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Chapter 1

Introduction

Geometry represents real world objects that often change, move, are transformed or
manipulated. The study of geometric reconfiguration analyzes the transformations of
such geometric objects under simple rules and constraints. By composing elementary
transformations, complex behaviors emerge, which, if understood, can lead to a deep
comprehension of those objects, and consequently of the disciplines that study them.
We start with the following example: a linkage is a sequence of fixed-length disjoint
straight bars (or edges) attached together at their endpoints using joints around which
the bars can rotate freely. Now, suppose you are given such a linkage in a fairly tangled
configuration. Can you move the edges continuously, without bending them or altering
their lengths, without letting edges cross, and keeping them attached at their joints and

reach a straight configuration, i.e., where all edges are on a same line?

A

Figure 1.1: A locked universal chain with 5 bars. Figure from [DLOS03].

While for some 3D linkages with only 5 edges, this is known to be impossible (we
then say the linkage is locked, see Figure 1.1), some restrictions on the starting config-
uration suffice to ensure straightening is always achievable (e.g. all edges in a plane).

Still, elementary variants of this problem remain elusive, for instance, if we restrict our
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attention to linkages where all edges are of the same length, it is unknown whether there
exists a linkage that is locked or if any configuration can be straightened.

Linkages are elementary, and can be used, for example, to study the range of motions
of robotic arms. The reconfigurations of equilateral polygons are of intense interest to
knot theorists as well. In biology, they are often used to represent the backbone of
proteins. One of our hopes is that elementary questions such as the one mentioned above
might help in understanding of how proteins fold, which is one of the most important
challenges of bioinformatics, or at least to reduce the computational power required to
simulate a folding motion.

This can be exemplified by considering the computational counterpart of the above
question: given two specific configurations of a chain, can you reconfigure from one to
the other? For unconstrained 3D linkages, this problem has recently been shown to
be PSPACE-complete, while for some of the more restricted configurations mentioned
above, the problem is trivial: the answer is always yes. Yet knowing that the answer
is yes is not necessarily the end of the story, and if for some classes of configurations
straightenability is guaranteed, it does not necessarily mean that the path to the straight
configuration is known or easy to find. These are only a few of the problems we discuss
in this thesis.

This work is not intended to be an exhaustive survey of geometric configuration.
Several excellent surveys have been published on the subject [DO05, O’R07], including a
very recent 450 pages book by Erik D. Demaine and Joseph O'Rourke [DOO07]. Instead,
we will focus on some key topics where we have made a contribution, or where we feel
advances are within reach.

In the next chapter, we begin by discussing the reconfiguration of linkages in the
plane and in R® under continuous motions. After defining the problem (Section 2.2), we
discuss which 2D linkages can lock or not and how the situation changes if we thicken
the bars of a linkage or replace them by polygons [CDD*] (Section 2.3). We then turn to
linkages in 3D and perform a nearly exhaustive analysis of which combinations of small
chains can lock and/or interlock [DLOS03, DLOS02, GLO*04] (Section 2.4). We then
focus on the motions of 3D linkages for which the angle between adjacent bars is fixed
[ADD*02] (Section 2.5) and devise a model connecting our theories to that of protein
folding in molecular biology [DLOO06] (Section 2.6)

In Chapter 3, we analyze combinatorial reconfigurations of linkages, i.e. when the
number of possible operations that can be applied on a linkage is finite. After describing
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the background, the pocket flip problem by Erdés and the flipturn operation (Sections 3.1
and 3.2), we present a more thorough analysis of operations that permute the order of
the edges of linkage [ABD02, ABB*] (Section 3.3).

Finally, in Chapter 4 we discuss several problems related to the unfolding of polyhe-
dra: the unfolding of polyhedral bands [ADL*] (Section 4.1) and of orthogonal polyhe-
dra [DIL] (Section 4.2), and how to wrap smooth convex surfaces with a piece of paper
[DDILO7] (Section 4.3).

Most of the results described in this thesis have been published in a series of articles
[CDD*, DLOS03, DLOS02, GLO*04, ADD*02, DLO06, ABD*02, ABB*, ADL™*, DIL,
DDILO7]. A copy of these articles is provided in the appendix.



Chapter 2
Linkages

As mentioned in the introduction, a linkage (or polygonal chain or just chain) is a
sequence of fixed-length bars (also called links or edges) connected at their endpoints
(or vertices) using joints.

A configuration describes the position of every edge in space such that all edge lengths
are respected. The configuration will be called simple if no two edges intersect except at
their joints. Constraints can be imposed on the joints. For example, if the angle between
any two consecutive edges is fixed, the chain is called a fized-angle linkage.

In this chapter, we discuss reconfigurations of linkages under continuous motions.

Contents
2.1 Definitions
2.2 Reachability
2.3 2D Chains of Polygons
2.4 Small (inter)locked linkages
2.5 Flat to flat

2.6 Protein machine
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2.1 Definitions

The polygonal chain P in R? has n+ 1 vertices V = (vp, ..., vy), and is specified by the
fixed edge lengths d; between v; and vi4y, i = 0,...,n — 1. We write P[i,j], i < j, for
the polygonal subchain composed of vertices v;, ..., v;. Internal vertices vy,...,v,—) are
called joints. A closed chain is a chain that connects its two endpoints, i.e., vg = vy.
Otherwise, the chain is open.

A configuration Q = (qo, . ..,qn) of the chain P (see Fig. 2.1) is an embedding of P
into RY, i.e., a mapping of each vertex v; to a point ¢; € RY, satisfying the constraints
that the distance between ¢; and g;+; is d;. The points ¢; and ¢;4+) are connected by a
straight line segment e;.

9i+2

9i.1

49;

Figure 2.1: Notation for a configuration Q. Figure from [DLOO06].

Thus, a configuration in R? can be specified by the position of eg and clockwise turn
angles 6; at each vertex v, i = 1,...,n — 1. A configuration in R® can be specified by
the position of eg and e, turn angles #;, and dihedral angles §;, i = 1,...,n — 2, where
d; is the angle between half-planes e;e;_; and e;e;y; whose boundaries contain e;, and
whose interiors contain e;_; and e;; respectively. The configuration is simple if no two
nonadjacent segments intersect.

In R3, we will discuss several restrictions to valid configurations. In a rigid chain,
values of turn angles ¢; and dihedral angles §; are specified along with the edge lengths
d; in the definition of the chain, and a configuration of that chain must satisfy those
constraints. The position of a rigid chain can thus be fully specified by the position of
edges ep and e;. In a fized-angle chain (also sometimes called dihedral or revolute), only
values of the turn angles 6; are specified along with the edge lengths d; in the definition
of the chain. A configuration can thus be described by the position of ey and e; and the
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dihedral angles d;. A fixed-angle chain where all angles §; < a forsome 0 < a < m, P is
called a (< a)-chain.!

The most general type of chain, in which only edge lengths are specified, is called
fexible.

A motion M = (mg,...,my,) of a chain P is a list of n + 1 continuous functions
m; : [0,00] = R%, i =0,...,n, such that M(t) = (mg(t),...,mn(t)) is a configuration of
P for all t € [0,00]. The motion is said to be simple if all such configurations M(t) are
simple. We often assume that the motion is finite in the sense that, after some time T,
M becomes independent of t.

The configuration space of a chain P is the set of simple configurations of that chain.
Then a simple motion can be seen as the parametric equation of a connected curve in

the configuration space.

2.2 Reachability

The main problem that will be studied throughout this chapter is that of reachability:

motion M that transforms Q, into Q2, i.e. M(0) = Q) and M(o0) = Q27
Note that this is equivalent to asking if Q; and Q2 are in the same component of the

[Problem 2.1 Given two configurations Q; and Q2 of a same chain P, is there a (simple)

configuration space of P. This problem has many facets each of which will be considered
in turn. Already, as we saw above, the definition of chains and configurations come in
many flavors: dimension of the space, type of joints etc., and more refinements of those
will be defined along the way. Each of these variants will motivate an equal number of
reachability questions to solve.

Although reachability is stated as a decision problem, of which the complexity will
have to be analyzed, it is natural to first ask whether the answer to Problem 2.1 is
always “Yes”, i.e., whether the configuration space is always connected. In such situa-
tions, we would talk about a universality result. The decision problem in that case is
computationally trivial, but this does not necessarily imply that it is easy to find the
transforming motion M.

The complexity of deciding reachability is only one of the computational questions
that can be asked. Another important one is that of the complexity of the simplest

motion for transforming a chain into another, as well as the complexity of computing

'Some work [ADD*02, ADM*02] focuses on the angle between adjacent edges, which for us is m — a.
Thus "nonacute chains” in that work corresponds to (< x/2)-chains here.
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such a simple motion. This will require defining the complexity of a motion, and there
several models have been considered.

One standard technique for proving a universality result is to define a canonical
configuration for a chain. For example in the case of open universal chains, the canonical
configuration will often be chosen to be the straight configuration, in which all turn
angles #; have value 0. A configuration or a chain that can always reach the straight
configuration will be qualified of straightenable. Then, if one can show that both @, and
@ are straightenable, then they can reach each other by combining the straightening
motion from @; and the reverse of the straightening motion from Q. More generally, if
both chains can reach some canonical configuration, then they can reach each other.

However, it is often the case that a single canonical configuration is difficult to define,
and it is instead more natural to consider a class of canonical configurations. For example,
for closed universal chains, we will define conver configurations, and a chain that can
reach some convex configuration will be qualified of convezifiable. Likewise, for fixed-
angle chains in R®, we define a flat configuration to be a simple configuration such that
all edges and vertices lie in a common plane. A chain or a configuration that can reach
some flat configuration will be called flattenable. Then, in order to follow the same
reasoning as before, it will be necessary to show that any canonical configuration in
the class can reach any other. Thus this motivates the study of reachability and the
search for universality results in restricted classes of configurations (such as convex or
flat configurations).

While many classes of chains and configurations exhibit universality, many others do
not. In order to show this, it will suffice to describe two configurations @ and Q2 of a
same chain P and prove that no motion exists that can transform one into the other.
When Q3 is a canonical configuration (e.g. @) is not straightenable), then we say that Q
is locked. The existence of locked configurations is fundamental in many respects. They
not only to demonstrate the absence of a universality result, but they have also helped in
gadgets that were used in proving the intractability of some versions of the reachability
problem. Furthermore, as we show in [DLOO06], if small locked chains exist, then the
class of configurations that can reach the canonical configuration is a vanishingly small
portion of the entire configuration space as n, the number of links, grows.

Note that claiming the existence of a locked configuration is equivalent to stating that
the configuration space is not connected. Thus, the validity of the claim is independent

of the choice of the canonical configuration(s). Because of this, we will allow ourselves to
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claim the existence of locked configurations even when the canonical configuration has
not been explicitly defined.

We also study the reconfiguration of several of chains. The same reachability ques-
tions can then be asked, and be enriched with the concept of separability. A configuration
of two or more chains is said to be separable if there is a simple motion that moves them
arbitrarily far apart. If no such motion exist, the configuration is said to be interlocked.
Notice that the existence of an interlocked configuration implies that the configuration
space is not connected, while the converse is not necessarily true.

While seemingly simple, the question? of whether a chain can be locked in R? has
challenged researchers for over 25 years until it was finally answered negatively in 2000 by
Connelly, Demaine, and Rote [CDR03]. The proof relies on techniques borrowed from
rigidity theory and convex programming, as well as the concept of ezpansive motions
(motions where every pair of points on the chain moves apart). Since then, two further
algorithms for straightening open chains and convexifying closed chains were presented,
one using the theory of frameworks and pseudo-triangulations [Str00] and the other
by minimizing some energy function [CDIO04]. A complete history of this important
discovery can be found in [DO05, DO07, Sos01].

In R3, it is known that a single open chain having as few as 5 bars can be locked,
see Figure 1.1. Two proofs of this exist, the first proof for this by Canterella and
Johnston [CJ98] and uses a precise case analysis. A somewhat simpler proof using
elements of knot theory was presented in [BDD*99]. Moreover, it was recently shown
that deciding reachability in R? is PSPACE-hard [AKRW04].

Surprisingly, R? is the only dimension where the configuration space of universal
chains is not always connected, as it was shown that chains and cycles in R? for d > 4
can always be straightened [COO01].

2.3 2D Chains of Polygons

Of course, the models described in the previous sections are purely theoretical, if only
because the edges are assumed to be infinitely thin. In a recent paper [CDD*], we
thicken the edges of chains in R? by gluing shapes (adornments) on them, which are
required not to collide. In that case, we show that it might happen that the chains

become locked. However, we manage to characterize quite precisely the adornments for

2posed independently by Stephen Schanuel and George Bergman in the early 1970's, UIf Grenander in
1987, William Lenhart and Sue Whitesides in 1991, and Joseph Mitchell in 1992 [CDR03]
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which the configurations space is always connected. We show that if the adornments
on an open chain are slender (roughly, if the inward normal from any boundary point
intersects the edge), then expansive motions will be simple and thus will straighten the
chain without collisions. The same, however, is not true for closed chains. We also show
that our characterization is tight, in the sense that isosceles triangles with any desired
apex angle < 90° admit locked chains, which is precisely the threshold beyond which the
slender property no longer holds.

Our work has already found applications in the analysis of hinged collections of
polygons. For instance, a hinged dissection is a chain or a tree of polygons that can be
reconfigured into two or more self-touching configurations with desired silhouettes. For
example, Figure 3 in [CDD*] shows a classic hinged dissection from 1902 for transforming
a triangle into a square. While general families of dissections have been extensively
analyzed[AN98, DDE*05, DDLS05, Epp01, Fre02], nearly none of these studies consider
the problem of actually moving from one configuration to the other without collisions.
Our results provide potential tools for resolving these problems, and already solve an
open problem from [DDE*05].

2.4 Small (inter)locked linkages

In this section, we come back to the reachability problem in 3D. In particular we try to
determine the number of bars needed for one or more linkages to lock and/or interlock.

[Problem 2.2 What 3D chains can lock/interlock?

As we saw in Section 2.2, Canterella and Johnston [CJ98] have proved that there is
a universal open chain with 5 bars that can lock. They also showed that no chain with
4 bars or less can lock, that a closed hexagon can lock but no closed pentagon. It is also
known that fixed-angle open chains with 4 bars can lock, but not 3. The configuration
space of closed fixed angle chains with 4 bars or more can have more than one component,
but the configuration space of a triangle is trivially connected. Finally, the configuration
space of a rigid chain is always connected. These results are summarized in Table 2.1

We now turn to determining which sets of linkages can interlock. This work was
motivated by an open problem by a question posed by Anna Lubiw [DO00]: Into how
many pieces must a chain be cut so that the pieces can be separated and straightened?
This problem is motivated by protein molecules, which can be modeled by polygonal
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| Open | Closed
Universal 5 6
Fixed-angle B RS
Rigid 00 00

Table 2.1: Minimum number of edges needed for a 3D chain to have a non-connected
configuration space

chains, and, according to some theories, temporarily split apart in order to reach the
minimum-energy folding.

First note that configuration spaces involving two closed chains can never been con-
nected, as it always possible to construct a configuration topologically equivalent to the
link 02 composed of two disjoint unknots, and another one for the link 23 composed of
two unknots, one going through the other, see Figure 2.23. Since those are not topo-
logically equivalent, it is impossible to move from one to the other without causing the

configuration to be non simple at some time.

W ©
@@

Figure 2.2: The first few two-component links.

In [DLOS03], we study the small interlocked configurations composed of one closed
and one open chain. The results are summarized Table 2.2. The proofs are similar in

spirit to the argument above, with a twist: if we construct an open chain that have long
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Closed

3/4]|5

1 R [
Open 3| - |+ |+
4|+ |+ |+

Table 2.2: Open chains and closed chains that can interlock (+) or not (-), depending on
the number of edges. A claim that a k-chain can interlock holds also for any l-chain with
[ > k, and a claim that a k-chain cannot interlock holds also for any I-chain with | < k.

end bars, then we can simulate a two component link by supposing that the endpoints
of one chain are tied together with a rope.

To prove the above results, we (conceptually) close an open chain by adding a piece
of rope, then argue that geometric properties keeps the rope from interfering with any
motion, and that topological invariants demonstrated that the resulting closed links are
interlocked. However, this approach does not extend to proving interlocking between
two open chains: we cannot simply close two or more open chains with ropes because
the ropes may interfere with one another. Instead we establish geometric invariants,
typically about the convex hull of joints and the relations of the end bars, often by
considering convenient projections of the linkage [DLOS02]. In [GLO04] it is shown
that a universal 2-chain can interlock with a universal open 19-chain. The 19-chain was
then subsequently reduced to an 11-chain [GLOZ06]. Finding the smallest chain that
can interlock with a 2-chain remains an open problem. The results are shown Table 2.3

For sets of 3 chains, we show [DLOS02] that three open universal chains with 3 bars
each can interlock, but two 3-chains along with any number of 2-chains cannot, Thus
we almost completely characterize the size of combinations of chains that can interlock.

Important special cases remains open as, for example, we do not know whether a
chain can lock if all its edges are of unit length. For fixed-angle chains, we do not know
whether such a unit chain can lock as soon as the fixed angles are larger than 60°. This
problem is of particular interest since proteins have all edges nearly equal, and bond
angles around 110°.

3link images produced by Robert Scharein’s knotplot program
http://www.cs.ubc.ca/nest/imager/contributions/scharein/KnotPlot.html.
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2-chain 3-chain 4-chain 5-chain

flexible | rigid || flexible | fixed-angle | rigid || flexible | fixed-angle | rigid || rigid

2-chain  flexible | - -1 - = LY | — -5 |
igd | - [ - [ = +14] ol +NH T

3-chain _fleible | — [ — [ T =5 [ +9] 4+ + L * |
fixed-angle]| — | %[ -F + T+ + + + [+
1 ] I I o + + | + + + [+

4-chain  flexible || =% | -4 +11 + TE [l + + + “T
fixed-angle]| =5 | +™ + =t + 1 + F *1 =
rigd || 1+ + - + [+ - + [+

S5-chain  rigd || +°| + || + + + [ + - + [ + |
11-chain flexible || +* [ + [ + - + [ + + + | +

Table 2.3: Results on interlocking pairs of open chains. (+) = can, (—) = cannot interlock.
In superscript is the number of the theorem from [DLOS02] proving the result, or * for
[GLOZ06), the other entries are implied.

2.5 Flat to flat

We highlighted earlier the importance of defining a natural set of canonical configura-
tions in order to solve some instances of the reachability problem, and while straight
configurations seem like an obvious option for universal chains, the choice is more diffi-
cult to make when it comes to fixed-angle chains. One might be tempted to choose flat
configurations, i.e. configurations where all edges lie in a common plane. Unfortunately,
a flat configuration for a given chain might not be unique, and even worse, it might not
exist.

Nevertheless, many classes of chains (e.g. if all edges have equal length, or if all
turning angles are < 90°) do have a flat state. In that case, is there a simple motion
from any flat configuration to any other flat configuration? If yes, we say that the chain
is flat-state connected.

[Pmblem 2.3 Is every open fized-angle chain flat-state connected?

Although the general problem is still unsolved, a series of papers partially answers
this question for some important classes of chains [ADM*02, ADD*02, AM06]. The
currently best known results are shown Table 2.4

Notice that linkages are not the only structures to be represented in the table. In
an attempt to understand the nature of the problem, we have analyzed the flat-state
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Constraints on Fixed-Angle Linkage Flat-state
Connectivity Angles Lengths Motions connectivity
QOpen chain - — - ?
has a monotone state —_ Connected [AMO6]
nonacute -_ — Connected [ADD*02]
equal acute — —_ Connected [ADM*02]
eachin (6,28) for6 <7/3 — Connected [AMO6]
each in (60°,90°] unit — Connected [ADM*02]
— — 180° edge spins | Disconnected [ADD*02]
orthogonal — 180° edge spins | Connected [ADD*02
Set of chains, each orthogonal — — Connected [ADD*02
pinned at one end  orthogonal — partially rigid Disconnected [ADD*02
Tree orthogonal — partially rigid Disconnected [ADD¥02] |
Graph orthogonal — — Disconnected [ADD*02

Table 2.4: Known results. The ‘—' means no restriction of the type indicated in the column
heading. Entries marked ‘?' are open problems

connectivity of more complex structures and restrictions on the motions. In particular,
we study sets of chains with one endpoint stuck on the zy plane, partially rigid trees,
and graphs. A detailed description of these structures and of the results can be found
in [ADD*02].

2.6 Protein machine

Fixed-angle chains are of particular interest, partly because they can be used to rep-
resent the backbone of protein chains. In this part of our work, we ask the following,

intentionally vague, question:

[Pmblem 2.4 What classes of configurations correspond to folded proteins?

As a first step towards this goal, we study the impact of the way a protein is pro-
duced on the structure of the folded backbone [DLO06]. Our inspiration derives from
the ribosome, which is the “machine” that creates protein chains in biological cells. Fig-
ure 2.3 shows a schematic cross section of a ribosome and its exit tunnel, based on a
model developed by Nissen et al. [NHB*00].

We consider a very simple geometric model that roughly captures the exit point z of
the ribosome: the chain is produced inside a cone of some half-angle 3, with the chain
emerging through the cone's apex. All through the production process, we require that
the chain being produced remains simple at all times and the portion already out of the
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Figure 2.3: The ribosome R in cross-section. The protein is created in tunnel £ and emerges
at z. Figure from [DLOO06).

cone never intersects the cone. This constraint immediately implies that the maximum
turn angle a in the produced chain is at most 2.

Our main result is that a chain can be produced in our model if and only if it can
be flattened. Furthermore, since we use a unique canonical configuration to describe the
motion, this provides an alternate proof of the flat-state connectivity of those chains.

We also show that, if some small locked chain exists, the the portion of the configu-
ration space that is producible (and thus flattenable) is vanishingly small as the number
of edges grows.

Interestingly, the canonical configuration we use has an helical form that is in many
ways similar to the shape a protein takes as it naturally comes out of the ribosome.



Chapter 3

Combinatorial moves

As the full range of motions for linkages is often quite complex, many authors have
considered restricting the reconfigurations to be from a finite set of moves. One of the
earliest occurrences of such a problem was posed by Paul Erdds in 1935 [Erd35], and has

spawned a large number of studies and variants.

Contents
3.1 Erdés flips
3.2 Flipturns

3.3 Permutations

18
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3.1 Erdos flips

In 1935, Paul Erdés posed the following problem [Erd35]: given a simple closed polygon
P with n edges, let CH(P) be the convex hull of P. If we remove P from CH(P),
we are left with pockets, maximal connected regions that are in CH(P) but outside of
P. The boundary of the pocket is composed of one convex hull edge called the lid, and
a contiguous subsequence of the edges of P. A pocket flip or just flip, transforms the
polygon by reflecting the pocket’s subsequence of edges across the lid. It can also be
seen as a 180° rotation of the pocket’s edges about the supporting line of the lid in 3D.
Every non-convex polygon has at least one pocket. Can every polygon be convexified by
a finite number of simultaneous pocket flips?

A few years later, Nagy [Nag39] noted that performing simultaneous flips might result
in a self-intersecting polygon. He then proposed a proof that any polygon can become
convex after a finite number of single pocket flips. Several further proofs were published
by different authors since then. Unfortunately most of these proofs, including the first
one by Nagy, contain flaws. Those were noticed and corrected in a recent paper by
Demaine, Gassend, O’Rourke and Toussaint [DGOTO06]. It was also proved by Joss and
Shannon in 1973 that it is not possible to bound the number of flips needed to convexify
a polygon as a function of n [Grii95], in fact it is possible to construct a quadrilateral
requiring arbitrarily many flips to be convexified.

Wegner [Weg93| defined the deflation as the inverse operation from a flip, and conjec-
tured that any polygon can be deflated at most a finite number of times (while remaining
simple) until no further deflation is possible. This conjecture was disproved by Fevens
et al. [FHM*01] who presented a family of quadrilaterals that can be deflated infinitely
many times.

Combining flips and deflations, one could again pose the reachability problem: given
two configurations of a same chain P in R?, is there a sequence of flips and deflation
operations to go from one to the other. We can rapidly obtain a negative answer by a
counting argument: the number of configurations reachable from a starting configuration
by flips and deflations is countable, while the set of possible configurations is not. Still
it would be interesting to know when the combination of flips and deflations are as
universal as combinatorial moves could get, i.e., are there polygons and configurations
that can reach any neighborhood of the configuration space via a sequence of flips and
deflations?
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3.2 Flipturns

Flipturns, defined by Joss and Shannon, are a simple variation on pocket flips where
instead of reflecting the pocket through the lid, the pocket is rotated 180° about the
center of the lid. This has for effect of reversing the order of the pocket’s edges while
maintaining their lengths and orientations. Thus, because a flipturn only produces a
permutation of the same edges, they show that at most (n — 1)! — 1 flipturns can be
made before the polygon becomes convex. This bound was improved by Ahn et al to
n(n—3)/2 or n(s—1)/2—s when the polygon edges have only s different slopes [ABC*00].
This result uses a modified definition of flipturns to handle degenerate cases more easily.
Aichholzer et al. [ACD*02]. showed that a bound of n? — 4n + 1 holds for the original
definition of flipturns, and showed that computing the longest sequence of flipturns is
NP-hard. Whether finding the shortest convexifying sequence of flipturns can be done
in polynomial time remains an open problem. They also prove that the convex polygon
obtained after any maximal sequence of flipturns is always the same and can be computed
in O(nlogn) time by sorting the edges by slope, and provide data structures for maintain
the polygon and its convex hull after flipturn operations, in O(log" n) amortized time
per flipturn.

In [Bie06], Biedl presented a polygon such that the shortest convexifying flipturn
sequence is of length (n — 1)?/8 and another one whose longest sequence has (n — 2)?/4

flipturns.

3.3 Permutations

In [ABD*02], we analyze several further operations whose effect is to produce a different
permutation of the same edges, preserving edge lengths and orientations. In general, we
will view each edge as a rooted vector, and the polygon is a sequence of these vectors.
When talking about a simple polygon, we often require the polygon to be clockwise
(counterclockwise), i.e., the interior of the polygon is on the right (left) side of every
vector.

A reversal or generalized flipturn [ACD¥02] reverses the order of some subsequence
of edges, and is thus a generalization of the flipturn operation. A transposition swaps
two subsequences of edges. A single edge transposition moves an edge to another position
in the sequence. It can be seen as a transposition between a single edge and an empty

subsequence at some arbitrary position. An edge swap of popturn reverses the order of



CHAPTER 3. COMBINATORIAL MOVES 21

two adjacent edge. It is thus a special case of a reversal and at the same time a single
edge transposition. All those operations are called crossing-free if the resulting polygon
is simple, and simple if, starting with a simple clockwise polygon, the resulting polygon
is simple and the clockwise.

Interestingly, questions about those operators without requiring simplicity requires
very little geometry. It is in fact equivalent to the problem of sorting a circular permuta-
tion of the ordered set of edge orientations using those operators. These problems have

received considerable attention in the literature. Table 3.1 summarizes known results.

The remainder of this discussion focuses on simple and crossing-free operations.

Convexifiable? min # moves finding min
to convex # moves
popturn always O(n?) [Bal03] ?
Non single-edge transp. always O(n) ?
simple  transposition always O(n) ?
flipturn always O(n!) [GZ98] ?
reversal always O(n) NP-hard [SSLO3]
popturn NP-hard [ABB™] — —
Crossing single-edge transp. | not always [ABD*02] - -
free transposition ? ? ?
flipturn always|Grii95] ©(n?) [ABC*00] ? [ACD*02]
reversal always 0O(n?) NP-hard [ACD*02]
Simple  popturn iff no purse, ©(n*) [ABD*02] O(nlogn)
O(n) [ABB] [ABB*] [ABB™]

Table 3.1: Known results for combinatorial moves

Because reversals are a generalization of flipturns, we can easily conclude that any
polygon can be convexified after O(n?) reversals. Aichholzer et al. [ACD*02] proved that
computing the shortest convexifying sequence of reversals for a given polygon is NP-hard.
In [ABD*02], we show polygons that cannot be convexified using popturns or single-edge
transpositions without introducing crossings. Recently [ABB*], we refined the analysis
of popturns and obtained several new results. Interestingly, the distinction between
crossing-free and simple popturns influences dramatically the complexity of determining
if the polygon is convexifyable. In the same paper, we extend further those operations for
the case of unit orthogonal polygons and show that permitting 180° rotations or untwist
operations suffice to make any such polygon convexifiable. It would be interesting to see

whether those extensions could be generalized to general polygons.
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In [ABD*02], we study several further computational problems on permutations of
the edges of a polygon, such as finding the permutation of smallest or largest diameter.



Chapter 4

Polyhedra and surfaces

One of the most classical reconfiguration problems is that of polyhedron edge unfolding:
Given a convex polyhedron, can we cut along some of its edges in such a way that its
surface can be unfolded into a single planar polygon without overlap? This problem
implicitly goes back to 1525 when Albrecht Diirer published edge unfoldings of convex

polyhedra, and is to this day unsolved.

[Problem 4.1 Does every convez polyhedron have an edge unfolding?

If we are allowed to cut the polyhedron through its faces, then we talk about a
general unfolding. Two methods exist that will produce a general unfoldings for any
convex polyhedron: source unfoldings and star unfoldings. On the other hand, it is
unknown whether any (non-convex) polyhedron has a general unfolding.

[Problem 4.2 Does every polyhedron (not necessarily convez) have a general unfolding?

Although those two important open problems have remained open for quite some
time, progress has been made at steady pace over the past few years, every time increasing
our understanding of the problems. We here illustrate two approaches that have lead to
interesting results and end the chapter by discussing the wrapping of smooth surfaces.

Again, we refer the reader to the recent book of Demaine and O'Rourke [DO07] for

an extensive survey of the area of polyhedra unfolding.

Contents
4.1 Bands

4.2 Orthogonal polyhedra

4.3 Wrapping convex smooth surfaces

23
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4.1 Bands

One approach towards understanding edge unfoldings is to study polyhedra that have a
special structure. Another one is to loosen the requirements of the resulting unfolding.
Here, rather than trying to unfold the entire polyhedron, we attempt to edge-unfold a
large portion of a convex polyhedron.

In 1998, E. Demaine, M. Demaine, A. Lubiw, and J. O’Rourke posed the following
problem: A polyhedral band is the surface of a convex polyhedron enclosed between
parallel planes, and containing no polyhedron vertices. Can every polyhedral band be
unfolded without overlap by cutting an appropriate single edge? This case is in some
sense the simplest sort of edge unfolding task one could imagine since only one edge has
to be cut. At the same time, this question can be seen as a way to exploit the knowledge
we have of polygonal chains by thickening them into bands.

We first studied the nested case where, in some projection, one border of the band
is in the interior of the other. For that case, we show [ADL"] that it is always possible
to cut an edge to unfold the band without overlap. Furthermore, we show two different
continuous unfolding motions from the original band to its unfolded configuration. The
result was further improved by Aloupis [Alo05] to include non-nested bands and bands

whose border contains vertices.

4.2 Orthogonal polyhedra

Here again, in order to facilitate the study of Problems 4.1 and 4.2, we will restrict our
attention to a special class of polyhedra: the class of orthogonal polyhedra, in which every
face is orthogonal to the z, y or z axis.

One of the earliest results concerning orthogonal polyhedra came from Biedl et al.
[BDD*98] where two subclasses of polyhedra are analyzed: orthostacks and orthotubes.
An orthostack is an orthogonal polyhedron of which every horizontal planar slice not
including a horizontal face is a single simple (orthogonal) polygon. An orthotube is a
(possibly cyclic) sequence of rectangular boxes glued together according to some rules.

They show the existence of orthostacks that cannot be edge-unfolded, but show that
both orthostacks and orthotubes can be generally unfolded. In their unfoldings, they
use cuts along planes orthogonal to the coordinate axes. In the case of orthotubes, all
such planes go through at least one vertex of the polyhedron. Such an unfolding is called
grid-edge unfolding. For orthostacks however, they need to use planes that do not go
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through any vertex and ask whether every orthostack can be grid-edge unfolded. In
subsequent articles, the question was generalized to the following:

[Problem 4.3 Can every orthogonal polyhedron be grid-edge unfolded?

A normal edge unfolding cuts the polyhedron along edges in such a way that the
resulting cut surface is edge-connected and can be embedded onto a plane without over-
lap. In a vertezx unfolding, the polyhedron is again cut along edges but the resulting
surface only needs to be connected through vertices. Vertex unfoldings were introduced
in [DEE*02, DEE*03].

In [DIL], we prove that every orthostack can be grid-vertez unfolded, i.e., cut along
axis-parallel planes incident to vertices of the polyhedron such that the resulting surface
is vertex connected and can be embedded onto a plane without overlap.

This result was subsequently generalized in several ways: Damian, Flatland and
O’Rourke [DFO06] show that every orthogonal polyhedron can be vertex-unfolded, and in
another paper [DFOO07] that if we are allowed to cut along a refined grid subdividing each
slab of the grid through every vertex into 2°(®) pieces, then any orthogonal polyhedron
after that refinement can be grid-edge unfolded, thus providing the first general unfolding
of any orthogonal polyhedron. Nevertheless, Problem 4.3 remains open to this day.

A recent survey of unfolding results for orthogonal polyhedra was recently published
by O’Rourke [O'R07].

4.3 Wrapping convex smooth surfaces

We end this chapter with a preliminary result, and an open-ended discussion, on how to
wrap smooth surfaces.

All the unfolding works described above as well as in mathematical origami describe a
mapping between a flat piece of paper and a surface. The mapping described is isometric
in the sense that pairwise distances (defined as shortest path on the piece of paper) are
preserved. A problem naturally arises if we consider convex smooth surfaces, e.g., that
have positive curvature everywhere.

Thus, we must find a way to allow changing the curvature while preventing from
stretching the piece of paper. For this, we define a concept of wrapping as a contractive
mapping, i.e. where every pairwise distance on the piece of paper either stays the same
or shrinks.
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In [BCO04], Benbernou, Cahn, and O'Rourke defined a similar notion of unfolding,
but restricted to certain piecewise ruled surfaces and they analyzed the volcano unfolding
of smooth prizmatoids. In such unfoldings, the paper is wrapped from each point from
the base along a straight geodesic line on the surface.

In [DDILO7], we formalize the concept of wrapping for smooth convex surfaces and
focus on stretched wrappings that can be specified by a surface-covering tree of stretched
paths, i.e. paths along which the wrapping is isometric. We then analyze the sizes and
shapes of a piece of paper that can cover a sphere of unit radius. For instance, we show
that a sphere can be covered by a disk of radius = (surface 7*), a square of diameter
27 (surface 272) and a rectangle 2wz (surface 27%). Surprisingly, we then show that
it is possible to cover the sphere with an equilateral triangle of area 1.99862672, a 0.1%
improvement. We then discussed how to tile the plane with shapes that wrap the sphere,
while keeping the shapes fat. This could be useful, e.g., if the wrapping paper is to be

produced in large quantities.
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Conclusion

In this thesis, we have presented a variety of problems and results on the geometric
reconfiguration of linkages and polyhedra. Although we could only touch on a few
topics, we hope to have illustrated some of the richness and diversity of the subject.

The reader probably noticed the many doors that every new result opens, as is
clearly illustrated by the several question marks left in most table of results. Beyond
these obvious holes to fill in and the main questions discussed throughout the text,
several problems deserve discussion and further work. I will highlight several of them
and indicate some possible directions to attack them.

[Problem 5.1 Can a unit linkage lock?

This problem has puzzled researchers for many years, still several variants are within
reach: what locked linkage has the minimum ratio between its longest and shortest edge
lengths? Does that ratio depend on n, the number of bars in the linkage? How about
fixed angle chains? Is there a tradeoff between the fixed angle, the number of bars and
the ratio?

