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Thèse présentée en vue de l’obtention du grade de Docteur en Sciences
soutenue le 13 juin 2006 devant le jury composé de:
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Résumé

Ces quinze dernières années, beaucoup de progrès ont été réalisés dans le domaine de
la vérification formelle des systèmes temps-réels. On parle de logiques, d’automates,
d’algèbres de processus, de langages synchrones, etc. Dès le début, un formalisme a
joué un rôle central: les automates temporisés, et leur extension naturelle les automates
hybrides. Ces modèles permettent de définir des contraintes temps-réel en utilisant
des horloges ou plus généralement des variables continues dont l’évolution est décrite
par des équations différentielles. Ils généralisent les automates finis du fait que leur
sémantique définit des mots temporisés, où un instant de survenance est attaché à
chaque symbole discret.

La décidabilité et l’analyse algorithmique des automates temporisés et hybrides ont
été abondamment étudiées dans la littérature. Le résultat principal pour les automates
temporisés est qu’ils sont positivement décidables. Ce n’est pas le cas des automates
hybrides, mais des semi-algorithmes sont connus lorsque la dynamique est suffisamment
simple, comme une relation linéaire entre les dérivées. Avec la complexité croissante
des systèmes actuels, ces modèles sont toutefois limités dans leur sémantique classique,
pour modéliser des implémentations ou des systèmes dynamiques réalistes.

Dans cette thèse, nous étudions l’algorithmique de sémantiques complexes pour
les automates temporisés et hybrides. D’une part, nous proposons des sémantiques
implémentables pour les automates temporisés et nous étudions leur propriétés calcu-
latoires: au contraire d’autres travaux, nous identifions notamment une sémantique qui
est à la fois implémentable et qui a des propriétés de décidabilité. D’autre part, nous
donnons des nouvelles approches algorithmiques pour l’analyse d’automates hybrides
dont la dynamique est donnée par une fonction affine de ses variables.

Mots-clés: Temps-réel, Robustesse, Implémentabilité, Vérification, Automates tem-
porisés, Automates hybrides.
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Abstract

In the field of formal verification of real-time systems, major developments have been
recorded in the last fifteen years. It is about logics, automata, process algebra, pro-
gramming languages, etc. From the beginning, a formalism has played an important
role: timed automata and their natural extension, hybrid automata. Those models
allow the definition of real-time constraints using real-valued clocks, or more generally
analog variables whose evolution is governed by differential equations. They general-
ize finite automata in that their semantics defines timed words where each symbol is
associated with an occurrence timestamp.

The decidability and algorithmic analysis of timed and hybrid automata have been
intensively studied in the literature. The central result for timed automata is that they
are positively decidable. This is not the case for hybrid automata, but semi-algorithmic
methods are known when the dynamics is relatively simple, namely a linear relation
between the derivatives of the variables. With the increasing complexity of nowadays
systems, those models are however limited in their classical semantics, for modelling
realistic implementations or dynamical systems.

In this thesis, we study the algorithmics of complex semantics for timed and hybrid
automata. On the one hand, we propose implementable semantics for timed automata
and we study their computational properties: by contrast with other works, we identify
a semantics that is implementable and that has decidable properties. On the other
hand, we give new algorithmic approaches to the analysis of hybrid automata whose
dynamics is given by an affine function of its variables.

Keywords: Real-Time, Robustness, Implementability, Verification, Timed automata,
Hybrid automata.
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Chapter 1

Introduction

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

Albert Einstein.

1.1 Context

Embedded control systems take an increasingly important role in everyday life, from
traffic light controllers to aircrafts and from telecommunication networks to medical
systems. Many applications are safety-critical and their correctness is of course a
highly desirable property. Embedded digital systems differ from classical computer
systems in that they are reactive and real-time.

A reactive system interacts with an external environment, a physical system like
a pump, an airplane or a railroad crossing. It receives inputs from the environment
via sensors, and it should react through actuators to control the environment, that is
essentially to maintain valid a set of properties. Usually, the execution of the system is
not intended to terminate, and the control objective is to avoid ever reaching some set
of error states (like maintaining a minimal distance between two aircrafts, or closing
the barriers when the train is approaching).

A system is real-time if its correctness relies on the timing of actions and events.
This is obviously the case when a real-time constraint is explicitly specified, e.g. a
request must be responded within two time units. But it is also usual in other applica-
tions like the design of circuits and protocols where the relative delays between events
(gate switch or message transmission) may affect the resulting behaviour.

5



6 CHAPTER 1. INTRODUCTION

The model-based methodology to develop such systems is a formal approach that
can be decomposed in three main steps:

• The specification: a model of the environment under control, expressed in a
formal language with a mathematical definition of its semantics. In addition, a
control objective is provided, for example in the form of a set of bad states to
avoid.

• The design: a model of a controller that describes a control strategy for steering
the environment. Again, the model should be defined in mathematical terms.

• The verification: a procedure that establishes or refutes the correctness of the
composition of the environment and the controller.

The specification is a manual task that is impossible to automate. It requires
ingenuity and creative effort from the engineers and it may be long to obtain. The
process can be eased by the use of design tools such as simulators. The expected
properties of the model can also be verified in the third phase of the methodology.

The design is a task that is most often carried out manually, but there exist tech-
niques to synthesize the controller, often related to game theory. No matter how it is
obtained, the controller must be formally verified: either by a generic proof of correct-
ness of the synthesis procedure, or by a specific proof for the application.

The verification consists in constructing such a proof, in general using automatic
methods. Other approaches such as testing and simulation may be helpful to quickly
detect errors, but they fail in proving the absence of errors by lack of an exhaustive
analysis. By contrast, the techniques of model-checking on which we concentrate in
this thesis aim at formally proving that the system is error free. Model-checking
is difficult because non trivial real-time systems have an infinite number of states, an
unbounded evolution in time and mixed discrete/continuous components. The presence
of concurrency makes the task even harder.

We assume that a model of the environment is given using the formalism of hybrid
automata, a formal language for dynamical systems with both discrete and continuous
components. For the controller, we make a distinction between a model and an im-
plementation. A model is a high-level description, classically in the same language as
for the environment. Here, we choose timed automata, a subclass of hybrid automata.
The model may exhibit non-deterministic choices and it has a mathematical semantics
that is idealized. On the other hand, an implementation is also an abstract model,
but its semantics should reflect much more accurately the behaviour of the physical
realization of the controller. Like for the environment, the adequacy of the abstract
model with regard to the real system cannot be checked formally. It can be justified by
experiments and simulations. We argue that the implementation is not totally deter-
ministic in its execution because the precise timing of a program is necessarily subject
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to imprecisions, and cannot be uniquely predicted. However, the non-determinism
related to the discrete choices is in general resolved in an implementation.

In this thesis, we concentrate on the verification of real-time reactive systems,
described in terms of timed and hybrid automata, with a focus on open questions
related to the analysis of complex semantics:

• For timed automata, we discuss the classical semantics and we show that it is not
suitable for the implementation of controllers. We study a natural semantics that
could be implemented, but we show that its verification is undecidable. Then,
we propose a methodology to synthesize a correct implementation from a model,
based on a new semantics that we show to be decidable.

• For hybrid automata, it is known that they are difficult to analyze, and that de-
cidability is restricted to models having constant dynamics. However, there exist
semi-algorithms (procedures that are sound but not guaranteed to terminate) to
verify hybrid automata, but they are limited to relatively simple dynamics ex-
pressed by linear relations between the derivatives of the variables. We define an
automatic technique to analyze more complex dynamics, where the derivatives
are given as a linear function of the variables, and we show its applicability on a
case study.

In the next two sections, we give more details about the motivations and goals of
the thesis.

1.2 Verification of Robust Semantics for Timed Au-

tomata

As we have sketched above, in the model-based methodology to develop real-time
systems, we have to establish the correctness of a system made up of:

• a hybrid automaton Env that models the environment, with a set Bad of bad
states that are to be avoided.

• a timed automaton Cont that models a control strategy to prevent the environ-
ment to enter Bad.

In that context, the condition of correctness can be informally written as

Reach(JEnvK ‖ JContK) ∩ Bad = ∅ (1.1)

where Reach(JEnvK ‖ JContK) denotes the set of states that are reached when the
controller, embedded in the environment, is executed. Thus the system is correct if
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none of the reachable states is a bad state (a formal definition of this notation is given
in Chapter 2).

When the model of the controller has been proven correct, it would be valuable to
ensure that an implementation Impl of that model can be obtained in a systematic way
in order to ensure the preservation of correctness, that is to ensure that

Reach(JEnvK ‖ JImplK) ∩ Bad = ∅ (1.2)

holds by construction. This is often called program refinement : given a high-level
description P1 of a program, refine that description into another description P2 such
that the “important” properties of P1 are maintained. Usually, P2 is obtained from P1

by reducing nondeterminism. The correctness of P2 can be established using a notion
of simulation (see Section 2.3 for a formal definition). Here, we have to show that the
controller Cont simulates the implementation Impl, which means that Cont can mimic
all the behaviours of Impl. In particular, this would imply that:

Reach(JEnvK ‖ JImplK) ⊆ Reach(JEnvK ‖ JContK) (1.3)

Then, the correctness of the implementation (Equation 1.2) would directly follow from
the correctness of the model (Equation 1.1).

Unfortunately, this is often not possible in the context of real-time embedded con-
trollers for several fundamental and/or technical reasons. First, the notion of time
used in the traditional semantics of timed automata is continuous and defines perfect
clocks (in the sense that their value is a real number, and their dynamics is of the form
ẋ = 1), while implementations can access time only through digital and thus finitely
precise clocks. Second, timed automata react instantaneously to events and time-outs.
This is a convenient way to see reactivity and synchronization at the modeling level,
but since implementations can only react within a given, usually small but not zero,
reaction delay, any control strategy that relies for its correctness on that instantaneity
cannot be implemented by any physical device no matter how fast it is. Third, timed
automata may describe control strategies that are unrealistic, like zeno strategies or
strategies that require the controller to act faster and faster [CHR02]. For those rea-
sons, a naive implementation of a controller may not be correct, or the controller may
not be implementable at all.

The infinite precision and instantaneity characteristics of the traditional semantics
given to timed automata is very closely related to the synchrony hypothesis that is com-
monly adopted in the community of synchronous languages [Hal93, Ber00]. Roughly
speaking, the synchrony hypothesis can be stated as follows:

“The program reacts to inputs of the environment by emitting outputs in-
stantaneously.”

The rationale behind the synchrony hypothesis is that the speed of a digital controller is
usually so high with regard to the speed of the environment that the reaction time of the
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controller can be neglected. This hypothesis greatly simplifies the view of the designer
of an embedded controller: he/she does not have to take into account the performances
of the platform on which the system will be implemented. This is coherent with
the model-based development methodology. But like any hypothesis, the synchrony
hypothesis should be validated not only by informal arguments, if we want to transfer
correctness properties from models to implementations. To do so, we need a new
semantics JContK that realizes Equation 1.3.

Before going further, we discuss the model of time, an essential issue for modelling
real-time systems: either the time domain is discrete like the natural numbers, or the
time domain is dense like the rational or real numbers.

As far as we know, the models in physics use continuous time, except maybe at
the sub-atomic scale. For the actual range of applications of embedded systems, the
model of dense time is thus well suited. At the modelling level, we argue that it is an
interesting notion of time because no assumption has to be made on the granularity
of time which gives the most liberal framework for the design. This is desirable in the
early phases of the development.

On the other hand, at the implementation level, the controller is executed on a
digital hardware, with a discrete (tick-based) clock providing timing information with
finite precision (or granularity). The controller has only access to discrete informations,
essentially in the form of sequences of bits, both for its internal memory and for external
input through its sensors and its clock. However, it is more convenient to keep a
dense model of time because the controller is embedded in a physical environment,
thus a continuous time device (sometimes the environment is even reduced to the
sole model of time). Hence, the discrete (or sampled) behaviour of the controller is
composed with the continuous-time behaviour of the environment, and thus the clocks
of the controller are just observations of the environment’s time which is taken as the
reference. Those observations cannot be claimed to be exact, as they are given by clocks
which are devices that measure and not define time. Therefore, a purely discrete-time
controller would make the unrealistic assumption that the clocks are perfect, and that
the behaviour of the program is deterministic with respect to time. We agree that
in many situations the discrete time model is sufficient, because it is unlikely that an
error occurs because of the violation of this assumption [Sta02, KMTY04]. However,
a tiny probability does not mean impossibility, and it may happen that the slightest
imperfection in clocks leads to totally different behaviours. We illustrate this more
concretely with a simple example in Section 6.5.

After this discussion about time, we formulate two propositions for the semanticsJContK. First, to model the imprecisions of the real system, we could relax the un-
realistic constraint that the implementation has a sampling rate which is fixed and
invariable. Instead, we ask that there exist some bounds on the sampling period. The
controller can poll the inputs and compute new outputs every between α and β unit of
time. This semantics appears as a good candidate for satisfying Equation 1.3. On the
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computational side, we bring the following contribution:

• When α and β are fixed constants, this semantics is equivalent to a finite state
system, and the condition of Equation 1.1 can be decided. However, the practi-
tioner could object that when the constants are small, the model-checking would
face a state explosion. On the other hand, the option to leave α and β as param-
eters, and then to synthesize a granularity such that the system is correct can
be more appealing. Unfortunately, we show in Chapter 3 that this question is
undecidable.

This result leads us to examine another implementable semantics, the Almost
ASAP1 semantics (AASAP-semantics), noted JContKAAsap

∆ , where ∆ is a parameter (see
Section 4.4). This semantics was jointly defined with De Wulf and Raskin in [DDR04].
In this thesis, we concentrate on the computational aspects of the AASAP semantics.
The detailed study of its properties will be part of the PhD thesis of Martin De Wulf.

The AASAP-semantics is a parametric semantics that leaves as a parameter the
reaction time of the controller. This semantics relaxes the synchrony hypothesis in
that it does not impose the controller to react instantaneously when a synchronization
or a control action is enabled, but within ∆ time units. The designer acts as if the
synchrony hypothesis was true, i.e. he/she models the environment and the controller
strategy without referring to the reaction delay. This reaction delay is taken into
account during the verification phase: verifying the AASAP semantics of a controller,
that is deciding whether:

Reach(JEnvK ‖ JContKAAsap
∆ ) ∩ Bad = ∅ (1.4)

is roughly equivalent to check whether the control strategy is robust in the following
sense:

“Is the strategy still correct if it is perturbed a little bit when executed on a
device that has a finite speed and uses finitely precise clocks ?”

To formally establish the implementability of the controller, we need to precisely
define what implementable means. We choose to give a program semantics to real-time
controllers, that intends to subsume (or simulate) any realistic implementation. We
discuss our choice in Section 4.3.

The complete proofs of the formal link between models and implementations in
that framework can be found in [DDR04, DDR05a]. On the computational side, we
obtain the following results:

1ASAP = As soon as possible.
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• Checking Equation 1.4 when ∆ is a fixed rational number is decidable. This
question corresponds to the problem of deciding if a controller can be correctly
implemented on a given hardware, with known characteristics. The proof is
detailed in Chapter 5. It uses an encoding of the AASAP semantics with timed
automata. The result follows then from the decidability of reachability questions
for timed automata. Thus, in practice the problem can be solved with the most
efficient existing model-checkers for timed automata.

• When the hardware is not fixed, the problem is to decide the existence of ∆ >
0 such that Equation 1.4 holds. To solve the problem, we give two symbolic
algorithms that improve the classical approach to parameter synthesis, either in
a forward analysis or in a backward analysis. Those algorithms are correct, but
not guaranteed to always terminate.

• In Chapter 6, we show that the question of existence has strong connections with
robustness questions about timed automata, and that the problem is decidable
when the model of the environment is a timed automaton that is also interpreted
in a robust way, that is with perturbations bounded by ∆. This is not strictly
equivalent to Equation 1.4, but still useful because at the same time we verify
that the controller is implementable and that the model of the environment
is robust, that is insensitive to an arbitrarily small level of noise. Indeed, if
Equation 1.4 was falsified when Env is exposed to the slightest perturbations, we
might conclude that the model of the system is flawed.

1.3 Verification of Affine Hybrid Automata

In the second part of this thesis, we shall be interested in the algorithmic analysis of
complex semantics for hybrid automata, the formalism for modelling the environment.
A hybrid automaton has a finite state structure that corresponds to the modes of
the system, and in each mode, a set of continuous variables are evolving according to
differential equations.

The algorithmic analysis of hybrid systems is theoretically limited by undecidability
results [HKPV98]. The reachability questions that we have formulated in the previous
sections are already undecidable when the dynamics of the environment is given by
rectangular inclusions of the form ẋ ∈ [a, b]. On the practical side, there exists a
reasonably efficient semi-algorithm to compute the set of reachable states [ACH+95],
and when the semi-algorithm terminates, the correctness of the system is easily decided.
However for more complex dynamics like affine dynamics of the form ẋ = A x+B, the
computations are more difficult and only approximate methods are known.

We propose the following contributions:
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• For the algorithmic analysis of affine dynamics hybrid automata, we automat-
ically construct an over-approximation whose dynamics is given by rectangular
inclusions. By over-approximation, we mean an automaton that simulates the
affine dynamics automaton. This way, the approximation is sound for safety
properties: if the correctness of the approximation can be established, we may
directly conclude that the affine automaton is correct. Otherwise, we have to
refine the approximation.

• Refinements are defined as approximations that are closer to the original system.
That notion is precisely defined with the notion of simulation that we have al-
ready evoked in the previous section. We fix a natural measure of the imprecision
of an approximation, and we define an optimization problem that aims at con-
structing the refinement that minimizes the imprecision. We give an algorithm to
solve the problem for two dimensional systems (affine hybrid automata with two
continuous variables). For the general case, we show how to obtain a refinement
that is arbitrarily close to the optimal solution.

• We illustrate the practicability of the method on a benchmark case study. With
a first prototype, we were able to verify quite efficiently a set of case studies.

1.4 Overview

The rest of the thesis is organized as follows.

Chapter 2 Timed and Hybrid Automata. We recall the definitions and properties of
timed transition systems, an abstract formalism to model real-time systems. The
notions of simulations and bisimulations are presented. Then, we review two
concrete formalisms to denote real-time systems, timed and hybrid automata.
For timed automata, we recall the region automaton construction to establish
the decidability of reachability questions. For hybrid automata, the reachabil-
ity questions being undecidable, we give a brief description of the semi-decision
procedures used in practice.

Chapter 3 Parametric Reasoning. First, we review the existing results concerning
parametric reachability questions for timed automata. Then we prove a new un-
decidability result for the class of open timed automata, where equality in timing
constraints is forbidden. This result is of interest because open timed automata
are robust, that is insensitive to arbitrarily small perturbations. Therefore, there
may have been a chance that implementability of open timed automaton could
be decided. Our result reduces that hope.

Chapter 4 Implementability of Timed Automata. We propose a novel approach to
define implementability of timed automata. First, we propose a program seman-
tics for timed automata that intends to be a realistic model of implementation,
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as we take into account the most common sources of uncertainty in physical re-
alization of real-time controllers: the precision of the clock, the reaction times,
and the synchronization delays. The program semantics can be seen as a formal
semantics for a polling procedure that periodically inspects the input sensors and
computes new values for the output. The unique interest of this semantics is to
be clearly implementable.

Second, we present the Almost ASAP semantics for timed automata. We intro-
duce this parametric semantics to reason about the system at a more abstract
level. The Almost ASAP semantics has the important characteristics that faster
is better, a property that does not hold for the program semantics. More crucial
is the link between the two semantics: the Almost ASAP semantics simulates the
program semantics, and thus an implementation of a real-time controller will be
correct by construction in our framework. Therefore, it is worth studying the
verification problems of the next two chapters. The details and proofs of the
properties of the Almost ASAP semantics are out of the scope of this thesis. The
reader is referred to [DDR04, DDR05a].

Chapter 5 Verification of the AASAP Semantics. In this chapter, we first give a proof
that the Almost ASAP semantics can be verified when its parameter is fixed to
a rational constant. The proof is based on a careful study of the urgency in
timed automata, and how to distribute this notion over a network of synchro-
nizing timed automata. Beside the theoretical result, we give semi-algorithms to
synthesize a value of the parameter in the AASAP semantics. Our procedures
iteratively construct a simple necessary condition on the parameter, which be-
comes also a sufficient condition if the procedure terminates. The proof that the
synthesis is algorithmically feasible is postponed to Chapter 6.

Chapter 6 Robustness of Timed Automata. Our goal in this chapter is to prove the
decidability of the implementability problem for timed automata. Roughly, this
problem asks, given a timed automaton A, whether there exists a perturbation
of A (in the guards and/or the clock rates) such that some given error state is
unreachable. This problem has an obvious connection with the synthesis prob-
lem for AASAP semantics, but also with a notion of robustness introduced by
Puri [Pur98]: in a robust analysis of timed automata, Puri computes the states
that are reachable when the automaton is perturbed by an arbitrarily small drift
in the clocks rate. This set may be strictly greater than the classical reach-
able states. We complete these results with a detailed study of both guard and
clock perturbations, which conducts to the decidability of the implementability
problem.

On the other hand, we give a wide overview of the existing results about ro-
bustness of real-time and hybrid systems. We compare the approaches from the
literature with our framework. Finally, we suggest an extension of our results to
timed automata with diagonal constraints.
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Chapter 7 Verification of Affine Hybrid Automata. We show how to systematically
construct and refine rectangular abstractions of systems of linear differential
equations. From a hybrid automaton whose dynamics is given by a system of
affine differential equations, our method computes automatically a sequence of
rectangular hybrid automata that are increasingly precise over-approximations
of the original hybrid automaton. We prove an optimality criterion for succes-
sive refinements. We also show that this method can take into account a safety
property to be verified, refining only relevant parts of the state space. The prac-
ticability of the method is illustrated on a benchmark case study.

Chapter 8 Conclusion.



Chapter 2

Timed and Hybrid Automata

Que dites-vous ? C’est inutile ? Je le sais !
Mais on ne se bat pas dans l’espoir du succès !
Non! non! c’est bien plus beau lorsque c’est inutile !

Edmond Rostand, Cyrano de Bergerac.

2.1 Preliminaries

Sets We denote by R the set of real numbers, by Q the rational numbers, by Z the
integers, and by N the natural numbers (including 0). We use notations such as R≥0

for the positive real numbers and R>0 for the strictly positive real numbers, etc.

The infimum of a nonempty set X ⊆ R is the greatest lower bound of X and is
denoted inf X, with inf X = −∞ when X is unbounded from below. For σ = inf X,
we have ∀x ∈ X : σ ≤ x and ∀σ′ > σ · ∃x ∈ X : x < σ′. We define symmetrically
sup X, the supremum of X.

Norm, distance, neighbourhood For p ∈ N>0, we define the p-norm of a vector
x = (x1, . . . , xn) ∈ Rn by:

‖x‖p = p
√
|x1|p + · · ·+ |xn|p

For p = 2, ‖·‖2 is the euclidean norm. Let ‖x‖∞ = max{|x1|, . . . , |xn|}. We use the
triangle inequality in the following two equivalent forms. For all x, y ∈ Rn, for all
p ∈ N>0 ∪ {∞}, we have:

‖x + y‖p ≤ ‖x‖p + ‖y‖p ‖x− y‖p ≥ ‖x‖p − ‖y‖p

Given p ∈ N>0 ∪ {∞} and two vectors x, y ∈ Rn, the p-distance between x and y
is dp(x, y) = ‖x − y‖p. Given two sets X, Y ⊆ Rn, let dp(X, Y ) = inf{dp(x, y) | x ∈

15
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X ∧ y ∈ Y }. Given a set X ⊆ Rn and η ∈ R≥0, the η-neighbourhood of X is the
set Np(X, η) = {x ∈ Rn | ∃x′ ∈ X : dp(x, x′) ≤ η}. For x ∈ Rn, define the shortcut
Np(x, η) = Np({x}, η) for the ball of radius η centered in x.

The interior of a set X ⊆ Rn is the set int(X) = {x ∈ Rn | ∃η > 0 : N2(x, η) ⊆ X}
The set X is open iff X = int(X). The closure of X is the set (X) = {x ∈ Rn | ∀η >
0 : N2(x, η) ∩ X 6= ∅}. The set X is closed iff X = X. The definition of open and
closed sets is not changed if we use Np(·, ·) instead of N2(·, ·), for any p ∈ N>0 ∪ {∞}.

A set X ⊆ Rn is convex if for all x, y ∈ X, for all λ ∈ R such that 0 ≤ λ ≤ 1, we
have λx + (1− λ)y ∈ X.

Intervals An interval is a nonempty convex subset of the set R of real numbers.
For a bounded interval I, we denote the left (resp. right) end-point of I by lI (resp.
rI). For an interval I, we define size(I) = rI − lI if I is bounded, and size(I) = +∞
otherwise. Given two closed intervals I1 and I2, their convex hull is the closed interval
I3 = I1 ⊔ I2 such that lI3 = min(lI1 , lI2) and rI3 = max(rI1, rI2). For bounded intervals
with left end-point a and right end-point b, we use the notations [a, b] for the closed
interval, ]a, b[ for the open interval, [a, b[ for the left-closed and right-open interval,
and ]a, b] for the left-open and right-closed interval.

2.2 Timed Transition Systems

When the notions presented here are independent of the choice of a particular time
model, we uniformly denote the time domain by T. In the sequel, we use either the
model of continuous time (T = R≥0) or the model of discrete time (T = N). For
time-abstract systems having a qualitative notion of time (either some time elapses or
no time elapses) we use the singleton T = {time}. We introduce this time domain to
deal with timed and untimed systems in the same framework. It is trivial to extend
arithmetical operations for this time domain (the result is always time).

The executions of real-time systems can be represented by a state-transition graph
called timed transition system, which is in general infinite. The vertices of the graph
correspond to the state of the system (including timing informations), and the transi-
tions correspond to a change in either the discrete or the continuous part of the state.
Timed transition systems are an explicit formalism to define the executions of real-time
system, and they cannot in general be effectively constructed because they are infinite.
To specify real-time systems, we use high-level syntactical formalisms like timed and
hybrid automata whose semantics is given in terms of timed transition systems. These
formalisms are concise and, as we will see, very expressive.

Definition 2.1 A TTS (timed transition system) is a tuple T = 〈Q, Q0, Qf , Σ,→〉
where
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• Q is a (possibly infinite) set of states (T is finite iff Q is finite),

• Q0 ⊆ Q is the set of initial states ,

• Qf ⊆ Q is the set of final states (here considered as the bad states),

• Σ is a finite set of labels, including the silent label τ , and such that Σ ∩ T = ∅,

• and → ⊆ Q× (Σ ∪ T)×Q is the set of transitions.

�

We often write q
σ−→ q′ as a shortcut for (q, σ, q′) ∈ →, and we call q

σ−→ q′ a discrete
transition if σ ∈ Σ, a silent transition if σ = τ and a timed transition if σ ∈ T. When
T = {time}, we say that the TTS is time-abstract .

For k ∈ N, a finite trajectory of size k of a TTS T = 〈Q, Q0, Qf , Σ,→〉 is a finite
sequence of the form:

π = (q0, t0) σ1 (q1, t1) σ2 . . . (qk−1, tk−1) σk (qk, tk) such that

• for all 0 ≤ i ≤ k, we have qi ∈ Q and ti ∈ T,

• for all 1 ≤ i ≤ k, qi−1
σi−→ qi and

◦ either σi ∈ Σ and ti = ti−1,

◦ or σi ∈ T and ti = ti−1 + σi.

Notice that only the differences ti − ti−1 are constrained in this definition, and so
replacing each time stamps ti by ti + δ for δ ∈ T yields another trajectory of T . We
write |π| = k for the size (or the number of transitions) of π, and Duration(π) = tk− t0
for the total duration of π.

The i-th state in π is written statei(π) = qi and we denote by first(π) = state0(π)
(resp. last(π) = state|π|(π)) the first (resp. last) state in π. We say that π is a trajectory

from q0 to qk, and we sometimes write π more briefly as q0
σ1−→ q1

σ2−→ . . . qk−1
σk−→ qk.

The sequence of states q0 q1 . . . qk is called a path in T , and the trace of π is the
sequence:

trace(π) = λ1 . . . λk with λi =

{
σi if σi ∈ Σ
time otherwise.

Let σi1 , σi2 , . . . , σin be the labels of π such that σij ∈ Σ \ {τ} and i1 < i2 < · · · <
in. The timed word defined by π is the sequence word(π) = (σi1 , ti1 − t0), (σi2 , ti2 −
t0), . . . , (σin , tin − t0).

We say that π is stutter-free if trace(π) does not contain the silent label τ and
we say that π is in normal form if trace(π) does not contain the symbol time twice
consecutively, that is, for each 1 ≤ i < |π|, either λi 6= time or λi+1 6= time.



18 CHAPTER 2. TIMED AND HYBRID AUTOMATA

The infinite trajectories π∞ of a TTS are defined in a similar way. In this case, we
have |π∞| =∞, Duration(π) = limk→∞ tk − t0 and last(π∞) is undefined.

A TTS T = 〈Q, Q0, Qf , Σ,→〉 is said normalized if (i) for all timed transitions
(q, t, q′) ∈ → and (q′, t′, q′′) ∈ →, we have (q, t + t′, q′′) ∈ →, and (ii) for all timed
transitions (q, t, q′) ∈ →, for all t′, 0 < t′ < t, we have (q, t′, q′′) ∈ → and (q′′, t−t′, q′) ∈
→ for some q′′ ∈ Q. All the TTS we consider in the sequel are normalized.

Given a TTS T = 〈Q, Q0, Qf , Σ,→〉, the untimed version of T is the time-abstract
TTS Untime(T ) = 〈Q, Q0, Qf , Σ,→′〉 where →′ ⊆ Q× (Σ ∪ {time})×Q is defined by:

(q, σ, q′) ∈ →′ iff

{
σ ∈ Σ and (q, σ, q′) ∈ →
or σ = time and (q, t, q′) ∈ → for some t ∈ T

A state q of a TTS T is reachable if there exists a finite trajectory π of T such that
first(π) is an initial state of T and last(π) = q. The set of reachable states of T is noted
Reach(T ). For A ⊆ Q, we also use the notation Reach(T , A) for the set of reachable
states of the TTS 〈Q, A, Qf , Σ,→〉. Dually, a state q of T can reach the final states
if there exists a trajectory π of T with first(π) = q and last(π) is a final state of T .
The set of states of T that can reach the final states is noted Reach−1(T ). Finally, let
Unsafe(T ) = Reach(T ) ∩ Reach−1(T ) be the set of reachable states that can reach the
final states.

Definition 2.2 [Emptiness problem for TTS] A TTS T is empty if and only if
Unsafe(T ) = ∅. Given a TTS T , the emptiness problem for TTSs asks whether T is
empty. �

An equivalent formulation for the emptiness condition of T = 〈Q, Q0, Qf , Σ,→〉 is
Reach(T ) ∩ Qf = ∅. In this form, the emptiness condition is often referred to as a
safety property. It can also be turned into an equivalent so-called reachability property
as follows: T is empty iff Reach(T ) ⊆ Qg where Qg = Q\Qf is the complement of Qf .

We define the classical Pre and Post operator, leading to a more operational defi-
nition of the reachable states.

Given a set of states A ⊆ Q in T , the one-step successors of A is the set:

PostT (A) = {q′ ∈ Q | ∃ q ∈ A, ∃σ ∈ Σ ∪ T : q
σ−→ q′}

Similarly, the set of one-step predecessors of A in T is defined by:

PreT (A) = {q ∈ Q | ∃ q′ ∈ A, ∃σ ∈ Σ ∪ T : q
σ−→ q′}

The reachable states of T can be written as the set Reach(T ) =
⋃

i∈N Posti
T (Q0)

where Post0T (A) = A and recursively Posti
T (A) = PostT (Posti−1

T (A)) for i ≥ 1. Sym-
metrically, we have Reach−1(T ) =

⋃
i∈N Prei

T (Qf ) where Pre0
T (A) = A and recursively

Prei
T (A) = PreT (Prei−1

T (A)) for i ≥ 1.
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2.3 Simulation and Bisimulations

Simulation relations are used to define a notion of refinement [Mil80]. A more abstract
system is refined by a more concrete system if the former can simulate the latter.

Definition 2.3 [Simulation] Given two TTS T1 = 〈Q1, Q1
0, Q

1
f , Σ

1,→1〉 and T2 = 〈Q2,
Q2

0, Q
2
f , Σ

2,→2〉, we write T1 � T2 and say that T1 simulates T2 if Σ1 = Σ2 and there
exists a relation R ⊆ Q1 ×Q2 such that:

1. for all (q1, q2) ∈ R, for each σ ∈ Σ2 ∪T, if q2
σ−→ q′2 then there exists q′1 ∈ Q1 such

that q1
σ−→ q′1 and (q′1, q

′
2) ∈ R,

2. for all q2 ∈ Q2
0, there exists q1 ∈ Q1

0 such that (q1, q2) ∈ R,

3. and for all q2 ∈ Q2
f , for all q1 ∈ Q1, if (q1, q2) ∈ R then q1 ∈ Q1

f .

Such a witness relation R is called a simulation relation for T1 � T2. �

For a relation S ⊆ Q1 × Q2, let the inverse of S be the relation S−1 = {(q2, q1) |
(q1, q2) ∈ S}.

Definition 2.4 [Bisimulation] Two TTS T1 and T2 are bisimilar, noted T1 ≈ T2, if
there exists a simulation relation R for T1 � T2 and a simulation relation S for T2 � T1
such that R = S−1. �

Bisimulation is a stronger notion than mutual simulation in that two bisimilar TTS
are mutually similar, but the converse does not hold.

We define a weaker version of simulation and bisimulation where the silent labels
are hidden for external observations.

Given the TTS T = 〈Q, Q0, Qf , Σ,→〉, we define the stutter-closed relation ։ ⊆
Q × (Σ\{τ} ∪ T) × Q as follows: if σ ∈ Σ\{τ} then q

σ−։ q′ iff there exists a finite
sequence q0, . . . , qk ∈ Q of states such that q = q0, q′ = qk and q0

τ−→ . . .
τ−→ qi

σ−→
qi+1

τ−→ . . .
τ−→ qk; if t ∈ T then q

t−։ q′ iff there exists a finite sequence q0, . . . , q2k ∈ Q
of states and a finite sequence t0, . . . , tk ∈ T of time stamps such that q = q0 and

q0
t0−→ q1

τ−→ q2
t1−→ . . .

τ−→ q2k
tk−→ q′ and t = t0 + · · ·+ tk.

For the definition of weak simulation, we assume that in every sequence of silent
transitions of the form q

τ−→ . . .
τ−→ q′, if q′ is final, then so is q. This ensures that

we cannot ”miss” a final state when we eliminate stuttering. Formally, we make the
hypothesis that all the TTS T = 〈Q, Q0, Qf , Σ,→〉 that we consider are visible: if a

state q 6∈ Qf and q
τ−→ q′, then q′ 6∈ Qf .
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Definition 2.5 [Weak simulation] Given two TTS T1 = 〈Q1, Q1
0, Q

1
f , Σ

1,→1〉 and T2 =
〈Q2, Q2

0, Q
2
f , Σ

2,→2〉, we write T1 �weak T2 and say that T1 weakly simulates T2 if
T ′

1 � T ′
2 where T ′

1 = 〈Q1, Q1
0, Q

1
f , Σ

1\{τ}, ։1〉 and T ′
2 = 〈Q2, Q2

0, Q
2
f , Σ

2\{τ}, ։2〉. A
weak simulation relation for T1 �weak T2 is a simulation relation for T ′

1 � T ′
2 . �

Definition 2.6 [Weak bisimulation] Two TTS T1 and T2 are weakly bisimilar, noted
T1 ≈weak T2, if there exists a weak simulation relation R for T1 �weak T2 and a weak
simulation relation S for T2 �weak T1 such that R = S−1. �

Using the results of [Par81], we have the following proposition.

Proposition 2.7 For two TTS T1 and T2, if T1 � T2 and T1 is empty, then T2 is
empty.

Note that for our purpose of checking emptiness, simulations and bisimulations are
unnecessarily strong notions. Indeed, they can be used to establish more general classes
of properties, like LTL and ∀CTL. However, simulations are useful as they provide a
framework to present emptiness proofs in an inductive way.

Definition 2.8 [Hiding] Let T = 〈Q, Q0, Qf , Σ,→〉 be a TTS, and let Σ′ ⊆ Σ \ {τ}.
The hiding of Σ′ in T is the TTS T [Σ′ := τ ] = 〈Q, Q0, Qf , Σ\Σ′,→′〉 where (q, σ′, q′) ∈
→′ iff there exists (q, σ, q′) ∈ → with either σ ∈ Σ′ and σ′ = τ or σ 6∈ Σ′ and σ′ = σ.

�

2.4 Timed Automata

A timed automaton [AD94] is essentially a finite graph (with locations and edges)
augmented with a set of clocks. Those clocks take values in the time domain T which
can be either discrete (T = N) or continuous1 (T = R≥0). Invariants on locations and
guards on edges are used to temporally constrain the system. The expressiveness and
conciseness of the timed automata depends on the choice of the class of constraints
allowed to define the invariants and the guards. Given a finite set of variables Var and
a class of predicates G, we denote by G(Var) the set of all predicates of the class G
over the variables in Var. In the original model of timed automata, the constraints are
rectangular.

Definition 2.9 [Rectangular predicates] Given a finite set of variables Var, a closed
rectangular predicate over Var is a finite formula ϕc defined by the following grammar
rule:

ϕc ::= ⊥ | ⊤ | x ≤ a | x ≥ a | x = a | ϕc ∧ ϕc

1Other dense timed domains are sometimes considered in the literature, like the rational numbers
Q≥0. Such choice would not modify the results presented.
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where x ∈ Var and a ∈ Q. An open rectangular predicate over Var is a finite formula
ϕo defined by the following grammar rule:

ϕo ::= ⊥ | ⊤ | x > a | x < a | ϕo ∧ ϕo

where x ∈ Var and a ∈ Q.

We denote by Rectc (resp. Recto) the class of closed (resp. open) rectangular
predicates. A rectangular predicate over Var is a formula ϕ defined by the grammar
rule:

ϕ ::= ϕc | ϕo | ϕc ∧ ϕo

where ϕc ∈ Rectc(Var) and ϕo ∈ Recto(Var). We denote by Rect the class of rectangular
predicates. �

Definition 2.10 [Timed automaton] Given a class G of predicates, a timed automaton
over G is a tuple 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 where

• Loc is a finite set of locations representing the discrete states of the automaton;

• Var is a finite set of real-valued variables, called clocks . Their first derivative
with regard to time is equal to 1;

• Init : Loc→ G(Var) is the initial condition. The automaton can start in a location
ℓ with values of its clocks satisfying Init(ℓ);

• Inv : Loc → G(Var) is the invariant condition. The automaton can stay in a
location ℓ as long as the values of its clocks satisfy Inv(ℓ);

• Lab is a finite alphabet of labels (including the silent label τ), corresponding to
discrete events in the automaton;

• Edg ⊆ Loc × Loc × G(Var) × Lab × 2Var is a finite set of edges . An edge
(ℓ, ℓ′, g, σ, R) ∈ Edg represents a jump from location ℓ to location ℓ′ with a guard
g, an event σ and a set R ⊆ Var of variables to be reset;

• Final : Loc → G(Var) is the final condition, corresponding to the error states of
the automaton.

�

An Alur-Dill automaton is a timed automaton over the class Rect. A closed (resp.
open) timed automaton is a timed automaton over the class Rectc (resp. Recto).

The semantics of a timed automaton A is given by a timed transition system JAK.
It can be defined in discrete time (T = N) or in continuous time (T = R≥0). The states
of JAK are pairs (ℓ, v) where ℓ ∈ Loc and v : Var→ T is a valuation over Var. If we fix
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an order for the variables, we identify valuations and tuples in Tn where n = |Var|. We
often write vi for the value v(xi) where xi is the i-th variable in Var, and we also say
that v ∈ Tn. In order to specify the transition relation of JAK, we must define when a
predicate ϕ ∈ G(Var) is satisfied by a valuation v, noted v |=G ϕ We denote by JϕK the
set {v | v |= ϕ} of valuations that satisfy the predicate ϕ. Below, we define |= for the
class of rectangular predicates.

Definition 2.11 Given a valuation v : Var → T and a predicate ϕ ∈ Rect(Var), we
write v |= ϕ and say that v satisfies ϕ if and only if (recursively):

• ϕ ≡ ⊤,

• or ϕ ≡ x ⊲⊳ a for ⊲⊳∈ {<,≤, =,≥, >} and v(x) ⊲⊳ a,

• or ϕ ≡ ϕ1 ∧ ϕ2 and v |= ϕ1 and v |= ϕ2.

�

Addition and subtraction of valuations are defined as for vectors of Tn (by adding
or subtracting their corresponding components). Sometimes, we use expressions such
as v + t, v− t, t−v, etc. where v ∈ Tn and t ∈ T. Those expressions are the valuations
v +~t, v−~t and ~t− v respectively, where ~t ∈ Tn and ~ti = t for 1 ≤ i ≤ n. In particular,
the valuation v + t assigns the value v(x) + t to each variable x ∈ Var. On the other
hand, t · v is a valuation that assigns the value t · v(x) to each variable x ∈ Var.

Finally, given a set R ⊆ Var, a valuation v : Var → T and a constant c ∈ T, we
write v[R := c] for the valuation v′ such that:

v′(x) =

{
c if x ∈ R
v(x) if x ∈ Var\R

We often use the shortcut v[x := c] for v[{x} := c].

Definition 2.12 Given a timed automaton A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 on
a class G of predicates, the semantics of A is induced by the relation |=G. It is the
TTS JAK = 〈Q, Q0, Qf , Σ,→〉 where :

• Q = {(ℓ, v) | ℓ ∈ Loc ∧ v : Var→ T ∧ v |=G Inv(ℓ)};

• Q0 = {(ℓ, v) ∈ Q | v |=G Init(ℓ)};

• Qf = {(ℓ, v) ∈ Q | v |=G Final(ℓ)};

• Σ = Lab;

• The relation → ⊆ Q× (Σ ∪ T)×Q is defined as follows:
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◦ Discrete transitions. For σ ∈ Lab, ((ℓ, v), σ, (ℓ′, v′)) ∈ → iff there exists an
edge (ℓ, ℓ′, g, σ, R) ∈ Edg such that v |=G g and v′ = v[R := 0].

◦ Timed transitions. For each t ∈ T, ((ℓ, v), t, (ℓ′, v′)) ∈ → iff ℓ′ = ℓ, v′ = v+t
and for every t′ ∈ [0, t] : v + t′ |=G Inv(ℓ).

�

The emptiness problem for timed automata is a central question in the field of
real-time systems verification.

Definition 2.13 [Emptiness problem for timed automata] Given a timed automaton
A, the emptiness problem for timed automata asks whether JAK is empty. �

Another classical problem for timed automata is the location reachability problem
where, given a location ℓf of a timed automaton A, it is asked to decide whether there
exists a valuation vf such that (lf , vf ) is reachable in A. This problem is obviously
reducible to emptiness, and the converse also holds since to transform an emptiness
problem into an equivalent problem of location reachability, it suffices to create a new
location ℓerr and to add the edges (ℓ, ℓerr, gℓ, τ, ∅) with gℓ = Final(ℓ) for each location
ℓ of the timed automaton.

Finally, notice that the invariants of Alur-Dill automata are not essential for the
emptiness problem in the following sense: given an Alur-Dill automaton A = 〈Loc, Var,
Init, Inv, Lab, Edg, Final〉, we can construct an Alur-Dill automaton A′ with trivial invari-
ants and such that A is empty if and only if A′ is empty: A′ = 〈Loc, Var, Init′, Inv′, Lab,
Edg′, Final′〉 such that:

• for all ℓ ∈ Loc, Init′(ℓ) ≡ Init(ℓ) ∧ Inv(ℓ), Inv′(ℓ) ≡ ⊤ and Final′(ℓ) ≡ Final(ℓ) ∧
Inv(ℓ), and

• Edg′ = {(ℓ, ℓ′, g′, σ, R) | (ℓ, ℓ′, g, σ, R) ∈ Edg and g′ ≡ g ∧ Inv(ℓ) ∧ Inv(ℓ′)[R := 0]}
where for a rectangular predicate ϕ and a set R ⊆ Var, the predicate ϕ[R := 0]
is obtained by substituting each variable x ∈ R by the constant 0 in ϕ, and
interpreting the expressions 0 ⊲⊳ a for ⊲⊳∈ {<,≤, =,≥, >} and a ∈ Q as expected.

Thus, invariants are useful at the design level to control time elapsing (by contrast
with guards that control the timing of discrete actions) but for the verification of
safety properties (or emptiness), they do not add expressive power. More generally,
for a timed automaton on G, this transformation holds if G is a class of predicates such
that the set JϕK is convex for all formula ϕ ∈ G and G is closed under conjunction.
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2.4.1 The Region Automaton

The emptiness problem has been shown decidable for Alur-Dill automata in [AD94].
The proof constructs the so-called region automaton, a finite time-abstract TTS, and
shows that it is bisimilar to the untimed semantics of the original timed automaton,
that is RA ≈ Untime(JAK) where RA is the region automaton of the timed automaton A.
As we intensively use the region automaton in the sequel, we recall the construction and
the main properties in continuous time (T = R≥0). In discrete time, the construction
is drastically simpler.

The construction of the region automaton assumes that the constants appearing in
the predicates of the timed automaton (guards, invariants, initial and final conditions)
are integers. This is not restrictive since emptiness is preserved when all the constants
of an Alur-Dill automaton A are multiplied by a positive integer c ∈ N>0 (let Ac be
the transformed automaton). More precisely, A is empty if and only if Ac is empty.
To see this, observe that π = (q0, t0) σ1 (q1, t1) σ2 . . . is a trajectory of JAK iff πc =
(q′0, c · t0) σ′

1 (q′1, c · t1) σ′
2 . . . is a trajectory of JAcK where q′i = (ℓi, c · vi) if qi = (ℓi, vi),

σ′
i = c · σi if σi ∈ R≥0 and σ′

i = σi otherwise.

In Definition 2.14, we define an equivalence relation ∼⊆ [Var→ R≥0]×[Var→ R≥0]
between valuations over Var with the following properties:

• If v ∼ w then ∀tv ∈ R≥0, ∃tw ∈ R≥0 : v + tv ∼ w + tw;

• If v ∼ w then for all formulas ϕ ∈ Rect(Var) that appear in guards, invariants,
initial and final conditions of A: v |= ϕ iff w |= ϕ;

• If v ∼ w then ∀R ⊆ Var : v[R := 0] ∼ w[R := 0].

The first condition ensures that two equivalent valuations visit the same equivalence
classes of ∼ as time elapses. Informally, we say that ∼ is time-abstract invariant. The
other two conditions ask that ∼ is invariant for the discrete transitions, that is two
equivalent valuations satisfy exactly the same set of guards, and when some clocks are
reset, the valuations remain equivalent.

For a ∈ R, we write ⌊a⌋ = max{k ∈ Z | k ≤ a} to denote the integral part of a,
and 〈a〉 = a− ⌊a⌋ to denote the fractional part of a.

Definition 2.14 [Region-equivalence] Let A be an Alur-Dill automaton with set of
clocks Var. Let M be the largest constant appearing in the rectangular constraints
(guards, invariants, initial and final conditions) of A. Two clock valuations v, w :
Var→ R≥0 are region-equivalent for A, noted v ∼A w if and only if

1. For all x ∈ Var, if v(x) ≤M or w(x) ≤ M then ⌊v(x)⌋ = ⌊w(x)⌋;

2. For all x, y ∈ Var, if v(x) ≤ M and v(y) ≤ M then 〈v(x)〉 ≤ 〈v(y)〉 iff 〈w(x)〉 ≤
〈w(y)〉;
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3. For all x ∈ Var, if v(x) ≤ M then 〈v(x)〉 = 0 iff 〈w(x)〉 = 0;

A region of A is an equivalence class of ∼A. We write ]v[ for the region containing
v and RA for the set of all regions of A. �

Conditions (1) and (3) ensure that the same set of rectangular predicates of A
are satisfied by two region-equivalent valuations v and w. Condition (2) imposes the
same ordering of the fractional parts of clocks in v and w, so that one can determine
the order in which clocks cross integers as time elapses, and thus which regions are
the time successors of a given region. A corollary of conditions (2)−(3) is that two
region-equivalent valuations v and w such that v(x) ≤ M and v(y) ≤ M also satisfy
the same set of diagonal constraints of the form x− y ≤ a or x− y < a where a ∈ N.

Obviously, the number of regions of A is finite. The number of regions depends
only on the number n of clocks and the largest constant M of the automaton. We
write this number W (M, n) (or simply W when M and n are clear from the context).

Definition 2.15 [Operations on regions] A time successor of a region r is a region r′

such that ∃v ∈ r, ∃t ∈ R≥0 : v + t ∈ r′. Given a predicate ϕ ∈ Rect(Var), we say that
a region r satisfies ϕ (noted r |= ϕ) if ∃v ∈ r : v |= ϕ. Given a set R ⊆ Var, we write
r[R := 0] for the set {v[R := 0] | v ∈ r}. �

In Definition 2.15, if r is a region then the set r[R := 0] is also a region.We are now
ready to define the region automaton.

Definition 2.16 [Region automaton] Given an Alur-Dill automaton A = 〈Loc, Var,
Init, Inv, Lab, Edg, Final〉, the region automaton of A is the finite time-abstract TTS
RA = 〈Q, Q0, Qf , Σ,→〉 where

• Q = {(ℓ, r) | ℓ ∈ Loc ∧ r ∈ RA ∧ r |= Inv(ℓ)};

• Q0 = {(ℓ, r) ∈ Q | r |= Init(ℓ)};

• Qf = {(ℓ, r) ∈ Q | r |= Final(ℓ)};

• Σ = Lab;

• The relation → ⊆ Q× (Σ ∪ {time})×Q is defined as follows:

◦ Discrete transitions. For σ ∈ Lab, ((ℓ, r), σ, (ℓ′, r′)) ∈ → iff there exists an
edge (ℓ, ℓ′, g, σ, R) ∈ Edg such that r |= g and r′ = r[R := 0].

◦ Timed transitions. We have ((ℓ, r), time, (ℓ′, r′)) ∈ → iff ℓ′ = ℓ and r′ is a
time successor of r.

�
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The definition of the region automaton is very similar to the semantics of Alur-Dill
automata (Definition 2.12) and in fact they are tightly coupled in the sense that the two
sets TA = {trace(π)|π is a trajectory of A} and TRA

= {trace(π′)|π′ is a trajectory of
RA} are equal and therefore the emptiness problem for Alur-Dill automata is decidable.

Proposition 2.17 ([AD94]) For the class of Alur-Dill automata, the emptiness prob-
lem is PSpace-Complete.

In practice, the region automaton is not the most efficient way to algorithmically
verify timed automata. The verification tools for timed automata (Uppaal [LPY97],
Kronos [DOTY95], HyTech [HHW95]) use symbolic representations of the state
space and compute the reachable states by iterating the Post operator from the initial
states [HNSY94]. We explain this approach in more details in the next section about
hybrid automata, a generalization of timed automata. We would just mention an effi-
cient data-structure that is specifically used to analyze timed automata: the difference
bound matrices (DBM) [Dil89]. We give more details about them in Chapter 6. For
the special case of closed timed automata, the reachability analysis can be made with
another efficient data-structure: the binary decision diagrams (BDD) [Bry86]. The
idea is that for deciding location reachability in a closed timed automaton, it is suffi-
cient to consider integer-valued clocks [Bey01]. Therefore, both the location and the
clock valuations can be encoded in the same BDD. The tool Rabbit implements this
technique [BLN03].

2.4.2 Composition

The definition of the synchronized product of two timed automata over G requires that
the class G is closed under conjunction: if ϕ1 and ϕ2 are predicates of G, then so is
the predicate ϕ1 ∧ϕ2. All the classes of predicates we consider in the sequel are closed
under conjunction.

