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Anotace

Tato práce se zabývá vývojem numerických metod pro výpočty stlačitelného prou-
děńı s aplikaćı na interakci tekutiny a elastického tělesa.

Nejprve se zabýváme vývojem numerických metod založených na schématech
využ́ıvaj́ıćıch distribuci residua (RD). Je presentován rozbor teoretických výsledk̊u
pro stabilitu a řád aproximace RD schémat. Reziduálńı schémata formulovaná pro
řešeńı nestacionárńıch problémů jsou dále rozš́ı̌rena pro př́ıpad výpočt̊u na časově
proměnných śıt́ıch. Dále je pro řešeńı prouděńı vyvinuta metoda konečných ob-
jemů v cell centered i vertex centered formulaci. RD metoda je srovnána s metodou
konečných objemů jednak teoreticky pomoćı modifikované rovnice v jednorozměrném
př́ıpadě, tak i porovnáńım numerických výsledk̊u řešeńı skalárńı rovnice a systému
Eulerových rovnic. Je presentováno množstv́ı dvou a trojrozměrných stacionárńıch
i nestacionárńıch př́ıpad̊u, dokládaj́ıćıch vlastnosti vyvinutých numerických metod.
Výsledky jsou porovnány s teoretickým řešeńım a experimenty.

Ve druhé části disertačńı práce je vyvinuta numerická metoda pro řešeńı problémů
interakce proud́ıćı tekutiny s tělesy. Problém je rozdělen na tři jednodušš́ı problémy:
problém dynamiky tekutin na pohyblivé výpočetńı śıti, problém pohybu tělesa a
problém pohybu výpočetńı śıtě. Pohyb tělesa je popsán soustavou parciálńıch difer-
enciálńıch rovnic druhého řádu pro elastické anizotropńı kontinuum a řešen metodou
konečných prvk̊u. Metoda je rozš́ı̌rena pro výpočet vlastńıch kmit̊u tělesa. Pohyb
śıtě je formulován jako pohyb pseudo-elastického kontinua a opět řešen metodou
konečných prvk̊u. Uvedené tři problémy jsou spolu svázány iteračńı metodou. Vlast-
nosti metody jsou demonstrovány na př́ıpadě 2D supersonického třepotáńı panelu
(panel flutter) a 3D transsonického třepotáńı AGARD kř́ıdla. V prvńım př́ıpadě jsou
výsledky srovnány s teoretickým řešeńım a výpočty publikovanými v literatuře, ve
druhém př́ıpadě s experimentem.
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Title: Numerical Algorithms for the Computation of Steady and Un-
steady Compressible Flow over Moving Geometries – Application to
Fluid-Structure Interaction

Author: Jǐŕı Dobeš

Abstract

This work deals with the development of numerical methods for compressible flow
simulation with application to the interaction of fluid flows and structural bodies.

First, we develop numerical methods based on multidimensional upwind residual
distribution (RD) schemes. Theoretical results for the stability and accuracy of the
methods are given. Then, the RD schemes for unsteady problems are extended for
computations on moving meshes. As a second approach, cell centered and vertex
centered finite volume (FV) schemes are considered. The RD schemes are compared
to FV schemes by means of the 1D modified equation and by the comparison of the
numerical results for scalar problems and system of Euler equations. We present a
number of two and three dimensional steady and unsteady test cases, illustrating
properties of the numerical methods. The results are compared with the theoretical
solution and experimental data.

In the second part, a numerical method for fluid-structure interaction problems
is developed. The problem is divided into three distinct sub-problems: Computa-
tional Fluid Dynamics, Computational Solid Mechanics and the problem of fluid
mesh movement. The problem of Computational Solid Mechanics is formulated as
a system of partial differential equations for an anisotropic elastic continuum and
solved by the finite element method. The mesh movement is determined using the
pseudo-elastic continuum approach and solved again by the finite element method.
The coupling of the problems is achieved by a simple sub-iterative approach. Ca-
pabilities of the methods are demonstrated on computations of 2D supersonic panel
flutter and 3D transonic flutter of the AGARD 445.6 wing. In the first case, the
results are compared with the theoretical solution and the numerical computations
given in the references. In the second case the comparison with experimental data
is presented.

Key words: Residual distribution scheme, Finite volume method, ALE method,
Unsteady method, Implicit method, Parallel method, Unsteady flows, Aeroelasticity,
Three field formulation, Finite element method, CFD, AGARD 445.6 wing, Panel
flutter.
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ν [1] – Poisson ratio
~λ(~x, t) ≡ ∂~f/∂u – vector of Jacobian matrices (or advection vector for scalar

advection equation)
λ [Pa] – Lamé parameter
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Chapter 1.

Introduction

1.1. Motivation and global objectives of the thesis

A large number of methods is available for the solution of compressible flows to-
day. They operate on structured or unstructured meshes. Since structured mesh
generation is one of the biggest bottlenecks for industrial type simulations, see e.g.
[Ath05], we will focus on methods working on unstructured meshes. One of the
most commonly used methods for industrial type compressible flow simulations on
unstructured meshes is the finite volume method in cell centered or vertex centered
settings, see e.g. [Krö97, BO04]. Despite its large popularity, there are still some
problems unresolved, namely accuracy for the flow features not aligned with the
mesh, and dependence of the scheme on 1D physics introduced by the numerical
flux.

As a cure to the above-mentioned problems, the residual distribution (RD) schemes
were suggested in [Roe82]. Since then, a successful development was sought. Nowa-
days, RD schemes can be used to solve complex problems such as 3D inviscid flows
around a full aircraft or 3D turbulent flow past a wing. A first objective of the
thesis is to select several residual distribution schemes and to investigate their prop-
erties for well defined test cases. Then the schemes should be applied to technically
important problems and problems of mathematical physics.

The fluid–structure interaction problems ultimately call for highly accurate meth-
ods. Since RD schemes are expected to be more accurate than traditional finite
volume schemes, the use of RD methods for fluid–structure interaction problems
is appealing. Until recently, only first order RD schemes for moving grids compu-
tations were available, see [MSD03]. Hence, a second objective of the thesis is to
explore possible extension of higher order accurate RD schemes for computations
on moving meshes with application to aeroelastic simulations.

13



Chapter 1. Introduction

1.2. Survey of state-of-the-art technique in the field

1.2.1. Numerical methods for fluid dynamics

Current state-of-the-art CFD methods can be characterized by their nature as meth-
ods working on structured meshes and methods working on unstructured meshes.
The structured mesh generation procedure for industrial type of computations is
difficult and it is one of the biggest bottlenecks [Ath05] for numerical simulations.
For this reason, we focus exclusively on the computational methods utilizing un-
structured meshes.

From modern numerical methods for compressible flows working on unstructured
meshes one can select several important groups:

• Finite element methods with continuous solution approximation, see e.g. [TS06,
Tez04].

The streamline upwind Petrov-Galerkin method for compressible flow simula-
tions was pioneered by [TH82]. The finite element test functions are modified
by inclusion of extra term, such that the stabilization of the method is achieved.
The scheme was supplemented by a shock capturing term in [HFM87]. An
overview of the development can be found in [Tez04]. This scheme in space-
time setting was successfully used for large scale computations, e.g. flow past
full helicopter or large eddy simulation of turbulent flows.

• Finite volume methods, see e.g. [Bar94, BO04, LeV02, Krö97, Jam04].

Finite volume schemes on unstructured meshes were pioneered by [JBW86],
[MJ87]. They used a central scheme with artificial dissipation of scalar type.
The method is formally second order accurate on smooth flows and satisfies
the discrete maximum principle for scalar problems. This was one of the
first methods capable to solve the system of Euler equations for full aircraft
configuration on unstructured meshes.

The vertex centered upwind finite volume method was among others developed
by [BJ89]. The integral form of the conservation form was expressed on each
control volume. In this case, the control volume was constructed using the dual
mesh to the computational grid. Higher order of accuracy was achieved by the
linear reconstruction. Non-oscillatory properties of the scheme are guaranteed
with help of limiters. This method has proven to be very successful, it was
later extended to many variants. The numerical flux on the boundary of
the finite volume is approximated by solving a Riemann problem or other
types of flux splitting, e.g. Roe’s Riemann solver [Roe81] or AUSM scheme
[LCJS93]. The higher order spatial accuracy can be achieved with the aid of
linear, quadratic [BF90, Bar93], or even higher order [Shu03] reconstruction.
The time derivative can be discretized with explicit Euler or Runge-Kutta
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1.2. Survey of state-of-the-art technique in the field

methods [GS98, GST01], implicit backward differentiation formula or implicit
Runge-Kutta methods [JMC03]. The important references for the extension
of the method to moving mesh computations include [KF99, Far04]. Similar
method exist in the cell centered settings.

• Discontinuous Galerkin methods, see e.g. [Coc04, Coc99].

The method is based on a finite element discretization, however jumps in the
solution on each face of an element are allowed. Similar to the above described
finite volume method, a numerical flux has to be approximated on the element
edges. Limiters [Coc04] or artificial viscosity [KvdVvdV06] are used for stabi-
lization in case of shocks. The solution is advanced by Runge-Kutta scheme,
or alternatively the discontinuous Galerkin method is re-casted in a space-time
formulation and a steady problem in space-time is solved [KvdVvdV06]. Cur-
rently, the method in its second order space-time version is used e.g. for 3D
aeroelastic simulation of aircraft wings.

• Residual distribution methods, see e.g. [DSA00, AM04, Dec03, DRS03, AM03a].

The scheme can be seen either as a finite volume method, where the residual
is computed over a finite element and subsequently distributed, or as a finite
element method with explicitly given test function. Second order accurate non-
oscillatory schemes are available for technical computations of inviscid [GW01]
and turbulent flows [SD03]. Extension to higher order of accuracy is subject of
current research [RVAD05, RVAD07, HL05, CF05, Hub06, TA06]. Most of the
available theory on the RD schemes is included in von Karman lecture series
[Dec03] and [DR05], journal papers [Abg01, AM04, AM03a] and PhD thesis
[Ric05]. As the other sources we can cite [SR95, HR00, AR03, NR04], [AB02]
and [CPNP96, PPRN05]. The development of the RD schemes can be tracked
by a number of PhD thesis [Pai95, Iss97, vdW98, Car00, Cśı02, Mez02, Ric05]
and von Karman Lecture series 1991–01, 1993–04, 1994–05, 1995–02, 1997–02,
1998–03, 2003–05, 2006–01.

• There exist a number of methods under development, which do not naturally
belong to any of the mentioned groups. We mention the residual based com-
pact schemes of [CBK06], which are the extension of the work of [LC01] to
unstructured meshes. The performance of the method was demonstrated on
2D inviscid transonic airfoil simulation [CBK06]. An other approach is the
spectral volume method, see e.g. [SWL06] and references therein, allowing
to construct schemes of arbitrary high order of accuracy with non-oscillatory
properties. The performance of this method was demonstrated on several well
known test cases and low speed 3D flow around a rotating propeller.

In this thesis we focus on the finite volume (FV) methods and on residual distribu-
tion (RD) methods. For the first part of the thesis the most important references are

15
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[Bar94, Roe81, Dec03, AM04, AM03a, Far04] and [Ric05]. An excellent (but rather
expensive) reference for the modern methods in computational fluid dynamics is
[SdBH04].

1.2.2. Fluid-structure interaction problems

Methods for the computation of fluid-structure interaction problems have emerged
aside of the development of accurate methods for computational fluid dynamics.
These include fluid-structure interaction between bodies with two degrees of freedom
[AJ94], or later bodies modeled by the finite element method [ZT00a, DT85]. For a
survey of the high-speed-flow computational aeroelasticity, see [Far04], which is also
the most important reference for the second part of the thesis.

1.3. Specific objectives of the thesis

The goals of the presented work are:

1. To develop a numerical method based on selected schemes of residual distri-
bution type and to analyse some of their properties. Eventually find possible
improvements for particular flow problems. Develop an extension for problems
involving a time dependent domain of solution.

2. To develop a numerical method based on a finite volume method in cell cen-
tered or vertex centered formulation. Include the possibility of handling a time
dependent domain of solution.

3. To test selected numerical methods on problems of scalar conservation law
and system of Euler equations, with particular attention to the accuracy of
the schemes and monotone capturing of complex solution features.

4. To develop a finite element method for the problem of elasticity, where the
material is modeled as an elastic continuum allowing large displacements and
taking into account possible anisotropic material properties.

5. To develop and validate the numerical method for fluid structure interaction
problems, where the flow is modeled as a inviscid perfect gas and the body
either as a elastic continuum or by a system of two ordinary differential equa-
tions.

16



Part I.

Numerical methods for
fluid dynamics
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Chapter 2.

Mathematical formulation of the
problem

The basic formulation of problems governed by conservation laws is described in
many mathematical books, see, e.g. [GR96, LeV99, LeV02, Fei93, FFS03]. The
formulation on moving domains using the Arbitrary Lagrangian-Eulerian (ALE)
method can be found in [FN04, FN99, FGG01, HS02, Fei93, GR96] and many articles
in leading scientific journals, e.g. in Journal of Computational Physics and Computer
Methods in Applied Mechanics and Engineering.

2.1. The system of conservation laws in a fixed

reference frame

In this section, we shall introduce a general formulation of a system of conservation
laws in d spatial dimensions with classical and weak solutions of the problem. The
problems of finite domain and boundary conditions are not discussed. The discussion
of the appropriate boundary conditions is postponed to the sections related to the
concrete physical system of conservation laws.

2.1.1. System of conservation laws

Let Γ be an open subset of Rq, and let fj, 1 ≤ j ≤ d, be d smooth functions from Γ
into Rq; the general form of a system of conservation laws in d space variables is

∂u

∂t
+

d∑

j=1

∂

∂xj

fj(u) = 0, ~x = (x1, . . . , xd) ∈ R
d, t > 0, (2.1)

where
u = (u1, . . . , uq) (2.2)

is a vector-valued function from Rd × [0, +∞[ into Γ. The set Γ is called the set of
states and the functions

fj = (fj1 , . . . , fjq
) (2.3)
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Chapter 2. Mathematical formulation of the problem

are called flux functions. One says that the system (2.1) is written in conservative
form.

2.1.2. Initial value problem

The system of conservation laws has to be equipped with initial and boundary con-
ditions. Since the formulation involving boundary condition is still an open problem
[Fei93], we shall introduce only the initial value problem, and the boundary condi-
tions are discussed separately within the context of the concrete physical systems
in section 2.3. The boundary conditions and initial-boundary value problem are
discussed in, e.g., [Fei93] and [GR96].

Let us define the Cauchy problem, or initial value problem (IVP): Find a function
u : (~x, t) ∈ Rd× [0, +∞[→ u(~x, t) ∈ Γ such that (2.1) holds and the initial condition

u(~x, 0) = u0(~x), ~x ∈ R
d, (2.4)

is satisfied. The function u0 : Rd → Γ is the initial comdition.

Definition 1 (Classical solution). We shall say that a function u : Rd×[0, +∞[→
Γ is the classical solution of (2.1), (2.4) if the function u ∈ C1(Rd) and satisfies the
equations (2.1), (2.4) pointwise.

The essential feature of the problem (2.1), (2.4) is that there do not exist in
general classical solutions of (2.1), (2.4) beyond some finite time interval, even when
the initial condition u0 is a very smooth function, see, e.g., [GR96, LeV99, LeV02,
Maj84].

Definition 2 (Weak solution). Assume that the function u0 ∈ L∞
loc(R

d)q. A
function u ∈ L∞

loc(R
d × [0, +∞[)q is called a weak solution of the Cauchy problem

(2.1), (2.4) if u(~x, t) ∈ Γ almost everywhere and satisfies

∫ ∞

0

∫

Rd

(
u

∂ϕ

∂t
+

d∑

j=1

fj(u)
∂ϕ

∂xj

)
d~x dt +

∫

Rd

u0(~x) ϕ(~x, 0) d~x = 0 (2.5)

for any function ϕ ∈ C1
0(Rd × [0, +∞[)q.

Additional information about classical and weak solutions can be found in refer-
ences [GR96, LeV99, LeV02, RR92, Fei93].

2.2. System of conservation laws in the moving

reference frame

In this section the system of conservation laws in the moving reference frame is
derived with the aid of the Arbitrary Lagrangian-Eulerian (ALE) formulation.
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2.2. System of conservation laws in the moving reference frame

2.2.1. ALE mapping

First, the family of homeomorphic mappings At is defined. The mapping At is
called the ALE mapping [FN04], which for each t ∈ [0, +∞[ associates a point ~Y of
reference configuration Ω0 to a point ~x on the current domain configuration Ωt:

At : Ω0 ⊂ R
d → Ωt ⊂ R

d, ~x(~Y , t) = At(~Y ). (2.6)

Let f : Ωt × [0, +∞[→ R. We will denote by f̂ := f ◦At the corresponding function
on the ALE reference frame, i.e.

f̂ : Ω0 × [0, +∞[→ R, f̂(~Y , t) = f(At(~Y ), t). (2.7)

For later use, the mapping has to satisfy the assumptions of Theorem 3. Note,
that the mapping is rather arbitrary except for the fact that At(∂Ω0) = ∂Ωt for all
t ∈ [0, +∞[.

The Jacobian of the ALE mapping exists and its determinant is defined as

JAt
=

∂~x

∂~Y
, JAt

= det(JAt
). (2.8)

We define the domain velocity ~̂w as

~̂w(~Y , t) =
∂~x(~Y , t)

∂t
. (2.9)

It can be expressed in terms of current domain coordinates, where

~w(~x, t) =
∂~x

∂t

∣∣∣∣
~Y

(~Y (~x, t), t) (2.10)

is the corresponding function in Ωt × [0, +∞[.
The relation between the time derivative of the Jacobian JAt

and the divergence
of the domain velocity ~w is given by the following theorem. For the reference, see,
e.g. [Fei93] and [GR96].

Theorem 3. Let t ∈ [0, +∞[, ~Y ∈ Ω0 and the following conditions be satisfied

1. Mapping At (see (2.6)) has continuous first order partial derivatives with re-
spect to the variables t, Yi, . . . , Yd and continuous second order derivatives
∂2xi/∂t ∂Yj, i, j = 1, . . . , d.

2. Mapping (2.6) is a continously differentiable one-to-one mapping of Ω0 onto
Ωt with the Jacobian JAt

(defined by (2.8)), which is continuous and bounded
and satisfies the condition

JAt
(~Y , t) > 0 ∀~Y ∈ Ω0, ∀t ∈ [0, +∞[. (2.11)
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Chapter 2. Mathematical formulation of the problem

3. The domain velocity ~w(~x, t) (defined by (2.10)) has continuous bounded first
order derivatives on the set {(~x, t); t ∈ [0, +∞[, ~x ∈ Ωt}.

Then the function JAt
= JAt

(~Y , t) has a continuous and bounded partial derivative

∂JAt
/∂t for ~Y ∈ Ω0, t ∈ [0, +∞[ and

1

JAt
(~Y , t)

∂JAt

∂t
(~Y , t) = ∇x · ~w(~x, t). (2.12)

Proof. See [Fei93, GR96]. Jacobian determinant JAt
(~Y , t) can be expanded by its

i-th row:

JAt
(~Y , t) =

d∑

α=1

∂xi

∂Yα

(~Y , t)Di,α(~Y , t), (2.13)

where Di,α denotes the cofactor of element ∂xi/∂Yα. For α, β = 1, . . . , d, the cofac-
tors Di,β are independent of ∂xi/∂Yα. Hence,

∂JAt

∂
(

∂xi

∂Yα

) = Di,α. (2.14)

In order to calculate the derivative ∂JAt
/∂t we consider the determinant JAt

(~Y , t)
as a function dependent on elements ∂xi/∂Yα which depend on t:

∂JAt

∂t
=

d∑

α=1

∂JAt

∂
(

∂xi

∂Yα

) ∂

∂t

(
∂xi

∂Yα

)
=

d∑

α=1

Di,α
∂2xi

∂Yα∂t
. (2.15)

Now let us deal with derivative (∂2xi/∂Yα∂t)(~Y , t). Under the assumptions of the
Theorem 3 we get

∂2xi

∂Yα∂t
(~Y , t) =

∂2xi

∂t∂Yα

(~Y , t) =
∂

∂Yα

wi(~x(~Y , t), t)) =
d∑

j=1

∂wi

∂xj

(~x, t)
∂xj

∂Yα

(~Y , t). (2.16)

Substituting into the equation (2.15), we have

∂JAt

∂t
=

d∑

i,α=1

Di,α

d∑

j=1

∂xj

∂Yα

∂wi

∂xj

=
d∑

i,j=1

(
d∑

α=1

∂xj

∂Yα

Di,α

)
∂wi

∂xj

. (2.17)

For determinants following holds

d∑

α=1

∂xj

∂Yα

Di,α = JAt
δij (2.18)

and thus
∂JAt

∂t
= JAt

d∑

i,j=1

δij
∂wi

∂xj

= JAt

d∑

i=1

∂wi

∂xi

= JAt
∇x · ~w. (2.19)

¤
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2.2.2. System of conservation laws

The total amount of the conserved quantity u in the time dependent control volume
Ωt can be computed as ∫

Ωt

u d~x. (2.20)

The flux bringing the quantity inside the control volume is given by the physical
flux ~f(u) minus the flux induced by the movement of the boundary of the control
volume

~fALE(u) = ~f(u) − u~w. (2.21)

The system of conservation laws can be written in the integral form as

∂

∂t

∣∣∣∣
~Y

(∫

Ωt

u d~x

)
+

∮

∂Ωt

[~f(u) − u~w] · d~n = 0, (2.22)

where ~n is the outer normal to the surface ∂Ωt. The second integral is recast from
the contour integral to the volume integral using the Gauss-Ostrogradski theorem

∂

∂t

∣∣∣∣
~Y

(∫

Ωt

u d~x

)
+

∫

Ωt

~∇x · [~f(u) − u~w] d~x = 0. (2.23)

The ALE mapping is a homeomorphism with the continuous partial derivatives and
JAt

6= 0, hence we can use the substitution theorem in the first integral, see, e.g.
[Rek95],

∂

∂t

∣∣∣∣
~Y

(∫

Ω0

uJAt
d~Y

)
+

∫

Ω0

~∇x · [~f(u) − u~w]JAt
d~Y = 0. (2.24)

The reference domain Ω0 and the coordinates ~Y do not depend on time t, the
integrand is integrable, hence

∫

Ω0

(
∂JAt

u

∂t

∣∣∣∣
~Y

+ ~∇x · [~f(u) − u~w]JAt

)
d~Y = 0. (2.25)

The equation has to be valid independently of the control volume Ω0, i.e. the inte-
grand has to be zero almost everywhere. Jacobian JAt

being nonzero, the equation
can be rewritten as

1

JAt

∂JAt
u

∂t

∣∣∣∣
~Y

+ ~∇x · [~f(u) − u~w] = 0. (2.26)

This is the conservative Arbitrary Lagrangian-Eulerian form of the system of con-
servation laws . If the solution is sufficiently smooth, it is equal to

1

JAt

∂JAt
u

∂t

∣∣∣∣
~Y

+ ~∇x ·~f(u) − ~w · ~∇xu − u~∇x · ~w = 0. (2.27)
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The last term, u~∇x · ~w, is the geometrical source term and it is equal to zero for
non-deforming meshes. Another way to obtain this equation is via the Reynolds
transport theorem, see e.g. [Mar99].

Similarly as in Definition 2, we can define the weak solution of the equation (2.26):

Definition 4 (Weak solution of the ALE problem). Assume that u0 ∈ L∞
loc(R

d)q.
A function u ∈ L∞

loc(R
d×[0, +∞[)q is called the weak solution of the Cauchy problem

(2.26), (2.4), if the function u(~x, t) ∈ Γ almost everywhere and

∫

R+

∫

Rd

(
u

∂JAt
ϕ

∂t

∣∣∣∣
~Y

+
d∑

j=1

[fj(u) − wju]
∂JAt

ϕ

∂xj

)
d~x dt

+

∫

Rd

u0(~x) ϕ(~x, 0) d~x = 0 (2.28)

holds for any function ϕ ∈ C1
0(Rd × [0, +∞[)q.

The system of conservation laws admits an arbitrary nonzero constant function
uc ∈ Γ ⊂ Rq as exact solution. Then ~∇x · ~f(uc) is identically zero and the con-
served variable uc can be taken out of the differential operators, which leads to the
important equivalence

1

JAt

∂JAt

∂t

∣∣∣∣
~Y

= ∇x · ~w. (2.29)

This is the (continuous) Geometric Conservation Law . It is the same relation as
(2.12).

2.3. Examples of physical systems written as

conservation laws

In this section we shall introduce concrete physical models for the conservation laws
discussed in this thesis.

2.3.1. Scalar conservation laws

We consider scalar conservation laws, i.e. the number of conserved variables is q = 1.

2.3.1.1. Constant advection equation

The vector of flux functions is defined as ~f(u) = ~λu, where ~λ ∈ Rd is an arbitrary
constant nonzero vector.
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2.3.1.2. 2D and 3D circular advection equation

The flux vector is defined as

~f(u; x, y) = (−yu, xu) (2.30)

for the 2D case, and ~f(u; x, y, z) = (−yu, xu, 0) for the 3D case.

2.3.1.3. 1D Burgers equation and 2D variant

The flux vector is defined as ~f(u) = (u2/2). This case can be extended to two

dimensions (see, e.g. [Pai95, Bar94]): the flux vector is defined as ~f(u) = (u2/2, u).

2.3.2. System of Euler equations

The Euler equations in d spatial dimensions is the system of q = d + 2 conservation
laws (2.1) given by conserved variables

u = (ρ, ρ~v, E), (2.31)

where ρ is the density, ~v = (v1, . . . , vd) are the components of the velocity vector
and E is the total energy. The flux is

fi = (ρvi, ρvivj + δijp, [E + p]vi), 1 ≤ j ≤ d, (2.32)

where p is the static pressure and δij is Kronecker delta symbol. The system is closed
by a thermodynamic equation for the pressure p = f(u). We will only consider a
perfect gas, then the equation is given by

p = (γ − 1)

(
E − 1

2
ρ

d∑

i=1

v2
i

)
. (2.33)

The ratio of the specific heat for a diatomic gas is used, i.e. γ = 1.4 (if not specified
otherwise). The system is equipped with an entropy inequality, see, e.g. [GR96,
LeV99, LeV02, Fei93, FFS03, Mar99, Krö97].

25



Chapter 2. Mathematical formulation of the problem

26



Chapter 3.

Residual distribution scheme

Several methods based on the distribution of the residual have been developed in the
past, see e.g. [Ni81, Roe82], for a survey see e.g. [Pai95]. This part of the work deals
with residual distribution schemes as defined in [Krö97], i.e. schemes, which are
usually written as in section 3.2 and 3.3. Such schemes will be referred as residual
distribution schemes.

The class of residual distribution (RD) schemes (or fluctuation splitting schemes)
was introduced by P. L. Roe in [Roe82]. Since then the schemes were devel-
oped for many situations. Most recent closely related works are the Ph.D. theses
[Pai95, vdW98, Cśı02, Ric05], the journal papers [DRS93, Abg01, AM03a, AM04]
and the conference proceedings [DSA00]. The important developments until 2003
are summarized in VKI Lecture Series 33rd Computational Fluid dynamics Course,
Von Karman Institute for Fluid Dynamics [Dec03], the developments until 2005 in
[DR05]. An extensive overview on RDS is presented in [DSA00]. The state-of-the-art
RDS development is included in the PhD thesis of Mario Ricchiuto [Ric05].

After short statement of the notation, the guidelines for the design of the RD
schemes are mentioned. Then, the RD schemes for steady problems are introduced.
Finally, we introduce the RD schemes for unsteady problems with novel extension
for computations on moving meshes.

3.1. On mesh and notation

The polygonal domain Ω is triangulated by a mesh denoted by T h, i.e. Ω̄ =
⋃

E∈T h E.
The nodes (vertices) of the mesh are denoted by indices i, j. All the vertices in the
mesh will be denoted by i ∈ T h. The mesh elements are denoted by E. All the
elements in the mesh will be denoted similarly by E ∈ T h. All nodes of the element
E are denoted by i ∈ E.

For the RD schemes only simplex elements will be considered. The simplex ele-
ment in one dimension is a line segment, a triangle in two dimensions and a tetra-
hedron in three spatial dimensions. Note that each simplex in d spatial dimensions
has d + 1 vertices.
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Chapter 3. Residual distribution scheme

The finite element type trial function is denoted by ψ. The ψi vary linearly over
each element and takes unit value at node i, zero for all the other nodes. The trial
function can be expressed within the element E sharing node i

ψE
i (~x) = 1 − ~ni · (~xi − ~x)

d µ(E)
, (3.1)

where ~ni is the normal perpendicular to the face opposite to the node i scaled by its
measure, ~xi is the coordinate of node i, d is the number of spatial coordinates and
µ(E) is the measure of the element E. The gradient of the trial function is constant
over the element E, i.e.

∇ψE
i (~x) =

~ni

d µ(E)
. (3.2)

The following part of this section is devoted to the conservative evaluation of the
residual

φE ≈
∫

E

∇ ·~f d~x. (3.3)

As was noted by P. Roe, see [Roe81], it can be advantageous to describe the spatial

distribution of the solution u(~x) and the fluxes ~f(~x) using the parameter vector,
denoted by v(~x), here called the primary variable, instead of the spatial distribution
of the conserved variable u(~x) itself. The primary variable is chosen such that both

solution u and flux ~f are at most quadratic functions of v, raising the possibility to
evaluate exactly (given the piecewise linear distribution of the primary variable v)
the integral (3.3).

We introduce the primary variable v with regular one-to-one mapping to the
conserved variable u 7→ v(u) with Jacobian

∂u

∂v
. (3.4)

The primary variable is suitable chosen, i.e. for the set of Euler equations the primary
variable is Roe’s parameter vector

v = (
√

ρ,
√

ρ~v,
√

ρH) (usually denoted z) (3.5)

and for scalar equations considered in this thesis the primary variable is the con-
served variable u ≡ v.

The primary variable is approximated by the trial functions over the element as

vh(~x)

∣∣∣∣
E

=
∑

j∈E

vjψj(~x), (3.6)

where vj is the nodal value, and over the whole computational domain

vh(~x) =
∑

j∈T h

vjψj(~x). (3.7)
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The solution u is approximated by uh, i.e.

uh(~x) ≡ u(vh(~x)). (3.8)

The gradient of the approximation of the primary variable reads

∇vh(~x) =
∑

j∈E

vj∇ψj(~x) =
∑

j∈E

vj
~nj

d µ(E)
. (3.9)

The flux approximation is denoted by ~fh.
The element residual is defined as

φE =

∫

E

∇ ·~fh d~x =

∫

E

∂~fh

∂vh
· ∇vh d~x. (3.10)

Now, with the use of the piecewise linearity of the approximation vh, we have

φE = ∇vh ·
∫

E

∂~fh

∂vh
d~x. (3.11)

For a certain class of the problems, the primary variable v can be chosen such that
the flux ~f is at most a quadratic function of the primary variable v. Most notably
this holds for the system of Euler equations1. Then the Jacobian ∂~fh/∂vh is at most
a linear function of the variable vh. The last integral can be exactly computed using
the arithmetic average of the nodal values vi, i.e.

∫

E

∂~fh

∂vh
d~x = µ(E)

∂~fh

∂vh
(v̄), v̄ =

∑
i∈E vi

d + 1
. (3.12)

The residual can be expressed with aid of (3.9) as

φE = µ(E)
∂~fh

∂vh
(v̄) · ∇vh = µ(E)

∂~fh

∂uh
(v̄)

∂uh

∂vh
(v̄) · ∇vh

= µ(E)
∂~fh

∂uh
(v̄)

∂uh

∂vh
(v̄) ·

∑

j∈E

vj~nj

d µ(E)

=
∑

j∈E

(
∂~fh

∂uh
(v̄) · ~nj

d

) (
∂uh

∂vh
(v̄)vj

)
=

∑

j∈E

k̄jūj, (3.13)

with

k̄j =
∂~fh

∂uh
(v̄) · ~nj

d
(3.14)

ūj =
∂uh

∂vh
(v̄)vj, (3.15)

1and all the systems of conservation laws considered in this work
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Chapter 3. Residual distribution scheme

where we have introduced the upwind parameter k̄j. In the scalar case the Jacobian
corresponds to the advection vector

~λ =
∂~fh

∂uh
(v̄). (3.16)

In the subsequent chapters, when no confusion can be made, the over-bars k̄j, ūj

are dropped to simplify the notation. The advantage of this approach is that the
residual is evaluated using a continuous approximation of the flux the ~fh in the
domain, which is needed for the conservativity of the scheme. It was introduced
in [DRS93] (Deconinck-Roe-Struijs linearization), following [Roe81]. If the flux ~f
and the conserved variable u cannot be expressed as second order polynomials of
the primary variable v, we refer to the work of [CRD02, RCD05, Cśı02, Ric05] or
[AB02].