As discussed earlier, the existence of small chains has strong implications on other

results, such as the protein machine result, or the existence of hardness proofs.

[Problem 5.2 What chains correspond to proteins?

Biologists constantly make observations about the geometric structure of proteins.
For example, that the endpoints of a protein always remain close to its outer layer!. If
we could formalize those observations, it could be possible to reduce the search space of

protein folding simulations, and increase the efficiency of the simulation.

'R. Brasseur, personal communication

27
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Problem 5.3 Which results on combinatorial reconfigurations of chains can be gener-
[alized to 3D?

Griinbaum and Zaks [GZ98] have asked whether it is always possible to convexify a
polygon in 3D using 3D flips (for some definition of a 3D flip), however, it seems like some

other operations, such as the flipturn, can generalize more easily and more naturally.

Problem 5.4 Can the band unfoldings be combined to generate a new general unfolding
algorithm?
Or another interesting question is to characterize which bands can be thickened so

as to contain the entire faces it touches, while still being edge-unfoldable.

Problem 5.5 Can the unfolding algorithms for orthogonal polyhedra be generalized to
[c-on‘ented polyhedra?

Maybe this way it would be possible to leverage the general unfolding algorithm for
orthogonal polyhedra.
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Abstract

We extend linkage unfolding results from the well-studied case of polygonal linkages to the
more general case of linkages of polygons. More precisely, we consider chains of nonoverlapping
rigid planar shapes (Jordan regions) that are hinged together sequentially at rotatable joints.
Our goal is to characterize the familes of planar shapes that admit locked chains, where some
configurations cannot be reached by continuous reconfiguration without self-intersection, and
which families of planar shapes guarantee universal foldability, where every chain is guaranteed
to have a connected configuration space. Previously, only obtuse triangles were known to admit
locked shapes, and only line segments were known to guarantee universal foldability. We show
that a surprisingly general family of planar shapes, called slender adornments, guarantees uni-
versal foldability: roughly, the distance from each edge along the path along the boundary of
the slender adornment to each hinge should be monotone. In constrast, we show that isosceles
triangles with any desired apex angle < 90° admit locked chains, which is precisely the threshold
beyond which the slender property no longer holds.

1 Introduction

In this paper, we explore the motion-planning problem of reconfiguring or folding a hinged collection
of rigid objects from one state to another while avoiding self-intersection. This general problem has
been studied since the beginnings of the motion-planning literature when Reif [Rei79] proved that
deciding reconfigurability of a “tree” of polyhedra, amidst fixed polyhedral obstacles, is PSPACE-
hard. This result has been strengthened in various directions over the years, although the cleanest
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versions were obtained only very recently: deciding reconfigurability of a tree of line segments in
the plane, and deciding reconfigurability of a chain of line segments in 3D, are both PSPACE-
complete [AKRWO04]. This result is tight in the sense that deciding reconfigurability of a chain of
line segments in the plane is easy, in fact, trivial: the answer is always yes [CDRO03].

These results illustrate a rather fine line in reconfiguration problems between computationally
difficult and computationally trivial. The goal of our work is to characterize what families of
planar shapes and hingings lead to the latter outcome, a universality result that reconfiguration is
always possible. The only known example of such a result, however, is the family of chains of line
segments, and that problem was unsolved for about 25 years [CDR03|. (A chain is a sequence of
line segments joined end-to-end that are disjoint except except for consecutive endpoints, where
they are hinged. It is called an open chain when the first line segment is not joined to the last,
and closed when it is joined to the last segment in a closed cycle.) Even small perturbations to the
problem, such as allowing a single point where three line segments join, leads to locked examples
where reconfiguration is impossible [CDR02].

What about chains of shapes other than line segments? It is easy to see that a shape tucked into
a “pocket” of a nonconvex shape immediately makes trivial locked chains with two pieces. Back in
January 1998, the third author showed how to simulate this behavior with convex shapes, indeed,
just three triangles; see Figure 1(a). This example has circulated throughout the years to many
researchers (including the authors of this paper) who have asked about chains of 2D shapes. The
only really unsatisfying feature of the example is that some of the angles are very obtuse. But with
a little more work, one can find examples with acute angles, indeed, equilateral triangles, albeit of
different size; see Figure 1(b). What could be better than equilateral triangles?

(a) (b)

Figure 1: Simple examples of locked chains of triangles. (a) A locked chain of three triangles. (b) A locked
chain of equilateral triangles of different sizes. The gaps should be tighter than drawn.

It is therefore reasonable to expect, as we did for many years, that there is no interesting class
of shapes, other than line segments, with a universality result—essentially all other shapes admit
locked chains. We show in this paper, however, that this guess is wrong.

We introduce a family of shapes, called slender adornments, and prove that all open chains,
made up of arbitrarily many different shapes from this family, can be universally reconfigured
between any two states. Indeed, we show that these chains have a natural canonical configuration.



analogs of the straight configuration of an open chain. Our result is based on the existence of
“expansive motions”, proved in [CDR03|. Our techniques build on the theory of unfolding chains
of line segments, substantially generalizing and extending the results from that theory. Indeed, the
results in this paper essentially piggy-back onto the results of [CDRO3| or any of the other results
and algorithms such as [Str00] or [Str05] that provide a continuous expansive motion of the base
chain. Our results go far beyond what we thought was possible (until recently). As part of the
methods that we describe here, we also consider discrete expansive motions of the base chain, that
do not necessarily come from a continuous expansive motion. (A discrete ezpansion of a chain C
is simply another corresponding chain C” such that if x and y are two points in C' the distance
between corresponding points z’ and ¥’ is not smaller than the distance between x and y.) In that
case if all the slender adornments are symmetric under the reflection about the line of the base
chain, then any expansive discrete motion of the base chain will have the property that the attached
adornments will not overlap. It turns out that the continuous case, when the adornments are not
necessarily symmetric, follows from the discrete symmetric case,

The family of slender adornments has several equivalent definitions. The key idea is to dis-
tinguish the two hinge points on the boundary of the shape connecting to the adjacent shapes in
the chain, and view the shape as an adornment to the line segment connecting those two hinges,
called the base. This view is without loss of generality, but provides additional information relating
the shapes and how they are attached to neighbors, which turns out to be crucial to obtaining a
universality result. An adornment is slender if the distance from either endpoint of the base to
a point moving along one side of the adornment changes monotonically. If the boundary curve,
defining the adornment, is sufficiently smooth, it is slender if and only if every inward normal of
the shape hits the base. Equivalently, an adornment is slender if it is the union, in each half-plane
having the base as a boundary, of the intersection of pairs of disks centered at the two endpoints
of the base.

Slender adornments are quite general. Figure 2 shows several examples of slender adornments.
These examples are themselves slender adornments, but also any pair can be joined along their
bases so that the union makes another slender adornment. Our results imply that one can take any
of these slender adornments, link the bases together into an open chain in any way that the chain
does not self-intersect, and the resulting chain can be unfolded without self-intersection to a straight
configuration, and thus the chain can be folded without self-intersection into every configuration.

We also demonstrate the tightness of the family of slender adornments by giving examples of
locked chains of shapes that are not slender. Specifically, we show that, for any desired angle
f < 90°, there is a locked chain of isosceles triangles with apex angle #. This is precisely the family
of isosceles-triangle adornments that are not slender. Thus, for chains of triangles, obtuseness is
really desirable, contrary to our intuition from Figure 1(a): the key is that the apex angle opposite
the base (in the adornment view) be nonacute, not any other angle. The proof that our examples
are locked uses the self-touching theory developed for trees of line segments in [CDR02].

Motivation. Hinged collections of rigid objects have been studied previously in many contexts,
particularly robotics. One recent body of algorithmic work by Cheong et al. [CvdSG™| considers
how chains of polygonal objects can be itmmobilized or grasped by a robot with a limited number
of actuators. Grasping is a natural first step toward robotic manipulation, but the latter chal-
lenge requires a better understanding of reconfigurability. This paper offers the first theoretical
underpinnings for reconfiguration of chains of rigid objects (other than line segments).

Another potential application is to continuous folding of hinged dissections. Hinged dissections
are chains or trees of polygons that can be reconfigured into two or more self-touching configurations
with desired silhouettes. For example, Figure 3 shows a classic hinged dissection from 1902 of a



Figure 2: Examples of slender adornments. The base is drawn bold. The examples in the top row are symmetric.
Any two of these examples can be glued together along a common base so that the union also becomes a slender
adornment.

Figure 3: Hinged dissection of square to equilateral triangle, described by Dudeney [Dud02]. Different shades
show different folded states (overlapping slightly).

square into an equilateral triangle of the same area. Many general families of hinged dissections
have been established in the recent literature [AN98, DDE*05, DDLS05, Epp01, Fre02|. One
problem not addressed in this literature, however, is whether the reconfigurations can actually be



executed without self-intersection, as in Figure 3. Our results provide potential tools, previously
lacking, for addressing this problem. While hinged dissections have frequently been considered in
recreational contexts, they have recently found applications in nanomanufacturing [MTW*02] and
reconfigurable robotics [DDLS05].

Outline. This paper is organized as follows. Section 2 defines the model and slender adornments
more precisely, and proves several basic properties. Section 3 describes the case when each adorn-
ment is symmetric about its base and is important for proving, in Section 4, that simple chains of
slender adornments can always be unfolded so that the base is convex or straight. In Section 5 we
discuss the situation when the adornments are permitted to overlap. Section 6 describes our exam-
ples of locked chains of isosceles triangles, including the necessary background from self-touching
trees. The Appendix describes an example of a closed chain, with slender adornments attached,
that has infinitely many components in its configuration space.

2 Slender Adornments

This section provides a formal statement of the objects we consider—adorned chains consisting of
slender adornments—and proves several basic results about them.

2.1 Adorned Chains

Our object of study is a chain of nonoverlapping rigid planar shapes (Jordan regions) that are
hinged together sequentially at rotatable joints. Another way to view such a chain is to consider
the underlying polygonal chain, the core, of line segments connecting successive joints. (For an open
chain, there is some freedom in choosing the endpoints for the first and the last bar of the chain.)
On the one hand, these line segments can be viewed as bars that move rigidly with the shapes to
which they belong. On the other hand, the shapes can be viewed as “adornments” to the bars of
an underlying polygonal chain. This view leads to the concept of an “adorned polygonal chain”,
which we now proceed to define more precisely.

An adornment is a simply connected compact region in the plane, called the shape, together
with a line segment xy connecting two boundary points, called the base. There are two boundary
arcs from x to y that enclose the shape, called sides. We require the base to be contained in the
shape; i.e., the base must be a chord of the shape.

We say that two distinct adornments overlap when some point of one adornment lies in the
interior of the other, and we insist that the relative interiors of the base chains be disjoint. Thus,
the bases of two shapes are not allowed to touch except at common hinges of the polygonal chain.
An adorned polygonal chain is a set of nonoverlapping adornments whose bases form a polygonal
chain. We permit the shapes to touch on their boundary and to slide along each other.

For our main result, Theorem 3, where we assume that the motion of the base is expansive,
it is not necessary to assume that the base chain is simple. It can be any finite embedded graph
with straight edges whose relative interiors are pairwise disjoint; a vertex may touch an edge.
When the base chain is simple the results of [CDR03] or [Str05] guarantee that there is such an
expansive motion. On the the other hand, although an expansive motion of the base chain of a
strictly simple closed polygon to a convex convex configuration can be guaranteed, it may happen
that two realizations are not in the same configuration component, as shown in Figure 10, and in
the Appendix there is a description of a case when there are infinitely many components in the
configuration space,



The viewpoint of a chain of shapes as an adorned polygonal chain is useful for two reasons.
First, we can more easily talk about the kinds of shapes, and their relation to the locations of the
incident hinges, in a family of chains: this information is captured by the adornments. Second,
the underlying polygonal chain provides a mechanism for folding the chain of shapes, as well as
a natural unfolding goal: straighten the underlying open chain or convexify the underlying closed
chain. Indeed, we show that, in some cases, unfolding motions of the polygonal chain induce valid
unfolding motions of the chain of shapes.

2.2 Slender Adornments

An adornment is defined to be slender if, for a point moving on either side of the shape, the
distance to each endpoint of the base changes monotonically (possibly not strictly monotonically).
An adornment is called symmetric if it is symmetric about the line through the base. An adornment
is called one-sided if it lies in just one of the closed half-planes whose boundary contains the
base. Clearly, a general adornment is the union of two one-sided adornments, and a one-sided
adornment is the intersection of a symmetric adornment with a closed half-plane whose boundary
contains the base. For any base interval with endpoints z and y, and a point 2 in the plane, where
[|lz = z|| < |ly — z|| and ||z — y|| < || = yll|, let L(z) be the intersection of the disk with z on its
boundary centered at x, and the intersection of the disk with z on its boundary centered at y. We
call L(z) the lens determined by = associated to the base [z,y]. A half-lens, denoted as L(z), is the
intersection of L(z) and the closed half-plane through the base containing z. See Figure 4 for a
picture of a half-lens and lens. The following are some simple, but useful, properties of lenses.

Proposition 1 For any point z in a (symmetric) slender adornment A, L(z)c A (L(z) C A).

Proof: Let z be a point on the defining boundary of A. Since the distance to x along the boundary
is monotone, no point along the path from = to y intersects the interior of the circle centered at
z through z. Similarly, no point along the path from 2 to x intersects the interior of the circle
centered at y through 2. Thus, the intersection of the circular disks centered at r and y. with 2z on
their boundary, and the closed half-plane containing z, L(2) is contained in the adornment. In the
symmetric case, the intersection of the circular disks with z on their boundary L(z) is contained in
A. See Figure 4. O

(a) (b)

Figure 4: Figure (a) shows a half-lens in non-symmetric adornment, and Figure (b) show a symmetric lens with
a point z in the interior of the lens and the adornment,

Propositjon 2 For any point z in the interior of a (symmetric) slender adornment A, there is a
half-lens L(z') C A (lens L(z') C A) that has z in its interior.



Proof: The half-lens (lens) through z is contained in A by Proposition 1. Since z is in the interior
of A, there is another point 2’ in A on the line perpendicular to the base segment slightly further
away from the base. Then 2 is in the interior of the half-lens (lens) defined by 2'. O

Proposition 3 A symmetric adornment is slender if and only if it is the union of the intersection
of pairs of disks one centered at each endpoint x and y of its base.

Proof: By Proposition 1, L(z) C A. Thus, the union of the lenses L(z) for 2z on the boundary of
the slender adornment is contained in the adornment.

To show the reverse containment, any point z in the interior of the adornment lies on a circle
centered at x, and this circle must intersect the boundary of the adornment at (at least) one point
2. Then z is in L(2’). Thus, the union of the lenses L(z’) for 2’ on the boundary of the slender
adornment contains the adornment.

To show the converse suppose a point z is on the boundary of A, any closed adornment defined
by an continuous path from z to y on one side. Then z must lie in some adornment and so the
lens L(z) itself must be in A. Thus, the path along the boundary, away from z, must not enter the

circle through z centered at x. Thus, the path is monotone at z. A similar argument applies to y.
0O

Proposition 4 Finite unions and arbitrary intersections of slender adornments are slender adorn-
ments.

Proof: This follows from Proposition 3 in the symmetric case, and the non-symmetric case follows
from the symmetric case by intersecting with the closed half-plane containing the line segment. O

Proposition 5 Every slender adornment is contained in the symmetric lens determined by either
of the points equidistant from the endpoints of the base as in Figure 5.

Proof: Any slender adornment must be contained in the disk through the other end of the base,
and thus it is in the intersection of those two disks. (m]

Figure 5: The largest slender adornment with a given base is a lens L(z), where ||z — z|| = ||y — z|| and
1z = wll = lly — =I|.

Figure 2 shows examples of slender adornments. If a single triangle is attached, where the base
forms one side, then the angle at the other vertex must be obtuse or a right angle.

2.3 Remark

Suppose that an adornment is such that its boundary is a differentiable curve from one endpoint x
of the base to the other endpoint y. Then the condition of being slender is equivalent to requiring

7
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Figure 6: The normal property for slender shapes.

that every inward normal of the shape intersects the base, before exiting the shape. This is shown
in Figure 6. This property was our original motivation for defining the property of being slender.
It insures that slender adornments will not get closer together during an expansive motion of the
base. But the monotone distance property is easier to handle, and it does not raise questions of
differentiability.

2.4 Kirszbraun’s Theorem

In what follows it is very handy to have the following theorem of Kirszbraun [Kir34].

Theorem 1 Suppose a finite set of closed circular disks in Euclidean space are rearranged so that
no pair of centers gets strictly closer together. If the original set has an empty intersection, so does
the rearranged set.

There is a discussion and proof of this in [Ale84] as well as references to other proofs. We only
need this result for four disks in the Euclidean plane.

3 Expanded Slender Symmetric Adornments Never Overlap

We first prove the following for the case of symmetric slender adornments. Note that the following
result is for discrete expansions of the base chain. Recall that two adornments overlap if a point in
one adornment lies in the interior of the other. This allows their boundaries to touch, but not to
penetrate each other. Note that the bases of a chain do not cross as well, by the expansive property
of a discrete motion. We do not need the continuous expansive property for this result.

Theorem 2 Consider two configurations X and Y of corresponding chains with symmetric slender
adornments such that the base chain of Y is an expansion of the base chain of X. We assume that
the adornments attached to the base chain of X do not overlap. Then, when the corresponding
adornments are attached to the base chain of Y, they also do not overlap.

Proof: Suppose Ay and By are two slender adornments attached to different links of the base
chain of X, and Ax and Bx do not overlap. Let Ay and By be the corresponding adornments for
Y. Suppose that z is a point in the intersection Ay N By, where z is in the interior of, say, Ay.
We wish to find a contradiction.

Let z4 and zp be the corresponding distinct points in Ax and By, respectively, that map to
z under the expanding map of their bases. Thus, the lenses L (24) and Lg(zp) for Ay and By
have disjoint interiors, since the adornments do not overlap. Since z is in the interior of Ay, we



can assume that L4(z4) can be chosen so that the closed lenses L4(z4) and Lg(zg) are disjoint
also. Thus the four circular disks that correspond to the circular disks that define L4(z4) and
Lg(zp) have an empty intersection. By Kirszbraun's Theorem 1, and the expansion property of
the endpoints of the bases of Ax and By. which are the centers of the four circular disks, the
intersection of the corresponding lenses for Ay and By must also be empty, contradicting the
assumption that Ay and By overlap. See Figure 7. (=]

Figure 7: This is the situation when two adornments overlap. The four circles that used in the application of
Kirszbraun's Theorem are indicated. Note that, in this figure, the motion from X to Y is not an expansion, since
that would contradict Theorem 2.

For discrete expansions, it is not possible to deal with non-symmetric adornments. Figure 8
shows an example of two chains with corresponding slender adornments, one an expansion of the
other. One starts with no overlap, and the other has such an overlap.

¢ <

Figure 8: This shows two chains, with slender but not symmetric adornments, where one is an expansion of the
other, while there is an overlap in the expanded configuration, but not the original.

4 Slender Adornments Cannot Lock
We now consider the general case, assuming a continuous expansive motion.

Theorem 3 Suppose there is a continuous expansive motion of the base chain with slender non-
overlapping, not necessarily symmetric, adornments attached. Then the adornments never overlap
during the motion.



Proof: Because of the expansive property, two segments of the base chain can only intersect
at common endpoints of adjacent segments. Thus, suppose z4. in the interior of adornment A,
intersects zg in adornment B at some time ¢; during the motion. We look for a contradiction. By
Proposition 2, there is a closed half-lens L4 for A that contains z4 in its interior and there is a
first time #o < t; when L, intersects another half-lens Lg for B that contains zg. Necessarily, that
intersection must be on the common boundary of Ly and Lg. (Note that Lg could be a single
point on a base segment.) Then there are three cases that can occur. In each case, we will show
that when the motion is continued from ¢g to t;, 24 and z5 cannot intersect.

Case 1: The bases of A and B intersect in the interior of at least one of the bases. This cannot
happen because the bases are initially disjoint and the motion is expansive. See Figure
9(a).

Case 2: The base of A or B intersects the half-lens of the other. The half lens can be extended to
a full symmetric lens without overlaping the base of the other. Applying Theorem 2 we
see that 24 and 25 cannot intersect upon further expansion. See Figure 9(b).

Case 3: The half lenses of A and B intersect. In this case both half lenses can be extended to non-
overlapping symmetric lenses. Again we apply Theorem 2 to see that 24 and zg cannot
intersect upon further expansion. See Figure 9(c).

Figure 9: This presents the cases when one adornment with its base might start to overlap with the other. The
dashed lines indicate where one or both of the lens of the adornment can be extended so that it does not intersect
the relevant part of the other. The thick lines indicate the part of the adornment that is not to be penetrated by
the other lens or base. The thin lines indicate where some of the rest of the adornment might lie, containing the
point z4, say, in the proof.

o

Corollary 4 A strictly simple polygonal chain with slender adornments attached can always be
straightened or converified by a continuous motion.

Proof: By [CDRO03| There is a continuous expansive motion of the base chain, where the final
configuration is convex in the case of a closed chain and straight in the case of an open chain. Then
Theorem 3 implies that they can be carried along without overlap. O

Corollary 5 Strictly simple open polygonal chains with slender adornments, attached on the same
corresponding sides, can always be continuously reconfigured between any two states.

Proof: By Corollary 4, both states can be continuously expansively reconfigured so that the base
chains are straight. But there is only one way to do this, since the adornments are attached on
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the same sides. Thus, one state can be expanded to have a straight base configuration, and then
contracted to the other configuration by running its expansion backwards. 0O

It is interesting to note that the conclusion of Corollary 5 does not hold for closed chains, even
though any two convex chains with no adornments can be continuously reconfigured from one to
the other. Figure 10 shows an example, where the configuration space has two components, where
the base chain is a quadrilateral, and where each adornment is a triangle attached to its base.

(a) (b) (c)

Figure 10: This shows two configurations (a) and (c) of a quadrilateral with two slender adornments attached
such that it is not possible to continuously move from one to the other without colliding. Figure (b) shows how
the two adornments collide as the quadrilateral is deformed from (a) to (c).

Indeed, in the appendix it is shown how to create a quadrilateral with two slender adornments
such that the configuration space has infinitely many components.

It is also interesting to note that when the slender adornments are attached, and the base chain
is expanded, often it happens that the motion on the adorned configuration is not expansive. Figure

11 shows an example.
&(a) B(b)

Figure 11: The base chain of Figure (a) expands to Figure (b). But the dark points on the corresponding
slender adornments get closer together.

5 Generalizations: Overlapping Adornments and Generalized Slen-
der Symmetric Adornments

In the discussion so far, we have assumed, when the adornments are attached to their chains, that
they do not overlap. What happens when the slender adornments do overlap? It turns out that
we can apply some of the results of [BC02| related to problems concerning areas of unions and
intersections of circular disks in the plane to the case when the adornments are all symmetric.

Proposition 3 shows that any symmetric adornment is the infinite union of symmetric lenses
L(z) for all z on the boundary of the adornment. To apply the theory of [BC02] it is more convenient
that there only be a finite number of sets involved in the union of lenses. But it is easy to see that
each adornment can be approximated by a finite union of lenses.

We first define a flower as a set in the plane that can be described in terms of finite unions and
intersections of circular disks, where each disk appears once and only once in the in the Boolean
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expression that describes the set. For the special case at hand we need only be concerned with
flowers F' of the following sort:

F= (B NB)U(BsNBy)U(BsN Bg)U...(By-1 N By), (1)

where each B;,i = 1,..., N is a circular disk in the plane. Flowers were defined by [GM92], and a
special case of Corollary 8 in [BC02] shows the following. Let B(x,r) denote a disk in the plane of
radius r centered at x.

Theorem 6 Let B(p;,ri) and B(gi,ri),i =1,...,N be two sets planar disks, where ||p; — pi+1l| 2
[1gi — Gis1|| for i odd, and ||p; — pis1|| < ||gi — gjl| for all other pairs i < j. Then the area of the
flower F in (1) defined for the configuration of p; is less than or equal to the area of the flower F
defined for the configuration of g;.

The crucial observation is that the union of the slender adornments can be approximated by
flowers. Each lens is the intersection of two disks, one of the terms in (1), and Proposition 3 implies
the following.

Theorem 7 Suppose that one chain is a discrete expansion of the other and slender symmetric
adornments are attached to each chain. Then the area of the union of the adornments does not

decrease.

Figure 12 shows an example of overlapping symmetric adornments. Figure 13 shows an example of

Figure 12: This Figure shows three intervals with overlapping symmetric slender adornments.

a chain with non-symmetric adornments that expands to another chain and the area of the slender
adornments with an expanded core decreases.

Figure 13: This is an example of two chains with non-symmetric slender adornments, where the expanded chain
with adornments has smaller area.

Another possible generalization is to attach the analogue of slender adornments to simplicial
complexes in higher dimensions. For example, a set A in three-space would be called slender with
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respect to a triangle base B if for any plane P perpendicular to the plane of A, P N A is slender
with respect to BN A. Then the analogue of Corollary 4 should also hold using the notion of
symmetric slender adornments. Even the analogue of Theorem 7 for the volumes of symmetric
slender adornments would still hold, but it could only be asserted for continuous expansions of
the base chain. The higher dimensional version of Corollary 8 in [BC02| is not known for discrete
expansions. However, in [Csi01], there is a continuous version that will suffice. In higher dimensions,
the idea is to assume simply that the base chain, to which the adornments are attached, is expanded.

6 Locked Chains of Sharp Triangles

An isosceles triangle with an apex angle of > 90° and with the nonequal side as the base is a slender
adornment. By Corollary 4, any chain of such triangles can be straightened. In this section we
show that this result is tight: for any isosceles triangle with an apex angle of < 90° and with the
nonequal side as a base, there is a chain of these triangles that cannot be straightened.

(a) (b)

Figure 14: A locked chain of nine equilateral triangles. (a) Drawn loosely. Separations should be smaller than
they appear. (b) Drawn tightly, with no separation, as a self-touching configuration.

Figure 14(a) shows the construction for equilateral triangles (of slightly different sizes). This
figure is drawn with the pieces loosely separated, but the actual construction has arbitrarily small
separations and arbitrarily closely approximates the self-touching geometry shown in Figure 14(b).
Stretching the triangles in this self-touching geometry, as shown in Figure 15, defines our construc-
tion for any isosceles triangles with an opposite angle of any value less than 90°. In this case,
however, our construction uses two different scalings of the same triangle.

6.1 Theory of Self-Touching Configurations

This view of the construction as a slightly separated version of a self-touching configuration allows us
to apply the program developed in [CDR02| for proving a configuration locked. This theory allows
us to study the rigidity of self-touching configurations, which is easier because vertices cannot move
even slightly. and obtain a strong form of lockedness of non-self-touching perturbations drawn with
sufficiently small (but positive) separations.

13



Figure 15: Variations on the self-touching configuration from Figure 14(b) to have any desired angle < 90°
opposite the base of each triangle.

To state this relation precisely, we need some terminology from [CDR02]. Call a linkage con-
figuration rigid if it cannot move at all. Define a é-perturbation of a linkage configuration to be a
repositioning of each vertex within distance & of its original position, without regard to preserving
edge lengths (better than £24), but consistent with the combinatorial information of which vertices
are on which side of which bar. Call a linkage locked within £ if no motion that leaves some bar
pinned to the plane moves any point by more than £. Call a self-touching linkage configuration
strongly locked if, for any desired £ > 0, there is a § > 0 such that all §-perturbations are locked
within €. Thus, if a self-touching configuration is strongly locked, then the smaller we draw the
separations in a non-self-touching perturbation, the less the configuration can move. In partic-
ular, if we choose £ small enough, the linkage must be locked in the standard sense of having a
disconnected configuration space locally.

Theorem 8 [CDR02, Theorem 8.1] If a self-touching linkage configuration is rigid, then it is
strongly locked.

Therefore, if we can prove that the self-touching configuration in Figure 14(b) (and its variations
in Figure 15) are rigid, then sufficiently small perturbations along the lines shown in Figure 14(a)
are rigid.

The theory of [CDR02] also provides tools for proving rigidity of a self-touching configuration.
Specifically, we can study infinitesimal motions, which just define the beginning of a motion to the
first order. Call a configuration infinitesimally rigid if it has no infinitesimal motions.

Lemma 9 [CDR02, Lemma 6.1] If a self-touching linkage configuration is infinitesimally rigid,
then it is rigid.

A final tool we need from [CDRO02] is for proving infinitesimal rigidity. For each vertex u wedged
into a convex angle between two bars {v,w;} and {v,ws}, we say that there are two zero-length
connections between u and v, one perpendicular to each of the two bars {v,w;}.! See Figure 16.
These connections must increase to the first order because u must not cross the two bars {v, w;}. In
proving infinitesimal rigidity, we can choose to discard any zero-length connections we wish, because
ignoring some of the noncrossing constraints only makes the configuration more flexible. Together,

'The definition of such connections in [CDR02] is more general, but this definition suffices for our purposes.
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Figure 16: Two zero-length connections between vertices u and v.

the bars and the zero-length connections are the edges of the configuration. Define a stress to be
an assignment of real numbers (stresses) to edges such that, for each vertex v, the vectors with
directions defined by the edges incident to v, and with magnitudes equal to the corresponding
stresses, sum to the zero vector. We denote the stress on a bar {v,w} by w,,. and we denote the
stress on a zero-length connection between vertex u and vertex v perpendicular to {v,w} by wy vuw-

Lemma 10 [CDR02, Lemma 7.2] If a self-touching configuration has a stress that is negative on
every zero-length connection, and if the configuration is infinitesimally rigid when every zero-length
connection is treated as a bar pinning two vertices together, then the self-touching configuration is
infinitesimally rigid.

6.2 Locked Chains

We are now in the position to state the precise senses in which the chains of isosceles triangles in
Figures 14 and 15 are locked:

Theorem 11 The self-touching chains of nine isosceles triangles shown in Figures 14(b) and 15
are rigid provided that the apex angle is < 90°.

Applying Theorem 8, we obtain the desired result:

Corollary 12 The self-touching chains of nine isosceles triangles shoun in Figures 14(b) and 15
are strongly locked provided that the apex angle is < 90°. Therefore, any sufficiently small non-self-
touching perturbation, similar to the one shown in Figure 14(a), is locked.

Sections 6.3-6.4 prove Theorem 11.

6.3 Simplifying Rules

We introduce two rules that significantly restrict the allowable motions of the self-touching config-
uration of isosceles triangles.

Rule 1 If a bar b is collocated with another bar V' of equal length, and the bars incident to V' form
angles less than 90° on the same side as b, then any motion must keep b collocated with b/ for some
positive time. See Figure 17.

Proof: The noncrossing constraints at the endpoints of b and ¥ prevent b from moving relative
to &' until the angles at the endpoints of &' open to > 90°, which can only happen after a positive
amount of time, O
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Figure 17: Rule 1 for simplifying self-touching configurations.

We can apply this rule to the region shown in Figure 18, resulting in a simpler linkage with the
same infinitesimal behavior. Although the figure shows positive separations for visual clarity, we
are in fact acting on the self-touching configuration of Figure 14(b).

#

Rulg 1

Figure 18: Applying Rule 1 to the chain of nine equilateral triangles from Figure 14.

Rule 2 If a bar b is collocated with an incident bar b’ of the same length whose other incident bar
b" forms a conver angle with ¥ surrounding b, then any motion must keep b collocated with i for
some positive time. See Figure 19.

Figure 19: Rule 2 for simplifying self-touching configurations.

Proof: The noncrossing constraints at the endpoint of b surrounded by the convex angle formed
by b’ and b” prevent b from moving relative to b’ until the convex angle opens to > 90°, which can
only happen after a positive amount of time. O

We can apply this rule twice, as shown in Figure 20, to further simplify the linkage.
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Figure 20: Applying Rule 2 twice to the configuration from Figure 18.

The final simplification comes from realizing that the central quadrangle gap between triangles
is effectively a triangle because the right pair of edges are a rigid unit. Thus the gap forms a
rigid linkage (though it is not infinitesimally rigid, because a horizontal movement of the central
vertex would maintain distances to the first order), so we can treat it as part of a large rigid block.
Figure 21 shows a simplified drawing of this self-touching configuration, which is rigid if and only
if the original self-touching configuration is rigid.

Figure 21: The simplified configuration from Figure 20.

6.4 Stress Argument

Finally we argue that the simplified configuration of Figure 21 is infinitesimally rigid using Lemma 10.
The configuration is clearly infinitesimally rigid if B is pinned against B’, C is pinned against ",
and D is pinned against D’. It remains to construct a stress that is negative on all length-zero
connections. The stress we construct is nonzero only on the edges connecting points with labels in
Figure 21; we also set wap = 0.

We start by assigning the stresses incident to A. We choose wqp < 0 arbitrarily. and set
wap = —wap > 0. A is now in equilibrium because these stress directions are parallel.

We symmetrically assign wge := wap < 0 and wgrer = wqrgr > 0. The resulting forces on B and
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B’ are vertical. They can be balanced by an appropriate choice of the stresses wg pra = wg g < 0,
which, taken together, also point in the vertical direction.

Vertex D' has exactly three incident stresses—wev py, wpr pe, and wpy pg—which do not lie in a
halfplane. Thus there is an equilibrium assignment to these stresses, unique up to scaling, and the
stresses all have the same sign. Because zero-length connections must be negative, we are forced
to make all three of these stresses negative. We also choose this scale factor to be substantially
smaller than the stresses that have been assigned so far.

By assigning wop = —werpr, we establish equilibrium at vertex D as well: the forces at D are
the same as at D', only with reversed signs.

Vertex C feels two stresses assigned so far—wep > 0 and wpe < 0. By the choice of scale
factors, the latter force dominates, leaving us with a negative force in the direction close to CB,
and two stresses we cv g and we crpe which can be used to balance this force. The three directions
do not lie in a halfplane. Therefore we ¢vp and we o can be assigned negative stresses.

Finally, vertex C" is also in equilibrium because wpc» = —wpe, werp = —wep, and the stress
from the zero-length connections are the same as for C' but in the opposite direction.

In summary, we have shown the existence of a stress that is positive on all zero-length connec-
tions. By Lemma 10, the self-touching configuration is infinitesimally rigid, so by Lemma 9, the
configuration is rigid. By the simplification arguments above, the original self-touching configu-
ration is also rigid. By Theorem 8, the original self-touching configuration is strongly locked, so
sufficiently perturbations are locked.

We remark that an argument similar to the one above, using an assignment of stresses, can also
be used for proving Rules 1 and 2, with an appropriate modification of Lemma 10; however, the
direct argument that we have given is simpler.

The argument relied on the isosceles triangles having an apex angle of < 90° (but no more) in
order to guarantee that particular triples of stress directions are or are not in a halfplane. It also
relies on the symmetry of the configuration through a vertical line (excluding the triangle in the
upper right). Thus the argument generalizes to all isosceles triangles sharper than 90°.

6.5 Locked Equilateral Triangles

Figure 22 shows another, simpler example of a locked chain of equilateral triangles, using just seven
triangles instead of nine. However, this example cannot be stretched into a locked chain of triangles
with an arbitrary apex angle of < 90°, as in Figure 15.

To prove that this example is locked, we first apply Rule 1 and then Rule 2, as shown in Fig-
ure 23. Unlike the previous example, the resulting simplified configuration is not infinitesimally
rigid (the middle vertex can move infinitesimally horizontally), so we cannot use a stress argu-
ment. In this case, however, we can use a more direct argument to prove rigidity of the simplified
configuration (and thus of the original self-touching configuration).