Definition 2.18 [Synchronized product of timed automata] The synchronized prod-
uct of two timed automata A1 = 〈Loc1, Var1, Init1, Inv1, Lab1, Edg1, Final1〉 and A2 =
〈Loc2, Var2, Init2, Inv2, Lab2, Edg2, Final2〉 on G is the timed automaton A1 ×A2 = 〈Loc,
Var, Init, Inv, Lab, Edg, Final〉 on G such that:

• Loc = Loc1 × Loc2;

• Var = Var1 ∪ Var2;

• Init(ℓ1, ℓ2) = Init1(ℓ1) ∧ Init2(ℓ2) for each (ℓ1, ℓ2) ∈ Loc;

• Inv(ℓ1, ℓ2) = Inv1(ℓ1) ∧ Inv2(ℓ2) for each (ℓ1, ℓ2) ∈ Loc;
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• Lab = Lab1 ∪ Lab2;

• ((ℓ1, ℓ2), (ℓ
′
1, ℓ

′
2), g, σ, R) ∈ Edg iff one of the following assertions holds:

◦ e1 = (ℓ1, ℓ
′
1, g1, σ, R1) ∈ Edg1, e2 = (ℓ2, ℓ

′
2, g2, σ, R2) ∈ Edg2, σ 6= τ , g =

g1 ∧ g2 and R = R1 ∪R2.

◦ e1 = (ℓ1, ℓ
′
1, g, σ, R) ∈ Edg1, ℓ2 = ℓ′2 and σ = τ or σ 6∈ Lab2.

◦ ℓ1 = ℓ′1, σ = τ or σ 6∈ Lab1, and e2 = (ℓ2, ℓ
′
2, g, σ, R) ∈ Edg2.

• Final(ℓ1, ℓ2) = Final1(ℓ1) ∧ Final2(ℓ2) for each (ℓ1, ℓ2) ∈ Loc;

�

In the product A1 × A2, the timed automata A1 and A2 share common labels
(in Lab1 ∩ Lab2) and common variables (in Var1 ∩ Var2). For technical reasons, we
need both type of synchronizations in the sequel. However, when the synchronized
product is used to design systems in a modular way, we often have no shared variables
(Var1 ∩Var2 = ∅) and the same alphabet (Lab1 = Lab2). In that case, the set of timed
words defined by trajectories of the composition A1×A2 is the intersection of the sets
of timed words defined by trajectories of A1 and A2. Let word(JAK) = {word(π) | π is
a trajectory of JAK}. Then, word(JA1 ×A2K) = word(JA1K) ∩ word(JA2K).
2.5 Hybrid Automata

Hybrid systems combine discrete evolutions (namely, mode changes and variable up-
dates) and continuous evolutions through variables whose dynamics is governed by
differential equations. The formalism of hybrid automata has been introduced to deal
with such systems in a uniform way [Hen00]. The original definition is therefore very
general. In this thesis, we focus on subclasses of particular interest. We have already
presented timed automata, an important class of hybrid automata for which emptiness
is decidable. When continuous variables are subject to rectangular flow constraints,
that is constraints of the form ẋ ∈ [a, b], hybrid automata are called rectangular. For
that subclass of hybrid automata, there exists a reasonably efficient algorithm to com-
pute the flow successor. Based on this algorithm, there exists an iterative method that
computes the exact set of reachable states when it terminates. This semi-algorithm can
be used to establish or refute safety properties. On the other hand, if the evolution of
the continuous variables is subject to more complicated flow constraints, for example
affine dynamics like ẋ = 3x − y, computing the flow successor is much more difficult
and only approximate methods are known. We present in Chapter 7 a new approach
to verify safety properties based on increasingly precise rectangular approximations of
affine dynamics.
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Predicates Let X = {x1, . . . , xn} be a finite set of variables. Given a valuation
v : X → R and Y ⊆ X, define v|Y : Y → R by v|Y (x) = v(x) for every x ∈ Y .

Definition 2.19 [Linear term] A linear term over a finite set of variables X is an
expression of the form y ≡ a0 +

∑
xi∈X aixi where ai ∈ Q (0 ≤ i ≤ n) are ra-

tional constants. Given a valuation v over X, we write JyKv for the real number
a0 +

∑
xi∈X aiv(xi). We denote by LTerm(X) the set of all linear terms over X. �

Definition 2.20 [Linear predicate] A linear predicate over X is a finite formula ϕ
defined by the following grammar rule:

ϕ ::= y ⊲⊳ 0 | ϕ ∧ ϕ

where y ∈ LTerm(X) and ⊲⊳∈ {<,≤, =, >,≥}. The linear predicate is closed if ⊲⊳∈
{≤, =,≥}.

We denote by Lin the class of linear predicates and by Linc the class of closed linear
predicates. �

Definition 2.21 Given a valuation v : X → R and a predicate ϕ ∈ Lin(Var), we write
v |= ϕ and say that v satisfies ϕ if and only if (recursively):

• ϕ ≡ y ⊲⊳ 0 and JyKv ⊲⊳ 0,

• or ϕ ≡ ϕ1 ∧ ϕ2 and v |= ϕ1 and v |= ϕ2.

�

A convex polyhedron is a set JpK = {v | v |= p} defined by a linear predicate p, and
a polytope is a convex polyhedron that is both closed and bounded.

An affine dynamics predicate over X is a formula of the form
∧

x∈X ẋ = tx where
tx ∈ LTerm(X) (x ∈ X) are linear terms over X and ẋ represents the first derivative
of x. Let Ẋ = {ẋ | x ∈ X}. We denote by Affine(X, Ẋ) the set of all affine dynamics
predicates over X. As usual, for an affine dynamics predicate p, we write JpK for the
set of all valuations v ∈ [X ∪ Ẋ → R] satisfying p.

We define three types of hybrid automata, with either affine, linear or rectangular
dynamics [ACH+95, HKPV98].

Definition 2.22 [Hybrid automaton] A hybrid automaton H is a tuple 〈Loc, Lab, Edg,
X, Init, Inv, Flow, Jump, Final〉 where:

• Loc = {ℓ1, . . . , ℓm} is a finite set of locations ;
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ℓ1

ON1∧OFF2

I(0, 100)

ℓ0

OFF1∧ OFF2

I(80, 100)

ℓ2

OFF1∧ ON2

I(0, 100)

ON1 ≡ ẋ1 = h1 − a1x1 + b1x2

OFF1 ≡ ẋ1 = −a1x1 + b1x2

I(a, b) ≡ a ≤ x1 ≤ b ∧ a ≤ x2 ≤ b

ON2 ≡ ẋ2 = h2 − a2x2 + b2x1

OFF2 ≡ ẋ2 = −a2x2 + b2x1

x1 = 0

∧x2 = 50

turnoff1

x1 = 100

turnon2

x2 = 80

toggle

x1 = 100 ∧ x2 ≤ 80 ∨ x2 = 0 ∧ x1 ≥ 20

turnon1

x1 = 80

turnoff2

x2 = 100

x2 = 100 ∧ x1 ≤ 80 ∨ x1 = 0 ∧ x2 ≥ 20

toggle

Figure 2.1: A shared gas-burner.

• Lab is a finite set of labels , including the silent the silent label τ ;

• Edg ⊆ Loc× Lab× Loc is a finite set of edges ;

• X = {x1, . . . , xn} is a finite set of variables;

• Init : Loc→ Lin(X) gives the initial condition Init(ℓ) of location ℓ. The automaton
can start in ℓ with an initial valuation v lying in JInit(ℓ)K;
• Inv : Loc→ Lin(X) gives the invariant condition Inv(ℓ) of location ℓ. We require

that JInv(ℓ)K is bounded for every ℓ ∈ Loc. The automaton can stay in ℓ as long
as the values of its variables lie in JInv(ℓ)K;
• Flow governs the evolution of the variables in each location:

◦ either Flow : Loc→ Affine(X, Ẋ) and H is called an affine automaton,

◦ or Flow : Loc→ Linc(Ẋ) and H is called a linear automaton;

◦ or Flow : Loc→ Rectc(Ẋ) and H is called a rectangular automaton;

We assume that JFlow(ℓ)K 6= ∅ for every ℓ ∈ Loc.

• Jump : Edg → Lin(X ∪ X ′) with X ′ = {x′
1, . . . , x

′
n} gives the jump condition

Jump(e) of edge e. The variables in X ′ refer to the updated values of the variables
after the edge has been traversed.
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• Final : Loc → Lin(X) gives the final condition Final(ℓ) of location ℓ. In general,
final conditions specify the unsafe states of the system.

�

Example Figure 2.1 represents an affine automaton modeling a single gas-burner
that is shared for heating alternatively two water tanks. It has three locations ℓ0, ℓ1, ℓ2

and two variables x1 and x2, the temperature in the two tanks. The gas-burner can be
either switched off (in ℓ0) or turned on heating one of the two tanks (in ℓ1 or ℓ2). The
dynamics in each location is given by a combination of the predicates ONi and OFFi

(i = 1, 2) where the constants ai model the heat exchange rate of the tank i with the
room in which the tanks are located, bi model the heat exchange rate between the two
tanks and hi depends on the power of the gas-burner. On every edge of the automaton,
we have omitted the condition x′

1 = x1 ∧ x′
2 = x2 also written as stable(x1, x2) that

asks that the values of the variables are maintained when the edge is traversed. In the
sequel, we fix the constants h1 = h2 = 2, a1 = a2 = 0.01 and b1 = b2 = 0.005.

Definition 2.23 [Semantics of hybrid automata] The semantics of an hybrid automa-
ton H = 〈Loc, Lab, Edg, X, Init, Inv, Flow, Jump, Final〉 is the TTS JHK = 〈S, S0, Sf , Σ,
→〉 where S = Loc×Rn is the state space, S0 = {(ℓ, v) ∈ S | v ∈ JInit(ℓ)K} is the initial
space, Sf = {(ℓ, v) ∈ S | v ∈ JFinal(ℓ)K} is the final space, Σ = Lab and → contains all
the tuples ((ℓ, v), σ, (ℓ′, v′)) such that:

• either there exists e = (ℓ, σ, ℓ′) ∈ Edg such that (v, v′) ∈ JJump(e)K,
• or ℓ = ℓ′, σ = δ ∈ R≥0 and there exists a continuously differentiable function

f : [0, δ]→ JInv(ℓ)K such that f(0) = v, f(δ) = v′ and for all t ∈ [0, δ]:

◦ either H is affine and (f(t), ḟ(t)) ∈ JFlow(ℓ)K,
◦ or H is linear or rectangular and ḟ(t) ∈ JFlow(ℓ)K.

Such a function f is called a witness for the transition ((ℓ, v), δ, (ℓ′, v′)).

�

2.5.1 Algorithmic Verification

As for timed automata, we define an emptiness problem for hybrid automata.

Definition 2.24 [Emptiness problem for hybrid automata] Given an hybrid automa-
ton H , the emptiness problem for hybrid automata asks whether JHK is empty. �
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Unfortunately, the emptiness problem is undecidable already for rectangular au-
tomata.

Proposition 2.25 ([HKPV98]) The emptiness problem is undecidable for both affine,
linear and rectangular automata.

We have already mentioned that emptiness is decidable for timed automata. A
more detailed study of the boundary between decidability and undecidability is given
in [HKPV98]. In particular, a decidability result is known for initialized rectangular
automata. An hybrid automaton is initialized if for every edge e = (ℓ, σ, ℓ′) and for
every variable x, if we have {v(ẋ) | v ∈ JFlow(ℓ)K} 6= {v(ẋ) | v ∈ JFlow(ℓ′)K} then the
set updatee = {w(x′) | (v, w) ∈ JJump(e)K} does not depend on v. In words, whenever
the flow condition changes for a variable by a discrete transition e, the variable is
re-initialized to a new value in updatee that is independent of the ancient value.

Despite the undecidability of the general case, the emptiness problem has been at-
tacked algorithmically: many of the existing tools (a.o. HyTech [HHW95], d/dt [ADMB00],
PHAVer [Fre05]) use a symbolic analysis of the hybrid automaton with a forward
and/or backward approach: starting from the initial (resp. unsafe) states, iterate the
operator PostJHK (resp. PreJHK) until a fixed point is reached and then check emptiness
of the intersection with the unsafe (resp. initial) states. By Proposition 2.25, those
procedures are not guaranteed to terminate in general.

Remark The first versions of PHAVer that we have used do not implement the
backward analysis. Nevertheless, for a rectangular automaton H it is possible to define
the reverse automaton −H such that PreJHK = PostJ−HK, so that Reach−1JHK = ReachJ−HK.
Roughly, the construction consists in reversing the flow dynamics (an interval [a, b] is
replaced by the interval [−b,−a]) and the jump conditions (by permuting primed and
unprimed variables). The other components are kept unchanged except the initial and
unsafe sets which are swapped [HKPV98].

We briefly outline the principles of the algorithmic analysis of linear automata.
Since the semantics of linear automata is infinite, the computation of PostJHK is done
symbolically, with a symbolic representation of sets of states known as the double
description for polyhedrons. A non-empty polyhedron P ⊆ Rn is represented by a pair
(A, B) where A is a m × n matrix and B is a m × 1 vector with rational coefficients
where:

P =
{
x ∈ Rn | AxT ≥ B

}

The pair (A, B) defines a systems of inequalities. We restrict this short presentation
to topologically closed polyhedrons, defined by loose inequalities. Extension to strict
inequalities is a technical issue discussed for example in [HPR94].

Operations such as inclusion tests and time successors are not easily handled when
polyhedrons are represented by inequalities. Therefore, another representation has
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been introduced: a closed polyhedron P ⊆ Rn can be represented by a pair (V, R),
called the generators of P , where V ⊆ Rn is a finite set of vertices and R ⊆ Rn is a
finite set of rays, with:

P =





∑

vi∈V

λi · vi +
∑

rj∈R

µj · rj | λi ≥ 0, µj ≥ 0,
∑

i

λi = 1





Pair of rays ri, rj such that ri = −rj are called lines and are often stored separately in
implementations. The representation is also extended with closure points to deal with
non-closed polyhedrons.

There exist algorithms for transforming a representation into the other, namely the
Fourier-Motzkin procedure (or quantifier elimination) for computing the predicates
representation from the generators [DE73, FR75], and the Chernikova’s algorithm for
computing the generators from a set of predicates [Che68].

We can now define the following operations. The time successors of a polyhedron P
under flow dynamics given by Q 6= ∅ is the set:

PրQ = {p + t · q | p ∈ P, q ∈ Q, t ∈ R≥0}

If (V, R) and (V ′, R′) are the generators of P and Q respectively, then a set of
generators for PրQ is (V, R ∪ V ′ ∪ R′). Notice that if Q is a closed polyhedron, then
PրQ is a polyhedron, but this does not hold in general for non-closed polyhedrons Q.

The discrete successors of a polyhedron P by an edge e = (ℓ, σ, ℓ′) of a hybrid
automaton H is the set:

poste(P ) = {v′ | ∃v ∈ P : (v, v′) ∈ JJump(e)K ∧ v′ ∈ JInv(ℓ′)K}
This set is easily computed (intersection and existential quantification are straightfor-
ward with formula representation).

The inclusion test P ⊆ Q for a polyhedron P with generators (V, R) and a poly-
hedron Q = {x | Ax ≥ B} is equivalent to check that Av ≥ B for each v ∈ V and
Ar ≥ 0 for each r ∈ R. Finally, the emptiness test P = ∅ is equivalent to check that
V = ∅.

Note that apart from the time successors, all the operations can be performed on
the formula representation using quantifier elimination.

We can now sketch the semi-algorithm (shown as Algorithm 1) used to analyze
linear hybrid systems. The states of the linear automaton H are represented by finite
sets of pairs (ℓ, P ) where ℓ ∈ Loc and P is a polyhedron (stored using both the formula
representation and the generators). The set of states corresponding to such a set R isJRK = {(ℓ, v) | ∃(ℓ, P ) ∈ R : v ∈ P}. If the linear automaton H is empty, the algorithm
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computes the reachable states in variable R by iterating Post, without guarantee of
termination. If H is non empty however, the procedure will eventually stop when a
non empty intersection of R with the final states is detected.

Algorithm 1: Verification of linear hybrid systems: the Verify semi-algorithm.

Data : A linear automaton H = 〈Loc, Lab, Edg, X, Init, Inv, Flow, Jump, Final〉.
Result : If H is empty then Safe else Unsafe.

begin
Bad← {(ℓ, JFinal(ℓ)K) | ℓ ∈ Loc} ;
R← {(ℓ, JInit(ℓ)K) | ℓ ∈ Loc} ;
Rold ← ∅ ;
while JRK 6⊆ JRoldK do

Rold ← R ;
R← {(ℓ, PրJFlow(ℓ)K), (ℓ′, poste(P )) | (ℓ, P ) ∈ R ∧ e = (ℓ, σ, ℓ′) ∈ Edg}
;
if JRK ∩ JBadK 6= ∅ then return Unsafe;

return Safe ;

end

A similar semi-algorithm implements the backward approach (by iterating Pre).
Other approaches are possible such as mixed forward-backward where the forward and
backward algorithms are executed in an interleaved fashion. All those variations are
semi-algorithms since the problem is undecidable.

2.6 Conclusion

In this chapter, we have presented the timed and hybrid automata, the two main
formalisms we study in this thesis. The central verification question about those for-
malisms is expressed by the emptiness problem, which is used to define reachability
and safety properties.

This problem is decidable for timed automata (with the region automaton con-
struction), but undecidable for the more general hybrid automata. However, semi-
algorithmic verification of hybrid systems is possible, but without guarantee of termi-
nation.

In this chapter we have given an overview of the techniques that we are going to
apply further:

• Simulations and bisimulations, a powerful tool to infer emptiness of a concrete
systems from an emptiness proof of an abstract system;
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• The region construction for timed automata, the basis for existing decidability
results and further developments in this thesis;

• The semi-decision procedures for hybrid systems, that can also be applied for
parametric verification of timed automata.



Chapter 3

Parametric Reasoning

– Mais, Monsieur Fogg, ce laps de quatre-vingts jours n’est calculé que comme
un minimum de temps !

– Un minimum bien employé suffit à tout.

– Mais pour ne pas le dépasser, il faut sauter mathématiquement des railways
dans les paquebots, et des paquebots dans les chemins de fer !

– Je sauterai mathématiquement.

Jules Verne, Le tour du monde en 80 jours.

3.1 Introduction

In the model-based development methodology for real-time systems, we have to verify
that the model (the composition of the environment and the controller) satisfies the
control objective (here specified as a set of bad states of the environment to avoid). To
do so, we can use the techniques that we have presented in Chapter 2 for timed and
hybrid automata.

Our goal is also to ensure that the controller is implementable on a digital hardware.
This means that we want to guarantee that the physical realization of the controller
satisfies the control objective. However, to simplify the design process, the implemen-
tation details are often neglected or left as parameters in the model. Typically, for
controllers that observe the environment at regularly spaced time instants, the sam-
pling rate is not fixed a priori. In the verification phase, it is then asked to find a
sampling rate such that the environment is prevented to enter the bad states.

More generally, the possibility to specify parametric timing constraints allows to
design systems independently of a particular implementation. For example, the speed
of the hardware or the time transmission in a communication protocol could be left
as parameters in the early phases of the design. Then, when using the model for a

35
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concrete application, the parameters are instantiated with a value satisfying a condition
of correctness. However, it is well known that the problem of determining the existence
of parameter values such that a parametric timed automaton satisfies a safety property
is undecidable [AHV93, CHR02]. So the construction of a constraint that defines all
the correct parameter values is often impossible.

The classical proofs of that result use the expressiveness of equality in timed au-
tomata to encode Turing machine’s computations. The hope has then risen that de-
cidability could be established for more robust models like open timed automata, that
avoid equality constraints. In that case, we could specify that the sampling rate lies
in an interval ]α, β[ with parametric bounds, and we would ask if there exist rational
numbers α and β such that the bad states of the environment are avoided. A solution
to that problem would give a realistic relaxed sampling semantics that could be im-
plemented. Unfortunately, we shall show that this question cannot be answered and
that parametric timed automata are thus “robustly” undecidable, as it is the case for
classical timed systems [HR00].

In this chapter, we define the model of parametric timed automata in Section 3.2
and we review the known decidability and undecidability results for the reachability
problem in parametric timed automata in Section 3.3. Then, we present a new proof
of undecidability in continuous time for open timed automata that avoids equalities
in clock constraints in Section 3.4. Therefore, this new result shows that parametric
timed automata are quite robust as their ability to specify punctual events (through
equality) is not the deep cause of their undecidability.

3.2 Parametric timed automata

In parametric timed automata (PTA for short), constants in guards and invariants can
be replaced by parameters representing unfixed constants.

Definition 3.1 [Parametric rectangular predicates] Given a set Var of clocks and a
set P of parameters, a parametric rectangular predicate over Var with parameters P is
a finite formula ϕ defined by the following grammar rule:

ϕ ::= ⊥ | ⊤ | x ⊲⊳ a | ϕ ∧ ϕ

where x ∈ Var, a ∈ N ∪ P and ⊲⊳∈ {<,≤, =,≥, >}. We denote by PRectP the class of
parametric rectangular predicates with parameters P. �

Given a valuation v : Var→ T, the truth value of a parametric predicate is param-
eterized by a valuation for the parameters. We assume the the parameters take their
value in the set T. This corresponds to the interesting problems studied in the litera-
ture. For continuous time (T = R≥0), all the results presented hold if the parameters
are valued in Q≥0.
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Definition 3.2 Given a parameter valuation κ : P → T, the relation |=κ is defined
as follows. For a valuation v : Var → T and a parametric rectangular predicate
ϕ ∈ PRectP, we have v |=κ ϕ if and only if (recursively):

• ϕ ≡ ⊤,

• or ϕ ≡ x ⊲⊳ a for ⊲⊳∈ {<,≤, =,≥, >} and

◦ either a ∈ N and v(x) ⊲⊳ a,

◦ or a ∈ P and v(x) ⊲⊳ κ(a);

• or ϕ ≡ ϕ1 ∧ ϕ2 and v |=κ ϕ1 and v |=κ ϕ2.

We denote by JϕKκ the set {v | v |=κ ϕ}. �

Definition 3.3 [PTA - Parametric Timed Automata] A parametric timed automaton
is a pair 〈A, P〉 where P is a finite set of parameters and A is a timed automaton on
PRectP. �

In the framework of hybrid automata, a parameter α can be seen as a variable
that is not constrained by the predicate Init, that is never modified by any edge e (for
any (v, v′) ∈ JJump(e)K we have v′(α) = v(α)) and whose first derivative is 0 in every
location ℓ (the constraint α̇ = 0 appears in Flow(ℓ)).

Definition 3.4 Given a parameter valuation κ : P → T, the semantics of a PTA
〈A, P〉 is the semantics of A induced by the relation |=κ, and is denoted JAKκ. �

Given a PTA A and a location ℓf , the set Γℓf
(A) = {κ | (ℓf , vf) ∈ Reach(JAKκ)

for some valuation vf} contains all the parameter valuations such that ℓf is reachable
in A.

Definition 3.5 Given a PTA 〈A, P〉 and a location ℓf of A, the parametric reachability
problem asks whether Γℓf

(A) is empty. �

The more general synthesis problem asks to compute a symbolic representation of
the set Γℓf

(A), like a set of algebraic constraints. This symbolic representation should
support boolean operations, projections and checking emptiness.
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T
Clocks compared Other

Parameters
to parameters clocks

N 1 any any
√

[AHV93]
R 1 0 any

√
[AHV93, Mil00]

N or R 3 0 6 × [AHV93]
R 3 0 1 × [Mil00]
R 1 3 1 × [Mil00]

Table 3.1: Existing decidability (
√

) and undecidability (×) results for PTA.

3.3 State of the Art

In Table 3.1, we give a summary of the existing results concerning the decidability of
the parametric reachability problem, depending on the time domain and the number
of clocks and parameters.

In [AHV93], the parametric reachability problem in discrete time is shown to be
decidable for the class of PTA with an arbitrary number of clocks, but only one clock
compared to parameters. The proof is in two steps. First they eliminate the non
parametrically constrained clocks, and then they construct a formula of the additive
theory of reals defining Γℓf

(A). Decidability of testing emptiness of Γℓf
(A) follows.

In continuous time, decidability is established only for PTA with only one clock,
and the problem is NP-complete in this case [AHV93, Mil00]. However, for PTA with
four clocks, the parametric reachability problem is undecidable even if only one clock is
parametrically constrained [Mil00]. Finally, as stated by Theorem 3.6, the parametric
reachability problem is undecidable in both discrete and continuous time for PTA with
as few as three clocks and six parameters [AHV93].

Theorem 3.6 ([AHV93]) The parametric reachability problem is undecidable in con-
tinuous time for general PTA.

The proof is by reduction of the reachability problem for 2-counters machine which
is known to be undecidable [Min67].

Definition 3.7 A 2-counters machine is a tuple 〈Q, q0, qm, Instr〉 where

• Q = {q0, . . . , qm} is a finite set of machine states ;

• q0 is the initial state;

• qm is the final state;

• Instr : Q→ I where I is the set of all instructions of the form:
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◦ (increment) Ck = Ck + 1 goto qi;

◦ (decrement) Ck = Ck − 1 goto qi;

◦ (zero-testing) if Ck = 0 then goto qi else goto qj ;

where k ∈ {1, 2} and qi, qj ∈ Q are machine states.
�

The decrement is not allowed if the counter value is 0. We may assume that a
zero-testing is done before every decrement.

A configuration of a 2-counters machine M = 〈Q, q0, qm, Instr〉 is a triple (q, c1, c2)
where q ∈ Q is a state of M and c1, c2 ∈ N are the values of the two counters C1 and
C2. We write ConfM = Q× N× N for the set of configurations of M .

Definition 3.8 An execution of a 2-counters machine M is an infinite sequence π =
π0π1 . . . of configurations πi ∈ ConfM such that π0 = (q0, 0, 0) and for all i ≥ 0, if
πi = (q, c1, c2) and πi+1 = (q′, c′1, c

′
2) then

• either Instr(q) ≡ Ck = Ck + 1 goto q′ and c′k = ck + 1 and c′3−k = c3−k,

• or Instr(q) ≡ Ck = Ck − 1 goto q′ and ck 6= 0, c′k = ck − 1 and c′3−k = c3−k,

• or Instr(q) ≡ if Ck = 0 then goto q′ else goto q′′ and c′k = ck = 0 and
c′3−k = c3−k,

• or Instr(q) ≡ if Ck = 0 then goto q′′ else goto q′ and c′k = ck 6= 0 and
c′3−k = c3−k.

�

Definition 3.9 Given a 2-counters machine M = 〈Q, q0, qm, Instr〉, the reachability
problem is to decide if M has an execution containing a configuration (qm, c1, c2) for
some values c1 and c2. �

Proposition 3.10 ([Min67]) The reachability problem for 2-counters machines is
undecidable.

The reduction presented in [AHV93] uses three clocks and six parameters to encode
the value of the two counters, and the instructions of the 2-counters machine are
translated into operations on clocks.

In [Mil00], an original proof is presented for continuous time. It works for PTA
with three clocks and one parameter. The idea is to use a new undecidability result
for irrational timed automata where constants can be irrational instead of integers.
Once again, this result is proven by reduction of reachability problem for 2-counters
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machines. Then, it is shown that the reduction is still applicable if the irrational con-
stants are replaced by a parameter (since a rational parameter can be chosen arbitrarily
close to an irrational). Refer to [Mil00] for details.

In the field of parametric real-time verification, there are several works where the pa-
rameters are introduced in real-time logics like TCTL [Wan95, WH97, ET99, AETP99,
BDR03] or simultaneously in the model and in the logic [BR03]. The study of real-time
logics is out of the scope of this thesis.

3.4 Robust Undecidability

In both undecidability proofs of the previous section (Theorem 3.6), the fact that
PTA allow to define strong constraints of the form ’x = α’ where α is a parameter
is essential for simulating 2-counters machine. It could be argued that perhaps the
parametric decision problem is undecidable simply because equality is too expressive.
However, we now show that a 2-counters machine can be simulated without using
equality. Our reduction technique is inspired by the widget construction presented
in [CHR02].

A PTA 〈A, P〉 is open if all the predicates (guards, invariants, initial and final
conditions) of A are generated by the grammar:

ϕ ::= x < c | x > c | ϕ ∧ ϕ

where x ∈ VarA and c ∈ N ∪ P.

Theorem 3.11 The parametric reachability problem is undecidable in continuous time
for open PTA (with at least 5 clocks, 2 parameters and 2 of the clocks compared with
parameters).

Proof. Given a 2-counters machine M = 〈Q, q0, qm, Instr〉, we construct an open PTA
〈AM , {α, β}〉 with five clocks and two parameters. Initially, all the clocks are equal
to zero. The states q0, . . . , qm ∈ Q of the 2-counters machine are encoded by the
locations ℓ0, . . . , ℓm of AM respectively. The construction is such that the location ℓm

is reachable for some valuation of the parameters if and only if M reaches the state
qm. The value of each counter Ck is encoded by two clocks xk and yk of the timed
automaton, and we use an additional clock t to generate pseudo-periodical ticks : the
guard t > α appears on every edge, and the invariant t < β appears on every location
(except for the automaton of Figure 3.2 that we use in an initialization step). Also,
we reset t on every edge so that a new tick occurs every between α and β time units
with α < β (α and β are the parameters and typically their value is intended to be
much less than 1).

After i such ticks, a clock x (initially 0) has a value in the interval Ii =]i · α, i · β[.
Now, assume that for some n ∈ N \ {0} (see also Figure 3.1):
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0 1

I2 Ii In−1I1 . . .. . . In

Figure 3.1: Intervals of the form Ii =]i · α, i · β[ in which the clocks x and y are lying.

(A1) the intervals Ii and Ii+1 are disjoint for each 0 ≤ i < n;

(A2) In−1 ⊂ [0, 1] and In ⊂ [1, +∞[ .

Then, if we reset the clock x when x ∈ In, that is n ticks after the last reset, we can
simulate a modulo-n counter. Now, we use the difference between two such counters to
maintain the value of the machine counters as time elapses. Given a maximal constant
n, we define the value c of a counter encoded with clocks x and y as follows:

if x ∈ Ii and y ∈ Ij then c = val(i, j) =

{
i− j if i ≥ j
n + i− j if i < j

The assumption (A1) guarantees the uniqueness of i such that x ∈ Ii (and similarly
for j). It is easy to establish the following invariance property for this encoding:

∀0 ≤ i < n, ∀0 ≤ j < n : val(i + 1 mod n, j + 1 mod n) = val(i, j) (3.1)

Note that the assumption (A1) is equivalent to ask that In−1 and In are disjoint,
which is implied by (A2). On the other hand, (A2) is equivalent to the following
condition on the parameters:

(n− 1)β < 1 < n · α

We check this condition with the initialization widget Ainit of Figure 3.2 whose
location ℓ0 (corresponding to the machine state q0) is reachable if and only if there
exists n ∈ N \ {0} such that (n − 1)β < 1 < n · α. In fact n is the number of times
the location a0 is visited before reaching ℓ0, thus the loop a0, a1 is taken n− 1 times.
Observe that the clock x1 is always reset when x1 < α, so that when the edge (a2, ℓ0)
is taken, we have t < n · α and t > 1 which implies 1 < n · α. On the other hand, the
condition (n− 1)β < 1 is trivially satisfied for n = 1. For n > 1, since y1 is reset when
y1 > β, we have t > (n − 1)β in the location a0 when the edge to a2 is taken with
t < 1. This entails (n− 1)β < 1.

With this setting, the maximal value of the two counters is n − 1 = ⌊ 1
α
⌋ = ⌊ 1

β
⌋.

Thus, with a lower value for α we can encode larger values of the counters. Since
parameters are valued in R≥0, this is sufficient to guarantee a correct simulation of
the 2-counters machine, if its counters remain bounded. If a counter overflow occurs
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a0 a1

a2 ℓ0

t < β

x1 < α

x1 := 0

y1 > β

y1 := 0
t < 1

x1 < α ∧ t > 1

x1, y1, x2, y2, t := 0

Figure 3.2: Ainit

in the simulation of M , a special location is reached in AM where it is impossible to
reach ℓm. In summary,

• if M reaches qm, then the values of its counters remain bounded, and so by
choosing sufficiently small values for the parameters, AM will be able to simulate
M and thus to reach ℓm.

• On the other hand, if M does not reach qm, then either the counters are un-
bounded and AM falls in overflow whatever the choice of the value of the pa-
rameters, or AM can mimic the execution of M forever (as before, by choosing
sufficiently small values for the parameters), yet cannot reach ℓm since M does
not reach qm.

We present the widgets that we use to construct the timed automaton AM . In all
the subsequent figures, the invariant t < β on each location, the guard t > α and the
reset t := 0 on every edge are not depicted for the sake of clarity.

First, consider the idling automaton Aidle
k of Figure 3.4. This automaton maintains

the value of the counter Ck by resetting xk and yk whenever they exceed 1. This widget
is used to preserve the value of a counter while executing an instruction involving the
other counter. The correctness of Aidle

k relies on Equation (3.1).

Now, we show how to execute the three types of instruction of M with AM .

Increment An instruction of the form Instr(qi) ≡ Ck = Ck + 1 goto qj is trans-
lated into the synchronized product A+

k × Aidle
3−k where A+

k is depicted in Figure 3.5.
It is assumed that all their edges have the same label (not depicted) which ensures
synchronizations of the two automata.
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0 1

1

1

1

(ℓi)

(ℓ′i)

(ℓ′′i )

(ℓj)

y1

x2 y1 y2

y2 x1

C1 = 3, C2 = 5

C1 = 3, C2 = 5

C1 = 3, C2 = 5

C1 = 4, C2 = 5

x1

y1

x2

y2 x1 x2

y2 x1x2, y1

2 ticks

3 ticks

1 tick

I2 I4 I6I1 I3 I5 I7

Figure 3.3: Incrementing the counter C1.

We informally explain the structure of A+
k . Remember that each edge is a tick.

For the example, we have n = 7 and we increment C1 (that is k = 1) starting from a
configuration (qi, C1 = 3, C2 = 5) encoded by x1 ∈ I5, y1 ∈ I2, x2 ∈ I1 and y2 ∈ I3 as
on Figure 3.3.

The first step is to obtain an encoding of C1 such that y1 = 0 in ℓ′′i . With a first
tick, we cross the self-loop on ℓi and stay in location ℓi. After a second tick, x1 breaks
1 so we jump to ℓ′i and x1 is reset. After three more ticks, we get into ℓ′′i with y1 = 0
(note that y2 has been reset meanwhile, due to the idling automaton). There is a direct
jump to ℓ′′i without passing by ℓ′i for the case where y1 breaks 1 before x1 does (or at
the same tick). The second step is to increment C1: we reset y1 with the next tick
and we proceed to ℓj. However, if x1 was to break 1 at that time, it would mean that
the counter overflows and that the simulation cannot continue. The deadlock location
overflow is then reached.

Decrement A decrement of the form Instr(qi) ≡ Ck = Ck − 1 goto qj is translated
into the synchronized product A−

k × Aidle
3−k where A−

k is depicted in Figure 3.6. Again,
all their edges have the same label.

Decrementing the counter Ck is the dual of incrementing: we proceed to location
ℓ′′i (possibly via ℓ′i) when xk is reset so that yk ∈ In−i if the value of Ck is i. Then,
with the next tick, we reset xk so that xk ∈ I0 and yk ∈ In−i+1. Thus, the value of Ck

is now i− 1 in ℓj. Note that there is no edge guarded by xk > 1∧ yk > 1 starting from
location ℓi in Figure 3.6 since it corresponds to a counter equal to 0 which is prevented
by the assumption that counters are zero-tested before decrementing.
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Zero-testing An instruction of the form Instr(qi) ≡ if Ck = 0 then goto qj else
goto qj′ is translated into the synchronized product A0

k × Aidle
3−k where A0

k is depicted
in Figure 3.7.

The value of a counter Ck is zero iff xk, yk ∈ Ii for some i, which means that the two
clocks will eventually exceed 1 during the same tick. This is checked by A0

k, branching
to either ℓj or ℓj′.

The automaton AM is now built up by concatenating Ainit and each of the widget
translated from the instructions of M . By concatenation, we mean taking the union
of the locations and edges of the widgets, with initial location a0 of Ainit and final
location ℓm. It is now clear from the above construction that the following claims are
equivalent:

1. There exists a trajectory π of JAMKκ with last(π) = (ℓm, v) for some valuation v.

2. There exists an execution π′ of M containing a configuration (qm, c1, c2) for some
c1, c2 ∈ N and such that for all i ≥ 0, if π′

i = (q, c1, c2) then c1, c2 ≤ ⌊ 1
κ(α)
⌋.

This allows to conclude that Γℓm(AM) is not empty iff and only if the answer to
the reachability problem for M is Yes. From Proposition 3.10, this implies that the
parametric reachability problem is undecidable for open PTA. �

The proof that we have presented uses five clocks and two parameters, but three
clocks are compared with parameters, namely x1, y1 and t. It is clear that the same
reduction holds with only two clocks compared with parameters: in the initialization
widget Ainit, since all the clocks are reset before entering ℓ0, we could swap for example
x1 and t.

3.5 Conclusion

We have seen that introducing parameters in the model of timed automata yields a
parametric version of the emptiness problem that is undecidable in continuous time
except for some restricted cases, with few interactions with parameters (and only one
clock in continuous time). Those decidable classes are of limited usefulness.

We have strengthened this result with a new proof of undecidability for parametric
timed automata. Unlike the classical proofs of undecidability, our proof does not rely
on the use of equality in timing constraints and thus it is more robust. Formally, it
applies to open parametric timed automata, with at least two parameters and five
clocks (among which two are compared with the parameters). It is an open question
whether this number of clocks and parameters is tight for undecidability.
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idle

xk > 1
∧ yk > 1
xk, yk := 0

xk < 1
∧ yk < 1

xk > 1
∧ yk < 1
xk := 0

xk < 1
∧ yk > 1
yk := 0

Figure 3.4: Idling with Aidle
k .

ℓi

ℓ′i

ℓ′′i ℓj

overflow

xk < 1
∧ yk < 1

xk > 1 ∧ yk > 1
xk, yk := 0

xk < 1 ∧ yk > 1
yk := 0

xk > 1
∧ yk < 1
xk := 0

yk < 1

yk > 1
yk := 0

xk < 1

yk := 0

xk > 1

Figure 3.5: Incrementing Ck with A+
k .
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ℓi

ℓ′i

ℓ′′i ℓj

xk < 1 ∧ yk < 1

xk > 1 ∧ yk < 1

xk := 0

xk < 1
∧ yk > 1
yk := 0

xk < 1

xk > 1
xk := 0

yk < 1

xk := 0

yk > 1

xk, yk := 0

Figure 3.6: Decrementing Ck with A−
k .

ℓi ℓj

ℓj′

xk > 1 ∧ yk > 1

xk, yk := 0

xk < 1 ∧ yk < 1

xk < 1
∧ yk > 1
yk := 0

xk > 1 ∧ yk < 1
xk := 0

Figure 3.7: Zero-testing of Ck with A0
k.
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Since timed automata are quite expressive, those undecidability results for the
parametric reachability problem are not surprising. In Chapter 6 however, we identify
a class of PTA for which we establish decidability and that has an interest in practice.
This class has one parameter (P = {∆}) and allows clock constraints of the form
ϕ ::= x ≥ a −∆ | x ≤ a + ∆ | ϕ ∧ ϕ with a ∈ N. The idea is to enlarge the classical
constraints of timed automata by an unfixed value ∆ to model the imprecisions of the
implementation. The details are given in Chapter 4.
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Chapter 4

Implementability of Timed
Automata

Loi de Hofstadter: tout prend toujours plus de temps que prévu, même en
tenant compte de la Loi de Hofstadter.

Douglas Hofstadter, Gödel, Escher et Bach, les brins d’une guirlande éternelle.

4.1 Introduction

Formal methods are now widely used for the specification and verification of computer
systems, and in particular real-time systems. The verification techniques apply to
mathematical models because the formal arguments hold only in a well defined con-
text. The need for a rigorous approach to the design of real-time systems is nowadays
understood by both the research community and industry.

It is important to remind that verification gives guarantees for the correctness of a
model which is a more or less sound description of a physical realization. Of course,
when the model is given in terms of the formal semantics of a programming language,
the designer can be more confident that the implementation of the model is faithful
and thus correct.

However, embedded real-time controllers are seldom directly developed in the form
of a compilable/executable program. As for traditional programs, the development of
real-time reactive systems often follows a cyclic design methodology, like the model-
based methodology. In the early phases of the design, it is more convenient for the
engineers to take a high-level view of the conception, not considering the implemen-
tation details. At those steps, the verification techniques have proven useful for elimi-
nating the mistakes. Later, the models are refined and transformed to be implemented
on a real-time platform. At the level of code, it is often more difficult to formally
check correctness because the system is much more detailed. If the implementation is

49
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automatically generated, a proof that the synthesis procedure preserves correctness is
sufficient, and this is more appealing

In this chapter, we present the tools that enable us to apply this schema to the
design of real-time reactive controllers. In Section 4.2, we define structuration and
composition of timed systems. In Section 4.3 we discuss a formal model for the im-
plementation of real-time embedded controllers, called the program semantics. We
argue that this model is quite general, and that many usual real-time platforms fit the
definition. Therefore it is a convincing model for implementations. Unfortunately, we
will see that the program semantics is not well suited for verification. In Section 4.4,
we present a new semantics for timed automata, the Almost ASAP semantics, whose
purpose is to serve in the verification phase. This semantics has nice properties that
are useful for the verification and there is a formal connection with the program se-
mantics. Finally in Section 4.5, we give an overview of related works where similar
problems are addressed.

The algorithmic analysis of the Almost ASAP semantics is presented in Chapters 5
and 6.

4.2 Structured Timed Systems

We use structured systems to model open systems where the set of synchronization
labels is partitioned into uncontrollable (namely the input events released by the envi-
ronment), and controllable, corresponding to either output events visible to the envi-
ronment or internal events for internal changes.

4.2.1 Structured Timed Transition Systems

The following definition refines Definition 2.1.

Definition 4.1 A STTS (structured timed transition system) is a tuple S = 〈Q, Q0,
Qf , Σin, Σout, Στ ,→〉 such that Σin, Σout, Στ is a partition of Σ = Σin ∪ Σout ∪ Στ and
T = 〈Q, Q0, Qf , Σ,→〉 is a TTS. We say that S is given by the TTS T structured by
(Σin, Σout, Στ ). We assume that τ ∈ Στ . �

A classical notion of refinement is induced by simulations: a TTS T1 refines a TTS
T2 if T2 � T1. As mentioned in Section 2.3, refinements preserve safety properties (or
emptiness), so that the correctness of T2 implies the correctness of T1. However, we do
no want the relation T2 � T1 to hold trivially because T1 might be blocking at some
point. Classically, it is asked that T1 is non-blocking: it must accept every input in
every state and it may not prevent time to diverge. The first condition is known as
input enabledness [LT87], and the second as non-zenoness [AL94].



4.2. STRUCTURED TIMED SYSTEMS 51

Definition 4.2 [Input enabled STTS] A STTS S given by T = 〈Q, Q0, Qf , Σ,→〉
structured by (Σin, Σout, Στ ) is input enabled if for all σ ∈ Σin, for all q ∈ Q there exists
q′ ∈ Q such that (q, σ, q′) ∈ →. �

Input enabledness is easy to verify and is often obtained by construction. In some
cases however, we have not input enabledness, for example when we want to model a
process that terminates; then, we can always add the missing transitions from blocking
states going to an error state contained in the final set of the TTS.

Definition 4.3 [Non-zeno STTS] A STTS S given by T = 〈Q, Q0, Qf , Σ,→〉 struc-
tured by (Σin, Σout, Στ ) is non-zeno if for all finite trajectory π of T with first(π) ∈ Q0,
there exists a trajectory π′ of T such that first(π′) = last(π), trace(π′) ∩ Σin = ∅ and
Duration(π′) = 1. �

Non-zenoness is a liveness assumption [AS85] and it is the only liveness condition we
need in practice because under this condition, the important liveness properties become
safety properties [Hen92]. For example, the bounded response property, stating that
every request must be followed by a grant within some delay δ, is a liveness property.
But if time diverges then we can equivalently say that an error state is reached whenever
a request is followed by a delay δ without a grant has occurred. Algorithmic aspects
of checking non-zenoness are presented in [HNSY94].

The non-zenoness condition rules out systems issuing an infinite number of actions
in a finite amount of time, for example at times 1

2
, 3

4
, 7

8
, 15

16
, etc. Such systems are

clearly not physically realizable. However it is not sufficient that a system is non-zeno
to be implementable [CHR02]. Consider the following sequence of time stamps:

ρ = 0,
1

2
, 1, 1

1

4
, 2, 2

1

8
, 3, 3

1

16
, . . .

where ρ2i = i and ρ2i+1 = i + 1
2i+1 (i ≥ 0). Although ρ is diverging, it is impossible

for a hardware to issue actions at times ρi, because the time distance between two
successive actions is not bounded from below. To avoid such unwanted behaviours,
we should impose a more realistic condition that two successive actions can always be
separated by at least a fixed amount of time δ > 0.

Definition 4.4 [Composition of STTS] Two STTS S1 given by 〈Q1, Q1
0, Q

1
f , Σ

1,→1〉
structured by (Σ1

in, Σ
1
out, Σ

1
τ ) and S2 given by 〈Q2, Q2

0, Q
2
f , Σ

2,→2〉 structured by (Σ2
in,

Σ2
out, Σ

2
τ ) are composable if for every σ ∈ Σ1 ∩ Σ2 \ {τ}, we have either σ ∈ Σ1

in ∩ Σ2
out

or σ ∈ Σ2
in ∩ Σ1

out.

Their composition, noted S1‖S2 is the STTS given by T structured by (Σin, Σout, Στ )
where:
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• Σin = (Σ1
in ∪ Σ2

in) \ (Σ1 ∩ Σ2);

• Σout =(Σ1
out ∪ Σ2

out) \ (Σ1 ∩ Σ2);

• Στ = (Σ1
τ ∪ Σ2

τ ) ∪ (Σ1 ∩ Σ2);

and T = 〈Q, Q0, Qf , Σ,→〉 such that Q = Q1 × Q2, Q0 = Q1
0 × Q2

0, Qf = {(q1, q2) ∈
Q | q1 ∈ Q1

f ∨ q2 ∈ Q2
f}, Σ = Σin ∪ Σout ∪ Στ , and ((q1, q2), σ, (q′1, q

′
2)) ∈ → iff one of

the following three assertions holds:

• σ ∈ (Σ1 ∩ Σ2 \ {τ}) ∪ R≥0 and (q1, σ, q′1) ∈ →1 and (q2, σ, q′2) ∈ →2

• σ ∈ (Σ1 \ Σ2) ∪ {τ} and (q1, σ, q′1) ∈ →1 and q2 = q′2

• σ ∈ (Σ2 \ Σ1) ∪ {τ} and (q2, σ, q′2) ∈ →2 and q1 = q′1
�

In this definition of composition, a shared label must be an input label of one system
and an output label of the other (except the silent label τ). The two systems must
synchronize on shared labels which are then considered as internal in the composition.
This corresponds to rendez-vous communication. Other communication paradigms can
be modeled, such as broadcast where the common labels are put into the output set
of the composed system. The choice of a communication schema is orthogonal to the
issues studied here and would not modify the presented results.

The composition operator ‖ is commutative, up to a renaming of the states: the
STTS A‖B is equal to B‖A if its states (qa, qb) are renamed (qb, qa). Similarly, compo-
sition is associative if common labels are shared by at most two STTS. Let A, B and
C be three STTS without common label (that is ΣA ∩ ΣB ∩ ΣC = {τ}). If A, B, C are
pairwise composable, then A‖(B‖C) is equal to (A‖B)‖C if its states (qa, (qb, qc)) are
renamed ((qa, qb), qc).

An important property of composition is that it preserves the simulation relations.
In combination with associativity, this property enables the modular design and veri-
fication of controllers. The definition of simulation is extended to STTS in the natural
way. For weak simulation, the internal events are hidden (see Definition 2.8) and
considered as being silent.

Definition 4.5 [(Weak) simulation] Let S1 be a STTS given by T1 and structured
by (Σ1

in, Σ
1
out, Σ

1
τ ), and S2 be a STTS given by T2 and structured by (Σ2

in, Σ
2
out, Σ

2
τ ). We

say that S1 (weakly) simulates S2, noted S1 � S2 (resp. S1 �weak S2), if Σ1
in = Σ2

in and
Σ1

out = Σ2
out and if T1 � T2 (resp. T1[Σ1

τ := τ ] �weak T2[Σ2
τ := τ ]). �

Theorem 4.6 Let (S1,S2) and (S ′
1,S ′

2) be two pairs of composable STTS such that
S ′

1 � S1 and S ′
2 � S2. Then S ′

1‖S ′
2 � S1‖S2.



4.2. STRUCTURED TIMED SYSTEMS 53

Proof (Sketch). Let R1 and R2 be simulation relations for S ′
1 � S1 and S ′

2 � S2

respectively. It is easy to show that R12 = {((q′1, q′2), (q1, q2)) | (q′1, q1) ∈ R1 ∧ (q′2, q2) ∈
R2} is a simulation relation for S ′

1‖S ′
2 � S1‖S2. �

Notice that the properties of input enabledness and non-zenoness are not neces-
sarily preserved by (weak) simulations. This is not surprising as we have seen that
those properties are related to existential liveness (there must exist some non-blocking
trajectory) while simulations preserve safety (all the trajectories avoid the bad states).

On the other hand, input enabledness is preserved by composition, and moreover
input enabledness of two STTS ensures that their composition is non-blocking. A proof
of Theorem 4.7 is given in Appendix A.1.

Theorem 4.7 Let S1,S2 be two input-enabled and composable STTS (structured by
(Σ1

in, Σ
1
out, Σ

1
τ ) and (Σ2

in, Σ
2
out, Σ

2
τ ) respectively). Let →1, →2 and → be the transition

relations of S1, S2 and S1‖S2 respectively. If (q1, q2) ∈ Reach(S1‖S2) and there is
a discrete transition (q1, σ, q′1) ∈ →1 with σ 6∈ Σ1

in (respectively (q2, σ, q′2) ∈ →2 with
σ 6∈ Σ2

in) then there exists a state q′2 (resp. a state q′1) such that ((q1, q2), σ, (q′1, q
′
2)) ∈ →.

However, it is not true in general that the composition of two STTS that are input
enabled and non-zeno is itself non-zeno. Nevertheless, that property holds for the
particular STTS that we consider in the sequel (namely in Section 4.3.1).

4.2.2 Structured Timed automata

We refine the definition of timed automata to deal with open controllers, whose alpha-
bet is structured in sets of input, output and internal labels.

Definition 4.8 A timed automaton A with alphabet Lab is structured by a triple
(Labin, Labout, Labτ ) if those three sets form a partition of Lab (with τ ∈ Labτ ). Its
semantics is the STTS given by JAK and structured by (Labin, Labout, Labτ ). �

Running example We illustrate this chapter with a running example, shown in
Figure 4.1. We have a model of an environment given in Figure 4.1(a), in the form
of a structured timed automaton. We use the notation σ! to denote actions that are
triggered by the automaton (σ ∈ Labout) and σ? to denote events that are received
(σ ∈ Labin). The environment is supposed to be input enabled, but we do not depict
the edges that are going to the Bad location, with a label σ ∈ Labin. The location Bad
is the final state of the automaton, thus the state to avoid.

The environment starts in location ℓ1 with x = y = 0 and waits for the event A.
In location ℓ2, the response B is sent when y = 1, and then the event C is accepted
which resets the clock y and the automaton gets back to ℓ1. At any moment in the
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ℓ1 ℓ2

y ≤ 1

ℓ3

Bad
A?

x := 0

B!

y ≥ 1
C?

y := 0

x ≥ α

x ≥ α

x ≥ α

(a) The environment.

ℓ′1

w ≤ 1

ℓ′2

ℓ′3

z ≤ 0

w ≥ 1 A!

w := 0

B?

z := 0
C!

(b) The ASAP controller.

Figure 4.1: Running example.

cycle, there is an edge labelled by τ that leads to Bad with a guard x ≥ α where α is
a parameter. In the sequel, we study the correctness of the controller of Figure 4.1(b)
when α ∈ Q≥0.

To be correct, the controller must produce an event A at least every α time units,
and after receiving the event B, has to output a C. That sequence of events must be
done fast enough to avoid the clock x of the environment to run over α. One solution
is given in Figure 4.1(b). The designer has chosen here to output an A every 1 time
unit, and to react to the event B as quickly as possible.

