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Nâzev prâce: Numerické metody pro vypocet stacionârnflio a nestacionârniho 
stlacitelného proudëm s uvazovânim pohyblivych geometrii — s aplikaci 
na interakce tekutiny s tëlesy

Autor: Ing. Jin Dobes

Anotace
Tato prâce se zabÿvâ vyvojem numerickÿch metod pro vypocty stlacitelného prou- 
dëni s aplikaci na interakci tekutiny a elastického tëlesa.

Nejprve se zabÿvâme vyvojem numerickÿch metod zalozenÿch na schématech 
vyuzivajfcich distribuci residua (RD). Je presentovân rozbor teoretickÿch vysledkù 
pro stabilitu a fâd aproximace RD schcmat. Reziduâlm' schémata formulovanâ pro 
fesem nestacionârnich problémù jsou dâle rozsifena pro pfipad vÿpoctû na casovë 
promènnÿch sitich. Dâle je pro feseni proudëm vyvinuta metoda konecnÿch ob- 
jemû V cell centered i vertex centered formulaci. RD metoda je srovnâna s metodou 
konecnÿch objemû jednak teoreticky pomoci modifikované rovnice v jednorozmërném 
pripadë, tak i porovnânfm numerickÿch vÿsledkù resem' skalârm rovnice a systému 
Eulerovÿch rovnic. Je presentovâno mnozstvi dvou a trojrozmôrnÿch stacionârnich 
i nestacionârnich pripadû, doklâdajicich vlastnosti vyvinutÿch numerickÿch metod. 
Vÿsledky jsou porovnâny s teoretickÿm fesenim a experimenty.

Ve druhé câsti disertacm prâce je vyvinuta numerickâ metoda pro reseni problémù 
interakce proudici tekutiny s tëlesy. Problém je rozdëlen na tri jednodussi problémy: 
problém dynamiky tekutin na pohyblivé vÿpoëetni siti, problém pohybu tëlesa a 
problém pohybu vÿpoëetm sitë. Pohyb tëlesa je popsân soustavou parciâlmch difer- 
enciâlnich rovnic druhého fâdu pro elastické anizotropni kontinuum a fesen metodou 
konecnÿch prvkû. Metoda je rozsifena pro vÿpocet vlastmch kmitù tëlesa. Pohyb 
sitë je formulovân jako pohyb pseudo-elastického kontinua a opët fesen metodou 
konecnÿch prvkù. Uvedené tri problémy jsou spolu svâzâny iteracm metodou. Vlast­
nosti metody jsou demonstrovâny na pripadë 2D supersonického tfepotâni panelu 
(panel flutter) a 3D transsonického trepotânf AGARD kndla. V prvnim pripadë jsou 
vÿsledky srovnâny s teoretickÿm resenim a vÿpoëty publikovanÿmi v literatufe, ve 
druhém pripadë s experimentem.



Title: Numerical Algorithms for the Computation of Steady and Un- 
steady Compressible Flow over Moving Geometries — Application to 
Fluid-Structure Interaction

Author: Jin Dobes

Abstract

This Work deals with the development of numerical methods for compressible flow 
simulation with application to the interaction of fluid flows and structural bodies.

First, we develop numerical methods based on multidimensional upwind residual 
distribution (RD) schemes. Theoretical results for the stability and accuracy of the 
methods are given. Then, the RD schemes for unsteady problems are extended for 
computations on moving meshes. As a second approach, cell centered and vertex 
centered flnite volume (FV) schemes are considered. The RD schemes are compaxed 
to FV schemes by means of the ID modified équation and by the compaxison of the 
numerical results for scalar problems and System of Euler équations. We présent a 
number of two and three dimensional steady and unsteady test cases, illustrating 
properties of the numerical methods. The results are compaxed with the theoretical 
solution and experimental data.

In the second part, a numerical method for fluid-structure interaction problems 
is developed. The problem is divided into three distinct sub-problems: Computa- 
tional Fluid Dynamics, Computational Solid Mechanics and the problem of fluid 
mesh movement. The problem of Computational Solid Mechanics is formulated as 
a System of partial difîerential équations for an anisotropic elastic continuum and 
solved by the flnite élément method. The mesh movement is determined using the 
pseudo-elastic continuum approach and solved again by the flnite element method. 
The coupling of the problems is achieved by a simple sub-iterative approaeh. Ca- 
pabilities of the methods axe demonstrated on computations of 2D supersonic panel 
fluttex and 3D transonic fluttex of the AGARD 445.6 wing. In the first case, the 
results axe compaxed with the theoretical solution and the numerical computations 
given in the references. In the second case the comparison with experimental data 
is presented.
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Chapter 1. 

Introduction

1.1. Motivation and global objectives of the thesis

A large number of methods is available for the solution of compressible flows to- 
day. They operate on structurcd or unstructured meshes. Since structurcd mesh 
génération is one of the biggest bottlenecks for industrial type simulations, see e.g. 
[AthOS], we will focus on methods working on unstructured meshes. One of the 
most commonly used methods for industrial type compressible flow simulations on 
unstructured meshes is the finite volume method in cell centered or vertex centered 
settings, see e.g. [Krô97, BO04]. Despite its large popularity, there are still some 
problems unresolved, namely accuracy for the flow features not aligned with the 
mesh, and dependence of the scheme on ID physics introduced by the numerical 
flux.

As a cure to the above-mentioned problems, the residual distribution (RD) schemes 
were suggested in [Roe82]. Since then, a successful development was sought. Nowa- 
days, RD schemes eau be used to solve complex problems such as 3D inviscid flows 
around a full aircraft or 3D turbulent flow past a wing. A first objective of the 
thesis is to select several residual distribution schemes and to investigate their prop- 
erties for well defined test cases. Then the schemes should be applied to technically 
important problems and problems of mathematical physics.

The fluid-structure interaction problems ultimately call for highly aecurate meth­
ods. Since RD schemes are expected to be more aecurate than traditional finite 
volume schemes, the use of RD methods for fluid-structure interaction problems 
is appealing. Until recently, only first order RD schemes for moving grids compu­
tations were available, see [MSD03]. Hence, a second objective of the thesis is to 
explore possible extension of higher order aecurate RD schemes for computations 
on moving meshes with application to aeroelastic simulations.

13



1.2. Survey of state-of-the-art technique in the field

1.2.1. Numerical methods for fluid dynamics
Current state-of-the-art CFD methods can be characterized by their nature as meth­
ods working on structured meshes and methods working on unstructured meshes. 
The structured mesh génération procediue for industrial type of computations is 
difficult and it is one of the biggest bottlenecks [Ath05] for numerical simulations. 
For this reason, we focus exclusively on the computational methods utilizing un- 
structiued meshes.

From modem numerical methods for compressible flows working on unstructured 
meshes one can select several important groups:

• Finite élément methods with continuons solution approximation, see e.g. [TS06, 
Tcz04].

The streamline upwind Petrov-Galerkin method for compressible flow simula­
tions was pioneered by [TH82]. The finite élément test fonctions are modified 
by inclusion of extra term, such that the stabilization of the method is achieved. 
The scheme was supplemented by a shock capturing term in [HFM87]. An 
OverView of the development can be found in [Tez04]. This scheme in space- 
time setting was successfully used for large scale computations, e.g. flow past 
full helicopter or large eddy simulation of turbulent flows.

• Finite volume methods, see e.g. [Bar94, BO04, LeV02, Krô97, Jam04].

Finite volume schemes on unstruetmed meshes were pioneered by [JBW86], 
[MJ87]. They used a central scheme with artiflcial dissipation of scalar type. 
The method is formally second order accruate on smooth flows and satisfles 
the discrète maximum principle for scalar problems. This was one of the 
flrst methods capable to solve the System of Euler équations for full aircraft 
configuration on unstruetmed meshes.

The vertex centered upwind finite volume method was among others developed 
by [BJ89]. The intégral form of the conservation form was expressed on each 
control volume. In this case, the control volume was constructed using the dual 
mesh to the computational grid. Higher order of accmacy was achieved by the 
linear reconstruction. Non-oscillatory propertics of the scheme are guaranteed 
with help of limiters. This method has proven to be very successful, it was 
later extended to many variants. The numerical flux on the boundary of 
the finite volume is approximated by solving a Riemann problem or other 
types of flux splitting, e.g. Roe’s Riemann solver [Roe81] or AUSM scheme 
[LCJS93]. The higher order spatial accmacy can be achieved with the aid of 
linear, quadratic [BF90, Bar93], or even higher order [Shu03] reconstruction. 
The time dérivative can be discretized with explicit Euler or Runge-Kutta

Chapter 1. Introduction
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1.2. Swvey of state-of-the-art technique in the Reld

methods [GS98, GSTOl], implicit backwaxd différentiation formula or implicit 
Runge-Kutta methods [JMC03]. The important referenees for the extension 
of the method to moving mesh computations include [KF99, Far04], Similar 
method exist in the cell centered settings.

• Discontinuons Galerkin methods, see e.g. [Goc04, Coc99].
The method is based on a finite élément discretization, however jumps in the 
solution on each face of an élément are allowed. Similar to the above described 
finite volume method, a numerical flux has to be approximated on the élément 
edges. Limiters [Coc04] or artificial viscosity [KvdVvdVOfi] axe used for stabi­
lization in case of shocks. The solution is advanced by Runge-Kutta scheme, 
or alternatively the discontinuons Galerkin method is re-casted in a space-time 
formulation and a steady problem in space-time is solved [KvdVvdVOfi]. Cur- 
rently, the method in its second order space-time version is used e.g. for 3D 
acroelastic simulation of aircraft wings.

• Residual distribution methods, see e.g. [DSAOO, AM04, Dec03, DRS03, AM03aj.
The scheme can be seen either as a finite volume method, where the residual 
is computed over a finite élément and subsequently distributed, or as a finite 
élément method with explicitly given test function. Second order accurate non- 
oscillatory schemes are available for technical computations of inviscid [GWOl] 
and turbulent flows [SD03]. Extension to higher order of accuracy is subject of 
current research [RVAD05, RVAD07, HL05, GF05, HubOfi, TAOfij. Most of the 
available theory on the RD schemes is included in von Karman lecture sériés 
[Dec03] and [DR05], journal papers [AbgOl, AM04, AM03a] and PhD thesis 
[RicOSj. As the other sources we can cite [SR95, HROO, AR03, NR04], [AB02] 
and [CPNP9fi, PPRN05]. The development of the RD schemes can be tracked 
by a number of PhD thesis [Pai95, Iss97, vdW98, CarOO, Csf02, Mez02, Ric05] 
and von Karman Lecture sériés 1991-01, 1993-04, 1994-05, 1995-02, 1997-02, 
1998-03, 2003-05, 200fi-01. •

• There exist a number of methods under development, which do not naturally 
belong to any of the mentioned groups. We mention the residual based com­
pact schemes of [CBKOfi], which are the extension of the work of [LCOl] to 
unstructured meshes. The performance of the method was demonstrated on 
2D inviscid transonic airfoil simulation [GBKOfij. An other approach is the 
spectral volume method, see e.g. [SWLOfi] and référencés therein, allowing 
to construct schemes of arbitrary high order of accuracy with non-oscillatory 
properties. The performance of this method was demonstrated on scveral well 
known test cases and low speed 3D flow around a rotating propeller.

In this thesis we focus on the finite volume (FV) methods and on residual distribu­
tion (RD) methods. For the first part of the thesis the most important référencés are

15



Chapter 1. Introduction

[Bar94, RoeSl, Dec03, AM04, AM03a, Far04] and [Ric05]. An excellent (but rather 
expensive) référencé for the modem methods in computational fluid dynamics is 
[SdBH04].

1.2.2. Fluid-structure interaction problems
Methods for the computation of fluid-structure interaction problems hâve emerged 
aside of the development of accmate methods for computational fluid dynamics. 
These include fluid-structure interaction between bodies with two degrees of freedom 
[AJ94], or later bodies modeled by the flnite élément method [ZTOOa, DT85]. For a 
survey of the high-speed-flow computational aeroelasticity, see [Far04], which is also 
the most important référencé for the second part of the thesis.

1.3. Spécifie objectives of the thesis
The goals of the presented work are:

1. To develop a numerical method based on selected schemes of residual distri­
bution type and to analyse some of their properties. Eventually flnd possible 
improvements for paxticular flow problems. Develop an extension for problems 
involving a time dépendent domain of solution.

2. To develop a numerical method based on a flnite volume method in cell cen- 
tered or vertex centered formulation. Include the possibility of handling a time 
dépendent domain of solution.

3. To test selected numerical methods on problems of scalar conservation law 
and System of Euler équations, with particular attention to the accuracy of 
the schemes and monotone capturing of complex solution features.

4. To develop a flnite élément method for the problem of elasticity, where the 
material is modeled as an elastic continuum allowing laxge displacemcnts and 
taking into account possible anisotropic material properties.

5. To develop and validate the numerical method for fluid structure interaction 
problems, where the flow is modeled as a inviscid perfect gas and the body 
either as a elastic continuum or by a System of two ordinary differential équa­
tions.
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Chapter 2.

Mathematical formulation of the 
problem
The basic formulation of problems govcrned by conservation laws is described in 
many mathematical books, see, e.g. [GR96, LeV99, LeV02, Fei93, FFS03]. The 
formulation on moving domains using the Arbitraxy Lagrangian-Eulerian (ALE) 
method can be found in [FN04, FN99, FGGOl, HS02, Fei93, GR96] and many articles 
in leading scientific journals, e.g. in Journal of Computational Physics and Computer 
Methods in Applied Mechanics and Engineering.

2.1. The System of conservation laws in a fixed 
reference frame

In this section, we shall introduce a general formulation of a System of conservation 
laws in d spatial dimensions with classical and weak solutions of the problem. The 
problems of finite domain and bormdary conditions axe not discussed. The discussion 
of the appropriate boundary conditions is postponed to the sections related to the 
concrète physical System of conservation laws.

2.1.1. System of conservation laws
Let F be an open subset of and let fj, 1 < j < d, bc d smooth functions from F 
into E®; the general form of a System of conservation laws in d space variables is

+ ^—fj(u) = 0, x = {xi,...,Xd) t>0, (2.1)
j=i

where
u= (ui,...,u,j) (2.2)

is a vector-valued fonction from x [0, +oo[ into F. The set F is called the set of 
States and the functions

tj = (fi,, ■■■,/!,) (2.3)
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Chapter 2. Mathematical formulation of the problem

axe called flux functions. One says that the System (2.1) is written in conservative 
form.

2.1.2. Initial value problem
The System of conservation laws has to be cquipped with initial and boundary con­
ditions. Since the formulation involving boundary condition is still an open problem 
[Fei93], we shall introduce only the initial value problem, and the boundary condi­
tions are discusscd separately within the context of the concrète physical Systems 
in section 2.3. The boundary conditions and initial-boundary value problem are 
discussed in, e.g., [Fei93] and [GR96].

Let us define the Cauchy problem, or initial value problem (IVP): Find a fonction 
U : {x, t) G X [0, -l-oo[—> u(r, t) E T such that (2.1) holds and the initial condition

u(r, 0) = u°(:f), X G (2.4)

is satisfled. The fonction u° : —> F is the initial comdition.

Définition 1 (Classical solution). We shall say that a fonction u : R*^ x [0, -|-oo[^ 
F is the classical solution of (2.1), (2.4) if the fonction u G C'^(R'^) and satisfles the 
équations (2.1), (2.4) pointwise.

The essential featme of the problem (2.1), (2.4) is that there do not exist in 
general classical solutions of (2.1), (2.4) beyond some flnite time interval, even when 
the initial condition u° is a very smooth fonction, see, e.g., [GR96, LeV99, LeV02, 
Maj84].

Définition 2 (Weak solution). Assume that the fonction u° G A
fonction u G Z/“j,(R'^ x [0, -|-oo[)^ is called a weak solution of the Cauchy problem 
(2.1), (2.4) if u(r, t) G F almost everjrwhere and satisfles

I £ + E f.(“) u"(f) 0) df = 0 (2.5)

for any fonction G C'o(R‘^ x [0,-|-oo[)^.

Additional information about classical and weak solutions can be found in référ­
encés [GR96, LeV99, LeV02, RR92, Fei93].

2.2. System of conservation laws in the moving 
reference frame

In this section the System of conservation laws in the moving reference frame is 
derived with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation.
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2.2. System of conservation laws in the moving référencé frame

2.2.1. ALE mapping
First, the family of homeomorphic mappings At is defined. The mapping At is 
called the ALE mapping [FN04], which for each t E [0, +oo[ associâtes a point Y of 
référencé configmration Qq to a point x on the current domain configmation fit'.

A : fio C ^ fit C E^ x{Ÿ, t) = At{Ÿ). (2.6)

Let / : fit X [0, +oo[^ E. We will dénoté hy f := f oAt the corresponding function 
on the ALE référencé frame, i.e.

/ : Qo X [0, +ooH f{y, t) = f{At{Ÿ), t). (2.7)

For later use, the mapping has to satisfy the assumptions of Theorem 3. Note, 
that the mapping is rather arbitrary except for the fact that .4t(9Qo) = Oflt for ah 
t E [0, +cx)[.

The Jacobian of the ALE mapping exists and its déterminant is defined as

Jai — dGt(J_4j).

We define the domain velocity w as

w{Ÿ,t) =
dx(Ÿ, t) 

dt

It can be expressed in terms of current domain coordinates, where

(2.8)

(2.9)

wix., t)
dx
dt (Ÿ(x,t),t) (2.10)

is the corresponding function in fit x [0, +oo[.
The relation between the time dérivative of the Jacobian Ja^, and the divergence 

of the domain velocity w is given by the following theorem. For the référencé, see, 
e.g. [Fei93] and [GR96].

Theorem 3. Let t E [0,+oo[, T G îlo awd the following conditions be satisfied

1. Mapping At (see (2.6)) has continuons first order partial dérivatives with re­
spect to the variables t, Yi,... and continuons second order dérivatives 
&^Xi/dtdYj, i,j = l,...,d.

2. Mapping (2.6) is a continously différentiable one-to-one mapping of JIq onto 
fit with the Jacobian JAt (defined by (2.8)^, which is continuons and bounded 
and satisfies the condition

Jai{Yli) > 0 VT G r^o, Vt G [0,+oo[. (2.11)
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Chapter 2. Mathematical formulation of the problem

3. The domain velocity w{x,t) (defined by (2.10)^ has continuons bounded first 
order dérivatives on the set {{x,t)]t G [0,+oo[, ^ G fit}-

Then the function J4J = {Y, t) has a continuons and bounded partial dérivative
dJj^^jdt for Ÿ G flo, t ^ [0, +oo[ and

1 9Ja, 
JM{Ÿ,t) dt

(Ÿ,t) = Vx • w{x,t). (2.12)

Proof. See [Fei93, GR96]. Jacobian déterminant JAtÇ^,t) c^n be expanded by its 
z-th row:

dxi

Q=1
(2.13)

where Di a dénotés the cofactor of élément dXi/dYa. For a, P = 1,... ,d, the cofac­
tors Di P are independent of dXi/dYa. Hence,

dJAt
d \dYc, J

(2.14)

In order to calculate the dérivative dJAt/dt we consider the déterminant JaiO^P) 
as a function dépendent on éléments dXi/dYa which dépend on t:

dJAt _ dJAt d f dxi \ v-^ „ d'^Xi
dt S a (g) dt V dY^ — ^ Die

a=l dYe,dt
(2.15)

Now let us deal with dérivative {d^Xi/dYadt){Ÿ,t). Under the assumptions of the 
Theorem 3 we get

= t (2.16)
J=l

Substituting into the équation (2.15), we hâve

dJAt
dt = E^‘.«E

d 4~\ r\ d
OXj OWi y-

^ dYe, dXi ^ X^dYe,i,Q=l j=l " J ij=l \a=l “
i,a

dwj
dxj'

For déterminants following holds

Q=1
U

and thus
dJAt
dt

7=1 JÏJ= i=l

(2.17)

(2.18)

(2.19)

□
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2.2. System of conservation laws in the moving référencé frame

2.2.2. System of conservation laws
The total amount of the conserved quantity u in the time dépendent control volume 
rit can be computed as

(2.20)

The flux bringing the quantity inside the control volume is given by the physical 
flux f(u) minus the flux induced by the movement of the boundary of the control 
volume

f''“(u) = f(u) - uw. (2.21)

The System of conservation laws can be written in the intégral form as

dt Ÿ
udx + / [f(u)

J dClt
uw\ dra = 0, (2.22)

where n is the outer normal to the surface dfîf The second intégral is rccast from 
the contom- intégral to the volume intégral using the Gauss-Ostrogradski theorem

dt Ÿ
Va; • [f (u) — uic] dx = 0. (2.23)

The ALE mapping is a homeomorphism with the continuous partial dérivatives and 
7^ 0, hence we can use the substitution theorem in the first intégral, see, e.g. 

[Rek95],

+ [ Va;-[f(u)-uû?]J^,dF = 0. 
J Qq

(2.24)

The référencé domain Qq and the coordinates Y do not dépend on time t, the 
integrand is intégrable, hence

r /dJAtU
L\ dt Ÿ

+ Va; ■ [f (u) nw]JAt ) dy = 0. (2.25)

The équation has to be valid independently of the control volume flo; i-e. the inte­
grand has to be zéro almost everywhere. Jacobian Ja^ being nonzero, the équation 
can be rewritten as

1 dJAt^i 
JAt dt

y- Va; • [f(u) - uw] = 0. 
y

(2.26)

This is the conservative Arbitrary Lagrangian-Eulerian form of the System of con­
servation laws. If the solution is sufliciently smooth, it is equal to

1 dJAfU 
JAt dt Ÿ

+ Va; • f (u) w ■ Va;U — uVi • te = 0. (2.27)
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Chapter 2. Mathematical formulation of the problem

The last term, uV^ • w, is the geometrical source term and it is equal to zéro for 
non-deforming meshes. Another way to obtain this équation is via the Reynolds 
transport theorem, see e.g. [Max99].

Similaxly as in Définition 2, we can define the weak solution of the équation (2.26):

Définition 4 (Weak solution of the ALE problem). Assume that u“ G 
A function u G x [0, +oo[)^ is called the weak solution of the Cauchy problem
(2.26), (2.4), if the function u{x,t) G T almost everywhere and

i=i
Wju] dxdt

dXj J

+ j u“(x) </?(x, 0) dx = 0 (2.28)

holds for any function y? G Co(M'^ x [0, +oo[)®.

The System of conservation laws admits an arbitrary nonzero constant function 
G r C as exact solution. Then • f(u^) is identically zéro and the con- 

served variable can be taken out of the differential operators, which leads to the 
important équivalence

1 dJAt 
JAt dt

= Va, • w.
y

(2.29)

This is the (continuons) Géométrie Conservation Law. It is the same relation as
(2.12).

2.3. Examples of physical Systems written as 
conservation laws

In this section we shall introduce concrète physical models for the conservation laws 
discussed in this thesis.

2.3.1. Scalar conservation laws
We consider scalar conservation laws, i.e. the number of conserved variables isq = 1.

2.3.1.1. Constant advection équation

The vector of flux functions is defined as f{u) = Au, where A G is an arbitrary 
constant nonzero vector.
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2.3. Examples of physical Systems written as conservation laws

2.3.1.2. 2D and 3D circular advection équation

The flux vector is defined as

f(u; X, y) = {-yu, xu) (2.30)

for the 2D case, and /(tt; a;, y, z) = {—yu, xu, 0) for the 3D case.

2.3.1.3. ID Burgers équation and 2D variant

The flux vector is deflned as f{u) = {u^/2). This case can be extended to two 
dimensions (see, e.g. [Pai95, Bar94]): the flux vector is defined as f{u) = {u^/2,u).

2.3.2. System of Euler équations
The Euler équations in d spatial dimensions is the System of g = d + 2 conservation 
laws (2.1) given by conserved variables

^={p,pv,E), (2.31)

where p is the density, v = {v\,... ,Vd) axe the components of the velocity vector 
and E is the total energy. The flux is

fi = {pVi,pviVj + 8ijp, [E + p]vi), l<j<d, (2.32)

where p is the static pressure and Sij is Kronecker delta symbol. The System is closed 
by a thermodynamic équation for the pressure p = /(u). We will only consider a 
perfect gas, then the équation is given by

p = (7 - 1) (2.33)

The ratio of the spécifie heat for a diatomic gas is used, i.e. 7 = 1.4 (if not specified 
otherwise). The System is equipped with an entropy inequality, see, e.g. [GR96, 
LeV99, LcV02, Fei93, FFS03, Mar99, Krô97].
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Chapter 3.

Residual distribution scheme
Several methods based on the distribution of the residual hâve been developed in the 
past, see e.g. [Ni81, Roe82], for a survey see e.g. [Pai95]. This part of the work deals 
with residual distribution schemes as defined in [Kro97], i.e. schemes, which are 
usually written as in section 3.2 and 3.3. Such schemes will be referred as residual 
distribution schemes.

The class of residual distribution (RD) schemes (or fluctuation splitting schemes) 
was introduced by P. L. Roe in [Roe82]. Since then the schemes were devel- 
opcd for many situations. Most recent closely related works are the Ph.D. theses 
[Pai95, vdW98, Csi02, Ric05], the journal papers [DRS93, AbgOl, AM03a, AM04] 
and the conférence proceedings [DSAOO]. The important developments until 2003 
are summarized in VKI Lecture Sériés 33rd Computational Fluid dynamics Course, 
Von Karman Institute for Fluid Dynamics [Dec03], the developments until 2005 in 
[DR05]. An extensive overview on RDS is presented in [DSAOO]. The state-of-the-art 
RDS development is included in the PhD thesis of Mario Ricchiuto [Ric05].

After short statement of the notation, the guidelines for the design of the RD 
schemes are mentioned. Then, the RD schemes for steady problems are introduced. 
Finally, we introduce the RD schemes for unsteady problems with novel extension 
for computations on moving meshes.

3.1. On mesh and notation

The polygonal domain D is triangulated by a mesh denoted by T^, i.e. Ù = UseT'* 
The nodes (vertices) of the mesh are denoted by indices i, j. Ail the vertices in the 
mesh will be denoted by z G T^. The mesh éléments axe denoted by E. Ail the 
éléments in the mesh will be denoted similaxly hy E E T^. AU nodes of the élément 
E are denoted hy i E E.

For the RD schemes only simplex éléments will be considered. The simplex élé­
ment in one dimension is a line segment, a triangle in two dimensions and a tetra- 
hedron in three spatial dimensions. Note that each simplex in d spatial dimensions 
has d-\-l vertices.
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Chapter 3. Residual distribution scheme

The finite element type trial function is denoted by '0. The 0i vary linearly over 
each element and takes unit value at node i, zéro for ail the other nodes. The trial 
funetion can be expressed within the element E sharing node i

= 1 -
fîi ■ {Xi - x) 

dp{E)
(3.1)

where Ui is the normal perpendicular to the face opposite to the node i scaled by its 
measure, Xi is the coordinate of node i, d is the number of spatial coordinates and 
p{E) is the measure of the element E. The gradient of the trial function is constant 
over the element E, i.e.

V0f (x) =
rii

(3.2)dp{EY
The following part of this section is devoted to the conservative évaluation of the 

residual
[ V-fdx. (3.3)
Je

As was noted by P. Roe, see [RoeSl], it can be advantageous to describe the spatial 
distribution of the solution u{x) and the fluxes f(£) using the parameter vector, 
denoted by v(x), here called the primary variable, instead of the spatial distribution 
of the conserved variable u(x) itself. The primary variable is chosen such that both 
solution U and flux f are at most quadratic functions of v, raising the possibility to 
evaluate exactly (given the piecewise linear distribution of the primary variable v) 
the intégral (3.3).

We introduce the primary variable v with regular one-to-one mapping to the 
conserved variable u i—> v(u) with Jacobian

dv'

The primary variable is suitable chosen, i.e. for the set of Euler équations the primary 
variable is Roe’s parameter vector

V = (y/p, y/pv, y/pH) (usually denoted z) (3-5)

and for scalar équations considered in this thesis the primary variable is the con­
served variable u = v.

The primary variable is approximated by the trial functions over the element as

Vh
j€E

where Vj is the nodal value, and over the whole computational domain

jeTh

(3.6)

(3.7)
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The solution u is approximated by u^, i.e.

u^(T) = u(v^(T)).

The gradient of the approximation of the primary variable reads

n,-

jeE

The flux approximation is denoted by P. 
The element residual is defined as

<t>^ =

j^E

[ V-f^df= [ !^-Vv'‘dT.
Je Je

dn{EY

(3.8)

(3.9)

(3.10)

Now, with the use of the piecewise linearity of the approximation v^, we hâve

dî^
(j)^ = Vv'^

/■ aP
Je9v'‘

(3.11)

For a certain class of the problems, the primary variable v can be chosen such that 
the flux f is at most a quadratic function of the primary variable v. Most notably 
this holds for the System of Euler équations^. Then the Jacobian dî^/dw^ is at most 
a lineax function of the variable v^. The last intégral can be exactly computed using 
the arithmetic average of the nodal values Vj, i.e.

L

dfh Qfh
— dx = ii{E)—^{w), V >: ieE

d+1
(3.12)

The residual can be expressed with aid of (3.9) as

ach ach a. .h

vjüj
= M^)^(v)^(v)-g^^

= E
jeE

du^ ^ d\^

'du^
dw^ (v)

with

■ 7
au'*
dv^

(v)v,-,

jeE

(3.14)

(3.15)

^and ail the Systems of conservation laws considered in this work
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Chapter 3. Residual distribution scheme

where we hâve introduced the upwind parameter kj. In the scalar case the Jaeobian 
corresponds to the advection vector

du^ (v). (3,16)

In the subséquent chapters, when no confusion can be made, the over-bars kj, üj 
are dropped to simplify the notation. The advantage of this approach is that the 
residual is evaluated using a continuous approximation of the flux the in the 
domain, which is needed for the conservativity of the scheme. It was introduced 
in [DRS93] (Deconinck-Roe-Struijs lineaxization), following [RoeSl]. If the flux f 
and the conserved variable u cannot be expressed as second order polynomials of 
the primary variable v, we refer to the work of [CRD02, RCD05, Csi02, Ric05] or 
[AB02].

3.2. Introduction and general framework

The residual distribution schemes for steady problems gcnerally involve the following 
steps:

1. Compute the residual as the intégral of the convective terms of the équation 
(2.1) over élément E with aid of (3.13)

<i> (3.17)

2. Distribute the residual to the nodes of élément E via distribution matrix
A

<l>f = such that (j)f = 4>^. (3.18)
ieE

3. Update the solution in ail the nodes of the computational domain

(3.19)
Eei

where n is the index of the time level and o;» > 0 is a relaxation parameter, to 
be specifled later.