3.2. Introduction and general framework

The residual distribution schemes for steady problems generally involve the following
steps:

1. Compute the residual as the integral of the convective terms of the equation
(2.1) over element E with aid of (3.13)

φE =

∫

E

∇ ·~fh d~x = −
∫

E

∂uh

∂t
d~x =

∑

i∈E

k̄iūi. (3.17)

2. Distribute the residual φE to the nodes of element E via distribution matrix
βi

φE
i = βE

i φE, such that
∑

i∈E

φE
i = φE. (3.18)

3. Update the solution in all the nodes of the computational domain

uh,n+1
i = uh,n

i − αi

∑

E∈i

φE
i , (3.19)

where n is the index of the time level and αi > 0 is a relaxation parameter, to
be specified later.

Certain class of the schemes define directly the residual contribution φE
i to the

node i. The distribution coefficient is then defined implicitly from eq. (3.18). The
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3.3. RD schemes for unsteady problems

relaxation parameter αi is proportional to the value of the time step. Then, the
scheme can be written as

un+1
i − un

i

∆t
= − 1

µ(Si)

∑

E∈Di

φE
i = − 1

µ(Si)

∑

E∈Di

βE
i φE, (3.20)

where µ(Si) is the volume of the median dual cell around the node i and E ∈ Di

denotes all elements sharing node i. The RD scheme will be recast in the following
abstract form, see, e.g. [Ric05]

un+1
i = un

i − ∆t

µ(Si)

∑

E∈Di

∑

j∈E

cE
ij(u

n
i − un

j )

︸ ︷︷ ︸
φE

i

=
∑

j∈Di

c̃iju
n
j . (3.21)

3.3. RD schemes for unsteady problems

The above-stated RD scheme is first order accurate at most for unsteady problems
even if a high order time discretization scheme is used, see, e.g. [FD97, Mae96, Ric01,
DSA00]. The reason is that, there exists a coupling between spatial and temporal
discretization through a finite element type mass matrix. The accuracy problem was
treated by two distinct approaches: schemes formulated using a mass matrix, see,
e.g. [FD97, Mae96, RD99, DD05a, DDF05a, PPRN05, Ric05, DD06d] and space-time
schemes, see, e.g. [CRDP01, CD01, CD02, CRD03, Ric01, RAD03, Cśı02, RCD05,
RCD04, AM01, MA02, AM03a, MRAD03, Dob02, DRD03b, DRD03a, DRD03c,
DRD05, DD05b, CCF01, CF05]. Although the schemes were derived using different
frameworks, they can be reduced to a common base. Namely, we can formulate the
unsteady problem (2.1) using the pseudo time stepping (or dual time), i.e.

∂u

∂τ
+

∂u

∂t
+

d∑

j=1

∂

∂xj

fj(u) = 0, (3.22)

and we seek for an unsteady solution of (2.1) as a steady solution of (3.22)

lim
τ→∞

∂u

∂τ
= 0. (3.23)

Hence we can proceed with a similar solution method as in section 3.2:

1. Compute the approximation of the unsteady residual as the integral of the
equation (2.1) over the space-time element EST between time levels n and
n + 1

φEST

=

∫

EST

(
∂uh

∂t
+ ∇ ·~fh

)
d~x dt =

∫

[tn,tn+1]

∫

E

(
∂uh

∂t
+ ∇ ·~fh

)
d~x dt.

(3.24)
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Chapter 3. Residual distribution scheme

2. Distribute residual φEST

to the nodes of the element EST located on the time
level n + 1 via the distribution parameter (matrix) βi

φEST

i = βEST

i φEST

with
∑

i∈E

φEST

i = φEST

. (3.25)

Because we have an initial value problem with data at n, the distribution is
constrained to nodes at n + 1.

3. Update the solution in all the nodes of the computational domain at the time
level n + 1

uh,n+1,m+1
i = uh,n+1,m

i − αi

∑

E∈i

φEST

i , (3.26)

where m is the index of the pseudo-time step and αi is the relaxation coefficient.
The value of the coefficient αi is given by relation (3.73).

4. The steps 1. to 3. are repeated until a steady solution in pseudo-time is found.
Then, the next layer of the space-time elements is considered [tn, tn+1] →
[tn+1, tn+2].

The problem to find a stationary point of equation (3.26)

uh,n+1,m+1
i = uh,n+1,m

i i.e.
∑

E∈i

φEST

i = 0 (3.27)

is explained in more details in section 3.8.

3.4. Design principles

3.4.1. Upwinding

From the theory of characteristics it is known in which directions the quantities
are propagated. The multidimensional upwind schemes update nodes only in the
relevant directions.

Definition 5 (Multidimensional Upwind scheme [DSBR93]). If all the eigen-
values of ki are negative, then φi = 0.

3.4.2. Linearity preservation

The key concept to show the second order accuracy of the scheme is the linearity
preservation property, see, e.g. [Abg01, Ric05].

Definition 6. The scheme is linearity preserving , if it is able to reproduce exactly
every solution u, for which the primary variable v = v(u) is a linear function.
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3.4. Design principles

The linearity preserving scheme is second order accurate at steady state. The
proof was first published in [AM01] for the system of Euler equations and later ex-
tended for the RD schemes of arbitrary order of accuracy [AR03]. A slightly different
form of the proof is used in [Abg05] and [RVAD05]. The additional information for
the original proof as well as the extension for the case with presence of source terms
can be found in [Ric05] and [RAD06].

Theorem 7. The scheme evaluating element residual φE using (3.13) and distribut-
ing the residual with uniformly bounded distribution coefficients (matrices) βi is lin-
earity preserving.

Proof. Consider a steady state solution of (2.1), for which the primary variable is a
linear function v(~x). Since u = u(v) is the solution of (2.1), the element residual
(3.17) is φE = 0 for each element E and it is evaluated by scheme (3.13) exactly
due to the linearity of v. The distribution coefficients βi are bounded, hence all the
nodal contributions φi are zero. Hence, this solution is a steady state solution of
(3.19) and it is is exactly reproduced (preserved). ¤

A similar statement holds for the schemes for the unsteady problems in pseudo-
time stepping formulation. The uniformly bounded distribution coefficients are the
key issue for the construction of the so called N-modified scheme, see section 3.5.4,
page 39, and section 3.6.4, page 52.

3.4.3. Positivity for scalar problems

Definition 8 (Positivity of the scalar RD scheme). The fully discrete scheme
(3.21) for the scalar equation is positive, if all the coefficients c̃ij are non-negative
with ∑

j∈Di

c̃ij = 1. (3.28)

For the construction of the N-modified scheme, see section 3.5.4, page 39, and
section 3.6.4, page 52, a stricter condition is needed.

Definition 9 (Sub-element positivity of the scalar RD scheme). The fully
discrete scheme (3.21) for scalar equation is sub-element positive, if all coefficients
cE
ij are non-negative and the time step ∆t satisfies

∆t ≤ min
i∈T h

∑

E∈Di

∑

j∈E

µ(E)

(d + 1) cE
ij

. (3.29)

The sub-element positivity of the scheme is a sufficient condition for positivity.
Positivity of an implicit space-time scheme can be defined using the matrix analysis,
see, e.g. [RCD05, AM04], or using the space-time formulation. The time can be
treated as an additional spatial direction and the positivity can be defined in the
space-time domain.
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Chapter 3. Residual distribution scheme

Theorem 10. Positivity of the scheme (3.21) implies the discrete maximum prin-
ciple, i.e.

min
i∈T h

u0,h
i ≤ uh,n ≤ max

i∈T h
u0,h

i ∀n ∈ [0, 1, 2, . . . , N ], (3.30)

where uh,n is the approximation of the solution in the n-th time layer. Moreover,
the scheme (3.21) is stable in L∞ norm, i.e.

‖uh(x, t)‖L∞
≤ ‖u0,h(x)‖L∞

, t ∈ [0, T ], (3.31)

where u0,h is the approximation of the initial condition.

As the solution at each node at time level n = 1 lies within the convex hull of the
nodal values at time level n = 0, hence the discrete maximum principle is satisfied.
The mathematical induction is used for the case n > 1. If the local maximal values
of the solution do not increase and the local minimal values do not decrease, the
scheme is said to be local extremum diminishing (LED). The concept of positivity
and LED property is discussed for RD schemes in [Pai95, AM04, vdW98, Ric05],
for the FV methods in [Bar94, Jam]. The positivity of the scheme is closely related
to the TVD property, see [Har83]. In 1D the TVD property and the LED property
are equivalent, see [Tad88].

3.4.4. Linearity

The scheme for the scalar linear equation is said to be linear, if the distribution
coefficients βi do not depend on the solution.

From the Godunov theorem for RD schemes [DSBR93] it is known, that a linear
scheme cannot be both second order accurate and positive. Since both properties
are important, we will focus on the nonlinear schemes.

3.4.5. Geometric conservation law

The scheme obeys the geometric conservation law (GCL) if any constant solution
is exactly preserved on a deforming mesh. An overview of the current status of the
geometrical conservation law is given in [MY06, Far04] or [Lep04].

Let us mention several results concerning the geometrical conservation law (GCL):

• GCL is a sufficient condition for the scheme to achieve first order temporal
accuracy, see [GF00].

• GCL is not a necessary condition for achieving design accuracy of the under-
lying time integration scheme, see [GGF03].

• GCL is a necessary and sufficient condition for respecting nonlinear stability
of the underlying time integration scheme, see [FGG01].
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3.4. Design principles

• GCL is a sufficient condition for the Euler backward time integration to be
unconditionally stable, see [FN99].

• GCL is not a necessary condition for the convergence of the numerical method
to the weak solution of the conservation law (2.28), see [DFD07b, DFD07a].

• If GCL is not respected, an incorrect flutter boundary can be predicted, see
[Far04].

These results encourage to use schemes respecting the GCL. All the schemes (RD
and FV) considered in this thesis satisfy the GCL.

3.4.6. Extension for a hyperbolic system of equations

The work was pioneered by E. van der Weide in his PhD thesis [vdW98] by in-
troducing so called matrix schemes . The later important development include
[Abg01, AM04, AM03a, Mez02, Cśı02, Ric05] with excellent summary in [Ric05].
Generally, the RD schemes for scalar problems extend to systems of equations,
where upwind and distribution coefficients are replaced by matrixes of size q × q,
with addition and multiplication operators replaced by their matrix counterparts.

The matrix ki is the Jacobian matrix in the direction of the normal ~ni, see eq.
(3.14). The notation k+

i and k−
i means positive and negative part of the matrix in

the sense of eigen-decomposition

k±
i = ri Λ

±
i li, (3.32)

where matrices ri and li contain right and left eigenvectors of matrix ki and the
matrix Λ±

i contains positive or negative eigenvalues of the matrix. In the following
text, we drop the subscript i for simplification. For the computations on moving
meshes, the upwind matrix has to reflect the mesh velocity, also for the scalar case
(3.104). In this case, the matrix Λ in equation (3.32) contains eigenvalues of the
matrix ki minus the averaged mesh velocity on the element in the direction of the
normal ~ni

Λ = diag
m∈[1,2,...,q]

(λm − ~̄w · ~ni). (3.33)

The element residual can be expressed in particularly simple form

φE =
∑

j∈E

k̄jūj, k̄j =

(
∂~f

∂u
− ~̄w

)
· ~nj, (3.34)

where ~̄w is the approximation of the mesh velocity in the element. The precise state
for the linearization on moving meshes is given in section 3.7.8.
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Chapter 3. Residual distribution scheme

Scheme Linear Positive Linearity Formal order
preserving of accuracy

N X X 1
LDA X X 2
N-modified X X 2
B X 2
Bx 2

Table 3.1.: Properties of the RD schemes

3.5. RD schemes for steady problems

The properties of the RD schemes are listed in Table 3.1.

In the following sections, we will introduce schemes used in the course of this
work. We start with first order N scheme.

3.5.1. N scheme

The N scheme is given by the nodal contribution from element E

φi = k+
i (ui − uin), uin = −N

∑

j∈E

k−
j uj, (3.35)

where

N ≡ (
∑

i∈E

k+
i )−1 (3.36)

and k± = ±max(0,±k). If the Euler explicit time-stepping procedure is used, the
scheme is sub-element positive under time-step restriction (3.29).

Proof. It is easy to verify that the scheme can be written as (3.21), where

cE
ij = −k+

i

(∑

j∈E

k+
j

)−1

k−
j . (3.37)

Because k+ is positive or zero and k− is negative or zero, the coefficients cE
ij are

always non-negative. ¤

The scheme for the system of equations is given by

φi = k̄+
i (ūi − uin), uin = −N

∑

j∈E

k̄−
j ūj, (3.38)
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3.5. RD schemes for steady problems

with

N =

(∑

j∈E

k̄+
j

)−1

. (3.39)

The N scheme is very robust, however it is only first order accurate. The following
scheme is second order accurate.

3.5.2. LDA scheme

The LDA scheme is defined by the distribution coefficient

βi = k+
i N, (3.40)

and by the distribution matrix in the system case

βi = k̄+
i N. (3.41)

The LDA scheme is linear and second order accurate. One can compute even
some transonic flows with discontinuities, see e.g. Fig. 3.1. The discontinuities are
not captured in a monotone manner, the scheme is not positive. As is known from
the Godunov theorem, a second order positive scheme has to be non-linear. Precisely
for this reason a number of non-linear schemes were developed in the past. Now, we
will focus on them.

3.5.3. B scheme

Part of this section was published in [DDF07].
The B scheme was introduced by van der Weide (unpublished 1997) and it is

described in e.g. [CDP01]. The scheme combines the first order N scheme and the
second order LDA scheme

φB
i = (1 − θ)φLDA

i + θφN
i (3.42)

using the blending coefficient

θ =
|φE|∑

j∈E |φN
j |

. (3.43)

For the system of equations, the N scheme and the LDA are blended by components,
where for each component of the vector the blending coefficient is computed using
equation (3.43).

The B scheme is linearity preserving at convergence limit, as is was proven in
[AM01].
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Chapter 3. Residual distribution scheme

Theorem 11. Schemes in the form (3.42), with θ ∈ [0, 1], i.e. convex element-wise
combinations of the N scheme and the LDA scheme, cannot be locally positive in
two spatial dimensions, whatever choice of θ ∈ [0, 1] except the case θ = 1, i.e. N
scheme.

Proof. Consider a triangle E with vertices numbered 1, 2, 3. Without loss of gen-
erality, we will consider the case of k1 > 0, k2 > 0 (giving k3 < 0), i.e. two target
triangle, and focus on node 1. The B scheme can be written as

φB
1 = k1(u1 − u3) +

[
−(1 − θ)

k1k2

k1 + k2

]

︸ ︷︷ ︸
cE
12

(u1 − u2). (3.44)

Coefficient cE
12 is negative for any 0 ≤ θ < 1. By Definition 9, see page 33, scheme

is not locally positive. ¤

This finding is in a contradiction with the wide-spread belief in the positivity of
the blended scheme. To support our theoretical result, an oscillatory behavior of the
B scheme is briefly mentioned in [AM03b]. Although the B scheme is not (locally)
positive, it performs in a very similar manner as the positive N-modified scheme,
see section 3.5.4, pg. 39.

Example of the construction of a positive scheme using the blending with θ ∈ R is
given in [Abg01]. Let us state one more theoretical result concerning the construction
of the nonlinear schemes.

Theorem 12. Any scalar multidimensional upwind scheme (denoted by Scheme 3)
in two spatial dimensions can be constructed by the blending of two distinct arbitrary
multidimensional upwind schemes (denoted by Scheme 1 and 2) in the form

φScheme3
i = (1 − θ)φScheme1

i + θφScheme2
i , (3.45)

with θ ∈ R.

This means, that any scheme can be constructed using any pair of other multi-
dimensional upwind schemes, as far as φScheme1

i 6= φScheme2
i . On the contrary, there

does not exist any multidimensional upwind scheme, which cannot by expressed as
a blend of two distinct schemes, e.g. N scheme and LDA scheme.

Proof. For one target case (i.e. k1 > 0, k2 < 0, k3 < 0) the situation is easy:
all the multidimensional upwind schemes distribute the element residual φE to the
downwind node φ1 = φE and equation (3.45) is identically satisfied. For the two
target case we will denote the downwind nodes by numbers 1 and 2. The nodal
contribution for the Scheme 3 can be constructed from the Scheme 1 and Scheme 2
only by the choice of the blending parameter θ ∈ R: all the schemes distribute the
same element residual φE, i.e.

φScheme1
1 + φScheme1

2 = φScheme2
1 + φScheme2

2 = φScheme3
1 + φScheme3

2 = φE. (3.46)
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3.5. RD schemes for steady problems

Therefore it is sufficient to know one nodal contribution φ1, the other is uniquely
given by the relation

φ2 = φE − φ1. (3.47)

The schemes are distinct, if the nodal residuals are different, i.e.

φScheme1
1 6= φScheme2

1 . (3.48)

The nodal contribution of is given by

φScheme3
1 = (1 − θ)φScheme1

1 + θφScheme2
1 . (3.49)

from which one can easily compute the desired value of the blending parameter

θ =
φScheme3

1 − φScheme1
1

φScheme2
1 − φScheme1

1

. (3.50)

¤

3.5.4. N-modified scheme

The N scheme is defined by nodal contributions (3.35) and it can be understood
as a scheme distributing residual (3.17), (3.18) with implicitly defined distribution
coefficients

βi =
φi

φE
. (3.51)

Clearly, the distribution coefficients of the N scheme are not uniformly bounded. We
would like to construct linearity preserving scheme (with uniformly bounded distri-
bution coefficients) for its second order accuracy. The task is to find a continuous
nonlinear mapping, see [Ric05, RCD05]

R
d+2 → R

d+1 : Φ(φE, β1, β2, . . . , βd+1) 7→ (βmodif
1 , βmodif

2 , . . . , βmodif
d+1 ), (3.52)

in 2D it is R4 → R3 : Φ(φE, β1, β2, β3) 7→ (βmodif
1 , βmodif

2 , βmodif
3 ), such that

φE = 0 =⇒ βmodif
i = 0 ∀i = [1, 2, . . . , d + 1] (3.53)

βi β
modif
i ≥ 0 ∀i = [1, 2, . . . , d + 1] (3.54)

βmodif
i < ∞ ∀i = [1, 2, . . . , d + 1] (3.55)

∑

i∈E

βmodif
i = 1 (3.56)

Then, the modified scheme has uniformly bounded distribution coefficients and the
scheme remains positive.
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Chapter 3. Residual distribution scheme

The uniform boundedness of the distribution coefficients comes from eq. (3.55).
The sub-element positivity of the modified scheme can be understand from eq. (3.21)

βi =
φi

φE
=

∑

j∈E

cE
ij

φE
(un

i − un
j ). (3.57)

The modified scheme has distribution coefficients

cE,modif
ij =

βmodif
i cE

ij

βi

, (3.58)

which are positive due to (3.54). The existence and well posedness of the mapping
is proven in [Ric05].

One possible mapping is the following:

βmodif
i =

β+
i∑

j∈E β+
j

. (3.59)

This construction is well known for a long time, see, e.g. [Pai95, AM03b]. New the-
oretical results concerning this mapping were published in [RCD04, RCD05, Ric05].

For the system of equations, the limiting procedure (3.52) is performed on simple
waves . Given a system of hyperbolic conservation laws in quasilinear form

∂u

∂t
+

d∑

j=1

Aj
∂u

∂xj

= 0, (3.60)

and spatial vector ~ξ = (ξ1, ξ2, . . . , ξd), the matrix

A =
d∑

j=1

Ajξj (3.61)

is diagonizable with matrix of left and right eigenvectors l and r. The element
residual and the nodal contributions are projected on the eigenvectors

φ̃E = lφE, φ̃i = lφi (3.62)

and the modification procedure is applied on the components of the projected resid-
uals with mapping

R
d+2 → R

d+1 : Φ(φ̃E, β̃1, β̃2, . . . , β̃d+1) 7→ (β̃modif
1 , β̃modif

2 , . . . , β̃modif
d+1 ). (3.63)

As the direction ξ we chose vector (1, 0) or (1, 0, 0) and the Jacobian is evaluated in
the state of the arithmetic average v̄ of the solution in the element. The modified
nodal contributions are projected back with φmodif

i = r φ̃modif
i .
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3.5. RD schemes for steady problems

Both B and N-modified schemes are second order accurate, however they suffer
of poor iterative convergence and they lack accuracy in smooth parts of the flow.
This served as a momentum to develop another non-linear scheme as part of this
thesis, named Bx scheme [DD06d, DD05a]. The following scheme is not positive
(and it cannot be, as it was proven in Theorem 11), but it is surprisingly robust and
accurate.

3.5.5. Bx scheme for the Euler equations

The Bx scheme has the general form (3.42). To define the blending parameter θ, we
first construct an element-wise shock capturing sensor

sc =

(
~∇p · ~v
δpv

)+

≈
(∫

T
~∇p dx

δpvµ(E)
· ~v

)+

, (3.64)

where ~v is the approximation of the velocity vector in the element, p is the static
pressure and µ(E) is the area of the element. The δpv ≈ (pmax − pmin) v̄ is a global
pressure variation scale multiplied by the magnitude of the mean velocity in the
domain. The sensor sc is positive in a shock and compression, zero in expansion,
and of order sc = O(1) in smooth regions. One of the important properties of the
scheme is its second order of accuracy. For 2D, in equation (3.42) the left hand side
has to give O(h3) [Ric05], where h is a diameter of a circle with the same area as the
element (or sphere in 3D). The contribution from the N scheme gives O(h2) and from
the LDA scheme O(h3) in 2D. Hence, the blending factor θ has to be of order O(h).
Multiplication of the shock sensor sc by h does not lead to sufficient damping in the
shock regions. If multiplied by

√
h, then the amount of the numerical viscosity is

correct, but the scheme is only O(h1.5) accurate. The solution is to take a blending
factor as

θ = min

(
1,

(
sc

√
h
)2

)
= min

(
1, sc2 h

)
, (3.65)

which gives the right amount of artificial viscosity together with second order of
accuracy in smooth regions. The nodal contribution of the Bx scheme is then given
by (3.66) with the blending coefficient given by (3.64) and (3.65)

φBx
i = (1 − θ)φLDA

i + θφN
i . (3.66)

The blending coefficient is smooth and allows to use the complete 2nd order Jaco-
bian for the implicit calculations (even though we use its numerical approximation),
which noticeably speeds up the convergence rate. For all the other nonlinear schemes
in this thesis a first order approximation of the Jacobian had to be taken (from the
N scheme).

Since this is a novel scheme, we present immediately some numerical results show-
ing the performance of the scheme. More results are included later in chapter 5.
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Figure 3.1.: Ni channel. Top: Part of the Weatherill mesh and the Mach number
isolines for the Bx scheme, ∆M = 0.05, the bold line is M = 1. Middle:
the distribution of the Mach number along the bottom wall and the
convergence histories for different schemes. Bottom: distribution of the
Mach number along the wall, zoom before and after the shock.
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First, we present numerical results for transonic flow in the so-called Ni channel
[Ni81]. The flow is defined by the ratio of the outlet static pressure to the isentropic
total pressure p2/p0is corresponding to M2is = 0.675. The length of the channel is 3
with unit width and 10 % circular bump. We use an unstructured grid consisting of
2762 nodes and 5281 elements, with 31 nodes along the bump, utilizing Weatherill
type triangulation [Ath05]. This mesh gives a better idea of the behavior of the
scheme in the case of changing connectivity, as is usual in 3D, avoids false cancel-
lation of the error and does not prefer any direction. The Euler backward scheme
is used for the time integration with numerical approximation of the Jacobian. For
the N-modified and the B scheme we had to use the Jacobian of the N scheme. We
start with the CFL number of 100 and every iteration we multiply it by the factor
1.2 until it reaches 106.

In Fig. 3.1 isolines of the Mach number for the present Bx scheme are shown. One
can observe a supersonic pocket on the bump. The isolines do not exhibit wiggles
and they run straight into the shock, which corresponds to a not very dissipative
scheme. The comparison of the Mach number distribution along the bottom wall is
shown on the next figure together with a zoom to the beginning and the end of the
shock. Before the shock, the Bx scheme follows the LDA scheme an creates a small
overshoot on the Mach number distribution. After the shock the Bx scheme behaves
very similar as both the N-limited and the B schemes in terms of capturing after-
shock singularity. For comparison, the solution for the vertex centered finite volume
method with Barth limiter and Roe’s Riemann solver, from section 4.2 is shown.
The FV scheme is clearly more dissipative than all the nonlinear RD schemes, as
can be observed on the last point before the shock and mainly in the more diffusive
capture of the after-shock singularity. Convergence of the norm of the residual is also
presented. The new formulation gives a convergence rate very similar to the linear
schemes, while all the other nonlinear schemes stall after a few orders of magnitude.

The next test examines robustness of the new scheme on a Mach 20 bow shock in
front of the cylinder. The solution was computed using the Bx, N and N-modified
scheme on mesh consisting of 10531 nodes and 20632 elements. The B scheme always
gives negative pressure in the shock, even if started from a converged solution with
extremely small CFL number. In Fig. 3.2 the isolines of Mach number are shown,
the left part of the figure is the N-modified scheme, while the right one presents
the Bx scheme. One can notice that the Bx scheme better captures irregularities of
the solution, resulting from the interaction of the shock wave with the Weatherill
type of mesh. The next part of the figure shows a cut along the streamline to the
stagnation point. Points correspond to the intersection of the cut line with the
edges of the triangles. As we can expect from the design of the scheme, there are
no oscillations in the vicinity of the shock, nor anywhere else in the computational
domain. The solution obtained by all the schemes gives practically the same result.
Convergence properties of the schemes are considerably worse than for the transonic
flows, as is known also from other methods. On the other hand, one can employ a
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Figure 3.2.: Mach 20 bow shock. Top: isolines of the Mach number, the N-modified
scheme is on the left, the Bx scheme on the right. Bottom: cut along
the stagnation line and convergence history.

convergence fix, well known from the FV framework [Del96] – after a certain number
of iterations n0, when the solution is fully developed, we don’t decrease anymore the
blending factor in the subsequent iterations, i.e.

θn = max(θn, θn−1), for all n ≥ n0. (3.67)

In this case we have chosen n0 = 4000. It is not clear how to apply a similar fix to
the N-modified scheme. Note that this definition is opposite of the FV limiter, since
θ = 1 gives the non-oscillatory scheme, while in the case of FV θ = 0 reverts to the
upwind scheme with constant reconstruction. The scheme recovers convergence to
machine accuracy with a possibly slight price of more dissipative solution.

As the last steady case, we present a sub-critical flow around the cylinder [DvLPR89],
with M∞ = 0.38. This test examines the behavior of the method in smooth flow
regions. We use a much coarser mesh than in reference [DvLPR89], because in that
case all the schemes gave very similar, accurate results. Our mesh consists of approx-
imately equilateral triangles with 80 elements along the wall and 40 rows of triangles
towards the free stream boundary, see Fig. 3.3. This gives a position of the far-field

44



3.5. RD schemes for steady problems

boundary approximately 10 diameters away from the cylinder. The exact solution
is perfectly symmetric both with respect to x and y axis. The Mach number isolines
are plotted in Fig. 3.3 with step of ∆M = 0.02. All the schemes gives reasonably
good results. The LDA and present Bx give very similar almost symmetric results,
with a small deviation behind the cylinder on the axis of symmetry. The standard
formulation of the B scheme gives larger error behind the cylinder, however it still
converges to the horizontally symmetric solution. The N-modified scheme did not
converge well and wake-like structures appear behind the cylinder. However, unlike
the other results in [Pai95], no separation zone develops there. The results suggest
that the Bx scheme contains very little unwanted artificial dissipation and it can
capture smooth flow regions very well.

The scalar counterpart of the Bx scheme can be easily defined by considering the
“shock sensor” as

sc =

∫
E
‖∇uh‖ d~x

δu · µ(E)
. (3.68)
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LDA Bx

B N-modified

Figure 3.3.: Sub-critical flow past the cylinder. Mach number isolines, ∆M = 0.02.
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3.6. Schemes for unsteady problems

We start again with the first order N scheme.

3.6.1. N scheme

Historically, there are two independently developed versions of the space-time N
scheme. One comes from the application of the spatial N scheme to a space-time
prismatic element, see [CRD03, RCD05]. The second one was developed as the
spatial N scheme equipped with Crank-Nicholson time integration procedure. Both
schemes suffer from the same time-step restriction. In the first case the restriction
allows time layers decoupling and time marching procedure. The satisfaction of the
time step gives positivity of the scheme in the second case. For more discussion and
comparison see e.g. [RCD05]. We will omit the first scheme and present only the
second scheme.

The unsteady version of the N scheme is a straightforward application of the
preferred time integrator to the steady version of the scheme. We shall present the
scheme equipped with two different time integrators: Crank-Nicholson (later needed
for the N-modified scheme of M. Mezine and R. Abgrall [MRAD03, AM03a]) and
the scheme with three points backward (3BDF) time integrator, later needed for the
Bx scheme [DD05a, DD06d].

First, we derive the (space-time) nodal contribution for the N scheme with the
Crank-Nicholson time integrator. We start from equation (3.20) with the nodal
contribution given by (3.35) (taking into account the chosen Crank-Nicholson time
integrator)

un+1
i − un

i

∆t
= − 1

µ(Si)

∑

E∈Di

1

2
(φE,n+1

i + φE,n
i ). (3.69)

The nodal contribution from the space-time element is obtained by rearranging the
terms of (3.69) into space-time contributions

∑

E∈Di

φEST

i = 0, φEST

i =
µ(E)

d + 1
(un+1

i − un
i ) +

1

2
∆t(φE,n+1

i + φE,n
i ), (3.70)

with φE
i given by (3.35). The update scheme is then given by (3.26). Space-time

element residual φEST

in this case corresponds to use of the trapezoidal integration
rule on the space-time prism

φEST

=
µ(E)

d + 1

∑

i∈E

(
un+1

j − un
j

)
+

1

2
∆t(φE,n+1 + φE,n+1), φE =

∑

i∈E

kiui. (3.71)

Thanks to the space-time nature of the scheme, we can formulate sub-element
positivity for the unsteady space-time RD schemes:
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Definition 13 (Sub-element positivity of the scalar space-time RD scheme).
The fully discrete scheme

un+1,m+1
i = un+1,m

i − αi

∑

E∈Di

φEST

i

= un+1,m
i − αi

∑

E∈Di

∑

j∈E

[
n+1cE

ij(u
n+1
i − un+1

j ) + ncE
ij(u

n+1
i − un

j )
]m

(3.72)

is sub-element positive, if all coefficients n+1cE
ij,

ncE
ij are non-negative and the local

relaxation coefficient αi satisfies

0 < αi ≤
( ∑

E∈Di

∑

j∈E

(n+1cE
ij + ncE

ij)

)−1

. (3.73)

We now establish sub-element positivity of scheme (3.70) with relaxation proce-
dure (3.26). The fully discrete scheme leads to

un+1,m+1
i = un+1,m

i − αi

∑

E

[
µ(E)

d + 1
(un+1

i − un
i ) +

1

2
∆t(φE,n+1

i + φE,n
i )

]

= un+1,m
i − αi

∑

E

[
µ(E)

d + 1
(un+1

i − un
i )

+
1

2
∆t[k+,E

i (un+1
i − uE,n+1

in ) + k+,E
i (un

i − uE,n
in )]

]
. (3.74)

The content of the bracket (element superscript E is omitted) is

µ(E)

d + 1
(un+1

i − un
i ) +

1

2
∆t[k+,E

i (un+1
i − uE,n+1

in ) + k+,E
i (un

i − uE,n
in )]

=
µ(E)

d + 1
(un+1

i − un
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1

2
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[
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i (un+1
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[
k−

j un+1
j

]
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i (un
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j un
j )

]
]

=
µ(E)
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. (3.75)

48



3.6. Schemes for unsteady problems

Now, we can rearrange terms

µ(E)
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i − un
i ) − 1
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i N
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[
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+
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i N
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[
−k−
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. (3.76)

We check sub-element positivity following definition 13, page 48. The second and
third coefficients are always positive. A time-step condition coming from the first
term is

∆t ≤ 2µ(E)

k+,E
i (d + 1)

, ∀i, E ∈ T h. (3.77)

The physical time-step condition (3.77) together with the condition (3.73) are suffi-
cient for sub-element positivity of the space-time N scheme (3.70). Condition (3.77)
is the same as derived in [AM03a, Ric05, RCD05] started from the implicit method
examining properties of the implicit matrices.

Relation (3.73) is satisfied, if the relaxation parameters are bounded by

αi ≤
( ∑

E∈Di

µ(E)

d + 1
+

∆t

2
k+,E

i

)−1

. (3.78)

As the second possibility, we consider the 3BDF time integration method

∂ui

∂t
≈ αn+1un+1

i + αnun
i + αn−1un−1

i

tn+1 − tn
(3.79)

with coefficients

αn+1 =
1 + 2τ

1 + τ
, αn = −1 − τ, αn−1 =

τ 2

1 + τ
, τ =

tn+1 − tn

tn − tn−1
, (3.80)

i.e.