Given this controller for the system, our task is to verify that it is correct and
implementable. We define correctness and implementability later in this chapter, but
intuitively the correctness asks that the environment avoids entering the location Bad
and the implementability asks in addition that some amount of time is allowed to the
controller to fire a transition and observe events.

4.3 Real-Time Implementations

In the classical semantics of timed automata (Definition 2.12), the invariants are used
to bound the time the automaton can stay in a location, thus forcing to take a dis-
crete transition. So, invariants are used to ensure progress. However, the progress
is naturally present in an implementation, where the program is going to systemat-
ically take any transition as soon as it is enabled (which makes sense only for left
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closed predicates). Therefore, the invariants in timed automata are not necessary if we
make a progress assumption saying that transitions are executed as soon as possible.
This assumption should be encoded in the semantics of structured timed automata. It
should be noticed that the progress assumption should allow some delay to execute a
transition, because this corresponds to realistic implementations. We emphasize the
absence of invariants for timed controllers in the definition below. We also assume that
the bad states are given in the specification of the environment, and that there is at
most one initial location in the controller.

Definition 4.9 [Elastic controller] An Elastic controller is a structured Alur-Dill
automaton A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 such that Inv(ℓ) = ⊤, Final(ℓ) = ⊥
for every ℓ ∈ Loc and Init(ℓ) is satisfiable for at most one location ℓ ∈ Loc. �

Implementability of real-time models is not a well defined notion in the literature,
as it may depend on various arbitrary choices, such as the type of hardware, the
scheduling policy, interrupts handling, sensors polling, time management, etc. There-
fore, the notion of implementability is in essence controversial, and a widely accepted
definition is difficult to find. We first give a short overview of the important points
that characterize “real” implementations.

The definition must be sufficiently close to the real implementations so that prac-
titioners agree that an implementable system is indeed realizable. On the other hand,
it must be sufficiently abstract to be independent of small internal differences between
real-time platforms.

In this context, we propose a definition that is as simple as possible, and hopefully
sufficiently general so that almost every implementation can be simulated by it. Hence,
we do not focus on optimization issues.

We give an overview of the classical way real-time programs are implemented, in-
fluenced by our experience with a simple real-time system, the Lego MindstormsTM

robots, and other real-time frameworks [Die99, Lab02].

The fundamental mechanism underlying those systems is polling . The operating
system must periodically check the sensors to detect an input and activate the threads
ready to execute. The scheduling policy is a round Robin, each thread receiving the
CPU successively. The use of priorities somewhat complicates this picture, but the
principle is the same.

A program consists of a set of threads, that is sequential programs executed in
parallel (but not simultaneously on single-processor architectures) and typically sharing
memory. For implementing Elastic controllers, we only use very simple forms of
threads. Indeed, for a timed automaton, a thread would be the code corresponding to
firing one transition, and the common data be the current location of the automaton
and the value of the clocks. We give more details below on how we implement timed
automata.
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Waiting
⊥

Sleeping
⊥load

Running
⊤

occurred
Event

Preemption Wait event

Activation

r = Tslice

r := 0

Figure 4.2: The three states of a thread.

The round Robin is implemented by time-slicing, that is assigning the CPU to
one thread execution for a small amount of time called the time-slice, after which
the thread is interrupted and put in sleeping mode, and the CPU is assigned another
thread. In this work, we assume that the execution of a transition is always less
than the time-slice. This is clearly realistic for simple examples, because the code for
a transition is fairly simple (there is no alternative, nor complex constructions like
function calls). But still, this should be justified in practice by an analysis of the
sequential code generated by the compiler, namely by bounding the execution time of
each instruction. An interesting future work would be to deal with execution times
greater than the time-slice, which corresponds to consider an implicit notion of task.

As we mentioned, a reactive program is not intended to terminate. Therefore,
after executing a transition, the thread is not deleted: rather it is waiting that the
conditions are met to execute the transition again. Those conditions include being in
the source location of the transition, and satisfying its guard. A real-time hardware
has a single system clock , say T, whereas timed automata may have several clocks.
Therefore, we use the system clock as the absolute time, and we use the difference
between the current time and the resetting time of a clock to obtain its current value.
Thus, guards are evaluated using the value T− r(x) for each clock x where r(x) is the
last resetting time of x. Since the system clock is digital (with a precision of 1ms in
the case of Lego MindstormsTM), the number T− r(x) is an integer multiple of the
unit of time.

In Figure 4.2, we give an informal picture of this schema. Initially, threads are
loaded in sleeping state and successively receive the CPU, going to running mode.
When the time a thread is running reaches the time-slice, the thread is interrupted,
getting back to sleeping mode (this does not occur for our timed automata). If a
thread has “terminated” before the time-slice and is thus waiting for an event, it goes
to the state waiting. The operating system then checks the new inputs and moves the
corresponding waiting threads to sleeping. Then, the next sleeping thread is run.
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In the case of Lego MindstormsTM, we use semaphores to guarantee mutual
exclusive access to shared data, and in particular, a boolean semaphore is associated
to each location of the controller. One of those semaphores is set to 1 corresponding
to the current location. Every transition is waiting that the semaphore of its source
location equals 1. If a transition is enabled, its thread goes to sleeping and the location
semaphore is decremented. This is done with an atomic test and set procedure (similar
to the POSIX sem wait) so that at most one thread can be put in sleeping mode at
each round. We also use boolean semaphores to encode events. In Figure 4.3, we give a
high-level abstract model of the thread coding a transition (ℓ, ℓ′, g, σ, R), where either
σ ∈ Labin is an input event or σ ∈ Labout is an output event. In this code, the function
wait event is used to test both the semaphore of the location ℓ (and the semaphore
of σ if σ ∈ Labin), and the condition expressed by the guard g. If the two (or three)
conditions are satisfied, the semaphore(s) is (are) atomically set to false. The rest of
the while loop executes the transition, resetting the clocks in R (assigning them the
value of the system clock), posting the semaphore of ℓ′ (that is, setting it to true) and
optionally posting the semaphore of σ (if σ ∈ Labout).

In the description we have given of the implementation of timed automata under
Lego MindstormsTM, many aspects would be shared by other platforms, but prob-
ably slightly different solutions are also satisfying. Since we want to be as much as
possible independent of a particular platform, we take a definition of implementability
that does not account for the very low details of the internals of the target hard-
ware and operating system. First, we define a program semantics for structured timed
automata.

while True do
wait event(ℓ, σ, g);
foreach x ∈ R do x← T;
post(ℓ′);

(a) if σ ∈ Labin.

while True do
wait event(ℓ, g);
foreach x ∈ R do x← T;
post(σ);
post(ℓ′);

(b) if σ ∈ Labout.

Figure 4.3: Thread for the transition (ℓ, ℓ′, g, σ, R).

4.3.1 Program semantics

The program semantics is a formal semantics for the following interpretation proce-
dure of structured timed automata. This procedure repeatedly executes what we call
execution rounds. An execution round is defined as follows:
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1. the current system time is read in the clock register of the CPU and stored in
the variable T;

2. the input sensors are checked for new events issued by the environment and the
list of input events to handle is updated;

3. the guards of the transitions leaving the current location are evaluated with the
value stored in T. If at least one guard evaluates to true then one of the enabled
transitions is chosen nondeterministically and executed;

4. the next round is started.

We choose this semantics for its simplicity and because it is obviously imple-
mentable. All we require from the hardware is to respect the following two require-
ments: (i) the clock register of the CPU is incremented every ∆P time units and (ii)
the time spent in one loop is bounded by a fixed value ∆L . The values ∆P = 1ms and
∆L = 6ms are typical for Lego MindstormsTM.

Our program semantics is close to the semantics of PLC-automata [Die01]. We give
a detailed comparison with that framework in Section 4.5.

As we have mentioned, our model of time is continuous, but the implementations
have only access to discrete time through the digital clock producing ticks every ∆P .
Note however that the environment can issue events at any point between two ticks.
Thus, the semantics must be continuous time, even though the program executes in
a discrete time fashion, and with variables that have a fixed precision. Thus, the
program has a sampled view of the environment. This notion is captured by the
following notations.

Definition 4.10 [Clock rounding] For T ∈ R≥0 and δ ∈ R>0, let ⌊T ⌋ (resp. ⌈T ⌉) be
the greatest (resp. lowest) integer k such that k ≤ T (resp. k ≥ T ) and let ⌊T ⌋δ = δ⌊T

δ
⌋

and ⌈T ⌉δ = δ⌈T
δ
⌉. �

In the implementation, guards of transitions are evaluated periodically. Thus, if
a guard does not remain true for a sufficiently long time, it is likely that the imple-
mentation will miss it. Therefore, we enlarge the guards to guarantee that a satisfied
guard is eventually detected by the polling loop of the program.

Definition 4.11 [Predicate transformations] Let δ1, δ2 ∈ Q. For a rectangular predi-
cate ϕ ∈ Rect(Var), we use the symbols 〈 ∈

{
[ , ]

}
and 〉∈

{
], [

}
to define the notation

δ1〈ϕ〉δ2
as follows (recursively):

• δ1〈⊤〉δ2 ≡ ⊤;
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• δ1〈⊥〉δ2 ≡ ⊥;

• δ1〈x ≥ a〉δ2 ≡ δ1〈x > a〉δ2 ≡
{

x ≥ a− δ1 if 〈= [
x > a− δ1 if 〈= ]

• δ1〈x ≤ a〉δ2 ≡ δ1〈x < a〉δ2 ≡
{

x ≤ a + δ2 if 〉= ]
x < a + δ2 if 〉= [

• δ1〈ϕ1 ∧ ϕ2〉δ2 ≡ δ1〈ϕ1〉δ2 ∧ δ1〈ϕ2〉δ2

�

For example, for δ1 = −1
3

and δ2 = 1
2
, we have:

δ1 ]2 ≤ x ≤ 5]δ2 ≡ 2 +
1

3
< x ≤ 5 +

1

2
≡ 7

3
< x ≤ 11

2

We are now ready to define the program semantics. The state space of the program
semantics contains two types of informations: (i) the state of the automaton: the
current location ℓ, the resetting time r(x) of each clock x, the time I(σ) the input
event σ has been pending for (I(σ) = ⊥ if σ is not pending) and the time d elapsed
since the last location change; (ii) the state of the program: the absolute time T at
the beginning of the current execution round, the time u spent in the current round,
and a boolean f saying whether a transition has occurred in the current round.

All the timing informations contained in (r, I, d, T , u) are real numbers, and
represent exact values. Since the program manipulates discrete variables, when we use
those values in the implementation, we have to round the exact timing informations
to the precision ∆P of the system clock, for example to evaluate a guard.

We give more intuitions right after the definition.

Definition 4.12 [Program semantics] Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 be
an Elastic controller structured by (Labin, Labout, Labτ ), and let ∆L, ∆P ∈ Q>0.
Let ∆S = ∆L + ∆P . The program semantics of A is the STTS JAKPrg

∆L,∆P
given by

〈Q, Q0, Qf , Σ,→〉 structured by (Σin, Σout, Στ ), where:

• Q = {(ℓ, r, I, d, T, u, f) | ℓ ∈ Loc ∧ r : Var → R≥0 ∧ I : Labin → R≥0 ∪ {⊥} ∧
d, T, u ∈ R≥0 ∧ f ∈ {⊤,⊥}};

• Q0 = {(ℓ, r, I0, 0, 0, 0,⊥) | −r ∈ Init(ℓ) and I0(σ) = ⊥ for every σ ∈ Labin};

• Qf = ∅;

• Σin = Labin, Σout = Labout, and Στ = Labτ ∪ Labin ∪ {τ};
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• the transition relation is defined as follows: for q = (ℓ, r, I, d, T, u, f), we have
(q, σ, q′) ∈ → if and only if

– for the discrete transitions,

(P1) either σ ∈ Labout ∪ Labτ and f = ⊥, q′ = (ℓ′, r′, I, 0, T, u,⊤)
and there exists (ℓ, ℓ′, g, σ, R) ∈ Edg such that ⌊T ⌋∆P

− ⌊r⌋∆P
|=

∆S
[g]∆S

and r′ = r[R := T ];

(P2) or σ ∈ Labin and q′ = (ℓ, r, I ′, d, T, u, f) where I ′ = I if I(σ) 6= ⊥
and I ′ = I[σ := 0] if I(σ) = ⊥;

(P3) or σ = ᾱ ∈ Labin and I(α) > u, f = ⊥, q′ = (ℓ′, r′, I ′, 0, T, u,⊤)
with I ′ = I[σ := ⊥] and there exists (ℓ, ℓ′, g, α, R) ∈ Edg such
that ⌊T ⌋∆P

− ⌊r⌋∆P
|= ∆S

[g]∆S
, r′ = r[R := T ];

(P4) or σ = τ and q′ = (ℓ, r, I, d, T + u, 0,⊥), and either f = ⊤ or the
two following conditions hold:

(P4.1) for all α ∈ Labin, for all (ℓ, ℓ′, g, α, R) ∈ Edg, we have
that either ⌊T ⌋∆P

− ⌊r⌋∆P
6|= ∆S

[g]∆S
or I(α) ≤ u;

(P4.2) for all σ ∈ Labout ∪ Labτ , for all (ℓ, ℓ′, g, σ, R) ∈ Edg,
we have that ⌊T ⌋∆P

− ⌊r⌋∆P
6|= ∆S

[g]∆S

– for the timed transitions,

(P5) σ = t ∈ R≥0 and q′ = (ℓ, r, I + t, d+ t, T, u + t, f) and u + t ≤ ∆L.

�

Comments on the program semantics. First, since the program is started with
T = 0, the initial value of a clock x in the program is T − r(x) = −r(x). Therefore,
we ask in the definition of the initial states Q0 that −r ∈ Init(ℓ).

We observe that guards are enlarged by ∆S = ∆L+∆P . This increases the enabling
time of the guard and so it ensures that the guard is not missed by the program.

The guards are evaluated with the valuation v1 = ⌊T ⌋∆P
− ⌊r⌋∆P

which gives, up
to ∆P , the time elapsed since the last reset of each variable. If the guard is satisfied in
the program at the beginning of a round, the transition could be taken until the end
of the round, thus at most ∆L time units later. At that time, the exact valuation of
the clock (which is not visible to the program) is v2 = T +u− r. The distance |v2−v1|
is thus bounded by ∆S = ∆L + ∆P .

Rule (P1) asserts that an output or internal action can be issued provided such a
labeled transition is enabled in the current state of the program, and we have not yet
taken a transition (f = ⊥). Clocks are reset to the stored absolute time T .

Rule (P2) ensures input enabledness. The occurrence of an event from the envi-
ronment is stored in I, provided no such event is already pending, that is I(σ) = ⊥.
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Otherwise, the event is accepted but I is not modified. This way we define a queue I
with bounded size and, to make the presentation simpler, bounded by 1. If the size
of the queue was unbounded, we fall into a class of systems that are infinite in their
discrete states, and studying such systems is out of the scope of this thesis.

In Rule (P3), the label ᾱ means that the controller has handled the input event
α and thus has executed a transition labelled by α. We say that an event α is visible
to the program if it has occurred before the beginning of the current round (that is
I(α) > u, assuming that a > ⊥ for all a ∈ R). The event is then removed from the
queue (I ′(α) = ⊥). The rest of the rule is similar to (P1). We always assume that
Labin and Lab are disjoint.

In Rule (P4), the silent label τ is used to terminate the current execution round.
We update the variable T and the flag f , at the condition that either we did take a
transition (f = ⊤), or there was no enabled transition at all, neither labelled by an
input event (P4.1), nor by an output or internal action (P4.2). This rule forces the
program to progress when possible.

The timed transitions are allowed by Rule (P5). The time spent in a round is
bounded by ∆L and thus, a new round must be started to let more time elapse. Notice
that this is always possible by Rule (P4). Finally, note that in every state the absolute
time is given by T + u.

In this definition, the variable d recording the time spent in the current location is
not necessary. In fact d is an additional information that we maintain along the execu-
tion, but that does not influence the program. More precisely, if ((ℓ, r, I, d1, T, u, f), σ,
(ℓ′, r′, I ′, d′, T ′, u′, f ′)) ∈ → then for all d2 ∈ R≥0, we have ((ℓ, r, I, d2, T, u, f), σ,
(ℓ′, r′, I ′, d′, T ′, u′, f ′)) ∈ →. The reason to introduce this variable will be clear in
the next section.

Our definition of implementability relies on the program semantics. Remind that
only the controller is implemented.

Definition 4.13 [Implementability of Elastic controllers] An Elastic controller A
embedded in an STTS environment Env is implementable if there exists ∆L, ∆P ∈ Q>0

such that JAKPrg
∆L,∆P

‖Env is empty. �

Observe that the implementability is not a property of the controller alone: it
also depends on the property to verify (which is hidden inside the specification of the
environment, in the form of bad states). Moreover, it is easy to see that every E-

lastic controller A is non-zeno and we can show that the composition JAKPrg
∆L,∆P

‖Env
for ∆L, ∆P > 0 is non-zeno as soon as Env is non-zeno.

Verifying the implementability of a timed controller using directly the program
semantics suffers from two main drawbacks. First, the constants appearing in the
semantics are likely to be of completely different scales. On the one hand, the hardware
has very small execution times (e.g. ∆L = 6ms), and on the other hand, the timing
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of the controllers we implement can typically be expressed in terms of seconds. This
makes the analysis very difficult because the state space is unnecessarily fragmented by
the model-checkers, see for example [IKL+00]. In the next section, we propose a general
methodology that allows to verify the implementability, independently of the constants
of the hardware, and without the fragmentation of the state space due to the repetition
of a huge number of very small time steps. Second, it would be much more attractive
if the constants ∆L and ∆P could be left as parameters during the verification. This
way, we would synthesize a set of values for ∆L and ∆P that guarantee the correctness
and we could choose a posteriori the characteristics of the hardware in order to satisfy
the constraint. The problem with the program semantics is that it is not monotonic
in its parameters, in the sense that it is not obvious that choosing smaller parameters
preserves the correctness. In particular, it is not true that JAKPrg

∆L,∆P
� JAKPrg

∆′

L,∆′

P
if

∆L > ∆′
L and ∆P > ∆′

P , which is however a desirable property. To see this, consider
a controller with two locations ℓ1,ℓ2 and one edge (ℓ1, ℓ2,⊤, α, ∅) where α is an input
label. Assume that an event α is issued by the environment 11ms after the system is
started (in location ℓ1 for the controller). In a first implementation, let ∆′

L = 10ms
(the value of ∆P does not matter here), and thus the transition is enabled in the third
execution round. Assume that it is executed at time 27ms. In a second implementation
with ∆L = 12ms, the transition is enabled in the second execution round and thus it
must be executed between 12ms and 24ms. Hence it is impossible to simulate the faster
implementation. A similar phenomenon can happen with output labels, for example if
an enlarged guard ∆S

[g]∆S
is satisfied for the first time after 11ms.

In the methodology we develop further, this intuitive property that faster is better
holds, and thus we have the guarantee that using a faster hardware is not a source
of new errors. Also, we show in Chapter 6 that a parametric verification problem for
timed automata that is tightly related to the question of implementability is decidable.

4.4 A New Semantics for Timed Automata

Running example As already pointed out in the introduction, the synchrony hy-
pothesis is problematic if we want to transfer the properties verified on the model to
an implementation. For timed automata, we illustrate the properties of the classical
semantics (see Definition 2.12) that makes difficult to implement a controller while
preserving the properties that are verified in the design.

First, note that the invariants of the controller (shaded on Figure 4.1(b)) are used
to force the controller to take actions. The invariants can be removed if we make
a maximal progress assumption for the controller: any action is taken as soon as it
is enabled. So, for example, the transition labeled by A! is fired exactly when z =
0, i.e. instantaneously. Clearly, no hardware can avoid reaction delays. Second,
synchronizations between the environment and the controller (e.g. transitions labeled
by B) are not instantaneous as well. Some time is necessary to the hardware to detect
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an incoming event B and to the software to take this event into account (through
interruptions for example). Third, in continuous time we assume that the clocks of the
controller are infinitely precise (their value ranges over a dense domain), which is not
realistic. It is not obvious that a digital clock can replace a real-valued clock without
changing the reachability properties of the system. Finally, the classical semantics is
not input enabled, as it does not take into account the structuration of timed automata.

Those problems are similar to the synchrony hypothesis and show that even if
we have formally verified our control strategy using the classical semantics for timed
automata (and thus under the synchrony hypothesis), we cannot conclude that an
implementation will preserve the properties that we have proven on the model. This
is very unfortunate. To summarize, there are two options offered to the designer:

• either he gives up the synchrony hypothesis and he models the target real-time
platform that implements the controller, as for example in [IKL+00],

• or he goes on with the synchrony hypothesis at the modeling level, but during the
verification phase, the ASAP semantics is relaxed in order to formally validate
the synchrony hypothesis.

We think that the second option is much more appealing and we propose a frame-
work that makes it possible theoretically, but also feasible practically. The framework
that we propose is a relaxation of the ASAP semantics that we call the Almost ASAP
semantics (or AASAP semantics).

We formally define this semantics and we show that:

• it is robust in the sense that it defines a tube of strategies (instead of a unique
strategy as in the ASAP semantics) which can be refined into an implementation
that preserves the safety properties.

• it can be encoded in classical timed automata, and thus verified in practice with
the existing model-checkers.

4.4.1 Requirements

At the modeling level, when writing down the system specification, it is very important
to concentrate on the conceptual aspects: the discrete structure (the locations), the
set of events that are awaited, the actions to be issued, the timing constraints, the
concurrency, etc. At that point, it is often very convenient to forget about some low
level details, therefore assuming for example that the clocks are perfectly precise, that
executing an assignment takes no time, that time is continuous, etc.

As an illustration, consider the strict inequalities in timing constraints. It is simpler
to write x > 1 where we mean x ≥ 1 + ǫ with ǫ > 0, even though we slightly over-
approximate the constraint in mind. In an implementation however, it is not clear
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what is the difference between x > 1 and x ≥ 1 when x is a (continuous) clock. Thus,
strict inequalities are very useful for the design of the system, but have no realistic
counterpart in implementations.

As we mentioned in the previous section, implementations are executing with a
kind of almost ASAP strategy that ensures a progress assumption. Enabled transitions
are not executed urgently whenever they are enabled, but urgently within some fixed
delay δ after being enabled.

To formally define that almost urgency, we need to know the time a transition has
been enabled for. If this amount of time is greater than δ then the transition is urgent.
Three elements are necessary to determine whether an enabled transition is urgent in
the current state: (i) the time we have been in the current location (ii) the current
valuation of the clocks, and optionally (iii) the release time of the input events issued
by the environment (in the case the transition synchronizes on such an event).

Therefore, in addition to the usual location ℓ and valuation v, we have to remem-
ber the time d ∈ R≥0 spent in the current location, and the time elapsed after the
occurrence of each event (for those events that occurred), in the form of a function
I : Labin → R≥0 ∪ {⊥}, the special value ⊥ being returned for non pending events. In
a state (ℓ, v, I, d), the enabled time of a transition (ℓ, ℓ′, g, σ, R), where σ ∈ Labin is an
input event, is the minimum of the three values d, I(σ) (⊥ is less than any number)
and ETime(g, v) (where ETime(g, v) denotes the time the guard g has been enabled for
in a state with current valuation v).

Definition 4.14 Given a valuation v : Var→ R≥0 and a closed rectangular predicate
ϕ ∈ Rectc(Var), let

ETime(ϕ, v) = sup{t ∈ R≥0 | ∀t′ ∈ [0, t] : v − t′ |= ϕ}

(with the usual convention that sup ∅ = −∞). �

This definition is illustrated on Figure 5.7.

4.4.2 Almost ASAP semantics

According to the previous discussions, we can summarize the main characteristics of
the new semantics as follows. The Almost ASAP semantics is:

• input-enabled, accepting any input in every state;

• non-zeno and, moreover, some delay δ can always pass after a discrete transition;

• urgent within δ time units, in the sense that a transition is urgent when it has
been enabled for a time at least δ.
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We give detailed comments on the AASAP semantics after the formal definition.

Definition 4.15 [AASAP semantics] Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 be
an Elastic controller structured by (Labin, Labout, Labτ), and let δ ∈ Q≥0. The
AASAP semantics of A is the STTS JAKAAsap

δ given by 〈Q, Q0, Qf , Σ,→〉 structured
by (Σin, Σout, Στ ) where:

• Q = {(ℓ, v, I, d) | ℓ ∈ Loc ∧ v : Var→ R≥0 ∧ I : Σin → R≥0 ∪ {⊥} ∧ d ∈ R≥0};

• Q0 = {(ℓ, v, I⊥, 0) | ℓ ∈ Loc ∧ v ∈ JInit(ℓ)K ∧ ∀σ ∈ Σin : I⊥(σ) = ⊥};

• Qf = ∅;

• Σin = Labin, Σout = Labout, and Στ = Labτ ∪ Labin ∪ {τ};

• The transition relation is defined as follows:

– for the discrete transitions, we have ((ℓ, v, I, d), σ, (ℓ′, v′, I ′, d′)) ∈ → iff

(A1) either σ ∈ Labout∪Labτ , I ′ = I, d′ = 0 and there exists (ℓ, ℓ′, g, σ, R) ∈
Edg such that v |= δ[g]δ and v′ = v[R := 0] ;

(A2) or σ ∈ Labin, (ℓ′, v′, d′) = (ℓ, v, d), and either I(σ) 6= ⊥ and I ′ = I
or I(σ) = ⊥ and I ′ = I[σ := 0] ;

(A3) or σ = ᾱ ∈ Labin, d′ = 0, I(α) 6= ⊥, I ′ = I[α := ⊥] and there
exists (ℓ, ℓ′, g, α, R) ∈ Edg such that v |= δ[g]δ and v′ = v[R := 0];

(A4) or σ = τ and (ℓ′, v′, I ′, d′) = (ℓ, v, I, d).

– for the timed transitions, we have ((ℓ, v, I, d), t, (ℓ, v′, I ′, d′)) ∈ → for t ∈ R≥0

iff v′ = v + t, I ′ = I + t (where ⊥+ t = ⊥), d′ = d + t and

(A5.1) for all edges (ℓ, ℓ′, g, σ, R) ∈ Edg with σ ∈ Labout∪Labτ ,we have:

∀t′ ∈ [0, t] : d + t′ ≤ δ ∨ ETime(g, v + t′) ≤ δ

(A5.2) and for all edges (ℓ, ℓ′, g, σ, R) ∈ Edg with σ ∈ Labin, we have:

∀t′ ∈ [0, t] : d + t′ ≤ δ ∨ ETime(g, v + t′) ≤ δ ∨ (I + t′)(σ) ≤ δ

�



66 CHAPTER 4. IMPLEMENTABILITY OF TIMED AUTOMATA

Comments on the AASAP semantics. Rule (A1) corresponds to issuing an output
action or an internal event, through a transition whose guard is enlarged by δ. Clocks
are reset according to the transition taken, and the delay d for a location change is
also set to 0.

Rules (A2) and (A3) are dealing with input events. The environment controls the
occurrence of those events, and thus by Rule (A2) the semantics must accept them at
any moment (input enabledness). On the other hand, by Rule (A3) an event α can be
treated as soon as it is pending (I(α) 6= ⊥) and there is an enabled transition labelled
by α in the controller. The event is then removed from the queue (I ′(α) = ⊥) and
the other variables are updated similarly to Rule (A1). For technical reasons, we allow
silent self-loops by Rule (A4).

Rule (A5) controls the passage of time. As soon as no transition is urgent , time can
pass freely. A transition (ℓ, ℓ′, g, σ, R) with σ ∈ Labout ∪ Labτ is urgent if it has been
enabled for more than δ time units, that is (i) the current location was ℓ for at least δ
time units (d > δ) and (ii) its guard g has been satisfied by the current valuation v for
at least δ (ETime(g, v) > δ). If σ ∈ Labin, we ask in addition that (iii) the event σ has
occurred δ time units ago (I(σ) > δ). Rule (A5.1) asks that all the transitions with
σ ∈ Labout ∪ Labτ are not urgent, and Rule (A5.2) asks that all the transitions with
σ ∈ Labin are not urgent.

In the next section, we give some important properties of the AASAP semantics.
The key issue is that this semantics is an over-approximation of the program seman-
tics. More precisely, the AASAP semantics JAKAAsap

δ simulates the program semanticsJAKPrg
∆L,∆P

, under some condition on the parameters ∆L, ∆P and δ. Therefore, verifying
the correctness of a controller using the AASAP semantics gives for free a proof that
the implementation of the controller is correct according to the program semantics.

Definition 4.16 [Robust correctness of Elastic controllers] For δ ∈ Q≥0, an E-

lastic controller A embedded in an STTS environment Env is correct up to δ if JAK
and Env are composable and JAKAAsap

δ ‖Env is empty. �

Three problems can be formulated about the AASAP semantics: either (i) we know
the characteristics of the hardware and so we fix the value of δ, or (ii) we ask whether
there exists some δ such that the controller is correct, or (iii) we ask to maximize δ
such that the controller is correct. In the context of verification, we assume that the
environment is an Alur-Dill automaton (interpreted in the classical semantics) because
the problems would already be undecidable if the environment was in the more general
class of rectangular automata (see Definition 2.22).
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Definition 4.17 [Robust safety control problems] Given a structured Alur-Dill au-
tomaton Env, and an Elastic controller A embedded in JEnvK, the robust safety
control problem asks:

• [Fixed] whether A is correct up to δ for a given fixed value of δ ∈ Q≥0;

• [Existence] whether there exists δ ∈ Q>0 such that A is correct up to δ;

• [Maximization] to maximize δ such that A is correct up to δ.

�

We show in Chapter 5 that the first flavour [Fixed] of the robust safety control
problem is decidable, by reducing the problem to emptiness of Alur-Dill automata. The
question of [Existence] is the subject of Chapter 6 where we show the decidability of a
closely related question, by establishing a strong relation with a notion of robustness
with regard to drifts in clocks. Note that we are interested in the existence of δ strictly
positive. This will be justified by Corollary 4.21. We have no algorithmic solution to
the question of [Maximization]. However, the maximal δ can be approximated up to
any precision with a binary search based on the [Fixed] problem, if we assume that a
bound on δ is known. Note that this is not sufficient to decide [Existence].

4.4.3 Properties of the AASAP semantics

We mention some important properties of the AASAP semantics. The detailed proofs
can be found in [DDR04, DDR05a] and will appear in Martin De Wulf’s PhD thesis.

We state a first property of the AASAP semantics corresponding to the informal
statement faster is better . If a controller embedded in an environment is correct up
to δ1, then it is also correct up to δ2 for any δ2 ≤ δ1.

Theorem 4.18 Let A be an Elastic controller, for all δ1, δ2 ∈ Q≥0 such that δ2 ≤ δ1,
we have JAKAAsap

δ1
� JAKAAsap

δ2
.

Theorem 4.18, Theorem 4.6 and Proposition 2.7 allow us to state the following
corollary:

Corollary 4.19 Let A be an Elastic controller embedded in an STTS environment
Env. For all δ1, δ2 ∈ Q>0, if A is correct up to δ1 and δ2 ≤ δ1 then A is correct up to
δ2.

Theorem 4.20 establishes that the program semantics is a refinement of the AASAP
semantics. It gives a simple sufficient condition on the parameters ∆L, ∆P and δ for
the AASAP semantics to simulate the program semantics.
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Theorem 4.20 (Simulation) Let A be an Elastic controller. For all δ, ∆L, ∆P ∈
Q>0 such that δ ≥ 3∆L + 2∆P , we have JAKAAsap

δ � JAKPrg
∆L,∆P

.

The proof is quite involved and the bound 3∆L +2∆P may not be tight as we have
managed to use a simulation relation for JAKAAsap

δ � JAKPrg

∆L,∆P
as simple as possible.

Nevertheless, it is clear that the tightest bound is at least 2∆L + ∆P as a transition
whose guard becomes true (up to ∆P ) just after the current round has been started
could be executed only at the end of the next round.

Corollary 4.21 Let A be an Elastic controller embedded in an STTS environment
Env. If A is correct up to δ for some δ ∈ Q>0 then A is implementable.

In practice, either we want to use a given hardware with its characteristics (∆L, ∆P )
or we want to determine the slowest hardware able to implement the controller. In
the first case, we use the [Fixed] flavour of the robust safety control problem with δ =
3∆L +2∆P , and in the second case we use the flavours [Existence] and [Maximization]
to know if the controller is implementable at all, and compute the largest δ. In practice,
verifying the AASAP semantics with a δ fixed may be difficult when δ is small with
regard to the constants of the controller and of the environment. Problems like the
fragmentation of the state space can be unmanageable for model-checkers. It is also
preferable to have a procedure for maximization as it allows to choose the slowest
hardware (or the cheapest) that is able to implement the controller
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Figure 4.4: Parametric analysis of the running example (Figure 4.1).

Running example We illustrate Theorem 4.20 and Corollary 4.21 on the running
example. Consider the diagram of Figure 4.4. It gives, as a function of the parameter
α, the values of δ such that the AASAP semantics of the controller of Figure 4.1 is
correct up to δ. It was obtained with HyTech, using the construction presented in
Chapter 5. The condition can be expressed as δ ≤ min{α−1, α

3
}. For the values of δ in

the shaded region labelled “Unsafe”, the system is not correct, that is the location Bad
is reachable. In particular for α < 1, the system is not correct for any δ. For α = 1 and
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δ = 0, the controller is correct, but according to Corollary 4.21, it is not implementable.
It means that the correct control strategies for α = 1 are not reasonable, because they
block time, or they are zeno, or they do not let a minimal amount of time between
events. For example, consider the following sequence of transitions for a trajectory of
the system that avoids Bad:

1︷ ︸︸ ︷ 1︷ ︸︸ ︷ 1︷ ︸︸ ︷
1, A, 0, B, 1

2
, C, 1

2
, A, 1

2
, B, 1

4
, C, 1

4
, A, 3

4
, B, 1

8
, C, 1

8
, A, 7

8
, B, 1

16
, C, . . . ti, A, t

′
i, B, t

′′
i , C, . . .︸ ︷︷ ︸

1

︸ ︷︷ ︸
1

︸ ︷︷ ︸
1

︸ ︷︷ ︸
1

where ti = 1
2i , t′i = 1− ti and t′′i = 1

2i+1 for i = 0, 1, . . . . This is a trace of the system
because (i) the time between two consecutive A’s is equal to 1, as required by the
controller (through clock w); (ii) the time between a C and the next B is equal to 1,
as required by the environment (through clock y). On the other hand, the value of x
in location ℓ1 of the environment is t′i + t′′i = 1 − 1

2i+1 < 1 and thus the Bad location
is unreachable. However, this trace is clearly not implementable because the reaction
time after an input B for issuing C and A is not bounded from below. The condition
δ = 0 means that only this kind of odd behaviour can avoid Bad.

For α > 1, there is a non-singular range for δ. The profile of Figure 4.4 is established
by HyTech and it can be intuitively justified as follows. First, observe that the two
clocks x and w are reset synchronously and thus we have w = x for all executions
of the system. Since the location Bad is reachable whenever x is above α, the worst
situation corresponds to the largest value of x (and w). This occurs when the delays
in the controller are the largest: let us jump to ℓ′2 when w = 1− δ and count the time
needed to get back to ℓ′1. First, we wait δ unit of time in ℓ′2 for the event B! to be
issued, then one more δ in location ℓ′2 to see the event and finally in ℓ′3, a third δ is
allowed to react and output C. At the end, we have w = 3δ. On the other hand, we
can wait in ℓ′1 until w = 1 + δ to issue an A again. Thus, to avoid the location Bad, we
need the condition δ ≤ min{α− 1, α

3
} for ensuring implementability.

In practice, we must choose a hardware such that 3∆L + 2∆P ≤ δ (according to
Theorem 4.20). For example, if α ≥ 2 we can take 3∆L + 2∆P = 2

3
.

4.5 Related Works

Research in real-time systems has early focused on the questions related to the decid-
ability of the formalisms for real-time, see for example [Koy90, AH92, AD94, AFH96,
HKPV98]. More recently, there are several works that study the relationship between
high-level models and low-level implementations. We give an overview of the main
results for real-time systems. They were all published in the last decade and most of
them in the years 2000.
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4.5.0.1 PLC

To our knowledge, the work on PLC-automata [Die99, Die01] is the closest to the
AASAP semantics. It is one of the first attempts to formally prove the correctness of a
real-time implementation with the imperfections of the hardware taken into account.
The motivation was to verify real-time applications for Programmable Logic Controllers
(PLC). The approach proposed by Dierks compares with ours as follows. Starting from
the observation that the classical semantics of real-time systems neglects the delay for
communications and computations, a new and weaker semantics for PLC is given, the
PLC-automata. While being dedicated to physical PLC, the model intends to cover the
main characteristics of all real-time operating systems, namely the cycle (i) polling
of the inputs, (ii) computing the reactions, and (iii) updating the outputs. The
components of a PLC-automaton include an upper time bound for a cycle, delays for
the visibility of inputs, and accuracy of timers. This methodology is similar to our
approach with the program semantics of Section 4.3.1. Dierks goes one step forward
and provides an algorithm for translating PLC-automata to code, but the correctness
is not established formally.

The language used to define the semantics of PLC-automata and to specify real-
time constraints is the Duration Calculus [CHR91] which is a dense time interval-
based temporal logics that allows to fix the delays for the visibility of events, the
computation times, the imprecision of the clocks, etc. That logics is very expressive,
but its semantics may appear relatively obscure for the novice as it relies on the integral
calculus, which is a source of counter-intuitive interpretation, such as for example “a
proposition is true almost always”, that is at every point in time except at most finitely
many. The use of subtle tricks is necessary to circumvent this kind of unexpected
meaning. More pragmatically, the major drawback is that the Duration Calculus
is undecidable [CHS93]. By contrast, we show in Chapter 6 that the question of
implementability is decidable with the AASAP semantics. Moreover, our semantics is
more abstract in that it does not make explicit the different kinds of imprecisions of
the implementation. The semantics of PLC-automata is more similar to the program
semantics.

In summary, the framework of PLC-automata provides an interesting solution for
the design of real-time controllers that are aware of the characteristics of the target
platform. It is undoubtedly an important step in bridging the gap between models and
implementations in real-time.

4.5.0.2 Giotto

Giotto is a programming environment to develop embedded control systems [HHK01].
It is used to help the implementation of high-level mathematical designs by software
engineers. The main feature of Giotto is an abstract programming language, that is
(i) closer to the design level than classical programming languages, which makes easier
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for designers the translation from mathematical model to code, and (ii) suitable to
formal verification for checking correctness, and such that code generation is possible
for potentially any platform (that is the combination of a hardware and a real-time
operating system).

The compilation to a particular target platform follows two steps. First, the ab-
stract program is translated to E-code, a language that is executed by a virtual ma-
chine, the E-machine [HK02]. The abstract program describes the structure of the
tasks (decomposed in modes of operation, with logical execution times) and their in-
teraction with each other through I/O drivers. The corresponding E-code is a set of
blocks that execute a sequence of primitive instructions similar to assembly languages.
For going to executable code, it is possible to specify some constraints about the target
platform, such as the number of CPUs, the worst case execution times of the tasks, the
internal communication delays, and a jitter tolerance for the writing of outputs. More-
over, Giotto is not restricted to a particular scheduling policy; the user can make his
choice. Several compilers for Giotto have been developed, and realistic applications
have been implemented [San99].

To make a comparison, we could say that the AASAP semantics gives conditions for
implementability on a time-triggered architecture of a controller that is event-triggered,
while Giotto starts from a model that is already time-triggered. That approach is
closer to synchronous languages like Esterel [BG92] and Lustre [HCRP91].

4.5.0.3 Charon

Charon is a design toolkit for hybrid systems. A hybrid system is described in terms of
several agents that communicate via shared variables. Inside an agent, the behaviour
is decomposed in modes (similar to the locations of an hybrid automaton) that are
connected by edges labelled by guarded commands. In each mode, the evolution of the
variables can be described by differential equations. The language allows a modular
design in modes that can have sub-modes, and can be shared by other modes. Charon

has a continuous-time semantics and it supports formal verification of safety properties,
based on reachability analysis [LPY01].

A code generator has been developed for Charon, that maps models with several
(concurrent) agents to (sequential) code for a single processor. Therefore, the transla-
tion has to take care of the dependencies between the shared variables. On the other
hand, the code is by essence discrete, while the model is continuous. The problems re-
lated to the discretization of hybrid systems are carefully studied and proofs are given
that the code refines (or equivalently is simulable by) the model [AIK+03, HKLC04].

The methodology has been applied to several case studies, and seems to be promis-
ing for the model-based development of embedded systems. However, some aspects
that are important for the implementability, such as the delays in sensing/actuating,
and the existence of non null computation times have been left as future works. Maybe
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interesting synergies can be found with the AASAP semantics.

4.5.0.4 Other works

In [AFM+02, AFP+03], Yi et al. have developed the tool Times that generates exe-
cutable code (C code for the Lego MindstormsTM platform) from timed automata
with an explicit model of the computation tasks (the automaton releases task with
given deadlines and worst-case execution times). The tool integrates a schedulability
analysis of the tasks, but the code is generated with the synchrony hypothesis. There-
fore, the properties that are proven on the models are not guaranteed to be preserved
by their code generation.

In [IKL+00], Larsen et al. show how to translate code for real-time controllers to
timed automata in Uppaal to formally verify the correctness of the implementation.
Usually, they encounter the problem that the obtained timed automata are difficult to
analyze because the time unit at the controller level (the time slice of the real-time OS
for example) is much smaller than the time unit of the environment. This leads to what
they call symbolic state space fragmentation. They proposed in [HL02] a partial solution
to that problem, namely accelerating some cycles that have a particularly simple form.
In our framework, we do not encounter that problem because the reaction delay of the
AASAP semantics is usually close to the time unit of the environment to control, and
usually much larger than the time unit of the hardware on which the control program is
executed. The advantage of our approach is also that Theorem 4.20 and Corollary 4.21
hold for all Elastic controllers, and thus we do not need to redo a proof of correctness
for each application.

In [AT05], Altisen and Tripakis attack the problem of implementability with a
methodology where the target platform has to be explicitly modeled as a timed au-
tomaton. The controller is transformed into a finite (untimed) automaton that is
triggered by a network of timed automata that model the features of the execution
platform such as the precision of digital clocks, the communication between the pro-
gram and the environment, the scheduling policy etc. This way, the methodology is
more flexible and more expressive as the designer can easily change some characteris-
tics of the target platform. However, the approach suffers from the common problem
that faster is not necessarily better and the model-checking may be difficult because
the models contain all the details of the implementation.



Chapter 5

Verification of the AASAP Semantics

Ouvrez des écoles, vous fermerez des prisons.

Victor Hugo.

5.1 Introduction

In this chapter, we present a proof that the AASAP semantics can be verified algorith-
mically when the parameter δ is a fixed rational number. The question of deciding the
existence of δ is studied in Chapter 6.

Formally, we show that the [Fixed] flavour of the robust safety control problem is
decidable. To do this, we encode the AASAP semantics of an Elastic controller with
an Alur-Dill automaton such that the two systems are mutually similar [DDR04]. The
encoding is generic for all values of δ. We need to fix δ only to obtain a non-parametric
timed automaton that can be verified algorithmically. This technique is also useful in
practice to decide the robust correctness of a controller, since we can use the recent and
powerful tools for the analysis of timed automata, like Uppaal and Kronos. Even,
in the case where δ is left as a parameter, we can use tools for hybrid automata like
HyTech and PHAVer. However, the encoding we proposed in [DDR04] has a limited
interest in practice because its size is exponential in |Labin|, the number of input labels
of the controller, essentially because we need a queue of size 1 for each input event,
thus at least 2|Labin| discrete configurations.

We solved this problem by giving an encoding which is compositional in the sense
that we distribute the queues of each event in a separate automaton. This way, the
encoding has polynomial size. Of course, if we compute the synchronized product of
our construction, we get back to an exponential size. However, this is not a drawback
in practice because networks of timed automata can be analyzed on-the-fly without
primarily computing a product, and it is likely in practice that a minor subset of the
2|Labin| configurations is reachable. Therefore, we avoid to explore the whole state space
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and we obtain a significant increase of performance, as shown by experiments.

So, we want to encode the AASAP semantics (parameterized by ∆) in a composi-
tional way, that is with a network of timed automata. This approach leads to technical
difficulties related to the distributed form of the encoding. In particular, to decide when
a transition becomes urgent is no more possible within one automaton because several
components are involved. For example, the time spent in a location and the recording
of input events are distributed over different automata. In Section 5.2, we show how
to deal with urgency in a compositional way. In Section 5.3, we describe two compo-
nents of the compositional encoding, called the watchers that are used to distribute the
recording of the timing information about input events. The complete construction is
given in Section 5.4 and a proof of correctness is given in Section 5.5.

5.2 Urgency policies

In this section, we define a syntactical feature that is used to model urgency, the flag
Asap. We will see that in the case of a product of timed automata, the meaning of that
flag cannot be encoded using only clocks. This is not surprising since the purpose of
urgency policies is to declare urgent an edge in a product of timed automata whenever
it is urgent in every automaton of the product. With clocks, urgency is local and so
an edge would be urgent when it is urgent in some automaton of the product.

Definition 5.1 [Urgency policy] An urgency policy for a timed automaton A with set
of edges EdgA is a boolean function Asap : EdgA → {⊤,⊥}. �

We use the semantics of the tool HyTech for the Asap flag [HHW95]. The flag
modifies the condition for the passage of time: time can pass in a location if there is
no outgoing urgent edge labelled by Asap. This may be counter-intuitive as time is
blocked even when the guards of the urgent edge are not satisfied. Notice that a slightly
different notion of urgency is available in Uppaal, which means that some adaptations
are needed to define an encoding of the AASAP semantics that is compatible with
Uppaal.

Definition 5.2 [Semantics of urgency policies] The semantics of a timed automaton
A with urgency policy defined by Asap is the TTS 〈Q, Q0, Qf , Σ,→′〉 such that JAK =
〈Q, Q0, Qf , Σ,→〉 and ((ℓ, v), σ, (ℓ′, v′)) ∈ →′ if and only if ((ℓ, v), σ, (ℓ′, v′)) ∈ → and
either σ ∈ Σ, or σ ∈ T and for every edge e = (ℓ1, ℓ2, g, σ, R) ∈ EdgA of A, if ℓ1 = ℓ
then Asap(e) = ⊥. �

By an abuse of notation, we denote by JAK the semantics of Definition 5.2. Notice
that the semantics of classical timed automata (Definition 2.12) is equal to the seman-
tics of timed automata with the urgency policy Asap⊥ that maps every edge to ⊥.
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This explains why we use the same notation. Further, the urgency policy in a single
timed automaton can be encoded using one additional clock as follows: let us call a
location ℓ urgent in A (noted UrgentA(ℓ)) whenever there exists an edge e of A with
source location ℓ and Asap(e) = ⊤. Now, we use a new clock u to ask that no time can
pass in urgent locations. We add the predicate u ≤ 0 conjunctively in the invariant
of each of them, and we reset the clock u on every edge. Hence, this shows that the
urgency policy does not add expressive power to timed automata. It is very useful
however when used in combination with synchronized products to model urgency in
a compositional way. For the synchronized products of timed automata with urgency
policy, we extend Definition 2.18 as follows:

Definition 5.3 The synchronized product of two timed automata A1 = 〈Loc1, Var1,
Init1, Inv1, Lab1, Edg1, Final1〉 and A2 = 〈Loc2, Var2, Init2, Inv2, Lab2, Edg2, Final2〉 on G
with respective urgency policies Asap1 and Asap2 is the timed automaton A1 × A2 =
〈Loc, Var, Init, Inv, Lab, Edg, Final〉 on G with urgency policy Asap such that:

• Loc, Var, Init, Inv, Lab, Final are defined as in Definition 2.18;

• An edge e = ((ℓ1, ℓ2), (ℓ
′
1, ℓ

′
2), g, σ, R) ∈ Edg iff one of the following assertions

holds:

◦ e1 = (ℓ1, ℓ
′
1, g1, σ, R1) ∈ Edg1, e2 = (ℓ2, ℓ

′
2, g2, σ, R2) ∈ Edg2, σ 6= τ , g =

g1 ∧ g2 and R = R1 ∪R2. Moreover, we have Asap(e) = ⊤ iff Asap1(e1) = ⊤
or Asap2(e2) = ⊤.

◦ e1 = (ℓ1, ℓ
′
1, g, σ, R) ∈ Edg1, ℓ2 = ℓ′2 and σ = τ or σ 6∈ Lab2. We have

Asap(e) = Asap1(e1).

◦ ℓ1 = ℓ′1, σ = τ or σ 6∈ Lab1, and e2 = (ℓ2, ℓ
′
2, g, σ, R) ∈ Edg2. We have

Asap(e) = Asap2(e2).
�

The reader can check that the encoding of urgency sketched above is not preserved
by synchronized product since UrgentA1×A2

(ℓ1, ℓ2) 6= UrgentA1
(ℓ1) ∨ UrgentA2

(ℓ2). In
fact, we cannot define UrgentA1×A2

(ℓ1, ℓ2) as a boolean combination of UrgentA1
(ℓ1)

and UrgentA2
(ℓ2), as shown on Figure 5.1(a) for conjunction and Figure 5.1(b) for

disjunction. The figures show two automata on the left part and their synchronized
product on the right part. In Figure 5.1(a), we assume that the alphabet of A1 and
A2 is {a, b, c}.

5.3 Watchers

For the rest of this section, we fix a parameter ∆ that we distinguish from its value
δ ∈ Q. We define parametric predicates that use only that single parameter.
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ℓ1 ℓ2 ℓ3 ℓ4 ℓ5 ℓ6

a

Asap b

a

Asap c

a

(a) Urgent(ℓ5) 6= Urgent(ℓ1) ∧ Urgent(ℓ3).

ℓ′1 ℓ′2 ℓ′3

ℓ′4 ℓ′5 ℓ′6

ℓ′7

ℓ′8

ℓ′9

ℓ′10 ℓ′11

τ

Asap

a

τ

Asap

a

τ

τ

τ

τ

Asap

a

(b) Urgent(ℓ′8) 6= Urgent(ℓ′2) ∨ Urgent(ℓ′4).

Figure 5.1: Urgency and composition.

Definition 5.4 [Parametric multirectangular predicates] Given a set Var of clocks,
a parametric multirectangular predicate over Var is a finite formula ϕ defined by the
following grammar rule:

ϕ ::= ⊥ | ⊤ | x ⊲⊳ a | ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ Var, a ∈ {c, c + ∆, c−∆ | c ∈ N} and ⊲⊳∈ {<,≤, =,≥, >}.
We denote by MultPRect the class of parametric multirectangular predicates.

�

A multirectangle is a finite union of rectangles. Given δ ∈ Q≥0, the definition of the
satisfiability relation v |=δ ϕ for a valuation v : Var→ T and a parametric rectangular
predicate ϕ ∈ MultPRect is similar to v |=κ ϕ with κ(∆) = δ in Definition 3.2. Similarly,
for δ ∈ Q≥0 the semantics of a timed automaton A over MultPRect is induced by |=δ

and is denoted JAKδ.

The main characteristics of the AASAP semantics that is difficult to encode com-
positionally is expressed by rule (A5.1) and (A5.2) in Definition 4.15 that defines the
almost urgency. According to that rule, there are three reasons for allowing time to
pass:

1. either the controller has been in its current location for less than δ time units,
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2. or all the pending input events have been issued by the environment less than δ
time units ago,

3. or finally the guards of the outgoing transitions have not been enabled for more
than δ time units.

Roughly, those conditions will be checked in our compositional construction by,
respectively, a syntactical transformation E(A) of the Elastic controller A, and two
types of widgets: the event-watchers and the guard-watchers.

The most obvious way of defining urgency with timed automata is by using invari-
ants on locations. Roughly, if we have an edge guarded by a constraint g ≡ x ≥ c, it
can be forced as soon as it is enabled by adding as invariant in its source location the
closure of ¬g, that is x ≤ c. This way, time is blocked when the guard is satisfied and
the discrete transition is forced. If we enlarge the invariant by ∆ (yielding x ≤ c+∆),
we get the almost urgency. However, urgency is not only determined by guards, but
also by the discrete events: the location changes and the input events. For the edge
guarded by g, a valid behaviour would be that the source location is reached (or the
input is received) when x = c + 1, although the invariant is then violated. Hence, we
have to take into account the conditions of urgency altogether according to rule (A.5)
of the AASAP semantics.