Certain class of the schemes define directly the residual contribution 4>f to the 
node i. The distribution coefficient is then defined implicitly from eq. (3.18). The
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3.3. RD schemes for unsteady problems

releixation parameter ccj is proportional to the value of the time step. Then, the 
scheme can be written as

u:n+l

At
EiE

EeVi

(3.20)
Ee-Di

where p{Si) is the volume of the médian dual cell around the node i and E E 
dénotés ail éléments sharing node i. The RD scheme will be recast in the following 
abstract form, see, e.g. [Ric05]

= u"
At

^^cg(u”-U,") = ^CyU7. (3.21)
EeVi jeE jeDi

En

3.3. RD schemes for unsteady problems
The above-stated RD scheme is first order accurate at most for unsteady problems 
even if a high order time discretization scheme is nsed, see, e.g. [FD97, Mae96, RicOl, 
DSAOO]. The reason is that, therc exists a coupling betwecn spatial and temporal 
discretization through a finite élément type mass matrix. The accuracy problem was 
treated by two distinct approaches: schemes formulated nsing a mass matrix, see, 
e.g. [FD97, Mae96, RD99, DD05a, DDFOSa, PPRN05, Ric05, DD06d] and space-time 
schemes, see, e.g. [CRDPOl, CDOl, CD02, CRD03, RicOl, RAD03, Csf02, RCD05, 
RCD04, AMOl, MA02, AM03a, MRAD03, Dob02, DRD03b, DRD03a, DRD03c, 
DRD05, DD05b, CCFOl, CF05]. Although the schemes were derived using different 
frameworks, they can be reduced to a common base. Namely, we can formnlate the 
nnsteady problem (2.1) using the pseudo time stepping (or dual time), i.e.

(3.22)

and we seek for an unsteady solution of (2.1) as a steady solution of (3.22)
O

lim — = 0. (3.23)T—S-OO OT

Hence we can proceed with a similar solntion method as in section 3.2:

1. Compute the approximation of the unsteady residual as the intégral of the 
équation (2.1) over the space-time élément between time levels n and 
n -h 1

4-V dx dt. 

(3.24)
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2. Distribute residual to the nodes of the element located on the time 
level 71 + 1 via the distribution parameter (matrix) /3,

with (3.25)

Because we hâve au initial value problem with data at n, the distribution is 
constrained to nodes at n + 1.

3. Update the solution in ail the nodes of the computational domain at the time 
level n + 1

a. <Pi , (3.26)
Eei

where m is the index of the pseudo-time step and ai is the relaxation coefficient. 
The value of the coefficient «j is given by relation (3.73).

4. The steps 1. to 3. are repeated until a steady solution in pseudo-time is found. 
Th en, the next layer of the space-time éléments is considered —>
[r+i,r+2].

The problem to find a stationary point of équation (3.26)

h,n-\-l,m+l /i,71+1,771 • \ nU. ’ ’ ^ = uu ^ ’ i.e. 2^ =0
Eei

(3.27)

is explained in more details in section 3.8.

3.4. Design prindples

3.4.1. Upwinding
From the theory of characteristics it is known in which directions the quantities 
are propagated. The multidimensional upwind schemes update nodes only in the 
relevant directions.

Définition 5 (Multidimensional Upwind scheme [DSBR93]). If ail the eigen- 
values of are négative, then = 0.

3.4.2. Linearity préservation
The key concept to show the second order acenraey of the scheme is the linearity 
préservation property, see, e.g. [AbgOl, RicOS].

Définition 6. The scheme is linearity preserving, if it is able to reproduce exactly 
every solution u, for which the primary variable v = v(u) is a linear fnnetion.
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The linearity preserving scheme is second order accurate at steady state. The 
proof was fîrst published in [AMOl] for the System of Euler équations and later ex- 
tendcd for the RD schemes of arbitrary order of accuracy [AR03]. A slightly different 
form of the proof is uscd in [AbgOS] and [RVAD05]. The additional information for 
the original proof as wcll as the extension for the case with presence of source terms 
can be found in [RicOS] and [RAD06].

Theorem 7. The scheme evaluating element residual 4>^ using (3.13) and distrihut- 
ing the residual with uniformly bounded distribution coefficients (matrices) is lin­
earity preserving.

Proof. Consider a steady state solution of (2.1), for which the primary variable is a 
linear function v(x). Since u = u(v) is the solution of (2.1), the element residual 
(3.17) is (j)^ = 0 for each element E and it is evaluated by scheme (3.13) exactly 
due to the linearity of v. The distribution coefficients Pi are bounded, hence ail the 
nodal contributions pi are zéro. Hence, this solution is a steady state solution of 
(3.19) and it is is exactly reproduced (preserved). □

A similar statement holds for the schemes for the unsteady problems in pseudo- 
time stepping formulation. The uniformly bounded distribution coefficients are the 
key issue for the construction of the so called N-modificd scheme, see section 3.5.4, 
page 39, and section 3.6.4, page 52.

3.4.3. Positivity for scalar problems
Définition 8 (Positivity of the scalar RD scheme). The fully discrète scheme 
(3.21) for the scalar équation is positive, if ail the coefficients Cij are non-negativc 
with

= 1- (3-28)
jeVi

For the construction of the N-modificd scheme, see section 3.5.4, page 39, and 
section 3.6.4, page 52, a stricter condition is needed.

Définition 9 (Sub-element positivity of the scalar RD scheme). The fully 
discrète scheme (3.21) for scalar équation is sub-element positive, if ail coefficients 
cfj are non-negative and the time step satisfies

At < min
igT'* EE

EeVi j€E

t{E)
(d+ l)c^'

(3.29)

The sub-element positivity of the scheme is a sufficient condition for positivity. 
Positivity of an implicit space-time scheme can be defined using the matrix analysis, 
see, e.g. [RCD05, AM04], or using the space-time formulation. The time can be 
treated as an additional spatial direction and the positivity can be defined in the 
space-time domain.
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Theorem 10. Positivity of the scheme (3.21) implies the discrète maximum prin- 
ciple, i.e.

min < maxu°’^ Vn G [0,1,2,..., A^], (3.30)
ieT'* ieT>'

where is the approximation of the solution in the n-th time layer. Moreover, 
the scheme (3.21) is stable in L^o norm, i.e.

Il«'‘(i.()lk„ < t G 10,T], (3.31)

where is the approximation of the initial condition.

As the solution at each node at time level n = 1 lies within the convex hull of the 
nodal values at time level n = 0, hence the discrète maximum principle is satisfied. 
The mathematical induction is used for the case n > 1. If the local maximal values 
of the solution do not increase and the local minimal values do not decrease, the 
scheme is said to be local extremum diminishing (LED). The concept of positivity 
and LED property is discussed for RD schemes in [Pai95, AM04, vdW98, Ric05], 
for the FV methods in [Bar94, Jam]. The positivity of the scheme is closely related 
to the TVD property, see [Hax83]. In ID the TVD property and the LED property 
are équivalent, see [Tad88].

3.4.4. Linearity
The scheme for the scalar linear équation is said to be linear, if the distribution 
coefficients j3i do not dépend on the solution.

From the Godunov theorem for RD schemes [DSBR93] it is known, that a linear 
scheme cannot be both second order accurate and positive. Since both properties 
are important, we will focus on the nonlinear schemes.

3.4.5. Géométrie conservation law
The scheme obeys the geometrie conservation law (GCL) if any constant solution 
is exactly preserved on a deforming mesh. An overview of the current status of the 
geometrical conservation law is given in [MY06, Far04] or [Lep04].

Let us mention several results concerning the geometrical conservation law (GCL):

• GCL is a sufficient condition for the scheme to achieve first order temporal 
accuracy, see [GFOO].

• GCL is not a necessary condition for achieving design aceuracy of the under- 
lying time intégration scheme, see [GGF03].

• GCL is a necessary and sufficient condition for respecting nonlinear stability 
of the underlying time intégration scheme, see [FGGOl].
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3.4. Design principles

• GCL is a sufïicient condition for the Euler backward time intégration to be 
unconditionally stable, see [FN99].

• GCL is not a necessary condition for the convergence of the numerical method 
to the weak solution of the conservation law (2.28), see [DFD07b, DFD07a].

• If GCL is not respected, an incorrect flutter boundary can be predicted, see 
[Far04],

These results encoiurage to use schemes respecting the GCL. Ail the schemes (RD 
and FV) considered in this thesis satisfy the GCL.

3.4.6. Extension for a hyperbolic System of équations

The Work was pioneered by F. van der Weide in his PhD thesis [vdW98] by in- 
troducing so called matrix schemes. The later important development include 
[AbgOl, AM04, AM03a, Mez02, Csf02, Ric05] with excellent summary in [Ric05]. 
Generally, the RD schemes for scalar problems extend to Systems of équations, 
whcre upwind and distribution coefficients are replaced by matrixes of size g x g, 
with addition and multiplication operators replaced by their matrix counterparts.

The matrix Iq is the Jacobian matrix in the direction of the normal see eq. 
(3.14). The notation and k“ means positive and négative part of the matrix in 
the sense of eigen-decomposition

k±=r,A±b, (3.32)

where matrices r* and b contain right and left eigenvectors of matrix kj and the 
matrix A^ contains positive or négative eigenvalues of the matrix. In the following 
text, we drop the subscript i for simplification. For the computations on moving 
meshes, the upwind matrix has to reflect the mesh velocity, also for the scalar case 
(3.104). In this case, the matrix A in équation (3.32) contains eigenvalues of the 
matrix kj minus the averaged mesh velocity on the élément in the direction of the 
normal «j

A = diag (A^ - w ■ Uj). (3.33)

The element residual can be expressed in particularly simple form

(1)^ = kj = ( M ^
jeE V /

where w is the approximation of the mesh velocity in the element. The précisé State 
for the linearization on moving meshes is given in section 3.7.8.

35



Chapter 3. Residual distribution scheme

Scheme Lineax Positive Linearity
preserving

Formai order 
of accuracy

N / / 1
LDA / / 2
N-modified / / 2
B / 2
Bx 2

Table 3.1.: Properties of the RD schemes

3.5. RD schemes for steady problems

The properties of the RD schemes are listed in Table 3.1.
In the following sections, we will introduce schemes used in the comse of this 

Work. We start with first order N scheme.

3.5.1. N scheme
The N scheme is given by the nodal contribution from élément E

(j)i ^in)î ^in ^ ^ ^
jeE

(3.35)

where
(3.36)

ieE

and = ±max(0, ±A;). If the Euler explicit time-stepping procedure is used, the 
scheme is sub-element positive under time-step restriction (3.29).

Proof. It is easy to verify that the scheme can be written as (3.21), where

= *^7- (3-37)
\jeE J

Bccause is positive or zéro and A:" is négative or zéro, the coefficients are 
always non-negative. □

The scheme for the System of équations is given by

(j)i = k+ (üi - Uin), Uin = -N ^ kjüj, (3.38)
jeE
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3.5. RD schemes for steady problems

with

(3.39)

The N scheme is very robust, however it is only first order aeciirate. The following 
scheme is seeond order aeairate.

3.5.2. LDA scheme
The LDA scheme is defincd by the distribution coefficient

A = ktN, (3.40)

and by the distribution matrix in the System case

= k+N. (3.41)

The LDA scheme is linear and second order accurate. One can compute even 
some transonic flows with discontinuities, see e.g. Fig. 3.1. The discontinuities are 
not captmed in a monotone manner, the scheme is not positive. As is known from 
the Godunov theorem, a second order positive scheme has to be non-lincar. Precisely 
for this rcason a number of non-linear schemes were developed in the past. Now, we 
will focus on them.

3.5.3. B scheme
Part of this section was published in [DDF07].

The B scheme was introduced by van der Weide (unpublished 1997) and it is 
described in e.g. [CDPOl]. The scheme combines the first order N scheme and the 
second order LDA scheme

= (1 - (3,42)

using the blending coefficient

(3.43)

For the System of équations, the N scheme and the LDA are blended by components, 
where for cach component of the vector the blending coefficient is computed using 
équation (3.43).

The B scheme is linearity preserving at convergence limit, as is was proven in 
[AMOl].
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Theorem 11. Schemes in the form (3.42), with 6 G [0,1], i.e. convex element-wise 
combinations of the N scheme and the LDA scheme, cannot be locally positive in 
two spatial dimensions, whatever choice of 6 £ [0,1] except the case 6 \, i.e. N
scheme.

Proof. Consider a triangle E with vertices numbered 1, 2, 3. Without loss of gen- 
erality, we will consider the case of fci > 0, /c2 > 0 (giving ks < 0), i.e. two taxget 
triangle, and focus on node 1. The B scheme can be written as

<l>i = - Us) + -(1-0)
hk2

kl + k2
(«1 - U2).

t'12

(3.44)

Coefficient cf2 is négative for any 0 < 0 < 1. By Définition 9, see page 33, scheme 
is not locally positive. □

This finding is in a contradiction with the wide-spread belief in the positivity of 
the blended scheme. To support our theoretical resuit, an oscillatory behavior of the 
B scheme is briefly mentioned in [AM03b]. Although the B scheme is not (locally) 
positive, it performs in a very similar manner as the positive N-modified scheme, 
see section 3.5.4, pg. 39.

Example of the construction of a positive scheme using the blending with 0 G M is 
given in [AbgOl]. Let us state one more theoretical resuit concerning the construction 
of the nonlincar schemes.

Theorem 12. Any scalar multidimensional upwind scheme (denoted by Scheme 3) 
in two spatial dimensions can be constructed by the blending of two distinct arbitrary 
multidimensional upwind schemes (denoted by Scheme 1 and 2) in the form

iSchemeS = (1 - 0)<^^Schemel Scheme2 (3.45)

with 0 G M.

This means, that any scheme can be constructed using any pair of other multi­
dimensional upwind schemes, as far as ^Schemei ^ 0Scheme2 Qj^ contrary, there 
does not exist any multidimensional upwind scheme, which cannot by expressed as 
a blend of two distinct schemes, e.g. N scheme and LDA scheme.

Proof. For one taxget case (i.e. A:i > 0, /c2 < 0, ks < 0) the situation is easy: 
ail the multidimensional upwind schemes distribute the élément residual (j)^ to the 
downwind node 4>i = (f)^ and équation (3.45) is identically satisfied. For the two 
target case we will dénoté the downwind nodes by numbers 1 and 2. The nodal 
contribution for the Scheme 3 can be constructed from the Scheme 1 and Scheme 2 
only by the choice of the blending parameter 0 G M: ail the schemes distribute the 
same élément residual 4>^, i.e.

^Schemel ^Schemel ^ ^Scheme2 ^ ^Scheme2 ^ ^SchemeS ^Scheme3 ^ ^3
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3.5. RD schemes for steady problems

Therefore it is sufficient to know one nodal contribution 0i, the other is miiquely 
given by the relation

= -cj>,. (3.47)

The schemes axe distinct, if the nodal residuals are different, i.e.

^Schemel ^ ^Scheme2 (3.48)

The nodal contribution of is given by

0Scheme3 __ __ ^^^Schemel _|_ ^0Scheme2 (3.49)

from which one can easily compute the desired value of the blending parameter

^SchemeS __ ^Schemel

j^Scheme2 __ ^Schemel ' (3.50)

□

3.5.4. N-modified scheme
The N scheme is defined by nodal contributions (3.35) and it can be understood 
as a scheme distributing residual (3.17), (3.18) with implicitly defined distribution 
coefficients

A = (3.51)

Cleaxly, the distribution coefficients of the N scheme are not uniformly bounded. We 
would like to construct linearity preserving scheme (with uniformly bounded distri­
bution coefficients) for its second order accuracy. The task is to find a continuons 
nonlinear mapping, see [Ric05, RCD05]

rJ+2 ^ Rj+I : $(,^E,/Î,,/32, . . . .A+l) (^modif ^ ^modif^ _
•••/Jîvr), (3.52)

in 2D it is ^ : ^>((^^, A,/^2,/^s) ^ ), such that

Vi = [l,2,...., d -h 1] (3.53)
>0 Vi = |l,2....., d -h 1] (3.54)

^modif ^ ^ Vi = |l,2,.■ • •, d + 1] (3.55)

(3.56)
ieE

Then, the modified scheme has uniformly bounded distribution coefficients and the 
scheme remains positive.
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The uniform boundedness of the distribution coefficients cornes from eq. (3.55). 
The sub-element positivity of the modified scheme can be understand from eq. (3.21)

/?i = ÉL E
jeE

(3.57)

The modified scheme has distribution coefficients

jEjinodif _ ^
“ Pi

which are positive due to (3.54). The existence and well poscdness of the mapping 
is proven in [Ric05].

One possible mapping is the following:

(3.58)

0r“' = (3-59)
Au jeE Pj

This construction is well known for a long time, see, e.g. [Pai95, AM03b]. New the- 
oretical results concerning this mapping were published in [RCD04, RCD05, Ric05].

For the System of équations, the limiting procedure (3.52) is performed on simple 
waves. Given a System of hyperbolic conservation laws in quasilinear form

dt

d

dxj
= 0,

and spatial vector ^ = (^i, S,.. -, ^d), the matrix

d

A = E^A
J=1

(3.60)

(3.61)

is diagonizable with matrix of left and right eigenvectors 1 and r. The clcment 
residual and the nodal contributions axe projected on the eigenvectors

Pi = \ct>i (3.62)

and the modification procedure is applied on the components of the projected resid- 
uals with mapping

K'*” ^ R"' : .......ÂTi"")- (3.63)

As the direction ^ we chose vector (1,0) or (1,0,0) and the Jacobian is evaluated in 
the State of the arithmetic average v of the solution in the élément. The modified 
nodal contributions are projected back with
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Both B and N-modified schemes are second order accurate, however they suffer 
of poor itérative convergence and they lack accuracy in smooth parts of the flow. 
This served as a momentum to develop another non-linear scheme as part of this 
thesis, named Bx scheme [DD06d, DD05a]. The following scheme is not positive 
(and it cannot be, as it was proven in Theorem 11), but it is surprisingly robust and 
accurate.

3.5.5. Bx scheme for the Euler équations
The Bx scheme has the general form (3.42). To define the blending parametcr 9, we 
first construct an element-wise shock capturing sensor

SC = (3.64)

where v is the approximation of the velocity vector in the element, p is the static 
pressure and p{E) is the area of the element. The ôpy ~ (Pmax — Pmin) h is a global 
pressure variation scale multiplied by the magnitude of the mean velocity in the 
domain. The sensor sc is positive in a shock and compression, zéro in expansion, 
and of order sc = 0{1) in smooth régions. One of the important properties of the 
scheme is its second order of accuracy. For 2D, in équation (3.42) the left hand side 
has to give 0{h^) [RicOS], where h is a diameter of a circle with the same area as the 
element (or sphere in 3D). The contribution from the N scheme gives 0{h?) and from 
the LDA scheme 0{h^) in 2D. Hence, the blending factor 9 has to be of order 0{h). 
Multiplication of the shock sensor sc by h does not lead to sufficient damping in the 
shock régions. If multiplied by y/h, then the amount of the numerical viscosity is 
correct, but the scheme is only 0{h}'^) accurate. The solution is to take a blending 
factor as

= min (l, sc^ h) , (3.65)

which gives the right amount of artificial viscosity together with second order of 
accuracy in smooth régions. The nodal contribution of the Bx scheme is then given 
by (3.66) with the blending coefficient given by (3.64) and (3.65)

.Af" = (1 - (3.66)

The blending coefficient is smooth and allows to use the complété 2nd order Jaco- 
bian for the implicit calculations (even though we use its numerical approximation), 
which noticeably speeds up the convergence rate. For ail the other nonlinear schemes 
in this thesis a first order approximation of the Jacobian had to be taken (from the 
N scheme).

Since this is a novel scheme, we présent immediately some numerical results show- 
ing the performance of the scheme. More results are included later in chapter 5.
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Chapter 3. Residual distribution scheme

Figure 3.1.: Ni channel. Top: Part of the Weathcrill mcsh and the Mach number 
isolines for the Bx scheme, AM = 0.05, the bold line is M = 1. Middle: 
the distribution of the Mach number along the bottom wall and the 
convergence historiés for different schemes. Bottom: distribution of the 
Mach number along the wall, zoom before and after the shock.
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First, we présent numerical results for transonic flow in the so-called Ni channel 
[Ni81]. The flow is defined by the ratio of the outlet static pressure to the isentropic 
total pressure P2/Pois corresponding to M21S = 0.675. The length of the channel is 3 
with unit width and 10 % circular bump. We use an unstructured grid consisting of 
2762 nodes and 5281 éléments, with 31 nodes along the bump, utilizing Weatherill 
type triangulation [Ath05]. This mesh gives a better idea of the behavior of the 
scheme in the case of changing connectivity, as is usual in 3D, avoids false cancel- 
lation of the error and does not prefer any direction. The Euler backwaxd scheme 
is used for the time intégration with numerical approximation of the Jacobian. For 
the N-modified and the B scheme we had to use the Jacobian of the N scheme. We 
start with the CFL number of 100 and every itération we multiply it by the factor 
1.2 until it reaches 10®.

In Fig. 3.1 isolines of the Mach number for the présent Bx scheme are shown. One 
can observe a supersonic pocket on the bump. The isolines do not exhibit wiggles 
and they run straight into the shock, which corresponds to a not very dissipative 
scheme. The comparison of the Mach number distribution along the bottom wall is 
shown on the next figure together with a zoom to the beginning and the end of the 
shock. Before the shock, the Bx scheme follows the LDA scheme an créâtes a small 
overshoot on the Mach number distribution. After the shock the Bx scheme behaves 
very similar as both the N-limited and the B schemes in terms of capturing after- 
shock singulaxity. For comparison, the solution for the vertex centered finite volume 
method with Barth limiter and Roe’s Riemann solver, from section 4.2 is shown. 
The FV scheme is clearly more dissipative than ail the nonlinear RD schemes, as 
can be observed on the last point before the shock and mainly in the more diffusive 
capture of the after-shock singularity. Convergence of the norm of the residual is also 
presented. The new formulation gives a convergence rate very similar to the linear 
schemes, while ail the other nonlinear schemes stall after a few orders of magnitude.

The next test examines robustness of the new scheme on a Mach 20 bow shock in 
front of the cylinder. The solution was computed using the Bx, N and N-modified 
scheme on mesh consisting of 10531 nodes and 20632 éléments. The B scheme always 
gives négative pressure in the shock, even if started from a converged solution with 
extremely small CFL number. In Fig. 3.2 the isolines of Mach number are shown, 
the left part of the figure is the N-modified scheme, while the right one présents 
the Bx scheme. One can notice that the Bx scheme better captures irregularities of 
the solution, resulting from the interaction of the shock wave with the Weatherill 
type of mesh. The next part of the figure shows a eut along the streamline to the 
stagnation point. Points correspond to the intersection of the eut line with the 
edges of the triangles. As we can expect from the design of the scheme, there axe 
no oscillations in the vicinity of the shock, nor an3rwhere else in the computational 
domain. The solution obtained by ail the schemes gives practically the same resuit. 
Convergence properties of the schemes are considerably worse than for the transonic 
flows, as is known also from other methods. On the other hand, one can employ a
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Figure 3.2.: Mach 20 bow shock. Top: isolines of the Mach number, the N-modified 
scheme is on the left, the Bx scheme on the right. Bottom: eut along 
the stagnation line and convergence history.

convergence fix, well known from the FV framework [Del96] - after a certain number 
of itérations no, when the solution is fully developed, we don’t decrease anymore the 
blending factor in the subséquent itérations, i.e.

= max(0", 0"“^), for ail n > no. (3.67)

In this case we hâve chosen no = 4000. It is not clear how to apply a similar fix to 
the N-modified scheme. Note that this définition is opposite of the FV limiter, since 
9 = 1 gives the non-oscillatory scheme, while in the case of FV 9 = 0 reverts to the 
upwind scheme with constant reconstruction. The scheme recovers convergence to 
machine accuracy with a possibly slight price of more dissipative solution.

As the last steady case, we présent a sub-critical flow axound the cylinder [DvLPR89], 
with Moo = 0.38. This test examines the behavior of the method in smooth flow 
régions. We use a much coarser mesh than in référencé [DvLPR89], because in that 
case ail the schemes gave very similar, accmate results. Om: mesh consists of approx- 
imately équilatéral triangles with 80 éléments along the wall and 40 rows of triangles 
towards the free stream boundary, see Fig. 3.3. This gives a position of the far-field
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boundary approximately 10 diameters away from the cylinder. The exact solution 
is perfectly s5Tnmetric both with respect to x and y axis. The Mach number isolines 
are plotted in Fig. 3.3 with step of AM = 0.02. AU the schemes gives reasonably 
good results. The LDA and présent Bx give very similar almost symmetric results, 
with a small déviation behind the cylinder on the axis of symmetry. The standard 
formulation of the B scheme gives larger error behind the cylinder, however it still 
converges to the horizontally symmetric solution. The N-modified scheme did not 
converge well and wake-like structures appear behind the cylinder. However, unlike 
the other results in [Pai95], no séparation zone develops there. The results suggest 
that the Bx scheme contains very little unwanted artificial dissipation and it can 
capture smooth fiow régions very well.

The scalar counterpart of the Bx scheme can be easily defined by considering the 
“shock sensor” as

/^||V^^||df 
ôu • p{E)

(3.68)
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Figure 3.3.: Sub-critical flow past the cylinder. Mach number isolines, AM = 0.
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3.6. Schemes for unsteady problems
We start again with the first order N scheme.

3.6.1. N scheme
Historically, there are two independently developed versions of the space-time N 
scheme. One cornes from the application of the spatial N scheme to a space-time 
prismatic element, see [CRD03, RCD05]. The second one was developed as the 
spatial N scheme equipped with Crank-Nicholson time intégration procedure. Both 
schemes suffer from the same time-step restriction. In the first case the restriction 
allows time layers decoupling and time marching procedure. The satisfaction of the 
time step gives positivity of the scheme in the second case. For more discussion and 
comparison see e.g. [RCD05]. We will omit the first scheme and présent only the 
second scheme.

The unsteady version of the N scheme is a straightforward application of the 
preferred time integrator to the steady version of the scheme. We shall présent the 
scheme equipped with two different time integrators: Crank-Nicholson (later needed 
for the N-modified scheme of M. Mezine and R. Abgrall [MRAD03, AM03a]) and 
the scheme with three points backward (3BDF) time integrator, later needed for the 
Bx scheme [DDOSa, DD06d].

First, we dérivé the (space-time) nodal contribution for the N scheme with the 
Crank-Nicholson time integrator. We start from équation (3.20) with the nodal 
contribution given by (3.35) (taking into account the chosen Crank-Nicholson time 
integrator)

1 1
At fi(Si) 2V EeVi

/iE,n+l ,
\(Pi +4>i )■

E,n\ (3.69)

The nodal contribution from the space-time element is obtained by rearranging the 
terms of (3.69) into space-time contributions

EeVi
<i>r = - O + +•pf"). (3.70)

with (j)f given by (3.35). The update scheme is then given by (3.26). Space-time 
element residual in this case corresponds to use of the trapezoidal intégration 
rule on the space-time prism

^ - “?) + + «A'"’"’"'). >!>’' = Y. (3.71)
ieE ieE

Thanks to the space-time natme of the scheme, we can formulate sub-element 
positivity for the unsteady space-time RD schemes:
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The fully discrète scheme

Chapter 3. Residual distribution scheme

E€Vi

= -a, Y, T, - “r*) + - “J)]” (3-72)
E€Vi j€E

is sub-element positive, if ail coefficients are non-negative and the local
relaxation coefficient o:» satisfies

o<«i< •
\EeVi jeE J

(3.73)

We now establish sub-element positivity of scheme (3.70) with relaxation proce­
dure (3.26). The fully discrète scheme leads to

U
n+l,m+l __ n+l,m— tXj

E

n+l,m
= U- ' —a

f.,n+\ __ n

p{E)

1

E

1
+ -At[fc/-’^(ur^ - - nf/)]

The content of the bracket (élément superscript E is omitted) is

- <) + ^M[kp'^(ur' - + (:+■'=(< - »?")]

(3.74)

1 ,
+ -Ai

<;+«+' - JV E [Çxf'] ) + *?(“? [*^7’*”)]
jeE j€E

E [*^7 (-«r'+“f')]+E [*^7 (-<+"?)]

= f^(»r‘-<)+5A(i+ATE [*7(-“r*‘ + “7'"‘)]+5A<*:7wE [*7(-< + “7)]
jeE jeE

+ iAtt+ATE - l^tKNE ^7“^'] • (3.75)
jeE jeE
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3.6. Schemes for unsteady problems

Now, we can rearrange terms

- <) - +<)]
j€E

+ +«r‘)] +5A(*:+JV^ [fc7(_„»+> +„^")]
jeE

(<+■ - <) + [-fc-«+> - uf')]
jeE

+ UtkfN Y, - «”)] . (3.76)

jeE

d+1 2

jeE

We check sub-element positivity following définition 13, page 48. The second and 
third coefficients are always positive. A time-step condition coming from the first 
terni is

At < —, Vi, E G (3.77)
~kp^{d+iy

The physical time-step condition (3.77) together with the condition (3.73) are suffi- 
cicnt for sub-element positivity of the space-time N scheme (3.70). Condition (3.77) 
is the same as derived in [AM03a, RicOS, RCD05] started from the implicit method 
examining properties of the implicit matrices.

Relation (3.73) is satisfied, if the relaxation parameters are bounded by

a, <
-1

(3.78)

As the second possibility, we consider the 3BDF time intégration method

dui ^ -I-
dt ~ - t"

with coefficients

a,n+l __ 1 + 2r 
l + T

, a" = -1 - r, =
l + r'

^n+l _ ^n 
in _ fn-l •

i.e.

1 ^n+l^n+l ^ \ _
- t

The space-time nodal contribution is given by

gST _ p{E) I ^n+l^n+1 ^ ^ j ^ (^n+1 _ ^n>^^E,n+l
d -1- 1

(3.79)

(3.80)

(3.82)
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Chapter 3. Rcsidual distribution scheme

Positivity cannot be ensured for 3BDF time intégration scheme. The System is 
solved in dual time again. Positivity cannot be ensured for this scheme.

The System scheme with Crank-Nicholson time intégration can be written in terms 
of a space-time nodal contribution

U. =ur*’" - c ^ - O+5Ai(0f'"+>+0f").
E

a.‘4- d+v ^
E

+ ^At[kP^{nr^ - - uf/)] , (3.83)

with Uin defined by (3.38). Note the différence between Uj and üi (équation (3.15)). 
We would like to mention, that in the original work [AMOl, Mez02, MRAD03] a 
different linearization is used for the discretization of the time dérivatives. The 3BDF 
time intégration scheme is extended in a similax manner as the Crank-Nicholson 
scheme.

The N scheme is a linear, positive scheme, therefore it is first order accurate only.
Two different extension of the second order LDA scheme will be considered. The 

LDA scheme of Ferrante and Deconinck [FD97], section 3.6.2, was developed using 
the finite élément framework, while the LDA scheme of Caraeni [CarOO, CCFOl, 
CF05], section 3.6.3, simply distributes the unsteady residual with a “steady” version 
of the LDA distribution coefficients.