Let £ denote the side length of the triangles in any of the self-touching configurations. Consider
the two dashed chains connecting vertices A and B in the simplified configuration. The left chain
of two bars forces the distance between A and B to be at most 2¢, with equality as in the original
configuration only if the angle between the two bars remains straight. The right chain of three
bars can only open its angles, because of the three triangles on the inside, so the right chain acts
as a Clauchy arm. The Cauchy-Steinitz Arm Lemma (see, e.g., [Conn82] or [SZ67]) proves that the
endpoints of such a chain can only get farther away from each other. Thus the distance between A
and B is at least 2¢, with equality only if the angles in the right chain do not change. These upper
and lower bounds of 2¢ on the distance between A and B force the bounds to hold with equality,
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(a) (b)

Figure 22: A locked chain of seven equilateral triangles. (a) Drawn loosely. Separations should be smaller than
they appear. (b) Drawn tightly, with no separation, as a self-touching configuration. B

Rule 2

Figure 23: Applying Rules 1 and 2 to the chain of seven equilateral triangles from Figure 22.

which prevents any angles from changing except possibly for the angles at A and B. However, it
is impossible to change fewer than four angles of a closed chain such as the one formed by the left
and right dashed chains. (This simple fact was also proved by Cauchy [Cro97].) Therefore, the
configuration is rigid.

Applying Theorem 8, we obtain that the self-touching configuration is strongly locked:

Theorem 13 The self-touching chain of seven equilateral triangles shoun in Figure 22(b) is rigid
and thus strongly locked. Therefore, any sufficiently small non-self-touching perturbation, similar
to the one shown in Figure 22(a), is locked.

Appendix

Here we describe a construction of a closed chain, a convex parallelogram, with slender adornments
attached, where each adornment together with its base is convex, such that the configuration space
has infinitely many components.

We attach a single obtuse triangle as a slender adornment to the top base segment, as with
Figure 10. If the bottom segment is fixed the path of the bottom vertex in the upper adornment
traces out a circle, which is shown as a dashed circular arc C' in Figure 24(a).

The second slender adornment is attached to the bottom segment and is the convex hull of
infinitely many points, each slightly above €. The points form an infinite sequence py,ps,...
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converging to a point on the right p.., and they are chosen so the straight line interval from p; to
Pi+1 intersects the lower portion of C' (the open circular disk determined by ). An exaggerated
picture of this construction is in Figure 24(b). Thus, the upper slender adornment intersects the
lower adornment and misses it alternately infinitely often.

(b)

Figure 24: Figure (a) shows the overall set-up of a parallelogram with two convex slender adornments attached
such that the configuration space has infinitely many components. Figure (b) is an exaggerated close-up of where
the two adornments are close.
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Abstract

We study collections of linkages in 3-space that are interlocked in the sense that the linkages cannot be separated
without one bar crossing through another. We explore pairs of linkages, one open chain and one closed chain, each
with a small number of joints, and determine which can be interlocked. In particular, we show that a triangle and
an open 4-chain can interlock, a quadrilateral and an open 3-chain can interlock, but a triangle and an open 3-chain
cannot interlock.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Consider a simple polygonal chain, either an open arc or a closed polygon, that is embedded in
3-space. We view the vertices of the chain (except the endpoints of an open chain) as universal joints,
and the edges of the chain as rigid bars. We call a chain with k bars a k-chain. A motion of the chain is a
motion of the vertices that preserves the length of the bars, and never causes bars to cross. In particular,
a straightening of an open chain is a motion that makes all joint angles become 180°. We say that a
collection of disjoint, simple chains can be separated if, for any distance d, there is a motion whose
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result is that every pair of points on different chains has distance at least d. If a collection cannot be
separated, we say that its chains are interlocked. If a single chain cannot be straightened, we say that it is
locked.

It is known that a single, open chain in 3-space, having as few as 5 bars, can be locked [1,2]. Other
classes of chains are known to be unlocked, but the complexity of deciding whether a given chain can
be unlocked is not known. One decision procedure applies the roadmap algorithm for general motion
planning [3,4], which runs in exponential time.

Our work is inspired by a question posed by Anna Lubiw [5]: Into how many pieces must a chain be
cut so that the pieces can be separated and straightened? This problem is motivated by protein molecules,
which can be modeled by polygonal chains, and, according to some theories, temporarily split apart in
order to reach the minimum-energy folding.

We can observe easy upper and lower bounds for Lubiw’s problem: some n-chains require cutting
at least |(n — 1)/4] vertices for separation, and no chain requires cutting of more than |[(n — 1)/2]
vertices. The lower bound is obtained by concatenating many copies of the 5-bar “knitting needles”
example from [1,2], each sharing one bar with the next as in Fig. 1. Observe that each copy of the locked
5-bar chain must have one of its four interior vertices cut. The upper bound is obtained by cutting every
second joint of a chain, and observing that the resulting 2-bar pieces (“*hairpins™) can be rigidly separated
arbitrarily far by dilating from a point, because the pieces are starshaped sets. This separation motion
dates back at least to de Bruijn in 1954 [6], where he used it to prove separability of convex objects;
the same motion was shown to apply to the more general situation of starshaped objects by Dawson in
1984 [7], and the algorithmic side of this result is described by Toussaint in 1985 [8]. See also [9].

While Lubiw’s problem motivated our original interest in interlocked open chains, we explore here
interlocking for combinations of open and closed chains. In the next section, we resolve how many bars
are needed by each chain in order to obtain an interlocked pair, as summarized in Table 1.

Fig. 1. An n = 17 bar chain that requires cutting at least [(n — 1)/4] = 4 vertices to separate.

Table |

Our results on when an open chain and a closed chain can interlock. A claim
that a k-chain can interlock holds also for any /-chain with / > k, and a claim
that a k-chain cannot interlock holds also for any /-chain with [ <k

Sec Chain 1 Chain 2 Result
2 closed triangle open 3-chain Cannot Interlock
3.1 closed triangle open 4-chain Can Interlock

32 closed quadrilateral open 3-chain Can Interlock
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2. Triangle and 3-chain cannot interlock

We begin by showing that a triangle and a 3-chain cannot interlock. As we will see later, this is in
some sense a maximal non-interlocking configuration.

Theorem 1. An open 3-chain cannot interlock with a triangle.

Proof. We follow this notation: Aabc lies in plane H, and the 3-chain C has vertices (po, pi, P2, P3)
and bars (ly, Iy, I;). First assume C is not planar; otherwise, make C nonplanar by a small motion. Let L;
be the support line of /; and define points ¢; = L; N H.

(1) Bar [, intersects the closed Aabc. In this case, it is possible to move bar [ and bar /; within the plane
that it forms with /; so that the angle at the joint shared with /, is arbitrarily close to either 0 or ,
because one of the two wedges spanned by these two motions does not intersect any other edge.
Once both end bars have been moved to that position, C is arbitrarily close to a single bar which can
be translated in the direction p; ps.

(2) Bar I, does not intersect the closed Aabc. Because configuration C is non-self-intersecting, we can
assume that the points {qo, p1. P2, g2} do not lie on a common plane, or equivalently {go, g1, g2} are
not collinear. Denote the line containing go and g, by Qg 2, as in Fig. 2. In fact, for any position of /,
such that (L, N H) € Qy,2, the lines containing gop, and p2g, do not intersect, and do not intersect
the edges of Aabc. Thus the motion that translates /; in a direction orthogonal to Qg ; and parallel to
H, away from Aabc, while maintaining Lo and L, through the original points g and ¢, will avoid
self-intersection.’ O

Fig. 2. Translate /) so that the point g; = Ly N H moves away from Qg 2. Keep the points gg and ¢ fixed in H, so that the
lines Lg and L pivot about gg = Lo N H and g3 = L N H as I} moves. This separates the 3-chain from Aabe.

3 See http://www.cs.smith.edu/~orourke/Interlocked/ for an animation of this motion.
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3. Interlocked examples and the topological method

Our two proofs that chains are interlocked follow a similar structure in what we call the ropological
method. We imagine tying the two ends of the open chain with a long rope near infinity, which defines
a topological /ink (multicomponent knot) [10, p. 17]. For the two chains to separate, they must form the
trivial link (referred to as 07; see later). First we show that before this happens, the ends of the open chain
must get close to the closed chain. Second we argue that this proximity is impossible before changing
the topology of the link. Finally we prove that this circularity leads to a contradiction, so the chains are
interlocked.

To make connections to known mathematics for links, we will refer to some links by their numbers
from standard tables. See [10, p. 287] or [11, p. 1086]. Tables of links are often organized by (minimum)
crossing number. The superscript in the link notation is the number of components, for us always 2. The
subscript is an arbitrary table index. See Fig. 3.

3.1. Triangle and 4-chain
We begin with the configuration illustrated in Fig. 4.

Theorem 2. A triangle can interlock with a 4-chain.

WAL

1 2 4 51
61 63 63 N

Fig. 3. The first few two-component links.

4 Link images produced by Robert Scharein's knotplot program http:/www.cs.ubc.ca/nest/imager/contributions/scharein/
KnotPlot.html,
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Fig. 4. A triangle and a 4-chain can lock.

Proof. We choose the following notation for the configuration of Fig. 4: A triangle abc lies in a plane
H, with H* the halfspace above and H~ the halfspace below H. Let the circumcircle of Aabc have
center o, and radius r.

The 4-chain alternates points and bars pg, lo, py, [y, ..., I3, ps with the following placements: py is in
H ™, bar Iy crosses the interior of Aabc, and ends at a point p, above o. Bar [, crosses the interior of
Aabc again, so p; € H™. Bar I, crosses H outside of Aabc, and /5 crosses the wedge formed by /, and
I, above H. So {po, p2) C H™ and {py, p3, ps) CH™.

Let R be the real number r + |/;| + |/2|, and set the length of /; and /3 to 20R. Consider the open ball
B of radius 15R, and the ball B’ of radius 4R, both centered at o. Initially, po and p4 lie outside of B,
while a, b, ¢, p;, p2 and ps all lie inside B’ C B. As long as py and p4 stay outside B and all other
vertices stay inside B, we can attach a sufficiently long unknotted string between p, and p4 that remains
outside B, and thus is never crossed by any of the bars, and our configuration is equivalent to the link Sf.
The non-interlocked configuration corresponds to two separable unknots 07, so any motion separating
this configuration would require pg or p4 to enter the ball B or p,, p; or ps to leave B.

Consider the first event when any p;, i =0, ...,4, touches the boundary of B. Then before or at that
event, points p;, p; and ps must be out of B’ but still inside B: When p, touches B, point p; must be

Fig. 5. When pg touches B, point py, p; and p3 must be exterior to B'.
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Fig. 6. This configuration is incompatible with the fact that py or p4 touches the boundary of B,

exterior to B’ by at least R, and therefore p, and p; are also exterior to B'. See Fig. 5. The same applies
for when p4 touches the boundary of B. When any one of p;, p; or p3 touches the boundary, the other
two are at least at a distance 14R from o and so are outside of B’. Since we consider the first such event,
there must be an instant before that when all three points are outside B’ but still inside B.

At this time, the only elements possibly inside B’, besides Aabc, are the two bars [ and /3. Then
either one of [y and /5 crosses the interior of Aabc, or both do, or neither do. The first case corresponds
to a link 22 and the third case to two separable unknots 0%; neither of these are equivalent to our starting
configuration (in the knot-theoretical sense). Since the rope and the bars have not crossed, the topology
of the configuration cannot have changed and so these cases lead to a contradiction.

The case in which both /y and /5 cross Aabc requires a careful analysis. Because end vertices pg and
P4 are still outside of the open ball B, we can replace the string joining them by a great arc y on the
boundary of B. Let T be the plane parallel to /g and /3, and passing through o. Consider the orthogonal
projection of the 4-bar linkage onto 7. Note that in the projection, the lengths of bars /p and /3 are
preserved, and all other segment lengths are at most their original lengths. Let go be the intersection of
lp and plane H. The triangle Aabc is contained in a ball of radius 2R centered at go, and joints p;, p;
and p; lie in a ball of radius R centered at p,. Since p, is outside B’ and g is inside the circumcircle
of Aabc, the distance between those two points is larger than 3R, and that distance is preserved in the
projection. Thus, the projections of the two balls are disjoint and we can separate the projections of p,,
p2 and p; from the projections of py, ps and Aabc by a line (this separation is necessary to exclude cases
such as the one shown in Fig. 6), and the two bars /; and /; can be replaced by a single bar joining p; and
ps without changing the topology of the link. By enumerating all possible above/below combinations for
the crossings in that projection, we can infer that configuration is equivalent to 03, which is two separated,
unknotted links, or to 42, which is shown in Fig. 7. But neither of these are topologically equivalent to
our starting configuration, so this first event could never happen.

Note that a similar argument can be used to show that the chains in Fig. 6 are interlocked as well. O

3.2. Quadrilateral and 3-chain

In the following, we will use what is known as the linking number of a two component link. We first
arbitrarily orient both components of the link. Then each crossing drawn in the projection of the link has
one of two types, associated with a value +1 or —1. See Fig. 8.

The linking number of the link is half the sum of the values of all crossings between the different
components; crossings of a component with itself are not counted. For example, the link 57 has 5
crossings, but only four of them involve both components. The sum of the values of the four crossings
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Fig. 7. The link 42, formed when bars I and I3 both pass through the interior of Aabc. (Not to scale; gray segments indicate
omissions.) Joints {py, p2, p3) can be separated from {a, b, ¢, po, ps}.

XX

+1 -1 Link(5%) =0

Fig. 8. Sign of a crossing.

is 0, which yields a linking number of 0. Note that if the orientation of one of the components is reversed,
then the linking number is negated. It can be proved using some elementary knot theory that the linking
number of an oriented link is an invariant, that is, it has the same value for all drawings of the oriented
link [10, p. 21].

Theorem 3. A 4-gon can interlock with a 3-chain.

Proof. Let the 4-gon be abcd, and again use (lo, [1, ;) and (po, p1, p2, p3) to represent the bars and
vertices of the 3-chain. Starting with the configuration of Fig. 9, let R = |ab| + |bc| + |cd| + |I;| and set
the length of [y and /; to 20R. Consider the open ball B of radius 15R, the ball B’ of radius 4R, and the
ball B” of radius R, all three centered at a. As in the previous proof, we connect py to p3 by a string
exterior to B. The resulting link is now 67. We again argue that in order to separate the 4-gon from the
3-chain, py or ps has to enter the ball B or p, or p; have to leave B. Before that, there must be an instant
when py and p; are still outside B, p, and p, are still inside B but out of B’, and the only elements
possibly inside B’, besides abcd, are the two edges [y and /,.
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I 4
/ /\ '
e L N

Fig. 9. A quadrilateral and a 3-chain can lock.

a

If neither /o nor /; intersects B”, then the configuration is the link 07, contradicting that the topology
cannot have changed. If one of the two end bars, say /o, intersects B”, let gp be a point of I N B”. We
project the configuration onto a plane parallel to /y and /5, preserving the distances along those two bars.
As in the previous proof, because the length of the segment gop; is preserved in the projection, only
the interiors of /y and /, can intersect the projection of B”. This implies that the linking number of the
configuration will be the sum of the values induced by /y and abed, and the values induced by /; and
abcd, divided by 2. Notice that the total of the values induced by a straight edge and a 4-gon is at most
2, and so the linking number of the configuration is at most (2 + 2)/2 = 2. But the linking number of 67
is 3. Because the linking number is an invariant, the topology of the configuration must have changed, a
contradiction. 0O

4. Open problems

Many open problems remain in the context of interlocking pairs of open chains, which have close
connections to the motivating problem of Lubiw. For each value of i, what is the smallest j for which an
i-chain can interlock with a j-chain?

The topological method of Theorems 2 and 3, where we used a “rope” to close one open chain to
form a topological linkage, does not easily extend to pairs of open chains. Two ropes would be needed,
and their potential interactions would need to be controlled. To extend this work, therefore, we will be
investigating a geometric method that establishes a collection of geometric facts and shows that there
can be no first violation. We believe that we can use such a method to establish three conjectures: that
a 3-chain can interlock with a 4-chain, that three 3-chains can interlock, but that two 3-chains cannot
interlock even in the presence of any finite number of 2-chains.

The proof of Theorem 3 depends upon a tetrahedron formed by the 4-gon, and does not show that a
3-chain and a k-gon can interlock for any k > 4. In fact, adding any small edge to the 4-gon would allow
the 3-chain to escape. On the other hand, our conjecture that a 3-chain can interlock with a 4-chain,
once established, would imply that a 3-chain can interlock with a k-gon for any k > 5 by connecting the
endpoints of the 4-chain with one or more edges.

Chains that model physical objects, such as robot arms or protein backbones, often have restrictions
placed on the motion of a joint. There are a number of interesting problems for open and closed chains
under various restrictions on motions. For example, we conjecture that a rigid, open 3-chain can interlock
with a flexible, open 3-chain.
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ABSTRACT

We advance the study of collections of open linkages in 3-
space that may be interlocked in the sense that the link-
ages cannot be separated without one bar crossing through
another, We consider chains of bars connected with rigid
joints, revolute joints, or universal joints and explore the
smallest number of chains and bars needed to achieve in-
terlock. Whereas previous work used topological invariants
that applied to single or to closed chains, this work relies on
geometric invariants and concentrates on open chains.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms]: Nonnumerical Algorithms—
Geometrical problems and computations

General Terms
Theory

Keywords

Linkages, Knots, Geometry, Configurations, Robotic Arms,
Protein Models

1. INTRODUCTION

Consider a simple polygonal chain that is embedded in 3-
space with disjoint, straight-line edges, which we think of as
fixed-length bars. We call a chain with k bars a k-chain. The
k + 1 vertices of a k-chain are the two end points, adjacent
to the end bars, and k — 1 internal vertices, or joints. We
can place restrictions that each joint be rigid, permitting no
relative motion between its two incident bars, or be revolute,
a term that we will consistently use for a rotational joint
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that preserves the angle between its two incident bars, or be
flexible, serving as a universal joint that allows any rotation.

A motion of a chain is a motion of the vertices that pre-
serves the length of the bars, respects the restrictions on
joints, and never causes nonadjacent bars to touch. We say
that a collection of disjoint, simple chains can be separated if,
for any distance d, there is a motion whose result is that ev-
ery pair of points on different chains has distance at least d.
If a collection cannot be separated, we say that its chains
are interlocked.

In this paper, we characterize collections of open chains
with small numbers of bars that can interlock. Our results
on pairs of chains, summarized in Table 1, explore when it
is possible for an open k-chain to interlock with an open m-
chain. A result that an open k-chain can interlock with an
m-~chain also implies that open or closed [-chain, with [ > k,
can interlock with an m-chain, and a result that no open
k-chain can interlock with an m-chain also implies that no
open [-chain with { < k can interlock with an m-chain.

In addition, we show that

e Two flexible 3-chains with any finite number of flexible
2-chains cannot interlock, but three flexible 3-chains
can interlock.

e A flexible 4-chain with any finite number of flexible
2-chains cannot interlock, but a flexible 3-chain and
4-chain can interlock.

We prove results on separability of chains in Section 2, and
on interlocked chains in Section 3. Our proofs assume gen-
eral position, namely that no nonincident bars are coplanar
and no three joints collinear. Since we can enforce general
position by a small perturbation, this assumption can be
made without loss of generality. We list some remaining
open problems in Section 4.

Previous work has considered motions of single chains and
of closed chains. A straightening of a fiexible chain is a mo-
tion that makes all joint angles become 180°. If a single
chain cannot be straightened, we say that it is locked. It is
known that a single, open chain in 3-space, having as few
as 5 bars, can be locked [4, 1]. In a companion paper [7],
we showed examples with open and closed chains that were
interlocked, including an open 3-chain with a quadrilateral
and an open 4-chain with a triangle. In these previous works
it was possible to (conceptually) close an open chain by
adding a piece of rope, then argue that geometric proper-
ties kept the rope from interfering with any motion, and that
topological invariants demonstrated that the resulting closed
links were interlocked. However, this approach does not ex-
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2-chain 3-chain 4-chain 5-chain

flexible | rigid || flexible | revolute | rigid || flexible | revolute | rigid || rigid

2-chain flexible - - = — -8 2 5 = +1°
rigid = = = 4 +1i]| +14 114 R 3
3-chain flexible - - = -6 +o + & +
revolute|| - | -*| -° + | + . B B B
rigid _8 FRE) + + + + T =
4-chain flexible || - | +'| <+ . + - B - -
revolute|| - | +"| + - . - - - +
rigid =+ + - + [ + - - -
S-chain _ rigid +*2 ] + | + + [+ ] + + |+ ] +

Table 1: Our results on interlocking pairs of open chains. (+) = can, (~) = cannot interlock. In superscript
is the number of the theorem proving the result, the other entries are implied.

tend: we cannot simply close two or more open chains with
ropes because the ropes may interfere with one another. In-
stead we establish geometric invariants, typically about the
convex hull of joints and the relations of the end bars, often
by considering convenient projections of the linkage. We
emphasize the different proof techniques used within each
section.

One of the inspirations for our work was a question posed
by Anna Lubiw [6]: into how many pieces must a chain
be cut so that the pieces can be separated and straight-
ened? This question is motivated by proteins, which may,
according to some theories, temporarily split apart in order
to reach the minimum-energy folding. Our results on open
flexible chains, along with the locked 5-chain of [4, 1], im-
ply that a set of chains can always be separated and every
chain straightened if the total number of middle bars is less
than three. If the end bars are long enough, there are inter-
locked configurations whenever the number of middle bars
is at least three. Soss (8] investigated revolute chains’, also
motivated by proteins, and created a “staple and hook" ex-
ample of an interlocked revolute 3-chain and 4-chain. We
have an interlocked example with two revolute 3-chains.

The complexity of deciding whether a given chain can
be unlocked is not known. One decision procedure applies
the roadmap algorithm for general motion planning [2, 3],
which runs in polynomial space but exponential time. Be-
cause all of our results are for a few chains, each of a few
joints, the roadmap algorithm could in principle establish
interlock for our examples, but couldn't discover them and
probably wouldn't give insight into their structure. On the
other hand, the separability proofs apply to general classes
of sets of chains, rather than the specific instances handled
by the algorithm.

2. SEPARABLE CHAINS
In this section, we prove that certain configurations are

'Here, and throughout this paper, a revolute joint is one
that preserves the angle between the adjacent bars, which is
called an “edge spin” in {9] and a “dihedral motion" in [8].
In some areas “revolute” is used for the larger class of pin
joints whose axes need not align with one of the bars; we
use only the restricted definition.
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separable by extending a scaling idea (whose earliest refer-
ence we know is de Bruijn [5]) and other arguments to find a
separating motion. Except for a couple of cases involving a
flexible 2-chain, the theorems in this section are tight in the
sense that, for the chains considered, any additional bars or
further restrictions on the motion can allow an interlocked
configuration.

2.1 Two 3-flexible chain+many 2-flexible can-
not interlock

We show that two 3-chains (even with added 2-chains)
never form an interlocked configuration.

THEOREM 1. Two open, flexible $-chains and any finite
number of flexible 2-chains can always be separated.

Proor. Consider two 3-chains C; and C3, and especially
their middle bars, k; and k;. By our general position as-
sumption, non-adjacent bars are not coplanar. Let K be a
plane between, and parallel to, the middle links k; and k;.
We may choose the coordinate system such that K is the yz
plane. If necessary, apply another small perturbation to en-
sure that no two vertices have the same z coordinates except
for the vertices of k; and of ks.

Now, consider the affine transformation = — ax for any
real @ > 1. Note that this is a non-uniform scaling that
increases all distances between pairs of points with different
zr-coordinates. Thus, it preserves the lengths of k; and k3,
and increases the length of all the other edges.

Create a motion parameterized by time t > 1 by placing
the chains according to the transform for a = ¢, and trun-
cating the edges at both ends of each chain to preserve the
lengths. Because affine transformations preserve incidence
relationships among lines, the motion cannot cause any bars
to touch. As t becomes large, the chains separate arbitrarily
far, so they are not interlocked. [J

We can prove a similar theorem for an open 4-chain and
2-chains.

THEOREM 2. An open, flexible {-chain and any finite num-
ber of flexible 2-chains can always be separated.

PROOF. As in the proof of Theorem 1, rotate the config-
uration so that the three joints of the 4-chain are parallel to



the yz plane, and apply the affine transformation z — ar
for any real a > 1 to increase the distance between all ver-
tices except the joints of the 4-chain. Each end bar can be
truncated to obtain a separating motion. [J

A corollary improves the bound for a problem posed by
Lubiw, and first addressed in [7].

COROLLARY 3. Given a n-chain, it is always possible to
cut |(n — 3)/2] vertices so that the pieces obtained can be
separated and straightened.

ProoF. Cut the 4th joint, then cut every other joint to
obtain one 4-chain and many 2-chains, [J

The next three subsections establish theorems on pairs of
chains with restricted motions.

2.2 2-rigid+3-revolute cannot interlock

THEOREM 4. A rigid 2-chain and a revolute 3-chain can-
not interlock.

ProoF. Consider the rigid 2-chain P = (pg,p1,p2) and
the revolute 3-chain R = (rg,ry,r2,7s). The general posi-
tion assumption ensures that no two non-adjacent edges are
coplanar. Let H be the plane containing P. Then R inter-
sects H in at most three points: let r{ be the intersection
between ryr¢4; and H, if it exists.

The two lines containing pop; and pipa divide H into 4
quadrants Qy, ..., Q4. If quadrant Qy, Q2, or Q3 contains
no intersection point r}, then P can be separated by a trans-
lation in H: if Q, is empty, we translate P in the direction
piba, if Q; is empty, we translate P in the direction p3py,
and if Qs is empty, we translate P in the direction pgp:.
Otherwise, we may assume r;, € Qy, r;, € Q2 and r{, € Q.

Figure 1: 2-chain P in its plane H.

Now, translate P in H so that joint p, is within a dis-
tance £ of rj, as shown in Fig. 1, where £ > 0 is a small
value to be chosen later. Thiscanbedonewithout intersec-
tions. If the segment ri,r{, does not mt.emect P, then we
can rotate P counterclockwise about r{, until quadrant Q;
(which is changing shape as P rotates) becomes empty—
then translate P in the direction pap;. There remains the
case in which segment r(,r., intersects P. We analyze two
subcases: either iy = 1 and r{ isin Qy, or iy # 1.

If r} € Q,, suppose that the middle bar of R is fixed. Then
the end bar rory can move in a cone with apex ry and axis
rir2 passing through rj. If £ was chosen small enough, this
cone intersects H in a curve (a conic section) that connects
point ry to some point in quadrant Q4 without intersecting
Qi. Bar rgry can rotate until it reaches the ray from r}
through r{, € Qs without intersecting bar rars, so we can
rotate rj into Q4, then can separate P by a translation in H.
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For the last case, we assume without loss of generality
that r} € Q2, 75 € Q) and rj € Qs. Then, for any 4 > 0, we
can choose &€ small enough so that P can be translated to be
at distance at most § from ry without crossings. Because the
vertex angles at r; and ry are fixed, we can choose § small
enough in order to rotate rary without crossings to bring it
arbitrarily close to rory. Then, for some small values of §
and then ¢, the cone describing the motions of pypa when
popy is fixed does not intersect ryry, and we can move pypa
until we fall into one of the previous cases. [

2.3 2-flexible+4-rigid cannot interlock

When the 2-chain is flexible, the extra degree of freedom
allows it to escape in its plane from any chain that intersects
the plane in at most four points,

THEOREM 5. A flexible 2-chain and a rigid 3-chain, 4-
chain, or closed 5-chain cannot interlock.

PROOF. As in the previous theorem, let the 2-chain P =
(po, p1, p2) define a plane H and four quadrants, Qy, ..., Qs.
Consider the at most four points where the other chain R
intersects H. If one of the quadrants Q;, for j € {1,2,3},
does not contain at least one intersection point, then we can
separate P from R by translation in H.

We could move point py along pap:, allowing pop: to rotate
if it reaches any point in Q2, unless and until p; approaches
aray pia = rits, withry € RNQy and 12 € RN Q2. We
could then move p; along ray pia, until py approaches a ray
ps = ryrs, with rf{ € RN Q, and r5 € RN Qs. If these
motions do not separate the chains, then we have found two
rays that cross in Q4. This implies that ry # r} and we
know the quadrants of all four points of RN H. We can now
straighten the 2-chain P by a motion in H that preserves
the ray/chain intersection points 12N P and r13 N P. Then
we can separate P from R by translation. [

2.4 3-flexible+3-revolute cannot interlock

THEOREM 6. A flexible 3-chain and a revolute 3-chain
cannot interlock.

Proor. Let P = (po,...,pa) denote the flexible 3-chain
and R = (rp,...,rs) denote the revolute 3-chain, Consider
the projection of the two chains from the viewpoint p; onto
a sphere. All three bars of R and paps project to segments of
great arcs of angle < w, and pop; and pyp2 project to points.
Thus popy can be moved arbitrarily close to ryry unless its
projection is enclosed in a triangle formed by rory, rar; and

papa. But then, looking at the projection from viewpoint p2
instead, paps can be moved arbitrarily close to ryra. Once
one of the end bars of P is moved close to rirz, the second
end bar can be moved close to rira as well, and they can
then both be moved close to the midpoint of ryra.

So we have reached a configuration where both pop; and
paps are at a distance at most £ from the midpoint r§ of ryr
for some appropriate € > 0. Let H be the plane containing
p1, p2 and r}, and project P onto H in the direction ryrj.
For any given § > 0, we can choose the value of £ so that for
any bar ab intersecting H at a distance > é from any point
of the projection of P, that segment does not touch any bar
of P

Le't ri be the intersection of ryris; with H. If we fix
the position of rira, the possible positions of rory and rary
intersect H in two curves (conic sections). Both these curves



Figure 2: Possible positions for v on components of
the dotted ellipse in H.

are cut into pieces by the projection of P. Those pieces will
be called components for r§ or r5.

We will describe several motions of the chain P where
p1pz2 will remain in H and will be translated in some speci-
fied direction, while the support lines of popy and paps will
slide around r} and remain within a distance « of that point.
We will call any such motion feasible if there exists a simul-
taneous motion of R, with ryry fixed, that introduces no
crossings. This motion will not introduce crossings between
P and itself, or between P and rira. Also, ror; and rars

only intersect lfthenysrm wdmmequd.aowewﬂl
have to preserve the radial ordering of ry and rj with re-
spect to ry during the motion. The last kind of possible
crossings would be between the end bars of R and the chain
P. For those, we observe the possible movements of those
end bars, which correspond to the components for rf or r5.
If the component for rg or r3 is unbounded (e.g. the end
of a parabola), then the corresponding bar can be moved to
stop intersecting H, which can only help moving P away. If
the component for r§ or rj is bounded but never dissapears
during the entire motion, the corresponding bar can be con-
tinuously moved within that component to avoid crossings
with P. So, if rf and r are contained in unbounded com-
ponents, or in bounded components that never disappear
during the entire motion, then the motion is feasible. Con-
versely, the only way for a motion not to be feasible is when
either ry or r is contained in a bounded component that
disappears. Because the curves are convex, and r} is inside
their convex hull, the disappearance of a component during
a motion of the kind described above must involve p;pa.

Fig. 2 denotes by X, Y and Z the three kinds of compo-
nents that could disappear. Since we have only two points
to place in those components, at least one of X, ¥ or Z
contains neither rj nor r3, and perhaps does not exist. If X
is empty or non-existent, then we can translate p;p; in the
direction pap;. This translation does not reduce the size of
Z until pyps stops bounding Z, and Y remains unchanged
by the motion, and so the motion is feasible. If Z is empty
or non-existent, then translating p;p2 in the direction pyp2
produces a feasible motion for the same reasons. If Y is
non-existent for at least one of the two curves, then X and
Z are the same component for that curve and we fall into
the previous case. Finally, suppose Y exists and is empty
for both curves, and there is a non-empty X component
and a non-empty Z component. Assume that X contains rg
and Z contains r3. Then one of the two curves must be an
ellipse; assume that it is the curve containing rg. We can
translate pyp; with rj along its component, away from ri,
until the Y component of r disappears, connecting the X
and Z components of ry and falling back into the previous
case. [J
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3. INTERLOCKED CHAINS

To show that two or more chains are interlocked we estab-
lish geometric invariants, often regarding the convex hull of
selected vertices or joints. We begin with some useful pre-
liminaries. We use a bracket [abed] to denote the 4 x 4
orientation determinant of the homogeneous coor: of
four points a, b, ¢, and d. It will be positive if the ray ab is
consistently oriented with ray ed according to a right-hand
rule.

Since we are concerned with invariants under motion, the
points in a bracket will move over time. We can make state-
ments about the invariance of faces of convex hulls like the
following two lemmas; see Figure 3 for an illustration.

LEMMA 7. Under continuous motion of a, b, ¢, and d, de-
terminant [abed] is positive iff the convex hull CH(a, b, ¢, d)
is a tetrahedron with edges to a, b, and ¢ appearing in counter-
clockwise (ccw) order around d.

Proor. This is a consequence of properties of the orien-

tation determinant. [
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Figure 3: The configurations for Lemmas 7 and 8.

LEMMA 8. Suppose, as depicted at the right of Figure 3,
that the convex hull CH(a,b, c,d,q) initially has siz faces
Agae, Aqeb, Agbd, Aqda, Aade, and Abed. As long as
three conditions hold under motion of a, b, ¢, and d—that
Aade and Abed are faces of convex hull CH(q,a,b,c,d),
that bar pq intersects CH(a, b, ¢,d) with [pgab] > 0, and that
gr intersects CH(a, b, c,d) with [grab] > 0—the convez hull
CH(a,b,c,d, q) retains its face structure. In particular, ab
pierces Oged.

PRrooOF. Since Aadc and Abed remain faces of the con-
vex hull CH(q,a,b,c,d), they remain faces of CH(a, b, c,d),
which must be a tetrahedron. By Lemma 7, [abed] > 0.

We claim that ¢ remains in the intersection of halfspaces
bounded by planes through acd, bed, abd, and ach. These
planes are indicated by dotted lines at the right of Figure 3.
If point ¢ would exit this intersection by first reaching planes
through acd or bed, then a or b would no longer be a vertex
of the convex hull CH(q,a,b,c,d). If q first reached abd or
ach, then pg or gr could no longer intersect the tetrahedron
abed and maintain a positive orientation determinant with
ab, (Note that reaching two or more planes simultaneously
still violates the conditions.) Thus, ¢ remains on the convex
hull and keeps all its incident faces. [J



Figure 4: Three flexible 3-chains that interlock.

3.1 Three flexible 3-chains can interlock

In this section we show that the three open 3-chains of
Fig. 4 interlock. We say that chain i, for i € {0,1,2} has
vertices wy, z;, yi, and z;, as illustrated. We will use index
arithmetic modulo 3.

To make this example, one could start with Borromean
rings made of triangular chains with w; = z;, then extend
the end bars of chain i above and below the surrounding
chain (i + 1) until the end bars are at least three times
longer than the middle bars. Let us assume that the middle
bars have unit length.

THEOREM 9. Three flerible 3-chains can interiock.

Proor. We can make a number of initial geometric ob-
servations, which we will show are geometric invariants of
this linkage. When we say a segment pq pierces a triangle
Aabe, it is a shorthand for saying that five brackets are pos-
itive: [pabe], [abeg|, [pgab), [pgbe], and [pgcal—that is, points
p and g are on opposite sides of the plane abc and Aabc is
oriented consistent with a right-hand rule around pq. We
have the following for all i € {0,1,2}:

(1) The convex hull of the joints @ = CH({z;,y; | 0 <
J < 2}) is an octahedron with edges to Zi+1, ¥i-1, ¥i+1
and z;-, appearing counter-clockwise (ccw) around x;
and clockwise (cw) around y;.

(2) Middle bar z;y; pierces Azi—1yi-1Ti41.

(3) End bar zw; pierces Ayi—1Zi-1y¢41, forms positive
determinants [ziwizuw.-ﬂl and [ziwiyi+1z.-+1]. and
exits the hull Q.