We introduce the following notations to simplify the presentation of the construc-
tion. It is based on Definition 4.11.

Definition 5.5 Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 be an Elastic controller
structured by (Labin, Labout, Labτ), and ℓ ∈ Loc be one of its locations. Define the set
of guards labelling output transitions or internal transitions as:

Gact(ℓ) = {g | (ℓ, ℓ′, g, σ, R) ∈ Edg ∧ σ ∈ Labout ∪ Labτ}

For each α ∈ Labin, define the set of guards labelling α-transitions as:

Gevt(ℓ, α) = {g | (ℓ, ℓ′, g, α, R) ∈ Edg}

Finally, we define the following parametric multirectangular predicates:

ϕ̄act(ℓ) =
∧

g∈Gact(ℓ)

¬(−∆]g[ 0) and ϕ̄evt(ℓ, α) =
∧

g ∈Gevt(ℓ,α)

¬(−∆]g[ 0)

(with the usual convention that
∧

g∈? ϕg ≡ ⊤).

�

E.g. for Gact(l) = {x ≥ 3, 0 ≤ y ≤ 1}, we have ϕ̄act(l) ≡ x ≤ 3 + ∆ ∧ (y ≤ ∆∨ y ≥ 1).
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The predicates ϕ̄act(ℓ) and ϕ̄evt(ℓ, α) are used as invariants in E(A) and the guard-
watchers, to check the second part of rule (A5.1) and the third part of rule (A5.2)
respectively. We will see in Lemma 5.12 that there is a strong link between the set
{v | v |=δ ¬(−∆]g[ 0)} and the set {v | ETime(g, v) ≤ δ} (they are almost equal, namely
their closure are equal).

Those invariants are central to our construction, but if we want a compositional
construction (a product of automata), invariants are too restrictive to express urgency
since urgency also depends on the current state of the other automata offering enabled
synchronizations in the product. Hence, we should not block time simply when a
transition is enabled in one automaton but only when it is enabled in every automaton
of the product. Therefore, some compositional mechanism is needed to model urgency
in a product: we will use the Asap flag. Remember that this flag expresses the fact
that a transition is urgent as soon as it is enabled in the product.

W0

zα ≤ ∆

W1

W2

α

zα := 0

τ

α

ᾱ α

Asap

Figure 5.2: Event-Watcher Wα.

U0U0

U1U1 U2

ϕ̄evt(ℓ, α)

U3

uℓ
α = 0

ᾱ

inℓ
outℓ

τ

τ

ᾱ

uℓ
α := 0

outℓ

Figure 5.3: Guard-Watcher W ℓ
α.

Now, we present the two types of widgets that are used in the compositional
construction for the AASAP semantics of an Elastic controller A = 〈Loc, Var, Init,
Inv, Lab, Edg, Final〉 structured by (Labin, Labout, Labτ ).

5.3.1 Event-watchers

Associated to each event α ∈ Labin, we define Wα (see Figure 5.2) that records the
occurrences of the event α. It has a clock zα that encodes the value of I(α) from
the AASAP semantics. The clock zα records the time elapsed since the last untreated
event α was issued by the environment. Thus when I(α) 6= ⊥, the value of the clock
zα is equal to I(α) and the location of the automaton is either W1 or W2. According
to rule (A2) in Definition 4.15, in those two states, the event α is ignored (the self-
loops guarantee input enabledness). The automaton can stay in location W1 as long
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as zα ≤ ∆. After that delay at the latest, the location moves to W2 where a transition
labelled by ᾱ is enabled, and possibly urgent due to the urgency policy.

Definition 5.6 [Event-watcher] Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 be an E-

lastic controller structured by (Labin, Labout, Labτ) and α ∈ Labin an input event.
Define the timed automaton event-watcher Wα = 〈Loc′, Var′, Init′, Inv′, Lab′, Edg′, Final′〉
and its urgency policy Asap as follows:

• Loc′ = {W0, W1, W2};

• Var′ = {zα};

• Init′(W0) ≡ zα = 0 and Init′(W1) ≡ Init′(W2) ≡ ⊥;

• Inv′(W0) ≡ Inv′(W2) ≡ ⊤ and Inv′(W1) ≡ zα ≤ ∆;

• Lab′ = {α, ᾱ, τ};

• Edg′ = {e1, e2, e3, e4, e5} where:

◦ e1 = (W0, W1,⊤, α, {zα}),
◦ e2 = (W1, W2,⊤, τ, ∅),

◦ e3 = (W2, W0,⊤, ᾱ, ∅),

◦ e4 = (W1, W1,⊤, α, ∅),

◦ e5 = (W2, W2,⊤, α, ∅);

• Final′(ℓ) = ⊥ for every ℓ ∈ Loc′;

• Asap(e3) = ⊤ and Asap(e) = ⊥ for every e ∈ Edg′ \ {e3}.

�

5.3.2 Guard-watchers

Associated to each event α ∈ Labin and location ℓ ∈ Loc, we define W ℓ
α (see Figure 5.3)

to monitor the truth value of the set of guards G = ϕ̄evt(ℓ, α). When the Elastic

controller A is not in location ℓ, the guard-watchers W ℓ
α do not influence the execution,

being in location U0 and offering a self-loop synchronization on ᾱ. When the location
ℓ is reached in A, a synchronization on inℓ occurs and forces each W ℓ

α to enter their
location U1 and to become active. The guard-watchers get back in U0 as soon as ℓ is
exited, through the label outℓ. Thus, the guard-watchers are active when they are not
in location U0. Their role is then to switch between locations U1 and U2 depending
on the truth value of the conditions ETime(g, v) ≤ δ that appears in rule (A5.2) of
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Definition 4.15, where g is a guard on a transition of A labelled with α (see also the
comments after Definition 5.5). When the condition is not true (in location U1), a
transition labelled by ᾱ is enabled. When this transition is taken, the location U3 is
visited and left immediately (because of the invariant uℓ

α = 0) so that the controller
leaves location ℓ immediately.

Remember that there is only one location ℓ in an Elastic controller such that
Init(ℓ) is satisfiable (Definition 4.9). The initial location of the corresponding guard-
watchers W ℓ

α is U1.

Definition 5.7 [Guard-watcher] Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 be an E-

lastic controller structured by (Labin, Labout, Labτ ), let ℓ ∈ Loc be one of its locations
and α ∈ Labin an input event. Let G ⊆ Rect(Var) be a set of guards. Define the timed
automaton guard-watcher W ℓ

α = 〈Loc′, Var′, Init′, Inv′, Lab′, Edg′, Final′〉 and its urgency
policy Asap as follows:

• Loc′ = {U0, U1, U2, U3};

• Var′ = Var ∪ {uℓ
α} (assuming uℓ

α 6∈ Var);

• Init′(Uinit) ≡ ⊤ and Init′(U) ≡ ⊥ for every U ∈ Loc \ {Uinit} where Uinit = U1 if
Init(ℓ) is satisfiable and Uinit = U0 otherwise;

• Inv′(U0) ≡ Inv′(U1) ≡ ⊤, Inv′(U2) ≡ ϕ̄evt(ℓ, α) and Inv′(U3) ≡ uℓ
α = 0;

• Lab′ = {ᾱ, inℓ, outℓ, τ};

• Edg′ = {e1, e2, e3, e4, e5, e6, e7} where:

◦ e1 = (U0, U1,⊤, inℓ, ∅),

◦ e2 = (U1, U0,⊤, outℓ, ∅),

◦ e3 = (U1, U2,⊤, τ, ∅),

◦ e4 = (U2, U1,⊤, τ, ∅),

◦ e5 = (U1, U3,⊤, ᾱ, {uℓ
α});

◦ e6 = (U3, U0,⊤, outℓ, ∅);

◦ e7 = (U0, U0,⊤, ᾱ, ∅);

• Final′(ℓ) = ⊥ for every ℓ ∈ Loc′;

• Asap(e) = ⊥ for every e ∈ Edg′.

�
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5.4 Compositional Construction

Now, we present the syntactical transformation E(·) of Elastic controllers. The aim
of E(A) is of course to encode the structure of A, but also to translate the rules of
the AASAP semantics (Definition 4.15) that have not been encoded in the watchers.
The transformation is similar for each location of the controller, so we illustrate it on
location ℓ of the Elastic controller A of Figure 5.4. The result of the transformation
is shown on Figure 5.5:

• From the first part of rules (A5.1) and (A5.2), we must allow a maximum delay
of ∆ when the location changes. When the controller A moves to the location ℓ,
the automaton E(A) enters location Inℓ with d = 0. The invariant forces a move
to Outℓ before ∆ time units.

• From the second part of rule (A5.1), transitions labeled with actions σ ∈ Labout∪
Labτ should be urgent when their guard has been satisfied for more than ∆ time
units. This is encoded in the invariant d ≤ ∆ ∨ ϕ̄act(ℓ) of location Outℓ. Notice
that the second part of rule (A5.2) is encoded by watchers.

• From rules (A1) and (A3), we have to enlarge the guards of the controller’s
transitions.

Finally, when a transition from A is fired, the location Outℓ is left and the two
events outℓ and inℓ′ are issued where ℓ′ is the target location of the transition.

Definition 5.8 [Controller transformation E ] Let A = 〈Loc, Var, Init, Inv, Lab, Edg,
Final〉 be an Elastic controller structured by (Labin, Labout, Labτ). Define the timed
automaton E(A) = 〈Loc′, Var′, Init′, Inv′, Lab′, Edg′, Final′〉 and its urgency policy Asap
as follows:

• Loc′ = {PreInℓ, Inℓ, Outℓ, P ostOutℓ,ℓ′ | ℓ, ℓ′ ∈ Loc};

• Var′ = Var ∪ {d} (assuming d 6∈ Var);

• Init′(Inℓ) ≡ Init(ℓ) ∧ d = 0 and Init′(PreInℓ) ≡ Init′(Outℓ) ≡ Init′(PostOutℓ,ℓ′) ≡
⊥ for every ℓ, ℓ′ ∈ Loc;

• Inv′ is defined as follows for each ℓ, ℓ′ ∈ Loc:

◦ Inv′(Inℓ) ≡ d ≤ ∆,

◦ Inv′(Outℓ) ≡ d ≤ ∆ ∨ ϕ̄act(ℓ),

◦ Inv′(PreInℓ) ≡ Inv′(PostOutℓ,ℓ′) ≡ d = 0;

• Lab′ = Labout∪Labτ ∪Labin∪
⋃

ℓ∈Loc{inℓ, outℓ} (assuming those sets are disjoint);
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• Edg′ contains the edges (Outℓ, P ostOutℓ,ℓ′, ∆[g]∆, σ, R ∪ {d}) such that either

◦ there exists (ℓ, ℓ′, g, σ, R) ∈ Edg with σ ∈ Labout ∪ Labτ ,

◦ or there exists (ℓ, ℓ′, g, α, R) ∈ Edg with α ∈ Labin and σ = ᾱ;

and the edges (Inℓ, Outℓ,⊤, τ, ∅), (PostOutℓ,ℓ′, P reInℓ′,⊤, outℓ, ∅) and (PreInℓ,
Inℓ,⊤, inℓ, ∅) for each ℓ, ℓ′ ∈ Loc;

• Final′(ℓE) = ⊥ for every ℓE ∈ Loc′;

• Asap(e) = ⊥ for every e ∈ Edg′.
�

ℓ

ℓ′

ℓ′′

σ!

y ≥ 3

α?

x ≥ 2

Figure 5.4: An Elastic controller A.

Inℓ

d ≤ ∆

Outℓ

d ≤ ∆ ∨
y ≤ 3 +∆

d = 0

PostOutℓ,ℓ′

d = 0

PostOutℓ,ℓ′′

d = 0

PreInℓ′

d = 0

PreInℓ′′

Inℓ′

Inℓ′′

τ

σ

y ≥ 3−∆
d := 0

ᾱ

x ≥ 2−∆
d := 0

outℓ

outℓ

inℓ′

inℓ′′

Figure 5.5: The timed automaton E(A) associated to the Elastic controller A of
Figure 5.4.

Running example Figure 5.6 shows the result of the transformation E(·) of Defi-
nition 5.8 when applied to the controller of Figure 4.1(b). Remember that only one
synchronization label is allowed per edge, as usual in the literature and in model-
checkers. For the sake of clarity however, we depict by a single edge, the sequences of
three simultaneous (but sequential) synchronizations σ, outℓ, inℓ. Using this encoding,
we have obtained the graph of Figure 4.4 with HyTech.
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Inℓ′1

d ≤ ∆

Outℓ′1

d ≤ ∆

∨w ≤ 1 + ∆

Inℓ′2

d ≤ ∆

Outℓ′
2

d ≤ ∆

Inℓ′
3

d ≤ ∆

Outℓ′
3

d ≤ ∆

∨z ≤ ∆

τ A, outℓ′1, inℓ′2

w ≥ 1−∆
w := 0, d := 0

τ

B̄, outℓ′2, inℓ′3

z := 0, d := 0τ

C, outℓ′3, inℓ′1

d := 0

Figure 5.6: Running example: controller transformation.

Definition 5.9 [Compositional construction F ] Let A = 〈Loc, Var, Init, Inv, Lab, Edg,
Final〉 be an Elastic controller structured by (Labin, Labout, Labτ). The compositional
construction F(A) is the synchronized product of the following timed automata:

• the event-watchers Wα for every α ∈ Labin,

• the guard-watchers W ℓ
α for every α ∈ Labin and ℓ ∈ Loc,

• and the timed automaton E(A).

Formally, F(A) = E(A)×∏
α∈Labin

Wα ×
∏

α∈Labin,ℓ∈Loc W ℓ
α.

Given δ ∈ Q≥0, the compositional semantics of A is the STTS JAKFδ given byJF(A)Kδ[{inℓ, outℓ} := τ ] structured by (Labin, Labout, Labτ ∪ Labin ∪ {τ}). �

5.5 Correctness proof

The correctness of the compositional construction is established by a proof of mutual
simulation with the AASAP semantics.

Theorem 5.10 Let A be an Elastic controller embedded in an STTS environment
Env. For all δ ∈ Q≥0 we have JAKAAsap

δ �weak JAKFδ and JAKFδ �weak JAKAAsap

δ .

The proof of this theorem is given after the following intermediate definitions and
lemmas.
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b − a

v(x)

ba0 a + δ

δ

−∞ −∞

ETime(a ≤ x ≤ b, v)

Figure 5.7: We have ETime(a ≤ x ≤ b, v) > δ iff v(x) ∈]a + δ, b].

Definition 5.11 [Left and right bounds of a rectangular predicate]

Let ϕ ∈ Rect(Var) be a rectangular predicate and x ∈ Var. We define the left (resp.
right) bound lb(ϕ(x)) (resp. rb(ϕ(x))) of ϕ for x as follows (recursively):

• if ϕ ≡ ⊤ then lb(ϕ(x)) = −∞ and rb(ϕ(x)) = +∞;

• if ϕ ≡ ⊥ then lb(ϕ(x)) = +∞ and rb(ϕ(x)) = −∞;

• ifϕ ≡ x′ ≥ a or ϕ≡ x′ > a then lb(ϕ(x))=

{
a if x = x′

−∞ if x 6= x′ and rb(ϕ(x)) = +∞;

• if ϕ ≡ x′ ≤ a or ϕ ≡ x′ < a then lb(ϕ(x)) = −∞ and rb(ϕ(x)) =

{
a if x = x′

+∞ if x 6= x′

• if ϕ ≡ x′ = a then lb(ϕ(x)) = rb(ϕ(x)) = a if x = x′ and lb(ϕ(x)) = −rb(ϕ(x)) =
−∞ if x 6= x′;

• if ϕ ≡ ϕ1 ∧ ϕ2 then lb(ϕ(x)) = max
{
lb(ϕ1(x)), lb(ϕ2(x))

}
and rb(ϕ(x)) =

min
{
rb(ϕ1(x)), rb(ϕ2(x))

}

�

In the next lemma, we give the relationship between the condition ETime(ϕ, v) ≤ δ
that is used in the rules (A5.1) and (A5.2) of the AASAP semantics (Definition 4.15)
and the predicate −∆]ϕ ]0. We show that the two expressions define the same set of
valuations. Observe however that the predicate in Lemma 5.12 is not exactly of the
form of the closed predicates ϕ̄act(ℓ) and ϕ̄evt(ℓ, α) in Definition 5.5. We come back to
that issue after the lemma.
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Lemma 5.12 Let ϕ ∈ Rect(Var) be a rectangular predicate and let δ ∈ Q≥0. For all
valuations v over Var, we have:

ETime(ϕ, v) ≤ δ iff v |=δ ¬(−∆]ϕ]0)

Proof. Figure 5.7 may be helpful. It shows the value of ETime(a ≤ x ≤ b, v) as
a function of v(x). Notice that ETime(a ≤ x ≤ b, v) = ETime(a ≤ x < b, v). On
the other hand, we have ETime(a < x ≤ b, v) = ETime(a < x < b, v) and those
four functions differ only when v(x) = a: we have ETime(a ≤ x ≤ b, v) = 0 and
ETime(a < x ≤ b, v) = −∞. However, the caption of Figure 5.7 holds for all δ ≥ 0
and all the above predicates.

For each x ∈ Var, let ax = lb(ϕ(x)) and bx = rb(ϕ(x))). Then, we have successively:

ETime(ϕ, v) ≤ δ

iff δ is an upper bound of the set {t ∈ R≥0 | ∀t′ ∈ [0, t] : v − t′ |= ϕ}
iff ∀t ∈ R≥0 : (∀t′ ∈ [0, t] : v − t′ |= ϕ)→ t ≤ δ

iff ∀t ∈ R≥0 : (v |= ϕ ∧ v − t |= ϕ)→ t ≤ δ

iff ∀t ∈ R≥0 : v 6|= ϕ ∨ v − t 6|= ϕ ∨ t ≤ δ

iff v 6|= ϕ ∨ ∀t > δ : v − t 6|= ϕ

iff (v |= ϕ)→ ∃x ∈ Var : v(x)− δ ≤ ax

iff (v |= ϕ)→ (∃x ∈ Var : ax ≤ v(x) ≤ bx ∧ v(x)− δ ≤ ax)

iff (v 6|= ϕ) ∨ ∃x ∈ Var : ax ≤ v(x) ≤ min{bx, ax + δ})
iff (∃x ∈ Var : v(x) < ax ∨ v(x) > bx ∨ (∃x ∈ Var : ax ≤ v(x) ≤ min{bx, ax + δ})
iff ∃x ∈ Var : v(x) ≤ ax + δ ∨ v(x) > bx

iff ∃x ∈ Var : v(x) /∈ (ax + δ, bx]

iff v 6|=δ −∆]ϕ]0
iff v |=δ ¬(−∆]ϕ]0).

�

The rules (A5.1) and (A5.2) of the AASAP semantics (Definition 4.15) give the
condition for the passage of time in the form of a conjunction of disjunctions. The
natural encoding of that condition in timed automata is by the use of invariants.
Since time can pass in a location as soon as its invariant is satisfied, if the invariant
corresponds exactly to the condition of rules (A5.1) and (A5.2), then all is fine. This
is why we have the invariant ‘d ≤ ∆ ∨ ϕ̄act(ℓ)’ in each location Outℓ (ℓ ∈ Loc) of
E(A), the invariant ‘zα ≤ ∆’ (α ∈ Labin) in the location W1 of each event-watcher Wα

(corresponding to the condition I(α) ≤ ∆), and the invariant ϕ̄evt(ℓ, α) in the location
U2 of each guard-watcher W ℓ

α (ℓ ∈ Loc, α ∈ Labin).

However, according to Lemma 5.12, the expressions ϕ̄act and ϕ̄evt slightly over-
approximate the condition ETime(·, ·) ≤ δ. Indeed, they correspond to the closure of
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the exact condition. As a consequence, the construction F(A) has potentially more
behaviours than the expected construction (which should use the exact condition of
Lemma 5.12). As we will see in the proof of Theorem 5.10, this is in fact not the case,
but it somewhat complicates the proof. Intuitively, this is explained by the fact that
the two invariants I1 ≡ x ≤ ∆ ∨ y > 1 and I2 ≡ x ≤ ∆ ∨ y ≥ 1 are equivalent, in the
sense that given any valuations v and v′, there exists a timed transition from v to v′

under invariant I1 if and only if there exists such a timed transition under invariant
I2. In Lemma 5.14, we generalize and formalize this argument.

The reason to do this subtle trick is as follows: the encoding F(A) is intended
to be used for verification of the AASAP semantics with automatic verification tools
like HyTech or Uppaal. But those tools do not accept disjunctions in their in-
put language. This is claimed to be unrestrictive because it is in general easy to
build an equivalent Alur-Dill automaton from a timed automaton over multirectangu-
lar predicates, by splitting components (edges and locations). For edges, the splitting
is straightforward, but some care is required for locations.

In a timed automaton over multirectangular predicates, we would split a location ℓ
with invariant Inv(ℓ) ≡ p1∨· · ·∨pn into n locations ℓi with invariants Inv(li) ≡ pi for 1 ≤
i ≤ n. Those locations are connected to each other by silent edges. The initial location
and the edges of the automaton are modified as expected. This transformation cannot
be done safely (with preservation of emptiness) in general. For example, splitting a
location ℓ with invariant x < 1∨ x ≥ 1 is not safe: from the location ℓ1 with invariant
x < 1, it is impossible to reach the location ℓ2 with invariant x ≥ 1 and thus time is
blocked and x cannot reach 1. Of course, this is not the case in the original location.
A sufficient condition for safe splitting of locations is that the expressions p1, . . . , pn

define closed sets of valuations. Hence, we use the expressions of Definition 5.5, defining
closed sets. The establish the correctness of the construction, we need the following
lemma about right-closed predicates.

Definition 5.13 [Right-closed predicates] A parametric multirectangular predicate
ϕ ∈ MultPRect(Var) is right-closed if (i) it does not contain any negation sign ’¬’; and
(ii) it does not contain any strict inequality sign ’<’. �

Lemma 5.14 Given a parametric multirectangular predicate ϕ ∈ MultPRect(Var) that
is right-closed, let ϕ̄ be the predicate obtained by replacing each occurrence of ‘>’ by
‘≥’ in ϕ and let ϕ̆ be the predicate obtained by replacing each occurrence of ‘≥’ by ‘>’
in ϕ. For all valuations v over Var, for all δ ∈ Q≥0 and T ∈ R>0:

if ∀t ∈ ]0, T ] : v + t |=δ ϕ̄, then ∀t ∈ ]0, T ] : v + t |=δ ϕ̆.

Proof. Without loss of generality, we may assume that ϕ is in conjunctive normal
form and does not contain equality. Since for ϕ = ϕ1 ∧ ϕ2, we have ϕ̄ = ϕ̄1 ∧ ϕ̄2 and
ϕ̆ = ϕ̆1∧ϕ̆2, it suffices to prove the Lemma when ϕ is a finite disjunction of constraints
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of the form xi ⊲⊳ ai. For each constraint p ≡ x ⊲⊳ a appearing in ϕ, let tp ∈ R such that
v(x)+tp = aδ where aδ is equal to respectively c, c+δ, c−δ if a is equal to c, c+∆, c−∆.
Let Pϕ be the set of constraints appearing in ϕ, and let TP = {tp | p ∈ Pϕ} .

For an arbitrary t ∈ ]0, T ], let us prove that v + t |=δ ϕ̆. We have v + t |=δ ϕ̄, and
thus v + t |=δ p̄ for some p ∈ Pϕ.

• If t 6= tp, then we have trivially v + t |=δ p̆.

• If t = tp and p̄ ≡ x ≤ a, then p̄ ≡ p̆ and we have again v + t |=δ p̆.

• If t = tp and p̄ ≡ x ≥ a, then let tq = max({t′ ∈ TP | t′ < tp}∪{0}). Since tp > 0,
we have tp > tq and there exists t̂ such that tq < t̂ < tp and t̂ ∈ ]0, T ]. Therefore
we have v + t̂ |=δ ϕ̄ and thus v + t̂ |=δ p̄′ for some p′ ∈ Pϕ. Let p′ ≡ x′ ⊲⊳ a′.
Either ⊲⊳∈ {>,≥} and then v + tp |=δ p̆′ because tp > t̂, or ⊲⊳≡≤ and then since
v(x′) + t̂ ≤ a′ we have tp′ ≥ t̂ and thus tp′ ≥ tp. Hence, we also have v + tp |=δ p̆′

as p̄′ ≡ p̆′.

In summary, we have shown that at least one predicate in ϕ̆ is satisfied by v + t. We
conclude that v + t |=δ ϕ̆.

�

Now, we present the proof of Theorem 5.10 that establishes the mutual simulation
between JAKFδ and JAKAAsap

δ .

Proof of Theorem 5.10.

In this proof, we use the following notations: for a location ℓ = (ℓ1, . . . , ℓn) of
a synchronized product A1 × · · · × An of timed automata, we define ℓ(Ai) = ℓi for
1 ≤ i ≤ n. Let ℓ̂ ∈ Loci be a location of Ai, we define ℓ[Ai := ℓ̂] to be the location ℓ′

such that ℓ′(Ai) = ℓ̂ and ℓ′(Aj) = ℓj for j 6= i.

Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 structured by (Labin, Labout, Labτ). LetJAKAAsap

δ be given by the TTS T1 = 〈Q1, Q1
0, Q

1
f , Σ

1,→1〉 structured by (Σ1
in, Σ

1
out, Σ

1
τ )

and JAKFδ be given by the TTS T2 = 〈Q2, Q2
0, Q

2
f , Σ

2,→2〉 structured by (Σ2
in, Σ

2
out, Σ

2
τ ).

Then, we have Σ1
in = Σ2

in = Labin, Σ1
out = Σ2

out = Labout and Σ1
τ = Σ2

τ = Labτ ∪ Labin ∪
{τ}.

First, we show that JAKFδ �weak JAKAAsap

δ . Let R ⊆ Q2 × Q1 be the set of pairs
((ℓ2, v2), (ℓ1, v1, I1, d1)) such that:

1. ℓ2(E(A)) =

{
Inℓ1 if d1 ≤ δ
Outℓ1 otherwise

2. For all α ∈ Labin: ℓ2(Wα) =






W0 if I1(α) = ⊥
W1 if I1(α) 6= ⊥ and I1(α) ≤ δ
W2 otherwise
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3. For all α ∈ Labin, ℓ ∈ Loc: ℓ2(W
ℓ
α) =

{
U1 if ℓ = ℓ1

U0 otherwise

4. ∀x ∈ Var : v2(x) = v1(x);

5. v2(d) = d1;

6. For every α ∈ Labin, if I1(α) 6= ⊥ then v2(zα) = I1(α).

Let us show that R is a weak simulation relation, in the sense of Definition 2.5.

First, we have Q1
f = ∅, and thus trivially ∀q1 ∈ Q1

f · ∀q2 ∈ Q2 : if (q2, q1) ∈ R then
q2 ∈ Q2

f .

Second, for each (ℓ1, v1, I⊥, 0) ∈ Q1
0 there exists (ℓ2, v2) ∈ Q2

0 such that (q2, q1) ∈ R.
Indeed since Init(ℓ) is satisfiable for at most one location ℓ ∈ Loc, we can take ℓ2 such
that ℓ2(E(A)) = Inℓ1 , for each α ∈ Labin : ℓ2(Wα) = W0 and for any α ∈ Labin and
ℓ ∈ Loc : ℓ2(W

ℓ
α) = U1 if ℓ = ℓ1 and ℓ2(W

ℓ
α) = U0 otherwise. And we take v2 such that

v2(d) = 0 and v2(x) = v1(x) for all x ∈ Var.

Third, if (q2, q1) = ((ℓ2, v2), (ℓ1, v1, I1, d1)) ∈ R and (q1, σ, q′1) ∈ ։
1 for some σ ∈

Σ1 \{τ} (with q′1 = (ℓ′1, v
′
1, I

′
1, d

′
1)), then we must show that there exists a state q′2 ∈ Q2

such that (q2, σ, q′2) ∈։
2 and (q′2, q

′
1) ∈ R:

• If σ ∈ Σ1
in.

By rule (A2) of the AASAP semantics (Definition 4.15), since (q1, σ, q′1) ∈։
1, we

have

◦ either I1(σ) = ⊥ and then q′1 = (ℓ1, v1, I1[σ := 0], d1). Then, by definition
of R and since (q2, q1) ∈ R, we have ℓ2(Wσ) = W0. Thus, there exists
a transition (q2, σ, q′2) ∈ ։

2 with q′2 = (ℓ′2, v
′
2) where ℓ′2 = ℓ2[Wσ := W1]

and v′
2 = v2[zσ := 0]. This is because Wσ is the only automaton in F(A)

that synchronizes on σ, and it has an edge (W0, W1,⊤, σ, {zσ}) whose guard
is trivially satisfied by v2 and zσ is reset so that the invariant zα ≤ ∆ is
trivially satisfied by v′

2.

Finally, it is easy to see that (q′2, q
′
1) ∈ R (in particular, v′

2(zσ) = I ′
1(σ) = 0).

◦ or I1(σ) 6= ⊥ and then q′1 = q1. Then, by definition of R, since (q2, q1) ∈ R
we have either ℓ2(Wσ) = W1 or ℓ2(Wσ) = W2. In both cases, there exists
a transition (q2, σ, q′2) ∈ ։

2 with q′2 = q2 since Wσ is the only automaton
in F(A) that synchronizes on σ, and it has two self-loops (W1, W1,⊤, σ, ∅)
and (W2, W2,⊤, σ, ∅) with trivial guard and empty reset.

Trivially, we have (q′2, q
′
1) ∈ R.

• If σ ∈ Σ1
out.
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By rule (A1) of the AASAP semantics (Definition 4.15), since (q1, σ, q′1) ∈։
1, we

know that there exists an edge (ℓ1, ℓ
′
1, g, σ, R) ∈ Edg such that v1 |=δ ∆[g]∆ and

v′
1 = v1[R := 0]. Also I ′

1 = I1 and d′
1 = 0.

Since (q2, q1) ∈ R, we have either ℓ2(E(A)) = Inℓ1 or ℓ2(E(A)) = Outℓ1. If
ℓ2(E(A)) = Inℓ1 , then we use the edge (Inℓ1 , Outℓ1,⊤, τ, ∅) of E(A) to reach Outℓ1
(because the invariant of Outℓ1 contains the invariant of Inℓ1 disjunctively). From
location Outℓ1, we take the edge (Outℓ1, P ostOutℓ1,ℓ′1

, ∆[g]∆, σ, R ∪ {d}) because
the guard is satisfied by v2 (it is satisfied by v1, and v1 agrees with v2 on the
variables in Var), and d is reset so that the invariant of PostOutℓ1,ℓ′1

is satisfied.

Then we can go to PreInℓ′1
(invariant d = 0) and finally to Inℓ′1

(invariant
d ≤ ∆) by synchronizing on outℓ1 and inℓ′1

respectively. This makes the location

of the guard-watchers W ℓ1
α and W

ℓ′1
α (for each α ∈ Labin) change to U0 and U1

respectively. Let q′2 = (ℓ′2, v
′
2) be the new current state in JAKFδ . It is easy to

see that (q′2, q
′
1) ∈ R (in particular, the location of the watchers are correctly

updated, we have v′
2(d) = d′

1 = 0 and for every x ∈ R : v′
2(x) = v′

1(x) = 0).

• If σ ∈ Σ1
τ . If σ ∈ Labτ , the proof is similar to the previous case. Otherwise, we

have σ ∈ Labin. Let σ = ᾱ for α ∈ Labin.

By rule (A3) of the AASAP semantics (Definition 4.15), since (q1, ᾱ, q′1) ∈ ։
1,

we know that there exists an edge (ℓ1, ℓ
′
1, g, α, R) ∈ Edg such that v1 |=δ ∆[g]∆

and v′
1 = v1[R := 0]. Also I1(α) 6= ⊥, I ′

1 = I1[α := ⊥] and d′
1 = 0.

We show below that there exists a transition(q2, σ, q′2)∈։
2 such that(q′2, q

′
1)∈ R.

To do this, we consider the sequence of labels ᾱ, outℓ1, inℓ′1
in each component of

F(A) that synchronizes on at least one of those labels.

1. Event-watchers do not synchronize on outℓ1 and inℓ′1
. Only Wα synchro-

nizes on ᾱ. Since (q2, q1) ∈ R and I1(α) 6= ⊥, we have either ℓ2(Wα) = W1

or ℓ2(Wα) = W2. In the first case, we go to W2 (that has a trivial in-
variant) by the edge (W1, W2,⊤, τ, ∅) of Wα. From W2, we take the edge
(W2, W0,⊤, ᾱ, ∅), which is enabled since its guard and the invariant of the
target location W0 is trivial.

2. Guard-watchers W ℓ
α. If ℓ 6= ℓ1, then ℓ2(W

ℓ
α) = U0 and we use the self-loop

(U0, U0,⊤, ᾱ, ∅). If ℓ = ℓ1, then ℓ2(W
ℓ
α) = U1 and the edge (U1, U3,⊤, ᾱ,

{uℓ1
α }) is used, with reset of uℓ1

α to reach U3 (invariant uℓ1
α = 0).

Now, for each β ∈ Labin, the guard-watchers W ℓ1
β (which synchronizes on

outℓ1) and W
ℓ′1
β (which synchronizes on inℓ′1

) have an enabled transition
labelled by outℓ1 and inℓ′1

respectively, leading to their location U0 and U1

respectively.

3. The automaton E(A). Since (q2, q1) ∈ R, we have either ℓ2(E(A)) = Inℓ1 or
ℓ2(E(A)) = Outℓ1. In the first case, we use the edge (Inℓ1 , Outℓ1,⊤, τ, ∅) of
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E(A) to reach Outℓ1 (because the invariant of Outℓ1 contains the invariant
of Inℓ1 disjunctively).

From Outℓ1, we take the edge (Outℓ1, P ostOutℓ1,ℓ′1 , ∆[g]∆, ᾱ, R ∪ {d}). This
is allowed because the guard is satisfied by v2 (it is satisfied by v1, and v1

agrees with v2 on the variables in Var), and d is reset so that the invariant
of PostOutℓ1,ℓ′1

is satisfied.

Then we can go to PreInℓ′
1

(invariant d = 0) and finally to Inℓ′
1

(invariant
d ≤ ∆) by synchronizing on outℓ1 and inℓ′1

respectively.

Let q′2 = (ℓ′2, v
′
2) be the new current state in JAKFδ . It is easy to see that (q′2, q

′
1) ∈

R (in particular, the location of the watchers are correctly updated, we have
v′
2(d) = d′

1 = 0 and for every x ∈ R : v′
2(x) = v′

1(x) = 0).

• If σ = t ∈ R≥0.

By rules (A5.1) and (A5.2) of the AASAP semantics (Definition 4.15), since
(q1, t, q

′
1) ∈։

1, we have:

(B1) for all edges (ℓ, ℓ′, g, σ, R) ∈ Edg with σ ∈ Labout ∪ Labτ ,we have:

∀t′ ∈ [0, t] : d + t′ ≤ δ ∨ ETime(g, v + t′) ≤ δ

(B2) and for all edges (ℓ, ℓ′, g, α, R) ∈ Edg with α ∈ Labin, we have:

∀t′ ∈ [0, t] : d + t′ ≤ δ ∨ ETime(g, v + t′) ≤ δ ∨ (I + t′)(α) ≤ δ

By definition of R, since (q2, q1) ∈ R, we have:

(C1) v2(d) = d1;

(C2) ∀α ∈ Labin: if I1(α) 6= ⊥, then v2(zα) = I1(α);

(C3) ∀g ∈ Rectc(Var)·∀t′ ∈ R≥0: ETime(g, v1+t′) ≤ δ iff v2+t′ |=δ ¬(−∆]g]0).

Proposition (C3) is established by Lemma 5.12 since v1 and v2 agree on all the
variables in Var.

We must show that F(A) can let pass t time units and reach a state q′2. For this,
we show that (i) each automaton in F(A) can let time t pass and that (ii) the
synchronized product of those automata can avoid staying in urgent locations.

(i) Let us consider each automaton in F(A):

◦ Event-Watchers Wα, for α ∈ Labin. If ℓ2(Wα) = W0 or ℓ2(Wα) = W2, then
time can pass since the invariant is trivial. Otherwise, we have ℓ2(Wα) = W1.
If t ≤ δ − v2(zα), then we can stay W1 for t time units. Otherwise, we wait
δ − v2(zα) time units in W1 (so that the value of zα is δ) and we jump to
W2 where the invariant is trivial, using the edge (W1, W2,⊤, τ, ∅).



5.5. CORRECTNESS PROOF 91

◦ Guard-Watchers W ℓ
α, for ℓ ∈ Loc and α ∈ Labin. Since (q2, q1) ∈ R, we have

either ℓ2(W
ℓ
α) = U0 or ℓ2(W

ℓ
α) = U1. In both cases, time can pass since the

invariant is trivial.

◦ E(A). Since (q2, q1) ∈ R, we have either ℓ2(E(A)) = Inℓ1 or ℓ2(E(A)) =
Outℓ1. In the first case, either t ≤ δ−v2(d) and we can stay waiting in Inℓ1 ,
or t > δ− v2(d) and we wait δ− v2(d) time units in Inℓ1 followed by a silent
jump to Outℓ1. We claim that in Outℓ1, the remaining t− (δ − v2

1(d)) time
units can pass. In the second case, we claim that t time units can pass in
Outℓ1.

Replacing (C1) and (C3) in (B1), we obtain that ∀g ∈ Gact(ℓ1) · ∀t′ ∈ [0, t] :
(v2(d) + t′ ≤ δ ∨ v2 + t′ |=δ ¬(−∆]g ]0)). This implies that v2 + t′ |=δ d ≤
∆∨ϕ̄act(ℓ1), that is v2+t′ satisfies the invariant of Outℓ1 for every 0 ≤ t′ ≤ t.

(ii) It remains to check that we do not need to let time pass in an urgent location.
The urgent locations we could enter by letting time pass in F(A) are the locations
ℓα (for each α ∈ Labin) such that ℓα(E(A)) = Outℓ1, ℓα(Wα) = W2 and ℓα(W ℓ1

α ) =
U1, where a transition labelled by ᾱ is proposed.

Assume that after t′ < t time units, we get into such an urgent location ℓα (for
some α ∈ Labin). Then, we necessarily have v2(d)+t′ ≥ δ and v2(zα)+t′ ≥ δ (and
I1(α) 6= ⊥ since ℓα(Wα) = W2 and thus ℓ1(Wα) 6= W0). From (C1) and (C2) for
every t′′ > t′ we have d1 + t′′ > δ and (I1 + t′′)(α) > δ. Therefore, (B2) reduces
to ∀g ∈ Gevt(ℓ1, α)∀t′′ · t′ < t′′ ≤ t : ETime(g, v1 + t′′) ≤ δ, which entails by (C3)
that v2 + t′′ |=δ ¬(−∆]g ]0) and finally v2 + t′′ |=δ ϕ̄evt(ℓ1, α) for t′ < t′′ ≤ t. Since
ϕ̄evt(ℓ1, α) contains only loose inequalities, we also have v2 + t′ |=δ ϕ̄evt(ℓ1, α).

Hence, the invariant of U2 in W ℓ1
α is satisfied by v2 + t′′ for all t′′ ∈ [t′, t] and so

we can jump from U1 to U2 and stay there for the remaining t− t′ time units.

This trick can be repeated for all urgent locations that we encounter when sim-
ulating the timed transition. Since there is a finite number of such locations
(at most |Labin|), there is a finite number of silent jumps to a location U2 of a
guard-watcher. Therefore, we have (q2, t, q

′
2) ∈։

2.

The reader can easily check that we have (q′2, q
′
1) ∈ R.

Now, we proceed with the second part of the proof showing that JAKAAsap

δ �weakJAKFδ . Let R′ ⊆ Q1 ×Q2 be the set of pairs ((ℓ1, v1, I1, d1), (ℓ2, v2)) such that:

1. ℓ2(E(A)) ∈ {Inℓ1 , Outℓ1};

2. For all ℓ ∈ Loc, we have ℓ2(W
ℓ
α) = U0 if and only if ℓ 6= ℓ1;

3. For all α ∈ Labin: I1(α) =

{
⊥ if ℓ2(Wα) = W0

v2(zα) otherwise



92 CHAPTER 5. VERIFICATION OF THE AASAP SEMANTICS

4. ∀x ∈ Var : v1(x) = v2(x);

5. d1 = v2(d).

Let us show that R′ is a weak simulation relation, in the sense of Definition 2.5.
Notice that R′ 6= R−1 and thus we establish mutual weak simulation and not weak
bisimulation.

First, we have Q2
f = ∅, and thus trivially ∀q2 ∈ Q2

f · ∀q1 ∈ Q1 : if (q1, q2) ∈ R′ then
q1 ∈ Q1

f .

Second, for each (ℓ2, v2) ∈ Q2
0 it is easy to check that there exists (ℓ1, v1, I⊥, 0) ∈ Q1

0

such that (q1, q2) ∈ R′.

Third, if (q1, q2) = ((ℓ1, v1, I1, d1), (ℓ2, v2)) ∈ R′ and (q2, σ, q′2) ∈ ։
2 for some

σ ∈ Σ2 \ {τ} (with q′2 = (ℓ′2, v
′
2)), then we must show that there exists a state q′1 ∈ Q1

such that (q1, σ, q′1) ∈ ։
1 and (q′1, q

′
2) ∈ R′. In this part of the proof, however there

are several states q′2 ∈ Q2 such that (q2, σ, q′2) ∈ ։
2, we often assume for the sake

of simplicity and without loss of generality that q′2 is a particular chosen state. We
informally justify that this is not restrictive. First, notice that the assumption that
we have made before Definition 2.5 holds trivially since F(A) has no final states.
Therefore, we may disregard the states q′′2 such that (q2, σ, q′′2) ∈։

2 and q′2
τ−→ . . .

τ−→ q′′2 .
Second, we must ensure that all the successors (according to ։

2) of the other states q′′2
such that (q2, σ, q′′2) ∈ ։

2 are also successors of q′2 (with the same label). The reader
can check that this is true.

More succinctly, this part of the proof makes the implicit assumption that the state
space of JAKFδ is restricted to the set {q2 ∈ Q2 | ∃q1 ∈ Q1 : (q1, q2) ∈ R′}.

• If σ ∈ Σ2
in.

Since the event-watcher Wσ is the only automaton in F(A) that synchronizes on
σ, and (q2, σ, q′2) ∈։

2 we have:

◦ either ℓ2(Wσ) = W0 and then assume wlog. that ℓ′2 = ℓ2[Wσ := W1]. Then,
we have v′

2 = v2[zσ := 0] and since (q1, q2) ∈ R′, I1(σ) = ⊥.

Therefore, there is a transition (q1, σ, q′1) ∈ →1 with q′1 = (ℓ1, v1, I1[σ :=
0], d1) (by rule (A2) of the AASAP semantics, Definition 4.15). Hence, we
have (q′1, q

′
2) ∈ R′ (in particular, I ′

1(σ) = v′
2(zσ) = 0).

◦ or ℓ2(Wσ) 6= W0 and then assume wlog. that ℓ′2 = ℓ2 (and thus q′2 = q2).
Since (q1, q2) ∈ R′, we have I1(σ) 6= ⊥, which implies that (q1, σ, q′1) ∈ →1

for q′1 = q1 (by rule (A2) of the AASAP semantics, Definition 4.15). It is
then immediate that (q′1, q

′
2) ∈ R′.

• If σ ∈ Σ2
out.



5.5. CORRECTNESS PROOF 93

In this case, E(A) is the only automaton synchronizing on σ and there must exist
an edge (ℓ1, ℓ

′
1, g, σ, R) ∈ Edg such that v2 |=δ ∆[g]∆ and v′

2 = v2[R ∪ {d} := 0]
(because silent edges labelled by τ do not modify the variables). Also, assume

wlog. that ℓ′2(E(A)) = Inℓ′1
(thus the guard-watchers W ℓ1

α and W
ℓ′1
α for each α ∈

Labin have moved to U0 and U1 respectively, through internal synchronizations
on outℓ1 and inℓ′1

respectively).

Since (q1, q2) ∈ R′, v1 and v2 agree on the variables of g and thus v1 |=δ ∆[g]∆.
Then by rule (A1) of the AASAP semantics (Definition 4.15), there is a transition
(q1, σ, q′1) ∈ →1 where q′1 = (ℓ′1, v

′
1, I1, 0) and v′

1 = v1[R := 0].

It is easy to check that (q′1, q
′
2) ∈ R′ (in particular, d′

1 = v′
2(d) = 0 and for every

x ∈ R : v′
1(x) = v′

2(x) = 0).

• If σ ∈ Σ2
τ . If σ ∈ Labτ , the proof is similar to the previous case. Otherwise, we

have σ ∈ Labin. Let σ = ᾱ for α ∈ Labin.

We consider each component of F(A) and gather the following observations:

1. By definition of E(A), there must exist an edge (ℓ1, ℓ
′
1, g, α, R) ∈ Edg such

that v2 |=δ ∆[g]∆ and v′
2 = v2[R ∪ {d} := 0]. As in the previous case,

assume wlog. that ℓ′2(E(A)) = Inℓ′
1
, thus two silent transitions synchronizing

internally on outℓ1 and inℓ′1
respectively have been taken.

2. (a) In guard-watchers W ℓ
α (for ℓ ∈ Loc), the sequence of labels ᾱ, outℓ1, inℓ′1

has the following effect: if ℓ 6= ℓ1 and ℓ 6= ℓ′1, then W ℓ
α does not synchronize

on outℓ1 and inℓ′1
and thus ℓ2(W

ℓ
α) = ℓ′2(W

ℓ
α) = U0 (there is a self-loop on

U0 labelled by ᾱ); if1 ℓ = ℓ1, then ℓ2(W
ℓ
α) = U1 and ℓ′2(W

ℓ
α) = U0 (via U3);

and if ℓ = ℓ′1, then ℓ2(W
ℓ
α) = U0 and assume wlog. that ℓ′2(W

ℓ
α) = U1.

(b) In guard-watchers W ℓ
β (for α 6= β ∈ Labin), the location is updated to U0

if ℓ = ℓ1, to U1 if ℓ = ℓ′1 and it is unchanged otherwise.

3. For event-watchers (which do not synchronize on outℓ1 nor on inℓ′1
), only

Wα synchronizes on ᾱ. Hence, we have either ℓ2(Wα) = W1 or ℓ2(Wα) = W2

and ℓ′2(Wα) = W0.

From the above observations, and since (q1, q2) ∈ R′, we have v1 |=δ ∆[g]∆ and
I1(α) 6= ⊥. Hence, by rule (A3) of the AASAP semantics (Definition 4.15), there
is a transition (q1, σ, q′1) ∈ →1 with q′1 = (l′1, v

′
1, I

′
1, 0) where v′

1 = v1[R := 0] and
I ′
1 = I1[α := ⊥].

Therefore, it is easy to see that (q′1, q
′
2) ∈ R′ (in particular, the location of

the watchers are correctly updated and we have d′
1 = v′

2(d) = 0 and for every
x ∈ R : v′

1(x) = v′
2(x) = 0).

1The case ℓ1 6= ℓ′1 is handled similarly.



94 CHAPTER 5. VERIFICATION OF THE AASAP SEMANTICS

• If σ = t ∈ R≥0.

(1) First, assume that v2(d) = 0. Then ℓ2(E(A)) = Inℓ1 . If t ≤ δ, then the
invariant of Inℓ1 is satisfied by v2 + t′ for all t′ ∈ [0, t] and we may assume wlog.
that ℓ′2(E(A)) = Inℓ1 . Since (q1, q2) ∈ R′, we have d1 = v2(d) and thus d1 + t′ ≤ δ
for all t′ ∈ [0, t]. Then, by rules (A5.1) and (A5.2) of the AASAP semantics
(Definition 4.15), there is a transition (q1, t, q

′
1) ∈ →1 with q′1 = (l′1, v

′
1, I

′
1, d

′
1)

where ℓ′1 = ℓ1, v′
1 = v1 + t, I ′

1 = I1 + t and d′
1 = d1 + t. The reader can easily

check that we have (q′1, q
′
2) ∈ R′.

On the other hand, if t > δ, then a silent jump to Outℓ1 must have occurred and
thus ℓ′2(E(A)) = Outℓ1.

Since the invariant of Outℓ1 contains the invariant of Inℓ1 disjunctively, we have
that v2 + t′ satisfies the invariant of Outℓ1 for all t′ ∈ [0, t], that is v2 + t′ |=δ

d ≤ ∆ ∨ ϕ̄act(ℓ1). Since v2 + t′ > δ for all t′ ∈ (δ, t], we have v2 + t′ |=δ ϕ̄act(ℓ1)
for t′ ∈ (δ, t]. By Lemma 5.14 (with v = v2 + δ), we have v2 + t′ |=δ ϕ̆act(ℓ1)
for all t′ ∈ (δ, t], and thus v2 + t′ |=δ d ≤ ∆ ∨ ϕ̆act(ℓ1) for all t′ ∈ [0, t]. Since
(q1, q2) ∈ R′, we have d1 = v2(d) and v1(x) = v2(x) for all x ∈ Var. Hence, for all
t′ ∈ [0, t], we have d1 ≤ δ or v1 |=δ ϕ̆act(ℓ1). By Lemma 5.12 and Definition 5.5,
this is equivalent to:

∀g ∈ Gact(ℓ1) · ∀t′ ∈ [0, t] : d1 + t′ ≤ δ ∨ ETime(g, v1 + t′) ≤ δ)

This shows that the condition of the rule (A5.1) of the AASAP semantics (Defi-
nition 4.15) is satisfied.

Now, we establish the condition of rule (A5.2) for each α ∈ Labin:

◦ If ℓ2(Wα) = W0. Since (q1, q2) ∈ R′, we have I1(α) = ⊥ and trivially
∀t′ ∈ [0, t] : (I1 + t′)(α) ≤ δ which entails the condition of rule (A5.2).
Clearly, ℓ′2(Wα) = W0.

◦ If ℓ2(Wα) = W1. Since (q1, q2) ∈ R′, we have I1(α) = v2(zα). If v2(zα) + t ≤
δ, then the invariant of W1 is satisfied by v2 + t′ for all t′ ∈ [0, t] and we
may assume wlog. that ℓ′2(Wα) = W1. Then, we also have I1(α) + t′ ≤ δ
for all t′ ∈ [0, t] which entails the condition of rule (A5.2). On the other
hand, if v2(zα)+ t > δ, then ℓ′2(Wα) = W2 (by an intermediate silent jump).
Let us decompose the transition (q2, t, q

′
2) ∈ ։

1 into (q2, δ, q
′′
2) ∈ ։

1 and
(q′′2 , t − δ, q′2) ∈ ։

1, and assume that the second transition starts with a
continuous transition (and not a silent transition). After the first transition,
the location of E(A) is Outℓ1, the location of Wα is W2 and the location of
W ℓ1

α is either U1, U2 or U3. It cannot obviously be U3 because time is blocked
there. In the second transition (which is a sequence of silent and continuous
transitions from JAKFδ ), when time is passing, the location of W ℓ1

α cannot
be U1 as it would correspond to an urgent location in JAKFδ . When time is
passing, the location of W ℓ1

α is then U2, and the invariant of U2 is therefore
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satisfied by v2 + t′ for all t′ ∈ (δ, t]. By Lemma 5.14, we conclude that
v2 + t′ |=δ ϕ̆evt(ℓ1, α) for all t′ ∈ (δ, t]. By a similar argument as for Gact(ℓ1),
we can show that:

∀g ∈ Gevt(ℓ1, α)·∀t′ ∈ [0, t] : d1+t′ ≤ δ∨ETime(g, v1+t′) ≤ δ∨(I1+t′)(α) ≤ δ

which is the condition of rule (A5.2).

Hence, there is a transition (q1, t, q
′
1) ∈ →1 and the reader can check that we

have (q′1, q
′
2) ∈ R′.

(2) Second, if v2(d) 6= 0. Then, since Inℓ1 is entered with d equal to 0, there must
have been in the past a continuous transition from a state q′′2 = (ℓ′′2, v

′′
2) ∈ Q2

with v′′
2(d) = 0.

