ dV]})yy(w[f *

xC
*

vz θ−++

 (4.8) 
Let A be the cross section area and L the length of the thin walled member. By substituting (4.6) and 
(4.8) into (4.4) and after integrating by parts and isolating coefficients of virtual displacements, the 
principle of virtual work can be expressed as: 
 

0 0

* * L
x,x x x 0

L A A
u [ dA f ]dx [u dA]σ + − σ∫ ∫ ∫

* * L
xy,x y xy,x 0

L A A
v [ dA f ]dx [v dA]+ τ + − τ∫ ∫ ∫

* * L
xz,x z xz 0

L A A
w [ dA f ]dx [w dA]+ τ + − τ∫ ∫ ∫

∫ ∫ ω++ωσ+τ−+ω−+τ−+ω−θ+
L

x,xx
A

xx,xx,xzcz,x,xycy,
* dx]mmdA))yy()zz(([
x
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( )x x,x x
* L * L * L

,y c xy ,z c xz 0 x 0 vx 0
A A A

[ ( z z ) ( y y ) dA] [ dA] [ f dA]+ θ ω + − τ + ω − + τ + θ ωσ − θ ω∫ ∫ ∫

x
* L

x,x 0
A

[ dA]− θ ωσ∫ ( ) ( )
y y

* * L
x,x xz y x 0

L A A
[ z dA m ]dx [ z dA]+ θ σ − τ + − θ σ∫ ∫ ∫

( )
z z

* * L
x,x xy z x 0

L A A
[ ( y )dA m ]dx [ y dA]+ θ − σ + τ + + θ σ∫ ∫ ∫

( ) ( )ii i

n
* i i i * i L

x,x ,y xy ,z xz x 0
i 1 L A A

{ u [ dA f ]dx [u dA] } 0
Ω

=
+ Ω σ −Ω τ −Ω τ + − Ω σ =∑ ∫ ∫ ∫  (4.9) 

 
The expressions of applied body loads by unit length of the beam are given by (4.10): 
 

∫=
A

vxx dAff   

∫=
A

vyy dAff   

∫=
A

vzz dAff   

∫ −−−=
A

vycvzcx dA)f)zz(f)yy((m   

∫=
A

vxy dA)zf(m   

∫−=
A

vxz dA)yf(m   

∫ Ω=Ω
A

vx
i dA)f(f i   

∫ ω=ω
A

vxx dAfm   (4.10) 

 
4.2.4 Stress resultants  

To continue the developments of the beam theory, the following stress resultants acting on the 
complete cross section are introduced: 
 
Axial force: 
 

∫ σ=
A

xdAN  

 
Shear forces: 
 

∫ τ=
A

xyy dAT  

∫ τ=
A

xzz dAT  
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Torsional stress resultants: 

∫ ωσ=ω
A

xdAM  (second order bimoment) 

( )dA)yy()zz(M xzcz,xycy,
A

1
x τ−+ω−+τ−+ω−= ∫  (moment) 

∫ σΩ=
A

x
i

i dAB   (i=1,2,…n) (biforces)  

∫ τΩ+τΩ=ϕ
A

xz
i

z,xy
i

y,i dA)(  (i=1,2,…n) (biflows) 

 
Bending moments: 
 

∫ σ=
A

xy dAzM  

∫ σ−=
A

xz dAyM  (4.11) 

It is important to note that the definition of the biforces is related in this case to the usual definition of 
the bimoment in Vlassov or Benscoter theory (moment multiplied by a distance). Hereby, the biforces 
are internal forces applied on transversal nodes and associated with the ui. The usual bimoment –as 
defined in Vlassov or Benscoter theories– can be computed as a resultant of these warping forces. 
By substituting (4.2) into (4.3) and by integrating the stresses over the whole cross section, the stress 
resultants (4.11) are expressed as function of the kinematics: 
 

∑
=

Ω+=
n

1i
x,ix,0 uSEAuN i  

)uS)AzS(AAv(GT
n

1i
ix,xCzx,y i

y,y, ∑
=

Ωω +θ−−θ−=  

)uS)AyS(AAw(GT
n

1i
ix,xCyx,z i

z,z, ∑
=

Ωω +θ+−θ+=  

)uIII(EM
n

1i
x,izxx,xzx,yyy i∑

=
Ωω +θ−θ=  

)uIII(EM
n

1i
x,iyxx,xyx,zzz i∑

=
Ωω −θ+θ=  

 

)v)(AzS()w)(AyS[(GM zx,Cyx,C
1
x y,z,

θ−+−+θ+−−= ωω i i i
,y ,z

n

C C i
i 1

( I z S y S )u
Ω Ω Ω

=

+ − + −∑
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2 2
z y C C C C x,x(I I 2I I I 2y S 2z S y A z A) ]ω ω ω ω ω ω ω+ + + + + + − + + θ  

 
)III(EM xx,xx,zyx,yz θ−θ−θ= ωωωωω  i=1,2,3,……n  

 

i i i j

n

i y,x z,x j,xz y
j 1

B E(I I I u )
Ω Ω Ω Ω

=

= θ − θ +∑  
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i i i i i i
,y ,z ,y ,z ,y ,z

i ,x z ,x y C C x,xz y
G[(S (v ) S (w ) ( I I z S y S )

Ω Ω Ω Ω Ω Ω
ϕ = − θ + + θ + − + + − θ i k i k

,y ,y ,z ,z
k

k

(I I )u )]
Ω Ω Ω Ω

+ +∑
  i=1,2,3,……n  (4.12) 

 
Since the additional equations (3.20) are not yet considered, the resultant forces in (4.12) are not 
written in their uncoupled form. In order to restrain the warping degrees of freedom to the description 
of the torsional behavior and to reduce (4.12) to its most useful form, each resultant forces (axial and 
shear forces, bending moments, torque and biforces) have to be only associated with the corresponding 
degrees of freedom. The axial force N must depend on the axial strain u0,x. My and Tz must depend on 
the curvature θy,x, on the rotation angle θy and on the derivative of w. Similarly, Mz and Ty must 
depend on the curvature θz,x, on the rotation angle θz and on the derivative of v. Torsional internal 
forces Mx

1, Mω, Bi and φi must derive from θx and ui. 
It could be easily demonstrated that, if the kinematic equations (3.13, 3.16 and 3.17) are satisfied, the 
axial force and bending moments are therefore written in their uncoupled form (4.13). Indeed, if a 
function (equations 3.13, 3.16, 3.17) vanishes for any value of x, its derivative is also equal to zero. As 
expected, N, My and Mz are reduced therefore to their usual form: 
 

x,0EAuN =  

x,yyy EIM θ=  

x,zzz EIM θ=  (4.13) 

 
Besides, the expressions of Ty and Tz in (4.12) are transformed to (4.16) by introducing additional 
constraints:  

0uS)AzS(
n

1i
ix,xCy, i

y,
=+θ−− ∑

=
Ωω  (4.14) 

0uS)AyS(
n

1i
ix,xCz, i

z,
=+θ+− ∑

=
Ωω  (4.15) 

Equations (4.14) and (4.15) are used to calculate the co-ordinates (yC,zC) of the shear center. The usual 
uncoupled form of Ty and Tz is then given by (4.16):  
 

)AAv(GT zx,y θ−=  
)AAw(GT yx,z θ+=  (4.16) 

 
Equations (3.13, 3.16, 3.17, 4.14 and 4.15) are also prescribed for the virtual displacements introduced 
in (4.4) so that the principle of virtual work (4.9) can be developed in an uncoupled form. If done so, 
Mx

1, Mω, Bi and φi are written in their uncoupled form (4.17). The torsional biforces, biflows and 
moments are thus associated only with the torsional degrees of freedom. 
 

]u)I()SzSyIII2II[(GM
n

1i
ix,xCCz,z,yz

1
x iy,z,y,y, ∑

=
Ωωωωωωωω −+θ−+++++=  

xx,xEIM θ−= ωωω  

∑
=

ΩΩ
=

n

1j
x,ji uIEB ji  i=1,2,3,……n   
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x,xCCyzi )SySzII[(G i
z,

i
y,

i
z,

i
y,

θ−++−=ϕ ΩΩΩΩ
]u)II(

k
kk

z,
i
z,

k
y,

i
y,∑ ΩΩΩΩ ++   i=1,2,3,……n (4.17) 

 
4.2.5 Equilibrium equations 

Since (4.9) must  be satisfied for any admissible set of virtual displacements *
0u , *v , *w , *

xθ , *
yθ , 

*
zθ , *

x,xθ  and *
iu (i=1,..n) per unit length (L = 1), the expressions into brackets ([…]) associated with 

each of these arbitrary variables should be set to zero. The following equilibrium equations are then 
obtained: 
 

N,x + fx = 0 
 
Ty,x + fy= 0 
 
Tz,x + fz = 0 
 
M1

x,x + Mω,xx + mx + mxω,x = 0 
 
My,x - Tz + my = 0 
 
Mz,x + Ty + mz = 0 
 

0fB iix,i =+ϕ− Ω  (4.18) 

 
In term of displacements, (4.18) can be written as: 
 

0fEAu xxx,0 =+   

 
0f)AAv(G yx,zxx, =+θ−   

 
0f)AAw(G zx,yxx, =+θ+  

 
xx,xCCyzxxxx,x )SzSyIII2II[(GEI

y,z,z,z,y,y,
θ−++++++θ− ωωωωωωωωω

0m  m]u)I( xx

n

1i
x,ii =++−+ ω

=
Ω∑  

 
0m)AAw(GEI yyx,xx,yy =+θ+−θ  

 
0m)AAv(GEI zzx,xx,zz =+θ−+θ          

 

∑
=

ΩΩ

n

1j
xx,juIE ji x,xCCyz )SySzII[(G i

z,
i
y,

i
z,

i
y,

θ−++−− ΩΩΩΩ
0f]u)II( ik

z,
i
z,

k
y,

i
y,

k
k =++− ΩΩΩΩΩ∑  

i=1,2,3,……n (4.18’) 
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The form of the boundary conditions for x=0 and x=L is: 
 

 xFN =  or  00 uu =   
 yy FT =  or  00 vv =  

 zz FT =  or  00 ww =  

 1
x ,x x xM M m mω ω+ + =  or  xx θ=θ  

 ωω = xmM  or  x,xx,x θ=θ  

 yy mM =  or  yy θ=θ  

 zz mM =  or  zz θ=θ  

 ifBi Ω
=  or  ii uu =   i=1,2,…n  (4.19) 

The prescribed displacements (uo  , v…) are the kinematic or geometric boundary conditions and the 
prescribed forces (Fx, Fy,…) are the statical or force boundary conditions. 
 
4.3 Linear elastic analyses with bending shear effects 

4.3.1 Displacement field and strains 

The advanced shear deformation theory, introduced in paragraph 3.3, is developed hereby to 
adequately describe adequately the (xz) shear bending beam deformation. The developments for (xy) 
shear bending effects are not reproduced hereby since they are exactly identical to these (xz) 
calculations. Besides, since the complete effects including non uniform torsion have been analyzed in 
the previous paragraph and since the uncoupling of the different effects has been described in 
paragraph (3.2.3), the displacement field considered hereby does only take into account (xz) shear 
bending effects.  
 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧
Ω+θ

=

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧
∑
=

w

0

uz

w

v

u
n

1i
i

i
y

q

q

q  

 (4.20) 

 
The strain-displacements relations are derived by using the expression of the displacement field (4.20): 
 

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

Ω+θ+

Ω

Ω+θ

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

ε

ε

ε

∑

∑

∑

=

=

=

n

1i
iz,

i
yx,0

n

1i
iy,

i

n

1i
x,i

i
x,y

xz

xy

x

uw

u

uz

2

2   (4.21) 
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As explained in detail in paragraph (3.2) for torsional warping effects and in (3.3) for beam shear 
effects, additional equations must be satisfied in order to solve the problem. These equations can be 
written as: 
 

0uS
n

1i
ii =∑

=
Ω  

0uS
n

1i
iy,

i =∑
=

Ω  

0uI
n

1i
iy i =∑

=
Ω  

ue-ud=0  (4.22) 
 
The fourth series of equations (4.22) is related to the free edges of a profile with open branches. e is an 
edge node and d is the adjacent one. 
 

4.3.2 Principle of virtual work 

The governing equations are derived from the principle of virtual work of the beam (4.23). Similarly 
to paragraph 4.2.3, a thin-walled beam is considered with V as volume. Virtual parameters are denoted 
by the superscript *.  
W=Wint-Wext=0 ∀ *w , *

yθ  and *
iu (i=1,..n). (4.23) 

The internal virtual work is: 
 
Wint= dV)22( xz

*
xzxy

*
xyx

V

*
x τε+τε+σε∫  (4.24) 

 
By considering virtual kinematics that has the same form of (4.20) and by substituting the 
corresponding strain-displacement relations (4.21) into (4.24), the virtual internal work becomes: 
 

Wint= )uz([
n

1i

*i*
x,yx

V
x,i∑∫

=

Ω+θσ )u(
n

1i

*
y,

i
xy i∑

=

Ωτ+ dV)]uw(
n

1i

*
z,

i*
y

*
x,xz i∑

=

Ω+θ+τ+  (4.25) 

 
By assuming that there is only a transverse load on the beam, the external virtual work of the element 
is: 
 
Wext=

* *
q vx q vz

V
(u f w f )dV+∫  (4.26) 

where fvx and fvz are the components of external volume forces.  
 

Wext= ]uz[f{
n

1i

*i*
y

V
vx i∑∫

=

Ω+θ dV]}w[f *
vz+  (4.27) 

 
Let A and L be the cross section area and the length of the thin walled member. By substituting (4.25) 
and (4.27) into (4.23) and after integrating, the principle of virtual work can be expressed as: 
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* * L

xz,x z xz 0
L A A

w { dA f }dx [w dA]τ + − τ∫ ∫ ∫ ( ) ( )
y y

* * L
x,x xz y x 0

L A A
{ z dA m }dx [ z dA]+ θ σ − τ + − θ σ∫ ∫ ∫

( ) ( )ii i

n
* i i i * i L

x,x ,y xy ,z xz x 0
i 1 L A A

{ u { dA f }dx [u dA] } 0
Ω

=
+ Ω σ −Ω τ −Ω τ + − Ω σ =∑ ∫ ∫ ∫  (4.28) 

 
with 

∫=
A

vzz dAff   

∫=
A

vxy dA)zf(m   

∫ Ω=Ω
A

vx
i dA)f(f i   (4.29) 

 

4.3.3 Stress resultants 

The required stress resultants are defined hereafter: 
 

∫ τ=
A

xzz dAT  

∫ σ=
A

xy dAzM  

∫ σΩ=
A

x
i

i dAB , i=1,2,…n       

∫ τΩ+τΩ=ϕ
A

xz
i

z,xy
i

y,i dA)( , i=1,2,…n (4.30) 

     
The displacement-dependant internal forces are given by: 
 

)uSAAw(GT
n

1i
iyx,z i

z,∑
=

Ω+θ+=  

)uII(EM
n

1i
x,izx,yyy i∑

=
Ω+θ=  

)uII(EB
n

1j
x,jx,yzi jii ∑

=
ΩΩΩ +θ= , i=1,2,3,……n   

∑ ΩΩΩΩΩ ++θ+=ϕ
k

kyx,i u)II(G)w(GS k
z,

i
z,

k
y,

i
y,

i
z,

  i=1,2,3,……n (4.31) 

 
(4.25 and 4.26) can then be written with the following form: 
 

Wint= ∫ ∑ ϕ++θ++θ
=

L

0

*
ii

n

1i

*
x,ii

*
yzx,z

*
x,yy dx)]uuB(T*wTM[  (4.32) 
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Wext= ∫ ∑ ++θ
=

Ω

L

0

*
z

n

1i

**
yy dx}wfufm{

ii  (4.33) 

 
4.3.4 Equilibrium equations 
Since (4.32) must be equal to (4.33) for any value of  *w , *

yθ ,  *
iu (i=1,..n), the expressions per unit 

length L = 1, associated with each of these arbitrary variables is set to zero. The following equilibrium 
equations are obtained: 
 
Tz,x + fz = 0 
 
My,x - Tz = 0 
 

0FB iix,i =+ϕ− Ω  (4.34) 

 
The form of the boundary conditions for x=0 and x=L is: 

 
 zz FT =  or  00 ww =  
 yy mM =  or  yy θ=θ  

 ifBi Ω
=  or  ii uu =   i=1,2,…n  (4.35) 

 
The prescribed displacements (ui  , w…) are the kinematic or geometric boundary conditions and the 
prescribed forces (Fz, my,…) are the statical or force boundary conditions. 
 
Case of a simply supported beam 
For a beam under a distributed load (q0), the equilibrium equations (4.34) are expressed in terms of 
displacements as: 

0q)uSAAw(G 0

n

1k
x,kx,yxx, k

z,
=++θ+ ∑

=
Ω  

0uSGuIEEIGAGAw
n

1k
k

n

1i
xx,izxx,yyyx, k

z,
i =−+θ+θ−− ∑∑

=
Ω

=
Ω  

0uIEu)II(GEI)w(GS
n

1j
xx,j

k
kxx,yzyx, jik

z,
i
z,

k
y,

i
y,

ii
z,

=−++θ−θ+ ∑∑
=

ΩΩΩΩΩΩΩΩ  (4.36) 

 
The solution of (4.36), which must also satisfy (4.22), depends on the boundary conditions (4.35) that 
can be written for a simply supported beam for example as: 
- 2 kinematic conditions : 

 
  w(x 0) 0= =  w(x L) 0= =  
 
- 2+2n statical conditions: 
 
 0)0x(My ==  0)Lx(My ==  

 0)0x(Bi ==  0)Lx(Bi ==   i=1,2,…n  (4.37) 
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or, in terms of displacements: 
 
w (0) = 0  w (L) = 0 

0|)uII( 0x

n

1i
x,izx,yy i =+θ =

=
Ω∑  0|)uII( Lx

n

1i
x,izx,yy i =+θ =

=
Ω∑  

0|)uII( 0x

n

1j
x,jx,yz jii =+θ =

=
ΩΩΩ ∑  0|)uII( Lx

n

1j
x,jx,yz jii =+θ =

=
ΩΩΩ ∑   (4.38) 

 
4.3.5 An application: simply supported beam with uniformly distributed load  
In this paragraph, the present linear elastic analysis is used with bending shear warping effects (PBT). 
The results are compared to other beam theories introduced in paragraph 2.1: Bernoulli beam theory 
(BBT), Timoshenko beam theory (TBT), modified Timoshenko beam theories (TBTM), high order 
theories as Reddy-Bickford beam theory (RBT) [Wang, 2000, page 14]. 
A simply supported beam is considered under uniformly distributed load of intensity q0=10kN/m. The 
cross section is a thin rectangle (b = 0.02m) x (h = 0.2m). E = 210 MPa, G=84MPa. 

Figure 4.1 Simply supported beam with rectangular cross section (bxh) under uniformly distributed 
load 
 
The equilibrium equations (4.36) and boundary conditions in (4.38) are implemented in Maple® code 
and solved. For the numerical application given above (L=10m), the deflection of the beam is found to 
be : 

 
 (4.39) 
The values of maximal deflection are given for (BBT) by (2.12), for (TBTM) with k = 5/6 by (2.13), 
and for (RBT) by (2.14). 
 
From table 4.1, it is clear that, for rectangular cross-sections, (RBT) and (PBT) are not justified since 
the gain in accuracy with respect to (TBT) is not significant. For L/h = 50, Bernoulli beam theory 
gives a deflection with a difference of 0.1%. The (RBT) (same for (PBT)) solution is very close in that 
case (0.02%) to the Timoshenko theory solution (TBT). The results coincide with those of 
Timoshenko modified theory (TBTM) with k=5/6. For L/h = 10, the differences between the theories 
are larger than above (BBT - TBTM : 2.34%, RBT - TBTM : 0.4%). 

10kN/m 

L 

h

b
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Table 4.1 Analytical values of maximal deflection [m] of beam (Figure 4.1) 
L/h=50 L/h=10

Bernoulli beam theory (BBT) 4.65030E-01 7.44048E-04
Timoshenko beam theory (TBT) 4.65402E-01 7.58929E-04
Modified TBT with k (TBTM) 4.65476E-01 7.61905E-04

Reddy beam theory (RBT) 4.65476E-01 7.61901E-04
Present beam theory (PBT) with nn=5 4.65454E-01 7.61017E-04  

 
The correction factor of (TBTM) (eq. 2.9) is usually deduced from the geometry of the cross section 
by approximating the complex phenomenon. However, in real applications, it depends not only on the 
material (Poisson ratio) and geometric parameters, but also on the loading and boundary conditions. 
A close examination shows that although the RBT does not include explicit correction factors, the 
kinematic relation (2.11) are characterized by two coefficients α and β that must be evaluated 
according to the cross section geometry. The influence of the loading and boundary conditions is 
included in the formulation. The solution given in (2.14 and 2.15) is only valid for rectangular cross 
sections. For other shapes, similar developments should be accomplished with different values of α 
and β deduced from the geometry and the no shear boundary conditions for open profiles. The (PBT) 
has the advantage of being applicable to arbitrary profiles without any restrictions or additional 
formulations. The automatic discretization of the profile does not require coefficient calculations.  
The validation and the performance of (PBT) is shown in Chapter 5 by comparing numerical results 
using the proposed theory with those of other theories. The effect of shear deformation is evaluated for 
different types of cross sections with the length of the beam as varying parameter. 
 

4.4 Linear elastic analysis with distortional warping effects 

As introduced in paragraph 3.4, an advanced theory is presented hereby to describe the distortional 
behavior. The uncoupling of the different effects (tension-compression / bending / torsion / distortion) 
has been described previously and the displacement field considered hereby is associated to one 
distortional mode I (the sum on m distortional modes is omitted for presentation simplification).  
 

4.4.1 Deformations 

The expression of linear strains is deduced from the displacement field (3.31) and from (2.63): 
n i

I I xI,xx i,xxx
i 1

I,s xIss

n i
xy CI I,y I xI,x ,y i

i 1
n i

xz CI I,z I xI,x ,z i
i 1

u

e

2 (z z ) u

2 (y y ) u

=

=

=

⎧ ⎫⎫⎧ −ω µ θ + Ωε ⎪ ⎪⎪⎪
⎪ ⎪⎪⎪
⎪ ⎪⎪⎪ Γ θε ⎪ ⎪⎪⎪⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ε − − + ω µ θ + Ω
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ε − −ω µ θ + Ω
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∑

∑

∑

 (4.40) 

 
4.4.2 Principle of virtual work 

The equilibrium is studied for a thin-walled member with volume V. Virtual functions are denoted by 
the superscript *.  
 
The principle of virtual work expression is: 
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W=Wint-Wext=0 ∀ *

xIθ , *
xI,xθ , *

iu (i=1,..n). (4.41) 

 
By considering virtual kinematics that has the same form of (3.31 and 2.63) and by substituting the 
corresponding strain-displacement relations (4.40) into (4.5), the virtual internal work becomes: 
 

Wint=
n

* i *
x I I xI,xx i,x

i 1V
[ ( u )

=
σ −ω µ θ + Ω∑∫ *

s I,s xIe+σ Γ θ
n

* i *
xy CI I,y I xI,x ,y i

i 1

( (z z ) u )
=

+τ − − + ω µ θ + Ω∑
n

* i *
xz CI I,z I xI,x ,z i

i 1

((y y ) u )]dV
=

+τ − − ω µ θ + Ω∑  (4.42) 

 
The external virtual work is the product of forces and displacements (equation 4.7): 
 

Wext=
n

* i *
vx I I xI i

i 1V

f [ u ]
=

−ω µ θ + Ω∑∫ *
vy CI I xIf [ (z z ) ]+ − − µ θ *

vz CI I xIf [(y y ) ]}dV+ − µ θ  (4.43) 

 
Let A and L be the cross section area and the length of the thin walled member. By substituting (4.42) 
and (4.43) into (4.41) and after integrating by parts and isolating coefficients of virtual displacements, 
the principle of virtual work can be expressed by (4.44).  
 

xI

*
s I,s I,y CI I xy,x I,z CI I xz,x I I x,xx

L A

[ ( e ( z z ) ( y y ) )dAθ −σ Γ − ω + − µ τ + −ω + − µ τ + ω µ σ∫ ∫

xI x I,xm m ]dxω+ + ( )
xI

* L
I,y cI I xy I,z cI I xz 0

A

( z z ) ( y y ) dA+θ ω + − µ τ + ω − + µ τ∫ xI

* L
x I 0[ m ]ω− θ

xI ,x

* L
I I x 0

A

[ dA]+ θ ω µ σ∫ xI

* L
I I x,x 0

A

[ dA]− θ ω µ σ∫

( ) ( )ii i

n
* i i i * i L

x,x ,y xy ,z xz x 0
i 1 L A A

{ u [ dA f ]dx [u dA] } 0
Ω

=

+ Ω σ −Ω τ −Ω τ + − Ω σ =∑ ∫ ∫ ∫  (4.44) 

 
The expressions of applied body loads by unit of length of the beam are: 
 

xI CI I vz CI I vy
A

m ((y y ) f (z z ) f )dA= − µ − − µ∫   

∫ Ω=Ω
A

vx
i dA)f(f i   

x I I I vx
A

m f dAω = ω µ∫  (4.45) 

 
4.4.3 Stress resultants  

The distortional stress resultants acting on the complete cross section are: 

I I I x
A

M dAω = ω µ σ∫  (second order bimoment) 
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( )1
xI I,y CI I xy I,z CI I xz

A

M ( z z ) ( y y ) dA= − ω + − µ τ + −ω + − µ τ∫  (moment) 

∫ σΩ=
A

x
i

i dAB   (i=1,2,…n) (biforces)  

i i
i ,y xy ,z xz

A
( )dAϕ = Ω τ +Ω τ∫  (i=1,2,…n) (biflows) 

sI s I,s
A

M edA= σ Γ∫  (4.46) 

 
It is important to note that the biforces are applied on transversal nodes and are associated to the 
degrees of freedom ui. The usual distortional bimoment can be computed as a resultant of these 
warping forces. 
 
By substituting (4.40) into (4.3) and by integrating the stresses over the whole cross section, the stress 
resultants (4.46) are found to be: 
 

I J I,y I J I,z CJ I J I,y CJ I J I,z I J I,y J ,y I J I,z J ,z

I J I J I J CJ I J CJ I J J ,y I J J,z

I J CI I J CI I J CI CJ I J CI CJ I J CI J

m1
xI z y z y

J 1

zz yy z z y y z y

z z y y z z y y z

M G (I I S S I I

I I S S I I

S S A A S

µ µ ω µ µ ω µ µ ω µ µ ω µ µ ω ω µ µ ω ω
=

µ µ µ µ µ µ µ µ µ µ ω µ µ ω

µ µ µ µ µ µ µ µ µ µ ω

= − − + + +

+ + − − + −

− − + + −

∑

,y I J CI J,z

i i i i
I ,y I CI ,y I ,z I CJ ,z

y xJ,x
n

iz z y yi 1

S )

G( I S I S )u

µ µ ω

µ Ω µ Ω µ Ω µ Ω=

+ θ

+ − + + −∑

 

 

J I J I

m

I xJ,xx
J 1

M E Iω µ µ ω ω
=

= − θ∑  

2 2
sI xI I,s

A

M E e dA= θ Γ∫  

i j

n

i j,x
j 1

B E I u
Ω Ω

=

= ∑   i=1,2,3,……n  

i i i i
I ,y I ,z I CI ,y I CI ,z

m

i xI,xz y z y
I 1

G[ (( I I S S )
µ Ω µ Ω µ Ω µ Ω

=
ϕ = − + + − θ∑ i k i k

,y ,y ,z ,z
k

k
(I I )u )]Ω Ω Ω Ω+ +∑   i=1,2,3,……n  (4.47) 

 
In order to uncouple the distortional modes from torsion, stretching and bending, the distortional 
degrees of freedom θxI and ui must induce zero axial resultant, zero shear forces, zero bending 
moments and zero torsional resultants.  
 

J T,y J T,z CJ J T,y CJ J T,z J J,y T,y J J ,z T,z

J J J CJ J CJ J J ,y J J ,z

J CT J CT J CJ CT J CJ CT J CT J,y J CT J,z

i i i
,y ,y ,z

z y z y

zz yy z z y y z y

z z y y z z y y z y xJ,x

CTz y

(I I S S I I

I I S S I I

S S A A S S )

G( I z S I

µ ω µ ω µ ω µ ω µ ω ω µ ω ω

µ µ µ µ µ ω µ ω

µ µ µ µ µ ω µ ω

Ω Ω Ω

− − + + +

+ + − − + −

− − + + − + θ

+ − + + i
,z

n

CT i
i 1

y S )u 0
Ω=

− =∑

 (4.48) 
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i
J J CJ J J ,y ,y

n

z z xJ,x i
i 1

(S A S ) S u 0µ µ µ ω Ω=
− − + θ + =∑  (4.49) 

i
J J CJ J J,z ,z

n

y y xJ,x i
i 1

(S A S ) S u 0µ µ µ ω Ω=
− − θ + =∑  (4.50) 

 
In addition, it could be easily seen that, if the kinematic equations (3.32, 3.33, 3.34 and 3.35) are 
satisfied, no axial force, bending moments or torsional bimoment derive from (4.40). However, for 
each distortional mode I, additional equations (4.48), (4.49) and (4.50) are required in order to 
uncouple torsional moment resultant M1

x and bending shear resultants Ty and Tz respectively from 
distortion.  
Equations (4.48), (4.49) and (4.50) are used to calculate or condensate µI, yCI and zCI. For an open 
profile without ramifications, the unknowns are: 

- m unknowns: µI; I =1,…m 
- 4m unknowns: m x (yCI , zCI); I =1,…m 

The equations corresponding to the resolution of the 5m unknowns are: 
- 2m equations: dependency of distortional centers and corresponding joint (equations 2.76 and 

2.77) 
- 3m equations: (4.48), (4.49) and (4.50). 

Note that torsion can be considered as a particular distortional mode I by taking: 
I = T (torsion) with µT=1, yCI = yCT, zCI = zCT  (4.51) 
yCT and zCT denote the coordinates of the torsional or shear center. 
For instance, equation (4.48) can be obtained from (4.47) by setting that the torsional moment M1

xT 
(equation 4.47 where I = T) must not derive from degrees of freedom related to a distortional mode J. 
 