(4) End bar yx pierces Az¢—1yi-1¥i+1 (the same triangle
with the opposite orientation), forms positive determi-
::lnltanmz.-zmy.-ﬁl and [i2iYi+1%i+1), and exits the

As the points and vertices move, let us consider which of
these conditions could fail first. We divide them into two
classes: hull conditions, where a joint or end point goes in-
side the hull Q or a hull edge disappears as two adjacent
faces become coplanar, and piercing conditions, where a bar
fails to pierce its triangle or one of its orientation determi-
nants becomes zero,
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We begin by showing that the first change cannot be a
joint disappearing inside the convex hull. Consider ver-
tex z;. Segment ziw; pierces Ayi—1Ti-1¥i+1 and segment
¢y plerces Az_1yi-1Z¢+1. Since both enter the tetrahe-
dron formed by the middle bars z;_,y;—1 and z(41¥i41, we
can apply Lemma 8 to the 2-chain wyzy, to see that joint z;
cannot be first joint to disappear inside the convex hull.
Similarly, the two segments x,y,z intersect the convex hull
of the two middle bars such that we can apply Lemma 8 and
show that joint y; cannot be the first inside.

If a convex hull edge disappears, then two adjacent trian-
gles become coplanar. By the pigeonhole principle, two of
the vertices of that quadrilateral are from the same chain,
which implies that a middle bar x;y, is on the convex hull.
But as long as z;y; pierces its triangle, it cannot be on the
convex hull. We show below that the triangle piercing is
invariant.

First, however, we argue that end points wy and z; never
enter the hull, by establishing that the hull diameter is less
than three as long as 1) and 2) hold.

LEMMA 10. If the diameter of the convexr hull Q is > 3,
then either Q contains a joint, or a middle bar lies on the
boundary of Q.

Proor. If the hull diameter is three or more, introduce
two planes perpendicular to the diameter segment that cut
it into three equal pieces. These planes cut the hull Q into
three pieces; by the pigeonhole principle, either the first or
the third piece contains (the interior of) only one middle
bar z;y:. If both joints of this bar are on the convex hull,
then this bar lies on the hull because the defining plane
separates these joints from the remaining. [

Thus, the first failures must be piercing conditions, possi-
bly accompanied by an edge (but not a vertex) disappearing
from the hull. Without loss of generality, we consider that
among the first piercing conditions to fail is one for a bar
on chain 1. In preparation for finding a contradiction, we
draw the projections of relevant bars from the perspectives
of joints y; and z; in Figure 5, just before any piercing con-
dition fails.

View from y,: View from x;:

L

~

w2

Figure 5: Views of selected bars and hull edges from
w and from z;.

Consider the projection of the octahedron from y,. By
(1), we see a convex quadrilateral yayoz2zo oriented ccw. By
(2), point z; is initially inside Azoyoxa; since ray2 pierces
Az y1z0, we also know that r, is inside Azayayo. By (3),
bar waxra pierces Axyyyo, so the projection of wazs has x,
to the left and yo to the right, which restricts the placement
of z; as in the figure.
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Now, suppose that the condition that z;y; pierces Azoyoz2
is among the first to fail—that is, one or more of its five ori-
entation determinants become zero. We show that each case
contradicts a known property. (We do one case analysis in
detail to as illustration.) We know that [z)zoyoezz] > 0
and [zoyozay:] > 0, since the triangle is strictly inside the
convex hull and both vertices z; and y; are on the bound-
ary of Q. Thus, it follows from Lemma 7 that [z1y1Zoyo)
can become zero only if bars z,y; and zoyg are touching.
Bracket [z)y1y0z2] can become zero only if the projection of
Tawz has moved to be disjoint from the projection of zyo,
meaning that the piercing condition for z2wz has previously
failed. Finally, [z1y12270] can become zero only if the condi-
tion that zay» pierces Az y1xo has previously failed. This
establishes that the piercing condition for z;y; cannot be
among the first to fail.

We make a similar argument in the projection from y, for
the piercing conditions for yy21. By (4), point z; projects
to the left of 2y, and yozo. Because yz222 pierces Az y1yo,
the projection of yazz has yo to the right and z; to the left;
the orientation determinant also says that, in projection, z;
is to the left of y222. Thus, 2; is restricted to the shaded
region. Since yy2; goes through the hull, Lemma 7 implies
that the yi12; will touch the bars zoyo, zay2, or Y222 if their
corresponding brackets go to zero. Thus, z; can leave the
shaded region only by touching a bar or by a previous failure
of a piercing condition. Notice that the points in the shaded
region satisfy all the conditions imposed upon y;z; in (4).

The argument for rjw; is similar and establishes that
there can be no first failure of piercing conditions. This
completes the proof of Theorem 9.

3.2 A 3-chain and 4-chain can interlock

Figure 6: An example showing a locked 3-chain and
4-chain. Added lines show that the convex hull of
joints is a bi-pyramid.

THEOREM 11. Open flexible 3- and 4-chains can inter-
lock.

ProoF. Figure 6 depicts the core of two linked chains,
ABCDE and wzyz, where bars between joints have unit
length and end bars have length greater than BC + CD +
zy = 3. We analyze the convex hull of the flexible joints
Q= CH(B,C, D,z,y) as the points move.

In the initial embedding of Figure 6, we make several ob-
servations that we will show are invariants. Recall that a
statement that, for example, zy pierces ADCB is short-
hand for saying that five orientation determinants are posi-
tive: [xDCB), |[DCBy), [xyDC], |zyCB], and [zyBD).
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(1): Bar zy pierces ADCB. Equivalently, the hull Q is a
bi-pyramid, with edges to B, C, and D in ccw order

around = and cw order around y.

End bar DE pierces AByz and hull face ABCz and
makes positive orientation determinant [DEzw).

End bar BA pierces ACyzx and hull face ADCy and
makes positive determinants [BAzy| and [BAzw|.
End bar zw pierces ADCB and hull face ACBy and
makes positive determinant [wryz].

(5): End bar yz pierces ABCD and hull face ABCz.

Any motion that separates these chains must change the
convex hull Q and invalidate observation (1), so some set
of observations must be first to fail. We show by finding
contradictions that none of these can be among the first,
establishing that there is no separating motion. Unfortu-
nately, this configuration has no symmetries to cut down on
the number of cases.

To begin, we apply Lemma 8 to argue that the first event
cannot include z or y vanishing inside the hull Q. Consider
z first. Since rw and zy pierce ADCB, both bars intersect
tetrahedron CH(B,C, D, E). Since [DEyz] and [DEzw)|
are positive, we can apply Lemma 8 to show that z cannot
vanish into tetrahedron CH(B, C, D, E) without some other
hull change occurring. But vanishing into CH(B,C, D, E)
would be necessary before = could vanish into hull Q. Simi-
larly, yz and yz pierce ABCD and straddle BA, so Lemma 8
implies that the point y cannot vanish into the tetrahedron
CH(A,B,C, D) unless Q has already changed.

Next, we show that (1) cannot be among the first condi-
tions to fail; that zy must remain inside the hull. Since we
know that z and y remain on opposites sides of the plane
BCD, we can most easily to argue about orientation deter-
minants in 3D by considering projections from the perspec-
tives of one of the joints, as illustrated in Figure 7. Consider

Cp 13 ¥
. C
A w C w
A
& QC’ $D
D > x X

view fromx B viewfromD  view from B view fromy D

(2):
(3):
(4):

Figure 7: Projections of the linkage of Figure 6 from
z, D, B, and y.

the view from z, where we see y inside a ccw-oriented tri-
angle ABCD. By condition (2), DE pierces ABCz, and
[DEyz] is positive (from DE piercing AByz); these further
restrict y to lie in a triangle formed by the projections of
bars BC, CD and DE. By Lemma 7, the projection of y
cannot reach the projections of BC or CD without causing
bars to intersect. Nor can it reach reach BD without causing
bars ry and DE to intersect unless there has been a previ-
ous failure of DE to pierce ABCz, violating condition (2).
Thus, condition (1) cannot be among the first condition to
fail.

As long as the hull keeps its structure, we can make an
argument like that of Lemma 10 to show that the diameter
of the hull is at most three, which implies that end vertices
never enter the hull. For end bar piercing conditions, there-
fore, we can continue to consider projections from joints,
without worrying that a joint or end vertex will disappear
inside the hull,



To see that condition (2) cannot be among the first to fail,
consider the view from D, where we see a convex quadrilat-
eral zCyB whose diagonals are bars that restrict the point
that is the projection of DE. By (4) and (1), bars zw and zy
pierce ADCB, so there is a triangle formed by projections
of bars zw, zy, and BC that contains the projection of E.
For this point to leave the projection of AByz or ABCzx
or change the sign of [DEzw], bar DE would intersect bars
zw, zy, or BC inside Q, or the condition of (4) that zw
pierces ADCB would have previously failed.

For condition (3), we have a similar case in the view from
B. If the projection of A were to leave the projection of
ACyzx or ADCy, bar BA would intersect bar zy, yz, or CD,
or there would have been a previous failure of condition (5),
that yz pierces ABCD.

For the piercing conditions of (4), it is sufficient to estab-
lish that zw always pierces AC By, because as long as it is
satisfied and (1) zy pierces ADCB, we automatically have
zw piercing ADCB. We must also establish that [wzyz] > 0
as points move. Consider once again the view from z. Bar
Tw projects to a point in a region bounded by the projec-
tions of CB, zy, BA, and DE as long as (4) bar zw pierces
ACBy, (5) bar yz pierces ABCz and satisfies [wzyz] > 0,
(3) bar BA pierces ACyz, and (2) [DEzw| > 0. Since zw
cannot intersect bars CB, zy, BA, or DE, for the projection
of w to leave ACBy or cause [wryz] to become negative,
a piercing condition from (5) or (3) must have previously
failed. Thus condition (4) cannot be among the first to fail.

For (5), consider the view from y. As long as zy pierces
ADCB, bar yz piercing ABCz is the more restrictive con-
dition. Bar yz projects to a point in a triangle bounded by
projections of AB, CB, and zw, since (3) AB pierces ACyx
and (4) zw pierces ACBy. (In this case, we cannot use the
condition [DEzw| > 0, since the projection of point E could
lie inside ACBz.) Since yz cannot intersect bars AB, BC,
or zw, the only way to leave ABCz would be after a previ-
ous failure of piercing conditions from (3) or (4).

Since no event can occur among the first events, we know
that any motion will preserve the triangles of the convex
hull Q, and that the chains remain interlocked. [

3.3 2-rigid + 3-rigid can interlock

The remaining subsections investigate interlocking config-
urations with restricted motion.

Figure 8: A rigid 2-chain and a rigid 3-chain can
interlock.

THEOREM 12. A rigid 2-chain can interlock with a rigid
3-chain.

PRrooF. The starting configuration is as shown in Fig. 8.
For the two chains P = (po,p1,p2), and Q = (g0, 1,92,93),
we assume that point gy = (0,0,0), point g2 = (1,0,0), bar
goq1 goes through the point g5 = (1, —1,—1), bar gags goes
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through the point ¢5 = (0,1,—1), and all end bars have
length L. The vertex angle at py is /2 < 8 < x. Draw
a central projection of the configuration onto the zy plane
from viewpoint p;, as in Figure 8.

In the starting configuration, both bars of P intersect
T = CH(40,41,42,93), and during any separating motion,
those bars must cease intersecting 7. The diameter of T is
less than 3, so if L > 3/tan 3, we know that if po or pa enter
T, then one of the end bars of P will have already left 7. So
during any separating motion, one of py or pz will have to
cross one of the dotted lines in the projection shown in Fig-
ure 8. Note that before the motion starts, the dot product
of the planar vectors in the projection popz - q1¢g2 > 0, and
as soon as one of pp or p; intersects one of the dotted lines
in the projection, popa - q1q2 < 0. Since this is a continuous
motion, at some instant we have popa - g1g2 = 0; that is, the
plane containing 2-chain P is perpendicular to ¢142.

Consider the intersections of Q with the plane containing
P at that instant. The intersection with ¢1¢2 is at (y,z) =
(0,0), the intersection with qog: lies on the segment joining
(0,0) to (—1,—1), and the intersection with gaqy lies on the
segment joining (0,0) to (1,—1). Thus, the support line
of pop1 would have to be below (—1,—1) and above (0,0)
and the support line of pyp2 would have to be above (0,0)
and below (1,—1). But this would imply that § < w which
contradicts the fact that P is rigid. O

34 2-rigid + 4-flexible can interlock

Consider the rigid 2-chain P = (po,p1,p2) and flexible
4-chain Q = (qo,...,qs4) shown in Fig. 9. The lengths of
the internal edges ky = ¢1g2, and k2 = g¢a¢s are unity, and
the length of all end bars is set to some large value L to be
determined later. Let 7 be the tetrahedron with vertices
{P1,q1,42,43}. We show:

LEMMA 13. Starting from the configuration portrayed at
the left of Fig. 9, consider any motion where none of the
vertices po, pa, Qo or qs ever enter the tetrahedron T. Then
at all times, the edges popy and pypa2 both intersect triangle
919293-

Proor. Along with the conclusion stated in the lemma,
we will show that a few other conditions remain true at all
times during the motion:

[90919295) <0,  [q1029394] > 0
[pop1goqy] < 0, [Pop1gigi+1] > 0 for i =1,2,3
[P1p2g3gs] >0,  [p2p1Gigi41] > 0 for i =0,1,2

and the edges pop: and p;p; intersect triangle Agig2gs, goq1
intersects Apigags and g¢3gq intersects Ap;qiq2. We prove
this by showing that none of these conditions can be the first
one to become false. Note that these conditions also imply
that p; remains above the plane containing Aqiqaqa.

First consider all determinants involving popy or pyp2. For
this, we project the configuration from the viewpoint p; onto
the Agigags as in the middle of Fig. 9. Let gy be the inter-
section of the edge gog: and the triangle Ap1gags, go projects
to the intersection point of the projections of the edges goq
and q2gs. Likewise, let g be the intersection of the edge
¢3qa and the triangle Apyqiq2; point ¢ projects to the in-
tersection point of the projections of the edges ¢34 and g, q;.
Also, let r be the projection of the intersection between the
projections of the edges gog; and gags; point r is the projec-
tion of points on those two edges that lie inside 7.



Figure 9: A rigid 2-chain P and a flexible 4-chain Q, with views from vertices p; and q.

In the projection, pp becomes a point lying inside the tri-
angle Argogs. The three edges of this triangle are the pro-
jection of portions of edges completely contained in 7, and
po is not contained in 7, so none of the determinants in-
volving pop1 can change sign as the first violated condition
without involving an edge crossing. The same argument can
be made about edge pip2 and triangle Argig:. The same
projection also shows that the edges pop; and p;pa2 will not
stop intersecting triangle Ag)¢ags before some determinant
involving one of these two edges changes sign.

For the events involving gog:, we project the configuration
from the viewpoint ¢ onto the Ap)qags as in the right of
Fig. 9. Let pj be the intersection of popy and Aqiq2gs, po
projects to the intersection point of the projections of the
edges pop1 and ¢2¢3. Let p5 be the intersection of pyp2
and Aqi¢2qs, ph projects to the intersection point of the
projections of the edges pyp2 and ¢2¢s. In the projection,
go becomes a point lying inside the triangle Apopips. The
three edges of this triangle are the projection of portions of
edges completely contained in 7, and go is not contained
in 7, so none of the determinants involving gog: can change
sign as the first violated condition without involving an edge
crossing. The same projection also shows that gag; will not
stop intersecting triangle Ap1gaqs before some determinant
involving gog: changes sign. The events involving gags can
be treated in the same manner, and so none of the events
can occur first. [

THEOREM 14. Given any angle 0 < 3 < =, there is an
interlocked configuration of a 2-chain with a 4-chain, if the
vertez angle of the 2-chain is restricted to stay >  during
the entire motion.

Proor. Consider the configuration shown at the left of
Fig. 9. We show that the length L of all 4 end bars can be
made large enough so that the configuration is interlocked.
By the previous lemma, in order to unlock P and Q, point
Po or pz must enter tetrahedron 7 through Agigags. At the
time one of these endpoints, say po, enters Ag1g2qs, pip2
still intersects Ag1g2¢s. But the closest point to po on p1p2
is at distance Lsin3. Since the diameter of the triangle
Aq1qaqs is less than 2, the configuration will be locked if
Lsinf>2,0r L>2/sinf. 0O

3.5 2-flexible + 5-rigid can interlock
THEOREM 15. A flerible 2-chain can interlock with a rigid
5-chain.

PROOF. We can build this configuration with the coor-
dinates of Figure 10 and check that initially it has positive
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orientation determinants [p1pagigi+1), for i € {0,1,2}, and
[pop1Gigi+1], for i € {2,3,4}. The four planes gigi+1qi+2 for
i € {0,1,2,3} define a tetrahedron 7, shown dotted in Fig-
ure 10, that contains p;. We can calculate the coordinates
s and t, as in the figure, so tetrahedron v = CH(q2, g3, 8, t).

In fact, py cannot leave 7 without causing bars of the two
chains to intersect. Consider the view from p;. Ends po
and pa project to points that are contained in triangles that
are projections of bars of Q. These projected triangles are
invariant as long as p; is in 7: Because the planes gog2¢s
and g¢sgsga completely contain 7, the end bars of Q project
onto g¢2gs until two edges of a projected triangle becomes
collinear, which occurs only if p; reaches a face of . But this
would also force an intersection in the projection between an
end bar of P and a bar of Q. Since the length of the end
bars of P is > 9, and the greatest distance of = from a point
of the projected triangle is |sq1| = 6, the bars do intersect,
as promised. [J

Gy=(+4,-2,-2) X

qr=(+4, +1,-2)
%= (+2,0,0)
4=1(-2,0,0)
= (4,-1,-2)
qs= (=4, +2,-2)

e 4

R’: (—7.5.‘l0 -4)

n= (0,0,+1) 2

P= (+7.5.+1,4) .
%

3:(0. -1,+2) 9 o)

t=(0,+1.+2) View from p,

Figure 10: A flexible 2-chain and a rigid 5-chain can
interlock.

3.6 3-rigid + 3-flexible can interlock

As shown in Section 2.1, two flexible 3-chains cannot in-
terlock. To obtain a locked configuration for two 3-chains,
we could restrict the motion of the chains in several ways.
To make these ways precise, consider a 3-chain with vertices
po, P1, p2, and ps, and define



e the vertex angle at p;, for i = 1,2, which is the angle
£pi-1pipis1, and

o the dihedral angle of the 3-chain, which is the angle
between the orthogonal projections of pop: and paps
onto a plane perpendicular to pipa.

In a flexible chain, these angles are completely unrestricted.
For a revolute chain, the vertex angles cannot change during
the motion. We will prove that two 3-chains can be locked
if:

e The sum of the two vertex angles for each chain is
bounded from above by some angle a < x, or

o Each of the three angles of one of the chains is bounded
from below by some angle 8 > 0, the other chain being
completely flexible.

Figure 11: Two 3-chains that interlock if the joints
are restricted.

Consider the 3-chains P = (po,...,ps) and @ = (go,...,¢3)
shown in Fig. 11, The lengths of middle edges £ = pyp; and
k = g192 are unity, and the length of all end bars is set to
some large value L to be determined later. Let 7 be the
tetrahedron with vertices {p1,p2,q1,92}. We first show:

LEMMA 16. Starting from the configuration of Fig. 11,
consider any motion where none of the vertices po, ps,go or
g3 ever enter the tetrahedron T, then at all times,

o) { 1)

and the end bar starting at each vertez of T intersects the
opposite facet of the tetrahedron.

PROOF. It can be verified that expression (1) is true at
the starting configuration. Consider the first occurrence of
an event that might cause (1) to become false. To consider
[Pop19sgs41] for j = 0,1,2, we project the inside of 7 from
vertex p;. This is illustrated in Figure 12.

<0fori=j3=1
> 0 otherwise,

Figure 12: View from p;

Point p; sees the triangle qygapa containing py. The seg-
ment goq intersects Ap;paga and thus intersects pags in the
projection, and the segment gags intersects Apipag; and
so intersects paq: in the projection. Because pp is actually
the projection of ppp;, the possible projections of pop; are
bounded by the segments goq1, q192, and ga2gs. All the other
cases are symmetric to this one except [p1pagiga). But this
corresponds to the segments £ and k becoming coplanar and
T becoming empty. But this cannot happen before one of
the other events. [

THEOREM 17. Given any angle 0 < § < =, there is an
interlocked configuration of two 3-chains where the dihedral
angle and both vertex angles of the first chain are > § during
any motion and the other chain is unrestricted.

ProoF. By Lemma 16, the dihedral angle of P is at most
the angle @ between Ap;pa2q; and Ap;pagz (and thus 8 > 3)
as long as po,pa,qo and g3 stay out of 7. The restriction
on the vertex angles of P also imply that one of the angles
Zpypaqy and £pipaqga is at least 3, and the same for the
angles Zpap1qy and £papigz. Since £ and k are both of
length 1, then if the longest distance between any two points
in T is D, then p1q1, P12, paq1, and pagz are all of length
> D - 2. Along with the restrictions on the angles of P,
this implies that (D — 2)sin3 < 1 as long as po, ps, go and
ga stay out of 7. Thus if we set the length L of the end bars
larger than 2 + 1/sin 3, po, p3, go and ¢y will never enter T,
and the configuration is locked. [

COROLLARY 18. A rigid 3-chain and a flexible 3-chain
can interlock.

3.7 3-revolute + 3-revolute can interlock

In this subsection we consider 3-chains of Figure 11 as
revolute chains, and consider the cones obtained by rotating
each of the end bars around the middle edge. We will need
a new lemma:

LEMMA 19. In any motion starting from the configura-
tion of Fig. 11, the four cones defined by the chains P and
Q have a non-empty intersection as long as none of the ver-
tices po, p3, Go, or qa enter the tetrahedron T .

ProoF. Using Lemma 16, we claim that the end bars of
one of the chains have to intersect both cones of the other
chain. To see this, observe that if, say, bar pop: does not
intersect the cone at gy, then [pop1goq:] and [pop1g142] have
opposite signs (because gog is inside the cone), which con-
tradicts lemma 16. Pick a point § at the intel.section of
the boundary of the two cones of Q, such that §g; and gag
have a positive orientation with pop; and paps. This implies
that bars pop: and p;p2 both intersect the triangle g1¢24.
Construct p the same way, and notice that the triangles
mp2p and giga§ intersect. Since the triangles are subsets
of the cone intersections of their chains, this completes the
proof. [

THEOREM 20. Given any angle 0 < a < =, there is an
interlocked configuration of two 3-chains where the sum of
the two vertez angles of each chain stays < a during any
motion (and the dihedral angles are unrestricted).

PRrOOF. Let Ry, fori = 1,2, be the union, over all possible
pairs of vertex angles with sum < a, of the intersections of



the two cones of C;. Note that R, is contained in a sphere
of radius (cot((x — a)/2) + 1)/2 centered at the midpoint
of its middle bar. By Lemma 19, we know that R; and R
intersect, and so do the spheres that contain them, as long
as the conditions of lemma 16 are satisfied. So if we set
the length L of the end bars larger than cot((x — a)/2) + 2,
then vertices po, ps, go and g3 will never enter 7, and the
configuration is interlocked. [

COROLLARY 21. Two revolute $-chains can interlock.

4. CONCLUSION

We have settled the majority of the problems for small
interlocked chains. Two problems that would complete Ta-
ble 1 remain open, as well as other questions that we find

interesting:

1. What is the smallest k for which a flexible k-chain
can interlock with a flexible 2-chain? We believe that
6<k<I1l.

. What is the smallest k for which a revolute k-chain
can interlock with a flexible 2-chain? Does cutting
one-third of the vertices of a flexible chain suffice to
separate the pieces? Corollary 3 says one-half suffices,
but our results do not immediately lead to a better
bound.

. What are the interlocking configurations for sets of
three or more chains with restricted motions? For ex-
ample, we conjecture that a revolute 3-chain and two
rigid 2-chains can interlock.

. What is the complexity of deciding whether given chains
are interlocked?
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A 2-CHAIN CAN INTERLOCK WITH A ik-CHAIN

JULIE GLASS, STEFAN LANGERMAN, JOSEPH O'ROURKE, JACK SNOEYINK,
AND JIANYUAN K. ZHONG

ABSTRACT. One of the open problems posed in [3] is: what is the minimal number
k such that an open, flexible k-chain can interlock with a flexible 2-chain? In this
paper, we establish the assumption behind this problem, that there is indeed some
k that achieves interlocking. We prove that a fiexible 2-chain can interlock with a
flexible, open 16-chain.

1. INTRODUCTION

A polygonal chain (or just chain) is a linkage of rigid bars (line segments, edges)
connected at their endpoints (joints, vertices), which forms a simple path (an open
chain) or a simple cycle (a closed chain). A folding of a chain is any reconfiguration
obtained by moving the vertices so that the lengths of edges are preserved and the
edges do not intersect or pass through one another. The vertices act as universal
joints, so these are flexible chains. If a collection of chains cannot be separated by
foldings, the chains are said to be interlocked.

Interlocking of polygonal chains was studied in [4, 3], establishing a number of
results regarding which collection of chains can and cannot interlock. One of the
open problems posed in [3] asked for the minimal k such that a flexible open k-chain
can interlock with a flexible 2-chain. An unmentioned assumption behind this open
problem is that there is some k that achieves interlocking. It is this question we
address here, showing that k = 16 suffices.

It was conjectured in [3] that the minimal k satisfies 6 < k& < 11. This conjecture
was based on a construction of an 11-chain that likely does interlock with a 2-chain.
We employ some ideas from this construction in the example described here, but for
a 16-chain. Our main contribution is a proof that k = 16 suffices. It appears that
using more bars makes it easier to obtain a formal proof of interlockedness.

Results from (3] include:

(1) Two open 3-chains cannot interlock.
(2) No collection of 2-chains can interlock.
(3) A flexible open 3-chain can interlock with a flexible open 4-chain.

This third result is crucial to the construction we present, which establishes our

main theorem, that a 2-chain can interlock a 16-chain (Theorem 1 below.)
1
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2. IDEA OF PROOF

We first sketch the main idea of the proof. If we could build a rigid trapezoid
with small rings at its four vertices (T}, 7, T3, Ty), this could interlock with a 2-chain,
as illustrated in Figure 1(a). For then pulling vertex v of the 2-chain away from
the trapezoid would necessarily diminish the half apex angle o, and pushing » down
toward the trapezoid would increase o. But the only slack provided for a is that
determined by the diameter of the rings. We make as our subgoal, then, building
such a trapezoid.

h‘\
o leT/

(2) (©) ’
FIGURE 1. (a) A rigid trapezoid with rings would interlock with a 2-

chain; (b) An open chain that simulates a rigid trapezoid; (b) Fixing a
crossing of aa’ with bb'.

We can construct a trapezoid with four links, and rigidify it with two crossing
diagonal links. In fact, only one diagonal is necessary to rigidify a trapezoid in the
plane, but clearly a single diagonal leaves the freedom to fold along that diagonal in
3D. This freedom will be removed by the interlocked 2-chain, however, so a single
diagonal suffices. To create this rigidified trapezoid with a single open chain, we need
to employ 5 links, as shown in Figure 1(b). But this will only be rigid if the links
that meet at the two vertices incident to the diagonal are truly “pinned” there. In
general we want to take one subchain aa’ and pin its crossing with another subchain
bb' to some small region of space. See Figure 1(c) for the idea.

This pinning can be achieved by the “3/4-tangle” interlocking from [3], result (3)
above. So the idea is replace the two critical crossings with a small copy of this
configuration. This can be accomplished with 7 links per 3/4-tangle, but sharing with
the incident incoming and outgoing trapezoid links potentially reduces the number of
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links needed per tangle. We have achieved 5 links at one tangle and 4 at the other.
The other two vertices of the trapezoid need to simulate the rings in Figure 1(a). and
this can be accomplished with one extra link per vertex. Together with the 5 links
for the main trapezoid skeleton, we employ a total of 54 (5+ 4+ 1+ 1) = 16 links.

3. A 2-CHAIN CAN INTERLOCK AN OPEN 16-CHAIN

3.1. Open flexible 3- and 4-chains can interlock. It was proved that open flexible
3- and 4-chains can interlock in [3]. The construction, which we call a 3/4-tangle, is
repeated in Figure 2.

FIGURE 2. Fig. 6 from [3].

It was proved in Theorem 11 of [3] that the convex hull CH(B,C, D, z,y) of the
joints B, C, D, x, and y does not change.

We first establish bounds on how far the vertices of the construction can move. Let
BC =CD = ry = 1 unit, and end bars AB = DE = rw = yz = 3 units.

Lemma 1. Let P be the midpoint of xy. Then in any folding of the interlocked 3-
and 4- chain: (1) The distance between P and the endpoints w, z of the 3-chain can
be no more than 3.5 units, (2) The distance between P and joints B, C, D, x, and y
can be no more than 2.5 units, and (3) The distance between P and the endpoints A,
E of the 4-chain can be no more than 5.5 units.

Proof. (1) Since P is the midpoint of bar zy, x and y are exactly 0.5 units away from
P. The joints w, r and P form a triangle, by the triangle inequality Pw < Pr+xw =
0.5 + 3 = 3.5 units; similarly, Pz < 3.5.

(2) We now prove that the distance between P and the joints B, C', D, z, and y
can be no more than 2.5 units. In the convex hull CH(B, C, D, r, y), bar ry pierces
ABCD, where B and D can be imagined to be connected by a rubber band, then
BD < BC + CD = 2. We observe that: (i) any two points inside ABCD or on the
boundary BC,CD, BD are less than 2 units apart, and (ii) the distance between the
midpoint P and the plane determined by B, C, D must be less than 0.5 units. From
the fact that bar zy pierces ABCD, the distance between P and any point on or
inside ABCD is less than 2 4+ 0.5 = 2.5 units. Since P is the midpoint of bar zy, =
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and y are exactly 0.5 units away from P. Therefore, P and the joints B, C, D, =,
and y can be no more than 2.5 units as claimed.

(3) Finally, by the triangle inequality PA < PB + AB < 2.5+ 3 = 5.5 units;
similarly, PE < 5.5. O

For € > 0, choosing BC = CD = zy = %c, and end bars Ab = DE = zw = yz =
yields the following:

Corollary 1. In the above interlocked 3- and 4-chains, let P be the midpoint of xy,
then all joints B,C, D, x,y and endpoints A, E, w, z stay inside the e-ball centered at
P,

3.2. A 2-chain can interlock an open 16-chain. Take two 3/4-tangles, where all
joints and end points of the pair stay within an e-ball centered at the midpoint of the
middle link of the 3-chain. Position the tangles as two of the “vertices” of a trapezoid
with the links arranged as shown in Figure 3. This design follows Figure 1(b) in
spirit, but varies the connections at the diagonal endpoints to increase link sharing.
The lower right vertex achieves maximum sharing, in that all three incident trapezoid
edges are shared with links of the 3/4-tangle. The upper left vertex shares two incident
links. We extend the first and last links of the trapezoid chain to be very long so that
the end vertices of the chain are well exterior to any of the e-balls.

€

B3| e

3.2.1. 2-chain Through Trapezoid Jag Corners. Call the simple structure at the other
two corners jag loops. These corners also can be assured to remain in an e-ball simply
by making the extra link length €. Thus we have that all corners of the trapezoid stay
within e-balls.

We first argue that the jag loop “grips” the 2-chain link through it, under the
assumption of near rigidity of the trapezoid. Let (u,v,w) be the 2-link chain, and let
(a,b,¢,d) be the vertices constituting a 1-link jag at a corner of the trapezoid. The
short link of the jag is be. The near-rigidity of the trapezoid permits us to take ab to
be roughly horizontal (the base of the trapezoid) and cd to be roughly at angle 6 with
respect to the base (the angle at a base corner of the trapezoid). The link uv is nearly
parallel to de, and is woven through the jag as illustrated in Figure 4. The words
“roughly” and “nearly” here are intended as shorthand for “approaches, as € — (.”

Lemma 2. The plane containing Aabe continues to separate v above from u below
(where “above” is determined by the counterclockwise ordering of a,b,c) under all
nonintersecting foldings of the chains.

Proof. We argue that uv continues to properly pierce Aabe under all foldings, from
which it follows that the initial separating property is maintained. The overall struc-
ture of the trapezoid prevents uv from moving directly through Aabe: neither v nor
u can get close to the triangle. So the only way the piercing could end is if uv passes
through a side of Aabe. Two of these sides—ab and be—are links, and avoiding in-
tersection prevents passage through those. Thus uv would have to pass through ac,
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F

FIGURE 3. An open 16-chain forming a nearly rigid trapezoid.

which is not a link. However, to do this, we now argue it would have to pass through
the link cd.

The gap between ab and cd is at most |be|] = . uv must pass through this gap
to “escape” and pass through the segment ac. Because |uv| > €, uv must turn
“sideways” to pass through it. More precisely, let @ be a plane parallel to ab and cd
and midway between them, i.e., Q passes through the midpoint of the gap. uv must
align to lie nearly in @ to pass through the gap. Because uv is on the “wrong side”
of ab, there are only two ways uv can reach Q: either to align roughly parallel to ab,
or to align roughly parallel to ed. In either case, it would then be possible to pass
uv through the gap, by keeping it close to the long link to which it is nearly parallel.
However, the first alignment places uv at an angle near # with respect to ed: but it
must be nearly parallel to ed. The second alignment requires flipping uv around so
that u is above v in the view shown in the figure, in order to get on the other side
of ab. But this then makes uv approximately antiparallel to ed, rather than nearly
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v

FIGURE 4. A 1-link “jag.”

parallel as it must be. Thus the only escape route is impossible, and uv maintains its
piercing of Aabe. O

Corollary 2. The 1-link jag interlocks with uv, under the constraints imposed by the
nearly rigid trapezoid.

3.2.2. 2-chain Through Trapezoid Tangle Corners. Next we argue that the link uv can
thread through the corner T} of the trapezoid so that it is “gripped” by the 3/4-tangle
there. Note that the (7}, T}) trapezoid link connects to the 3-chain at T, which is
itself just a jag loop. But uv cannot thread properly through both jag loops on either
end of the (77,7}) link. So instead we thread uv through the 4-chain at T;.

» s \
FIGURE 5. A 4-chain, part of a 3/4-tangle, can be viewed as two jag loops.
Now, a 4-chain can be viewed as two jag loops; see Figure 5. Moreover, the 4-chain

and 3-chain participating in a 3/4-tangle can be viewed as each lying nearly in planes
that are twisted with respect to one another. So we chooose to twist the 4-chain at
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Ty so that uv threads properly through one of its two jag loops. Similarly, the link
vw threads from the jag at T3 through the 3-chain at 7, (and not through the 4-chain
to which (7}, T3) is connected).

Applying Corollary 2 to guarantee interlocking yields:

Lemma 3. The 2-chain links, when threaded as just described, are interlocked with
the 3/4-tangles, under the constraints of a nearly rigid trapezoid.

We should mention that the foregoing argument would be unnecessary if we had
instead used a 2-link jags at T and T3, which would give freedom to position the jag
to permit piercing the tangles however desired (and which would lead to an 18-link
interlocking chain).

Finally, there is more than enough flexibility in the design to ensure that uv and
vw can indeed share the same 2-chain apex v.

3.2.3. Apex v Cannot Move Far. Thus the 2-chain (u, v, w) cannot slide free of any of
the trapezoid corners unless one of its vertices enters the e-ball containing the corner.
We argue below that this cannot occur. We start with a simple preliminary lemma.

Lemma 4. When € is sufficiently small, a line piercing two disks of radius € can
angularly deviate from the line connecting the disk centers at most § < 2¢/L, where
L is the distance between the disk centers.