Observe that any transition between state q′′2 and q2 can only have a label either
τ or α ∈ Labin, and that such transitions do not modify the variables in Var∪{d}.
Hence, we must have (q′′2 , t

′, q′2) ∈ →2 for t′ = v2(d)+t, and we can reuse the proof
for the case v2(d) = 0 to show the existence of a transition (q′′1 , t

′, q′1) ∈ →1 for
q′′1 ∈ Q1 such that (q′′1 , q

′′
2) ∈ R′. Therefore, since the TTS JAKAAsap

δ is normalized,
we have (q′′1 , t

′′, q̂1) ∈ →1 and (q̂1, t, q
′
1) ∈ →1 for some q̂1 = (ℓ1, v̂1) ∈ Q1 and v̂1

agrees with v1 on the variables in Var∪{d}. Hence, by rules (A5.1) and (A5.2) of
the AASAP semantics (Definition 4.15), there is also a transition (q1, t, q

′
1) ∈ →1

with q′1 = (l′1, v
′
1, I

′
1, d

′
1) where ℓ′1 = ℓ1, v′

1 = v1 + t, I ′
1 = I1 + t and d′

1 = d1 + t.
The reader can easily check that we have (q′1, q

′
2) ∈ R′.

�

Theorem 5.10 shows that the compositional construction can be used as an equiv-
alent model to verify safety properties of the AASAP semantics. Hence, we have im-
mediately the following theorem.

Theorem 5.15 Let A be an Elastic controller embedded in an STTS environment
Env. For all δ ∈ Q≥0, A is correct up to δ if and only if JAKFδ ‖Env is empty.

As a consequence, the AASAP semantics can theoretically be verified using existing
model-checkers and the code for an implementation of Elastic controllers can be
generated automatically with certified correctness. In practice, the verification of the
AASAP semantics using the compositional transformation has been implemented for
HyTech and Uppaal in [Leg04] and will be detailed in Martin De Wulf’s PhD thesis.
From an Elastic controller, the tool generates the watchers and the transformed
controller in the input language of Uppaal (with the parameter ∆ instantiated to a
rational value) or HyTech (∆ is left as a parameter). For the code generation, some
academic examples have been treated manually, and the methodology has been applied
to a realistic example, the Philips Audio Control Protocol [DDR05b].
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5.6 Semi-algorithms for constraint synthesis

We give two semi-algorithms for the synthesis of correct values for ∆ in the AASAP
semantics. These procedures perform either a forward or a backward analysis of the
compositional construction, with ∆ left as a parameter. To do so, we use the clas-
sical view of parametric timed automata as hybrid automata (parameters are vari-
ables whose first derivative is 0 in every location). We formalize this view hereafter.
Therefore, the semi-algorithms can be implemented in HyTech. They construct the
(forward or backward) reachable states and thus are not guaranteed to terminate.

For an interval φ ⊆ R, we use the notation JAKFφ to denote JF ′(A)K where F ′(A) is
a linear hybrid automaton, obtained from F(A) and φ by:

1. splitting the locations with disjunctive invariants, to obtain only conjunctive
invariants (as we have sketched after Lemma 5.12);

2. considering the parameter ∆ as an additional variable of F ′(A);

3. adding the rectangular constraint lφ ≤ ∆∧∆ ≤ rφ conjunctively to each invariant
condition Inv(·), and the constraint ∆̇ = 0 conjunctively to each flow condition
Flow(·).

5.6.1 Forward semi-algorithm

The principle of the forward semi-algorithm (sketched as Algorithm 2) is as follows:
first, using Algorithm 1 on page 33, we check if the controller is correct for δ = 0, which
corresponds to a perfect hardware (line 1). This corresponds to the usual situation in
model-checking: we verify the intrinsic correctness of the controller. If the verification
fails, we should conclude that the controller is flawed in its logic. Notice that if the
test is passed successfully, it means that the reachable states are computable. Now, we
take δ = 1, which corresponds to a hardware executing in the same time scale as the
environment (line 2). If the system is safe in this situation, we know by Corollary 4.19
that it is safe for all δ ≤ 1. Here, the choice to take δ = 1 is arbitrary and may be
replaced by δ = +∞ (and then replace the interval [0, 1] by R≥0 in the algorithm). The
goal is to take advantage of the fact that the designer has in general an idea of an upper
bound for δ for which it is easy to find a hardware that implements the controller (for
instance such that 3∆L + 2∆P < δ, according to Theorem 4.20). This way, we reduce
the a priori range of δ and thus we reduce the size of the reachable states to compute.
Clearly, in some particular field of applications, the value δ = 1 should be increased to
fit with the particular time scale of the environment, for example in low-level networks
or electronics.

We continue the description of the forward semi-algorithm. In the while-loop
(line 6), we compute the reachable states of the system JAKFδ ‖Env for δ ∈ ϕ where
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Algorithm 2: Forward verification of the AASAP semantics using the composi-
tional construction F(·).

Data : An Elastic controller A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 and an
STTS environment Env with final states Qf .

Result : The set ϕ = {δ ∈ [0, 1] | JAKFδ ‖Env is empty }.
begin

1 if Verify(JAKFδ=0‖Env) = Unsafe then return ∅ ;
2 if Verify(JAKFδ=1‖Env) = Safe then return [0, 1] ;
3 Sold ← ∅ ;
4 S ← Reach(JAKFδ=0‖Env) ;
5 ϕ← [0, 1[ ;
6 while S 6= Sold do
7 Sold ← S ;
8 S ← PostJAKFϕ ‖Env(S) ;

9 ϕ← ϕ ∩ {v(∆) | ∀((ℓ, P ), q) ∈ S : v ∈ P → q 6∈ Qf} ;

10 return ϕ ;

end

ϕ is an interval of values of δ for which we have not been able so far to prove thatJAKFδ ‖Env is not empty (or unsafe). Before entering the loop, the variable S is initial-
ized to Reach(JAKFδ=0‖Env), which is a set of states that are reachable for any δ ≥ 0
(according to Theorem 4.18 and Theorem 5.10, faster is better). At each iteration, S
is replaced by its one-step successors computed in the TTS of JAKFδ ‖Env with δ ∈ ϕ
(line 8). If we find a state in S that is a final state for Env, we know that the corre-
sponding value of the parameter ∆ (seen as a variable of a linear hybrid automaton
in the algorithm) is unsafe, so we remove it from ϕ (line 9). Again, by the faster
is better property, the set ϕ is necessarily an interval. If the algorithm terminates,
we have S = Sold and S contains the reachable states of JAKFφ ‖Env. The set ϕ gives
immediately an answer to both the [Existence] and the [Maximization] flavours of the
robust safety control problem (Definition 4.17).

Algorithm 2 is not guaranteed to terminate as it uses the semi-algorithm Verify

which tries to compute the reachable states of a linear hybrid automaton. Notice that
the reachable states are in general not “computable” even for the class of Alur-Dill
automata for which the emptiness problem is however decidable (Proposition 2.17).
The second reason why our algorithm may not terminate is that the set S computed
by the loop (lines 6-9) may never stabilize. A simple example of a timed automaton for
which this happens is given in Section 6.5. If the guards of the automaton of Figure 6.1
are enlarged by δ (replacing x ≤ 2 by x ≤ 2 + δ, y ≥ 2 by y ≥ 2 − δ, etc.), it can be
shown that the point v = (ℓ2, x = 0, y = 2) (and hence the location err) is reachable no
matter the value of δ > 0. However, as δ decreases, the number of transitions that are
necessary to reach v increases. Therefore, the loop of Algorithm 2 will need roughly
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O(n) steps to remove δ = 1
n

from the interval φ, and so it will not terminate on that
example.

The decidability of the [Existence] flavour of the robust safety control problem is
established in Chapter 6.

5.6.2 Backward semi-algorithm

The backward semi-algorithm (sketched as Algorithm 3) is the dual of the forward
semi-algorithm. We compute in S the states that can reach the final states by iterating
the one-step predecessors operator Pre. The interval ϕ is reduced at each iteration by
removing the values of ∆ corresponding to an initial state in S.

Algorithm 3: Backward verification of the AASAP semantics using the composi-
tional construction F(·).

Data : An Elastic controller A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 and an
STTS environment Env with initial states Q0.

Result : The set ϕ = {δ ∈ [0, 1] | JAKFδ ‖Env is empty }.
begin

1 if Verify(JAKFδ=0‖Env) = Unsafe then return ∅ ;
2 if Verify(JAKFδ=1‖Env) = Safe then return [0, 1] ;
3 Sold ← ∅ ;
4 S ← Reach−1(JAKFδ=0‖Env) ;
5 ϕ← [0, 1[ ;
6 while S 6= Sold do
7 Sold ← S ;
8 S ← PreJAKFϕ ‖Env(S) ;

9 ϕ← ϕ ∩ {v(∆) | ∀((ℓ, P ), q) ∈ S : v ∈ P ∩ JInit(ℓ)K→ q 6∈ Q0} ;

10 return ϕ ;

end

Several variations of those two semi-algorithm are possible. First, we can interleave
the forward and backward approaches. At each iteration of the while-loop, we compute
both a forward step (Post(·)) and a backward step (Pre(·)), and we use the conjunc-
tion of the constraints computed in each semi-algorithm. This way, the constraint is
stronger and that should facilitate further computation steps by reducing the state
space for the parameter. Second, we can compute the reachable states in the forward
algorithm (and the states that can reach the final states in the backward algorithm)
more efficiently by storing in S only the newly reachable states at each iteration. This
is a usual trick that we implement with a new variable R, initialized to R← ∅ at the
beginning of the algorithms, and the following two lines inserted after line 8:
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8.1 S ← Weakdiff(S, R) ;
8.2 R← (R ∪ S) ;

At the beginning of the loop, R contains the reachable states computed in the previous
iterations, and S is the set of states that have been discovered reachable at the previous
iteration. The new value of S is the set of successors of the ancient S, from which the
set R is removed. In fact, the operator Weakdiff(S, R) computes an over-approximation
of the difference S \R. Computing the exact difference is computationally costly and
model-checkers like HyTech offer weaker operators that are much faster to compute.
The approximation is conservative in the sense that S still contains the newly reachable
states. The choice between the exact operator and an approximated one depends on
the specific application, and both should be tried. Third, we can further reduce the
state space by adding an invariant to the system: in the forward algorithm, at each
iteration we can intersect the reachable states S with the set Reach−1(JAKFδ=1‖Env).
This way, we remove states that cannot reach the bad states of Env for δ = 1 (and thus
for any δ ≤ 1). A similar invariant for the backward algorithm is Reach(JAKFδ=1‖Env).

5.7 Conclusion

In Chapter 4, we have presented a new methodology to obtain a real-time controller
that is correct and implementable, with the formalism of timed automata. One of
the components of the methodology is the program semantics, that provides a realistic
model of a real-time implementation: the characteristics of real systems, such as delays
in synchronizations, non-zero computation times and finite precision of digital clocks
are taken into account. The other component is the AASAP semantics. The correct-
ness of a model (with regard to the AASAP semantics) implies the correctness of the
implementation (with regard to the program semantics). The interest of this stronger
relation is that the AASAP semantics can be algorithmically verified, as we have shown
in Chapter 5. Therefore, we can formally establish that a controller is implementable
on a given hardware, with known characteristics.

In Chapter 6, we solve the problem of deciding the existence of a hardware such that
the controller is implementable. A positive answer to that problem means that a correct
implementation can be obtained by construction, if it is executed on a sufficiently fast
hardware. On the other hand, a negative answer means that the controller is not correct
when the classical and idealized semantics is perturbed by the slightest uncertainty,
and thus that it is not robust. A reasonable conclusion is that robustness is a necessary
and sufficient condition of implementability.
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Chapter 6

Robustness of Timed Automata

A necessary condition for existence is to be a nonmember of the class of things
which do not exist. (. . . ) No one knows whether this condition is sufficient as
well.

Anonymous, Ask-A-Scientist Archive, http://www.newton.dep.anl.gov/.

6.1 Introduction

In this chapter, we study a theoretical problem that is closely related to the [Existence]
flavour of the robust safety control problem (see Definition 4.17). Our main result is
that this problem is decidable.

We define a family of semantics for timed automata that is parameterized by two
parameters: ∆ and ε. We call this semantics the enlarged semantics. The parameter
∆ has a similar meaning as in the previous chapter. It is used to enlarge the set of
valuations that satisfy a guard. The second parameter ε models another type of pertur-
bation that applies to the rate of the clocks. Instead of being perfectly synchronized
with the real time (time in the environment), the clocks of the controller may drift
by ε. Their derivative lie in the interval [1 − ε, 1 + ε]. There are several reasons for
introducing this new semantics of timed automata. First, the perturbations induced
by ∆ and ε apply uniformly to all guards and all clocks and so the model is easier to
understand and to reason about. Furthermore, the perturbations should be applied to
both the controller and the environment. Because of that, the enlarged semantics is
slightly more permissive than the AASAP semantics (formally it simulates the AASAP
semantics) and the decidability result cannot formally be extended to the [Existence]
flavour of the robust safety control problem. Even though, we believe it is not rea-
sonable to implement a controller that is correct according to the AASAP semantics
but not according to the enlarged semantics, as it would mean that the model is not
robust against arbitrarily small perturbations ∆ or ε. Second, there is an interesting

101
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paper by Puri about timed automata perturbed only by drifts (so that ∆ is always
equal to 0) [Pur98]. The new results that we present follow the general ideas of Puri’s
paper (e.g. they are based on a careful study of the structure of limit cycles of timed
automata, a fundamental notion introduced by Puri) but we needed new techniques to
deal with the imprecisions on guards instead of the drifts on clocks. Also, the proofs
in Puri’s paper are not always fully convincing, so we had to reprove a large number
of his lemmas for establishing our proof, and we had to correct one of them. Third,
as Puri sketches it in his paper, there is a tight connection between the two types of
perturbations, and therefore it makes sense to mix them in a new semantics. Finally,
notice that the results of Chapter 5 can be adapted in the presence of drifts in clocks
of the program semantics, as done in [DDR05a].

6.2 Related Works

In Section 4.5, we have given an overview of the previous works in verification about
bridging the gap between mathematical models for real-time and their physical coun-
terpart. There were attempts to reduce the expressive power of timed and hybrid
automata, to introduce fuzziness, or to define semantics that are robust against small
perturbations. In this section, we give samples from the literature that illustrate those
approaches, and we compare them with the AASAP semantics, focusing on the decid-
ability aspects.

In [GHJ97], a variant of the classical semantics of Alur-Dill automata is studied.
In the classical definition, closed and open automata may have dramatically different
behaviours. However, a physical realization of the two models could not distinguish
open and closed inequalities and more generally could not distinguish arbitrarily close
behaviours. The authors define a new acceptance condition for timed automata that is
robust with regard to small perturbations like replacing a strict inequality by a loose
one. The language of a robust timed automaton is a set of tubes (the open sets of a
topology defined by some usual metrics) rather than a set of trajectories that reach
the final states. A tube is accepted by a timed automaton if the tube contains a dense
set of accepted trajectories. With that definition, a trajectory that is accepted by the
classical semantics but that is isolated (because for example, one of the guards is an
equality constraint) is now rejected. Symmetrically, a rejected trajectory that is not
isolated is now accepted. It is shown that the definition is independent of the choice of
a “natural” metrics, and that tube acceptance coincides with trajectory acceptance for
open timed automata. For the important verification questions, robust timed automata
have the same properties as classical timed automata: their emptiness is decidable (it
is PSpace-Complete), they are not determinizable, not closed under complement
and the problem of universality is undecidable [HR00]. For the slightly more general
class of open rectangular automata, emptiness is undecidable. It may be concluded
that the inherent precision (e.g. through the use of equality constraint) of timed and
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hybrid automata is not the deep cause of the undecidability results.

In [Frä99], the author tends to contradict that claim for hybrid systems, with
a definition of robustness that looks more similar to the guard enlargement of the
AASAP semantics: in the computation of the reachable states, a perturbed version
of the post operator is used. Given a noise level ǫ, the set that is computed by
the classical operator is augmented by all the neighbour states that are at distance
at most ǫ. It is argued that a realistic system should be either safe or unsafe both
in the classical and perturbed version of the reachability analysis, because noise, no
matter how small, is inevitably present in real-world applications. Such systems are
called robust. The central result of the paper is that safety is decidable for robust
hybrid systems. However, the interest of the result is somewhat limited because it is
undecidable to determine whether a given hybrid automaton is robust or not.

Those works of Fränzle and Henzinger et al. consider timed and hybrid automata in
continuous time, and give decidability results for robust reachability. In that respect,
the main result of this chapter is similar but for a different definition of robustness.
However, they do not provide a formal argument to show that their definition of ro-
bustness leads to models of real-time systems that are implementable. This is done for
the AASAP semantics in Chapter 4.

In [AT04], a decidability result is presented for the emptiness problem of lazy hybrid
automata. This is a class of rectangular automata with perturbed guards in a sampled
discrete-time semantics: the length of the timed transitions is equal to one unit of
time, but the mode switches can occur in some interval during the timed evolution,
thus in a fuzzy (or lazy) way. It contrasts with the usual discrete-time semantics
where the discrete transitions must occur at integer instants. The result is interesting
because it does not require the rectangular automata to be initialized and that removes
an important restriction for the designer. The drawback is the need to choose a fixed
granularity for time and a fixed level of fuzziness for guards. In practice, this is perhaps
a low price to pay for decidability.

In the context of real-time temporal logics, it has also been observed that fuzziness
reduces the expressive power and may lead to decidability. In [AFH96], it is shown
that a temporal logics becomes decidable when disallowing equalities in the timing con-
straints. More recently, robust interpretations of real-time logics have been introduced
where the timing constraints are slightly relaxed, and the relation with implementabil-
ity (i.e. the transfer of the properties verified by the model to the implementation)
has been studied [HVG04, HMP05]. There are certainly many other interesting results
in the literature, but the study of temporal logics is out of the scope of this thesis.

Later in this chapter, we discuss in more details the important work by Puri about
the dynamical properties of timed automata [Pur98]. An extension of that work to more
general dynamical systems has been proposed in [AB01]. Finally, we mention a recent
result for timed automata with a single clock: if the clock may drift by ε > 0, then there
exists a deterministic timed automaton that accepts the same timed language [ATM05].
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Therefore, timed automata with a single drifting clock are complementable. This result
is of interest for systems that are specified by a product of 1-clock timed automata, a
common situation in circuit theory [BS91].

6.3 The implementability problem

We define the new parametric semantics for timed automata. Since we are only inter-
ested in safety properties, the definition does not take into account the invariants. As
already mentioned after Definition 2.13, this is not surprising since invariants can be
transfered to guards while preserving the reachability properties. Further, we assume
that the constants are integers and the variables are bounded by the largest constant
M of the timed automaton. Accordingly, we call bounded region automaton the region
automaton restricted to bounded regions. This is not restrictive for modeling purposes
because clocks that run over the largest constant can be reset, and the finite structure
of the timed automaton can be used to remember the status of each clock (either exact
or over M). For further execution, the guards are evaluated according to that status,
which is correct because the truth value of a guard does not depend on the precise
value of a clock as soon as it is larger than M .

Definition 6.1 Given an Alur-Dill automaton A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉
with n clocks (Var = {x1, . . . , xn}) and largest constant M , and given two numbers
∆, ε ∈ R≥0, the enlarged semantics of A is the TTS JAKε

∆ = 〈Q, Q0, Qf , Σ,→〉 where :

• Q = {(ℓ, v) | ℓ ∈ Loc ∧ v : Var→ [0, M + 1]};

• Q0 = {(ℓ, v) ∈ Q | v |= Init(ℓ)};

• Qf = {(ℓ, v) ∈ Q | v |= Final(ℓ)};

• Σ = Lab;

• The relation → ⊆ Q× (Σ ∪ T)×Q is defined as follows:

◦ Discrete transitions. For σ ∈ Lab, ((ℓ, v), σ, (ℓ′, v′)) ∈ → iff there exists an
edge (ℓ, ℓ′, g, σ, R) ∈ Edg such that v ∈ N∞(JgK, ∆) and v′ = v[R := 0].

◦ Timed transitions. For each t ∈ T, ((ℓ, v), t, (ℓ′, v′)) ∈ → iff ℓ′ = ℓ and
v′ − v ∈ N∞(t, εt), that is (1 − ε)t ≤ v′(xi) − v(xi) ≤ (1 + ε)t for all
1 ≤ i ≤ n.

�
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In the sequel, we often write JAKε to denote JAKε
0 and JAK∆ to denote JAK0

∆ (this
overrides the similar notation of Section 5.3). On the other hand, we have JAK0

0 = JAK.
For ∆ and ε fixed, the enlarged semantics can be seen as an initialized rectangular

automaton. We have already mentioned that for this class of automata, the emptiness
problem is decidable [HKPV98]. However, it is an open question whether it is possible
to decide the existence of ∆ > 0 such that the enlarged semantics is empty. It is the
essential result of this chapter to answer positively to that question.

Definition 6.2 Given an Alur-Dill automaton A, the implementability problem asks
whether there exists ∆ ∈ R>0 such that JAK0

∆ is empty. �

Remark Alur-Dill automata allow both strict and non-strict inequalities in predi-
cates. In the presence of guard enlargement, it would not be restrictive to allow only
non-strict inequalities. Indeed, consider an Alur-Dill automaton A and the closure au-
tomaton Â resulting from A by replacing strict inequalities by non-strict inequalities.
It appears obviously that:

Reach(JÂKε
∆

2

) ⊆ Reach(JAKε
∆) and Reach(JAKε

∆) ⊆ Reach(JÂKε
∆),

and hence the implementability problem on A is equivalent to the the implementability
problem on Â. Therefore, in the sequel, we concentrate on closed timed automata. This
class has the property that the set of reachable states is closed.

In the rest of the chapter, we make an assumption on the type of cycles in timed
automata, in order to prove that the implementability problem is decidable. This
assumption is slightly restrictive. We discuss this issue below.

Definition 6.3 A progress cycle in the region automaton of a timed automaton is an
elementary cycle in which each clock of the automaton is reset at least once. �

Assumption 6.4 We only consider timed automata whose elementary cycles in the
region automaton are all progress cycles.

This assumption was made by Puri in [Pur98]. It is weaker than the classical non-
Zeno assumptions in the literature. For example in [AMPS98], the authors impose that
“in every cycle in the transition graph of the automaton, there is at least one transition
which resets a clock variable xi to zero, and at least one transition which can be taken
only if xi ≥ 1”. Other natural hypotheses would be to ask that every cycle in the
region automaton has a timed transition, or that every cycle in the region automaton
contains a time-elapsing region, that is a region r such that ∃v ∈ r · ∃t > 0 : v + t ∈ r.
Again, Assumption 6.4 is weaker. So, that assumption should not be an obstacle to the
design of real-time systems with timed automata, as we only rule out automata that
are clearly weird. Many interesting intermediate results in this chapter hold without
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that assumption so we will always explicitly refer to it when it is needed to prove a
claim.

In the next sections, we establish a strong link between robustness and imple-
mentability of timed automata, and we prove that the implementability problem for
Alur-Dill automata is decidable under Assumption 6.4. Before that, we need some
technical definitions and properties related to the regions of timed automata.

6.4 Properties of Zones and Regions

We review the important properties of the regions of timed automata, for a heavy use
in the sequel. The reader is invited to refer to Section 2.4 for the basic definitions
related to timed automata.

According to Definition 2.14, a region of a timed automaton contains a set of
valuations that agree on the integral part of the clocks and on the ordering of their
fractional parts. We make this characterization of regions more concrete by introducing
the following representation of regions [Pur98]:

Definition 6.5 Let N⊥ = N ∪ {⊥} be the set of ⊥-integers. Given an Alur-Dill
automaton A with n clocks (Var = {x1, . . . , xn}) and largest constant M , we represent
a region of A by:

1. a tuple of (a1, . . . , an) of ⊥-integers;

2. and a tuple (X0, X1, . . . , Xk) of k + 1 (0 ≤ k ≤ n) sets of clocks that form a
partition of the clocks that have a value less than M , except that X0 can be empty.
Formally, let Var≤M = {xi ∈ Var | ai 6= ⊥}. We ask that Var≤M = X0 ∪ · · · ∪Xk,
Xi ∩Xj = ∅ if i 6= j and Xi 6= ∅ for all 1 ≤ i ≤ k.

The region characterized by a tuple (ai)1≤i≤n and (Xi)0≤i≤k is the set of all valua-
tions v : Var→ R≥0 such that:

1. For all xi ∈ Var: v(xi) > M iff ai = ⊥ and if ai 6= ⊥ then ⌊v(xi)⌋ = ai;

2. for all x, y ∈ Var≤M : 〈v(x)〉 < 〈v(y)〉 iff for some i < j, x ∈ Xi and y ∈ Xj;

3. and for all x ∈ Var≤M : 〈v(x)〉 = 0 iff x ∈ X0.

�

Notice that the size of this representation is bounded because the integers ai are
less than or equal to M . As a consequence, an upper bound of the number of regions
can easily be derived: the number W (M, n) of regions is bounded by (M +2)n ·n! · 2n.
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A more classical way to represent regions is by the set of constraints it satisfies.
Our representation of a region r is easily translated to a set of constraints that are
satisfied by (and only by) valuations of r. A valuation v belongs to a region represented
by (ai)1≤i≤n and (Xi)0≤i≤k if and only if v satisfies the following constraints [AD94]:

• xi > M for each xi such that ai = ⊥;

• xi = ai for each xi ∈ X0;

• ai < xi < ai + 1 for each xi ∈ Xl for some l > 0;

• xi−ai < xj−aj for each xi, xj such that xi ∈ Xl and xj ∈ Xm for some 0 < l < m;

• xi − ai = xj − aj for each xi, xj ∈ Xl for some l > 0.

Given a region r of a timed automaton, we denote by [r] its topological closure
and [r] is called a closed region. For a valuation v, we write [v] for the closed region
containing v.

Example In a timed automaton with 5 clocks and largest constant M = 8, a re-
gion r represented by (1, 3, 5,⊥, 2) and ({x1, x3}, {x2}, {x5}) satisfies the following
constraints:

0 = x1 − 1 = x3 − 5 < x2 − 3 < x5 − 2 < 1 ∧ x4 > 8

The closure [r] of r then satisfies:

0 = x1 − 1 = x3 − 5 ≤ x2 − 3 ≤ x5 − 2 ≤ 1 ∧ x4 ≥ 8

The constraints in the representation of regions are rectangular or diagonal. The
sets that can be represented by such constraints are called zones in the literature.
Zones play an important role in the algorithmic approach of the reachability analysis
of timed automata [Bou01]. They are used to represent convex unions of regions1.
Since we focus on closed timed automata, we use a slightly different definition. In our
setting, zones are considered as closed sets.

Definition 6.6 A zone Z ⊆ Rn is a closed set defined by inequalities of the form

xi − xj ≤ mij , αi ≤ xi, xi ≤ βi

where 1 ≤ i, j ≤ n and mij , αi, βi ∈ Z. A set of states is called a zone-set if it is a
finite union of sets of the form {ℓ} × Z where ℓ is a location and Z is a zone. �

1However, not all convex unions of regions can be represented by zones
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A typical example of a zone-set is the set
⋃

ℓ∈Loc{ℓ} × JFinal(ℓ)K of final states of a
closed timed automaton.

Related to the algorithmic analysis of timed automata, an efficient data structure
has been introduced to represent zones: the difference bound matrices (DBM) [Dil89].
We briefly introduce DBM and show how the basic operations that are useful for
reachability analysis are computed.

Let x1, . . . , xn be the clocks of an Alur-Dill automaton. The idea of the DBM is
to represent all constraints uniformly, by diagonal constraints of the form xi − xj ≤ a
with a ∈ Z∪{+∞}. For bounded zones, the range of a can be reduced to Z∩ [−M, M ]
where M is the largest constant of the timed automaton. The rectangular constraints
are written x0−xi ≤ −αi and xi−x0 ≤ βi where x0 is a special “variable” whose value
is always 0.

A DBM is a (n + 1)× (n + 1) matrix M =
(
mi,j

)
0≤i,j≤n

where each mi,j is of the

form (ai,j,≺i,j) where ≺i,j ∈ {<,≤} and ai,j ∈ Z is called a bound). In the sequel, we
only consider DBM that represent closed sets, that is DBM where ≺i,j is always ≤.
The set of valuations represented by the DBM M =

(
mi,j

)
0≤i,j≤n

is:JMK = {(x1, . . . , xn) ∈ Rn | ∀ 0 ≤ i, j ≤ n : xi − xj ≤ mij ∧ x0 = 0}.

A DBM is associated to a complete directed graph with nodes 0, 1, . . . , n and
edges (i, j) labeled by mij . In this graph, the length of a path is the sum of the
labels of the edges in the path. It is easy to see that the length of a path from node i
to node j is an upper bound of the difference xi−xj . The length of the shortest paths
between nodes gives the tightest bounds on the variables and difference of variables.
This allows to define a normal form for DBM that corresponds to the shortest path
closure of the associated directed graph. If the graph contains a cycle of negative
length, the shortest path closure does not exist and the DBM represents the empty
set as a constraint of the form xi − xi ≤ m with m < 0 is unsatisfiable. Hence, for
nonempty DBM in normal form, we have mi,i = 0 for all 0 ≤ i ≤ n.

Operations on sets represented by DBM are executed by syntactic transformations
on the DBM. Some of those operations require the normal form. We present the
operations that will be useful in the sequel. Other operations like the difference of two
DBM and the inclusion test are definable (see [ACD+92, Yov96, CGP99] for details).

• Intersection: given two DBM M =
(
mi,j

)
0≤i,j≤n

and M′ =
(
m′

i,j

)
0≤i,j≤n

, let

M′′ be the DBM such that m′′
i,j = min{mi,j, m

′
i,j}. Then, we have JM′′K =JMK∩ JM′K. It is not required that M and M′ are in normal form. In either case

the result is not necessarily in normal form.

• Time passing: given a DBM in normal form M =
(
mi,j

)
0≤i,j≤n

, let Mր be the

DBM
(
m′

i,j

)
0≤i,j≤n

such that m′
i,0 = ∞ and m′

i,j = mi,j for all 0 ≤ i, j ≤ n with
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j 6= 0. This removes the upper bound on all the clocks. We have JMրK = {v+t |
v ∈ JMK ∧ t ∈ R≥0} and Mր is in normal form.

• Reset: given a DBM in normal form M =
(
mi,j

)
0≤i,j≤n

and a clock x, let M[x :=

0] be the DBM
(
m′

i,j

)
0≤i,j≤n

such that for all 0 ≤ i, j ≤ n with i 6= j:

m′
i,j =





m0,j if x = xi

mi,0 if x = xj

mi,j otherwise

We have removed all the bounds involving x and set x to zero. We have JM[x :=
0]K = {v[x := 0] | v ∈ JMK}. We define similarly M[R := 0] for R ⊆ {x1, . . . , xn}.
The result is in normal form.

• Emptiness test: given a DBM M =
(
mi,j

)
0≤i,j≤n

, we have JMK = ∅ if and only

if there is a cycle in the directed graph associated to M whose length is negative.
The emptiness test is realized by the shortest path algorithm used to put DBM
in normal form.

We continue our review with the notion of vertex of a region. For a set S ⊆ Rn,
let Conv(S) be the convex hull of S.

Definition 6.7 Let r be a bounded region of an Alur-Dill automaton. The set of
vertices of r is the smallest set of points S(r) = {v0, v1, . . . , vk} such that [r] =
Conv({v0, v1, . . . , vk}). �

Definition 6.7 is meaningful because bounded regions are polytopes. The set S(r)
is unique and the number of vertices is at most n + 1, where n is the number of clocks
of the automaton.

Lemma 6.8 The vertices of a bounded region r are the integer vectors of its closure:
S(r) = [r] ∩Nn.

Proof. Let v ∈ [r]. Let the representation of r be given by (ai)1≤i≤n and (Xi)0≤i≤k.
Then, for all valuations w ∈ [r] we have:

∀0 ≤ i ≤ k · ∀x, y ∈ Xi : 〈w(x)〉 = 〈w(y)〉,
∀0 ≤ i < j ≤ k · ∀x ∈ Xi, y ∈ Xj : 〈w(x)〉 ≤ 〈w(y)〉,

∀x ∈ X0 : 〈w(x)〉 = 0,



110 CHAPTER 6. ROBUSTNESS OF TIMED AUTOMATA

Let v0 be the valuation such that v0(xi) = ai for each 0 ≤ i ≤ k. We have v0 ∈ [r]
and for all 0 < j ≤ k, the valuation vj defined by

vj(x) = v0(x) if x ∈ Xi with i < j

vj(x) = v0(x) + 1 if x ∈ Xi with i ≥ j

belongs to [r].

We now prove that those valuations generate the whole closed region [r]: let w be
a valuation in [r]. We define

w′ = (1− 〈w(xk)〉)v0 + (〈w(x1)〉 − 〈w(x0)〉)v1 + · · ·+ (〈w(xk)〉 − 〈w(xk−1)〉)vk

where each xi is a clock in the corresponding Xi for 1 ≤ i ≤ k and w(x0) = 0 by
convention. We claim that w′ = w. To show this, let y be a clock, and j such
that y ∈ Xj . Then

w′(y) = (1− 〈w(xk)〉).v0(y) + (〈w(x1)〉 − 〈w(x0)〉).v1(y) + · · ·+
(〈w(xk)〉 − 〈w(xk−1)〉).vk(y)

= (1− 〈w(xk)〉).v0(y) + (〈w(x1)〉 − 〈w(x0)〉).(v0(y) + 1) + · · ·+
(〈w(xj)〉 − 〈w(xj−1)〉).(v0(y) + 1)+

(〈w(xj+1)〉 − 〈w(xj)〉).(v0(y)) + · · ·+
(〈w(xk)〉 − 〈w(xk−1)〉).(v0(y))

= v0(y) + 〈w(xj)〉 = w(y)

since y ∈ Xj. Therefore [r] = Conv({v0, . . . , vk}). On the other hand, {v0, . . . , vk} is the
smallest set generating [r], since there is no valuation vi that is a convex combination
of the others. �

Lemma 6.8 ensures that if a region r is a sub-region of a bounded region r′, then
its set of vertices S(r) is the intersection of [r] and the set S(r′) of vertices of r′.

Lemma 6.9 Let A be a closed timed automaton. The set Reach(JAK) is topologically
closed.

It is easy to prove Lemma 6.9 by showing that the successors of a closed region by a
discrete transition or by the passage of time is a union of closed regions.

In the rest of this chapter, we often abusively use operators that apply to valuations
v or regions r to pairs (ℓ, v) and (ℓ, r), where ℓ is a location. For example, we write
(ℓ, v) + (ℓ, v′) to denote (ℓ, v + v′) and λ(ℓ, v) to denote (ℓ, λv), and similarly for
distances, norms and neighbourhoods. We write (ℓ, v) ∈ (ℓ, r) instead of v ∈ r, [(ℓ, v)]
instead of (ℓ, [v]), etc.
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6.5 Robustness and Implementability

In his paper, Puri shows that the classical reachability analysis defined in [AD94] is
not correct when the clocks may drift, even by a very small amount [Pur98]. He then
reformulates the reachability problem as follows: given a timed automaton A, instead
of computing Reach(JAK0

0), he proposes an algorithm that computes the limit set

⋂

ε∈R>0

Reach(JAKε
0)

When A is clear from the context, this set is denoted by R∗
ε. This is the set of states

that can be reached when the clocks drift by an infinitesimally small amount. He
shows that this set has nice robustness properties with respect to modeling errors.
In particular, he claims that his new reachability analysis is correct when guards are
subject to small imprecisions (see [Pur98] for details).

In this chapter, in order to make the link with the implementability problem, we
study a variant of this robust semantics where small imprecisions on guards are allowed:
the set of reachable states in this semantics is the limit set

⋂

∆∈R>0

Reach(JAK0
∆)

When A is clear from the context, this set is abbreviated by R∗
∆. We first show that for

any timed automaton A, any zone-set Bad, we have that: ∩∆∈R>0Reach(JAK0
∆)∩Bad =

∅ iff there exists ∆ ∈ R>0 such that Reach(JAK0
∆)∩ Bad = ∅. Afterward, we establish

that the algorithm proposed by Puri to compute the set ∩ε∈R>0Reach(JAKε
0) is also valid

to compute the set of states ∩∆∈R>0Reach(JAK0
∆). We also reprove the results of Puri

in our broader context. This yields an algorithm for deciding the implementability
problem, and proves that under assumption 6.4, both types of imprecisions have the
same effect:

⋂

ε>0

Reach(JAKε
0) =

⋂

∆>0

Reach(JAK0
∆) =

⋂

∆>0
ε>0

Reach(JAKε
∆)

For the rest of the chapter, we denote by R∗
∆,ε the third set in the above equality.

Example Consider the closed timed automaton Aα of Figure 6.1 where α ∈ {2, 3}.
The automaton has two clocks x and y. There is one initial location ℓ1 with initial
predicate x = 1 ∧ y = 0. For location ℓ1 and ℓ2, the sets of reachable states in the
classical semantics JAK with ε = ∆ = 0 are depicted in Figure 6.2. The final states (or
bad states) correspond to the location err with any clock valuation. For both α = 2
and α = 3, the timed automaton A does not reach the bad states.
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x = 1
∧ y = 0

ℓ1 ℓ2 err

x ≤ 2

x := 0

y := 0

y ≥ 2

x = 0 ∧ y ≥ α

Figure 6.1: A closed timed automaton Aα with α ∈ {2, 3}.
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Figure 6.2: The set Reach(JAαK) for locations ℓ1 and ℓ2 of Aα.
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Figure 6.3: The set R∗
∆ =

⋂
∆>0 Reach(JAαK0

∆) for locations ℓ1 and ℓ2 of Aα.
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Consider the enlarged semantics JAK0
∆ for ε = 0 and ∆ > 0. In this semantics,

guards are enlarged by ∆. The edge from ℓ1 to ℓ2 has the guard x ≤ 2 + ∆ and the
edge from ℓ2 to ℓ1 has the guard y ≥ 2−∆. From the initial state (ℓ1, x = 1, y = 0), the
transition to ℓ2 can be taken ∆ time units later, and so the states (ℓ2, x = 0, y ≤ 1+∆)
are reachable. Similarly, the transition from ℓ2 back to ℓ1 is enabled ∆ time units earlier
than before and the states (ℓ1, x ≥ 1−2∆, y = 0) are reachable. It is easy to show that
after having taken k times the transitions of the cycle, the states (ℓ1, x ≥ 1−2k∆, y = 0)
(provided x ≥ 0) and (ℓ2, x = 0, y ≤ 1 + (2k − 1)∆) (provided y ≤ 2) are reachable.
Hence, for all ∆ > 0 the states (ℓ1, x ≥ 0, y = 0) and (ℓ2, x = 0, y ≤ 2) are reachable inJAK0

∆ and were not reachable in the classical semantics. Those states are represented
in Figure 6.3.

The same situation occurs in the enlarged semantics JAKε
0 for ∆ = 0 and ε > 0.

The set of states that are reachable no matter the value of ε > 0 is the same as on
Figure 6.3.

This example shows that that Reach(JAK) 6= R∗
∆ and Reach(JAK) 6= R∗

ε. On the
other hand, it shows that the classical semantics is not robust with regard to small
perturbations in either the timing constraints or the clock rate. The effect of such
perturbations, no matter how small they are, may lead to dramatically different be-
haviours of the system. In this case, the location err is reachable in the perturbed
version of Aα=2 but not in the classical semantics. We say that the safety property
(to avoid the location err) is not robustly satisfied by Aα=2. On the other hand, for
α = 3 the safety property still holds in the limit of the enlarged semantics. As we will
demonstrate, this implies that there exists a strictly positive value for ∆ such that the
enlarged semantics JAK0

∆ is safe. In fact, any ∆ < 1
3

fits.

The main result of this chapter is Theorem 6.10.

Theorem 6.10 Under assumption 6.4, there exists an algorithm that decides, given
an Alur-Dill automaton A and a bounded zone-set Bad, whether there exist ∆ ∈ R>0

such that Reach(JAK0
∆) ∩ Bad = ∅.

To prove Theorem 6.10, we show that the algorithm proposed by Puri to compute
R∗

ε is correct and also computes R∗
∆. As a corollary, the two sets are equal. That

proof is given in the next section. The connection with the implementability problem
is established by the following theorem.

Theorem 6.11 Under assumption 6.4, for all Alur-Dill automata A, and all bounded
zone-sets Bad, the following equivalence holds:

R∗
∆ ∩ Bad = ∅ iff ∃∆ > 0 : Reach(JAK0

∆) ∩ Bad = ∅.

The proof of Theorem 6.11 is based on the following lemmas. The first one corrects
a wrong claim of Puri about a lower bound on the∞-distance between two zones with
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empty intersection. This bound is claimed to be 1
2

in [Pur98, Lemma 6.4]. We show
that 1

n
is the tightest bound, where n is the dimension of the space .

Lemma 6.12 Let Z1, Z2 ⊆ Rn be two zones such that Z1 ∩ Z2 = ∅. For all x ∈ Z1

and y ∈ Z2, we have d∞(x, y) ≥ 1
n
. This bound is tight.

Proof. Let us recall the definition of the 1-norm and the ∞-norm:

‖x‖∞ = max
1≤i≤n

(|xi|) ‖x‖1 =
n∑

i=1

|xi|

First, we show that 1
n

is a lower bound. Clearly, for all v ∈ Rn, ‖v‖1 ≤ n · ‖v‖∞.
We prove that ‖x− y‖1 ≥ 1, which entails the result.

We consider two zones given by two DBM in normal form: Z1 ≡ J(mi,j)K and
Z2 ≡ J(m′

i,j

)K. Since Z1 ∩ Z2 = ∅, there must exist a “negative cycle”:

m
(′)
i1,i2

+ m
(′)
i2,i3

+ m
(′)
i3,i4

+ · · ·+ m
(′)
ip,i1
≤ −1

where each term m
(′)
i,j of the sum can be taken either in the matrix of Z1 or in the

matrix of Z2. We may assume that at least one m
(′)
i,j comes from Z1 and one from Z2

since otherwise Z1 (or Z2) would be empty and the result holds vacuously.

Since for DBM in normal form, we have ma,b + mb,c ≥ ma,c for all indices a, b, c, we
can merge any two consecutive mi,j’s into one while keeping the inequality. The same
holds for m′

i′,j′, and we can thus assume that mi,j and m′
i′,j′ alternate in the sum above

(starting with mi1,i2, say).

Pick x ∈ Z1 and y ∈ Z2. Then

(xi2 − xi1) + (yi3 − yi2) + (xi4 − xi3) + · · ·+ (yi1 − yip) ≤ −1.

Terms can be rearranged in this sum, yielding

(yi1 − xi1)− (yi2 − xi2) + (yi3 − xi3)− · · · − (yip − xip) ≤ −1.

If ik = 0 for some k, then xik − yik = 0. Thus, we assume that 1 ≤ ik ≤ n. We take
the absolute value, and apply the triangle inequality:

1 ≤
∣∣(yi1 − xi1)− (yi2 − xi2) + (yi3 − xi3)− · · · − (yip − xip)

∣∣
≤ |(yi1 − xi1)|+ |(yi2 − xi2)|+ |(yi3 − xi3)|+ · · ·+ |(yip − xip)|
≤ ‖x− y‖1.

Now, let us show that this bound is tight. Consider the zones Z1, Z2 ⊆ Rn defined
by the following equations:
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• If n is odd

Z1 ≡
{

x1 = 1
x2i − x2i+1 = 0 1 ≤ i ≤ n−1

2

Z2 ≡
{

x2i−1 − x2i = 0 1 ≤ i ≤ n−1
2

xn = 0

• If n is even

Z1 ≡






x1 = 1
x2i − x2i+1 = 0 1 ≤ i ≤ n

2
− 1

xn = 0

Z2 ≡
{

x2i−1 − x2i = 0 1 ≤ i ≤ n
2

We have Z1 ∩ Z2 = ∅; indeed combining the equations of Z1 and Z2 yields xi = xj

for all 0 ≤ i, j ≤ n, which leads to a contradiction since x1 = 1 and xn = 0. On the
other hand, let p = (1, n−2

n
, n−2

n
, n−4

n
, n−4

n
, . . . ) and q = (n−1

n
, n−1

n
, n−3

n
, n−3

n
, n−5

n
, . . . )

(take the first n coordinates). It is easy to check that p ∈ Z1 and q ∈ Z2, while
d∞(p, q) = max( 1

n
, . . . , 1

n
) = 1

n
. �

The next three lemmas are purely related to set theory and topology. For Lemma 6.13
and Lemma 6.14, the proof is immediate, but for Lemma 6.15, the argument is more
involved.

Lemma 6.13 If d∞(A, B) > 0, then A ∩ B = ∅.

Lemma 6.14 If A ⊆ B, then d∞(A, C) ≥ d∞(B, C) for all C.

Lemma 6.15 Let A∆(∆ ∈ R>0) be a collection of closed sets such that A∆1
⊆ A∆2

if ∆1 ≤ ∆2. Let A =
⋂

∆>0 A∆ be nonempty. If B is a bounded set with d∞(A, B) > 0,
then there exists ∆ > 0 such that A∆ ∩ B = ∅.

Proof. We proceed by contradiction. Assume that for all ∆ > 0, we have A∆∩B 6= ∅.
Let δi = 1

i
(for each i ≥ 1). Then, we have:

∀i ≥ 1 · ∃xi ∈ Aδi
∩B

Since B is bounded, so is the set {xi | i ≥ 1}. By Bolzano-Weierstrass Theorem, there
exists a point x such that:

∀ǫ > 0 · ∀i ≥ 1 · ∃j ≥ i : xj ∈ N2(x, ǫ) ∩Aδj

Let us show that x is in the closure of Aδi
for all i ≥ 1. Since Aδj

⊆ Aδi
for all j ≥ i,

we have:
∀i ≥ 1 · ∀ǫ > 0 · ∃j : xj ∈ N2(x, ǫ) ∩Aδi
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that is:
∀i ≥ 1 · ∀ǫ > 0 : N2(x, ǫ) ∩ Aδi

6= ∅

Hence, for all i ≥ 1 the point x is in the closure of the closed set Aδi
, and thus x ∈ Aδi

.
Since, for all ∆ > 0 there exists i ≥ 1 such that δi ≤ ∆ and thus Aδi

⊆ A∆, we have
∀∆ ∈ R>0 : x ∈ A∆. This entails that x ∈ A. Now observe that:

∀i ≥ 1 : d∞({x}, B) ≤ d∞(x, xi) + d∞({xi}, B)

Observe that d∞(x, xi) can be made arbitrarily small for sufficiently large i, and
d∞({xi}, B) = 0 since xi ∈ B for all i ≥ 1. Therefore, we get:

∀ǫ > 0 : d∞({x}, B) ≤ ǫ

and thus d∞({x}, B) = 0 which is a contradiction. �

Now, we present the proof of Theorem 6.11.

Proof of Theorem 6.11. First, assume that R∗
∆ ∩ Bad = ∅. Since R∗

∆ and Bad are
zone-sets2, by Lemma 6.12 we have d∞(R∗

∆, Bad) > 0. From Lemma 6.15, we obtain
that there exists ∆ > 0 such that Reach(JAK0

∆) ∩ Bad = ∅.

Second, assume that there exists ∆ > 0 such that Reach(JAK0
∆) ∩ Bad = ∅. Then

trivially R∗
∆ ∩ Bad = ∅. �

Results similar to Theorem 6.11 can be proven in the same way, namely:

R∗
ε ∩ Bad = ∅ iff ∃ε > 0 : Reach(JAKε

0) ∩ Bad = ∅

and R∗
∆,ε ∩ Bad = ∅ iff ∃∆, ε > 0 : Reach(JAKε

∆) ∩ Bad = ∅.

6.6 Algorithm for computing R∗∆, R∗ε and R∗∆,ε

In this section, we prove that R∗
ε = R∗

∆ = R∗
∆,ε, and that those sets are computed by

Algorithm 4 (originally proposed in [Pur98]). To help the reader to follow the further
developments, we give in Figure 6.6 a reminder of the main steps of the proof, and we
explain informally the principle of the algorithm on a simple example.

Example Consider the closed timed automaton Aα of Figure 6.1 (the value of α
does not matter here). The reachable states of A in locations ℓ1 and ℓ2 are depicted on
Figure 6.2 and are computed in J∗ by the algorithm at line 4. Then, in the while-loop,
the algorithm adds to J∗ the progress cycles of the region automaton of A that “touch”

2The set J∗ computed by Algorithm 4 below is a zone-set, and we show in the correctness proof
of the algorithm that J∗ = R∗

∆.
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Algorithm 4: Algorithm for computing the limit sets R∗
∆, R∗

ε and R∗
∆,ε of a closed

timed automaton A.
Data: A closed timed automaton A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉.
Result: The set J∗ = R∗

ε = R∗
∆ = R∗

∆,ε.

begin
1 Construct the bounded region automaton RA of A ;
2 Compute the set PC(RA) of progress cycles of RA ;
3 Q0 ← {(ℓ, r) | ℓ ∈ Loc ∧ r ∈ RA ∧ r |= Init(ℓ)} ;
4 J∗ ← Reach(RA, Q0) ;
5 while for some S = p0 p1 . . . pk ∈ PC(RA), [p0] 6⊆ J∗ and J∗ ∩ [p0] 6= ∅ do
6 J∗ ← J∗ ∪ [p0] ;
7 J∗ ← Reach(RA, J∗) ;

8 return J∗ ;

end

the set J∗, and performs a reachability analysis from the new states in the classical
semantics. In the example, the progress cycle (ℓ1, R1), (ℓ1, R2), (ℓ1, R3), (ℓ2, R4) shown
in Figure 6.4 is added, and the set J∗ computed by the algorithm is the set R∗

∆ shown
in Figure 6.3.
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b
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1

2
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b
ℓ2ℓ1

R1

R3

R2

R4

Figure 6.4: A progress cycle R1, R2, R3, R4 in the region automaton of Aα.

To prove the correctness of Algorithm 4, we first study the properties of limit cycles.
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6.6.1 Limit cycles

Definition 6.16 [Limit Cycle] A limit cycle of a closed timed automaton A is a finite
trajectory π of JAK that contains at least one discrete transition and such that last(π) =
first(π). �

As suggested in [Pur98], given a progress cycle in the bounded region automaton
and a region on this cycle, only a subset of the points of the region have a limit cycle.

Definition 6.17 Given a path p = p0 p1 · · · pN in the bounded region automaton of
a timed automaton A, we say that a trajectory π of JAK follows p if |π| = N and for
all i, 0 ≤ i ≤ N , statei(π) ∈ [pi]. �

Definition 6.18 Let p = p0 p1 . . . pN be a cycle in the bounded region automaton of
a closed timed automaton A (thus such that pN = p0). For Q0 ⊆ [p0], define the return
map Rp(Q0) as follows:

Rp(Q0) =

{
q ∈ [pN ]

∣∣∣∣∣
there exists a trajectory π of JAK that follows p

such that first(π) ∈ Q0 and last(π) = q

}

For i ≥ 2, define recursively Ri
p(Q0) = Rp(R

i−1
p (Q0)) and let Li,p be the set of points

that can return back to themselves after i cycles through p: Li,p = {q | q ∈ Ri
p({q})}.

We write Lp = ∪i∈N>0Li,p. �

The following key property of Lp is central to the proof of correctness of Algorithm 4.
It states that Lp is both forward and backward reachable from all valuation in a cycle p.

Theorem 6.19 ([Pur98, Lemma 7.10]) Let p = p0 . . . pN be a cycle in the bounded
region automaton of a closed timed automaton. For all z ∈ [p0], there exists z′, z′′ ∈ Lp

and trajectories π, π′ in JAK such that

• first(π) = z and last(π) = z′ and

• first(π′) = z′′ and last(π′) = z.

The proof proposed by Puri is quite sketchy. We propose a complete proof that
uses the following intermediate lemmas.

Lemma 6.20 ([Pur98, Lemma 7.1]) Let p = p0 p1 . . . pN be a path in the bounded
region automaton of a closed timed automaton A, let π and π′ be two trajectories
of JAK that follow p. Then for all λ ∈ [0, 1], there exists a trajectory π′′ of JAK
that follows p and such that first(π′′) = λ.first(π) + (1 − λ).first(π′) and last(π′′) =
λ.last(π) + (1− λ).last(π′).
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Proof. Let π = (q0, t0) σ1 (q1, t1) σ2 · · · σN (qN , tN) and π′ = (q′0, t
′
0) σ′

1 · · · σ′
N (q′N , t′N).