1

tn+1 − tn

(
αn+1un+1

i + αnun
i + αn−1un−1

i

)
= − 1

µ(Si)

∑

E∈Di

φE,n+1
i . (3.81)

The space-time nodal contribution is given by

φEST

=
µ(E)

d + 1

(
αn+1un+1

i + αnun
i + αn−1un−1

i

)
+ (tn+1 − tn)φE,n+1

i . (3.82)
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Positivity cannot be ensured for 3BDF time integration scheme. The system is
solved in dual time again. Positivity cannot be ensured for this scheme.

The system scheme with Crank-Nicholson time integration can be written in terms
of a space-time nodal contribution

un+1,m+1
i = un+1,m

i − αi

∑

E

[
µ(E)

d + 1
(un+1

i − un
i ) +

1

2
∆t(φE,n+1

i + φE,n
i ),

]

= un+1,m
i − αi

∑

E

[
µ(E)

d + 1
(un+1

i − un
i )

+
1

2
∆t[k̄+,E

i (ūn+1
i − uE,n+1

in ) + k̄+,E
i (ūn

i − uE,n
in )]

]
, (3.83)

with uin defined by (3.38). Note the difference between ui and ūi (equation (3.15)).
We would like to mention, that in the original work [AM01, Mez02, MRAD03] a
different linearization is used for the discretization of the time derivatives. The 3BDF
time integration scheme is extended in a similar manner as the Crank-Nicholson
scheme.

The N scheme is a linear, positive scheme, therefore it is first order accurate only.
Two different extension of the second order LDA scheme will be considered. The

LDA scheme of Ferrante and Deconinck [FD97], section 3.6.2, was developed using
the finite element framework, while the LDA scheme of Caraeni [Car00, CCF01,
CF05], section 3.6.3, simply distributes the unsteady residual with a “steady” version
of the LDA distribution coefficients.

3.6.2. LDA scheme of Ferrante and Deconinck

This version of the LDA scheme was developed by Ferrante and Deconinck, see
[FD97]. We start from the conservative formulation of the governing equation (2.1).
Multiply the equation by the Petrov-Galerkin test function ϕi and integrate over
the region Ω

∫

Ω

ϕi
∂u

∂t
d~x +

∫

Ω

ϕi∇x · ~f d~x = 0 with ∇x · ~f = ~λ · ∇xu. (3.84)

The integral over domain Ω is written as the sum of the integrals over simplex
elements E ∈ Di adjacent to the node i. The solution is approximated on each
element using the linear trial functions as

uh =
∑

j∈E

ujψj. (3.85)

Note that ∇xu
h is a constant function per element.
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The second integral of equation (3.84) is rewritten in the quasi-linear form and
constant terms are taken out

∫

E

ϕi∇x · ~fh d~x =

∫

Et

ϕi
~λ · ∇xu

h d~x = ~λ · ∇xu
h

∫

E

ϕi d~x = βiφ
E. (3.86)

with residual φE defined by (3.17), upwind parameters (3.14) and distribution coef-
ficients βi (3.40).

The first integral is approximated as
∫

Ω

ϕi
∂uh

∂t
d~x =

∑

E∈Di

∑

j∈E

∂uj

∂t

∫

E

ϕiψj d~x =
∑

E∈Di

∑

j∈E

∂uj

∂t
mE

ij. (3.87)

Term mE
ij = µ(E)m̃E

ij =
∫

E
ϕiψj d~x is the element contribution to the mass matrix.

Equation (3.86) is satisfied for the test function defined as

ϕi(~x) = ϕGalerkin
i (~x) +

∑

E∈i

(
βE

i − 1

d + 1

)
ΠE(~x), (3.88)

where ΠE(~x) is the characteristic function of the element; it is unit for ~x in E and zero
outside. Hence, with this test function one can evaluate the element contribution
to the mass matrix explicitly

mE
ij = µ(E)m̃E

ij, m̃E
ij =

1

d + 1

(
1 + δij

d + 2
+ βj −

1

d + 1

)
. (3.89)

Since the mass matrix is taken into account, any second order time discretization can
be used. Here we concentrate on the three point backward differentiation formula
(3BDF) (3.79) with coefficients (3.80). The contribution from element E is then

φEST

i

tn+1 − tn
=

µ(E)

d + 1

(
k+

i N +
2

d + 2
− 1

d + 1

)n+1
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j 6=i

[(
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j N +
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d + 2
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d + 1
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∂uj
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]n+1

+ βiφ
E,n+1. (3.90)

The LDA scheme is formally extended to the system of equations as the other
schemes. For the scalar case, the scheme corresponds to the Petrov-Galerkin formu-
lation of the finite element method. In the system case the correspondence is not so
clear, since the test functions would have to be matrices.

The element contribution to the mass matrix is in this case sub-matrix

mE
ij =

µ(E)

d + 1

(
1 + δij

d + 2
I + βj −

1

d + 1
I

)
=

µ(E)

d + 1

(
1 + δij

d + 2
I + k̄+

j N − 1

d + 1
I

)
,

(3.91)
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where matrix N is given by (3.39). The nodal contribution is

φEST
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∂uj
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+ k̄+
i NφE,n+1, (3.92)

where φE,n+1 is given by (3.13). The scheme is equipped with the three point
backward differentiation formula (3BDF) for the time discretization.

3.6.3. LDA scheme of Caraeni

The space-time scheme of Caraeni [Car00, CCF01, CF05, MRAD03] was developed
in a second and third order version. The second order version distributes the space
time residual

φEST

tn+1 − tn
=

∫

E

(
∂uh

∂t
+ ∇ · ~fh

)
d~x

= µ(E)
∑

i∈E

αn+1un+1
i + αnun

i + αn−1un−1
i

tn+1 − tn
+

∑

i∈E

kn+1
i un+1

i (3.93)

using LDA distribution coefficients (3.40). The time derivative is discretized using
3BDF scheme, but other discretizations can be also considered. For a system of
equations, the scheme is extended in the standard manner, i.e. the unsteady residual
is distributed using the distribution matrices (3.41).

This scheme is simpler than the LDA scheme of Ferrante and Deconinck from
section 3.6.2, but it is also more oscillatory in the vicinity of steep gradients. The
version for the system of equations was successfully used for large eddy simulations
[Car00].

3.6.4. One layer space-time scheme of Mezine and Abgrall

The LDA scheme is a linear second order scheme. A second order, positive scheme
must be non-linear, as is known from the Godunov theorem. We will describe the
construction of the nonlinear, N-modified scheme of Mezine and Abgrall [AM03a,
Mez02] in section 3.6.4. This scheme is positive under a time-step restriction. A
(two-layer) second order positive scheme without a time-step restriction is described
in section 3.6.5.

The space-time N scheme from section 3.6.1 is linear and sub-element positive
with unbounded distribution coefficients. We can apply nonlinear mapping (3.52)
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Figure 3.4.: Two layer space-time scheme

to get uniformly bounded coefficients, yet with the unchanged signs of cE
ij. Then,

the scheme is second order accurate.
The (unlimited) nodal residual is given by the equation (3.70). The modified

distribution coefficients are computed according to (3.59). The resulting scheme is
sub-element positive under a time-step given by (3.77). The resulting system of
algebraic equations is solved in dual time. This scheme was published in [AM01,
MA02, AM03a, MRAD03]. The system scheme is obtained in a similar manner.

3.6.5. Two layer space-time scheme of Mezine and Abgrall

The two-layer approach was developed as a cure for the time-step restriction of
the implicit space-time schemes [CRDP01, Ric01, CD01, CD02, CRD03, Cśı02].
Always two layers of elements are solved, see Fig. 3.4. The lower layer, between
time levels n and n + 1/2 is the N-modified scheme from section 3.6.4. The time-
step ∆tLower = tn+1/2 − tn obeys restriction (3.77). The scheme in the upper layer
is similar to the lower layer scheme, however part of the space-time residual is
distributed to nodes in n + 1/2 level and part to the level n + 1, such that the
scheme is sub-element positive under arbitrary time step ∆tUpper. The second order
accuracy is achieved by the mapping (3.59).

The full scheme is given after assembly of the nodal contributions from the lower
layer [tn, tn+1/2] of elements

φ
EST,n+1/2,Lower
i =

µ(E)

d + 1
(u

n+1/2
i − un

i ) +
1

2
∆t1(φ

E,n+1/2
i + φE,n

i ), (3.94)

with the contribution from the upper layer of elements [tn+1/2, tn+1] to the n + 1/2
level

φ
EST,n+1/2,Upper
i =

1

2
∆t2φ

E,n+1/2
i (3.95)

and the contribution from the upper elements to the n + 1 level

φEST,n+1,Upper
i =

µ(E)

d + 1
(un+1

i − u
n+1/2
i ) +

1

2
∆t2φ

E,n+1
i . (3.96)
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Note that the element residual at the upper layer given by

φEST,Upper =
∑

i∈E

φEST,n+1,Upper
i + φ

EST,n+1/2,Upper
i , (3.97)

is the same approximation of the space-time residual as for the lower layer scheme.
The modification procedure (3.59) is applied on each element in the lower and upper
level separately.

This scheme is positive and second order accurate. Unfortunately, it has problems
with iterative convergence in dual time. Some reasoning can be found in a recent
article [Abg06]. As an alternative without the iterative convergence problems the
time accurate Bx scheme was proposed [DD05a].

3.6.6. Bx scheme

The basis for the Bx scheme is the LDA scheme of Ferrante and Deconinck [FD97]
with 3BDF time integration, see section 3.6.2 and the N scheme with the same time
integration procedure, see section 3.6.1. The 3BDF procedure is preferred over the
Crank-Nicholson method, because the later does not include dissipation in time, as
it corresponds to the central time discretization. It renders Crank-Nicholson scheme
not enough robust for technical type of computations.

The change in the pressure due to the traveling pressure wave can be locally
approximated as a change due to pure convection of the pressure wave and the
change due to its expansion or compression. Pure convection obeys the equation

∂p

∂t
+ ~vc · ~∇p = 0, (3.98)

where ~vc is the speed of the wave. This effect is dominant e.g. in the convection
of an inviscid vortex. Pure expansions or compressions happen with respect to the
frame of reference moving with velocity ~vc. We define ~vr = ~v − ~vc, where ~v is the
velocity of the flow and ~vr is relative velocity with respect to the frame of reference.
The shock sensor has to be constructed using the relative velocity, i.e.

sc =
1

δpv

(~∇p · ~vr)
+ =

1

δpv

(~∇p · ~vr +
∂p

∂t
+ ~vc · ~∇p

︸ ︷︷ ︸
=0

)+

=
1

δpv

(
∂p

∂t
+ ~∇p · (~vr + ~vc))

+ =
1

δpv

(
∂p

∂t
+ ~∇p · v)+, (3.99)

with scaling δpv defined in section 3.5.5, page 41. If the shock sensor is positive, the
flow experiences compression, while if the argument of the shock sensor is negative,
the flow is expanding with respect to the relative frame of reference. The operator
is scaled in the same manner as for steady problems (3.65) to define the blending
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3.6. Schemes for unsteady problems

coefficient, which retains the second order of accuracy of the LDA scheme together
with non-oscillatory behavior.

Due to the unconditional stability of the underlying N and the LDA schemes
with the three points backward time integration formula, the resulting unsteady Bx
scheme is expected to be robust for high CFL number simulations.

Since this scheme is novel, we present some numerical results showing its perfor-
mance in comparison with the performance of the other schemes. We have chosen
a smooth convection of a vortex as the first unsteady test case, see [DD05a]. The
problem is solved on the square domain [−0.5, 0.5]× [−0.5, 0.5] filled with a Weath-
erill type triangulation with 41 points along each side. The flow velocity is given by
the main stream velocity ~vm = (6, 0) and the circumferential perturbation

(vx, vy)θ = (−y, x) · ω, ω = 15 · (cos 4πr + 1), r =
√

x2 + y2 (3.100)

for r < 0.25, (vx, vy)θ = ~0 elsewhere. Density is chosen constant ρ = 1.4 and the
pressure from the balance in the radial direction p = pm + ∆p, where

∆p =
152ρ

(4π)2

(
2 cos(4πr) + 8πr sin(4πr) +

cos(8πr)

8
+

4πr sin(8πr)

4
+ 12π2r2

)
+ C.

(3.101)
The constant C is such that p|r=0.25 = pm = 100. This setup gives maximal Mach
number in the domain M

.
= 0.8. The free stream values are prescribed on the

boundaries y = ±0.5 and periodic boundaries are used for x = ±0.5. The simulation
stops after one period, i.e. tmax = 1/6. This test case was first presented in [DD05a].

In Fig. 3.5 the isolines of the pressure for the different schemes are shown. The
computation was performed with CFL = 1. Distribution of the pressure in the core
of the vortex shows that the Bx scheme performs essentially as the LDA scheme for
the smooth regions. The performance of the N-limited scheme is noticeably worse.
We have performed the same test with several other schemes. The minimal pressure
in the vortex core is given in Table 3.2. The finite volume method is cell centered
with the three points backward time integration scheme formulated in dual time
and with, or without Barth’s limiter, see section 4.2. Note, that the Finite Volume
scheme performs worse even in the case with no limiter and it uses approximately
twice more unknowns than the RD scheme.

As a test to examine the scheme on flow with complex features, we present results
for a 2D Riemann problem [MRAD03]. The problem is symmetric along y = x with
the initial conditions given by

(ρ, vx, vy, p) =





( 1.5, 0, 0, 1.5 ) y < 0.8, y > x

( 0.1379928, 1.2060454, 1.2060454, 0.0290323 ) x > 0.8, y > x

( 0.5322581, 1.2060454, 0, 0.3 ) y > x elsewhere,
(3.102)

see Fig. 3.6. The simulation stops at tmax = 0.8.
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Figure 3.5.: Advection of the vortex, t = 1/6. Isolines of the pressure for differ-
ent schemes. Distribution of the pressure in the core of the vortex for
different schemes.

Scheme: Bx LDA N-limited LDA [CCF01] FV nolim FV Barth Exact

pmax 100.11 100.12 100.42 100.12 100.04 100.11 100
pmin 94.00 93.84 96.27 93.88 94.35 98.76 93.213

Table 3.2.: The maximal and the minimal pressure in the vortex core for the vortex
advection problem, t = 1/6. FV is the cell centered Finite Volume
scheme with the linear reconstruction and with or without Barth’s [BJ89]
limiter and the three point backward scheme formulated in dual time.
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0.8
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Figure 3.6.: Two-dimensional Riemann problem. Sketch of the situation.
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In Fig. 3.7 comparison of the Bx scheme with the N-modified is presented on
meshes with spatial resolution 1/200 and 1/400. Both computations with the Bx
scheme show much higher resolution. It can be observed on pronounced Kelvin-
Helmholtz instabilities along the slip lines, where the Bx scheme gives a richer
structure, which is seen from the growth of the rollers along the instability. The
N-modified scheme captures the instabilities well, however it clearly gives lower
resolution. To show that the scheme captures the discontinuities without spurious
oscillations we make a cut along the diagonal for the mesh 1/400, see Fig. 3.7. The
solution obtained by the Bx scheme shows non-oscillatory capturing of the smooth
regions as well as discontinuities. On the other hand, there are undamped high
frequency modes on the solution given by the N-modified scheme, which causes
oscillations in the smooth regions of the solution.

A natural question arises: why not use the N scheme with the Euler backward
time integration procedure, which has better stability properties (it can be shown
positive) than the 3BDF method. However, in this case the scheme would not be

conservative, because there is no continuous approximation of the flux ~fh except if
the blending coefficient θ is constant in the domain.
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Figure 3.7.: Two-dimensional Riemann problem, density contours (∆ρ = 0.05) at
t = 0.8. Left figures show the solution obtained by the Bx scheme,
while right figures show the results of the N-modified scheme. Top row:
spatial resolution 1/200, middle row 1/400. Bottom: solution along the
diagonal for the mesh 1/400 for the pressure and the density.
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3.7. Extension of the schemes for moving mesh

computations

In this section we will extend all the considered schemes from section 3.6, starting
from first order and second order linear schemes upto nonlinear schemes.

3.7.1. N scheme + Crank-Nicholson

The N scheme with the Euler explicit time integrator was already extended to mov-
ing meshes in [Mic00, MSD03]. Extension for the Crank-Nicholson time integrator
was published in [DD05b].

We start from the quasi-linear form of the equation (2.27). Similarly to the space-
time N scheme, section 3.6.1, the discretization of the time derivative corresponds
to the discretization on the medial dual grid

φtime
i =

1

tn+1 − tn
µ(En+1)un+1

i − µ(En)un
i

d + 1
. (3.103)

The convective term including ~w · ~∇xu is discretized as (3.35) with the upwind
parameters defined as

kn,n+1
i = (~λ − ~w)

n,n+1

·
~nn,n+1

j

d
, (3.104)

where ~λ and ~w are the averaged advection vector and mesh velocity in the element
at time levels n and n + 1. For the precise definition of the averaged state see
section 3.7.8, page 66. Normals ~nn+1

j and ~nn
j are taken from the geometric position

at time levels n and n + 1 respectively. The last, geometrical term is discretized in
accordance with the time discretization using the identity (2.12). In [Mic00, MSD03]
the authors compute the integral of the geometric term over element E

∫

E

u∇x · ~w d~x ≈
∑

j∈E un
j

d + 1

µ(En+1) − µ(En)

tn+1 − tn
(3.105)

and then distribute it with the LDA distribution coefficient βLDA
i (3.40). That

discretization spoils the positivity of the scheme. Instead of this, we discretize the
last term on the dual mesh, (as it is usual for pointwise treatment of source terms
in the vertex centered finite volume schemes). The full nodal contribution is then

φEST

i =
µ(En+1)un+1

i − µ(En)un
i

d + 1

+
∆t

2

((
k+

i (ui − uin)

)n+1

+

(
k+

i (ui − uin)

)n
)

− un
i + un+1

i

2

µ(En+1) − µ(En)

d + 1
. (3.106)
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Chapter 3. Residual distribution scheme

Note, that the contribution was multiplied by ∆t for a correspondence to the space-
time approach of the unsteady RD schemes. The scheme is sub-element positive
under the time-step restriction

∆t ≤ µ(En+1) + µ(En)

k+,E
i (d + 1)

, ∀i, E ∈ T h. (3.107)

The full nodal contribution for the system of equations is

φEST

i =
µ(En+1)un+1

i − µ(En)un
i

d + 1

+
∆t

2

((
k̄+

i (ūi − uin)

)n+1

+

(
k̄+

i (ūi − uin)

)n
)

− un
i + un+1

i

2

µ(En+1) − µ(En)

d + 1
. (3.108)

3.7.2. N scheme + 3BDF

The extension of the N scheme with the 3BDF time integrator differs mainly in
the treatment of the time derivatives and the geometric source term. The time
derivative is discretized as

1

tn+1 − tn
αn+1µ(En+1)un+1

i + αnµ(En)un
i + αn−1µ(En−1)un−1

i

d + 1
. (3.109)

The geometrical term is discretized in accordance with the time discretization using
the identity (2.12), on the dual mesh with pointwise treatment

1

tn+1 − tn
un+1

i

αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

d + 1
, (3.110)

where the first fraction is the arithmetic average of the solution over the element
and in the second denominator term d + 1 accounts for the part belonging to node
i. The full nodal contribution is then

φEST

i

tn+1 − tn
=

1

tn+1 − tn
αn+1µ(En+1)un+1

i + αnµ(En)un
i + αn−1µ(En−1)un−1

i

d + 1

+ k+
i (un+1

i − un+1
in ) − 1

tn+1 − tn
un+1

i

αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

d + 1
.

(3.111)

Similar expression is obtained for a system of equations.
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3.7.3. LDA scheme of Ferrante and Deconinck

This section was published in [DDF05a, DD06a, DD06b]. We start from the conser-
vative ALE formulation (2.26). Multiply the equation by the Petrov-Galerkin test
function from the current configuration ϕi and integrate over the time dependent
region Ωt

∫

Ωt

ϕi

JAt

∂JAt
u

∂t

∣∣∣∣
~Y

d~x+

∫

Ωt

ϕi∇x · (~f − ~wu) d~x = 0 with ∇x · ~f = ~λ ·∇xu. (3.112)

The integral over domain Ωt is written as the sum of the integrals over simplex
elements E ∈ Di adjacent to the node i. The solution and the mesh velocity are
approximated on each element using the linear trial functions as

uh =
∑

j∈E

ujψj, ~wh =
∑

j∈E

~wjψj. (3.113)

Note that ∇x · ~wh and ∇xu
h are constant functions per element and the approxima-

tion of Jacobian Jh
At

is constant in space over each element. The trial functions ψj

as function of the ALE coordinate ~Y are constant in time and can be taken in front
of the time derivative

∫

Ωt

ϕi

Jh
At

∂Jh
At

uh

∂t

∣∣∣∣
~Y

d~x =
∑

E∈Di

1

Jh
At

∑

j∈E

∂Jh
At

uj

∂t

∣∣∣∣
~Y

∫

Et

ϕiψj d~x

=
∑

E∈Di

1

Jh
At

∑

j∈E

∂Jh
At

uj

∂t

∣∣∣∣
~Y

mE
ij. (3.114)

Term mE
ij = µ(Et)m̃

E
ij =

∫
Et

ϕiψj d~x is the element contribution to the mass matrix.
The second integral of equation (3.112) is rewritten in the quasi-linear form and

constant terms are taken out
∫

Et

ϕi∇x · (~fh − ~whuh) d~x =

∫

Et

ϕi(~λ · ∇xu
h − ~wh · ∇xu

h − uh∇x · ~wh) d~x

= (~λ − ~w) · ∇xu
h

∫

Et

ϕi d~x −∇x · ~wh

∫

Et

ϕiu
h d~x

= (~λ − ~w) · ∇xu
h

∫

Et

ϕi d~x −
∑

j∈E

(
uj∇x · ~wh

∫

Et

ϕiψj d~x

)

= βiφ
E −∇x · ~wh

∑

j∈E

(
ujm

E
ij

)
. (3.115)

The ALE element residual φE is defined as

φE = µ(E)(~λ − ~w) ·
∑

j∈E

uj∇xψj = µ(E)
∑

j∈E

(~λ − ~w) · ∇xψjuj =
∑

j∈E

kjuj, (3.116)
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where µ(E) is the measure of the element and the upwind parameter kj with respect
to the relative speed is given by

kj = (~λ − ~w) · ∇xψj = (~λ − ~w) · ~nj

d
, (3.117)

and ~nj is the normal to the surface opposite to the node j scaled by its surface.

The distribution coefficient is chosen using the LDA scheme (3.40). The diver-
gence of the mesh velocity is expressed as a time derivative using the identity (2.12).
The time derivative (2.12) is discretized by the three point backward differentiation
formula (3BDF), i.e.

∫

Et

ϕiu~∇x · ~w d~x =

∫

Et

ϕiu
1

JAt

∂JAt

∂t

∣∣∣∣
~Y

d~x ≈
∫

Et

ϕiu
h 1

Jh
At

∂Jh
At

∂t

∣∣∣∣
~Y

d~x

=

∫

Et

(
ϕi

∑

j∈E

[ψjuj]
1

Jh
At

∂Jh
At

∂t

∣∣∣∣
~Y

)
d~x

=
αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

tn+1 − tn

∑

j∈E

m̃E
ijuj, (3.118)

with coefficients (3.80) and m̃E
ij defined in (3.89). The scheme respects the discrete

geometric conservation law.

The precise averaging of the terms (~λ − ~w) will be specified later in the chapter
3.7.8. Finally, the fully discrete scheme is given by nodal contribution

φEST

i

tn+1 − tn
=

∑

j∈E

[
1

d + 1

(
δij + 1

d + 2
+ βn+1

j − 1

d + 1

)

·
αn+1µ(En+1)un+1

j + αnµ(En)un
j + αn−1µ(En−1)un−1

j

tn+1 − tn

]
+ βn+1

i

∑

j∈E

kn+1
j un+1

j

+
αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

tn+1 − tn

∑

j∈E

[
1

d + 1

(
1 + δij

d + 2
+ βn+1

j − 1

d + 1

)
uj

]
.

(3.119)
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The nodal contribution for system of equations is

φEST

i

tn+1 − tn
=

1

d + 1

(
k̄+

i N +
2

d + 2
I − 1

d + 1
I

)

︸ ︷︷ ︸
m̃E

ii

∂µ(E)ui

∂t

+
∑

j∈E
j 6=i

[
1

d + 1

(
k̄+

j N +
1

d + 2
I − 1

d + 1
I

)

︸ ︷︷ ︸
m̃E

ij,j 6=i

∂µ(E)uj

∂t

]
+ k̄+

i N
∑

j∈E

k̄jūj

+
∂µ(E)

∂t

∑

j∈E

[
1

d + 1

(
1 + δij

d + 2
I + k̄+

j N − 1

d + 1
I

)

︸ ︷︷ ︸
m̃E

ij

uj

]
. (3.120)

The time derivatives are discretized by 3BDF scheme (3.79) and (3.80).

3.7.4. Galerkin (central) scheme

The Galerkin finite element scheme itself is unstable for hyperbolic problem (2.1).
However, it is possible to write an RD scheme as the perturbation of the Galerkin
scheme plus dissipation

φi = θφGalerkin
i + (1 − θ)(φRD

i − φGalerkin
i ), (3.121)

with coefficient θ = 0. This can be useful later e.g. for the extension of the RD
schemes for problems with viscosity [RVAD05, DRAD06]. Once the extension of
the LDA scheme for moving meshes (3.119) is known, the Galerkin scheme can be
constructed by removing all the terms related to the upwinding (or equivalently
dropping the second part of the test function (3.88)). The scheme2 is given by

φEST

i

tn+1 − tn
=

∑

j∈E

1 + δij

(d + 1)(d + 2)

∂µ(E)uj

∂t

+
1

d + 1

∑

j∈E

k̄jūj +
∂µ(E)

∂t

∑

j∈E

1 + δij

(d + 1)(d + 2)
uj. (3.122)

2This development is strictly valid only for linear flux function.
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3.7.5. LDA scheme of Caraeni

For the extension of the scheme on the moving meshes the integral of the equation
(2.27) over the element is considered. Then, the element residual is

φEST

tn+1 − tn
=

∫

E

(
1

Jh
At

∂Jh
At

uh

∂t

∣∣∣∣
~Y

+ ~∇x · ~fh − ~wh · ~∇xu
h − uh~∇x · ~wh

)
d~x

=
∑

i∈E

αn+1µ(En+1)un+1
i + αnµ(En)un

i + αn−1µ(En−1)un−1
i

tn+1 − tn

+
∑

i∈E

kn+1
i un+1

i +
αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

tn+1 − tn

∑
i∈E un+1

i

d + 1
, (3.123)

with the upwind parameters given by (3.117). The residual is subsequently dis-
tributed with LDA distribution coefficients (3.40).

For the system of equations, the integral of the equation (2.27) over the element
is considered. Then, the element residual is

φEST

tn+1 − tn
=

∑

i∈E

αn+1µ(En+1)un+1
i + αnµ(En)un

i + αn−1µ(En−1)un−1
i

tn+1 − tn

+
∑

i∈E

k̄n+1
i ūn+1

i +
αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

tn+1 − tn

∑
i∈E un+1

i

d + 1
, (3.124)

with the upwind parameters given by (3.117). The residual is subsequently dis-
tributed with LDA distribution coefficients (3.40).

3.7.6. One and Two layer space-time scheme of Mezine and
Abgrall

This section was published in [DD06c]. The sub-element positive extension of the
N scheme with the Crank-Nicholson time integration method is described in section
3.6.1. As it was noted in section 3.6.5, the upper layer scheme is similar to the lower
layer scheme, with the residual distributed to the nodes in n + 1/2 and n + 1 levels.
We use the similar extension for the upper layer as for the lower layer, i.e. nodal
contribution from the lower layer [tn, tn+1/2] elements is

φ
EST,n+1/2,Lower
i =

1

d + 1
(µ(En+1/2)u

n+1/2
i − µ(En)un

i )

+
∆tLower

2

((
k+

i (ui − uin)

)n+1/2

+

(
k+

i (ui − uin)

)n
)

−
∑

j∈E(u
n+1/2
j + un

j )

2(d + 1)

µ(En+1/2) − µ(En)

d + 1
. (3.125)
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The contribution from upper elements [tn+1/2, tn+1] to the n + 1/2 layer is

φ
EST,n+1/2,Upper
i =

∆tUpper

2

(
k+

i (ui − uin)

)n+1/2

(3.126)

and the contribution from upper elements to the n + 1 layer is

φEST,n+1,Upper
i =

1

d + 1
(µ(En+1)un+1

i − µ(En+1/2)u
n+1/2
i )

+
∆tUpper

2

(
k+

i (ui − uin)

)n+1

−
∑

j∈E(un+1
j + u

n+1/2
j )

2(d + 1)

µ(En+1) − µ(En+1/2)

d + 1
.

(3.127)

After application the limiting procedure (3.59), the scheme is positive and second
order accurate under arbitrary time step ∆t = ∆tLower + ∆tUpper.

The scheme is extended for the system of equations in the standard manner. The
element contribution is given by

φ
EST,n+1/2,lower
i =

1

d + 1
(µ(En+1/2)u

n+1/2
i − µ(En)un

i )

+
∆t1
2

((
k̄+

i (ūi − uin)

)n+1/2

+

(
k̄+

i (ūi − uin)

)n
)

−
∑

j∈E(u
n+1/2
j + un

j )

2(d + 1)

µ(En+1/2) − µ(En)

d + 1
. (3.128)

The contribution from upper elements [tn+1/2, tn+1] to the n + 1/2 layer is

φ
EST,n+1/2,Upper
i =

∆t2
2

(
k̄+

i (ūi − uin)

)n+1/2

(3.129)

and the contribution from the upper elements to the n + 1 layer

φEST,n+1,Upper
i =

1

d + 1
(µ(En+1)un+1

i − µ(En+1/2)u
n+1/2
i )

+
∆t2
2

(
k̄+

i (ui − uin)

)n+1

−
∑

j∈E(un+1
j + u

n+1/2
j )

2(d + 1)

µ(En+1) − µ(En+1/2)

d + 1
. (3.130)

The limiting procedure (3.63) is applied.

3.7.7. Bx scheme

The scheme is a simple blend of the LDA scheme (3.119) and the N scheme (3.111)
with blending coefficient defined as (3.99) and (3.65).
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3.7.8. Conservativity of the schemes on moving meshes

The ALE element residual φE and geometric source term φGS are defined using
quasilinear form (3.115). For the conservativity the argument of the contour integral
has to be continuously approximated in the domain,

φE + φGS =

∮

∂Et

(~fh − ~wuh) · d~n =

∫

Et

∇x · (~fh − ~wuh) d~x, (3.131)

i.e. the contour integral over the edge has to be equal for the elements on both sides
of the edges. We follow the approach of [DRS93, Mic00, MSD03] and section 3.1.
For smooth solutions one has

φE +φGS =

∫

Et

∇x · (~fh − ~wuh) d~x =

∫

Et

[∇x ·~fh − ~w ·∇xu
h −uh∇x · ~w] d~x. (3.132)

In the first term of the contour integral, we assume linear variation of Roe’s param-
eter vector z, denoted by single hat (̂·), in the second term linear variation of the

domain velocity ~wh and the solution uh, denoted by double hat (̂̂·).
We have

∫

Et

∇x ·~fh d~x = λ(z̄) · ∇̂uµ(E) (3.133)

∫

Et

~w · ∇xu
h d~x = ~̄w · ̂̂∇xuh µ(E). (3.134)

The element residual is then

φE = µ(E)λ(z̄) · ∇̂u − µ(E) ~̄w · ̂̂∇xuh

= µ(E)[(λ(z̄) − ~̄w) · ∇̂u] − µ(E)[ ~̄w · (̂̂∇xuh − ∇̂xuh). (3.135)

Both terms are to be distributed with distribution coefficient (matrix) βi, implicitly
defined for some schemes. The first term is the ALE element residual and the second
term is a so called conservative correction [Mic00, MSD03]. Authors [Mic00, MSD03]
have found “minimal” importance of this term. However, in all the schemes for
computations on moving grid, this term has to be added to the nodal contribution.

Second, we focus on the geometric source term. With above stated assumptions
(linear variation of domain velocity ~w and solution uh over the element) we have

φGS =

∫

Et

uh∇x · ~w d~x = ūh · ̂̂∇x · ~w µ(Et). (3.136)

Let us recall under which assumption the terms are derived:
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• Linear variation of Roe’s [DRS93, Roe81] parameter vector: λ(z̄), ∇̂xuh

• Linear variation of the solution: ūh,
̂̂∇xuh

• Linear variation of the domain velocity: ~̄w

The discrepancy between the assumption of linear variation of Roe’s parameter
vector and the assumption of linear variation of the solution has to be corrected by
the conservative correction

µ(E) ~̄w · (̂̂∇xuh − ∇̂xuh), (3.137)

and distributed to nodes by the distribution coefficient βi.

