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Introduction

In last decades, numerical simulation tools aiming at predicting the physics
surrounding the human being were developed faster and faster. While first
trials made use of computers of the size of an office and less performing than
today’s pocket calculators, nowadays computation centers proceed to massive
parallel numerical simulations using hundreds of processors for model size of
millions of degrees of freedom (see [RR00]). From that point of view, it is
clear that major improvements were achieved in the computational capability
domain.

In spite of it, one observes that many industry sectors are still mainly re-
lying on experimental testing, and that computer aided predictions are often
of little use in the practice, at least when both experimental and numerical
testing are made available.
Actually, it looks like improvements in the computational capacity were not
accompanied by a similar research interest in the physical model description
area. Consequently, while extremely sophisticated machines are used to run
very large numerical models, facing the numerically predicted results to exper-
imental data remains a very challenging task.
Part of this challenge can be solved thanks to the fundamental research. In-
deed, it aims at understanding the physics of those many phenomena that have
still to be described by the use of either empirical laws or very simplified math-
ematical relations in the numerical models. Therefore, fundamental research
should be promoted more than ever.

A dedicated science addresses the gap between experimental testing and nu-
merical predictions: it is the domain of error estimation and related updating
and validation techniques. Such investigation area is intrinsically of great inter-
est since updating techniques marry experiments with numerical predictions,
while today’s industry behavior often tends to make them competing. This
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document focuses on reconciling numerically predicted acoustic fields with cor-
responding experimental testing results.
The work is made harder because neither the numerical predictions nor the
experimental data describe perfectly the reality, each of those models being
biased by its own kinds of error (see for example [Bal97, BADM06]).
From the numerical side, the deviation with respect to reality is caused by the
simplification of the geometry, (which is sometimes combined with a poor dis-
cretization of the continuous domain), the assumptions and approximations in
the models describing the physics (non linearity, dissipative effects, structural
joints, . . . ), and the identification of the coefficients describing the model (e.g.
acoustic admittance model parameters).
As to the experimental part, the available information is restricted by the
number of sensors and the frequency sampling that is recorded. Furthermore,
experimental data are polluted by measurement noise. Despite its deviation to
reality, experimental information is commonly regarded as the reference, and
the updating technique is wished to be able to filter the noise and to alleviate
the lack of knowledge of the discrete numerical model.

From an industrial point of view, updating techniques are used in two dif-
ferent contexts. The first application tends to shorten the time to market of
new products during their development from virtual sketching to mass produc-
tion. The updating step target is to improve the numerical model thanks to
experimental testing performed on a first prototype. The updated model will
provide more reliable output leading to a better next candidate, which will
speed up the product development process by driving down the number of iter-
ations of the prototyping stage. The second application is related to industry
sectors where the number of prototypes to be built is kept to a few samples
for either economical or technical reasons. Astronautics is a good guest for
such a kind of expensive application. Additionally, many rocket properties can
not be measured due to technical reasons like ambient atmosphere, including
temperature/speed/stresses unpredictable combination for instance. For such
cases, numerical predictions (conducted with an as reliable as possible model)
are of prime importance.

Various updating techniques are developed in the literature. The way those
are classified follows either the type of correction applied to the system (global
or local corrections), the type of experimental information (static versus modal
data, temporal versus frequency response function), or the kind of function to
be minimized, which can be built on input, output, or constitutive laws.
A short literature review about existing updating techniques is presented in
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section 1.2. The present work focuses on a parametric updating method based
on the constitutive law error, which was extensively studied from the beginning
of the eighties and successfully applied to structural dynamics ([Lad98, Der01,
CLP97, Com00]). Please note that we will use indifferently the acronym CLE
(Constitutive Law Error) or CRE (Constitutive Relation Error) when referring
to the updating method built on the corresponding error estimator. This up-
dating technique shows strong mechanical foundation and the analogy between
acoustics and structural dynamics mathematical formulation (see section 1.1)
helped believing in the potential success of applying the constitutive law error
method to our favorite domain.

The objectives of the document can be summarized as follows. First, the
literature on acoustic updating technique being pretty light, and the industrial
interest in getting a reliable numerical tool for predicting acoustic fields in-
creasing, addressing systematically the problem by applying a successful story
from structural dynamics looks pertinent. Second, while acoustic data are po-
tentially noisy and dispersion effect is inherent to the Helmholtz wave equation
([DBB99]), the CLE updating method will be applied to the acoustics and its
robustness with respect to noise and dispersion will be evaluated. With a view
to make the new technique able to improve large industrial acoustic models,
effort will be spent to fasten the process, notably by reducing the problem size
by projecting it into a sub-space. Finally, the CLE validation method could be
used for improving the absorbing characterization of acoustic dampers. Indeed,
the Kundt tube setup which is standardly used to measure acoustic properties
of a sample of material located at the tube extremity is unidimensional and
records the response of the sample to waves propagating perpendicularly to
its surface. Using the CLE concept to update the acoustic pressure field in
a fully tridimensional measurement device (instead of a wave guide) should
better characterize the studied absorbing material.

The thesis manuscript is built on a skeleton made of four papers that were
either published or accepted for publication in international scientific journals.
After a brief introduction to the acoustics mathematical description in the fre-
quency domain and the similitude of its formulation with structural dynamics
through chapter 1, a literature review of existing updating methods is pre-
sented.
Chapter 2 describes the updating method and its application to the acoustics
into details. The constitutive relation error estimator is deducted from the less
reliable information of the model. So, the equations of the numerical model
together with the experimental data are classified into reliable and less reliable
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information. The reliable part has to be satisfied exactly, which yields to an ad-
missible solution set. Then, the updated parameters are the ones characterizing
the less reliable laws. The best admissible solution minimizes the constitutive
relation error. Taking into account the experimental uncertainty contribution
adds a supplementary term to the model quality estimator that becomes the
modified constitutive relation error. The less reliable data are exactly verified
if the estimator equals zero at the end of the updating step. The technique is
applied on a 2D academic setup, and the robustness of the method with respect
to measurement noise is established.
Chapter 3 examines the updating quality in presence of dispersion error that
pollutes the Helmholtz equation solution when increasing the frequency ([BI99,
IB95]). Note that many authors investigated the dispersion phenomenon. Some
papers propose a stabilization for the finite element method ([FFML97, HH92]),
while other authors focus on high order numerical approximation methods
based either on the hp-formulation of the FEM ([GD96]) or on meshless tech-
niques ([BS98, LBV03]). Today’s most promising results are obtained by in-
corporating solution information into the numerical discrete subspace. Sev-
eral formulations take advantage of this idea, like the Trefftz based approach
([CJZ91, DvHS02]), the discontinuous Galerkin FEM ([FHF01]), the varia-
tional theory of complex rays ([LARB01]), or the generalized FEM and some
meshless approaches ([BM97, DBVB05]) for example.
Chapter 3 also demonstrates the updating of admittance coefficients describing
the absorption in the acoustic medium through a large frequency range, whilst
the dispersion error is controlled. For medium to high wave number, using a
numerical approximation method exhibiting a robust frequency behavior (here
the element-free Galerkin method) is shown to be more efficient than the con-
ventional finite element method.
Chapter 4 addresses the extension of the CLE technique to 3D acoustic prob-
lems. The updating equation system to be solved being larger than the initial
one, and the optimization process being iterative, solving large industrial prob-
lems requires diminishing the model size. The equation system is projected
in a subspace making use of a reduced modal basis. The system is rewritten
under the form of undamped forced vibration problems. The reduced basis is
made of eigenmodes and series of Krylov vectors associated with the excitation
of the undamped forced vibration problems. Furthermore, static responses to
the forces related to the variations of the system during the updating process
together with responses associated to measured degrees of freedom are addi-
tional contributions to the particular projection basis. The reduced basis is
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successfully tested on an academic 3D car mesh by comparing the updated
pressure fields resulting from the full and reduced numerical models.
Then, chapter 5 of the thesis presents a two-stage approach for the application
of the CLE updating technique to the characterization of absorbing material
properties. The updating process focuses on the wall admittance modeling for
the absorbing materials which damp the sound pressure level. The idea consists
in splitting the optimization run into two parts. The first part only looks for
the best complex number describing each absorbing material, which is achieved
for a few frequencies spread in the range of interest and independently of any
admittance model. The second stage needs to select an admittance model for
the frequency description of each material, and interpolates the discrete com-
plex numbers found through stage one to get continuous material damping
properties. The two-stage method is validated on a simple academic setup,
and then applied to the TRICARMO concrete car cabin developed by LMS
International.
The concluding chapter 6 summarizes the main findings of the thesis and pro-
poses extending the scope of the research from cavity acoustics to open exterior
domains. Concerning future developments, additional works could combine
structural properties of the domain boundary with acoustic fields of the cav-
ity, the vibro-acoustic system allowing to update either acoustic or structural
dynamics properties based on coupled data. As it was already mentioned, up-
dating in acoustics benefits from similar advances in structural dynamics, which
suggests investigating new developments from recent findings in that area.
Then, the newly developed Extended Constitutive Relation Error estimator
enabling to validate structural dynamics models in presence of uncertainties
([DLR04, LPDR06]) should be considered.
Recent theories propose strategies to reduce the lack of knowledge (LOK) in
model validation by propagating throughout the mechanical model the bounds
of uncertain LOK variables that are defined for each substructure [LPR06b,
LPR06a].
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Acoustic updating techniques: state of
the art and structural dynamics similarity
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1.1 Acoustics versus structural dynamics wave
equation formulation