3.6.2. LDA scheme of Ferrante and Deconinck
This version of the LDA scheme was developed by Ferrante and Deconinck, see 
[FD97]. We start from the conservative formulation of the governing équation (2.1). 
Multiply the équation by the Petrov-Galerkin test function ipi and integrate over 
the région Q

[ if~dx+ [ ipiVx ■ fdx = 0 with •/= A • Va;«. (3.84)
Jçi 9t Jq

The intégral over domain D is written as the sum of the intégrais over simplex 
éléments E E T>i adjacent to the node i. The solution is approximated on each 
élément using the linear trial functions as

= (3-85)
jeE

Note that is a constant function per élément.
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3.6. Schemes for unsteady problems

The second intégral of équation (3.84) is rewritten in the quasi-lineax form and 
constant terms axe taken out

JE Je
iPi\ • Vxu'" dx = X- VxU^ / <fiàx =

Je

lE (3.86)

with residual defined by (3.17), upwind parameters (3.14) and distribution coef­
ficients A (3.40).

The first intégral is approximated as

E€.T>i j^E ^ TPezTt.EeVi jeE

(3.87)

Term mfj = p,{E)mfj = dx is the element contribution to the mass matrix.
Equation (3.86) is satisfied for the test function defined as

+ E (■®® - jyr) (3-88)

where II^(T) is the chaxacteristic function of the element; it is unit for T in E and zéro 
outside. Hence, with this test function one can evaluate the element contribution 
to the mass matrix explicitly

mS = MS)*.?. *.? = ITT M - ITl) ■

Since the mass matrix is taken into account, any second order time discretization can 
be used. Here we concentrate on the three point backward différentiation formula 
(3BDF) (3.79) with coefficients (3.80). The contribution from element E is then

0;
£ST ir{E)

fn+l _^n ^ 1

+ ME)
d + 1

ktN +

E
jer

d + 2 d+1 
1

OUi
dt

n+1

+ Pi(j>E,n+1 (3.90)

The LDA scheme is formally extended to the System of équations as the other 
schemes. For the scalar case, the scheme corresponds to the Petrov-Galerkin formu­
lation of the finite element method. In the System case the correspondence is not so 
cleax, since the test functions would hâve to be matrices.

The element contribution to the mass matrix is in this case sub-matrix

ME)
d -|- 1

/1 -l- Sjj 
y d -p 2 I+Pj

ME)
d+1

/1 -P Sjj 
y d -P 2

I + k+N -
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Chapter 3. Residual distribution scheme

where matrix N is given by (3.39). The nodal contribution is

d+l

I m
d+l

where is given by (3.13). The scheme is equipped with the three point
backward différentiation formula (3BDF) for the time discretization.

3.6.3. LDA scheme of Caraeni
The space-time scheme of Caraeni [CarOO, CCFOl, CF05, MRAD03] was developed 
in a second and third order version. The second order version distributes the space 
time residual

using LDA distribution coefficients (3.40). The time dérivative is discretized using 
3BDF scheme, but other discretizations can be also considered. For a System of 
équations, the scheme is extended in the standard manner, i.e. the unsteady residual 
is distributed using the distribution matrices (3.41).

This scheme is simpler than the LDA scheme of Ferrante and Deconinck from 
section 3.6.2, but it is also more oscillatory in the vicinity of steep gradients. The 
version for the System of équations was successfully used for large eddy simulations 
[CarOO].

3.6.4. One layer space-time scheme of Mezine and Abgrall
The LDA scheme is a linear second order scheme. A second order, positive scheme 
must be non-linear, as is known from the Godunov theorem. We will describe the 
construction of the nonlinear, N-modified scheme of Mezine and Abgrall [AM03a, 
Mez02] in section 3.6.4. This scheme is positive under a time-step restriction. A 
(two-layer) second order positive scheme without a time-step restriction is described 
in section 3.6.5.

The space-time N scheme from section 3.6.1 is lineax and sub-element positive 
with unbounded distribution coefficients. We can apply nonlinear mapping (3.52)

+ + a
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3.6. Schemes for unsteady problcms

n + 1

n + 1/2

n

Figure 3.4.: Two layer space-time scheme

to get uniformly bounded coefficients, yet with the unchanged signs of c^. Then, 
the scheme is second order accurate.

The (unlimited) nodal residual is given by the équation (3.70). The modified 
distribution coefficients axe computed aecording to (3.59). The rcsulting scheme is 
sub-element positive under a time-step given by (3.77). The resulting system of 
algebraic équations is solved in dual time. This scheme was published in [AMOl, 
MA02, AM03a, MRAD03]. The system scheme is obtained in a similar manner.

\/
4>

/ \I — <

3.6.5. Two layer space-time scheme of Mezine and Abgrall
The two-layer approach was developed as a cure for the time-step restriction of 
the implicit space-time schemes [CRDPOl, RicOl, CDOl, CD02, CRD03, Csi02]. 
Always two layers of éléments are solved, see Fig. 3.4. The lower layer, between 
time levels n and n -h 1/2 is the N-modified scheme from section 3.6.4. The time- 
step obeys restriction (3.77). The scheme in the upper layer
is similar to the lower layer scheme, however part of the space-time residual is 
distributed to nodes in n + 1/2 level and part to the level n -|- 1, such that the 
scheme is sub-element positive under arbitrary time step The second order
accuracy is achieved by the mapping (3.59).

The full scheme is given after assembly of the nodal contributions from the lower 
layer [t", of éléments

jE® ^ ,n+1 / 2, Lower n+l/2

d+V ' O +
E,n+l/2 + #”), (3.94)

with the contribution from the upper layer of éléments to
level

Upper _ ^ A j ±E,n+l/2 
ri 2

and the contribution from the upper éléments to the n -|-1 level

the n -I- 1/2 

(3.95)

Upper ^ (3.96)
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Chapter 3. Residual distribution scheme

Note that the element residual at the upper layer given by

^£;ST Upper ^ Upper Upper

ieE

(3.97)

is the same approximation of the space-time residual as for the lower layer scheme. 
The modification procedure (3.59) is applied on each element in the lower and upper 
level separately.

This scheme is positive and second order accmrate. Unfortunately, it has problems 
with itérative convergence in dual time. Some reasoning can be found in a recent 
article [AbgOfi]. As an alternative without the itérative convergence problems the 
time accurate Bx scheme was proposed [DD05a].

3.6.6. Bx scheme
The basis for the Bx scheme is the LDA scheme of Ferrante and Deconinck [FD97] 
with 3BDF time intégration, see section 3.6.2 and the N scheme with the same time 
intégration procedure, see section 3.6.1. The 3BDF procedure is preferred over the 
Crank-Nicholson method, because the later does not include dissipation in time, as 
it corresponds to the central time discretization. It renders Crank-Nicholson scheme 
not enough robust for technical type of computations.

The change in the pressure due to the traveling pressure wave can be locally 
approximated as a change due to pure convection of the pressure wave and the 
change due to its expansion or compression. Pure convection obeys the équation

^ + »,.Vp = 0, (3.98)

where Vc is the speed of the wave. This effect is dominant e.g. in the convection 
of an inviscid vortex. Pure expansions or compressions happen with respect to the 
frame of reference moving with velocity Vc- We define Vr = v — Vc-, where v is the 
velocity of the flow and Vr is relative velocity with respect to the frame of reference. 
The shock sensor has to be constructed using the relative velocity, i.e.

1
^pv

=0

= + Vp• (fl) + = ^(^ + Vp• t')*. (3.99)

with scaling ôpv defined in section 3.5.5, page 41. If the shock sensor is positive, the 
flow expériences compression, while if the argument of the shock sensor is négative, 
the flow is expanding with respect to the relative frame of reference. The operator 
is scaled in the same manner as for steady problems (3.65) to define the blending

(Vp -Vr + ^ + Vc- Vp)+SC = —(Vp ■ Vr)^ =
Jpv
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3.6. Schemes for unsteady problems

coefficient, which retains the second order of accuracy of the LDA scheme together 
with non-oscillatory behavior.

Due to the unconditional stability of the underlying N and the LDA schemes 
with the three points backward time intégration formula, the resulting unsteady Bx 
scheme is expected to be robust for high CFL number simulations.

Since this scheme is novel, we présent some numerical results showing its perfor­
mance in comparison with the performance of the other schemes. We hâve chosen 
a smooth convection of a vortex as the first unsteady test case, see [DD05a]. The 
problem is solved on the square domain [—0.5,0.5] x [—0.5,0.5] filled with a Weath- 
erill type triangulation with 41 points along each side. The flow velocity is given by 
the main stream velocity Vm = (6, 0) and the circumferential pertmrbation

{‘Vx,Vy)e = {—y,x) • uj, O) = 15 • (cosdTrr H-1), r = \/x^ -\-y'^ (3.100)

for r < 0.25, {vj;,Vy)e = 0 elsewhere. Density is chosen constant p = 1.4 and the 
pressure from the balance in the radial direction p = Pm + ^P, where

Ap = 15^p
(47t)^

2cos(47rr) -|- 87rr sin(47rr) -|-
cos(87rr) 47rr sin(87rr)

8 + + 127rV^ ) -h C.

(3.101)
The constant C is such that p|r=o.25 = Pm = 100. This setup gives maximal Mach 
number in the domain M = 0.8. The free stream values are prescribed on the 
boundaries y = ±0.5 and periodic boundaries are used for x = ±0.5. The simulation 
stops after one period, i.e. tmax = 1/6. This test case was first presented in [DD05a].

In Fig. 3.5 the isolines of the pressure for the different schemes are shown. The 
computation was performed with CFL = 1. Distribution of the pressure in the core 
of the vortex shows that the Bx scheme performs essentially as the LDA scheme for 
the smooth régions. The performance of the N-limited scheme is noticeably worse. 
We hâve performed the same test with several other schemes. The minimal pressure 
in the vortex core is given in Table 3.2. The finite volume method is cell centered 
with the three points backward time intégration scheme formulated in dual time 
and with, or without Barth’s limiter, see section 4.2. Note, that the Finite Volume 
scheme performs worse even in the case with no limiter and it uses approximately 
twice more unknowns than the RD scheme.

As a test to examine the scheme on flow with complex features, we présent results 
for a 2D Riemaim problem [MRAD03]. The problem is symmetric along y = x with 
the initial conditions given by

f(
(p,Vx,Vy,p) = <

1.5, 0, 0, 1.5 )
0.1379928, 1.2060454, 1.2060454, 0.0290323 ) 
0.5322581, 1.2060454, 0, 0.3 )

see Fig. 3.6. The simulation stops at tmax = 0.8.

y < 0.8, y>x 
X > 0.8, y > X 
y > X elsewhere,

(3.102)
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Chapter 3. ResiduaJ distribution scheme

Figure 3.5.: Advection of the vortex, t = 1/6. Isolines of the pressure for differ­
ent schemes. Distribution of the pressure in the core of the vortex for 
different schemes.

Scheme: Bx LDA N-limited LDA [CCFOl] FV nolim FV Barth Exact

Pmax
Pmin

100.11
94.00

100.12
93.84

100.42
96.27

100.12
93.88

100.04
94.35

100.11
98.76

100
93.213

Table 3.2.: The maximal and the minimal pressure in the vortex core for the vortex 
advection problem, t = 1/6. FV is the cell centered Finite Volume 
scheme with the linear reconstruction and with or without Barth’s [BJ89] 
limiter and the three point backward scheme formulated in dual time.

Figure 3.6.: Two-dimensional Riemann problem. Sketch of the situation.
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3.6. Schemes for unsteady problems

In Fig. 3.7 compaxison of the Bx scheme with the N-modified is presented on 
meshes with spatial resolution 1/200 and 1/400. Both computations with the Bx 
scheme show much higher resolution. It can be observed on pronounced Kelvin- 
Helmholtz instabilities along the slip Unes, where the Bx scheme gives a richer 
structure, which is seen from the growth of the rollers along the instability. The 
N-modified scheme captures the instabilities well, however it clearly gives lower 
resolution. To show that the scheme captures the discontinuities without spmious 
oscillations we make a eut along the diagonal for the mesh 1/400, see Fig. 3.7. The 
solution obtained by the Bx scheme shows non-oscillatory capturing of the smooth 
régions as well as discontinuities. On the other hand, there are undamped high 
frequency modes on the solution given by the N-modified scheme, which causes 
oscillations in the smooth régions of the solution.

A natural question arises: why not use the N scheme with the Euler backward 
time intégration procedure, which has better stability properties (it can be shown 
positive) than the 3BDF method. However, in this case the scheme would not be 
conservative, because there is no continuons approximation of the flux P except if 
the blending coefficient 6 is constant in the domain.
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Figure 3.7.: Two-dimensional Riemann problem, density contours (Ap = 0.05) at 
t = 0.8. Left figures show the solution obtained by the Bx scheme, 
while right figures show the results of the N-modified scheme. Top row: 
spatial resolution 1/200, middle row 1/400. Bottom; solution along the 
diagonal for the mcsh 1/400 for the pressme and the density.
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3.7. Extension of the schemes for moving mesh 
computations

In this section we will extend ail the considered schemes from section 3.6, starting 
from fîrst order and second order linear schemes upto nonlinear schemes.

3.7. Extension of the schemes for moving mesh computations

3.7.1. N scheme + Crank-Nicholson
The N scheme with the Euler explicit time integrator was already extended to mov­
ing meshes in [MicOO, MSD03]. Extension for the Crank-Nicholson time integrator 
was published in [DD 05b].

We start from the quasi-linear form of the équation (2.27). Similarly to the spaee- 
time N scheme, section 3.6.1, the discretization of the time dérivative corresponds 
to the discretization on the médial dual grid

1 - /i(E"X
(3.103)

The convective term including w ■ VxU is discretized as (3.35) with the upwind 
parameters defined as

, . -*n,n+l,1 ^5--------n,n+\ n-
A^r^' = (A-^) (3.104)

where A and w are the averaged advection vector and mesh velocity in the élément 
at time levels n and n -|- 1. For the précisé définition of the averaged state see 
section 3.7.8, page 66. Normals and are taken from the géométrie position 
at time levels n and n-\-\ respectively. The last, geometrical term is discretized in 
accordance with the time discretization using the identity (2.12). In [MicOO, MSD03] 
the authors compute the intégral of the géométrie term over élément E

uVx ■ wdx ^ d+1
(3.105)

and then distribute it with the LDA distribution coefficient (3.40). That
discretization spoils the positivity of the scheme. Instead of this, we discretize the 
last term on the dual mesh, (as it is usual for pointwise treatment of source terms 
in the vertex centered finite volume schemes). The full nodal contribution is then

* d+1

H ^ ~ ^in)^ 4” {'^i ~ '^in)^ ^
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Chapter 3. ResiduaJ distribution scheme

Note, that the contribution was multiplied by At for a correspondence to the space- 
time approach of the unsteady RD schemes. The scheme is sub-element positive 
under the time-step restriction

^ + KE")
- fc+'V+l)

Vi, E e T^.

The full nodal contribution for the System of équations is

(3.107)

+ Y -Ui„)y‘+ (^k+(üi -

3.7.2. N scheme + 3BDF
The extension of the N scheme with the 3BDF time integrator differs mainly in 
the treatment of the time dérivatives and the géométrie source term. The time 
dérivative is discretized as

d+ 1 (3.109)

The geometrical term is discretized in accordance with the time discretization using 
the identity (2.12), on the dual mesh with pointwise treatment

1 + a^p{E^) + a"-V(^"“^)
d+1

(3.110)

where the first fraction is the arithmetic average of the solution over the élément 
and in the second denominator term d+1 accounts for the part belonging to node 
i. The full nodal contribution is then

<»f" 1
fn+l __pi ^”+1 ___

+kt(ur' - «”+')

g’‘+V(£:"+‘)ii"+* + a>(g»X + a"^V(E"-‘X~‘
d+1

1 ,.„+i V(^”^^) + oi^p{E^) + o:'^“ V(^"“^)
d+1

(3.111)

Similar expression is obtained for a System of équations.
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3.7. Extension of the schemes for moving mesh computations

3.7.3. LDA scheme of Ferrante and Deconinck
This section was published in [DDFOSa, DD06a, DD06b]. We start from the conser­
vative ALE formulation (2.26). Multiply the équation by the Petrov-Galerkin test 
function from the cnrrent configuration (pi and integrate over the time dépendent 
région Qt

<fi dJAtU 
JAt dt

dx+ [ 
Ÿ

wu) dx = 0 with ^x-f = X-VxU. (3.112)

The intégral over domain is written as the sum of the intégrais over simplex 
éléments E E T>i adjacent to the node i. The solution and the mesh velocity are 
approximated on each élément using the linear trial functions as

jeE jCE
(3.113)

Note that and are constant functions per élément and the approxima­
tion of Jacobian is constant in space over each élément. The trial functions 
as function of the ALE coordinate Y are constant in time and can be taken in front 
of the time dérivative

/J Qt JX dt
1

E jl,
E€Vi jeE

dt J
Y J Et

P>i4>j dT

= E
EeVi jeE

dJX^j
dt

(3.114)

Term mf- = p{Et)fhfj = Je, dT is the élément contribution to the mass matrix.
The second intégral of équation (3.112) is rewritten in the quasi-linear form and 

constant terms are taken out

/ V:, • (/* - wV) df = [ -w^-u^\/^-w^)dx
JEt JEt

= {X — w) • VxU^ / <Pidx — '\/x-w^ dx
JEt JEt

= (X-w) ■ VxU^ / ipidx-'Y^l UjVx ■ / ifii'ipj df )
J Et J Et /

• (3-115)
jeE

The ALE élément residual (j)^ is defined as

(j)^ = p{E){X - w) ■ ^ UjS/^'il^j = p{E) ^ (A - -û;) • Vx'ipjUj = ^ kjUj, (3.116)
jeE jeE jeE

61



Chapter 3. Residual distribution scheme

where p{E) is the measure of the élément and the upwind parameter kj with respect 
to the relative speed is given by

n,-
kj = {X-w)- = {X-w)-^ (3.117)

and fîj is the normal to the surface opposite to the node j scaled by its surface.

The distribution coefficient is chosen using the LDA scheme (3.40). The diver­
gence of the mesh velocity is expressed as a time dérivative using the identity (2.12). 
The time dérivative (2.12) is discretized by the three point backward différentiation 
formula (3BDF), i.e.

^n+l^(^n+l) ^ gn-1
tn+1 _

jeE
(3.118)

with coefficients (3.80) and rhfj defined in (3.89). The scheme respects the discrète 
géométrie conservation law.

The précisé averaging of the terms {X — w) will be specified later in the chapter
3.7.8. Finally, the fully discrète scheme is given by nodal contribution

est

tn+1 _ tn— = y
_ fn

jeE L d -|- 1 \ d “H 2 d -I-1

^n+l^(^n+l)^n+l ^ Q,"/i(^")u5‘ + a""V(-E"-^)u"n—1

tn+l _ fn

pi+l _ fn

jeE

U
n+l

E
j€E

^ . on+1 _ ^

d+l \ d + 2 d+1
Ui

(3.119)
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The nodal contribution for System of équations is

d+1
1 ^k+N + - -J—ï^

d 2, d+1 dt

+E
jeE

1 1 ^ ^ dp{E)ujk+N +
d+1 V " d + 2‘ d+rj dt

-fjM.

+ k+N
jeE

+ dii{E)
dt E

jeE L

1 /1 + Sij 1
1—T +7^1 + ktN - -^I U, . (3.120)

rhf.

The time dérivatives are discretized by 3BDF scheme (3.79) and (3.80).

3.7.4. Galerkin (central) scheme

The Galerkin finite élément scheme itself is unstable for hyperbolic problcm (2.1). 
However, it is possible to write an RD scheme as the pertmbation of the Galerkin 
scheme plus dissipation

+ (1 - - (/(Galerkin^^ (3.121)

with coefficient 6 = 0. This can be useful later e.g. for the extension of the RD 
schemes for problcms with viscosity [RVAD05, DRAD06]. Once the extension of 
the LDA scheme for moving meshes (3.119) is known, the Galerkin scheme can be 
constructed by removing ail the terms related to the upwinding (or equivalently 
dropping the second part of the test function (3.88)). The scheme^ is given by

4>f _ 1 + 5jj dp{E)uj
tn+i _ ~ + l){d + 2) dt

1 'T—v - _ dp{E) 1 + 5ij
"^d+lS-/ ^ dt ^(d+l)(d + 2)^"‘

jeE jeE '■ ’

(3.122)

^This development is strictly valid only for linear flux function.

63



Chapter 3. Residual distribution scheme

3.7.5. LDA scheme of Caraeni

For the extension of the scheme on the moving meshes the intégral of the équation 
(2.27) over the element is considered. Then, the element residual is

- f ( ^
dJ^u’'

tn+1 _ tn Je \JX dt
+ Vx ■ dx

E
ie£

ÿn+1 _ pi

ieE
tn+1 _ tn d + 1

with the upwind parameters given by (3.117). The residual is subsequently dis- 
tributed with LDA distribution coefficients (3.40).

For the System of équations, the intégral of the équation (2.27) over the element 
is considered. Then, the element residual is

^n+l _ E
ieE

^n+l^(^n+l)un+l ^ g, V(F;"-^)ur^
tn+1 _ tn

+ ^k,"+'ü,"+' +
ieE

^n+l^(^n+l) ^ ^ p{E^~^) YiieE

f"+i - t" d + 1 ’
(3.124)

with the upwind parameters given by (3.117). The residual is subsequently dis- 
tributed with LDA distribution coefficients (3.40).

3.7.6. One and Two layer space-time scheme of Mezîne and 
Abgrail

This section was published in [DD06c]. The sub-element positive extension of the 
N scheme with the Crank-Nicholson time intégration method is described in section
3.6.1. As it was noted in section 3.6.5, the upper layer scheme is similar to the lower 
layer scheme, with the residual distributed to the nodes in n + 1/2 and n + 1 levels. 
We use the similar extension for the upper layer as for the lower layer, i.e. nodal 
contribution from the lower layer éléments is

(Pi
£®^,n+l/2,Lower   1

, N n+1/2 / \ n

f (^i ^in) 1 T f j (Uj n.ji,) )

+ u”) //(Æ;”+V2) _

+

d +
A^Lower

YljeEi'^j
2{d+l) d+1

. (3.125)

64



3.7. Extension of the schemes for moving mesh computations

(3.126)

The contribution from upper éléments to the n + 1/2 layer is

, £;STn+l/2,Upper At^PPer / \ -+V2
<l>i = -----2-----

and the contribution from upper éléments to the n + 1 layer is

^£ST „+i_Upper ^ _^(£;n+l/2)^^"+l/2N

d + 1

^^Upper / >
■I 7: ( {Ui — Win)

2[d + 1) d+ 1

(3.127)

After application the limiting procedure (3.59), the scheme is positive and second 
order accurate under arbitrary time step At =

The scheme is extended for the System of équations in the standard manner. The 
élément contribution is given by

<!>:
£®^,n+l/2,lower __

+

d +

Ati n+1/2

k+ {Ui - Uin) + (K (Ui - Uin)

2{d+l) d+1

The contribution from upper éléments to the n + 1/2 layer is

. (3.128)

n+1/2,Upper   A^2 k+ (Ui - Uin)
n+lj2

(3.129)

and the contribution from the upper éléments to the n + 1 layer

^£ST_„+i_Upper _ _^(^(£;n+l)^n+l _^^^n+l/2^^n+l/2^

+ 2 l^k, (Ui - Uin) J

The limiting procedure (3.63) is applied.

(3.130)

3.7.7. Bx scheme

The scheme is a simple blend of the LDA scheme (3.119) and the N scheme (3.111) 
with blending coefficient defined as (3.99) and (3.65).
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Chapter 3. Residual distribution scheme

3.7.8. Conservativity of the schemes on moving meshes

The ALE element residual 4>^ and géométrie source term are defined using 
quasilinear form (3.115). For the conservativity the argument of the contom intégral 
has to be continuously approximated in the domain,

(j) (̂P* — îUu^) • dn = f Vi • (P* — wu^) dx, (3.131)
JdEt J Et

i.e. the contour intégral over the edge has to be equal for the éléments on both sides 
of the edges. We follow the approach of [DRS93, MicOO, MSD03] and section 3.1. 
For smooth solutions one has

f • (f^ - ûJu'*) dx = [ [V^-^-w-V^n^-u^V:,-w]dx. (3.132) 
J Et J Et

In the first term of the contour intégral, we assume linear variation of Roe’s param- 
eter vector z, denoted by single hat (^, in the second term linear variation of the 
domain velocity and the solution u^, denoted by double hat 0.

We hâve

L
V^-f^dx = \{z)-Wup{E)

L
w ■ ViU^ dx = û; •

The element residual is then

(3.133)

(3.134)

(j)^ = p{E)X{z) ■ Vu - p{E)w ■

= p{E)[{\{z) - îF) • W] - p{E)[^ ■ (VT^* - (3.135)

Both terms are to be distributed with distribution coefficient (matrix) Pi, implicitly 
defined for some schemes. The first term is the ALE element residual and the second 
term is a so called conservative correction [MicOO, MSD03]. Authors [MicOO, MSD03] 
hâve found “minimal” importance of this term. However, in ail the schemes for 
computations on moving grid, this term has to be added to the nodal contribution.

Second, we focus on the géométrie source term. With above stated assumptions 
(linear variation of domain velocity w and solution over the element) we hâve

pGS ^ f u^^^.ûjdx = ù'^-v7^p{Et). (3.136)
J Et

Let us recall under which assumption the terms are derived:
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• Linear variation of Roe’s [DRS93, RoeSl] parameter vector: A(z),

• Linear variation of the solution: ù^,

• Linear variation of the domain velocity: w

The discrepancy between the assumption of linear variation of Roe’s parameter 
vector and the assumption of linear variation of the solution has to be corrected by 
the conservative correction

p{E)w ■ (Viu'* - Va;u'‘), (3.137)

and distributed to nodes by the distribution coefficient Pi.

3.8. Implicit time-stepping, dual time approach and 
parallelization

The time stepping procedure for RD schemes for steady problems (3.19) can be 
regarded as a general itération procedure to solve the set of algebraic équations. 
Ail the considered RD schemes for unsteady problems are formulated in dual time. 
Hence, the solution procedure for the unsteady problems (3.26) can be also regarded 
as an itération procedure. Both types of schemes can be written as

Ijm+l ^ljm_ (3.138)

where [7'"+^ and are algebraic vectors of solution variables for itérations m and 
m + 1; R is the vector of right hand sides and a is a diagonal matrix of positive 
relaxation coefficients (also regarded as timosteps). The task is to find a stationary 
point of the System of équations

Ijm+i ^jjm (3.139)

as efficient as possible.
To be efficient, we use the highest possible time-step in each node, i.e. we always 

use local time-stepping. The time step limit is given by the CFL condition [CFL28, 
CFL67, LeV99] for explicit relaxation procedure. The problems considered are non- 
linear and the time-step restriction usually denoted by CFL = 1 is relaxed to a 
somewhat lower value, e.g. CFL = 0.9, depending on the problem. For the higher 
time-steps, the implicit relaxation procedure has to be used. Since we would like 
to march as fast as possible towards the stationary solution, we use Euler backward 
method with linearization

jjm+l ^jjm
dÜ

[Um-+-l (3.140)
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Chapter 3. Residual distribution scheme

giving the System

+
dU

AU = AU = - U^. (3.141)

For an efficient itération procedure only an approximation of the Jacobian dR/dU 
is needed [Iss97]. We use a one-sided numerical approximation

dr r{u + £■) — r(u)
---------- "

du e
because of its conveniency for the code development together with its reasonably 
good efficiency [Iss97].

System (3.141) is a large set of linear équations with general sparsc matrix. We 
use GMRES method with ILU(O) preconditioning for the solution of the System. 
In parallel computations, we use block Jacobi preconditioning, where each block is 
located on one processor and ILU(O) preconditioner on each block.

For a discussion about implicit and explicit itération procedures we refer to the 
PhD thcsis [Iss97] and work [Dob02, DRD03a].

3.8.1. Parallelization

CFD in general is known to be very computationally demanding. In order to in- 
crease computational power available, one has to use some kind of parallel computer. 
Nowadays, most readily available parallel computers are clusters of personal com­
puters running GNU/Linux operating System. This is what we hâve chosen as the 
target architecture. The natme of this computer System is most suitable for the 
domain décomposition approach: the problem domain is divided into distinct sub­
domains, each sub-domain is solved on a separate processor and data are exchanged 
on intcrprocessor boundaries. As the communication software we use MPI [MPI06]. 
For the solution of linear System, we use PETSc library [PET07].

The mesh is decomposed into non-overlapping régions with the METIS [Met06] 
software. The computation and the communication has to overlap for higher ef­
ficiency. Moreover, we setup communication such that one partition does not ex­
change data with more than one other partition at the same time. This is achieved 
by the graph coloring and suitable numbering of the interprocessor boundaries.

The problem of parallelization for RD schemes and FV schemes is very similar, it 
can be abstracted as an operation on graphs. For additional discussion see section 
4.4.

3.9. Boundary conditions
In this section we will examine different treatments of the boundary conditions. 
According to [Pai95], the boundary condition treatment can be differentiated in
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strong boundary condition, and weak boundary condition.
For the strong boundary condition, the residual in the node is changed such that, 

in the next time level the solution obeys a prescribed value in the boundary node. 
For the weak boundary condition the value for the nodal update is modified such 
that the intégral of the flux along the boundary line satisfics a prescribed value.

3.9.1. Scalar problem

We prescribe ail the boundary conditions strongly, i.e. in équation (3.19) or (3.26) 
a correction is added to the update formula

U,/i,n+l __ h,n
0!i (3.143)

with chosen such that

3.9.2. Euler équations

3.9.2.1. Wall — Petrov-Galerkin formulation

For internai aerodynamic problems it can be very important that no mass or energy 
escapes/enters the domain through the walls. We call this property conservativity 
of the Wall boundary condition. It corresponds to the fact, that the intégral of the 
mass and energy flux through the (rigid) wall has to be zéro, i.e. in 2D

I f{u)-ndl = l-{0,pn^,pn‘^,0)^. (3.144)
Jwai\

To the knowledge of the author, none of the boundary conditions routinely used 
with RD schemes strictly respect this conservativity requirement. Among other 
important properties are accmacy and (at least linear) stability of the boundary 
conditions. We would also prefer boundary conditions with the same theoretical 
formulation in 1, 2 and 3D.

One of the possibilities is to take the Petrov-Galerkin (PG) formulation of RD 
schemes for the dérivation of the boundary condition treatment. The PG formulation 
[Pai95, DRS03, Dob02, DRD03a, DD05b] reads: flnd u = such that

/ ^ ^ (3.145)

for every PG weight function

= + (3.146)
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Chapter 3. ResiduaJ distribution scheme

where ij)i is the linear Galerkin test function, crf = /3j — l/(d+l) and 11^ is the 
chaxacteristic function of the élément: Il(x)^ = 1 if x G T, 0 elsewhere. We can 
split the intégral and integrate by parts

Z
£6T'‘

f Vipi-f{u)dQ,— f a^V-f(u)dfi—/ i/)jf(u)- 
Je Je JdE

dn , (3.147)

where n is the external normal. For a linear flux, the first intégral on the RHS gives 
for élément E

d+1 jeE

(3.148)

the second intégral is

-A Yl Y
j&E jeE

while the third is a sum of fluxes through the boundary of the élément. If the point 
i is an internai point in the computational domain, ail the contributions of (3.148) 
and (3.149) sum to

- E (E>'i"d > (3150)
EeVi \jeE J

while the sum of the boundary intégrais vanishes. However, if f is a boundary point, 
contributions both from the volume and boundary intégrais rcmain. Without loss 
of generality, consider a 2D élément with points on the wall i, l and point j inside 
the domain. The contribution to the node i is

where fi dénoté the external normal and terms which vanish after the élément sum- 
mation are omitted. In the last intégral, the imposed flux f • n = (0,pna;,prZy, 0)^, 
where linear variation of Roe parameters along the wall is prescribed. This treatment 
of boundary conditions meets ail the above stated rcquirements.