3.8. Implicit time-stepping, dual time approach and

parallelization

The time stepping procedure for RD schemes for steady problems (3.19) can be
regarded as a general iteration procedure to solve the set of algebraic equations.
All the considered RD schemes for unsteady problems are formulated in dual time.
Hence, the solution procedure for the unsteady problems (3.26) can be also regarded
as an iteration procedure. Both types of schemes can be written as

Um+1 = Um − αR, (3.138)

where Um+1 and Um are algebraic vectors of solution variables for iterations m and
m + 1; R is the vector of right hand sides and α is a diagonal matrix of positive
relaxation coefficients (also regarded as time-steps). The task is to find a stationary
point of the system of equations

Um+1 = Um = U∗ (3.139)

as efficient as possible.
To be efficient, we use the highest possible time-step in each node, i.e. we always

use local time-stepping . The time step limit is given by the CFL condition [CFL28,
CFL67, LeV99] for explicit relaxation procedure. The problems considered are non-
linear and the time-step restriction usually denoted by CFL = 1 is relaxed to a
somewhat lower value, e.g. CFL = 0.9, depending on the problem. For the higher
time-steps, the implicit relaxation procedure has to be used. Since we would like
to march as fast as possible towards the stationary solution, we use Euler backward
method with linearization

Um+1 = Um − α

[
Rm +

∂R

∂U

∣∣∣∣
m

(
Um+1 − Um

)]
, (3.140)
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giving the system
(

α−1 +
∂R

∂U

∣∣∣∣
m

)
∆U = −Rm, ∆U = Um+1 − Um. (3.141)

For an efficient iteration procedure only an approximation of the Jacobian ∂R/∂U
is needed [Iss97]. We use a one-sided numerical approximation

∂r

∂u
≈ r(u + ε) − r(u)

ε
, (3.142)

because of its conveniency for the code development together with its reasonably
good efficiency [Iss97].

System (3.141) is a large set of linear equations with general sparse matrix. We
use GMRES method with ILU(0) preconditioning for the solution of the system.
In parallel computations, we use block Jacobi preconditioning, where each block is
located on one processor and ILU(0) preconditioner on each block.

For a discussion about implicit and explicit iteration procedures we refer to the
PhD thesis [Iss97] and work [Dob02, DRD03a].

3.8.1. Parallelization

CFD in general is known to be very computationally demanding. In order to in-
crease computational power available, one has to use some kind of parallel computer.
Nowadays, most readily available parallel computers are clusters of personal com-
puters running GNU/Linux operating system. This is what we have chosen as the
target architecture. The nature of this computer system is most suitable for the
domain decomposition approach: the problem domain is divided into distinct sub-
domains, each sub-domain is solved on a separate processor and data are exchanged
on interprocessor boundaries. As the communication software we use MPI [MPI06].
For the solution of linear system, we use PETSc library [PET07].

The mesh is decomposed into non-overlapping regions with the METIS [Met06]
software. The computation and the communication has to overlap for higher ef-
ficiency. Moreover, we setup communication such that one partition does not ex-
change data with more than one other partition at the same time. This is achieved
by the graph coloring and suitable numbering of the interprocessor boundaries.

The problem of parallelization for RD schemes and FV schemes is very similar, it
can be abstracted as an operation on graphs. For additional discussion see section
4.4.

3.9. Boundary conditions

In this section we will examine different treatments of the boundary conditions.
According to [Pai95], the boundary condition treatment can be differentiated in
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strong boundary condition, and weak boundary condition.
For the strong boundary condition, the residual in the node is changed such that,

in the next time level the solution obeys a prescribed value in the boundary node.
For the weak boundary condition the value for the nodal update is modified such
that the integral of the flux along the boundary line satisfies a prescribed value.

3.9.1. Scalar problem

We prescribe all the boundary conditions strongly, i.e. in equation (3.19) or (3.26)
a correction is added to the update formula

uh,n+1
i = uh,n

i − αi

(∑

E∈i

φE
i + φcorr

i

)
, (3.143)

with φcorr
i chosen such that uh,n+1

i = uBC.

3.9.2. Euler equations

3.9.2.1. Wall – Petrov-Galerkin formulation

For internal aerodynamic problems it can be very important that no mass or energy
escapes/enters the domain through the walls. We call this property conservativity
of the wall boundary condition. It corresponds to the fact, that the integral of the
mass and energy flux through the (rigid) wall has to be zero, i.e. in 2D

∫

wall

~f(u) · ~n dl = l · (0, p̄nx, p̄ny, 0)T . (3.144)

To the knowledge of the author, none of the boundary conditions routinely used
with RD schemes strictly respect this conservativity requirement. Among other
important properties are accuracy and (at least linear) stability of the boundary
conditions. We would also prefer boundary conditions with the same theoretical
formulation in 1, 2 and 3D.

One of the possibilities is to take the Petrov-Galerkin (PG) formulation of RD
schemes for the derivation of the boundary condition treatment. The PG formulation
[Pai95, DRS03, Dob02, DRD03a, DD05b] reads: find u =

∑
i uiψi such that

∫

Ω

ϕi

(
∂u

∂t
+ ∇ ·~f(u)

)
dΩ = 0, (3.145)

for every PG weight function

ϕi = ψi + αT
i ΠT , (3.146)
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where ψi is the linear Galerkin test function, αT
i = βi − 1/(d + 1) and ΠT is the

characteristic function of the element: Π(x)T = 1 if x ∈ T , 0 elsewhere. We can
split the integral and integrate by parts

∫

Ω

ϕi
∂u

∂t
dΩ =

∑

E∈T h

[ ∫

E

~∇ψi·~f(u) dΩ−
∫

E

αT ~∇·~f(u) dΩ−
∮

∂E

ψi
~f(u)· d~n

]
, (3.147)

where ~n is the external normal. For a linear flux, the first integral on the RHS gives
for element E

ki

d + 1

∑

j∈E

uj, (3.148)

the second integral is

−βi

∑

j∈E

kjuj +
1

d + 1

∑

j∈E

kjuj, (3.149)

while the third is a sum of fluxes through the boundary of the element. If the point
i is an internal point in the computational domain, all the contributions of (3.148)
and (3.149) sum to

−
∑

E∈Di

βi

(∑

j∈E

kjuj

)
, (3.150)

while the sum of the boundary integrals vanishes. However, if i is a boundary point,
contributions both from the volume and boundary integrals remain. Without loss
of generality, consider a 2D element with points on the wall i, l and point j inside
the domain. The contribution to the node i is

−φwall
i = − βi

∑

j∈T

kjuj

︸ ︷︷ ︸
φE

i

−kj

(
2

3
ui +

1

3
ul

)

︸ ︷︷ ︸
R

ψi
~fold· d~n

−
∫

wall

ψi
~f(u) · d~n, (3.151)

where ~n denote the external normal and terms which vanish after the element sum-
mation are omitted. In the last integral, the imposed flux ~f · ~n = (0, pnx, pny, 0)T ,
where linear variation of Roe parameters along the wall is prescribed. This treatment
of boundary conditions meets all the above stated requirements.

In scheme (3.151) the first term is the contribution from the inner scheme, the
second corresponds to the portion of an “old” flux and the last integral is the imposed
flux (3.144) distributed with Galerkin weights. Hence, the whole procedure is a
correction of the residual coming from the inner scheme using the boundary flux.
From the implementation point of view, to compute the “old” flux, one has to know
the solution on all the nodes of the element adjacent to the wall to determine kj from
the conservative linearization. An easier computer implementation is to compute
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the “old” flux using the known linear variation of Roe parameters as a line integral
along the wall.

Note the similarity of the PG treatment of boundary conditions with the procedure
of van der Weide [vdW98]. The non-conservativity of the treatment [vdW98] lies
in the mismatch between the flux integral seen by the inner scheme, i.e. linear
variation of Roe parameters, and the boundary integral – linear variation of the
solution. Another difference is in the distribution weights – 1/4 and 3/4 vs. 1/3
and 2/3.

For unsteady problems, namely problems involving moving meshes, a consistent
space-time treatment of the moving wall boundary conditions is needed. As will be
shown later in this section, a simple treatment using boundary conditions developed
for spatial schemes introduces an error into the solution. In particular, it is clear
that the flux trough the boundary of the element has the form

(~f(u) − u~w) · ~n. (3.152)

For a solid wall the velocity in the direction perpendicular to the boundary has to
be clearly equal to the velocity of the wall ~w · ~n. E.g. for a 1D problem it is

f(u)wall = (ρv, ρv2 + p, v(E + p)) − w(ρ, ρv, E) = (0, p, vp). (3.153)

We proceed as above. We compute a boundary corrective flux in the intermediate
state, i.e. in the middle between nodes at level n and n+1 as the arithmetic average.
Then we distribute the boundary correction to the nodes of the face. Finally, the
conservative correction flux is added.

This method can be easily extended for the 3BDF time integrator. In this case,
the solution is taken from n + 1 time layer and the mesh velocity is computed by
the procedure described later in section 4.3.2.

3.9.2.2. Wall – Weak boundary condition of Paillere

In this formulation, the boundary conditions are implemented using ghost nodes,
see [Pai95]. Consider the situation depicted in Fig. 3.8. Ghost nodes 1∗ and 3∗ are
created, triangles i, 1, 2 and i, 4, 3 become interior and they are treated as inside of
the domain. Variables from node 1 and 3 are mirrored into their counterparts 1∗

and 3∗. Then the scheme in the limit of diminishing distance between boundary
nodes and their star counterparts is taken. The residual of triangle E1∗,i,2 is

φE1∗,i,2

= µ(E)∇~fh = µ(E)
∂~fh

∂uh
∇ · ~uh =

∑

j∈E

k̄jūj (3.154)

Since ~ni = −~n1∗ and ~n2 = ~0, recalling definition of the upwind matrix (3.14), we
have

k̄1∗ = −k̄i, k̄2 = 0. (3.155)
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Figure 3.8.: Situation in the vicinity of the wall – Paillere’s boundary condition

Therefore, the ghost element residual can be expressed as

φ1∗,i,2 = k̄iūi + k̄1∗ū1∗ (3.156)

Element residual is then distributed with the same distribution scheme as for the
inner elements to the node i, the distribution matrix βi is determined by the scheme

φi = βiφ
1∗,i,2. (3.157)

Since the RD scheme for the boundary correction is the same as for the interior
domain, this formulation also includes the case with moving meshes.

3.9.2.3. Wall – 2D characteristic strong boundary conditions

In this section 2D characteristic strong boundary conditions are considered. They
are included here only for completeness, because they are difficult to extend to three
dimensions. For more details about this formulation of the boundary condition, see
[Dob02, DRD03a].

Consider the state on the wall in the coordinate system perpendicular to the
wall, oriented such that the normal is a unit inner normal (nx, ny). We project the
residual on the eigenvectors of the flux Jacobian in the direction normal to the wall.
In this case the only characteristic entering corresponds to the eigenvalue (where a
is sound-speed and unx + vny the normal velocity)

λ3 = a + unx + vny (3.158)

The corresponding right eigenvector is

r3 =

[
ρ

a
, ρ

(u

a
+ nx

)
, ρ

(v

a
+ ny

)
, ρ

(
u2 + v2

2a
+ unx + vny +

a

γ − 1

)]
(3.159)
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Consider the update scheme (at the point i, index is dropped)

un+1 = un+1 − αR = un+1 − α(RI + RBC) (3.160)

The RI residual is computed by the scheme from the interior of the domain and RBC

is corrective residual. The corrective residual can be expressed as the component
corresponding to the ingoing characteristic

RBC = βr3, (3.161)

where β is the unknown amplitude. The solution at level n + 1 must satisfy

~u · ~n = ~w · ~n. (3.162)

Therefore with u = (ρ, ρu, ρv, E)T ,

(
un+1

2

un+1
1

)
nx +

(
un+1

3

un+1
1

)
ny = ~w · ~n (3.163)

un+1
2 nx + un+1

3 ny = un+1
1 ~w · ~n (3.164)

[un
2 − α(RI

2 + RBC
2 )]nx + [un

3 − α(RI
3 + RBC

3 )]ny = [un
1 − α(RI

1 + RBC
1 )]~w · ~n

(3.165)

[un
2 − α(RI

2 + βr3
2)]nx + [un

3 − α(RI
3 + βr3

3)]ny = [un
1 − α(RI

1 + βr3
1)]~w · ~n, (3.166)

from which, we can easily compute the strength β

[un
2 − αRI

2]nx + [un
3 − αRI

3]ny − [un
1 − αRI

1]~w · ~n = αβr3
2nx + αβr3

3ny − αβr3
1 ~w · ~n
(3.167)

β =
[un

2 − αRI
2]nx + [un

3 − αRI
3]ny − [un

1 − αRI
1]~w · ~n

αr3
2nx + αr3

3ny − αr3
1 ~w · ~n . (3.168)

3.9.2.4. Wall – Numerical results in 1D

A comparison of the numerical results obtained with different boundary formulations
is plotted in Fig. 3.9. The test case is described in section 5.6.1, but here we solve
the problem in one spatial dimension. The dependence of the Mach number on the
coordinate is shown. The characteristic and van der Weide’s [vdW98] formulation
are simple extensions of their steady counterparts, where the approximation of the
mesh velocity in node i is given by ~wi = (~xn+1

i − ~xn
i )/∆t and the solution it taken

from the n+1 time layer. It corresponds to Euler backward time integration method.
The Petrov-Galerkin formulation uses the Crank-Nicholson time integration method,
while Paillere’s [Pai95] formulation uses the same RD scheme as for the interior
elements. In Fig. 3.9 left, the computation using the one layer N-modified scheme
described in section 3.6.4 is shown. If the boundary condition does not use the same
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Figure 3.9.: 1D piston problem: Mach number in the vicinity of the piston at t = 4.
Influence of the different formulation of boundary conditions. Left: One
layer N-modifies scheme. Right: LDA scheme with mass matrix and
3BDF time integration.

time integration method as the interior scheme, i.e. Crank-Nicholson, a systematic
error is introduced. In Fig. 3.9 right, results given by LDA scheme from section
3.6.2 with mass matrix and 3BDF time integration are shown. Also in this case,
if the time integration method for boundary conditions and inner scheme does not
match, the numerical results do not agree with the theoretical solution.

The formulation of boundary conditions has to be still improved. We have shown
the importance of the choice of the discretization of the mesh velocity and the flux
evaluation.

3.9.2.5. Free stream

For the free stream boundary conditions nodal values of

ui∞ = (ρ, ρ~v, E)i∞ (3.169)

are prescribed. The boundary correction is computed as

RBC = k+
ii∞

(u − ui∞), (3.170)

with the usual definition. The k matrix is evaluated in the direction of the normal
to the boundary. For more details about the free stream boundary conditions see
[Dob02, DRD03a].
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Finite volume scheme

Idea behind the finite volume schemes, i.e. approximating integral of the divergence
terms as a contour integral, has contributed to the development of many numer-
ical methods, see e.g. [SdBH04]. This part of the work is devoted to the finite
volume methods as defined in [Krö97], i.e. discretization based on eq. (4.8). This
discretization will be referred as the finite volume method.

4.1. Introduction

In this section finite volume methods will be considered, which are widely used as
the current state of the art approach [Bar94, Bar03, BO04] for the given problem.
Among the main advantages we can mention:

Accuracy: Second order of accuracy is routinely observed for the method with a
piecewise linear reconstruction of unknowns.

Shock capturing properties: The use of limiters [Bar94] or the WLSQR [FK02b,
Für04, Für06, FK02a] method gives a non-oscillatory solution even in presence
of strong shock waves and discontinuities.

Conservativity: The method can converge to the proper weak solution of the con-
servation law (the shock waves are located in the correct position).

Unstructured mesh: The use of an unstructured mesh greatly simplifies treatment
of complex geometries.

Efficiency and parallel implementation: The method is quite efficient in terms of
spent CPU time and proper implementation gives high parallel speed-up.

For survey of current research on finite volume methods we refer to [Bar94, Bar03,
BO04, Bla01, LeV02, Krö97].
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Figure 4.1.: Finite volume scheme. Computational mesh, the cross denotes location
of variables. Left: vertex centered (VC) scheme with dual finite volume.
Center: cell centered (CC) scheme. Right: Detail of mesh element for
3D vertex centered FV scheme. Part of the finite volume inside the
element ABCD surrounding the node A. The nodes EFG are at the
mid-sides of the edges, nodes HIJ at the centroids of the faces and node
K at the centroid of the element.

4.2. Finite volume scheme

The domain of solution Ω is covered by a mesh consisting of elements. We consider
two classes of FV schemes: cell centered (CC) and vertex centered (VC), see [BO04,
Krö97]. For the CC method the (finite) volumes used to satisfy the integral form
of the equation are the mesh elements itself, while for the VC method the finite
volumes are cells of the dual mesh. Dual cells are constructed in two dimensions
by connecting the centroids of the mesh elements with the centers of the edges. A
similar construction applies in 3D. Note that the location of the variables does not
necessarily coincide with the mesh vertices, as discussed later, see Fig. 4.1.

We will consider a linear variation of the approximation of the solution uh over
each finite volume Ei, continuity of the numerical solution on the boundary of the
volume is not required. The system of conservation laws (2.1) is to be satisfied for
every finite volume in the integral sense

∫

Ei

(
∂uh

∂t
+ ~∇ ·~fh

)
d~x = 0, (4.1)

where~fh is an approximation of the flux tensor. The application of Gauss-Ostrogradski
theorem to the convective terms results in

∫

Ei

∂uh

∂t
d~x +

∮

∂Ei

~fh · d~n = 0. (4.2)

Let us focus on the treatment of the first term. The solution varies linearly inside
the finite volume at a given time instant, i.e. uh,E = ui + (~x − ~xi) · ~∇ui. The
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coordinate ~xi is the position, where u(x) = ui. The first integral is

It =

∫

Ei

∂uh

∂t
d~x =

∫

Ei

(
∂ui

∂t
+

∂(~x − ~xi) · ~∇ui

∂t

)
d~x

=

∫

Ei

(
∂ui

∂t
+ (~x − ~xi) ·

∂~∇ui

∂t

)
d~x. (4.3)

Both ui and ~∇ui do not depend on ~x inside the element, the latter due to the
linearity of uh,E. Hence

It =
∂ui

∂t

∫

Ei

d~x +
∂~∇ui

∂t
·
∫

Ei

(~x − ~xi) d~x

= µ(Ei)
∂ui

∂t
+

∂~∇ui

∂t
·
∫

Ei

(~x − ~xi) d~x = µ(Ei)
∂ui

∂t
+

∂~∇ui

∂t
· ~Si, (4.4)

where ~Si is a vector of static moments of the finite volume with respect to ~xi and
µ(Ei) is the measure of the element Ei, i.e. surface or volume of the element. The
gradient of the solution inside the finite volume can be expressed as

~∇ui =
∑

∀j

~cij(ui − uj). (4.5)

The summation is performed for all j within the stencil of a linear reconstruction.
The integral is then

It = µ(Ei)
∂ui

∂t
+ ~Si ·

∂(ui

∑
∀j cij)

∂t
− ~Si ·

∑

∀j

∂ujcij

∂t
. (4.6)

If the reconstruction coefficients cij do not depend on the solution, e.g. for the linear
scheme, the mass matrix can be introduced

It =

(
µ(Ei) + ~Si ·

∑

∀j

cij

)
∂ui

∂t
− ~Si ·

∑

∀j

cij
∂uj

∂t
=

∑

∀j

mij
∂uj

∂t
. (4.7)

However, if the reconstruction coefficients depend on the solution, as is the case for
schemes with nonlinear weights in the reconstruction or limiters, the mass matrix is
not constant in time and the time dependence has to be considered.

For steady problems the existence of the mass matrix is not important [Bar94]
and the mass matrix can be replaced by the diagonal matrix with µ(Ei) terms on
diagonal. However, for unsteady problems, the full mass matrix has to be taken
into account. The matrix is global and connects all the elements involved in the
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reconstruction stencil. The existence of a non-diagonal mass matrix renders the
method implicit even if explicit time stepping is used. The mass matrix for vertex
centered finite volume method is discussed e.g. in [VM95, Ven95b, VM96, Bar94,
Bla01]. In [VM96] the authors propose a treatment of the mass matrix for the
unsteady problems with a Runge-Kutta method.

We will adopt a different approach. It is well known, that the static moment
with respect to the gravity center is zero. Hence, in eq. (4.4) if ~xi are centroids of

the finite volumes, all the static moments ~Si are zero. The mass matrix becomes
diagonal with the measure of the volume µ(Ei) on the diagonal. For cell centered
FV ~xi are the centroids of the mesh elements, for vertex centered FV ~xi are the
centroids of the dual volumes, which generally do not coincide with the position of
the mesh nodes (see Fig. 4.1).

The contour integral in eq. (4.2) involves the flux on the boundary of the finite
volume. The integral is approximated using the numerical flux evaluated in Gauss
points. For the second order approximation, one Gauss point in the centroid of each
face of the finite volume is needed.

µ(Ei)
∂ui

∂t
+

∑

∀j

F(uL,j,uR,j, ~nj) = 0, (4.8)

where the index j goes over the faces of the finite volume Ei and ~nj is the normal
of the face scaled by the the measure (surface) of the face j. The uL,j and uR,j are
values of the approximation of the solution at the Gauss point from the left and
right side of the face of the finite volume. A modification of Roe’s approximated
Riemann solver [Roe81] is used to compute the numerical flux F(uL,j,uR,j , ~nj). For
this we refer to the references, since it is a very standard approach given in many
textbooks, e.g. [Roe81, Tor97, LeV02, GR96].

4.2.1. Linear reconstruction and monotonicity enforcement

The gradient of the numerical solution ∇ui in each finite volume is estimated using
the weighted least square method [Bar94, Bar03]. In 3D it has the form



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 (4.9)
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either with linear weight

wik =
1

|~xi − ~xk|2
, (4.10)

or nonlinear weight (WLSQR or WENO method) [FK02b, Für04, Für06, FK02a]

wik =
1

‖ui − uk‖2 + |~xi − ~xk|2
. (4.11)

Unfortunately, the system of algebraic equations (4.9) is not necessary well posed,
and a suitable method of solution has to be chosen [Bar94, Lep04]. We simply
discard the solution and set the gradient to zero for the matrix with (almost) zero
determinant, otherwise we use Cramer’s rule.

In the case of weight (4.10), the monotonicity of the solution has to be enforced
using so called limiters. We use Barth’s limiter [BJ89]. The value of the limiter is
the largest Φ0 for which the following holds

Φ0 =





min(1, Umax−ui

UL−ui
) if UL − ui > 0,

min(1, Umin−ui

UL−ui
) if UL − ui < 0,

1 if UL − ui = 0,

(4.12)

where Umax and Umax are maximal and minimal values at centroids of the finite
volumes neighboring the element Ei and UL is the reconstructed value from the
volume Ei to the Gauss points (before application of the limiter). The gradient
given by the least square method is then multiplied by the value of the limiter.
For the system of equations, we apply the least square procedure component by
component and use the minimal value of the limiter for all the components of the
vector of conserved variables.

The schemes using Barth’s limiter have considerable convergence problems [Ven95a,
Bar03]. However, one can apply a simple convergence fix [Del96]. After a certain
number of iterations n0, when the solution is fully developed, we don’t increase
anymore the value of the limiter in the subsequent iterations

Φn = min(Φn, Φn−1), for all n ≥ n0. (4.13)

The same fix is applied during the dual time iteration procedure.

4.2.2. Time integration procedure

The numerical scheme after the semi-discretization can be written as

∂ui

∂t
= −r, (4.14)
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where r is the approximation of the convective terms. This is a set of ordinary
differential equations. We use different strategies to solve the problem. For steady
problems we use either Euler explicit forward

un+1
i − un

i

∆t
= −r(Un), (4.15)

or implicit backward (with linearization), see equation (3.140), and always local
time-stepping. For unsteady problems we use either a two or three step Runge-
Kutta method [GS98, GST01, Shu99]. The optimal (in the sense of the largest
allowed time step) second order TVD Runge-Kutta method is given by

u(1) = un + ∆t r(Un) (4.16)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆t r(U (1)) (4.17)

with the stability limit CFL = 1. The optimal third order TVD Runge-Kutta
method is given by

u(1) = un + ∆t r(Un) (4.18)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆t r(U (1)) (4.19)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆t r(U (2)) (4.20)

with the same stability limit. For the simulations with larger time step we use the
three point backward method (3BDF)

1

tn+1 − tn

∑

i∈E

(
αn+1un+1

i + αnun
i + αn−1un−1

i

)
= −r(Un+1), (4.21)

with coefficients (3.80). For the comparison with the RD schemes with the Crank-
Nicholson integration schemes the same scheme was also implemented for the FV
method

un+1
i − un

i

∆t
= −1

2

(
r(Un) + r(Un+1)

)
. (4.22)

Both the 3BDF and CN schemes are solved in dual time in the same manner as for
the RD schemes, see section 3.8.

4.2.3. Stability criterion

For explicit time-integration the time step restriction is governed by a CFL condi-
tion. In fact, it is very easy to derive in 1D for a scalar linear advection equation.
The following derivation will be based on positivity of the first order upwind scheme.

80



4.2. Finite volume scheme

Consider a scalar advection equation

∂u

∂t
+ ~λ(~x) · ∇u = 0. (4.23)

The finite volume scheme with constant reconstruction and with explicit Euler time
integration reads

µ(Ei)
un+1

i − un
i

∆t
+

m∑

k=1

Skf
h(un

i , un
ke

, ~nk) = 0, (4.24)

where k is the index of surrounding faces, Sk is the surface of face k and ke is the
index of elements at the other side of face k. The numerical flux in this case is

fh(ui, uke
, ~nk) =

{
ui

~λk · ~nk if ~λk · ~nk > 0

uke
~λk · ~nk if ~λk · ~nk < 0.

(4.25)

This flux can be written as

fh(ui, uke
, ~nk) =

1

2
(ui + uke

)~λk · ~nk +
1

2
(ui − uke

)|~λk · ~nk| (4.26)

Plugging this numerical flux into equation (4.24) one get

µ(Ei)
un+1

i − un
i

∆t
+

m∑

k=1

(
Sk

1

2
(un

i + un
ke

)~λk · ~nk +
1

2
(un

i − un
ke

)|~λk · ~nk|
)

= 0 (4.27)

Gathering terms containing ui and joining summations we obtain

un+1
i =

[
1 − ∆t

µ(Ei)

m∑

k=1

Sk(~λk · ~nk)
+

]
un

i −
m∑

k=1

[
∆tSk

µ(Ei)
(~λk · ~nk)

−un
ke

]
. (4.28)

The terms in the second bracket are all positive. The first term on the RHS is
positive

1 − ∆t

µ(Ei)

m∑

k=1

Sk(~λk · ~nk)
+ ≥ 0 (4.29)

under the time-step restriction

∆t ≤ µ(Ei)∑m
k=1 Sk(~λk · ~nk)+

. (4.30)

The TVD Runge-Kutta schemes used in this work have the same stability limit
as the Euler forward scheme [Shu99, GS98, GST01]. The Crank-Nicholson scheme
is positive for CFL ≤ 2. The stability condition for higher order schemes with linear
reconstruction is more restrictive [Bar03], see Tab. 4.1.
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Element shape dimension CFL number

Segment 1 1/2
Triangle 2 1/3

Parallelogram 2 1/2
Tetrahedron 3 1/4

Table 4.1.: Stability restriction for Euler forward time integration with linear recon-
struction for different element shapes [Bar03].

4.3. Extension of the scheme for computations on

moving meshes

We start from the combination of the equations (2.22) and (2.25),
∫

Ω0

∂JAt
u

∂t

∣∣∣∣
~Y

d~Y +

∮

∂Ωt

[~f(u) − u~w] · d~n = 0. (4.31)

In agreement with the development described in section 3 and equation (4.8), the
semi-discrete equation is

∂µ(E)ui

∂t

∣∣∣∣
Y

+
∑

∀j

F(uL,j,uR,j, ~n
α
j , ~wα) = 0. (4.32)

The numerical flux is given by Roe’s Riemann solver [Roe81]

F(uL,uR, ~n, ~w) =
1

2

(
f̄(uL) + f̄(uR) − Ā(uR − uL)

)
. (4.33)

The extension for the ALE flux is rather simple, the eigenvalues of Jacobian Ā are
given by

λALE = λorig − ~w · ~n (4.34)

and the flux f̄ is replaced by its ALE counterpart (2.21).
A question is, which value of the approximation of the mesh velocity ~wα and the

geometry (normal and surface of the mesh face, ~nα
j ) shall be taken, the time-level

α = n, α = n + 1 or between? All schemes presented in this thesis are chosen
such that the approximation of the solution exactly obeys equation (2.29), i.e. the
geometric conservation law, see section 3.4.5, is exactly satisfied. Therefore, the
choice has to be made in accordance with the time integration scheme.

4.3.1. Crank-Nicholson time integration scheme

The simplest extension is such that the geometry is taken as the average between
time level n and n + 1 and the mesh velocity as the mean velocity between the two
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levels

~n
n+1/2
j =

1

2
(~nn

j + ~nn+1
j ) (4.35)

~wn+1/2 =
~xn+1 − ~xn

∆t
. (4.36)

4.3.2. Three points backward scheme – Scheme A

This scheme was introduced by [KF99] and after being proven as robust and accu-
rate, it is presented in many publications of the group of C. Farhat [FGG01, GGF02,
GGF03, GF03, FGB03, Far04]. The scheme is an extension of the three point back-
ward scheme. The mesh velocity is computed from time layers n − 1, n and n + 1,
where within each time slab [tn−1, tn], [tn, tn+1] two Gauss points are used. The
geometry is taken such that the scheme respects the geometric conservation law.

c+ =
1

2

(
1 +

1√
3

)
(4.37)

c− =
1

2

(
1 − 1√

3

)
(4.38)

c1 = c2 =
αn+1

2
(4.39)

c3 = c4 = −αn−1

2τ
(4.40)

~n1 = c−Sn+1 ~nn+1 + c+Sn ~nn (4.41)

~n2 = c+Sn+1 ~nn+1 + c−Sn ~nn (4.42)

~n3 = c−Sn−1 ~nn + c+Sn−1 ~nn−1 (4.43)

~n4 = c+Sn ~nn + c−Sn−1 ~nn−1 (4.44)

~nj = c12(~n1 + ~n2) + c34(~n3 + ~n4) (4.45)

S = ‖~nj‖ (4.46)

(4.47)

and

~w · ~nj = c1
(~xn+1 − ~xn) · n1

∆tn
+ c2

(~xn+1 − ~xn) · n2

∆tn
+

c3
(~xn − ~xn−1) · n3

∆tn−1
+ c4

(~xn − ~xn−1) · n4

∆tn−1
(4.48)

with α and τ given in (3.79), where S is the surface of the face. For two dimensions
only one Gauss point would be needed for the evaluation of the velocity, however
we use always this form of the scheme.
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Figure 4.2.: Parallel speed-up. Onera M6 wing. WLSQR (WENO) reconstruction.
Left: explicit scheme. Right: implicit scheme, CFL = 1000.

No. of processors Explicit Implicit
Speedup Efficiency Speedup Efficiency

1 1 100 % 1 100 %
2 2.1 105 % 1.9 96 %
4 4.2 105 % 3.8 96 %
8 8.0 100 % 7.2 91 %
12 11.6 96 % 10.7 89 %
21 19.4 92 %

Table 4.2.: Parallel performance for Onera M6 test case. FV CC scheme, WLSQR
reconstruction. For implicit method CFL = 1000.

4.4. Parallel implementation

The computational domain is split in (almost) equal size sub-domains. The problem
is then distributed to different processors in the computational cluster. The data
are interchanged with help of the MPI library. Attention must be paid to overlap
computations and data exchange.

To achieve a good parallel scalability of the linear solver, entries in the matrix
have to be suitably numbered. The numbering of the matrix entries can lower
the bandwidth and contribute to higher accuracy of the block ILU preconditioner.
Subsequently, the GMRES method converges faster.

The problem of the reduction of the matrix band is known to be NP complete.
Hence, only approximate algorithms are used. The conclusive solution is still an
open problem [Meu99, Bar94, Ski98]. We have tested the Cuthill-McKee [CM69]
algorithm (also in its reverse version [Geo71]) and the multilevel nested dissection al-
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Mesh ordering method efficiency

Cuthill-McKee [CM69] 91 %
Reverse Cuthill-McKee[Geo71] 90 %

Mesh generator (original numbering) 86 %
METIS [Met06, KK99] 67 %

Random 64 %

Table 4.3.: Impact of the mesh numbering on parallel performance of the implicit
solver, 12 processors. FV2 WENO scheme, CFL = 1000.

gorithm [KK99]. The latter is implemented in the METIS [Met06] software package.
For comparison, we have also numbered data randomly and as they were numbered
originally by the mesh generator.