Addressing acoustic problems takes advantage of preliminary having a look at
corresponding developments in the structural dynamics area.
Indeed, based on the similarity between both mechanical domain mathemati-
cal formulations, one could use some hints from previous structural dynamics
investigations. It is also the case for the constitutive law error theory that was
first developed for structural applications.

To help understanding how close both investigation areas are, the temporal
movement equations ([MO95]) are presented for structural dynamics (1.1) and
acoustics (1.2):

[Ms] {ü}+ [B] {u̇}+ [Ks] {u} = {fs} , (1.1)
[Mf ] {p̈}+ [C] {ṗ}+ [Kf ] {p} = {ff} , (1.2)

where [M ] and [K] are the mass and stiffness matrices of the system respec-
tively, and subscripts (.)s and (.)f stand for structure and fluid. The damping
matrix is usually named [B] in structural dynamics, and [C] in acoustics. The
unknown vector is the displacement {u} in structural dynamics, and the sound
pressure {p} in acoustics; the system excitation is represented by the force vec-
tor {fs} for the structural part and {ff} acts for the acoustic sources of the
fluid domain (e.g. surrounding boundary vibrations, loudspeakers, ...).

In the frequency domain, equations (1.1) and (1.2) become respectively:(
[Ks] + jω [B]− ω2 [Ms]

)
{U} = {Fs} , (1.3)(

[Kf ] + jω [C]− ω2 [Mf ]
)
{P} = {Ff} , (1.4)

where

j =
√
−1, (1.5)

{u} = {U} ej(ωt−Φ) = {U} ejωt, (1.6)
{p} = {P } ej(ωt−Φ) = {P} ejωt, (1.7)
{fk} = {Fk} ej(ωt−Ψ) = {Fk} ejωt (k = f, s). (1.8)

In equations 1.6 to 1.8, where t is the time and ω the angular frequency while Φ
and Ψ represent phase angles, it is shown that both the unknown vectors {U}



1.1 Similarity between acoustics and structural dynamics 9

and {P} and the excitations {Fs} and {Ff} contain the information about the
amplitude and the phase.

Comparing equations 1.3 and 1.4 clearly identifies the similarity between both
application domains. Though, some important differences are to be highlighted:

• the frequency range of interest is generally much larger in acoustics. In-
deed, while the low frequency modes are of primary importance in struc-
ture computations, sounds are always filtered through the ears of the
human being, which filter emphasizes non linearly frequencies belonging
roughly to the 20-20000 Hz bandwidth;

• the structural dynamics damping matrix [B] addresses the whole struc-
ture volume while the acoustic matrix [C] applies on the surface bounding
the domain. As a consequence, the updating process is sometimes split
into two stages in structural dynamics, the first being dedicated to lo-
cating the most polluted regions (the ones that will be updated through
the second stage) based on an error map; in acoustics, the badly defined
regions are generally located around the absorbing materials.

The first interest in comparing acoustics to structural dynamics concerns the
available references in the literature. Indeed, whilst there are numerous of
structural dynamics works dealing with updating techniques, acoustics updat-
ing literature is pretty rare. In what follows, the updating technique review
is based on those structural dynamics works, assuming that the conclusions
should be applicable to the acoustics, possibly with some slight modifications.
Furthermore, this work being the first one to apply the constitutive law error
to the acoustics, it took advantage of the conclusions coming from the previous
analyses achieved by several PhD students during their stay at the Ecole Nor-
male Supérieure of Cachan (Paris) ([Der01, Cho97, Com00]), which boosted the
developments of the technique to the cousin area of the structural dynamics.
Going one step further, one can think about updating a coupled vibro-acoustic
model [MO95] that would look like system 1.9.[

[Ks] + jω [B]− ω2 [Ms] [Ksf ]
[Kfs] [Kf ] + jω [C]− ω2 [Mf ]

]{
U
P

}
=

{
Fs

Ff

}
, (1.9)

where [Ksf ] and [Kfs] are the coupling matrices. Relation 1.9 is the starting
point for the idea of updating for example the acoustic pressure field based
on experimental data related to the vibration of the surrounding structure,
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allowing to make use of accelerometer based experimental data instead of using
microphones to record acoustic pressure fields.

1.2 Acoustic updating technique state of the art
Updating techniques are used when the quality of the numerical model ap-
pears to be poor so that the distance with respect to experimental data is
above a critical threshold. While updating methods were initially split into
two main classes, namely direct and parametric techniques, the distinction is
getting looser [MF93]. Parametric techniques need parameterizing the model
and resort to an iterative optimization process, as opposed to direct methods.
The literature review that follows comes from updating techniques in structural
dynamics. Based on chapter 1.1, the presentation of the methods is adapted
to the particular domain of acoustics.

1.2.1 Direct updating techniques
Minimum norm methods

Experimental modes are expanded and fill in the columns of the laboratory data
matrix, which would be [P̃ ] in acoustics. The minimum norm method looks
for the symmetric correction matrices [∆M ] and [∆K] (see [Bar82, BN83])
minimizing :

‖ [M ]1/2 [∆M ] [M ]1/2 ‖, (1.10)

‖ [M ]1/2 [∆K] [M ]1/2 ‖, (1.11)

under orthogonality and equilibrium constraints

[P̃ ]T [M + ∆M ][P̃ ] = [I], (1.12)

[P̃ ]T [K + ∆K][P̃ ] = [Λ], (1.13)

([K + ∆K]− [Λ][M + ∆M ]) [P̃ ] = 0. (1.14)

[I] is the unity matrix, [Λ] is the eigenvalue matrix, and ‖.‖ is the norm of
Frobenius, i.e. the sum of the square of all matrix coefficients. Under this form,
the technique addresses the correction of both stiffness and mass matrices of
undamped systems. The major drawback of the minimum norm method lies
in its lack of physics linked to the corrections, even though improvements were
brought by some authors.
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Matrix mixing methods

Assuming that the whole set of modes of the discrete model is measured, the
mass and stiffness matrices of the numerical model are built as follows:

[M ]−1 = [P̃ ]T [P̃ ], (1.15)

[K]−1 = [P̃ ]T [Λ]−1[P̃ ]. (1.16)

This method is actually of little use due to the large amount of experimental
data to be measured. Authors like [LWB87] and [Cae87] extended the method
to make it suitable when unknown modes exist.
Note that the dimensions of the measured eigen vectors have to match the size
of the numerical matrices.