Proof. Figure 6 illustrates the largest angle 4, (%)L sind = €, so sind = 2¢/L, and the
claim follows from the fact that lin(l) Eu;l:i =1. O

Let the trapezoid have base of length 2B, side length L, and base angle 6. Let the
triangle determined by the trapezoid have height h and half-angle o at the apex, so
tanf = h/B, or h = Btan#. See Figure 6(b). The following lemma captures the key
constraint on motion of the 2-link.

Lemma 5. If the sides of the trapezoid pass through the e-disks illustrated, then the

height of the triangle approaches h as € — 0.

Proof. hy,in occurs with a triangle apex angle of o + d and a base angle of # — 4. Let
b be the amount by which B is lengthened. In Azyz, b = Fr—, and in AzY Z,

tan(f — §) = %ﬂg. Thus we have that

Ronin = (B + tan(f — 6) = Btan(d — §) +

‘ ¢
sin(# — 6)) cos(f — &)
Thus hyy, is continuous near € = . Also, if e — 0 then § — 0 since § < %‘ Therefore
lim, g hnin = Btan# = h since tan(f) = h/B.
For hp,. all the signs reverse to yield that lim, g hy.y = Btanf = h.
We conclude that the height of the triangle approaches h as € approaches 0 as
desired. O
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be|xz|

FIGURE 6. Trapezoid Lemma: (a) Line through two disks deviates at
most 4; (b) Trapezoid structure, with h,,;,, computation illustrated.

3.2.4. Main Theorem. We connect 3D to 2D via the plane determined by the 2-link
in the proof of the main theorem below.

Theorem 1. The 2-link chain is interlocked with the 16-link trapezoid chain.

Proof. Let H be the plane containing the 2-link chain. We know that the links of the
2-chain must pass through e-balls around the four vertices of the trapezoid. H meets
these balls in disks each of radius < e. The Trapezoid Lemma shows that the height
of the triangle approaches h as € approaches 0. Thus, by choosing ¢ small enough, we
limit the amount that the apex v of the 2-link chain can be separated from or pushed
toward the trapezoid to any desired amount.,

We previously established (in Corollary 2 and Lemma 3) that the 2-chain links are
interlocked with the 3/4-tangles and jag loops through which they pass, under the
assumption that the trapezoid is nearly rigid. The near-rigidity of the trapezoid could
only be destroyed by a 2-chain link escaping from one of the jag loops through which
it is threaded. But up until the time of this first escape, the trapezoid is nearly rigid;
and so there can be no first escape.
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Thus, choosing € small enough to prevent any of the vertices of the 2-link chain
from entering the e-balls ensures that the 2-link chain is interlocked with the trapezoid
chain. O

4. DISCUSSION

We do not believe that £ = 16 is minimal. We have designed two different 11-
chains both of which appear to interlock with a 2-chain. However, both are based on
a triangular skeleton rather than on a trapezoidal skeleton, and place the apex v of
the 2-chain close to the 11-chain. It seems it will require a different proof technique
to establish interlocking, for the simplicity of the proof presented here relies on the
vertices of the 2-chain remaining far from the entangling chain.

Another direction to explore is closed chains, for which it is reasonable to expect
fewer links. Replacing the 3/4-tangles with “knitting needles” configurations [2][1]
produces a closed chain that appears interlocked, but we have not determined the
minimum number of links that can achieve this.
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1

Motivation: Locked Chains. There has been considerable research on reconfig-
uration of polygonal chains in 2D and 3D while preserving edge lengths and
avoiding self-intersection. Much of this work is on the problem of which classes
of chains can lock in the sense that they cannot be reconfigured to straight or
convex configurations. In 3D, it is known that some chains can lock (4], but the
exact class of chains that lock has not been delimited [3]. In 2D, no chains can
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Motivation: Protein Folding. The backbone of a protein can be modeled as
a polygonal chain, but the joints are not universal; rather the bonds between
residues form a nearly fixed angle in space. The study of such fired-angle chains
was initiated in [11], and this paper can be viewed as a continuation of that
study. Although most protein molecules are linear polymers, modeled by open
polygonal chains, others are rings (closed polygons) or star and dendritic poly-
mers (trees) [12,6].

The polymer physics community has studied the statistics of “self-avoiding
walks” [9,10,15], i.e., non-self-intersecting configurations, often constrained to
the integer lattice. To generate these walks, they consider transformations of
one configuration to another, such as “pivots” [7] or “wiggling” [8]. Usually these
transformations are not considered true molecular movements, often permitting
self-intersection during the motion, and perhaps are better viewed as string edits.

In contrast, this paper maintains the geometric integrity of the chain through-
out the transformation, to more closely model the protein folding process. We
focus primarily on transformations between planar configurations.

Fized-angle linkages. Before describing our results, we introduce some defini-
tions. A (general) linkage is a graph with fixed lengths assigned to each edge.
The focus of this paper is fired-angle linkages, which are linkages with, in addi-
tion, a fixed angle assigned between each pair of incident edges. We use the term
linkage to include both general and fixed-angle linkages.

A configuration or realization of a general linkage is a positioning of the
linkage in R? (an assignment of a point in R? to each vertex) achieving the
specified edge lengths. The configuration space of a linkage is the set of all
its configurations. To match physical reality, of special interest are non-self-
intersecting configurations or embeddings in which no two nonincident edges
share a common point. The free space of a linkage is the set of all its embeddings,
i.e., the subset of configuration space for which the linkage does not “collide”
with itself.

A configuration of a fixed-angle linkage must additionally respect the spec-
ified angles. The definitions of configuration space, embedding, and free space
are the same. A reconfiguration or motion or folding of a linkage is a continuum
of configurations. Motions of fixed-angle linkages
are distinguished as dihedral motions.

Dihedral motions. A dihedral motion can be “fac-
tored” into local dihedral motions or edge spins [11]
about individual edges of the linkage. Let ¢ =
(v1.v2) be an edge for which there is another edge
e; incident to each endpoint v;. Let IT; be the plane
through e and e;. A (local) dihedral motion about e
changes the dihedral angle between the planes [T,
and IT; while preserving the angles between each
pair of edges incident to the same endpoint of €. Fig.1. A local dihedral mo-
See Fig. 1. The edges incident to a common vertex tion (spin) about edge e.

in a fixed-angle linkage are moved rigidly by a dihedral motion. In particular,

w
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if the edges are coplanar, they remain coplanar.' If we view e and ¢, € I, as
fixed, then a dihedral motion spins e, about e.

Flat-state connectivity. A flat state of a linkage is an embedding of the linkage
into R? without self-intersection. A linkage X is flat-state connected if, for each
pair of its (distinct, i.e., incongruent) flat states X; and X5, there is a dihedral
motion from X, to X, that stays within the free space throughout. In general
this dihedral motion alters the linkage to nonflat embeddings in R? intermediate
between the two flat states. If a linkage X is not flat-state connected, we say it
is flat-state disconnected.

Flat-state disconnection could occur for two reasons. It could be that there
are two flat states X; and X, which are in different components of free space
but the same component of configuration space. Or it could be that the two flat
states are in different components of configuration space. The former reason
is the more interesting situation for our investigation; currently we have no
nontrivial examples of the latter possibility.

Results. The main goal of this paper is to delimit the class of linkages that are
flat-state connected. Our results apply to various restricted classes of linkages,
which are specified by a number of constraints, both topological and geomet-
ric. The topological classes of linkages we explore include general graphs, trees,
chains (paths), both open and closed, and sets of chains. We sometimes restrict
all link lengths to be the same, a constraint of interest in the context of protein
backbones; we call these unit-length linkages. We consider a variety of restric-
tions on the angles of a fixed-angle linkage, where the angle between two incident
links is the smaller of the two angles between them within their common plane.
A chain has a monotone state if it has a flat state in which it forms a monotone
chain in the plane. For sets of chains in a flat state, we pin each chain at one of
the end links, keeping its position fixed in the plane.

In some cases we restrict the motions of a linkage in one of two ways. First,
we may enforce that only certain edges permit local dihedral motion, in which
case we call the linkage partially rigid. (Such a restriction also constrains the
flat states that we can hope to connect, slightly modifying the definition of flat-
state connected.) Second, we may restrict the motion to consist of a sequence
of 180° edge spins, so that each move returns the linkage to the plane. Most
of our examples of flat-state disconnected linkages are either partially rigid or
restricted to 180° edge spins.

With the above definitions, we can present our results succinctly in Table 1.

! Our definition of “dihedral motion” includes rigid motions of the entire linkage,
which could be considered unnatural because a rigid motion has no local dihedral
motions. However, including rigid motions among dihedral motions does not change
our results. For a linkage of a single connected component, we can modulo out rigid
motions; and for multiple connected components, we always pin vertices to prevent
rigid motions.
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Table 1. Summary of results. The '—' means no restriction of the type indicated in
the column heading. Entries marked ‘7' are open problems

Constraints on Fixed-Angle Linkage Flat-state

Connectivity Angles Lengths  Motions connectivity
Open chain - — — ?

has a monotone state — ?

nonacute — — Connected

equal acute — — Connected 2]

each in (60°,90°] unit - Connected (2]

— — 180° edge spins | Disconnected

orthogonal — 180° edge spins | Connected
Set of chains, each orthogonal — — Connected
pmned at one end orthogonal -— partially rigid Disconnected
Closed chain — — — ?

nonacute — — ?

orthogonal — — ?

orthogonal unit — Connected
Tree — — — ?

orthogonal — - ?

orthogonal — partially rigid | Disconnected
Graph orthogonal — - Disconnected

2 Flat-State Disconnection

It may help to start with negative results, as it is not immediately clear how a
linkage could be flat-state disconnected. Several of our examples revolve around
the same idea, which can be achieved under several models. We start with par-
tially rigid orthogonal trees, and then modify the example for other classes of

linkages.

2.1 Partially Rigid Orthogonal Tree

An orthogonal tree is a tree linkage such that every pair of incident links meet
at a multiple of 90°, Partial rigidity specifies that only certain edges permit
dihedral motions. Note that the focus of a dihedral motion is an edge, not the
joint vertex.

Fig. 2(a-b) shows two incongruent flat states of the same orthogonal tree;
we'll call the flat states X,y and X). All but four edges of the tree are frozen,
the four incident to the central degree-4 root vertex z. Call the 4-link branch
of the tree containing a the a-branch. and similarly for the others. Label the
vertices of the a-branch (a,a,,a2,a3), and similarly for the other branches.

We observe three properties of the example. First, as mentioned previously,
fixed-angle linkages have the property that all links incident to a particular
vertex remain coplanar throughout all dihedral motions. In Fig. 2, this means
that {z,a,b,c,d} remain coplanar; and we view this as the plane IT of the flat
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Fig. 2. Two flat states of a partially rigid orthogonal tree. The four open edges are the
only ones not rigid, permitting dihedral motions.

states under consideration. Note that, for example, a rotation of a about bd
would maintain the 90° angles between all edges adjacent consecutively around
z, but would alter the 180° angle between za and z¢, and thus is not a fixed-angle
motion.

Second, the short links, or “pins,” incident to vertices b’, ¢/, and d' must
remain coplanar with their branch, because they are rigid. For example, the '
pin must remain coplanar with zb, for otherwise the rigid edge b’ would twist.

Third, X, and X, do indeed represent incongruent flat states of the same
linkage. The purpose of the b’ pin is to ensure that its relation to (say) the ¢/ pin
in the two states is not the same. Without the b’ pin, a flat state congruent to
X3 could be obtained by a rigid motion of the entire linkage, flipping it upside-
down. It is clear that state X, can be obtained from state X, by rotating
the a-branch 180° about ra, and similarly for the other branches. Thus the two
flat states are in the same component of configuration space. We now show that
they are in different components of the free space.

Theorem 1. The two flat states in Fig. 2 of an orthogonal partially rigid fized-
angle tree cannot be reached by dihedral motions that avoid crossing links.

Proof: Each of the four branches of
the tree must be rotated 180° to achieve
state X;). We first argue that two oppo-
site branches cannot rotate to the same
side of the IT-plane, either both above or
both below, Without loss of generality,
assume both the a- and the c-branches
rotate above [1. Then, as illustrated in
Fig. 3, vertex a; must hit a point on the
c1cz2 edge, for the length aa, is the same Fig.3. The a- and c-branches collide
as the distance from a to ¢)c;. when rotated above.
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Now we argue that two adjacent
branches cannot rotate to the same side of IT. Consider the a- and b-branches,
again without loss of generality. As it is more difficult to identify an exact pair
of points on the two branches that must collide, we instead employ a topological
argument. Connect a shallow rope R from a to ay underneath I1, and a rope
S from b to b that passes below R. See Fig. 4. In X4, the two closed loops

5

Fig. 4. With the additions of the ropes R and S underneath, the a-chain is not linked
with the b-chain in (a), but is linked in (b).

A = (R,a,ay,az,a3) and B = (S,b. b, ba, b3) are unlinked. But in X, A and
B are topologically linked. Therefore, it is not possible for the a- and b-branches
to rotate above IT without passing through one another.

By the pigeon-hole principle, at least two branches must rotate though /7.
Whether these branches are opposite or adjacent, a collision is forced. a

2.2 Orthogonal Graphs and Partially Rigid Pinned Chains.

We can convert the partially rigid tree in Fig. 2 to a completely flexible graph by
using extra “braces” to effectively force the partial rigidity. We can also convert
the tree into four partially rigid chains, each pinned at one endpoint near the
central degree-4 vertex. Thus we obtain the following two results:

Corollary 1 The described orthogonal fired-angle linkage has two flat states
that are not connnected by dihedral motions that avoid crossing links.

Corollary 2 The four orthogonal partially rigid fired-angle pinned chains cor-
respending to Figure 2 are not connected by dihedral motions that avoid crossing
links.

3 Nonacute Open Chains

We now turn to positive results, starting with the simplest and perhaps most ele-
gant case of a single open chain with nonacute angles. After introducing notation,
we consider two algorithms establishing flat-state connectivity, in Sections 3.1
and 3.2.
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An abstract polygonal chain C of n links is defined by its fixed sequence
of link lengths, (¢,,...,£,), and whether it is open or closed. For a fixed-angle
chain, the n—1 or n angles a; between adjacent links are also fixed. A realization
C of a chain is specified by the position of its n + 1 vertices: vg, vy, ..., ty. If
the chain is closed, v, = vy. The links or edges of the chain are ¢; = (v,—1, ;).
i =1,...,n, so that the vector along the ith link is v; — v;_;. The plane in which
a flat state C' is embedded is called [T or the xy-plane.

3.1 Lifting One Link at a Time

The idea behind the first (unrestricted) algorithm is to lift the links of the
chain one-by-one into a monotone chain in a vertical plane. Once we reach this
canonical state, we can reverse and concatenate motions to reach any flat state
from any other.

We begin by describing the case of orthogonal chains, as illustrated in Fig. 5,
and the algorithm will generalize to arbitrary nonacute chains. The invariant at
the beginning of each step i of the algorithm is that we have lifted the chain
€1,...,€; into a monotone chain in a vertical plane, while the rest of the chain
€i41s-- -4 En Temains where it began in the zy-plane. Initially, i = 0 and the lifted
chain contains no links, and we simply lift the first link e, to vertical by a 90°
edge spin around the second link ;. For general i, we first spin the lifted chain
around its last (vertical) link €; so that the vertical plane contains the next link
to lift, €;+,, and so that the chain ey, ..., €,5 is monotone. Then we pick up ;4
by a 90° edge spin around €;4. Throughout, the lifted chain remains monotone
and contained in the positive-z halfspace, so we avoid self-intersection.

Fig. 5. Picking up a planar orthogonal chain into a monotone canonical state. (a)
Lifting edges e; = (v, vy) and ez = (11, v2): a, b, c. (b) Lifting edges ey and eq: d, €, f.

Nonacute chains behave similarly to orthogonal chains, in particular, the
canonical state is monotone, although it may no longer alternate between left
and right turns. Now there may be multiple monotone states, and we must
choose the state that is monotone in the z dimension. The key property is that,
as the chain ey, ..., e; rotates about e;4, the chain remains monotone in the 2
direction, so it does not penetrate the zy-plane.

This algorithm proves the following result:

Theorem 2. Any nonacute fired-angle chain is flat-state connected.
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3.2 Lifting Two Links at a Time

The algorithm above makes at most 2 edge spins per link pickup, for a total of
2n edge spins to reach the canonical state, or 4n edge spins to reach an arbitrary
flat state from any other. This bound is tight within an additive constant.

We can reduce the number of edge spins to 1.5n to reach the canonical state,
or 3n to reach an arbitrary flat state, by lifting two edges in each step as follows.
As before, in the beginning of each step, we spin the lifted chain ¢,,....e; about
the last link e; to orient it to be coplanar and monotone with the next link ;..
Now we spin by 90° the lifted chain and the next two links ;4 and e;;2 about
the following link e;,3, bringing e;,, and e;,2 into a vertical plane, and tilting
the lifted chain e;,...,e, down to a horizontal plane (parallel to the zy-plane)
at the top. Then we spin the old chain ey,...,e; by 90° around ¢;4,, placing it
back into a vertical plane, indeed the same vertical plane containing €;4; and
€+2, S0 that the new chain eq,..., €;4+2 becomes coplanar and monotone. We
thus add two links to the lifted chain after at most three motions, proving the
1.5n upper bound; this bound is also tight up to an additive constant,

Corollary 3 Any nonacute fired-angle chain with n links can be reconfigured
between two given flat states in at most 3n edge spins.

4 Multiple Pinned Orthogonal Open Chains

In this section we prove that any collection of open, orthogonal chains, each
with one edge pinned to the zy-plane, can be reconfigured to a canonical form,
establishing that such chain collections are flat-state connected. We also require
a “general position” assumption: no two vertices from different chains have a
common z- or y-coordinate. Let C;, i = 1,...,k, be the collection of chains in
the zy-plane. Each has its first edge pinned, i.e., vy and vy have fixed coordinates
in the plane; but dihedral motion about this first edge is still possible (so the
edge is not frozen). Call an edge parallel to the r-axis an r-edge, and similarly
for y-edge and 2-edge. The canonical form requires each chain to be a staircase
in a plane parallel to the z-axis and containing its first (pinned) edge. If the first
chain edge is a y-edge, the staircase is in a yz quarter plane in the halfspace
> > 0 above xy; if the first chain edge is an z-edge, the staircase is in an zz
quarter plane in the halfspace z < 0 below xy.

The algorithm processes independently the chains that are destined above or
below the xy-plane, and keeps them on their target sides of the zy-plane, so there
is no possibility of interference between the two types of chains. So henceforth
we will concentrate on the chains C; whose first edge is a y-edge, with the goal of
lifting each chain C; into a staircase S; in a yz quarter plane. At an intermediate
state, the staircase S; is the portion of the lifted chain above the xy-plane, and
C; the portion remaining in the xy-plane. The pivot edge of the staircase is its
first edge, which is a z-edge. Let (....¢;, by, a;) be the last three vertices of the
chain C;. Let a; have coordinates (a;.a,): we'll use analogous notation for b,
and ¢;. Vertex a; at the foot of a staircase is its base vertex and the last edge of
the chain, (b, a;), is the staircase’s base edge.
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After each step of the algorithm, two invariants are reestablished:

1. All staircases for all chains are in (parallel) yz quarter planes;
2. The base edge for every staircase is a y-edge, i.e., is in the plane of the
staircase.

We will call these two conditions the Induction Hypothesis.

The main idea of the algorithm is to pick up two consecutive edges of one
chain, which then ensures that the next edge of that chain is a y-edge. The
chain is chosen arbitrarily. To simplify the presentation, we assume without loss
of generality that ¢; is to the right of b;. First, the staircases whose pivot’s z-
coordinates lie in the range [b,,c,] are reoriented to avoid crossing above the
(by, ;) edge.

o

Fig. 6. (a) First, y-edge (a;,b;) picked up; (b) Planes parted and flattened in prepa-
ration; (¢) Two states of staircase shown: Aligned with the second, r-edge (b, ¢;), and
after pickup of that edge; (d) Staircase rotated into vertical plane, and flattened planes
made upright.

With S; aligned with its base y-edge, the (a;,b;) edge can be picked up into
a vertical plane without collision; see Fig. 6a. We now align S; with (b;,¢;), by
“parting” the planes at b, toward the left, laying all planes left of b, down toward
—x (Fig. 6b), and then rotating S; to be horizontal. Now we pick up (b;, ¢;) into
a rz quarter plane, after laying down all planes right of ¢,; see Fig. 6(c). Finally,
reorient the zz-plane to be vertical and then restore all tilted planes to their yz
orientation. We have reestablished the Induction Hypothesis. See Fig. 6(d).
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Repeating this process eventually lifts every chain into parallel vertical
planes, leaving only the first (pinned) y-edge of each chain in the xry-plane.

5 Unit Orthogonal Closed Chains

Our only algorithm for flat-state connectivity of closed chains is specialized to
unit-length orthogonal closed chains. Despite the specialization, it is one of the
most complex algorithms, and will only be mentioned in this abstract. We use
orthogonally convex polygons as a canonical form, justified by the first lemma:

Lemma 1. Let C' and D be two orthogonally conver embeddings of a unit-length
orthogonal closed chain with n vertices, There is a sequence of edge spins that
transforms C' into D.

The more difficult half is establishing the following:

Lemma 2. Let C be a flat state of a unit-length orthogonal closed chain with n
vertices. There is a sequence of edge spins that transforms C' mto an orthogonally
convexr embedding.

These lemmas establish the following theorem:

Theorem 3. Any unit-length orthogonal closed chain is flat-state connected.

6 180° Edge Spins

A natural restriction on dihedral motions is that the motion decomposes into a
sequence of moves, each ending with the chain back in the zy-plane—in other
words, 180° edge spins. This restriction is analogous to Erdds flips in the con-
text of locked chains [14,1,3]. In this context, we can provide sharper negative
results-—general open chains can be flat-state disconnected—and slightly weaker
positive results—orthogonal open chains are flat-state connected.

6.1 Restricted Flat-State Disconnection of Open Chains

We begin by illustrating the difficulty in reconfiguring open chains by 180° edge
spins; see Fig. 7. Spinning about edge 1 does nothing; spinning about edge 2

(a) S == (b) () =

Fig. 7. (a-b) Two flat states of a chain that cannot reach each other via a sequence of
180° edge spins. (¢) Attempt at spinning about edge 4.
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causes edges | and 3 to cross; spinning about edge 3 makes no important change
to the flat state; spinning about edge 4 causes edges 2 and 8 to cross as shown in
Fig. 7(c); spinning about edge 5 causes edges 4 and 6 to cross (in particular); and
the remaining cases are symmetric. This case analysis establishes the following
theorem:

Theorem 4. The two incongruent flat states in Fig. 7(a-b) of a fired-angle open
chain cannot be reached by a sequence of 180° edge spins that avoid crossing links.

6.2 Restricted Flat-State Connection of Orthogonal Open Chains

The main approach for proving flat-state connectivity of orthogonal chains is
outlined in two figures: spin around a convex-hull edge if one exists (Fig. 8), and
otherwise decompose the chain into a monotone (staircase) part and an inner
part, and spin around a convex-hull edge of the inner part (Fig. 9). Such spins
avoid collisions because of the empty infinite strips R(ey), R(e2), ... through
the edges of the monotone part of the chain. In Fig. 9, the monotone portion
of the chain is e;, €3, 3, which terminates with the first edge e3 that does not
have an entire empty strip R(es). Each spin of either type makes the chain
more monotone in the sense of turning an edge whose endpoints turn in the
same direction into an edge whose endpoints turn in opposite directions; hence,
the number of spins is at most n. Using a balanced-tree structure to maintain
information about recursive subchains, each step can be executed in O(logn)
time, for a total of O(n logn) time. In addition, we show how the algorithm can
be modified to keep the chain in the nonnegative-r halfspace with one vertex
pinned against the x = 0 plane.

Ww_aQ "

: €2 3 M'!’

b e

: ' ' Oy a1

: 1 YA

1 Riep : €y

\ W

: : : L

| e,

=) ]
Fig.8. A dihedral rotation about a Fig. 9. Determining the chain e;, ea,
convex-hull edge resolves a violation of ..., €i—1 that can be rotated about ;.

the canonical form,

Theorem 5. Orthogonal chains are flat-state connected even via restricted se-
quences of 180° spins that keep the chain in the nonnegative-r halfspace with
one vertex pinned at x = (. The sequence of O(n) spins can be computed in
O(nlogn) time.
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Conclusion and Open Problems

See Table 1 for several open problems. In particular, these three classes of chains
seem most interesting, with the first being the main open problem:

1.
2.
3.

Open chains (no restrictions).
Open chains with a monotone flat state.
Orthogonal trees (all joints flexible).
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Geometric Restrictions on Producible
Polygonal Protein Chains'

Erik D. Demaine,” Stefan Langerman,® and Joseph O'Rourke*

Abstract.  Fixed-angle polygonal chains in three dimensions serve as an interesting model of protein back-
bones. Here we consider such chains produced inside a “machine™ modeled crudely as a cone, and examine
the construints this model places on the producible chains. We call this notion producible, and prove as our
main result that a chain whose maximum tum angle is « is producible in a cone of half-angle > « if and only
if the chain is flartenable, that is, the chain can be reconfigured without self-intersection to lie flat in a plane.
This result establishes that two seemingly disparate classes of chains are in fact identical. Along the way, we
discover that all producible configurations of a chain can be moved to & canonical configuration resembling &
helix, One consequence is an algorithm that reconfigures between any two flat states of a “nonacute chain” in
O(n) “moves," improving the O (n*)-move algorithm in [ADD ).

Finally, we prove that the producible chains are rare in the following technical sense. A rundom chain
of n links is defined by drawing the lengths and angles from any “regular” (e.g., uniform) distribution on any
subset of the possible values. A random configuration of a chain embeds into R* by in addition drawing the
dihedral angles from any regular distribution. If a class of chains has a locked configuration (and no nontrivial
class is known to avoid locked configurations), then the probability that a random configuration of a random
chain is producible approaches zero geometrically as n — oo,

Key Words. Polygonal chains, Locked chains, Fixed-angle chains, Flattenable chains, Protein folding,
Protein backbone,

1. Introduction. The backbone of a protein molecule may be modeled as a three-
dimensional polygonal chain, with joints representing residues and fixed-length links
(edges) representing bonds. The joints are not universal; rather successive bonds form
nearly fixed angles in space. The motions at the joints are then called dihedral motions.
The study of such fived-angle chains was initiated in [ST] and continued in [ADM™]
and [ADD™"]. These papers identified flar states of a chain—embeddings into a plane
without self-intersection—as geometrically interesting. A chain that can reconfigure
in R? via dihedral motions between any two of its flat states is called flat-state con-
nected. A chain that has a flat state but is in a configuration that cannot reach that
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Fig. 1. The ribosome R in crosssection, The protein is created in tunnel 1 and emerges at x.

state (vsia dihedral motions, without self-intersection) is called unflattenable or simply
locked.

We look here at a particularly simple but natural constraint on the “production™ of a
fixed-angle chain. Our inspiration derives from the ribosome, which is the “machine”
that creates protein chains in biological cells. Figure | shows a schematic cross section
of a ribosome and its exit tunnel, based on a model developed by Nissen et al. [NHB*].
We consider a very simple geometric model that roughly captures the exit point x of
the ribosome: the chain is produced inside a cone of some half-angle 8, with the chain
emerging through the cone’s apex. See Figure 2. This constraint immediately implies that
the maximum turn angle « in the produced chain is at most 2 8. We consider the somewhat
stronger condition that @ < f. These conditions are consistent with our analogy to the
ribosome, where the cone is roughly a half-plane (half-angle B = 90”) and the chain has
obtuse angles around 110° (turn angle & = 70°).

We show in Section 3 that this simple constraint guarantees that all producible chains
are flattenable and furthermore mutually reachable. There are several interesting aspects
to this result. First, we are naturally led in our proof to a canonical form, called «-CCC,
which bears a resemblance to the helical form preferred by many proteins. Second, we
show in Section 5 that long “random™ chains are locked with probability approaching 1,
implying that producible protein chains are rather special. Third, we show in Section 4
that if we strengthen the production model to allow producing chain turn angles of more
than 28, then locked chains can be produced. This example shows the importance of our
condition that @ < f (or a similar condition such as & < 28).

2. Definitions

2.1. Chains and Motions. The fixed-angle polygonal chain P has n 4+ 1 vertices V =
(v, ..., v,) and is specified by the fixed turn angle &, ateach vertex v, i = 1,..., n—1,

% In fact, this definition is slightly more specific than the usual notion of “locked.” which says that there are
two arbitrary configurations of the linkage that are mutually unreachable,
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Fig. 2. The chain is produced in cone Cp, and emerges at the origin into the complementary cone By below
the xy-plane.

and by the edge length d; between v; and vy, i = 0,...,n— 1. When all angles §; < «
for some 0 < @ < m, P is called a (< «)-chain.® We write Pli, j],i < j, for the
polygonal subchain composed of vertices v;, ..., v;.

A configuration Q = (qo. .... q») of the chain P (see Figure 3) is an embedding
of P into R, i.e., a mapping of each vertex v; to a point ¢; € R?, satisfying the
constraints that the angle between vectors ¢;—1q; and ¢;q;+; 15 ¢;, and the distance
between ¢; and ¢4 is d;. The points g; and g+, are connected by a straight line
segment ¢;. Thus, a configuration can be specified by the position of e, and dihedral
angles 8;,i = I, ..., n — 2, where 4, is the angle between planes ¢; ¢; and ¢;¢;,. The
configuration is simple if no two nonadjacent segments intersect.

A motion M = (myg, ....m,) of a chain P is a list of n + | continuous functions
m;: [0,00] = R*,i =0,...,n suchthat M(t) = (mg(t), ..., m,(t)) is aconfiguration
of P forallr € [0, oc). The motion is said to be simple if all such configurations M (1)

Fig. 3. Notation for a configuration Q.

© Other work [ADM* |, [ADD* | focuses on the angle between adjacent edges, which for us is 7 — a. Thus
“nonacute chains” in that work corresponds 1o (< x/2)-chains here. Our use of the turn angle is more in
consonance with cone production.
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are simple. We normally assume that the motion is finite in the sense that, after some
time 7', M becomes independent of 1.

2.2. Chain Production. As mentioned above, our model is that the chain is produced
inside an infinite open cone Cy with apex at the origin, axis on the z-axis, and half-angle
(angle to the positive z-axis) f; see Figure 2. In fact the production happens in the closure
C 4 of the cone (the cone plus its surface). Vertices and edges are produced sequentially
over time inside the cone C; and eventually exit through the origin. The production
process maintains the invariant that at most one link, the last link produced, is (partially)
inside the cone; once a link is fully outside the cone it must remain so. The last produced
link must constantly touch the origin, with one half of the segment inside the cone and
the other half outside the cone. The rest of the chain can move freely as long as it stays
simple and never meets the cone Cj.

More precisely. at time 1y = 0, the machine creates g at the apex of Cjg, g, inside
Cp, and the segment ¢, connecting them; see Figure 4. In general, at time 7;, vertex ¢
reaches the origin, and g;,, and e; are created at arbitrary locations inside the cone Eﬁ.
The vertex ¢, stays in Eﬂ between times #;; and #;, and stays outside Cj after time ;.
In total there are n + | critical times satisfying 0 =15 <) < -+ < 1.

Formally, a B-production F is a setof n+ | continuous functions f: [f_;, o¢] — R3,
i =0,...,n, such that, forall t € [t;,_, 4], fi(t) € Cp, F(t) = (fo(). ..., f;(1) is
a simple configuration of the segment ¢, is incident to the origin, and no segment ¢,
intersects Cq, i < j— 1. A configuration Q is S-producible if there exists a f-production
F with F (o) = Q. We say that a configuration is (> «)-producible if it is B-producible
for some § > o.

One consequence of this model is that, as the last link produced exits the cone C, it
must enter what we call the complementary cone Ef_. For p < m/2 (a convex cone Cy),
the complementary cone B} is the mirror image of C g with respect to the xy-plane. For
B = /2 (areflex cone Cy), the complementary cone By is the region of space exterior

ty tg<r<iy

Fig. 4. Production of ¢y and e; during r € [ro, 1]
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200°

[cone mntenor)

Vo [cone exterior]

(a)

Fig. 5. Production in cone of # > x/2. Here # = 100”, so that the full cone angle is 2007, The viewpoint is
under the x y-plane. (a) ¢p exits to the exterior of the cone during 1 € [fp, £;). (b) ¢} is created at 1 = 1, inside
the cone, forming, in this instance, a tum angle of 1007,

to Cy. (This region is smaller than the mirror image of Cj in this case.) Figure 5 shows
an example of production when g > /2.
This complementary cone restricts the achievable turn angles in the producible chains:

LEMMA 1. To produce a chain whose maximum turn angle is « using a cone Cy, we
musthavea/2 < B <n —a/2.

PROOF. Suppose 8; = a. At time t;, when g;+, is created inside the cone, g, is at the
apex, and g is outside. Because we stipulate continuous motion, g;—; must be inside
the cone Eﬂ below the xy-plane, for it must have been there throughout t € [f;_y, ).
For the same reason, g;,; must be in the mirror image of B, with respect to the xy-
plane, because ¢; is just about to enter 'B_,;. The cone E,; and its mirror image each form
an angle min(8, = — B) with the z-axis, so in order for €;_; and ¢, to fit those cones,
«/2 < min(f, T — B). a

Note that arbitrarily sharp turn angles can be produced in a cone Cy /2, which might
be viewed as a half-space with a pinhole exit at the origin.

We prove that there exists a simple motion between any two S-producible configura-
tions of the same chain, and that all such configurations are flattenable. Next we define
the notion of a “simple™ motion.

2.3. Complexity of a Motion. There are of course many ways to define the complexity
of a motion M. As a first approximation, we could assume that each dihedral angle
8M (1) of the segment ¢ is a piecewise-linear function of time 1, and the complexity
T (M) of the motion M is the total number of linear pieces over all functions 8 (r). That
is, T(M) = Y/ T(8}), where T(5M) is the number of linear pieces in the function
8. Unfortunately, this definition is not acceptable, as it restricts the range of possible
motions M. The definition can be generalized to allow arbitrary functions 5 (1), given
some corresponding measure of complexity 7 (), with the added restriction that for
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every time range ¢ € [r,s) during which 8 (¢) is a linear function, that time range
contributes at most | to the complexity 7'(3). For example, if 8} (1) is a piecewise-
polynomial function, 7'(8#) could be defined as the sum of the degrees of the polynomial
pieces; or more generally 7 (3" (r)) might measure the number of inflection points or
monotonic pieces of 8 (1).

The complexity of a production F can be defined in an analogous way, where 8/ (1)
is defined only for the time range 1 > #;,. The resulting value will only account for
the dihedral motions outside the cone Cyz. We still need to add the complexity of the
movement of point f;.(r) before it exits the cone for all i, i.e., at time 1 € [, 1;41).
If we assume that the chain exits the cone at a constant rate, we only need to consider
the vector u” (1) = (0, fi41(t)) for t € [t;, ti41), described in polar coordinates by the
angle p (1) of u” (1) with the z-axis, and the angle y*(¢) of the projection of u’ (1)
onto the xy-plane with the x-axis. The complexity will be expressed by 7(y*) and
T(p"), with the restriction that 7(p") be at least the number of connected components
in {t: p©(1) = 0). For example, the number of pieces in a piecewise-linear function,
or the sum of degrees in a piecewise-polynomial function, would qualify. We further
impose on T(y ") and T'(p) the same restriction as for T(8]). The total complexity of
the production is then T(F) = Y1 T8/ ) + T(p") + T(y").