Consider the sequence

π′′ = (q′′0 , t
′′
0) σ′′

1 (q′′1 , t
′′
1) σ′′

2 · · · σ′′
N (q′′N , t′′N )

where for all 0 ≤ i ≤ N , q′′i = λ.qi + (1 − λ).q′i and t′′i = λ.ti + (1 − λ).t′i and for all
1 ≤ i ≤ N , σ′′

i = λ.σi + (1− λ).σ′
i if σi ∈ T and σ′′

i = σi otherwise. It is easy to show
that π′′ is a trajectory in JAK since regions are convex sets. �

Lemma 6.21 ([Pur98, Lemma 7.3]) Let p be a cycle in the bounded region automa-
ton of a closed timed automaton. Then Lp is convex.

Proof. Let x, y ∈ Lp, and λ ∈ [0, 1]. There exists natural numbers k and l such
that x ∈ Lk,p and y ∈ Ll,p. Then x, y ∈ Lk.l,p, and according to Lemma 6.20, we have
λ.x + (1− λ).y ∈ Lk.l,p ⊆ Lp. �

Definition 6.22 Let p = p0 p1 . . . pN be a cycle in the bounded region automaton of
a closed timed automaton (thus p0 = pN). The orbit graph is the graph Θp = (VΘ,→Θ)
such that VΘ = S(p0) is the set of vertices of p0 and for all v, w ∈ VΘ, v →Θ w iff
w ∈ Rp({v}). For m ∈ N and v ∈ VΘ, we define

Succm(v) = {w ∈ VΘ | v →m
Θ w} and Predm(v) = {w ∈ VΘ | w →m

Θ v}.

�

Given a vertex v ∈ VΘ, the set Rp({v}) is a closed region according to Lemma 6.9,
and thus we have Rp({v}) = Conv({w ∈ VΘ | v →Θ w}) as a closed region contains
all its vertices. More generally, we have Rk

p({v}) = Conv({w ∈ VΘ | v →k
Θ w}) for all

k ≥ 1.

Lemma 6.23 ([Pur98, Lemma 7.4]) If there exists a path p . . . p′ in the bounded
region automaton of a closed timed automaton A, then for all vertices v ∈ S(p) of p,
there exists a vertex v′ ∈ S(p′) of p′ such that there exists a trajectory of JAK from v
to v′, and conversely, for all vertices v′ ∈ S(p′) of p′, there exists a vertex v ∈ S(p) of
p such that there exists a trajectory of JAK from v to v′.

Proof. Let v be a vertex of [p]. Then {v} forms a subregion of [p], and its successors
in [p′] form a closed subregion of [p′]. According to Lemma 6.8, that subregion of [p′]
necessarily contains a vertex.

The same argument can be applied backward, since the predecessor of a subregion
of p′ is a closed subregion of p. �
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Proof of Theorem 6.19. Let Θp = (VΘ,→Θ) be the orbit graph of p.

Let V = {v ∈ VΘ | ∃m ∈ N. v ∈ Succm(v)}. Lemma 6.23 entails that every vertex
in the orbit graph has an outgoing edge. Thus for all v ∈ VΘ, there exists an integer mv

such that ∀m ≥ mv : Succm(v) ∩ V 6= ∅, because VΘ is finite. Let M = max{mv | v ∈
VΘ} be the largest such mv. Then SuccM(v) ∩ V 6= ∅ for all v. A similar argument
proves the existence of M ′ such that PredM ′

(v) ∩ V 6= ∅ for all v.

Since z ∈ [p0], we can write z =
∑

i λi vi, where λi ∈ [0, 1],
∑

i λi = 1 and vi ∈ VΘ.
For each vi, let wi be an element of SuccM(vi)∩ V . From Lemma 6.20, there is a path
from z to z′ =

∑
i λiwi and z′ ∈ Conv(V ). By Lemma 6.21 we have Conv(V ) ⊆ L and

thus z′ ∈ L.

Conversely, if xi is a vertex in PredM ′

(vi)∩ V , there is a path from z′′ =
∑

i λi xi ∈
Conv(V ) ⊆ L to z. �

6.6.2 Soundness of Algorithm 4: J∗ ⊆ R∗∆ and J∗ ⊆ R∗ε

We show that the set J∗ computed by Algorithm 4 is reachable in the limit sets R∗
∆

and R∗
ε . In particular, for all progress cycles that are added to J∗ by the algorithm,

we show that every point of the cycle is reachable if either a drift on clocks or an
enlargement of the guards is allowed, no matter how small it is.

The proof is based on Theorem 6.19 and on the fact that for all progress cycles p,
the set Lp is a strongly connected component of both JAK0

∆ and JAKε
0 for all ∆, ε > 0.

Hence in Lp, every state is reachable from every state for the enlarged semantics, and
thus similarly, in each region of the cycle p every state is reachable from every state
by Theorem 6.19.

6.6.2.1 Imprecise guards: J∗ ⊆ R∗
∆.

Theorem 6.24 Let A be a closed timed automaton, let p = p0 p1 · · · pN be a progress
cycle of the bounded region automaton of A, and ∆ ∈ R>0. For all states u, v ∈ Lp,
there exists a trajectory π of JAK0

∆ such that first(π) = u and last(π) = v.

This theorem results immediately from the following Lemma.

Lemma 6.25 Let A be a closed timed automaton, let p = p0 p1 · · · pN be a progress
cycle of the bounded region automaton of A. For all ∆ ∈ R>0, for all state u ∈ Lp and
for all neighbour state v ∈ [p0] ∩ N∞(u, ∆

2
), there exists a trajectory π′ of JAK0

∆ such
that first(π′) = u and last(π′) = v.

Proof. Let A = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉. Since u ∈ Lp, there exists a tra-
jectory π of JAK0

0 that follows p a certain number of times and such that first(π) =
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last(π) = u. We slightly modify π such that timed and discrete transitions alternate
(we insert a zero length timed transition between two consecutive discrete transitions,
and we merge consecutive timed transitions). Assume that3:

π = (ℓ0, u0)
t0−→ (ℓ0, u

′
0)

σ0−→
R0

(ℓ1, u1)
t1−→ (ℓ1, u

′
1)

σ1−→
R1

· · ·

· · · σm−2−−−→
Rm−2

(ℓm−1, um−1)
tm−1−−−→ (ℓm−1, u

′
m−1)

σm−1−−−→
Rm−1

(ℓm, um)
tm−→ (ℓm, u′

m)

with u0 = u′
m = u. Each ti ∈ R≥0 and σi ∈ Σ. We annotate π with sets of clocks

Ri ⊆ Var that are reset by discrete transitions σi. Note that
⋃i=m−1

i=0 Ri = Var.

Intuitively, we prove the lemma by modifying the length of the timed transitions of
π so that the clocks are reset slightly earlier or later than in π. We obtain a trajectory
of JAK0

∆ because the guards are enlarged and therefore they are enabled in the states
of the new trajectory.

Let the representation of p0 be given by (ax)x∈Var and (Xi)0≤i≤k. For all valua-
tions w ∈ p0, we have:

• for all x ∈ Var: ⌊w(x)⌋ = ax;

• for all x ∈ X0: 〈w(x)〉 = 0;

• for all i and for all x, y ∈ Xi: 〈w(x)〉 = 〈w(y)〉;

• for all i < j and for all x ∈ Xi, y ∈ Xj : 〈w(x)〉 < 〈w(y)〉;

Since p is a progress cycle, we know that each clock is reset at least once along π.
For each clock x ∈ Var, let αx be the index of the last transition of π in which x is
reset. Formally, we have:

x ∈ Rαx ∀i > αx : x 6∈ Ri (6.1)

Then, for each clock x ∈ Var, we have:

u0(x) = u′
m(x) = u(x) =

m∑

i=αx+1

ti (6.2)

Let v ∈ [p0]∩N∞(u, ∆
2
) and for each x ∈ Var let δx = v(x)−u(x). Clearly, we have

|δx| ≤ ∆
2
. Moreover since v ∈ [p0], the closed version of the above inequalities defining

p0 are satisfied by v. Let 〈〈v(x)〉〉 = v(x)− ax, we have:

3It is not restrictive to assume that π starts and ends with a timed transition as zero length timed
transitions are possible.
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• for all x ∈ Var: 0 ≤ 〈〈v(x)〉〉 ≤ 1;

• for all x ∈ X0: 〈〈v(x)〉〉 = 0;

• for all i and for all x, y ∈ Xi: 〈〈v(x)〉〉 = 〈〈v(y)〉〉;

• for all i < j and for all x ∈ Xi, y ∈ Xj : 〈〈v(x)〉〉 ≤ 〈〈v(y)〉〉;

This entails that:

• for all i and for all x, y ∈ Xi: δx = 〈〈v(x)〉〉 − 〈u(x)〉 = 〈〈v(y)〉〉 − 〈u(y)〉 = δy;

• for all x, y ∈ Var such that u(x) < u(y) (and hence αx > αy from Equation (6.2)),
we have v(x) ≤ v(y) and thus u(x) + δx ≤ u(y) + δy, that is:

δx − δy ≤ u(y)− u(x) =

αx∑

i=αy+1

ti (6.3)

Let Γ = {αx | x ∈ Var} = {α1, . . . , αl} be the set of positions in π where a clock is
reset for the last time. Assume without loss of generality that α1 < α2 < · · · < αl and
that for all 1 ≤ i ≤ l, the clock xi ∈ Var is such that that αxi

= αi. Consider the time
stamps in π as the following block-sequence, and construct the sequence (t′i)0≤i≤m by
adding a shift given as follows:

[
t0 . . . tα1

][
tα1+1 . . . tα2

]
. . .

[
tαj−1+1 . . . tαj

]
. . .

[
tαl−1+1 . . . tαl

][
tαl+1 . . . tm

]

+0 +δ1 − δ2 . . . +δj−1 − δj . . . +δl−1 − δl +δl

=
[
t′0 . . . t′α1

][
t′α1+1 . . . t′α2

]
. . .

[
t′αj−1+1 . . . t′αj

]
. . .

[
t′αl−1+1 . . . t′αl

][
t′αl+1 . . . t′m

]

where each t′i is obtained from ti by distributing the shift of each block over the time
stamps of the block. This can be done such that each t′i is nonnegative for all 0 ≤ i ≤ m
since for all i ≤ α1 we have t′i = ti, for all 2 ≤ j ≤ l we have:

αj∑

i=αj−1+1

t′i =




αj∑

i=αj−1+1

ti



 + δj−1 − δj ≥ 0 by Equation (6.3),

and finally for all i ≥ αl + 1 we have:

m∑

i=αl+1

t′i =

m∑

i=αl+1

ti + δl = u(xl) + δl = v(xl) ≥ 0
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We now construct the trajectory π′ from π by simply replacing each ti by t′i:

π′ = (ℓ0, v0)
t′0−→ (ℓ0, v

′
0)

σ0−→
R0

(ℓ1, v1)
t′1−→ (ℓ1, v

′
1)

σ1−→
R1

· · ·

· · · σm−2−−−→
Rm−2

(ℓm−1, vm−1)
t′m−1−−−→ (ℓm−1, v

′
m−1)

σm−1−−−→
Rm−1

(ℓm, vm)
t′m−→ (ℓm, v′

m)

where v0 = u0 = u, for all 0 ≤ i ≤ m : v′
i = vi + t′i and for all 1 ≤ i ≤ m : vi =

v′
i−1[Ri−1 := 0]. We claim that π′ is a trajectory of JAK0

∆. To show this, we must
verify that the guard (which is enlarged by ∆ in JAK0

∆) of each discrete transition σi

is satisfied by v′
i. Since π is a trajectory of JAK, we know that each u′

i satisfies the
corresponding guard under the classical semantics. Therefore, it is sufficient to prove
that the difference |u′

i(x) − v′
i(x)| is bounded by ∆ for all x ∈ Var. To do that, let j

be the greatest index such that j ≤ i and uj(x) = vj(x) (such an index exists because
u0 = v0). Clearly, the difference |u′

i(x)−v′
i(x)| is bounded by the sum of the shifts that

we have introduced between index j and i. For uniformity, let the first shift be δ0− δ1

with δ0 = δ1 and the last shift be δl − δl+1 with δl+1 = 0. Notice that |δi| ≤ ∆
2

holds
for all i = 0, . . . , l + 1. If a block

[
tαp−1+1 . . . tαp

]
is such that j ≤ αp−1 + 1 and αp ≤ i,

then the whole shift δp−1 − δp counts in the sum. On the other hand, if i or j lies
inside the block, then only a portion α(δp−1 − δp) of the shift counts where α ∈ [0, 1].
Accordingly, the sum of the shifts can take one of the three forms (where α, β ∈ [0, 1]):

• s1 = α(δp − δp+1) (if i and j lie in the same block)

• s2 = α(δp − δp+1) + β(δp+1 − δp+2) (if i and j lie in consecutive blocks)

• s3 = α(δp − δp+1) + δp+1 − δq + β(δq − δq+1) (otherwise)

It is easy to show the following bounds:

• |s1| ≤ α · 2 · ∆
2
≤ ∆

•
|s2| = |α(δp − δp+2) + (β − α)(δp+1 − δp+2)| ≤ α ·∆ + |β − α|∆
|s2| = |(α− β)(δp − δp+1) + β(δp − δp+2)| ≤ |α− β|∆ + β ·∆

}
⇒|s2| ≤ ∆

•
|s3| = |α(δp − δq+1) + (1− β)(δp+1 − δq) + (β − α)(δp+1 − δq+1)|
|s3| = |(α− β)(δp − δq) + (1− α)(δp+1 − δq) + β(δp − δq+1)|

}
⇒|s3| ≤ ∆

which shows that |u′
i(x)− v′

i(x)| ≤ ∆ for all x ∈ Var.

Finally, since the sets of clocks Ri that are reset in π′ are the same as in π, Equa-
tion (6.2) applies and we get for all x ∈ Var:

v′
m(x) =

m∑

i=αx+1

t′i =
m∑

i=αx+1

ti + δx = u′
m(x) + δx = u(x) + δx

Hence v′
m = v. It follows that first(π′) = u and last(π′) = v as required. �
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6.6.2.2 Drifting clocks: J∗ ⊆ R∗
ε.

We prove a result similar to Theorem 6.24 for drifting clocks.

Theorem 6.26 Let A be a closed timed automaton, let p = p0 p1 · · · pN be a progress
cycle of the bounded region automaton of A, and ε ∈ R>0. For all states u, v ∈ Lp,
there exists a trajectory π of JAKε

0 such that first(π) = u and last(π) = v.

The proof is more involved than for guard enlargement. We need the following
intermediate lemmas.

Lemma 6.27 Let A be a closed timed automaton, let r and r′ be two regions of A

such that (ℓ, r)
time−−→ (ℓ, r′) in the bounded region automaton of A. For all u ∈ r,

v ∈ r′ and τ ∈ R>0 such that (ℓ, u)
τ−→ (ℓ, v) in JAK0

0, and for all δ ≥ 0, for all y ∈
N∞(v, δ) ∩ [r′], there exists x ∈ N∞(u, 2δ) ∩ [r] and τ ′ ∈ R≥0 such that (ℓ, x)

τ ′

−→ (ℓ, y)
in JAK0

0.

Proof. Let n be the number of clock of A. Reminiscent of the normal form DBM
representation of regions, let αi, βi, mi,j ∈ Z and α′

i, β
′
i, m

′
i,j ∈ Z be the tightest con-

stants such that for all valuations u, v, we have u ∈ [r] and v ∈ [r′] if and only if for
all 1 ≤ i, j ≤ n:

ui − uj ≤ mi,j αi ≤ ui ≤ βi ( [r] )

vi − vj ≤ m′
i,j α′

i ≤ vi ≤ β ′
i ([r′])

In particular, this entails that −mj,i ≤ ui−uj ≤ βi−αj and −m′
j,i ≤ vi− vj ≤ β ′

i−α′
j

for all 1 ≤ i, j ≤ n, and since the constants are tight:

−mj,i ≤ mi,j ≤ βi − αj −m′
j,i ≤ m′

i,j ≤ β ′
i − α′

j (6.4)

Now, let u ∈ r, v ∈ r′ and τ ∈ R>0 such that (ℓ, u)
τ−→ (ℓ, v) in JAK0

0, and let δ ≥ 0
and y ∈ N∞(v, δ)∩ [r′]. Since r′ is a time successor of r and v = u + τ , we have for all
1 ≤ i, j ≤ n:

mi,j = m′
i,j vi − vj = ui − uj (6.5)

We define the valuation D = y − v. Since y ∈ N∞(v, δ), we have ‖D‖∞ ≤ δ and since
y ∈ [r′], we have for all 1 ≤ i, j ≤ n:

(vi + Di)− (vj + Dj) ≤ mi,j α′
i ≤ vi + Di ≤ β ′

i (6.6)

Now let z = u + D. As shown on Figure 6.5, we might have z 6∈ [r]. Thus, we have

to construct a neighbour x of z that belongs to [r] and such that x
τ ′

−→ y for some
τ ′ ∈ R≥0. By Equation (6.5) and (6.6), we have for all 1 ≤ i, j ≤ n:

zi − zj = (ui + Di)− (uj + Dj) = (vi + Di)− (vj + Dj) ≤ mi,j (6.7)
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[r]

u

v
y

zx

(a) The interior of [r] is empty.

[r]
u

v
y

z
x

(b) The interior of [r] is not
empty.

Figure 6.5: Construction of a predecessor of y in the closed region [r].

1. First, assume that for some i0, we have αi0 = βi0 . This means that the interior of r is
empty, as on Figure 6.5(a). Let t = −Di0 . Notice that the value of t is independent of
the choice of i0. Indeed, if for some j 6= i0 we have αj = βj , then using Equation (6.4)
we get:

αi0 − βj ≤ −mj,i0 ≤ mi0,j ≤ βi0 − αj

and −mj,i0 = mi0,j since αi0−βj = βi0−αj . By Equation (6.5), we have −m′
j,i0

= m′
i0,j

and thus in the region [r′], we have vi0 − vj = −m′
j,i0

= m′
i0,j = yi0 − yj and thus

Di0 = Dj .

Now, let x = z+t so that xi0 = ui0. We show that x ∈ [r]. Clearly, by Equation (6.7)
we have:

xi − xj = zi − zj ≤ mi,j

And in particular, for all 1 ≤ j ≤ n : −mi0,j ≤ xj − xi0 ≤ mj,i0. Since xi0 = ui0 =
αi0 = βi0 and by Equation (6.4) we have:

αj ≤ βi0 −mi0,j ≤ xj ≤ mj,i0 + αi0 ≤ βj

Now, we have ‖x− u‖∞ = ‖D + t‖∞ ≤ 2‖D‖∞ ≤ 2δ and thus x ∈ N∞(u, 2δ) ∩ [r].

2. Second, assume that for all i, we have αi < βi. This means that the interior of r is
not empty, as on Figure 6.5(b). We define the following sets:

I ={i | αi > zi} I ′ ={i | zi > βi}

• If I = ∅ and I ′ = ∅, then z ∈ [r] by Equation (6.7) and we take x = z. We have
‖x− u‖∞ = ‖z − u‖∞ = ‖D‖∞ ≤ δ.
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• If I 6= ∅, then define t = max{αi − zi | i ∈ I} and let i0 be an index in I such
that t = αi0 − zi0 . Clearly t > 0 and since t = αi0 − ui0 − Di0 and αi0 ≤ ui0,
we have t ≤ −Di0 . We take x = z + t so that xi0 = αi0 . We show that x ∈ [r].
Clearly, by Equation (6.7) we have:

xi − xj = zi − zj ≤ mi,j

In particular, for all 1 ≤ i ≤ n we have xj − xi0 ≤ mj,i0 ≤ βj − αi0 by Equa-
tion (6.4). Since xi0 = αi0 , this yields xj ≤ βj . Moreover, for all i ∈ I we have
xi = zi + t ≥ αi by definition of t, and for all i 6∈ I we have xi = zi + t ≥ zi ≥ αi.
Finally, we have ‖x− u‖∞ = ‖D + t‖∞ ≤ 2‖D‖∞ ≤ 2δ.

• If I ′ 6= ∅, then define t = min{βi − zi | i ∈ I ′} and let i0 be an index in I ′ such
that t = βi0 − zi0 . Clearly t < 0 and since t = βi0 − ui0 − Di0 and ui0 ≤ βi0 ,
we have t ≥ −Di0 . We take x = z + t so that xi0 = βi0. We show that x ∈ [r].
Clearly, by Equation (6.7) we have:

xi − xj = zi − zj ≤ mi,j

In particular, for all 1 ≤ j ≤ n we have xi0 − xj ≤ mi0,j ≤ βi0 − αj by Equa-
tion (6.4). Since xi0 = βi0 , this yields xj ≥ αj . Moreover, for all i ∈ I ′ we have
xi = zi + t ≤ βi by definition of t, and for all i 6∈ I ′ we have xi = zi + t ≤ zi ≤ βi.
Finally, we have ‖x− u‖∞ = ‖D + t‖∞ ≤ 2‖D‖∞ ≤ 2δ.

In each case, we have x ∈ N∞(u, 2δ) ∩ [r] and (ℓ, x)
τ ′

−→ (ℓ, y) in JAK0
0 for τ ′ = τ − t

(obviously we have τ ′ ≥ 0 because r′ is a time successor of r). �

Now, intuitively, if we take a trajectory π from u to itself in the classical semanticsJAK0
0, in order to reach the states in the neighbourhood of u (from u) in JAKε

0, we can
use the drifts to modify the timed transitions of π. To do so, we need to ensure that
the duration of π is sufficiently long, because a fixed drift applies proportionately to
durations. We care of that in the next lemma, by showing that if time passes on π then
it is possible to cycle on u by a trajectory of duration at least 1

2
without extending the

size of π more than twice. This last condition is important as otherwise, the lemma
would be trivially true.

Lemma 6.28 Let A be a closed timed automaton, let p = p0 p1 p2 . . . pN be a progress
cycle in the bounded region automaton of A. If there exists a limit cycle π of JAK
that follows p such that Duration(π) > 0, then there exists a limit cycle π′ of JAK with
first(π′) = first(π) and such that |π′| ≤ 2|π| and Duration(π′) ≥ 1/2.

Proof. The result is immediate if Duration(π) ≥ 1/2. Otherwise, assume that
Duration(π) < 1/2. Since all clocks are reset along π, their value is strictly less than 1/2
in every state of the trajectory.
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Let k = |π| and u = first(π) = last(π). Let π2 be the trajectory obtained by
repeating π twice. We have |π2| = 2k and first(π2) = statek(π2) = last(π2) = u. Since
all clocks are reset along π, their value remain strictly less than 1/2 in every state of π
and π2. By the fact that Duration(π) > 0, there must be at least one timed transition
in π with a strictly positive time stamp. Consider the first such transition in π2, and let
increase its length by 1/2 time units, yielding a new trajectory π′ in which each clock
remain below 1. Therefore, the same transitions as in π2 can be taken as the guards
satisfied by a state of π is also satisfied by the corresponding state in π′. Observe that
we leave the second half of the trajectory π′ unchanged, and since all clocks are reset
along π, we obtain last(π′) = u = first(π′), |π′| = 2|π| and Duration(π′) ≥ 1/2. �

Lemma 6.29 Let A be a closed timed automaton. Let (ℓ, x) and (ℓ, y) be two states
of JAK, and τ ∈ R≥0 such that (ℓ, x)

τ−→ (ℓ, y) in JAK. For all ε ∈ R>0, for all
x′ ∈ N∞(x, ετ) : (ℓ, x′)

τ−→ (ℓ, y) in JAKε
0.

Proof. The result is immediate if τ = 0. Otherwise, it suffices to set the rate of each
clock c of A to 1− x′(c)−x(c)

τ
, which lies between 1− ε and 1 + ε. �

Lemma 6.30 Let A be a closed timed automaton, let r and r′ be two regions of A such
that r→r′ in the bounded region automaton of A. For all u ∈ [r], v ∈ [r′] and ε ∈ R>0:

• if there is a timed transition u
τ−→ v in JAK, then for all η ∈ R>0, we have:

∀y ∈ N∞(v,
η + ετ

2 + 3ε
) ∩ [r′] · ∃x′ ∈ N∞(u, η) ∩ [r] : x′ τ ′

−→ y in JAKε
0;

• if there is an action transition u
σ−→ v in JAK, then for all η ∈ R>0, we have

∀y ∈ N∞(v, η) ∩ [r′] · ∃x ∈ N∞(u, η) ∩ [r] : x
σ−→ y in JAKε

0.

Proof. We only prove the first part of the lemma, the second part being quite obvious.
We have v = u + τ . Let δ = Kε(η + ετ) and let y ∈ N∞(v, δ)∩ [r′]. From Lemma 6.27,

there exists x ∈ N∞(u, 2δ)∩ [r] such that x
τ ′

−→ y in JAK for some τ ′ ∈ R≥0. So we have
y = x + τ ′. Using the triangle inequalities, we have:

τ ′ = ‖y − x‖∞ = ‖(v − u)− [(x− u) + (v − y)]‖∞ ≥ τ − 3δ (6.8)

Consider the set S = N∞(x, ετ ′) ∩ Conv({u, x}). Since d∞(u, x) ≤ 2δ, there exists
x′ ∈ S such that:

{
d∞(u, x′) = 0 if d∞(u, x) ≤ ετ ′ (take x′ = u)

d∞(u, x′) ≤ 2δ − ετ ′ if d∞(u, x) > ετ ′
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Since [r] is convex and x, u ∈ [r], we have x′ ∈ [r], and since x
τ ′

−→ y in JAK, Lemma 6.29

entails that x′ τ ′

−→ y in JAKε
0. To complete the proof, we have to show that x′ ∈ N∞(u, η),

that is d∞(u, x′) ≤ η. Starting from Equation (6.8), we have:

ε(τ − τ ′) ≤ 3εδ = (2 + 3ε)δ − 2δ = η + ετ − 2δ

and thus 2δ − ετ ′ ≤ η which entails d∞(u, x′) ≤ η. �

Lemma 6.31 Let A be a closed timed automaton, let ε ∈ R>0 and Kε = 1/(2 + 3ε).
Let p = p0 p1 · · · pN be a path in the bounded region automaton of A. Let π be a
trajectory of JAK that follows p and let u = first(π), v = last(π) and T = Duration(π).
For all y ∈ N∞(v, KN

ε εT )∩ [pN ], there exists a trajectory π′ in JAKε
0 that follows p and

such that first(π′) = u and last(π′) = y.

Proof. Let π = (q0, t0)σ1(q1, t1)σ2 . . . σN (qN , tN) with t0 = 0 and tN = T . Define
ǫi = Ki

εεti. We show that for all 0 ≤ i < N , for all y ∈ N∞(qi+1, ǫi+1) ∩ [ri+1], there
exists x ∈ N∞(qi, ǫi) ∩ [ri] such that there exists a transition from x to y in JAKε

0:

• if qi

σi+1−−→ qi+1 is a discrete transition, then we have ǫi+1 ≤ ǫi because ti+1 = ti
and Kε ≤ 1. The claims follows then directly from Lemma 6.30.

• otherwise, we have a timed transition qi
τ−→ qi+1 and ti+1 = ti+τ . By Lemma 6.30

with η = ǫi, we have:

∀y ∈ N∞(qi+1, Kε(ǫi + ετ)) ∩ [ri+1] · ∃x′ ∈ N∞(qi, ǫi) ∩ [ri] : x′ τ ′

−→ y in JAKε
0.

Since Kε ≤ 1, we have:

Kε(ǫi + ετ) = Ki+1
ε εti + Kεετ

≥ Ki+1
ε ε(ti + τ)

= Ki+1
ε εti+1 = ǫi+1

Hence, N∞(qi+1, ǫi+1) ⊆ N∞(qi+1, Kε(ǫi + ετ)) and we have:

∀y ∈ N∞(qi+1, ǫi+1) ∩ [ri+1]. ∃x′ ∈ N∞(qi, ǫi) ∩ [ri]. x′ τ ′

−→ y in JAKε
0.

Applying this result for each 0 ≤ i < N , we obtain immediately that for all y ∈
N∞(qN , ǫN)∩[rN ], there exists x ∈ N∞(q0, ǫ0)∩[r0] such that there exists a trajectory π′

in JAKε
0 that follows p with first(π′) = x and last(π′) = y. Finally, we have qN = last(π)

and q0 = first(π) so that x = u since ǫ0 = 0 and N∞(q0, 0) = {q0}. �
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Lemma 6.32 Let A be a closed timed automaton and p be a progress cycle of the
bounded region automaton of A. For all u, v ∈ Lp, there exists an n ∈ N such
that Conv({u, v}) ⊆ Ln,p.

Proof. Let k and l be such that u ∈ Lk,p and v ∈ Ll,p. Take n = kl. The result
follows from Lemma 6.20. �

Lemma 6.33 Let A be a closed timed automaton and p = p0 p1 · · · pN be a progress
cycle of the bounded region automaton of A. For all u, v ∈ Lp, for all ε ∈ R>0, there
exists δ > 0 such that for all x ∈ Conv({u, v}) and for all y ∈ Lp ∩ N∞(x, δ), there
exists a trajectory π in JAKε

0 such that first(π) = x and last(π) = y.

Proof. If p is not a time-elapsing progress cycle, then Lp is a singleton that contains
the valuation in which all clocks are equal to zero. In this case, the result is immediate.

Assume that p contains a time-elapsing region. For u, v ∈ Lp, let n ∈ N be given by
Lemma 6.32. We are in the conditions of Lemma 6.28: for all x ∈ Conv({u, v}) there
exists a limit cycle π on x with Duration(π) > 0 and |π| ≤ nW where W is the number
of regions of A. Therefore, there exists a limit cycle π′ on x with Duration(π′) ≥ 1/2
and |π′| ≤ 2nW . Let N = 2nW and take δ = 1

2
εKN

ε . By Lemma 6.31, for all
y ∈ N∞(x, δ) ∩ [p0] there exists a trajectory π in JAKε

0 such that first(π) = x and
last(π) = y. Finally, the result follows from the fact that Lp ⊆ [p0]. �

We proceed with the proof of Theorem 6.26:

Proof of Theorem 6.26. For u, v ∈ Lp, let δ as given by Lemma 6.33 and let k = ⌈1
δ
⌉.

Consider the points x0 = u, xk = v, and xi = u + iδ(v − u) for i = 1, . . . , k − 1. It
is easy to see that d∞(xi, xi+1) ≤ δ · d∞(u, v) ≤ δ (because the ∞-distance between
two points of a region is at most 1). Thus from Lemma 6.33, for all 0 ≤ i ≤ k − 1
there exists a trajectory from xi to xi+1 in JAKε

0, and thus a trajectory π such that
first(π) = u and last(π) = v. �

6.6.2.3 Soundness of Algorithm 4.

Theorem 6.34 Let A be a closed timed automaton. Let p = p0 p1 . . . pN be a progress
cycle of the bounded region automaton of A. For all x, y ∈ [p0], we have:

• For all ∆ ∈ R>0, there exists a trajectory π in JAK0
∆,

• For all ε ∈ R>0, there exists a trajectory π′ in JAKε
0
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such that first(π) = first(π′) = x and last(π) = last(π′) = y.

Proof. From Theorem 6.19, there exist u, v ∈ Lp and two trajectories π1 and π3

of JAK such that first(π1) = x and last(π1) = u, and first(π3) = v and last(π3) = y.
By Theorem 6.24, there exists a trajectory π2 of JAK0

∆ such that first(π2) = u and
last(π2) = v. We construct π by concatenating the three trajectories π1, π2 and π3.
The proof is similar for the second part of the theorem, based on Theorem 6.26. �

As a consequence:

Theorem 6.35 Let J∗ be the set computed by Algorithm 4. We have J∗ ⊆ R∗
∆ and

J∗ ⊆ R∗
ε.

Proof. For all ∆ > 0, if a set of regions J∗ is reachable in JAK0
∆, then:

• so is the set Reach(RA, J∗) of regions reachable from J∗ in the bounded region
automaton RA of A;

• for all progress cycles p, if p0 is a region in p such that [p0] ∩ J∗ 6= ∅, then the
set J∗ ∪ [p0] is reachable in JAK0

∆, according to Theorem 6.34.

Since J∗ is obtained by iterating the above two operations (lines 4, 6 and 7 of the algo-
rithm) from the set of initial states Q0 (see line 3), this ensures that J∗ ⊆ Reach(JAK0

∆).
This holds for all ∆ > 0, and hence J∗ ⊆ R∗

∆.

The proof for drifts on clocks is similar. �

6.6.3 Completeness of Algorithm 4: R∗∆,ε ⊆ J∗

To prove the completeness of Algorithm 4, we have to show that any state that is
reachable in the semantics JAKε

∆ no matter how small are ε and ∆, lies in the set J∗

computed by Algorithm 4. First, we show that if the number of transitions in trajec-
tories is bounded, we can compute a bound on the distance between a state reachable
in JAKε

∆ and the set of reachable states Reach(JAK) in the classical semantics (Theo-
rem 6.40). This bound vanishes when ε → 0 and ∆ → 0. This shows that a state
x ∈ R∗

∆,ε that is reachable in a bounded number of steps from the initial states in JAKε
∆

for all ε, ∆ > 0 is at distance zero from the reachable states in the classical semantics.
An argument related to topologically closed sets then shows that x ∈ Reach(JAK).
Second, to extend the result to the whole set R∗

∆,ε, we roughly use the fact that longer
trajectories necessarily contain a cycle that is added to J∗ by the algorithm. There-
fore, only a bounded part of those trajectories can take the state far from J∗. By a
similar argument as above, this distance to J∗ is shown to vanish when ε → 0 and
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Soundness: J∗ ⊆ R∗
∆ and J∗ ⊆ R∗

ε .

Theorem 6.34 and 6.35.

Study of limit cycles.

Theorem 6.19.

Study of reachability properties
of the enlarged semantics.

• Theorem 6.24 for JAK0
∆.

• Theorem 6.26 for JAKε
0.

using using

Completeness: R∗
∆,ε ⊆ J∗.

Theorem 6.42.

Bounding the distance allowed by JAKε
∆ wrt. JAK.

• Theorem 6.40 for trajectories of bounded size.

• Theorem 6.41 for trajectories of unbounded size.

Study of PDBM.

Lemma 6.36-6.39.

using

using

Figure 6.6: Milestones for the proofs of soundness and completeness of Algorithm 4.
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∆ → 0 (Theorem 6.41). The proofs of the theorems are based on a detailed study of
the reachability properties of the enlarged semantics, for which we use a tool that may
appear very powerful for our purpose: the parametric DBM, an extension of DBM
that we have presented in Section 6.4). Our attempts to come up with simpler or
more intuitive proofs have failed. The important steps of the proof can be followed on
Figure 6.6.

A parametric DBM (PDBM) in Rn is a matrix M =
(
mi,j

)
0≤i,j≤n

where mi,j ∈ Z×N

is called a parametric bound . In a PDBM, each mi,j is a couple (a, b) of integers with
b ≥ 0. Given a number Ω ∈ R≥0, the value of mi,j is JmKΩ = a + bΩ. The set
represented by M is:JMKΩ = {(x1, . . . , xn) ∈ Rn | ∀ 0 ≤ i, j ≤ n : xi − xj ≤ JmijKΩ ∧ x0 = 0}.

As usual, we often write JMK for JMK0. More general definitions of PDBM have
been introduced in [AAB00, HRSV01], with implementations. Here, we use PDBM for
purely theoretical purposes, so we keep the definition as simple as possible.

For a PDBM M =
(
mij

)
0≤i,j≤n

with mij = (aij, bij), we define the width of M by

w(M) = max{bij | 0 ≤ i, j ≤ n}. Thus a DBM is a zero-width PDBM. Any closed
rectangular guard g can be represented by a PDBM Mg with w(Mg) = 2 such that for
all Ω ∈ R≥0 we have JMgKΩ = N∞(JgK, Ω). In particular, JgK = JMgK.
Example Let g ≡ x = 4 ∧ 1 ≤ y ≤ 3. Then,

0 x y

0



(0, 0) (−4, 1) (−1, 1)
(4, 1) (0, 0) (3, 2)
(3, 1) (−1, 2) (0, 0)


Mg = x

y

When the reachable states in the enlarged semantics of a closed timed automaton A
are computed parametrically using PDBM, it would be nice that the classical semanticsJMK gives exactly the reachable states in JAK and that the enlarged semantics JMKΩ

gives the reachable states in JAKε
∆. This can be obtained when ε = 0 by taking Ω = ∆.

For the general case ε > 0, the set JMKΩ over-approximates the reachable states,
provided ε is sufficiently small. We are more precise in Lemma 6.38 and Lemma 6.39.

In that context, the width of PDBM records the accumulation of the deviations
allowed by the enlarged semantics. This is useful to bound the distance between
states that are reachable in the enlarged semantics and states that are reachable in the
classical semantics. The following lemma gives such a bound.

Lemma 6.36 Let M be a PDBM in Rn and let Ω ∈ R≥0 such that Ω·(2n+1)·w(M) <
1. Let Z = JMK and Z ′ = JMKΩ. For all x′ ∈ Z ′, there exists x ∈ Z such that
‖x′ − x‖∞ ≤ n · w(M) · Ω.
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Proof. First, assume that x′ is a vertex of Z ′. Then x′ can be obtained by solving
a system of n equations of the form x′

i − x′
j = JmijKΩ, x′

i = Jmi0KΩ or x′
i = −Jm0iKΩ.

Therefore, each x′
i is the sum or difference of at most n coefficients JmijKΩ. Since the

bounds mij are entries of M, for all 1 ≤ i ≤ n, if x′
i = li + kiΩ for some li, ki ∈ Z, then

|ki| ≤ n ·w(M) and we take xi = li. Then ‖x′− x‖∞ ≤ n ·w(M) ·Ω and we claim that
x ∈ Z. Let l0 = k0 = 0. Then, for all 0 ≤ i, j ≤ n we have:

x′
i − x′

j = li − lj + (ki − kj) · Ω ≤ aij + bijΩ

Hence,
li − lj ≤ aij + (bij − ki + kj) · Ω

Since li, lj and aij are integers and |(bij − ki + kj) · Ω| ≤ (2n + 1) · w(M) · Ω < 1, we
have xi − xj = li − lj ≤ aij . Therefore x ∈ Z.

Second, if x′ is not a vertex, then it can be written as x′ =
∑

i λiv
′
i with λi ≥ 0 and∑

i λi = 1 and each v′
i is a vertex of Z ′. From the proof above, for each v′

i there exists
vi ∈ Z such that ‖v′

i − vi‖∞ ≤ n · w(M) · Ω. We take x =
∑

i λivi. Clearly x ∈ Z, and
we have:

‖x′ − x‖∞ =
∥∥∥

∑

i

λi(v
′
i − vi)

∥∥∥
∞

≤
∑

i

λi‖v′
i − vi‖∞

≤
∑

i

λi(n · w(M) · Ω)

≤ n · w(M) · Ω
�

Now, we show how to extend to PDBM the operations that we have presented in
Section 6.4 for DBM. To do so, we have to define the minimum of two parametric
bounds (for intersection of PDBM). We define a lexicographic order on parametric
bounds: (a, b) ≤ (a′, b′) if and only of either a < a′, or a = a′ and b ≤ b′. This
(syntactical) definition is justified by the following observation: for all Ω such that
bΩ ≤ 1, if (a, b) ≤ (a′, b′) then J(a, b)KΩ ≤ J(a′, b′)KΩ. Thus if we take a sufficiently
small Ω, the order is preserved at the semantical level. In the sequel, this will imply
that provided Ω is below some threshold, the operations on PDBM can be performed
independently of the value of Ω. The sum of two parametric bounds (a, b) and (a′, b′)
is (a + a′, b + b′).

We review the fundamental operations on PDBM:

• Intersection: the intersection of two PDBM M1 and M2 is the PDBM M whose
entries are the minimum (according to the lexicographic order on parametric
bounds) of the corresponding entries of M1 and M2. Hence w(M) ≤ w(M1) and
w(M) ≤ w(M2).
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• Time passing and reset: those operations only substitute entries of the matrix
with other entries of the matrix and they preserve the normal form (see below).
Thus the width cannot increase.

• Normalization: to obtain the normal form of a PDBM M in Rn, each entry mij

is replaced by the length of the shortest path from node i to node j, which has at
most n edges. Therefore, the width of the normal form is bounded by n ·w(M).

• Emptiness test: given a PDBM M, let M′ be its normal form. The emptiness
test checks whether one of the diagonal entries is negative (a parametric bound
m = (a, b) is negative iff m < (0, 0) iff a ≤ −1).

A summary of the above observations is given in Table 6.1. Note that all the
operations (except the normalization) are correct for all values of Ω. For all PDBM
M, M′, M1 and M2 in Rn, we have:

• ∀Ω ∈ R≥0 : JM1 ∩M2KΩ = JM1KΩ ∩ JM2KΩ;

• ∀Ω ∈ R≥0 : JMրKΩ = JMKΩր;

• ∀Ω ∈ R≥0 · ∀R ⊆ {x1, . . . , xn} : JM[R := 0]KΩ = JMKΩ[R := 0];

• ∀Ω ∈ [0, 1/(n · w(M))]: if M′ is the normal form of M, then the DBM(Jm′
ijKΩ

)
0≤i,j≤n

is the normal form of the DBM
(JmijKΩ

)
0≤i,j≤n

.

For the emptiness test, the value of Ω should also be bounded.

Lemma 6.37 Let M be a PDBM. We have:

∀Ω ∈ [0, 1/(n · w(M))[ : JMKΩ = ∅ iff JMK0 = ∅

Proof. First, we have JMK0 ⊆ JMKΩ for all Ω. Thus it suffices to show that JMK0 = ∅
implies that JMKΩ = ∅ for all Ω < 1/(n · w(M)). If JMK0 = ∅ then there exists a
parametric bound m′ = (a, b) in the diagonal of the normal form PDBM M′ such that
a ≤ −1. Since b ≤ n · w(M), we have Jm′KΩ = a + bΩ < 0 and therefore JMKΩ is
empty. �

Notation Given a TTS T = 〈Q, Q0, Qf , Σ,→〉, let A ⊆ Q and σ ∈ Σ. We define the
following operators:

postσT (A) = {q′ ∈ Q | ∃q ∈ A : q
σ−→ q′}

posttime
T (A) = {q′ ∈ Q | ∃q ∈ A · ∃t ∈ R≥0 : q

t−→ q′}
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PDBM in Rn Input in NF Output in NF Width of the result

Intersection M1 ∩M2 No No ≤ max{w(M1), w(M2)}
Time passing Mր Yes Yes ≤ w(M)

Reset M[R := 0] Yes Yes ≤ w(M)

Normalization of M
No Yes ≤ n · w(M)

Emptiness test of M

Table 6.1: Operations on PDBM (NF = normal form).

We use the PDBM to characterize the relationship between the reachable states of
the classical semantics JAK and those of the enlarged semantics JAKε

∆.

By an abuse of notation, we omit the location in the argument of post(·), that is
we use Z = JMK instead of Z = {ℓ} × JMK for ℓ ∈ Loc. Finally, we assume that the
edges of timed automata are identified by their label. This is clearly not restrictive for
reachability analysis.

In Lemma 6.38, the PDBM M′ contains the exact information about the timed
successors of M in the classical semantics, and it is an over-approximation of the timed
successors in the enlarged semantics. Lemma 6.39 is similar for discrete successors.

Lemma 6.38 Let A be a closed timed automaton with n clocks and largest constant M .
Let M be a PDBM in Rn in normal form. There exists a PDBM M′ in normal form
such that:

• ∀Ω ∈ R≥0 · ∀∆ ∈ R≥0 · ∀ε ≤ Ω/(2(M + 1)) : posttimeJAKε
∆
(JMKΩ) ⊆ JM′KΩ;

• posttimeJAK00(JMK0) = JM′K0;

• w(M′) = w(M) + 1.

Proof. Assume that Ω, ∆ ∈ R≥0 and ε ≤ Ω/(2(M + 1)). First, observe that in the
classical semantics JAK, the length of a timed transition is bounded by M . In the
enlarged semantics JAKε

∆ however, a timed transition may be longer than M because
clocks can progress slower, namely at the rate 1− ε. Therefore, the length of a timed
transition is bounded by M/(1− ε) and thus by M + 1 since ε ≤ 1/(M + 1). Second,
we obtain M′ by constructing the time successor of M as described above (in the exact
semantics), and then by replacing each bound (a, b) of the PDBM by (a, b + 1), except
on the diagonal. Clearly we have w(M′) = w(M) + 1 and JMրK0 = JM′K0 and thus
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posttimeJAK00(JMK0) = JM′K0. On the other hand, if we have (ℓ, x)
t−→ (ℓ, x′) in JAKε

∆ and

xi − xj ≤ JmijKΩ, then:

x′
i − x′

j ≤ JmijKΩ + 2εt ≤ JmijKΩ + 2ε(M + 1) ≤ JmijKΩ + Ω = Jm′
ijKΩ

Therefore posttimeJAKε
∆
(JMKΩ) ⊆ JM′KΩ. �

Lemma 6.39 Let A be a closed timed automaton with n clocks and alphabet Lab.
Let M be a PDBM in Rn. For all σ ∈ Lab, there exists a PDBM M′ in normal form
such that:

• ∀Ω ∈ R≥0 · ∀∆ ≤ Ω · ∀ε ∈ R≥0 : postσJAKε
∆
(JMKΩ) ⊆ JM′KΩ;

• postσJAK00(JMK0) = JM′K0;

• w(M′) ≤ n ·max{2, w(M)}.

Proof. Assume that Ω, ε ∈ R≥0 and ∆ ≤ Ω. Let (ℓ, ℓ′, g, σ, R) be the edge of A
associated to σ. Let Mg be the PDBM that represents the guard g. To construct M′,
let M∩ be the PDBM M ∩Mg put in normal form, and let M′ = M∩[R := 0] which
is in normal form. According to Table 6.1, we have w(M′) ≤ n ·max{2, w(M)} and

postσJAKε
∆
(JMKΩ) ⊆ postσJAKε

Ω
(JMKΩ) = JM′KΩ

For Ω = ∆ = ε = 0, the sets collapse and postσJAK00(JMK0) = JM′K0. �

With the two previous lemma, we have characterized how much the set of reachable
states can increase by taking one transition (either timed or discrete) in the enlarged
semantics JAKε

∆ instead of the classical semantics JAK0
0. That increase is measured in

terms of the width of a PDBM. In the next lemma, we use an argument by induction
to give a bound on the increase after a given number of transitions. However, this is
not sufficient to prove the completeness of Algorithm 4. We need in addition to show
that every trajectory π′ in JAKε

∆ can be approached by a trajectory π in JAK0
0 where

each intermediate state in π is “close” to the corresponding state in π′. To obtain
this result, we introduce the notion of automaton refinement that roughly divides the
guards into small pieces of size4 1

γ
(with γ ∈ N) so that two valuations that satisfy

the same guard are necessarily “close” to each other (by choosing γ sufficiently large).
This is the core of Theorem 6.40.

4The size of a set is the maximal ∞-distance between two points in the set.
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Automaton refinement Given a closed timed automaton A with n clocks and an
integer γ ∈ N, the γ-refinement of A is the closed timed automaton Aγ constructed
from A by first substituting in A each constant c appearing in the rectangular con-
straints (guards, invariants, initial and final conditions) of A by cγ and second removing
each edge (l, l′, g, σ, R) of A and replacing it by the set of all edges (l, l′, g′, σ, R) such
that g′ ∈ φ(g) where φ(g) is defined as follows. Assume without loss of generality
that g ≡ ϕ1 ∧ · · · ∧ ϕn where for all 1 ≤ i ≤ n the constraint ϕi is of the form either
ϕi ≡ xi = ai or ϕi ≡ ai ≤ xi ≤ bi with ai, bi ∈ γN. Correspondingly, let φi be the set
of constraints {xi = ai} or {c ≤ xi ≤ c + 1 | c ∈ N ∧ ai ≤ c < bi}. Now, we define
φ(g) = {g′ ≡ ϕ′

1 ∧ · · · ∧ ϕ′
n | ∀ 1 ≤ i ≤ n : ϕ′

i ∈ φi}.
Roughly, the γ-refinement of A is a scaling of the constants by a factor γ (and thus

a scaling of the time), followed by a partitioning of the guards such that the∞-distance
between two valuations that satisfy the guard is at most 1 (instead of a multiple of γ
after the scaling).

The important property of such refinements is that for all ∆, ε ∈ R≥0, the two
TTS JAKε

∆ and JAγKε
γ∆ are bisimilar, witnessed by the bijection µγ : QA → QAγ such

that µγ(ℓ, v) = (ℓ, γv). We extend µγ to trajectories as expected (states are mapped
according to µγ and the time stamps are multiplied by γ). Finally, for all v, v′ ∈ QAγ

we have ‖µ−1
γ (v)− µ−1

γ (v′)‖∞ = ‖v − v′‖∞/γ

Example. For γ = 2, an edge (ℓ, ℓ′, g, σ, R) in A with g ≡ x = 4 ∧ 1 ≤ y ≤ 3 is
replaced in Aγ by the four edges:

(ℓ, ℓ′, {x = 8, 2 ≤ y ≤ 3}, σ, R) (ℓ, ℓ′, {x = 8, 4 ≤ y ≤ 5}, σ, R)
(ℓ, ℓ′, {x = 8, 3 ≤ y ≤ 4}, σ, R) (ℓ, ℓ′, {x = 8, 5 ≤ y ≤ 6}, σ, R)

Theorem 6.40 Let A be a closed timed automaton with n ≥ 1 clocks and largest
constant M . For all distances 0 < α < 1, for all number of steps k ∈ N, there exist
two numbers D, E ∈ R>0 such that for all ∆ ∈ [0, D], for all ε ∈ [0, E] and for all
trajectories π′ of JAKε

∆ in normal form such that |π′| = k, there exists a trajectory π ofJAK such that:

• first(π) ∈ [first(π′)];

• trace(π) = trace(π′);

• π is “close” to π′: ∀ 0 ≤ i ≤ k : if statei(π) = (ℓi, vi) and statei(π
′) = (ℓ′i, v

′
i) then

ℓi = ℓ′i and ‖vi − v′
i‖∞ < α.

Proof. Given 0 < α < 1 and k ∈ N, let γ = ⌈2/α⌉ and:

D =
α

4γ(n + 1)k+1
E =

D

2(γM + 1)
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Let ∆ ∈ [0, D] and ε ∈ [0, E] and let Ω = γD. Let trace(π′) = σ1σ2 . . . σk be the
trace of π′. Let ρ′ = µγ(π

′). Then ρ′ is a trajectory of JAγKε
γ∆. Let M0 be a PDBM

in normal form such that JM0K = [first(π′)] and w(M0) = 0 (in fact M0 is a DBM).
Observe that ∆ ≤ Ω and ε ≤ Ω/(2(Mγ + 1)) where Mγ = γM is the largest constant
of Aγ . Therefore, by Lemma 6.38 and 6.39, there exists PDBM M1,M2, . . . ,Mk in
normal form such that for all 1 ≤ i ≤ k:

• (a) postσiJAγKε
γ∆

(JMi−1KΩ) ⊆ JMiKΩ;

• (b) postσiJAγK(JMi−1K0) = JMiK0;

• (c) w(Mi) ≤ max{w(Mi−1) + 1, n ·max{2, w(Mi−1)}.

Let us show that w(Mi) ≤ 2(n + 1)i. We proceed by induction. The claim holds for
i = 1 since w(M0) = 0. Assume that it holds for i− 1 for i ≥ 2. Then we have:

w(Mi) ≤ max
{
w(Mi−1) + 1, n ·max{2, w(Mi−1)}

}

≤ max{1 + 2(n + 1)i−1, 2n · (n + 1)i−1} by (c)

≤ 2(n + 1)i−1 + 2n · (n + 1)i−1

≤ 2(n + 1)i

For each 0 ≤ i ≤ k, let q′i = statei(π
′). By (a), we have µγ(q

′
k) ∈ JMkKΩ. Since α < 1,

it is easy to see that:

Ω =
α

4(n + 1)k+1
<

1

(2n + 1)w(Mk)

and thus by Lemma 6.36, there exists qk ∈ JMkK such that:

‖µγ(q
′
k)− qk‖∞ ≤ n · w(Mk) · Ω < 2(n + 1)k+1 · Ω ≤ α

Using (b), we can construct in a backward fashion a trajectory ρ of JAγK such that:

• last(ρ) = qk;

• trace(ρ) = trace(π′);

• first(ρ) ∈ JM0K = [q′0].