4.4.4 Equilibrium equations 

Since (4.44) must be satisfied for any admissible set of virtual displacements *
xIθ ( I = 1,..m) and *

iu  
(i = 1,..n) per unit length, the expressions into brackets ([…]) associated with each of these arbitrary 
variables is set to zero. The following equilibrium equations are obtained in case of one ‘I’ distortional 
mode: 
 

M1
xI,x + MωI,xx - MsI + mxI + mxωI,x = 0 (4.52) 

 
0fB iix,i =+ϕ− Ω  (4.53) 

 
The form of the boundary conditions for x=0 and x=L is: 

 
1
xI I,x x I xIM M m mω ω+ + =  or  xI xIθ = θ   I=1,2,…m 

I x IM mω ω=  or  x,xI x,xIθ = θ   I=1,2,…m 

ifBi Ω
=  or  ii uu =   i=1,2,…n (4.54) 

 
The prescribed displacements ( xIθ …) are the kinematic or geometric boundary conditions and the 
prescribed forces ( xIm …) are the statical or force boundary conditions. 
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4.5 Basic equations for linearized structural stability analysis 

4.5.1 Introduction 

In this paragraph, analytical developments (similar to those presented in paragraphs 4.2, 4.3 and 4.4) 
deal with bifurcation and linear stability in order to determine the buckling loads at which a structure 
becomes unstable. The characteristic shapes associated with the response of a buckled structure are the 
buckled mode shapes. When an equilibrium position is critical, the second variation of the total 
potential energy vanishes [Trahair 1993 page 30; Waszczyszyn 1994 page 35…]. Critical loads are 
calculated by taking into consideration that a structure reaches instability if there is more than one 
equilibrium position for the same load level [De Ville 1989 page 4.12…]. Mathematically, instability 
occurs when the determinant of the equilibrium equations is zero [Waszczyszyn 1994 page 45 …].  
 

4.5.2 Displacement field and stresses 

The displacement vector at any point has three coordinates {uq ,vq, wq}. In case of large displacements, 
the Green strain vector has components related to the gradients of displacement by means of a non-
linear kinematic relation detailed in appendix A8 (equation A8.8). 
To simplify the presentation of analytical calculations in this paragraph, Bernoulli bending model is 
adopted and strains are assumed to be small enough to neglect uq,x when compared with unity [De 
Ville 1989, page 4.3; Shakourzadeh 1996].  
 
uq,x  <<  1 
u2

q,x  <<  uq,x  (4.55) 
 
The two approximations described above are relaxed in the finite element analysis (§5.6). 
 

The Green strain vector can thus be expressed as follows: 

 
2 2
q,x q,xx q,x

xy q,y q,x q,y q,x q,y q,x

q,z q,x q,x q,z q,x q,zxz

1 (v w )E u 2
2E (u v ) (v v w w )

(u w ) (v v w w )2E

⎧ ⎫⎫⎧ +⎧ ⎫ ⎪ ⎪⎪⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪= + + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪+ +⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭⎩ ⎭ ⎩ ⎭

 (4.56) 

 
By assuming that the cross section is transversally rigid (no distortion deformation), the transverse 
displacements are continuous and differentiable functions of x, y and z: 
 

q C C

C Cq

v (y y )(1 cos (x)) (z z )sin (x)0 v(x)
w(x) 0 (y y )sin (x) (z z )(1 cos (x))w

⎫⎧ − − − θ − − θ⎧ ⎫⎪ ⎪ ⎧ ⎫ ⎧ ⎫= + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬− θ − − − θ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭

 (4.57) 

θ is the twisting angle. 
 
The transverse strains are: 
 

q,yxy C

q,z Cxz

u2E v 'cos w 'sin (z z ) '
u v 'sin w 'cos (y y ) '2E

⎫ ⎧ ⎫ θ + θ− − θ⎧ ⎧ ⎫⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬− θ + θ+ − θ⎩ ⎭⎪ ⎪⎪⎩ ⎩ ⎭⎭
  (4.58) 
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The longitudinal displacement is divided into three parts (uq = u0 + uF + uT). u0 is a constant 
tension/compression term, uF is the flexural term that derives from Bernoulli hypothesis neglecting 
shear deformation in the mean surface of the section and uT is the torsional warping. 
 
2Exy = 2Exy|F + 2Exy|T 
2Exy|F = 2Exz|F = 0 or 2Exy - 2Exy|T = 2Exz - 2Exz|T = 0 (4.59) 
 
By substituting (4.58) into (4.59), (4.60) is obtained: 
 
uF,y + v’cosθ + w’sinθ = 0 
uF,z - v’sinθ + w’cosθ = 0  (4.60) 
 
and the expression of uF is deduced: 
 
uF = - y {v’ cosθ + w’ sinθ} - z{ w’ cosθ - v’ sinθ} (4.61) 
 
uT is the torsional warping term: 
 
uT = -ωθ’ +∑Ωiui (4.62) 
 
by using (4.62) and (4.61) the longitudinal displacement is thus found to be equal to: 
 
uq = u0 - y {v’ cosθ + w’ sinθ} - z{ w’ cosθ - v’ sinθ} - ωθ’ + ∑Ωiui (4.63) 
 
and the complete strain vector is then: 
 

i
0 i

2 2 2 2
C C C C Cxx

xy i
C ,y ,y i

xz
i

C ,z ,z i

u ' y(v"cos w"sin ) z(w"cos v"sin ) " u '
1 (v ' w ' r ' ) ' v '(y sin z cos ) ' w '(z sin y cos )E 2

2E
(z z ) ' u2E

(y y ) ' u

⎧ ⎫− θ + θ − θ− θ −ωθ + Ω
⎪ ⎪
⎪ ⎪+ + + θ + θ θ+ θ + θ θ− θ⎫⎧ ⎪ ⎪⎪⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

− − + ω θ + Ω⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪

⎪ ⎪− −ω θ + Ω
⎪ ⎪⎩ ⎭

∑

∑

∑

 (4.64) 

 
where  

 
2

C
2

C
2

C )zz()yy(r −+−=  
 
Assuming that rotations and displacements are moderate, the higher order terms can be neglected 
(v’θ’θ and w’θθ’) and the rotational angle can be considered to be small: 
 

1cossin ≈θθ≈θ               (4.65) 
 
Thus (4.57), (4.63) and (4.64) can be expressed as: 
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⎪
⎪
⎭
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⎬

⎫

⎪
⎪
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θ−−

Ω+ωθ−θ−−θ+−
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⎪
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⎭

⎪⎪
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⎫

⎪
⎩

⎪
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⎧ ∑

)yy(w
)zz(v

u')'v'w(z)'w'v(yu

w

v

u

C

C

i
i

0

q

q

q

 (4.66) 

 
i

0 i
2 2 2 2

C C Cxx

xy i
C ,y ,y i

xz
i

C ,z ,z i

u ' y(v" w" ) z(w" v" ) " u '
1 (v ' w ' r ' ) z ' v ' y ' w 'E 2

2E
(z z ) ' u2E

(y y ) ' u

⎧ ⎫− + θ − − θ −ωθ + Ω
⎪ ⎪
⎪ ⎪+ + + θ + θ − θ⎫⎧ ⎪ ⎪⎪⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

− − + ω θ + Ω⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎪ ⎪

⎪ ⎪− −ω θ + Ω
⎪ ⎪⎩ ⎭

∑

∑

∑

 (4.67) 

 
4.5.3 Principle of virtual work 

The principle of virtual work can be written as: 
 
W=Wint-Wext=0 ∀ *

0u , *v , *w , *θ , '*θ , *
iu (i=1,..n). (4.68) 

 
or ij ij i i

v v
(S E )dV u df dVδ = δ∫ ∫  (4.69) 

where V is the volume in the reference configuration. Eij is the Green-Lagrange strain tensor; Sij is the 
Piola Kirchhoff stress tensor; fi is the external force vector. The material is assumed to be 
homogeneous, isotropic, linear and elastic so that the relationship between stresses and strains is given 
by Hooke’s law. 
 

Wint=
n* * * * * * * * i *

x 0 i
i 1V

[S {u ' y(v " w " w" ) z(w " v " w" ) " u '
=

− + θ + θ − − θ − θ −ωθ + Ω∑∫

)}''w''w(y)''v''v(z''r'w'w'v'v **
C

**
C

*2
C

** θ+θ−θ+θ+θθ+++

i

n* i *
xy ,y c ,y

i 1
S { ( z z ) ' u }

=
+ − ω + − θ + Ω∑

i

n* i *
xz ,z c ,z

i 1
S {( y y ) ' u }]dV

=
+ −ω + − θ + Ω∑  (4.70) 

 

Wext= ])x(u')'v'v'w(z)'w'w'v(yu[f{
n

1i

*i********
0

V
vx i∑∫

=
Ω+ωθ−θ−θ−−θ+θ+−

])zz(v[f *
xC

*
vy θ−−+ dV]})yy(w[f *

xC
*

vz θ−++ ])zz(v[f *
xC

*
sy θ−−+  (4.71) 

 

4.5.4 Governing equations 

(4.70) and (4.71) are substituted into (4.68) and the result is integrated in order to obtain expressions 
associated with arbitrary values for *

0u , *v , *w , *θ , '*θ , *
iu (i=1,..n). These expressions must be set to 

zero. 
The following equilibrium equations are obtained: 
 
N’ + fx = 0 
My” - (Mz θ)” + (w’N)’ - yC(θ’N)’ – (mzθ)’+ fz + my’ = 0 
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Mz” + (My θ)” - (v’N)’ - zC(θ’N)’ + (myθ)’ - fy + mz’ = 0 
Mω” + M1

x’ – Mzw” – Myv”+ (Mtr θ’)’+zC(Nv’)’ -yC(Nw’)’+mx + mxω,x +mzw’+myv’= 0 
0fB iix,i =+ϕ− Ω  (4.72) 

 
with  
 

x
A

N S dA= ∫  

y x
A

M zS dA= ∫   z x
A

M yS dA= − ∫   x
A

M S dAω = ω∫  

( )1
x ,y c xy ,z c xz

A
M ( z z )S ( y y )S dA

⎡ ⎤
= − ω + − + −ω + −⎢ ⎥
⎣ ⎦
∫  

2
tr C x

A
M r S dA= ∫  

i
i x

A
B S dA= Ω∫ , i=1,2,…n  

∫=
A

xx dAfF    

∫ −−−=
A

yczcx dA)f)zz(f)yy(m   

∫=
A

xy dA)zf(m   ∫−=
A

vxz dA)yf(m    

∫ Ω=Ω
A

vx
i dA)f(f i   ∫ω=ω

A
vxx dAfm       

   
The internal forces are calculated in terms of displacements. By limiting the following developments 
to a linearized stability, the first order terms are considered: 
 

0N EAu '=  
''wEIM yy −=  

''vEIM zz =            

x,xxM EIω ωω= − θ  

∑
=

ΩΩ
=

n

1j
x,ji uIEB ji  

2 2
2 2

tr y z C C 0 C z C yyr zr
M E{(I I y A z A)u ' (I 2y I )v" (I 2z I )w"= + + + − − − −

")Iz2Iy2I( zCyCr 2 θ−−− ωωω 'u)SzSyIz2Iy2II( i
2

C
2

CzCyCzy iiiii2i2 ΩΩΩΩΩΩ ++−−++∑  

1
xM = x,xzy

2
C

2
CCCz,z,y,y,yz )I2I2AzAySz2Sy2IIII[(G

y,z,y,z,
θ+−++−++++ ωωωωωωωω  

]u)SySzI(
n

1i
iCC i

z,
i
y,

i∑
=

ΩΩΩ −+−+  
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x,xCCyzi )SySzII{(G i
z,

i
y,

i
z,

i
y,

θ−++−=ϕ ΩΩΩΩ
)}u)II(

k
kk

z,
i
z,

k
y,

i
y,∑ ΩΩΩΩ ++    (4.73) 

 
The analytical analysis of instability of elastic structures originated by the interaction of buckling 
modes is deduced from these equations. The criterion to determine the buckling state is the singularity 
of the system of the structure equilibrium equations. When the critical load is reached, the structure 
has at least two equilibrium positions. So, equations (4.72) and (4.73) are combined, differentiated by 
keeping in mind that the external loads are not incremented. 
 
EAdu '' 0=  
 

y z C zEI dw '''' M d " Ndw '' y Nd '' m d ' 0− − θ + − θ − θ =   

 
z y C yEI dv '''' M d " Ndv '' z Nd '' m d ' 0+ θ − − θ + θ =   

 
ωω z y C C z yEI dθ '''' M dw" - M dv '' z Ndv'' - y Ndw'' m dw m dv− − + + +

''d
I

M
)Iz2I(''d

I
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A
N)AzAyII(
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y
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z
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C
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Czy 22 θ−+θ−−θ++++
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'd)SySzII(G"duIE i
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i
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i
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ji CCyz

n

1j
j θ−++−− ΩΩΩΩ

=
ΩΩ∑ ∑ ΩΩΩΩ +−

k
kdu)II(G k

z,
i
z,

k
y,

i
y,

=0  

 (4.74) 
 
4.5.5 Buckling of simply supported columns 

General equations (4.72) using the adapted Prokić warping function are applied in the case of thin 
walled structure buckling analysis. The resulting governing equations, including torsional effects, are 
valid for any type of thin walled cross sections. If a simply supported column is submitted to an axial 
force P passing through any point p of the cross section, the internal forces are found to be: 
 

PN −= ;   py PzM −= ;   pz PyM = ;   0M1
x = ;   0M =ω ;   0Bi = ; (4.75) 

 
The secondary warping effects are completely taken into consideration within these calculations and 
the last 3 + n equations that are deduced from (4.72) can be written as follows: 
 
a)1 torsional buckling equation with respect to derivatives of θx and ui (i=1,2,… n): 
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b) 2 flexural buckling equations with respect to derivatives of v, w and  θx: 
 

0")zz(P"Pv""vEI xpCz =θ−++  (4.77) 
0")yy(P"Pw""wEI xpCy =θ−−+  (4.78) 

 
c) n equations (i=1,2,….n) which relate uk ( k=1,2,….n) to θx: 
 

0
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ki =
θ

−+−+++− ΩΩΩΩΩΩΩΩΩΩ  (4.79) 

 

4.5.6 Buckling of simply supported beams with equal end moments 

The lateral buckling is analytically calculated hereby by using the equilibrium equations obtained 
from equation (4.72). The second torsional warping effects are taken into account and the internal 
forces are found as: 
 
N = 0, My ≠ 0, Mz = 0, Mx

1 = 0, Mω = 0, Bi = 0  (4.80) 
 
In this case, the set of equations (4.74) is reduced to: 
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=0 (4.81) 

 
Different methods are used in the literature to solve analytically similar problems (Galerkin, Ritz,…) 
[Galéa 2002; Villette 2002; Mohri 2003…]. Appropriate displacement modes must be chosen in order 
to solve the system of (n+3) equations (4.81). One sinuzoidal function for dv, dw and dθ and one 
cosine function for each dui (eq. 4.82) are usually suitable for beams with bisymmetrical profiles 
submitted to equal end moments. In this case, (4.81) is developed into (4.83). 
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 (4.83) 
 
The critical moment is calculated by taking the determinant of the system of equilibrium equations 
(4.83) equal to zero. Practically the last n equations in (4.83) are resolved to evaluate each constant ak 
in function of A3. The resulting expressions are then inserted in the two previous equations in order to 
evaluate the determinant which must be equal to zero. The value of My is thus found to be the solution 
of (4.83’). 
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By solving equations (4.74) for a uniform moment distribution Mz on a simply supported beam (N = 0, 
My = 0, Mz ≠ 0, Mx

1 = 0, Mω = 0, Bi = 0), the lowest buckling moments, based on Prokić warping 
function leads to the equation (4.84). One sinusoidal function is used for transversal displacements and 
rotations while one cosine function approximates the warping displacement modes. 
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The fi terms are found by solving the set of equations associated with the n warping degrees of 
freedom. They relate the warping variables ui to the twisting angle θx. 
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4.5.7 Analytical analyses of thin walled structure buckling  

The present calculations, based on one single warping function, are shown hereby to give excellent 
results for arbitrary asymmetrical (closed or/and open) profiles. They are compared to other analytical 
computations with different warping functions for flexural-torsional and lateral torsional buckling of 
columns and beams. 
- In the first example, the influence of second order torsional warping is evaluated while computing 
the torsional, flexural, flexural torsional and lateral torsional buckling of rectangular, cruciform, I 
shaped, U shaped and L shaped columns. 
- In the second example, the flexural torsional and lateral torsional buckling are analyzed for 
asymmetric profiles comprising one closed cell. 
- In the third example, the lateral torsional buckling of a monosymmetrical I beam is analyzed while 
varying the linear bending moment distribution along a simply supported beam. 
- The fourth example compares the lateral torsional buckling behavior of five profiles for a simply 
supported beam submitted to a uniform load. 
The application of several analytical methods is illustrated in the third and fourth examples. The 
Maple® software is used in order to solve the differential equations by using Galerkin method with 
series of sine and cosine functions. “EC3” denotes the analytical calculations deduced from the 
European Code for the Design of Steel Structures. “VL1” represents another analytical solution 
adopting either a Vlassov or a Benscoter warping function depending on the profile (open or closed 
respectively). Galerkin method is used with one sinuzoidal function as displacement mode. For 
“VL5”, the displacement modes are described by a series of sinusoidal functions with five terms. A 
similar analytical method “PR1” with a single sinuzoidal function as displacement mode is developed 
with Prokić warping function instead of Vlassov warping function. 
 
Example 1: Secondary warping effects 
In this example, a column with a cruciform cross section is submitted to an axial load passing through 
the centroid (Fig. 4.2.). The thickness of the walls is t = 8mm. G = 80GPa, E = 200GPa.  

Figure 4.2 Column with cruciform cross section 
 
The first-order theory gives three homogeneous equations and represents an eigenvalue problem. The 
cross section is symmetric, the shear center (C) and the centroid (G) coincide and the second moment 
of area is the same with respect to any axis in the plane of the cross section and passing through the 
centroid. Thus, the equations are uncoupled and the solutions of (2.78, 2.79 and 2.80) give two 
discrete sets of buckling modes: one associated with the flexural mode and the other associated with 

8cm 

 P

L 

8cm 

8cm 

8cm 

8mm 



 4-24

the torsional mode. For the flexural buckling set, the critical loads are inversely proportional to the 
square of the length of the column; and for each flexural mode, the critical load is proportional to the 
square of the number of waves n. 
The torsional warping of this kind of cross section reduces to second order warping. The particular 
geometry of the profile allows a warping along the thickness of each wall while the entire midline 
remains in the same plane. 
According to standard buckling analyses with Vlassov theory, the torsional critical load does not 
depend on the length L of the column since it depends only on the Saint Venant constant. Equation 
(2.80) is reduced to (4.85) and the torsional critical load is in this case equal to 1.363MN.  
 

0
dx
d)PiGK( 2

x
2

2
G =

θ
−   (4.85) 

 
The torsional critical load and the first critical load of the flexural buckling set are represented in 
figure 4.3 with varying values for the length L of the column. 
 

Figure 4.3 Critical loads for flexural and torsional buckling of a column  
 
By using the adapted Prokić warping function, the set of equations (4.76 and 4.79) is reduced in this 
particular case to a single equation: 
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Unlike the developments done by using equation (4.85), the torsional critical loads are found to be a 
function of the length L. This is due to the fact that, within this kinematic formulation, the effects of 
second order torsional warping are taken into account as defined in paragraph 3.2. The difference 
between the first value of this set and Vlassov critical torsional load is given in figure 4.4. As 
expected, the influence of the second order torsion is negligible for slender beams but is not negligible 
for small values of length L (3% for L=1m). If second order warping effects are neglected, equation 
(4.86) degenerates into (4.85) and the difference between analytical calculations based on Prokić and 
Vlassov formulations vanishes. 
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Figure 4.4 Difference between analytical calculations of torsional critical loads by using Vlassov and 
adapted Prokić kinematic formulations 
 
The same phenomenon is shown for other types of cross sections (table 4.2) and the difference 
between the analytical calculations of critical loads based on the adapted Prokić formulation and those 
based on Vlassov theory is shown to be important for small values of L. 
 
Table 4.2: Data for profile geometries  

 
Figures 4.5 and 4.6 show this phenomenon for columns submitted to axial force and for beams 
submitted to uniform bending respectively. Second order warping is more important for the L, 
cruciform and rectangular cross sections than for the I and U shaped profiles. Indeed, in the first three 
cases, the torsional axial deformations are linear functions with respect to the thickness coordinate 
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since the first order warping vanishes along the entire midline. This remark is also stated in [Batoz and 
Dhatt, 1990, page 195] by making reference to previously published work. 
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Figure 4.5 Difference between analytical calculations (Vlassov and adapted Prokić kinematic 
formulations) of torsional critical loads for columns with rectangular, cruciform and I sections and of 
coupled flexural torsional loads for columns with channel (U) and angle (L) cross sections 
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Figure 4.6 Difference between analytical calculations  (Vlassov and Prokić kinematic formulations) of 
lateral torsional critical moments for beams with rectangular, cruciform, I, U and L cross sections 
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Example 2: Buckling of celled-profile beams 
A column (a) is submitted to an axial load and a beam (b) is submitted to uniform bending (figure 4.7). 
Two cross-sections are considered (1 consists of one cell and two walls, and 2 is a closed cross-
section). Note that this close profile was introduced by Kollbrunner [1972, page 195]. L= 20m, 
E=206GPa, G=82.4GPa.  
Firstly, the column (a) is submitted to an axial load. In case (1-a), a mono-symmetrical cross-section 
is considered. The lowest critical load (161kN) corresponds to a coupling between flexural and 
torsional buckling. The other critical load (111 MN) associated with the coupling of flexural and 
torsional buckling is very large. The intermediate critical load (923kN) is associated with a pure 
bending mode and is given exactly by the two theories (Benscoter and the proposed theory) since it 
depends on the flexural characteristics of the beam and not on the warping shape and characteristics. 
The same column (a) is studied with the closed cross-section (case 2-a). In practice, a column with 
this kind of closed cross-section 2 will not collapse by global instability because of its high torsional 
and bending stiffnesses but rather by local buckling or yielding. This may be the reason why torsional 
buckling analysis of columns with closed cross-section is not found in the literature. However, this 
cross-section is analyzed here for testing the model and the critical loads obtained are indeed very 
large. These computations are rather important for the buckling analysis of beams or columns with 
cross sections such as 1 that are neither totally open, nor fully closed. 

Figure 4.7 Flexural, flexural-torsional and lateral-torsional buckling of beams and columns 
 
Table 4.3: Difference between critical loads or bending moments calculated by using Benscoter and 
adapted Prokić warping functions 
         First critical load   second critical load  Third critical load 
case 1-a (Pcr [MN]) (0.161)           0.001% (0.923)           0.001% (111)         0.530% 
case 1-b (Mcr MNm]) (+0.528)         0.006% (-0.538)          0.006%  
case 2-a (Pcr [MN]) (148.4)           0.005% (549)              0.002% (4044)       0.250% 
case 2-b (Mcr MNm]) (–831)            0.052% (721)              0.055%  
 
Secondly, the beam (b) is subjected to uniform plane bending by applying at its ends two couples 
acting along the main principal axis. The critical bending moments (+528 /-538 kN.m) of the first 
cross-section correspond to the lateral-torsional buckling. The sign of the bending moment is very 
important. In the second case (2-b for the mono-cellular cross-section), the first critical moment 
calculated by using Benscoter warping function is –831MN.m for one orientation and 721MN.m for 
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the other. The analytical values of critical loads and bending moments are calculated by using 
Benscoter warping function and the above described warping function. The difference is given is table 
4.3. 
 
Example 3: A monosymmetrical I beam with linear bending moment distribution 
A simply supported beam with an open monosymmetric cross section (Figure 4.8b) is submitted to 
unequal end moments as shown in Figure 4.8a. Five loading cases are considered: “C1”, “C5”, “C0”, 
“C-5”, “C-1”, for different values of end moment ratio k = 1 (uniform moment distribution), 0.5, 0, -
0.5 and –1 respectively. Six different values of beam length are considered: L = 3, 5, 8, 10, 15 and 20 
meters. E = 210GPa, G = 80 GPa.  

 
Figure 4.8 A monosymmetrical I beam 
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Figure 4.9 Lateral torsional buckling of monosymmetrical I beam 
 
The following comparisons are made: 
-firstly, the European Code for the design of Steel Structures EC3 is compared with the present 
analytical calculations VL1. The difference for Mcr between EC3 and VL1 (0.00%, 0.04%, 0.07%, 
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0.25% and 0.51% for C1, C5, C0, C-5 and C-1 respectively) is small and does not vary with the length 
of the beam. 
-secondly, the present warping function is compared to that of Vlassov. The difference for Mcr 
between PR1 and VL1 is found to be similar for the five loading cases. However it varies with the 
length of the beam: 0.088%, 0.049%, 0.021%, 0.013%, 0.006% and 0.003% for L = 3, 5, 8, 10, 15 and 
20 meters respectively (case C1). As expected, the influence of the thickness warping is negligible in 
the case of very thin walled structures and decreases with increasing values of the length L. 
-thirdly, the influence of the choice of displacement functions in analytical calculations is analyzed. 
VL5 is used with five terms of sinusoidal functions in order to refine the modelling of the 
displacement modes. The difference for Mcr between EC3 and VL5 is shown in Figure 4.9. The 
difference is very large for the case C-1 (75% for L = 3m) where each flange of the I beam changes 
from compression to tension along the length of the beam. EC3 critical moments are found to be very 
high compared to VL5. This result coincides with the conclusions of previous works [Mohri (2000), 
Braham (2001)…]. However, it should be noted that the risk of buckling is relatively reduced in this 
case (C-1) since the critical moment is larger than that of the other loading cases.  
The non coincidence of the centroid (G) with the shear center (C) of the monosymetrical cross section 
(Figure 4.8b) leads to two different buckling moments (M+ and M-) depending on which side  (upper 
or lower) of the profile is submitted to compression. The difference between the two buckling 
moments (M+ and M-) reaches 67.3% for C1 where a whole flange is under compression along the 
entire length of the beam (uniform moment distribution). 
 
Example 4: A simply supported beam with uniformly distributed load 
Table 4.4: Data for profile geometries under uniformly distributed load 
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A simply supported beam (with length L) is submitted to a uniformly distributed load q. Five cross 
sections are considered (Table 4.4). E = 210GPa, G = 80 GPa. 

Figure 4.10: Lateral torsional buckling of simply supported beam with different profiles (Table 4.4) 
under uniformly distributed load  
 
Figure 4.10a shows the influence of the choice of the warping functions for the five profiles and for a 
varying beam length on the critical value of the load q. Vlassov warping function is used for all 
profiles except for the single celled profile V for which Vlassov warping function is not applicable. 
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Benscoter warping function is thus used for this profile with a single sinusoidal function as 
displacement mode for VL1 and with a series of five sinusoidal functions for VL5. The critical load 
for this profile cannot be computed by using the formulae of the Eurocode (EC3). Figure 4.10b shows 
the difference for the critical load qcr between VL1 (a single sinusoidal function for displacement 
modes) and VL5 (a series of five terms). The data variation is represented on the horizontal axis of 
Figure 4.10a and 4.10b by the beam parameter kb used by Conci (1992) and defined by (4.87). 
 

GKL4
EIhk 2

2

b
π

=  (4.87) 

h is the total depth of the beam and I is the second moment of area about the vertical bending axis. 
 
The following conclusions can be drawn from the parametric study: 
- the results of the European Steel code EC3 are found to closely match those of present analytical 
calculations VL1 (0.043%, 0.027%, 0.044% and 0.017% for profiles I, II, III and IV).  
- the difference between the present warping function (PR1) and Vlassov or Benscoter warping 
function (VL1) increases in general with small values of beam length (Figure 4.10a). This is due to the 
influence of the thickness warping (second warping function -ωθx,x in equation 3.9) which is important 
for short thin walled beams. The second order torsional warping is not included in Vlassov and 
Benscoter warping function in the present VL analytical calculations and in the European Code EC3. 
The profile II exhibits the largest deviation. 
- the importance of the choice of displacement mode functions depends on the profile asymmetry. For 
the bisymmetrical I profile (Profile I), the difference between VL5 and VL1 is 1% (kb = 0.15). For the 
other monosymmetrical cross sections (Profile II, III, IV and V), the difference is larger (Figure 
4.10b). The T cross section (profile III) exhibits the largest deviation. 
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CHAPTER 5. FINITE ELEMENT DISCRETIZATION 

5.1 Introduction 

The analysis of complex behavior of solid mechanics as a continuous problem cannot be always 
solved analytically since the available techniques limit the possibilities to simplified situations. 
Engineers use adequate numerical models with a finite number of well-defined components and 
approximations in order to converge to the exact continuum solution when the number of discrete 
variables increases. Among these discretization procedures, the finite element method offers a very 
well-known methodology for the analysis of the structural behavior. The continuum is divided into a 
finite number of parts called elements with a finite number of parameters. For each element of the 
structure, a force-displacement relationship is established. The elements of the entire structure are then 
assembled and the resolution of the equilibrium equations yields the unknown displacements. In this 
chapter, different elements are developed to illustrate the application of the kinematics presented in 
paragraphs 2.1.1, 2.1.2 and in Chapter 3. 
 
5.2 Finite elements with torsional warping 

5.2.1 A 2-node beam model “FEM1” 

Displacement field 
The finite element ‘FEM1’ described hereafter is based on the flexural and torsional kinematics 
previously described in §2.1.1 and §3.2. The simplest bending beam kinematics is the Bernoulli beam 
theory based on the hypothesis that a plane cross section normal to the beam axis remains plane and 
normal during bending. This assumption is based on neglecting transverse shear strains. The 
displacements are small and the rotation angle of the cross section is assimilated to the slope of the 
deflected line shape. The torsional theory includes a thickness and a contour warping. The first is 
assumed to be proportional to the gradient of the torsional angle and the second is evaluated as a linear 
combination of warping displacements of transversal nodes selected from a geometrical discretization 
of the profile. 
In a general loading with tension-compression, biaxial bending and torsion, the displacement vector at 
any point q is: 

n i
x,x i

,x i 1q ,x0

q c x

q c x

uyvu zwu
v 0 0 v (z z )

0 w 0w (y y )
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⎪ ⎪⎩ ⎭

∑

 (5.1) 

As developed in §3.2.3, the torsional warping problem requires additional kinematical equations 
(equations 3.12, 3.15 and 3.17). 
 