3. Producible = Flattenable. Key to our main theorem is showing that every (= «)-
producible configuration of a (< a)-chain can be moved to a canonical configuration,
and therefore 1o every other (= a)-producible configuration of that chain.

3.1. Canonical Configuration. We begin by defining the canonical configuration of
(< a)-chains, called the a-cone canonical configuration or @-CCC. To understand the
constraints of a configuration Q better, consider normalizing all edge vectors ¢;¢;4; t0
unit vectors u; = (gi+1 — qi)/llgi+1 = qi |l which lie on the unit sphere. The «-CCC
is constructed to have the property that all such vectors lie along a circle of radius
a/2 on that sphere. In other words, the vectors ; lie on the boundary of a cone with
half-angle «/2.

To ease the description, we use the cone C,/2 (not C,) to define «-CCC, but note
that the cone and the chain could be rotated and translated. By convention, we place
uy on the boundary of C,; in the positive quadrant of the yz-plane. Because Q is
a configuration of P, the angle between u;_; and u; is &; and so, on the sphere, u;
lies on the circle of radius #, centered at u; ;. Because 6, < , this circle intersects the
boundary of C,, 2. We set u; to be the first intersection counterclockwise from u;_y on the
boundary of C, » (where counterclockwise is viewed from the origin). See Figure 6 foran
example.

The position of the ;s on the unit sphere as described above, along with the position
of gy, uniquely determine the position of the «-CCC of the chain. Because the u; vectors
all have positive z coordinates, we know that the resulting configuration is simple. See
Figure 7. We can also show that the &-CCC is completely contained in C, 3

LEMMA 2. If all unit edge vectors u; are contained in a cone Z",, for some half-angle
B = 0, then the configuration Q is inside go + C 5, the cone translated so its apex is at
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Fig. 6. ug lies on the cone Cy 4. (6, 62, B3) = (7 /4, 7/6, 7 /5), respectively.

Fig. 7. A chain in its «-CCC configuration. Here &, = 7 /4 for all ¢.
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Go. Furthermore, if ug # u\, then only the first bar of the chain can touch the boundary
ofgo+C B

PROOF. The proof is by induction on . The claim holds for the one-point chain Q[n, n].
Assume Q[ 1, n] is contained in a cone with apex g;. Now g, is in the cone with apex
4o, so the cone with apex at g, is contained in the one with apex at go. Furthermore, the
boundary of these cones intersect only if ¢ is on the boundary of ¢y + Cy, and in that
case the intersection is contained in the line of support gog,. O

In the «-CCC, u, is always different from u, .

3.2. Canonicalization. Nextwe show how to find a motion from any (> «)-producible
configuration of a (< «)-chain to the corresponding «-CCC.

THEOREM 1. If a configuration Q of a (< a)-chain P is (= a)-producible by a pro-
duction F, then there is a motion M from Q to the a-CCC, with T(M) < T(F) + 3n.

PROOF. Suppose that Q is B-producible for § > «, and that F is a S-production
with F(oc) = Q. By scaling time appropriately, we can arrange that r; = i, and the
configuration freezes attime n 4+ 1, ie., F(t) = F(n+ 1) fort > n+ 1.

We construct a motion M from Q to the a-CCC, constructed inside C . A key idea
in our construction is to play the production movements backwards. More precisely,
forall i = 0,...,n, we define m;(r) = fi(n + 1 — 1) for the (reverse) time interval
t € [0,n + 2 —i]. (Beyond reverse time nn + 2 — i, the original production time is less
thann + 1 — (n 4+ 2 — i) = i — | and thus f; is no longer defined.) To complete the
construction, we just have to define m; () for r > n + 2 — i, that is, the motion of the
part of the chain that has already re-entered the cone C.

During the time interval (n — i,n + 1 — i), the edge ¢; is entering the cone Cp
through the origin, P[0, i] is outside Cg, and P[i + 1, n] is inside Cy. We maintain the
invariant that P[i, n] is in o-CCC, contained in a cone -C-‘,,; translated and rotated to
some position C 2. See Figure 8. So the dihedral angle of ¢, does not change for j > i,
i.e., Pli + 1, n] is held rigid. Because P[0, i] moves freely outside of Cy4 according to
the reversed movements of the f-production, we can only control the dihedral angle of
€; in order to maintain that C; (and so P[i + 1, n]) stays inside Z",.

Again, consider the vectors u;. The invariant means that all ), j = i,...,n — 1,
touch the boundary of some circle o of radius «/2 on the unit sphere centered on the apex
of the cone, and o must be inside C . For any position u;, we place o so that its center
is on the great arc between w; and ., where u . is the unit vector along the the z-axis.
This implies that «; is the farthest point from «,. on o and since, by the production
constraints, u; is in Cg, o is in C, as well and the invariant is satisfied. As long as
u; # W4, this position of o is unique and the resulting motion is continuous because
the production is continuous. When u; = w.., a discontinuity might be introduced,
but these discontinuities can casily be removed by stretching the moment of time at
which a discontinuity occurs and filling in a continuous motion between the two desired
states.
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Fig. 8. Cone C,; is nested inside Cy. The diameter of the former is no more than the radius of the latter.

Attime t = n + 1 — i, vertex i enters Cy and the invariant needs to be restored for
the next phase. At that time, the vector u;_ lies in E,. and u; 1s on a circle t of radius ¢,
centered at u; ;. Let o’ be the desired new position for o, that is, the circle whose radius
is /2, and whose center is on the great arc between u,_; and u ;.. We know thato " and t
intersect and all intersections are inside C 4 because o' is in C 5. See Figure 9(a), We first
move u; along t to the first intersection between o’ and t counterclockwise from u; _,
on o’ (Figure 9(b)) by changing the dihedral angle of ¢;__ |, and simultaneously moving o
accordingly as described above by changing the dihedral angle of ¢,. This can be done
while maintaining the invariant because the intersection of t and Cj is connected. We
then rotate o about i, to the position o’ (Figure 9(c)) by changing the dihedral angle of
¢;. This motion can be done while maintaining the invariant because the set of dihedral
angles of ¢, for which o is in Cj is connected.

The complexity of all dihedral motions outside of Cy is ¥/ : T(8]). The dihedral
motions of ¢; during times ¢ € (n —i, n+ | —i) mirror exactly y* (n + 1 — 1), except at
discontinuities, which correspond to times for which ; = u ., which is exactly when

(b) (c)

Fig. 9. Restoring the invariant. View looking down u. .. (a) o and o’ are both radius o /2, determined by a,,‘:.
which moves inside E,,. centered on u ... v is of radius 6,. (b) »; walks to the counterclockwise point of o’ Nr,
() o isrotated about uy . Here /2 = 30" < & = 50" <a = 60" < f = 70°,
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pF(n 41 —1) = 0, so the 1otal complexity of these dihedral motions is bounded by
T(p") 4 T(y"). Finally, whenever a vertex attains the apex of the cone, we perform
three dihedral rotations (linear functions of time) to restore the invariant. Summing it
all, we obtain T(M) < 12 TGF) + T(oF) + T(yF) + 3n = T(F) + 3n. O

COROLLARY 1, For any two simple (> a)-producible configurations Q and Q> of a
common (< a)-chain, with respective productions Fy and F», there is a simple motion
M from Q) to Q—that is, M(0) = Q, and M(oc) = Qr—for whichT(M) < T(F,)+
T(F3) + 6n.

PROOF. Because Q; and Q; are (> «)-producible, the previous theorem gives us
two motions M; and M, with M,(0) = Q;, M,(x) = a-CCC, M2(0) = @3, and
Ms(oc) = a-CCC. By rescaling time, we can arrange that M, (r) = Ma(t) = a«-CCC
for t beyond some time 7. Thendefine M(¢) = M, (t)forO <1 < T M(1) = M(2T —1)
forT <t <2T,and M(t) = Q; fort > 2T, O

LEMMA 3. Ana-CCC of a (< a)-chain is B-producible foranya /2 < B < 7 — a/2.
The complexity of the production is at most 2n — 1.

PROOF. Let Q be a @-CCC positioned in C,, ;2 with g at the origin. Let ¢ (1) be the point
at distance t from g along Q. The position F(¢) of the produced portion of the «-CCC at
time ¢ is Q translated so that g (r) is at the origin and deleting all the edges of Q completely
inside C, 2. By Lemma 2, all edges of F(r) except for the edge containing the origin are
contained in the cone By, 2. F is thus a valid g-production foranya/2 < 8 < 7 —a/2.
The B-production does not use any dihedral rotation so 7(8f) < 1, p* (1) = a/2 for all
150 T(pF) < 1,and ¥ is constant for every edge, so T(y*) <n (m)

COROLLARY 2. If a configuration Q of a (< a)-chain has a -production F for some
B = a, then it has a B'-production F' forall @/2 < B’ < 7w — «/2 and T(F') <
T(F)45n+41.

PROOF. Using Theorem 1, let M be the motion from Q to an a-CCC, and let M’ be
the reverse motion from the @-CCC to Q. Let R be the sum of the edge lengths of the
chain. The production F’ first produces an &-CCC in B,; using Lemma 3. The «-CCC
is then translated by a distance R/sina /2 in the negative direction along the z-axis. At
this point, the sphere centered at g, and of radius R does not intersect the outside of
B, >. Keeping g, fixed, we perform the motion M’ to obtain configuration Q. a

3.3. Connection to Flar States. Finally, we relate flat configurations to productions
and prove our main result that flattenability is equivalent to producibility.

LEMMA 4. All flar configurations of a (< «)-chain have a B-production F for any B
satisfying @« < B < /2. Furthermore, T(F) < n.
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PROOF. Assume the configuration is in the xy-plane. Any such flat configuration can
be created using the following process. First, draw ¢q in the xy-plane. Then, for all
consecutive edges e;, create ¢; in the vertical plane through ¢, at angle #,_, with the
xy-plane, then rotate it to the desired position in the xy-plane by moving the dihedral
angle of e;_;. During the creation and motion of ¢, it is possible to enclose it in some
continuously moving cone C of half-angle § whose interior never intersects the xy-
plane: at the creation of €;, C is tangent to the xy-plane on the support line of ¢;_; and
with its apex at p;, and thus contains ¢;, During the rotation of ¢;, € will eventually
touch the boundary of C. We then move C along with &; so that both ¢, and the xy-plane
are tangent to C. When ¢, reaches the xy-plane, we translate C along ¢; until its apex
i8 py+y. Viewing the construction relative to € and placing C on Cy gives the desired
B-production. a

COROLLARY 3. (< m/2)-chains are flat-state connected. The motion between any two
[flat configurations uses at most 8n dihedral motions.

PROOF. Consider two flat configurations Q and Q' of a (< 7 /2)-chain. By Lemma 4,
Q and Q' are both (x/2)-producible, and so, by Corollary 1, there exists a motion M
such that M(0) = Q and M(+o0) = Q. O

COROLLARY 4, Al a-producible configurations of (< «)-chains are flattenable, pro-
vided « < 7 /2. For a production F, the flattening motion M has complexity T(M) <
T(F)+Tn.

ProOF. Consider an «-producible configuration Q of an (< «)-chain P. Because
@ < m/2, the chain P also has a flat configuration Q' [ADD*). By Lemma 4, Q' is
producible, and so by Corollary 1, there exists a motion M such that M(0) = Q and
M (+0oc) = Q'. The bound on T(M) is by composition of the bounds in Lemma 4 and
Corollary 1. 0

We note that the restriction in our results to @ < /2 accords with the gener-

ally obtuse (about 110°) protein bond angles, which correspond to turn angles e of
about 707,

4. A More Powerful Machine. We now show that our result does not hold without
the assumption @ < B, under a somewhat stronger model of production that also breaks
the @ < 28 claim of Lemma 1.

The stronger model of production separates the creation of the next vertex vy, from
the moment that the previous vertex v; reaches the origin. Specifically, we suppose that
vi+) is not created at r;, but rather imagine the time instant r; to be stretched into a
positive-length interval (1, ¢/], allowing time for v, to rotate exterior to the cone
prior to the creation of v, (at time /). This flexibility removes the connection in
Lemma | between the half-angle f of the cone and the turn angles « produced, permitting
chains of large turn angle from any cone. Indeed, the sequence of motions depicted in
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N

°

Fig. 10. Production of a locked chain under a model that permits large turning angles to be created, For clanity,
the cone is reflected to aim upward. (a) ey = (gg, g1 ) emerges; (b) turn at ¢ ; (¢) turn at ¢ and dihedral motion
at gy places ¢; in front of cone; (d) ez nearly fully produced; (¢) chain spun about 3 (or viewpoint changed);
(f) rotation at g3 away from viewer places chain behind cone; (g) e emerges; (h) final locked chain shown
loose; the turn angle 8y at ¢y can be made arbitrarily close to r,

Figure 10 exploits this large-angle freedom to emit a 4-link fixed-angle chain that is
locked.

5. Random Chains. This section proves that the producible/flattenable configurations
are a vanishingly small subset of all possible configurations of a chain, for almost any
chain. Essentially, the results below say that if there is one configuration of one chain in
a class that is unflattenable, then a randomly chosen configuration of a randomly chosen
chain from that class is unflattenable with probability approaching 1 geometrically as the
number of links in the chain grows. Furthermore, this result holds for any “reasonable™
probability distribution on chains and their configurations.

To define probability distributions, it is useful to embed chains and their configura-
tions into Euclidean space. A chain P = (6),...,0,-1:dp, ..., ds—y) € [0, /2]""" x
[0, oc)" is specified by its turn angles #, and edge lengths d;. A configuration Q =
(8),...,8,-2) € [0,27)" 2 of P is specified by its dihedral angles. We also need to
be precise about our use of the term “unflattenable™ for chains versus configurations.
A simple configuration Q is unflattenable or simply locked if it cannot reach a flat
configuration; a chain P is lockable if it has a locked configuration.

We consider the following general model of random chains of size n. Call a probability
distribution regular if it has positive probability on any positive-measure subset of some
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open set called the domain, and has zero probability density outside that domain.” For
Euclidean d-space Y, a probability distribution is regular if it has positive probability
on any positive-radius ball inside the domain. Uniform distributions are always tegular.

For chains of k links, we emphasize the regular probability distribution P ob-
tained by drawing each turn angle #; independently from a regular distribution ©, and
drawing each edge length d; independently from a regular distribution D. Similarly,
for not-necessarily-simple configurations of a fixed chain P, we emphasize the regular
probability distribution obtained by drawing each dihedral angle §; independently from
a regular distribution A. We can modify this probability distribution to have a domain
of all simple configurations of P instead of all configurations of P, by zeroing out the
probability density of nonsimple configurations, and rescaling so that the total proba-
bility is 1. The resulting distribution is denoted Q”*#, and it is regular because of the
following well-known property:

LEMMA 5. The subspace of simple configurations of a chain P is open.

PROOF. Consider the space [0, 27)*~2 of all configurations of P. The simplicity of a
configuration Q of P can be expressed by the O (k?) constraints that no two nonadjacent
segments intersect. These (semi-algebraic) constraints are all of the form g (Q) < 0 where
2(Q) = g(8y, ..., 8_2) is a multinomial of a constant number of terms in sin(4;) and
cos(d,). Each constraint defines an open set in the configuration space. The conjunction
of the constraints corresponds to the intersection of these finitely many sets, which is
open. (@)

First we show that individual locked examples immediately lead to positive proba-
bilities of being locked. The next lemma establishes this property for configurations of
chains, and the following lemma establishes it for chains.

LEMMA 6. For any regular probability distribution Q on simple configurations of a
lockable chain P, if there is a locked simple configuration in the domain of Q, then the
probability of a random simple configuration Q of P being locked is at least a constant
¢ >0

PROOF. Let Q' be a locked simple configuration in the domain of Q. Let C be the
component of the space of simple configurations containing Q', and let D be the inter-
section of € and the domain of Q. Because C is open and thus D is open, there exists a
constant £ > 0 such that the ball B of radius & centered at Q' is contained in D, and all
Q" € B are locked as well. Choose ¢ to be the probability of choosing a configuration
in B, which is positive by regularity. O

LEMMA 7. For any regular probability distribution P on chains, if there is a lockable
chain in the domain of P, then the probability of a random chain P being lockable is at
least a constant p > ().

7 Aclosely related but more specific notion of regular probability distributions in one dimension was introduced
by Willard [Wil] in his extensions 1o interpolation search.
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PROOF. Consider the space of all chains and configurations of those chains, C =
[0, 7/2]"" % [0, 00)" x [0, 27)" 2. As described in Lemma 5, the constraint that a par-
ticular configuration is locked can be phrased as a set of open semi-algebraic constraints,
except now the constraints depend on all 3n — 3 variables (not just the dihedral angles).
Intersecting all these open semi-algebraic sets results in a subspace £ C C of all locked
configurations of all chains. Projecting this open setdownto £’ C [0, 7/2]""! %[0, oo)*
by dropping the dihedral angles results in another open semi-algebraic set, because open
semi-algebraic sets are closed under projection.

Now let P’ be a lockable chain in the domain of P, let C be the component of £’
containing P’, and let D be the intersection of C and the domain of P. Because C, and
thus D, is open, there is a constant ¢ > () such that the ball B of radius £ centered at
P' is contained in D, and all P" € B are lockable. Choose p to be the probability of
choosing a chain in B, which is positive by regularity, O

Next we show that these positive-probability examples of being locked lead to in-
creasing high probabilities of being locked as we consider larger chains.

THEOREM 2. Let P, be a random chain drawn from the regular distribution PP, If
there is a lockable chain in the domain of PSP for at least one value of n, then

lim Pr(P, is lockable] = 1.
=00

limy..o Pr|P, is lockable] = 1. Furthermore, if Q,, is a random simple configuration
drawn from the regular distribution Q" then

"lil?‘J Pr|Q, is flattenable] = I'm;Ic Pr(Q, is producible] = 0.

limy, . PrQ, is flattenable] = lim,_. Pr(Q, is producible] = 0. Both limits con-
verge geometrically.

PROOF.  Suppose there is a lockable chain of k links. By Lemma 7, Pr| £y is lockable] >
p > 0. Break P, into |n/k] subchains of length k. Each of these subchains is chosen
independently from 'P:’ *“ and is not lockable with probability < | — p. Now P, is
lockable (in particular) if any of the subchains are lockable, so the probability that P, is
not lockable is < (1 — p)*/*! which approaches 0 geometrically as n grows. Likewise,
by Lemma 6, the probability that Qy is locked is > ¢p for some constant 0 < ¢ < I,
and so the probability that Q, is flattenable is < (1 — ¢p)""/*) which approaches 0
geometrically as n grows. O

Thus, producible configurations of chains become rare as soon as one chain in the
domain of the distribution is lockable. The locked “knitting needles™ example of [CJ]
and [BDD™] can be built with chains satisfying e < /2 by replacing the acute-angled
universal joints with obtuse, fixed-angled chains of very short links. Thus for any regular
distribution including such examples in its domain, we know that configurations of (< «)-
chains are rarely producible for the case we have considered, @ < 7 /2. We do not know
of any nontrivial regular probability distribution PP whose domain has no lockable



Geometric Restrictions on Producible Polygonal Protein Chains 181

chains. In particular, for equilateral (all edge-lengths equal) fixed-angle chains, it is not
known whether angle restrictions can prevent the existence of locked configurations.
As protein backbones are nearly equilateral, it is of particular interest to answer this
question.

Future directions for research include resolving the locked question just mentioned,
incorporating the short side-chains that jut from the protein backbone, and more realis-
tically modeling the ribosome structure.
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Computing Signed Permutations of Polygons *
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Abstract

Given a planar polygon (or chain) with a list of edges {€;, ez, €3,...,
€n—1,€n}, we examine the effect of several operations that permute
this edge list, resulting in the formation of a new polygon. The main
operations that we consider are: reversals which involve inverting the
order of a sublist, transpositions which involve interchanging subchains
(sublists), and edge-swaps which are a special case and involve inter-
changing two consecutive edges. Using these permuting operations,
we explore the complexity of performing certain actions, such as con-
vexifying a given polygon or obtaining its mirror image. When each
edge of the given polygon has also been assigned a direction we say
that the polygon is signed. In this case any edge involved in a reversal
changes direction. The complexity of some problems varies depending
on whether a polygon is signed or unsigned. An additional restriction
in many cases is that polygons remain simple after every permutation.

1 Introduction

Much focus has been placed recently on the problem of sorting a permutation
of n integers by reversals [HP98, BP95]. As one might guess, a single reversal
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is applied to a consecutive set of these integers and the result is that their
order is inverted. The key problem that arises is determining the minimum
number of reversals necessary to sort a given permutation. This number is
called the reversal distance of the permutation. A variation of this problem
involves signed permutations [BMYO01]. In this case any integer affected by
a given reversal also changes parity.

Each of these interesting combinatorial problems has its roots in bioin-
formatics and molecular biology [HP98, HP96, BP95, CIM*00, BMY01)].
Specifically, genomes have been modeled as linear or cyclic sequences, where
each element in a sequence is a block of smaller elements that are never
separated. A popular model for mutation involves inverting parts of these
sequences. In order to determine the number of such mutations needed to
transform one genome to another, one may compute the reversal distance of
the associated permutations. An extension of this model is to consider the
direction of each block. This leads to the study of signed permutations. We
illustrate signed inversions in Figure 1 which has been modified from [BP95].

Mouse [ 1 ) 2 | 3 4) sY 6) 7| 8)
e ————
Lt 2KsKaeK3]|]e)7]8)
e —
[t 2] 7Ke[3)]4)s)s)
———Cee
D ENEIEEE ED KD,
—
Lo a|aks] @) sX e
e —————
ESENFATEEREREL T,
o T ——ma
Hman { 4 K6 | 1Y 7] 2 K3 ] s) s)

Figure 1: A most parsimonious evolutionary scenario for the transformation
of human into mouse chromosome assuming that the X chromosome evolves
solely by inversions [BP95]. Each block represents a conserved linkage group
of genes. Reversal distance is equal to six.

The problem of computing transposition distance also stems from bioin-



formatics. In this case, a transposition involves exchanging two disjoint sets
of consecutive integers in a permutation. Computing reversal distance has
been shown to be NP-hard [Cap99] for unsigned permutations, but for the
signed version a linear time algorithm exists [BMY01]. Computing transpo-
sition distance is of unknown complexity [CIM*00]. The reader may also be
interested in [BHKO01, BP98, EEK*01].

In this paper we extend the ideas mentioned above from one dimension
to two. Instead of considering permutations of integers, we consider permu-
tations of edges which form polygons or chains. We define operations such
as edge-swaps, reversals and transpositions, in analogy to R'. We introduce
the notions of signed permutations of polygons and chains. These concepts
give rise to a wide range of problems to be solved.

2 Definitions

First we introduce the notion of a signed polygon or signed permutation of a
polygon. Any polygon P may be described by a list of edges {e;,es, €3, ...,
€n-1,€n}. A signed polygon is no different, except that each edge is also
assigned a direction. The same holds for chains. This is a generalization
of the notion of parity that is used in R'. If the directions of all edges are
consistent as we traverse a polygon or chain, then this polygon or chain is
oriented. In Figure 2 we illustrate some signed polygons and chains.

(7 8 23 5

Figure 2: From left to right, a signed polygon, signed chain, oriented polygon,
oriented chain.

Without loss of generality, suppose that we are dealing with an oriented
polygon. A transposition of two edges A and B involves interchanging their
positions so that the resulting polygon remains oriented. This is illustrated in



Figure 3. If A and B are consecutive, this operation is defined as an edge-swap
or plainly swap (Figure 4a). It is not difficult to see that entire subchains
may also be transposed. A single-edge transposition involves transposing an
edge with an empty subchain. One may also think of this operation as a
transposition between the single edge and one of its neighboring subchains
(Figure 4b).

Figure 3: Transposing two edges A and B.

g VA

Figure 4: (a) An edge swap. (b) A single-edge transposition.

(a)

A reversal of a subchain belonging to a polygon involves inverting the
order of the edges in the subchain. Geometrically this rotates the subchain
rigidly in the plane by an angle of 7 so that its endpoints are placed exactly at
each other’s original location. For unsigned polygons this operation appears
identical to the flipturn operation introduced by Joss and Shannon [GZ01)].
However, here we allow reversals to take place on any subchain, not only



on pockets. For signed polygons the direction of each edge involved in the
reversal is switched, as is done for parity in R'. In Figure 5 we illustrate a
reversal of subchain {e;,...,e;} for a signed (initially oriented) polygon. One

Figure 5: Reversing a subchain of a signed polygon.

can see that for unsigned polygons, an edge-swap is merely a transposition or
a reversal of two consecutive edges. For signed polygons there is a difference
in the resulting direction of each edge.

Each of the operations above results in the same shape when used on a
polygon, regardless of the directions of its edges. In other words, to compute
how a polygon changes shape, one can imagine that it is oriented. However,
for chains alternate definitions exist. For example consider the oriented chain
in Figure 6. We may choose to perform a reversal on edges (A, B,C) in at
least two ways. One way (shown on top) is identical to what is done for poly-
gons. This is convenient but also means that the endpoints of the chain will
never move. A second way (shown at the bottom) is to preserve orientation.
This may allow the chain to form more interesting configurations. We use
the latter definition in Theorem 3.6 in the next section.

3 Permuting Polygons

Scott [Sco82] has shown that precisely two permutations of an edge list form
oriented convex polygons, and these have maximal area. It is also known
that if the longest edge of a polygon has unit length, this polygon may be
permuted to fit into a circle of radius v/5 [GY79)].

5



Figure 6: Two ways that a reversal may be defined on a chain.

For the remainder of this section we present our results concerning per-
mutations of polygons or chains. We impose the restriction that simplicity
must be maintained at all times, unless mentioned otherwise.

In Figure 7a we show a polygon which does not admit any edge-swaps.
Examples such as this one may be extended easily to create any n-gon which
will not admit edge-swaps. In Figure 7b we show a polygon which does not
admit single-edge transpositions, with the exception of a few edge-swaps for
some edges that are almost collinear. These transpositions cannot change
the basic shape. Thus we see that sometimes local permutations will not be
sufficient to achieve desired reconfigurations.

(a) (b) ?

Figure 7: Polygon (a) does not admit edge-swaps. Polygon (b) does not
admit single-edge transpositions.




Theorem 3.1 A simple polygon may be convezified with O(n?) reversals
while maintaining simplicity after each reversal.

Proof: This result holds for the more restricted reversal operation of
flipturns [ABC*00]. 0

Theorem 3.2 A star-shaped polygon can be convezified with O(n®) edge-
swaps while maintaining star-shapedness after each edge-swap, and this bound
is tight in the worst case.

Proof: Let k be a point in the kernel and without loss of generality
suppose that the polygon is oriented clockwise. If the polygon is not convex,
there must exist two successive edges ﬁ and bc which form a left hand turn
(see Figure 8a). Since the polygon is star-shaped, b is the only vertex in

(a) | (b)

k k

Figure 8: Using edge-swaps to convexify a star-shaped polygon.

the cone formed by the half-lines ka and ke. If we edge-swap ab and Q, we
obtain the configuration shown in Figure 8b. The new position of b (shown
as I') must be somewhere in the triangle (a,c,k"). The swapped edges are
still visible from k, and they do not interfere with the other edges of the
polygon. Thus the polygon remains star-shaped. Furthermore any point in
the kernel remains in the kernel and any point in the polygon remains in the
polygon.

Every edge e may be found only within a halfplane determined by a line
parallel to e that passes through k. Now suppose that two edges, ab and

form a right hand turn. This means that b and ¢ coincide as shown



halfplane of 3 halfplane of cd

Figure 9: Any pair of edges may be swapped at most once.

in Figure 9. It is impossible to move these edges within their respective
halfplanes and into a left hand turn without obstructing visibility from & to
either b or ¢. Thus once a pair of edges forming a left hand turn are swapped,
they will never form a left hand turn again. The polygon will become convex
only when there are no swaps to be made on left hand turns. Since any pair
of edges may be swapped at most once, O(n?) swaps suffice to convexify a
star-shaped polygon. In Figure 10 we show that this bound is tight. Every
edge €; (2 < 17 < n — 2) must be swapped with edges ey,...,e;_; for the
polygon to become convex. O

1

®n-2

Figure 10: A star-shaped polygon which requires Q(n?) edge-swaps to become
convex.



For the following two theorems we do not enforce simplicity.

Theorem 3.3 Determining whether a signed polygon may be permuted using
transpositions so that its shape is rotated by an angle of m takes ©(nlogn)
time in the algebraic decision tree model of computation.

Proof: Since only transpositions are allowed, each edge of the polygon
must have its opposite also present in the polygon. This property also suffices
if we do not impose the restriction of maintaining simplicity at all times. By
“opposite” we mean an edge with the same angle, but opposite direction.
For example, in Figure 11 edges a,b,¢,d, e of the polygon on the left are
matched by edges a, b, ¢, d, &. This means that the shape of this polygon may
be rotated by an angle of 7 (shown on right) with appropriate transpositions.

Figure 11: Left: a signed polygon for which every edge is matched by an
“opposite”. Right: a permutation of the polygon with the same shape rotated
by an angle of 7.

If we translate every edge to the origin (so that they are directed away
from the origin), we obtain a set of n points. The shape of the given poly-
gon can be rotated if and only if every such point has a reflection through
the origin. This can be determined in O(nlogn) time with a radial sort,
and the matching lower bound is obtained by a reduction from Set Equality
(see [Ead88]). O

Theorem 3.4 Determining whether we can obtain the mirror image of a
signed polygon using transpositions takes ©(nlogn) time in the algebraic de-
cision tree model of computation.



Proof: In order to be able to obtain a mirror image, there must exist
an axis through which every edge has its reflection present (allowing trans-
lation). For example consider the polygon on the left in Figure 12. If we
take a vertical line as an axis of symmetry, then edges d and j are reflections
of each other. The same holds for pairs (b, h) and (f, k). Vertical edges do
not need a matching edge. If such an axis exists, then a mirror image of the
polygon can be obtained using transpositions. As in Theorem 3.3 we can
place every edge at the origin to obtain a set of n points. The symmetries
of this point set may be found using the Knuth-Morris-Pratt string match-
ing algorithm [KMP77]. The overall time complexity is O(nlogn). This is
pointed out by Eades [Ead88] who also mentions that such reflection tests
have 2(nlogn) lower bounds on fixed degree decision tree machines. ]

Figure 12: Two polygons that are mirror images and have different permu-
tations of the same edge list.

Theorem 3.5 Given an oriented polygon P and a rectangle R, deciding
whether P can be permuted by transpositions into an oriented polygon P’
that can be drawn inside R is (weakly) NP-complete. '

"This result also holds if P’ is to be placed inside a strip or circle, instead of a rectangle.
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Proof: Consider an integer partition problem with S = {ag,ay,...,a,-1}
and a; > 0 foralli. Let A = 3" _ca/2. Deciding whether there is a subset S’
of S with )7 .o a = A is (weakly) NP-hard. Consider the following polygon
P. Denote the edges of P in counter-clockwise order by {eg,ei,...,€m4+3}.
The edges with even indices are parallel to the z-axis; the edges with odd
indices are parallel to the y-axis. Let € be a positive number less than one.
The edge eq has length ag + €. Edges e; for i = 2,4, 6,...,2n — 2 have length
a2 Edge ez, has length A. Edge ey,., has length A + ¢. Edges ¢; for
1=1,3,5,...,2n + 1 have length 1. Edge e;,.3 has length n + 1.

We also assign directions to the edges, so that the edges form a counter-
clockwise traversal of P. All edges of length 1 go up. The edges e; for
1=0,2,4,...,2n—2 go from left to right. The few remaining edges go down
and right to left, as illustrated in Figure 13(a) with n=7.

€16

17

(a): polygon P

(b): polygon P’

Figure 13: Polygons P and P’ with 18 vertices.

Let R be a rectangle of size A + € by n + 1. W.l.o.g assume that R has
(—€,0) and (A,n + 1) as its left-bottom and right-top corner. Suppose P
can be permuted into a polygon P’ that can be drawn in the rectangle R.
Again w.l.0.g assume that e;,2 of P’ lies along the top side of R and e

11



along the left side of R. This implies that the left and right endpoints of es,
are (0,y) and (A, y) for some value of y with 1 < y < n. Moreover the edge
eg lies below ey,. The edges form a counter-clockwise traversal of P'. Since
e2n has a direction that goes from right to left, the horizontal edges above
€2, connect the left endpoint of ey, with the right endpoint of eg,.2, so their
lengths must add up to A. Therefore the partition has a solution if and only
if P can be permuted into a polygon P’ that fits in R. Figure 13(b) shows a
permutation of the polygon in Figure 13(a) that fits in rectangle R. (m

Theorem 3.6 The mazimum endpoint distance over all permutations of an
oriented chain may be computed in O(nlogn) time.

Proof: Fix one endpoint at the origin. Endpoint distance depends only on
the direction of each edge. If we knew the direction in which to position the
second endpoint, it would be a simple matter to select the direction of each
edge in order to maximize the distance. Position two vectors at the origin
for each edge, representing its possible directions. Sort the vectors radially
and compute the sum of all vectors in one halfplane determined by a line
¢ through the origin. This represents the maximum distance in a direction
perpendicular to £. By rotating £ and updating the vector sum whenever a
vector enters or exits the rotating halfplane, we obtain the endpoint distance
over all directions. The time complexity is dominated by the sorting step, so
the entire procedure takes O(nlogn) time using O(n) space. (]
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Vertex Pops and Popturns
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1 Introduction

This paper considers transformations of a planar poly-
gon P according to two types of operations. A verter
pop (or a pop) reflects a vertex v;, i € {1,...,n}, across
the line through the two adjacent vertices v;_; and vy
(where index arithmetic is modulo n). A popturn ro-
tates v; in the plane by 180° about the midpoint of the
line segment v;_jv;4;. Pops and popturns are moves
similar to “Erdds pocket flips” and “Hipturns” [5, 3] in
that they preserve the lengths of the polygon edges.
Our goal in this paper is to study which polygons can
be convexified by a series of pops or popturns, under var-
ious intersection restrictions and definitional variants.

We distinguish between three types of polygons. A
simple polygon is non-self-intersecting, in that edges in-
tersect only at common endpoints. A polygon is weakly
simple if its boundary does not “properly cross” itself.
Finally, a general polygon may be self-intersecting with
proper crossings. Pops and popturns can easily intro-
duce weak or proper crossings, so the latter two classes
are often more natural to study.

We also focus on two subclasses of polygons. In an
orthogonal polygon, adjacent edges meet at right angles.
In an equilateral or unit polygon, all edge lengths are
equal, say, to 1. In equilateral polygons, pops and pop-
turns become identical operations.

We will see that a vertex pop can create a hairpin ver-
tez (or a pin): a vertex v; whose incident edges overlap
collinearly. If also v;_1=v;+; (which arises naturally in
unit polygons), then the reflection line for a pop of v, is
not determined. Whether to allow a pop of such a pin,
and if so, how to define it, leads to many interesting
variations, detailed in Section 3 below.
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Polygons Moves Convexifiable?
arbitrary popturns yes, always
simple popturns yes iff no purse
weakly simple, | pops+180° rot.
unit, orthogonal | or pops-+untwists TEs s

Table 1: Summary of our results.

Our results. Table 1 lists our results. If crossings are
permitted, it remains unresolved whether every poly-
gon can be convexified via vertex pops, but we show
popturns suffice. Restricting to simple polygons, it is
known that every star-shaped polygon can be convex-
ified by popturns [1, Thm. 3.2]. We characterize pre-
cisely the class of polygons that can be convexified by
simple popturns: those without a “purse.” Our final
result is specialized to unit orthogonal polygons, which
can be reconfigured under various hairpin move restric-
tions.