In scheme (3.151) the flrst term is the contribution from the inner scheme, the 
second corresponds to the portion of an “old” flux and the last intégral is the imposed 
flux (3.144) distributed with Galerkin weights. Hcnce, the whole procedure is a 
correction of the residual coming from the inner scheme using the boundary flux. 
From the implémentation point of view, to compute the “old” flux, one has to know 
the solution on ail the nodes of the élément adjacent to the wall to détermine kj from 
the conservative linearization. An casier computer implémentation is to compute
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3.9. Boundary conditions

the “old” flux using the known lineax variation of Roe parameters as a line intégral 
along the wall.

Note the similarity of the PG treatment of boundary conditions with the procedure 
of van der Weide [vdW98]. The non-conservativity of the treatment [vdW98] lies 
in the mismatch between the flux intégral seen by the inner scheme, i.e. linear 
variation of Roe parameters, and the boundary intégral - linear variation of the 
solution. Another différence is in the distribution weights - 1/4 and 3/4 vs. 1/3 
and 2/3.

For unsteady problems, namely problems involving moving meshes, a consistent 
space-time treatment of the moving wall boundary conditions is nceded. As will be 
shown later in this section, a simple treatment using boundary conditions developed 
for spatial schemes introduces an error into the solution. In particular, it is clear 
that the flux trough the boundary of the élément has the form

(f(u) — uû;) • n. (3.152)

For a solid wall the velocity in the direction pcrpendicular to the boundary has to 
be clearly equal to the velocity of the wall w ■ n. E.g. for a ID problem it is

= {pv,pv^ d-p,v{Ed-p))-w{p,pv,E) = (0,p,up). (3.153)

We proceed as above. We compute a boundary corrective flux in the intermediate 
State, i.e. in the middle between nodes at level n and n+1 as the arithmetic average. 
Then we distribute the boundary correction to the nodes of the face. Finally, the 
conservative correction flux is added.

This method can be easily extended for the 3BDF time integrator. In this case, 
the solution is taken from n + 1 time layer and the mesh velocity is computed by 
the procedure described later in section 4.3.2.

3.9.2.2. Wall - Weak boundary condition of Paillere

In this formulation, the boundary conditions are implemented using ghost nodes, 
see [Pai95]. Consider the situation depicted in Fig. 3.8. Ghost nodes 1* and 3* are 
created, triangles i, 1, 2 and i, 4, 3 become interior and they are treated as inside of 
the domain. Variables from node 1 and 3 arc mirrored into their counterparts 1* 
and 3*. Then the scheme in the limit of diminishing distance between boundary 
nodes and their star counterparts is taken. The rcsidual of triangle is

» Of/i _
= I1{E) Vf- = m(B) V • u' = ^ k,fl, (3,154)

jeE

Since fii = -ni- and «2 = 0, recalling définition of the upwind matrix (3.14), we 
hâve

kl. = -ki, ÎC2 = 0. (3.155)
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Chaptcr 3. Residual distribution scheme

Figure 3.8.: Situation in the vicinity of the wall - Paillere’s boundary condition

Therefore, the ghost élément residual can be expressed as

(3.156)

Elément residual is then distributed with the same distribution scheme as for the 
inner éléments to the node i, the distribution matrix Pi is determined by the scheme

Pi = (3.157)

Since the RD scheme for the boundary correction is the same as for the interior 
domain, this formulation also includes the case with moving meshes.

3.9.2.3. Wall — 2D characteristic strong boundary conditions

In this section 2D characteristic strong boundary conditions are considered. They 
are included here only for completeness, because they are difîicult to extend to three 
dimensions. For more details about this formulation of the boundary condition, see 
[Dob02, DRD03a].

Consider the state on the wall in the coordinate System perpendicular to the 
wall, oriented such that the normal is a unit inner normal {rix,ny). We project the 
residual on the cigenvectors of the flux Jacobian in the direction normal to the wall. 
In this case the only characteristic entering corresponds to the eigenvalue (where a 
is sound-speed and un^ + vUy the normal velocity)

A3 = a + uîix + vriy

The corresponding right eigenvector is

r^ =
P /U \ /V \ /
-,p[- + n.),p[-+ny),pl-^ + un^ + vny +

7- iy_

(3.158)

(3.159)
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Consider the update scheme (at the point i, index is dropped)

U"+1 = u^+l _ = ^n+l _ ^ j^BC) (3.160)

The R* residual is computed by the scheme from the interior of the domain and 
is corrective residual. The corrective residual can be expressed as the component 
corresponding to the ingoing characteristic

R^^ = ^r^ (3.161)

where /3 is the unknown amplitude. The solution at level n + 1 must satisfy

ü-n = w-n. (3.162)

Therefore with u = (p, pu, pv, E)'^,

(^)riy = w-n (3.163)

+ U3‘*‘^ny = • n (3.164)
[u2 — «(R^ + Rf*^)]^^; + [u” — ct(R3 + R3*^)]ny = [u" — a(Ri + Rf*^)]?!; • n

(3.165)
[U2 - o;(R4 + prl)]ri:, + [ug - «(Rg + prl)]ny = [u” - a(Rj + prl)]w ■ n, (3.166) 

from which, we can easily compute the strength (3 

[u2 — aR^jui + [ug — aRgjUÿ — [u" — aRjJû; • n = a^rlux + a^r\ny

P _ [^2 ~ + [ug — aRgjuy — [u" — OîRijîi; ■ n
ar^nx + argUy — arlw ■ n

3.9.2.4. Wall - Numerical results in ID

A comparison of the numerical results obtaincd with different boundary formulations 
is plotted in Fig. 3.9. The test case is described in section 5.6.1, but here we solve 
the problem in one spatial dimension. The dependence of the Mach number on the 
coordinate is shown. The characteristic and van der Weide’s [vdW98] formulation 
are simple extensions of their steady counterparts, where the approximation of the 
mesh velocity in node i is given by Wt = — x^)/At and the solution it taken
from the n+1 time layer. It corresponds to Euler backward time intégration method. 
The Petrov-Galerkin formulation uses the Crank-Nicholson time intégration method, 
while Paillere’s [Pai95] formulation uses the same RD scheme as for the interior 
éléments. In Fig. 3.9 left, the computation using the one layer N-modified scheme 
described in section 3.6.4 is shown. If the boundary condition does not use the same

— a^r\w • n
(3.167)

(3.168)
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Chapter 3. Residual distribution scheme

Figure 3.9.: ID piston problem: Mach number in the vicinity of the piston at t = 4.
Influence of the different formulation of boundary conditions. Left: One 
layer N-modifles scheme. Right: LDA scheme with mass matrix and 
3BDF time intégration.

time intégration method as the interior scheme, i.e. Crank-Nicholson, a systematic 
error is introduced. In Fig. 3.9 right, results given by LDA scheme from section
3.6.2 with mass matrix and 3BDF time intégration are shown. Also in this case, 
if the time intégration method for boundary conditions and inner scheme does not 
match, the numerical results do not agréé with the theoretical solution.

The formulation of boundary conditions has to be still improved. We hâve shown 
the importance of the choice of the discretization of the mesh velocity and the flux 
évaluation.

3.9.2.5. Free stream

For the free stream boundary conditions nodal values of

^ioo = (p, P^, E)i^ (3.169)

are prescribed. The boundary correction is computed as

R“«=kt^(u-Ui„), (3.170)

with the usual définition. The k matrix is evaluated in the direction of the normal 
to the boundary. For more details about the free stream boundary conditions see 
[Dob02, DRD03a].
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Finite volume scheme

Idea behind the finite volume schemes, i.e. approximating intégral of the divergence 
terms as a contour intégral, has contributed to the development of many numer- 
ical methods, see e.g. [SdBH04]. This part of the work is devoted to the finite 
volume methods as defined in [Krô97], i.e. discretization based on eq. (4.8). This 
discretization will be referred as the finite volume method.

4.1. Introduction

In this section finite volume methods will be considered, which are widely used as
the current state of the art approach [Bar94, Bar03, BO04] for the given problem.
Among the main advantages we can mention:

Accuracy: Second order of accuracy is routinely observed for the method with a 
piecewise linear reconstruction of unknowns.

Shock capturing properties: The use of limiters [Bar94] or the WLSQR [FK02b, 
Fiir04, FiirOfi, FK02a] method gives a non-oscillatory solution even in presence 
of strong shock waves and discontinuities.

Conservativity: The method can converge to the proper weak solution of the con­
servation law (the shock waves are located in the correct position).

Unstructured mesh: The use of an unstructured mesh greatly simplifies treatment 
of complex geometries.

Efficiency and parallel implémentation: The method is quite efficient in terms of 
spent CPU time and proper implémentation gives high parallel speed-up.

For survey of current research on finite volume methods we refer to [Bar94, Bar03,
BO04, BlaOl, LeV02, Krd97].
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D

Figure 4.1.: Finite volume seheme. Computational mesh, the eross dénotés location 
of variables. Left: vertex centered (VC) scheme with dual finite volume. 
Center: cell centered (CC) scheme. Right: Detail of mesh élément for 
3D vertex centered FV scheme. Part of the finite volume inside the 
element ABCD surrounding the node A. The nodes EFG are at the 
mid-sides of the edges, nodes H IJ at the centroids of the faces and node 
K at the centroid of the element.

4.2. Finite volume scheme

The domain of solution fl is covered by a mesh consisting of éléments. We consider 
two classes of FV schemes: cell centered (CC) and vertex centered (VC), see [BO04, 
Krô97]. For the CC method the (finite) volmnes used to satisfy the intégral form 
of the équation are the mesh éléments itself, while for the VC method the finite 
volumes are cells of the dual mesh. Dual cells are constructed in two dimensions 
by connecting the centroids of the mesh éléments with the centers of the edges. A 
similar construction applies in 3D. Note that the location of the variables does not 
necessarily coïncide with the mesh vertices, as discussed later, see Fig. 4.1.

We will consider a linear variation of the approximation of the solution over 
each finite volume continuity of the numerical solution on the boundary of the 
volume is not rcquired. The System of conservation laws (2.1) is to be satisfied for 
every finite volume in the intégral sense

d\i^ ->
^ +V-f^ dx = 0, (4.1)

where f ^ is an approximation of the flux tensor. The application of Gauss-Ostrogradski 
theorem to the convective terms results in

dn = 0. (4.2)

Let us focus on the treatment of the first term. The solution varies linearly inside 
the finite volume at a given time instant, i.e. = Uj + (x — Xj) ■ Vu^. The
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coordinate Xi is the position, where u(a;) = u^. The first intégral is

^i) • j (4-3)

Both U, and Vuj do not dépend on x inside the element, the latter due to the 
linearity of u^’^. Hence

duj
dt

+
dt

(4.4)

where Si is a vector of static moments of the finite volume with respect to Xi and 
/j.{Ei) is the measure of the element Ei, i.e. surface or volume of the element. The 
gradient of the solution inside the finite volume can be expressed as

Vui = 'Y2cij{ui - Uj).
Vj

(4.5)

The summation is performed for ail j within the stencil of a linear reconstruction. 
The intégral is then

It = fi{Ei)^ + S
d{ni Xlvj Cij)

dt Vj

dujCjj
dt

(4.6)

If the reconstruction coefficients Qj do not dépend on the solution, e.g. for the linear 
scheme, the mass matrix can be introduced

It = fi{Ei) + Si
Vj /

duj
dt

-Si
Vj

duj
dt

Vj

O
duj
dt

(4.7)

However, if the reconstruction coefficients dépend on the solution, as is the case for 
schemes with nonlinear weights in the reconstruction or limiters, the mass matrix is 
not constant in time and the time dependence has to be considered.

For steady problems the existence of the mass matrix is not important [Bar94] 
and the mass matrix can be replaced by the diagonal matrix with fJ,{Ei) terms on 
diagonal. However, for unsteady problems, the full mass matrix has to be taken 
into account. The matrix is global and connects ail the éléments involved in the
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reconstruction stencil. The existence of a non-diagonal mass matrix renders the 
method implicit even if explicit time stepping is used. The mass matrix for vertex 
centered finite volume method is discussed e.g. in [VM95, Ven95b, VM96, Bar94, 
BlaOl]. In [VM96] the authors propose a treatment of the mass matrix for the 
unsteady problems with a Runge-Kutta method.

We will adopt a different approach. It is well known, that the static moment 
with respect to the gravity center is zéro. Hence, in eq. (4.4) if Xi are centroids of 
the finite volumes, ail the static moments Si are zéro. The mass matrix becomes 
diagonal with the measure of the volume p{Ei) on the diagonal. For cell centered 
FV Xi are the centroids of the mesh éléments, for vertex centered FV Xi are the 
centroids of the dual volumes, which generally do not coïncide with the position of 
the mesh nodes (see Fig. 4.1).

The contom* intégral in eq. (4.2) involves the flux on the boundary of the finite 
volume. The intégral is approximated using the numerical flux evaluated in Gauss 
points. For the second order approximation, one Gauss point in the centroid of each 
face of the finite volume is needed.

= 0, (4.8)
Vj

where the index j goes over the faces of the finite volume Ei and fîj is the normal 
of the face scaled by the the measme (surface) of the face j. The ulj and urj are 
values of the approximation of the solution at the Gauss point from the left and 
right side of the face of the finite volume. A modification of Roe’s approximated 
Riemann solver [RoeSl] is used to compute the numerical flux F{ulj, n^). For 
this we refer to the references, since it is a very standard approach given in many 
textbooks, e.g. [RoeSl, Tor97, LeV02, GR96].

4.2.1. Linear reconstruction and monotonicity enforcement

The gradient of the numerical solution Vuj in each finite volume is estimated using 
the weighted least square method [Bar94, Bar03]. In 3D it has the form

Efc WikXkVk Y,k '^ik^kZk ^ \ R^ik^k \ a
Efc '^ikXkVk Y.k^ikyl Et WikVkZk Efc '^ikTJk b
Y.k '^ik^kZk Efc WikUkZk Y.k ^ik4 T,k ^ikZk c

\ Y.k^ik^k ^2ik ^ikVk Efe ^ikZk Hk^ik J . ^ .
Y,k f^ikXkUk 
J2k WikVkUk 
Y,k ’^ikZkUk ’ 
Ylk '^ikUk

Vui = (4.9)
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4.2. Finite volume scheme

either with lineax weight
1

Wik =
F* - ^k\

(4.10)

or nonlineax weight (WLSQR or WENO method) [FK02b, Für04, Für06, FK02a]

1
+ \Xi - Xk\'^'

(4.11)

Unfortunately, the System of algebraic équations (4.9) is not necessary well posed, 
and a suitable method of solution has to be chosen [Bar94, Lep04]. We simply 
discaxd the solution and set the gradient to zéro for the matrix with (almost) zéro 
déterminant, otherwise we use Cramer’s rule.

In the case of weight (4.10), the monotonicity of the solution has to be enforced 
using so called limiters. We use Baxth’s limiter [BJ89]. The value of the limiter is 
the largest 4>o for which the following holds

( min(l,^^^) if UL-Ui>0,

4>o=< min(l,^g^) ifUL-u,<0, (4.12)
Il if UL-Ui = 0,

whcre and are maximal and minimal values at centroids of the finite 
volumes neighboring the élément Ei and Ul is the reconstructed value from the 
volume Ei to the Gauss points (before application of the limiter). The gradient 
given by the least square method is then multiplied by the value of the limiter. 
For the System of équations, we apply the least square procedure component by 
component and use the minimal value of the limiter for ail the components of the 
vector of conserved variables.

The schemes using Barth’s limiter hâve considérable convergence problems [Ven95a, 
Bar03]. However, one can apply a simple convergence fix [Del96]. After a certain 
number of itérations no, when the solution is fully developed, we don’t increase 
anymore the value of the limiter in the subséquent itérations

= min('ï>", 4>” ^), for ail n > no- (4-13)

The same fix is applied dming the dual time itération procedure.

4.2.2. Time intégration procedure

The numerical scheme after the semi-discretization can be written as

duj _
(4.14)

79



Chapter 4. Finite volume scheme

where r is the approximation of the convective terms. This is a set of ordinary 
differential équations. We use different strategies to solve the problem. For steady 
problems we use either Euler explicit forwaxd

— u”
■ AI ■ =

(4.15)

or implicit backward (with linearization), see équation (3.140), and always local 
time-stepping. For unsteady problems we use either a two or three step Runge- 
Kutta method [GS98, GSTOl, Shu99]. The optimal (in the sense of the largest 
allowed time step) second order TVD Runge-Kutta method is given by

= u"-F Atr([7") (4.16)

u"+i = lu" +
^ ^ ^

(4.17)

with the stability limit CFL = 1. The optimal third order TVD Runge-Kutta 
method is given by

= u"-f-Atr(f/") (4.18)

u(2) = -k
4 4 4

(4.19)

U-+1 = lu" + + lAtr(C/(2))
O O O

(4.20)

with the same stability limit. For the simulations with larger time step we use the 
three point backward method (3BDF)

—^ Y, + a"u." + (4.21)
i&E ^ '

with coefficients (3.80). For the comparison with the RD schemes with the Crank- 
Nicholson intégration schemes the same scheme was also implemented for the FV 
method

u:n+l

■^r^ = -5(r((7") + r(17"«) (4.22)

Both the 3BDF and CN schemes are solved in dual time in the same manner as for 
the RD schemes, see section 3.8.

4.2.3. Stability criterion

For explicit time-integration the time step restriction is governed by a CFL condi­
tion. In fact, it is very easy to dérivé in ID for a scalar linear advection équation. 
The following dérivation will be based on positivity of the first order upwind scheme.
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4.2. Finite volume scheme

Consider a scalar advection équation

du -*
— + A(x) • Vu = 0. (4-23)
(JL

The finite volume scheme with constant reconstruction and with explicit Euler time 
intégration reads

n+l — U-

At
Uke1 fik) = 0,

*=1

(4.24)

where k is the index of surrounding faces, Sk is the surface of face k and kg is the 
index of éléments at the other side of face k. The numerical flux in this case is

f , U/j)
if Afc • n;t > 0 

if Xk-fîk < 0.

This flux can be written as

f (Uj, U/jg , Tlk ) ■ 2 (Uj T Uk^ ) Xk ■ ^k “1“ 2 ^ke ) I ^k ' ^k \

(4.25)

(4.26)

Plugging this numerical flux into équation (4.24) one get

u+l n / 1 1 \

+ Y. ( •5*3W + • s* + 3W - »Ü|Â. ■ StI ) = 0 (4.27)
A:=l ^

Gathering terms containing Ui and joining summations we obtain

= <-E
fe=l

AtSk

A^i)
{Xk-fik) ui (4.28)

The terms in the second bracket are ail positive. The first term on the RHS is 
positive

At
1-

under the time-step restriction

At < KEi)

YIk=i Sk{Xk ■ Ufc)+
(4.30)

The TVD Runge-Kutta schemes used in this work hâve the same stability limit 
as the Euler forward scheme [Shu99, GS98, GSTOl]. The Crank-Nicholson scheme 
is positive for CFL < 2. The stability condition for higher order schemes with linear 
reconstruction is more restrictive [Bar03], see Tab. 4.1.
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Element shape dimension CFL number

Segment 1 1/2

Triangle 2 1/3
Parallelogram 2 1/2

Tetrahedron 3 1/4

Table 4.1.: Stability restriction for Euler forward time intégration with linear recon­
struction for different element shapes [Bar03].

4.3. Extension of the scheme for computations on 
moving meshes

We start from the combination of the équations (2.22) and (2.25),

uûJ] • dn = 0. (4.31)

In agreement with the development described in section 3 and équation (4.8), the 
semi-discrete équation is

dp{E)ui
dt

+ '^F{uLj,URj,nl^,ûr) = 0.
Y vj

The numerical flux is given by Roe’s Riemann solver [RoeSl]

F(ui, ujj, n, w) = 1 (f (ul) + Î(uh) - À(ur - ui)) .

(4.32)

(4.33)

The extension for the ALE flux is rather simple, the eigenvalues of Jacobian A are 
given by

AAle = -w-n (4.34)

and the flux f is replaced by its ALE counterpart (2.21).
A question is, which value of the approximation of the mesh velocity and the 

geometry (normal and surface of the mesh face, n“) shall be taken, the time-level 
a = n, a = n + loT between? AU schemes presented in this thesis are chosen 
such that the approximation of the solution exactly obeys équation (2.29), i.e. the 
géométrie conservation law, see section 3.4.5, is exactly satisfied. Therefore, the 
choice has to be made in accordance with the time intégration scheme.

4.3.1. Crank-Nicholson time intégration scheme

The simplest extension is such that the geometry is taken as the average between 
time level n and n -1- 1 and the mesh velocity as the mean velocity between the two
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4.3. Extension of the scheme for computations on moving meshes

levels

-.n+l/2n.

^+1/2
1 _

Âi ■

(4.35)

(4.36)

4.3.2. Three points backward scheme - Scheme A

This scheme was introduced by [KF99] and after being proven as robust and accu- 
rate, it is presented in many publications of the group of C. Farhat [FGGOl, GGF02, 
GGF03, GF03, FGB03, Far04]. The scheme is an extension of the three point back­
ward scheme. The mesh velocity is computed from time layers n — 1, n and n 4- 1, 
where within eaeh time slab two Gauss points are used. The
geometry is taken such that the scheme respects the géométrie conservation law.

C3 — C4 —
an—1

2r
ni = -h c+5" fT
n2 = c+5'^+^fr+^ + c_5"7T 

na = n" -f-
fîi = c+5'"fT + c_5”-^n"-^ 

fij = Ci2(ni -I- fl2) + C34(n3 -1- fîi)

S=\\nA\

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)
(4.42)

(4.43)
(4.44)

(4.45)

(4.46)
(4.47)

and

W ■ Tlj = Cl
(^+1 _ m (f™+l - f") • H2

Ar
+ C2-

C3
(f" -

AP-
■ «3 , (f^
-------- h C4-----

) • n4
AP-

(4.48)

with a and r given in (3.79), where S is the surface of the face. For two dimensions 
only one Gauss point would be needed for the évaluation of the velocity, however 
we use always this form of the scheme.
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Chapter 4. Finite volume scheme

Figure 4.2.: Paxallel speed-up. Onera M6 wing. WLSQR (WENO) reconstruction. 
Left: explicit scheme. Right: implicit scheme, CFL = 1000.

No. of processors Explicit Implicit
Speedup Efficiency Speedup Efficiency

1 1 100 % 1 100 %
2 2.1 105 % 1.9 96 %
4 4.2 105 % 3.8 96 %
8 8.0 100 % 7.2 91 %
12 11.6 96 % 10.7 89 %
21 19.4 92 %

Table 4.2.: Parallel performance for Onera M6 test case. FV CC scheme, WLSQR 
reconstruction. For implicit method CFL = 1000.

4.4. Parallel implémentation

The computational domain is split in (almost) equal size sub-domains. The problem 
is then distributed to different processors in the computational cluster. The data 
are interchanged with help of the MPI library. Attention must be paid to overlap 
computations and data exchange.

To achieve a good parallel scalability of the linear solver, entries in the matrix 
hâve to be suitably numbered. The numbering of the matrix entries can lower 
the bandwidth and contribute to higher accuracy of the block ILU preconditioner. 
Subsequently, the GMRES method converges faster.

The problem of the réduction of the matrix band is known to be NP complété. 
Hence, only approximate algorithms are used. The conclusive solution is still an 
open problem [Meu99, Bar94, Ski98]. We hâve tcsted the Cuthill-McKce [CM69] 
algorithm (also in its reverse version [Geo71]) and the multilevel nested dissection al-
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Mesh ordcring method efficiency

Cuthill-McKee [CM69] 91 %
Reverse Cuthill-McKee[Geo71] 90 %

Mesh generator (original numbering) 86 %
METIS [Met06, KK99] 67 %

Random 64 %

Table 4.3.: Impact of the mesh numbering on parallel performance of the implicit 
solver, 12 processors. FV2 WENO scheme, CFL = 1000.

gorithm [KK99]. The latter is implemented in the METIS [Met06] software package. 
For comparison, we hâve also numbered data randomly and as they were numbered 
originally by the mesh generator.

The parallel efficiency is defined as

/Ic _ ^CPU
77IL 6qpu

where is the CPU time for solving the problem for sequential computation and
^CPU CPU time spend to solve the same problem in parallel on n processors.
The time is measured with the standard MPI_Wtime() routine.

The matrix fill patterns are plotted in Fig. 4.3. The Cuthill-McKce (CM) and 
Reverse Cuthill-McKee (RCM) gives the same filling patten, while the RCM has 
lower fill-in for the LU décomposition. The performance results are plotted in Tab.
4.3. One can observe relatively high dependence of the parallel scalability on the 
mesh numbering. Using the RCM algorithm on a 12 proccssor cluster one gains a 
speedup of 11 compared with 8 for the multilevel nested dissection algorithm. The 
advantage of a proper choice of the mesh rcnumbering algorithms is clear.

To solve the sparse linear System, we use the PETSc library [PET07]. Unfortu- 
nately, a node rcnumbering algorithm for distributed matrices is not implemented 
there, at least in the current version 2.3.1.

4.5. Boundary conditions

The far field boundary conditions are implemented using the ghost cell approach. 
The cell next to the bormdaiy face is created and ail the components of the vector 
of unknowns are prescribed. A higher number of prcscribed variables than can 
be determined from the theory of characteristics does not pose problems, because 
relevant values are selected by the Riemann solver.

For the wall boundary conditions the ALE flux (2.21) is prcscribed on the wall 
boundary, i.e. the velocity perpendicular to the wall is equal to the normal wall

(4.49)
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Chapter 4. Finite volume scheme

Figure 4.3.; Fill patterns of the matrix for Onera M6 wing 5 x 306843 DOF, 3 pro- 
cessors. Top left: natural ordering, right: random reorder. Bottom 
left: reverse Cuthill-MeKee [Geo71], right: multilevel nested dissection 
algorithm [KK99].
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velocity and the pressure, the density and the velocity parallel to the wall are ex- 
trapolated from the adjacent cell.
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Chapter 5.

Comparison of some FV and RD 
schemes

In the course of this thesis we shall develop and test various numerical schemes. The 
different tests cases will be presented in this chapter. AU the tests are relatively 
simple to examine spécifie aspects of the numerical scheme.

In this section we shall investigate Finite Volumes (FV) schemes both in vertex 
centered (VC) and cell centered (CC) settings in comparison with Residual Distri­
bution (RD) schemes. Some comparisons of CC FV, VC FV and RD were published 
in [Csi02, PPRN05, AbgOl, WK98, SR95, Roe90, Pai95, vdW98, DD05b, DD05a, 
CDP02, WooOl, MW04]. To perform such a comparison one has to overcome a 
number of technical problems

• Cell and vertex centered methods employ different number degrees of freedom 
for the same mesh.

• The methods can significantly differ in the computational complexity.

• The methods hâve to be available with similar level of development (i.e. both 
state-of-the-art FV and RD codes).

• Formulation and implémentation of the boundary conditions can significantly 
affect the solution.

Up-to now, there is no wide agreement on the definite superiority of one tj^e of 
method.

In the first part of this chapter we will compare theoretically the finite volume 
and residual distribution schemes using a ID modified équation. We will illustrate 
the properties derived from the modified équation on a simple numerical test case. 
In the subseqnent chapters we will systematically examine different aspect of the 
numerical schemes on a carefully chosen set of test cases. The test cases are sorted 
from easy to more complex: scalar linear équation, then scalar nonlinear équation 
up-to the System of nonlinear équations; from steady to unsteady flow; from smooth 
solution to discontinuons solution. We will start with simple, steady scalar linear
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équation with smooth data (section 5.3.1). We perform convergence studies for ail 
the schemes appearing in this thesis to check its accuracy and rate of convergence. 
The study is performed in two and three spatial dimensions to examine différences. 
Then, the schemes axe tested on 2D inviscid Bmgers équation to examine their 
behavior in shocks, see section 5.3.2. Préservation of maximum properties (under 
and over-shoots) is summaxized in table 5.4. This complétés scalar steady test cases. 
Accmacy of the unsteady schemes is tested on a 2D circular advection problem in 
section 5.3.3. Extensive study of the influence of the scheme and time discretization 
is performed. The convergence rates are plotted in Tab. 5.5. The main topic of 
the first part of the thesis is the extension of the residual distribution schemes for 
computations on moving meshes. The accuracy of the schemes is examined in section 
5.3.4. The second order of accuracy of the LDA scheme is confirmed, as well as the 
higher accuracy in compaxison with state of the axt finite volume schemes. This 
set of test cases examine the behaviox of the schemes for scalax équations, both for 
steady and unsteady problems and the behavior in shocks. Next, the schemes axe 
examined for the System of Euler équations. Considering steady problems, we first 
focus on the accuracy of the scheme in smooth parts of the solution and near the 
Wall. Sub-critical flow past circular cylinder was selected, see section 5.4.1. This 
allows to check also higher order linear schemes, which might fail to compute flows 
with strong shocks. The section related to the steady solution of the Euler équations 
is concluded by a well known and technically important test case, inviscid flow past 
Onera M6 wing, see section 5.4.2. This test case nicely demonstrates the ability to 
capture weak shock waves on a simple 3D geometry and examines the accuracy of 
the scheme for flow with a stagnation line (on the leading edge of the wing). Finally, 
a vortex convection test case gives an idea of the performance of the schemes for 
smooth unsteady flow, for the System of Euler équations. To conclude, we test the 
schemes on a set of test cases involving moving meshes. We hâve selected a test 
case involving compression of gas inside a piston cylinder. We start again with a 
smooth solution (see section 5.6.1) and then test the schemes on flow with shocks 
(see section 5.6.2).