Finite element definition 
The finite element is defined by two end nodes; each one is characterized by 6+n degrees of freedom 
(u0, v, w, v,x, w,x, θx, ui,…) (figure 5.1). The beam displacements at any point within the element is 
approximated by expressions (5.2) in which the components of N are chosen functions of position. 
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Linear shape functions are used for tension / compression and torsion and cubic shape functions give 
exact bending solutions at nodes. 
The degrees of freedom (u0, v, w, θx, ui,…) are related to the finite element nodal displacements (5.2) 
by using the interpolation functions (5.3). 
 
u0=<Nu>{qu0} 
v=<Nv>{qv}  w= <Nw>{qw} 
θx = <Nu>{qθx}  ui = <Nu>{qui}; i=1,2,…n  (5.2) 
 
with 
{qu0}t = <u01 , u02 > 
{qv}t = <v1 , v1,x , v2 , v2,x > {qw} t = < w1 , w1,x , w2 , w2,x > 
{qui}t = <ui1 , ui2 > {qθx} t = < θx1 , θx2 >  
 
The components of Nu, Nv and Nw are given by: 

u1
xN 1 ( )
L

= −  u2
xN ( )
L

=  

2 3
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2 3
v3 w3

x xN N 3( ) 2( )
L L

= = −  2 3
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L L
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Figure 5.1 Beam finite element without shear effects 
 
Stiffness matrix 
The displacements at any point q within an element are deduced from (5.1), (5.2) and (5.3), in a matrix 
expression :  
 

[ ]{ }
q

q

q

u
v q
w

⎧ ⎫
⎪ ⎪

= η⎨ ⎬
⎪ ⎪
⎩ ⎭

 (5.4) 

 

O,C 

z,w 

y,v 

x,u 
Node 2 

L 

Node 1 

u01 θx1 
v1 v1,x 
w1 w1,x 
u11 u21 ... un1 

u02 θx2 
v2 v2,x 
w2 w2,x 
u12 u22 ... un2 



 5-3

 where {q} is the (12+2n) nodal displacement vector (5.5) and [ ]η  the (12+2n x 12+2n) matrix given 
below in (5.6):  

1 i n
x

t
u0 v w u u u

{q} q q q q q q ... q ... qθ= =  (5.5) 

 
1 i n

u v w u u u u

v c u

w c u

N y N z N N N ... N ... N

[ ] N (z z ) N
N y y ) N

⎡ ⎤′ ′ ′− − −ω Ω Ω Ω⎢ ⎥
⎢ ⎥η = − −
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 (5.6) 

 
The generalized strain vector is also presented in a matrix formulation: 
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 (5.8) 

 
By using the principle of minimum potential energy, the governing equilibrium equations are 
presented for an element as: 
 
[kel] {q} = {F} (5.9) 
 
The element stiffness matrix is: 
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5.2.2 A 3-node beam model “FEM2” 

Displacement field 
The finite element described hereafter ‘FEM2’ is based on the flexural and torsional kinematics that 
was previously described in §2.1.2 and §3.2. The normality assumption of the Bernoulli beam theory 
is relaxed and transverse shear strain is supposed to be constant in each cross section. The shear 
stresses computed from the constitutive equations are also assumed to be constant and a shear 
correction factor is thus applied (§2.1.2). 
In a general loading with tension-compression, biaxial bending and torsion, the displacement vector at 
any point q is expressed as: 
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 (5.11) 

 
In addition, kinematical equations (equations 3.12, 3.15 and 3.17) must be satisfied. 
 

Finite element definition 
The beam finite element is defined by three longitudinal nodes. For each end node, there are 6+n 
degrees of freedom (u0,v,w,θx,θy,θz,ui,…). The central node is characterized by 5 degrees of freedom 
(v,w,θx,θy,θz). The beam displacements at any point within the element are approximated in terms of 
nodal displacements by using two prescribed functions. The transverse displacements (v,w) and the 
rotations (θx, θy, θz) are interpolated by a quadratic shape function N. For the longitudinal 
displacements, a linear interpolation function Nu is used. 
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)1(4

231
N

2

T  T
u

1N − ξ⎧ ⎫= ⎨ ⎬ξ⎩ ⎭
 with x

L
ξ =   (5.12) 

 

Figure 5.2 Beam finite element with shear effects 
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The displacements (u0,v,w,θx,θy,θz,ui,…) are related to the finite nodal displacements by using the 
interpolation functions as follows: 
 
u0=<Nu>{qu0} 
v=<N>{qv}  
w= <N>{qw} 
θx = <N>{qθx}  
θy = <N>{qθy}  
θz =<N>{qθz} 
ui = <Nu>{qui}; i=1,2,…n (5.13) 
 
with 
{qu0}t = < u01 , u02 > 
{qv}t = < v1 , v2 , v3 > 
{qw}t = < w1 , w2 , w3 > 
{qui}t = < ui1 , ui2 > 
{qθx}t = < θx1 , θx2, θx3 > 
{qθy}t = < θy1 , θy2, θy3 > 
{qθz}t = < θz1 , θz2, θz3 > 
 
Stiffness matrix 
The displacements at any point q within an element are deduced from (5.11), (5.12) and (5.13) by 
using the following matrix notation :  
 

[ ]{ }
q

q

q

u
v q
w

⎧ ⎫
⎪ ⎪

= η⎨ ⎬
⎪ ⎪
⎩ ⎭

 (5.14) 

 
where 

i
u u

c

c

N N z N y N ... N ...
[ ] N (z z ) N

N (y y ) N

⎡ ⎤′−ω − Ω
⎢ ⎥

η = − −⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 (5.15) 

and 

{ }
x y z 1 i n

t
u v w u u uq q q q q q q q ... q ... qθ θ θ=  (5.16) 

 
The generalized strain vector is also presented in a matrix formulation: 
 

[ ]{ }qB

2

2 L

xz

xy

x

=

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

ε

ε

ε

 (5.17) 

where  
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[ ] [ ]η

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂
∂
∂

=

xz

xy

x
BL  (5.18) 

 
i

u u

i
L c ,y ,y u

i
c ,z ,z u

N N z N y N N

B N (z z ) N N N

N (y y ) N N N

⎡ ⎤′ ′′ ′ ′ ′−ω − Ω⎢ ⎥
⎢ ⎥′ ′= − − + ω − Ω⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥

′ ′− − ω Ω⎢ ⎥
⎣ ⎦

 (5.19) 

 
And the element stiffness matrix is: 
 

[ ]
L

t
L Lel

0 A
k [B ] [H][B ]dAdx= ∫ ∫  (5.20) 

 
The above quadratic Timoshenko element is modified in order to take into account a reduced selective 
integration. For the element stiffness matrix (Appendix A3), this affects only the matrix [K1]. For the 
resulting finite element, called hereafter ‘FEM2’, the shear locking problem is eliminated and the 
finite element solution is ameliorated. Jirousek 1984 shows that the quadratic isoparametric beam 
element integrated with two Gauss points solves exactly a beam segment with a parabolic distribution 
of bending moment. 
 
Properties of the Timoshenko beam finite element 
In the literature, various choices of interpolation functions for bending degrees of freedom have 
resulted in different Timoshenko beam finite elements. Some elements present numerical problems 
like shear locking since they are unable to represent bending deformations for which transverse shear 
must vanish. For deformations in which the normal to the midline remains straight and normal, these 
elements exhibit a spurious penalizing stiffness that leads to the appearance of erroneous transversal 
shear. This penalty term becomes in some cases more important than the stiffness of the correct 
deformation and the inappropriate transversal shear absorbs a large part of the energy due to the 
external forces leading to inaccurate deflections and strains. In particular, when identical linear 
interpolations of transversal displacements and section rotations are used with exact integrations to 
calculate the stiffness matrix [Batoz 1990 page 83; Belytschko 2000 page 556; …], an inconsistency 
of the formulation results in its inability to capture a zero state of transverse shear strain. The locking 
phenomenon appears by displaying a strong over-stiffening and inducing significant errors. The 
convergence deteriorates as the thickness (or ratio height/length) of the Timoshenko beam model tends 
to zero. A large number of references [Batoz 1990 page 86, Reddy 1997, Yunhua 1998, Binkevich 
1998, Wang 2000, Mukherjee 2001… ] have elaborated and developed diverse beam finite element 
models and have shown many techniques to avoid the problem of shear locking so that the application 
to thin walled structures becomes feasible. 
In this work, the quadratic Timoshenko element (‘FEM2’) is used with a reduced selective integration 
since this technique was found to suppress, for beam elements, the locking without requiring 
additional computing costs.  
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For the proposed quadratic element, the shear strain (γxz = w0,x+θy) and the curvature (χ = θy,x) can be 
expressed as functions of the bending nodal displacements (transverse displacements w and cross 
sectional rotations θy) by using (5.12) and (5.13):  
 

F
xz 1 2 3 y1

3 4 1w w w
L L L

⎧ ⎫γ = − + − + θ⎨ ⎬
⎩ ⎭ y1 y2 y3 1 2 3

x 4 8 43 4 w w w
L L L L
⎧ ⎫+ − θ + θ − θ + − +⎨ ⎬
⎩ ⎭

{ }
2

y1 2 y32
x 2 4 y 2
L

+ θ − θ + θ  (5.21) 

 

y1 y2 y3
3 4 1
L L L

⎧ ⎫χ = − θ + θ − θ⎨ ⎬
⎩ ⎭ y1 y2 y3

x 4 8 4
L L L L
⎧ ⎫+ θ − θ + θ⎨ ⎬
⎩ ⎭

 (5.22) 

 
An absence of shear strains (γxz = 0) along the beam element induces three equations (5.23): 
 
 

1 2 3 y1
3 4 1w w w 0
L L L

⎧ ⎫− + − + θ =⎨ ⎬
⎩ ⎭

 

y1 y2 y3 1 2 3
4 8 43 4 w w w 0
L L L

⎧ ⎫− θ + θ − θ + − + =⎨ ⎬
⎩ ⎭

 

{ } 02y42 3y21y =θ+θ−θ  (5.23) 

 
It could be shown that if the third equation of (5.23) is satisfied, the curvature (5.24) is found to be 
constant along the element:  
 

y1 y2 y3
3 4 1
L L L

⎧ ⎫χ = − θ + θ − θ⎨ ⎬
⎩ ⎭

 (5.24) 

 
Thus, by using a three-node beam element with quadratic interpolations, the shear locking is not 
present as in simple linear Timoshenko element (Appendix A3) since the curvature does not vanish. 
The following bending cases and the numerical examples in §5.3.4 show detailed results. 
 
Pure bending case 
If a state of pure bending is considered, 
 
w1 = w3 = 0, w2 = αL/4,  -θy1 = θy3 = α, θy2 = 0 (5.25) 
 
Substituting (5.25) into (5.21) shows that the transverse shear vanishes through the element. Thus, 
shear locking is not expected in this case. 
 
Second bending case with zero shear 
However, it is not the case if another state corresponding to a situation where normals remain normal 
is considered. For instance, the variation of the displacement along the length of the beam is 
considered to be cubic: 
 
w = α(-1+2ξ)3, θy  = -w,x = -6α (-1+2ξ)2 /L 
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so that 
 
-w1 = w3 = α, w2 = 0,  θy1 = θy3 = -6α/L, θy2 = 0  (5.26) 
 
By substituting (5.26) into (5.21), the transverse shear is given by: 
 

F 2
xz 2 3

18[ 3 x 3 x ]
2 L L L
α α α

γ = − + −  (5.27) 

 
(5.27) represents a parasitic shear strain since, by using the kinematic hypothesis of Timoshenko, this 
shear strain should be zero for (5.26). The transverse shear given by (5.27) gives nonzero shear 
everywhere except at: 
 

)
3
31(

2
lx ±=  (5.28) 

 
These two points are precisely the locations for the two Gauss point integration rule. It is already 
shown in the literature that, for the quadratic element, the points for which the transverse shear 
deformation tends to zero coincide with the nodes of the Gauss integration of second order [Jirousek 
1984; Binkevich 1998; Belytschko 2000]. 
Thus, to avoid shear locking phenomenon and to ameliorate the finite element solution [Jirousek 
1984], a selective reduced integration is used with two point (5.28) integration rule for the stiffness 
matrix terms associated with the transverse shear strain and an exact integration is used for the other 
terms (matrix [K1] in appendix A3). 
 

5.2.3 Adapting ‘FEM1’ and ‘FEM2’ to the torsional theory of thin-walled beams 

Neglecting second order warping effects 
For thin-walled structures, the thickness warping (or so-called second order warping) is usually 
neglected [Batoz (1990) page 195, Murray (1986), Benscoter (1954), De Ville (1989), …] in linear 
analysis since it induces small effects in comparison with those of the contour warping. The second 
order warping has indeed a small influence and is neglected in most analyses. In this work, when the 
thickness is considered to be small compared to the mid-wall length, terms such as Izω, Iyω and Iωω are 
neglected when integrating (5.20) since it can be postulated that: 
 

2e 1
L

⎛ ⎞ <<⎜ ⎟
⎝ ⎠

; (5.29) 

 
Thus: 
- Iωω can be neglected when compared to Ih in the (4th,4th) matrix term of kel since: 
 

2
2 2

n n
e h dA h dA
L

⎛ ⎞ <<⎜ ⎟
⎝ ⎠
∫ ∫   

 
- the terms Izω and Iyω can be neglected when compared to Sω,z and Sω,y in the (4th,5th) and (4th,6th) 
matrix term of kel since 
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2

n n
e h cos dA h cos dA
L

   ⎛ ⎞ α << α⎜ ⎟
⎝ ⎠
∫ ∫  

2

n n
e h sin dA h sin dA
L

   ⎛ ⎞ α << α⎜ ⎟
⎝ ⎠
∫ ∫  (5.30) 

 
These approximations are adopted in this work if not otherwise mentioned. 
 
Finite element developments of the additional equations 
It is important to note that the warping function must be related to torsion by satisfying additional 
equations and that the simplest form for the equilibrium equations is the uncoupled one. It was 
previously shown in §3.2.3 that, for equations (5.1) & (5.11), principal axes are used and the 
orthogonality equations (3.13, 3.16, 3.17) have to be satisfied. The stiffness matrixes of the preceding 
beam finite elements result from developing equations (5.10 & 5.20) and from combining the 
orthogonality relationships (3.13, 3.16, 3.17, 4.14 & 4.15). The latter equations are developed by using 
‘FEM2’ finite element discretization (similar equations are developed in the case of using ‘FEM1’ 
finite element). 
 

(3.13)  => { }i
i

n

u u
i 1

S N q 0
Ω=

=∑  (5.31) 

(3.16)  => { } { }i
x i

n

z u uzi 1
I N ' q I N q 0ω θ Ω=

− + =∑  (5.32) 

(3.17)  => { } { }i
x i

n

y u uyi 1
I N ' q I N q 0ω θ Ω=

− + =∑  (5.33) 

(4.14)  => { } { }i
,y x i,y

n

c u u
i 1

G(S z A) N ' q GS N q 0ω θ Ω=
− − + =∑  (5.34) 

(4.15)  => { } { }i
,z x i,z

n

c u u
i 1

G(S y A) N ' q GS N q 0ω θ Ω=
− + + =∑  (5.35) 

 
Expressions (5.31) to (5.35) must be verified for any value of x, which implies that:  
 

(5.31)  => i

n

i1
i 1

S (u ) 0
Ω

=

=∑  (5.36) 

(5.31)  => i

n

i3
i 1

S (u ) 0
Ω

=

=∑  (5.36’) 

 

(5.32)  => { } { } 0uI43
l
1I

n

1i
1iz3x2x1xz i =+θ+θ−θ ∑

=
Ωω  (5.37) 

(5.32)  => { } { } 0uI34
l
1I

n

1i
3iz3x2x1xz i =+θ−θ+θ− ∑

=
Ωω  (5.37’) 

 

(5.33)  => { } { } 0uI43
l
1I

n

1i
1iy3x2x1xy i =+θ+θ−θ ∑

=
Ωω  (5.38) 
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(5.33)  => { } { } 0uI34
l
1I

n

1i
3iy3x2x1xy i =+θ−θ+θ− ∑

=
Ωω  (5.38’) 

 

(5.34)  => { } { } 0uS43
l
1)AzS(

n

1i
1i3x2x1xc y,

iy,
=+θ+θ−θ− ∑

=
Ωω  (5.39) 

(5.34)  => { } { } 0uS34
l
1)AzS(

n

1i
3i3x2x1xc y,

iy,
=+θ−θ+θ−− ∑

=
Ωω  (5.39’) 

 

(5.35)  => { } { } 0uS43
l
1)AyS(

n

1i
1i3x2x1xc z,

iz,
=+θ+θ−θ+ ∑

=
Ωω  (5.40) 

(5.35)  => { } { } 0uS34
l
1)AyS(

n

1i
3i3x2x1xc z,

iz,
=+θ−θ+θ−+ ∑

=
Ωω  (5.40’) 

 
Elimination of the coupled terms in the stiffness matrix 
It is found that equations (5.36 and 5.36’) eliminate the warping/tension-compression coupled terms, 
that (5.38, 5.38’, 5.39 & 5.39’) eliminate the warping/bending (xy) coupled terms and that equations 
(5.37, 5.37’, 5.40 & 5.40’) eliminate the warping/bending (xz) coupled terms in the stiffness matrix. 
This numerical approach is equivalent to the analytical work done in paragraph 4.2.4 setting that the 
warping degrees of freedom should not induce normal forces, shear forces or bending moments. And 
inversely, the tension-compression and bending generalized forces should not be related to the 
torsional warping terms ui. This eliminates the symmetrical coupled terms in the stiffness matrix. The 
non zero terms of kel (computed from equations 5.10 & 5.20) obtained after eliminating the coupled 
terms (5.36-5.40’ for FEM2) and after neglecting the second warping effects (taking into account 
5.30) are given in Appendices 2 & 3 respectively. 
 
Relating ui to torsional warping 
The orthogonality equations (5.36 to 5.40’) that simplify the system of equilibrium equations 
(previous paragraph) must again be used to relate the degrees of freedom. Therefore, there are (n-3) 
independent degrees of freedom among the (6+n) of each longitudinal end node of the finite element. 
For one finite element, six dependent axial displacements ui must be separated from the other 
independent ones. The displacement vector {q} is thus divided into two parts: dependent degrees of 
freedom {qd} and independent ones {qi}. Kinematic equations obtained by neglecting second torsional 
warping (as stated in equation 5.30) into (3.13, 3.16, 3.17) give the relationships that can be written in 
the following forms :  
 
[C]{q}=0 
or 
{qd}= [D] {qi} (5.41) 
  
The entire set of equilibrium equations can be solved by using the Lagrange multipliers (5.42) or by 
condensing the stiffness matrix. 
 

⎭
⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
λ⎥

⎦

⎤
⎢
⎣

⎡

}b{
}F{

}{
}q{

0]C[
]C[]K[ t

 (5.42) 
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For the condensation method, the set of equilibrium equations is transformed into: 
 
[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }⎭

⎬
⎫

⎩
⎨
⎧

=
⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡

d

i

d

i

dddi

idii

F
F

q
q

KK
KK

 (5.43) 

 
By combining (5.41) and (5.43), the final system to be solved is then reduced to: 
 
[[Kii]+[Kid][D]+[D]t[Kid] +[D]t[Kdd] [D]] {qi}={Fi}+[D]t{Fd} (5.44) 
 
The (6,2n) C matrix is constituted by two sets of three equations. Each set is related to a longitudinal 
end node and is deduced from equations (5.36-5.38) by neglecting second order torsional warping 
(taking into account 5.30).  
 

i

n

ij
i 1

S u 0
Ω

=

=∑  j=1,2 

i

n

ijy
i 1

I u 0
Ω

=

=∑  

i

n

ijz
i 1

I u 0
Ω

=

=∑  

 

[ ]

k

k

k

m

m

m

y

z

y

z

... S ... 0 0 0

... I ... 0 0 0

... I ... 0 0 0
C

0 0 0 ... S ...
0 0 0 ... I ...

0 0 0 ... I ...

Ω

Ω

Ω

Ω

Ω

Ω

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (5.45) 

 
Equations (5.34 & 5.35) are used to calculate the coordinates of the shear center yC and zC: the full 
system of equations is solved after a static condensation that uses (5.39 - 5.40’) in order to eliminate 
yC and zC. 
 
Static condensation of mid node degrees of freedom 
This final step is not mandatory but is done in order to reduce the total number of degrees of freedom 
of a structure. The local unknowns of the central node 2 of each element are statically condensed 
before assembling the entire structure so that the total number of degrees of freedom is reduced. The 
columns and lines of the stiffness matrix associated with the degrees of freedom of the central node are 
eliminated: the terms associated with ith (varies from 7+n till 11+n) degree of freedom are eliminated 
by modifying all the terms (m, j varying from 1 till 17+2n) of the stiffness matrix as follows: 
 

 ' mi
mj mj ij

ii

k
k k k

k
= −  (5.46) 

 
The condensed matrix is computed numerically and is not developed hereafter analytically. 
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5.2.4 Nodal forces equivalent to distributed loads 

In the finite element method, distributed forces (5.47) along the element in the direction of the (x,y,z) 
axes are transformed into nodal forces.  
 
f = ax + b (5.47) 
 
The resulting nodal forces {F}, statically equivalent to the forces distributed along the element, are 
calculated for any (virtual) nodal displacements {q} (17+2n) by equating the external and the internal 
work done by the various forces.  
 

{ } { } { } { }
L Tt h

0
q F u f dx= ∫  (5.48) 

 
{uh} is the (6+n) displacement vector (u0, v, w, θx, θy, θz, ui) of any point within the element. {uh} is 
computed by multiplying a matrix [M] (6+n,12+2n for FEM1; 6+n,17+2n for FEM2) constituted from 
the interpolation functions by the nodal displacement vector {q}. 
Since (5.48) is valid for any value of virtual displacements {q}, the contribution of the distributed 
forces to those of each node is calculated by: 
 

{ } [ ] { }
L

T

0
F M f dx= ∫  (5.49) 

 
For an axial distributed force fx: 
 
fx = ax+b 

1
Tx1

u x
x2 0

F
N f LdF

⎧ ⎫
= ξ⎨ ⎬

⎩ ⎭
∫ =

2

2

1 bLal
6 2
al bL
3 2

⎡ ⎤+⎢ ⎥
⎢ ⎥
⎢ ⎥+⎢ ⎥⎣ ⎦

  (5.50) 

 
For a lateral distributed force fy (and identically for fz) and in the case of FEM2: 
 
fy = ax+b 

y1 1
T

y2 y
0

y3

F
F N f Ld
F

⎧ ⎫
⎪ ⎪

= ξ⎨ ⎬
⎪ ⎪
⎩ ⎭

∫ ( )

bL
6

l aL 2b
3
l (aL 2b)
6

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪
⎪ ⎪+⎪ ⎪⎩ ⎭

 (5.51) 

 
For a torsional distributed torque mx and in the case of FEM2 (and identically for my and mz): 
 
mx=ax+b 
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1x1
T

x2 x
0

x3

m
m N m Ld
m

⎧ ⎫
⎪ ⎪ = ξ⎨ ⎬
⎪ ⎪⎩ ⎭

∫ ( )

aL
6

l aL 2b
3
l (aL b)
6

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= +⎨ ⎬
⎪ ⎪
⎪ ⎪+⎪ ⎪⎩ ⎭

 (5.52) 

 
The condensation of Fy2, Fz2, mx2, my2 or mx2 gives the equivalent nodal vector with components 
associated with the end nodes of each element. If i is associated with the term to be eliminated (one of 
the 5 degrees of freedom of the central node), a j term (one of the remaining 12+2n degrees of 
freedom) is affected as follows: 
 

' i
j j ij

ii

f
f f k

k
= −  (5.53) 

 
The condensed (12+2n) vector {F} is developed numerically. 
It is interesting to note that, for a uniformly distributed lateral force fy = q, the corresponding 
condensed vector {F} (using ‘FEM2’) is found to be the same as that of the Hermitian cubic element 
based on the Euler-Bernoulli beam theory (‘FEM1’). By using (5.53) to condensate (5.51) (with a = 0 
and b = q), the nodal vector is found to be {qL/2, -qL2/12, qL/2, -qL2/12}. 
 
5.2.5 Assembly of beam elements 

The behavior of a general three dimensional structure composed of thin walled beams with different 
profile geometries is significantly influenced by assembly details. In practice, the carrying capacity 
and the stability of beams with uniform cross sections may be increased by bolting or welding 
additional plates in highly stressed parts so that the cross section changes abruptly. 
The influence of a connection and the assembly of different beam structures are not easily taken into 
account in beam analyses. Beam forces and displacements are transferred from one finite element to 
another through nodal components on particular points of each element. This can be done routinely if 
all the components refer to the same physical point. However, assembled beams and columns may not 
have their centroid G or torsional center C (Fig. 5.3) situated on the same axis. This kind of assembly 
necessitates a particular treatment. The handling of the torsional axial displacement is particularly 
complex since the assembled cross sections do not necessarily fit together after deformation, but may 
have some parts of the contour in common. Modeling the real compatibility of the connected cross 
sections is a complicated task. 
The influence of an assembly is hereby analyzed for each uncoupled loading effect: tension-
compression, flexure, torsion and warping. Regarding tension-compression, bending or uniform 
torsion, the transmission is considered to be either ensured (rigid connection) or not. The assembly of 
general three dimensional thin walled beams and columns is limited to the usual beam study as done 
by Gunnlaugsson (1982), Pedersen (1991) or Shakourzadeh (1999). The displacements (u, v, w, θx, θy, 
θz) of the connected nodes refer to a common assembling point A. This assembling point A, defined as 
the point where the continuity is ensured, is assumed to be defined somewhere within the common 
contour of the connected cross sections: for example, in Figure 5.3, point A is taken anywhere along 
the common line 123. 
The influence of the assembly details on the torsional warping of each assembled cross section is 
accurately described in the present work. The longitudinal displacements (ui) of selected transversal 
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nodes (i=1,…n), chosen as additional degrees of freedom to model the torsional warping of thin 
walled structures, enable the description of compatibility equations for arbitrary joints. The warping of 
each cross section may be described as totally independent, partially or fully dependent from the other 
connected cross sections. When warping is continuous, one finite element node is used to model the 
connection. When it is not the case, two or more longitudinal nodes are taken at the same geometrical 
connection point; each node belongs to a connected element. One is the master node, and the other 
slave nodes are related to it by compatibility equations. 

Figure 5.3 A straight connection 
 
- The axial displacement due to in-plane tension or compression, usually considered at the centroid, is 
a mean value of the longitudinal displacement of the cross section. In particular, it could be taken at 
the common reference A. 
 
u0A

a = u0G
a = u0C

a (5.54) 
 
- The constant mean value of transversal translation due to plane flexure can be taken for the same 
reason at the common reference A.  
 
vA

F
 = vG

F= vC
F

 

wA
F= wG

F
 = wC

F (5.55) 
 
However the axial displacement, varying linearly along the plane of bending is proportional to the 
flexural rotation of the cross section. At an assembling point, centroids may not coincide and the 
adjacent cross sections are assumed to rotate around a common point A depending on the connection.  
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uA
F

 = u0G
F

 - yA θz + zA θy (5.56) 

 
Figure 5.4 Plane flexure 
 
- When submitted to torsional effects, a cross section rotates around the shear center. If shear centers 
of adjacent cross sections do not coincide, the corresponding eccentricity should be taken into account.  
 
vA

T
 = vC

T
  - (zA - zC) θx 

wA
T

 = wC
T

 + (yA - yC) θx (5.57) 
 
 
- Compatibility equations are required to model the transmission of the first order torsional warping. 
They describe exactly how the warping is free on some parts of the contours or partially or totally 
restrained on others. For instance, for the straight connection represented in Figure 5.3, the 
compatibility conditions between the two beams (1) and (2) are: 
 
u1

(1) = u1
(2) , u2

(1) = u2
(2) , u3

(1) = u3
(2) , u4

(1) ≠ u4
(2) , u5

(1) ≠ 0, u6
(1) ≠ 0 (5.58) 

 
Some other examples are given in Figures 5.5a, 5.5b and 5.5c. fi are the internal forces associated with 
the degrees of freedom ui. 

  
Figure 5.5a Rigid connection, warping restrained (after Gjelsvik 1981) (ui 

(1) = 0, ui 
(2) =0 ) 
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Figure 5.5b Semi rigid connection, warping transmitted (after Gjelsvik 1981) (ui 

(1) = ui 
(2)) 

 
Figure 5.5c Hinged  connection, independent warping (after Gjelsvik 1981) (ui 

(1)  ≠ ui 
(2) , fi

(1) = fi
(2) =0) 

 
The contour warping formulation does not depend directly on the assembling point since functions Ωi 
describe a linear variation between the transversal nodes that relate the nodal displacements ui of the 
cross section. However, the thickness warping is proportional to the perpendicular distance to the 
normal issued from the shear center. When the cross section is rotating around an arbitrary point A, 
the continuity must be insured. 
 
ωA = ωC + hnAC e (5.59) 
 
where hnCA is the distance between the normal issued from the shear center C to the midline and that 
issued from the assembling point A. Thus, 
uA

T
 = uC

T
 - hnACe θx,x (5.60) 

 
The transformation matrix (eq. 5.61) applied to the displacements and the forces of each connected 
node allows the assembly process (5.54, 5.55, 5.56 and 5.57) by unifying the point of application of 
the nodal unknowns and neglecting second order warping continuity (neglecting 5.60).  
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or 
{qn}%G=[A]{qn}%A (5.62) 
 
Hereafter, the force vector is considered. If external forces {fn}%G are applied on the centroid, the 
nodal force vector at the assembly point {fn}%A can be deduced from simple equilibrium equivalence 
equations. 
The three translation equilibrium equations can be expressed as follows: 
 
fx %G = fx %A 
fy %G = fy %A 
fz %G = fz %A (5.63) 
 
The three rotating equilibrium equations can be expressed as follows: 
 
Mx %A = Mx %G - fz %G (yA - yC) + fy %G (zA - zC) 
My %A = My %G - fx %G (zA) 
Mz %A = Mz %G + fx %G (yA) (5.64) 
 
Thus the force vector and the stiffness matrix are transformed as follows: 
 
{fn}%G =[A]T{fn}%A 
 
[k]%A=[A]T [k]%G[A] (5.65) 
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5.2.6 Applications: a thin walled beam behavior including torsional warping 
Elastic finite elements ‘FEM1 and FEM2’ analyze the thin-walled beam behavior including the 
torsional warping of open, closed and multi-celled profiles with or without branches and without any 
restriction of symmetry. Their performance and convergence are shown for the following examples 
submitted primarily to torsion. Arbitrary open (examples 1, 4, 5, 7 and 9) and closed (examples 2, 3 
and 6) cross sections are analyzed by using the same warping function and the same finite element 
model. If not mentioned otherwise, the calculations are done with a minimal kinematical profile 
discretization (minimum number of nodes that describe the geometry of the profile). 
The numerical results are compared with analytical computations using various kinematical models 
depending on the profile geometry, the loading case and the boundary conditions. The reference theory 
is selected to be the de Saint Venant theory when the warping is uniform along the beam length. This 
is the case when the warping vanishes (e.g. example 2) due to the radial symmetry of the profile 
(circular, square tubular, particular rectangular tubular profiles..). For other particular shapes (L 
section, example 1…), the contour warping vanishes and the de Saint Venant theory is taken to be the 
reference if the second warping (thickness warping) is neglected. For other general forms of profiles, 
the uniform torsion is restricted to the case of a uniform distribution of torsional moment and free 
warping along the longitudinal axis of the beam (example 3a). In all these particular cases, the 
analytical and numerical results degenerate exactly into Saint Venant theory. In other general cases, 
the finite element results converge for refined meshes to: 
- the solution obtained with Vlassov theory for open cross sections (examples 4,5,7,8 and 9) 
- the solution obtained with Benscoter theory for closed cross sections (examples 3b, 6) 
The following examples, summarized in table 5.1, show the difference between the theories in case of 
absence or strong non uniformity of warping. 
 