For each 0 ≤ i ≤ k, let qi = statei(ρ). For all i such that σi 6= time, we have qi ∈ Jg′
iK

and µγ(q
′
i) ∈ N∞(Jg′

iK, γ∆) where g′
i is the guard of the edge of Aγ associated to σi

that has been taken in ρ. Since the size of g′
i is at most 1, we have:

‖µγ(q
′
i)− qi‖∞ ≤ 1 + γ∆ ≤ 1 + Ω (6.9)
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Observe that the effect of discrete transitions is to reset some clocks and that does not
increase the ∞-distance between two states: we also have ‖µγ(q

′
i) − qi‖∞ ≤ 1 + γ∆

for all i such that σi−1 6= time. Since π′ is in normal form and trace(ρ) = trace(π′),
Equation (6.9) holds for all 0 ≤ i ≤ k. Now, let π = µ−1

γ (ρ) which is a trajectory
of JAK since ρ is a trajectory of JAγK. Thus, we have for all 0 ≤ i ≤ k:

‖q′i − µ−1
γ (qi)‖∞ ≤

1 + Ω

γ
<

2

γ
≤ α

which entails that π is “close” to π′ as required. �

The following theorem is the key of the proof of completeness. It shows that for
all distances α > 0, we can choose sufficiently small values of ∆ and ε such that
from J∗ the points that are reachable in JAKε

∆ are at distance at most α from J∗.
By contrast with Theorem 6.40, we do not make the hypothesis that the length of
the trajectories is bounded. This result is similar to Theorem 8.3 in [Pur98], but the
constants are different because only drifting clocks were considered by Puri and the
bound of Lemma 6.12 was wrong.

Theorem 6.41 Let A be a closed timed automaton with n ≥ 1 clocks and largest
constant M that satisfies Assumption 6.4. For all distances α ∈ R>0, there exist
two numbers D, E ∈ R>0 such that for all ∆ ∈ [0, D], for all ε ∈ [0, E] and for all
trajectories π′ of JAKε

∆ such that first(π′) ∈ J∗, we have d∞(last(π′), J∗) < α.

Proof. Without loss of generality, we may assume that α < 1
2n

. Let W be the number
of regions of A, let γ = ⌈2/α⌉ and:

D =
α

4γ(n + 1)2W+1
E =

D

2(γM + 1)

Let ∆ ∈ [0, D] and ε ∈ [0, E] and let π′ be a trajectory of JAKε
∆ in normal form such

that first(π′) ∈ J∗. Let m = |π′| and for each 0 ≤ i ≤ m, let q′i = statei(π
′).

• If m ≤ 2W . By Theorem 6.40, there exists a trajectory π of JAK such that
first(π) ∈ [first(π′)] and for all 0 ≤ i ≤ m, ‖qi − q′i‖∞ < α where qi = statei(π).
Since q0 ∈ [q′0] ⊆ J∗, the state qm is reachable from J∗ and thus qm ∈ J∗. Since
‖qm − q′m‖∞ < α this yields d∞(last(π′), J∗) < α.

• If m > 2W . By induction, assume that d∞(q′i, J
∗) < α for all 0 ≤ i ≤ m − 1.

Consider the sub-trajectory of π′ from state q′m−2W to q′m, and according to
Theorem 6.40 let π be a trajectory such that for all m−2W ≤ i ≤ m, ‖qi−q′i‖∞ <
α where qi = statei−(m−2W )(π). Then for all i, m− 2W ≤ i ≤ m− 1, we have :

d∞(qi, J
∗) ≤ ‖qi − q′i‖∞ + d∞(q′i, J

∗) ≤ 2α <
1

n
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and by Lemma 6.12, this implies [qi]∩J∗ 6= ∅ for all m−2W ≤ i ≤ m−1 (since
J∗ is a zone-set).

On the other hand, the trajectory π has the same trace as the sub-trajectory of
π′ from q′m−2W to q′m and thus it is in normal form and |π| = 2W . Therefore, π
has 2W + 1 states and thus there exists two states qk and qk′ in π with k < k′

such that [qk] = [qk′ ] and a discrete occurred along π between qk and qk′ in π, and
thus there exists a path from [qk] to itself in the region automaton of A. Since
[qk] ∩ J∗ 6= ∅, we have [qk] ⊆ J∗ by line 6 of Algorithm 4 and [qi] ⊆ J∗ for all
i ≥ k by line 7 of the algorithm. So we have qm ∈ J∗ and since ‖qm− q′m‖∞ < α,
this yields d∞(last(π′), J∗) < α.

�

6.6.3.1 Completeness of Algorithm 4.

Theorem 6.42 Let J∗ be the set computed by Algorithm 4. Under Assumption 6.4,
we have R∗

∆,ε ⊆ J∗.

Proof. For all y ∈ R∗
∆,ε, for all ∆ > 0 and ε > 0 there exists a trajectory π ofJAKε

∆ such that first(π) ∈ J∗ (because J∗ contains the initial states) and last(π) = y.
Therefore, by Theorem 6.41 for all α ∈ R>0 we have d∞(y, J∗) < α. This implies that
d∞(y, J∗) = 0 and since J∗ is a closed set (a finite union of closed regions) we have
y ∈ J∗. �

With Theorem 6.35 and Theorem 6.42 we have proven the following inclusions.

R∗
∆,ε

R∗
∆

R∗
ε

J∗R∗
∆,ε ⊆

⊆
⊆

⊆
⊆

All those sets are thus equal:

Theorem 6.43 Under Assumption 6.4, we have R∗
∆ = R∗

ε = R∗
∆,ε, and those sets are

computed by Algorithm 4.

6.6.4 Complexity

The complexity issues have been studied in [Pur98]. We mention the main theorem
and we give a detailed proof of the hardness result.
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Theorem 6.44 ([Pur98]) Given a timed automaton A = 〈Loc, Var, Init, Inv, Lab, Edg,
Final〉 satisfying Assumption 6.4 and a location ℓ ∈ Loc, deciding whether there exists
a valuation v such that (ℓ, v) ∈ R∗

∆ (or equivalently (ℓ, v) ∈ R∗
ε, or (ℓ, v) ∈ R∗

∆,ε) is
PSpace-Complete.

The proof uses the following definition of Linear Bounded Turing Machines (LBTM).
A LBTM is a nondeterministic Turing machine that can only use a number of tape
cells equal to the length of its input.

Definition 6.45 [Linear Bounded Turing Machine] A LBTM M = (Q, Σ, q0, qf , E)
consists of:

• a finite set of control states Q,

• a finite alphabet Σ,

• an initial state q0 ∈ Q, a final state qf ∈ Q,

• and a set of transitions E ⊆ Q× Σ× Σ× {left, right} ×Q.

A configuration of M is a triple (q, w, i) ∈ Q×Σ∗×N where q is a control location,
w ∈ Σ∗ is the content of the tape, and i is the position of the tape head. A config-
uration (q′, w′, i′) is a successor of a configuration (q, w, i) iff there exists a transition
(q, σ, σ′, d, q′) ∈ E such that:

(1) wi = σ;

(2) w′
i = σ′ and w′

j = wj for all j 6= i;

(3) i′ = i− 1 if d = left and i′ = i + 1 if d = right with 1 ≤ i′ ≤ |w|.

We assume that the condition 1 ≤ i′ ≤ |w| is realized using input delimiters. An
execution of M on the input x ∈ Σ∗ is a sequence s0s1 . . . sn of configurations starting
with s0 = (q0, x, 1) and such that si+1 is a successor of si for every 0 ≤ i < n. We
say that M accepts x iff M has an execution on x finishing in sn = (qf , w, i) for some
w ∈ Σ∗ and i ∈ N. The acceptance problem for LBTM asks, given a LBTM M and an
input word x ∈ Σ∗ whether M accepts x. �

Proof of Theorem 6.44. First, we prove PSpace-membership. It is not possible
to use Algorithm 4 because we should construct the region automaton RA, which may
have a number of states exponential in the number of clocks of the timed automa-
ton A. However, we can check the reachability of a region r by guessing a path in the
region automaton from the initial regions to r in polynomial space. This is a fairly
standard trick used for showing PSpace-membership of the reachability problem for
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classical timed automata with an on-the-fly algorithm [AD94]. The difficulty is that
the successor of a given region r can be a neighbour region r′ such that [r] ∩ [r′] 6= ∅
provided r′ lies in a progress cycle S of RA. As we have shown, the entire region r′ can
be reached from r in JAK∆ no matter how small is ∆, by repeating the cycle S. Hence
we can add S in one step in the set of reachable states. Such an acceleration has been
proven correct (Theorem 6.35) and complete (Theorem 6.42). So, when guessing the
successor of a region r, we must take into account the neighbour regions of r and decide
whether they are in a progress cycle or not. This can be checked in PSpace using
the same procedure as for classical timed automata [AD94]. A polynomially bounded
part of the memory is reserved for executions of this procedure. Since the content of
this part of the memory is not necessary for further computations, it can be reused by
subsequent calls and PSpace-membership follows.

We establish PSpace-hardness using a reduction of the acceptance problem for
LBTM which is known to be PSpace-hard [Kar72].

Our reduction is similar to [CY91], where a configuration (q, w, i) of a LBTM is
encoded by a location (q, i) (that records the control state q and the tape position
i) and by the clocks y1, . . . , y|w|, one for each tape cell. We assume without loss of
generality that Σ = {a, b}. A clock yi has the value yi = na if wi = a and yi = nb > na

if wi = b. This encoding is not preserved by time passing. Thus we need to periodically
refresh the values of the clocks. This is done in two phases: (I) resetting the clocks
coding a ’b’ (by checking yi = nb), then letting nb−na time unit pass, and (II) resetting
the clock coding an ’a’ (by checking yi = nb again) and finally letting na time unit
pass. During phase (I), the clock that encodes the tape cell pointed by the head, is
updated according to the transitions of the LBTM.

We show how to adapt this reduction to the enlarged semantics of timed automata.
Due to guards enlargements, equality cannot be tested precisely and the clocks can
not store precise values na and nb. However, if ∆ is sufficiently small and na and nb

are not too close, we can still distinguish clocks coding an ‘a’ and clocks coding a ‘b’.
The main details of the proof follow.

Let M = (Q, Σ, q0, qf , δ) be a LBTM and x ∈ Σ∗ be an input word. Let n = |x|,
na = 3 and nb = 6. We construct a timed automaton A(M, x) with n + 1 clocks
and a location ℓf such that M accepts x iff (ℓf , v) ∈ R∗

∆ for some valuation v. Let
A(M, x) = 〈Loc, Var, Init, Inv, Lab, Edg, Final〉 with:

• Loc = {s0, s1, ℓf} ∪ {(q, i, j, φ, d) | q ∈ Q ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n + 1 ∧ φ ∈
{I, II} ∧ d ∈ {left, right}}; a location (q, i, j, φ, d) encodes the control state q, the
tape position i, the number j of the next clock to be treated, the phase φ of the
simulation, and the direction d of the next head movement;

• Var = {yi | 1 ≤ i ≤ n} ∪ {z};

• Init(s0) ≡
∧

t∈Var t = 0 and for all ℓ ∈ Loc \ {s0} : Init(ℓ) = ⊥;
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• Inv(ℓ) = ⊤ and Final(ℓ) = ⊥ for all ℓ ∈ Loc;

• Lab = {τ};

• The set Edg contains the following edges (we write ℓ
g,R−−→ ℓ′ when (ℓ, ℓ′, g, τ, R) ∈

Edg):

– Initialization:

• s0
z=3,{yi|xi=a}∪{z}−−−−−−−−−−−→ s1

• s1
z=3,{z}−−−−→ (q0, 1, 1, I, left)

– Refresh: for every (q, i, j, φ, d) ∈ Loc with j 6= i and j ≤ n,

• (q, i, j, φ, d)
z≤0∧ yj≤4,?−−−−−−−−−→ (q, i, j + 1, φ, d)

• (q, i, j, φ, d)
z≤0∧ yj≥5,{yj}−−−−−−−−−→ (q, i, j + 1, φ, d)

• (q, i, i, II, d)
z≤0∧ yi≤4,?−−−−−−−−−→ (q, i, i + 1, II, d)

• (q, i, i, II, d)
z≤0∧ yi≥5,{yi}−−−−−−−−−→ (q, i, i + 1, II, d)

– Execution:for every q ∈ Q, 1 ≤ i ≤ n, d ∈ {left, right}, and for every transition
(q, σ, σ′, d′, q′) ∈ E,

• If (σ, σ′) = (a, a) then (q, i, i, I, d)
z≤0∧ yi≤4,?−−−−−−−−−→ (q′, i, i + 1, I, d′)

• If (σ, σ′) = (a, b) then (q, i, i, I, d)
z≤0∧ yi≤4,{yi}−−−−−−−−−→ (q′, i, i + 1, I, d′)

• If (σ, σ′) = (b, a) then (q, i, i, I, d)
z≤0∧ yi≥5,?−−−−−−−−−→ (q′, i, i + 1, I, d′)

• If (σ, σ′) = (b, b) then (q, i, i, I, d)
z≤0∧ yi≥5,{yi}−−−−−−−−−→ (q′, i, i + 1, I, d′)

– Phase change: for every q ∈ Q, 1 ≤ i ≤ n, j = n + 1 and d ∈ {left, right},

• (q, i, n + 1, I, d)
z=3,{z}−−−−→ (q, i, 1, II, d)

• (q, i, n + 1, II, left)
z=3,{z}−−−−−→ (q, i− 1, 1, I, left)

• (q, i, n + 1, II, right)
z=3,{z}−−−−→ (q, i + 1, 1, I, right)

– Termination: for every 1 ≤ i ≤ n, d ∈ {left, right},

• (qf , i, 1, I, d)
⊤,?−−→ ℓf
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After the initialization step, the automaton is in the location (q0, 1, 1, I, left) and
we have the following relation between the tape content w and the clocks y1, . . . , yn

when z = 0: {
3−∆ ≤ yi ≤ 3 + ∆ if wi = a

6− 2∆ ≤ yi ≤ 6 + 2∆ if wi = b

After executing one transition (q, σ, σ′, d′, q′) of M , let w′ be the new tape content (w′

differs from w by at most one symbol). If we simulate that transition by the refresh
steps, the execution step, and the phase changes, it is easy to check that in location
(q, i, 1, I, d), when z = 0 we have:

{
3− 2∆ ≤ yi ≤ 3 + ∆ if w′

i = a

6− 3∆ ≤ yi ≤ 6 + 2∆ if w′
i = b

(6.10)

Note that two clocks coding the same symbol are not necessarily equal (however, their
difference is bounded by ∆). The reader can check that after having executed a second
transition of M , there is no accumulation of the imprecisions and the conditions (6.10)
still hold. Hence, provided ∆ is sufficiently small (in fact ∆ < 1/2), the automaton
A(M, x) will correctly distinguish clocks coding ’a’ from clocks coding ’b’ for any
number of transitions, and thus simulate faithfully the execution of M on x. It is now
easy to see that the location ℓf is reachable in R∗

∆ iff ℓf is reachable in JAK0
0 iff M

accepts x. This concludes the proof since our construction is polynomial in the size of
M and x. �

6.7 Beyond Progress Cycles

We review some classical extensions of the model of closed timed automata, and their
implication on the decidability result of the implementability problem. We have already
mentioned (after Definition 6.2) that the result still holds for Alur-Dill automata,
where both loose and strict inequalities are allowed. We can go further and claim that
the result holds for timed automata over rectangular and diagonal constraints (i.e.
constraints of the form x − y ≤ a or x − y < a where a ∈ N). The definition of the
enlarged semantics need not to be modified as we use the notion of neighbourhood
to define guard enlargements. Remind of the fact that all the points in a region of
a timed automaton satisfy the same set of rectangular and diagonal constraints. In
several contexts, to show that a valuation v satisfies a guard g, we have often used the
fact that v ∈ r∧r |= g for some region r. This argument is obviously valid for diagonal
constraints. The other proofs are easily adapted: for Lemma 6.25, we have used an
argument of the form v |= g ∧ v′ ∈ N∞(v, η) to show that v′ ∈ N∞(JgK, η) which is
fairly independent of the form of g. Finally, the proof of completeness was based on
properties of PDBM and the fact that guards can be encoded by PDBM of width 2
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(page 132). It is easy to see that diagonal constraints are representable by PDBM,
with the same property.

x = 0
∧ y = 0

ℓ1 err

x = 0, x := 0

x = 0 ∧ y ≥ 1

Figure 6.7: A closed timed automaton that does not satisfy Assumption 6.4.

Now, consider Assumption 6.4 about progress cycles. Figure 6.7 shows a closed
timed automaton whose region automaton has a non progress cycle (the self-loop on
location ℓ1 does not reset y). Algorithm 4 would compute J∗ = {(ℓ1, v) | v(x) = v(y)}.
However, when ∆ > 0 no matter how small, the loop on ℓ1 can increase y unboundedly,
and thus the location err is reachable in JAK∆ for all ∆ > 0. Therefore, J∗ 6= R∗

∆. On
the other hand, if the only perturbation of the classical semantics is drifts on clocks,
then Algorithm 4 is correct on this example: J∗ = R∗

ε . We conjecture that it is always
true that Assumption 6.4 is not necessary for drifting clocks. For imprecise guards, we
conjecture that the following adaptation of the algorithm solves the problem: for non
progress cycles, instead of adding the whole region [p0] that intersects J∗ (as in line 6
of Algorithm 4), we could add only the part of [p0] that is reachable from J∗ ∩ [p0]
by time passing with first derivative equal to zero for the clocks that are reset in the
cycle. Thus, we would replace line 6 by the assignment J∗ ← J∗∪ ([p0]∩ ([p0]∩J∗)րXS

)

where XS is the set of clocks that are reset at least once in the cycle S, and rրX = {v′ |
∃t ∈ R≥0 · ∃v ∈ r : v′(x) = v(x) if x ∈ X and v′(x) = v(x) + t otherwise }. This set is
a union of regions. We have no proof of those conjectures, but it may appear useless
as the kind of timed automata that are excluded by Assumption 6.4 have no interest
in practice (see for instance Figure 6.7, where a clock is both tested and reset to 0).

6.8 Conclusion

In this chapter, we have studied an algorithm proposed by Puri to compute a semantics
of timed automata that is robust against drift on clocks, and we have shown that it
also computes a robust semantics against perturbations of the guards. We have also
drawn an important link between robustness and implementability of timed automata
to show that implementability problem is decidable.

The key feature of the algorithm is to compute the cycles of the region automaton.
It can be seen as defining exact accelerations of the cycles of the timed automaton.
Since constructing the region automaton is unrealistic in practice, the algorithm is not
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well suited for practical use. A necessary future work is to design a more practical
algorithm, for example with a symbolic computation of the cycles, similar to what
exists for reachability analysis with DBM or BDD.

As a future work, it may also be interesting to prove the conjecture that the maximal
value of ∆ such that JAK0

∆ is empty, is a rational number.



Chapter 7

Verification of Affine Hybrid
Automata

Sans la liberté de blâmer, il n’est point d’éloge flatteur.

Beaumarchais, La folle journée ou le mariage de Figaro.

7.1 Introduction

In the previous chapters, we have studied the robustness and implementability prop-
erties of timed automata. This was motivated by the fact that in real-time systems
where an environment is controlled by a digital device, a natural model for the digital
controller is a timed automaton: the finite structure encodes the discrete states of
the controller, and the clocks constrain the timing behaviour. Simple dynamics of the
form ẋ = 1 are sufficient because real controllers refer to time through their internal
clock. For the second part of the system, the environment, the context is different.
In general, the environment models a physical system whose behaviour is governed by
non trivial differential equations. As we have mentioned in Section 2.5, the emptiness
problem is undecidable for more general than uniformly constant dynamics, like in
timed automata.

Therefore, the usual way to analyze hybrid automata is by way of approxima-
tions. A general methodology has been proposed in [HHW98] where rectangular au-
tomata are shown to have the property that they can over-approximate, at any level
of precision, the set of behaviors of more complex hybrid automata. For rectangu-
lar automata, there exists a reasonably efficient semi-algorithm to compute the set of
reachable states [ACH+95], and when the semi-algorithm terminates, the correctness
of the system is easily decided. The methodology can be summarized as follows: to
establish a safety property on a complex hybrid automaton A, construct a rectangular
approximation B of A and check the safety property on B. If the property is estab-

147
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lished on B, then it also holds on A. If the property is not established on B, then use
a more precise rectangular approximation B′.

So far, the construction of the abstraction B and its refinement B′ was supposed
to be obtained manually. In this chapter, we show how to efficiently automate this
methodology for the class of affine hybrid automata, that is hybrid automata whose
continuous dynamics are defined by systems of linear differential equations. More pre-
cisely, we show (i) how to compute automatically rectangular approximations for affine
hybrid automata, (ii) how to refine automatically and in an optimal way rectangular
approximations that fail to establish a given safety property, and (iii) how to target
refinement only to relevant parts of the state space.

Refinements are obtained by splitting location invariants. A split is optimal if it
minimizes some measure of the imprecision of the resulting rectangular approximation.
Intuitively, the imprecision corresponds to the size of the interval defining the rectangu-
lar flow, because the smaller the imprecision, the closer the rectangular dynamics is to
the exact dynamics. We choose to minimize the maximal imprecision of the dynamics
in the split location of the refined automaton.

7.2 Preliminaries

The following definitions are based on the preliminaries of Section 2.1 and on the
hybrid automata of Section 2.5. In this chapter, the time domain T is always the set
of nonnegative real numbers R≥0.

Given a function f : A → B and b ∈ B, define the level set of f corresponding to
b by f−1(b) = {a ∈ A | f(a) = b}. For C ⊆ B, define f−1(C) = {a ∈ A | f(a) ∈ C}.
For a function f : Rn → R, we denote by ∇f the vector ( ∂f

∂x1
, . . . , ∂f

∂xn
).

Predicates Given two rectangular predicates p =
∧

x∈X x ∈ Ix and q =
∧

x∈X x ∈ Jx,
we define the size (or diameter) of p by |p| = maxx∈X{size(Ix)}. It is the length
of the largest interval defining p. The rectangular hull of p and q is the predicate
p ⊔ q =

∧
x∈X x ∈ Ix ⊔ Jx.

Lines and hyperplanes A function f : Rn → R is called affine if it is of the form
f(x) = a0 +

∑
i aixi with ai ∈ Q, for all 0 ≤ i ≤ n. We say that two affine functions f1

and f2 are parallel if for some λ ∈ R the function f(x) = f1(x)+λf2(x) is independent
of x (that is, ∇f is identically 0). A hyperplane is a level set of an affine function.
Given an affine function f : Rn → R, we write π ≡ f(x) = 0 to denote the hyperplane
π = f−1(0). In R2 a hyperplane is a line. Given two points a, b ∈ R2, let ℓine(a, b)
denote the line passing by a and b. We write [a, b] for the line segment connecting a
and b, i.e. the set of convex combinations {λa + (1− λ)b | 0 ≤ λ ≤ 1}.
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Simulations We have defined simulation and weak simulation for TTS in Section 2.3.
In the sequel, we also use a slightly different notion of simulation where only the unsafe
states are to be simulated, because of the following observation: if a state q has been
proven to be safe in T1 (that is q 6∈ Unsafe(T1)) and T1 � T2 with the simulation relation
R, then all the states q′ such that (q, q′) ∈ R are necessarily safe in T2. Therefore the
emptiness problem for an hybrid automaton H has the same answer as the emptiness
problem on H with some of its safe states removed. So, it is sufficient to refine the
automaton in its unsafe states. More details are given in Section 7.5.

Definition 7.1 [Weak simulation for unsafe behaviours] Given two TTS T1 = 〈Q1, Q1
0,

Q1
f , Σ

1,→1〉 and T2 = 〈Q2, Q2
0, Q

2
f , Σ

2,→2〉, we write T1 �unsafe T2 and say that T1
weakly simulates the unsafe behaviours of T2 if there exists a relation R ⊆ Q1 ×
Unsafe(T2) such that:

1. for all (q1, q2) ∈ R, for each σ ∈ Σ\{τ} ∪ R≥0, if q2

σ−։ q′2 and q′2 ∈ Unsafe(T2),
then there exists q′1 ∈ Q1 such that q1

σ−։ q′1 and (q′1, q
′
2) ∈ R,

2. for all q2 ∈ Q2
0 ∩ Unsafe(T2), there exists q1 ∈ Q1

0 such that (q1, q2) ∈ R,

3. and for all q2 ∈ Q2
f ∩ Unsafe(T2), for all q1 ∈ Q1, if (q1, q2) ∈ R, then q1 ∈ Q1

f .

Such a relation R is called a weak simulation relation for T1 �unsafe T2. �

Definition 7.2 [Weak bisimulation for unsafe behaviours] Two TTS T1 and T2 are
weakly bisimilar for unsafe behaviours (noted T1 ≈unsafe T2) if there exists a simulation
relation R for T1 �unsafe T2 and a simulation relation S for T2 �unsafe T1 such that
R = S−1. �

Lemma 7.3 Let T1 and T2 be two TTS. If T1 � T2, then T1 �unsafe T2.

Theorem 7.4 Let H and H ′ be two hybrid automata such that JH ′K �unsafe JHK. IfJH ′K is empty, then so is JHK.
Over-approximations

Definition 7.5 [Rectangular phase-portrait approximation] We say that a hybrid au-
tomaton H ′ is a rectangular phase-portrait approximation of an hybrid automaton H
if JH ′K � JHK and H ′ is a rectangular automaton. �

A natural way of constructing a rectangular phase-portrait approximation H ′ =
rect(H) of an affine automaton H is to replace in each location ℓ of H the affine flow
condition FlowH(ℓ) =

∧
x∈X ẋ = tx by the rectangular predicate FlowH′(ℓ) =

∧
x∈X ẋ ∈

Ix where Ix is the convex hull of the set {JtxKv | v ∈ JInv(l)K}. The bounds of Ix

can be determined by a linear program since tx is a linear term and Inv(l) is a linear
predicate. The proof that JH ′K � JHK is immediate since for any v ∈ JFlowH(ℓ)K we
have v|Ẋ ∈ JFlowH′(ℓ)K.
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(b) Location splitting.

Figure 7.1: Location ℓ1 of the shared gas-burner.

Example Figure 7.1(a) depicts the result of this construction when applied to the
location ℓ1 of the shared gas-burner automaton of Figure 2.1. For x1, since ẋ1 =
h1 − a1x1 + b1x2 and the invariant of ℓ1 imposes x1, x2 ∈ [0, 100], a lower bound for ẋ1

is h1 − 100 · a1 = 1 and an upper bound is h1 + 100 · b1 = 5
2
. The process is similar for

ẋ2.

For an hybrid automaton H with set of locations LocH , let SafeLoc(H) = {ℓ ∈
LocH | ∄(ℓ, v) ∈ Unsafe(JHK)}.
Lemma 7.6 For every affine automaton H, we have SafeLoc(rect(H)) ⊆ SafeLoc(H).

Proof. For any location ℓ 6∈ SafeLoc(H), let us show that ℓ 6∈ SafeLoc(rect(H)). By
definition of SafeLoc(H), there exists a valuation v such that (ℓ, v) ∈ Unsafe(JHK) and
thus a trajectory π of JHK = 〈S, S0, Sf , Σ,→〉 with first(π) ∈ S0, last(π) ∈ Sf and
statei(π) = (ℓ, v) for some i ∈ N. Since Jrect(H)K � JHK witnessed by the identity
simulation relation, π is also a trajectory of Jrect(H)K = 〈S, S0, Sf , Σ,→′〉. Therefore,
(ℓ, v) ∈ Unsafe(Jrect(H)K) and ℓ 6∈ SafeLoc(rect(H)). �
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7.3 Abstraction Refinement for Hybrid Automata

We explain how to refine a rectangular phase-portrait approximation of an hybrid
automaton, that is how to obtain a more precise rectangular automaton, in the sense
of simulation relations.

Definition 7.7 [Refined approximation] Given H ′ and H ′′ two rectangular phase-
portrait approximations of an hybrid automaton H , we say that H ′′ refines H ′ ifJH ′K � JH ′′K. �

A natural way of refining an approximation of an affine automaton is to split its
locations by partitioning or covering their invariant.

Definition 7.8 [Cut] Given a polytope P ⊆ Rn and a hyperplane π ≡ f(x) = 0, we
define the cut P/π = 〈P+, P−〉 where P+ = P ∩ f−1(R≥0) and P− = P ∩ f−1(R≤0).
The cut P/π is said non-trivial if P+ 6= ∅ and P− 6= ∅. �

Thus a non-trivial cut P/π of a polytope is a cover of P but not a partition since
the two pieces P+ and P− are closed sets and they share the points in P ∩ π.

Definition 7.9 [Location splitting] Given an hybrid automaton H = 〈Loc, Lab, Edg,
X, Init, Inv, Flow, Jump, Final〉, one of its locations ℓ⋆ ∈ Loc and a hyperplane π ≡
fπ(x) = 0 in R|X|, the splitting of H by the hyperplane π in location ℓ⋆ is the hybrid
automaton split(H, ℓ⋆, π) = 〈Loc′, Lab′, Edg′, X ′, Init′, Inv′, Flow′, Jump′, Final′〉 where:

• Loc′ = Loc\{ℓ⋆} ∪ {(ℓ⋆, ϕ1), (ℓ
⋆, ϕ2)} where ϕ1 ≡ Inv(ℓ⋆) ∧ fπ(x) ≤ 0 and ϕ2 ≡

Inv(ℓ⋆) ∧ fπ(x) ≥ 0. For ℓ′ ∈ Loc′, let loc(ℓ′) = ℓ′ if ℓ′ ∈ Loc and loc(ℓ′) = ℓ⋆

otherwise;

• Lab′ = Lab;

• Edg′ = E1∪E2 where E1 = {(ℓ, σ, ℓ′) | ℓ, ℓ′ ∈ Loc′∧ (loc(ℓ), σ, loc(ℓ′)) ∈ Edg} is the
set of edges inherited from H and E2 = {((ℓ⋆, ϕ1), τ, (ℓ

⋆, ϕ2)), ((ℓ
⋆, ϕ2), τ, (ℓ

⋆, ϕ1))}
are silent edges between the two copies of the location ℓ⋆;

• X ′ = X;

• Init′(ℓ′) = Init(loc(ℓ′)) for each ℓ′ ∈ Loc′;

• Inv′(ℓ′) = Inv(ℓ′) for each ℓ′ ∈ Loc\{ℓ⋆} and Inv′(ℓ⋆, ϕ) = ϕ;

• Flow′(ℓ′) = Flow(loc(ℓ′)) for each ℓ′ ∈ Loc′;

• for every e = (ℓ, σ, ℓ′) ∈ E1 we have Jump′(e) = Jump
(
(loc(ℓ), σ, loc(ℓ′))

)
, and for

every e ∈ E2 we have Jump′(e) = stable(X);

• Final′(ℓ′) = Final(loc(ℓ′)) for each ℓ′ ∈ Loc′.

�
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t2 sin(1/t)

t

Figure 7.2: The function f(t) = t2 sin(1/t).

Example Figure 7.1(b) shows for the shared gas-burner the rectangular phase-por-
trait approximation of the splitting of the location ℓ1 by the line x1 = x2. The resulting
automaton is a refinement since the ranges of the rectangular dynamics have decreased
in each of the two splitted locations.

This technique is very general and has also been applied to hybrid automata with
nonlinear dynamics [HHW98]. However, in that paper, the proof of correctness (that
the refined automaton split(H, ℓ⋆, π) weakly simulates the original automaton H) relies
crucially on the fact that the split of an invariant is derived from a finite open cover ,
that is, a location ℓ⋆ is replaced by (ℓ⋆, ϕ1) and (ℓ⋆, ϕ2) where Jϕ1K, Jϕ2K are open sets
such that Inv(ℓ⋆) ⊆ Jϕ1K∪ Jϕ2K. Unfortunately, the proof cannot be extended to closed
covers: for example, the continuously differentiable function f : R≥0 → R defined by
f(0) = 0 and f(t) = t2 sin(1/t) for t > 0, oscillates infinitely in every interval [0, ǫ] for
ǫ > 0, see Figure 7.2. So that if f|[0,δ] was the witness of a transition ((ℓ, v), δ, (ℓ, v′)) of
an automaton H with variable XH = {y}, it would be impossible for the automaton
split(H, ℓ, y = 0) to mimic that transition since time cannot progress by any positive
amount while maintaining either y ≥ 0 or y ≤ 0. However, this kind of pathological
behaviour cannot occur as a solution of a system of affine dynamics flow conditions
(even though spiral trajectories are still possible) because such solutions are analytic
and zeroes of analytic functions are isolated (except for the identically zero function).
Details are given in Appendix A.2.

Theorem 7.10 For every affine hybrid automaton H, for every location ℓ of H, and
every hyperplane π, we have Jsplit(H, ℓ, π)K ≈weak JHK, that is Jsplit(H, ℓ, π)K and JHK
are weakly bisimilar.

With the remark above, the proof of Theorem 7.10 is straightforward.

We are interested in finding automatically an optimal cut for refining the state
space. We consider the general problem to split a location in an optimal way, that is,
to minimize the imprecision of the resulting rectangular phase-portrait approximation.
The definition of the imprecision could have several forms. We decide to minimize
the maximal size of the rectangular predicates that occur as flow conditions in the
rectangular approximation of the splitted automaton (and particularly in the splitted
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location). It may be necessary to scale the variables in order to give sense to the
comparison of their dynamics range. We now discuss our choice. On the one hand,
this criterion is natural since the precision of the approximation is directly connected
to the size of the rectangular predicates. Further, minimizing the maximal size ensures
that the approximation becomes more precise, and eventually arbitrarily precise. On
the other hand, other criteria we have tried (minimizing the sum of the squares of
the sizes, minimizing the size of the reachable set, etc.) gave rise to computational
difficulties due to their non-linear form. Our criterion can be handled with linear
programming techniques, and showed applicable in practice.

7.4 Optimization problems

We want to split the invariant of a location through a hyperplane, minimizing the
maximal size of the rectangular predicates that approximate the affine dynamics. We
define two versions of this problem, one called concrete when the given dynamics is
affine on the invariant, and one called abstract when the invariant is already covered
by a number of pieces each with its rectangular dynamics. The second formulation
is introduced because we have no simple algorithm in nD for n ≥ 3 for solving the
concrete problem, while we have a general algorithm for the abstract one. Therefore,
it may be of interest to discretize the original affine system and solve the abstract
problem on the discretization. This yield an approximation of the optimal split for
the concrete problem. We show that the resulting measure of imprecision can be made
arbitrarily close to the exact solution. Let us define the two problems.

In Definition 7.11, we associate to each subset Q ⊆ P of the invariant P of a
location the tightest rectangular dynamics that contains the exact dynamics in the
set Q (which is defined by an affine predicate of the form

∧
xi∈X ẋi = fi(x1, . . . , xn)).

Then, the imprecision of a cut of P into two pieces is defined to be the maximal size
of the rectangular predicates associated to each piece.

Definition 7.11 [Concrete imprecision] Let X = {x1, . . . , xn} be a finite set of vari-
ables. Let P ⊂ Rn be a polytope and F = 〈f1, . . . , fn〉 be a tuple of n affine functions
fi : Rn → R (1 ≤ i ≤ n). For a polytope Q ⊆ P , we define the rectangular predicate

rangeF (Q) =
∧

x∈X

ẋ ∈ Ix

where for each xi ∈ X, we have Ixi
= fi(Q). We define the concrete imprecision of a

cut P/π = 〈P+, P−〉 by:

sizeRangeF (P/π) = max
{
|rangeF (P+)|, |rangeF (P−)|

}

�
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Example We illustrate Definition 7.11 with the shared gas-burner, shown in Fig-
ure 2.1 and the rectangular approximations of Figure 7.1. We have X = {x1, x2},
P = [0, 100]× [0, 100] and F = 〈h1 − a1x1 + b1x2,−a2x2 + b2x1〉. The splitting of Fig-
ure 7.1(b) is obtained by the cut of P by the line π ≡ x1 = x2. Consider the location
ℓ≥1 whose invariant is the triangle Q≥ = P ∩ {(x1, x2) | x2 ≥ x1}. The rectangular dy-
namics in ℓ≥1 is rangeF (Q≥) = ẋ1 ∈ [3

2
, 5

2
]∧ ẋ2 ∈ [−1

2
, 1

2
], whose size is |rangeF (Q≥)| = 1.

Symmetrically, the rectangular dynamics in ℓ≤1 is rangeF (Q≤) = ẋ1 ∈ [1, 2]∧ẋ2 ∈ [−1, 0]
whose size is also 1. Hence, the concrete imprecision of the cut 〈Q≥, Q≤〉 is given by
sizeRangeF (P/π) = max{1, 1} = 1.

We associate an optimal-cut problem with the concrete imprecision that asks to
split P to minimize the imprecision.

Definition 7.12 [Concrete optimal-cut problem] An instance of the concrete optimal-
cut problem is a tuple 〈P, X, F 〉 where:

• P ⊂ Rn is a polytope,

• X = {x1, . . . , xn} is a set of n variables, and

• F is a tuple of n affine functions fi : Rn → R (1 ≤ i ≤ n).

Given 〈P, X, F 〉, the concrete optimal-cut problem is to determine a hyperplane π⋆ ⊂
Rn such that for every hyperplane π ⊂ Rn, sizeRangeF (P/π⋆) ≤ sizeRangeF (P/π).

�

Observe that P is a polytope in Definition 7.12, which means that to apply the concrete
optimal-cut problem to hybrid automata, we have to assume that the invariants are
bounded.

We define an abstract version of the optimal-cut problem where the invariants of
the locations are originally given as a union of polytopes P, and the flow condition in
each polytope is rectangular. This form of the problem is naturally obtained when we
discretize the concrete problem according to P. The abstract problem asks to split the
location into only two pieces such that the maximal flow interval in the two pieces is
minimized. This version of the optimal-cut problem can be used to approximate the
optimal cut according to the concrete imprecision, as in Definition 7.12.

Definition 7.13 [Abstract imprecision] Let X = {x1, . . . , xn} be a finite set of vari-
ables. Let P ⊂ Rn be a polytope covered by a finite set of polytopes P = {P1, . . . , Pm},
that is such that P = P1 ∪ · · · ∪ Pm. Let Flow : P → Rect(Ẋ) be a function that asso-
ciates to each polytope of P a rectangular dynamics. For a polytope Q ⊆ P , we define
the rectangular predicate

rangeFlow(Q) =
⊔

Pj∈P,Pj∩Q 6=?Flow(Pj)
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We define the abstract imprecision of a cut P/π = 〈P+, P−〉 by:

sizeRangeFlow(P/π) = max
{
|rangeFlow(P+)|, |rangeFlow(P−)|

}

�

Definition 7.14 [Abstract optimal-cut problem] An instance of the abstract optimal-
cut problem is a tuple 〈P,P, X, Flow〉 where:

• P ⊂ Rn is a polytope,

• P = {P1, . . . , Pm} is finite set of polytopes such that P = P1 ∪ · · · ∪ Pm,

• X = {x1, . . . , xn} is a set of n variables, and

• Flow : P → Rect(Ẋ).

Given 〈P,P, X, Flow〉, the abstract optimal-cut problem asks to determine a hyperplane
π⋆ ⊂ Rn such that sizeRangeFlow(P/π⋆) ≤ sizeRangeFlow(P/π) for every hyperplane
π ⊂ Rn. �

7.4.1 Solution of the abstract optimal-cut problem

We give an algorithm for solving the abstract problem and show how it can be used
to approximate the solution of the concrete problem.

Definition 7.15 [Separability] Two sets A, B ⊆ Rn are separable if there exists an
affine function f : Rn → R such that ∀x ∈ A : f(x) ≤ 0 and ∀x ∈ B : f(x) ≥ 0. �

This definition extends to sets of sets: we say that A ⊆ 2Rn

and B ⊆ 2Rn

are
separable if

⋃A and
⋃B are separable. Separability can be tested using the convex

hull of a set, denoted Conv(·).

Lemma 7.16 Two sets A, B ⊆ Rn are separable iff there exists a hyperplane π ⊂ Rn

such that Conv(A) ∩ Conv(B) ⊆ π.

An optimal cut for the abstract problem 〈P,P, X, Flow〉 is computed by Algo-
rithm 5. It uses two external functions value and separable taking as input two sets A
and B of polytopes. The function value returns the number sizeRangeFlow(〈⋃A,

⋃B〉)
and the boolean function separable returns true iff A and B are separable. Lemma 7.16
suggests a natural implementation of separable. Notice that constructing a hyperplane
that separates two polytopes given by their constraints representation is a linear pro-
gram.
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The principle of Algorithm 5 is the following: it constructs incrementally two sets
of pieces G+ ⊆ P and G− ⊆ P to separate, and maintains a set G0 = P\(G+ ∪G−) of
untreated pieces. Initially, we have G+ = G− = ∅ and G0 = P. The call split(∅, ∅,P)
is aimed to return two sets G+ and G− that are separable and such that any separating
hyperplane of G− and G+ is an optimal cut for 〈P,P, X, Flow〉. Intuitively, the function
split iteratively selects and separates two pieces Pi, Pj ∈ P with a maximal flow interval
r = rangeFlow(Pi ∪ Pj), so that if Pi and Pj were not separated there would be no way
that the final imprecision run below r. The constraint that Pi and Pj must be separated
by the optimal cut can be represented by putting an edge between Pi and Pj in a graph
whose vertices is the set P. We can add new edges as long as the graph remains 2-
colorable and the two sets of pieces induced by the 2-coloring is physically separable
by a hyperplane. In the case the new edge is already connected to the rest of the
graph, the color of the common vertex imposes the color of the other. Otherwise, the
algorithm has to explore two choices (corresponding to put either Pi in G− and Pj in
G+ or vice versa). An obvious argument shows that this could occur at most n times
(where n = |X| is the number of variables) so that the the algorithm is in O(m.2n)
(with m = |P|), assuming constant execution time of external functions value and
separable. We do not know if this bound is tight for the problem.

Theorem 7.17 Algorithm 5 is correct and terminates.

Proof. We prove the correctness of the function split by showing that if the pre-
condition Pre below is satisfied, then we have the post-condition Post for the assignment
〈D, E, v〉 ← split(A, B, C):

• Pre ≡ A ∪ B ∪ C = P ∧ A and B are separable.

• Post ≡ A ⊆ D ⊆ P ∧ B ⊆ E ⊆ P ∧ any cut separating D and E is the best
among those separating A and B (and its value is v).

Obviously, the pre-condition is satisfied by the call split(∅, ∅,P), and the post-
condition ensures that G− and G+ are separable by the optimal cut.

The proof of correctness is by induction on the size of the third argument |C|. First,
we consider the case |C| = 0. Second, we show that the correctness for |C| ≤ n − 1
implies the correctness for |C| = n. Finally, we note that whenever split(A, B, C) calls
split(A′, B′, C ′), we have |C ′| < |C| which allows to conclude that the algorithm is
correct and always terminates.

1. Assume |C| = 0. Then C = ∅, and the test of line 2 is satisfied. The
call split(A, B, C) returns 〈A, B, value(A, B)〉 which trivially satisfies the post-
condition.
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Algorithm 5: Algorithm for the abstract optimal-cut problem.

Input : An instance 〈P,P, X, Flow〉 of the abstract optimal-cut problem.

Result : Two separable sets G− and G+ such that any separating hyperplane
of G− and G+ is an optimal cut for 〈P,P, X, Flow〉.

begin
return split(∅, ∅,P) ;

end

external function value(A,B: set of polytopes): R≥0

external function separable(A,B: set of polytopes): {true, false}
function split(G−, G+, G0: set of polytopes): 2P × 2P × R≥0 begin

1 Let Pi, Pj ∈ P maximizing rangeFlow(Pi ∪Pj) subject to Pi ∈ G0 ∨Pj ∈ G0 ;
2 if no such Pi, Pj exists then return 〈G−, G+, value(G− ∪G0, G

+ ∪G0)〉 ;
3 if Pi ∈ G0 ∧ Pj ∈ G0 then
4 vA ←∞ ;
5 vB ←∞ ;
6 if separable(G− ∪ {Pi}, G+ ∪ {Pj}) then
7 〈A1, A2, vA〉 ← split(G− ∪ {Pi}, G+ ∪ {Pj}, G0\{Pi, Pj}) ;

8 if separable(G− ∪ {Pj}, G+ ∪ {Pi}) then
9 〈B1, B2, vB〉 ← split(G− ∪ {Pj}, G+ ∪ {Pi}, G0\{Pi, Pj}) ;

10 if vA = vB =∞ then return 〈G−, G+, value(G− ∪G0, G
+ ∪G0)〉 ;

11 if vA ≤ vB then
12 return 〈A1, A2, vA〉 ;

else
13 return 〈B1, B2, vB〉 ;

else
14 Assume w.l.o.g. that Pi ∈ G− ;
15 if separable(G−, G+ ∪ {Pj}) then
16 return split(G−, G+ ∪ {Pj}, G0\{Pj}) ;

else
17 return 〈G−, G+, value(G− ∪G0, G

+ ∪G0)〉 ;

end
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2. Let n > 0. Assume split(A, B, C) is correct for |C| ≤ n − 1. Consider the call
split(A, B, C) with |C| = n. Then C 6= ∅. Hence, some Pi and Pj exist and the
test of line 2 fails. We claim that among the cuts separating A and B, any cut
separating Pi and Pj is better than any other cut. This is because at line 1, we
have considered every pair of polytopes in P for which we do not already know
whether or not they must be separated. Therefore, if it is possible to separate
both A and B and Pi and Pj (that is separate either A ∪ {Pi} and B ∪ {Pj} or
A ∪ {Pj} and B ∪ {Pi}), we must do so, and otherwise, every cut separating A
and B is optimal (and such a cut exists by the pre-condition).

(a) If the condition of line 3 evaluates to true. Then, we compare the cost of
separating A ∪ {Pi} and B ∪ {Pj} or vice versa, and take the best. If both
choices lead to inseparable sets, we have vA = vB = ∞ and the function
returns 〈A, B〉. Notice that the pre-conditions for the recursive calls are
trivially satisfied.

(b) Otherwise, one of Pi and Pj is already in either A or B. Assume w.l.o.g.
that Pi ∈ A. Then, the only way to possibly separate Pi and Pj is to put
Pj in B. The test of line 15 checks this and the function returns the best
cut in each case.

�

Algorithm 5 can be used to solve the concrete optimal-cut problem up to any precision
ǫ ∈ Q>0. It suffices to discretize the given polytope with a grid of size ǫ: given a tuple
F = 〈f1, . . . , fn〉 of n affine functions in Rn, let

GridF
ǫ = {

⋂

1≤i≤n

f−1
i ([ki ǫ, (ki + 1) ǫ]) | (k1, . . . , kn) ∈ Zn}

In practice, the complexity blows up since the number of elements in the grid increases
exponentially with 1/ǫ.

Definition 7.18 [ǫ-discretization of a concrete optimal-cut problem] Let Q = 〈P, X, F 〉
be an instance of the concrete optimal-cut problem in Rn, and let ǫ ∈ Q>0. The ǫ-
discretization of Q is the instance Qǫ = 〈P,P, X, Flow〉 of the abstract optimal-cut
problem such that:

• P = {P ∩ box | box ∈ GridF
ǫ ∧ P ∩ box 6= ∅}. Notice that P is finite since P is

bounded;

• for each Pj ∈ P, we have Flow(Pj) = rangeF (Pj) which is a rectangular predicate
of size at most ǫ.

�
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Theorem 7.19 Let Q = 〈P, X, F 〉 be an instance of the concrete optimal-cut problem
and let Qǫ = 〈P,P, X, Flow〉 be its ǫ-discretization for some ǫ ∈ Q>0. If π⋆ is a solution
for Q and π⋆

ǫ is a solution for Qǫ, then 0 ≤ sizeRangeF (P/π⋆
ǫ )− sizeRangeF (P/π⋆) < ǫ.

Proof. Let ǫ ∈ Q>0. Let P/π⋆ = 〈P+, P−〉 and v⋆ = sizeRangeF (P/π⋆). For each fi

in F , let Ii = fi(P ). First, we claim that for all 1 ≤ i ≤ n such that size(Ii) ≥ v⋆, the
hyperplane π⋆ separates the sets

Lefti = {x ∈ P | fi(x) ≤ r(Ii)− v⋆} and Righti = {x ∈ P | fi(x) ≥ l(Ii) + v⋆}

This follows from the fact that for all x ∈ Lefti and x′ ∈ Righti, the hyperplane π⋆

separates x and x′. To show this, let xL, xR ∈ P such that fi(xL) = l(Ii) and fi(xR) =
r(Ii). The following points are separated by π⋆: (i) x and xR (ii) xR and xL (iii) xL

and x′. Therefore, x and x′ are separated by π⋆.

Now, for a ∈ R, let ⌊a⌋ (resp. ⌈a⌉) be the greatest (resp. lowest) integer k such
that k ≤ a (resp. k ≥ a) and let ⌊a⌋ǫ = ǫ⌊a

ǫ
⌋ and ⌈a⌉ǫ = ǫ⌈a

ǫ
⌉. Let

Leftǫi = {x ∈ P | fi(x) ≤ ⌊r(Ii)− v⋆⌋ǫ} and Rightǫi = {x ∈ P | fi(x) ≥ ⌈l(Ii) + v⋆⌉ǫ}

Clearly, we have the inclusions Leftǫi ⊆ Lefti and Rightǫi ⊆ Righti so that π⋆ also
separates Leftǫi and Rightǫi. Thus we can assume that Leftǫi ⊆ P+ and Rightǫi ⊆ P−.
Therefore, we have:

fi(P
+) ⊆

[
l(Ii), ⌈l(Ii) + v⋆⌉ǫ

]
and fi(P

−) ⊆
[
⌊r(Ii)− v⋆⌋ǫ, r(Ii)

]

Since for all a ∈ R we have ⌊a⌋ǫ > a − ǫ and ⌈a⌉ǫ < a + ǫ, we conclude that
sizeRangeFlow(P/π⋆) < v⋆ + ǫ. It is easy to show that:

sizeRangeF (P/π⋆
ǫ ) ≤ sizeRangeFlow(P/π⋆

ǫ ) ≤ sizeRangeFlow(P/π⋆)

which yields sizeRangeF (P/π⋆
ǫ ) < v⋆ + ǫ.

�

7.4.2 Solution of the concrete optimal-cut problem in R2

We propose Algorithm 6 to solve the concrete optimal-cut problem 〈P, X, F 〉 in two
dimensions (P ⊂ R2), when F = 〈f1, f2〉 contains two functions. This algorithm is
inspired by the abstract Algorithm 5 applied to an ǫ-discretization of the concrete
problem with ǫ → 0. The main trick is to translate the condition of separability
expressed with convex hulls into a more continuous condition. We show that this
condition can be computed by a linear program.
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f1(x, y) = ẋmax

f2(x, y) = ẏmin

Figure 7.3: A polytope in R2 with 2 affine functions f1 and f2.

Let us execute Algorithm 6 and explain informally why it is correct. The input is
an instance 〈P, X, {f1, f2}〉 of the concrete optimal-cut problem. We represent P on
Figure 7.3.

At lines 1,2 we compute the interval image of P by f1 and f2, and the size of the
those intervals rx and ry. The assumption ry ≥ rx of line 3 implies that the points r
and t on Figure 7.3 are such that sizeRangeF ({r, t}) = sizeRangeF (P ), that is r and t
realize the maximal imprecision on P . Therefore, any cut that separates those points
is better than any other cut. This remains true for all pairs of points taken in the
shaded regions defined by ∆0 on Figure 7.4(a) until:

• either ∆0 becomes equal to ry − rx, which means that separating two points q
and s is “as necessary” as separating the shaded regions;

• or ∆0 reaches the value ry

2
, and the optimal-cut is given by the line ℓ ≡ f2(x, y) =

ẏmin + ry

2
.