Eigenstructure Assignment Method

This is based on the control theory where the input u is linked to the output y
via the gain matrix [G] which will determine the corrections to fit the numerical
modes and natural frequencies with the experimental data. Assuming that the
output can be expressed as a linear combination of the pressure and its first
time derivative, the following relation links the input and the output:

{u} = [G]{y} = [G] ([D0]{p}+ [D1]{ṗ}) . (1.17)

The system matrix is then written:

[K]{p}+ [C]{ṗ}+ [M ]{p̈} − [B0]{u} = 0. (1.18)

Then, mixing 1.17 and 1.18 yields

([K]− [B0][G][D0]) {p}+ ([C]− [B0][G][D1]) {ṗ}+ [M ]{p̈} = 0. (1.19)

The main drawbacks of the Eigenstructure Assignment Method lie in the non-
unicity of the gain matrix [G] and the non-symmetry of the corrected system
matrices, even though some works tend to alleviate those problems (see [IM90,
ZW90]).
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1.2.2 Parametric updating techniques

The model is assumed to be parameterized. It means that the system matrices
are expressed as a function of n parameters xi, which gives for instance in the
case of the correction of the damping matrix :

[∆C] =
n∑

i=1

[∆C](xi). (1.20)

The updating process consists in finding the parameter set minimizing the cost
function J({x}) ([Nat88, Tar87]) such that:

J({x}) = ‖{R({x})}‖2 + λ|{x} − {x0}|2. (1.21)

The first term in equation 1.21 {R({x})} measures the correlation between
the discrete model with parameters {x} and the laboratory data. {R({x})} is
called residue or penalization term.
The second term in relation 1.21 is a regularization quantity aiming at favoring
a solution {x} which is as close as possible to the initial candidate {x0}. λ is a
parameter to be adjusted which notably allows for weighting differently both
contributions in 1.21.

Modal data

The penalization term is written as a combination of the residue on both eigen-
modes Φi and natural frequencies ωi. For example, if n eigenmodes are taken
into account and the residue is expressed by the Modal Assurance Criterion
(MAC), and the chosen norm is a weighted L2 distance, it yields:

‖{R({x})}‖2 =
n∑

i=1

xi

(
1−MAC

(
{Φ̃}, {Φ}

))2

+α
n∑

i=1

yi

(
ωi − ω̃i

ω̃i

)2

. (1.22)

α is a weighting factor and the Modal Assurance Criterion is given by:

MAC ({Φi}, {Φj}) =

(
{Φi}T {Φj}

)2

({Φi}T {Φi}) ({Φj}T {Φj})
. (1.23)
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Temporal data

Updating methods based on temporal data are only of interest when studying
the non linear behavior of a structure. The present study focuses on linear
acoustics and will not deal with non linearity occurring in specific domains like
aero-acoustics or boundary layer phenomena.

Frequency Response Functions

Those methods are classified by the kind of residue in expression 1.21, which
are the input residue, output residue, or constitutive relation error.

Input residue

The input residue postulates that the measured pressure field P̃ is applied
to the numerical acoustic model, allowing to compute the resulting force acting
on the equivalent model.(

[K]− ω2[M ] + jω[C]
)
{P̃} = {F}. (1.24)

At a given frequency ω, the residue is calculated by:

{R({x})}ω = {F} − {F̃}. (1.25)

Since not all the dof’s of the system can be measured, the experimental vector
{F̃} is to be expanded based on the numerical information. As a consequence,
the measured vector is now depending on the design parameters xi, and the
optimization problem is no more linear. Updating techniques using the input
residue are furthermore measurement noise sensitive ([Fri86, CFN84]).

Output residue

The output residue presumes that the numerical model undergoes the force
vector that is recorded in the lab. The pressure field is computed using the
following equation: (

[K]− ω2[M ] + jω[C]
)
{P} = {F̃}. (1.26)

The residue can be calculated at angular frequency ω by:

{R({x})}ω = {P} − {P̃}. (1.27)
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While this optimization problem is also non linear, it appears to be more ro-
bust with respect to measurement noise. Those methods are often referred as
sensitivity techniques, and the cost function 1.21 is generally approximated by
a second order Taylor’s development.

Constitutive relation error

The Constitutive Relation Error (CRE) technique is described into details
through chapter 2. Other techniques like the Modeling Error in the Con-
stitutive Equations (MECE) ([PGR98]) and the Minimum Dynamic Residual
Expansion (MDRE) ([Bal00]) present a formulation of the residue which is
pretty close to the one of the CRE.
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Nowadays, the increasing importance of the acoustic noise in the indus-
try makes essential to dispose of reliable simulation tools. Furthermore, many
industries need to know the acoustic performances of the products that they
achieve or use. Indeed, these components are often parts of larger setups (like
cars, airplanes, concert halls, theaters,...) for which numerical acoustic simu-
lations are run from the earliest design stage. In that framework, this paper
proposes a new updating technique for the acoustic simulations, which is based
on the constitutive relation error (CRE) proposed by P. Ladevèze in structural
dynamics.
The technique consists in improving the quality of acoustic models by reducing
the constitutive relation error below a prescribed level.
The CRE updating method aims at minimizing a cost function with respect to
physical parameters of the model. Both modeling error (i.e. the error related
to the approximation of physical phenomena) and measurement error are taken
into account. Particular attention is paid to the admittance coefficient, which
is probably the most important and the most badly known acoustic parameter,
and the application to two dimensional finite element numerical simulations is
presented showing how promising the technique is.
The ultimate goal of the approach should be to improve the numerical simula-
tions of the acoustic pressure level of real-life complex setups like cars, aircrafts,
satellite launchers, etc.

2.1 Introduction

Nowadays, many manufacturing companies have to control the acoustic noise
either to improve user’s comfort or to decrease environmental pollution. Most
of the acoustic simulations are performed using a finite element or a boundary
element software.
While computers become faster and faster, allowing decreasing computational
time together with smaller calculation error, the acoustic models remain un-
changed making the simulations poorly reliable in many cases due to the com-
plexity of the physical phenomena. For instance, the approximative evaluation
of the admittance coefficients that are used to run numerical simulations is an
example of reason why simulations deviate from experimental data. Indeed, in
most of the cases, admittance coefficients are evaluated by achieving experi-
mental measurements on a few samples of a material for which such coefficient
is needed. The most classical way to evaluate that coefficient uses a laboratory
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setup of Kundt duct type. The admittance coefficient An is generally assumed
real, what is obviously wrong, since phase shift occurs for waves propagating
in porous media. Presently, manufacturers data are limited to the absorption
coefficient, what is equivalent to give the modulus of the impedance or admit-
tance coefficient.
In this paper, the idea is to evaluate in situ frequency dependent complex ad-
mittance coefficients on the base of a validation stage for a complex incident
field. Sound pressure measurements are achieved in a few points of the acoustic
domain and admittance coefficients are tuned to verify admittance relations as
closely as possible with respect to the physical phenomena.
The values of the admittance coefficients obtained after updating can be used
in future numerical simulations. For example, these parameters should be use-
ful in a prototyping phase, when changing the configuration (e.g. the shape of
the acoustic domain). The updated values are introduced in the new numer-
ical model of the acoustic domain enabling a good prediction of the acoustic
pressure level without having to build a new prototype of the studied setup.
Three different kinds of models are to be considered: the continuous model,
the numerical model, and the experimental one. While the continuous and
the numerical models are usually the reference and the approximate models
respectively, a significant difference appears in the following approach. Indeed,
one updates here the continuous model (that is approximated by a numerical
model) with respect to experimental data, which constitute the reference.
In what concerns the acoustics, literature treating on updating techniques
seems to be poor so that one has to refer to the structural dynamics to get
an overview of the existing possibly applicable updating methods. Indeed,
the governing equations in dynamics are very similar to those of acoustics;
the acoustic pressure and velocities are homologous of the displacement and
stresses respectively in structural dynamics. That domain offers more biblio-
graphic sources, leading to distinguish between direct and parametric updating
techniques. The direct techniques mainly consist in modifying the mass and
stiffness matrices so that numerically simulated and experimentally measured
frequency response functions agree as good as possible in terms of natural
frequencies. Such modifications lack physical meaning, making the validity
domain thin if the configuration changes. In the case of parametric updating
techniques, one has to minimize a cost function by tuning physical parameters
of the model. The sensitivity of the cost function with respect to the different
parameters allows to choose which of these have to be tuned. That choice can
also vary with the geometrical localization in the studied domain. A more ex-
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tended state of the art on validation methods is presented in [MF93, MKN02].
The present paper proposes to apply a particular parametric updating tech-
nique based on the constitutive relation error to the acoustics and to make
use of it to get accurate evaluation of complex admittance coefficients. The
fundamentals of the CRE were first developed by P. Ladevèze in structural
dynamics (see [Lad98, CLP97, DLR04]) and [DBDL02, DBDL04a] introduced
the idea of applying the CRE to the acoustics. The main idea in the CRE
technique consists in splitting the data and equations of the model into reliable
information and less reliable one. Whether one trusts a given data or equation
has to be related to the assumptions made to establish that one.
The paper is organized as follows. Firstly, the CRE is applied to the acoustics,
and reliable and less reliable data are set. Admissible pressure and velocity
fields verifying the reliable equations are built and used to define the CRE.
Secondly, we discuss the measurements related error, which leads to consider
the modified CRE. Afterwards, the paper deals with a particular numerical ap-
proximation of the continuous model, in the circumstances the finite element
discretization. Finally, simulations are run on a 2D car cabin to validate the
method.