Table 5.1 Description of examples 

 
 
Example 1: Saint Venant torsion of a thin rectangular cross section 
A thin rectangular cross section (figure 5.6b) is considered in order to show that, when the solution of 
Saint Venant is exact, the finite element solution degenerates into that one. The beam is simply 
supported at its two ends in such a way that the torsional rotation is prevented at the ends and that the 
sections are free to warp. A concentrated torque is applied at mid span (Figure 5.6a). G=80GPa; 
E=210GPa. 
The torsional moment distribution is not uniform along the entire length of the beam but the first order 
warping (contour warping ω1 in equation 2.33) is equal to zero. According to the theory of Vlassov, 
Iω = 0 and the solution degenerates into that of Saint Venant: this is the case of pure uniform torsion. 
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Figure 5.6 Simply supported beam submitted to a concentrated torque  
 
The distribution of the torsional angle along the beam length is linear and thus, for both finite elements 
‘FEM1’ and ‘FEM2’ (neglecting second order effects; equations 5.30) with linear and quadratic 
interpolation of the torsional angle, the exact solution is obtained with minimum discretization 
required for the geometry and the definition of the problem. The maximal torsional angle is found to 
be 7.5 10-4rad and the maximal tangential stresses are found numerically and analytically equal to 
0.6MPa. 
 
Example 2 : Saint Venant torsion of a square tubular cross section 
For the same purpose of the previous example, a square tubular cross section (figure 5.7c) beam is 
submitted to a uniformly distributed torque leading to a linear distribution of torsional moment. E = 
206GPa and G = 82.4GPa. 
Two boundary conditions are considered: 
-simply supported beam with free warping (figure 5.7a), 
-bi-fixed beam with constrained warping at the supports (figure 5.7b). 
In both cases, the finite element solution reaches, with minimum discretization (two elements), the 
Saint Venant value for the mid span torsional rotation (θx=7.58 10-7rad). Indeed, the monocellular 
cross section has a particular shape (tubular section with specific dimensions so called Neuber) that 
does not warp (ω1 in equation 2.43 is equal to zero). Benscoter theory degenerates into Saint Venant 
theory. In this example as in the previous one, there are no effects of restrained warping and the 
uniform torsional theory is the exact solution. 

Figure 5.7 Square tubular beam with uniform density of torque 
 
Since the cross section does not warp, there are no warping shear stresses (τxs

ω). The shear flow of 
Saint Venant stresses is uniform along the periphery of the cross-section. The same value is found for 
the mean shear stress by numerical and analytical results (τxs

s = 0.125MPa at the left support). Besides, 

 
 C = 1N.m 

0.5m 0.5m 

0.005m 

0.1m 
(a) (b) 

  t  =0.002m 

0.1m 

0.13 
0.12MPa 

0.002m 

  
1N.m/m 

L = 1m 
  
1N.m/m 

(a)   
 
 
 
 
(b) 
 



 5-20

additional shear stresses vary linearly through the thickness variation, vanish along the centerline and 
reach a maximum value on the outer skin (∆τxs = 5kPa at the left support). The total variation of the 
shear stresses (τxs

s + ∆τxs) along the thickness (0.002m) is given in Figure 5.7d. 
 
Example 3: torsion of a rectangular tubular cross section 
In this example, the influence of warping constraint is discussed for a beam with a closed cross section 
(figure 5.8c) subjected to a uniform distribution of torsional moment. G=82,4GPa; E=206GPa. 
Two boundary conditions are considered: 
-simply supported beam: fixed rotation at left support; but with free warping at both supports (figure 
5.8a), 
-free fixed beam: fixed rotation and warping prevented at the left end (figure 5.8b). 

Figure 5.8 Torsion of a tubular cross section 
 
When all cross sections are free to warp, the numerical results match those of Saint Venant (θx=1,82 
10-2 rad) which are exact in this theoretical case. If one section is prevented from warping, the warping 
is no longer uniform and the solution of Saint Venant is no longer exact. The numerical solutions 
approach that of Benscoter (θx=1,813 10-2 rad) (figure 5.9). 

Figure 5.9 Relative difference between values of maximal torsional angle of the beam in 5.8b obtained 
by the theory of Benscoter and the finite elements FEM1 and FEM2 
 
In paragraph 2.2, the difference between the torsional behavior of closed and that of open cross 
sections has been discussed. The non uniform warping effects have been shown to be much more 
important for open cross sections than for closed ones. The approximation that results from solving a  

  C = 1kN.m 

t  =0.002m L = 1m 0,05m 

0.1m 

           C = 1kN.m 
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torsional problem with the de Saint Venant theory is in general more acceptable for closed (0.25% in 
this example) than for open cross sections.  
The torsional problem of this example is found to be mostly governed by the de St Venant torsion (for 
which Mx

st is proportional to the first derivative of the torsional angle θx) rather than by the non 
uniform torsional term (for which Mx

ω is proportional to the third derivative of the torsional angle θx). 
The distribution of the torsional angle along the beam longitudinal axis is quasi linear and the finite 
element discretization of FEM1 (linear interpolation functions) is sufficient (figure 5.9: FEM1 and 
FEM2 results nearly coincide). 
 
Example 4: non uniform torsion of an open cross section 
A non uniform warping is considered in this example along a beam with an open cross section in order 
to show the convergence of the finite element solution towards that of Vlassov. The theory of Saint 
Venant is not exact in this case. A simply supported I beam (figure 5.10a), is sollicited by a uniform 
density of torque C = 100Nm/m which leads to a linear distribution of torsional moment along the 
length of the beam. The torsional angle is prevented at the ends and the sections are free to warp. 
G=82.4GPa; E=206GPa.  

Figure 5.10 Simply supported beam submitted to a uniform density of torque  
 

Figure 5.11 Relative difference between the values of mid span torsional rotation obtained by the 
theory of Vlassov and the finite elements FEM1 and FEM2 
 
This is the case of mixed torsion (uniform + non uniform torsion) whose results must converge to 
those obtained with Vlassov theory. Figure 5.11 shows how the numerical solution converges to that 
of Vlassov when varying the number of finite elements. As expected, the result obtained by the theory 
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of Saint-Venant (θx=3,56 10-1 rad) is different from the solutions of Vlassov theory (θx=1,227 10-1 rad) 
and of finite element FEM2. In this example, the non uniform torsion governs a large part of the 
torsional problem and the distribution of the torsional angle along the beam longitudinal axis is 
exponential and not linear. The finite element ‘FEM2’ (quadratic interpolation functions) is shown 
(figure 5.11) to behave far better than ‘FEM1’ (linear interpolation function). Since ‘FEM1’ is not 
suitable for important non uniform torsional effects, ‘FEM2’ is used hereafter when analyzing the 
torsional behavior. 
Now, the same beam is considered with warping restrained at the supports (5.10b) in order to show the 
influence of constrained warping. The results obtained with the finite element model ‘FEM2’ converge 
to the solution of Vlassov (figure 5.12). The difference between the finite element FEM2 and Vlassov 
is 3% for 10 beam elements. The variation with the solution of Saint Venant is even larger than in the 
previous case. This is quite logical since the theory of Saint Venant does not take into account the 
effects of non uniform warping, and these effects are stronger when the ends of the beam itself are 
prevented from warping. The value of maximal torsional angle with Saint Venant theory is the same as 
in the previous case (3.56 10-1 rad) and is almost ten times larger than Vlassov one (3.29 10-2 rad). The 
effects of non uniform warping on open cross sections (981% in this example) are really large 
compared with those of closed cross sections (0.25% in example 3). 

Figure 5.12 Relative difference between values of mid span rotating angle obtained by the theory of 
Vlassov and the finite element FEM2 
 
Example 5: a channel cross section beam submitted to uniform transversal load 
A beam with a channel cross section is submitted to a uniform transversal load (Fig. 5.13a). The 
torsional angle is prevented at the ends and the sections are free to warp. E = 210GPa, G = 80GPa. 
Flexural analyses 
Firstly, the uniform transversal load induces a bending in the plane of the load. The numerical 
solutions of both finite elements ‘FEM1 and FEM2’ developed in §5.2.1 and §5.2.2 respectively give 
the exact value of bending rotation at the supports (θz = 2.115 10-3rad) regardless of the number of 
elements. The maximum deflection occurs at the middle of the beam. The analytical value of this 
deflection are obtained by using Bernoulli (without taking into account the shear effects) and modified 
Timoshenko (by taking into account a constant shear strain over the cross section) theories. The 
difference (5.175%) between these two theories measures the error induced by neglecting shear 
deformation effects on beam deflections. The finite element ‘FEM1’ that neglects shear bending 
effects gives with minimum discretization (two elements) the Bernoulli analytical value of maximal 
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deflection (v = 2.64 10-3m). FEM2, based on Timoshenko theory with a selective numerical reduced 
integration with two Gauss points gives exactly [Jirousek 1983] Timoshenko value (v = 2.78 10-3m). 
FEM1 and FEM2 give exact results for bending displacements regardless the number of finite 
elements. 

Figure 5.13 Channel beam submitted to non-uniform torsion  
 
Prescribing the location of the shear center for the torsional analyses 
Secondly, since the load is not applied at the shear center C (Fig. 5.13b), the beam is also submitted to 
torsion. For Vlassov theory, taken as the reference solution for this open profile, the distance between 
the centroid and the shear center is equal to 0.0625m. This value, computed from equations (3.21), is 
found to depend exclusively on the profile geometry. This is a consequence of Vlassov approximation 
(HYPV2, §2.2.3.1) stating that warping shear strains are assumed to vanish in the middle surface of a 
thin walled beam. With the finite element ‘FEM2’, this distance is found to be exactly the same in the 
case of uniform torsion (uniform torsional moment and free warping); this particular case satisfies the 
absence of warping shear stresses (as assumed by Vlassov). 
If this location is prescribed within the present finite element analyses, the difference for the maximal 
torsional angle between FEM2 results (with 20 elements) and Vlassov analytical solution (θx = 7.7165 
10-2rad ) is 0.023%. It is interesting to note that computing analytically the maximal angle of torsion 
with Saint Venant theory and neglecting the non uniform torsion lead to a difference of 45.8%! The 
theory of Saint Venant is indeed not applicable here because the torsional moment is not constant and 
the warping is not uniform. 
The distributions of normal stresses σx and contour warping shear stresses τxs

ω caused by the non 
uniform distribution of torsional moments are shown in figures 5.14b and 5.14c. Since Vlassov theory 
assumes zero warping shear stresses at the mid wall, the analytical calculation of warping shear 
stresses τxs

ω are computed from the equilibrium equations (equation 2.40’) and yield a parabolic 
shaped distribution (Figure 5.14c). The numerical study (between parentheses) gives values of shear 
stresses for each small segment of the thin wall; the number of these transversal segments result from 
discretizing the contour by a finite number of nodes and segments (for results in figure 5.14c, 14 
transversal segments are used). The variation of shear stresses along the thickness is linear and is 
given by Saint Venant shear stresses τxs

s. They are uniform along the contour (coordinate s), for a wall 
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with constant thickness and vanish at the centerline. The variation of τxs
s
 through the thickness is given 

in Figure 5.14a. 

Figure 5.14 Normal and shear stresses due to non-uniform torsion for a channel beam 
 
It is important to note that refining the kinematical discretization (increasing the number of the 
transversal nodes that describe the geometry of the profile) has a very small incidence on the torsional 
angle and normal stresses distributions. In this example, the difference between Vlassov solution for 
the maximal torsional angle and FEM2_18 (FEM2 computations with eighteen transversal segments) 
is 0.003%  while the difference computed with minimum kinematical discretisation (FEM2_3; three 
transversal segments for the entire profile) is 0.023%.   
Condensing the location of the shear center for the torsional analyses 
If the coordinates of the torsional center are not prescribed but condensed according to equations 
(4.14) & (4.15), the values of the torsional angle and the distribution of the normal stresses do not 
change significantly. The difference between the two finite elements (prescribing and condensing the 
coordinates of the torsional center) is found to be 0.032% for the maximal rotating angle and 0.532% 
for the normal stresses at mid span. The location of the torsional center may be then computed as a 
function of the finite element solution (equations 4.14 and 4.15). The difference between Vlassov and 
FEM2 computations for the distance between the torsional center and centroid (e.g. curve FEM2_3 in 
figure 5.15a) is maximal at the ends of the beam since the ratio between the non uniform effects and 
the uniform torsional effects is largest for x = 0m. Indeed, the torsional moment may be considered as 
being the sum of two parts (equation 2.20): the uniform torsional part Mx

st and the non uniform 
torsional part Mx

ω. For this example, the ratio Mx
ω / Mx

st (0.77 at the beam ends and 0.35 for x = 1m) 
decreases when moving from one end to the midspan of the beam. 
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Figure 5.15 (a) Difference between Vlassov and FEM2 calculations for the distance between the 
centroid and the shear center, (b) warping shear stresses (x = 0m) at the mid wall when prescribing 
shear center coordinates, (c) warping shear stresses (x = 0m) at the mid wall when condensing the 
shear center coordinates 
 
In figures 5.15b and 5.15c, the distributions of warping shear stresses at the left support of the beam 
are plotted against the contour coordinate (s) in both above cases: prescribing the location of the shear 
center as being that of Vlassov (or that of uniform torsion) and condensing the location of the shear 

0.00%

0.05%

0.10%

0.15%

0.20%

0.25%

0 0.5 1 1.5 2 2.5 3 3.5 4
x [m]

FEM2_3
FEM2_9
FEM2_18

-4.00E+06

-3.00E+06

-2.00E+06

-1.00E+06

0.00E+00

1.00E+06

2.00E+06

3.00E+06
0 0.1 0.2 0.3 0.4 0.5s[m]

Vlassov
FEM2_3
FEM2_9
FEM2_18

-4.00E+06

-3.00E+06

-2.00E+06

-1.00E+06

0.00E+00

1.00E+06

2.00E+06

3.00E+06
0 0.1 0.2 0.3 0.4 0.5s[m]

Vlassov
FEM2_3
FEM2_9
FEM2_18

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 



 5-26

center. These distributions are computed by using Hooke’s law and the present kinematics. In the first 
case (figure 5.15b), shear warping stresses (3 transversal nodes and 4 nodes describe the geometry of 
the monosymmetrical profile for FEM2_3; 9 transversal nodes for FEM2_9 and 18 transversal nodes 
for FEM2_18) do not match exactly the analytical solution. The prescribed location of the shear center 
is not exact and gives, for these warping shear stresses,  a vertical bending shear force. Figure 5.15c 
presents accurate computations of torsional warping shear stresses computed with the adequate 
location of shear center. This difference between the two cases is more marked in the case of an open 
asymmetrical profile where both coordinates of the shear center differ from those of the centroid. 
Hereafter, the location of the shear center is taken as being that of uniform torsion in order to compare 
the torsional rotation and longitudinal stresses to those computed with Vlassov theory. However, 
warping shear stresses will be computed by using the condensation technique. 
 
Example 6: non uniform torsion for a beam with a closed cross section 
A beam with a non-symmetric closed cross section (figure 5.16b) is submitted to a uniform 
distribution of torque (figure 5.16a). E = 206GPa, G = 82.4GPa, t0 = 0.01m. The torsional angle is 
prevented at the ends and the sections are free to warp. As in the previous example, the beam is 
submitted to non uniform torsion.  

Figure 5.16 Maximum torsional rotation angle in case of non uniform torsion for a closed cross section 
 
The difference for the maximum torsional rotation angle between the finite element analysis ‘FEM2’ 
and the analytical solution based on Benscoter theory (θx = 0.153 10-2rad) is shown in Figure 5.16c for 
various descritizations. The error obtained by using Saint Venant theory for the torsional angle is 
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2.6%. As expected (discussed in paragraph 2.2), the effects of non uniform torsion are more important 
for an open (47.79%, example 5) than for a closed cross section. 
Figure 5.17 shows normal and shear stresses caused by non uniform torsion. Shear stresses flow 
through the periphery of the cross section. The analytical study gives a parabolic shaped distribution of 
these contour shear stresses by considering an equilibrium equation (equation 2.55) in Benscoter 
theory. The numerical study gives constant values for shear stresses at transversal segments, obtained 
directly from the kinematics by using Hooke’s law by discretizing the contour by a finite number of 
nodes and segments (for results in figure 5.17c, 13 transversal segment are used). All the previous 
computations are ensured by prescribing the location of the shear center as being that of uniform 
torsion (as in Benscoter theory). 

Figure 5.17 Normal and shear stresses in case of non uniform torsion for a closed cross section beam 
 
Example 7: non uniform torsion of continuous beam with three spans 
A continuous beam with three spans is analyzed in order to compare the proposed finite element 
solution with another finite element solution based on the theory of Vlassov [Batoz, 1990, page 211].  

Figure 5.18: Continuous beam with three spans submitted to a uniform density of torque at central 
span 
 
The beam geometry and loading are shown in figure 5.18. The beam is simply supported at its four 
supports (where the torsional angle is prevented, and the end sections are free to warp). The central 
span is submitted to a uniform density of torque. The beam has an open I cross section. G=77GPa; 
E=200GPa. 
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Figure 5.19 gives the distribution of rotating angle and bimoment along the left half of the beam. For 
the finite element solution with Prokić kinematic formulation, the bimoment is calculated from the 
forces fi associated with the warping degrees of freedom which are the warping longitudinal 
displacements of the transversal nodes. Results obtained with FEM2 based on Prokić kinematic 
formulation and with the finite element based on Vlassov theory match precisely. It is again shown 
that the maximal rotating angle (θx=2,6 10-4 rad pour x=4m) would be very poorly estimated by de 
Saint Venant theory where θx = 6,12 10-4rad (the difference is 136%).  

Figure 5.19: Distributions of rotating angle and bimoment along the beam in figure 5.18 
 
Example 8: warping of an I beam due to a single axial load P  
This example illustrates a particular case in which thin walled structures exhibit a torsional behavior in 
the absence of applied torsional torques. A load P = 100kN parallel to the longitudinal axis acts at one 
corner at the right end of the beam (L = 10m) in figure 5.20. At both ends, the torsional angle is 
prevented and the end sections are free to warp. 
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It is well known that three cases of loading (figure 5.21a,b,c) are induced in this case involving an 
axial force and two bending moments about the y and the z axes. These internal loads are easily 
deduced from the applied load by using simple equilibrium equations (longitudinal force equilibrium 
and moment equilibrium around the transversal axes). The moment equilibrium around the 
longitudinal axis gives zero torsional moment. This set of loads is in a general Strength of Materials 
type of analysis sufficient to describe the behavior of the part of the beam some distance away from 
the surface loading. However, in this loading case, thin walled structures have a complex behavior and 
additional stresses, resulting from other effects, do not attenuate as quickly along the length of the 
beam as in beams with solid cross sections. When the cross section is an assembly of different thin 
rectangles, the cross section does not remain plane but warps [Murray 1986, page 6]. 

Figure 5.20 An I beam submitted to an eccentric single axial load 
 

Figure 5.21 Longitudinal stresses corresponding to four sets of loading resulting from a single load 
applied in 5.20; a: compression, b &c: bending, d: torsional warping 
 
A fourth set of stress distributions is hereby considered (figure 5.21d). The corresponding load is the 
torsional bimoment that is associated with the cross section warping. A twisting occurs along the 
longitudinal axis even in absence of applied torsional torques and a torsional moment appears when 
the bimoment varies along the length of the beam (equation 2.38 for Vlassov theory and equation 4.18 
for the present analyses). The analogy between the flexure and the torsion presented in paragraph 2.2.3 
can be used to clearly illustrate this phenomenon. If a simply supported beam is submitted to a flexural 
couple at one end, the bending moment distribution is linear and the shear force distribution is uniform 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
(c) (d) 
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over the length inducing transversal stresses. Even if there are no applied forces, the couple induces a 
reaction force at each end of the simply supported beam in order to ensure equilibrium.  
For the loading given in figure 5.20, analytical computations are developed by using Vlassov warping 
function in order to qualify the present finite element results. The different analytical and numerical 
values of rotating angle at mid length and of warping at the left support of the beam are compared in 
table 5.2. The value of the constant torsional moment along the beam has been found to be exact for 
all the calculations (Mx = 1401.48Nm). The distribution of the torsional rotation along the beam is 
given in figure 5.22. 
 

Figure 5.22 Diagram of torsional rotation [rad] along the longitudinal beam in figure 5.20 
 
Table 5.2 Rotating angle [rad] and warping [m] along the longitudinal beam in Figure 5.20 

 
Axial stresses are maximal at the right end of the beam where the load is applied (on the right lower 
part of the cross section: -181.94MPa). They are induced by an axial load (N), bending moments (My 
and Mz) and a torsional bimoment (B) as follows: from N : 3.38%; from My : 18.33%; from Mz : 
4.82% and from B : 73.47%. Warping normal stresses are shown to be larger than bending stresses and 
cannot be ignored. 
 
Example 9: influence of warping boundary conditions 
This example analyses the effect of warping restraint on the torsional behavior of a simple beam 
submitted to a torque (Figure 5.23). The supports are taken to be either free to warp or partially or 
completely prevented from warping. The beam is divided into sixteen identical finite elements. E = 
200GPa and G = 80GPa. Seven types of warping conditions are considered: 
- fully restrained warping at both ends; (Case I, figure 5.23b). 
- partially restrained cross sections at both ends (  is restrained); (Case II), 
- partially restrained cross sections at both ends (  is restrained); (Case III), 
- free warping at left end and totally restrained warping at right end; (Case IV), 
- partially restrained cross sections at both ends (  is restrained); (Case V), 
- free at left end and partially restrained (   is restrained) at right end; (Case VI), 

Analytical FEM, 1elt FEM, 2elts FEM, 10elts FEM, 20elts
twist at mid length 4.3282E-02 5.0588E-02 5.0588E-02 4.3487E-02 4.3333E-02
warping at left end 3.5198E-04 7.0951E-04 3.9734E-04 3.5398E-04 3.5248E-04
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- free warping for both ends; (Case VII). 

Figure 5.23 A Beam submitted to torsion 
 
Table 5.3 Rotating angle [rad] at 1.75m from left end for different types of warping conditions  

 
 
Figure 5.24 gives the distribution of rotation angle along the beam and table 5.3 gives the value of the 
rotation angle at 1.75m from left end. For the first and last cases, the rotating angle and the bimoment 
distributions obtained from the present warping function are in excellent agreement with analytical 
values obtained with Vlassov warping function. It is expected to find that the torsional angle is 
maximal in case of free warping and minimal in case of totally restrained warping. The solutions for 
partially restrained warping are between these two extremes. The decreasing value of torsional angle 
depends on the amount of restrained warping. By taking the free warping case as a reference, the 
torsional angle decreases of 5.27%, 74.75% and 74.87% if respectively ,  and  are 
restrained. This is related to the fact that the warping is more important on segment  than on . 
It could be concluded that in such structures, warping resistance is important. The torsional stiffness is 
significantly increased when cross sections are fully or partially restrained against warping. 
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Figure 5.24 distribution of rotating angle [rad] along the beam for different types of warping 
conditions at supports 
 
5.2.7 Applications involving connections 

Two examples are presented in order to analyze the linear behavior of structures combining beams 
with different thin-walled cross-sections and to investigate the influence of the torsional warping 
transmission on the overall behavior. The numerical results are compared with other results obtained 
by using shell finite element analyses.  

 
Example 1 Transmission of torsional warping through a connection in a frame 
This example illustrates the influence of the joint description on the behavior of a frame.  

Figure 5.25 Portal frame geometry with H (1) and U (2) cross sections 
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The frame consists of a vertical column (1) with a H-section connected to a horizontal beam (2) with a 
U-section (Figure 5.25). A torque C acts along the longitudinal axis of the beam (2). The two supports 
are clamped but keep the warping free: 6 degrees of freedom (u, v, w, θx, θy, θz) are set equal to zero. 
The torsional rotation is calculated at the connection by assuming different warping transmission 
modes at the corner of the frame. E = 200GPa, G = 80GPa, L = 10m.  
 
If the connection at the corner allows the complete transmission of forces and moments, the value of 
the maximal rotating angle obtained by a beam finite element using Vlassov warping function (Batoz, 
1990, page 211) is 0.028024 rad for C = 100kNm. The difference between this result and the results of 
the beam element ‘FEM2’ by assuming that warping is continuous as shown in Figure 5.26. 

Figure 5.26 Difference with Vlassov finite element solution for the torsional rotation at the connection 
and FEM2 
 
Table 5.4 gives the results of the analysis with ‘FEM2’ by assuming different transmission modes of 
warping: 
-independent warping for both profiles, 
-warping transmitted along one transversal node:  for H profile (beam 1) section and   for U 
profile (beam 2) 
-warping transmitted at a common segment:  for H profile (beam 1) section and   for U 
profile (beam 2) 
-restrained warping for both profiles. 
The influence of the transmission of warping varies within a range of 0.37%. 
 
Table 5.4 Rotating angle at the rigid joint 

 
If the joint at the corner is a simple hinge allowing independent rotations for the connected members 
with independent warping, the horizontal U beam is then submitted to a uniform torsion. Finite 
element analyses with the present warping function ‘FEM2’ and with Vlassov warping function 
(Batoz, 1990, page 211) give the same results for the case of independent warping of the U beam and 
the H column (for C = 1kNm, θx = 0.078125rad) and the numerical solutions do not depend on the 
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number of elements. When the transmission of warping changes, the rotating angle varies within a 
range of 9.9%; when warping is restrained, θx = 0.07108rad. 
 
Example 2: Assembly of beam elements 
The second example, already solved in the literature (Gunnlaugsson & Pedersen 1982, Pedersen 
1991), illustrates an application involving the assembly of beam elements with different cross sections 
within a simple beam structure. A simply supported beam (L = 2.4m) is divided in three prismatic thin 
walled beam elements. The two end elements have a tubular thin cross section and the connecting 
element has an open U shaped cross-section. The wall thickness is constant and equal to 0.003m. The 
beam is loaded by torques at its ends C = 1kNm (Figure 5.27). E=210 MPa, ν =0.3. 
 

Figure 5.27 Box girder with large opening submitted to torsion 
 
Gunnlaugsson (1982) and Pedersen (1991) have computed the variation of the rotating angle along the 
beam. The values of the rotating angle and the warping axial stresses of Gunnlaugsson beam element 
are shown by the continuous line (curves a) in Figure 5.28. 
He compared his results with those of a plane stress finite element model (curves c). He also used a 
beam model assembled in such a way that the warping function is continuous (curves b) (Fig. 5.28). 
The finite element ‘FEM2’ is used with sixteen beam elements. Two superposed finite element nodes 
are taken at each intersection where the cross section geometry changes abruptly in order to capture 
the discontinuity of the warping function. FEM2 results are not influenced significantly by the choice 
of the connection point at the contour (for the maximal rotation angle, the difference is 0.0001% if the 
cross sections are assembled by node 2 or node 4). For the results in figures 5.29 and 5.30, the 
connection point is taken at node 2. The torsional angle distribution is represented by the triangles in 
Figure 5.29 along the right half of the beam. FEM2 results are compared with the results given by 
Pedersen (1991). The variation of the rotating angle along the beam is much larger in the open part 
than in the closed part of the beam. The present finite element solution with transmission of warping 
matches the results of the analysis with the plane stress finite element model performed by Pedersen. 
The variations given by the elements of Gunnlaugsson  (curve a, Figure 5.28) and Pedersen (Figure 
5.29) are slightly lower. The torsional rotation calculated by a beam theory neglecting the 
discontinuity of the warping function is much larger (curve b, Figure 5.28). When warping is 
restrained at the connection, the torsional rotation is smaller: the solution is given by the diamond 
shaped points in Figure 5.29. 

 

0.4m 

0.2m 

1kNm 

1kNm 

0.003m 

node 2 

node 4 



 5-35

 

Figure 5.28 Results from Gunnlaugsson (1982) 
 
 
 

Figure 5.29 Comparison of the rotation angle along the girder by using ‘FEM2’ (16 beam elements) 
and the results of Pedersen (1991) 
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The normal stresses result from the resistance of the cross sections to the non uniform warping. The 
distribution found by the present finite element analysis (given in Figure 5.30) matches the distribution 
calculated by Gunnlaugsson (Figure 5.28, curve c). At the connection between the open and the closed 
cross sections (x = 0.6m), the plane stress finite element gives the local stress concentration. The beam 
theory gives a discontinuity in the distribution of the normal stresses since the hypothesis of Saint 
Venant is no longer verified. This inaccuracy that occurs at most junctions because of the overlap of 
the cross sectional areas has a small effect and can be disregarded. Anywhere else, the stresses given 
by ‘FEM2’ are closer to the plane stress finite element solution than to Gunnlaugsson beam solution 
whose model is stiffer. However, the response given by the beam finite element model that does not 
take into account the warping function discontinuity at the connection is that of a more flexible 
structure. 
 