5.1. ID modified équations

In this section we compare the finite volume scheme with lineax reconstruction and 
the LDA scheme of Ferrante and Deconinck [FD97], both equipped with the Crank- 
Nicholson time intégration procedure. We consider ID unsteady scalar advection 
équation

du du
(5.1)

with a = 1.
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5.1.1. Finite volume scheme

The upwind finite volume scheme with Crank-Nicholson time integrator has the form

I n+1- U?
+ ôÂT - /i-1/2)" + ôx; (/»+i/2 - /t-i/2)"^" - 0.At 2Ax

The numerical fiux for the method with linear reconstruction is

fi+ll2 — ani+i/2,L, — U{ +
du^
dx

Ax

with
du^
dx

'Î^Z+I ^i—1
2Âx '

The numerical flux is then

fi+ll2 ® T ^(^i+1 1)^ •

(5.2)

(5.3)

(5.4)

(5.5)

The whole scheme is 

1 a- U?
At

+
2Ax <-«^i + 4(«IVi-<-“-i+<2)

1 a
^ 2Âx

U,n+1
+ i w+v - «r' - <i‘+<i’)

1 ,n+l n+1 ,n+l ,n+l'\ = 0, (5.6)

which is Fromm’s space discretization combined with Crank-Nicholson time intégra­
tion. We take the Taylor expansion up to the fourth order

u{t, x) = u(f", Xi) + (t- r)ut + (x - Xi)Ux
Xi,t"

+ + {t~ - Xi)utx + ^(a: - Xi)‘^Uxx
1
2'

+ ^{t- t'^)^Uut + ^{t- C)^(x - Xi)uttx + J(^ - t"'){x - Xifutxx + Xifu^xxx
6 2 2 O

+ ^(i - “ t")^(x - Xi)utttx + \{i- - Xi)‘̂ uttxx

g ^ )(^ ^txxx ~l” 2^ ^xxxx + C>(A^^Ax^) (5.7)

and plug it into the scheme. In the subséquent computation, the terms 0{At^, Ax^) 
are dropped. After simplification we get

Ut + aUx -h ^ At utt + \ aAt Utx + 1/6 At^ Uut + 7 aAt\ux ~ aAx'^u^xx 
2 2 4 12

T 777 4~ 777 ^At Utttx 777 ^^X At Utxxx T ~ uAx Uxxxx 6- (^‘^)24 12 24 8
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Now, the higher order time dérivatives hâve to be removed. We follow the procedure 
of [WH74]. To remove Uu term, we dérivé the équation (5.8) by t and subtract from 
the équation (5.8) its At/2 multiple. Note, that we don’t remove the higher order 
dérivatives using équation (5.1), but équation (5.8). The resuit is truncated to the 
fomth order dérivatives. The procedure is repeated, until ail the higher order time 
dérivatives are removed. The modified équation is then

Ut + aUx =

which can be written as

Ut + aUx

^ ^ ^ f^xxx g uAx Uxxxxt

aAx^
12 (1 - CFL^) Uxxx

1
8

aAx^u^

where

is the CFL number.

CFL =
aAt
Ax

(5.9)

(5.10)

(5.11)

5.1.2. LDA scheme of Ferrante and Deconinck

The ID LDA scheme after summation of ail the contributions (3.90) is

1 a
12At 2 Ax

+

+
1 a

12At 2 Ax

2 la 

) <-i + (-

___-___
12At

+ 1 a
SAt 2 Ax

0. (5.12)

We take Taylor expansion (5.7) and insert it to the scheme. After simplification we 
get

1a 1 a 1 a ^ 1aUt + aUx + -Atuu+ \--Ax + -AtajUtx--Ax aUx

1 1
6

6

4 4
1

+ - At uttt + -7 Af Ax + - At a Uux + -7 Ax At a + - Ax Utxx
1 1

6

+ 7 Ax^aUxxx + 7^ At^Utut + (-^ AfAx + At^a ) Uutx12 12

+ {^At Ax^ - ^ At^Ax Uuxx + ^ Ax^At a^ Utxxx~

—— Ax uUxxxx 0. (5.13) 
24
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Again, we remove the high order time dérivatives adding a linear combination of 
the dérivatives of this équation. After simplification and truncating the higher order 
dérivatives, we get

Uf aUx — aAx^u 
24 XXXX’

This can be written similaxly to (5.10)

Ut + aUx = aAx^ ^xxx — aAx^u 
24 xxxx *

(5.14)

(5.15)

5.1.3. Comparison and conclusions

The both schemes are clearly second order accurate, since the leading term in front 
of the higher order dérivatives is of order Ax^. Both schemes contain only fourth 
order dissipation {uxxxx)i where the LDA scheme has thrce times lower dissipation 
than the FV. The dissipation error is of order Ax^.

The dispersion error for the LDA scheme is

Alcra") , (5.16)

while for the FV scheme is

The absolute value of the dispersion coefficient |C'FL^/12| and |(1 — CFL"^)/12\ de- 
pending on the CFL numbcr is plotted in Fig. 5.1. For CFL < \Jl/2 ^ 0.7 the LDA 
scheme has lower dispersion error than FV scheme. For the CFL number CFL = 1 
the FV scheme has zéro third order dispersion. Since the coefficient in front of the 
dissipation is Ax^, the scheme become third order accurate.

The problem is solved on a domain of unit length for time t E [0,1]. Periodic 
boundary conditions are considered. Hence, the initial condition consisting of a sine 
puise or top hat is cqual to the solution at time t = 1. It is plotted by the full 
line in Fig. 5.2. The numerical solution obtained by the above-described schemes 
for a mesh consisting of 100 nodes and time-step corresponding to CFL = 0.8 and 
CFL = 1.5, is plotted in Fig. 5.2. Looking at the FV solution for CFL = 0.8, the 
dispersion coefficient is positive and the wiggles appear right to the discontinuity. 
The dispersion coefficient for the LDA scheme is négative for arbitrary CFL number, 
which corresponds to the presence of the wiggles left to the discontinuity. For the 
CFL number CFL =1.5 the dispersion coefficients of both the schemes are négative 
and comparable magnitude (—0.187 for the LDA scheme and —0.104 for the FV
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Figure 5.1.: Absolute value of the dispersion coefficient depending on the CFL 
nuraber for FV scheme with lineax reconstruction and no limiter and 
LDA scheme with mass matrix [FD97]. Both schemes uses the Crank- 
Nicholson time intégration.

scheme), which clearly corresponds to the shift of the wiggles to the left of the 
discontinuity. The higher absolute value for the LDA scheme places the peak of the 
wiggle for the LDA scheme left to the peak for the FV scheme.

We can conclude, that both the schemes hâve dispersion error scaling as Ax"^ 
giving the second order of accuracy. For the LDA scheme, the dispersion coefficient is 
négative and of the same order of magnitude for the higher CFL numbers, rendering 
the group velocity lower than the advection velocity. For time-step CFL = 1 the FV 
scheme has zéro dispersion error and the scheme is third order accmate; for lower 
CFL numbers the dispersion coefficient is positive. The dissipation error scales as 
Ax^ and the dissipation term is fourth order dérivative. The dissipation of the LDA 
scheme is three times lower than for the FV scheme.

5.2. Meshes for common test cases

The numerical methods developed and evaluated in this thesis are intended for 3D 
industrial-type simulations in complex configurations. The automatic and reliable 
mesh génération is today biggest bottleneck for this kind of computations [Ath05]. 
It is still difficult to obtain uniform mesh quality and optimal mesh connectivity, 
especially in the 3D case [Ath05, DDAOO, Ric05]. The tests of the numerical schemes 
should use similar meshes as those available for the industrial simulations. For this 
reason, Weatherill [WH94] type of meshes are used. This kind of triangulation has 
roughly the same size of éléments, but the connectivity of the mesh is changing (see 
Fig. 5.3). The meshes in two dimensions are generated by the mesh génération plug- 
in of Tecplot [Tec06] or the software developed in the AMeGOS project [AMVDOO].
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Figure 5.2.: ID advection équation, a = 1, periodic boundary conditions, solution 
at t = 1. FV scheme with linear reconstruction without limiter; LDA 
scheme with mass matrix [FD97]. Both schemes uses Crank-Nicholson 
time intégration. Left: CFL = 0.8, Right: CFL = 1.5.

Meshes generated by the ICEM CFD software [ICE06] are used in three dimensions. 
The latter package is considered today’s state of the art software for industrial mesh 
génération.

For the scalar test in 2D we use a square domain, triangulated with Weatherill type 
of triangulation, as in Fig. 5.3. One can see the nodes with different connectivity 
in the figure. The reference size is one over the number of éléments along the side, 
in this case h = \jl. To enable comparison of the methods with different number 
of degrees of freedom, i.e. cell centered and vertex centered methods, we define 
équivalent mesh spacing

^ball (5.18)

where is the diameter of circle with surface Si, with *

* DOF'
(5.19)

Surface of the whole computational domain is denoted by /x(D) and DOF is the 
number of degrees of freedom in the domain. Equation (5.18) is modified to

^ball ^ (5.20)

in three spatial dimensions.
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0
0 0.25 ^ 0.5 0.75 1

Figure 5.3.: A unit square domain triangulated with Weatherill type mesh used for 
test problems, h = 1/7. One can observe nodes of different degree. 
Nodes of degree 4, 5, 6, 7 and 8 are emphasized. (See [Ric05].)

5.3. Scalar problems
This set of tests is chosen to examine different aspects of the numerical schemes, 
namely accuracy in smooth parts of the solution (estimated by the convergence 
studies) and the behavior in the shock. First, we test steady schemes, then unsteady 
schemes and finally the schemes for computations on moving meshes.

5.3.1. 2D and 3D steady circular advection

As the first test we will show performance of the schemes on the 2D steady circular 
advection problem introduced in section 2.3.1.2, page 25, with four periods of a 
sinus function on the y = 0 boundary. We shall study the cell-centered (CC) finite 
volume schemes with constant and linear reconstruction with or without limiter, 
vcrtex centered (VC) schemes with the same reconstructions and the RD N, LDA 
and N-modified schemes. Part of this section was published in [DDF06].

The domain of solution is the unit square and we solve the équation (2.1) with 
flux given by (2.30). For y = 0 Dirichlet boundary condition are prescribed

u{x) = sin^(47ra;), (5-21)

and for a; = 1 condition tt(y) = 0. For the other two boundaries no boundary 
condition is used, as it is given by theory of characteristics [GR96, LeV99, LeV02, 
Fei93, FFS03]. As the initial condition, we prescribe u°{x,y) = 0.
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5.3. Scalar problems

Figure 5.4.: Approximation of the exact solution of the 2D circulax advection prob- 
1cm on grid h = 1/40.

The analytical solution is the function prescribed as the Dirichlet boundary con­
dition rotated around coordinate origin, i.e.

u{x,y) = sin^(47rmin(l,r)), r = y/x'^ + (5.22)

The exact solution approximatcd by the piecewise linear function is depicted in Fig.
5.4.

Once the analytical solution is known, we can perform convergence studies for ail 
the schemes. The D’ norm of error is computed as

err = |u - u^\Pdx Ri ^ p{E)\u{xj) -Uj\P. (5.23)

for the CC FV scheme and

||erT||z,P ~ (5.24)

for the VC FV and RD schemes.
As the first resuit, we plot the solution and the error along the outlet of the domain 

(for the boundary rr = 0), for the équivalent mcsh with spacing = 1/95 (Fig.
5.5, 5.7, 5.9), i.e. h = 1/55 for the cell centered finite volume and h = Xjll for vertex 
centered finite volume and residual distribution schemes. The N scheme is clcarly 
more accurate than both finite volume schemes with constant reconstruction, see 
Fig. 5.5, 5.6, and the cell centered scheme is more accurate than the vertex centered 
scheme. The order of accuracy lower than first for the FV schemes, see Tab. 5.1, is 
cxpected, as it is shown in [KRW96, Krô97]. In the case of finite volume schemes with
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Chapter 5. Comparison of some FV and RD schemes

lineax reconstruction, the accuracy is similar in terms of the and norra, sec Fig.
5.8. The error in the maximal norm is higher for the cell centered FV scheme than 
the vertex centered schemes. The LDA scheme is clearly the most accurate in ail the 
norms. The order of accuracy estimated from the and norms is almost two 
for ail the schemes. The LDA scheme shows almost second order accurate behavior 
even in the L°° norm, see Tab. 5.1, while the rate of decrease of the maximal error 
is doser to one for the finite volume schemes. The situation is quite different for the 
nonlinear schemes, see Fig. 5.9, 5.10. The vertex centered scheme is more accmate 
than the cell centered FV, it gives second order of accuracy in and norms. 
This could be explained by the better behavior of the limiter on dual volume than 
on the triangular élément. The N-modified scheme is the least accurate. However, 
the order of accuracy estimated from the V- and norms for cell centered FV and 
N-modified scheme is similar. The convergence studies were performed also for the 
B scheme. The error is very close to the error of the N-modified scheme, we don’t 
plot convergence study here.
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Scheme order order L°° order

CC FV Const. 0.76 0.72 0.60
VC FV Const. 0.58 0.54 0.40
N 0.75 0.71 0.59

CC FV Linear 2.04 1.92 0.90
VC FV Linear 1.99 1.95 1.39
LDA 2.16 2.11 1.79

CC FV Barth 1.64 1.60 0.96
VC FV Barth 2.00 1.95 1.47
N-mod 1.66 1.54 1.21

Table 5.1.: Comparison of orders of accuracy for 2D steady circular advection prob- 
lem

Scheme order order L°° order

CC FV Const. 0.87 0.80 0.72
VC FV Const. 0.65 0.57 0.44
N 0.75 0.67 0.56

CC FV Linear 2.21 2.10 1.05
VC FV Linear 1.51 1.38 1.20

LDA 2.45 2.30 1.90

CC FV Barth 2.33 2.29 1.14
VC FV Barth 1.52 1.37 1.21

N-mod 1.74 1.64 1.37

Table 5.2.: Comparison of orders of accuracy for 3D steady circular advection prob- 
lem
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Chapter 5. Comparison of some FV and RD schemes

Figure 5.5.: 2D steady circulax advection problem. The solution along boundary 
a: = 0 and the error for N scheme and the schemes with constant recon­
struction.

Figmc 5.6.: 2D steady circulax advection problem. Schemes with constant recon­
struction and the N scheme. Norm of error vs. mesh spacing.
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-m------ LDA
------ CC2

«------ VC2

-0.04 -

0.4 y 0.6

Figure 5.7.: 2D steady circulai advection problem. The solution along boundary 
X = 0 and the error of FV schemes with the linear reconstruction and 
LDA RD scheme.

;,ball

Figure 5.8.: 2D steady circulai advection problem. Schemes with linear reconstruc­
tion without limiter and LDA scheme. Norm of error vs. mesh spacing.
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N-modif 
CC Barth 
VC Barth

Figure 5.9.: 2D steady circular advection problem. The solution along boundary 
a: = 0 and the error of FV schemes with Barth’s limiter and N-modified 
RD scheme.

Figure 5.10.: 2D steady circular advection problem. Finite volume schemes with
limiter and N-modified scheme. Norm of error vs. mesh spacing.
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For the second test, we solve scalar équation

ut + (-y,x,0) ■Wu = 0 (5.25)

on a domain fl = [—1,1] x [0,1] x [0,1], with the initial conditions = 0 and 
boundary conditions

_( cos^[7rmin(0.5,1.4||:r —(0.5,0,0.5)11)] on a; > 0, y = 0,
I 0 on the rest of inflow boundary.

(5.26)
The similar problem was solved in [Lep04], The différence between 2D and 3D case 
lies in the fact, that there is roughly 6 times more éléments than nodes for 3D, while 
only twice more éléments in 2D and bigger variations in the mesh connectivity. A 
sequence of meshes was generated, with the mesh parameters given in Tab. 5.3.

The solution using the FV schemes with constant reconstruction and the N scheme 
is plotted in Fig. 5.12. The situation is different than for the 2D case; the cell 
centered finite volume is slightly more accurate than the N scheme. As in the 2D 
case, the vertex centered finite volume is the least accurate scheme. The finite 
volume schemes with linear reconstruction exhibits similar behavior, see Fig. 5.13. 
The cell centered scheme is more accurate than the vertex centered. The LDA 
scheme is cleaxly most accurate considered scheme. The convergence order of the 
LDA scheme estimated from the and norm of error substantially exceeds 
second order accuracy, while in the L°° norm is almost second order accurate, see 
Tab. 5.2, pg. 99. The cell centered finite volume scheme exhibits second order 
accuraeyin the and norm, while the estimated order for the vertex centered 
scheme is somewhat lower. Finally, the N-modified scheme is more accurate than 
the vertex centered finite volume, while the cell centered finite volume gives the 
most accurate results, see Fig. 5.14. Estimation of convergence order is reported in 
Tab. 5.2.

The conclusions from the 2D and 3D circular advection test case: the LDA is 
the most accurate among ail the considered schemes. The advantage of the other 
RD schemes is not so well pronounced - N scheme performs similarly to the cell 
centered scheme in the 3D case and the N-modified scheme is the least accurate 
among the nonlinear schemes in the 2D case. In 3D case the vertex centered finite 
volume scheme is the least accurate in ail modifications.
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Id # nodes # éléments cell centered vertex centered

mlOOO 5248 27781 0.0258 0.0449
m0820 9735 52004 0.0209 0.0366
m0670 16612 91962 0.0173 0.0306
m0544 29984 168565 0.0141 0.0251
m0444 55823 317535 0.0114 0.0204
m0369 96714 555022 0.0095 0.0170
m0303 175959 1010467 0.0077 0.0139

Table 5.3.: 3D rotation problem; mesh parameters.

Figure 5.11.: Steady 3D circular advection problem. Sketch of the situation.
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5.3. Scalar problems

Figure 5.12.: 3D steaxly circulax advection problem. Schemes with constant recon­
struction and the N scheme. Norm of error vs. mesh spacing.

Figure 5.13.: 3D steady circulax advection problem. Schemes with linear reconstruc­
tion without limiter and LDA scheme. Norm of error vs. mesh spacing.
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Figure 5.14.: 3D steady circular advection problem. Finite volume schemes with 
limiter and N-modified scheme. Norm of error vs. mesh spacing.

5.3.2. 2D Burgers équation

We solve the 2D inviscid Burgers équation

du 1 du“^ 
dt ^ 2 dx

du
(5.27)

on the square domain Çl = [0,1.5] x [0,1.5] with boundary conditions on the boundary
y = 0

u = <
1.5 

-0.5 
1.5-2x

for X < 0 

for X > 1 

elsewhere
(5.28)

and U = 1.5 for x = 0 and u = —0.5 for x = 1.5.
The problem was solvcd on a mesh with 2900 DOF (giving h = 1/39 for VC 

FV and RD schemes and h = 1/28 for CC FV schemes). The solution isolines 
and eut along Unes y = 0.1 and y = 1 are plotted. The symbols on the Unes 
correspond to the cross-section of cuts with the mesh lines. AU the FV schemes 
with constant reconstruction and the N scheme give a strictly monotone solution. 
Among the linear positive schemes, the N scheme clcarly gives the most accurate 
results, see Fig. 5.15, 5.16, 5.17. The resolution of the CC and VC schemes with 
constant reconstruction is comparable, with CC results slightly more accurate than 
the VC. The cell centered scheme with linear reconstruction without limiter gives
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5.3. Scalar problems

Scheme Maximum Minimum Overshoot Undershoot

Exact 1.5 -0.5

CC FV Const. 1.5 -0.5
VC FV Const. 1.5 -0.5

N 1.5 -0.5

CC FV Linear 1.8611 -0.9657 0.3611 -0.4657
VC FV Linear 1.8240 -0.88325 0.3240 -0.3832

LDA 1.8813 -0.7385 0.3813 -0.2385

CC FV Barth 1.5 -0.5
VC FV Barth 1.50043 -0.50004 0.000439 -4.99 • 10-^

N-modif 1.5 -0.5

Table 5.4.: Maximal and minimal values in the domain for the 2D Burgers problem

less accmate results than the VC and LDA scheme, see Fig. 5.18, 5.19, 5.20. The 
higher accuracy of the LDA scheme can be observed namely on the région of steep 
gradient, where the shock forms. The solution is comparable in terms of overshoots 
and undershoots. Finally, the nonlinear schemes, see Fig. 5.21, 5.22, 5.23: the N- 
modified scheme gives solution similax to the VC FV scheme with Barth’s limiter. 
The différence lies mainly in the wiggles in the fan région, for discussion see e.g. 
[AbgOG]. The CC scheme with Barth’s limiter gives the least accurate results. The 
monotonicity of the results can be judged from Tab. 5.4 and the eut plots.
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Figure 5.15.: 2D Burgers équation. CC FV with eonstant reconstruction. Isolines 
of the solution and the eut along y = 0.1 and y = 1 Unes.

Figure 5.16.: 2D Burgers équation. VC FV with eonstant reconstruction. Isolines
of the solution and the eut along y = 0.1 and y = 1 Unes.
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5.3. Scalar problems

Figure 5.17.; 2D Burgers équation. RD N scheme.
eut along y = 0.1 and y = 1 Unes.

Isolines of the solution and the

Figinre 5.18.: 2D Bm-gers équation. CC FV with lineax reconstruction without lim­
iter. Isolines of the solution and the eut along y — 0.1 and y = 1
lines.
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Figure 5.19.: 2D Burgers équation. VC FV with linear reconstruction without lim­
iter. Isolines of the solution and the eut along y = 0.1 and y = 1 
Unes.

Figure 5.20.: 2D Burgers équation. RD LDA scheme. Isolines of the solution and
the eut along y = 0.1 and y = 1 Unes.
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5.3. Scalax problems

Figure 5.21.: 2D Burgers équation. CC FV with linear reconstruction and Baxth’s 
limiter. Isolines of the solution and the eut along y = 0.1 and y = 1 
Unes.

Figure 5.22.: 2D Burgers équation. VC FV with linear reconstruction and Baxth’s
limiter. Isolines of the solution and the eut along y = 0.1 and y = 1
lines.
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Figure 5.23.: 2D Burgers équation. RD N-modified scheme. Isolines of the solution 
and the eut along y = 0.1 and y — 1 lines.

5.3.3. 2D unsteady circular advection

As the first test case involving time dépendent simulation, the circular advection is 
considered. The problem is solved in space-time domain D x 7, D = [—1,1] x [—1,1], 
I — [0, 27t]. As the initial condition the cosinus profile was prescribed

u^{x) = 1 +
cos(47t min(d, 1 /4))

d=||f-(-0.5,0)11. (5.29)

The problem was solved on a sequence of grids with spacing h = 1/20, h = 1/28, 
h = 1/39, h = 1/55, h = 1/77, h = 1/108, h = 1/152, h = 1/214 and h = 1/302. 
The time-step was chosen At = 0.005h, giving the maximal CFL number in the 
domain about one. We hâve performed the convergence studies, with the norm of 
the error in space-time domain

||e^||Lp(nxt) = j [î/(f, t) - u^{x, t)]P df dt

~ p/y^ At'^p{Vi)[u{xi, P) - u^^{xi, t")]P, (5.30)
Un i

where p{Vi) is the measure of the volume associated with the point i, i.e. smface of 
the triangle for cell centered FV and surface of the dual volume for vertex centered 
FV and RD schemes. The L°° norm is the maximal error in the whole space-time 
domain.

112



5.3. Scalar problems

Figure 5.24.: 2D unsteady circular advection problem. CC FV scheme with lineax 
reconstruction without limiter; comparison of time-stepping schemes

First, we examine different time-stepping schemes, see Fig. 5.24. Both second and 
third order Runge-Kutta (RK) methods gives similar accuracy, slightly higher for 
the third order RK scheme. The implicit 3BDF time stepping scheme gives much 
higher aceuracy than both Runge-Kutta schemes. Comparison of the schemes with 
linear reconstruction and the LDA scheme is plotted in Fig. 5.24. The LDA is again 
the most accurate scheme. The VC is about the same accurate as the CC scheme; 
different time intégration procedme also has to be taken into the account. Finally 
for nonlinear schemes, see Fig. 5.26, the VC is less accurate than the CC scheme, 
the N-modified is the least accurate one. Similar conclusions can be drawn from 
Tab. 5.5.
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^ball

Figure 5.25.: 2D unsteady circular advection problem. CC FV scheme with linear 
reconstruction without limiter 3BDF time intégration scheme; VC FV 
scheme with linear reconstruction without limiter RK2 time intégration 
scheme; LDA with mass matrix and 3BDF time intégration scheme.

Scheme order order L°° order max^çn u^{x, t = 27t)

CC FV2 nolim 3BDF 2.010 1.883 1.883 0.987
CC FV2 nolim RK2 1.865 1.775 1.850 0.987
CC FV2 nolim RK3 1.875 1.785 1.864 0.987
VC FV2 nolim RK2 1.701 1.604 1.609 0.977

LDA 3BDF 2.022 1.905 1.848 0.994

CC FV2 Barth 3BDF 1.871 1.850 1.498 0.965
VC FV2 Barth RK2 1.656 1.619 1.612 0.948

N-mod CN 1.354 1.304 1.150 0.885

Table 5.5.: Comparison of orders of accuracy for 2D unsteady circular advection 
problem and maximal value of the solution on grid h = 2/150.
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Figiore 5.26.: 2D unsteady circular advection problem. CC FV scheme with linear 
reconstruction with Barth’s limiter 3BDF time intégration scheme; VC 
FV scheme with linear reconstruction with Barth’s limiter RK2 time 
intégration scheme; one layer N-modified scheme.

5.3.4. 2D unsteady circular advection on deforming meshes

This test examine accuracy of the numerical methods on deforming meshes. It 
is probably the most important test case in this thesis, because proper extension 
of unsteady schemes for moving mesh computations always raise accuracy concerns 
[MY06, Far04]. The LDA scheme, see section 3.7.3, is compared with the FV scheme, 
see section 4.3.2. The FV scheme uses linear reconstruction and no limiter. Both 
schemes are equipped with the 3BDF time intcgrator.

The Setup of the test-case is similar as for the previous test, see section 5.3.3. 
We also use the same set of meshes as in the previous test case, while the mesh 
coordinates dépends on time with formula

\ d -- cos t . r... \
x{t) =----- ------ Y, (5.31)

where Y is the original mesh coordinate and x{t) is the current configuration mesh 
coordinate. This setup gives us the original mesh size for the start t = 0 and for the 
final time t = 2tt and double size of the original mesh at time t = ir.

The error was measured in the same manner as for the previous test case. Conver­
gence is plotted in Fig. 5.27 and the rate of convergence is computed fi-om the least 
square fit in Tab. 5.6. The higher accuracy of the LDA scheme in comparison with

115



Chapter 5. Comparison of sortie FV and RD schemes

Scheme order order L°° order

LDA 2.02 1.91 1.94
FV2 nolim 1.71 1.64 1.73

Table 5.6.: Comparison of orders of accuracy for 2D unsteady circular advection 
problem on deforming mesh.

Figure 5.27.: 2D unsteady circular advection problem of deforming mesh. LDA 
scheme and FV scheme with linear reconstruction without limiter. 
Norm of error vs. mesh spacing.

the FV scheme is cleax, both from the lower error and from the higher convergence 
rate.

5.3.5. Conclusions

The developed methods were tested on 2D and 3D linear, non-linear, steady and 
unsteady scalar problems. From the linear schemes, the LDA is consistently the best 
in the class. The CC and VC formulation of the FV scheme gives similar results, 
the CC scheme gave more often better results than the VC one. The N-modified 
scheme gives superior results for the Burgers équation with shock wave, while the 
aceuracy for smooth solution is lower, often lower than the finite volume scheme.
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5.4. Euler équations - steady problems

We examine behavior of the schemes for the case of Euler équations in this section. 
Note that some results were already presented in section 3.5.5. We staxt again with 
the smooth steady solution, the next case is a steady solution involving the shocks. 
Then we test the schemes for unsteady problems. This section conclude with test 
cases involving computations on moving meshes.

5.4.1. Sub-critical flow past a cylinder

The test case is introduced in section 3.5.5, page 41. Recall the free stream Mach 
number M^o = 0.38. Here we présent some additional results. The computational 
mesh is shown in Fig. 5.28. We hâve generated two meshes, the one used for the cell 
centered finite volume has 676 nodes and 1269 triangular éléments with 61 éléments 
along the wall boundary and the one used for the vertex centered finite volumes 
and RD schemes has 1247 nodes and 2386 triangular éléments with 79 element 
along the wall boundary. This ensmres that ail the methods uses similar number of 
degrees of frecdom. The meshes are even coarser then in section 3.5.5, to amplify 
the différences between the schemes. We do not compare only the schemes, but also 
different formulations of boundary conditions, as they are given in section 3.9.2, 
page 69.

The solution of the FV schemes with constant reconstruction and RD N scheme 
are given in Fig. 5.29. In ail cases, the solution is more-less symmetric with respect 
to the horizontal axis. One can observe spurious wake-like structure behind the 
cylinder, which is given by the high dissipativity and relatively low accuracy of the 
schemes. Ail the formulations of the boundary conditions gave similar results.

The results for the LDA scheme and FV scheme with linear reconstruction without 
the limiter are shown in Fig. 5.30. We don’t plot the results from the vertex centered 
FV scheme without the limiter, since négative pressme has always been obtained 
during the convergence and the method has failed. Surprisingly large différences 
are caused by the formulation of the boundary conditions for the LDA scheme. 
The Paillere’s formulation, see sec. 3.9.2.2, page 71, gave spurious séparation, very 
different from the other boundary conditions formulation. For the characteristic 
formulation and Weide’s formulation the solution is roughly symmetric and looks 
similar to the cell centered finite volume scheme, presented on the bottom left figure. 
For the CC FV schemes gradient at the first cell next to the wall is often set to zéro 
to prevent obtaining négative pressure at the wall. Since this is a wide-spread 
approach, we hâve it included to the numerical results to show, how significantly 
it can change the solution. With uncorrected linear reconstruction in the element 
next to the wall the solution looks symmetric with respect to the horizontal axis, 
while if the gradient is set to zéro the solution become non-symmetric, as it can be 
observed in the right bottom Fig. 5.30.
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CC FV

Figure 5.28.: Sub-critical flow past a cylinder. Computational meshes. Left: CC 
FV, right RD schemes and VC FV.

Results obtained with the nonlinear schemes with Barth’s limiter and N-modified 
schemc are plotted in Fig. 5.31. The différences between the formulation of the 
bonndary conditions axe striking. On the other hand, it can be surprising, that for 
the VC finite volume scheme the formulation of the boundary conditions almost does 
not affect the solution. Unlike for the LDA scheme, wherc the Weide’s and charac- 
teristic formulation of the BC gave almost the same resnlt, hcre the characteristic 
formulation gave the best results and the Weide’s formulation is slightly worse. The 
Paillere’s formulation is the worst again, moreover it gave the worst results in this 
class of scheme. If we compare results between the schemes, the N-modified scheme 
gave the most symmetric results. The VC FV scheme gives more pronounced the 
spurious wake-like région and on the top and bottom of the cylinder the scheme 
produced non-symmetricity in the flow with respect to the vertical axis. The CC 
FV scheme gave the most wiggly results, while the accuracy seems to be similar to 
the VC scheme.

Finally, we présent the results obtained with the Bx scheme and the FV scheme 
with WLSQR reconstruction, as defined in section 4.2.1, page 78. The results given 
by the Bx scheme are substantially the same as for the LDA scheme, which point 
to the high accuracy of the scheme. The results of the CC FV with WLSQR recon­
struction are very similar to the CC FV scheme without limiter and qnantitatively 
similar to the Bx scheme. The computations using the VC FV scheme with WLSQR 
reconstruction has failcd due to the négative pressme obtained during the itérative 
procedme.

118



5.4. Euler équations - steady problems

N, Weide’s BC.

VC FVl, Weide’s BC.

Figiire 5.29.: Sub-critical flow past a cylinder. FV schcmes with constant recon­
struction and the N scheme.
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CC FV2 nolim, Vu|wall 0 CC FV2 nolim,

Figure 5.30.: Sub-critical flow past a cylindcr. Linear FV schemes with linear recon­
struction and LDA scheme.