2.2 The CRE applied to the acoustics

2.2.1 Principles
One deals with an acoustic problem that is defined on a domain Ω with bound-
ary ∂Ω. In linear acoustics, one assumes small harmonic perturbations of the
particle velocity ~v, the pressure p and the density ρ of the isotropic medium so
that these oscillations around steady values are respectively written as follows: ~v = ~v′ejωt

p = p′ejωt

ρ = ρ′ejωt
(2.1)

where j =
√
−1, ω the angular frequency, and t the time.

Let us consider that the reliable equations are the wave equation called Helmholtz
equation in the frequency domain and the Dirichlet boundary condition defined
on ∂1Ω (see figure (2.1) for an illustration of the boundaries):{

Helmholtz : ∆p + k2p = 0
Dirichlet B.C.: p|∂1Ω = p

(2.2)



2.2 The CRE applied to the acoustics 19

Figure 2.1: studied domain and its boundaries

where c is the sound velocity, and k = ω
c is the wave number.

The less reliable equations are originally [Lad98] the constitutive relations.
Here, we will assume that the mixed Robin boundary condition defined on ∂3Ω,
which links the pressure to the normal velocity by an impedance coefficient Zn,
and the Neumann B.C. defined on ∂2Ω are the less reliable data. That latter
boundary condition is rewritten in what follows using the Euler equation, which
links the pressure gradient to the velocity vector. The resulting two equations
are: 

Robin B.C.: vn|∂3Ω
= Anp

Neumann B.C.: vn|∂2Ω
=

j
ωρ

∂p

∂n
|∂2Ω = vn

(2.3)

where An = Z−1
n is the complex admittance coefficient, and vn is the prescribed

velocity on ∂2Ω which is known either by measurement or by structural dynamic
computation. Discussions are still open concerning the most appropriate form
of admittance relation (2.3). More details can be found in reference [FJT00].
One has chosen here to express the impedance relation under the form:

vn = c1p + c2
∂p

∂t
(2.4)

where c1 and c2 are constants and not function of time. Equation (2.4) is
equivalent in the frequency domain to:

vn = (c1 + jωc2)p = Anp (2.5)
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2.2.2 Admissibility

Let us define two Hilbert spaces V1 and V2 of functions square-integrable to-
gether with their first derivatives in Ω = Ω ∪ ∂Ω:

V1 = H1
D(Ω) = {p ∈ H1(Ω)|p = p on ∂1Ω}

V2 = H1
0 (Ω) = {w ∈ H1(Ω)|w = 0 on ∂1Ω}

The variational formulation corresponding to the Helmholtz equation with as-
sociated boundary conditions as given in (2.2) and (2.3) is expressed by:

Find p ∈ V1|
∫

Ω

(∇p∇w∗ − k2pw∗)dΩ + jωρ

∫
∂3Ω

vnw∗dΓ

+jωρ

∫
∂2Ω

vnw∗dΓ = 0 ∀w ∈ V2 (2.6)

where * denotes the complex conjugate. The solution s(p, vn, vn) (where p, vn, vn

are independent fields) ∈ Sad (is admissible) if p ∈ V1 and equation (2.6) is
verified.

2.2.3 Definition of the CRE

The CRE is an error which measures the verification of the less reliable equa-
tions defined by (2.3). Its value is always positive or equal to zero. It is equal
to zero if the Neumann and the Robin equations are verified. The following
expression for the CRE will be used :

• error from the Robin B.C.: ω2ρ2

∫
∂3Ω

(vn −Anp)∗(vn −Anp)dΓ

• error from the Neumann B.C.: ω2ρ2

∫
∂2Ω

(vn −
j

ωρ

∂p

∂n
)∗(vn −

j
ωρ

∂p

∂n
)dΓ
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The CRE ξ2
ω measuring the modeling error at angular frequency ω is the sum

of the errors related to the poorly reliable relations:

ξ2
ω(p, vn, vn) =

L2

L2 + L3
γω2ρ2

∫
∂2Ω

(vn −
j

ωρ

∂p

∂n
)∗(vn −

j
ωρ

∂p

∂n
)dΓ

+
L3

L2 + L3
(1− γ)ω2ρ2

∫
∂3Ω

(vn −Anp)∗(vn −Anp)dΓ (2.7)

where


L2 =

∫
∂2Ω

dΓ

L3 =
∫

∂3Ω

dΓ

The factor γ (0 ≤ γ ≤ 1) allows to weight differently the error related to the
impedance relation (Robin B.C.) and the one related to the system excitation
(Neumann B.C.). The factor γ is to be adjusted by taking into account the
a priori knowledge of the studied setup. For example, if the setup excitation
is very complex and it is known to be not reliable, the parameter γ should be
tuned in function (i.e. γ should tend to one) so that the updating focuses on
the error on that B.C. since it is dominant in that case. If no information is
available at this subject, γ is set to 0,5.
The interest of using such coefficient is explained by the following example. Let
us suppose that the updating process is stopped when reaching a 9% residual
CRE level at the end of the validation step (one assumes that 9% is the accuracy
level needed for the studied problem). Analyzing the contribution of the error
on the Neumann B.C. (ξN

ω ) and the one on the Robin B.C. (ξR
ω ) at the end of

the optimization shows:

ξω = 0.5 ∗ ξN
ω + 0.5 ∗ ξR

ω = 0.5 ∗ 12% + 0.5 ∗ 6% = 9% (2.8)

The corresponding updated parameters verify the Neumann B.C. with an error
of 12% and the Robin B.C. with an error of 6%.
Though, one would prefer to get updated parameters that correspond to an
equally distributed error on both B.C. (i.e. something like ξN

ω ≈ ξR
ω ≈ 9%).

Assuming an a priori knowledge of the setup of the type ξN
ω ≈ 2 ∗ ξR

ω , the
coefficient γ is set to 0.75 so that the previously updated parameters that
satisfied the CRE threshold now yields:

ξω = γ ∗ ξN
ω + (1− γ) ∗ ξR

ω = 0.75 ∗ 12% + 0.25 ∗ 6% = 10.5% (2.9)
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One can see that using the γ weight forces the updating process to only admit
parameters that equally distribute the CRE on both boundary conditions. If
no information is available enabling to determine the value of γ before starting
the optimization step, the ratio of the errors on the Neumann and Robin B.C.
is evaluated at the end of the minimization procedure. It allows to assess the
value of the factor γ which is used to run a new optimization process.

2.3 The modified CRE
Since one would like to update a continuous model with reference to experimen-
tal measurements, an additional measurement error adds to the error caused
by the model formulation itself. Just as for the model, it is necessary to define
the reliable and less reliable equations for the measurements and to build an
error measure on the less reliable experimental quantities. Measurement errors
are among others due to the positioning of the sensors and microphones, their
accuracy, calibration, measurement orientation, reproductivity and repeatabil-
ity of the measurements [Bal98, Bal96, Bal97],...
For instance, measurement errors occur for two types of data:

• pressure measurement by using microphones,

• velocity measurement by using accelerometers or velocity transducers.