This alternative is tested at line 4: the condition ry ≥ 2 rx is equivalent to ry

2
≤

ry−rx. If ry < 2 rx, the algorithm continues as depicted on Figure 7.4(b), separating all
pairs of points that give the largest range for function f1 and f2. The four regions Pq,
Pr, Ps and Pt (containing respectively the points q, r, s and t) are growing altogether at
the same “rate”. The algorithm will stop whenever it becomes impossible to separate
both Pq from Ps and Pr from Pt. As in the abstract algorithm, there are two branches
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Algorithm 6: Algorithm for computing the concrete optimal-cut in 2D.
Input : An instance S = 〈P,X,F 〉 of the concrete optimal-cut problem with P ⊂

R2, X = {x, y}, and F = 〈f1, f2〉.
Result : A line that solves the concrete optimal-cut problem for S.

begin

1 [ẋmin, ẋmax]← f1(P ) ; [ẏmin, ẏmax]← f2(P ) ;
2 rx ← ẋmax − ẋmin ; ry ← ẏmax − ẏmin ;
3 Assume w.l.o.g. that ry ≥ rx ;
4 if ry ≥ 2 rx then return ℓ ≡ f2(x, y) = ẏmin +

ry

2 ;
5 ∆0 ← ry − rx ;
6 Let ∆ be a symbolic parameter ;
7 a∆ ← f−1

2 (ẏmin + ∆0 + ∆) ∩ f−1
1 (ẋmin + ∆) ;

8 b∆ ← f−1
1 (ẋmin + ∆) ∩ f−1

2 (ẏmax −∆0 −∆) ;
9 c∆ ← f−1

2 (ẏmax −∆0 −∆) ∩ f−1
1 (ẋmax −∆) ;

10 d∆ ← f−1
1 (ẋmax −∆) ∩ f−1

2 (ẏmin + ∆0 + ∆) ;
11 for z = a to d do ∆z ← min{∆ | z∆ ∈ P} ;
12 ∆1 ← min(∆a,∆c); ∆2 ← min(∆b,∆d) ;
13 if ∆1 ≥ ry

2 −∆0 ∨ ∆2 ≥ ry

2 −∆0 then return ℓ ≡ f2(x, y) = ẏmin +
ry

2 ;
14 Qmin ← P ∩ f−1

1 (ẋmin) ; Qmax ← P ∩ f−1
1 (ẋmax) ;

15 if f2(Qmin) ∩ [ẏmin, ẏmin + ∆0] 6= ∅ ∧ f2(Qmin) ∩ [ẏmax −∆0, ẏmax] 6= ∅ then

16 return ℓ ≡ f2(x, y) = ẏmin +
ry

2 ;

17 else if f2(Qmin) ∩ [ẏmin, ẏmin + ∆0] 6= ∅ then

18 if f2(Qmax) ∩ [ẏmin, ẏmin + ∆0] 6= ∅ then

19 return ℓ ≡ f2(x, y) = ẏmin +
ry

2 ;

else

20 return ℓine(b∆2
, d∆2

) ;

21 else if f2(Qmin) ∩ [ẏmax −∆0, ẏmax] 6= ∅ then

22 if f2(Qmax) ∩ [ẏmax −∆0, ẏmax] 6= ∅ then

23 return ℓ ≡ f2(x, y) = ẏmin +
ry

2 ;

else

24 return ℓine(a∆1
, c∆1

) ;

25 else if f2(Qmax) ∩ [ẏmax − ∆0, ẏmax] 6= ∅ ∧ f2(Qmax) ∩ [ẏmin, ẏmin + ∆0] 6= ∅
then

26 return ℓ ≡ f2(x, y) = ẏmin +
ry

2 ;

27 else if f2(Qmax) ∩ [ẏmax −∆0, ẏmax] 6= ∅ then

28 return ℓine(b∆2
, d∆2

) ;

29 else if f2(Qmax) ∩ [ẏmin, ẏmin + ∆0] 6= ∅ then

30 return ℓine(a∆1
, c∆1

) ;

31 else if ∆1 > ∆2 then

32 return ℓine(a∆1
, c∆1

) ;

else

33 return ℓine(b∆2
, d∆2

) ;

end
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to explore, corresponding to separate either {Pq, Pr} from {Ps, Pt} or {Pq, Pt} from
{Pr, Ps}. Consider the points a∆, b∆, c∆ and d∆ that are the intersections of the level
sets of f1 as sketched on Figure 7.4(b). The subscript emphasizes the fact that those
points are moving when ∆ varies.

P
r

t

s

q

∆0 ∆0

f2(x, y) = ẏmin + ∆0

f2(x, y) = ẏmax − ∆0

(a) First phase.

P
r

t

s

q

∆ ∆

∆

∆

a∆

c∆

d∆

b∆

f2(x, y) = ẏmin + ∆0 + ∆

f1(x, y) = ẋmin + ∆

(b) Second Phase.

Figure 7.4: Two phases of Algorithm 6.

Intuitively, the sets {Pq, Pr} and {Ps, Pt} are separable iff a∆ and c∆ are outside P ,
a possible separating line being the line connecting a∆ and c∆. Similarly, {Pq, Pt}
and {Pr, Ps} are separable iff b∆ and d∆ are outside P . Assume that, as ∆ increases,
one of the points b∆ or d∆ first enters P . Then, it becomes impossible to separate
{Pq, Pt} from {Pr, Ps}. But since {Pq, Pr} and {Ps, Pt} are still separable (a∆ and c∆

are outside P ), the algorithm can continue increase ∆. When either a∆ or c∆ enters
P , the algorithm stops (with say ∆ = ∆⋆). An optimal line cut is given by the line
passing by a∆⋆ and c∆⋆ . Several other particular configurations may occur, depending
on the relative position of the level sets of f1 and f2 and the polytope P . Those cases
are treated in details in the proof of correctness of the algorithm (see for example
Figure 7.9).

In the algorithm, the points a∆, b∆, c∆ and d∆ are defined at lines 7–10. Then for
z = a . . . d, we compute the value ∆z such that z∆ “enters” P as a linear program:
it corresponds to the minimal value of ∆ such that z∆ ∈ P . From the intuitive
interpretation above, it appears that ∆⋆ = max(min(∆a, ∆c), min(∆b, ∆d)). The many
particular cases are treated by the algorithm from line 13. Finally, the optimal cut in
the general case is returned according to the test of line 31 (as in the example).

Remarks (i) The macro-instructions of Algorithm 6 (lines 1, 11, 14) can be imple-
mented by linear programs. In particular, the coordinates of a∆, b∆, c∆ and d∆ are
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P

x1 =x2

100

100

0

x2

x1

Figure 7.5: The optimal cut of the invariant of location ℓ1

of the shared gas-burner.

linear in the parameter ∆ so that the minimization of line 11 is indeed a linear pro-
gram. (ii) A property of the line cut returned by Algorithm 6 is that it passes by the
center of the parallelogram qrst defined by the extremal level sets of f1 and f2 on P
(the point o on Figure 7.3). We do not need this property so we omit its proof.

Example Figure 7.5 shows the invariant of location ℓ1 of the shared gas-burner of
Figure 2.1, with the position of the level sets of f1(x1, x2) = h1 − a1x1 + b1x2 and
f2(x1, x2) = −a2x2 + b2x1 at the end of Algorithm 6. The four arrows indicates
the moving direction of the lines corresponding to increase the parameter ∆ in the
algorithm. The shaded regions corresponds to the pieces that are to be separated. The
optimal cut is the dashed line x1 = x2.

To establish the correctness of Algorithm 6, we need some preliminary definitions
and lemmas.

First, we complete Definition 7.11 with the following: for a finite set X = {x1, . . . , xn}
of n variables, a polytope Q ⊂ Rn and a tuple F = 〈f1, . . . , fn〉 of n affine functions
fi : Rn → R (1 ≤ i ≤ n), we have defined rangeF (Q) =

∧
x∈X ẋ ∈ Ix where for each

xi ∈ X, we have Ixi
= fi(Q). For each variable xi ∈ X, we define sizeRangeF

xi
(Q) =

size(Ixi
) the imprecision on ẋi in Q.

Lemma 7.20 Let 〈P, X, F 〉 be an instance of the optimal-cut problem for which a
solution is π⋆. Then sizeRangeF (P/π⋆) ≥ 1

2
sizeRangeF (P ).

Proof. Assume without loss of generality that sizeRangeF (P ) = sizeRangeF
x1

(P ), and
let f1(P ) = [a, b]. For every hyperplane π, let P/π = 〈P+, P−〉. We have P+∪P− = P
and thus f1(P

+) ∪ f1(P
−) = f1(P ). Therefore,

sizeRangeF
x1

(P+) + sizeRangeF
x1

(P−) ≥ sizeRangeF
x1

(P )

so that max
{
sizeRangeF

x1
(P+), sizeRangeF

x1
(P−)

}
≥ 1

2
sizeRangeF

x1
(P )
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which entails the result since sizeRangeF (P/π⋆) = max
{
sizeRangeF

xi
(P∼) | 1 ≤ i ≤

n∧ ∼∈ {+,−}
}
. �

Lemma 7.21 Let f1, f2 : R2 → R be two affine functions that are not constant and
not parallel. Let a, b ∈ R. The set ℓ1 =

⋃
t∈R f−1

1 (a + t) ∩ f−1
2 (b + t) is a line1.

Lemma 7.22 Let C ⊆ R2 be a convex set and f : R2 → R an affine function such
that C ∩ f−1(0) = ∅. If C ∩ f−1(R>0) 6= ∅, then C ∩ f−1(R<0) = ∅ (and vice versa,
switching R>0 and R<0).

Proof. Let u ∈ C ∩ f−1(R>0). Assume (ad absurdum) that there exist v ∈ C ∩
f−1(R<0). Then, for every λ ∈ [0, 1], λ u + (1 − λ) v ∈ C. Consider the function
g(λ) = f(λ u + (1− λ) v). Obviously, g is continuous, g(0) < 0 and g(1) > 0. Thus by
the intermediate value theorem, there exists some λ⋆ ∈ [0, 1] such that g(λ⋆) = 0, that
is, f(w) = 0 for w = λ⋆ u + (1− λ⋆) v. Since C is convex, w ∈ C thus a contradiction
with the hypothesis C ∩ f−1(0) = ∅. �

Lemma 7.23 Let Π = abcd be a parallelogram with center o (that is, [a, c] ∩ [b, d] =
{o}). Let C be a convex set and q, r, s, t be four points on the sides of Π that belong to
C. More precisely, q ∈ C ∩ [a, b], r ∈ C ∩ [b, c], s ∈ C ∩ [c, d] and t ∈ C ∩ [d, a]. Then
o ∈ C.

a q

u

b

v

d

o

c

rt

s

Figure 7.6: Illustration of Lemma 7.23.

Proof. It is easy to show the existence of u ∈ [o, a] and v ∈ [o, c] such that u =
λq + (1 − λ)t and v = µr + (1 − µ)s for some λ, µ ∈ [0, 1]. Then, obviously o is
expressible as a convex combination of u and v, and thus of q, r, s and t, which implies
that o ∈ C since C is convex (see also Figure 7.6). �

1Notice that we can replace t by −t in this definition without changing the set ℓ1, since t is
quantified over R.
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Lemma 7.24 Let Π = abcd be a parallelogram. Let q ∈ [a, b], r ∈ [b, c], s ∈ [c, d],
t ∈ [a, d]. If C is a convex set containing r and t, then C ∩ [q, s] 6= ∅.

Lemma 7.25 Let A, B ⊆ R2 be two sets such that int(A ∩ B) 6= ∅. Then A and B
are not separable.

Proof. Since int(A∩B) 6= ∅, there exist x ∈ A∩B and ǫ > 0 such that Bǫ(x) ⊆ A∩B
(where Bǫ(x) = {y ∈ R2 | d(x, y) ≤ ǫ} is the ball of radius ǫ centered in x and d is the
euclidean distance. Hence, there are three points x1, x2, x3 ∈ A ∩B that do not lie on
the same line. But, if there existed an affine function f defining a line cut separating
A and B, the three numbers f(x1), f(x2), f(x3) would be equal to zero and so x1, x2

and x3 would be aligned, which is a contradiction according to Lemma 7.16. �

Definition 7.26 [Degenerated polytope] A polytope P ⊆ R2 is said degenerated iff
there exists a line ℓ such that P ⊆ ℓ. �

Lemma 7.27 A polytope is degenerated iff its interior is empty.

Lemma 7.28 Let P be a non-degenerated polytope and Π = abcd be a non-degenerated
parallelogram such that [a, c] ⊆ P . Then int(P ∩ Π) 6= ∅.

Correctness of Algorithm 6

Theorem 7.29 Algorithm 6 is correct and always terminates.

Proof. The input of the algorithm is an instance 〈P, X, F 〉 of the concrete optimal-cut
problem, with P ⊂ R2, X = {x, y} and F = 〈f1, f2〉. After lines 1-3 have executed,
consider the case ry ≥ 2 rx. Then the algorithm stops at line 4, returning the line
ℓ ≡ f2(x, y) = ẏmin + ry

2
. Let P/ℓ = 〈P+, P−〉. It is clear that:

sizeRangeF
x (P+) ≤ rx sizeRangeF

x (P−) ≤ rx

sizeRangeF
y (P+) = ry

2
sizeRangeF

y (P−) = ry

2

Hence, sizeRangeF (P/ℓ) = ry

2
= 1

2
sizeRangeF (P ). From Lemma 7.20, there exists no

better cut, so ℓ must be optimal. Now, we assume that :

ry < 2 rx (7.1)

First, we show the existence of ∆a, ∆b, ∆c and ∆d computed at line 11, and thus the
existence of the line cut returned by the algorithm. Second, we show that this cut is
optimal. Let

∆0 = ry − rx as in the algorithm, line 5. (7.2)
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f2(x, y) = ẏmaxf2(x, y) = ẏmin

f2(x, y) = ẏmin + ∆0

b′b′′a′′a′

d′′d′ c′′ c′

f2(x, y) = ẏmax − ∆0

ℓa

ℓd ℓc

ℓb
t

r

f1(x, y) = ẋmin

f1(x, y) = ẋmax

Figure 7.7: Level sets of f1 and f2 after the first phase of the algorithm.

1. To prove the existence of ∆a, we show that the set Sa = {∆ | a∆ ∈ P} is nonempty,
with the help of Figure 7.7. From Lemma 7.21, the set ℓa = {a∆ | ∆ ∈ R} is a line
and since a0 = a′′ and ary−∆0

= arx = c′, we have ℓa = ℓine(a′′, c′). See Figure 7.7.
If we apply Lemma 7.24 with the parallelogram Π = a′b′c′d′ defined by the level
sets f−1

1 (ẋmin), f−1
1 (ẋmax), f−1

2 (ẏmin) and f−1
2 (ẏmax), we conclude that P ∩ ℓa 6= ∅

so that Sa 6= ∅.

We show similarly the existence of ∆b, ∆c and ∆d. In all the figures that come with
this proof, the important line ℓa (as well as the lines ℓb, ℓc and ℓd corresponding to
b, c and d respectively) is dashed.

2. We prove the optimality of the cut computed by Algorithm 6. Let

∆̃ =
ry

2
−∆0 (7.3)

and consider the following cases:

(2a) If ∆1 > ∆̃. The algorithm stops at line 13 and returns the line ℓ ≡ f2(x, y) =
ẏmin + ry

2
. Consider Figure 7.8. Let r ∈ P ∩ [b′, c′] and t ∈ P ∩ [a′, d′]. Obviously,

the points r and t exist. Let P/ℓ = 〈Pr, Pt〉 with r ∈ Pr and t ∈ Pt.

According to line 14 of the algorithm, let Qmin = P ∩[a′, b′] and Qmax = P ∩[c′, d′].

We claim that Qmin ∩ [a′′, b′′] = ∅ and Qmax ∩ [c′′, d′′] = ∅. Since ∆1 > ∆̃, we
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f2(x, y) = ẏmaxf2(x, y) = ẏmin

f2(x, y) = ẏmin + ∆0

a′

f2(x, y) = ẏmax −∆0

c′′

a′′ b′′

d′′

e′
t

r

b′

c′d′

f

e

ℓc

ℓd

ℓb ℓa

f1(x, y) = ẋmin

f1(x, y) = ẋmax

Figure 7.8: An example of the case ∆1 > ∆̃. The thick edges [a′′, e] and [c′′, f ]
are known to be outside P .

have ∆a > ∆̃ and ∆c > ∆̃. Let e (resp. f) be the intersection point of [a′′, c′] and
[b′′, d′] (resp. [a′, c′′] and [b′, d′′]). Note that the line returned by the algorithm
is ℓ = ℓine(e, f). It is easy to show that e = ae∆ = be∆ (and f = ce∆ = de∆)
and therefore P ∩ [a′′, e] = ∅ and P ∩ [c′′, f ] = ∅ (in thick lines on Figure 7.8).
We apply Lemma 7.22 with C = P ∩ T where T is the triangle a′b′′d′. Since
P ∩ [a′, d′] 6= ∅, we have P ∩ [a′′, b′′] = ∅ which entails our claim. Thus, either

• Qmin ⊆ [a′, a′′] and Qmax ⊆ [d′, d′′]. See Figure 7.9(a). Then, we have:

sizeRangeF
x (Pr) < rx sizeRangeF

x (Pt) = rx

sizeRangeF
y (Pr) = ry

2
sizeRangeF

y (Pt) = ry

2

Since rx > ry

2
(Relation 7.1), we have sizeRangeF (P/ℓ) = rx. Now, assume

(ad absurdum) that there is a line cut ℓ⋆ such that sizeRangeF (P/ℓ⋆) <
sizeRangeF (P/ℓ). Let P/ℓ⋆ = 〈P1, P2〉 with r ∈ P1. From the fact that ℓ⋆ is
better than ℓ, we have ∀z ∈ P1 : f2(r) − f2(z) < rx and by Equation 7.2,
f2(z) > ẏmin + ∆0. Therefore, we must have Qmin ⊆ P2 and Qmax ⊆ P2 so
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ℓ
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Figure 7.9: Examples.

that sizeRangeF (P2) ≥ rx = sizeRangeF (P/ℓ) which contradicts the existence
of ℓ⋆. Thus ℓ is optimal.

• or Qmin ⊆ [a′, a′′] and Qmax ⊆ [c′, c′′]. See Figure 7.9(b). From Lemma 7.22
with C = P ∩ T where T is the trapezoid a′b′e′e (see Figure 7.8), since

P ∩ [a′, a′′] 6= ∅, we have P ∩a′′b′e′e = ∅ so that ∀z ∈ Pr : f1(z) > ẋmin +∆̃.

Similarly, ∀z ∈ Pt : f1(z) < ẋmax − ∆̃. Thus we have:

sizeRangeF
x (Pr) < rx − ∆̃ sizeRangeF

x (Pt) < rx − ∆̃

sizeRangeF
y (Pr) = ry

2
sizeRangeF

y (Pt) = ry

2

Clearly, rx − ∆̃ = ry

2
(by Equations 7.2 and 7.3) so that sizeRangeF (P/ℓ) =
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ry

2
= sizeRangeF (P )

2
. From Lemma 7.20, there exists no better cut.

• or Qmin ⊆ [b′, b′′]. This case is treated similarly to the previous ones.

(2b) If ∆1 = ∆̃. A slight modification in the proof of the previous case allows to

conclude: since either ∆a = ∆̃ or ∆c = ∆̃ (or both), we may have e ∈ P or
f ∈ P . Still, we have Qmin∩ [a′′, b′′[= ∅ and Qmax ∩ [c′′, d′′[= ∅, and thus the rest
of the proof is similar to the previous case.

(2c) If ∆2 ≥ ∆̃. The proof is similar to the previous cases.

(2d) If ∆1 < ∆̃ and ∆2 < ∆̃. Assume without loss of generality that ∆1 = ∆a,
∆2 = ∆b and ∆1 > ∆2. The algorithm continues after line 14, and we have
Qmin = P ∩ f−1

1 (ẋmin) and Qmax = P ∩ f−1
1 (ẋmax). Let r ∈ P ∩ [b′, c′] and

t ∈ P ∩ [a′, d′]. Obviously, the points r and t exist. See Figure 7.7.

• If Qmin ∩ [a′, a′′] 6= ∅ and Qmin ∩ [b′, b′′] 6= ∅. See Figure 7.9(c). Then, the
test of line 15 succeeds and the line ℓ ≡ f2(x, y) = ẏmin + ry

2
is returned.

Let P/ℓ = 〈Pr, Pt〉 with r ∈ Pr and t ∈ Pt. We have either Qmax ∩ Pr 6=
∅ or Qmax ∩ Pt 6= ∅. Therefore, since rx > ry

2
(Relation 7.1), we have

sizeRangeF (P/ℓ) = rx. Now, assume (ad absurdum) that there exists a line
cut ℓ⋆ such that sizeRangeF (P/ℓ⋆) < sizeRangeF (P/ℓ). Let P/ℓ⋆ = 〈P1, P2〉
with r ∈ P1. From the fact that ℓ⋆ is better than ℓ, we have ∀z ∈ P1 :
f2(r)−f2(z) < rx and by Equation 7.2, f2(z) > ẏmin+∆0. Then, [a′, a′′] ⊆ P2,
and we have Qmin ∩ P2 6= ∅. Similarly, we show that Qmin ∩ P1 6= ∅. Since
we necessarily have either Qmax ∩P1 6= ∅ or Qmax ∩P2 6= ∅, it must be that
sizeRangeF (P/ℓ⋆) ≥ rx = sizeRangeF (P/ℓ), which contradicts the existence
of ℓ⋆. Thus ℓ is optimal.

• Else, if Qmin ∩ [a′, a′′] 6= ∅.

If Qmax ∩ [d′, d′′] 6= ∅. This case is treated at lines 18, 19. The proof is
similar to the previous cases.

Otherwise, the algorithm returns ℓ = ℓine(b∆2
, d∆2

) (Line 20). Let P/ℓ =
〈Pr, Pt〉 with r ∈ Pr and t ∈ Pt. Define b′′′ as on Figure 7.10. Notice that
∆2 ≤ ∆b and ∆2 ≤ ∆d so that P ∩ [b′′, b∆2

[ = ∅ and P ∩ [d′′, d∆2
[ = ∅. From

Lemma 7.22 with C = P ∩T where T is the trapezoid b′b′′′b∆2
c′, we get that

∀z ∈ Pt : f2(z) ≤ ẏmax − ∆0 − ∆2. Similarly, ∀z ∈ Pt : f1(z) ≤ ẋmax − ∆2

and ∀z ∈ Pr : f2(z) ≥ ẏmin + ∆0 + ∆2 ∧ f1(z) ≥ ẋmin + ∆2. Therefore,

sizeRangeF
x (Pr) ≤ rx −∆2 sizeRangeF

x (Pt) ≤ rx −∆2

sizeRangeF
y (Pr) ≤ ry −∆0 −∆2 sizeRangeF

y (Pt) ≤ ry −∆0 −∆2

From Equation 7.2, rx − ∆2 = ry − ∆0 − ∆2, and thus sizeRangeF (P/ℓ) ≤
rx −∆2. By a similar reasoning as before, we can show that any line cut ℓ⋆
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Figure 7.10: Constructions in the proof of Theorem 7.29.

such that sizeRangeF (P/ℓ⋆) = rx−∆2− ǫ with ǫ > 0 must separate Qǫ
1 from

Qǫ
2 and Rǫ

1 from Rǫ
2 where:

Qǫ
1 = P ∩ f1([ẋmin, ẋmin + ∆2 + ǫ])

Qǫ
2 = P ∩ f2([ẋmax −∆2 − ǫ, ẋmax])

Rǫ
1 = P ∩ f2([ẏmin, ẏmin + ∆0 + ∆2 + ǫ])

Rǫ
2 = P ∩ f2([ẏmax −∆0 −∆2 − ǫ, ẏmax])

To do this, the line ℓ⋆ should separate either {Qǫ
1, R

ǫ
1} and {Qǫ

2, R
ǫ
2} or

{Qǫ
1, R

ǫ
2} and {Qǫ

2, R
ǫ
1}. We prove that both cases are impossible so that ℓ⋆

cannot exist.

We have b∆2
∈ P and o ∈ P by Lemma 7.23 (where o is the center of both

parallelograms a′b′c′d′ and a′′b′′c′′d′′). Since P is convex, [o, b∆2
] ⊆ P . We

have:
f1(b∆2

) = ẋmin + ∆2 f1(o) = ẋmin + rx

2

f2(b∆2
) = ẏmax −∆0 −∆2 f2(o) = ẏmax − ry

2

Since ∆2 < ∆̃, using Equation 7.2 and 7.3 we get ∆2 < 1
2
(rx − ∆0) and

thus ∆2 < rx

2
. Assume now that 0 < ǫ < rx

2
− ∆2 and let α = ǫ

rx
2
−∆2

< 1.

Consider the point u = α o + (1 − α)b∆2
. Clearly u ∈ P . Also, f1(u) =

α f1(o) + (1− α)f1(b∆2
) = ẋmin + ∆2 + ǫ so that u ∈ Qǫ

1 and
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f2(u) = α f2(o) + (1− α)f2(b∆2
)

= ẏmax −∆0 −∆2 − α
(

ry

2
−∆0 −∆2

)

= ẏmax −∆0 −∆2 − α
(

rx

2
−∆2 − ∆0

2

)

≥ ẏmax −∆0 −∆2 − ǫ

so that u ∈ Rǫ
2. Now, consider the parallelogram Π with sides parallel to

the level sets of f1 and f2 and with diagonal [u, b∆2
]. From Lemma 7.28, we

have int(P ∩ Π) 6= ∅. Clearly, we have shown that Π ⊆ Qǫ
1 and Π ⊆ Rǫ

2 so
that int(Qǫ

1 ∩Rǫ
2) 6= ∅. So, by Lemma 7.25 we have the inseparability of Qǫ

1

and Rǫ
2 for ǫ < rx

2
− ∆2. Since Qǫ

1 ⊆ Qη
1 and Rǫ

2 ⊆ Rη
2 for every ǫ ≤ η, we

have inseparability of Qǫ
1 and Rǫ

2 for every ǫ > 0.

A similar proof shows that {Qǫ
1, R

ǫ
2} and {Qǫ

2, R
ǫ
1} are not separable because

Qǫ
1 and Rǫ

1 are not separable. This entails that ℓ⋆ cannot exist.

• Else, if Qmin ∩ [b′, b′′] 6= ∅. The proof is similar to the previous case.

• Otherwise. The proof for the rest of the algorithm uses the same tricks as
above.

�

7.5 Refinement-based Safety Verification Algorithm

In this section, we explain the methodology to obtain automatically successive refine-
ments of an affine hybrid automaton H for which we want to check emptiness.

A first rectangular phase-portrait approximation H0 = rect(H) is computed from
the original automaton H . Then the automaton H0 is symbolically analyzed, both
forward and backward as described in Section 2.5. This gives the two sets Reach(JH0K)
and Reach−1(JH0K). If their intersection Unsafe(JH0K) is empty, then so is the set
Unsafe(JHK) (by Lemma 7.3 and Theorem 7.4) and the emptiness of H is estab-
lished. Otherwise, we refine the automaton H by splitting one of its unsafe loca-
tions and restart the procedure. In fact, we show that refining the rectangular ap-
proximation in a safe location is not helpful for checking emptiness. In other words,
the relevant part of the state space to be refined is Unsafe(JHK). Formally, the re-
sult follows from Theorem 7.30 where we use the notion of pruning of the state
space. For an hybrid automaton H = 〈Loc, Lab, Edg, X, Init, Inv, Flow, Jump, Final〉
and a subset L ⊆ Loc of its locations, let prune(H, L) be the hybrid automaton
〈Loc′, Lab, Edg′, X, Init, Inv, Flow, Jump, Final〉 where Loc′ = Loc\L, Edg′ = {(ℓ, σ, ℓ′) ∈
Edg | ℓ, ℓ′ ∈ Loc′} and the other components are left unchanged.

Theorem 7.30 For every hybrid automaton H, for every subset L ⊆ SafeLoc(H) of
its safe locations, we have Jprune(H, L)K ≈unsafe JHK, that is, Jprune(H, L)K and JHK
are weakly bisimilar for the unsafe behaviours.
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Proof. Consider the relation R = {(q1, q2) | q1 = q2 ∈ Unsafe(JHK)}. Let us show
that R is a weak simulation relation for Jprune(H, L)K �unsafe JHK. For all (q1, q2) ∈ R

and all σ ∈ Lab \ {τ} ∪ R≥0, if q2

σ−։ q′2 in JHK and q′2 = (ℓ, v) ∈ Unsafe(JHK), then

ℓ 6∈ L by definition of SafeLoc(H). Therefore, we have q1

σ−։ q′1 in Jprune(H, L)K for
q′1 = q′2. The other conditions of Definition 7.1 are established similarly, and the proof
that R−1 is a weak simulation relation for JHK �unsafe Jprune(H, L)K is trivial. �

By Theorem 7.30 and Lemma 7.6, we conclude that splitting a location that is safe
in the rectangular approximation has no relevance.

Corollary 7.31 For every hybrid automaton H, for all locations ℓ ∈ SafeLoc(rect(H)),
and all hyperplanes π, rect(H) is empty iff rect(split(H, ℓ, π)) is empty.

The core of the refinement based verification procedure is given below. Its cor-
rectness is justified by Corollary 7.31. There is no guarantee of termination for two
reasons. First, the reachability analyses of the rectangular approximations (that we
perform for checking the condition of the while loop) may not terminate as the problem
is undecidable. Second, the affine automaton H may be empty in the exact dynamics,
but nonempty for any over-approximation, no matter how close of H it is. So, however
the splitting can reduce the imprecision below any ǫ > 0, the emptiness of H could
not be established within a finite number of steps. However, we could stop when the
size of the invariants run below a certain threshold and conclude that the system is at
least not robustly correct for that threshold.

1 while Unsafe(Jrect(H)K) 6= ∅ do
2 L← SafeLoc(rect(H)) ;
3 H ′ ← prune(H, L) ;
4 Let ℓ be a location of H ′ and π be a hyperplane ;
5 H ← split(H ′, ℓ, π) ;

The splitting is done in the location ℓ having the greatest imprecision (the largest
value of sizeRange on its invariant) and the hyperplane π is determined using one of
the algorithms presented in Section 7.4. This is a natural choice for ℓ since our goal is
to finally reduce the overall imprecision of the rectangular approximation. This way,
the approximation can be made arbitrarily close to the original system [HHW98] and
so, if the system is robust against small perturbations as in [Frä99], our procedure
eventually establishes its correctness, provided the reachability analysis of the rectan-
gular automata terminates. This contrasts with the counter-example based refinement
abstraction method (CEGAR) developed by Clarke et al. [CGJ+00] where the approx-
imations are finite-state, but the refinement procedure is driven by the elimination of
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spurious counter-examples (executions of the approximation which have no concrete
counterpart) and therefore not guaranteed to terminate.

We have implemented a prototype tool to evaluate the refinement-based safety
verification algorithm. Driven by practical experiments, we have brought some im-
provements to the theoretical algorithm. First, to reduce the number of iterations of
the loop (and thus the number of analyses of rectangular approximations), we may
perform more than one split at each iteration: we execute line 4 and line 5 repeatedly
a fixed number of times (called splits per iteration). Second, the pruning can be im-
proved as follows: for a location ℓ that is unsafe in rect(H), we can replace in H ′ the
invariant of ℓ by any over-approximation of the unsafe states in ℓ, that is a polytope
P such that ∀(ℓ, v) ∈ Unsafe(Jrect(H)K) : v ∈ P . In practice, we take P as the convex
hull of the unsafe states in ℓ.

7.6 Case study

Our prototype tool is implemented in C++ on top of the Parma Polyhedra Library
(PPL) [BRZH02]. The PPL provides routines to handle convex polyhedra in exact
arithmetic (using rational coefficients stored as pairs of integers with unbounded size).
Linear programming with the simplex algorithm is one of the features.

For the analysis of rectangular automata, we make external calls to the model-
checker PHAVer [Fre05], a recent tool for the verification of hybrid systems. This
tool can handle affine dynamics hybrid automata, but the dynamics are first over-
approximated by rectangular inclusions. The verification algorithm computes the
reachable states with a procedure similar to HyTech that we have explained in Sec-
tion 2.5, however drastically improved and based on PPL. The tool PHAVer provides
an on-the-fly over-approximation of the affine dynamics, with refinements by location
splitting with user-defined hyperplanes. Since we have an algorithm to automatically
obtain the splitting hyperplanes, we do not use the refinement features of PHAVer.
Also, we use the reverse automaton construction of Section 2.1 to implement backward
analysis.

We applied our methodology to a benchmark, that we briefly present below. Our
implementation is designed to specifically handle that benchmark (the example is hard-
coded). However, the techniques that we have presented are general and the goal of
the prototype is just to validate the approach in practice.

Navigation benchmark The Navigation benchmark is a set of thirty instances of
the same problem, that was proposed in [FI04].

An object is moving on a m×n grid divided in m · n cells. The parameters m and
n vary from 3 to 25 in the instances. The dynamics of the object are given by the
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Figure 7.11: Navigation benchmark: the grid of desired velocities.

equations:

ẋ = v

v̇ = A(v − vd(i))
(7.4)

where x = (x1, x2)
T records the position of the object on the grid, and v = (v1, v2)

T

records its velocity. The 2 × 2 matrix A is constant for each instance. The vector
vd(i) models a desired velocity that is constant in each cell of the grid. Its value is
determined by an integer i ∈ {0, . . . , 7} associated to each cell by a given map M
as follows: vd(i) = (sin(iπ/4), cos(iπ/4)). The grid with desired velocities for the
instances NAV01-03 and NAV04 of the benchmark are shown in Figure 7.11. The
eigenvalues of A have strictly negative real part, which guarantees that v eventually
converges to vd. The benchmark defines two particular cells, one labelled by A that
has to be reached, and one labelled by B that is to be avoided. We are only interested
in verifying the safety property that the B-cell is unreachable. The initial positions are
shaded in Figure 7.11, the initial velocities (v1, v2) lie in the range:

NAV01: [−0.3, 0.3]× [−0.3, 0] NAV03: [−0.4, 0.4]× [−0.4, 0.4]

NAV02: [−0.3, 0.3]× [−0.3, 0.3] NAV04: [0.1, 0.5]× [0.05, 0.25]

The modeling of the Navigation benchmark with hybrid automata is depicted in
Figure 7.12. We use the models of [Fre05]: an automaton Pos with m ·n locations and
variables x1 and x2, corresponding to the cells of the grid (Figure 7.12(a) shows the
location for the central cell of NAV01-03), and an automaton Vel with a location for
each desired velocity (Figure 7.12(b) shows the three modes that are present in NAV01-
03). The velocities are a priori bounded to the interval [−2, 2], to comply with the
assumption that invariants are bounded. We check after the reachability analysis that
the velocities are indeed such bounded. The synchronization labels σi, i ∈ {0, . . . , 7},
give the index of the desired velocity according to the map M .
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ẋ1 = v1
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(a) Affine automaton Pos.
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(b) Affine automaton Vel.

Figure 7.12: Hybrid automata for the Navigation benchmark.

Instance Time Memory Splits/iteration Nbr. iter.

NAV01 5s 42 MB 15 1

NAV02 7s 42 MB 15 1
NAV03 7s 42 MB 15 1
NAV04 60s 105 MB 15 4

Table 7.1: Navigation benchmark: Execution times and memory
consumption on a Xeon 3GHz with 4GB RAM.

The Navigation benchmark has four variables x1, x2, v1 and v2, so we have to adapt
the presentation of Section 7.4.2 that was in 2D. Observe that only two variables appear
in the right-hand side of the differential equations 7.4, namely v1 and v2. So, the quality
of the splitting is not influenced by the range of values of the position variables x1 and
x2. Therefore, it will be sufficient to split in the plane v1v2 of the velocities (and thus in
the automaton Vel), and we take X = {v1, v2} for the input variable set of Algorithm 6.
For the tuple of functions F = 〈f1, f2〉, we may choose among the four functions that
define the dynamics: v1, v2, A1∗ · (v − vd) or A2∗ · (v − vd(i)) where A1∗ (resp. A2∗)
is the first (resp. second) row of A. In practice, we have observed that the first two
functions give better results in that the fixed point computation of the reachable states
converges much faster.

The execution time and memory consumption for the instances NAV01-04 are
shown in Table 7.1. For instance NAV01-03, the safety of the system is established
after one iteration of the refinement-based verification algorithm. The number of splits
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per iteration is to be understood as the number of line cuts in each of the locations of
the automaton Vel. So, for NAV01-03, the splitted automaton Vel has 48 = 3.(15 + 1)
locations. For NAV04, we give the details of the computation in Table 7.2. For each
iteration, there are two external calls to PHAVer, one for the forward analysis (F)
and one for the backward analysis (B). For each call, we give the execution time, the
memory consumption and the number of iterations for the fixed point in PHAVer.
In Figure 7.13, we show the reachable states for each line of Table 7.2, except the first
forward iteration, where the whole grid is reachable. The initial and bad states are
darker (initial states darkest). For backward analysis, the set of initial states is the
convex hull of the bad states that were reachable at the previous forward iteration.
The pruning policy of the safe states reduces the size of the state space and allows
to focus the computational effort to the parts where it is useful. Figure 7.13(f) shows
that the bad states are unreachable after the 4th forward iteration.

The results reported in Figure 7.1 compare favourably with the times/memory
reported in [Fre05]: 35s (63MB), 41s (54MB), 62s (90MB), and 225s (116MB) for
NAV01-04 respectively. So, we were able to verify more efficiently than PHAVer

itself the instances NAV01-04, while we used that tool as a black box for analysis of
rectangular automata (thus with all heuristics disabled).

Iteration F/B Time Memory Nbr. iter. in PHAVer

1 F 5s 42 MB 14

1 B 5s 39 MB 8
2 F 8s 57 MB 10
2 B 10s 51 MB 15
3 F 7s 81 MB 9
3 B 4s 30 MB 7
4 F 21s 105 MB 11

Table 7.2: Navigation benchmark: computation details for NAV04.

7.7 Conclusion and Future Works

Beyond Rectangular Approximations In the previous sections, the use of rect-
angular automata to approximate affine dynamics was motivated by the fact that (i)
rectangles are simple shapes, the value of each variable can be chosen independently
of the others (a rectangle is a Cartesian product of intervals), (ii) any level of pre-
cision can be obtained for the approximation, and (iii) the reachability analysis of
rectangular automata is reasonably efficient.

However, the more general class of linear hybrid automata is also analyzable in prac-
tice and it may happen that a linear dynamics approximation is sufficient to establish
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(a) 1st backward iteration. (b) 2nd forward iteration.

(c) 2nd backward iteration. (d) 3rd forward iteration.

(e) 3rd backward iteration. (f) 4th forward iteration.

Figure 7.13: Navigation benchmark: verification of NAV04 (see also Figure 7.11(b)).
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emptiness while rectangular approximations fail, no matter the number of splits.

We illustrate this fact on an example. Consider the affine hybrid automaton H1 of
Figure 7.14. Let P = JInv(ℓ)K be the invariant of the initial location. Let Flowℓ : P →
R2 : (x, y)→ (x+1, x+y +1) be the affine function that gives the flow vector (ẋ, ẏ) in
each point (x, y) of P . Since P is a polytope, the set Q = Flow(P ) is also a polytope
and is called the dynamics polytope. The set Q is shown on Figure 7.14.

This polytope corresponds to the dynamics of the linear hybrid automaton of Fig-
ure 7.15 that over-approximates H1. We see that this approximation is already suffi-
cient to prove that the location Bad is unreachable. Indeed, we have initially x ≤ y
and the constraint ẋ ≤ ẏ ensures that x ≤ y is always true in the initial location.
Therefore the guard x > y is never enabled and Bad is unreachable.

On the other hand, if we cover the dynamics polytope with any finite number of
rectangles, we cannot obtain that result. It is easy to show that there would necessarily
be a (non-degenerated) rectangle that contains the dashed box of Figure 7.14 for ǫ
sufficiently small. Therefore, from the initial point x = y = 0, there exist a dynamics
in the rectangular approximation such that ẋ > ẏ and therefore the guard x > y is
satisfied after any positive amount of time. Hence it is impossible to prove emptiness
of H1 with rectangular dynamics.

ẋ = x + 1

ẏ = x + y + 1

0 ≤ x ≤ 1

0 ≤ y ≤ 1

Bad
x = 0

∧ y = 0

x > y

0

ẏ

ẋ

1 2 3

1

2

3

ǫ

Figure 7.14: An affine hybrid automaton H1 and its polytope of dynamics.

1 ≤ ẋ ≤ 2

ẋ ≤ ẏ ≤ ẋ + 1

0 ≤ x ≤ 1

0 ≤ y ≤ 1

Bad
x = 0

∧ y = 0

x > y

Figure 7.15: Approximation of H1 by a linear hybrid automaton.

Refinement of linear approximations To automate the process of refinement
with linear automata, we have to define a splitting policy. We would like to have an
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algorithm for splitting in an optimal way, according to some criterion to be defined.
So far, we do not know such an algorithm. Instead, we propose a heuristics based on
the following observation.

We say that a set C ⊆ Rn is a cone if for all x ∈ C and for all λ ∈ R≥0, λx ∈ C.
The conic hull of a set S is the smallest convex cone containing S. For two polyhedrons
P, Q ⊆ Rn, it is easy to see that:

PրQ = {p + t.q | p ∈ P, q ∈ Q, t ∈ R≥0} = {p + t.λq | p ∈ P, q ∈ Q, t, λ ∈ R≥0}

and thus the set of time successors is not changed when the linear dynamics is replaced
by its conic hull. More precisely, for a linear automaton H , let H ′ be the automaton
obtained from H by replacing each predicate Flow(ℓ) by a linear predicate ϕℓ such thatJϕℓK is the conic hull of JFlow(ℓ)K. Then H and H ′ are time-abstract bisimilar, that is
Untime(JHK) ≈ Untime(JH ′K).

Therefore, conic hulls can be seen as a canonical representation of linear dynamics.
The refinement policy should then be expressed in terms of those conic hulls. In the
heuristics that we propose, we first split the cone of dynamics by a hyperplane yielding
two pieces F1 and F2. Then, we cover the invariant by two regions P1 and P2 such
that the dynamics polytope of P1 (resp. P2) is contained in F1 (resp. F2). The
heuristics is to determine the splitting hyperplane. Observe that it is always preferable
to choose a hyperplane passing by the origin (the point with all zero coordinates)
to avoid overlapping of the two cone dynamics. Given a cone C, we split along the
hyperplane π ≡ (v− v′)T x = 0 where v, v′ are vectors of C such that ‖v‖2 = ‖v′‖2 and
angle(v, v′) = max{angle(v1, v2) | v1, v2 ∈ C}. Thus we separate the vectors that are
spanning the largest angle.

If C is the conic hull of a polytope Q, the maximal angle is realized by two vertices
of Q. Therefore, computing v and v′ is a matter of enumerating the pairs of vertices
of Q. In practice, we may stop the refinement process when ‖v − v′‖2 run below some
threshold. Finally, note that the splitting hyperplane is in general not definable by
rational coefficients because the scaling of v and v′ (such that ‖v‖2 = ‖v′‖2) may
introduce irrational numbers.
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Chapter 8

Conclusion

Les hommes sont faits, nous dit-on,
Pour vivre en bande comme les moutons,
Moi j’vis seul et c’est pas demain
Que je suivrai leur droit chemin.

Georges Brassens, La mauvaise herbe.

8.1 Summary

We have considered two central formalisms for modelling real-time systems: timed and
hybrid automata. We have briefly presented the existing (un)decidability results and
algorithmic tools for the analysis of those models, with the focus on safety properties.
We have observed that there is a price to pay for those results, among others:

• For timed automata, the classical semantics is idealized: the clocks have a perfect
rate and guards are exact. This entails decidability of the emptiness problem.
However, the classical semantics is not well suited for reasoning about real im-
plementations.

• For hybrid automata, the dynamics is limited to rectangular or linear relations in
the space of the derivatives. This entails computability of the one-step successors
of a set of states. For practical applications however, the dynamics is often
specified with more general differential equations.

In this thesis, we have studied the decidability of richer semantics for timed au-
tomata and more general dynamics for hybrid automata. We have also contributed
to extend the algorithmic techniques for dealing with those semantics. We briefly
summarize our main contributions for timed automata and hybrid automata:

181
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• We have considered a first attempt to define a semantics that is decidable and
suitable for implementations, where the use of equality in timing constraints is
disallowed. Unfortunately, we have shown in Chapter 3 that even in that case,
the parametric reachability problem for timed automata is undecidable. This
result contrasts with the field of real-time logics where relaxing punctuality leads
to decidability [AFH96]. This result has oriented our research to the AASAP
semantics, a new semantics for timed automata that is implementable.

• For the verification of the AASAP semantics, we have a result of decidability for
the emptiness problem, when the parameter δ is fixed to a rational constant. We
have presented two algorithmic approaches to synthesize the value of δ.

• For the essential problem of deciding the existence of a value for the parameter δ
in the AASAP semantics, we have made a detailed study of important properties
of timed automata, and we have established that the problem is decidable. The
result is related to the robustness of timed automata against perturbations in
either the guards, the clock rate or both.

• We have proposed a refinement-based algorithm for the verification of safety prop-
erties for hybrid automata with affine dynamics. The algorithm approximates
the dynamics by rectangular inclusions, which gives an automaton that can be
analyzed with classical procedures. The approximation is conservative in that if
the rectangular automaton satisfies a safety property, then so does the original
automaton. Refined approximations are obtained automatically, according to an
optimality criterion. For automata with two continuous variables, we compute
the optimal refinement, and for automata in higher dimension, an arbitrarily
precise approximation of the optimal refinement is computable. The method is
further improved by running both a forward and backward exploration, and by
pruning parts of the state space that are not relevant to the verification of the
target property. Promising results have been obtained with an implementation
prototype.

8.2 Future works

Several extensions of the work presented in this thesis are possible. We briefly sum-
marize some directions for future works.

1. The programs that we have studied in this thesis belong to the category of reactive
programs that have input/output interactions with an environment, and that are
not intended to terminate. They differ from the transformational programs that
are aimed at computing a result from a given input in a finite amount of time.
For this kind of program, there exists a fairly standard model of computation:
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Turing Machines. It is an abstract model of program that is not used for physical
realization, but for theoretical reasonings about programs. Turing Machines
are equivalent in expressive power to many other models of computation, and
therefore they are widely accepted as the reference of what is computable by a
digital device.

For reactive real-time programs, there is a lack of a similar abstract model of
what is implementable on a digital device. There exist a lot of notations for
specifying reactive systems, but none is sufficiently abstract to convince of its
implementability in general. This is in contrast with classical models of compu-
tation. The presence of quantitative real-time constraints is the crucial feature.
The solution is perhaps to be searched in the theory of timed languages, for iden-
tifying in the abstract a general class of implementable languages. We hope that
the AASAP semantics and its motivations could help in the definition of such an
abstract model of reactive real-time computation.

2. We have seen that many problems about parametric timed automata are unde-
cidable. However, we have also shown that an important problem was decidable,
namely when either guards are uniformly enlarged or when clocks drift. Other
results of (un)decidability for particular classes of timed systems can probably be
found, as slight changes in the definitions may turn an undecidable problem to a
decidable one. For example, a recent result shows that the question whether there
exists a sampling period such that a given timed automaton is empty is decidable
when the automaton can idle [KP05]. Remind that without this assumption, the
problem is undecidable [CHR02].

3. For most of the problems that are decidable for parametric timed automata,
efficient implementations are still lacking. Future research should investigate
the design of data structures and algorithms for the practical verification of
implementable real-time systems. Techniques such as acceleration or abstract
interpretation could be helpful in that context. It would also be useful to define
other notions of implementability, and to find necessary or sufficient conditions
of implementability that are easy to compute.

4. It would be interesting to continue investigating the analysis of hybrid automata
with affine dynamics, and extend the techniques to more complex dynamics. In
the theory of refinements, future developments include a better understanding
of what makes the quality a refinement and how to construct them efficiently.
The combination of abstraction-refinement with other techniques such as ellip-
soids [KV00], barrier-certificates [PJ04], and theorem proving [RS05] should be
explored. The question of the scalability of the methods for hybrid automata is
also very important in practice.
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Appendix A

Technical proofs

A.1 Proof of Theorem 4.7

Theorem 4.7 Let S1,S2 be two input-enabled and composable STTS (structured by
(Σ1

in, Σ
1
out, Σ

1
τ ) and (Σ2

in, Σ
2
out, Σ

2
τ ) respectively). Let →1, →2 and → be the transition

relations of S1, S2 and S1‖S2 respectively. If (q1, q2) ∈ Reach(S1‖S2) and there is
a discrete transition (q1, σ, q′1) ∈ →1 with σ 6∈ Σ1

in (respectively (q2, σ, q′2) ∈ →2 with
σ 6∈ Σ2

in) then there exists a state q′2 (resp. a state q′1) such that ((q1, q2), σ, (q′1, q
′
2)) ∈ →.

Proof. We prove the first part of the theorem. The proof of the second part is
completely similar. Let S1 be given by 〈Q1, Q1

0, Q
1
f , Σ

1,→1〉 structured by (Σ1
in, Σ

1
out, Σ

1
τ )

and S2 be given by 〈Q2, Q2
0, Q

2
f , Σ

2,→2〉 structured by (Σ2
in, Σ

2
out, Σ

2
τ ).

Let (q1, q2) ∈ Q1 × Q2 and let σ ∈ Σ1
out ∪ Σ1

τ such that (q1, σ, q′1) ∈ →1. First, if
σ ∈ Σ1

τ then by Definition 4.4 we have ((q1, q2), σ, (q′1, q
′
2)) ∈ → for q′2 = q2. Second, if

σ ∈ Σ1
out then we consider two cases:

1. If σ 6∈ Σ2
in∪Σ2

out ∪Σ2
τ , then by Definition 4.4 we have ((q1, q2), σ, (q′1, q

′
2)) ∈ → for

q′2 = q2.

2. If σ ∈ Σ2
in∪Σ2

out∪Σ2
τ , then since S1 and S2 are composable, we have σ ∈ Σ2

in. As S2

is input enabled, by Definition 4.2 there exists q′2 ∈ Q2 such that (q2, σ, q′2) ∈ →2.
Hence, by Definition 4.4 we have((q1, q2), σ, (q′1, q

′
2)) ∈ →.

�
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A.2 A Note on Analytic Functions

A real function f : R → R is said non-trivial if it is not identically 0. A function
f : R → R is infinitely derivable iff its nth derivative f (n) exists for every n ≥ 1. We
denote by C∞(R) the set of infinitely derivable functions. Given a function f ∈ C∞(R)
and a point x0 ∈ R, the Taylor series T f

x0
of f at x0 is given by

T f
x0

(x) =

∞∑

k=0

f (k)(x0)

k!
(x− x0)

k

with the convention that f (0) = f .

Definition A.1 [Analytic function] A function f is called analytic if f ∈ C∞(R) and
for every x0 ∈ Rn, there exists a neighborhood of x0 (a set containing an open set
containing x0) in which f(x) is equal to its Taylor series at x0. �

Theorem A.2 The set Zf = {x | f(x) = 0} of the zeroes of a non-trivial analytic
function is isolated, that is for all x0 ∈ Zf there exists a neighborhood Vx0

of x0 such
that Vx0

∩ Zf = {x0}.

Proof. Let x0 ∈ Zf . Assume (ad absurdum) that the intersection of every neighbor-
hood of x0 with Zf contains another point than x0. Let Vx0

be a neighborhood of x0

such that f(x) = T f
x0

(x) in Vx0
.

We have f(x0) = 0 and we show by induction that f (k)(x0) = 0 for all k ≥ 1.
Assume that f (k)(x0) = 0 for k < n. Then for all x ∈ Vx0

:

f(x) =
∞∑

k=n

f (k)(x0)

k!
(x−x0)

k = (x−x0)
n

[
fn(x0)

n!
+ g(x)

]

︸ ︷︷ ︸
R(x)

where g(x)→ 0 for x→ x0

Since g(x) can be made arbitrarily small in a neighborhood of x0, if fn(x0) 6= 0
then R(x) 6= 0 in some neighborhood of x0. Therefore f has only one zero in such a
neighborhood (namely x0). This contradiction yields fn(x0) = 0 and so T f

x0
(x) (and

thus also f) is identically 0 on Vx0
.

Now, let U be the set of points x such that f vanishes identically on some neigh-
borhood of x. The existence of Vx0

shows that U is not empty and clearly U is open.
Let u be a boundary point of U . Since f ∈ C∞(R), we have f (k)(u) = 0 for all k ∈ N.
Thus the Taylor series of f at u is identically 0 and so is f in a neighborhood of u.
Then u ∈ U and U is also closed so that U = R and f vanishes identically on R, a
contradiction. �
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Corollary A.3 A non-trivial analytic function has a finite number of zeroes over any
bounded interval [a, b] ⊆ R.
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