120



5.4. Euler équations - steady problems

N-mod, Weide’s BC

VC FV char. BC VC FV Barth, Weide’s BC
VC FV Barth, Weide’s BC 
frozen limiter

CC FV Barth, Vu|waii = 0

Figure 5.31.: Sub-critical flow past a cylinder. Nonlinear FV schemes with linear 
reconstruction and N-modified scheme.
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Bx, Weide’s BC

CC WLSQR, Vuiwaii 7^ 0 CC WLSQR, Vuiwaii = 0

Figure 5.32.: Sub-critical flow past a cylinder. Nonlinear FV schemes with linear 
reconstruction and Bx scheme scheme.

122



5.4. Euler équations - steady problems

5.4.2. 3D inviscid flow around the Onera M6 wing

This is a well known test case, measurements were published in [SC79]. We hâve 
chosen data from Test 2308, i.e. with free stream Mach number Mooo = 0.8395 
and angle of attack a = 3.06° . We use an unstructurcd mesh consisting of 57041 
nodes and 306843 tetrahedral éléments. It means that the CC FV scheme cannot be 
directly compared to the VC FV and RD schemes, since CC FV uses about 6 times 
more unknowns. Isolines of the Mach number are presented in Fig. 5.34, 5.35, 5.36. 
The A-shock pattern is clearly visible for the more accurate schemes. The N scheme 
is about the same accurate as the VC FV scheme with constant reconstruction. One 
can see a big improvement of the method with linear reconstruction compared to 
the constant reconstruction. For the nonlinear schemes, the RD B scheme and CC 
FV with Barth’s limiter perform similarly, still with RD schemes using 6 times less 
unknowns. A similar situation occurs for the comparison of WENO schemes with 
the Bx RD scheme. Différences between the schemes are even more clear in Fig. 
5.37, 5.38 and 5.39. The figures show the distribution of the lift coefficient Cp at cuts 
in the 44 %, 90 % and 99 % of the span. In ail cases, the RD schemes gives better 
results than the VC FV schemes. Only the RD N scheme gives similar results as the 
VC FVI scheme. The solution with the Barth’s limiter and the B scheme features 
monotonous shock captming. The WLSQR (WENO) method and the Bx scheme 
gives higher accmacy, while one can observe a small undershoot in the Cp coefficient 
at in Fig. 5.37, 5.38, bigger for the Bx scheme. Part of this section was published 
in [DDF06].
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Figure 5.33.: Inviscid flow past Onera M6 wing. Computational mesh with domains 
for paxallel solution. The mesh has 57041 nodes and 306843 tetrahedral 
éléments.

CC FV, 6x DOF VC FV N

Figme 5.34.: Inviscid flow past Onera M6 wing. Isolines of Mach number. Left: CC 
FVl scheme. Middle: VC FVl scheme. Right RD N scheme.
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Figure 5.35.: Inviscid flow past Onera M6 wing. Isolines of Mach number. Left: CC 
FV scheme with Barth’s limiter. Middle: VC FV scheme with Barth’s 
limiter. Right RD B scheme.

Figure 5.36.: Inviscid flow past Onera M6 wing. Isolines of Mach number. Left: CC 
FV WENO scheme. Middle: VC FV WENO scheme. Right RD Bx 
scheme.
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6x DOF

CC FV2 WENO

VC FVl

BJ OA xlc *•* T

VC FV2 Baxth
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oj OA o/e

OA 04 sfc 0.0

Figure 5.37.: Inviscid flow past Onera M6 wing. Cut at 44 % of span. Full line: 
experiment, points: numerical solution. Left column: CC FV schemes. 
Middle column: VC FV schemes. Right column RD schemes. Top row: 
FVl and N scheme. Middle row: FV scheme with linear reconstruction 
and Barth’s limiter, B scheme. Bottom row: FV WENO scheme and 
Bx scheme.
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6x DOF

Figure 5.38.: Inviscid flow past Onera M6 wing. Cut at 90 % of span. Full line: 
experiment, points: numerical solution. Left column: CC FV schemes. 
Middle column: VC FV schemes. Right column RD schemes. Top row: 
FVI and N scheme. Middle row: FV scheme with linear reconstruction 
and Barth’s limiter, B scheme. Bottom row: FV WENO scheme and 
Bx scheme.
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6x DOF

Figure 5.39.: Inviscid flow past Onera M6 wing. Cut at 99 % of span. Full line: 
experiment, points: numerical solution. Left column: CC FV schemes. 
Middle column: VC FV schemes. Right column RD schemes. Top row: 
FVl and N scheme. Middle row: FV scheme with linear reconstruction 
and Barth’s limiter, B scheme. Bottom row: FV WENO scheme and 
Bx scheme.
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5.5. Euler équations - unsteady problems

5.5. Euler équations — unsteady problems

5.5.1. 2D vortex convection

Here we consider the test case from the section 3.6.6, pg. 55, which examines the 
scheme for the performance in the smooth parts of the flow. Here discuss some addi- 
tional figures for the comparison. For the FV schemes only cell centered formulation 
is presented. Cuts along the x direction in the core of the vortex are depicted in 
Fig. 5.40. For the comparison of the pressure in the core of the vortex, see Table
3.2 on page 56. The superiority of the LDA and Bx scheme is clear, even though 
the number of DOF is twice smaller. The nonlinear Bx scheme is even better than 
the unhmited FV scheme. The FV WLSQR (WENO) scheme performs much worse, 
even worse than the N-modified scheme. In the case of the transonic flow past the 
Onera M6 wing the performance of the CC WENO FV scheme and Bx scheme were 
comparable, whereas it is different for this test case. Problem with non-smooth 
solution can be observed on the solution of the N-modified scheme, as it is analyzed 
in [Abg06, RA06]. Clearly the worst performance is obtained for the FV scheme 
with Barth’s limiter.
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CC FV, 2x DOF RD

Figure 5.40.: 2D convection of the vortex test case. 
FV schemes. Right: RD schemes.

Cut in the x direction. Left
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•OJ X 0

Figure 5.41.: 2D convection of the vortex test case. Isolines of the pressure at t
1/6.
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5.6. Euler équations — unsteady problems with mesh 
movement

5.6.1. Smooth inviscid flow in a piston (2D)

This case was introduced in [DD05b]. It is motivated by internai aerodynamics 
problems, namely flow in piston engines. A gas at rest is enclosed between walls. 
One of the walls slowly staxts to move. This problem can be solved by the method 
of characteristics [ZH76] until the head of the pressure wave reflects from the other 
Wall or a shock is created. We hâve used a domain of length l = 5 and initial 
conditions vP = 0, = 1.4 and p° = 1. The piston starts to accelerate with
dérivative of accélération x =0.2. The numerical solution is plotted at time t = 4, 
when the piston has reached position x = 2.133. The exact solution is included in 
the appendix A.l, pg. 201.

The mesh consist of 180 nodes and 310 triangulax éléments for CC FV and 280 
nodes and 498 triangular éléments for VC FV and RD schemes. The différence 
in number degrees of freedom is in order of 10 %. The CCI FV scheme gives 
similax solution as the N scheme. On the other hand, the LDA scheme gives much 
better results than the FV scheme with lineax reconstruction and no limiter. Two 
boundary conditions axe included, Petrov-Galerkin, section 3.9.2.1, and Paillere’s
3.9.2.2 formulation. The both gives almost the same, highly aceurate results. The 
solution using one and two layer N-modified scheme is plotted in Fig. 5.47, 5.48. 
They both give similax results, much more aceurate than the FV scheme with Baxth’s 
limiter. There axe small wiggles in the vicinity of the moving wall in the very smooth 
part of the solution. For discussion of this issue we refer again to [AbgOG, RA06]. 
Finally, the Bx scheme and FV scheme with Baxth’s limited is compared, see Fig. 
5.46 and 5.49. Unfortunately, in this case the Bx scheme gives worse resuit than the 
FV scheme. It is due to the aetivation of the N scheme in the compression wave. 
Better formulation of the blending fonction would certainly help.
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5.6. Euler équations - unsteady problems with mesh movement

Figure 5.42.: Smooth compression of gas inside a piston cylinder. Mach number 
isolines and eut along the central line. FVl scheme, 3BDF time inté­
gration procedure.

Figure 5.43.: Smooth compression of gas inside a piston cylinder. Max:h number 
isolines and eut along the central line. N scheme 3BDF time intégration 
procedme.
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Chapter 5. Comparison of some FV and RD schemes

Figure 5.44.: Smooth compression of gas inside a piston cylinder. Mach number 
isolines and eut along the central line. FV2 scheme, no limiter, 3BDF 
time intégration procedure.
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Figure 5.45.: Smooth compression of gas inside a piston cylinder. Maeh number 
isolines and eut along the central line. LDA scheme, 3BDF time inté­
gration procedure. Top: Weide’s BC, Bottom: Paillere’s BC.
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Figure 5.46.: Smooth compression of gas inside a piston cylinder. Mach number 
isolines and eut along the central line. FV2 scheme, Barth’s limiter, 
3BDF time intégration procedure.
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Figure 5.47.: Smooth compression of gas inside a piston cylinder. Mach number 
isolines and eut along the central line. 1 layer N-modificd scheme. 
Top: Weide’s BC, Bottom: Paillere’s BC.

Figure 5.48.: Smooth compression of gas inside a piston cylinder. Mach number 
isolines and eut along the central line. 2 layer N-modified scheme.
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Figure 5.49.: Smooth compression of gas inside a piston cylinder. Mach munber 
isolines and eut along the central line. Bx schcmc
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5.7. Conclusions

5.6.2. Inviscid flow in a piston involving a shock (2D)

This problem involves a piston instantaneously accelerated to a uniform speed. From 
the Rankine-Hugoniot jump conditions we can compute the solution analytically. 
Piston velocity is chosen 0.8, therefore flow velocity is ul = 0.8, un = 0, density is 
PL = 2.8191, pr = 1.4 and pressure is pi = 2.78, pr = 1. Shock speed is 0.79461. 
The solution at t = 2 is shown. The mesh is the same as in section 5.6.1.

In following figures cuts in the axis of the domain are plotted for Mach number, 
pressure and Entropy. One can notice a problem with entropie layer in the vicinity 
of the piston smface. First, compare schemes with constant reconstruction and N 
scheme. The shock resolution is perfectly monotone. The shock is more smeared 
for the N scheme than for the FV scheme. There is a slightly higher pressure for 
the PG formulation of boundaxy conditions and the shock is in a more atdvanced 
position. The spurious entropy génération in the vicinity of the piston is much 
higher for the Paillere’s formulation. In the comparison of the N-modified scheme 
with the FV scheme with linear reconstruction and Barth’s limiter, the N-modified 
scheme gives sharper resolution of the shock wave. Both the schemes gives monotone 
resolution of the shock wave. The spurious entropy génération is higher for the 
Paillere formulation of boundaxy condition. The two-layer N-modified scheme gives 
similax results as the one-layer scheme, including the behavior of the spurious entropy 
layer. Finally, the Bx scheme performs worse than the WLSQR (WENO) scheme, 
in terms of the shock resolution and also spurious entropy layer. The Bx scheme 
performs actually the same as the N scheme. The FV scheme performs well, both 
with Barth’s limiter and the WLSQR (WENO) reconstruction. The results obtained 
with the N scheme and Bx are not so good. Somee of relatively poor performance 
for this type of test case is still has to be investigated. The Paillere formulation 
of boundaxy condition dépends on the numerical scheme used for the inner element 
in the domain. As it was noted, for Bx scheme the performance is better than 
the PG formulation, for the N scheme performs equally, while for the N-modified 
scheme the performance of the Paillere formulation is substantively worse than the 
PG formulation.

5.7. Conclusions

In this chapter results obtained by the cell centered, vertex centered finite volumes 
and RD schemes were presented and compared. In ail the test cases the LDA 
scheme was consistently the best. Also the cell centered FV scheme has performed 
very well. The vertex centered finite volume schemes did not show outstanding 
resuit. For the nonlineax schemes, the Bx scheme or the CG FV scheme with lineax 
reconstruction with WLSQR (WENO) weights axe among the most accmate. The 
Baxth’s limiter appears to be a good choice if a strict monotonicity of the solution is
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a) b) c)

d)

Figure 5.50.: 2D flow near suddcnly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Mach num­
ber. Space-time N scheme. Top: PG boundary conditions, Bottom:
Paillere’s boundary conditions.
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d)

Figure 5.51.: 2D flow near suddenly moviiig piston. Cuts: a) Mach number, b) 
static pressure, c) entropy; d) computational mesh and isolines of Mach 
number. CC FVI scheme with 3BDF time intégration.

needed. Surprisingly, in the opposite to the common findings, the N-modified scheme 
did not perform very well. It has to be noted, that the nonlinear RD schemes axe 
currently in the focus of intense research.^

^already for more than 20 years
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Figure 5.52.: 2D flow near suddenly moving piston. Cuts: a) Mach numbcr, b)
static pressure, e) entropy; d) computational mesh and isolines of Mach
number. 1 layer space-time N-modified scheme. Top: PG boundaxy
conditions, Bottom: Paillere’s boundaxy conditions.

142



5.7. Conclusions

d)

Figure 5.53.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static 
pressure, c) entropy; d) computational mesh and isolines of Mach num­
ber. 2 layer space-time N-modified scheme. PG boundary conditions.

Figme 5.54.: 2D flow neax suddenly moving piston. Cuts: a) Mach number, b) static 
pressure, c) entropy; d) computational mesh and isolines of Mach num­
ber. CC FV scheme with Barth’s limiter and 3BDF time intégration.
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Figure 5.55.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Maeh num-
ber. Bx scheme. Top: PG boundary conditions, Bottom: Paillcre’s
boundaxy conditions.
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Figure 5.56.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static 
pressure, c) entropy; d) computational mesh and isolines of Mach num- 
ber. CC FV scheme WENO reconstruction and 3BDF time intégration.
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Chapter 6.

Finite element method for elasticity 
problems

6.1. Introduction

In this section we will dérivé the équations of elasticity for both small and large 
displacements. We will staxt from Newton’s law, the stress-strain relation and the 
generalizcd Hooke’s law, finally leading to second order partial differential équation. 
Then, we will introduce a finite element method, usually used for the solution of this 
problcm. The chapter concludes with a few examples documenting the performance 
of the method.

Elastic problems can be also formulated as a set of first order hyperbolic partial 
differential équations and solved by the method usuallly applied for fluid dynamic 
problems. However, this formulation is not suitable for the elasticity problems of 
standard engineering mechanics. It is more usual for the applications, where a 
shock waves inside the material has to be capturcd, see e.g. [LeV02]. We will not 
put forward this approach, although some preliminaxy test were performed in the 
framework of RD schemes.

6.2. Formulation of the problem

In this section we will dérivé the general elastic model for finite displacements. We 
will use a nonlineax finite strain displacement relation. The strain tensor has the 
form

6ij
1
2

duk duk \ 
dxi dxj J ’

(6.1)

where Uj is the displacement in direction j and A: is a summation index. The 
displaccment is defined as the différence between the deformed State and the initial 
State

Ui = x[- Xi. (6.2)
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Chapter 6. Finite element method for elasticity problems

We use a linear relation between the strain e and the stress a called (generalized) 
Hooke’s law

(Tij ^kjkl^kli (®’^)

where Cijki is the elastic tensor. Hooke’s law can be expressed for a homogenous 
isotropie body in the form

o-ij = + 2psij, (6.4)

where a is the stress tensor, A and p are Lame parameters, depending on the body 
material, and 0 is a tensor invariant

d — Sa — £\i + £22 + £^33- (6.5)

The dynamic équation for the continuum (Newton’s law) is

d“^Ui
^~dF

daij
dxj + fi, (6.6)

where fi is a component of internai (e.g. gravity) force and p is material density. 
Structural damping is not considered.

For the moment, we will consider only homogenous isotropie material. One can 
substitute the équation for the strain tensor into Hooke’s law. We obtain (using 
Einstein summation convention)

dxj

Q - ^
dxi 2 dxi dxi

(y ij ^Sij
duk
dxk

X5ij
duk ^ Iduk duk

1 duk duk
2 dxi dxi 

dui

+ P
dui du 
—^ + 
dxj

dxk 2 dxi dxi + + dui +

dxi
duk duk

,j ^ duk duk
dxi dxj ^

dxj dxi dXi dXj + fi — P
di^Ui

(6.7)

(6.8)

(6.9)

The last équation is in fact a set of second order nonlinear differential équations. 
One has to note that the équations are nonlinear even though the linear Hooke’s 
law was uscd, due to the hyphotesis of large deformations.

We now rcturn back to équation (6.6) and dérivé the weak form of the équation. 
We hâve

d'^Ui daij _
^ df^ dxj ~~

(6.10)
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6.2. Formulation of the problem

Multiplying by test function (/? and integrating over Vt we obtain

dü-

f fip (Tij duj + / -^CTij dü= if fi dîl
'—V—' Jci oxj Jn

U
d(f f

drî /
dxj Jn

ipfidü+ é> iftidS,
JdU

(6.11)

(6.12)

(6.13)

where U is a traction (load per unit surface) in the direction of the i axis. This 
formulation leads directly to the matrix représentation for the numerical solution. 
From the first intégral a mass matrix arises, from the second a stiffness matrix and 
the RHS corresponds to the load vector.

Note that the problem is formulated in Lagrangian coordinates, hence no moving 
mesh is needed.

A fundamental assumption has to be made in two dimensions. Either the strain 
in the third dimension is zéro (and the stress in nonzero) or the stress is nonzero 
(and the strain is zéro). This is called plane stress and plane strain assumption. In 
a case of plane strain the Lame parameters are related to Young modulus E and 
Poisson ratio u by relations [BSS02]

Eu E
^ {l + u){l-2u) ^ ^ 2(1 + 1/)-

In case of plane stress the relations are

(6.14)

Ev _ E
2(1+1/)' (6.15)

The Young modulus E and Poisson ratio u are tabulated in technical tables for 
varions materials. For the test cases at the end of this chapter, the Poisson ratio 
will be taken u = 0.3, as the typical value for steel.

For the 3D orthotropic material Hooke’s law has the form

/cn C12 Cl3 0 0 0 \
0"22 C21 C22 C23 0 0 0 £22

<^33 C31 C32 C33 0 0 0 ^33

<^23 0 0 0 2C44 0 0 ^23

<^31 0 0 0 0 2Cs5 0 ^31

^0 0 0 0 0 2c66y \£i2/

(6.16)

The constants are related to Young modulus Eij, shear modulus Gÿ and Poisson
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ratio i>ij by the coefficients

1 “ U23 U23 U12 + Ui3 1^23 Ul3 + U12 ^23 (6.17)Cil —
E22 E33 D E22 E33 D E22E33D

1 — 1^13 ^23 + U\3 1^12 1 — V12 P\2
(6.18)C22 =

E\\ E33 D
C23 = -----------------

EnE33D """"" EnE22D

C44 G23 C55 = Gi3 C66 = G\2 (6.19)

— Î^12 Î^12 — 1^23 U23 ~ ^13 Ul3 — 2 1^12 1^23 1^13
E-i 1 E22 E33

Then, an équation similar to (6.9) is derived.
The two types of boundary conditions are considered - traction and displacement. 

In the case of displacement, the value on the boundary is prescribed (Dirichlet’s 
boundary condition). In the case of traction, the force per unit length is prescribed, 
which is term U in équation (6.13).

6.3. Numerical method for steady problems
The domain of solution is covered by finite éléments. The displacement Ui in the 
i-direction is approximated by the trial functions as

Ui = Ui^k'fpk- (6.21)
kerh

The trial functions will be specified later. The test functions belong to the same 
space as the trial functions. Hereafter we will not make a distinction between trial 
and test functions. The weak formulation (6.13) gives directly the finite element 
method, where the solution is replaced by its approximation (6.21) and the test 
functions by the trial functions xp. The problem can be written as

+ Kf/ = F, (6.22)

where U is the algebraic vector of unknowns (displacements), M is the mass matrix, 
K is the stiffness matrix and F the vector of right hand sides.

6.3.1. Sélection of éléments and spatial intégration

The trial function has to be chosen suitably. We use simple Lagrangian éléments 
[ZTOOb], with linear, bilinear or quadratic approximation of the solution and linear 
or bilinear approximation of the geometry. The éléments, where the geometry is 
approximated by the lower order polynomial, while the solution is approximated by 
the higher order polynomial are called sub-parametric. We hâve chosen (bi-)linear
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6.3. Numerical method for steady problems

Figure 6.1.: Finite éléments in 2D. Left: linear TRIS element. Middle: bilinear 
QUAD4 element. Right: biquadratic sub-parametric element QUAD9, 
the solution is approximated with 9 DOF, the geometry with 4 DOF.

approximation of the geometry, since the mesh génération software we use does not 
support higher order éléments^. The 2D éléments are depicted in Fig. 6.1. Similar 
éléments were used in three spatial dimensions, i.e. 4 node linear TETRA4, 8 node 
tri-linear HEXA8 and 27 nodes tri-quadratic HEXA27 éléments. The method is 
very general and other types of éléments (trial functions) can be simply added.

The contributions to the mass and stiffness matrix hâve the form of intégrais over 
the éléments. The trial fonction can be expressed directly in the spatial variables, 
or the element can be transformed to the mother element and integrated in the 
transformed System of coordinates [ZTOOb]. In that case, we use Gauss quadrature 
with sufficient number of quadrature points. On the bilinear element transformed 
to the square [—1,1] x [—1,1] we use four Gauss points located at points with co­
ordinates given by the tensor product of -^1/3). For bi-quadratic element
we use nine Gauss points identified by the tensor product of (—0, \/0.6). The 
procedure is standard, we include it with a référencé to [ZTOOb] or any other finite 
element textbook.

For the large displacement formulation, the quadratic terms hâve to be computed. 
We use Picard approximation (also called direct itération method), i.e. quadratic 
terms are approximated as independent of the solution, and the solution is taken 
from the previous itération. The infiuence of the large displacement vs. small dis­
placement formulation is depicted in Fig. 6.2.

6.3.2. Approximations of boundary conditions

The displacement boundary condition corresponds imposing directly the nodal value 
of the solution. In this case, we discard the corresponding line in the K matrix and 
set unit on the diagonal. Then we set the right hand side to the prescribed nodal 
value.

^Although a on pnrpose code to improve mesh can be easily written.
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Figure 6.2.: Linear (the left) and nonlinear (right), large deformation formulation.
Bending of a beam. Sequence of beams loaded with increasing force is 
shown.

Consider node k. For the prescribed traction U in direction of i on the boundary, 
the line (surface intégral in 3D)

[ ipkU dfîi (6.23)
JS

has to be evaluated. This value is then added to the RHS of the équation.
For steady problems (e.g. static aeroelasticity) the mass and time dépendent part 

of équation (6.22) is omitted (M = 0) and the problem reduces to solving the sparse 
System of algebraic équations

KU = F. (6.24)

For the moment we use GMRES with ILU(O) preconditioning, or block Jacobi pre- 
conditioning in parallel, where the ILU(O) preconditioner is applied on each block. 
A second option is the LU décomposition.

6.4. Numerical method for unsteady problems and 
modal analysis

6.4.1. Newmark method

For time dépendent (dynamic) problems we hâve to consider the full System of
(6.22). This semi-discrete ODE can be solved by the Newmark family of methods. 
In this method the fonction and its first time dérivative are approximated according
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6.4. NumericaJ method for unsteady problems and modal analysis

a II to
1/2 1/2 the constant-average accélération method (stable)
1/2 1/3 the linear accélération method (conditionally stable)
1/2 0 the central différence method (conditionally stable)
3/2 8/5 the Galerkin method (stable)
3/2 2 the backward différence method (stable)

Table 6.1.: Spécial case of choice of parameters among the Newmark family of meth- 
ods.

to

Ijn+l ^ f/n ^ ^
2

= [/" + AtÜ'^ + + ^At^il - 7)i/". (6.25)

and
f/n+i ^ f/n ^ = Ù’^ + + (1 - a)AtÜ^. (6.26)

Different schemes are obtained for spécial choices of the parameters a and 7, as 
summarized in Tab. 6.1. From équation (6.25) wc express and plug it into
équation (6.22). When ail the ternis from the level n are moved to the RHS, one 
gets

Kf/n+i = (6 27)

with

K — K + a3lVI (6.28)

F = F + M(a3[/" + a4f/" + a5t/"), (6.29)

and

oi = aAt

2
Û4 —

yAt

U2 = (1 — Q!)At

Us = - - 1.
7

«3 = (6.30)

(6.31)

Once solution Z7”+^ is obtained, the velocity and accélération are computed using

= 03(7/”+^ - U^) - (6.32)
f/n+l = f/n ^ ^ Q^^n+l^ (g 33^

these relations are équations (6.25) and (6.26) again. In ail the work we use the 
unconditionally stable constant-average accélération method (a = 7 = 1/2), which 
is known to préservé energy of the body.
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6.4.2. Modal analysis

For the problems of fiuid-structure interaction, we are interested in periodic or neaxly 
periodic movement of the elastic bodies. These kind of problems are typically solved 
by modal analysis. The modal analysis is needed also for the setup of initial condi­
tions for the AGARD 445.6 test case, see section 8.3.2 page 185.

We are looking for a solution in the form

U = Y^
m

of the homogeneous équation

+ KU = 0. (6.35)

This leads to a generalized eigen-problem

ulMUm + KUm = 0. (6.36)

This problem is much casier to solve than the eigen-problem of the matrix (M“^K), 
because both mass and stiffness matrices are sparse while (M“^K) is not. The 
Arnoldi method [HRV03, HRTV04] is used to solve the problem. The eigenvalues 
and eigenvectors are real, the frequency of the mode is

f =___ I___

The eigenvectors directly correspond to the displacement. There are as many eigen- 
pairs as degrees of freedom, but we consider only the first few relevant eigen-modes. 
For the better performance of the cigen-solver, the mass matrix M and stiffness 
matrix K can be scaled such that the entries are close to one. Of course, the 
eigenvalues hâve to be later scaled back.

6.5. Numerical results

In this section a few numerical results documenting the performance of the method 
will be shown.

AU the considered éléments are able to exactly reproducc pure stretch and shear, 
in the small and large deformation formulation. The bend is a surprisingly more 
difficult test case. We consider a bcam clamped on one side of length / = 10 with 
uniform thickness h = 0.1. The bending force on the other end of the beam is 
chosen such that the deflection is unit. The small deformation formulation is used. 
The solution on different meshes and éléments is plotted in Fig. 6.3. The results 
are given in Tab. 6.2. The error of the solution on linear and bilinear éléments is

(6.37)

(6.34)
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Mesh (DOF) TRIS QUAD4 QUAD9

2x40 0.032 0.093 0.997
2x100 0.161 0.390 1

Table 6.2.: Linear bending of a beam. Deflection (2) of the end of the beam for 
different éléments and meshes. Exact solution is 2 = 1.

Figure 6.3.: Linear bending of a beam. Plot of the solution and zoom to the end of 
the beam. Exact solution is 2 = 1. Different éléments axe considered.
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0 5 10 15 20
Time

Figure 6.4.: Comparison of the time intégration methods. Force accelerating a free 
body. For définition of schemes see Tab. 6.1.

so high, that the method cannot be used for engineering applications. The method 
using bi-quadratic éléments gives reasonable accuracy for the considered case.

The second test case consist of one element with very large stiffness {E = 10^^) and 
unit mass. The unit force staxts to accelerate the body according to Newton’s law. 
The numerical solution with different parameters of Newmark’s method together 
with the exact solution is plotted in Fig. 6.4. Only unconditionally stable methods 
were considered. One can clearly see the discretization error of the scheme and the 
need for sufficiently small time-steps. In the future, the extension for higher order 
time intégration scheme should be considered.

The last test case involves a modal analysis of a beam. We consider a 3D beam of 
dimensions 10 x 0.15 x 0.1, clamped on one side and free elsewhere. Young modulus 
is F' = 2 and density p = 5. The mesh is rather coarse consisting of 10 x 1 x 1 
tri-quadratic HEX27 éléments. Natural frequencies obtained from ID theory and 
the modal analysis are compared in Tab. 6.3. The theoretical values [BSS02] are

_ml [Ëh?
P\l 12p’

where m„ are roots of équation

cos m cosh m = — 1.

(6.38)

(6.39)
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t4444444Hl^li[i!i 111 i lu 1111 ni

Figure 6.5.: Modal analysis of 2D beam. First 10 modes plotted.

From ID theory From modal analysis
Ist bending mode - y 6.41-10-'^ 6.47-10-4
Ist bending mode - 2: 9.62-10-4 9.70-10-4
2nd bending mode - y 40.24-10-4 40.97-10-4
2nd bending mode - z 60.36-10-4 61.31-10-4

Table 6.3.: Modal analysis of a 3D beam. Natural frequencies.

The first three roots are approximately rrii — 1.8751, m2 = 4.6941, ms = 7.8548. 
One can see that even on sueh a coaxse mesh, the error is in the order of 1 % for 
the first mode and less than 2 % for the seeond mode. Modal shapes for a similax 
problem in 2D are potted in Fig. 6.5.
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Chapter 7.

Numerical method for fluid—structure 
interaction problems

The problem of the interaction of fluids and solid bodies is characterized essentially 
by two distinct, but intrinsically coupled problems. The numerical methods for 
problems of fluid dynamic (CFD) were discussed in the first part of this thcsis, the 
numerical methods for elastic bodies (CSM) were discussed in chapter 6. In this 
chapter a method to couple both problems will be discussed.

7.1. Three field formulation

If the amplitude of the structural body movement is small, the coupled problem can 
be solved using the simple transpiration approach [HKH03, HKH04b, HKH04a]. 
However, if the deformation is larger, the problem has to be solved on a moving 
mesh [Far04]. The three field formulation was introduced in [LF93]. The three 
distinct fields involve CFD, CSM and the fluid mesh deformation as the third field.

• CFD is coupled with the CSM via position and velocity of the computational 
domain. It is also intrinsically coupled to the mesh dynamics.

• CSM is coupled to CFD by the stress tensor on the surface of the body

• The position and velocity of the mesh boundary is coupled to the position and 
velocity of the surface of the body.

We will discuss the coupling of CFD and CSM by the movement of the mesh bound­
ary and transfer of the stress tensor in section 7.2. The mesh deformation algorithm 
for a given position of the nodes on the boundary is treated in section 7.3.

7.1.1. Formulation of the FSI problem

Lct us recall once again the problem to solve. For the gas, we solve the System 
of Euler équations in ALE formulation (introduced as (2.26)) in a time dépendent
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doHlâin ^^t,fluid )

1
JAt dt Ÿ

+ Va; • [f(u) - uw] = 0, Væ G f^t,fluid) t £ [0, Tniax] (7.1)

with conserved variables
n={p,pv,E), (7.2)

see section 2.3.2. The déterminant of Jacobian is defined by (2.8) and the domain 
velocity w by (2.10). The flux is given by

fi = {pvi, pViVj + Sijp, [E + p]vi), l<j<d. (7.3)

The System is closed by the équation for the pressure (introduced as (2.33))

E = (7.4)

with given ratio of spécifie beats 7. A standard set of boundaxy conditions on 9flt,fluid 
is used. Specifically, the velocity of the gas perpendicular to the wall is equal to the 
normal velocity of the wall.