 
 
 

Figure 5.30 Values of axial stresses due to non uniform warping along the girder by using ‘FEM2’ 
with 16 beam elements 
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5.3 Finite element with shear bending warping 

5.3.1 Displacement field 

In order to develop numerical methods for accurate shear bending results within the objectives fixed in 
paragraphs 3.3 and 4.3, another beam element ‘FEM3’ is presented in this paragraph. The kinematics 
is adapted by relating ∑Ωiui to the warping due to bending shear forces. Prokić warping function is 
represented by a contour (or first order) warping assumed to vary linearly along each polygonal 
segment of the contour. This new approach presents the advantage of automatic data generation and 
unified geometric characteristic computations regardless the type of the cross section (closed, open, 
asymmetric…). For simplicity, the developments in this paragraph deal with bending in (xz) axis. 
Similar analyses are done for (xy) axis but are not presented hereby. Tension/compression and torsion 
are not taken into account since they are analyzed in previous paragraphs. The efforts required to solve 
a general problem by taking into account not only torsional but also bending warping shear effects are 
not justified –in our opinion– because the accuracy gained in practical problems is not so high. 
However, for the finite element ‘FEM2’ in particular and for Timoshenko beam theory in general, the 
transverse shear strain is assumed to be constant through a beam cross section and a corrective 
modification has to be introduced in order to calculate the displacements and stresses resulting from a 
flexural loading. The present developments will be mainly used in this study in order to determine the 
shear correction factor for arbitrary profiles. As stated in §2.1.2, the shear correction factor is mostly 
evaluated in the literature by an energetical approach. It is a function of the distribution of the first 
moment over the area of the cross section. Evaluating the first moment is not always simple since it 
depends on the profile geometry and specifically different methods are required for open and closed 
thin-walled profiles. 
The displacement field, introduced in (3.23) in order to accommodate the warping of the cross section 
without the need of a corrective factor, describes the displacement vector at any point q within the 
cross section (§3.3): 
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5.3.2 Finite element definition 

As in paragraph (5.2.1), the interpolation functions are taken quadratic for the transversal displacement 
(w) and the rotation (θy) and linear for the warping longitudinal displacements (uj). 
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The displacements (w,θy,ui,…) can be related to the nodal displacements by using the interpolation 
functions as follows: 
w= <N>{qw} 
θy = <N>{qθy}  
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ui = <Nu>{qui}; i=1,2,…n  (5.68) 

Figure 5.31 Finite element with (xz) bending shear warping effects 
 

5.3.3 Stiffness matrix and additional equations 

The finite element calculations are derived in the same usual manner as in the previous paragraphs 
(e.g. §5.2.2). It is important to note that the problem is not well defined without the orthogonality 
relationships (5.69) and the non zero shear boundary conditions (5.70). These additional equilibrium 
equations are given by equations (4.22): 
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ue-ud=0, where e is an edge node and d is the adjacent one. (5.70)
  
Similarly to the torsional warping, if the additional constraints (5.69) are satisfied, the bending 
warping (xz)/tension-compression coupled terms and the bending warping (xz)/bending (xy) coupled 
terms vanish in the calculation of internal forces and stiffness matrix terms. The warping degrees of 
freedom associated with (xz) bending do not induce normal forces, shear forces (Ty) or bending 
moments (Mz). Inversely, the tension-compression and (xy) bending generalized forces should not 
derive from the terms ui. This eliminates the symmetrical coupled terms in the stiffness matrix. The 
non zero terms of kel obtained after this elimination are given in appendix A5. 
Equations (5.69) have been again used in order to relate the degrees of freedom ‘ui’ and to restrain 
these general parameters to the bending shear warping (xz). Depending on the profile geometry (more 
precisely the number of edges in an open profile), additional relations are written in the form of 
equation 5.41 and are added to the initial equilibrium system written in the form given in appendix A5. 
The resulting set of equilibrium equations is solved by using the Lagrange multipliers (equation 5.42). 
The development of the present beam finite element is based on the displacement field for which the 
constant shear strain hypothesis is relaxed. Numerical examples (§5.3.4) are analyzed in order to show 
that: 
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- the shear locking phenomenon, induced by the inconsistency of the straightness hypothesis 
does not occur in this ‘FEM3’ finite element; 

- ‘FEM3’ gives accurate results when analyzing shear warping bending effects on arbitrary 
profiles. 

Since the modified Timoshenko model (including shear correction factor) gives accurate results when 
computing the deformation of a thin walled structure submitted to bending, it is then concluded that 
combining torsional warping (FEM3) and shear bending warping (FEM2) effects for a 3D thin-walled 
structural analysis is not justified. The number (6+2n) of degrees of freedom per node increases 
significantly the computational costs while Timoshenko modified model gives accurate transverse 
displacement results. The present developments are thus suitable for inclusion as a ‘black box’ in the 
finite element code ‘FEM2’ in order to accurately and automatically determinate the shear correction 
factor for arbitrary profiles. The analysis of a 3D structure containing multi-shaped open and closed 
profiles, achieved by using modified Timoshenko model ‘FEM2’ and torsional warping effects 
(paragraph 5.2.2), will begin by a separate routine that determines the shear correction factor: 
A simply supported beam is submitted to a uniformly distributed force. The maximal deflection is 
computed by using ‘FEM3’. The analytical value of this maximal deflection is taken from the 
modified Timoshenko model (eq 2.13), where the shear correction factor k is the unknown. Equating 
these two solutions allows the determination of the shear correction factor.  
Finally, it is important to note that the shear stresses computations resulting from ‘FEM3’ consist in a 
variable distribution of stresses over the profile contour (one value for each transversal segment) while 
‘FEM2’ gives one approximate value (one for the entire profile).  
 

5.3.4 Applications on bending shear warping 

In this paragraph, applications aim mainly at validating the finite element ‘FEM3’ which includes 
shear bending warping effects. Comparisons are done with Euler Bernoulli beam theory and 
Timoshenko beam theory to demonstrate the ability of the theory to enhance available solutions 
provided by existing beam theories when the aspect ratio of the beam varies.  
The different results are: 
- analytical results with Bernoulli beam theory ‘BBT’ which is based on the normality assumption and 
neglects shear bending effects; 
- analytical results based on Timoshenko beam theory ‘TBT’ which is based on the planar assumption 
and considers a constant shear strain state without the shear correction factor (or, more exactly, with 
the shear correction factor set to unity); 
- analytical results based on the Modified Timoshenko beam theory ‘TBTM’ taking into account the 
shear correction factor [§2.1.2]; this model is considered to be the reference for all the other theories 
while computing differences in Figures 5.32, 5.33, 5.34 and 5.35 and table 5.6. The difference is 
calculated as follows: 

TBTM theory

TBTM

Value Value
%difference

Value
−

=  (5.71) 

 
- finite element results ‘FEM1’ based on Bernoulli kinematic formula (BBT) and developed in 
paragraph 5.2.1. The stiffness matrix is given in Appendix 2. 
- finite element results ‘FEM2’ based on Timoshenko beam kinematics shown in paragraph 5.2.2 with 
quadratic interpolations for the displacement w and the rotation θy and a selective reduced integration. 
The stiffness matrix is given in Appendix 3. 
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- finite element results ‘FEM3’ (paragraph 5.3) which takes into account the shear bending warping of 
the cross section by considering a linear interpolation of (nn) additional degrees of freedom (Appendix 
5). Two discretizations are required for ‘FEM3’: the usual finite element discretization and in addition, 
a kinematic discretization. The kinematic formulation uses linear functions Ωi associated to the nn 
degrees of freedom ui which are related to the transversal nodes of the discretized cross section. The 
thin profile is divided into a finite number of transversal segments which represent polygonal parts 
connected by transversal nodes. An edge transversal node in an open cross section is connected to only 
one transversal segment (e.g. in a T section, there are three edge nodes while in Figure 5.36a, nodes 1 
& 6 are the only edge nodes). The warping of the cross section is approximated by linear variations 
along the transversal segments. The inaccuracy induced by this approximation is maximal for the 
minimum discretization required to describe the geometry of the profile and is reduced for refined 
discretizations. With increasing transversal nodes and segments, the linear warping between adjacent 
transversal nodes approaches the exact distribution of warping in order to insure the convergence of 
the kinematic approach and to give accurate results. Higher order functions Ωi may be used to 
formulate exactly the problem with minimum discretization. For the elastic isotropic cross sections 
studied in this work, this approach is not considered. 
 
In addition, other displacement-based finite elements are considered in order to evaluate in some cases 
the locking phenomenon and to detect whether the behavior of FEM2 becomes poor (an overview of 
displacement finite element models of shear deformation beam theories is presented in [Reddy, 
1997]):  
- TLE is based on modified Timoshenko kinematic formula (TBTM) with linear interpolation and 
presents locking shear phenomenon (Appendix 6). The stiffness matrix and the force vector are given 
in (5.72) and (5.73) [Batoz, 1990, page 86]. 
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- RIE is the reduced integration linear Timoshenko beam element and is based on a reduced 
integration for the stiffness coefficients associated with the transverse shear strain and a full 
integration for the other terms. The shear locking problem is avoided for identical (and especially 
linear) interpolations for w and θy by approximating the shear strain distribution by a constant shear 
strain. The shear correction factor is taken into account. 
Among displacement-based finite elements, this approach is widely used to overcome the locking 
problem. The stiffness matrix and the force vector for RIE are given in (5.74) and (5.73). 
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where 
GAkL

EI12

y
2

y=ϕ  

- CIE is a consistent interpolation Timoshenko beam element with a quadratic interpolation for the 
displacement w and a linear interpolation for the rotation θy. The shear correction factor is taken into 
account. The element has end nodes having two degrees of freedom and the middle node has only a 
deflection as degree of freedom. The middle node degree of freedom can be condensed in order to 
reduce the matrix size. The stiffness matrix is then found to be equal to (5.74). However, the force 
vector for uniform loading is found to be equal to: 
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Example 1 
A simply supported beam with span L = 10m and thin rectangular cross section (bxh) is analyzed. The 
beam is submitted to a uniform load q. Three longitudinal nodes (two finite elements), required for the 
description of the problem, are taken for all the finite elements.  
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Figure 5.32 Difference between FEM3 and TBTM for a simply supported beam submitted to uniform 
load 
 
Table 5.5 BBT, TBTM and PBT results [m] for maximal deflection of a simply supported rectangular 
beam submitted to uniform load 10N/m 
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The values of the maximal displacement obtained by Bernoulli and Timoshenko beam theories and 
‘FEM3’ with increasing kinematic discretization are compared in Table 5.5 for varying values of the 
aspect ratio (L/h). nn is the number of transversal nodes whose longitudinal displacements are taken as 
degrees of freedom to model the warping of the cross section. Figure 5.32 shows the difference 
between FEM3 and TBTM when the kinematic discretization is refined. The convergence is shown for 
different values of L/h. 
 
Table 5.6 and figures 5.32 and 5.33 present additional results from which it can be concluded: 
- By comparing FEM1 results in table 5.6 to BBT results in table 5.5, the Hermite cubic element 
FEM1 is found to give the exact solution of Bernoulli analytical results with minimum finite element 
discretization. However, it does not coincide with TBTM values (the difference is 2.5% for L/h=10).  
 
Table 5.6 Finite element maximal deflection [m] for simply supported beam L=10m, and thin 
rectangular cross sections with b = 0.002m and varying values of height h 
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Figure 5.32 Finite element errors for maximal deflection of simply supported beam submitted to a 
uniformly applied load with varying aspect ratio (L/h); all finite element analyses performed with two 
elements 
 
- In figure 5.32, it is shown that as for Bernoulli theory ‘BBT’, the difference between FEM3 and the 
analytical solution TBTM increases with increasing values of h. FEM3 is shown to be locking free and 
the solution approaches the modified Timoshenko solution with finer kinematic discretization. 
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- The TLE element (table 5.6 and figures 5.32 & 5.33) is excessively poor with two elements. The 
shear locking phenomenon appears clearly since the error increases with increasing aspect ratio 
(decreasing thickness beam), the error is 99.975% for L/h=200! 
- In figure 5.33b, it is clear that the RIE and CIE are not completely free of locking. This remark 
coincides with the literature analyses, e.g. Reddy [1997], where it is noted that, in addition, refined 
meshing is necessary since it is shown that, for CIE and RIE, two elements give unacceptable 
solutions. 
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Figure 5.33b Illustration of shear locking shear phenomenon; two finite elements (enlargement of 
figure 5.32) 
 

Example 2 
The simply supported beam in the first example is now considered to be submitted to a pure bending. 
Two couples are applied at the extremeties of the beam (figure 5.34). 

Figure 5.34 Simply supported beam submitted to a pure bending 

L 
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In this theoretical case, Bernoulli solution ‘BBT’ is exact since shear forces vanish along the length of 
the beam. TLE, RIE and CIE are then compared with the finite element ‘FEM2’ with selective reduced 
integration. The results obtained here are given for two finite elements. 

Figure 5.35 (a) Locking shear phenomenon for the maximal deflection of a simply supported beam 
submitted to a pure bending with varying aspect ratio (L/h); (b): enlargement of figure 5.35a with CIE, 
RIE and FEM3 values  
 
In figure 5.35a, ‘TLE’ exhibits a locking shear phenomenon. For increasing values of L/h, the error 
between the exact solution ‘BBT’ and ‘TLE’ becomes higher. Besides, as stated by Reddy (1997), the 
linear equal interpolation reduced integration element (RIE) and the consistent interpolation element 
(CIE) are not completely locking free. The minimum discretization (e.g. one element per member) for 
both methods does not give the exact solution. Figure (5.35b) represents an enlargement of (5.35a) and 
shows the performance of CIE, RIE and FEM3. Between CIE, RIE and FEM3, FEM3 is the least free 
of locking element. In the case where L/h=1000, the differences between BBT and TLE, CIE, RIE and 
FEM3 respectively for the maximal deflection are 99.999%, 0.00821%, 0.00821%, 0.667E-9% 
respectively. 
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Example 3 
A hollow flange beam (45090HFB38) [Avery, 2000] is studied by neglecting the bend radius at the 
corners (Figure 5.36b). As stated by Avery (2000), this cross section is developed by ‘Palmer Tube 
Mills Pty Ltd’. It is used for its efficient structural behavior that results from torsionally rigid closed 
triangular flanges and its economical fabrication processes although it has complicated behavior 
characteristics. A second profile having the same overall dimensions than the two-celled profile is 
considered as an open (Figure 5.36a).  
For both profiles, a simply supported beam with span L is submitted to a uniformly distributed load q 
acting through the centroid. E = 200GPa, G = 80 GPa. 
The values of the maximal deflection, calculated by using Bernoulli and Timoshenko theories, are 
compared with the results obtained by the finite element FEM3 based on the kinematics developed 
above. The minimum transversal discretization that describes the profile geometry consists in dividing 
the thin profiles (Figure 5.36a & Figure 5.36b) into five and seven transversal segments (ns = 5 & 7 
respectively) connected by six transversal nodes (nn = 6). This kinematic and transversal minimal 
discretization is required in order to describe the behavior of the profile. Refined discretizations are 
obtained by dividing the previously described transversal segments into equal parts and are 
characterized by the total number of transversal nodes (nn).  
Figures 5.37 and 5.38 compare, for both profiles, the results of the above mentioned analytical and 
finite element methods for the maximal deflection of the simply supported beam for varying values of 
beam length L. In Figures 5.37a and 5.38a, the difference (eq. 5.71) between different models (BBT, 
TBT, FEM2 and TBTM) is plotted against the length L of the beam. In Figures 5.37b and 5.38b, the 
difference (eq. 5.71) between the finite element taking into account shear bending effects (FEM3) and 
‘TBTM’ is plotted for different values of beam length against the total number of transversal nodes 
‘nn’. 

Figure 5.36 (a) open cross section, (b) two-celled cross sections 
 
For different values of the span L and for the open profile, Figure 5.37a illustrates the difference 
between the analytical results of Bernoulli ‘BBT’ (and similarly Timoshenko ‘TBT’) and the modified 
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Timoshenko ‘TBTM’ theories; ‘TBTM’ being taken as reference. The finite element ‘FEM2’ based on 
Timoshenko kinematics without the correction factor gives exactly the same results as TBT for both 
profiles (In figure 5.37a, curves TBT & FEM2 match exactly). 
The effects of shear deformation on the beam deflection depend on the length L of the beam (Figure 
5.37a, curve BBT). Neglecting shear deformation effects in short beams leads to an error (measured by 
the difference between BBT and TBTM) of 32.67% for h/L = 0.3. For a long beam (e.g. h/L = 0.0225), 
this error is equal to 0.272%. The shear correction factor in Timoshenko theory is also important for 
short beams for the same reason (Figure 5.37a, curve TBT). By increasing the beam length (where h/L 
varies from 0.3 to 0.0225), the difference between TBT and TBTM decreases from 12.95% to 0.108%. 
Figure 5.38a illustrates the same results for the closed cross section. The error that results from 
neglecting shear deformation effects (measured by the difference between BBT and TBTM) is very 
important for short beams and varies from 36.28% to 0.319% for h/L decreasing from 0.3 to 0.0255. 
The difference between TBT and TBTM that measures the importance of the shear correction factor in 
Timoshenko theory varies from 16.1% to 0.142% for the same variation of h/L. 
 

Figure 5.37 Differences between TBTM and BBT, TBT & FEM2 for maximal deflection of simply 
supported beam with the open profile (a) and the closed profile (b) 
 
Figures 5.37b and 5.38b show the application of the model when shear bending effects are taken into 
account by modeling the warping due to shear forces. It is interesting to note that no shear correction 
factor is needed here since this model respects the no shear boundary condition (equation 5.70). This 
solution, which is automatically deduced from the geometry of arbitrary cross sections, is shown to 
converge to the modified Timonshenko beam theory (TBTM): the difference between the ‘FEM3’ 
finite element analysis and the ‘TBTM’ results decreases when refining the discretization. The 
minimum discretization (nn = 6 for the profile represented in Figure 5.36a) does not give the exact 
solution and refined meshing is required to approximate the non linear distribution by small linear 
variations between adjacent transversal nodes in order to give more accurate results. This is due to the 
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kinematics where the warping, representing the longitudinal displacement of the deformed profile, is 
modeled as varying linearly along the contour (Ωi are linear functions).  

Figure 5.38 Comparing beam shear theories for maximal deflection of simply supported beam with the 
closed profile.  
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5.4 Finite element with distortional warping 

5.4.1 Displacement field 

In this section, a numerical method is developed in order to study profile distortions within the 
objectives fixed in paragraphs 2.3, 3.4 and 4.4. A beam finite element ‘FEM4’ is developed by 
adapting Prokić warping function, a contour (or first order) warping assumed to vary linearly along 
each profile polygonal segment, in order to take into account the distortional warping. The axial, 
bending and torsional behavior, are not taken hereby into account. The displacement field has been 
introduced (3.31) at any point q within the cross section for one distortional mode I: 
 

n i
I I xI,x iq

i 1

q CI I xI

q CI I xI

uu

v (z z )

w (y y )

=

⎧ ⎫⎫⎧
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⎪ ⎪⎪⎪
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⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

− µ θ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

∑

 (5.89) 

 
Each distortional mode is associated with a joint I selected from the transversal nodes in order to 
separate the profile into rigid parts. CIy , CIz  and Iµ  are functions of the profile coordinate s. For each 
distortional mode I and for each associated contour part, CIy and CIz are the coordinates of the 
distortional centers, Iµ is the specific rotation ratio with respect to a reference part. Iµ θxI measures the 

distortional rotation. For instance, if an open profile without ramifications is considered, and if the 
right part is considered to be the reference part, θxI measures the rotation of all the material points 
located at the right of the joint I, while µIθxI measures the rotation of all the material points located at 
the left part. 
 
5.4.2 Finite element definition 

The interpolation functions (5.90) are taken quadratic for the rotations (θxI) and linear for the warping 
longitudinal displacements (uj). 

Figure 5.39 The finite element with distortional effects 
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The displacements (θxI, ui,…) can be related to the nodal displacements by using the interpolation 
functions as follows: 
 
θxI = <N>{qθxI} ; I=1,2,…m 
ui = <Nu>{qui}; i=1,2,…n  (5.91) 
 
5.4.3 Stiffness matrix and additional equations 

The finite element calculations are derived in the same usual manner as in previous paragraphs (e.g. 
§5.2.2). The equilibrium equations must be written in their uncoupled form. The three kinematical 
equations (equations 3.32, 3.33 and 3.34) have to be satisfied for each longitudinal node. (5.92 – 5.94), 
expressing the finite formulation of the previous equations and including the interpolation functions N 
and Nu, have to be satisfied for arbitrary values of x. 
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(3.33)  => { } { }i
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It could be easily seen that, if the kinematic equations (5.92, 5.93 and 5.94) vanish for any value of x, 
the axial force and bending moments (N, My and Mz) are reduced to their uncoupled usual form. 
Equations (5.95-5.97) are derived from the elimination of the coupled terms when computing the 
bending shear forces and the torsional moment by using the finite element discretization: 
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The distortion/tension-compression, the distortion/bending and the distortion/torsion uncoupling have 
been thus ensured in the calculation of internal forces and stiffness matrix terms. The distortional 
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warping degrees of freedom do not induce normal forces, shear forces (Ty and Tz), bending moment 
(My and Mz) or torsional resultants (Mx

1 and Mω). The tension-compression, bending and torsional 
generalized forces do not derive from the terms ui describing the distortion. 
 
Expressions 5.92 to 5.97 must be satisfied for any value of x, which implies that:  
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Similar developments are done for equation (5.97). 
By neglecting second order distortional warping (calculations similar to those in equation 5.30), (5.99, 
5.100, 5.101 and 5.102) are reduced to (5.107 and 5.108).  
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The stiffness matrix results from developing general equations (5.10). By combining the above 
described orthogonality relationships (equations 5.95-5.108), the coupled terms in the stiffness matrix 
are eliminated. The non zero terms of kel obtained after this elimination are given in Appendix 7. 
Kinematical equations (3.32, 3.33, 3.34 and 3.35) are added to the initial equilibrium system in order 
to relate the degrees of freedom ‘ui’ and to restrain the warping parameters to distortional warping. 
Similarly to the case of torsional warping developments (§5.2.3), two methods can be used (the 
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condensation technique and the method involving lagrange multipliers). The additional relations (5.95, 
5.96 and 5.97) together with the relations resulting from the joint/distortional_centers dependency 
(2.76 and 2.77) are used in order to determine the values of µI, yCI, zCI… The approach used in this 
study for unbranched profiles consists in considering 5m unknowns (yCI, zCI, µIyCI, µIzCI, µI; I=1,…m) 
to be calculated or condensed from five equations (5.95, 5.96, 5.97, 2.76 and 2.77). These five 
equations are linear with respect to the five unknowns. 
 
5.4.4 Applications on distortional warping 

The performance and the convergence of the elastic beam finite element ‘FEM4’ including distortional 
warping are shown by comparing the results with analytical computations using Takahashi model 
[1978, 1980…] and numerical shell calculations. The Poisson coefficient is taken equal to zero in the 
numerical shell computations that aim at validating the finite element ‘FEM4’ based on the 
assumption HYPT4 (paragraph 2.3.3). In the first example, the distribution of rotations, normal 
stresses and shear stresses associated with distortion are compared and discussed for a 
monosymmetrical profile. The second example compares the flexural, torsional and distortional 
behaviors exhibited by a beam submitted to a single transversal load applied at one corner of its 
asymmetrical profile. 
 
Example 1: Distortion of an open monosymmetrical profile 
The distortional rotation and warping of a clamped-free beam with an open thin walled profile (four 
polygonal segments [Ls = 0.08m] x [t = 0.001m]; Figure 5.40b) is prevented at the clamped end. At 
the free end, the beam is submitted to two opposite horizontal loads of 100N (Figure 5.40a). 
G=84GPa; E=210GPa. 
 

Figure 5.40 Clamped-free beam submitted to distortional loading 
 
Problem definition 
This profile, already analyzed by Takahashi (1978), presents a simple case of a monosymmetrical 
profile with one distortional mode (associated with the joint 3). The distortional deformation of the 
profile consists in the rotation of two rigid parts (left: 1-2-3 and right: 3-4-5) separated by the joint 3. 
Since the two rigid parts are symmetrical with respect to the vertical axis passing through the joint 3, 
the rotational angles are expected to have equal magnitude but opposite sign (µ = -1). Due to 
symmetry and to the alignment of the joint and the associated distortional centers (equation 2.77), the 
distortional centers are expected to be situated on the horizontal axis passing through the joint 3. The 
coordinates of the distortional centers are computed within the present finite element analyses by 
applying equations (5.95-5.97). For uniform distortion without additional local plate bending (uniform 
distribution of distortional moment along the beam length; distortional rotation prevented at one end 
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with free warping), the computed location (figure 5.41b) coincides exactly with that found by 
Takahashi (1978). Similarly to Vlassov computations, Takahashi warping function is assumed to be 
the same for arbitrary loading and boundary conditions since it assumes zero warping shear stresses at 
the contour (HYPT2 in §2.3.3). The position of the distortional centers, computed by Takahashi theory 
(equations 3.36-3.39), depends only on the geometrical shape and dimensions of the profile. However, 
in the present finite element analyses, the location of the distortional centers depends on the solution in 
arbitrary loading cases and boundary conditions but is always found to be positioned on the horizontal 
axis passing through node 3 for this monosymmetrical profile. 
The distribution of Ms

xI along the profile contour resulting from plate additional bending and defined 
in §2.3.4 is given in figure 5.41a. The loading in figure 5.40a induces a distortional torque 
MxI = -11.32N.m associated with the joint 3 and computed from equation 4.45. 

Figure 5.41 (a): Stiffening effects (distribution of Ms
xI along the profile contour). (b): Position of 

distortional centers 
 
Finite element calculations 
Results with the finite element ‘FEM4’ developed in §5.5 are compared with analytical computations 
(see also Mahieux 2003) with Takahashi theory and numerical results with shell elements (400 
elements; figure 5.42) by using the software Samcef (Samtech s.a. 2002).  

 
Figure 5.42 Meshing with Samcef shell finite elements 
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 Figure 5.43 (a): Distortional rotating angle distribution along the longitudinal axis (x); (b): Rotating 
angle distribution along the contour coordinate (s) for x=2m 
 
The diagram of the distortional angle along the longitudinal axis of the beam is first investigated. The 
distortional rotation of the right part of the profile is plotted in figure 5.43a. For shell elements, a 
rotation angle is calculated as the average of rotations of all the nodes that belong to the right part (s = 
0.16-0.32m). The differences between shell results and the finite element analysis ‘FEM4’ (with 20 
elements) and Takahashi analytical solution for the maximal distortional rotation angle are 2.13% and 
4.88% respectively. It is important to note that the assumption of rigid part rotations in beam theories 
(Takahashi and FEM4) is relaxed in shell element analyzes.  
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Figure 5.44 Normal stresses σx due to distortion of a monosymmetrical open profile for x = 1.5m 
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Figure (5.43b) shows that, for beam theories, the distortional angle is uniform in each part (left: s = 0-
0.16m; right : s = 0.16-0.32m) while, for shell results (continuous line), it varies slowly along each 
part and drops sharply around the joint (s = 0.16m). In both cases, it is opposite in the left and right 
parts due to the profile monosymmetry. 
Figures 5.44 and 5.45 show the distributions of normal stresses (σx, σs) at x = 1.5m. The beam finite 
element results ‘FEM4’ are compared with analytical computations based on Takahashi theory and 
with numerical results from Samcef shell analyzes. An excellent agreement was found. 
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Figure 5.45 Local stresses σs at the upper skin for x = 1.5m 
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Figure 5.46 Shear τxs stresses due to distortion of a monosymmetrical open profile for x = 1.5m 
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It is important to highlight that the distortional centers are prescribed as being those of a uniform 
distorsional case –except for the results concerning warping shear stresses–. In Takahashi beam 
theory, the shear stresses are computed from normal stresses by using longitudinal equilibrium 
equation. Similarly to Vlassov theory, they cannot be computed from kinematics by using Hooke law 
since they would be equal to zero. However, in ‘FEM4’ analyzes, the zero midwall shear assumption 
is relaxed and shear stresses are calculated from Hooke law for each transversal segment of the profile. 
Figure 5.46 shows the distribution of contour warping shear stresses τxs at x = 1.5m by condensing the 
location of the distortional centers. Since warping shear stresses τxs

ω have a parabolic shaped 
distribution (Takakashi or Samcef results in figure 5.46), ‘FEM4’ results need refined discretization of 
the contour by a finite number of nodes and segments (16 transversal segments are used for results 
FEM4_16 in figure 5.46; 4 transversal segments are used for results FEM4_4). The curve 
FEM4Prsc_16 (16 transversal segments) presents the erroneous warping shear stresses that would 
appear if the distortional centers are prescribed as those of Takahashi. It is interesting to note that the 
difference between prescribing (as being that of uniform distortion) and condensing the location of the 
distorstional centers is found to be very small for the values of the distorsional angle and the normal 
stresses.  
 
Example 2: Distortion of an open asymmetrical profile  
A clamped-free beam is considered with an asymmetrical open profile (Figure 5.47b; all the degrees of 
freedom are constrained at the clamped end). The thickness is t = 0.001m. The dimension of the 
contour is given by the lengths of transversal segments: Ls12 = 0.06m; Ls23 = 0.15m; Ls34 = 0.06m; 
Ls45 = 0.075m]. A horizontal load P = 100N acts at the free end (Figure 5.47a). G=84GPa; E=210GPa.  

Figure 5.47 (a) Clamped-free beam submitted to bending, torsion and distortion; (b) Position of 
torsional and distortional centers 
 
Problem definition 
According to the approach proposed in this work, the behavior of the thin walled beam is evaluated as 
being originated by four different cases (a + b + c + d) induced by the applied load P (figure 5.49). 
case a- A force Fy (-100N x cos24.11 = -91.279N), resulting from the projection of the load P on the 
principal axis (y), captures the (xy) bending behavior. A uniform shear force Ty and a linear bending 
moment Mz are distributed along the beam length. 
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case b- A force Fz (-100N x sin24.11 = -40.844N), resulting from the projection of the load P on the 
other principal axis (z), captures the (xz) bending behavior. A shear force Tz and a bending moment 
My are uniformly and linearly distributed along the beam length respectively. 
case c- A torsional torque CxT (100N x 0.04002m = 4.002Nm), resulting from the product of the 
intensity of the force vector and the radius distance from the center of rotation CT to the point of 
application of the load, captures the torsional behavior. A torsional moment (Mx) is uniformly 
distributed along the beam while the restrained warping at the clambed end of the beam induces a non 
uniform distribution of a torsional bimoment with respect to the longitudinal direction. 
case d- A distortional ‘torque’ CxD (100N x 0.05360m = 5.36Nm) resulting from the product of the 
intensity of the load P and the radius distance from the center of right rotation CD

r to the point of 
application of the load. Similarly to the case (c) related to torsion, a distortional moment and a 
distortional bimoment are uniformly and non uniformly distributed along the beam length. 
The distortional mode considered hereby is associated with the joint 3. The distortional deformation of 
the profile involves the rotation of two rigid parts (θD

l for the left rigid part: 1-2-3 and θD
r for the right 

rigid part: 3-4-5) around the respective distortional centers CD
l and CD

r). Since the profile is not 
symmetrical, the rotating angles are not the same (θD

l = µθD
r; µ ≠ -1). The distribution of Ms

xI 
(resulting from plate stiffening effects) along the profile contour is given in figure 5.48.  