2.3.1 The measurement error

In what follows, one assumes that reliable experimental information is:

• the measurement of the angular frequency,

• the positioning of the sensors and microphones,

• the calibration of the sensors and microphones,

• the directions of the measurements and excitations.

These define the admissibility Sad for the measurements. Considering the two
types of measurement error described in section 2.3, the measurement errors
at a given frequency are described as follows:

• pressure measurement (amplitude and phase) : |Π1p−Π1p̃|2,
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• velocity measurement (amplitude and phase) : ‖Π2vn −Π2ṽn‖2.

where ‖ ‖2 and | |2 denote energy norms, Π1 and Π2 are projection operators
that give the value of the pressure and normal velocity respectively at the
corresponding sensors, and p̃ and ṽn are the measured pressure and normal
velocity.
A projection operator Π is a matrix defined by: Πii = 1 if the dof i is measured

Πii = 0 if the dof i is not measured
Πij = 0 if i 6= j

(2.10)

2.3.2 Quality of a model with respect to measurements:
the modified CRE

By summing the constitutive relation error and the measurement error at an-
gular frequency ω, the modified CRE e2

ω is obtained:

e2
ω = ξ2

ω +
r

1− r
{ζ|Π1p−Π1p̃|2 + (1− ζ)‖Π2vn −Π2ṽn‖2} (2.11)

where 0 ≤ ζ ≤ 1 and 0 ≤ r < 1. The weighting factor
r

1− r
translates the

trueness in the measurements with respect to the model accuracy. If the error
on the measurements is known to be smaller than the modeling error, the pa-
rameter r should be consequently adjusted to a value that is lower than 0,5.
Indeed, r = 0, 5 weights equally the modeling error (ξω) and the measurement
error.
Similarly, ζ allows to weight the relative importance of the pressure and veloc-
ity measurement errors. Indeed, it is assumed that pressure as well as velocity
measurements are performed, each of those being polluted. The factor ζ is
tuned according to the relative trust that one places in the pressure and veloc-
ity measurements. For example, if the pressure measurements are known to be
very more polluted than the velocity ones, ζ should tend to 1. Otherwise, ζ is
set to 0,5.
The use of these two coefficients r and ζ can be explained in the same way as
which has been done for the weight γ.
The modified CRE is an indicator of the verification of the less reliable quan-
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tities and equations of the problem. Now the problem becomes :

Find sω(p, vn, vn)|

{
sω ∈ Sad

e2(sω) is minimum
(2.12)

The solution sω will thus verify the reliable equations and quantities exactly
by satisfying the admissibility. It will satisfy the less reliable quantities and
equations as well as possible by minimizing e2

ω.
The study of an acoustic system being usually led in a finite frequency range
[ωmin, ωmax], a weighting function z(ω) is defined so that∫ ωmax

ωmin

z(ω)dω = 1 z(ω) ≥ 0 (2.13)

and the mean modified CRE in the interval [ωmin, ωmax] is then given by:

e2 =
∫ ωmax

ωmin

e2
ωz(ω)dω (2.14)

If the same weight is attributed to each updating frequency, the function z(ω)
is given by

z(ω) =
1

ωmax − ωmin
(2.15)

More complex functions can be used to focus on a given zone of interest of the
frequency range.

2.4 Finite Element discretization

The method proposed in this paper is very general and can be applied to
all kinds of numerical approximations like finite element method, boundary
element method, meshless method [LBV03], etc. We propose to illustrate here
the CRE method in the case of a finite element discretization. It is assumed
in what follows that the interpolation and the pollution errors are kept under
control by adapting the mesh size to the frequency [DBB99]. Indeed, the sum
of these errors has to be sufficiently small compared to the modeling error
described before, otherwise the updating presented here does not make sense.
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It is first necessary to introduce a pressure formulation by introducing pressure
variables (P,Q,R) as follows :

p = P (2.16)
vn = AnQ (2.17)

vn =
j

ωρ

∂R

∂n
(2.18)

The CRE becomes :

ξ2
ω(P,Q,R) = γω2ρ2

∫
∂2Ω

(
j

ωρ

∂P

∂n
− j

ωρ

∂R

∂n
)∗(

j
ωρ

∂P

∂n
− j

ωρ

∂R

∂n
)dΓ

+(1− γ)ω2ρ2

∫
∂3Ω

(AnP −AnQ)∗(AnP −AnQ)dΓ (2.19)

Nodal unknowns are associated to the pressure fields as follows:

Pressure field Nodal unknown
P P
Q Q
R R

Note that fields Q and R are only defined on ∂3Ω and ∂2Ω respectively. From
the variational formulation (2.6), one writes the corresponding discrete matrix
equation:

[K]P + jωρ[C]Q− ω2[M]P = [E]R (2.20)

where

• ph = NtP is the finite element approximation of the pressure,

• [M] =
1
c2

∫
Ω

NtNdΩ is the mass matrix,

• [K] =
∫

Ω

∇tN∇NdΩ is the stiffness matrix,

• [C] =
∫

∂3Ω

AnNtNdΓ is the impedance matrix,
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• [E] =
∫

∂2Ω

∇n
tNNdΓ is the system excitation matrix due to normal ve-

locities imposed on boundary ∂2Ω.

CRE (2.7) is written for the FE discretization:

ξ2
ω(P,Q,R) = γ(R−P)∗[Kn](R−P)

+(1− γ)ρ2ω2(Q−P)∗[D](Q−P) (2.21)

where

• [Kn] =
∫

∂2Ω

∇n
tN∇nNdΓ

• [D] =
∫

∂3Ω

A∗
nAnNtNdΓ

Problem (2.12) to be solved is rewritten:

Find s′ω=(P,Q, R) |
{

[K]P + jωρ[C]Q− ω2[M ]P = [E]R
e2
ω(s′) is minimum (2.22)

Figure 2.2: 2D mesh of a car cabin
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2.5 Two dimensional numerical applications
At this stage, only two dimensional numerical simulations are run. Such prob-
lems are of course non realistic (because reality is three dimensional) so that
experimental data acquisition is not possible. Consequently, error evaluations
are made by comparison with numerical results that are known as being accu-
rate and reliable instead of experimental data.
The updating is performed in a few points located inside the acoustic domain.
For the two following studied cases, one limits oneself to the modeling error
related to the impedance relation (2.3) and to the pressure measurement error.
Pressure measurement is computed at a few points distributed inside the acous-
tic domain. In practice, it is important to have enough measurement points
to be able to filter the noise on these measurements, and to avoid to be in a
situation where all measurement points would coincide with pressure nodes, at
a given frequency.
There is only one value of vn given on ∂2Ω, so that the pressure value can be
normalized for a unit value of vn. In that case, the measurement error is on
the pressure only, and the error described in (2.11) reduces to:

e2
ω = ω2ρ2

∫
∂3Ω

(vn −Anp)∗(vn −Anp)dΓ +
r

1− r
|Π1p−Π1p̃|2 (2.23)

The corresponding relative error for each frequency ω is obtained by dividing
e2 by σ2, that is for instance:

σ2 =
ω2ρ2

2

∫
∂3Ω

((Anp)∗Anp + v∗nvn)dΓ (2.24)

The relative modified CRE is then written erel = e/σ.