2 Popturns

The polygon P with clockwise vertices (vq,v2,...,0,)
can be seen as a cyclic sequence of rooted vectors
(€1,...,€n), where e; = (v;_y,14). A sequence of vectors
is simple if they form a simple polygon, and clockwise if
each vector has the interior of P on its right side. In the
following, we will use the terms sequence of vectors and
polygon interchangeably. A popturn then corresponds
to swapping two adjacent vectors in their cyclic order-
ing. We call the popturn weakly simple if the resulting
polygon is simple. The two vectors to be popturned and
their images form a parallelogram. We call the popturn
simple if this parallelogram does not intersect or contain
P. This is the case if and only if the resulting polygon
is simple and clockwise.

If we permit crossings, popturns can convexify by sim-
ulating bubble sort on edge directions, where each ad-
jacent swap corresponds to a popturn; see (2, p. 32].

Theorem 1 Any polygon of n vertices can be convexi-
fied (permitting crossings) by a sequence of at most ()
popturns.
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In the remainder of this section, we concentrate on
simple polygons and simple popturns. The turning an-
gle 7; = 7, at vertex v; is the clockwise angle between
the vectors e; and €;4; (-7 < 7z < w), and the to-
tal turning angle 7; ; = 7., ., between edges ¢; and e;
is {____';' 71. Because the polygon is closed, simple, and
clockwise, 7; ; + 75, = 2m. Notice that the total turning
angle 7., ., between two edges, e, and e; does not change
after a simple popturn unless ¢, and ¢; are adjacent, i.e.,
j=i41lorj=1i-1,and the popturn is performed at
their common vertex. Consider, for example, Fig. 1(a),
in which a popturn at v reorders the sequence of vectors
{...,e1,€2.€3,64,...} 0 {...,€1,€3,€2,€4,...}. Only
two edge-turning angles change: 7., ., = %w becomes

T (2+%)7r. wrapping around the entire polygon:
meanwhile, 7., ., = l%ﬂ becomes 7, . = "%""

(b)

Fi
Ciyass 'C)'.

1: (a) Popturn at vy of {ez,es}. (b) Purse

A purse is a (cyclic) subsequence e;, ..., e; such that
i,y < —m: see Fig. 1(b). We show the following:

Lemma 2 If e;,...,e; is a purse, then e; and e; can
never be made adjacent by any sequence of simple pop-
turns, and 7;; is constant.

Proof: As stated previously, 7., ., will be affected by
a popturn only if e; and e; are adjacent, i.e., j=1i+1
or j = i—1. In the first case, 7; ; = 7;4+1 must be
strictly between —m and 7. In the second case, 7, ; =
Ti+lj = 27 — Tj 41, which is strictly between 7 and
3w. However, purse €;,...,€; has 7; ; < —r, meeting
neither case. Before e; and e; become adjacent, 7 ;
must change, but before 7; ; can change, e; and e; must
become adjacent. Thus e; and e; will never become
adjacent. 0

A vertex v is reflex if ; < 0. A popturn at a reflex
vertex is called a reflex popturn.

Lemma 3 Given a simple clockunse polygon, if the pop-
turn at a reflex verter v; is not simple, then the polygon
has a purse.

Proof: Let v} be the position of v; after the popturn. If
the popturn at v; is not simple. then the parallelogram
Ui-1ViVi4 V] intersects P. Suppose that P has no purse.
It follows that edge e, 2 is outside of the parallelogram.
Then by the Jordan curve theorem, there is a proper
intersection between the boundary of P and v, v or
v/v;—y. Assume by symmetry that there is such an inter-
section on the edge vy v} and let ¢ be the first proper
intersection encountered while walking from vy, to v);
see Fig. 2.

Figure 2: Proof of Lem. 3.

Let P’ be a counterclockwise polygon formed by tak-
ing the portion of P between v;+; and ¢ and a vector ¢’
from g to vy41. Let e* be the vector preceding ¢’ in P,
The polygon P’ is closed, simple, and counterclockwise.
Thus the total turning angle 7./ .+ 4 7e+ o = —27. But
the vector €* is part of a vector of P, say e, and ¢; is
parallel to €'; thus, 7, ; = 7 .-. Finally, * and ¢’ are
adjacent, 50 7. . must be strictly between —7 and w,
and 7 ; = Terer = —Teo,or — 27 < —m. Thus ey,...,e; is
a purse. 0

Theorem 4 A simple polygon P can be convexified by
a finite sequence of simple popturns if and only if P
contains no purse.

Proof: If P contains a purse e;,...,e;, then by defi-
nition, 7y; < —x and by Lem. 2, ¢; and ¢; will never
become adjacent, which implies that the value of 7, ;
will remain the same after any sequence of simple pop-
turns. In a clockwise convex polygon, the total turning
angle between every pair of edges is non-negative. This
implies P can never become convex after any sequence
of simple popturns.

Note that applying any sequence of popturns to P
will result in a polygon which is a permutation of the
original vectors. If P contains no purse, then by Lem. 3,
the popturn at any reflex vertex is simple. Such a pop-
turn will increase the area of the polygon, so the same
permutation of vectors will never be repeated. Since the
number of different permutations of vectors is finite, any
sequence of reflex popturns will have to be finite as well.
At the end of such a maximal sequence, no reflex vertex
remains and the polygon is convex. (]

Now we can more precisely bound the number of pop-
turns needed to convexify a polygon:
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Lemma 5 Let P be a polygon that has no purse. Any
mazimal sequence of reflex popturns will converify an
n-gon P after ezactly |{(i,j)|7i; < 0}| < () popturns.

The situation is significantly more complex in the case
of weakly simple popturns. In the full version we prove:

Theorem 6 Deciding if a polygon can be converified by
a sequence of weakly simple popturns is NP-Hard.

3 Unit Orthogonal Polygons

When restricted to simple pops, even the 12-vertex poly-
gon in Fig. 3a cannot be convexified. Here we loosen
that restriction and allow hairpin vertices. A hairpin
vertex v; in a unit polygon has v;_;=v;41, which leaves
a pop of v; undefined. We feel it is natural to define the

5 sl

w ™ (] “

Figure 3: (a) A unit polygon that cannot be convexified
by pure pops. (b,c,d) Convexifying by pin popping.

pop of a pin v; when v;_; = v;4; as the reflection across
the line L perpendicular to the pin edges and through
their common endpoint. This permits convexifying the
previous example; see Fig. 3(b-d). Through an exten-
sion of the argument in Thm. 4, we can show that pops
together with pin pops still do not suffice to convexify
all unit polygons while remaining weakly simple—again,
the polygon must have no purse. But rather than detail
this argument, we turn instead to positive results,

3.1 Pin-move Extensions

There are three natural pin-move extensions: rotating
a pin 90°, rotating 180°, or “untwisting” a pin. The
first is related to the work of Dumitrescu and Pach [4],
in that their “coin moves” can be simulated in certain
contexts with the help of 90° pin rotations. However,
we do not pursue this connection, and only observe that
90° rotations are subsumed by 180° rotations. We next
show that the second two pin movements, and there-
fore the first, permit convexifying any unit orthogonal
polygon while remaining weakly simple.

Let P be a unit orthgonal polygon. We define a U-
shaped boundary piece (vi, V441, ..., vj-1,v;) to be a cup
if vi41 and v;—; are both reflex or both convex and
Vi1, ... Vi1 are collinear. The line segment v;v; is the
cup lid. A cup is open if no piece of 9P lies along its
lid. A horizontal cup (or H-cup) is an upright or upside
down U-shape; a vertical cup (or V-cup) is a U/-shape
on its side.

Our reconfiguration algorithm converts P to a canon-
ical form by moving pins around P. If [v,_y, vy, v41)

is a pin, call v; its tip and v;_; = v;4 its base. We dis-
tinguish two types of pins. A flat pin has the tip vertex
v; coincident with either v;_; or v;.2; see Figs. 4a, 4b.
A barb pin has a tip vertex v; distinct from both v;_,
and v;42; see Figs. 4c¢, 4d.

v' 2 v, 182
B — I LY
i v v '
E k " l’iﬂ ||
(a) (b)

Figure 4: (a,b) Flat pins (¢,d) Barb pins.

Now we relax the condition that pops preserve sim-
plicity of the polygon, and allow for simple pin “twists”
in a small neighborhood around their base point. A
twisted pin (e.g. Fig. 5b) is the result of pop(v;) applied
in the following two conditions: (i) [vi—1,vi, vi41] is a
simple (untwisted) fiat pin, and (i) v;v;4+1 and v 1042
are orthogonal (cf. Figs. 4b, 5a). Once a pin becomes
twisted, we immediately untwist it (cf. Fig. 5¢). Note
that our pop operations apply on the simple polygon
obtained by separating the pin base into two points
within an epsilon-disk of the base, as illustrated in the
pin drawings. Although pin untwisting may seem like
“cheating,” in fact the operation is quite natural, for the
coincidence of v;_y with v,4; means that Figs. 5b and 5¢
are geometrically identical. Although it may appear

Figure 5: (a) Initial pin [v;_y,v;, vi41] (b) Pin twisted
after pop(v;) (¢) Untwisted pin.

from Figs. 5a, 5¢ that the result of popping/untwisting
a pin is the same as rotating the pin 180° about its re-
flex base point, the pop and the 180°-turn operations
are not always identical. Nevertheless, we show that
they are equivalent in the sense that the composite op-
erations (see Sec 3.3) used by our algorithm can be de-
fined in terms of either pop/untwist pin operations or
pop/180°-turn pin rotations.

3.2 Canonical Form

Let P be a polygon with 2r horizontal edges and 2y
vertical edges. The canonical form of P is a rectangle
of length x and height y. It is used as an intermediate
stage in reconfiguring P into another polygon with a
same number of horizontal and vertical edges.
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3.3 Composite Operations

We define three composite operations used by the recon-
figuration algorithm. Each can be implemented using
pop/untwist operations or pop/180°-turn operations.
SLIDE(IT): Moves the pin IT one lattice edge cw around

1 Y 't Yt P ’IEQ ”I: O . U
& v, Yo B Uy v, l’,,,;
!vM " " ) "hl ’H '4 'nl - J
) L T e i - i it (<)
v ! v v
| §1 g i v,
v | v v
i v
v " " " "
0 £ m " | l %
) L
’ld 't ’od |
() (d)

—
i LS %0 |
(e) - U Y% Y ;
v, ¥ v=v,, Yl

Figure 6: (a, b) Sliding a barb pin (c, d, e) Sliding a
flat pin.

the boundary. See Fig. 6.

WALK(IL, ¢): Applies a sequence of SLIDE operations
to walk the pin IT cw along @P until its base coincides
with corner point ¢.

PorSwWEEP(II, ¢): Here II is an outward pointing barb
pin whose base vertex b is connected to vertex ¢ by
a straight boundary segment. This operation pops all
vertices on the boundary segment, starting with b.

3.4 Converting P To Canonical Form

Let T' = ¥r be the leftmost among the topmost maxi-
mal horizontal sections of 9P, with £ (r) the left (right)
endpoint of T. The algorithm uses the composite op-
erations to convert P into a canonical rectangle R that
has its lower-right corner at r (see Fig. 7d). Initially, R
is degenerate and coincides with line segment [£, r].

The algorithm repeatedly creates a pin Il and walks
it around AP to the top left corner t; of R (initially
ty = £), where it uses a POPSWEEP operation to expand
IT into a new (top) row or (left) column of R. A pin is
created by popping all base vertices of an open cup,
which always exists (Lem. 7). E.g., in Fig. 7d, popping
base vertex bs of cup (as,bs, ca,dy) creates a pin (see
Fig. 7e). The cup must be open, for otherwise popping
the base vertices results in 9P touching along non-pin
edges. In the first iteration, the algorithm uses a pin II
corresponding to an upright open H-cup; this ensures
that, once it reaches £, IT expands into a row extending
from ¢ to r, turning R into a one-row rectangle (£ =
be,ty bt 7). Figs. Ta-Tg show this for two pins.
Lemma 7 If P is not a rectangle, it has at least one
open cup in the halfplane H bounded above by T.

Figure 7: (a) P (b) H-cup (ay,by,e1,dy) turned into
pin II by pop(b;) (¢) Pin II after WALK (d) Rectangle
R after POPSWEEP (e-g) Same steps for next pin.

Proof: If P is not a rectangle, then the reconfiguration
is not complete and some part of dP lies in the interior
of H. Therefore, P has at least one upright horizontal
cup in H, namely the H-cup with a lowest horizontal
edge as base. Of all upright horizontal cups in H, let
C = (v, ¥i41,...vj-1,v;) be one with a highest base.
Assume for the sake of contradiction that C' is not open.
Then its lid contains some (maximal) horizontal section
Uks ooy Ukss Of @P. Assume w.l.o.g. that k > j. If vx and
v; coincide, then (v;-2,vj-1,v; = Uk, Ug41) is an open
V-cup in H and the proof is finished, and similarly if
vg+s and v; coincide. So assume k # j and k + 5 # 1.
Then vg, ..., Vg4, must be the base of an upright H-cup,
call it D. Simple arguments show that D lies in H and
is higher than C, a contradiction. O

Theorem 8 The described algorithm transforms P into
a rectangle in O(n®) pop operations.

Acknowledgments. We thank the other partici-
pants of the 2007 Workshop on Reconfiguration at the
Bellairs Research Institute of McGill University.
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1 Introduction

It has long been an unsolved problem to determine whether every polyhedron
may be cut along edges and unfolded flat to a single, non-overlapping poly-
gon [12,9,7,6]. An interesting special case emerged in the late 1990s:% can the
band of surface of a convex polyhedron enclosed between parallel planes, and
containing no polyhedron vertices, be unfolded without overlap by cutting an
appropriate single edge? A band and its associated polyhedron are illustrated
in Figure 1.

Y, %
4x
YL. xo

Fig. 1. A polyhedron cut by two parallel planes, and the projection of the resulting
band onto the zy plane.

This band forms the side faces of what is known as a prismatoid (the convex
hull of two parallel convex polygons in R?®) but the band unfolding question
ignores the top and bottom faces of the prismatoid. An example was found
(by E. Demaine and A. Lubiw) that shows how flattened bands can end up
overlapping if a “bad” edge is chosen to cut; see Figure 2.

A\ <]

Fig. 2. Projection of a band that self-intersects when cut along the wrong edge
and unfolded. Left: original band. Edges at the bottom are nearly collinear. Right:
self-intersecting unfolding.

Band-like constructs have been studied before. Bhattacharya and Rosenfeld [3]
define a polygonal ribbon as a finite sequence of polygons, not necessarily
coplanar, such that each pair of successive polygons intersects exactly in a

6 Posed by E. Demaine, M. Demaine, A. Lubiw, and J. O’'Rourke, 1998.



common side. Triangular and rectangular ribbons (both open and closed) have
also been studied. Arteca and Mezey [2] deal with continuous ribbons. Simple
bands can be used as linkages to transfer mechanical motion, as pointed out
by Cundy and Rollett [5]. Open and closed rings of rigid panels connected
by hinges have also been considered in robotics as another model for robot
arms with revolute joints. For example, their singularities are well understood
mathematically [4]. As a special case of the more general panel-and-hinge
structures studied in rigidity theory, they are relevant to protein modeling
[13]. In all these instances, almost no attention was paid to questions regarding
their non-self-intersecting states or their self-collision-avoiding motions.

There is one unfolding result that is particularly relevant to our problem, which
may be interpreted as unfolding infinitely thin bands. This result states that
a slice curve, the intersection of a plane with a convex polyhedron, develops
(unfolds) in the plane without overlap [8,10]. This result holds regardless of
where the curve is cut. Thus, both the top and the bottom boundary of any
band (and in fact any slice curve between) cannot self-intersect after a band
has been flattened. So overlap can only occur from interaction with the cut
edge, as in Figure 2.

Here we will prove that a particular type of band can be unfolded by ex-
plicitly identifying an edge to be cut. A band is nested if projecting the top
boundary A orthogonally onto the plane of the bottom boundary B results
in a polygon nested inside B. For example, the band in Figure 1 is nested.
Intuitively, we might expect to obtain a nested band if both parallel planes
cut the polyhedron near its “top”. We prove that all nested bands can be
unfolded. Our proof provides more than non-overlap in the final planar state:
it ensures non-intersection throughout a continuous unfolding motion.

2 Bands

We first define bands more formally and analyze their combinatorial and ge-
ometric structure, without regard to unfolding.

Let P be the surface of a convex polyhedron with no coplanar faces. Let
20,21, ..., 2m denote the sorted z coordinates of the vertices of P. Pick two
z coordinates z4 and zp that fall strictly between two consecutive vertices
z; and 24, and suppose that z4 is above 25: % < 2p < 24 < 2zi41. The
band determined by P, z4, and zp is the intersection of P’s surface with the
horizontal slab of points whose z coordinates satisfy zp < z < z4.

The band is a polyhedral surface with two components of boundary, called A
and B. Specifically, we define A as the top (polygonal) chain of the band, i.e.,



the intersection of P’s surface with the plane 2 = 24, and B is the bottom
chain, corresponding to the plane z = zp. Both chains A and B are convex
polygons in their respective horizontal planes, being slice curves of a convex
polyhedral surface P. All vertices of the band are vertices of either A or B.

Every vertex of the band is incident to exactly three edges: two along the chain
A or B containing the vertex, and the third connecting to the other chain.
This third edge, called a hinge, is part of an edge of the original polyhedron
P connecting a vertex of P with z coordinate less than 2z to a vertex of P
with z coordinate greater than z4. The hinge from each vertex of the band
defines a perfect matching between vertices of the top chain A and vertices of
the bottom chain B. This matching is consistent with the cyclic orders of A
and B in the sense that, if vertex a; of A is paired with vertex b; of B, then the
vertex a;; clockwise around A from a; is paired with the vertex b;;; clockwise
around B from b;. This correspondence defines a consistent clockwise labeling
of the vertices ag, a,,...,a,-; of A and the vertices by, by, ..., b, of B, unique
up to a common cyclic shift.”

Each face of the band is a quadrilateral spanned by two adjacent vertices a;
and a;+, on the top chain A and their corresponding vertices b; and b;4; on
the bottom chain B. This facial structure follows from the edge structure of
the band. Each face is planar because it corresponds to a portion of a face of
the original polyhedron P. Because edges a;ai;+; and b;b;;, lie in a common
plane as well as in parallel horizontal planes, the edges themselves must be
parallel. Thus every face of the band is in fact a trapezoid, with parallel top
and bottom edges.

3 Nested Bands

Next we analyze the geometric structure of nested bands in particular, still
without regard to unfolding.

A band is nested if the orthogonal projection of A into the zy plane is strictly
contained inside the orthogonal projection of B into the zy plane. (Of course,
a band is just as nested if instead B’s projection is contained inside A’s pro-
jection, but in that case we just reflect the band through the zy plane.)

Nested bands have a particularly simple structure when projected into the
zy plane. As with all bands, each face projects to a trapezoid. The unique
property of a nested band is that none of its edges cross in projection. This
property follows because the projected edges are a subset of a triangulation of

7 Throughout this paper, indices are taken modulo n.



the projections of A and B, which themselves do not intersect by the nested
property. (In non-nested bands, edges of A intersect edges of B in projection.)
Thus the projected trapezoidal faces of the band form a planar decomposition
of the region of the zy plane interior to the projection of B and exterior to
the projection of A. When dealing with projections, we will refer to A (B) as
the inner (outer) chain.

In the zy projection, the normal cone of a vertex a; of A (or more generally
any convex polygon) is the closed convex region between the two exterior rays
that start at a; and are perpendicular to the incident edges a;— a; and a;a;4,
respectively. See Figure 3. The two rays forming this cone decompose the local
exterior of A around a; into three regions: left (counterclockwise), inside, and
right (clockwise) of the normal cone.

Fig. 3. The normal cone of a vertex a;.

Lemma 1 In the zy projection of a nested band, not all hinges a;b; can be to
the right (or all to the left) of the normal cones of their inner endpoint a;.

PROOF. The following proof refers exclusively to the zy projection. Suppose
by symmetry that all hinges are clockwise (right), or on the right border, of
their respective normal cones on the inner chain A. For each i, define T; to
be the trapezoid with vertices a;_1,a;,b;, bi—1, and let h; denote its height,
i.e., the distance between the opposite parallel edges a;_ a; and b;_,b;. See
Figure 4. Because a;b; is right of the perpendicular at a; to a;a;+,, and because
the interior angle at b; is convex, the convex angle a;b;b;_, is less than the
convex angle b;a;a;,. Thus, the height h; of T; is less than the height Ay
of the clockwise next trapezoid T;,;. Applying this argument to every T;, we
obtain a cycle of strict inequalities hg < hy < «++ < h,—y < hg, which is a
contradiction. O



bis1

Qi41

Fig. 4. If the hinge a;b; is right of the normal cone at a;, then the top shaded angle
is less than the bottom shaded angle, so h; < hj4.

4 Opening Convex Chains

Before we study the unfolding of bands, we first study what happens when
opening a convex closed chain (polygon) by cutting it at some vertex a; and
increasing all other internal angles.

We introduce some basic notation and terminology for a convex closed chain;
refer to Figure 5(a). Given a clockwise-oriented convex closed chain A =
(ag,ay,...,a,—1) in the plane, the interior angle a; at a vertex a;, 0 < j <
n — 1, is the angle a;-1a;a;4+; located on the right side of the chain. Let
T; = ™ — a; be the turn angle at a;, which is positive (to the right) because
of the clockwise orientation of A. Let 6; be the counterclockwise angle of the
vector a; —a;—; from the positive z axis. If a; —a;_, is fixed along the positive
z axis, then for a chain with all right turns, we have 8; = 0, §;_; = 7;_;, and
in general,

i-1

ik = ) Tj (1)

j=i-k

An opening of a convex closed chain A at a; is a motion A'(t) that cuts the
chain at a;, holds the edge a;_,a; fixed, and monotonically increases all other
interior angles. See Figure 5(b). More precisely, an opening of A at a; consists
of a nonstrictly increasing function d; : [0,1] — [0, 73], with §;(0) = 0, for each
j # i. For any t € [0, 1], the opened chain A'(t) = (a*(t), ai,,(t), ai5(t),...,
al_,(t),ap(t),ay(t),. .., ai(t)) at time ¢ is obtained from A by fixing ai(t) = a;,
fixing aj_,(t) = a;-1, and opening each interior angle a;, j # i, to aj(t) =
a; +6;(t). The opening separates two copies of a;; we call the stationary copy
a; and the moving copy a*(t). Because 4;(0) = 0, the opening motion starts
at A’(0) = A. Because d;(t) is nonstrictly increasing, the interior angles o (t)
only open with t. Because d;(t) < 75, the interior angle () remains at most
@j + 7; = , so the opened chain A’(t) has only right turns. Thus these chains



Fig. 5. (a) A convex closed chain A, and (b) an opening of a;4.

A'(t) can use the same definitions of interior angle o/(t), turn angle 7;(t),
and counterclockwise angle #;(t) at a vertex aj(t), j # ¢, and the analog of
Equation (1) still holds.

Lemma 2 During any opening A'(t) of a convez closed chain A at a;, every
edge aj(t)ay,,(t) turns clockwise in the sense that the vector aj ., (t) — aj(t)
rotates only clockwise as t increases; in particular, a*(t)a;+1(t) turns clockwise.

PROOF. The transformation of an edge ax—jax of A to aj._,(t)a(t) induced
by the opening at time ¢ can be expressed as a composition of rotations,
rotating clockwise by d;(¢) around each vertex a; for j = k,k+1,...,1 — 1.
In particular, the vector aj.(t) — aj._,(t) is a rotation of ax — ax—; clockwise by
¥i2) 6;(t). Because §(t) > 0 and §;(t) only increases with ¢, ax41(t) — a(t)
rotates only clockwise as ¢ increases. 0O

Lemma 3 During any opening A'(t) of a convex closed chain A at a;, the
Euclidean distance between any two vertices aj(t) and aj(t) only increases
with t.

PROOF. Cauchy’s arm lemma [8,10] states that opening the interior an-
gles ay, @y, . . ., o, of a convex open chain ag, ay, . .., a, nonstrictly increases
the Euclidean distance between the endpoints ag and a,. The lemma follows
from applying Cauchy’s arm lemma to the chain a;, a;41, ..., a; or the chain
@k, @41, - - -, @5, Whichever excludes the missing edge a;a®. O

We define three classes of shapes that an open chain A" = (a* aj ,, a5, ...,
a,_,,ay, a,...,a;) with only right turns may have: convex, weakly convex,
and spiral. Refer to Figure 6. The chain A’ is convez if joining the endpoints
a, and a* with a closing segment yields a convex polygon. The chain A’ is



weakly convez if joining the endpoints a; and a* with a segment yields a
nonconvex simple polygon with no exterior angles smaller than n/2. Such a
weakly convex chain is called R-weakly convez or L-weakly convexr depending
on which endpoint is on the hull: if @; is on the hull, then the chain is L-weakly
convex; if a* is on the hull, then the chain is R-weakly convex. If the chain A’
is neither convex nor weakly convex, then it is a spiral.

Fig. 6. Types of chains, from left to right: convex, R-weakly convex, spiral. Endpoints
are joined by dashed line segments.

Lemma 4 During any opening A'(t) of a convezx closed chain A at a;, A'(t)
remains convez or weakly convez, and the endpoint a*(t) remains outside the
normal cone of a;.

PROOF. Define the forbidden region to be the normal cone of a; unioned
with the quarter-plane above the horizontal ray emanating leftward from a;;
see Figure 5. Initially, no vertex a; is inside the forbidden region. By Lemma 3,
no vertex a(t) can cross an edge aj,_, (t)aj(t), for to cross the edge, a}(t) would
have to approach one of the edge’s endpoints. In particular, no vertex a;-(t)
can cross the edge a;_,a;. Because the opened chain A’(t) has only right turns,
the only way for a vertex aj(t) of the chain to enter the forbidden region is for
a*(t) to cross the ray r emanating from a; normal to a;a;+;. Such penetration
is possible only when a*(t) is above or on the horizontal line through the edge
a;_1a;, so we consider values of ¢ for which this is the case.

We claim that, for such values of ¢, the direction of the edge a*(t)aj,,(t)
remains in the clockwise range from the direction of a;a;4; to the horizontal
leftward direction. By Lemma 2, the edge turns clockwise from its original
direction of a;a;4,. If the direction were ever to reach horizontal leftward, it
would be impossible to connect ai, ,(t) to a;—; by only turning right and using
a total turn angle less than 2. (Turn angles only decrease while opening, and
the initial total turn angle excluding a; is less than 27.) The vertices a)(t)
thus remain in the clockwise wedge around a*(¢) from the direction of a;a;44
to horizontal leftward. These vertices are the possible centers of a clockwise
rotation affecting a*(t). The resulting instantaneous direction of motion of
a*(t) is thus in the clockwise range from the direction of the normal ray r to



vertical downwards (the previous cone of directions rotated clockwise by 7 /2).
Furthermore, in the case of instantaneous motion along the direction of r, the
actual motion of a*(t) is clockwise of the direction of r. Therefore, a*(t) moves
away from the ray r for these values of ¢, so it could never cross r. O

Lemma 5 Let A'(t) and A"(t) be openings of a convex closed chain A at
ai;1 and at a;, respectively, with the same angle-opening §;(t) functions for
J#Fi,i+1. If A'(t) is R-weakly convez, then A”(t) cannot be L-weakly convez.

PROOF. Because the lemma concerns only a single time ¢, we omit the ¢
argument. We apply a series of transformations that transform A’ into A”;
refer to Figure 7. Because A’ is R-weakly convex, a* must be in the upper-
right quadrant of a{,,. Now we make a new cut at aj, and translate the entire
opened chain, except the fixed edge a;ai;,, so that a* re-attaches to aj,,. We
let a} denote the translated copy of a}, and let a**a/, ; denote the original fixed
edge. Now a! must be in the lower-left quadrant of a**.

Fig. 7. (a) An opened chain A'. (b) Translating part of the chain to switch the cut
vertex. This is a new opened chain A” except that the angle a;; is not yet opened.

Now we have a new opened chain, except that we have not taken care of the
opening of angles o} and af,,. Because A’ opened the angle at a; by rotating
the chain that we merely translated, and a no longer has an angle to open, we
must rotate the translated chain to return it to the original orientation. This
rotation is counterclockwise, because the opening rotation at a; was clock-
wise. Next, because af,, (previously a*) has an angle not present in A’, we
must open that angle by again rotating the entire translated chain. Again the
rotation is counterclockwise to open aj,,. (Technically, we should also rotate
the entire chain to make a}_,a] horizontal, but this does not change weak
convexity.) During these counterclockwise rotations, a! might cross into the
lower-right quadrant of a**, but a} cannot cross into the upper-left quadrant
of a**. Therefore cutting at a; cannot produce an L-weakly convex chain. O



5 Unfolding Nested Bands

Having completed our study of unfolding cut chains, we now return the original
problem of unfolding bands. Our results on chains help understand the motions
of the top boundary A and the bottom B of the band. The rest of our study
focuses on the cut edge, which can cause intersection as in Figure 2 if we are
not careful.

After cutting a single hinge, a flattening motion is a continuous motion dur-
ing which each face moves rigidly but remains connected to each adjacent face
via their common hinge, and the final configuration is planar. If no intersec-
tion occurs during the motion, then this motion is a continuous unfolding.
If the resulting configuration is non-self-intersecting, but intersection occurs
during the motion, then we call the motion an instantaneous unfolding and
the resulting configuration an unfolded state. Thus in Figure 2 we would say
that the band has been flattened, but because it self-intersects it has not un-
folded. These notions can be defined precisely by specifying rigid motions of
the faces as functions of time that satisfy the connectivity constraints, similar
to openings of chains.

We now describe the particular flattening motion that will lead to our unfold-
ing, though it requires some effort to prove non-intersection, particularly of
the final state. The flattening motion is based on squeezing together the two
parallel planes z = z, and z = zp that contain A and B, keeping the planes
parallel and keeping each chain on its respective plane. At time t € [0, 1],
the squeezing motion reduces the vertical separation between the two parallel
planes down to (1 —t)(z4 — 25), that is, it linearly interpolates the separation
from the original 24 — 25 down to 0.

The squeezing uniquely determines the hinge dihedral angles necessary to
keep the vertices of the band on their respective moving planes (assuming
exactly one edge of the band has been cut). See Figure 8 for an example
of the projected motion. For nested bands, the motion increases the interior
angle at every vertex of each chain in projection. This property can be seen
by examining any two adjacent faces that are being “squeezed”. Both faces
rotate continuously to become more horizontal. If we forced one of the faces
to keep its vertices in the parallel planes, but allow the second face to only
follow this motion rigidly (i.e., the dihedral angle at the hinge remains fixed),
then the edges of the second face would no longer be on the horizontal planes.
To compensate, the second face must perform a (dihedral) rotation about the
hinge. In fact, the interior angle at the hinge must increase (flatten), causing
the interior angles of the chains to increase (open). Because the interior angle
at a vertex of a nested band can open only to 7, the opening chain will always
have only right turns. Thus we can apply the analysis of opening chains from

10



Section 4. For example, Lemma 4 tells us that the opening chains never become
spirals, so in particular never self-intersect while flattening (a fact already
known from the slice-curve result of [8,10]).

Fig. 8. A view from above of a nested band during a squeezing motion. The original
configuration has a lighter shade. For each trapezoid, the height increases and its
parallel edges rotate clockwise relative to their original positions.

As the parallel planes squeeze together, each band face remains a trapezoid in
the projection. Edges a;a;4; and b;b;4, remain parallel and retain their orig-
inal lengths throughout. Hinge projections lengthen as the band is squeezed,
which causes the trapezoid angles to change. Because b; and b;;; move or-
thogonally away from a;a;4,, acute trapezoid angles increase toward 7 /2 and
obtuse angles decrease toward /2.

The goal of this section is to show that the band does not self-intersect if
we cut a specific hinge. We mention that self-intersection of the band in 3D
implies self-intersection in projection, so it suffices to prove that there is no
self-intersection in projection to establish that there is no self-intersection in
3D.

Suppose that we cut hinge a;b; and hold a;_,a; fixed along the z axis in the
positive direction. The motion separates two copies of a;; we call the stationary
one a;, and call the moving one a*, as in Figure 5. Correspondingly, for the
outer chain, the direction of b;_b; remains fixed (it moves away from a;_,a;
because the trapezoid enlarges in projection, but remains parallel), and b* is
a “moving” endpoint. Thus the cut hinge is split into edges a;b; and a*b*. See
Figure 9.

Call a chain A safe if it is either convex, or it is R-weakly convex and the
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(a) (b)

Fig. 9. (a) Projection of the inner convex chain A and part of the outer chain B.
Hinge a;b; and the normal cone of vertex a; are shown. (b) The result of cutting at
a;b; and flattening.

hinge a;b; is left of or in the normal cone at a;, or it is L-weakly convex and
a;b; is right of or in the normal cone at a;. An opening of the band is safe if the
opened inner chain A is safe. See Figure 10. We will prove that safe openings
of the band never self-intersect, i.e., are unfoldings. Then we will prove that
there is always a suitable hinge a;b; that leads to a safe opening.

Fig. 10. After cutting at a;, the inner chain will become R-weakly convex if a* ends
up above the line determined by a;—,a; (dotted). In this case, the cut is labeled safe
if hinge a;b; (dashed) is left of or in the normal cone at a; (which is not the case in

this figure).

Our next lemma covers an opened band by a clockwise-turning family of rays
emanating from the inner chain A, dependent only on the cut edges and not
on the outer chain B. This covering will allow us to prove nonoverlap of the
opened band—in fact, an infinite version of the band with no bounding outer
chain—in certain cases using the nonoverlap of A.
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Lemma 6 For any safe opening of the band, there is a function r assigning
a ray r(p) from each point p on the chain A such that

(1) v is a continuous function;

(2) the direction of r(p) rotates only clockwise as p moves along A from a*
to a;;

(3) the total turn angle made by r(p) as p travels along A from a* to a; is at
most 27 ;

(4) the ray r(p) is locally exterior to the polygon formed by A and the edge
a;a*; and

(5) the ray r(a;) passes through b;, and the ray r(a*) passes through b*.

(Only Property 4 requires safeness.)

PROOF. First we assign r(a;) for each vertex a;. We set r(a;) to the ray from
a; passing through b;, and set r(a*) be the ray from a* passing through b°.
Thus we obtain Property 5. For each j # 4, let [u;j, w;] denote the clockwise
range of directions of rays that are left of the two incident edges a;_;a; and
ajaj+y (and hence locally exterior to A). We set the direction of r(a;), j # i,
according to three cases:

(1) If the direction of r(a;) is in the clockwise range [u;, w;], then we set the
direction of r(a;) to the direction of r(a;).

(2) Otherwise, if the direction of r(a*) is in the clockwise range [u;, w;], then
we set the direction of r(a;) to the direction of r(a*).

(3) Otherwise, we set the direction of r(a;) to the direction in the middle
of the range [u;, w;], i.e., r(a;) is the angular bisector of the exterior
(nonconvex) angle at a;.

Finally, we make r a continuous function over points on A by linearly inter-
polating the direction from r(a;j-,) to r(a;) for points along the edge a;_a;,
keeping the rays left of the edge. Thus we obtain Property 1.

Next we show Property 2 for the points along any edge a;_,a;. We split into
three cases. If r(a;—,) and r(a;) are exterior angular bisectors of a;_; and a;,
respectively, then the claim follows because the exterior angles are nonconvex,
so r(aj—) is left of the edge normal (at a;_,), while r(a;) is right of the edge
normal (at a;). If r(a;—,) has the same direction as r(a*), then r(a;_,) must be
strictly left of the line from a;4, to a; (in direction), while r(a;) is nonstrictly
right of this line, so the claim follows. The case when r(a;) has the same
direction as r(a;) is symmetric. Thus we obtain Property 2.