The parallel efficiency is defined as

ξ =
t1CPU

n tnCPU

, (4.49)

where t1CPU is the CPU time for solving the problem for sequential computation and
tnCPU is the CPU time spend to solve the same problem in parallel on n processors.
The time is measured with the standard MPI_Wtime() routine.

The matrix fill patterns are plotted in Fig. 4.3. The Cuthill-McKee (CM) and
Reverse Cuthill-McKee (RCM) gives the same filling patten, while the RCM has
lower fill-in for the LU decomposition. The performance results are plotted in Tab.
4.3. One can observe relatively high dependence of the parallel scalability on the
mesh numbering. Using the RCM algorithm on a 12 processor cluster one gains a
speedup of 11 compared with 8 for the multilevel nested dissection algorithm. The
advantage of a proper choice of the mesh renumbering algorithms is clear.

To solve the sparse linear system, we use the PETSc library [PET07]. Unfortu-
nately, a node renumbering algorithm for distributed matrices is not implemented
there, at least in the current version 2.3.1.

4.5. Boundary conditions

The far field boundary conditions are implemented using the ghost cell approach.
The cell next to the boundary face is created and all the components of the vector
of unknowns are prescribed. A higher number of prescribed variables than can
be determined from the theory of characteristics does not pose problems, because
relevant values are selected by the Riemann solver.

For the wall boundary conditions the ALE flux (2.21) is prescribed on the wall
boundary, i.e. the velocity perpendicular to the wall is equal to the normal wall
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Figure 4.3.: Fill patterns of the matrix for Onera M6 wing 5 × 306843 DOF, 3 pro-
cessors. Top left: natural ordering, right: random reorder. Bottom
left: reverse Cuthill-McKee [Geo71], right: multilevel nested dissection
algorithm [KK99].
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velocity and the pressure, the density and the velocity parallel to the wall are ex-
trapolated from the adjacent cell.
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Chapter 5.

Comparison of some FV and RD
schemes

In the course of this thesis we shall develop and test various numerical schemes. The
different tests cases will be presented in this chapter. All the tests are relatively
simple to examine specific aspects of the numerical scheme.

In this section we shall investigate Finite Volumes (FV) schemes both in vertex
centered (VC) and cell centered (CC) settings in comparison with Residual Distri-
bution (RD) schemes. Some comparisons of CC FV, VC FV and RD were published
in [Cśı02, PPRN05, Abg01, WK98, SR95, Roe90, Pai95, vdW98, DD05b, DD05a,
CDP02, Woo01, MW04]. To perform such a comparison one has to overcome a
number of technical problems

• Cell and vertex centered methods employ different number degrees of freedom
for the same mesh.

• The methods can significantly differ in the computational complexity.

• The methods have to be available with similar level of development (i.e. both
state–of–the–art FV and RD codes).

• Formulation and implementation of the boundary conditions can significantly
affect the solution.

Up-to now, there is no wide agreement on the definite superiority of one type of
method.

In the first part of this chapter we will compare theoretically the finite volume
and residual distribution schemes using a 1D modified equation. We will illustrate
the properties derived from the modified equation on a simple numerical test case.
In the subsequent chapters we will systematically examine different aspect of the
numerical schemes on a carefully chosen set of test cases. The test cases are sorted
from easy to more complex: scalar linear equation, then scalar nonlinear equation
up-to the system of nonlinear equations; from steady to unsteady flow; from smooth
solution to discontinuous solution. We will start with simple, steady scalar linear
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equation with smooth data (section 5.3.1). We perform convergence studies for all
the schemes appearing in this thesis to check its accuracy and rate of convergence.
The study is performed in two and three spatial dimensions to examine differences.
Then, the schemes are tested on 2D inviscid Burgers equation to examine their
behavior in shocks, see section 5.3.2. Preservation of maximum properties (under
and over-shoots) is summarized in table 5.4. This completes scalar steady test cases.
Accuracy of the unsteady schemes is tested on a 2D circular advection problem in
section 5.3.3. Extensive study of the influence of the scheme and time discretization
is performed. The convergence rates are plotted in Tab. 5.5. The main topic of
the first part of the thesis is the extension of the residual distribution schemes for
computations on moving meshes. The accuracy of the schemes is examined in section
5.3.4. The second order of accuracy of the LDA scheme is confirmed, as well as the
higher accuracy in comparison with state of the art finite volume schemes. This
set of test cases examine the behavior of the schemes for scalar equations, both for
steady and unsteady problems and the behavior in shocks. Next, the schemes are
examined for the system of Euler equations. Considering steady problems, we first
focus on the accuracy of the scheme in smooth parts of the solution and near the
wall. Sub-critical flow past circular cylinder was selected, see section 5.4.1. This
allows to check also higher order linear schemes, which might fail to compute flows
with strong shocks. The section related to the steady solution of the Euler equations
is concluded by a well known and technically important test case, inviscid flow past
Onera M6 wing, see section 5.4.2. This test case nicely demonstrates the ability to
capture weak shock waves on a simple 3D geometry and examines the accuracy of
the scheme for flow with a stagnation line (on the leading edge of the wing). Finally,
a vortex convection test case gives an idea of the performance of the schemes for
smooth unsteady flow, for the system of Euler equations. To conclude, we test the
schemes on a set of test cases involving moving meshes. We have selected a test
case involving compression of gas inside a piston cylinder. We start again with a
smooth solution (see section 5.6.1) and then test the schemes on flow with shocks
(see section 5.6.2).

5.1. 1D modified equations

In this section we compare the finite volume scheme with linear reconstruction and
the LDA scheme of Ferrante and Deconinck [FD97], both equipped with the Crank-
Nicholson time integration procedure. We consider 1D unsteady scalar advection
equation

∂u

∂t
+ a

∂u

∂x
= 0, (5.1)

with a = 1.
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5.1.1. Finite volume scheme

The upwind finite volume scheme with Crank-Nicholson time integrator has the form

un+1
i − un

i

∆t
+

1

2

a

∆x

(
fi+1/2 − fi−1/2

)n
+

1

2

a

∆x

(
fi+1/2 − fi−1/2

)n+1
= 0. (5.2)

The numerical flux for the method with linear reconstruction is

fi+1/2 = aui+1/2,L, ui+1/2,L = ui +
∂uh

∂x

∣∣∣∣
i

∆x

2
(5.3)

with
∂uh

∂x

∣∣∣∣
i

≈ ui+1 − ui−1

2∆x
. (5.4)

The numerical flux is then

fi+1/2 = a

(
ui +

1

4
(ui+1 − ui−1)

)
. (5.5)

The whole scheme is

un+1
i − un

i

∆t
+

1

2

a

∆x

[
un

i − un
i−1 +

1

4
(un

i+1 − un
i − un

i−1 + un
i−2)

]

+
1

2

a

∆x

[
un+1

i − un+1
i−1 +

1

4
(un+1

i+1 − un+1
i − un+1

i−1 + un+1
i−2 )

]
= 0, (5.6)

which is Fromm’s space discretization combined with Crank-Nicholson time integra-
tion. We take the Taylor expansion up to the fourth order

u(t, x)

∣∣∣∣
xi,tn

= u(tn, xi) + (t − tn)ut + (x − xi)ux

+
1

2
(t − tn)2utt + (t − tn)(x − xi)utx +

1

2
(x − xi)

2uxx

+
1

6
(t − tn)3uttt +

1

2
(t − tn)2(x − xi)uttx +

1

2
(t − tn)(x − xi)

2utxx +
1

6
(x − xi)

3uxxx

+
1

24
(t − tn)4utttt +

1

6
(t − tn)3(x − xi)utttx +

1

4
(t − tn)2(x − xi)

2uttxx

+
1

6
(t − tn)(x − xi)

3utxxx +
1

24
(x − xi)

4uxxxx + O(∆t5, ∆x5) (5.7)

and plug it into the scheme. In the subsequent computation, the terms O(∆t5, ∆x5)
are dropped. After simplification we get

ut + aux +
1

2
∆t utt +

1

2
a∆t utx + 1/6 ∆t2 uttt +

1

4
a∆t2uttx −

1

12
a∆x2uxxx

+
1

24
∆t3utttt +

1

12
a∆t3utttx −

1

24
a∆x2∆t utxxx +

1

8
a∆x3uxxxx = 0. (5.8)
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Now, the higher order time derivatives have to be removed. We follow the procedure
of [WH74]. To remove utt term, we derive the equation (5.8) by t and subtract from
the equation (5.8) its ∆t/2 multiple. Note, that we don’t remove the higher order
derivatives using equation (5.1), but equation (5.8). The result is truncated to the
fourth order derivatives. The procedure is repeated, until all the higher order time
derivatives are removed. The modified equation is then

ut + aux =

(
1

12
a∆x2 − 1

12
∆t2a3

)
uxxx −

1

8
a∆x3uxxxx, (5.9)

which can be written as

ut + aux =
a∆x2

12

(
1 − CFL2

)
uxxx −

1

8
a∆x3uxxxx, (5.10)

where

CFL =
a∆t

∆x
(5.11)

is the CFL number.

5.1.2. LDA scheme of Ferrante and Deconinck

The 1D LDA scheme after summation of all the contributions (3.90) is

(
5

12∆t
− 1

2

a

∆x

)
un+1

i−1 +

(
2

3∆t
+

1

2

a

∆x

)
un+1

i − 1

12∆t
un+1

i+1

+

(
− 5

12∆t
− 1

2

a

∆x

)
un

i−1 +

(
− 2

3∆t
+

1

2

a

∆x

)
un

i +
1

12∆t
un

i+1 = 0. (5.12)

We take Taylor expansion (5.7) and insert it to the scheme. After simplification we
get

ut + aux +
1

2
∆t utt +

(
−1

2
∆x +

1

2
∆t a

)
utx −

1

2
∆x auxx

+
1

6
∆t2uttt +

(
−1

4
∆t ∆x +

1

4
∆t2a

)
uttx +

(
−1

4
∆x ∆t a +

1

6
∆x2

)
utxx

+
1

6
∆x2auxxx +

1

24
∆t3utttt +

(
− 1

12
∆t2∆x +

1

12
∆t3a

)
utttx

+

(
1

12
∆t ∆x2 − 1

8
∆t2∆x a

)
uttxx +

(
− 1

12
∆x3 +

1

12
∆x2∆t a

)
utxxx−

1

24
∆x3auxxxx = 0. (5.13)
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Again, we remove the high order time derivatives adding a linear combination of
the derivatives of this equation. After simplification and truncating the higher order
derivatives, we get

ut + aux = − 1

12
∆t2a3uxxx −

1

24
a∆x3uxxxx. (5.14)

This can be written similarly to (5.10)

ut + aux = a∆x2

(
− 1

12
CFL2

)
uxxx −

1

24
a∆x3uxxxx. (5.15)

5.1.3. Comparison and conclusions

The both schemes are clearly second order accurate, since the leading term in front
of the higher order derivatives is of order ∆x2. Both schemes contain only fourth
order dissipation (uxxxx), where the LDA scheme has three times lower dissipation
than the FV. The dissipation error is of order ∆x3.

The dispersion error for the LDA scheme is

a∆x2

(
− 1

12
CFL2

)
, (5.16)

while for the FV scheme is

a∆x2

(
1

12
− 1

12
CFL2

)
. (5.17)

The absolute value of the dispersion coefficient |CFL2/12| and |(1 − CFL2)/12| de-
pending on the CFL number is plotted in Fig. 5.1. For CFL <

√
1/2 ≈ 0.7 the LDA

scheme has lower dispersion error than FV scheme. For the CFL number CFL = 1
the FV scheme has zero third order dispersion. Since the coefficient in front of the
dissipation is ∆x3, the scheme become third order accurate.

The problem is solved on a domain of unit length for time t ∈ [0, 1]. Periodic
boundary conditions are considered. Hence, the initial condition consisting of a sine
pulse or top hat is equal to the solution at time t = 1. It is plotted by the full
line in Fig. 5.2. The numerical solution obtained by the above-described schemes
for a mesh consisting of 100 nodes and time-step corresponding to CFL = 0.8 and
CFL = 1.5, is plotted in Fig. 5.2. Looking at the FV solution for CFL = 0.8, the
dispersion coefficient is positive and the wiggles appear right to the discontinuity.
The dispersion coefficient for the LDA scheme is negative for arbitrary CFL number,
which corresponds to the presence of the wiggles left to the discontinuity. For the
CFL number CFL = 1.5 the dispersion coefficients of both the schemes are negative
and comparable magnitude (−0.187 for the LDA scheme and −0.104 for the FV
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Figure 5.1.: Absolute value of the dispersion coefficient depending on the CFL
number for FV scheme with linear reconstruction and no limiter and
LDA scheme with mass matrix [FD97]. Both schemes uses the Crank-
Nicholson time integration.

scheme), which clearly corresponds to the shift of the wiggles to the left of the
discontinuity. The higher absolute value for the LDA scheme places the peak of the
wiggle for the LDA scheme left to the peak for the FV scheme.

We can conclude, that both the schemes have dispersion error scaling as ∆x2

giving the second order of accuracy. For the LDA scheme, the dispersion coefficient is
negative and of the same order of magnitude for the higher CFL numbers, rendering
the group velocity lower than the advection velocity. For time-step CFL = 1 the FV
scheme has zero dispersion error and the scheme is third order accurate; for lower
CFL numbers the dispersion coefficient is positive. The dissipation error scales as
∆x3 and the dissipation term is fourth order derivative. The dissipation of the LDA
scheme is three times lower than for the FV scheme.

5.2. Meshes for common test cases

The numerical methods developed and evaluated in this thesis are intended for 3D
industrial-type simulations in complex configurations. The automatic and reliable
mesh generation is today biggest bottleneck for this kind of computations [Ath05].
It is still difficult to obtain uniform mesh quality and optimal mesh connectivity,
especially in the 3D case [Ath05, DDA00, Ric05]. The tests of the numerical schemes
should use similar meshes as those available for the industrial simulations. For this
reason, Weatherill [WH94] type of meshes are used. This kind of triangulation has
roughly the same size of elements, but the connectivity of the mesh is changing (see
Fig. 5.3). The meshes in two dimensions are generated by the mesh generation plug-
in of Tecplot [Tec06] or the software developed in the AMeGOS project [AMVD00].
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Figure 5.2.: 1D advection equation, a = 1, periodic boundary conditions, solution
at t = 1. FV scheme with linear reconstruction without limiter; LDA
scheme with mass matrix [FD97]. Both schemes uses Crank-Nicholson
time integration. Left: CFL = 0.8, Right: CFL = 1.5.

Meshes generated by the ICEM CFD software [ICE06] are used in three dimensions.
The latter package is considered today’s state of the art software for industrial mesh
generation.

For the scalar test in 2D we use a square domain, triangulated with Weatherill type
of triangulation, as in Fig. 5.3. One can see the nodes with different connectivity
in the figure. The reference size is one over the number of elements along the side,
in this case h = 1/7. To enable comparison of the methods with different number
of degrees of freedom, i.e. cell centered and vertex centered methods, we define
equivalent mesh spacing

hball = 2

√
Si

π
, (5.18)

where hball is the diameter of circle with surface Si, with

Si =
µ(Ω)

DOF
. (5.19)

Surface of the whole computational domain is denoted by µ(Ω) and DOF is the
number of degrees of freedom in the domain. Equation (5.18) is modified to

hball =
3

√
3

4

Si

π
, (5.20)

in three spatial dimensions.
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Figure 5.3.: A unit square domain triangulated with Weatherill type mesh used for
test problems, h = 1/7. One can observe nodes of different degree.
Nodes of degree 4, 5, 6, 7 and 8 are emphasized. (See [Ric05].)

5.3. Scalar problems

This set of tests is chosen to examine different aspects of the numerical schemes,
namely accuracy in smooth parts of the solution (estimated by the convergence
studies) and the behavior in the shock. First, we test steady schemes, then unsteady
schemes and finally the schemes for computations on moving meshes.

5.3.1. 2D and 3D steady circular advection

As the first test we will show performance of the schemes on the 2D steady circular
advection problem introduced in section 2.3.1.2, page 25, with four periods of a
sinus function on the y = 0 boundary. We shall study the cell-centered (CC) finite
volume schemes with constant and linear reconstruction with or without limiter,
vertex centered (VC) schemes with the same reconstructions and the RD N, LDA
and N-modified schemes. Part of this section was published in [DDF06].

The domain of solution is the unit square and we solve the equation (2.1) with
flux given by (2.30). For y = 0 Dirichlet boundary condition are prescribed

u(x) = sin2(4πx), (5.21)

and for x = 1 condition u(y) = 0. For the other two boundaries no boundary
condition is used, as it is given by theory of characteristics [GR96, LeV99, LeV02,
Fei93, FFS03]. As the initial condition, we prescribe u0(x, y) = 0.
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Figure 5.4.: Approximation of the exact solution of the 2D circular advection prob-
lem on grid h = 1/40.

The analytical solution is the function prescribed as the Dirichlet boundary con-
dition rotated around coordinate origin, i.e.

u(x, y) = sin2(4π min(1, r)), r =
√

x2 + y2 (5.22)

The exact solution approximated by the piecewise linear function is depicted in Fig.
5.4.

Once the analytical solution is known, we can perform convergence studies for all
the schemes. The Lp norm of error is computed as

‖err‖Lp = p

√∫

Ω

|u − uh|p d~x ≈ p

√ ∑

E∈T h

µ(E)|u(~xi) − ui|p. (5.23)

for the CC FV scheme and

‖err‖Lp ≈ p

√ ∑

i∈T h

µ(Si)|u(~xi) − ui|p. (5.24)

for the VC FV and RD schemes.
As the first result, we plot the solution and the error along the outlet of the domain

(for the boundary x = 0), for the equivalent mesh with spacing hball = 1/95 (Fig.
5.5, 5.7, 5.9), i.e. h = 1/55 for the cell centered finite volume and h = 1/77 for vertex
centered finite volume and residual distribution schemes. The N scheme is clearly
more accurate than both finite volume schemes with constant reconstruction, see
Fig. 5.5, 5.6, and the cell centered scheme is more accurate than the vertex centered
scheme. The order of accuracy lower than first for the FV schemes, see Tab. 5.1, is
expected, as it is shown in [KRW96, Krö97]. In the case of finite volume schemes with
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linear reconstruction, the accuracy is similar in terms of the L1 and L2 norm, see Fig.
5.8. The error in the maximal norm is higher for the cell centered FV scheme than
the vertex centered schemes. The LDA scheme is clearly the most accurate in all the
norms. The order of accuracy estimated from the L1 and L2 norms is almost two
for all the schemes. The LDA scheme shows almost second order accurate behavior
even in the L∞ norm, see Tab. 5.1, while the rate of decrease of the maximal error
is closer to one for the finite volume schemes. The situation is quite different for the
nonlinear schemes, see Fig. 5.9, 5.10. The vertex centered scheme is more accurate
than the cell centered FV, it gives second order of accuracy in L1 and L2 norms.
This could be explained by the better behavior of the limiter on dual volume than
on the triangular element. The N-modified scheme is the least accurate. However,
the order of accuracy estimated from the L1 and L2 norms for cell centered FV and
N-modified scheme is similar. The convergence studies were performed also for the
B scheme. The error is very close to the error of the N-modified scheme, we don’t
plot convergence study here.
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Scheme L1 order L2 order L∞ order

CC FV Const. 0.76 0.72 0.60
VC FV Const. 0.58 0.54 0.40
N 0.75 0.71 0.59

CC FV Linear 2.04 1.92 0.90
VC FV Linear 1.99 1.95 1.39
LDA 2.16 2.11 1.79

CC FV Barth 1.64 1.60 0.96
VC FV Barth 2.00 1.95 1.47
N-mod 1.66 1.54 1.21

Table 5.1.: Comparison of orders of accuracy for 2D steady circular advection prob-
lem

Scheme L1 order L2 order L∞ order

CC FV Const. 0.87 0.80 0.72
VC FV Const. 0.65 0.57 0.44
N 0.75 0.67 0.56

CC FV Linear 2.21 2.10 1.05
VC FV Linear 1.51 1.38 1.20
LDA 2.45 2.30 1.90

CC FV Barth 2.33 2.29 1.14
VC FV Barth 1.52 1.37 1.21
N-mod 1.74 1.64 1.37

Table 5.2.: Comparison of orders of accuracy for 3D steady circular advection prob-
lem
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Figure 5.5.: 2D steady circular advection problem. The solution along boundary
x = 0 and the error for N scheme and the schemes with constant recon-
struction.
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Figure 5.6.: 2D steady circular advection problem. Schemes with constant recon-
struction and the N scheme. Norm of error vs. mesh spacing.
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Figure 5.7.: 2D steady circular advection problem. The solution along boundary
x = 0 and the error of FV schemes with the linear reconstruction and
LDA RD scheme.
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Figure 5.8.: 2D steady circular advection problem. Schemes with linear reconstruc-
tion without limiter and LDA scheme. Norm of error vs. mesh spacing.
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Figure 5.9.: 2D steady circular advection problem. The solution along boundary
x = 0 and the error of FV schemes with Barth’s limiter and N-modified
RD scheme.
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Figure 5.10.: 2D steady circular advection problem. Finite volume schemes with
limiter and N-modified scheme. Norm of error vs. mesh spacing.
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For the second test, we solve scalar equation

ut + (−y, x, 0) · ~∇u = 0 (5.25)

on a domain Ω = [−1, 1] × [0, 1] × [0, 1], with the initial conditions u0 = 0 and
boundary conditions

u =

{
cos2[π min(0.5, 1.4 ‖~x − (0.5, 0, 0.5)‖)] on x > 0, y = 0,
0 on the rest of inflow boundary.

(5.26)
The similar problem was solved in [Lep04]. The difference between 2D and 3D case
lies in the fact, that there is roughly 6 times more elements than nodes for 3D, while
only twice more elements in 2D and bigger variations in the mesh connectivity. A
sequence of meshes was generated, with the mesh parameters given in Tab. 5.3.

The solution using the FV schemes with constant reconstruction and the N scheme
is plotted in Fig. 5.12. The situation is different than for the 2D case: the cell
centered finite volume is slightly more accurate than the N scheme. As in the 2D
case, the vertex centered finite volume is the least accurate scheme. The finite
volume schemes with linear reconstruction exhibits similar behavior, see Fig. 5.13.
The cell centered scheme is more accurate than the vertex centered. The LDA
scheme is clearly most accurate considered scheme. The convergence order of the
LDA scheme estimated from the L1 and L2 norm of error substantially exceeds
second order accuracy, while in the L∞ norm is almost second order accurate, see
Tab. 5.2, pg. 99. The cell centered finite volume scheme exhibits second order
accuracyin the L1 and L2 norm, while the estimated order for the vertex centered
scheme is somewhat lower. Finally, the N-modified scheme is more accurate than
the vertex centered finite volume, while the cell centered finite volume gives the
most accurate results, see Fig. 5.14. Estimation of convergence order is reported in
Tab. 5.2.

The conclusions from the 2D and 3D circular advection test case: the LDA is
the most accurate among all the considered schemes. The advantage of the other
RD schemes is not so well pronounced – N scheme performs similarly to the cell
centered scheme in the 3D case and the N-modified scheme is the least accurate
among the nonlinear schemes in the 2D case. In 3D case the vertex centered finite
volume scheme is the least accurate in all modifications.
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Id # nodes # elements cell centered hball vertex centered hball

m1000 5248 27781 0.0258 0.0449
m0820 9735 52004 0.0209 0.0366
m0670 16612 91962 0.0173 0.0306
m0544 29984 168565 0.0141 0.0251
m0444 55823 317535 0.0114 0.0204
m0369 96714 555022 0.0095 0.0170
m0303 175959 1010467 0.0077 0.0139

Table 5.3.: 3D rotation problem: mesh parameters.
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Figure 5.11.: Steady 3D circular advection problem. Sketch of the situation.
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Figure 5.12.: 3D steady circular advection problem. Schemes with constant recon-
struction and the N scheme. Norm of error vs. mesh spacing.
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Figure 5.13.: 3D steady circular advection problem. Schemes with linear reconstruc-
tion without limiter and LDA scheme. Norm of error vs. mesh spacing.
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Figure 5.14.: 3D steady circular advection problem. Finite volume schemes with
limiter and N-modified scheme. Norm of error vs. mesh spacing.

5.3.2. 2D Burgers equation

We solve the 2D inviscid Burgers equation

∂u

∂t
+

1

2

∂u2

∂x
+

∂u

∂y
= 0 (5.27)

on the square domain Ω = [0, 1.5]×[0, 1.5] with boundary conditions on the boundary
y = 0

u =





1.5 for x ≤ 0
−0.5 for x ≥ 1

1.5 − 2x elsewhere
(5.28)

and u = 1.5 for x = 0 and u = −0.5 for x = 1.5.
The problem was solved on a mesh with 2900 DOF (giving h = 1/39 for VC

FV and RD schemes and h = 1/28 for CC FV schemes). The solution isolines
and cut along lines y = 0.1 and y = 1 are plotted. The symbols on the lines
correspond to the cross-section of cuts with the mesh lines. All the FV schemes
with constant reconstruction and the N scheme give a strictly monotone solution.
Among the linear positive schemes, the N scheme clearly gives the most accurate
results, see Fig. 5.15, 5.16, 5.17. The resolution of the CC and VC schemes with
constant reconstruction is comparable, with CC results slightly more accurate than
the VC. The cell centered scheme with linear reconstruction without limiter gives
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Scheme Maximum Minimum Overshoot Undershoot

Exact 1.5 −0.5

CC FV Const. 1.5 −0.5
VC FV Const. 1.5 −0.5

N 1.5 −0.5

CC FV Linear 1.8611 −0.9657 0.3611 −0.4657
VC FV Linear 1.8240 −0.88325 0.3240 −0.3832

LDA 1.8813 −0.7385 0.3813 −0.2385

CC FV Barth 1.5 −0.5
VC FV Barth 1.50043 −0.50004 0.000439 −4.99 · 10−5

N-modif 1.5 −0.5

Table 5.4.: Maximal and minimal values in the domain for the 2D Burgers problem

less accurate results than the VC and LDA scheme, see Fig. 5.18, 5.19, 5.20. The
higher accuracy of the LDA scheme can be observed namely on the region of steep
gradient, where the shock forms. The solution is comparable in terms of overshoots
and undershoots. Finally, the nonlinear schemes, see Fig. 5.21, 5.22, 5.23: the N-
modified scheme gives solution similar to the VC FV scheme with Barth’s limiter.
The difference lies mainly in the wiggles in the fan region, for discussion see e.g.
[Abg06]. The CC scheme with Barth’s limiter gives the least accurate results. The
monotonicity of the results can be judged from Tab. 5.4 and the cut plots.
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Figure 5.15.: 2D Burgers equation. CC FV with constant reconstruction. Isolines
of the solution and the cut along y = 0.1 and y = 1 lines.
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Figure 5.16.: 2D Burgers equation. VC FV with constant reconstruction. Isolines
of the solution and the cut along y = 0.1 and y = 1 lines.
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Figure 5.17.: 2D Burgers equation. RD N scheme. Isolines of the solution and the
cut along y = 0.1 and y = 1 lines.
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Figure 5.18.: 2D Burgers equation. CC FV with linear reconstruction without lim-
iter. Isolines of the solution and the cut along y = 0.1 and y = 1
lines.
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Figure 5.19.: 2D Burgers equation. VC FV with linear reconstruction without lim-
iter. Isolines of the solution and the cut along y = 0.1 and y = 1
lines.
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Figure 5.20.: 2D Burgers equation. RD LDA scheme. Isolines of the solution and
the cut along y = 0.1 and y = 1 lines.

110



5.3. Scalar problems

x

y

0

0
00

1

1

11

5

5

55

.

.

..
u

y
=

0
.1

u
y
=

1

x

0

0

0

0

0

0

00

1

1

1

1

11

5

5

5

5

5

5

55

.

.

.

.

.

.

..

-
-

Figure 5.21.: 2D Burgers equation. CC FV with linear reconstruction and Barth’s
limiter. Isolines of the solution and the cut along y = 0.1 and y = 1
lines.
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Figure 5.22.: 2D Burgers equation. VC FV with linear reconstruction and Barth’s
limiter. Isolines of the solution and the cut along y = 0.1 and y = 1
lines.
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Figure 5.23.: 2D Burgers equation. RD N-modified scheme. Isolines of the solution
and the cut along y = 0.1 and y = 1 lines.

5.3.3. 2D unsteady circular advection

As the first test case involving time dependent simulation, the circular advection is
considered. The problem is solved in space-time domain Ω×I, Ω = [−1, 1]× [−1, 1],
I = [0, 2π]. As the initial condition the cosinus profile was prescribed

u0(~x) = 1 +
cos(4π min(d, 1/4))

2
, d = ‖~x − (−0.5, 0)‖. (5.29)

The problem was solved on a sequence of grids with spacing h = 1/20, h = 1/28,
h = 1/39, h = 1/55, h = 1/77, h = 1/108, h = 1/152, h = 1/214 and h = 1/302.
The time-step was chosen ∆t = 0.005h, giving the maximal CFL number in the
domain about one. We have performed the convergence studies, with the norm of
the error in space–time domain

‖err‖Lp(Ω×t) =
p

√∫ 2π

0

∫

Ω

[u(~x, t) − uh(~x, t)]p d~x dt

≈ p

√∑

n

∑

i

∆tnµ(Vi)[u(~xi, tn) − uh(~xi, tn)]p, (5.30)

where µ(Vi) is the measure of the volume associated with the point i, i.e. surface of
the triangle for cell centered FV and surface of the dual volume for vertex centered
FV and RD schemes. The L∞ norm is the maximal error in the whole space-time
domain.
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Figure 5.24.: 2D unsteady circular advection problem. CC FV scheme with linear
reconstruction without limiter; comparison of time-stepping schemes

First, we examine different time-stepping schemes, see Fig. 5.24. Both second and
third order Runge-Kutta (RK) methods gives similar accuracy, slightly higher for
the third order RK scheme. The implicit 3BDF time stepping scheme gives much
higher accuracy than both Runge-Kutta schemes. Comparison of the schemes with
linear reconstruction and the LDA scheme is plotted in Fig. 5.24. The LDA is again
the most accurate scheme. The VC is about the same accurate as the CC scheme;
different time integration procedure also has to be taken into the account. Finally
for nonlinear schemes, see Fig. 5.26, the VC is less accurate than the CC scheme,
the N-modified is the least accurate one. Similar conclusions can be drawn from
Tab. 5.5.
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Figure 5.25.: 2D unsteady circular advection problem. CC FV scheme with linear
reconstruction without limiter 3BDF time integration scheme; VC FV
scheme with linear reconstruction without limiter RK2 time integration
scheme; LDA with mass matrix and 3BDF time integration scheme.

Scheme L1 order L2 order L∞ order max~x∈Ω uh(~x, t = 2π)

CC FV2 nolim 3BDF 2.010 1.883 1.883 0.987
CC FV2 nolim RK2 1.865 1.775 1.850 0.987
CC FV2 nolim RK3 1.875 1.785 1.864 0.987
VC FV2 nolim RK2 1.701 1.604 1.609 0.977

LDA 3BDF 2.022 1.905 1.848 0.994

CC FV2 Barth 3BDF 1.871 1.850 1.498 0.965
VC FV2 Barth RK2 1.656 1.619 1.612 0.948

N-mod CN 1.354 1.304 1.150 0.885

Table 5.5.: Comparison of orders of accuracy for 2D unsteady circular advection
problem and maximal value of the solution on grid h = 2/150.
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Figure 5.26.: 2D unsteady circular advection problem. CC FV scheme with linear
reconstruction with Barth’s limiter 3BDF time integration scheme; VC
FV scheme with linear reconstruction with Barth’s limiter RK2 time
integration scheme; one layer N-modified scheme.

5.3.4. 2D unsteady circular advection on deforming meshes

This test examine accuracy of the numerical methods on deforming meshes. It
is probably the most important test case in this thesis, because proper extension
of unsteady schemes for moving mesh computations always raise accuracy concerns
[MY06, Far04]. The LDA scheme, see section 3.7.3, is compared with the FV scheme,
see section 4.3.2. The FV scheme uses linear reconstruction and no limiter. Both
schemes are equipped with the 3BDF time integrator.

The setup of the test-case is similar as for the previous test, see section 5.3.3.
We also use the same set of meshes as in the previous test case, while the mesh
coordinates depends on time with formula

~x(t) =
3 − cos t

2
~Y , (5.31)

where ~Y is the original mesh coordinate and ~x(t) is the current configuration mesh
coordinate. This setup gives us the original mesh size for the start t = 0 and for the
final time t = 2π and double size of the original mesh at time t = π.