Figure 5.48 Distribution of Ms
xI along the profile contour  

 Figure 5.49 Separating distortional loading cases (d) from the bending/torsional loading case (a+b+c) 
for the case of loading in figure 5.47a 
 
Figure 5.49 presents the distortional case (d) when uncoupled from the well known bending/torsional 
cases (a+b+c). For the distortional configuration d, the applied load P is divided into two forces (γP) 
and (λP) acting respectively on the left and right parts of the cross section. The coefficients γ and λ are 
computed by setting that the flexural and torsional resultants are equal to zero (γP + λP =0) while the 
distortional moment is equivalent to that of the initial configuration resulting from the applied load 

37.24Nm/m 

(a+b+c) (d) 

αP = 137.313N 

βP = 37.313N 

λP = 137.313N 

γP = 137.313N 
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P(µ dD
l γP+ dD

r λP = dD
r P). dD

l and dD
r are the radius distances from the center of left rotation CD

l and 
the center of right rotation CD

r to the point of application of loads acting on the right part and the left 
part respectively. The flexural torsional configuration (a+b+c) is determined by setting that the 
flexural and torsional resultants are those of the applied load P (αP + βP = P) and that the distortional 
moment µ dD

l αP + dD
r βP = 0) is equal to zero. This way of decomposing the forces in not single and 

is presented hereby for the purpose of enhancing the understanding of the problem definition. 
The coordinates of the torsional and distortional centers and the value of the distortional ratio are 
computed within the present finite element analyses by using equations (5.34-5.35) & (5.95-5.97). 
They are found to coincide exactly with those of Vlassov and Takahashi theories in the cases of 
uniform torsion and uniform distortion without including the additional local plate bending (uniform 
distribution of torsional and distortional moment along the beam length; torsional and distortional 
rotation prevented at one end with free warping). As previously discussed, this is due to the fact that 
Vlassov and Takahashi warping functions assume zero warping shear stresses at the contour (HYPV2 
in § 2.2.3.1 for torsion & HYPT2 in §2.3.3 for distortion). 
 
Finite element calculations involving distortion 
Results with the finite element ‘FEM4’ are compared with analytical computations with Takahashi 
theory and simulations with shell elements (7000 elts; figure 5.50) by using the software Samcef 
(Samtech s.a. 2002).  

 
Figure 5.50 Meshing with Samcef shell finite elements 
 
The distribution of the distortional angle θD

r along the longitudinal axis of the beam is plotted in figure 
5.51. The differences between shell results and the finite element analysis ‘FEM4’ (with 20 elements) 
and analytical solutions with Takahashi formulation for the maximal distortional rotation angle are 
respectively 0.75% and 2.245% for the right part rotation.  
Figure 5.52 compares the distribution of the rotating angle along the contour coordinate (s) at the end 
of the beam. The local effects captured in shell simulations and not considered in Takahashi and 
FEM4 calculations are shown to be more important in the left part (the differences between shell 
results and FEM4 and Takahashi solutions are 14.69% and 13.3% respectively). 
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Figure 5.51 Distribution of the distortional rotating angle along the beam length (x) 

Figure 5.52 Rotating angle (torsion+distortion) distribution along the contour coordinate (s) for x=2m 
 
In this example, a very good agreement is found between the results of the proposed theory and those 
resulting from a complete shell analysis. The distortional behavior is shown to be important since, in 
this simple example, the distortional rotation (0.029rad) is not negligible if compared with the 
torsional rotation (0.040rad). 
Figure 5.53a shows the distributions of normal stresses (σx) resulting from the distortional mode at x = 
1.5m. The beam finite element results (FEM with 20elements) are compared (figure 5.53b) with 
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numerical results from Samcef shell analyzes and with analytical computations based on Takahashi 
theory for distorsion. The contribution of each loading cases (a, b, c & d) in the total value of normal 
stresses for this example is shown in table 5.7. The distortional behavior in this example is very 
important and neglecting it leads to erroneous results. For the transversal node 5 (s = 0.345m), the 
distortional contribution in normal stresses is equal to 2.9 times that of bending and 3.3 times that of 
torsion. 

Figure 5.53 Normal stresses for x = 1.5m resulting from (a) distortion only; (b) bending, torsion and 
distortion 
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Table 5.7 Normal stresses [Pa] of different loading cases 

 

Figure 5.54 shear stresses for x = 1.5m resulting from (a) distortion only; (b) bending, torsion and 
distortion 
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Similarly to the previous example, the results –except those concerning warping shear stresses– are 
done by prescribing the torsional center, the distortional centers and the distortional ratio as being 
those of a uniform torsional and distorsional case. 
Figure 5.54a shows the distribution of distortional warping shear stresses τxs at x = 1.5m by 
condensing the location of the distortional centers and the value of the distortional ratio. Since warping 
shear stresses τxs

ω have a parabolic shaped distribution, ‘FEM4’ results need refined discretization of 
the contour by a finite number of nodes and segments (12 transversal segments are used for results 
FEM4_12 in figure 5.54a…). For Vlassov and Takahashi theories, the shear stresses are computed 
from normal stresses by using the longitudinal equilibrium equation. The curve FEMPrsc_16 (with 16 
transversal segments) presents the erroneous warping shear stresses that would result if the location of 
the distortional centers is prescribed as being that of a uniform distorsional case. Once again, the 
difference between prescribing and condensing the location of the distortional centers is found to be 
very small for the values of the distorsional angle and the normal stresses. 
The distance GCT (in figure 5.47b) between the torsional center CT and the centroid G and the distance 
GCD

l (in figure 5.47b) between the left distorsional center CD
l and the centroid G are found to vary 

along the longitudinal axis of the beam. The values associated with the uniform torsional (GCT = 
0.0718m) and uniform distortional cases (GCD

l = 0.066m) are taken as the reference value in order to 
compute the differences computed for GCT and GCD

l along the beam length. These differences are 
maximal at the clamped end for which non uniform torsional and distortional effects are dominant 
when compared to the uniform torsional and distortional effects. These differences are plotted in figure 
5.55. 
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Figure 5.55 Curve FEM2_16: difference for the distance between the centroid and the torsional center; 
curve FEM4_16: difference for the distance between the centroid and the left distortional center 
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5.5 Non linear element for buckling analyses 

5.5.1 Step by step solution 

When the relation between the displacement field and the applied forces is non linear, the solution 
requires a linearization process and robust numerical algorithms. The non linear problem is 
transformed into a set of linear problems that follow the evolution of a configuration. The solution 
follows the equilibrium path in a step by step procedure. The aim is to evaluate equilibrium positions 
at successive discrete states.  
At each step, the equilibrium of the structure must be satisfied and the values of the kinematic and 
static variables must be determined. This is repeated until the complete solution path has been 
obtained. 
The equilibrium of any deformed configuration is expressed by the virtual work principle. Two forms 
are given in Appendix 2. The updated lagrangian description is used hereby so that the reference 
configuration is the last known equilibrium configuration Ci of the structure. The virtual work 
principle expressed in the current configuration as reference is given by (5.109). Similar developments 
can be done for any other description. 
 

{ } * * *
ij ij vi i ai i

v v a
R dv f u dv f u da 0= ε σ − − =∫ ∫ ∫   (5.109) 

 
If the current configuration is out of equilibrium, {R} does not vanish and is called the vector of 
residuals or vector of out-of-balances forces. 
All the variables, coordinates, displacements and stresses are known in Ci and are supposed to satisfy 
(5.109). In order to determine the solution process for the next step (next configuration Ci+1), an 
approximation must be taken for the coordinates of points in Ci+1. The computed stresses depend on 
the path chosen between the two configurations as well as on the integration scheme along this path. 
Since approximations are done during this process, the stresses will not be in equilibrium with the 
applied forces and the out of balance forces will not be equal to zero. It is then necessary to search for 
another configuration that will be closer to equilibrium. An iterative procedure is needed to correct the 
coordinates and to reach an acceptable configuration closer to equilibrium.  
 
5.5.2 Updated lagrangian formulation 

Let {dx} be the vector of nodal coordinate increments. The corresponding increment of the out of 
balance forces {dR} is related to {dx} by: 
 
{dR} = [KT] {dx} (5.110) 
 
where [KT] is the tangent stiffness matrix defined as the derivative of {R} (5.109) with respect to x. Its 
expression can be obtained by differentiating (5.109). The differential is in general not simple since 
the configuration is changing. 
To simplify the developments, body forces are only considered in order to shorten the notations. 
Similar developments can be done for the surface forces. The change in virtual work is expressed 
between two very close configurations Ci and Ci+1. ui are the unknown increments in the displacements 
occurring between situation i and situation i+1 at which the two configurations Ci and Ci+1 are in 
equilibrium. V is the volume in Ci. F is the incremental applied force assumed to be a deformation 
independent loading: the load is not affected by a perturbation of the coordinates of Ci. The value of df 
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which represents the perturbation of the applied loads induced by dx vanishes since the loading is 
conservative. 
In the unknown configuration Ci+1, the applied forces, stresses and strains are not known and thus the 
virtual work is written by taking the known configuration Ci as reference (see Appendix 8, equation 
A8.24): 
 

{ } * *
ij ij i Vi

V V
R E S dV u F dV 0= − =∫ ∫  

* *
ij ij i Vi

V V
E S dV u F dV=∫ ∫  (5.111) 

 
The linear part of the Eij Green strain tensor is found to be the infinitesimal strain: 
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The incremental strain, stress and applied force decompositions are: 
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ijijij sS ∆+σ=  (5.114) 
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In (5.114) the unknown PK2 stress tensor components Sij are decomposed into two parts: one part 
known at the situation Ci (σij) and an unknown increment (∆sij). Fi are the body forces of the situation 
Ci+1 measured in Ci. 
For a hyperelastic material (Appendix 0), in case of large displacements but small strain, the second 
Piola Kirchhoff stress tensor is computed from: 
 

klijklij dEddS =  (5.116) 

where dijkl is the stress-strain tensor at the configuration Ci. In practice, dijkl are constant components of 
elastic tensor defined in a manner similar to the small deformation ones.  
 
Since Ci+1 and Ci are very close configurations, the application of (5.116) can be approximated by [see 
also De Ville 1990 page 5.36…]: 
 

klijklij Eds =∆  (5.117) 

 
By using (5.117), (5.113) and (5.114), equation (5.111) can be written as: 
 

* * * *
ij ijkl kl ij ij ij ij i Vi

V V V V
E d E dV e dV dV u F dV+ σ + ε σ =∫ ∫ ∫ ∫  (5.118) 
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This represents a non linear equation for the incremental displacements ui and thus cannot be directly 
solved. In order to linearize the equilibrium equations, approximate solutions will be obtained by 
assuming that: 
 

ijijE ε=  (5.119) 

 
By using the approximation (5.119), the non linear term *

ij ije s∆  which is a higher order term in ui will 

be dropped and the following incremental constitutive equation will be used: 
 

klijklij ds ε=∆  (5.120) 

 
Thus, the approximate equilibrium equation to be solved is: 
 

* * * *
ij ijkl kl ij ij i vi ij ij

V V V V
d dV e dV u F dV dVε ε + σ = − ε σ∫ ∫ ∫ ∫  (5.121) 

 
Due to the non-linearities of the system, linearization will not give an exact solution and iterations 
may be required within each loading step to approach the exact solution of (5.111).  
 
5.5.3 Discretized equilibrium equations 

Since no analytical solution exists for any arbitrary geometry, loading and boundary conditions, 
numerical buckling calculations are developed with the finite element method. The finite element 
‘FEM2’ based on Timoshenko model for bending and including torsional warping effects is developed 
for buckling analyses.  
As introduced in paragraph 5.2.2, the displacement field is interpolated by: 
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 (5.122) 

where {q} is the nodal displacement vector with respect to a cartesian reference base, and [ ]η  is given 
by (5.15). 
As it was already noted, the virtual work principle is discretized by using the actualized lagrangian 
description with Ct as reference. Similar developments can be done with any other description. 
Under matrix form, the first term of equation (5.121) can be written as in linear elastic calculations 
(5.10) as follows: 
 

{ } [ ] { }
TT

L L
V

q ( B H B )dV q
⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤ δ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∫  (5.123) 

 

[ ]
T

L L L
V

K B H B dV⎡ ⎤= ⎡ ⎤⎣ ⎦⎣ ⎦∫  (5.124) 
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For the second term of (5.121), identically, a matrix form can be established (see also Prokić1996). 
The second term can then be expressed as follows: 
 

{ } [ ] { }
TT

NL NL
V

q ( B B )dV q
⎧ ⎫⎪ ⎪⎡ ⎤ ⎡ ⎤σ δ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∫  (5.125) 

 

[ ]
T

NL NL NL
V

K B B dV⎡ ⎤= σ ⎡ ⎤⎣ ⎦⎣ ⎦∫  (5.126) 

 
where [σ ] is the Cauchy matrix. 
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BNL is a matrix relating the deformations to the nodal displacements. 
 
By denoting the tangent matrix KT with KL + KNL =KT, the equilibrium equations can be written with a 
weak form by using the actualized lagrangian configuration as follows: 
 
[ KT] {q} = {R}-{F} (5.129) 
 
{F} includes the finite element evaluation of internal forces: 

{ } [ ]
T

L
v

F B dv⎡ ⎤= σ
⎣ ⎦∫  (5.130) 

{R} is the finite element evaluation of applied loads as in paragraph 5.2.4.  
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5.5.4 Tangent Stiffness matrix calculation 

The displacement at any point is deduced from the 6+n degrees of freedom as follows: 
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The interpolation functions are used and the calculation of BNL is based on the following calculations: 
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5.5.5 Solution procedures 

The incremental iterative technique, implemented for solving the nonlinear system of equations 
(5.129), combines the Newton Raphson method with the constant arc length of incremental 
displacements. It assumes that the solution is known at an initial discrete step (t), and iterations are 
performed to calculate the (t+1) equilibrium configuration by considering the equilibrium between the 
exterior load forces and the nodal interior forces (equivalent to stresses in the element). Critical loads 
are calculated by taking into consideration that the structure, already in equilibrium, reaches instability 
if there is more than one equilibrium position for the same loading level. The criterion to determine 
this buckling state is the singularity of the tangent stiffness matrix [KT] of the structure. This solution 
procedure is fully described in Appendix A9. 
 
5.5.6 Applications to buckling problems of thin walled structures 

The influence of non uniform torsional warping on the flexural torsional buckling of elastic thin 
walled structures is analyzed and discussed by comparing different kinematical formulations. The 
proposed warping function offers the advantage of automatic data generation and geometrical 
characteristic computations of arbitrary asymmetric cross sections. The 3D nonlinear finite element 
beam model, based on developments in paragraphs 5.5.3 & 5.5.4, is validated for various profile 
geometries and loading cases by comparison with existing analytical solutions. The following 
numerical examples involve the minimal discretisation required for the geometrical description of the 
contour profile: 4 transversal nodes and 4 transversal segments are required for a rectangular tubular 
profile, 6 nodes and 5 segments are required for an I profile... Besides, the shear center is prescribed to 
be that of uniform torsion (as in Vlassov or Benscoter computations). 
 
Example 1: Plane frame flexural buckling 
The first example illustrates the plane flexural buckling of a portal frame (Figure 5.56a). The columns 
and the beam of the frame are identical and the closed cross section is given in figure 5.56b. 
E = 210GPa, G = 80GPa. 

 Figure 5.56 Buckling of a frame consisting of members with closed cross section  
 
The frame buckles first in a sway mode in bending. The difference between the finite element results 
and the solution given by Timoshenko (1961) is shown in Figure 5.56c. The numerical value of the 
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first critical load converges to the value given by the analytical solution of Timoshenko (Pcr = 652N) 
when the total number of elements increases.  
 
Example 2: Pure torsional buckling of a column 
A column with a cruciform section submitted to an axial load is considered (Figure 5.57). The 
thickness of the walls is t = 4mm. L = 1m, G = 80.8GPa, E = 210GPa.  

Figure 5.57 Torsional buckling of a column with cruciform cross section 
 
According to Vlassov theory, this kind of cross section does not warp. The theoretical torsional 
Eulerian buckling load is 258398N. To initiate the torsional buckling of the column, a small 
perturbation is needed in the finite element analysis; this is introduced by applying a small torsional 
moment Mx at mid height of the column. Figure 5.57 gives the relationship between the axial load and 
the angle of twist at mid height for increasing values of P and Mx. The horizontal line   is the critical 
load 258398N. The curves represent the geometrical non-linear variation of the angle of twist at mid 
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height for different values of the ratio Mx/P:  Mx/P = 5.10-7 m for the curve , 15.10-7m for , 5.10-6 m 
for  and 15.10-6 m for . The relationship between the load and the angle of twist is obviously 
influenced by the magnitude of the applied torsional perturbation, but all curves reach asymptotically 
the level of the elastic buckling load corresponding to pure torsional buckling. 
 
Example 3: Flexural torsional buckling of a column 
A column with an open monosymmetric cross section is submitted to an axial load passing through the 
centroid (Figure 5.58): L = 20m, E = 210GPa, G = 80GPa.  

  
Figure 5.58 A column with open monosymmetric cross section 
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Figure 5.59 Buckling analysis of a column with open monosymmetric cross section 
 
Numerical results are compared with two analytical solutions. The first one is based on Vlassov theory 
for columns with open cross sections and the second is based on the proposed warping function. The 
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non linear buckling equations are developed from a state of combined torsion, bending and axial 
compression. They are obtained from general equilibrium equations written for the deformed beam or 
column. The solution is given by taking into consideration the boundary conditions. 
The first critical load is computed by using Vlassov theory. The analytical result (Pcr = 102223N) is 
then compared with the one based on Prokić warping function. The two analytical calculations give 
similar results with a difference of 0.0001%. The difference between the finite element solution and 
the reference value based on Vlassov theory is illustrated in Figure 5.59. 
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Figure 5.60 Critical loads for the centrally loaded column (figure 5.58) 
 
In a general flexural torsional buckling of a beam-column, the (xy) bending modes, the (xz) bending 
modes and the twisting modes are coupled. The first-order theory gives three homogeneous equations 
and represents an eigenvalue problem. When, the shear center (C) and the centroid (G) coincide, the 
equations are uncoupled and the solution gives a discrete set of buckling modes. The lowest critical 
load is, in general, of practical significance. When C and G do not coincide (examples 1 and 2), 
buckling involves simultaneously torsion and bending, and the critical load is lower than if torsional 
effects are ignored.  
 
Numerically, when the number of finite elements increases, the number of detected critical loads 
increases. Figure 5.60 shows the critical values obtained for the same example (figure 5.58) up to 
10MN. The squares along the horizontal axis of figure 5.60 represent the reference values of the 
buckling loads (based on Vlassov theory). The other sets of values correspond to buckling loads 
detected by finite element analyses with increasing number of elements (1, 2, 10, 16 and 20 elements). 
For one element, there are only three critical values when the applied load P increases from zero to 
10MN. For two elements, the numerical values of buckling loads are improved and other critical loads 
appear and so on... Each critical value converges to the reference solution when the number of 
elements increases. 
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Example 4: Lateral torsional beam buckling 
An I beam (Figure 5.61) is loaded by two couples at its ends and is therefore submitted to uniform 
bending. L = 20m, E = 300GPa, G = 99.5GPa. The critical value of the bending moment 
corresponding to the lateral torsional buckling is computed analytically by using Vlassov warping 
function (Mcr = 6262.26Nm). Figure 5.61b shows how the numerical solution converges to the 
reference solution based on Vlassov theory.  

Figure 5.61 Lateral torsional buckling of an I beam 
 
Example 5: Buckling of a one-celled monosymmetrical cross section 
A column (Figure 5.62a) submitted to an axial load and a beam (Figure 5.62b) submitted to uniform 
bending are considered. The cross section (Figure 5.62c) consists of one cell and two walls. L = 20m, 
E = 206GPa, G = 82.4GPa. The analytical solution of this problem was already presented in paragraph 
4.4.7. 

Figure 5.62 Flexural torsional and lateral torsional bukcling of an I beam with one cell 
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For the first case (figure 5.62a), the lowest critical load is a coupling of flexural and torsional 
buckling. The difference between the analytical value (161kN; see table 4.2) and the present finite 
element solution is 21.53% for a two finite element discretization and 0.79% for a ten finite element 
discretisation. 
In the second case, the beam (Figure 5.62b) is subjected to a uniform plane bending that induces 
compression in the thin walled cell and traction in the bottom flange. In this case of lateral torsional 
buckling, the differences between the present finite element and the analytical calculations (528Nm; 
see table 4.2) is 8.82% for a two finite element discretization and 1.01% for a ten finite element 
discretisation. 
 
Example 6: Buckling of columns with different cross sections 
A column with two different cross sections (1) and (2) is submitted to an axial load P (Figure 5.63b). 
The thickness is constant and equal to 20mm, E = 200 GPa, G = 80 GPa, L1 = 6m, and L2 = 14m.  
Two cases are considered: 

- two thin rectangular profiles as in figure 5.63a, 
- I and U profiles as in figure 5.63c. 

Figure 5.63 A column (b) with two cases of a change in the cross sectional geometry: case (a) and case 
(c) 
 
For the first case, a method for estimating theoretically the Eulerian flexural buckling load of such a 
column with different cross sections can be found in (Timoshenko 1961); the value obtained for the 
critical load is 200.3N. Other solutions (table 5.8) give higher values since they derive from energy 
methods. By performing an Eulerian stability analysis with shell elements (Samcef; Samtech s.a. 
2002), Pcr  is equal to 201.2N. The Eulerian stability analysis with Samcef beam elements (that include 
Saint Venant torsional theory) gives also an acceptable solution since the contour warping vanishes for 
the thin rectangular profiles. The buckling load obtained by a buckling analysis with 20 present beam 
elements is Pcr = 201.4N.  
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Table 5.8 Flexural buckling loads 
 Pcr [N] 
Timoshenko, exact method 200.3 
Timoshenko, approximated method 202.0 
Samcef beam, 50 elts 201.9 
Samcef shell, 1840 elts 201.2 
Present beam finite element, 20 elts 201.4 
 
For the second case (with the cross sections I and U given in Figure 5.63c), the difference between the 
values of the first critical load found by an analysis with shell elements (880 elements, Pcr = 65.64kN) 
and the present finite element analysis (20 beam elements) is 0.4%.  
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

In this chapter, the previously stated objectives are shown to be met within the presented work. A 
summary of the principal key points of the thesis is followed by a general discussion of the results. 
The main achievements and conclusions of the work are provided. Several areas of further research 
that could complete the work presented in this dissertation are suggested. 

 
6.1 Objectives  

This thesis has investigated the behavior of thin walled 3D beam structures with arbitrary profiles. The 
main objectives have been: 

- a detailed understanding of mechanical behaviors such as non uniform torsion, shear bending 
and distortion, 

- the elaboration of an efficient theoretical formulation and the implementation of the associate 
finite element model in order to analyze: 

• uniform and non uniform torsion 

• bending shear effects 

• distortion 

of thin walled beams by using a single warping function for: 

• a broad variety of cross sectional shapes comprising multiple branches and cells 

• asymmetrical profiles where the shear center does not coincide with the centroid 

• partial transmissions of warping in beam assemblies... 

 
6.2 Complexity 

Thin walled beams are usually cold formed from flat strips or welded from thin plates, resulting in a 
wide variety of cross sectional shapes and forms. Their behavior is poorly described by elementary 
formulations for which the mechanical components are reduced to stretching, bending and uniform 
torsion. In practical applications, large shear strains and stresses are exhibited. A significant non 
uniform warping arises from restrained supports and from general non uniform distributions of shear 
forces, torsional moments, torsional bimoments or other resultants associated with the in-plane 
deformation of the entire cross section, and called within this dissertation distortional moments and 
bimoments. 
The representation of these important effects in structural applications was a big challenge: 
approaching the intricate problem by a simplified and ‘computationally manageable’ formulation. 
Several complex mechanical aspects had to be taken into consideration in order to obtain an accurate 
representation of the real structural behavior.  
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6.3 Research topics 

The reviewed research that describes the main topics concerned with the present work was presented 
in the first part of the dissertation ‘Overview’. 
In chapter 1, some basic assumptions and computations were surveyed for thin walled beam analyses. 
The complexity of the relevant computational schemes was highlighted and the present work was 
positioned by comparison with published literature. Even at the early stage of bibliographical work, 
difficulties arose from abundant and diversified literature concerning the subject, lack of early 
publications or translations, unclear correlations between approximations and conclusions, missing 
links or justifications… 
The objective of improving the understanding of the mechanical components of existing thin walled 
beam theories was met in Chapter 2. The concept and history of main theories have been discussed in 
order to improve the understanding of the mechanical behavior and to prepare the theoretical and 
numerical developments presented in parts II and III. 
The performance of any beam method for the calculation of shear bending effects was shown to 
depend closely on adequate correction factors. The shear correction factor in Timoshenko formulation 
was found to depend on the geometrical aspect of the cross section, and particularly whether the 
profile does comprise or does not closed cells. In the kinematical description of the displacement field 
in high order bending shear theories, some coefficients were found to depend on the geometrical shape 
of the cross section. 
Some remarks and results have been correlated with the undertaken assumptions: torsional shear 
stresses found to be zero when computed from Vlassov kinematics, Vlassov warping function 
inadmissible for closed profiles, erroneous torsional moments when computed as internal resultants of 
stresses resulting from Benscoter kinematics, influence of the thickness warping function, deducing 
the thickness warping from the normality assumption of thin plates, limitations of Prokić analyses 
concerning the torsional behavior of monosymmetrical and asymmetrical profiles… The mechanical 
interpretation of some assumptions, approximations and relations has been improved: identifying the 
distortional behavior as located somewhere between local and global classifications, selecting ‘global’ 
distortional modes, computing local plate bending due to the membrane stiffening, describing the bi-
rotation of ‘hinged’ profile frame, calculating the coordinates of the distortional centers, evaluating the 
distortional centers and joints dependency…  
A brief presentation of elastic buckling of beams and columns was followed by analytical 
developments using Benscoter warping function for the calculations of flexural-torsional and lateral-
torsional buckling in the case of a multi-branched profile comprising a closed cell. 
 
6.4 Methodologies 

Based on the knowledge and the in depth assessments of Chapter 2, a unified approach with a single 
warping function has been formulated in this work in order to compute the response of thin walled 
beams with arbitrary profiles. Starting from Prokić work, the contour warping was represented by a 
linear combination of longitudinal displacements at cross sectional nodes. The expression (∑Ωi ui), 
involving a sum of variables with constant ‘coefficients’ placed in front of each, allows a separation 
between:  

- the variables ‘ui’ which are longitudinal displacements varying with the longitudinal beam 
coordinate (x);  

and 
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- the functions ‘Ωi’ which are constant with respect to x and linear with respect to the cross 
sectional contour coordinate (s). 

This warping function, presented in Chapter 3, is very general since –unlike Vlassov, Benscoter, 
Takahashi warping functions or high-order bending theories– its qualitative distribution over a cross 
section is not predetermined or associated with a specific problem (e.g. torsional, distortional, shear 
bending…). One of the main achievements of this thesis was to develop adequate enhancements of 
this general warping function in order to qualitatively and quantitatively reflect and capture the nature 
of mechanical behaviors. Specific constraints linked to different mechanical effects had to be 
introduced at both kinematical and equilibrium levels.  
At the kinematical level, constraints have been prescribed in order to dedicate the general expression 
(∑Ωi ui) to a specific mechanical warping (torsional, distortional or bending shear). These constraints, 
developed in Chapter 3, concern the expression of the displacement field. They are found by linking 
the warping degrees of freedom to one specific physical sub-problem and by decoupling this problem 
from the other stretching, bending, torsional and/or distortional terms. The satisfaction of these 
kinematical relations resulted in a twofold uncoupling at the level of the virtual work principle and the 
resulting equilibrium equations:  

(i) the dependency of normal forces and bending moments on torsional and distortional 
warping degrees of freedom was relaxed; 

(ii) the contribution of stretching and bending rotational degrees of freedom –when not 
involved in warping– in the computation of bimoments and warping resultants disappeared.  

At the equilibrium level, additional relations were formulated in order to eliminate similar twofold 
dependencies:  

(i) bending shear forces from torsional and distortional degrees of freedom; torsional moment 
from distortional warping degrees of freedom…;  

(ii) torsional and distortional moments and bimoments from bending degrees of freedom and 
so on…  

Other requirements –such as the no shear boundary condition in bending, the dependency between 
distortional joint and centers…– contributed to the definition of the mechanical problem. In order to 
capture the physical problem, all the previously described constraints –most were already used in the 
uncoupling process– have been re-introduced in the proposed formulation according to the following 
classification: 

– those involving undetermined torsional and distortional characteristics have been used in order 
to condense and evaluate these unknowns (coordinates of the torsional center, coordinates of 
the distortional centers, distortional rotation ratio); 

– those driven at the stage of the displacement field description have been added to the 
equilibrium equations in order to identify the nature of warping represented by the additional 
degrees of freedom ui. 

 
6.5 Result summary and discussion 

The building of a robust method that efficiently captures many complex physical behaviors has been a 
cautious and tedious task. Simple techniques of identifying, superposing and decoupling the different 
mechanical components constituted a crucial key of success for the developing process. The ability of 
the proposed model to capture the response of thin-walled beam structures was assessed under various 
loading cases by developing analytical formulations for simple problems (chapter 4) and finite element 
models for complete 3D beam structures (chapter 5). The results may be discussed in five different 
categories: (i) torsional behavior, (ii) flexural behavior, (iii) distortional behavior, (iv) buckling and (v) 
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discussion on the general concept and suitability of warping functions and location of torsional and 
distorsional centers. 
 