2.5.1 First application: pressure field inside a car cabin
with 2 real An

Figure (2.2) presents a mesh of the car cabin that has been studied. The mesh
comprises 298 nodes and is made up of linear elements with 4 nodes. The
excitation of the car structure is caused by the vibration of the firewall. The
corresponding boundary condition is represented by a dotted bold line on the
mesh. It is assumed in this simulation that only two parts of the cabin are
covered by absorbing materials and cause the attenuation of the ambient noise
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Figure 2.3: Sound pressure FRF at the ear of the driver for mesh (2.2)

inside the car. The first absorbing material overlays a part of the top of the car
(see the heavy line in figure (2.2)) with an impedance value Zn1 = 600Nsm−3.
The second absorbing material corresponds to the front side of the back of the
driver seat (Zn2 = 800Nsm−3). At this time, impedance values are supposed
real for that first application.
The frequency response function of such setup calculated at the ear of the driver
(see the bullet on the car mesh (2.2) for the location) is shown in figure (2.3):
the frequency range goes from 0 up to 1000 Hz and the ordinate corresponds to
the sound pressure FRF in dB when the firewall is excited with a normal veloc-
ity equal to 1mms−1. The FRF is computed using the ACTRAN c© software
developed by Free Field Technologies [Fre02]. The updating algorithm is run
for five different frequencies in the range 0−1000 Hz: {20,100,300,600,1000}Hz.
The updating parameters are the impedances Zn1 and Zn2 of the absorb-
ing materials described before. Initial values for these unknowns are set to
1000Nsm−3. Figure (2.4) illustrates the modified CRE to be minimized with
respect to Zn1 and Zn2 at each updating frequency. The shown error is fre-
quency averaged and clearly indicates the values of the impedances minimizing
the function.
If there are many different admittance coefficients, it is no more possible to
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Figure 2.4: frequency averaged modified CRE of the car versus (Z1, Z2)

examine the shape of the function to be minimized. That is the reason why the
addressed numerical example presents only two admittance coefficients. In the
framework of updating models, the unknowns are assumed to be sufficiently
close to the initial values that are used at the first iteration of the optimization
procedure, so that a local minimization algorithm is used to find the minimum
of the error function.
Besides, if one can not guarantee that the global minimum was found, a CRE
level after updating that is lower than the one before running the optimization
process certifies that the model was improved by the updating procedure.
The optimization algorithm that has been used in the numerical examples is
a multidimensional unconstrained nonlinear minimization algorithm of Nelder-
Mead [MN65] type.
Running the modified CRE technique implemented in a MATLAB c© environ-
ment with stopping criterion erel ≤ 10−4 yields the two following values for the
updated impedances:

{
Zn1 = 600.007Nsm−3

Zn2 = 799.995Nsm−3
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The relative modified CRE for the initial values of the two impedance coeffi-
cients Zn1 and Zn2 was about 38%. After updating the acoustic model, that
error diminished below the prescribed value of 0.01%, which shows that the
updating technique effectively validates the acoustic model.
For sure, such error level of 0.01% can only be reached for ideal study cases,
i.e. without measurement noise and when referring to simulated acoustic fields.
Real-life cases should exhibit error values that rarely decay below the 5% bar-
rier.

Figure 2.5: 2D mesh of the car cabin with 5 absorbing materials

2.5.2 Second application: updating a 2D car cabin with
5 frequency dependent complex An

The studied setup is the same as before, but the pressure field is now attenuated
by the contribution of 5 absorbing materials covering the seats, the roof, the
floor and the dashboard of the car. These materials are characterized by com-
plex frequency dependent admittance coefficients of the form: An = C1+jωC2,
where C1 and C2 are constant values and ω is the angular frequency.
The mesh of the setup is identical to the previous one, but more absorbing
materials are now covering the boundaries, as it can be seen on figure (2.5)
where the bold lines correspond to the regions covered by one of the absorbing
materials.
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Unity 10−3N−1s−1m3 %
CRE .05
An1 2 + .002ωj .20
An2 1− .0015ωj .41
An3 3 + .001ωj .37
An4 5 + .009ωj 3.47
An5 4− .008ωj .77

Table 2.1: Frequency average CRE and error on updated admittance coeffi-
cients

Updating without measurement noise

In this application, reference measurements are computed from a FE simulation
with the exact values of the 5 updated parameters. Table (2.1) shows the
reference values of the admittance coefficients and the error on each of these
ones after updating the model from 0 up to 500 Hz. These errors are frequency
average values, i.e. each average error is the sum of the errors at each updating
frequency divided by the total number of updating frequencies, which is 100
since the setup was updated at each multiple of 5 Hz.
The initial values of the parameters to be updated were set to twice the exact
values. Results of table (2.1) are quite satisfying.
Let us note that the number of frequencies at which the setup is to be updated
depends on factors like the type of material that is characterized by the updated
parameter. Indeed, some materials exhibit high frequency dependence (and
thus need lots of updating frequencies) while others present quasi frequency
independent behavior.

Updating with measurement noise

In this section, simulated noise is added to the computed measurements. The
noise is obtained by multiplying the real and imaginary parts of each mea-
surement by 1 + w ∗ N , where N is a random number chosen from a normal
distribution with mean zero and variance one, and w is the weight applied to
the normal distribution, and so the average noise level. The noise affects both
the amplitude and the phase of the reference pressure field.
Updating the setup presented above with an average noise level of 5% (i.e.
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Unity 10−3N−1s−1m3 %
CRE 4.82
An1 2 + .002ωj 3.39
An2 1− .0015ωj 4.55
An3 3 + .001ωj 2.42
An4 5 + .009ωj 4.05
An5 4− .008ωj 5.08

Table 2.2: Frequency average CRE and error on updated admittance coeffi-
cients with measurement noise

w = 0.05) generated results of table (2.2). One observes that the error levels
after updating are of the order of growth of the average noise level on the mea-
surements.
Figure (2.6) plots the amplitude and the phase of the FRF from 0 up to 500 Hz
of the 2D car with the 5 previously defined admittance coefficients. The exact
FRF together with the one coming from the updating process with polluted
data are plotted. As one can see, the 5% modified CRE level allows for quite
a good match with the reference curve.

2.6 Conclusions

A new updating technique inspired from the structural dynamics has been
adapted to the acoustics. The goal is here to update a continuous model with
reference experimental data.
Based on the constitutive relation error that basically separates data into reli-
able and less reliable ones, the paper discusses this splitting in what concerns
acoustic relations, boundary conditions, and experimental information. At-
tention is paid to the error coming from experimental measurements that is
integrated to the technique which becomes the modified CRE.
The exposed technique applying to every kind of numerical approaches, yet the
paper deals with one of these: the finite element formulation. The implemented
technique is applied to simulate the sound pressure inside a two dimensional
car cabin with absorbing materials on the top and on the driver seat, which
constitutes a first validation of the modified CRE technique in acoustics: the
impedance values of the absorbing materials are accurately updated. Then, the
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Figure 2.6: Sound pressure FRF at the ear of the driver for 5 An with polluted
measurements. Dashed line: reference FRF, dotted line: updated FRF

modified CRE updating technique is successfully applied to simulate the sound
pressure inside the same car cabin but with 5 absorbing materials defined by
frequency dependent complex admittance coefficients covering the boundaries.
The same validation is performed when adding simulated noise to the measure-
ments, allowing the technique to still successfully fit the reference FRF with
the updated one.
Since the modified CRE updating technique and its application for determin-
ing frequency dependent complex admittance coefficients is promising, three
dimensional real-life test cases are planned to be achieved, using more realistic
models for the admittance coefficient. But model size reduction should precede
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the application of the technique presented in this paper to 3D model updating,
due to the highly increasing computational time with the number of degrees of
freedom, as shown in [DLL02].
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In the frame of predicting acoustic pressure fields by means of numerical
simulations, many tools are already available, making mostly use of the finite
or boundary element techniques.
In order to get simulated acoustic pressure fields closer to the reality, updat-
ing techniques can be used. Particularly, one focuses on a validation method
based on the Constitutive Law Error (CLE), which was initially proposed by P.
Ladevèze [Lad98] in structural dynamics, and was recently applied to acoustics
[DBDL04a]. These works use the FEM as numerical approximation method.
When increasing the frequency, the validation quality decreases, due to the
growing discretization error of the linear FEM.
Therefore, to diminish the discretization error, another approximation method
is used, namely the element-free Galerkin method.
A case study is presented where the discretization error is controlled and the
effects on the updating parameters (the admittance coefficients) is evaluated.
Comparing the results coming from the validation when using both FEM and
EFGM shows that a numerical method with robust frequency behavior is more
suited for updating setups with highly frequency dependent parameters.