The error was measured in the same manner as for the previous test case. Conver-
gence is plotted in Fig. 5.27 and the rate of convergence is computed from the least
square fit in Tab. 5.6. The higher accuracy of the LDA scheme in comparison with
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Scheme L1 order L2 order L∞ order

LDA 2.02 1.91 1.94
FV2 nolim 1.71 1.64 1.73

Table 5.6.: Comparison of orders of accuracy for 2D unsteady circular advection
problem on deforming mesh.
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Figure 5.27.: 2D unsteady circular advection problem of deforming mesh. LDA
scheme and FV scheme with linear reconstruction without limiter.
Norm of error vs. mesh spacing.

the FV scheme is clear, both from the lower error and from the higher convergence
rate.

5.3.5. Conclusions

The developed methods were tested on 2D and 3D linear, non-linear, steady and
unsteady scalar problems. From the linear schemes, the LDA is consistently the best
in the class. The CC and VC formulation of the FV scheme gives similar results,
the CC scheme gave more often better results than the VC one. The N-modified
scheme gives superior results for the Burgers equation with shock wave, while the
accuracy for smooth solution is lower, often lower than the finite volume scheme.
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5.4. Euler equations – steady problems

We examine behavior of the schemes for the case of Euler equations in this section.
Note that some results were already presented in section 3.5.5. We start again with
the smooth steady solution, the next case is a steady solution involving the shocks.
Then we test the schemes for unsteady problems. This section conclude with test
cases involving computations on moving meshes.

5.4.1. Sub-critical flow past a cylinder

The test case is introduced in section 3.5.5, page 41. Recall the free stream Mach
number M∞ = 0.38. Here we present some additional results. The computational
mesh is shown in Fig. 5.28. We have generated two meshes, the one used for the cell
centered finite volume has 676 nodes and 1269 triangular elements with 61 elements
along the wall boundary and the one used for the vertex centered finite volumes
and RD schemes has 1247 nodes and 2386 triangular elements with 79 element
along the wall boundary. This ensures that all the methods uses similar number of
degrees of freedom. The meshes are even coarser then in section 3.5.5, to amplify
the differences between the schemes. We do not compare only the schemes, but also
different formulations of boundary conditions, as they are given in section 3.9.2,
page 69.

The solution of the FV schemes with constant reconstruction and RD N scheme
are given in Fig. 5.29. In all cases, the solution is more-less symmetric with respect
to the horizontal axis. One can observe spurious wake-like structure behind the
cylinder, which is given by the high dissipativity and relatively low accuracy of the
schemes. All the formulations of the boundary conditions gave similar results.

The results for the LDA scheme and FV scheme with linear reconstruction without
the limiter are shown in Fig. 5.30. We don’t plot the results from the vertex centered
FV scheme without the limiter, since negative pressure has always been obtained
during the convergence and the method has failed. Surprisingly large differences
are caused by the formulation of the boundary conditions for the LDA scheme.
The Paillere’s formulation, see sec. 3.9.2.2, page 71, gave spurious separation, very
different from the other boundary conditions formulation. For the characteristic
formulation and Weide’s formulation the solution is roughly symmetric and looks
similar to the cell centered finite volume scheme, presented on the bottom left figure.
For the CC FV schemes gradient at the first cell next to the wall is often set to zero
to prevent obtaining negative pressure at the wall. Since this is a wide-spread
approach, we have it included to the numerical results to show, how significantly
it can change the solution. With uncorrected linear reconstruction in the element
next to the wall the solution looks symmetric with respect to the horizontal axis,
while if the gradient is set to zero the solution become non-symmetric, as it can be
observed in the right bottom Fig. 5.30.
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CC FV RDS and VC FV

Figure 5.28.: Sub-critical flow past a cylinder. Computational meshes. Left: CC
FV, right RD schemes and VC FV.

Results obtained with the nonlinear schemes with Barth’s limiter and N-modified
scheme are plotted in Fig. 5.31. The differences between the formulation of the
boundary conditions are striking. On the other hand, it can be surprising, that for
the VC finite volume scheme the formulation of the boundary conditions almost does
not affect the solution. Unlike for the LDA scheme, where the Weide’s and charac-
teristic formulation of the BC gave almost the same result, here the characteristic
formulation gave the best results and the Weide’s formulation is slightly worse. The
Paillere’s formulation is the worst again, moreover it gave the worst results in this
class of scheme. If we compare results between the schemes, the N-modified scheme
gave the most symmetric results. The VC FV scheme gives more pronounced the
spurious wake-like region and on the top and bottom of the cylinder the scheme
produced non-symmetricity in the flow with respect to the vertical axis. The CC
FV scheme gave the most wiggly results, while the accuracy seems to be similar to
the VC scheme.

Finally, we present the results obtained with the Bx scheme and the FV scheme
with WLSQR reconstruction, as defined in section 4.2.1, page 78. The results given
by the Bx scheme are substantially the same as for the LDA scheme, which point
to the high accuracy of the scheme. The results of the CC FV with WLSQR recon-
struction are very similar to the CC FV scheme without limiter and quantitatively
similar to the Bx scheme. The computations using the VC FV scheme with WLSQR
reconstruction has failed due to the negative pressure obtained during the iterative
procedure.

118



5.4. Euler equations – steady problems

N, char. BC. N, Pail. BC. N, Weide’s BC.

VC FV1, char. BC. VC FV1, Pail. BC. VC FV1, Weide’s BC.

CC FV1

Figure 5.29.: Sub-critical flow past a cylinder. FV schemes with constant recon-
struction and the N scheme.
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LDA, char. BC. LDA, Pail. BC. LDA, Weide’s BC.

CC FV2 nolim, ∇u|wall 6= 0 CC FV2 nolim, ∇u|wall = 0

Figure 5.30.: Sub-critical flow past a cylinder. Linear FV schemes with linear recon-
struction and LDA scheme.
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N-mod, char. BC N-mod, Pail. BC N-mod, Weide’s BC

VC FV Barth, char. BC VC FV Barth, Weide’s BC
VC FV Barth, Weide’s BC
frozen limiter

CC FV Barth, ∇u|wall 6= 0
CC FV Barth, ∇u|wall 6= 0
frozen limiter CC FV Barth, ∇u|wall = 0

Figure 5.31.: Sub-critical flow past a cylinder. Nonlinear FV schemes with linear
reconstruction and N-modified scheme.
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Bx, Pail. BC Bx, Weide’s BC

CC WLSQR, ∇u|wall 6= 0 CC WLSQR, ∇u|wall = 0

Figure 5.32.: Sub-critical flow past a cylinder. Nonlinear FV schemes with linear
reconstruction and Bx scheme scheme.
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5.4.2. 3D inviscid flow around the Onera M6 wing

This is a well known test case, measurements were published in [SC79]. We have
chosen data from Test 2308, i.e. with free stream Mach number Ma∞ = 0.8395
and angle of attack α = 3.06◦ . We use an unstructured mesh consisting of 57041
nodes and 306843 tetrahedral elements. It means that the CC FV scheme cannot be
directly compared to the VC FV and RD schemes, since CC FV uses about 6 times
more unknowns. Isolines of the Mach number are presented in Fig. 5.34, 5.35, 5.36.
The λ-shock pattern is clearly visible for the more accurate schemes. The N scheme
is about the same accurate as the VC FV scheme with constant reconstruction. One
can see a big improvement of the method with linear reconstruction compared to
the constant reconstruction. For the nonlinear schemes, the RD B scheme and CC
FV with Barth’s limiter perform similarly, still with RD schemes using 6 times less
unknowns. A similar situation occurs for the comparison of WENO schemes with
the Bx RD scheme. Differences between the schemes are even more clear in Fig.
5.37, 5.38 and 5.39. The figures show the distribution of the lift coefficient cp at cuts
in the 44 %, 90 % and 99 % of the span. In all cases, the RD schemes gives better
results than the VC FV schemes. Only the RD N scheme gives similar results as the
VC FV1 scheme. The solution with the Barth’s limiter and the B scheme features
monotonous shock capturing. The WLSQR (WENO) method and the Bx scheme
gives higher accuracy, while one can observe a small undershoot in the cp coefficient
at in Fig. 5.37, 5.38, bigger for the Bx scheme. Part of this section was published
in [DDF06].
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X

Y

Z

Figure 5.33.: Inviscid flow past Onera M6 wing. Computational mesh with domains
for parallel solution. The mesh has 57041 nodes and 306843 tetrahedral
elements.

CC FV, 6× DOF VC FV N

Figure 5.34.: Inviscid flow past Onera M6 wing. Isolines of Mach number. Left: CC
FV1 scheme. Middle: VC FV1 scheme. Right RD N scheme.
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CC FV, 6× DOF VC FV B

Figure 5.35.: Inviscid flow past Onera M6 wing. Isolines of Mach number. Left: CC
FV scheme with Barth’s limiter. Middle: VC FV scheme with Barth’s
limiter. Right RD B scheme.

CC FV, 6× DOF VC FV Bx

Figure 5.36.: Inviscid flow past Onera M6 wing. Isolines of Mach number. Left: CC
FV WENO scheme. Middle: VC FV WENO scheme. Right RD Bx
scheme.
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Figure 5.37.: Inviscid flow past Onera M6 wing. Cut at 44 % of span. Full line:
experiment, points: numerical solution. Left column: CC FV schemes.
Middle column: VC FV schemes. Right column RD schemes. Top row:
FV1 and N scheme. Middle row: FV scheme with linear reconstruction
and Barth’s limiter, B scheme. Bottom row: FV WENO scheme and
Bx scheme.
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Figure 5.38.: Inviscid flow past Onera M6 wing. Cut at 90 % of span. Full line:
experiment, points: numerical solution. Left column: CC FV schemes.
Middle column: VC FV schemes. Right column RD schemes. Top row:
FV1 and N scheme. Middle row: FV scheme with linear reconstruction
and Barth’s limiter, B scheme. Bottom row: FV WENO scheme and
Bx scheme.
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Figure 5.39.: Inviscid flow past Onera M6 wing. Cut at 99 % of span. Full line:
experiment, points: numerical solution. Left column: CC FV schemes.
Middle column: VC FV schemes. Right column RD schemes. Top row:
FV1 and N scheme. Middle row: FV scheme with linear reconstruction
and Barth’s limiter, B scheme. Bottom row: FV WENO scheme and
Bx scheme.
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5.5. Euler equations – unsteady problems

5.5.1. 2D vortex convection

Here we consider the test case from the section 3.6.6, pg. 55, which examines the
scheme for the performance in the smooth parts of the flow. Here discuss some addi-
tional figures for the comparison. For the FV schemes only cell centered formulation
is presented. Cuts along the x direction in the core of the vortex are depicted in
Fig. 5.40. For the comparison of the pressure in the core of the vortex, see Table
3.2 on page 56. The superiority of the LDA and Bx scheme is clear, even though
the number of DOF is twice smaller. The nonlinear Bx scheme is even better than
the unlimited FV scheme. The FV WLSQR (WENO) scheme performs much worse,
even worse than the N-modified scheme. In the case of the transonic flow past the
Onera M6 wing the performance of the CC WENO FV scheme and Bx scheme were
comparable, whereas it is different for this test case. Problem with non-smooth
solution can be observed on the solution of the N-modified scheme, as it is analyzed
in [Abg06, RA06]. Clearly the worst performance is obtained for the FV scheme
with Barth’s limiter.
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Figure 5.40.: 2D convection of the vortex test case. Cut in the x direction. Left:
FV schemes. Right: RD schemes.

130



5.5. Euler equations – unsteady problems

X

Y

-0.2 0 0.2

-0.2

0

0.2

Exact

X

Y

-0.2 0 0.2

-0.2

0

0.2

FV nolim

2× DOF
X

Y

-0.2 0 0.2

-0.2

0

0.2

LDA Ferrante

X

Y

-0.2 0 0.2

-0.2

0

0.2

LDA Caraeni

X

Y

-0.2 0 0.2

-0.2

0

0.2

N-modified

X

Y

-0.2 0 0.2

-0.2

0

0.2

FV Barth

2× DOF

X

Y

-0.2 0 0.2

-0.2

0

0.2

FV WENO

2× DOF
X

Y

-0.2 0 0.2

-0.2

0

0.2

Bx

Figure 5.41.: 2D convection of the vortex test case. Isolines of the pressure at t =
1/6.

131



Chapter 5. Comparison of some FV and RD schemes

5.6. Euler equations – unsteady problems with mesh

movement

5.6.1. Smooth inviscid flow in a piston (2D)

This case was introduced in [DD05b]. It is motivated by internal aerodynamics
problems, namely flow in piston engines. A gas at rest is enclosed between walls.
One of the walls slowly starts to move. This problem can be solved by the method
of characteristics [ZH76] until the head of the pressure wave reflects from the other
wall or a shock is created. We have used a domain of length l = 5 and initial
conditions u0 = 0, ρ0 = 1.4 and p0 = 1. The piston starts to accelerate with
derivative of acceleration

...
x = 0.2. The numerical solution is plotted at time t = 4,

when the piston has reached position x = 2.133̄. The exact solution is included in
the appendix A.1, pg. 201.

The mesh consist of 180 nodes and 310 triangular elements for CC FV and 280
nodes and 498 triangular elements for VC FV and RD schemes. The difference
in number degrees of freedom is in order of 10 %. The CC1 FV scheme gives
similar solution as the N scheme. On the other hand, the LDA scheme gives much
better results than the FV scheme with linear reconstruction and no limiter. Two
boundary conditions are included, Petrov-Galerkin, section 3.9.2.1, and Paillere’s
3.9.2.2 formulation. The both gives almost the same, highly accurate results. The
solution using one and two layer N-modified scheme is plotted in Fig. 5.47, 5.48.
They both give similar results, much more accurate than the FV scheme with Barth’s
limiter. There are small wiggles in the vicinity of the moving wall in the very smooth
part of the solution. For discussion of this issue we refer again to [Abg06, RA06].
Finally, the Bx scheme and FV scheme with Barth’s limited is compared, see Fig.
5.46 and 5.49. Unfortunately, in this case the Bx scheme gives worse result than the
FV scheme. It is due to the activation of the N scheme in the compression wave.
Better formulation of the blending function would certainly help.
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Figure 5.42.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. FV1 scheme, 3BDF time inte-
gration procedure.
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Figure 5.43.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. N scheme 3BDF time integration
procedure.
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Figure 5.44.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. FV2 scheme, no limiter, 3BDF
time integration procedure.
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Figure 5.45.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. LDA scheme, 3BDF time inte-
gration procedure. Top: Weide’s BC, Bottom: Paillere’s BC.
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Figure 5.46.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. FV2 scheme, Barth’s limiter,
3BDF time integration procedure.
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Figure 5.47.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. 1 layer N-modified scheme.
Top: Weide’s BC, Bottom: Paillere’s BC.
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Figure 5.48.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. 2 layer N-modified scheme.
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Figure 5.49.: Smooth compression of gas inside a piston cylinder. Mach number
isolines and cut along the central line. Bx scheme
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5.6.2. Inviscid flow in a piston involving a shock (2D)

This problem involves a piston instantaneously accelerated to a uniform speed. From
the Rankine-Hugoniot jump conditions we can compute the solution analytically.
Piston velocity is chosen 0.8, therefore flow velocity is uL = 0.8, uR = 0, density is
ρL = 2.8191, ρR = 1.4 and pressure is pL = 2.78, pR = 1. Shock speed is 0.79461.
The solution at t = 2 is shown. The mesh is the same as in section 5.6.1.

In following figures cuts in the axis of the domain are plotted for Mach number,
pressure and Entropy. One can notice a problem with entropic layer in the vicinity
of the piston surface. First, compare schemes with constant reconstruction and N
scheme. The shock resolution is perfectly monotone. The shock is more smeared
for the N scheme than for the FV scheme. There is a slightly higher pressure for
the PG formulation of boundary conditions and the shock is in a more advanced
position. The spurious entropy generation in the vicinity of the piston is much
higher for the Paillere’s formulation. In the comparison of the N-modified scheme
with the FV scheme with linear reconstruction and Barth’s limiter, the N-modified
scheme gives sharper resolution of the shock wave. Both the schemes gives monotone
resolution of the shock wave. The spurious entropy generation is higher for the
Paillere formulation of boundary condition. The two-layer N-modified scheme gives
similar results as the one-layer scheme, including the behavior of the spurious entropy
layer. Finally, the Bx scheme performs worse than the WLSQR (WENO) scheme,
in terms of the shock resolution and also spurious entropy layer. The Bx scheme
performs actually the same as the N scheme. The FV scheme performs well, both
with Barth’s limiter and the WLSQR (WENO) reconstruction. The results obtained
with the N scheme and Bx are not so good. Source of relatively poor performance
for this type of test case is still has to be investigated. The Paillere formulation
of boundary condition depends on the numerical scheme used for the inner element
in the domain. As it was noted, for Bx scheme the performance is better than
the PG formulation, for the N scheme performs equally, while for the N-modified
scheme the performance of the Paillere formulation is substantively worse than the
PG formulation.

5.7. Conclusions

In this chapter results obtained by the cell centered, vertex centered finite volumes
and RD schemes were presented and compared. In all the test cases the LDA
scheme was consistently the best. Also the cell centered FV scheme has performed
very well. The vertex centered finite volume schemes did not show outstanding
result. For the nonlinear schemes, the Bx scheme or the CC FV scheme with linear
reconstruction with WLSQR (WENO) weights are among the most accurate. The
Barth’s limiter appears to be a good choice if a strict monotonicity of the solution is
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Figure 5.50.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Mach num-
ber. Space-time N scheme. Top: PG boundary conditions, Bottom:
Paillere’s boundary conditions.
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Figure 5.51.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b)
static pressure, c) entropy; d) computational mesh and isolines of Mach
number. CC FV1 scheme with 3BDF time integration.

needed. Surprisingly, in the opposite to the common findings, the N-modified scheme
did not perform very well. It has to be noted, that the nonlinear RD schemes are
currently in the focus of intense research.1

1already for more than 20 years
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Figure 5.52.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b)
static pressure, c) entropy; d) computational mesh and isolines of Mach
number. 1 layer space-time N-modified scheme. Top: PG boundary
conditions, Bottom: Paillere’s boundary conditions.
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Figure 5.53.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Mach num-
ber. 2 layer space-time N-modified scheme. PG boundary conditions.
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Figure 5.54.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Mach num-
ber. CC FV scheme with Barth’s limiter and 3BDF time integration.
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Figure 5.55.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Mach num-
ber. Bx scheme. Top: PG boundary conditions, Bottom: Paillere’s
boundary conditions.
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Figure 5.56.: 2D flow near suddenly moving piston. Cuts: a) Mach number, b) static
pressure, c) entropy; d) computational mesh and isolines of Mach num-
ber. CC FV scheme WENO reconstruction and 3BDF time integration.
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Part II.

Fluid-structure interaction
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Chapter 6.

Finite element method for elasticity
problems

6.1. Introduction

In this section we will derive the equations of elasticity for both small and large
displacements. We will start from Newton’s law, the stress-strain relation and the
generalized Hooke’s law, finally leading to second order partial differential equation.
Then, we will introduce a finite element method, usually used for the solution of this
problem. The chapter concludes with a few examples documenting the performance
of the method.

Elastic problems can be also formulated as a set of first order hyperbolic partial
differential equations and solved by the method usuallly applied for fluid dynamic
problems. However, this formulation is not suitable for the elasticity problems of
standard engineering mechanics. It is more usual for the applications, where a
shock waves inside the material has to be captured, see e.g. [LeV02]. We will not
put forward this approach, although some preliminary test were performed in the
framework of RD schemes.

6.2. Formulation of the problem

In this section we will derive the general elastic model for finite displacements. We
will use a nonlinear finite strain displacement relation. The strain tensor has the
form

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)
, (6.1)

where uj is the displacement in direction j and k is a summation index. The
displacement is defined as the difference between the deformed state and the initial
state

ui = x′
i − xi. (6.2)
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We use a linear relation between the strain ε and the stress σ called (generalized)
Hooke’s law

σij = cijklεkl, (6.3)

where cijkl is the elastic tensor. Hooke’s law can be expressed for a homogenous
isotropic body in the form

σij = λδijθ + 2µεij, (6.4)

where σ is the stress tensor, λ and µ are Lame parameters, depending on the body
material, and θ is a tensor invariant

θ = εii = ε11 + ε22 + ε33. (6.5)

The dynamic equation for the continuum (Newton’s law) is

ρ
∂2ui

∂t2
=

∂σij

∂xj

+ fi, (6.6)

where fi is a component of internal (e.g. gravity) force and ρ is material density.
Structural damping is not considered.

For the moment, we will consider only homogenous isotropic material. One can
substitute the equation for the strain tensor into Hooke’s law. We obtain (using
Einstein summation convention)

θ =
∂ui

∂xi

+
1

2

∂ui

∂xj

∂ui

∂xj

(6.7)

σij = λδij

[
∂uk

∂xk

+
1

2

∂uk

∂xl

∂uk

∂xl

]
+ µ

[
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

]
(6.8)

∂

∂xj

(
λδij

[
∂uk

∂xk

+
1

2

∂uk

∂xl

∂uk

∂xl

]
+ µ

[
∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

])
+ fi = ρ

∂2ui

∂t2
. (6.9)

The last equation is in fact a set of second order nonlinear differential equations.
One has to note that the equations are nonlinear even though the linear Hooke’s
law was used, due to the hyphotesis of large deformations.

We now return back to equation (6.6) and derive the weak form of the equation.
We have

ρ
∂2ui

∂t2
− ∂σij

∂xj

= fi. (6.10)
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Multiplying by test function ϕ and integrating over Ω we obtain

∫

Ω

ϕρ
∂2ui

∂t2
dΩ −

∫

Ω

ϕ
∂σij

∂xj

dΩ =

∫

Ω

ϕfi dΩ (6.11)

∫

Ω

ϕρ
∂2ui

∂t2
dΩ −

∮

∂T

ϕσij dnj︸ ︷︷ ︸
ti

+

∫

Ω

∂ϕ

∂xj

σij dΩ =

∫

Ω

ϕfi dΩ (6.12)

∫

Ω

ϕρ
∂2ui

∂t2
dΩ +

∫

Ω

∂ϕ

∂xj

σij dΩ =

∫

Ω

ϕfi dΩ +

∮

∂Ω

ϕ ti dS, (6.13)

where ti is a traction (load per unit surface) in the direction of the i axis. This
formulation leads directly to the matrix representation for the numerical solution.
From the first integral a mass matrix arises, from the second a stiffness matrix and
the RHS corresponds to the load vector.

Note that the problem is formulated in Lagrangian coordinates, hence no moving
mesh is needed.

A fundamental assumption has to be made in two dimensions. Either the strain
in the third dimension is zero (and the stress in nonzero) or the stress is nonzero
(and the strain is zero). This is called plane stress and plane strain assumption. In
a case of plane strain the Lame parameters are related to Young modulus E and
Poisson ratio ν by relations [BSS02]

λ =
Eν

(1 + ν)(1 − 2ν)
µ =

E

2(1 + ν)
. (6.14)

In case of plane stress the relations are

λ =
E ν

1 − ν2
µ =

E

2(1 + ν)
. (6.15)

The Young modulus E and Poisson ratio ν are tabulated in technical tables for
various materials. For the test cases at the end of this chapter, the Poisson ratio
will be taken ν = 0.3, as the typical value for steel.

For the 3D orthotropic material Hooke’s law has the form




σ11

σ22

σ33

σ23

σ31

σ12




=




c11 c12 c13 0 0 0
c21 c22 c23 0 0 0
c31 c32 c33 0 0 0
0 0 0 2c44 0 0
0 0 0 0 2c55 0
0 0 0 0 0 2c66







ε11

ε22

ε33

ε23

ε31

ε12




. (6.16)

The constants are related to Young modulus Eij, shear modulus Gij and Poisson
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ratio νij by the coefficients

c11 =
1 − ν23 ν23

E22 E33 D
c12 =

ν12 + ν13 ν23

E22 E33 D
c13 =

ν13 + ν12 ν23

E22 E33 D
(6.17)

c22 =
1 − ν13 ν13

E11 E33 D
c23 =

ν23 + ν13 ν12

E11 E33 D
c33 =

1 − ν12 ν12

E11 E22 D
(6.18)

c44 = G23 c55 = G13 c66 = G12 (6.19)

with

D =
1 − ν12 ν12 − ν23 ν23 − ν13 ν13 − 2 ν12 ν23 ν13

E11 E22 E33

. (6.20)

Then, an equation similar to (6.9) is derived.
The two types of boundary conditions are considered – traction and displacement.

In the case of displacement, the value on the boundary is prescribed (Dirichlet’s
boundary condition). In the case of traction, the force per unit length is prescribed,
which is term ti in equation (6.13).

6.3. Numerical method for steady problems

The domain of solution is covered by finite elements. The displacement ui in the
i-direction is approximated by the trial functions as

uh
i =

∑

k∈T h

ui,kψk. (6.21)

The trial functions will be specified later. The test functions belong to the same
space as the trial functions. Hereafter we will not make a distinction between trial
and test functions. The weak formulation (6.13) gives directly the finite element
method, where the solution is replaced by its approximation (6.21) and the test
functions by the trial functions ψ. The problem can be written as

MÜ + KU = F, (6.22)

where U is the algebraic vector of unknowns (displacements), M is the mass matrix,
K is the stiffness matrix and F the vector of right hand sides.

6.3.1. Selection of elements and spatial integration

The trial function has to be chosen suitably. We use simple Lagrangian elements
[ZT00b], with linear, bilinear or quadratic approximation of the solution and linear
or bilinear approximation of the geometry. The elements, where the geometry is
approximated by the lower order polynomial, while the solution is approximated by
the higher order polynomial are called sub-parametric. We have chosen (bi-)linear
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Figure 6.1.: Finite elements in 2D. Left: linear TRI3 element. Middle: bilinear
QUAD4 element. Right: biquadratic sub-parametric element QUAD9,
the solution is approximated with 9 DOF, the geometry with 4 DOF.

approximation of the geometry, since the mesh generation software we use does not
support higher order elements1. The 2D elements are depicted in Fig. 6.1. Similar
elements were used in three spatial dimensions, i.e. 4 node linear TETRA4, 8 node
tri-linear HEXA8 and 27 nodes tri-quadratic HEXA27 elements. The method is
very general and other types of elements (trial functions) can be simply added.

The contributions to the mass and stiffness matrix have the form of integrals over
the elements. The trial function can be expressed directly in the spatial variables,
or the element can be transformed to the mother element and integrated in the
transformed system of coordinates [ZT00b]. In that case, we use Gauss quadrature
with sufficient number of quadrature points. On the bilinear element transformed
to the square [−1, 1] × [−1, 1] we use four Gauss points located at points with co-
ordinates given by the tensor product of (−

√
1/3,

√
1/3). For bi-quadratic element

we use nine Gauss points identified by the tensor product of (−
√

0.6, 0,
√

0.6). The
procedure is standard, we include it with a reference to [ZT00b] or any other finite
element textbook.

For the large displacement formulation, the quadratic terms have to be computed.
We use Picard approximation (also called direct iteration method), i.e. quadratic
terms are approximated as independent of the solution, and the solution is taken
from the previous iteration. The influence of the large displacement vs. small dis-
placement formulation is depicted in Fig. 6.2.

6.3.2. Approximations of boundary conditions

The displacement boundary condition corresponds imposing directly the nodal value
of the solution. In this case, we discard the corresponding line in the K matrix and
set unit on the diagonal. Then we set the right hand side to the prescribed nodal
value.

1Although a on purpose code to improve mesh can be easily written.
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F F

Figure 6.2.: Linear (the left) and nonlinear (right), large deformation formulation.
Bending of a beam. Sequence of beams loaded with increasing force is
shown.

Consider node k. For the prescribed traction ti in direction of i on the boundary,
the line (surface integral in 3D)

∫

S

ϕkti d~ni (6.23)

has to be evaluated. This value is then added to the RHS of the equation.

For steady problems (e.g. static aeroelasticity) the mass and time dependent part
of equation (6.22) is omitted (M ≡ 0) and the problem reduces to solving the sparse
system of algebraic equations

KU = F. (6.24)

For the moment we use GMRES with ILU(0) preconditioning, or block Jacobi pre-
conditioning in parallel, where the ILU(0) preconditioner is applied on each block.
A second option is the LU decomposition.

6.4. Numerical method for unsteady problems and

modal analysis

6.4.1. Newmark method

For time dependent (dynamic) problems we have to consider the full system of
(6.22). This semi-discrete ODE can be solved by the Newmark family of methods.
In this method the function and its first time derivative are approximated according
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6.4. Numerical method for unsteady problems and modal analysis

α γ = 2β

1/2 1/2 the constant-average acceleration method (stable)
1/2 1/3 the linear acceleration method (conditionally stable)
1/2 0 the central difference method (conditionally stable)
3/2 8/5 the Galerkin method (stable)
3/2 2 the backward difference method (stable)

Table 6.1.: Special case of choice of parameters among the Newmark family of meth-
ods.

to

Un+1 = Un + ∆tU̇n +
1

2
∆t2Ün+γ

= Un + ∆tU̇n +
1

2
∆t2γÜn+1 +

1

2
∆t2(1 − γ)Ün. (6.25)

and
U̇n+1 = U̇n + ∆tÜn+α = U̇n + α∆tÜn+1 + (1 − α)∆tÜn. (6.26)

Different schemes are obtained for special choices of the parameters α and γ, as
summarized in Tab. 6.1. From equation (6.25) we express Ün+1 and plug it into
equation (6.22). When all the terms from the level n are moved to the RHS, one
gets

K̂Un+1 = F̂ , (6.27)

with

K̂ = K + a3M (6.28)

F̂ = F + M(a3U
n + a4U̇

n + a5Ü
n), (6.29)

and

a1 = α∆t a2 = (1 − α)∆t a3 =
2

γ∆t2
(6.30)

a4 =
2

γ∆t
a5 =

1

γ
− 1. (6.31)

Once solution Un+1 is obtained, the velocity and acceleration are computed using

Ün+1 = a3(U
n+1 − Un) − a4U̇

n − a5Ü
n (6.32)

U̇n+1 = U̇n + a2Ü
n + a1Ü

n+1, (6.33)

these relations are equations (6.25) and (6.26) again. In all the work we use the
unconditionally stable constant-average acceleration method (α = γ = 1/2), which
is known to preserve energy of the body.
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6.4.2. Modal analysis

For the problems of fluid-structure interaction, we are interested in periodic or nearly
periodic movement of the elastic bodies. These kind of problems are typically solved
by modal analysis. The modal analysis is needed also for the setup of initial condi-
tions for the AGARD 445.6 test case, see section 8.3.2 page 185.

We are looking for a solution in the form

U =
∑

m

Ume−iωmt (6.34)

of the homogeneous equation

MÜ + KU = 0. (6.35)

This leads to a generalized eigen-problem

ω2
mMUm + KUm = 0. (6.36)

This problem is much easier to solve than the eigen-problem of the matrix (M−1K),
because both mass and stiffness matrices are sparse while (M−1K) is not. The
Arnoldi method [HRV03, HRTV04] is used to solve the problem. The eigenvalues
and eigenvectors are real, the frequency of the mode is

fm =
1

2π
√

λm

. (6.37)

The eigenvectors directly correspond to the displacement. There are as many eigen-
pairs as degrees of freedom, but we consider only the first few relevant eigen-modes.
For the better performance of the eigen-solver, the mass matrix M and stiffness
matrix K can be scaled such that the entries are close to one. Of course, the
eigenvalues have to be later scaled back.

6.5. Numerical results

In this section a few numerical results documenting the performance of the method
will be shown.

All the considered elements are able to exactly reproduce pure stretch and shear,
in the small and large deformation formulation. The bend is a surprisingly more
difficult test case. We consider a beam clamped on one side of length l = 10 with
uniform thickness h = 0.1. The bending force on the other end of the beam is
chosen such that the deflection is unit. The small deformation formulation is used.
The solution on different meshes and elements is plotted in Fig. 6.3. The results
are given in Tab. 6.2. The error of the solution on linear and bilinear elements is
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6.5. Numerical results

Mesh (DOF) TRI3 QUAD4 QUAD9

2×40 0.032 0.093 0.997
2×100 0.161 0.390 1

Table 6.2.: Linear bending of a beam. Deflection (z) of the end of the beam for
different elements and meshes. Exact solution is z = 1.

0

0.5

1

TRI3 20x2 nodes

QUAD9 20x2 nodes

QUAD4 50x2 nodes

TRI3 50x2 nodes

QUAD4 20x2 nodes

Figure 6.3.: Linear bending of a beam. Plot of the solution and zoom to the end of
the beam. Exact solution is z = 1. Different elements are considered.
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Figure 6.4.: Comparison of the time integration methods. Force accelerating a free
body. For definition of schemes see Tab. 6.1.

so high, that the method cannot be used for engineering applications. The method
using bi-quadratic elements gives reasonable accuracy for the considered case.