The other System of équations is the dynamic équation for the continuum in a 
Lagrangian System of reference

dcT
P Q^2 ~ ^ ^elastic! t G [0, Tmax]- (7-5)

The hat (•) is used to distinguish the Lagrangian coordinate of the elastic body and 
to prevent conflict in the notation in this section. The displacement is defined as 
the différence between the deformed State and the initial state

ûi = x[- Xi.

The stress is related to the strain tensor by the generalized Hooke’s law

(Tij Cijkl^kh

where Cijki is a given elastic tensor. Tensor of deformation is defined as

1 / dûi dûj dûk dûk \

2 dxi dxi dxj J ’

where ûj is the displacement in direction j.
The Systems (7.1) and (7.5) are connected by the interface conditions relating the 

displacement of the elastic body with the fluid boundary

3^fluid = ^elasticî C^-^)

(7.6)

(7.7)

(7.8)
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for ail the fluid boundaries 5fît,fluid,waii immersing the elastic bodies and for ail the 
elastic boundaries 5fleiastic,wet immersed in the fluid. Similaxly, the forces has to be 
equal from the both sides of the interface

pnnuiA = f, (7.10)

where Ufluid is the outer normal on the fluid boundary and / is the normal force 
acting on the elastic body.

Finally, the ALE mapping At (see équation (2.6)) has to be found, such that the 
condition (7.9) is satisfled.

The problem is the following: flnd u : fl*,fluid x [0, Tmax] —^ fluid x
[0, Tmax] —> fluid ^ud û : f^eiastic X [0, Tmax] ^ such that ail the equations in this 
section are simultaneously satisfled.

7.2. Coupling of fluid and structural problems - load 
and motion transfer algorithm

For the aeroelastic computations, there is a ultimate need to treat non-matching 
interfaces. A non-matching interface is an interface between fluid and structural 
computational mesh, where the boundary points do not coincide. The non-matching 
interface allows to generate the mesh independently for fluid and structural problem 
and both the meshes can be tailored to their speciflc needs. Here we follow work of 
[FLL98, Far04].

The computation of the fluid mesh boundary displacement proceeds as follows (see 
Fig. 7.1). For each node on the fluid boundary, the projection to the elastic boundary 
along the normal is found. Then, the displaccment of the fluid boundary node is 
assumed equal to the displacement of the projccted node to the solid boundary. The 
displacement is determined using the trial functions of the flnite élément method 'ipi, 
which is used in the elastic body solver from the known displacement at the nodes of 
the solid mesh élément. This gives later needed coefficients Cij. This approach gives 
smooth variation of the fluid mesh boundary, since it uses quadratic polynomials for 
the interpolation (provided the quadratic flnite éléments for the elastic solver are 
used). Another advantage is, that the displacement is computed exactly for rigid 
body motion, which might not be the case for some other methods.

The force on the boundary of the elastic body is prescribed from the equality of 
Virtual works. Virtual work performed by the fluid is

ÔW^ = j -pn-üpds, (7-11)
JT F

where F^^ is the fluid boundary, p is the pressme, n is the normal to the fluid 
boundary and up is the Virtual displacement of the fluid boundary. The Virtual work
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pcrformed by the elastic body can be expressed as the sum of the nodal displacements 
and the nodal forces

6W" = / / ■ «5 ds = V /
i=i

USi, (7.12)

where fi is the force at node i and «5. is the displacement of the node i. Both 
expressions of the Virtual work hâve to be equal

/ -pfî-ÛFds = ^fi-üs^. (7.13)

The fluid boundary displacement dépends on the displacement of the boundary 
nodes

Up = Uf{Ui,F,U2,F, ■ ■ ■ ,Un,F)- (7-14)

The displacement of the fluid boundary node can be expressed as the linear combi­
nation of the elastic boundary node displacements

üi^F = '^CijUsy (7.15)
j

Combining équations (7.13), (7.14), (7.15) and eliminating the solid boundary node 
displacement usj we get the expression for the nodal forces ft acting on the elastic 
body. In our case, the boundary is a polygon and we approximate the intégral on 
the left hand side of équation (7.13) with the trapézoïdal intégration rule

pn • Uf ds ~ -Pkfîe ■ Uk,F,
k=l

(7.16)

where is the number of nodes on boundary face e. Se is the smface of the boundary 
face e, pk is the pressure at node k, fie is a normal to the face e and ük,F is the 
displacement of node k. If we plug relation (7.15) into (7.16) and (7.13) we get

e ^ k=\ j i=l

where the index e loops over ail the fluid boundary faces. This has to be valid for 
any U5., hence

Ttf> ,
J e k=l

where the index j loops over ail the nodes with nonzero Cij and index e for ail 
boundary faces containing node j.

164



7.3. Mesh deformation algorithm

Figiire 7.1.: Fluid boundary movement algorithm. Upper mesh is fluid, lower is 
elastic body.

7.3. Mesh deformation algorithm

Many different strategies were developed for the mesh movement [YM05, JT96, 
JT94, Far04]. The problem reads: given a nodal displacement on the part of the 
boundary, find a displaeement of the remaining nodes in the computational domain. 
We hâve chosen the pseudo-elasticity approach, where the mesh moves according to 
the behavior of the pseudo-elastic body [Far04, YM05]. Displacement of the mesh 
vertices is described by the équation

KU = F, (7.19)

where K is the fictions stiffness matrix, U is the algebraic vector of nodal displace­
ments and F is the algebraic vector of nodal forces. We omit the time dérivative 
in équation (6.22). Equations (7.19) and (6.22) gives comparable rcsults, while 
équation (6.22) has more parameters (élément masses) and the method is more 
computationally demanding. We solve the same System as équation (6.24), with 
the method described in chapter 6. The Young modulus is chosen such that the 
stiffness increases in the vicinity of problematic régions [YM05, JT96, JT94]. We 
hâve chosen the Young modulus in élément T as

v/d^T)’

where d is the distance of the centroid of the élément to the nearest wall and /x(T) 
is the volume of the élément. For viscous flow simulations, the Young module has 
to dépend also on the aspect ratio of the élément to ensure a good behavior of the 
method in the wake. The stiffness matrix K is evaluated in each time step based 
on the deformed state from the previous step, as the algorithm gives better mesh 
quality [Far04j.

(7.20)
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The nodal displacement is prescribed on the wall, the zéro traction is prescribed 
at the free stream. The numerical approximation of the boundaxy conditions is 
described in section 6.3.2.

7.4. The solution procedure

The problcm of fluid-structure interaction is coupled and the fluid flow and structural 
dynamics hâve to be solved together. One possibility is to make one step by the 
fluid solver and one step by the structmal method, however an error of order 0{At) 
is then introduced into the solution. The discussion about different approaches is 
given by référencé [Far04]. We use a very simple sub-iteration approach. For every 
time-step (i.e. from the solution at time-level n to the solution at time-level n + 1) 
we perform the following procedme:

• Compute preliminary nodal forces at the nodes of the elastic boundary, see 
eq. 7.18, from the CFD solution at time n.

• Do until converged:

— Compute new (preliminary) position of the elastic body at time level 
n+ l.

— Move the CFD mesh to the preliminary position at time level n + 1.

— Compute the corresponding flow fleld solving the CFD problem on the 
preliminary mesh position at time level n + 1.

— Compute the nodal forces at the nodes of the elastic boundary, see eq. 
7.18, from the preliminary CFD solution at time n + 1.

• Advance elastic body position and the flow fleld (n ^ n + 1).

The advantage of this approach is the accuracy, the obvions disadvantage is the long 
computational time and in some cases convergence probiems [MvBdB04]. On the 
other hand, we use the CFD method formulated in dual time, which is solved by 
the sub-iteration approach anyway. We perform sub-iterations until the residual of 
the CFD method drops sufficiently low.

We hâve developed one method to solve the elastic problcm, one mesh motion al- 
gorithm and one load/motion transfer algorithm. Since this thesis is focused mainly 
on CFD methods development, we employ several methods for the CFD side of the 
fluid-structure interaction problem. These CFD methods are specifled for each test 
case separately.

166



7.5. Numerical tests: load/motion transfer algorithm and mesh deformation algorithm

7.5. Numerical tests: load/motion transfer algorithm 
and mesh deformation algorithm

The first test case involvcs thc mesh deformation algorithm. This test documents the 
behavior of the method near the boundaiy and also the possibility to get an invalid 
mesh with négative volumes of the éléments. A two-dimensional hybrid mesh was 
generated around the double circular arc profile, see Fig. 7.2. The chanel width is 
chosen d= 1, with length of / = 3 and the 10 % thick profile has chord of c = 1. The 
mesh is used only for this test case, we do not solve the fiuid flows on it. In Fig. 7.2 
a) the non-deformed mesh is depicted. Fig. 7.2 b) shows the deformation of the mesh 
for the profile rotated by o; = 20° , with zoom of the trailing edge région in 7.2 g). 
This mesh is valid, i.e. ail the élément volumes remain positive. Note the behavior 
of the wake région, the term to increase the stiffness of the éléments in the wake is 
not included. The possibility to obtain mesh with négative volumes of the éléments 
is documented in Fig. 7.2 c). A zoom of the trailing edge région is depicted in 7.2 g). 
Unfortunately, négative mesh volumes can be obtained also by a simple translation 
of the profile, as can be seen in Fig. 7.2 e) and f). The zoom of the problematic 
région is depicted in Fig. 7.2 h). The mesh movement procedure is still an open 
problem [JT96, JT94] and even the state of the art approaches remesh from time to 
time in case of very large displaccmcnts [SBTPOl, TOOlb, TOOla, KTOO, SBK+00].

We assess the performance of the non-matching load and motion transfer algo­
rithm in two dimensions. A membrane of length l = 30 and thickness fi = 0.1 with 
Young modulus E = 2 is exposed to the pressure différence, created by the fiuid in 
the rest from one side and the prcscribed traction from the other side. The pressure 
from the fiuid side is set to p = 12.4 • 10“®, while the ambient pressure is set to 
P = 6.2 • 10“®. Plane stress assumption is used. Two latéral thirds of the membrane 
are rigidly supported and both sides are clamped, see Fig. 7.3. The formulation of 
the problem is given in Section 6.2, page 149, the computational method in Section
6.3, page 152. The regular fiuid mesh contains 250 x 17 éléments and the elastic 
mesh contains 100 x 1 bi-quadratic QUAD9 éléments. The problem is solved in 
parallel on 22 processors. This is only to test the parallel algorithm, the whole 
computation takes a few seconds on one processor. The theoretic displaccment in 
the middle of the membrane, computed from the ID beam theory, is ^ = 1. One 
can observe a smooth variation of the fiuid boundary, as it can be expected. The 
computed displacement is 2 = 1.013, giving the error of the order of 1 %.
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g) h) i)

Figiire 7.2.; Hybrid mesh deformation test, a) Initial mesh. b) a = 20° , c) a = 45° .
d) Az = 20 %, e) Az = 30 %, f) Az = 40 % of the chanel width. g) 
Detail for a = 20° . h) Detail for Az = 40 %. i) Detail for a = 45° . 
The meshes for cases Az = 20 % and a = 20° are valid and the meshes 
for case Az = 30 %, Az = 40 % and a = 45° are invalid.
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10 10 10

Figure 7.3.: Solution of the membrane problem, solution on 22 processors, interpro- 
cessor boundaries are emphasized.
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Chapter 8.

Numerical results for complex 
fluid-structure interaction problems

8.1. Transonic flutter of NACA 64A010 airfoil

Some parts of this section were published in [DDF05b].

8.1.1. Introduction

In this section we présent a solution of the interaction of the fluid with a two di- 
mensional airfoil profile. We présent results of a well known test case, namely a 
transient response of the NACA 64A010 profile. The case corresponds to the typical 
section of a large transport aircraft with swept wings. The problem was investi- 
gated in [Iso79, IsoSO, IsoSl] and later widely used as a test case for fiuid-structure 
interaction problems (see e.g. [AJ94]).

8.1.2. Formulation of the problem

We consider a rigid body with two degrees of freedom h and a. The following System 
for large displaccments is considered [SFH05, HorOS]

where
L{i) [N] aerodynamic force (upwards positive),
M[t) [N m] is aerodynamic torsional moment (clockwise positive), 
m [kg] mass of the airfoil.
Sa [kg m] static moment around the elastic axis, 
la [kg m^j inertia moment around the elastic axis, 
khh [N/m] bending sttffness 
kaa [N m/rad] torsional stiffness

mh + khhh + Saà. cos a — Saà? sin a = —L{t) 

Sah cos a + laà + kaaO: = M(t),

(8.1)
(8.2)
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a [rad] rotational displacement around the elastic axis (clockwise positive), 
and
h [m] vertical displacement of the elastic axis (downward positive). 
Géométrie position of the elastic axis is given.
The System is transformed into first order system using hd = h and ad = à

/ 771 Sa COS a 0 0\ /hd\ (-khhh + SaoidSina - L{t)\
Sa COS a la 0 0 àd -kaa^ + M{t)

0 0 1 0 h hd
V 0 0 0 V \à) \ ad J

Inverting the matrix, the following System of équation arises

hd = D*
Sa COS a

D*
M*

^ Sacosa^^ , m
ôij —------- TT----- _ Ai

D* D*
h = hd 

à = ad

with

cos^ aD* = laTn 

L* = —khhh + S'oCK^sina — L[t) 

M* = —kaaOL + M{t).

(8.3)

(8.4)

(8.5)

(8.6)
(8.7)

(8.8)
(8.9)

(8.10)

If the deformations are small, the system simplifies to

with

T 8
^L* - ^M* 
D* D*

. Sa Y *ad = —+ ^M*
D* D*

h = hd 

à = ad

D* = Iam-Sl

L* = -khhh - L{t) 

M* = —kaaOi + M{t).

System (8.1), (8.2) can be also written as

Mÿ + Ky = F,

(8.11)

(8.12)

(8.13)
(8.14)

(8.15)

(8.16) 

(8.17)

(8.18)
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with

M = (8.19)

where M is the mass matrix and K is the stiflFness matrix.
The dynamics of the profile is coupled with the fluid flow by lift and moment; 

the fluid problem is coupled to the profile dynamics by position and velocity of the 
profile. The problems cannot be solved separately, they are intrinsically coupled.

8.1.3. Numerical method

The problem consist of two subproblems: flow field and profile dynamics. The 
sub-iteration method is used to couple both subproblems.

We use an ALE extension of the FV method with three point backward time 
intégration schcme, see section 4.3.2, with modified Roe’s Riemann solver [RoeSl] 
and linear reconstruction with Barth’s limiter [BJ89].

The System of first order ODEs (8.4)-(8.7) for the profile dynamics is solved by 
the standard 4th order Runge-Kutta method

h = f{yn k2=^f{y^ + Ath/2)
h = fiy'^ + At k2/2) ki = + At h)

2/"^^ — 2/” T ~^At{k\ + 2/^2 T 2/^3 + k^. (8.20)
D

For evcry time-step (i.e. from solution at time-level n to solution at time-level 
n + 1) we perform following procedure:

• Compute the lift L(u") and moment M(u")

• Do until converged:

— Compute new (preliminary) position of the airfoil using RK4
[h* = f{L, M, h^, a", L", M”), a* = f{L, M, h", a", L", M"))

— Move CFD mesh (h*, a*)

— Compute corresponding flow field u* = f{h*, a*)

— Compute lift L = /(u*) and moment M = /(u*)

• Advance airfoil position = h*, = a*) and the flow field = u*)

The sub-iteration procedme exactly conserves momentum and energy.
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Figure 8.1.: Upper left: trace of zéro damping (taken from [AJ94]) with selectcd 
cases. Upper right: zoom on indefinite and damped régime. Bottom: 
dependence of hinge h on time. FV scheme with linear reconstruction 
and Barth’s limiter.
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Figure 8.2.: Computational mesh. Mach number isolines (AMa = 0.05) at non- 
dimensional structural time r = 21.5 and further with step At = 5. FV 
scheme with linear reconstruction and Barth’s limiter.

8.1.4. Numerical resuits

The aeroelastic régime is characterized by the Mach number Ma and the flutter 
vclocity defined as

Vf =
U

bujf^ B
m

npb'^
(8.21)

where u [m-s“l] is the vclocity of the air, Uf [s“^] is the frequcncy of the forced 
oscillations, p, [1] is the airfoil mass ratio and b [m] is the half chord. Common 
parameters for the tests are following: m = 18.8495, Sa = 33.9292, la = 65.5964, 
khh = 188495, kaa = 655964, Uf — 100, 6=1. The formulation for the small 
displacement is uscd. Thcse scttings give eigenvalues and eigenvectors of matrix
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Case P U V P

Indefinite: Ma = 0.825, Vf = 0.612 0.1 474.053161576 0 23584.0377804
Damping: Ma = 0.85, Vf = 0.439 0.1 340.047937797 0 11431.7943648

Flutter: Ma = 0.875, V/ = 1.42 0.1 1099.92727032 0 112871.370262

Table 8.1.: Pree stream conditions characterizing different cases. The profile is ro- 
tatcd with respect to the Cartesian axes by 1°.

(M-i K)

Al = 5089.309505, ri = (0.881354687,0.4724551996), (8.22)

Aa = 284925.4131, ra = (-0.881354687,0.4724551996) (8.23)

with corresponding natrural frequencies cJi^a = \/Ai,a = (71.34,533.7) and periods 
Tl,2 = 27r/u;i_a = (0.08807,0.01177) [s], which fully describes the homogenous solu­
tion of équation (8.18). The free stream conditions characterizing different régimes 
are given in Tab. 8.1. We hâve chosen three different cases, with négative, zéro and 
positive damping. The curve of zéro damping taken from [AJ94] is plotted in Fig.
8.1. The domain of solution is discretized with an unstructured triangular mesh 
consisting of 5574 nodes and 10950 éléments, there are 129 nodes along the profile 
(see Fig. 8.2).

The computations started from a steady solution with linear combination of the 
modes (h,a)o = Uo = 0.02ri -1- 0.002ra of équation (8.22), (8.23). The lift and 
pitching moments were artificially set to zéro, in order to avoid sharp transient 
response of the profile. Both the moments reached their respective values during the 
first cycle of the oscillations. The computations were performed with the following 
physical time-steps: fiutter case CFL = 20, indefinite case CFL = 43, damping case 
CFL = 25.

Dependence of the hinge h on time is shown in Fig. 8.1. Non-dimensional struc­
tural time is T = Uat, where Ua = y/kaa/Ia = 100. One can clearly see the différ­
ence between négative, zéro and positive damping. There is a zoom to the previous 
picture on the upper right figure with two different frequencies of the oscillations 
visible, corresponding to the two eigen-modes of the dynamic System of the airfoil. 
The faster mode is quickly damped. At the next sériés of figures the Mach number 
isolines axe shown during one cycle of the oscillation for the flutter case, starting at 
time t = 0.215 (r = 21.5) and with time-step At = 0.05 (Ar = 5).

8.2. Supersonic flutter of 2D fiat plate
Supersonic panel flutter has appeared as an important problem in the development of 
V2 missiles during the Second World War. Since then, the problem was theoretically.
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experimentally and numerically investigated, see e.g. [The35, The40, Mar58, BAH96, 
Dow04] and many other references about fluid-structinre interaction. The test case 
was chosen from référencé [PFOl].

An elastic panel with infinité aspect ratio is clamped on both edges. Its upper 
side is exposed to the supersonic airstream, while the lower side résides in the still 
air with the same pressinre as on the upper side. The panel has length L = 0.5 m, a 
uniform thickness h = 1.35 • 10“^ m, Young modulus E = 7.728 • 10^° N/m^, Poisson 
ratio U = 0.33 and density Ps = 2710kg/m^. The flow conditions are given by 
Poo = 25714 Pa and p^o = 0.4kg/m^. The critical Mach number Mo“ that is, the 
lowest free stream Mach number for which an unstable aeroelastic mode of the panel 
appeaxs, is given in the référencé [PFOl]. Using theoretical method the authors get 

2.27 and using their numerical scheme Ma^ 2.23, which they consider an 
“excellent agreement”.

First, we test the FSI methods with the FV scheme for different free stream Mach 
numbers. The computational domain is depicted in Fig. 8.3, together with typi- 
cal isolines of the pressure for one time instant with the free stream Mach number 
Mooo = 2.2. The domain of solution is rather small, however due to the supersonic 
nature of the flow possible perturbations resulting from the finite size of the com­
putational domain do not reach the oscillating panel. Wc hâve chosen the physical 
time-step At = 1 ■ 10““*, giving approx. 150 time-steps for one period.

The CFD method was selected with the following parameters: A uniform Carte- 
sian mesh of 300 x 100 éléments (giving 100 éléments along the profile) was used for 
the flow domain, hereafter denoted as fine. The 3BDF time-stepping procedure was 
used, together with the implicit dual-time stepping formulation. Lincar least square 
reconstruction with Barth’s limiter was employed and the solution of the Riemann 
problcm was approximated with the help of the Roe’s Riemann solver.

The panel was discretized by 60 x 2 QUAD9 (see Fig. 6.1) éléments. The Galerkin 
FEM method was equipped with the constant average accélération method = a — 
0.5). The plane strain assumption was used.

The free-stream conditions were prescribed to the flow domain and the panel was 
deflected with initial deflection

A?/o(a:) = c-d{2x), d{x) = Acos(Ax)-|-Rsin(Ax)-|-C'cosh(Af)-|-Dsinh(Af) (8.24)

with c = 0.002 and A = 1, R = -0.982502, C = -1, D = 0.982502, A = 4.73004, 
corresponding to the flrst mode of the panel [BSS02].

The intégral of the deflection as a fonction of time for varions Mach numbers 
around the critical Mach number is plotted in Fig. 8.4. One can see that the critical 
Mach number is about Ma" = 2.2, which corresponds to the results presented in 
[PFOl].

Second, we solve the problem on the fully unstructured grid (see Fig. 8.5) for the 
free stream Mach number Mooo = 2.2. The mesh consists of 3451 nodes and 6722
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Figure 8.3.: Panel flutter problem. Solution on fine mesh. Isolines of pressure for 
one time instant, Muoc = 2.2.
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Figm^e 8.4.: Panel flutter problem. Solution on fine mesh. Dependence of the inté­
gral of deflection on time for different free stream Mach numbers.
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8.2. Supersonic Butter of 2D Bat plate

Figure 8.5.: Panel flutter problem. Domain of solution for unstructured mesh. Iso- 
lines of pressure for one time instant, Ma^o = 2.2.

triangular éléments, giving 50 éléments along the panel. We use CC FV scheme 
with Barth’s limiter, LDA, N and Bx schemes, ail with the 3BDF time intégration. 
Even though the flow is supersonic, the shock-waves are relatively weak and we can 
cxpect acceptable capture of the shocks with the linear LDA scheme. AU the other 
parameters of the simulation remain the same.

The dependence of the intégral of deflection on time is plotted in Fig. 8.6. The 
results of the FV scheme correspond to the results of the computation on the fine 
mesh. One can see vcry good agreement of the second order RD schemes with the 
FV scheme.

The plotted results show a good agreement between each other and with theoret- 
ical investigations, but there axe still some open questions. The simulations were 
repeated with different wall boundaxy conditions, namely the ones derived from the 
weak Petrov-Galerkin formulation, marked as PG (see section 3.9.2.1) and the weak 
boundaxy conditions due to Paillexe [Pai95], maxked P (see section 3.9.2.2). Results 
obtained with these two foxmulations of the wall boundaxy conditions are givcn in 
Fig. 8.7. First of ail, the PG formulation was derived for Petrov-Galerkin schemes, 
i.e. schemes with bounded distribution coefficients. These are lineaxity preserving 
schemes in the RD framework. Neither N, nor Bx schemes belong to this class and 
the dérivation might not be valid. However, the formulation of the PG boundaxy 
condition is équivalent (at least for the linear case) to the Van der Weide formulation 
of wall boundaxy condition [vdW98], see section 3.9.2.1, (with modified distxibution 
coefficient), and in this case is not cleax if the foxmulation of Weide does woxk fox 
the non-lineaxity pxesexving schemes. For the LDA scheme, being the most accurate 
scheme, the différence is rather small. It it bigger for Bx the scheme. For N scheme, 
the two different formulations of the boundaxy conditions give completely diffexent 
dynamic xesponse. The suitable foxmulation of the boundaxy condition has to be 
tested and the pxoblem is still not fully solved.
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Figure 8.6.: Panel flutter problem. Solution on unstructured mesh. Dependence 
of the intégral of deflection on time for different numerical schemes. 
Mooo = 2.2. Paillere’s boundary conditions.
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Figure 8.7.: Panel flutter problem. Solution on the unstructinred mesh. Dependence 
of the intégral of deflection on time for different implémentation of the 
Wall boundary conditions. P stands for boundary conditions due to 
Paillere, PG stands for Petrov-Galerkin formulation of boundary con­
ditions. Mooo = 2.2.
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8.3. Transonic flutter of AGARD 455.6 wing

As a final test, a flutter computation of the AGARD 445.6 wing is presented. This is 
a very classical test case, first measured in 1956 [JU56], then measured and computed 
in 1962 [ECYLJTF63] (report [JU56] includes [ECYLJTF63] as appendix). The 
finite élément computation with modal shapes is later provided in [ECY87]. A 
number of publications including this test case exist, note the recent book [HWS03], 
with comparison of several state of the art computations.

We provide ail the details regarding the construction of this test case, including 
origin of used parameters, for the sake of clarity and repeatability. The conversion 
of units is taken from [Mec73].

Two types of models were built for the experiments, a solid model and a weakened 
model. There is a lack of detailed material properties of the wing in the references 
[ECYLJTF63, ECY87]. However, in [YKM+03] it has been found, that the solid 
model was made of Honduras mahagony (Swietenia macrophylla), see Fig. 8.8, with 
clastic constants as in the Tab. 8.2. Precisely for this reason we hâve selected the 
solid model for our flutter computations, despite the fact the weakened model was 
more extensively tested and it is more often referred to in the literature.

Géométrie data are taken from reference [ECY87]: quarter-chord sweep-back angle 
of 45° and NACA 65A004 airfoil section in the stream-wise direction. The geometry 
is presented in Fig. 8.9 together with numerical data. The panel span s = 2.500 ft 
(=0.762 m), root chord 26g = 1.833ft (=0.5587m) and tip chord 2bt = 1.208ft 
(=0.3682 m). The measurements were performed with “solid model 2”, measmed 
mass is m = 0.14658slugs (=2.1391 kg).

We will investigate stability of the elastic response near a point given by the free 
stream Mach number Ma^o = 0.92 and flutter speed index

^s^ct y M

given by Vf = 0.5214 [ECY87, pg. 50], with V the free stream gas velocity and 
uJa — ‘̂ T^fa the natural angular frequency of the wing in first uncoupled torsion 
mode, which we will take from the reference. The measurements were performed 
for Freon-12 gas, with spécifie heat ratio 7 = 1.14 [ECY87, pg. 3]. To asses the 
behavior of the method, we perform computations for different values of the flutter 
speed index V}, see Tab. 8.4. The last non-dimensional parameter is the mass 
ratio[ECY87, pg. 38], given by

/i = -, (8.26)pv

for our combination of the wing and the gas it is /ï = 9.300 [ECY87, pg. 51]. Symbol 
fh is the measured mass of the wing given above, p is the density of the test medium 
and V is the volume of the conical frustum having the stream-vise root chord as the
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(8.25)
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8.3. Transonic Butter of AGARD 455.6 wing

Figure 8.8.: Honduras Mahagony (Swietenia macrophylla) [MahOGb, Mah06a]

Eli 192.96-10® lbf/ft2 9238.9 MPa
E22 12.63-10® lbf/ft2 604.72 MPa
E33 21.11-10® lbf/ft2 1010.7 MPa

G\2 13.02-10® lbf/ft2 623.40 MPa
Gi3 16.59-10® lbf/ft2 794.33 MPa
G23 5.53-10® lbf/ft2 264.77 MPa

1^12 0.034
^13 0.033
^23 0.326

Table 8.2.: Elastic constants of Honduras Mahagony (Swietenia macrophylla) taken 
from [YKM+03]. Indexes 1, 2 and 3 dénoté longitudinal (fiber), tangen- 
tial and radial directions
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Figure 8.9.: Geometry of the AGARD wing, taken from [EGY87, pg. 51].

lower base diameter, stream-vise tip chord as upper base diameter and the panel 
span as height.

The surface of the cross-section of the half airfoil with unit cord is computed 
numerically by using trapezoidal rule, giving P = 0.0135938 m^. The surface of the 
cross-section at the root is then Px = 2 • 0.0135938 • 0.5586984^ = 0.0084864m^, at 
the tip it is Pa = 2 • 0.0135938 • 0.36819842 = 0.0036858m^.

The volume (see e.g. [Rek95, I, pg. 105, eqn. 9]) of the wing is then

= is(Pi + P2 + VP1P2) = \ ■ 0.762 • (0.0084864 + 0.0036858
O O

+ Vo.0084864 • 0.0036858) = 0.0045123 (8.27)

The density of the material is then p = fh/v^ = 2.1391/0.0045123 = 474.056 kg/m^

8.3.1. Computational mesh

The wing was discretized using 350 tri-quadratic éléments, 14 éléments are along the 
span, each element contains 27 nodes, sec Fig. 8.10. The unstructmed fluid mesh 
was downloaded from the Internet [BKGOO], generatcd by the group of G. Farhat. 
It consists of 22014 nodes and 118480 tetrahedral éléments.
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8.3. Dransonic Butter of AGARD 455.6 wing

Figiire 8.10.; AGARD 445.6 wing. Top: Fluid mesh, Mach number isolines in steady 
State (initially deformed). Bottom: structural mesh, cross-section of 
structural mesh with emphasized quadratic éléments.

8.3.2. Modal analysis

As a first step, a modal analysis of the wing was performed. The direction of the 
fibers is declined by 45° from the x-axis and the elastic tensor has to be transformed 
in accordance. Frequencies resulting from the analysis axe given in Tab. 8.3. The 
différence from the computation is of order 5%. If a three time denser mesh is nsed, 
the first modal frequency slightly increases such that the différence is about 4%. This 
systematic différence can by caused by the fact that om: model uses elastic constants 
found in référencé [YKM+03, Ano44]. These can be significantly different from the 
material of the constructed wing. Also radial and tangential direction of fibers are 
uncertain. Note, that we use a 3D anisotropic model, while the authors [ECY87] 
use a simplified 2D model, moreover the elastic constants taken firom [Ano44] were 
modified: “Values moduli and Poisson’s ratio representing the anisotropic character 
[... taken from [Anoff]- ■ ■] were modified slightly in order to duplicate as closely as 
possible the measured modal frequencies and mode Unes” [ECY87, pg. 2].

The isolines of deflection in ^-direction for the computed modes are plotted in Fig. 
8.11 and 8.12. Although the isolines axe not in the same scale, the coxxespondence 
is clear. Fig. 8.13 shows an axonometxic plot of the modes.