3.1 Introduction

In order to improve the quality of numerical simulations in acoustics, updating
techniques based on in situ measurements can be used. The literature deal-
ing with the validation of acoustic models being very light, a review of exist-
ing techniques examines corresponding works achieved in structural dynamics.
Validation techniques can be split into direct and parametric methods. While
direct techniques generally modify the mass and stiffness of the structure to fit
the measured natural frequencies, parametric methods modify physical param-
eters of the model by minimizing a cost function. Whereas the direct updating
techniques lack physical meaning, making the validity domain small if the con-
figuration changes, parametric methods improve the knowledge of the model,
which can be used again later.
Among the different possible parametric validation techniques, the one based
on time data are particularly pertinent when non linear problems are addressed,
which is not the case here.
The methods dealing with modal data update the eigen-values and vectors with
respect to the parameters. The corresponding experimental eigen-values and
vectors have to be measured.
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The FRF based techniques can be split into three different classes: the input
residue, the output residue and the constitutive law residue techniques. The
input residue method consists in applying the measured pressure field to the
system to get the corresponding evaluation of the excitation of the acoustic
domain. The residue is a function of the difference between that excitation
and the measured one. The output residue technique estimates the pressure
field computed by exciting the system using the measured excitation vector.
The residue is built from the comparison between that pressure field and the
measured one.
The latter FRF based method minimizes a residue which is related to the con-
stitutive laws of the system. This paper focuses on the constitutive law error
(CLE) proposed by P. Ladevèze in structural dynamics [Lad98]. For instance,
recent works applied that technique to validate acoustic models [DBDL02,
DBDL04a].
The CLE principles are very general and can be applied to update all kinds
of numerical solutions based on the finite element method, boundary element
method, etc. Previously, the CLE updating technique was applied to acoustics
solved by the finite element method. This analysis was motived by the fact
that the FE method is very popular and easy to implement.
The constitutive law that is addressed is the admittance boundary condition,
which links the normal velocity to the acoustic pressure by the admittance coef-
ficient. Particularly, we are interested by absorbing materials such as polymeric
foams for example. Since these materials are known for their medium and high
frequency absorbing behavior, it would be inappropriate to try to record such
material characteristics by performing only low frequencies updating simula-
tions.
But it has been shown [DBB99] that for high wave numbers, the Helmholtz
equation suffers from the so called dispersion effect: when solving the Helmholtz
equation with the classical Galerkin FEM, the accuracy of the numerical so-
lution deteriorates with increasing wave number k. The main effect of the
dispersion is that the wave number of the FEM solution is different from the
one of the exact solution.
As a consequence, for high wave numbers, the admittance coefficient is wrongly
tuned to compensate the dispersion error inherent in the FEM. It leads us to
consider an alternative method: the element-free Galerkin method (EFGM).
Indeed, [DBB99] and [SB00] have shown the good behavior of this method in
terms of dispersion error.
The paper is organized as follows. In section 3.2, the principles of the Con-
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stitutive Law Error and its application to acoustics are summarized. Section
3.3 uses the CLE to validate a FE acoustic model of a 2D car cabin whose
boundaries are covered by absorbing materials. Then, controlling the disper-
sion error, its effect on the updating quality is examined showing that the
validation results quickly deteriorate with the frequency. Section 3.4 proposes
to use an alternative numerical method to achieve the updating, namely the
EFGM, whose better behavior with respect to the frequency enables to obtain
more accurate results.
Section 3.5 finally compares both approximation methods in terms of CPU-
time, showing the interest of using the EFGM to update models with medium
wave numbers.

3.2 The CLE applied to the acoustics

3.2.1 Principles
One deals with an acoustic problem defined on a domain Ω with boundary ∂Ω.
In linear acoustics, one assumes small harmonic perturbations of the particle
velocity v, the pressure p and the density ρ of the isotropic medium so that
these oscillations around steady values are respectively written as follows: v = v′ejωt

p = p′ejωt

ρ = ρ′ejωt
(3.1)

where j2 = −1, ω is the angular frequency, and t the time.
The pressure field is the solution of the wave equation (called Helmholtz equa-
tion in the frequency domain) with associated Dirichlet, Neumann, and mixed
Robin boundary conditions on parts ∂1Ω, ∂2Ω, and ∂3Ω of the frontier respec-
tively. These equations are described in 3.2.

Helmholtz : ∆p + k2p = 0

Dirichlet B.C.: p|∂1Ω = p

Neumann B.C.: vn|∂2Ω
=

j

ωρ

∂p

∂n
|∂2Ω = vn

mixed Robin B.C.: vn|∂3Ω
= Anp

(3.2)

where c is the sound speed, k = ω
c is the wave number, An is the admittance

coefficient, and vn is the prescribed velocity exciting the acoustic medium.
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Principles of the CLE and its application to acoustics are deeply explained in
[DBDL04a]. Here is a short summary of what is necessary to understand the
following developments. The idea is to split the available information into re-
liable and less reliable data. When analyzing the effect of the dispersion error
on the updating, it is assumed that the reliable equations are the Helmholtz
wave equation in the frequency domain, the Dirichlet boundary condition, and
the Neumann B.C. Actually, what is called reliable or less reliable depends on
each particular studied case.
The paper deals with the influence of the accuracy of the numerical solution on
the quality of the updating. Without loss of generality, the less reliable data
considered in the present work is the admittance boundary condition describing
the sound absorption in porous media. Different models exist to approximate
the wall absorption, but none is completely reliable. The less reliable informa-
tion yields a residue that is the constitutive law error estimator. Validating
a setup then consists in finding the admissible pressure field minimizing the
CLE. The tests are performed on purely numerical results by updating the
parameters on a coarse grid with respect to the results on a fine grid.

3.2.2 Definition of the CLE

The CLE is an error measuring the satisfaction of the less reliable information.
The CLE ξ2

ω measuring the modeling error at angular frequency ω is given by:

ξ2
ω(p, vn) = ω2ρ2

∫
∂3Ω

(vn −Anp)∗(vn −Anp)dΓ (3.3)

where p, vn are independent fields on ∂3Ω. The relative error for each frequency
ω is obtained by dividing the CLE ξ2

ω by the following quantity that normalizes
the error:

σ2
ω =

ω2ρ2

2

∫
∂3Ω

((Anp)∗Anp + v∗nvn)dΓ (3.4)

The relative modified CLE is then written erel
ω = ξω/σω.

Approximate pressure variables (P,Q) are defined as follows on ∂3Ω:

p = P (3.5)
vn = AnQ (3.6)
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A variational formulation of equations 3.2 allows the discretization of the acous-
tic problem 3.7 where nodal unknowns P , Q are associated to pressure fields
P, Q.

[K]P + jωρ[C]Q− ω2[M ]P = [E]P (3.7)

where

• ph = NtP is the approximate pressure,

• [M ] =
1
c2

∫
Ω

NtNdΩ is the mass matrix,

• [K] =
∫

Ω

∇tN∇NdΩ is the stiffness matrix,

• [C] =
∫

∂3Ω

AnNtNdΓ is the admittance matrix,

• [E] =
∫

∂2Ω

∇n
tNNdΓ is the system excitation matrix due to normal ve-

locities prescribed on boundary ∂2Ω.

The CLE (3.3) is written for the discretized system :

ξ2
ω(P,Q) = ρ2ω2(Q−P)∗[D](Q−P) (3.8)

where [D] =
∫

∂3Ω

A∗
nAnNtNdΓ

The problem to be solved is :

Find sω=(P,Q) |
{

[K]P + jωρ[C]Q− ω2[M ]P = [E]P
ξ2
ω(sω) is minimum

3.2.3 Less reliable information: the wall admittance
Here, we will assume that the mixed Robin boundary condition which links
the pressure to the normal velocity by the admittance coefficient An is the less
reliable information.
Different models of the admittance coefficient are proposed in the literature.
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The choice of the model has to take into account different properties such as
the porosity and the thickness of the absorbing material, the stiffness of the
skeleton in the case of porous materials, but also the frequency, the incidence
angle of the acoustic waves, etc. More detail about admittance models can be
found in reference [All93, FJT00].
Again, without less of generality of the proposed approach, this paper focuses
on isotropic porous absorbing media with motionless frame and porosity close
to 1. These media are represented by an equivalent fluid. The empirical laws
of Delany and Bazley describe the wave number inside that fluid together with
its characteristic impedance as follows:

ke =
ω

c

(
1 + 0.0978X−0.700 − j0.189X−0.595

)
(3.9)

Ze = ρc
(
1 + 0.0571X−0.754 − j0.087X−0.732

)
(3.10)

where X =
ρf

σ
and 0.01 < X < 1.0.

f =
ω

2π
is the frequency and σ is the flow resistivity, an intrinsic property of

the material that measures the resistance to an air flow through that one. σ lies
between 5000 and 100 000 Nm−4s for materials like fiberglass and open-bubble
foam.