The second test case consist of one element with very large stiffness (E = 1015) and
unit mass. The unit force starts to accelerate the body according to Newton’s law.
The numerical solution with different parameters of Newmark’s method together
with the exact solution is plotted in Fig. 6.4. Only unconditionally stable methods
were considered. One can clearly see the discretization error of the scheme and the
need for sufficiently small time-steps. In the future, the extension for higher order
time integration scheme should be considered.

The last test case involves a modal analysis of a beam. We consider a 3D beam of
dimensions 10×0.15×0.1, clamped on one side and free elsewhere. Young modulus
is E = 2 and density ρ = 5. The mesh is rather coarse consisting of 10 × 1 × 1
tri-quadratic HEX27 elements. Natural frequencies obtained from 1D theory and
the modal analysis are compared in Tab. 6.3. The theoretical values [BSS02] are

ωm =
m2

n

l2

√
Eh2

12ρ
, (6.38)

where mn are roots of equation

cos m cosh m = −1. (6.39)
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6.5. Numerical results

Figure 6.5.: Modal analysis of 2D beam. First 10 modes plotted.

From 1D theory From modal analysis
1st bending mode – y 6.41·10−4 6.47·10−4

1st bending mode – z 9.62·10−4 9.70·10−4

2nd bending mode – y 40.24·10−4 40.97·10−4

2nd bending mode – z 60.36·10−4 61.31·10−4

Table 6.3.: Modal analysis of a 3D beam. Natural frequencies.

The first three roots are approximately m1 = 1.8751, m2 = 4.6941, m3 = 7.8548.
One can see that even on such a coarse mesh, the error is in the order of 1 % for
the first mode and less than 2 % for the second mode. Modal shapes for a similar
problem in 2D are potted in Fig. 6.5.
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Chapter 7.

Numerical method for fluid–structure
interaction problems

The problem of the interaction of fluids and solid bodies is characterized essentially
by two distinct, but intrinsically coupled problems. The numerical methods for
problems of fluid dynamic (CFD) were discussed in the first part of this thesis, the
numerical methods for elastic bodies (CSM) were discussed in chapter 6. In this
chapter a method to couple both problems will be discussed.

7.1. Three field formulation

If the amplitude of the structural body movement is small, the coupled problem can
be solved using the simple transpiration approach [HKH03, HKH04b, HKH04a].
However, if the deformation is larger, the problem has to be solved on a moving
mesh [Far04]. The three field formulation was introduced in [LF93]. The three
distinct fields involve CFD, CSM and the fluid mesh deformation as the third field.

• CFD is coupled with the CSM via position and velocity of the computational
domain. It is also intrinsically coupled to the mesh dynamics.

• CSM is coupled to CFD by the stress tensor on the surface of the body

• The position and velocity of the mesh boundary is coupled to the position and
velocity of the surface of the body.

We will discuss the coupling of CFD and CSM by the movement of the mesh bound-
ary and transfer of the stress tensor in section 7.2. The mesh deformation algorithm
for a given position of the nodes on the boundary is treated in section 7.3.

7.1.1. Formulation of the FSI problem

Let us recall once again the problem to solve. For the gas, we solve the system
of Euler equations in ALE formulation (introduced as (2.26)) in a time dependent
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domain Ωt,fluid,

1

JAt

∂JAt
u

∂t

∣∣∣∣
~Y

+ ~∇x · [~f(u) − u~w] = 0, ∀x ∈ Ωt,fluid, t ∈ [0, Tmax] (7.1)

with conserved variables
u = (ρ, ρ~v, E), (7.2)

see section 2.3.2. The determinant of Jacobian JAt
is defined by (2.8) and the domain

velocity ~w by (2.10). The flux is given by

fi = (ρvi, ρvivj + δijp, [E + p]vi), 1 ≤ j ≤ d. (7.3)

The system is closed by the equation for the pressure (introduced as (2.33))

E =
p

γ − 1
+

1

2
ρ

d∑

i=1

v2
i (7.4)

with given ratio of specific heats γ. A standard set of boundary conditions on ∂Ωt,fluid

is used. Specifically, the velocity of the gas perpendicular to the wall is equal to the
normal velocity of the wall.

The other system of equations is the dynamic equation for the continuum in a
Lagrangian system of reference

ρ
∂2ûi

∂t2
=

∂σij

∂x̂j

+ fi, ∀~̂x ∈ Ωelastic, t ∈ [0, Tmax]. (7.5)

The hat (̂·) is used to distinguish the Lagrangian coordinate of the elastic body and
to prevent conflict in the notation in this section. The displacement is defined as
the difference between the deformed state and the initial state

ûi = x̂′
i − x̂i. (7.6)

The stress is related to the strain tensor by the generalized Hooke’s law

σij = cijklεkl, (7.7)

where cijkl is a given elastic tensor. Tensor of deformation is defined as

εij =
1

2

(
∂ûi

∂x̂j

+
∂ûj

∂x̂i

+
∂ûk

∂x̂i

∂ûk

∂x̂j

)
, (7.8)

where ûj is the displacement in direction j.
The systems (7.1) and (7.5) are connected by the interface conditions relating the

displacement of the elastic body with the fluid boundary

xfluid = x̂′
elastic, (7.9)
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7.2. Coupling of fluid and structural problems – load and motion transfer algorithm

for all the fluid boundaries ∂Ωt,fluid,wall immersing the elastic bodies and for all the
elastic boundaries ∂Ωelastic,wet immersed in the fluid. The fluid velocity normal to
the fluid boundary has to be equal to the velocity of the elastic body projected to
the normal direction. Similarly, the forces has to be equal from the both sides of
the interface

p~nfluid = ~f, (7.10)

where ~nfluid is the outer normal on the fluid boundary and ~f is the normal force
acting on the elastic body.

Finally, the ALE mapping At (see equation (2.6)) has to be found, such that the
condition (7.9) is satisfied.

The problem is the following: find u : Ωt,fluid × [0, Tmax] → Rq, At : Ω0,fluid ×
[0, Tmax] → Ωt,fluid and ~̂u : Ωelastic × [0, Tmax] → Rd such that all the equations in this
section are simultaneously satisfied.

7.2. Coupling of fluid and structural problems – load

and motion transfer algorithm

For the aeroelastic computations, there is a ultimate need to treat non-matching
interfaces. A non-matching interface is an interface between fluid and structural
computational mesh, where the boundary points do not coincide. The non-matching
interface allows to generate the mesh independently for fluid and structural problem
and both the meshes can be tailored to their specific needs. Here we follow work of
[FLL98, Far04].

The computation of the fluid mesh boundary displacement proceeds as follows (see
Fig. 7.1). For each node on the fluid boundary, the projection to the elastic boundary
along the normal is found. Then, the displacement of the fluid boundary node is
assumed equal to the displacement of the projected node to the solid boundary. The
displacement is determined using the trial functions of the finite element method ψi,
which is used in the elastic body solver from the known displacement at the nodes of
the solid mesh element. This gives later needed coefficients cij. This approach gives
smooth variation of the fluid mesh boundary, since it uses quadratic polynomials for
the interpolation (provided the quadratic finite elements for the elastic solver are
used). Another advantage is, that the displacement is computed exactly for rigid
body motion, which might not be the case for some other methods.

The force on the boundary of the elastic body is prescribed from the equality of
virtual works. Virtual work performed by the fluid is

δW F =

∫

ΓF

−p~n · ~uF ds, (7.11)
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where ΓF is the fluid boundary, p is the pressure, ~n is the normal to the fluid
boundary and ~uF is the virtual displacement of the fluid boundary. The virtual work
performed by the elastic body can be expressed as the sum of the nodal displacements
and the nodal forces

δW S =

∫

ΓS

~f · ~uS ds =

i=iS∑

i=1

~fi · ~uSi
, (7.12)

where ~fi is the force at node i and ~uSi
is the displacement of the node i. Both

expressions of the virtual work have to be equal

∫

ΓF

−p~n · ~uF ds =

i=iS∑

i=1

~fi · ~uSi
. (7.13)

The fluid boundary displacement depends on the displacement of the boundary
nodes

~uF = ~uF (~u1,F , ~u2,F , . . . , ~un,F ). (7.14)

The displacement of the fluid boundary node can be expressed as the linear combi-
nation of the elastic boundary node displacements

~ui,F =
∑

j

cij~uSj
. (7.15)

Combining equations (7.13), (7.14), (7.15) and eliminating the solid boundary node

displacement uSj
we get the expression for the nodal forces ~fi acting on the elastic

body. In our case, the boundary is a polygon and we approximate the integral on
the left hand side of equation (7.13) with the trapezoidal integration rule

∫

ΓF

−p~n · ~uF ds ≈
∑

e

Se

ne

ne∑

k=1

−pk~ne · ~uk,F , (7.16)

where ne is the number of nodes on boundary face e, Se is the surface of the boundary
face e, pk is the pressure at node k, ~ne is a normal to the face e and ~uk,F is the
displacement of node k. If we plug relation (7.15) into (7.16) and (7.13) we get

∑

e

Se

ne

ne∑

k=1

−pk~ne ·
∑

j

ckj~uSj
=

i=iS∑

i=1

~fi · ~uSi
, (7.17)

where the index e loops over all the fluid boundary faces. This has to be valid for
any ~uSi

, hence

~fi =
∑

j

cij

∑

e

Se

ne

ne∑

k=1

−pk~ne, (7.18)

where the index j loops over all the nodes with nonzero cij and index e for all
boundary faces containing node j.
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7.3. Mesh deformation algorithm

Figure 7.1.: Fluid boundary movement algorithm. Upper mesh is fluid, lower is
elastic body.

7.3. Mesh deformation algorithm

Many different strategies were developed for the mesh movement [YM05, JT96,
JT94, Far04]. The problem reads: given a nodal displacement on the part of the
boundary, find a displacement of the remaining nodes in the computational domain.
We have chosen the pseudo-elasticity approach, where the mesh moves according to
the behavior of the pseudo-elastic body [Far04, YM05]. Displacement of the mesh
vertices is described by the equation

KU = F, (7.19)

where K is the fictious stiffness matrix, U is the algebraic vector of nodal displace-
ments and F is the algebraic vector of nodal forces. We omit the time derivative
in equation (6.22). Equations (7.19) and (6.22) gives comparable results, while
equation (6.22) has more parameters (element masses) and the method is more
computationally demanding. We solve the same system as equation (6.24), with
the method described in chapter 6. The Young modulus is chosen such that the
stiffness increases in the vicinity of problematic regions [YM05, JT96, JT94]. We
have chosen the Young modulus in element T as

E =
1√

d µ(T )
, (7.20)

where d is the distance of the centroid of the element to the nearest wall and µ(T )
is the volume of the element. For viscous flow simulations, the Young module has
to depend also on the aspect ratio of the element to ensure a good behavior of the
method in the wake. The stiffness matrix K is evaluated in each time step based
on the deformed state from the previous step, as the algorithm gives better mesh
quality [Far04].
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The nodal displacement is prescribed on the wall, the zero traction is prescribed
at the free stream. The numerical approximation of the boundary conditions is
described in section 6.3.2.

7.4. The solution procedure

The problem of fluid-structure interaction is coupled and the fluid flow and structural
dynamics have to be solved together. One possibility is to make one step by the
fluid solver and one step by the structural method, however an error of order O(∆t)
is then introduced into the solution. The discussion about different approaches is
given by reference [Far04]. We use a very simple sub-iteration approach. For every
time–step (i.e. from the solution at time-level n to the solution at time-level n + 1)
we perform the following procedure:

• Compute preliminary nodal forces at the nodes of the elastic boundary, see
eq. 7.18, from the CFD solution at time n.

• Do until converged:

– Compute new (preliminary) position of the elastic body at time level
n + 1.

– Move the CFD mesh to the preliminary position at time level n + 1.

– Compute the corresponding flow field solving the CFD problem on the
preliminary mesh position at time level n + 1.

– Compute the nodal forces at the nodes of the elastic boundary, see eq.
7.18, from the preliminary CFD solution at time n + 1.

• Advance elastic body position and the flow field (n → n + 1).

The advantage of this approach is the accuracy, the obvious disadvantage is the long
computational time and in some cases convergence problems [MvBdB04]. On the
other hand, we use the CFD method formulated in dual time, which is solved by
the sub-iteration approach anyway. We perform sub-iterations until the residual of
the CFD method drops sufficiently low.

We have developed one method to solve the elastic problem, one mesh motion al-
gorithm and one load/motion transfer algorithm. Since this thesis is focused mainly
on CFD methods development, we employ several methods for the CFD side of the
fluid–structure interaction problem. These CFD methods are specified for each test
case separately.
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7.5. Numerical tests: load/motion transfer algorithm

and mesh deformation algorithm

The first test case involves the mesh deformation algorithm. This test documents the
behavior of the method near the boundary and also the possibility to get an invalid
mesh with negative volumes of the elements. A two-dimensional hybrid mesh was
generated around the double circular arc profile, see Fig. 7.2. The chanel width is
chosen d = 1, with length of l = 3 and the 10 % thick profile has chord of c = 1. The
mesh is used only for this test case, we do not solve the fluid flows on it. In Fig. 7.2
a) the non-deformed mesh is depicted. Fig. 7.2 b) shows the deformation of the mesh
for the profile rotated by α = 20◦ , with zoom of the trailing edge region in 7.2 g).
This mesh is valid, i.e. all the element volumes remain positive. Note the behavior
of the wake region, the term to increase the stiffness of the elements in the wake is
not included. The possibility to obtain mesh with negative volumes of the elements
is documented in Fig. 7.2 c). A zoom of the trailing edge region is depicted in 7.2 g).
Unfortunately, negative mesh volumes can be obtained also by a simple translation
of the profile, as can be seen in Fig. 7.2 e) and f). The zoom of the problematic
region is depicted in Fig. 7.2 h). The mesh movement procedure is still an open
problem [JT96, JT94] and even the state of the art approaches remesh from time to
time in case of very large displacements [SBTP01, TO01b, TO01a, KT00, SBK+00].

We assess the performance of the non-matching load and motion transfer algo-
rithm in two dimensions. A membrane of length l = 30 and thickness h = 0.1 with
Young modulus E = 2 is exposed to the pressure difference, created by the fluid in
the rest from one side and the prescribed traction from the other side. The pressure
from the fluid side is set to p = 12.4 · 10−6, while the ambient pressure is set to
p = 6.2 · 10−6. Plane stress assumption is used. Two lateral thirds of the membrane
are rigidly supported and both sides are clamped, see Fig. 7.3. The formulation of
the problem is given in Section 6.2, page 149, the computational method in Section
6.3, page 152. The regular fluid mesh contains 250 × 17 elements and the elastic
mesh contains 100 × 1 bi-quadratic QUAD9 elements. The problem is solved in
parallel on 22 processors. This is only to test the parallel algorithm, the whole
computation takes a few seconds on one processor. The theoretic displacement in
the middle of the membrane, computed from the 1D beam theory, is z = 1. One
can observe a smooth variation of the fluid boundary, as it can be expected. The
computed displacement is z = 1.013, giving the error of the order of 1 %.
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a) b) c)

d) e) f)

g) h) i)

Figure 7.2.: Hybrid mesh deformation test. a) Initial mesh. b) α = 20◦ , c) α = 45◦ .
d) ∆z = 20 %, e) ∆z = 30 %, f) ∆z = 40 % of the chanel width. g)
Detail for α = 20◦ . h) Detail for ∆z = 40 %. i) Detail for α = 45◦ .
The meshes for cases ∆z = 20 % and α = 20◦ are valid and the meshes
for case ∆z = 30 %, ∆z = 40 % and α = 45◦ are invalid.
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Figure 7.3.: Solution of the membrane problem, solution on 22 processors, interpro-
cessor boundaries are emphasized.
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Chapter 8.

Numerical results for complex
fluid-structure interaction problems

8.1. Transonic flutter of NACA 64A010 airfoil

Some parts of this section were published in [DDF05b].

8.1.1. Introduction

In this section we present a solution of the interaction of the fluid with a two di-
mensional airfoil profile. We present results of a well known test case, namely a
transient response of the NACA 64A010 profile. The case corresponds to the typical
section of a large transport aircraft with swept wings. The problem was investi-
gated in [Iso79, Iso80, Iso81] and later widely used as a test case for fluid-structure
interaction problems (see e.g. [AJ94]).

8.1.2. Formulation of the problem

We consider a rigid body with two degrees of freedom h and α. The following system
for large displacements is considered [SFH05, Hor03]

mḧ + khhh + Sαα̈ cos α − Sαα̇2 sin α = −L(t) (8.1)

Sαḧ cos α + Iαα̈ + kααα = M(t), (8.2)

where
L(t) [N] aerodynamic force (upwards positive),
M(t) [N m] is aerodynamic torsional moment (clockwise positive),
m [kg] mass of the airfoil,
Sα [kg m] static moment around the elastic axis,
Iα [kg m2] inertia moment around the elastic axis,
khh [N/m] bending stiffness
kαα [N m/rad] torsional stiffness
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α [rad] rotational displacement around the elastic axis (clockwise positive),
and
h [m] vertical displacement of the elastic axis (downward positive).
Geometric position of the elastic axis is given.
The system is transformed into first order system using hd = ḣ and αd = α̇




m Sα cos α 0 0
Sα cos α Iα 0 0

0 0 1 0
0 0 0 1







ḣd

α̇d

ḣ
α̇


 =




−khhh + Sαα2
d sin α − L(t)

−kααα + M(t)
hd

αd


 (8.3)

Inverting the matrix, the following system of equation arises

ḣd =
Iα

D∗
L∗ − Sα cos α

D∗
M∗ (8.4)

α̇d = −Sα cos α

D∗
L∗ +

m

D∗
M∗ (8.5)

ḣ = hd (8.6)

α̇ = αd (8.7)

with

D∗ = Iαm − S2
α cos2 α (8.8)

L∗ = −khhh + Sαα2
d sin α − L(t) (8.9)

M∗ = −kααα + M(t). (8.10)

If the deformations are small, the system simplifies to

ḣd =
Iα

D̃∗
L̃∗ − Sα

D̃∗
M̃∗ (8.11)

α̇d = −Sα

D̃∗
L̃∗ +

m

D̃∗
M̃∗ (8.12)

ḣ = hd (8.13)

α̇ = αd (8.14)

with

D̃∗ = Iαm − S2
α (8.15)

L̃∗ = −khhh − L(t) (8.16)

M̃∗ = −kααα + M(t). (8.17)

System (8.1), (8.2) can be also written as

Mÿ + Ky = F, (8.18)
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with

M =

(
m Sα

Sα Iα

)
, K =

(
khh 0
0 kαα

)
, y =

(
h
α

)
, F =

(
−L
M

)
, (8.19)

where M is the mass matrix and K is the stiffness matrix.
The dynamics of the profile is coupled with the fluid flow by lift and moment;

the fluid problem is coupled to the profile dynamics by position and velocity of the
profile. The problems cannot be solved separately, they are intrinsically coupled.

8.1.3. Numerical method

The problem consist of two subproblems: flow field and profile dynamics. The
sub-iteration method is used to couple both subproblems.

We use an ALE extension of the FV method with three point backward time
integration scheme, see section 4.3.2, with modified Roe’s Riemann solver [Roe81]
and linear reconstruction with Barth’s limiter [BJ89].

The system of first order ODEs (8.4)–(8.7) for the profile dynamics is solved by
the standard 4th order Runge-Kutta method

k1 = f(yn) k2 = f(yn + ∆t k1/2)

k3 = f(yn + ∆t k2/2) k4 = f(yn + ∆t k3)

yn+1 = yn +
1

6
∆t(k1 + 2k2 + 2k3 + k4). (8.20)

For every time–step (i.e. from solution at time-level n to solution at time-level
n + 1) we perform following procedure:

• Compute the lift L(un) and moment M(un)

• Do until converged:

– Compute new (preliminary) position of the airfoil using RK4
(h∗ = f(L,M, hn, αn, Ln,Mn), α∗ = f(L,M, hn, αn, Ln,Mn))

– Move CFD mesh (h∗, α∗)

– Compute corresponding flow field u∗ = f(h∗, α∗)

– Compute lift L = f(u∗) and moment M = f(u∗)

• Advance airfoil position (hn+1 = h∗, αn+1 = α∗) and the flow field (un+1 = u∗)

The sub-iteration procedure exactly conserves momentum and energy.
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Figure 8.1.: Upper left: trace of zero damping (taken from [AJ94]) with selected
cases. Upper right: zoom on indefinite and damped regime. Bottom:
dependence of hinge h on time. FV scheme with linear reconstruction
and Barth’s limiter.

174



8.1. Transonic flutter of NACA 64A010 airfoil

Figure 8.2.: Computational mesh. Mach number isolines (∆Ma = 0.05) at non-
dimensional structural time τ = 21.5 and further with step ∆τ = 5. FV
scheme with linear reconstruction and Barth’s limiter.

8.1.4. Numerical results

The aeroelastic regime is characterized by the Mach number Ma and the flutter
velocity defined as

Vf =
u

b ωf
√

µ
, µ =

m

πρb2
, (8.21)

where u [m·s−1] is the velocity of the air, ωf [s−1] is the frequency of the forced
oscillations, µ [1] is the airfoil mass ratio and b [m] is the half chord. Common
parameters for the tests are following: m = 18.8495, Sα = 33.9292, Iα = 65.5964,
khh = 188495, kαα = 655964, ωf = 100, b = 1. The formulation for the small
displacement is used. These settings give eigenvalues and eigenvectors of matrix
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Case ρ u v p

Indefinite: Ma = 0.825, Vf = 0.612 0.1 474.053161576 0 23584.0377804
Damping: Ma = 0.85, Vf = 0.439 0.1 340.047937797 0 11431.7943648

Flutter: Ma = 0.875, Vf = 1.42 0.1 1099.92727032 0 112871.370262

Table 8.1.: Free stream conditions characterizing different cases. The profile is ro-
tated with respect to the Cartesian axes by 1◦.

(M−1 K)

λ1 = 5089.309505, r1 = (0.881354687, 0.4724551996), (8.22)

λ2 = 284925.4131, r2 = (−0.881354687, 0.4724551996) (8.23)

with corresponding natural frequencies ω1,2 =
√

λ1,2 = (71.34, 533.7) and periods
T1,2 = 2π/ω1,2 = (0.08807, 0.01177) [s], which fully describes the homogenous solu-
tion of equation (8.18). The free stream conditions characterizing different regimes
are given in Tab. 8.1. We have chosen three different cases, with negative, zero and
positive damping. The curve of zero damping taken from [AJ94] is plotted in Fig.
8.1. The domain of solution is discretized with an unstructured triangular mesh
consisting of 5574 nodes and 10950 elements, there are 129 nodes along the profile
(see Fig. 8.2).

The computations started from a steady solution with linear combination of the
modes (h, α)0 = y0 = 0.02r1 + 0.002r2 of equation (8.22), (8.23). The lift and
pitching moments were artificially set to zero, in order to avoid sharp transient
response of the profile. Both the moments reached their respective values during the
first cycle of the oscillations. The computations were performed with the following
physical time-steps: flutter case CFL = 20, indefinite case CFL = 43, damping case
CFL = 25.

Dependence of the hinge h on time is shown in Fig. 8.1. Non-dimensional struc-
tural time is τ = ωαt, where ωα =

√
kαα/Iα = 100. One can clearly see the differ-

ence between negative, zero and positive damping. There is a zoom to the previous
picture on the upper right figure with two different frequencies of the oscillations
visible, corresponding to the two eigen-modes of the dynamic system of the airfoil.
The faster mode is quickly damped. At the next series of figures the Mach number
isolines are shown during one cycle of the oscillation for the flutter case, starting at
time t = 0.215 (τ = 21.5) and with time-step ∆t = 0.05 (∆τ = 5).

8.2. Supersonic flutter of 2D flat plate

Supersonic panel flutter has appeared as an important problem in the development of
V2 missiles during the Second World War. Since then, the problem was theoretically,
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8.2. Supersonic flutter of 2D flat plate

experimentally and numerically investigated, see e.g. [The35, The40, Mar58, BAH96,
Dow04] and many other references about fluid-structure interaction. The test case
was chosen from reference [PF01].

An elastic panel with infinite aspect ratio is clamped on both edges. Its upper
side is exposed to the supersonic airstream, while the lower side resides in the still
air with the same pressure as on the upper side. The panel has length L = 0.5 m, a
uniform thickness h = 1.35 · 10−3 m, Young modulus E = 7.728 · 1010 N/m2, Poisson
ratio ν = 0.33 and density ρs = 2710 kg/m3. The flow conditions are given by
p∞ = 25714 Pa and ρ∞ = 0.4 kg/m3. The critical Mach number Macr

∞ that is, the
lowest free stream Mach number for which an unstable aeroelastic mode of the panel
appears, is given in the reference [PF01]. Using theoretical method the authors get
Macr

∞ ≈ 2.27 and using their numerical scheme Macr
∞ ≈ 2.23, which they consider an

“excellent agreement”.
First, we test the FSI methods with the FV scheme for different free stream Mach

numbers. The computational domain is depicted in Fig. 8.3, together with typi-
cal isolines of the pressure for one time instant with the free stream Mach number
Ma∞ = 2.2. The domain of solution is rather small, however due to the supersonic
nature of the flow possible perturbations resulting from the finite size of the com-
putational domain do not reach the oscillating panel. We have chosen the physical
time-step ∆t = 1 · 10−4, giving approx. 150 time-steps for one period.

The CFD method was selected with the following parameters: A uniform Carte-
sian mesh of 300× 100 elements (giving 100 elements along the profile) was used for
the flow domain, hereafter denoted as fine. The 3BDF time-stepping procedure was
used, together with the implicit dual-time stepping formulation. Linear least square
reconstruction with Barth’s limiter was employed and the solution of the Riemann
problem was approximated with the help of the Roe’s Riemann solver.

The panel was discretized by 60×2 QUAD9 (see Fig. 6.1) elements. The Galerkin
FEM method was equipped with the constant average acceleration method (γ = α =
0.5). The plane strain assumption was used.

The free-stream conditions were prescribed to the flow domain and the panel was
deflected with initial deflection

∆y0(x) = c·d(2x), d(x̃) = A cos(λx̃)+B sin(λx̃)+C cosh(λx̃)+D sinh(λx̃) (8.24)

with c = 0.002 and A = 1, B = −0.982502, C = −1, D = 0.982502, λ = 4.73004,
corresponding to the first mode of the panel [BSS02].

The integral of the deflection as a function of time for various Mach numbers
around the critical Mach number is plotted in Fig. 8.4. One can see that the critical
Mach number is about Macr

∞ = 2.2, which corresponds to the results presented in
[PF01].

Second, we solve the problem on the fully unstructured grid (see Fig. 8.5) for the
free stream Mach number Ma∞ = 2.2. The mesh consists of 3451 nodes and 6722
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Figure 8.3.: Panel flutter problem. Solution on fine mesh. Isolines of pressure for
one time instant, Ma∞ = 2.2.
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Figure 8.4.: Panel flutter problem. Solution on fine mesh. Dependence of the inte-
gral of deflection on time for different free stream Mach numbers.

178



8.2. Supersonic flutter of 2D flat plate

x

y

-4 -2 0 2 4

0

1

2

3

4

x

y

-4 -2 0 2 4

0

1

2

3

4

Figure 8.5.: Panel flutter problem. Domain of solution for unstructured mesh. Iso-
lines of pressure for one time instant, Ma∞ = 2.2.

triangular elements, giving 50 elements along the panel. We use CC FV scheme
with Barth’s limiter, LDA, N and Bx schemes, all with the 3BDF time integration.
Even though the flow is supersonic, the shock-waves are relatively weak and we can
expect acceptable capture of the shocks with the linear LDA scheme. All the other
parameters of the simulation remain the same.

The dependence of the integral of deflection on time is plotted in Fig. 8.6. The
results of the FV scheme correspond to the results of the computation on the fine
mesh. One can see very good agreement of the second order RD schemes with the
FV scheme.

The plotted results show a good agreement between each other and with theoret-
ical investigations, but there are still some open questions. The simulations were
repeated with different wall boundary conditions, namely the ones derived from the
weak Petrov–Galerkin formulation, marked as PG (see section 3.9.2.1) and the weak
boundary conditions due to Paillere [Pai95], marked P (see section 3.9.2.2). Results
obtained with these two formulations of the wall boundary conditions are given in
Fig. 8.7. First of all, the PG formulation was derived for Petrov–Galerkin schemes,
i.e. schemes with bounded distribution coefficients. These are linearity preserving
schemes in the RD framework. Neither N, nor Bx schemes belong to this class and
the derivation might not be valid. However, the formulation of the PG boundary
condition is equivalent (at least for the linear case) to the Van der Weide formulation
of wall boundary condition [vdW98], see section 3.9.2.1, (with modified distribution
coefficient), and in this case is not clear if the formulation of Weide does work for
the non-linearity preserving schemes. For the LDA scheme, being the most accurate
scheme, the difference is rather small. It it bigger for Bx the scheme. For N scheme,
the two different formulations of the boundary conditions give completely different
dynamic response. The suitable formulation of the boundary condition has to be
tested and the problem is still not fully solved.
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Figure 8.6.: Panel flutter problem. Solution on unstructured mesh. Dependence
of the integral of deflection on time for different numerical schemes.
Ma∞ = 2.2. Paillere’s boundary conditions.
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Figure 8.7.: Panel flutter problem. Solution on the unstructured mesh. Dependence
of the integral of deflection on time for different implementation of the
wall boundary conditions. P stands for boundary conditions due to
Paillere, PG stands for Petrov–Galerkin formulation of boundary con-
ditions. Ma∞ = 2.2.
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8.3. Transonic flutter of AGARD 455.6 wing

As a final test, a flutter computation of the AGARD 445.6 wing is presented. This is
a very classical test case, first measured in 1956 [JU56], then measured and computed
in 1962 [ECYLJTF63] (report [JU56] includes [ECYLJTF63] as appendix). The
finite element computation with modal shapes is later provided in [ECY87]. A
number of publications including this test case exist, note the recent book [HWS03],
with comparison of several state of the art computations.

We provide all the details regarding the construction of this test case, including
origin of used parameters, for the sake of clarity and repeatability. The conversion
of units is taken from [Mec73].

Two types of models were built for the experiments, a solid model and a weakened
model. There is a lack of detailed material properties of the wing in the references
[ECYLJTF63, ECY87]. However, in [YKM+03] it has been found, that the solid
model was made of Honduras mahagony (Swietenia macrophylla), see Fig. 8.8, with
elastic constants as in the Tab. 8.2. Precisely for this reason we have selected the
solid model for our flutter computations, despite the fact the weakened model was
more extensively tested and it is more often referred to in the literature.

Geometric data are taken from reference [ECY87]: quarter-chord sweep-back angle
of 45◦ and NACA 65A004 airfoil section in the stream-wise direction. The geometry
is presented in Fig. 8.9 together with numerical data. The panel span s = 2.500 ft
(=0.762 m), root chord 2bs = 1.833 ft (=0.5587 m) and tip chord 2bt = 1.208 ft
(=0.3682 m). The measurements were performed with “solid model 2”, measured
mass is m̄ = 0.14658 slugs (=2.1391 kg).

We will investigate stability of the elastic response near a point given by the free
stream Mach number Ma∞ = 0.92 and flutter speed index

Vf =
V

bsωα

√
µ̄

, (8.25)

given by Vf = 0.5214 [ECY87, pg. 50], with V the free stream gas velocity and
ωα = 2πfα the natural angular frequency of the wing in first uncoupled torsion
mode, which we will take from the reference. The measurements were performed
for Freon-12 gas, with specific heat ratio γ = 1.14 [ECY87, pg. 3]. To asses the
behavior of the method, we perform computations for different values of the flutter
speed index Vf , see Tab. 8.4. The last non-dimensional parameter is the mass
ratio[ECY87, pg. 38], given by

µ̄ =
m̄

ρv
, (8.26)

for our combination of the wing and the gas it is µ̄ = 9.300 [ECY87, pg. 51]. Symbol
m̄ is the measured mass of the wing given above, ρ is the density of the test medium
and v is the volume of the conical frustum having the stream-vise root chord as the
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8.3. Transonic flutter of AGARD 455.6 wing

Figure 8.8.: Honduras Mahagony (Swietenia macrophylla) [Mah06b, Mah06a]

E11 192.96·106 lbf/ft2 9238.9 MPa
E22 12.63·106 lbf/ft2 604.72 MPa
E33 21.11·106 lbf/ft2 1010.7 MPa

G12 13.02·106 lbf/ft2 623.40 MPa
G13 16.59·106 lbf/ft2 794.33 MPa
G23 5.53·106 lbf/ft2 264.77 MPa

ν12 0.034
ν13 0.033
ν23 0.326

Table 8.2.: Elastic constants of Honduras Mahagony (Swietenia macrophylla) taken
from [YKM+03]. Indexes 1, 2 and 3 denote longitudinal (fiber), tangen-
tial and radial directions
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Figure 8.9.: Geometry of the AGARD wing, taken from [ECY87, pg. 51].

lower base diameter, stream-vise tip chord as upper base diameter and the panel
span as height.