6.5.1 The torsional behavior 

The first developments handled the torsional behavior of thin walled beams. A 2-node beam element 
(FEM1) included the normality assumption (Bernoulli theory) for bending and related n warping 
degrees of freedom –where n is the number of transversal nodes of the beam element profile– to the 
torsional behavior. This finite element model is based on a linear polynomial interpolation of torsional 
rotations and warping degrees of freedom. Exact solutions were found with minimum finite element 
discretization for the following cases of uniform torsion, i.e.: 

- the case of a uniform variation of warping and of torsional moment distribution along the beam 
length; 

- the case of arbitrary loading and boundary conditions for particular thin profiles with zero 
warping (e.g. those presenting radial symmetry…). 

However, for the remaining cases, the influence of non uniform torsional effects was not captured 
accurately since the exact solution consists in an exponential-varying torsional rotation and warping 
along the longitudinal beam. Numerical examples in Chapter 5 showed that ‘FEM1’ gave acceptable 
results in the case of minor non uniform torsional effects and behaved rather poorly in the case of 
strong non uniform torsional effects. This motivated the implementation of a 3-node beam element 
(FEM2) by applying linear interpolation functions for longitudinal displacements and quadratic shape 
functions for the other degrees of freedom. The resulting finite element is based kinematically on 
Timoshenko model for shear bending and on relating the warping degrees of freedom to non uniform 
torsional effects. 
A wide variety of beam structures with different profile geometries was analyzed for various loading 
cases. The torsional rotation, the amount of warping as well as normal and shear stresses were 
computed. The numerical examples of Chapter 5 showed an excellent agreement with analytical 
computations including Vlassov theory for open profiles and Benscoter theory for closed profiles, with 
shell finite element simulations in Samcef (Sametch s.a.) and with some published results from the 
literature. The accuracy of ‘FEM2’ was shown to depend on the finite element discretization that aims 
at approaching the exponential –with respect to the longitudinal axis x– nature of the response by 
polynomial functions. It could be concluded that, for a standard beam member, a discretization with 
ten elements gives reasonable accuracy while a twenty element discretization gives an excellent 
agreement. Similarly to other contributions, warping restraints were found to have a strong impact on 
the beam response. Partial or full warping restraints were shown to stiffen significantly the torsional 
behavior of beam structures, particularly for open profiles exhibiting an important non uniform 
torsional behavior. The accuracy was also assessed in the case of beam assemblies with different 
shaped profiles where the connection type determines the nature of the warping transmission. The 
discontinuity of warping at the assembly point was found to influence strongly the beam response. 
 
6.5.2 The flexural behavior 

The 2-node finite element ‘FEM1’ with Hermitian cubic shape functions gave –as expected and well 
known in the literature– the exact solution of Bernoulli. The assumption of Bernoulli theory was 
shown to be unacceptable in some cases, especially for short beams with high and thin profiles. The 3-
node finite element, based on Timoshenko, has been modified by a reduced integration scheme for the 
stiffness terms associated with shear bending effects in order to avoid the shear locking problem. 
Exact solutions were found in the cases of linear and quadratic distributions of bending moment. The 
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shear correction factor was also introduced. The resulting modified ‘FEM2’ gave an excellent 
agreement with the modified Timoshenko analytical solution under uniformly distributed applied 
loads. 
The necessity of an automatic and unified computational method of the shear correction factor 
constituted an additional motivation for adapting the present warping function to bending shear 
warping effects. Full developments (FEM3) aimed therefore at capturing the influence of warping due 
to shear bending. The effects of shear deformation on the beam deflection were evaluated for different 
profile forms and dimensions: rectangular cross sections with different height/width ratios, an open 
asymmetrical profile with many branches, a high thin profile comprising closed cells. It was concluded 
that the benefit of including shear bending warping in order to predict the displacements of a structure 
is marginal when compared to the benefit of including torsional warping. The accuracy gained in 
computing torsional warping, when compared to the Saint Venant solution, was found to be much 
more important than the accuracy gained in computing bending shear warping, when compared to the 
modified Timoshenko solution. As a result, it was suggested to keep the modified 3-node element 
‘FEM2’ for the general analysis of 3D beam structures and to apply the developments including 
bending shear warping effects for the calculation of the shear correction factor only. Since the 
proposed warping function allows automatic and accurate computations for arbitrary profiles, ‘FEM3’ 
was included as a ‘black box’ in ‘FEM2’ in order to compute the shear correction factor before 
analyzing the flexural behavior of a 3D beam structure with the modified Timoshenko model. 
 
6.5.3 The distortional behavior 

Additional developments involved the distortional behavior of thin walled profiles. The kinematics of 
this work (and particularly the general warping function ∑Ωi ui) was adapted and introduced in a finite 
element model (FEM4) in order to capture the response of a structure exhibiting one mode of 
distortional behavior. The mechanical nature of profile distortions was defined and described in an 
approach similar to that currently used by Takahashi. Important similarities have been identified 
between the distortional theory and the torsional theory with uniform and non uniform effects. The 
torsional mode was found to be a particular mode of the distortional modes. The cross sectional 
distortion was identified as being induced by particular external loads which are statically equivalent 
to zero. The resulting stresses attenuate very slowly along the length of the beam. The location of 
distortional centers and the distortional rotational ratio were determined. An excellent agreement was 
found between ‘FEM4’ results and other results involving Takahashi analytical beam theory and 
numerical shell computations using the commercial code Samcef for the distortional rotation, normal 
and shear stresses distributions. The influence of the distortion on the stresses, usually ignored in thin-
walled beam designs, was shown to be important when compared to bending and torsion even in 
simple loading cases (e.g. second example in paragraph 5.4.4). 
 
6.5.4 Buckling  

A non linear finite element based on the updated lagrangian formulation was developed by including 
Timoshenko kinematics and torsional warping degrees of freedom for 3D thin walled beam structures. 
An incremental iterative method using the arc length and the Newton-Raphson methods were used to 
solve the non linear problem. The resulting non linear finite element model was validated for beams, 
columns and frames submitted to various loading cases. Numerical computations of critical loads were 
compared with analytical solutions using Vlassov or Benscoter warping functions, and to numerical 
simulations with shell finite elements. The proposed finite element was found to converge to reference 
solutions when mesh is refined. It was shown again that, for a single beam, an acceptable agreement is 
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found for a discretization with ten elements and an excellent agreement is found for a twenty elements 
discretization.  The present non linear element was able to capture the pure flexural, pure torsional, 
flexural torsional and lateral torsional buckling of beam structures with different forms of profile 
(monosymmetrical, asymmetrical, open, comprising cells…). 
 
6.5.5 Discussion on warping functions and locations of torsional and distortional centers 

The simplest solution of a torsional problem corresponds to the case of a uniform distribution of cross 
sectional warping along the beam axis. The corresponding theory, commonly known as the de Saint 
Venant method, restricts its applications to a few exceptional cases. The non uniform torsional 
behavior is extremely complex and an exact theory involves unfortunately laborious mathematical 
complications for general cases of profile geometries, torsional loading and boundary conditions. 
Approximate theories have been developed for thin walled beams. Open profiles are commonly 
analyzed by Vlassov theory which assumes an inflexible cross sectional contour. Warping shear 
strains are assumed to vanish in the middle surface of the thin walled structure and the out of plane 
displacement (or warping) of the profile is obtained as a function of the rotating angle. Starting from 
the kinematics of this approximate theory, the longitudinal warping stresses are also expressed as a 
function of the rotating angle while shear warping stresses are found to be equal to zero.  
Closed thin walled profiles have been analyzed by approximate theories based on the assumption that 
the distribution of warping is the same as in the case of uniform torsion. A new parameter is 
introduced and is found to depend on the angle of rotation of the profile. Longitudinal warping stresses 
are found to be function of this new parameter while shear stresses cannot be derived directly from the 
kinematics but have to be found by other methods. 
Within the previously overviewed methods, and as a result of the undertaken approximations, the 
warping function and the location of the torsional centers were found to depend only on the geometry 
of the cross section.  
Within this thesis work, it was shown how these approximations were relaxed. The warping function 
and the torsional center do not represent a pure characteristic of the profile geometry. They depend on 
the solution of the problem, and thus, on the applied loading and on the boundary conditions. These 
more general computations give accurate analyses in the cases where shear warping stresses at the 
midwall are large (e.g. short beams with thin profiles).  
The location of the shear center, as computed by Vlassov for open asymmetrical profiles or by 
Benscoter for closed asymmetrical profiles, is found with the present analyses in the case of uniform 
torsion; i.e. the case of uniform distribution of torsional moment and free warping. For this particular 
loading case and boundary conditions, the present finite element calculations give exactly the location 
of torsional center as computed by Vlassov and Benscoter. This coincidence could be expected since 
Vlassov and Benscoter theories do not take into account warping shear stresses in their kinematical 
formulations. In the case of a uniform torsional case, warping shear stresses vanish and the present 
finite element results coincide with those of Vlassov and Benscoter. However, in general loading cases 
and boundary conditions, Vlassov and Benscoter computations use the same warping function and 
torsional center –as in the case of absence of warping shear stresses– while the present computations 
do not. If the location of the torsional center is prescribed in the finite element computations as being 
that of uniform torsion, the torsional rotation and longitudinal stress distributions are found to be those 
of Vlassov and Benscoter. However, erroneous shear stresses are obtained if calculated from the 
kinematics by using Hooke’s law. This error vanishes for bisymmetrical profiles and gets larger with 
increasing distance between the torsional center and the centroid. 
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Similar observations were found for the distortional behavior. The locations of the distortional centers 
were found to be exactly those of Takahashi in the case of uniform distortion (uniform distribution of 
distortional moment and free warping along the length of the beam) without taking into account the 
local plate bending. Similarly to the torsional behavior, the location of the distortional center and the 
amount of warping were found to vary along the beam in general loading cases and boundary 
conditions. 
 
6.6 Suggestions for further works 

The introduction of this thesis stated that the main aim of this work was to investigate 3D thin walled 
beam structures for arbitrary geometry, loading cases and boundary conditions and to enable an 
accurate representation of the widest range possible of behaviors. The target was reached; all the 
designed and developed models gave satisfactory results and were conclusive. The work has provided 
important information that enhances the understanding of structural problems and the fundamental 
physical principles that underlie them. 
The developed model proved to be applicable to the examined behaviors. However more situations 
could fall within the scope of the formulation. For example, the distortional model, developed for 
arbitrary cases of profile geometry, could be validated for other profiles. The finite element with 
bending shear effects could be validated for the calculation of shear stresses. The variation of the 
position of the shear center could be investigated for a structure exhibiting buckling… 
A wide range of practical problems (central cores of towers, bridge decks, naval structures…), that 
initially motivated this research, could be deeply explored and fully analyzed by the 3D developed 
model. Such a complete application might reveal additional questions to be answered, would explore 
the advantageous effects of the presented advanced beam model and would certainly give a better 
understanding of its limitations. 
Finally, the present work provides the opportunity to explore new horizons: 

- applying the presented analyses in order to optimize the geometry of a profile or the bracing of a 
structure, 

- developing additional non linear computations with the presented warping function in order to 
study the distortional buckling and its interaction with the other effects, 

- studying the plastic and the full non linear post buckling behaviors within the present 
formulation.  
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Appendix 0. Constitutive relations 

The calculation of the constitutive relations that describe the stress-strain relation is important for the 
analysis of the behavior of structures. In order to complete any finite element development and to ensure 
sufficient equilibrium equations for the unknowns to be found, it is necessary to describe how the material 
behaves when submitted to deformation histories. Constitutive laws depend on the physical constitution of 
the material and are introduced to describe the macroscopic behavior under loading. They link the 
kinematic and static variables of a deformed body in order to fit accurately the observed physical behavior. 
Clearly, this task is not easy and is a subject of lots of research [De Ville 1989 §5.6…]. The simplest law 
for solids is the elastic linear Hooke law. The behavior of elastic materials depends only on the current 
level of the strain. This implies that the loading and unloading stress-strain relations are identical and that 
the original shape is recovered upon unloading. The solids are considered to return to their initial 
undeformed configuration upon stress removal. The constitutive law implies that the stresses in a given 
configuration only depend on the strains in this configuration and not on a strain history.  
 
For a general behavior of a non linear material, the constitutive equations are given by a relation between 
the rate of stresses and the rate of strains. This work is restricted to the elastic behavior of thin walled 
structures. The purely mechanical behavior of metallic structures generates large displacements and small 
deformations. When thermodynamic effects such as heat conduction are not considered, the response of the 
material may then be modeled by a simple extension of linear elastic laws by replacing the stress by the 
PK2 stress and the linear strain by the Green strain [De Ville 1989 §5.6.2]. This is called a Saint Venant-
Kirchhoff material: 
 
Sij=dijklEkl  (A0.1) 
 
dijkl are the components of the fourth-order tensor of elastic moduli which are constants for the Kirchhoff 
materials. The corresponding rate relationship is: 
 

ij ijkl kldS d dE=   (A0.2) 

dijkl are called the tangent moduli. 
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Appendix 1. Calculation of geometrical properties 
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Appendix 2. Elementary stiffness matrix  (without shear effects) 

[ ]40u0u
el KEAq,qk   =><  

el *
v v 1k q ,q E Kz  I ⎡ ⎤< > =

⎣ ⎦
 

 el *
w w y 2k q ,q EI K ⎡ ⎤< > =

⎣ ⎦
 

 [ ]4
*
h

el KGIq,qk
xx

=>< θθ   

i i i i
x i ,z ,y ,y ,z

el *
u c c 7y z

k q ,q G[I I z S y S ] K θ Ω Ω Ω Ω
⎡ ⎤< > = − + −
⎣ ⎦

 

i j i j i j
i j ,y ,y ,z ,z

Tel *
u u 4 3k q ,q EI K G[I I ] K 

Ω Ω Ω Ω Ω Ω
⎡ ⎤< > = + +⎡ ⎤⎣ ⎦ ⎣ ⎦
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Appendix 3. Elementary stiffness matrix with Timoshenko shear effects 

{qu0}T = <u01 ,u03> 

 {qv}T = <v01 ,v02, v03> 

 {qw}T = <w01 ,w02, w03> 

{qθx}T = <θx1, θx2, θx3> 

{qθy}T = <θy1, θy2, θy3> 

{qθz}T = <θz1, θz2, θz3> 

{qui}T = <ui1 ,ui3>; i=1,2,…n 

 

[ ]40u0u
el KEAq,qk   =><  

[ ]2vv
el KGAq,qk   =><  

 [ ]5v
el KGAq,qk

z
−=>< θ    

 [ ] [ ]12z
el KGAKEIq,qk

zz
+=>< θθ    
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y
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yy
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*
h
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i i i i
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el
u c c 7y z
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If the selective reduced integration method is used (§5.2.2), K1 is evaluated by using a two point Gauss 
integration rule (equation 5.28): 
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Appendix 4. Transition to global axes 

The equilibrium equations and the finite element calculations have been developed in this dissertation in 
principal axes related to the orientation of each beam element of the structure. To analyze a complete 
structure, the assembly process of different elements needs to refer to a common axis system. Since 
detailed information can be found in the literature on the finite element method, only basic formulae and 
equations are given hereafter. 
 
Transition from principal axes to given local axes  
If the longitudinal axis x of an element remains the same, the matrix [t] allows the transformation of nodal 
forces or displacements from the local principal axis to an arbitrary local axis system. [t] is an identity 
matrix modified to insert a rotation matrix Rβ (A4.1) of principal axes y and z. β is the angle between 
principal axes and the local axes where the cross section geometry is described. 
 

1 0 0
[R ] 0 cos sin

0 sin cos
β

⎡ ⎤
⎢ ⎥= β − β
⎢ ⎥β β⎣ ⎦

 (A4.1) 

 
{qn}loc=[t]T{qn}prnc 
 
[k] loc =[t]T[k] prnc [t] 
 
{fn} loc =[t]T{fn} prnc 
 
[t]T=[t]-1 (A4.2) 
 
Transition from local axes to global axes 
Equations (A4.2) are used with a rotation matrix Q[3x3] that allows the transformation from local axes 
(x,y,z) to global axes (X,Y,Z). Batoz and Datt [Batoz 1990, page 183] gave the following transformation 
matrix.  
 

]R][Q[]Q[ A α=  (A4.3) 
where: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎢

⎣

⎡

++

−
+

+

−

+

−

=

2222

22

2222

A

ca

a

ca

bcc

0cab
ca

c

ca

aba

]Q[  

with  

21 21 21
1a b c X Y Z
L

< >= < >  

X21, Y21 and Z21 are the differences of co-ordinates of extreme nodes of the element. The length of the 
element L is thus: 

2
21

2
21

2
21

2 ZYXL ++=  
 
The position of the local axes y and z of the cross section is characterized by the angle α between the local 
axis y and the intersection between the planes (x,Y) and the cross section plane (yz). 
This angle of orientation (α) can be given as a data [Batoz 1990, page 183], or computed from the 
coordinates of an arbitrary point D (XD, YD, ZD) at the positive part of the local axis y is taken at the second 
node of the element. The distance between the extreme node 2 and the arbitrary point D is L2D. 



 2

α is the angle between the local axis y whose direction is defined by the unit vector coordinates di (A4.4) 
and the intersection vector between the planes (x,Y) and the cross section plane (yz) that is defined by its 
unit vector coordinates oi (A4.5). 
 

D2

2D

D2

2D

D2

2D
L

ZZ,
L

YY,
L

XXd −−−
=  (A4.4) 

 
 

22
22

22 ca

bc,ca,
ca

abo
+

−
+

+

−
=  (A4.5) 

 
[Rα] can be directly calculated by inserting the expressions (A4.6) and (A4.7) of cosβ and sinβ in (A4.1). 
 

∑=α
3

iidocos  (A4.6) 

 
2

1221
2

1331
2

2332 )dodo()dodo()dodo(in −+−+−=αs  (A4.7) 
 
If the local axis x is parallel to the global axis Y (a = 0 et c = 0), the angle ψ between the global X and the 
local z characterizes the rotation.  
 
If x and Y have the same direction 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψ−ψ
−

ψψ
=

sincos0
001

cossin0
]Q[  (A4.8) 

 
with  

D2

2D
L

ZZ −
=ψcos  (A4.9) 

D2

2D
L

XXin −
=ψs  (A4.10) 

 
If x and Y have the opposite direction, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ψψ−
−

ψψ
=

sincos0
001

cossin0
]Q[  (A4.11) 

with  

D2

D2
L

ZZ −
=ψcos  (A4.12) 

D2

D2
L

XXin −
=ψs  (A4.13) 
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Appendix 5. Elementary linear stiffness matrix with (xz) bending warping effects  

{qv}T = <v01 ,v02, v03> 

{qw}T = <w01 ,w02, w03> 

{qθy}T = <θy1, θy2, θy3> 

{qθz}T = <θz1, θz2, θz3> 

{qui}T = <ui1 ,ui3>; i=1,2,…n 

 

[ ]2vv
el KGAq,qk   =><  

[ ]5v
el KGAq,qk

z
−=>< θ    

[ ] [ ]12z
el KGAKEIq,qk

zz
+=>< θθ    

[ ]2ww
el KGAq,qk =><   

[ ]5w
el KGAq,qk

y
=>< θ   

[ ] [ ]12y
el KGAKEIq,qk

yy
+=>< θθ   

i
i ,z

el
w u 7k q ,q G[S ] K 

Ω
< > = ⎡ ⎤⎣ ⎦  

i i
y i ,z

el
u 8 6z

k q ,q EI K GS K θ Ω Ω
< > = +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

[ ] [ ]3
T

4uu
el K]II[GKEIq,qk j

z,
i
z,

j
y,

i
y,

jiji ΩΩΩΩΩΩ ++=><   

 
[K1], [K2]…[K8] are given in Appendix 3. 
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Appendix 6. Shear locking problem presentation 

Timoshenko model deals with bending behaviors by including shear bending effects as it has been seen in 
§2.1.2. The simplest beam finite element with linear interpolations for both transversal displacement and 
section rotation displays strong over-stiffening and significant errors in some cases. In this appendix, a 
brief presentation of this problem, the so-called locking phenomenon, is introduced and developments are 
done, for simplicity, for a two dimensional (xz) beam lying along the x-axis. 
In Timoshenko model, the generalized strains are the shear strain (A6.1) and the curvature χ (A6.2): 
 

yx,0
F
xz w θ+=γ  (A6.1) 

 
x,yθ=χ  (A6.2) 

 
For a two-node beam Timoshenko element, (A6.1) and (A6.2) can be developed as follows: 
 

F
xz 1 2

1 1w w
L L

⎧ ⎫γ = − +⎨ ⎬
⎩ ⎭ y1 y2

1 x 1 x(1 ) (1 )
2 L 2 L

+ − θ + + θ  (A6.3) 

 

y1 y2
1 1

2L 2L
χ = − θ + θ  (A6.4) 

 
For this simple linear Timoshenko element, the absence of shear strain (A6.5) along the entire length of the 
beam induces two equations (A6.6). The second equation of (A6.6) leads to zero curvature (A6.7): 
 

0F
xz =γ  (A6.5) 

1 2 y1 y2
1 1 1 1w w 0
L L 2 2

− + + θ + θ =  

y1 y2
1 1

2L 2L
− θ + θ  (A6.6) 

 
0x,y =θ=χ  (A6.7) 

 
This shows that for linear Timoshenko element, the shear locking represents the inability of the element to 
represent exact pure bending. 
In particular, if a pure state of bending (A6.8) is considered, (A6.3) gives the corresponding shear strain 
(A6.9). 
 
w1 = w2 = 0 ,  θy1 = -θy2 = α (A6.8) 

=γF
xz α−

l
x  (A6.9) 

 
From (A6.9), it could be seen that the strain is found to be nonzero along the element except at x = 0. This 
is incompatible with the equilibrium equation of the state of pure bending where the shear and hence the 
strain should vanish when the moment is constant. The transverse shear which appears in this state of pure 
bending is often called parasitic shear and has large effects on the behavior of the element. 
 



 2

3 3 2L
2

x x y,x
0

1 bh bhd E dx E
2 24 24LΩ

α
σ ε Ω = θ =∫ ∫  (A6.10) 

2L
F F 2

xz xz xz
0

1 1 bhLd Gbh dx G
2 2 6Ω

α
τ γ Ω = γ =∫ ∫  (A6.11) 

 
Consequently, the ratio between the shear energy and the bending energy (A6.10 and A6.11) for the case of 
pure bending of a rectangular (bxh) beam is proportional to (L/h)2. The shear energy should be equal to 
zero in case of pure bending but for this element, the parasitic shear energy absorbs a large part of the 
available energy. The displacement solution is influenced by shear effects where it should be only 
associated to bending effects.  
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Appendix 7. Elementary stiffness matrix with distortional effects  

{qθxI}T = <θxI1, θxI2, θxI3>; I=1,2,…m 

{qui}T = <ui1 ,ui3>; i=1,2,…n 

 

[ ] [ ]I
xI xI

*Del
2 ISM 1hk q ,q GI K ED Kθ θ< > = +  

I I I I
i i i i

xI i ,z ,y CI ,y CI ,z

D D D Del
u 7y z z y

k q ,q G[I I S S ] Kθ Ω Ω Ω Ω
< > = − + − ⎡ ⎤⎣ ⎦  

[ ] [ ]34uu
el K]II[GKEIq,qk j

z,
i
z,

j
y,

i
y,

jiji ΩΩΩΩΩΩ ++=><   

[K1], [K2]…[K7] are given in Appendix 3. 
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Appendix 8. Basic concepts of non-linear analyses 

The analysis of slender thin-walled structures which offer a high resistance for a relatively light weight 
takes into account economy and stability. As thin walled structures have a very high loading capacity, their 
design is usually determined by structural instabilities. Due to their small thickness, they are subject during 
the loading process to large deflections and to significant changes in stiffness so that the load-deflection 
curve becomes non linear. The hypothesis of linearity and the principle of superposition cannot be adopted 
and the reference configuration cannot be kept as the undeformed structure. The non linear displacement 
response is thus determined by applying gradually the load and solving linear sets of equations. The load is 
divided into a series of increments and the stiffness of the structure is adjusted at the end of each increment.  
The purpose of this paragraph is to introduce the nonlinear analysis in order to study the elastic stability. 
The kinematic equations describing the geometric movement of a structure and the basic mechanics 
relations introducing the stress concepts are given. As the instability often occurs after a small deformation 
of most thin walled structures, the hypotheses of moderate rotations and small stress-strain relations are 
kept forwardly. 
The finite deformation solid mechanics is detailed in standard references (Criesfield 1997; Belytschko 
2000; Zienkiewicz 2000;…). This appendix, based mainly on the work of Akoussah (1987) and De Ville 
(1989), presents a brief outline of the basic equations. A deformable three dimensional body is considered. 
Different successive positions in the space and during the deformation history are analyzed. A 
configuration denotes a set of positions of the structure for a given load level. If C1 et C2 are two 
configurations and if the coordinates of C1 are taken as independent variables to describe C2, the 
configuration C1 is called reference configuration and the description of the movement is called lagrangian. 
The deformed structure is referred by the position vector position of material points in a chosen reference 
configuration in a three dimensional space.  

Figure A8.1: Undeformed, intermediate and deformed configurations for finite deformation problems. 
 
Three successive configurations are considered: 
-the initial configuration C0 refers to the unloaded and undeformed state of the structure, 
-the deformed or current Ct represents the deformed state or the position at a load level t of the structure, 
-an intermediate configuration Ci refers to an intermediate state between the first two configurations. 
A Cartesian system is used and the description is called actualized since the reference configuration is 
taken as Ct.  
 
Deformation 
The position vector has three coordinates that can be treated as components of one column matrix: 

     
z,Z

x,X 

   y,Y 

C0 

Ct 

   Ci 

(X, Y, Z) 

  (tx, ty, tz) 

    (ix, iy, iz) 
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x(X, t) X u(X)= +  (A8.1) 

 
The displacement vector <u> = <u,v,w> is introduced as the change of arbitrary point p between two 
frames (C0 ,Ct) in a Cartesian system.  
<X> = <X,Y,Z> is the initial position vector. 

Figure A8.2 Common reference for all the configurations 
 
The displacement components (Uk or uk), with respect to either a reference configuration C0 (Uk) or a 
current configuration Ct (uk) respectively, are related through: 
Ui = ui (A8.2) 
 
Both components may be used equally for finite element developments. 
A fundamental measure of deformation is described by the deformation gradient [J] which is a direct 
measure that maps a differential line element dx in the reference configuration C0 into one in the current 
configuration as: 
 

 dx dX du= +     { } { }udx I dX [J]{dX}
X
∂⎡ ⎤= + =⎢ ⎥∂⎣ ⎦

 

[ ]

u u u1
X Y Z

x v v vJ 1
X X Y Z

w w w1
X Y Z

∂ ∂ ∂⎡ ⎤+⎢ ⎥∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂⎡ ⎤ ⎢ ⎥= = +⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
⎢ ⎥∂ ∂ ∂

+⎢ ⎥∂ ∂ ∂⎣ ⎦

 (A8.3) 

where [I] is the identity matrix. 
 
J = det[J] > 0 (A8.4) 
[J] is subject to the constraint (A8.4) to ensure that material volume elements remain positive. F may be 
used to determine the change in length and direction of a differential line element and the determinant J 
maps a volume element in the reference configuration into one in the current configuration: 
 

Tdx dX [J]=  
dV (dX *dY).dZ=  becomes dv (dx *dy).dz JdV= =  (A8.5) 

x,X 

 y,Y 
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Ct 
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The following relations are also given: 
 

0 0 0dA (dX *dY) n dA= =  dAn)yd*xd(Ad ==   

{ } [ ] { }T 0 0n dA J J n dA−=  { } [ ] { }T 0dA J J dA−=  (A8.6) 

 
If dl0 and dl are the lengths of differential elements dX and dx respectively, the following relations are 
obtained: 
 

( ) { }
20dl dX dX=  ( ) { }dxdxdl 2 =  

( ) { }2 Tdl dX [J] [J] dX=  (A8.7) 

 
It is common to introduce the Green strain [E] for deformation measurements: 
 

( ) ( ) { } { }
22 0 Tdl dl dX ([J] [J] [I]) dX 2 dX [E] dX− = − =  

where  [ ] [ ] [ ] [ ]( )T1E J J I
2

= −  or ( )ij ki kj ij
1E J J
2

= − δ  

 
In terms of the reference displacements, 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂

∂
+

∂
∂

=
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i

k

i

j

j

i
ij X

U
X
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X
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X
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2
1E  (A8.8) 

Figure A8.3 Movement of a differential element 
 
The right hand side of equation (A8.8) can be split into linear and nonlinear strains. The linear strain is 
noted εij. 
 
Stress measures 
In the following developments, capital and small letters are used to design respectively the variables in a 
reference configuration Ci and in the current configuration Ct. 

x,X 

 y,Y 

   
z,Z

C0 

Ct 

    X 
0dl 
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Stresses measure the amount of force per unit of area. p is a material point of the deformed configuration Ct 
and ∆a is an elementary surface which orientation is defined by a normal n . Let ∆f be the force vector 
acting at this area element. The definition of the stress vector t (n) at p is given by the limit: 

 
a
flim)n(t

0a ∆
∆

=
>−∆

  (A8.9) 

 
This vector is defined by unit of deformed area in the configuration Ct and can be expressed in different 
manners. 

Figure A8.4 Stress measures 
 
Cauchy stress 
In finite deformation problems, the stress is defined with respect to the chosen configuration. If the current 
configuration is selected, the Cauchy (true) stress is a symmetric measure defined as follows:  
 

iijiijj dadandat σ=σ=  

[ ] { }n)n(t Tσ=  (A8.10) 
 
with 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

σττ
τστ
ττσ

=σ

zzzyzx

yzyyyx

xzxyxx

 (A8.11) 

Figure A8.5 Components of [ ]σ  
 
They are usually used to define general constitutive equations for materials. 
If fd is the load acting on the differential area da which normal is n  in the configuration Ct, then: 
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{ } { } [ ] dadatdf σ==  (A8.11) 

 
Second Piola Kirchhoff stress 
The second Piola Kirchhoff stress S is a symmetric stress measure with respect to the reference 
configuration and is related to the true or Cauchy stress through the deformation gradient as: 
 

ij ik kl jl
1 J S J
J

σ =  (A8.13) 

 
The force vector {F} and the stress vector {T}, associated with the Piola Kirchhoff stress definition, are 
related as follows: 
 
{ } { } [ ] dASdATdF ==  (A8.14) 

 
{T} is a surface traction defined by: 
 
{t} da = {T} dA (A8.15) 
 
The elementary area da in Ct results from the deformation of an elementary area dA in Ci. 
Identically, a volume force fv = ρt.f in Ct can be related (A8.17) to FV in any known configuration Ci by 
using (A8.16): 
 

dVdv it ρ=ρ  (A8.16) 
fv dv = FV dV (A8.17) 
ρt is the mass density in the current configuration and f is body force per unit mass. The relation with the 
reference configuration mass density ρi results from the principle of mass conservation. 
It should be noted that the values of Piola-Kirchhoff stresses (expressed by unit undeformed area) can be 
very different from those of Cauchy (expressed by unit of deformed area) if the solid is subjected to large 
deformations. 
 