The fixst fom modes wexe used as the initial deflection fox the fluid-structuxe com-
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fl
Frequency, [Hz]

/2 /a fi /s

Measm:ed [ECYLJTF63] 14.10 69.30 50.70 127.10
2D FEM [ECY87] 14.1201 50.9125 68.9416 122.2556 160.5292
Présent method 13.3645 45.6225 64.7223 113.513 157.599

Table 8.3.: AGARD 445.6 wing - solid model 2. Measured and computed modal 
frequencies [ECY87] and computation by présent method.

putation in the ratio 1:0.2:0.04:0.008. Maximal deflection of the wing corresponds 
to Az Ri 0.0125.

8.3.3. Steady flow solution - initial condition for FSI

Fluid-structure interaction computation starts from the steady State solution of the 
flow-field around the wing in the deformed State. The flow régime is sufficiently 
given by the Mach number and zéro angle of attack, however for later use we set 
correct flow-field parameters with respect to the flutter speed index.

The flutter speed index is given by (8.25). Natural circulax frequency fa was 
calculated in [ECYLJTF63] using procedure [JU56]. We didn’t recompute the value, 
but we took fa = 50.68 Hz as [ECY87, pg. 48]. Root and tip half-chords b^, bt are 
given above and volume of conical frustum is

v = ^{bUbsbt + b^t). (8.28)

From the équation (8.26) gas density is

fh
P=—,vp

(8.29)

and from (8.25)
V = VfbsUay/^. (8.30)

From the définition of the Mach number

Ma = - =
a \ 'YP

(8.31)

the pressure is
V^p 

^ Ma^'y
(8.32)

The flow parameters are given in Tab. 8.4. The flow solution is self-similar, only 
one computation is needed, the others are obtained by scaling velocity as V}/V/ref
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8.3. Transonic Butter of AGARD 455.6 wing

Figure 8.11.: First three modes of AGARD 445.6 wing. Left: présent method. Right: 
calculation from référencé [ECY87].
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Figure 8.12.: Forth and fifth mode of AGARD 445.6 wing. Left: présent method. 
Right: ealculation from referenee [ECY87].

Figure 8.13.: AGARD 445.6 wing. Axonometric plot of the fîrst six modes.
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8.3. Transonic Butter of AGARD 455.6 wing

Régime Flutter speed 
index variation

Vf P V P

Neutral 0% 0.52140 1.764526 141.4413 36584.789
Damping -5% 0.49533 1.764526 134.3692 33017.772
Damping -8% 0.47968 1.764526 130.1260 30965.365
Damping -10% 0.46926 1.764526 127.2972 29633.679

Table 8.4.: Computed régimes for the AGARD 445.6 wing. Ma^o = 0.92

and the pressure as Vj The isolines of the Maeh number for the steady state
solution are depicted in Fig. 8.10. The geometry is in the initially deformed state. 
The whole flow-field is subsonic, there is a tiny supersonic packet at the front tip of 
the wing.

8.3.4. Transonic flutter calculations

We start computations from the initial conditions described above. We hâve chosen 
a time step At = 0.0003, corresponding to about 120 time-steps per oscillation. 
Dcpendence of the intégral of the deflection on time t is depicted in Fig. 8.14. The 
neutral response is slightly above 95 % of the measured velocity, corresponding to 
an error in flutter speed index less than 5 %.

The measrued flutter frequency is 172.1 radians/sec [ECY87, pg. 48], correspond­
ing to the period T^eas = 0.036508. From Fig. 8.14, the period (computed from 
the flrst three cycles) is To% = 0.03866, T_s% = 0.0403333, r_g% = 0.0415333. The 
flutter frequency error is then (T_s% — Tn,eas)/Tmeas = 4.7%.

The second mcthod was the LDA scheme from section 3.7.3 with two different 
boundaxy conditions, the flrst due to Paillere (section 3.9.2.2) and the second given 
by the Petrov-Galerkin formulation, see section 3.9.2.1. The computations were 
pcrformed for the measured neutral response, see Fig. 8.15. The response in the 
case of Paillere’s boundaxy conditions is almost perfectly neutral, whilc the Petrov- 
Galerkin formulation gives roughly twice bigger growth of the initial perturbation 
than the flnite volume scheme. The flutter frequency obtained from the flrst three 
periods from plot 8.15 is given in Tab. 8.5. The error in frequency, computed as 
above, for the LDA scheme with Paillere’s boundaxy condition is less than 1 %, 
which can be judged much more accruate than can be expected, taking into account 
relatively simple method for elastic problems and the uncertainty in the value of the 
elastic constants. The error in the frequency for the Petrov-Galerkin formulation of 
the boundary conditions is less than 3 % and for the flnite volume scheme about 2 
%.
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Method Period T Error

Measured 0.036508
LDA Paillere 0.036265 0.66 %
LDA Petrov-Galerkin 0.035436 2.93 %
FV 0.035746 2.08 %

Table 8.5.: Flutter frequency for the AGARD 445.6 wing, comparison for the neutral 
response régime. Influence of the bonndaxy conditions.

Figure 8.14.: AGARD 445.6 wing. Time dependence of the volume intégral of the 
deflection for the velocity of 100 %, 95 %, 92 % and 90 % of the 
measured neutral response. Comparison with the dry elastic response.
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8.3. Transonic Butter of AGARD 455.6 wing

Figiire 8.15.: AGARD 445.6 wing. Time dependence of the volume intégral of the 
deflection for the measured neutral response. Comparison of the FV 
scheme and LDA scheme with different formulations of boundary con­
ditions.

No. of processors Speedup Effîciency

1 1 100%
2 1.77 88.5 %
4 3.24 81.2 %

Table 8.6.: Parallel performance for the AGARD 445.6 wing.

8.3.5. Parallel performance

We hâve performed the simulations on a parallel cluster up to four processors. The 
parallel efîiciency, as defined in (4.49), together with the speedup is presented in 
Tab. 8.6. The implémentation is far from optimal, however a noticeable speedup 
can be seen. The parallel efîiciency problem is caused by the very coarse structural 
mesh for the parallel solution in the cmrcnt implémentation.
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8.4. Conclusions
In this chapter, results from several examples of technically important fluid-structure 
interaction problems were presented. Ail selected test cases are well known and 
widely used as benchmarks. One can compare the performance of the presented 
methods with own methods or other methods from the references.

The transonic flutter of the profile NACA64A010 was presented. The profile was 
modeled as a rigid body with two degrees of freedom. The neutral, damped and 
flutter response was reproduced.

The supersonic flutter of a 2D panel was selected as second test case. The problem 
was solved on two different meshes, fine and unstructured. Different formulations of 
numerical schemes and boundary conditions were studied. The critical Mach number 
estimated firom the computations using the finite volume scheme was Ma^ = 2.2, 
while the theoretical value was = 2.27 and from the reference [PFOl] Ma^ = 
2.23. The case was solved by the novel formulation of the LDA, N and Bx schemes, 
confirming good performance of the LDA and the Bx schemes. The influence of the 
boundary conditions was also considered.

As the last ultimate test case, the transonic flutter of the AGARD 445.6 wing was 
considered. This is probably the most famous transonic flutter test case, partially 
because lack of flutter data for the other technically relevant test cases. The modal 
analysis of the wing was performed. The différence between the computed frequency 
and the measured frequency of the first mode is about 5 %. The computation 
using the FV scheme was performed. Computed flutter speed index was lower than 
measured by a différence less than 5 %. Then the computations were performed with 
the LDA scheme with two different boundary conditions for the case of measured 
neutral response. In one case, the resulting response was almost exactly neutral, for 
the second version of the boundary conditions the différence was bigger. The error 
of the flutter firequency was less than 1 % in one case and about 3 % in the second.

Ail the presented results can be considered very good. However, it has to be 
mentioned that for reliable fluid-structure computations the method has to be thor- 
oughly validated.

Chapter 8. Numerical résulta for complex üuid-structure interaction problems
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Chapter 9. 

Conclusions

The goals stated in the beginning of presented work were successfully fulfilled.

1. A numerical method based on residual distribution schemes wais developed and 
several extensions for moving mesh simulation were proposed. We hâve ana- 
lyzed the positivity of first order schemes, showing that the proposed extension 
satisfies a discrète maximum principle for a scalar conservation law. We hâve 
also analyzed the positivity and accuracy requirements of nonlinear schemes 
constructed as a linear combination of low and high order schemes. We hâve 
proposed and tested a new nonlinear scheme built as a convex combination of 
the LDA and the N scheme, named Bx scheme.

2. We hâve developed a finite volume method in both cell centered and vertex 
centered settings, including the capability to handle moving meshes. We hâve 
tested the influence of renumbering degrees of freedom for a parallel implicit 
method, showing its importance for the parallel performance.

3. We hâve conducted a number of computational experiments, starting from 
scalar advection problems, Burgers équation up to the Euler équations, includ­
ing the technically important case of transonic flow past the Onera M6 wing. 
The tests were performed in two and three spatial dimensions, for steady and 
unsteady problems, including problems with deforming meshes. A number of 
convergence studies for scalar cases were performed, also in three dimensions, 
giving opportunity to directly compare the accmacy of different schemes for 
the same test case.

4. A finite élément method for the structural problem has been developed in two 
and three dimensions including large displacement formulation and handling 
of anisotropic material properties. The modal analysis capabilities were in- 
cluded, as they are needed for the validation of the structural model and the 
prescription of the initial conditions in the fluid-structure interaction problem.

5. A numerical method for fluid-structure interaction was developed and coded. 
The numerical method for the fluid flow is based on the schemes developed
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in the first part of the work. Interface boundary conditions were developed 
and validated. The mesh motion algorithm uses the finite élément method to 
find a nodal displacement. The method was validated for 2D transonic fiow 
past a NACA 64A010 airfoil, where the structural dynamics is modeled by a 
System of two ordinary difîerential équations. The flutter, neutral and dump­
ing response were correctly reproduced. A flutter boundary for one selected 
Mach number of a two-dimensional elastic panel problem was computed and 
compared with theoretical results and solutions known from the literatiue. 
Finally, the method was tested on the 3D AGARD 445.6 wing test case. We 
hâve compared the solution using different developed CFD methods, both of 
the residual distribution and finite volume type.

9.1. Original contribution of this thesis
The main achievements of the thesis are summarized below.

• Development of the numerical methods based on residual distribution (RD) 
schemes and their extension for simulations on moving meshes.

Chapter 3 is devoted to the development of the residual distribution schemes 
(RDS). We hâve shown that a positive multidimensional upwind scheme, which 
is a convex combination of the N scheme and the LD A scheme, does not exist, 
see Theorem 11, page 38. We hâve also proven, that any scalar multidimen­
sional upwind scheme in two dimension can be constructed from the blend of 
two other schemes, e.g. N scheme and LDA scheme, see Theorem 12.

A new RD scheme has been developed, see Chapter 3.5.5, page 41, based 
on physical considérations for blending the LDA and N schemes, named Bx 
scheme. The Bx scheme is constructed such that the LDA scheme is active in 
smooth parts of the flow and the N scheme introduces higher order error, giving 
second order accruacy in smooth parts of the flow. The blending coefficient is 
smooth, leading to superior itérative convergence properties. The Bx scheme is 
extended for unsteady flow computations, taking into account the mass matrix 
of the RD schemes.

We hâve extended several unsteady versions of the RD schemes for compu­
tations on moving meshes, see section 3.7, page 59 and further. Unlike in 
[MSD03], oru extension préserves the positivity of the N scheme, allowing to 
prove a discrète maximum principle for scalar problems. Then, we hâve de- 
rived the extension of several versions of the space-time RD schemes and the 
extension of the LDA scheme with mass matrix. We hâve used the analogy 
with Petrov-Galerkin formulation of the LDA scheme. Unlike other authors, 
see e.g. [SFH05], we do not need to compute the time dérivative of the mass 
matrix, which could be a prohibitively expensive operation for the RD schemes.
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The method was implemented for large scale computations, i.e. the program 
is written to solve 3D problems in parallel using an implicit time intégration 
procedure.

The connection between the linear, linearity preserving residual distribution 
schemes and the Petrov-Galerkin formulation allows us to formulate a consis­
tent boundary conditions treatment. In particular, we hâve shown the con­
nection between the Petrov-Galerkin formulation and van der Weide’s formu­
lation, see section 3.9.2.1, page 69. We hâve also formulated a condition for 
conservativity of wall boundary conditions.

• Development of the state-of-the-art finite volume (FV) methods.

We hâve considered the stated-of-the-art finite volume method, which uses un- 
structmed meshes and numerical flux obtained by solving a Riemann problem 
at each face of the finite volume. We hâve used linear least square reconstruc­
tion with limiter, see [BJ89], or nonlinear weight, called WLSQR (WENO) 
method, see e.g. [Für06]. The extension of the method for moving mesh com­
putations was donc according to [KF99]. The computer implémentation allows 
to solve 3D industrial type flows, again using a parallel implicit time intégra­
tion procedure.

We hâve compared parallel element renumbering strategies and shown a large 
influence of the mesh numbering on the computational speed-up, see section
4.4, page 84.

• Evaluation of the performance and comparison of the schemes for steady and 
unsteady flow problems.

The finite volume schemes and residual distribution schemes are first compared 
in unsteady version via a modified équation approach, see Section 5.1, page 
90. We hâve shown that both methods hâve a dispersion error term of order 
O(Ax^) and fourth order dissipation term scaled as (9(Aa:^). Our theoreti- 
cal results were demonstrated numerically for the solution of a ID advection 
problem of smooth profile and top-hat.

In the subséquent part of Section 5, we hâve systematically performed numer­
ical expcriments to show the behavior of the schemes for a number of problem 
types. It includes smooth problems and problems with shock waves; scalar and 
System of équations; and problems involving moving meshes simulations. The 
RD schemes can be directly compared with cell centered and vertex centered 
formulations of the FV scheme. When it was possible, we hâve estimated the 
accuracy order by convergence study of the error in the appropriate norm. 
We hâve shown the definitive superiority of the LDA scheme in its class; and 
the high accuracy of the cell centered formulation of the finite volume scheme 
with Barth limiter for non-linear schemes. We hâve also demonstrated the
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unsatisfactory performance of the N-modified scheme and the superiority of 
the Bx scheme. The vertex centered formulation of the FV scheme was giving 
consistently worse results than the RD and cell centered FV methods.

• Development of a method for aeroelastic computations and performance test.

The finite élément method was developed for the elastic continuum simula­
tions. The method is simple, however it includes the key ingrédients to solve 
the elastic behavior of the wooden wing: anisotropic elastic material; formula­
tion for small and large displacements; possibility to solve unsteady problems 
and modal analysis. We hâve shown the practical necessity to use éléments 
with at least quadratic trial functions, see Section 6.5, page 156. The same 
method was later used for the computational fluid dynamics (CFD) mesh mo­
tion. The CFD mesh is large and our parallel implémentation of the algorithm 
is an advantage.

The fluid-structure interaction problem was formulated using the three field 
approach: computation of fluid dynamics on moving meshes, computational 
structured dynamics in Lagrangian formulation and mesh motion algorithm. 
The three problems are solved together using a simple sub-iteration approach.

The performance of the method is demonstrated in Chapter 8, page 171. As 
the simpler test we solve transonic flutter of the NACA 64A010 airfoil. The 
airfoil motion is described by the System of ordinary differential équations, we 
use Runge-Kutta scheme to solve the ODEs. The second test includes the 2D 
panel flutter problem. We asses the performance of the method in comparison 
with the theoretical solution.

As the final test in this thesis, we solve the transonic flutter problem of an 
AGARD 455.6 wing in three spatial dimensions. We describe the full setup 
of the problem, including the modal analysis and flow conditions for sake of 
clarity and repeatability. Thcn, we hâve compared the solution obtained with 
the FV scheme and RD scheme, also with experimental data.

Some of the results obtained during the work were published, the most important 
publications include:

• Extension of the RD schemes for computations on moving meshes [DD05b, 
DDF05a, DD06a, DD06c, DD06b].

• Blended (Bx) scheme [DD05a, DD06d].

• Fluid-structure interaction problem of an airfoil with two degrees of freedom 
[DDF05b].

• Fluid-struetme interaction problem of the AGARD 445.6 wing [DFDF07].
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• Comparison of cell centered and vertex centered formulation of finite volume 
scheme [DDF06].

9.2. Conclusions and further perspectives

The finite volume method proved to be an accurate and reliable method for fluid 
flow simulations. The methods developed in the coimse of this thesis hâve been vali- 
dated on a number of test cases, including internai turbomachinery flows (transonie 
axial and radial turbines) and external flows, i.e. airfoils and wings. Those results 
are not included in the thesis, for space limitations, but they axe published in scien- 
tific journals [DFH05, BUK+03, DFF+03a, DFH03, FDHK02, DFF+01], conférence 
proceedings abroad [DFF+04a, DFF+04b, DFH04, DFF+03c, DFF+03d, DFF+03b, 
DFF~''02], conférences in the Czech Republic and internai research reports of the 
Department of Technical Mathematics. The method was extended for the turbulent 
flows, which is also not included here. For the references we give [DFH05] and the 
internai research reports of the Department of Technical Mathematics. For the fm:- 
ther extension, we recommend to consider a better approximation of the Jacobiari 
for the implicit method, to improve boundary condition treatment and to include 
higher order implicit time intégration method (higher than two).

The residual distribution schemes are much less developed in comparison to the 
finite volume methods. The LDA scheme was shown to be superiorly accurate with 
respect to the finite volume schemes, while keeping enough dissipativity to compute 
flows with weak shock waves and discontinuities. The N-modified scheme was be- 
lieved to be superior in terms of accuracy to the finite volume schemes, whereas 
the comparison presented in chapter 5 has raised doubts about this statement. The 
Bx scheme was intended as the replacement, however, the shock captming operator 
does not stand on solid mathematical basis, it is rather an ad hoc solution. A lot of 
Work is still needed for the improvement of the nonlinear schemes. The only nonlin- 
ear unsteady shock capturing residual distribution scheme working sufficiently well 
for large time-steps seems to be the Bx scheme, for the time being. There are itéra­
tive convergence problems for the two layer space-time N-modified scheme with large 
time steps, which effectively prevents its use for fluid-structure interaction problems. 
The possible extension for viscous problems is described in e.g. [vdW98, DRAD06], 
or for space-time schemes of [CD02] in [DRD03b, DRD03a, DRD05].

This is a first research on the development of second order accurate RD schemes 
for aeroelastic simulations, and the proposed second order extensions are the first 
Work known to the author concerning this topic. Although very encouraging results 
were obtained, it will still take a lot of effort to finish the methods such that routine 
aeroelastic simulations would be possible.

Considering the method for elastic simulations, a relatively simple formulation 
was used. For realistic simulations of aircrafts the model has to be extended to
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consider internai mechanics of the wings with ail the equipment normally modeled, 
such as rods, bars, springs and honey combs. Contrary to the fluid flow modeling, 
computational solid mechanics methods are well developed and reliable and com­
mercial software packages are readily available. On side of post-processing of the 
results, identification of the dynamics parameters has to be improvcd, one of the 
proposed methods is the ERA algorithm [JP77].
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Appendix A. 

Appendix

A.l. Smooth compression of gas inside the piston 
cyiinder

This test case is motivated by internai aerodynamics problems, namely flow in piston 
engines. A gas at rest is enclosed between two walls. One of the walls slowly starts 
to move. This problem can be solvcd by the method of characteristics [ZH76] until 
the head of the pressure wave reflects from the other wall or a shock is created. We 
hâve used a domain of length 1 = 5 and initial conditions = 0, = 1.4 and

= 1. The piston starts to accelerate with dérivative of accélération x = 0.2. The 
solution at t = 4 from the method of characteristic is given in the table below.

# X

1 2.133333e+00
2 2.185243e+00
3 2.235394e+00
4 2.283819e+00
5 2.330552e+00
6 2.375627e+00
7 2.419075e+00
8 2.460932e+00
9 2.501229e+00

10 2.540001e+00
11 2.577280e+00
12 2.613100e+00
13 2.647494e+00
14 2.680495e+00
15 2.712137e+00
16 2.742453e+00
17 2.771476e+00
18 2.799240e+00
19 2.825777e+00
20 2.851122e+00

Mach
1.212121e+00 
1.193759e+00 
1.175405e+00 
1.157062e+00 
1.138734e+00 
1.120422e+00 
1.102130e+00 
1.083862e+00 
1.065619e+00 
1.047406e+00 
1.029225e+00 
1.011080e+00 
9.929733e-01 
9.749092e-01 
9.568908e-01 
9.389214e-01 
9.210045e-01 
9.031438e-01 
8.853426e-01 
8.676047e-01

U

1.600000e+00 
1.568160e+00 
1.536640e+00 
1.505440e+00 
1.474560e+00 
1.444000e+00 
1.413760e+00 
1.383840e+00 
1.354240e+00 
1.324960e+00 
1.296000e+00 
1.267360e+00 
1.239040e+00 
1.211040e+00 
1.183360e+00 
1.156000e+00 
1.128960e+00 
1.102240e+00 
1.075840e+00 
1.049760e+00

rho
5.610450e+00 
5.476419e+00 
5.346270e+00 
5.219890e+00 
5.097172e+00 
4.978009e+00 
4.862298e+00 
4.749938e+00 
4.640835e+00 
4.534892e+00 
4.432019e+00 
4.332127e+00 
4.235131e+00 
4.140947e+00 
4.049493e+00 
3.960692e+00 
3.874467e+00 
3.790744e+00 
3.709451e+00 
3.630519e+00

P
6.982606e+00 
6.750191e+00 
6.526674e+00 
6.311705e+00 
6.104945e+00 
5.906071e+00 
5.714772e+00 
5.530749e+00 
5.353715e+00 
5.183397e+00 
5.019529e+00 
4.861860e+00 
4.710146e+00 
4.564154e+00 
4.423660e+00 
4.288449e+00 
4.158316e+00 
4.033063e+00 
3.912499e+00 
3.796444e+00
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21 2.875307e+00
22 2.898365e+00
23 2.920330e+00
24 2.941236e+00
25 2.961114e+00
26 2.980000e+00
27 2.997926e+00
28 3.014924e+00
29 3.031030e+00
30 3.046275e+00
31 3.060693e+00
32 3.074318e+00
33 3.087183e+00
34 3.099320e+00
35 3.110764e+00
36 3.121547e+00
37 3.131703e+00
38 3.141265e+00
39 3.150266e+00
40 3.158740e+00
41 3.166720e+00
42 3.174239e+00
43 3.181331e+00
44 3.188028e+00
45 3.194365e+00
46 3.200373e+00
47 3.206088e+00
48 3.211541e+00
49 3.216766e+00
50 3.221797e+00
51 3.226667e+00
52 3.231408e+00
53 3.236055e+00
54 3.240640e+00
55 3.245198e+00
56 3.249760e+00
57 3.254361e+00
58 3.259033e+00
59 3.263811e+00
60 3.268726e+00
61 3.273813e+00
62 3.279105e+00
63 3.284635e+00
64 3.290437e+00

8.499336e-01
8.323331e-01
8.148069e-01
7.973587e-01
7.799924e-01
7.627119e-01
7.455209e-01
7.284234e-01
7.114234e-01
6.945248e-01
6.777317e-01
6.610480e-01
6.444779e-01
6.280254e-01
6.116947e-01
5.954898e-01
5.794149e-01
5.634743e-01
5.476720e-01
5.320122e-01
5.164993e-01
5.011373e-01
4.859305e-01
4.708832e-01
4.559995e-01
4.412837e-01
4.267400e-01
4.123726e-01
3.981858e-01
3.841836e-01
3.703704e-01
3.567502e-01
3.433272e-01
3.301055e-01
3.170893e-01
3.042825e-01
2.916893e-01
2.793136e-01
2.671594e-01
2.552306e-01
2.435312e-01
2.320649e-01
2.208356e-01
2.098470e-01

1.024000e+00
9.985600e-01
9.734400e-01
9.486400e-01
9.241600e-01
9.000000e-01
8.761600e-01
8.526400e-01
8.294400e-01
8.065600e-01
7.840000e-01
7.617600e-01
7.398400e-01
7.182400e-01
6.969600e-01
6.760000e-01
6.553600e-01
6.350400e-01
6.150400e-01
5.953600e-01
5.760000e-01
5.569600e-01
5.382400e-01
5.198400e-01
5.017600e-01
4.840000e-01
4.665600e-01
4.494400e-01
4.326400e-01
4.161600e-01
4.000000e-01
3.841600e-01
3.686400e-01
3.534400e-01
3.385600e-01
3.240000e-01
3.097600e-01
2.958400e-01
2.822400e-01
2.689600e-01
2.560000e-01
2.433600e-01
2.310400e-01
2.190400e-01

3.553881e+00 
3.479470e+00 
3.407223e+00 
3.337079e+00 
3.268977e+00 
3.202861e+00 
3.138673e+00 
3.076359e+00 
3.015867e+00 
2.957145e+00 
2.900143e+00 
2.844814e+00 
2.791110e+00 
2.738987e+00 
2.688400e+00 
2.639307e+00 
2.591668e+00 
2.545441e+00 
2.500589e+00 
2.457074e+00 
2.414859e+00 
2.373911e+00 
2.334194e+00 
2.295675e+00 
2.258324e+00 
2.222108e+00 
2.186999e+00 
2.152967e+00 
2.119984e+00 
2.088024e+00 
2.057059e+00 
2.027066e+00 
1.998018e+00 
1.969893e+00 
1.942668e+00 
1.916321e+00 
1.890830e+00 
1.866175e+00 
1.842335e+00 
1.819292e+00 
1.797028e+00 
1.775523e+00 
1.754762e+00 
1.734727e+00

3.684722e+00 
3.577165e+00 
3.473614e+00 
3.373912e+00 
3.277913e+00 
3.185474e+00 
3.096458e+00 
3.010736e+00 
2.928180e+00 
2.848672e+00 
2.772094e+00 
2.698337e+00 
2.627293e+00 
2.558861e+00 
2.492942e+00 
2.429443e+00 
2.368273e+00 
2.309346e+00 
2.252579e+00 
2.197891e+00 
2.145208e+00 
2.094454e+00 
2.045561e+00 
1.998460e+00 
1.953086e+00 
1.909379e+00 
1.867277e+00 
1.826725e+00 
1.787666e+00 
1.750050e+00 
1.713824e+00 
1.678942e+00 
1.645356e+00 
1.613023e+00 
1.581899e+00 
1.551945e+00 
1.523120e+00 
1.495388e+00 
1.468713e+00 
1.443060e+00 
1.418396e+00 
1.394690e+00 
1.371912e+00 
1.350033e+00
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65 3.296543e+00
66 3.302987e+00
67 3.309802e+00
68 3.317021e+00
69 3.324679e+00
70 3.332807e+00
71 3.341440e+00
72 3.350610e+00
73 3.360352e+00
74 3.370697e+00
75 3.381680e+00
76 3.393333e+00
77 3.405691e+00
78 3.418786e+00
79 3.432651e+00
80 3.447320e+00
81 3.462827e+00
82 3.479203e+00
83 3.496484e+00
84 3.514701e+00
85 3.533889e+00
86 3.554080e+00
87 3.575308e+00
88 3.597606e+00
89 3.621007e+00
90 3.645545e+00
91 3.671253e+00
92 3.698164e+00
93 3.726312e+00
94 3.755729e+00
95 3.786450e+00
96 3.818507e+00
97 3.851933e+00
98 3.886762e+00
99 3.923028e+00

100 3.960762e+00
101 5.000000e+00

1.991028e-01
1.886066e-01
1.783620e-01
1.683726e-01
1.586416e-01
1.491726e-01
1.399689e-01
1.310336e-01
1.223700e-01
1.139811e-01
1.058698e-01
9.803922e-02
9.049205e-02
8.323106e-02
7.625890e-02
6.957811e-02
6.319115e-02
5.710038e-02
5.130804e-02
4.581629e-02
4.062718e-02
3.574265e-02
3.116454e-02
2.689455e-02
2.293432e-02
1.928533e-02
1.594896e-02
1.292649e-02
1.021907e-02
7.827726e-03
5.753372e-03
3.996803e-03
2.558690e-03
1.439585e-03
6.399181e-04
1.599949e-04
O.OOOOOOe+00

2.073600e-01 
1.960000e-01 
1.849600e-01 
1.742400e-01 
1.638400e-01 
1.537600e-01 
1.440000e-01 
1.345600e-01 
1.254400e-01 
1.166400e-01 
1.081600e-01 
l.OOOOOOe-01 
9.216000e-02 
8.464000e-02 
7.744000e-02 
7.056000e-02 
6.400000e-02 
5.776000e-02 
5.184000e-02 
4.624000e-02 
4.096000e-02 
3.600000e-02 
3.136000e-02 
2.704000e-02 
2.304000e-02 
1.936000e-02 
1.600000e-02 
1.296000e-02 
1.024000e-02 
7.840000e-03 
5.760000e-03 
4.000000e-03 
2.560000e-03 
1.440000e-03 
6.400000e-04 
1.600000e-04 
O.OOOOOOe+00

1.715402e+00
1.696773e+00
1.678824e+00
1.661540e+00
1.644909e+00
1.628917e+00
1.613551e+00
1.598800e+00
1.584652e+00
1.571095e+00
1.558118e+00
1.545713e+00
1.533869e+00
1.522576e+00
1.511827e+00
1.501612e+00
1.491923e+00
1.482754e+00
1.474097e+00
1.465944e+00
1.458291e+00
1.451131e+00
1.444458e+00
1.438268e+00
1.432555e+00
1.427315e+00
1.422544e+00
1.418238e+00
1.414395e+00
1.411010e+00
1.408083e+00
1.405609e+00
1.403588e+00
1.402017e+00
1.400896e+00
1.400224e+00
1.400000e+00

1.329025e+00 
1.308862e+00 
1.289519e+00 
1.270972e+00 
1.253197e+00 
1.236173e+00 
1.219879e+00 
1.204294e+00 
1.189400e+00 
1.175179e+00 
1.161613e+00 
1.148686e+00 
1.136382e+00 
1.124686e+00 
1.113586e+00 
1.103066e+00 
1.093115e+00 
1.083721e+00 
1.074873e+00 
1.066560e+00 
1.058773e+00 
1.051502e+00 
1.044739e+00 
1.038476e+00 
1.032705e+00 
1.02742le+00 
1.022616e+00 
1.018286e+00 
1.014424e+00 
1.011028e+00 
1.008092e+00 
1.005613e+00 
1.003590e+00 
1.002018e+00 
1.000896e+00 
1.000224e+00 
l.OOOOOOe+00

A.2. Snehurka évolution

Once upon a time, late one evening May 2002, approximately 11 p.m. a time had 
corne to Write a new CFD code. The code was intended to replace the overly complex 
bob2d code and work in one, two and three spatial dimensions. The original C
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Figure A.I.: Evolution of the ultimate CFD code Snehurka. Lines of the code vs. 
time.

language coding was changed to C++ in the Autumn of 2002 following the advice 
of Jin Fürst. The subséquent évolution of Snehrurka is shown in Fig. A.l.
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