The surface of the cross-section of the half airfoil with unit cord is computed
numerically by using trapezoidal rule, giving P = 0.0135938 m2. The surface of the
cross-section at the root is then P1 = 2 · 0.0135938 · 0.55869842 = 0.0084864 m2, at
the tip it is P2 = 2 · 0.0135938 · 0.36819842 = 0.0036858 m2.

The volume (see e.g. [Rek95, I, pg. 105, eqn. 9]) of the wing is then

vw =
1

3
s(P1 + P2 +

√
P1P2) =

1

3
· 0.762 · (0.0084864 + 0.0036858

+
√

0.0084864 · 0.0036858) = 0.0045123 m3 (8.27)

The density of the material is then ρ = m̄/vw = 2.1391/0.0045123 = 474.056 kg/m3

8.3.1. Computational mesh

The wing was discretized using 350 tri-quadratic elements, 14 elements are along the
span, each element contains 27 nodes, see Fig. 8.10. The unstructured fluid mesh
was downloaded from the Internet [BKC00], generated by the group of C. Farhat.
It consists of 22014 nodes and 118480 tetrahedral elements.
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Figure 8.10.: AGARD 445.6 wing. Top: Fluid mesh, Mach number isolines in steady
state (initially deformed). Bottom: structural mesh, cross-section of
structural mesh with emphasized quadratic elements.

8.3.2. Modal analysis

As a first step, a modal analysis of the wing was performed. The direction of the
fibers is declined by 45◦ from the x-axis and the elastic tensor has to be transformed
in accordance. Frequencies resulting from the analysis are given in Tab. 8.3. The
difference from the computation is of order 5%. If a three time denser mesh is used,
the first modal frequency slightly increases such that the difference is about 4%. This
systematic difference can by caused by the fact that our model uses elastic constants
found in reference[YKM+03, Ano44]. These can be significantly different from the
material of the constructed wing. Also radial and tangential direction of fibers are
uncertain. Note, that we use a 3D anisotropic model, while the authors [ECY87]
use a simplified 2D model, moreover the elastic constants taken from [Ano44] were
modified: “Values moduli and Poisson’s ratio representing the anisotropic character
[. . . taken from [Ano44]. . . ] were modified slightly in order to duplicate as closely as
possible the measured modal frequencies and mode lines” [ECY87, pg. 2].

The isolines of deflection in z-direction for the computed modes are plotted in Fig.
8.11 and 8.12. Although the isolines are not in the same scale, the correspondence
is clear. Fig. 8.13 shows an axonometric plot of the modes.

The first four modes were used as the initial deflection for the fluid-structure com-
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Frequency, [Hz]
f1 f2 f3 f4 f5

Measured [ECYLJTF63] 14.10 69.30 50.70 127.10
2D FEM [ECY87] 14.1201 50.9125 68.9416 122.2556 160.5292
Present method 13.3645 45.6225 64.7223 113.513 157.599

Table 8.3.: AGARD 445.6 wing – solid model 2. Measured and computed modal
frequencies [ECY87] and computation by present method.

putation in the ratio 1:0.2:0.04:0.008. Maximal deflection of the wing corresponds
to ∆z ≈ 0.0125.

8.3.3. Steady flow solution – initial condition for FSI

Fluid-structure interaction computation starts from the steady state solution of the
flow-field around the wing in the deformed state. The flow regime is sufficiently
given by the Mach number and zero angle of attack, however for later use we set
correct flow-field parameters with respect to the flutter speed index.

The flutter speed index is given by (8.25). Natural circular frequency fα was
calculated in [ECYLJTF63] using procedure [JU56]. We didn’t recompute the value,
but we took fα = 50.68 Hz as [ECY87, pg. 48]. Root and tip half-chords bs, bt are
given above and volume of conical frustum is

v =
πs

3
(b2

s + bsbt + b2
t ). (8.28)

From the equation (8.26) gas density is

ρ =
m̄

vµ̄
, (8.29)

and from (8.25)
V = Vfbsωα

√
µ̄. (8.30)

From the definition of the Mach number

Ma =
V

a
= V

√
ρ

γp
(8.31)

the pressure is

p =
V 2ρ

Ma2γ
. (8.32)

The flow parameters are given in Tab. 8.4. The flow solution is self-similar, only
one computation is needed, the others are obtained by scaling velocity as Vf/Vfref
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Figure 8.11.: First three modes of AGARD 445.6 wing. Left: present method. Right:
calculation from reference [ECY87].

187



Chapter 8. Numerical results for complex fluid-structure interaction problems

Figure 8.12.: Forth and fifth mode of AGARD 445.6 wing. Left: present method.
Right: calculation from reference [ECY87].
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Figure 8.13.: AGARD 445.6 wing. Axonometric plot of the first six modes.
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Regime Flutter speed Vf ρ V p
index variation

Neutral 0% 0.52140 1.764526 141.4413 36584.789
Damping -5% 0.49533 1.764526 134.3692 33017.772
Damping -8% 0.47968 1.764526 130.1260 30965.365
Damping -10% 0.46926 1.764526 127.2972 29633.679

Table 8.4.: Computed regimes for the AGARD 445.6 wing. Ma∞ = 0.92

and the pressure as V 2
f /V 2

fref . The isolines of the Mach number for the steady state
solution are depicted in Fig. 8.10. The geometry is in the initially deformed state.
The whole flow-field is subsonic, there is a tiny supersonic packet at the front tip of
the wing.

8.3.4. Transonic flutter calculations

We start computations from the initial conditions described above. We have chosen
a time step ∆t = 0.0003, corresponding to about 120 time-steps per oscillation.
Dependence of the integral of the deflection on time t is depicted in Fig. 8.14. The
neutral response is slightly above 95 % of the measured velocity, corresponding to
an error in flutter speed index less than 5 %.

The measured flutter frequency is 172.1 radians/sec [ECY87, pg. 48], correspond-
ing to the period Tmeas = 0.036508. From Fig. 8.14, the period (computed from
the first three cycles) is T0% = 0.03866, T−5% = 0.0403333, T−8% = 0.0415333. The
flutter frequency error is then (T−5% − Tmeas)/Tmeas = 4.7 %.

The second method was the LDA scheme from section 3.7.3 with two different
boundary conditions, the first due to Paillere (section 3.9.2.2) and the second given
by the Petrov-Galerkin formulation, see section 3.9.2.1. The computations were
performed for the measured neutral response, see Fig. 8.15. The response in the
case of Paillere’s boundary conditions is almost perfectly neutral, while the Petrov-
Galerkin formulation gives roughly twice bigger growth of the initial perturbation
than the finite volume scheme. The flutter frequency obtained from the first three
periods from plot 8.15 is given in Tab. 8.5. The error in frequency, computed as
above, for the LDA scheme with Paillere’s boundary condition is less than 1 %,
which can be judged much more accurate than can be expected, taking into account
relatively simple method for elastic problems and the uncertainty in the value of the
elastic constants. The error in the frequency for the Petrov-Galerkin formulation of
the boundary conditions is less than 3 % and for the finite volume scheme about 2
%.
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Method Period T Error

Measured 0.036508
LDA Paillere 0.036265 0.66 %
LDA Petrov-Galerkin 0.035436 2.93 %
FV 0.035746 2.08 %

Table 8.5.: Flutter frequency for the AGARD 445.6 wing, comparison for the neutral
response regime. Influence of the boundary conditions.
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-0.005

0

0.005

100%
95%

92%

90%
Dry

Figure 8.14.: AGARD 445.6 wing. Time dependence of the volume integral of the
deflection for the velocity of 100 %, 95 %, 92 % and 90 % of the
measured neutral response. Comparison with the dry elastic response.
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8.3. Transonic flutter of AGARD 455.6 wing

t

∆z
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Figure 8.15.: AGARD 445.6 wing. Time dependence of the volume integral of the
deflection for the measured neutral response. Comparison of the FV
scheme and LDA scheme with different formulations of boundary con-
ditions.

No. of processors Speedup Efficiency

1 1 100 %
2 1.77 88.5 %
4 3.24 81.2 %

Table 8.6.: Parallel performance for the AGARD 445.6 wing.

8.3.5. Parallel performance

We have performed the simulations on a parallel cluster up to four processors. The
parallel efficiency, as defined in (4.49), together with the speedup is presented in
Tab. 8.6. The implementation is far from optimal, however a noticeable speedup
can be seen. The parallel efficiency problem is caused by the very coarse structural
mesh for the parallel solution in the current implementation.
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8.4. Conclusions

In this chapter, results from several examples of technically important fluid-structure
interaction problems were presented. All selected test cases are well known and
widely used as benchmarks. One can compare the performance of the presented
methods with own methods or other methods from the references.

The transonic flutter of the profile NACA64A010 was presented. The profile was
modeled as a rigid body with two degrees of freedom. The neutral, damped and
flutter response was reproduced.

The supersonic flutter of a 2D panel was selected as second test case. The problem
was solved on two different meshes, fine and unstructured. Different formulations of
numerical schemes and boundary conditions were studied. The critical Mach number
estimated from the computations using the finite volume scheme was Macr

∞ = 2.2,
while the theoretical value was Macr

∞ = 2.27 and from the reference [PF01] Macr
∞ =

2.23. The case was solved by the novel formulation of the LDA, N and Bx schemes,
confirming good performance of the LDA and the Bx schemes. The influence of the
boundary conditions was also considered.

As the last ultimate test case, the transonic flutter of the AGARD 445.6 wing was
considered. This is probably the most famous transonic flutter test case, partially
because lack of flutter data for the other technically relevant test cases. The modal
analysis of the wing was performed. The difference between the computed frequency
and the measured frequency of the first mode is about 5 %. The computation
using the FV scheme was performed. Computed flutter speed index was lower than
measured by a difference less than 5 %. Then the computations were performed with
the LDA scheme with two different boundary conditions for the case of measured
neutral response. In one case, the resulting response was almost exactly neutral, for
the second version of the boundary conditions the difference was bigger. The error
of the flutter frequency was less than 1 % in one case and about 3 % in the second.

All the presented results can be considered very good. However, it has to be
mentioned that for reliable fluid-structure computations the method has to be thor-
oughly validated.

192



Chapter 9.

Conclusions

The goals stated in the beginning of presented work were successfully fulfilled.

1. A numerical method based on residual distribution schemes was developed and
several extensions for moving mesh simulation were proposed. We have ana-
lyzed the positivity of first order schemes, showing that the proposed extension
satisfies a discrete maximum principle for a scalar conservation law. We have
also analyzed the positivity and accuracy requirements of nonlinear schemes
constructed as a linear combination of low and high order schemes. We have
proposed and tested a new nonlinear scheme built as a convex combination of
the LDA and the N scheme, named Bx scheme.

2. We have developed a finite volume method in both cell centered and vertex
centered settings, including the capability to handle moving meshes. We have
tested the influence of renumbering degrees of freedom for a parallel implicit
method, showing its importance for the parallel performance.

3. We have conducted a number of computational experiments, starting from
scalar advection problems, Burgers equation up to the Euler equations, includ-
ing the technically important case of transonic flow past the Onera M6 wing.
The tests were performed in two and three spatial dimensions, for steady and
unsteady problems, including problems with deforming meshes. A number of
convergence studies for scalar cases were performed, also in three dimensions,
giving opportunity to directly compare the accuracy of different schemes for
the same test case.

4. A finite element method for the structural problem has been developed in two
and three dimensions including large displacement formulation and handling
of anisotropic material properties. The modal analysis capabilities were in-
cluded, as they are needed for the validation of the structural model and the
prescription of the initial conditions in the fluid–structure interaction problem.

5. A numerical method for fluid–structure interaction was developed and coded.
The numerical method for the fluid flow is based on the schemes developed
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in the first part of the work. Interface boundary conditions were developed
and validated. The mesh motion algorithm uses the finite element method to
find a nodal displacement. The method was validated for 2D transonic flow
past a NACA 64A010 airfoil, where the structural dynamics is modeled by a
system of two ordinary differential equations. The flutter, neutral and damp-
ing response were correctly reproduced. A flutter boundary for one selected
Mach number of a two-dimensional elastic panel problem was computed and
compared with theoretical results and solutions known from the literature.
Finally, the method was tested on the 3D AGARD 445.6 wing test case. We
have compared the solution using different developed CFD methods, both of
the residual distribution and finite volume type.

9.1. Original contribution of this thesis

The main achievements of the thesis are summarized below.

• Development of the numerical methods based on residual distribution (RD)
schemes and their extension for simulations on moving meshes.

Chapter 3 is devoted to the development of the residual distribution schemes
(RDS). We have shown that a positive multidimensional upwind scheme, which
is a convex combination of the N scheme and the LDA scheme, does not exist,
see Theorem 11, page 38. We have also proven, that any scalar multidimen-
sional upwind scheme in two dimension can be constructed from the blend of
two other schemes, e.g. N scheme and LDA scheme, see Theorem 12.

A new RD scheme has been developed, see Chapter 3.5.5, page 41, based
on physical considerations for blending the LDA and N schemes, named Bx
scheme. The Bx scheme is constructed such that the LDA scheme is active in
smooth parts of the flow and the N scheme introduces higher order error, giving
second order accuracy in smooth parts of the flow. The blending coefficient is
smooth, leading to superior iterative convergence properties. The Bx scheme is
extended for unsteady flow computations, taking into account the mass matrix
of the RD schemes.

We have extended several unsteady versions of the RD schemes for compu-
tations on moving meshes, see section 3.7, page 59 and further. Unlike in
[MSD03], our extension preserves the positivity of the N scheme, allowing to
prove a discrete maximum principle for scalar problems. Then, we have de-
rived the extension of several versions of the space-time RD schemes and the
extension of the LDA scheme with mass matrix. We have used the analogy
with Petrov-Galerkin formulation of the LDA scheme. Unlike other authors,
see e.g. [SFH05], we do not need to compute the time derivative of the mass
matrix, which could be a prohibitively expensive operation for the RD schemes.
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The method was implemented for large scale computations, i.e. the program
is written to solve 3D problems in parallel using an implicit time integration
procedure.

The connection between the linear, linearity preserving residual distribution
schemes and the Petrov-Galerkin formulation allows us to formulate a consis-
tent boundary conditions treatment. In particular, we have shown the con-
nection between the Petrov-Galerkin formulation and van der Weide’s formu-
lation, see section 3.9.2.1, page 69. We have also formulated a condition for
conservativity of wall boundary conditions.

• Development of the state-of-the-art finite volume (FV) methods.

We have considered the stated-of-the-art finite volume method, which uses un-
structured meshes and numerical flux obtained by solving a Riemann problem
at each face of the finite volume. We have used linear least square reconstruc-
tion with limiter, see [BJ89], or nonlinear weight, called WLSQR (WENO)
method, see e.g. [Für06]. The extension of the method for moving mesh com-
putations was done according to [KF99]. The computer implementation allows
to solve 3D industrial type flows, again using a parallel implicit time integra-
tion procedure.

We have compared parallel element renumbering strategies and shown a large
influence of the mesh numbering on the computational speed-up, see section
4.4, page 84.

• Evaluation of the performance and comparison of the schemes for steady and
unsteady flow problems.

The finite volume schemes and residual distribution schemes are first compared
in unsteady version via a modified equation approach, see Section 5.1, page
90. We have shown that both methods have a dispersion error term of order
O(∆x2) and fourth order dissipation term scaled as O(∆x3). Our theoreti-
cal results were demonstrated numerically for the solution of a 1D advection
problem of smooth profile and top-hat.

In the subsequent part of Section 5, we have systematically performed numer-
ical experiments to show the behavior of the schemes for a number of problem
types. It includes smooth problems and problems with shock waves; scalar and
system of equations; and problems involving moving meshes simulations. The
RD schemes can be directly compared with cell centered and vertex centered
formulations of the FV scheme. When it was possible, we have estimated the
accuracy order by convergence study of the error in the appropriate norm.
We have shown the definitive superiority of the LDA scheme in its class; and
the high accuracy of the cell centered formulation of the finite volume scheme
with Barth limiter for non-linear schemes. We have also demonstrated the
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unsatisfactory performance of the N-modified scheme and the superiority of
the Bx scheme. The vertex centered formulation of the FV scheme was giving
consistently worse results than the RD and cell centered FV methods.

• Development of a method for aeroelastic computations and performance test.

The finite element method was developed for the elastic continuum simula-
tions. The method is simple, however it includes the key ingredients to solve
the elastic behavior of the wooden wing: anisotropic elastic material; formula-
tion for small and large displacements; possibility to solve unsteady problems
and modal analysis. We have shown the practical necessity to use elements
with at least quadratic trial functions, see Section 6.5, page 156. The same
method was later used for the computational fluid dynamics (CFD) mesh mo-
tion. The CFD mesh is large and our parallel implementation of the algorithm
is an advantage.

The fluid-structure interaction problem was formulated using the three field
approach: computation of fluid dynamics on moving meshes, computational
structured dynamics in Lagrangian formulation and mesh motion algorithm.
The three problems are solved together using a simple sub-iteration approach.

The performance of the method is demonstrated in Chapter 8, page 171. As
the simpler test we solve transonic flutter of the NACA 64A010 airfoil. The
airfoil motion is described by the system of ordinary differential equations, we
use Runge-Kutta scheme to solve the ODEs. The second test includes the 2D
panel flutter problem. We asses the performance of the method in comparison
with the theoretical solution.

As the final test in this thesis, we solve the transonic flutter problem of an
AGARD 455.6 wing in three spatial dimensions. We describe the full setup
of the problem, including the modal analysis and flow conditions for sake of
clarity and repeatability. Then, we have compared the solution obtained with
the FV scheme and RD scheme, also with experimental data.

Some of the results obtained during the work were published, the most important
publications include:

• Extension of the RD schemes for computations on moving meshes [DD05b,
DDF05a, DD06a, DD06c, DD06b].

• Blended (Bx) scheme [DD05a, DD06d].

• Fluid-structure interaction problem of an airfoil with two degrees of freedom
[DDF05b].

• Fluid-structure interaction problem of the AGARD 445.6 wing [DFDF07].
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• Comparison of cell centered and vertex centered formulation of finite volume
scheme [DDF06].

9.2. Conclusions and further perspectives

The finite volume method proved to be an accurate and reliable method for fluid
flow simulations. The methods developed in the course of this thesis have been vali-
dated on a number of test cases, including internal turbomachinery flows (transonic
axial and radial turbines) and external flows, i.e. airfoils and wings. Those results
are not included in the thesis, for space limitations, but they are published in scien-
tific journals [DFH05, BUK+03, DFF+03a, DFH03, FDHK02, DFF+01], conference
proceedings abroad [DFF+04a, DFF+04b, DFH04, DFF+03c, DFF+03d, DFF+03b,
DFF+02], conferences in the Czech Republic and internal research reports of the
Department of Technical Mathematics. The method was extended for the turbulent
flows, which is also not included here. For the references we give [DFH05] and the
internal research reports of the Department of Technical Mathematics. For the fur-
ther extension, we recommend to consider a better approximation of the Jacobian
for the implicit method, to improve boundary condition treatment and to include
higher order implicit time integration method (higher than two).

The residual distribution schemes are much less developed in comparison to the
finite volume methods. The LDA scheme was shown to be superiorly accurate with
respect to the finite volume schemes, while keeping enough dissipativity to compute
flows with weak shock waves and discontinuities. The N-modified scheme was be-
lieved to be superior in terms of accuracy to the finite volume schemes, whereas
the comparison presented in chapter 5 has raised doubts about this statement. The
Bx scheme was intended as the replacement, however, the shock capturing operator
does not stand on solid mathematical basis, it is rather an ad hoc solution. A lot of
work is still needed for the improvement of the nonlinear schemes. The only nonlin-
ear unsteady shock capturing residual distribution scheme working sufficiently well
for large time-steps seems to be the Bx scheme, for the time being. There are itera-
tive convergence problems for the two layer space-time N-modified scheme with large
time steps, which effectively prevents its use for fluid-structure interaction problems.
The possible extension for viscous problems is described in e.g. [vdW98, DRAD06],
or for space-time schemes of [CD02] in [DRD03b, DRD03a, DRD05].

This is a first research on the development of second order accurate RD schemes
for aeroelastic simulations, and the proposed second order extensions are the first
work known to the author concerning this topic. Although very encouraging results
were obtained, it will still take a lot of effort to finish the methods such that routine
aeroelastic simulations would be possible.

Considering the method for elastic simulations, a relatively simple formulation
was used. For realistic simulations of aircrafts the model has to be extended to
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consider internal mechanics of the wings with all the equipment normally modeled,
such as rods, bars, springs and honey combs. Contrary to the fluid flow modeling,
computational solid mechanics methods are well developed and reliable and com-
mercial software packages are readily available. On side of post-processing of the
results, identification of the dynamics parameters has to be improved, one of the
proposed methods is the ERA algorithm [JP77].
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Appendix A.

Appendix

A.1. Smooth compression of gas inside the piston

cylinder

This test case is motivated by internal aerodynamics problems, namely flow in piston
engines. A gas at rest is enclosed between two walls. One of the walls slowly starts
to move. This problem can be solved by the method of characteristics [ZH76] until
the head of the pressure wave reflects from the other wall or a shock is created. We
have used a domain of length l = 5 and initial conditions u0 = 0, ρ0 = 1.4 and
p0 = 1. The piston starts to accelerate with derivative of acceleration

...
x = 0.2. The

solution at t = 4 from the method of characteristic is given in the table below.

# x Mach u rho p

1 2.133333e+00 1.212121e+00 1.600000e+00 5.610450e+00 6.982606e+00

2 2.185243e+00 1.193759e+00 1.568160e+00 5.476419e+00 6.750191e+00

3 2.235394e+00 1.175405e+00 1.536640e+00 5.346270e+00 6.526674e+00

4 2.283819e+00 1.157062e+00 1.505440e+00 5.219890e+00 6.311705e+00

5 2.330552e+00 1.138734e+00 1.474560e+00 5.097172e+00 6.104945e+00

6 2.375627e+00 1.120422e+00 1.444000e+00 4.978009e+00 5.906071e+00

7 2.419075e+00 1.102130e+00 1.413760e+00 4.862298e+00 5.714772e+00

8 2.460932e+00 1.083862e+00 1.383840e+00 4.749938e+00 5.530749e+00

9 2.501229e+00 1.065619e+00 1.354240e+00 4.640835e+00 5.353715e+00

10 2.540001e+00 1.047406e+00 1.324960e+00 4.534892e+00 5.183397e+00

11 2.577280e+00 1.029225e+00 1.296000e+00 4.432019e+00 5.019529e+00

12 2.613100e+00 1.011080e+00 1.267360e+00 4.332127e+00 4.861860e+00

13 2.647494e+00 9.929733e-01 1.239040e+00 4.235131e+00 4.710146e+00

14 2.680495e+00 9.749092e-01 1.211040e+00 4.140947e+00 4.564154e+00

15 2.712137e+00 9.568908e-01 1.183360e+00 4.049493e+00 4.423660e+00

16 2.742453e+00 9.389214e-01 1.156000e+00 3.960692e+00 4.288449e+00

17 2.771476e+00 9.210045e-01 1.128960e+00 3.874467e+00 4.158316e+00

18 2.799240e+00 9.031438e-01 1.102240e+00 3.790744e+00 4.033063e+00

19 2.825777e+00 8.853426e-01 1.075840e+00 3.709451e+00 3.912499e+00

20 2.851122e+00 8.676047e-01 1.049760e+00 3.630519e+00 3.796444e+00
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21 2.875307e+00 8.499336e-01 1.024000e+00 3.553881e+00 3.684722e+00

22 2.898365e+00 8.323331e-01 9.985600e-01 3.479470e+00 3.577165e+00

23 2.920330e+00 8.148069e-01 9.734400e-01 3.407223e+00 3.473614e+00

24 2.941236e+00 7.973587e-01 9.486400e-01 3.337079e+00 3.373912e+00

25 2.961114e+00 7.799924e-01 9.241600e-01 3.268977e+00 3.277913e+00

26 2.980000e+00 7.627119e-01 9.000000e-01 3.202861e+00 3.185474e+00

27 2.997926e+00 7.455209e-01 8.761600e-01 3.138673e+00 3.096458e+00

28 3.014924e+00 7.284234e-01 8.526400e-01 3.076359e+00 3.010736e+00

29 3.031030e+00 7.114234e-01 8.294400e-01 3.015867e+00 2.928180e+00

30 3.046275e+00 6.945248e-01 8.065600e-01 2.957145e+00 2.848672e+00

31 3.060693e+00 6.777317e-01 7.840000e-01 2.900143e+00 2.772094e+00

32 3.074318e+00 6.610480e-01 7.617600e-01 2.844814e+00 2.698337e+00

33 3.087183e+00 6.444779e-01 7.398400e-01 2.791110e+00 2.627293e+00

34 3.099320e+00 6.280254e-01 7.182400e-01 2.738987e+00 2.558861e+00

35 3.110764e+00 6.116947e-01 6.969600e-01 2.688400e+00 2.492942e+00

36 3.121547e+00 5.954898e-01 6.760000e-01 2.639307e+00 2.429443e+00

37 3.131703e+00 5.794149e-01 6.553600e-01 2.591668e+00 2.368273e+00

38 3.141265e+00 5.634743e-01 6.350400e-01 2.545441e+00 2.309346e+00

39 3.150266e+00 5.476720e-01 6.150400e-01 2.500589e+00 2.252579e+00

40 3.158740e+00 5.320122e-01 5.953600e-01 2.457074e+00 2.197891e+00

41 3.166720e+00 5.164993e-01 5.760000e-01 2.414859e+00 2.145208e+00

42 3.174239e+00 5.011373e-01 5.569600e-01 2.373911e+00 2.094454e+00

43 3.181331e+00 4.859305e-01 5.382400e-01 2.334194e+00 2.045561e+00

44 3.188028e+00 4.708832e-01 5.198400e-01 2.295675e+00 1.998460e+00

45 3.194365e+00 4.559995e-01 5.017600e-01 2.258324e+00 1.953086e+00

46 3.200373e+00 4.412837e-01 4.840000e-01 2.222108e+00 1.909379e+00

47 3.206088e+00 4.267400e-01 4.665600e-01 2.186999e+00 1.867277e+00

48 3.211541e+00 4.123726e-01 4.494400e-01 2.152967e+00 1.826725e+00

49 3.216766e+00 3.981858e-01 4.326400e-01 2.119984e+00 1.787666e+00

50 3.221797e+00 3.841836e-01 4.161600e-01 2.088024e+00 1.750050e+00

51 3.226667e+00 3.703704e-01 4.000000e-01 2.057059e+00 1.713824e+00

52 3.231408e+00 3.567502e-01 3.841600e-01 2.027066e+00 1.678942e+00

53 3.236055e+00 3.433272e-01 3.686400e-01 1.998018e+00 1.645356e+00

54 3.240640e+00 3.301055e-01 3.534400e-01 1.969893e+00 1.613023e+00

55 3.245198e+00 3.170893e-01 3.385600e-01 1.942668e+00 1.581899e+00

56 3.249760e+00 3.042825e-01 3.240000e-01 1.916321e+00 1.551945e+00

57 3.254361e+00 2.916893e-01 3.097600e-01 1.890830e+00 1.523120e+00

58 3.259033e+00 2.793136e-01 2.958400e-01 1.866175e+00 1.495388e+00

59 3.263811e+00 2.671594e-01 2.822400e-01 1.842335e+00 1.468713e+00

60 3.268726e+00 2.552306e-01 2.689600e-01 1.819292e+00 1.443060e+00

61 3.273813e+00 2.435312e-01 2.560000e-01 1.797028e+00 1.418396e+00

62 3.279105e+00 2.320649e-01 2.433600e-01 1.775523e+00 1.394690e+00

63 3.284635e+00 2.208356e-01 2.310400e-01 1.754762e+00 1.371912e+00

64 3.290437e+00 2.098470e-01 2.190400e-01 1.734727e+00 1.350033e+00
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65 3.296543e+00 1.991028e-01 2.073600e-01 1.715402e+00 1.329025e+00

66 3.302987e+00 1.886066e-01 1.960000e-01 1.696773e+00 1.308862e+00

67 3.309802e+00 1.783620e-01 1.849600e-01 1.678824e+00 1.289519e+00

68 3.317021e+00 1.683726e-01 1.742400e-01 1.661540e+00 1.270972e+00

69 3.324679e+00 1.586416e-01 1.638400e-01 1.644909e+00 1.253197e+00

70 3.332807e+00 1.491726e-01 1.537600e-01 1.628917e+00 1.236173e+00

71 3.341440e+00 1.399689e-01 1.440000e-01 1.613551e+00 1.219879e+00

72 3.350610e+00 1.310336e-01 1.345600e-01 1.598800e+00 1.204294e+00

73 3.360352e+00 1.223700e-01 1.254400e-01 1.584652e+00 1.189400e+00

74 3.370697e+00 1.139811e-01 1.166400e-01 1.571095e+00 1.175179e+00

75 3.381680e+00 1.058698e-01 1.081600e-01 1.558118e+00 1.161613e+00

76 3.393333e+00 9.803922e-02 1.000000e-01 1.545713e+00 1.148686e+00

77 3.405691e+00 9.049205e-02 9.216000e-02 1.533869e+00 1.136382e+00

78 3.418786e+00 8.323106e-02 8.464000e-02 1.522576e+00 1.124686e+00

79 3.432651e+00 7.625890e-02 7.744000e-02 1.511827e+00 1.113586e+00

80 3.447320e+00 6.957811e-02 7.056000e-02 1.501612e+00 1.103066e+00

81 3.462827e+00 6.319115e-02 6.400000e-02 1.491923e+00 1.093115e+00

82 3.479203e+00 5.710038e-02 5.776000e-02 1.482754e+00 1.083721e+00

83 3.496484e+00 5.130804e-02 5.184000e-02 1.474097e+00 1.074873e+00

84 3.514701e+00 4.581629e-02 4.624000e-02 1.465944e+00 1.066560e+00

85 3.533889e+00 4.062718e-02 4.096000e-02 1.458291e+00 1.058773e+00

86 3.554080e+00 3.574265e-02 3.600000e-02 1.451131e+00 1.051502e+00

87 3.575308e+00 3.116454e-02 3.136000e-02 1.444458e+00 1.044739e+00

88 3.597606e+00 2.689455e-02 2.704000e-02 1.438268e+00 1.038476e+00

89 3.621007e+00 2.293432e-02 2.304000e-02 1.432555e+00 1.032705e+00

90 3.645545e+00 1.928533e-02 1.936000e-02 1.427315e+00 1.027421e+00

91 3.671253e+00 1.594896e-02 1.600000e-02 1.422544e+00 1.022616e+00

92 3.698164e+00 1.292649e-02 1.296000e-02 1.418238e+00 1.018286e+00

93 3.726312e+00 1.021907e-02 1.024000e-02 1.414395e+00 1.014424e+00

94 3.755729e+00 7.827726e-03 7.840000e-03 1.411010e+00 1.011028e+00

95 3.786450e+00 5.753372e-03 5.760000e-03 1.408083e+00 1.008092e+00

96 3.818507e+00 3.996803e-03 4.000000e-03 1.405609e+00 1.005613e+00

97 3.851933e+00 2.558690e-03 2.560000e-03 1.403588e+00 1.003590e+00

98 3.886762e+00 1.439585e-03 1.440000e-03 1.402017e+00 1.002018e+00

99 3.923028e+00 6.399181e-04 6.400000e-04 1.400896e+00 1.000896e+00

100 3.960762e+00 1.599949e-04 1.600000e-04 1.400224e+00 1.000224e+00

101 5.000000e+00 0.000000e+00 0.000000e+00 1.400000e+00 1.000000e+00

A.2. Snehurka evolution

Once upon a time, late one evening May 2002, approximately 11 p.m. a time had
come to write a new CFD code. The code was intended to replace the overly complex
bob2d code and work in one, two and three spatial dimensions. The original C
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J. Př́ıhoda and K. Kozel, editors, Proceedings of “Topical Problems
of Fluid Mechanics 2006”, pages 27–30. IT CAS CZ, February 2006.
ISBN 80-85918-98-6. 61, 196
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sonic flutter of naca 64a010 profile using a finite volume scheme. In
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[Mar99] F. Marš́ık. Termodynamika kontinua. Academia, Praha, 1999. ISBN
80-200-0758-X. In Czech. 24, 25

[Mec73] E. A. Mechtly. The international system of units. Physical constants
and conversion factors. Second revision. Technical Report NASA
SP–7012, NASA, 1973. 182

[Met06] Metis home page, 2006. URL http://glaros.dtc.umn.edu/

gkhome/metis/metis. 68, 85

[Meu99] G. Meurant. Computer Solution of Large Linear Systems, volume 28
of Studies in Mathematics and Its Applications. North-Holland, 1999.
ISBN 0-444-50169-X. 84

[Mez02] M. Mezine. Conception de Schémas Distributifs pour
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