Next we show Property 3. Along each edge a;-,a; of A for which r(a;-,) and

r(a;) are angular bisectors, the ray turns 3(7;-1+7;): 3751 turn from r(a;—) to
a normal to a;_,a;, and 37; turn from that normal to r(a;). Thus the total turn
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caused by such edges is at most 3 3°, ., ;41 (Tj-1475) = ¥; 7 —Ti—3(Tic1+7ia).
In the original chain A before opening, the total turn angle Zj 7; is 2m, and
opening the chain only decreases the turn angle 7; at each vertex a;, s0 3, 7;
remains at most 27. Thus the total turn of ray from being normal to a*a;4, to
being normal to a;_;a;, visiting the angular bisectors of a;, j # ¢, in between,
is at most 2w — 7;. If the projected trapezoid angle at a; (Za;_ja:b;) is acute,
then this total turn has already accounted for reaching (in fact, going beyond)
the direction of ray r(a;); if the angle is obtuse, however, then we must also
add the clockwise angle from the normal of a;_,a; to r(a;) to the total turn.
Similarly, if the projected trapezoid angle at a* (£b*a*a;,,) is obtuse, then we
must add the clockwise angle from r(a*) to the normal of a*a;;, to the total
turn. Before the opening, the sum of these two clockwise angles is 7;, and the
flattening of the trapezoids only decreases these projected angles. Thus, the
additional turn remains at most 7;. The total turn angle of the rays is therefore

at most 27, proving Property 3.

Finally we show Property 4. The property holds along any edge a;_,a; of A,
with respect to that edge, because rays r(a;-;) and r(a;) are both chosen to
be left of the edge a;-,a;, and because by Property 2, r(a;) is clockwise of
r(aj-1) in the halfplane left of a;—,a;. It remains to show Property 4 at a; and
a* with respect to the closing edge a;a*. Assume without loss of generality that
A is either convex or R-weakly convex. (Otherwise, imagine opening from the
other side, swapping the roles of a; and a*.) In either case, a*a;, is an edge
of the convex hull of A. Because the incident projected trapezoid of the band
is left of this edge, a*b* and hence r(a*) are left of this edge. Thus r(a*) is
exterior to A. For convex chains, the same argument shows that r(a;) is left
of the edge a;_;a; and hence exterior to A, completing the proof in this case.
Now consider R-weakly convex chains. By safeness, a;b; and hence r(a;) is left
of or in the normal cone at a;. By Lemma 4, a* is right of this normal cone.
Hence, r(a;) is locally outward with respect to the edge a;a*. Therefore, in all
cases, we have Property 4. O

Lemma 7 For any ray assignment r on a safe opened chain A satisfying
Properties 1-4 of Lemma 6, no two rays r(p) and r(q) intersect for two points

p#qof A’

PROOF. Consider any two points p and g on A, and assume by symmetry
that ¢ appears after p in the clockwise order around A. Let £ be the directed
line from p to ¢. For the rays r(p) and r(g) to intersect, they have to be on
the same side of £.

Suppose first that r(p) and r(g) are both right of £, as in Figure 11(a). For

8 Thereby avoiding total protonic reversal [11].
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(a) (b) (c)

Fig. 11. Three cases of rays r(p) and r(q) attempting to cross.

these rays to intersect, r(¢) must be clockwise of r(p) in the halfplane right
of £. As we move a point z from p to g clockwise around A, r(z) must rotate
continuously clockwise by Properties 1 and 2 of Lemma 6. During this motion,
r(z) sweeps the clockwise angle from r(p) to the reverse direction of £, then
it sweeps the 7 clockwise angle from the reverse direction of £ to the forward
direction of £, and finally it sweeps the clockwise angle from the forward direc-
tion of £ to r(q). If r(p) is counterclockwise of r(g) in the halfplane right of £,
the first and last angle must overlap, summing to more than 7, and hence r(z)
must sweep an angle more than 27 during z’s motion, contradicting Property 3
of Lemma 6. Therefore r(p) and r(q) cannot intersect right of £.

It remains to consider the case when both r(p) and r(g) are left of £. For these
rays to intersect, 7(p) must be clockwise of r(¢) in the halfplane left of £. As a
first subcase, suppose that the entire subchain of A from p to ¢ is nonstrictly
left of ¢, as in Figure 11(b); in particular, this subcase happens when A is
convex. As in the previous case, if we move a point z from p to g clockwise
around A, r(z) must rotate continuously clockwise by Properties 1 and 2 of
Lemma 6. If r(p) is clockwise of r(g) in the halfplane left of £, then r(z) must
at some point locally enter the polygon, contradicting Property 4 of Lemma 6.
Hence r(p) and r(g) cannot intersect in this subcase.

We are left with the subcase when A is weakly convex and the subchain of
A between p and ¢ is at some point right of £, as in Figure 11(c). This last
property implies that £ intersects A between p and ¢. Assume without loss of
generality that A is R-weakly convex. and thus @* is above the horizontal line
h through a;_,a;. (Otherwise, imagine opening from the other side, swapping
the roles of a; and a*.) Now h partitions the chain A into two convex subchains,
where the subchain above h precedes the subchain below A in the clockwise
order of A. For £ to intersect A between p and g, p and ¢ must be on opposite
sides of h, and by the clockwise ordering, p must be above h and ¢ must be
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below (or on) h. By R-weak convexity, both a* and p are in the upper-right
quadrant from a;. In particular, the line £” through the closing edge a;a* and
the line ¢’ through a; and p both have positive slope. Now £ partitions the
portion of A clockwise after p into two convex subchains, and if we direct ¢
from p to a;, the subchain nonstrictly left of £ contains p. For £ to intersect A
between p and ¢, ¢ must be on the subchain right of #, which is in the lower-left
quadrant of a;. Hence, the slope of £ must be positive and at most the slope
of £. (Note that the slope of a line does not depend on the line’s orientation.)
Furthermore, the slope of £ is at most the slope of £”. By Properties 1, 2, and
3 of Lemma 6, the direction of r(a;) must be in the clockwise range from the
direction of r(g) to the direction of r(p). In particular, this cone of directions is
in the halfplane left of £. By the slope arguments above, this cone is contained
in the nonconvex clockwise wedge from the ray starting at a; through a* to
the horizontal leftward ray starting at a;. But then r(a;) locally enters the
polygon, contradicting Property 4 of Lemma 6. O

Lemma 8 For any ray assignment r on a safe opened chain A satisfying
Properties 1-5 of Lemma 6, the union of rays r(p) over all points p on A
covers the opened band.

PROOF. The chains A and B, together with the hinges a;b; and a*b*, define
a bounded but possibly self-intersecting polygon, namely, the opened band.
For each point p on A, let b(p) denote the first point of the boundary of this
polygon that is intersected by the ray r(p). By boundedness of the polygon,
the ray r(p) must exit the band. By Property 4 of Lemma 6, r(p) cannot
immediately exit at p; and by Lemma 7, r(p) cannot exit by intersecting A
at any other point ¢ because then r(p) would intersect r(¢). By Lemma 7,
r(p) cannot exit by intersecting either of the hinges, because then it would
intersect r(a;) or r(a*). Thus, r(p) must exit the polygon by intersecting B at
some point b(p).

By Property 1 of Lemma 6, b(p) varies continuously along B. By Lemma 7,
b(p) # b(q) for any two points p # ¢ of A. By Lemma 5, b(a;) = b; and
b(a*) = b*. Thus, as we vary p along A from a* to a;, b(p) varies continuously
and monotonically along B from b* to b;. At any point p during this motion,
the ray r(p) covers the segment pb(p) contained by the band. These segments
define a ruling of the band, starting at a*b®, ending at a;b;, and in between
moving along the two other boundary chains A and B.

The consequence is that the continuum of segments pb(p), and hence the
containing rays r(p), cover the band. This consequence can be seen perhaps
more clearly by dividing the ruling at the finitely many key times when p is a
vertex of A or b(p) is a vertex of B. Then we effectively divide the problem into
the regions of time between these key times, where we simply have a linear
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ruling of a quadrangle. O

Combining Lemmas 7 and 8, we obtain the following important consequence:
Corollary 9 Any safe opening of a band does not self-intersect.

Now we turn to proving that a safe opening always exists. By Lemma 1, there
is a vertex a; whose hinge is counterclockwise of the normal cone at a, while
the hinge at ax4; is clockwise of its respective cone. For the cuts at both
vertices to produce unsafe inner chains, cutting at a, must produce an L-
weakly convex chain, while cutting at a,,; must produce an R-weakly convex
chain. See Figure 12.

Fig. 12. Two successive vertices, a; and a1, whose cuts produce different weakly
convex chains (indicated by the curves below the vertices).

But by Lemma 5, this situation is impossible. Thus, we can always find a
suitable vertex to cut so that the inner chain opens to a safe position, which
by Corollary 9 implies that we can always find an edge to cut along so that
a nested band has an unfolded state. This completes the proof of our main
result:

Theorem 10 Every nested band has an unfolded state.

The nonintersection of the final state turns out to be the main challenge for our
unfolding motion, and we can use it to establish non-intersection throughout:

Theorem 11 Every nested band has a continuous unfolding motion.

PROOF. The squeezing motion that we have defined has the property that
all the points with the same original height have the same new height at any
time ¢ during the squeezing motion, and vice versa for ¢ < 1. To see this,
parameterize a point p on the band by its original height 2, divided by the
height z of the original band. After partially squeezing the band to height zg,
the new height of p will be z5(z,/2).
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Now, suppose that two points p and ¢ intersected at some time ¢ < 1 during
the squeezing motion. At this time, the points have the same height, so at
their original positions at time 0, p and ¢ must also have the same height h.
We can view the motion of p and ¢ as the development of a slice curve z = h.
But by the results of [8,10], p and ¢ can never intersect.

We conclude that no intersection can occur until the final flattened configu-
ration of the band, which is a singularity where the above arguments do not
apply. By Theorem 10, there is a cut that produces an unfolded state. There-
fore, by making the same cut and applying the squeezing motion, we obtain
a continuous unfolding of the band. O

6 Remarks

We note that another natural continuous unfolding motion exists, consisting of
n—1 peeling moves. After cutting a hinge that produces an unfolded state, we
begin by performing a dihedral rotation about its neighboring hinge, so that
two trapezoids become coplanar. Subsequent moves are simple dihedral rota-
tions about successive hinges, and each step adds one more trapezoid to the
coplanar subset. Because this motion is not necessary for our results on nested
bands, a detailed proof of its correctness is omitted. We mention it, though,
because follow-on work establishes that this motion unfolds non-nested bands,
even those that contain polyhedron vertices on their boundaries [1].

Even with it established that arbitrary bands can be unfolded without over-
lap, it remains interesting to see whether this can lead to a non-overlapping
unfolding of prismatoids, including the top and bottom faces. It is natural to
hope that these faces could be nestled on opposite sides of the unfolded band,
but we do not know how to ensure non-overlap.
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Bied! et al. ! presented an algorithm for unfolding orthostacks into one piece without
overlap by using arbitrary cuts along the surface. They conjectured that orthostacks
could be unfolded using cuts that lie in a plane orthogonal to a coordinate axis and
containing a vertex of the orthostack. We prove the existence of a vertex unfolding using
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1. Introduction

A long-standing open question is whether every convex polyhedron can be edge
unfolded—cut along some of its edges and unfolded into a single planar piece with-
out overlap 211710 A related open question asks whether every polyhedron® (not
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“A polyhedron {unthout boundary) is an embedded connected polyhedral complex without bound-

ary, i.e., a connected set of polygons in Euclidean 3-space such that (1) every two polygons meet
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Fig. 1. These orthostacks are not edge-unfoldable . The first one is also not vertex-unfoldable.

necessarily convex but forming a closed surface) can be generally unfolded—cut
along its surface (not just along edges) and unfolded into a single planar piece with-
out overlap. Bied! et al. ' made partial progress on both of these problems in the
context of orthostacks. An orthostack is an orthogonal polyhedron® of which every
horizontal planar slice not including a horizontal face is a single simple (orthog-
onal) polygon. Biedl et al. showed that not all orthostacks can be edge unfolded
(see Figure 1), but that all orthostacks can be generally unfolded. In their general
unfoldings, all cuts are parallel to coordinate axes, but many of the cuts do not
lie in coordinate planes that contain polyhedron vertices, Given the lack of pure
edge unfoldings, the closest analog we can hope for with (nonconvex) orthostacks
is to find grid unfoldings in which every cut is in a coordinate plane that contains
a polyhedron vertex. In other words, a grid unfolding is an edge unfolding of the
refined (“gridded”) polyhedron in which we slice along every coordinate plane con-
taining a polyhedron vertex. Biedl et al. ! asked whether all orthostacks can be grid
unfolded.

We make partial progress on this problem by showing that every orthostack can
be grid verter-unfolded, i.e., cut along some of the grid lines and unfolded into a
vertex-connected planar piece without overlap. Vertex unfoldings were introduced
in ®9; the difference from edge unfoldings is that faces can remain connected along
single points (vertices) instead of having to be connected along whole edges. As
before, a vertex unfolding must be a single planar piece without overlap. In fact,
our vertex unfoldings consist of a single path of polygons, with consecutive polygons
connected together at common vertices. Furthermore, as argued in %9, connections

at either a common vertex, a common edge, or not at all; (2) every edge is incident to exactly
two polygons; and (3) every vertex is incident to exactly a topological disk of polygons, with
only cyclically adjacent polygons sharing an edge. Note that a polyhedron is treated as a surface
throughout this paper.

b An orthogonal polyhedron is a polyhedron (without boundary) in which every face is perpendic-
ular to a coordinate axis. This definition implies that every face is an orthogonal polygon.
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through a vertex never need to cross: for four incident faces A, B,C, D in cyclic
order around a vertex v if a vertex unfolding connects A to € and B to D both
via v, we can uncross the connection and keep the unfolding a single path by making
different connections through v. Our unfolding places faces orthogonally into the
plane: all edges of the unfolded faces are parallel to a coordinate axis. (This property
is not forced by gridness in vertex unfoldings.) Our unfolding may, however, place
faces so as to touch along boundary edges; we guarantee nonoverlap only of polygon
interiors.

Our use of grid refinement seems to be necessary for vertex-unfolding, because
the box-on-box example in Figure 1(left) has no vertex-unfolding if we are allowed
to cut only along edges. It remains open whether there is such an example re-
quiring grid cuts for a vertex-unfolding, but where every face has no holes (i.e., is
homeomorphic to a disk).

Since the conference version of this paper, Damian et al. ® generalized our tech-
niques to grid vertex-unfold all orthogonal polyhedra of genus zero. Also, by further
axis-parallel refinement of an orthogonal polyhedron beyond the grid, they have
shown how to edge-unfold “orthostacks with orthogonally convex slabs” ®, “Man-
hattan towers” 3, “well-separated orthotrees” 2, and general orthogonal polyhedra *.
The last case requires an exponential amount of refinement, making the two special
cases of interest.

2. Grid Vertex Unfolding

Given an orthostack K, let zp < z; < -++ < z, be the distinct z coordinates of
vertices of K. Refer to Figure 2. Subdivide the faces of K by cutting along every
plane perpendicular to a coordinate axis that passes through a vertex of K. This
subdivision rectangulates K We use the term rectangle to refer to one element of
this facial subdivision, while face refers to a maximal edge-connected set of coplanar
rectangles. (Thus faces can have holes, but at most one in an orthostack.) We use
up and doum to refer to the 2 dimension, and use left and right to refer to the =
dimension.

2.1. Rectangle Categorization

We partition the rectangles of K into several categories. After this categorization,
the description of the unfolding layout is not difficult.

For i = 0,1,...,n — 1, define the i-band to be the set of vertical rectangles
(i.e., that lie in an zz plane or in a yz plane) whose z coordinates are between z;
and z;;;. By the definition of rectangles, all of the rectangles of an i-band have the
same extent in the 2 dimension, namely, [2;, z;+1). By the definition of an orthostack,
each i-band is connected, forming the boundary of an extruded simple orthogonal
polygon.

For i = 0,1,...,n, we define the i-faces to be the faces of K in the horizontal
plane = = z;. As we have defined them, an i-face has several properties. It may
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2-down-iiber-
bectangle
1-down-iiber- I-begin 1-band
v rectangles l-end
l 1-connecting 1-up-iiber-
£ sequence rectangle
O-begin
O-band

"~ O-end

O-up-fiber-rectangles

Fig. 2. Top-left: A rectangulated orthostack K with three distinct = coordinates zq, 21, 22. Top-
right: Categorization into i-band rectangles (light), i-liber rectangles (medium), and i-connecting
rectangles (dark); and the tour visiting i-band and i-connecting rectangles. Bottom: The resulting
unfolding.

have the interior of K above or below it (but not both). The perimeter of the i-
face (both perimeters if the i-face has a hole) has a nonempty intersection with the
(i — 1)-band, provided i > 0, and with the i-band, provided i < n. (If an i-face
f is incident to only the i-band, then all edges of f must be incident to vertical
faces above z = z;, which form a cycle of faces in the i-band, so by connectivity of
the i-band no other i-face can be incident to the i-band; also, by connectivity of
the polyhedron, there cannot be another i-face meeting only the (i — 1)-band; so f
must be the bottom face of the polyhedron. Similarly, an i-face incident to only the
(i — 1)-band must be the top face of the polyhedron.)

We also need the notions of the “begin rectangle” and “end rectangle” of the
i-band. Choose the 0-band begin rectangle to be an arbitrary rectangle of the 0-
band. For i > 0, define the i-band end rectangle to be the rectangle of the i-band
that is adjacent to the i-band begin rectangle in the clockwise direction as viewed
from +z. For i > 1, define the i-connecting face to be the i-face that shares an edge
with the (¢ — 1)-band end rectangle, if such a face exists. Thus, the i-connecting
face does not exist if and only if the (7 — 1)-band end rectangle shares an edge with
the i-band. For ¢ > 1, choose the i-band begin rectangle to be one of the rectangles



October 20, 2006 15:43 WSPC/Guidelines paper

5

of the i-band that shares an edge with the i-connecting face, if it exists, or else the
rectangle of the i-band that shares an edge with the (i — 1)-band end rectangle. The
i-band interior rectangles are rectangles of the i-band that are neither the begin
rectangle nor the end rectangle.

Define the i-connecting sequence to be an arbitrarily chosen edge-connected
sequence of rectangles in the i-connecting face, if it exists, starting at the rectangle
that shares an edge with the (i — 1)-band end rectangle and ending at the rectangle
that shares an edge with the i-band begin rectangle. This sequence is chosen to
contain the fewest rectangles possible (a shortest path in the dual graph on the
rectangles in the i-connecting face), in order to prevent the path from looping around
an island and thereby isolating interior portions of the i-face. If the i-connecting
face does not exist, the i-connecting sequence is the empty sequence. The rectangles
in the i-connecting sequence are called i-connecting rectangles; all other rectangles
of the i-faces are called normal rectangles.

We now merge all normal rectangles with their normal neighbors in the z di-
mension. Call the resultant rectangular regions tiber-rectangles. Thus i-faces are
partitioned into the i-connecting rectangles and the i-iiber-rectangles. Every i-iiber-
rectangle is connected to the perimeter of an i-face; otherwise, the rectangles that
compose it could be used to construct a shorter i-connecting path. Thus, every i-
iiber-rectangle shares an edge with either the (i - 1)-band or the i-band (or both),
Define an i-up-tiber-rectangle to be an iiber-rectangle that is incident to the i-band
and an i-doun-tiber-rectangle to be an iiber-rectangle that is incident to the (i —1)-
band. If an tiber-rectangle is incident to both, we classify it arbitrarily.

Thus we have partitioned K into i-band begin rectangles, i-band end rectan-
gles, i-band interior rectangles, i-up-iiber-rectangles, i-down-iiber-rectangles, and
i-connecting rectangles. We now proceed to a description of the unfolding.

2.2. Unfolding Algorithm

Our unfolding of an orthostack consists of several components strung together at
distinguished rectangles called anchors. Specifically, there are two types of compo-
nents, i-main components and i-connecting components, both of which are anchored
at two rectangles, a begin rectangle and an end rectangle. The i-main component
consists of the entire i-band (the i-band begin rectangle, the i-band interior rect-
angles, and the i-band end rectangle), the (i + 1)-down-iiber-rectangles, and the
i-up-iiber-rectangles. The i-connecting component consists of the (i — 1)-band end
rectangle, the i-connecting rectangles (if any), and the i-band begin rectangle. It
serves to connect the (1 — 1)-main component and the i-main component (at the
(i — 1)-band end rectangle and the i-band begin rectangle, respectively).

To ensure that components do not overlap each other, we enforce that the com-
ponents are anchored in the following sense. A component is anchored at anchor
rectangles R and S if, in the unfolded layout of the component, no rectangles are
in the hatched region of Figure 3. More precisely, every rectangle is strictly right of
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Fig. 3. A component anchored at R and S must avoid the hatched regions, remaining within the
shaded region.

R and strictly left of S, or directly above R, or directly below S.

We can combine two anchored components with a common anchor while avoiding
overlap. More precisely, given a component C' anchored at anchors R and S, and
another component C’ anchored at S and 7' with the same orientation of S, we
can combine the two unfolded layouts by translating C’ so that the two copies of
S coincide (with matching orientations). The conditions on the rectangles in the
two components C' and C' guarantee nonoverlap of the combined unfolded layout.
To guarantee the matching orientations of anchors, we enforce that the positive z
direction of every vertical (i-band) rectangle becomes the positive y direction in the
planar unfolding.

We edge-unfold the i-main component by leaving one edge attached between
the iiber-rectangles of the component (arbitrarily, if there is a choice), and cutting
along all of the other edges of the iiber-rectangles. As shown in Figure 4, the layout
induced by this edge unfolding consists of a central horizontal rectangular strip,
which contains all i-band rectangles, and has the (i + 1)-down-iiber-rectangles con-
nected to the top of this strip, and the i-up-iiber-rectangles connected to the bottom
of this strip. The leftmost rectangle of this strip is the i-band begin rectangle, and
the rightmost rectangle of the strip is the i-band end rectangle. There is nothing
below the leftmost rectangle or above the rightmost rectangle because these vacant
locations are where the connecting rectangles are attached, and connecting rectan-
gles are not iiber-rectangles. (In the special cases i = 0 and ¢ = n, there can be
an iiber-rectangle below the leftmost rectangle and above the rightmost rectangle,
respectively, but in these cases, we can choose to attach the iiber-rectangle at its
opposite edge.) Therefore the edge unfolding of the i-main component is anchored
at the i-band begin and end rectangles.

We vertex-unfold the i-connecting component by a sequence of modifications to
the edge-unfolding of the rectangles in the component. Let Ry, Ry,..., Ry denote
these rectangles in connected order, where Ry is the (1 — 1)-band end rectangle and
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Fig. 4. An example of an unfolded {-main component. The dark rectangles are the i-band begin
rectangle (left) and i-band end rectangle (right). They are connected by the remainder of the
i-band (light). Above the i-band are the (i + 1)-down-iiber-rectangles and below are the i-up-iiber-
rectangles (medium). This example is a possible outcome for the (-main component of Figure 2,

Ry is the i-band begin rectangle. The i-connecting rectangles Ry, Ry, ..., Re—y all
come from an i-face, so they were planar even before the edge unfolding. The (i —1)-
band end rectangle R, is adjacent to R, along the edge originally in the positive
z direction; we rotate the edge-unfolding so that this edge is the top edge of Ry,
with R, stacked above, Now for 2 < j < k, assume that Rg, R, ..., Ry, have been
placed, and R;_; and R; remain connected at a common edge which is not the
left edge of R;_;. There are three cases, depending on whether R; shares the top,
bottom, or right edge of R;_,; see Figure 5. In the third case, we do nothing; in the
first two cases, we vertex-unfold R; by 90° around the right endpoint of the shared
edge. After this step, R, lies in one of the dark shaded squares, sharing R;'s
top, bottom, or right edge, so the induction proceeds. We handle the i-band begin
rectangle Ry differently to guarantee the proper orientation. Again there are three
cases, depending on whether Ry shares the top, bottom, or right edge of Ri_y; see
Figure 6. The shared edge corresponds the edge of Ry in the negative z direction, so
in each case we vertex-unfold if necessary to make that edge the bottom edge in the
unfolding. In the end, each rectangle R; is strictly right of the previous rectangles,
except Ry which might be on top of Rg_,. Thus, the anchored unfolding of the
i-connecting component does not self-intersect.

By combining the anchored unfoldings of the 0-main component, the 1-
connecting component, the 1-main component, etc., the (n — 1)-main component,
the (n—1)-connecting component, and the n-main component, we obtain the desired
vertex unfolding:

Theorem 1. Every orthostack can be grid vertezr-unfolded.
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Fig. 5. How to vertex-unfold R, after Rg, Ry, ..., K. have been placed (all but the last of which
are in the hatched region). There are three cases, from left to right: R; above, R, below, and R,
to the right, In all cases, R;4 is in one of the dark shaded regions, which is never left of R; after
vertex-unfolding. The illustrated unfoldings work no matter what are the sizes of the rectangles.

Ry

=

Fig. 6. How to vertex-unfold the last rectangle Ry after Rg. R;, ..., Ry have been placed (all
but the last of which are in the hatched region). There are three cases, from left to right: R;
above, Ry below, and Ry to the right, In all cases, we must orient Ry o that the edge opposite
Ry is on top. The illustrated unfoldings work no matter what are the sizes of the rectangles.
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The construction leads to an algorithm whose running time is linear in the

number of rectangles, which is at most quadratic in the combinatorial complexity

of

the polyhedron.
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Wrapping the Mozartkugel

Erik D. Demaine®

Abstract

We study wrappings of the unit sphere by a piece
of paper (or, perhaps more accurately, a piece of
foil). Such wrappings differ from standard origami
because they require infinitely many infinitesimally
small “folds” in order to transform the flat sheet into
a positive-curvature sphere. Qur goal is to find shapes
that have small area even when expanded to shapes
that tile the plane. We characterize the smallest
square that wraps the unit sphere, show that a 0.1%
smaller equilateral triangle suffices, and find a 20%
smaller shape that still tiles the plane.

Keywords: chocolate, marzipan, praline, nougat

1 Introduction

The Mozartkugel (“Mozart sphere”) [9. 8] is a famous
fine Austrian confectionery: a sphere with marzipan
in its core, encased in nougat or praline cream, and
coated with dark chocolate. It was invented in 1890
by Paul Fiirst in Salzburg (where Wolfgang Amadeus
Mozart was born), six years after he founded his con-
fectionery company, Fiirst. Fiirst (the company) still
to this day makes Mozartkugeln by hand, about 1.4
million per year, under the name “Original Salzburger
Mozartkugel” [6]. At the 1905 Paris Exhibition, Paul
Fiirst received a gold medal for the Mozartkugel.
Many other companies now make similar
Mozartkugeln, but Mirabell is the market leader with
their “Echte (Genuine) Salzburger Mozartkugeln” [7].
Over 1.5 billion have been made, about 90 million
per year, originally by hand but now by industrial
methods, and Mirabell claims their product to be
the only Mozartkugel that is perfectly spherical.
They are also the only Mozartkugel to be taken into
outer space, by the first Austrian astronaut Franz
Viehbock as a gift to the Russian cosmonauts on the
MIR space station. Despite industrial techniques,
each Mozartkugel still takes about 2.5 hours to make.
Although most of a Mozartkugel is edible, each
sphere is individually wrapped in a square of alu-
minum foil. To minimize the amount of this wasted,
inedible material, it is natural to study the smallest
piece of foil that can wrap a unit sphere. Because the

*MIT, {edemaine,mdemaine}@mit.edu

! Polytechnic University, http://john.poly.edu/

{Chercheur qualifié du FNRS, Université Libre de Bruxelles,
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Martin L. Demaine®
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pieces will be cut from a large sheet of foil, we would
also like the unfolded shape to tile the plane,

We formalize this practical problem in the next sec-
tion; the main difficulty is to allow a continuum of
infinitesimal folds to curve the paper, a feature not
normally modeled by mathematical origami. We then
study wrappings by squares and equilateral triangles,
and show that the latter leads to a small (0.1%) sav-
ings, which may prove significant on the many mil-
lions of Mozartkugel consumed each year. Even bet-
ter, if we allow wrapping by arbitrary shapes that
tile the plane, we show how to achieve a 20% sav-
ings. In addition to direct savings in material costs
for Mozartkugel manufacturers, the reduced material
usage also indirectly cuts down on CO; emissions, and
therefore partially solves the global-warming problem
and consequently the little-reported but equally im-
portant chocolate-melting problem,

2 Wrapping Problem

In standard mathematical origami [4, 5], a piece of
paper is a two-dimensional manifold (usually flat),
and a folding is an isometric mapping of this piece of
paper into Euclidean 3-space. Here isometric means
that distances are preserved, as measured by shortest
paths on the piece of paper before and after mapping
via the folding.

But there is no isometric folding of a square into a
sphere: isometric folding preserves curvature. There-
fore we define a new, less restrictive type of fold-
ing that allows changing curvature but still prevents
stretching of the material. Namely, a wrapping is a
continuous contractive mapping of a piece of paper
into Euclidean 3-space. Here confractive means that
every distance either decreases or stays the same, as
measured by shortest paths on the piece of paper be-
fore and after mapping via the folding. This definition
effectively assumes that the length contraction can be
achieved by continuous infinitesimal pleating.

We can model one family of wrappings by express-
ing which distances are preserved isometrically. An
optimal wrapping should be isometric along some
path, for otherwise we could uniformly scale the en-
tire wrapping and make a larger object. We call a
path stretched if the wrapping is isometric along it. A
stretched wrapping has the property that every point
is covered by some stretched path. Such a wrapping
can be specified by a set of stretched paths whose


http://john.poly.edu/

union covers the entire piece of paper. Although not
all such specifications are valid—we need to check that
all other paths are contractive—the specification does
uniquely determine a wrapping. We specify all of our
wrappings in this way, under the belief that stretched
wrappings are generally the most efficient.

A special case of stretched wrapping is when the
stretched paths consist of the shortest paths from one
point z to every other point y. In this case, we are
rolling geodesics in the piece of paper onto geodesics
of the target surface. This situation corresponds to
continuous unfoldings of smooth polyhedra as con-
sidered by Benbernou, Cahn, and O'Rourke [1]. Al-
though perhaps the most natural kind of wrapping,
this special case is too restrictive for our purposes,
as it essentially forces the sphere to be wrapped by a
disk of radius m, for those geodesics to reach around
to the pole opposite x. We will show how to wrap
with far less paper than this disk of area 3.

Note that, if we start with an arbitrarily long and
narrow rectangle, we can wrap the sphere using pa-
per area arbitrarily close to the surface area 4w of
the sphere [3]. This wrapping is not very practical,
however; in particular, it makes it difficult to make a
nondistorted logo on the surface of the sphere.

The only other known optimal wrapping result
(where no contraction is necessary) is wrapping a unit
cube with a square [2].

3 Petal Wrapping

Our wrappings are based on the following k-petal
wrapping. On the sphere we first construct k stretched
paths py,pa,...,pe from the south pole to the north
pole, dividing the 27 angle around each pole into &
equal parts of 27/k. To each path p; we assign an
“orange peel” with apex angles 27 /k, centered on
the path p; and bounded by the Voronoi diagram of
Pi—1,Pis Pi+1- These orange peels partition the surface
of the sphere into k equal pieces.

Then we construct a continuum of stretched paths
to cover each orange peel. Specifically, for every point
q along each path p;, we construct two stretched paths
emanating from ¢, proceeding along geodesics perpen-
dicular to p; in both directions, and stopping at the
boundary of p;'s orange peel.

These stretched paths cover every point of the
sphere (covering boundary points twice). It remains
to find a suitable piece of paper that wraps accord-
ing to these stretched paths. The main challenge is
to unfold the half of an orange peel left of a path p;.
Then we can easily glue the two halves together along
the (straight) unfolded path p;, and finally join the
resulting petals at the unfolded south pole.

To unroll half of a petal, we parameterize as shown
in Figure 1. Here B = w/k is the half-petal angle;
¢ is a given amount that we traverse along the center

path p; starting at the south-pole endpoint; A = 7 /2
specifies that we turn perpendicular from that point;
and b is the distance that we travel in that direction.
Our goal is to determine b in terms of c.

C

A

Figure 1: Half of a petal, labeled in preparation for
spherical trigonometry.

By the spherical law of cosines,
cosC' = —cos Acos B + sin Asin B cosc.

Now cos A = cos(w/2) = 0 and sin A = sin(7/2) =
1, so this equation simplifies to cos C' = sin B cose.
Hence, sinC = /1 —sin® Beos?¢. By the spherical

law of sines,
sinB _ sinC
sinb sine

Substituting sin C = \/1 — sin® B cos? ¢, we obtain
sinB V1 —sin® B cos? ¢

sinb sine

sin Bsine
V1 —sin® Beos? e
Taking arccos of both sides, we determine the value of
b in terms of the parameter ¢ and the known quantity
B=m=/k.
Figure 2 shows two examples of the resulting petal
unfolding, with k = 3 and k = 4.

sinh =

4 Square Wrapping

The angle at the tip of the petals can be computed
by taking the derivative db/0c at ¢ = 0. For k =
4, this derivative is 1 which implies a half angle of
m/4. Because the petals are convex, the convex hull
of the petal unfolding for k£ = 4 is exactly the square
of diagonal 2x. No smaller square could wrap the
unit sphere because the length of the path connecting
the center of the square to the point mapped to the
antipodal point must have length at least =. This
square has area 272,

Note that the same area is attainable by a rectan-
gle of dimensions 27 x m: draw one path p around the



(Q] k=3

(b) k=4

Figure 2: Petal unfoldings.

equator of the sphere and cover the sphere by a contin-
uum of stretched paths perpendicular to p emanating
from every point of p until the north and the south
pole of the sphere. The same rectangle is also exactly
a 2-petal unfolding. Interestingly, the area of this
rectangle wrapping is also 2. The Echte Salzburger
Mozartkugel is wrapped by Mirabell using the same
rectangle (expanded a bit to ensure overlap) but with
a slightly different folding,.

5 Triangle Wrapping

For k = 3, the angle at the tip of the petals can be
computed similarly to obtain 27 /3, which is natural

as the three petals meet at the north pole, their an-
gles summing to 27. However, the convex hull of the
3-petal unfolding is not a triangle. We compute its
smallest enclosing equilateral triangle. The support-
ing lines of the triangle will be each tangent to two
of the petals. The tangent point on the petal can be
computed by finding the point (¢, b) on its boundary
that maximizes the direction (—cos(w/3),sin(7/3)).
Plugging this into the previous equations, we obtain

¢ = arccos (¥:—:’_-7- - {,) == (.710086.

This implies that the supporting line is at a distance

[N

| Y (V1 1 /3 =
- §ar((‘m(-"g—‘ - 5) + = arc\m(

~ 0.620190x

from the center. The area of the inscribing equilat-
eral triangle is therefore 3h? tan(x/6) =~ 1.998626 =2,
about 0.1% less than the 272 area of the smallest
wrapping square.

6 Tiling

Instead of expanding the petal unfoldings to tilable
regular polygons, we can pack the petal unfoldings
directly and expand them just to fill the extra space.
Figure 3 shows an even better tiling resulting from
the 3-petal unfolding. A quick computation shows
that only about 1.67? area of paper is required for
each wrapping, a substantial improvement.

Figure 3: Packing the 3-petal unfolding.



7 Conclusion

This paper initiates a new research direction in the
area of computational confectionery. We leave as open
problems the study of wrapping other geometric con-
fectioneries, or further improving our wrappings of the
Mozartkugel. In particular, what is the optimal con-
vex shape that can wrap a unit sphere? What is the
optimal shape that also tiles the plane? What about
smooth surfaces other than the sphere?
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