Equilibrium equations 
By keeping quantities relating to the current deformation, the equilibrium equations for a solid subjected to 
finite deformation are deduced from the principle of conservation of movement quantity. They describe the 
macroscopic behavior of materials under loading effects. 
Let v be a volume in the configuration Ct having a as contour and submitted to external forces fv per unit of 
deformed volume and fs par unit of deformed surface. The equilibrium in the current configuration is: 
 

0=+
∂
∂

vi
j

ij

f
x
σ

 i,j=1,3 (A8.19) 

 
The equilibrium equations are nearly identical to those of small deformation. 
 
The boundary conditions consist of two types :  
-mechanical or traction boundary conditions [ ]{ } { }sfn =σ on af 

-geometrical or displacement boundary conditions on au 
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where  
fu aaa ∪=  and 0aa fu =∩  (A8.20) 

 
By using a matrix formulation : 
 
[ ] { } { } 0fb T =+σ  (A8.21) 
where xzyzxyzyx τττσσσ=σ  

et [ ]
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xy
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z
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y
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z
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y
00

x

b T  (A8.22) 

 
Virtual work principle 
In order to construct finite element approximations, it is necessary to write a formulation in a weak or 
variational form. In this work, analyses are developed for materials behaving elastically when subjected to 
deformation histories. To simplify the numerical developments, capital and small letters are used to design 
respectively the variables in a reference configuration Ci and in the current configuration Ct. 

Figure A8.6 Boundary conditions in the equilibrated configuration 
 
The principle of virtual work for real forces and virtual displacements implies that, at equilibrium, the 
virtual work done by internal forces is equal to the work done by external forces for any virtual 
displacement field. v and V denote the volume in Ct and Ci; a and A represent the part of the surface of Ct 
and Ci on which specified tractions fa and FA are applied; fv and FV are body forces in Ct and Ci, σ 
represents the Cauchy stresses and is associated with the virtual infinitesimal strain tensor ε.  
The equivalence between two reference configuration formulations (A8.23) in Ct and (A8.24) in Ci is 
developed hereby. 
 
In Ct: * * * *

ij ij i vi i ai
v v a

W dv u f dv u f da 0= ε σ − − =∫ ∫ ∫  (A8.23) 

In Ci: * * * *
ij ij i Vi i Ai

V V A
W E S dV U F dV U F dA 0= − − =∫ ∫ ∫  (A8.24) 

u* and U* are assumed to be kinematically homogenous virtual displacements (assumed to vanish on 
geometric boundary conditions so that reactions do not appear in virtual work formulation). These virtual 
displacements can be chosen as infinitesimal and taken as arbitrary variations of displacement δu or δU 
(equation A8.2). 
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fv
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The choice of the selected stress tensor (and hence the expression of the virtual work) depends on the 
adopted reference configuration (Ct or Ci). By using a reference configuration (A8.24), the second Piola-
Kirchhoff stress tensor S is found to be conjugated to the Green strain E. 
The equivalence between the internal work in (A8.23) and (A8.24) (see also De Ville 1989 §5.5.2.2) is 
shown below in (A8.29) by using equations (A8.25…28) which are deduced from (A8.2), (A8.5), (A8.8) 
and (A8.13). 
 

v V
dv JdV=∫ ∫  (A8.25) 

Ui = δij uj (A8.26) 

jll

j
kl
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i
ij X
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The Green strain tensor is expressed in terms of reference displacements as 
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The first term of (A8.23) is developed as follows: 
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The equivalence between the external work in (A8.23) and (A8.24) is directly found by using (A8.25), 
(A8.15) and (A8.17). 
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Appendix 9. Solution methods for the non linear problem 

Significant changes of shape can take place suddenly without warning for structural members with elastic 
behaviour. Such phenomenon of loss of equilibrium stability constitutes a typical failure mode for some 
structures. The theory of stability is a basis for design and examination of the safety of new and existing 
structures. It deals with critical loads and deformations associated with sudden changes of the states of a 
structure.  
In a general loading process, a structure becomes more flexible and is subject to large geometric changes 
when the loading reaches critical values. The configuration must be actualized since the associated 
governing equations are nonlinear. This appendix shows how the loss of stability is detected for the elastic 
structures under conservative loading that are analyzed in paragraph 5.5. The following developments are 
based on the work of Criesfield (1997, chapter 9) and on that of Fafard (Batoz 1999, course 4). 
 
The energy functional in paragraph 5.5.2 is reformulated in general terms as: 
 

Fu)u(),u( Tλ−Π=λπ  (A9.1) 
 
where π is the total potential energy, Π is the strain energy which is function of a finite set of displacement 
variables u, F is a fixed external load vector and the applied loads vary in magnitude by a single scalar 
multiplier λ. 
With λ fixed, a small change in potential energy, δπ, is approximated by truncated Taylor series: 
 

...u
u

u
2
1u

u 2

2
T +δ
∂
π∂

δ+δ
∂
π∂

=δπ  (A9.2) 

R
u
=

∂
π∂  (A9.3) 

T2

2
K

u
=

∂
π∂  (A9.4) 

 
By using the notations in paragraph 5.5, (A9.3) can be identified as the out of balance forces or gradient R 
and (A9.4) can be identified as the tangent stiffness matrix KT. 
 

...uKu
2
1uR T

T +δδ+δ=δπ  (A9.5) 

 
Higher order terms in (A9.5) are omitted. In order to ensure equilibrium, the energy change in (A9.5) 
should be stationary with respect to δu. The theorem of equilibrium state sets that the conservative system 
is in equilibrium if the first variation of potential energy equals zero: 
 

0),u(R
u

=λ=
∂
π∂  (A9.6) 

 
The set of non linear equilibrium equations (A9.6) for n degrees of freedom of the discrete model 
determines the configuration that an elastic structure assumes under a given set of loads. Stable 
configurations of equilibrium are determined according to the Lagrange-Dirichlet theorem. For stable 
equilibrium, a small change of energy must be positive for any small perturbation δu about the equilibrium 
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point. The potential energy is positive definite and a minimum of potential energy occurs in the stable 
equilibrium configuration. 
 

0uKu T
T >δδ  (A9.7) 

 
(A9.7) must be satisfied for all δu. 
In case of conservative system, an equilibrium state is unstable if the change in energy is negative for a 
small perturbation δu. KT is no more positive definite and will have at least one negative eigenvalue. 
A neutral state is defined by the fact that the second variation of potential energy is equal to zero. KT has a 
zero eigenvalue. 
 

0)Kdet( T =  (A9.8) 
 
Given a solution at a level A involving uA et λA, a Taylor expansion of (A9.6) for λ varying gives by 
neglecting higher order terms: 
 

0FuKRu
u
R

TAA =λ∆−∆=λ∆
λ∂

∂
+∆

∂
∂  (A9.9) 

 
In order to find the equilibrium path for the structure, (A9.10) must be solved: 
 

FKu 1
T
−λ∆=∆  (A9.10) 

 
When equation (A9.8) is satisfied, (A9.10) does not have a solution and the associated state is called 
critical. The potential system reaches a critical state of equilibrium if the first and second variations of 
potential energy equal zero. This critical or singular point can be either a limit point (figure A9.1a) or a 
bifurcation point (figure A9.1b) and corresponds either to a snapping or to a buckling phenomenon 
respectively. 

Figure A9.1 Singular points: Limit point (a) and bifurcation point (b) 
 
In the (n+1) dimensional space, a curve (figure A9.1) is constituted by plotting a set of points with 
coordinates λ and u1 which are solutions of (A9.6). The curves in the (n+1) dimensional space constitute 
the equilibrium path. The primary branch passes through the origin of the coordinate system and the 
secondary branch does not.  
 
Parameterization of load displacement curve 
The concept of scalar load multiplier λ is thus introduced as a factor multiplying a load vector up to the 
desired level.  

u1 

λ 

(a) 

λ 

(b) 

u1 
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A parameterization of the load-displacement curve is necessary to introduce functional aspects of the 
resolution. n+1 is the total number of unknowns where n is the number of degrees of freedom and the n+1 
unknown is the scalar load multiplier λ. 
 
{ } { } { } { }0RFR int =−λ=  (A9.11) 
 
F corresponds to equivalent nodal forces. It depends strictly on the external loading given for a problem. 
Rint is the internal force vector that depends on the displacements u. λ is the load level parameter. 
 
It is crucial to choose the most suitable parameter that dictates the path tracing of the load-displacement 
curve. If the parameter is chosen to be λ or any displacement ui, the algorithm fails at limit points or at 
‘snap-throughs’. To overcome this, the arc length method is used and a curvilinear axis coordinate s that 
follows the load displacement curve is taken hereby as a parameter (A9.12). 
 

{ } { })s(uu
)s(

=
λ=λ

 (A9.12) 

 
The load level parameter λ is therefore the variable to be determined as a function of s. 
 
The tangent unit vector at the point s of the curve is: 
 

{ }
{ }

⎭
⎬
⎫

⎩
⎨
⎧

λ
=

u
t   (A9.13) 

where{ }
⎭
⎬
⎫

⎩
⎨
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m
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2

ds
d
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dum ⎟

⎠
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⎜
⎝
⎛ λ

+
⎭
⎬
⎫

⎩
⎨
⎧=  

As t is a unit vector, 
 

{ } { } 1)(uutt 2 =λ+=  (A9.14) 

 
In order to approximate the equilibrium path by a broken line of chords whose end points correspond to 
successive discrete values, the incremental form is used instead of the differential one. (A9.14) is 
discretized as follows: 
 

{ }
⎭
⎬
⎫

⎩
⎨
⎧
∆
∆

=
s
uu  (A9.15) 

s∆
λ∆

=λ  (A9.16) 

{ } 22 )s()(u.u ∆=λ∆+∆∆  (A9.17) 
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Figure A9.2 Spherical arc length procedure for one degree of freedom (after Criesfield 1997) 
 
In (A9.17), a scaling parameter ψ is required because the load contribution depends on the adopted scaling 
between the load and displacement terms. 
 

{ } 222 )s()(u.u ∆=λ∆ψ+∆∆  (A9.18) 

 
If the loading term involving ψ is set to zero (A9.19), the method is known as cylindrical rather than 
spherical [Criesfield 1997 page 274, …]. (A9.18) is thus reduced to (A9.20). 
 
ψ = 0 (A9.19) 

{ } 2)s(u.u ∆=∆∆  (A9.20) 

 
Equation A9.17 describes the evolution from step to step by using the arc length method. s∆ , the discrete 
arc length value of the curve { } ),u( λ , represents at each step the fixed radius of the desired intersection (see 
figure A9.2 & A9.3). λ∆  and u∆  are incremental and relate back to the last converged equilibrium state. 
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Figure A9.3 Cylindrical arc length method for 2 degrees of freedom (after Batoz 1999) 
 
Cylindrical arc length method calculations 
Solving equation (A9.11) 
Let ∆ui be the increment in the displacement u from the beginning of a step till the current iteration i. δui is 
the increment in the displacement between two consecutive iterations i-1 and i. Identically, let ∆λi be the 
increment in the load parameter from the beginning of a step till the current iteration and δλi is the 
increment between two consecutive iterations i-1 and i. 
At a new unknown level, the change in displacement δui must be calculated from (A9.11) to ensure the 
equilibrium.  
 
{ } [ ] { } { }{ }exti

1
t FRKu ii δλ+=δ −  (A9.21) 

 
The iterative displacement δui can be split into two parts involving internal and external forces: 
 
{ } { } { }ext

1
t

1
t F]K[R]K[u iii

−− δλ+=δ  (A9.22) 
{ } { } { }iFiR uuu ii δδλ+δ=δ  (A9.23) 

δλi is still unknown and the new incremental displacement can be written as: 
{ } { } { } { }iFiR uuuu ii1i δδλ+δ+∆=∆ +  (A9.24) 

ii1i δλ+λ∆=λ∆ +  (A9.25) 

 
Then, (A9.24) is inserted into (A9.20) and a scalar quadratic equation is solved in order to determine δλi. 
 
( ) ( ) 0cba 2 =+δλ+δλ  (A9.26) 

where 
a= { }iFiF uu δδ   (A9.27) 
b= { } { } { })uu(u2 iRiF i δ+∆δ  (A9.28) 

c= { } { } { } { } ( )2iRiR s)uu)(uu( ii ∆−δ+∆δ+∆  (A9.29) 

This is applied for each iteration in order to let the Euclidean norm of the vector ∆u equal to ∆s. 
 
Finding the appropriate root to (A9.26) 
For a regular curve, there are two intersection points between the circle and the load displacement curve 
(figure A9.4). Equation (A9.26) has then two roots and the appropriate one must be chosen. Both solutions 
(δλi1 and δλi2) are computed and the closest to the previous incremental direction is kept in order to prevent 

up
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up 
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the solution from diverging or ‘doubling back on it tracks’ [Criesfield 1997 page 277]. This criterion is 
based on the fact that during the iteration process, two consecutive iterated vectors point roughly in the 
same direction.  
The solution with minimum angle between ∆ui and ∆ui+1 is kept (with maximum cosine of the angle): 
 

{ }{ }
( )²s

uu)cos( 1ii
i ∆

∆∆
=θ +  (A9.30) 

Figure A9.4 Selection of solution for the cylindrical arc length method (after Batoz 1999) 
 
Predictor solution 
The set of linear problems is solved starting from a first estimate. At the first step (s = 0) of calculation, the 
value of ∆s can be determined from a given value ∆λ of the load increment: 

λ∆=λ∆ 1  

{ }11
FF

uus ∆∆λ∆=∆  (A9.31) 

 
In this particular case for s = 0, the problem is linear and [KT ]= [K].  
 
In the beginning of any other step p (arbitrary values of s), the value of ∆λ is calculated from (A9.32): 
 

{ }11
1

FF
uu

s

∆∆

∆
±=λ∆  (A9.32) 

 
Real values of (A9.32) are found if : 
 
{ } { } ( )suu iRi ∆≤δ+∆  

 
Two predictors are possible and the sign of { }11p

p F
uu ∆∆ −  is prevalent. If the tangent matrix is positive 

definite, the positive sign is kept. However, if it is not the case, a negative pivot implies one negative 
eigenvalue for the tangent matrix. Discussion about the nature of this singular point is found in [Criesfield 
1997 page 286]. 
 

u1 

u2 s

up 

up
i 

up
i+1 

up
i+1 



List of figures 

Figure 2.1 Principal axes of a beam profile ........................................................................................................... 2-1 

Figure 2.2 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection of 

rectangular beams submitted to a uniformly distributed load............................................................... 2-5 

Figure 2.3 Difference between TBTM and (BBT, TBT and RBT) for maximal deflection of 

rectangular beams submitted to a concentrated force P at mid span ....................................................  2-6 

Figure 2.4 (a) Square tubular cross section (b = 0.1m, t = 0.001m), (b) open I cross section 

(b = 0.08m, tf = 0.01m, h = 0.38m, tw = 0.0035m), (c) tubular cross section (b = 0.3m, tf = 

0.008m, h = 0.8m, tw = 0.001m) and (d) T cross section (b = 0.4m, tf = 0.01m, h = 0.4m, 

tw = 0.01m) ........................................................................................................................................... 2-7 

Figure 2.5 Variation [(wTBTM-wBBT)/ wBBT] of shear deformation effects on maximal deflection [m] 

of beams (Figure 2.4) submitted to a uniformly distributed load (a) and to a unit 

concentrated load at mid length (b) ...................................................................................................... 2-9 

Figure 2.6 Closed and open cross sections ............................................................................................................ 2-12 

Figure 2.7 Cross sectional geometry...................................................................................................................... 2-14 

Figure 2.8 Internal stresses acting on the edges of an element (ds dx) .................................................................. 2-18 

Figure 2.9 Open (b) and closed (c) asymmetrical cross sections submitted to non uniform torsion ...................... 2-22 

Figure 2.10 Principal warping function [m2] of open cross section figure 2.9b....................................................... 2-23 

Figure 2.11 Torsional moment Mx = Mx
st + Mx

ω [Nm], bimoment B [Nm2] and twisting angle teta 

[rad] of an open asymmetrical thin walled beam for x varying from 0 (left support) till 

10m (midspan)...................................................................................................................................... 2-23 

Figure 2.12 Principal warping function [m2] of closed cross section in figure 2.9c ................................................ 2-24 

Figure 2.13 Rotating angle teta [rad], torsional moment Mx = Mx
st + Mx

ω [Nm], and bimoment B  

[Nm2] of closed asymmetrical thin walled beam for x varying from 0 (left support) till 

10m (midspan)...................................................................................................................................... 2-25 

Figure 2.14 (a) A global behavior: bending of an I beam; (b); a local behavior that involves one plate 

of a Z beam; (c) a distortional behavior................................................................................................ 2-27 

Figure 2.15 A transversal load (a) separated into: flexural & torsional loading (b) and distortional 

loading (c) (after Takahashi) ................................................................................................................ 2-28 

Figure 2.16 ‘yz’ beam axes and ‘se’ local axes ....................................................................................................... 2-29 

Figure 2.17 Distortional modes ............................................................................................................................... 2-29 

Figure 2.18 (a): Two cross section blocks (1-2-3 & 3-4-5) associated with the distortional joint 3; (b) 

cross section with no distortional modes .............................................................................................. 2-29 

Figure 2.19 Open cross section without ramifications............................................................................................. 2-31 

Figure 2.20 (a) An isolated unit length strip; stiffening effects represented by the distribution of Ms
xI 

along the profile contour (c) depending on the profile geometry (b) .................................................... 2-33 

Figure 2.21 Cross sections containing one or more than one cell ............................................................................ 2-35 

Figure 2.22 Lateral torsional buckling of a beam .................................................................................................... 2-37 

Figure 3.1 General form of a cross section ............................................................................................................ 3-1 

Figure 3.2 (a)Warping along the contour of the profile;(b) & (c): functions �and��.......................................... 3-2 

Figure 3.3 Thickness warping function, cut A-A of figure 3.1 .............................................................................. 3-3 

Figure 3.4 (a) Tension of an I beam; (b) extension u0 of the beam with ui vanishing; (c): possible 

configuration when uncoupling is not satisfied: warping (-ui) related to tension ................................. 3-5 



Figure 3.5 Pure bending of an I beam ................................................................................................................... 3-6 

Figure 3.6 Regression lines of plots (a): (y,f) and (b): (y,u) ................................................................................. 3-7 

Figure 3.7 A beam submitted to a shear force ...................................................................................................... 3-9 

Figure 3.8 (a): Beam cross section; (b): shear stresses; (c): warping of the cross section with a 

constant shear force ............................................................................................................................. 3-10 

Figure 4.1 Simply supported beam with rectangular cross section (bxh) under uniformly distributed 

load....................................................................................................................................................... 4-11 

Figure 4.2 Column with cruciform cross section ................................................................................................... 4-23 

Figure 4.3 Critical loads for flexural and torsional buckling of a column ............................................................ 4-24 

Figure 4.4 Difference between analytical calculations of torsional critical loads by using Vlassov and 

adapted Prokić kinematic formulations ................................................................................................ 4-25 

Figure 4.5 Difference between analytical calculations (Vlassov and adapted Prokić kinematic 

formulations) of torsional critical loads for columns with rectangular, cruciform and I 

sections and of coupled flexural torsional loads for columns with channel (U) and angle 

(L) cross sections.................................................................................................................................. 4-26 

Figure 4.6 Difference between analytical calculations  (Vlassov and Prokić kinematic formulations) 

of lateral torsional critical moments for beams with rectangular, cruciform, I, U and L 

cross sections........................................................................................................................................ 4-26 

Figure 4.7 Flexural, flexural-torsional and lateral-torsional buckling of beams and columns .............................. 4-27 

Figure 4.8 A monosymmetrical I beam ................................................................................................................ 4-28 

Figure 4.9 Lateral torsional buckling of monosymmetrical I beam ...................................................................... 4-28 

Figure 4.10 Lateral torsional buckling of simply supported beam with different profiles (Table 4.3) 

under uniformly distributed load ......................................................................................................... 4-31 

Figure 5.1 Beam finite element without shear effects............................................................................................ 5-2 

Figure 5.2 Beam finite element with shear effects................................................................................................. 5-4 

Figure 5.3 A straight connection............................................................................................................................ 5-14 

Figure 5.4 Plane flexure......................................................................................................................................... 5-15 

Figure 5.5a Rigid connection, warping restrained (after Gjelsvik 1981) (ui
(1)=0, ui 

(2)=0)....................................... 5-15 

Figure 5.5b Semi rigid connection, warping transmitted (after Gjelsvik 1981) (ui 
(1) = ui 

(2))................................... 5-16 

Figure 5.5c Hinged  connection, independent warping (after Gjelsvik 1981) (ui 
(1)  ≠ ui 

(2) , fi
(1) = fi

(2) 

=0) ........................................................................................................................................................ 5-16 

Figure 5.6 Simply supported beam submitted to a concentrated torque................................................................. 5-19 

Figure 5.7 Square tubular beam with uniform density of torque ........................................................................... 5-20 

Figure 5.8 Torsion of a tubular cross section......................................................................................................... 5-20 

Figure 5.9 Relative difference between values of maximal torsional angle of the beam in 5.9b 

obtained by the theory of Benscoter and the finite elements FEM1 and FEM2 ................................... 5-20 

Figure 5.10 Simply supported beam submitted to a uniform density of torque ...................................................... 5-21 

Figure 5.11 Relative difference between the values of mid span twist angle obtained by the theory of 

Vlassov and the finite elements FEM1 and FEM2 ............................................................................... 5-21 

Figure 5.12 Relative difference between values of mid span twisting angle obtained by the theory of 

Vlassov and the finite element FEM2 .................................................................................................. 5-22 

Figure 5.13 Channel beam submitted to non-uniform torsion ................................................................................. 5-23 

Figure 5.14 Normal and shear stresses due to non-uniform torsion for a channel beam.......................................... 5-24 

Figure 5.15 (a) Difference between Vlassov and FEM2 calculations for the distance between the centroid 

and the shear center, (b) warping shear stresses (x = 0m) at the mid wall when prescribing 



shear center coordinates, (c) warping shear stresses (x = 0m) at the mid wall when 

condensing the shear center coordinates............................................................................................... 5-25 

Figure 5.16 Maximum torsional rotation angle in case of non uniform torsion for a closed cross 

section .................................................................................................................................................. 5-26 

Figure 5.17 Normal and shear stresses in case of non uniform torsion for a closed cross section beam.................. 5-27 

Figure 5.18 Continuous beam with three spans submitted to a uniform density of torque at central span............... 5-27 

Figure 5.19 Distributions of twist and bimoment along the beam in figure 5.18. .................................................... 5-28 

Figure 5.20 An I beam submitted to an eccentric single axial load ......................................................................... 5-29 

Figure 5.21 Longitudinal stresses corresponding to four sets of loading resulting from a single load 

applied in 5.20; a: compression, b &c: bending, d: torsional warping ................................................. 5-29 

Figure 5.22 Diagram of twist [rad] along the longitudinal beam in figure 5.20....................................................... 5-30 

Figure 5.23 A Beam submitted to torsion ................................................................................................................ 5-31 

Figure 5.24 distribution of rotating angle [rad] along the beam for different types of warping 

conditions at supports ........................................................................................................................... 5-32 

Figure 5.25 Portal frame geometry with H (1) and U (2) cross sections ................................................................. 5-32 

Figure 5.26 Difference with Vlassov finite element solution for the rotational rotation at the 

connection and FEM2 .......................................................................................................................... 5-33 

Figure 5.27 Box girder with large opening submitted to torsion ............................................................................. 5-34 

Figure 5.28 Results from Gunnlaugsson (1982) ...................................................................................................... 5-35 

Figure 5.29 Comparison of the rotation angle along the girder by using ‘FEM2’ (16 beam elements) 

and the results of Pedersen (1991)........................................................................................................ 5-35 

Figure 5.30 Values of axial stresses due to non uniform warping along the girder by using ‘FEM2’ 

with 16 beam elements ......................................................................................................................... 5-36 

Figure 5.31 Finite element with (xz) bending shear warping effects ....................................................................... 5-38 

Figure 5.32 Difference between FEM3 and TBTM for a simply supported beam submitted to uniform 

load....................................................................................................................................................... 5-41 

Figure 5.33a Finite element errors for maximal deflection of simply supported beam submitted to a 

uniformly applied load with varying aspect ratio (L/h); all finite element analyses 

performed with two elements ............................................................................................................... 5-42 

Figure 5.33b Illustration of shear locking shear phenomenon; two finite elements (enlargement of 

figure 5.33a) ......................................................................................................................................... 5-43 

Figure 5.34 Simply supported beam submitted to a pure bending ........................................................................... 5-43 

Figure 5.35 (a): Locking shear phenomenon for the maximal deflection of a simply supported beam 

submitted to a pure bending with varying aspect ratio (L/h); (b): enlargement of figure 

5.35a with CIE, RIE and FEM3 values ................................................................................................ 5-44 

Figure 5.36 (a) open cross section, (b) two-celled cross sections ............................................................................ 5-45 

Figure 5.37 Differences between TBTM and BBT, TBT & FEM2 for maximal deflection of simply 

supported beam with the open profile (a) and the closed profile (b) .................................................... 5-46 

Figure 5.38 Comparing beam shear theories for maximal deflection of simply supported beam with 

the closed profile .................................................................................................................................. 5-47 

Figure 5.39 Finite element with distortional effects ................................................................................................ 5-48 

Figure 5.40 Clamped-free beam submitted to distortional loading.......................................................................... 5-51 

Figure 5.41 (a): Stiffening effects (distribution of Ms
xI along the profile contour). (b): Position of 

distortional centers ............................................................................................................................... 5-52 

Figure 5.42 Meshing with Samcef shell finite elements .......................................................................................... 5-52 



Figure 5.43 (a): Distortional rotating angle distribution along the longitudinal axis (x); (b): Rotating 

angle distribution along the contour coordinate (s) for x=2m............................................................... 5-53 

Figure 5.44 Normal stresses σx due to distortion of a monosymmetrical open profile for x = 1.5m ....................... 5-53 

Figure 5.45 Local stresses σs at the upper skin for x = 1.5m ................................................................................... 5-54 

Figure 5.46 Shear τxs stresses due to distortion of a monosymmetrical open profile for x = 1.5m .......................... 5-54 

Figure 5.47 (a) Clamped-free beam submitted to bending, torsion and distortion; (b) Position of 

torsional and distortional centers .......................................................................................................... 5-55 

Figure 5.48 Distribution of Ms
xI along the profile contour ..................................................................................... 5-56 

Figure 5.49 Separating distortional loading cases (d) from the bending/torsional loading case (a+b+c) 

for the case of loading in figure 5.47a .................................................................................................. 5-56 

Figure 5.50 Meshing with Samcef shell finite elements .......................................................................................... 5-57 

 

Figure 5.51 Distribution of the distortional rotating angle along the beam length (x) ............................................. 5-58 

Figure 5.52 Rotating angle (torsion+distortion) distribution along the contour coordinate (s) for x=2m ............... 5-58 

Figure 5.53 Normal stresses for x = 1.5m resulting from (a) the distortional mode only; (b) bending, 

torsion and distortion............................................................................................................................ 5-59 

Figure 5.54 Shear stresses for x = 1.5m resulting from (a) the distortional mode only; (b) bending, 

torsion and distortion............................................................................................................................ 5-60 

Figure 5.55 Curve FEM2_16: difference for the distance between the centroid and the torsional center; 

curve FEM4_16: difference for the distance between the centroid and the left distortional 

center .................................................................................................................................................... 5-61 

Figure 5.56 Buckling of a frame consisting of members with closed cross section ................................................ 5-67 

Figure 5.57 Torsional buckling of a column with cruciform cross section .............................................................. 5-68 

Figure 5.58 A column with open monosymmetric cross section ............................................................................. 5-69 

Figure 5.59 Buckling analysis of a column with open monosymmetric cross section ............................................. 5-69 

Figure 5.60 Critical loads for the centrally loaded column (figure 5.58) ................................................................. 5-70 

Figure 5.61 Lateral torsional buckling of an I beam................................................................................................ 5-71 

Figure 5.61 Flexural torsional and lateral torsional buckling of an I beam with one cell ........................................ 5-71 

Figure 5.63 A column (b) with two cases of a change in the cross sectional geometry: case (a) and 

case (c) ................................................................................................................................................. 5-72

 



List of tables 

Table 2.1 Shear deformation effects on the maximal deflection [m] of beams (Figure 2.4) submitted 

to a unit uniformly distributed load ..................................................................................................... 2-8 

Table 2.2 Shear deformation effects on the maximal deflection [m] of beams (Figure 2.4) submitted 

to a unit concentrated load at mid span ................................................................................................ 2-8 

Table 4.1 Analytical values of maximal deflection [m] of beam (Figure 4.1)...................................................... 4-12 
Table 4.2  Data for profile geometries.................................................................................................................. 4-25 

Table 4.3  Difference between critical loads or bending moments calculated by using Benscoter and 

adapted Prokić warping functions ....................................................................................................... 4-27 
Table 4.4  Data for profile geometries under uniformly distributed load ............................................................. 4-29 

Table 5.1 Description of examples ....................................................................................................................... 5-18 

Table 5.2 Rotating angle [rad] and warping [m] along the longitudinal beam in Figure 5.20 .............................. 5-30 

Table 5.3 Rotating angle [rad] at 1.75m from left end for different types of warping conditions ........................ 5-31 

Table 5.4 Rotating angle at the rigid joint ............................................................................................................ 5-33 

Table 5.5 BBT, TBTM and PBT results [m] for maximal deflection of a simply supported 

rectangular beam submitted to uniform load 10N/m ............................................................................ 5-41 

Table 5.6 Finite element maximal deflection [m] for simply supported beam L=10m, and thin 

rectangular cross sections with b = 0.002m and varying values of height h ......................................... 5-42 

Table 5.7 Normal stresses [Pa] of different loading cases.................................................................................... 5-60 

Table 5.8 Flexural buckling loads ........................................................................................................................ 5-73 