� ��� � � � ���	� �
��

Figure 3.1: Layer of equivalent fluid (thickness de) representing an absorbing
material backed by a rigid impervious wall

The wall impedance at a point S located on the skin of the absorbing material
(see figure 3.1) weakly depends on the angle of incidence so that it can be
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approximated by:

Z(S) = − jZe

tan(kede)
(3.11)

3.3 Using the CLE to update a FE model
The aim of this section is to analyze the consequences of the dispersion effect
inherent in the FEM on the updating efficiency.

3.3.1 Setup description
The 2D car cabin studied is represented in figure 3.2.
The firewall vibrating with a normal velocity v0 = 1mm/s excites the acoustic
domain. Four regions are covered with different absorbing porous materials
represented by hard lines on figure 3.2. The corresponding admittance coeffi-
cients are the parameter to be updated. The following parameterized Delany
and Bazley model is used for An where C1, C2, C3, and C4 are the coefficients
to be tuned:

An =
(
ρc

(
1 + C1X

−C2 − jC3X
−C4

))−1
(3.12)

Delany and Bazley experiments exhibit values for these coefficients as follows:

C1 = 0.057 (3.13)
C2 = 0.754 (3.14)
C3 = 0.087 (3.15)
C4 = 0.732 (3.16)

Each of these absorbing materials is characterized by this model whose coeffi-
cients C1 to C4 are slightly modified. Initial values for the coefficients are set
to 70% of these reference values at the first iteration of each validation process.
The flow resistivity σ of the updated porous material is set to 10000Nm−4s
so that the frequency validity domain is 100Hz < f < 10kHz to satisfy
0.01 < X < 1.0. The thickness of the porous media is set to 10 cm for the seats
and 5 cm elsewhere.
The updating is performed in 10 points distributed inside the acoustic domain.

A FEA performed on a highly refined mesh is used as a reference solution (pref )
to quantify the discretization error, which is dominated by the dispersion effect
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Figure 3.2: 2D mesh of a car cabin with absorbing materials (hard lines)

when increasing the frequency. The discretization error is computed using a L2

norm:

e2
disc =

∫
Ω

(
pref − ph

)∗ (
pref − ph

)
dΩ∫

Ω

pref∗prefdΩ
(3.17)

The error on An is computed by:

e2
An

=
(Aref

n −Aup
n )∗(Aref

n −Aup
n )

Aref∗
n Aref

n

(3.18)

where Aref
n is the reference exact value of the admittance coefficient and Aup

n

is the value of An obtained by updating the acoustic solution.

3.3.2 Effect of the dispersion error on updating FEM so-
lutions

The validation is performed using the classical linear FEM with 715 nodes and
consists in updating the 4 coefficients of the Delany and Bazley admittance
model presented in (3.12). Figure 3.3 shows the constitutive law error as a
function of kh,where k and h are the wave number and the average mesh size
respectively.
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Figure 3.3: CLE vs. kh with 715 dofs using linear FE

If an accuracy of e.g. 5% for the CLE is required when validating an acoustic
model, a mesh size satisfying at least kh = 0.45 is needed with linear FE (cf.
figure 3.3). That is much more demanding than the usual rule of thumb of
kh = 1 (i.e. six linear elements per wavelength).
Figure 3.4 draws the discretization error together with the error on the updated
parameter An1. Actually, the frequency behavior of the error on the 4 updated
admittance coefficients is very similar so that only one of these coefficients
is represented in what follows. Figure 3.4 shows the high influence of the
dispersion error on the updated parameter An1 that exhibits a high level error
when the wave number grows. Indeed, it can be seen on that figure that the
updated parameter is wrongly tuned during the validation stage because of the
dispersion error.
Figure 3.5 shows pressure fields normalized by the excitation velocity, in dB.

The plain curve is the reference computed field (FEA with 32024 nodes). The
dotted graph corresponds to the FEM numerical simulation with the exact value
of the admittance parameters and 715 nodes, so that the difference between
these two curves comes from the dispersion effect.
The dashed FRF on figure 3.5 represents the updated normalized pressure field
(FEA with 715 dofs). The validation is not able to correctly tune the parameter
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Figure 3.4: An1 error (hard line) and discretization error (dotted line) vs. kh
with 715 dofs using linear FE

to fit the exact FRF.
Figures 3.3, 3.4 and 3.5 clearly motive the present study.

3.4 Using the CLE to update an EFG model

Similarly with what has been done in the previous section, the CLE updating
technique is now applied to the EFGM (see [LBV03] for detail about applying
the EFGM to acoustics). The element-free shape functions are based on the
moving least square approximation (MLSA) which is defined on a cloud of
nodes. These nodes are not connected by elements. For each node, a domain
of influence is defined. In 2-D, that domain is either a disc or a square. The
domains are defined to connect the nodes: two nodes are connected if their
domains of influence intersect. The influence of a node at a given point is
defined by the weight function of that node. The weight function is equal to
unity at the node and decreases when the distance to the node increases. The
weight function is zero outside the domain of influence of the node. The weight
functions that are used for the tests are exponential.
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Figure 3.5: Pressure amplitude normalized by the exciting velocity at the
driver’s ear vs. kh: highly refined FEA reference (32024 nodes, hard line),
715 dofs FE FRF with exact Ani (dotted line), and 715 dofs FE updated FRF
(dashed line)

The construction of the MLSA and the corresponding shape functions is based
on the choice of a basis B(x, y) of functions that can be polynomial or not.
The EFG approximation used to compute the pressure is of the type (in 2-D):

ph(x, y) = N(x, y)p (3.19)

where

N(x, y) = Bt(x, y)A(x, y) (3.20)

and A(x, y) is a matrix determined by minimizing a L2 norm.
This formulation furnishes more accurate results compared to the classical lin-
ear FEM for 2-D or 3-D acoustics, as shown in [LBV03].
However, precautions have to be taken concerning the particularity of the EFG
method which needs to interpolate the nodal pressure values after solving the
system (the shape functions are not equal to 1 at the nodes).
Using a trigonometric function basis leads to better results for a given node
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distribution at a given frequency. Though, using that latter basis is more ex-
pensive in terms of CPU-time, since the shape functions have to be computed
at each frequency. To achieve computations on a frequency range and from a
CPU-time point of view, the trigonometric function basis is not adapted.
Consequently, a linear basis B ={1, x, y} is used for computing the 2-D results
in this paper.

3.4.1 Improving the validation quality thanks to the EFGM

In this section, the improvement of the validation quality by making use of the
EFGM instead of the FEM as numerical method is shown. Again, the valida-
tion aims at finding the appropriate values of the 4 parameters in eq. (3.12).
The comparison of both numerical methods is based on the same nodal distri-
bution, namely 715 nodes like above.
In figure 3.6, the maximum admissible kh leading to a 5% CLE level is plotted

Figure 3.6: CLE of FEM (hard line) and EFGM (dotted line) solutions vs. kh
with 715 dofs

for both methods with an average mesh size h = 0.054m. The khmax = 0.75 of
the EFGM is about 1.7 time higher than the one of the FEM.
The corresponding An1 and discretization errors are drawn in figure 3.7.



48 Influence of the dispersion error on the updating

Finally, figure 3.8 gives the ratio of the pressure field amplitude normalized

Figure 3.7: Residual errors after updating: FEM An1 error (hard line), FEM
dispersion error (dashed line), EFGM An1 error (dotted line), and EFGM dis-
persion error (dashed dotted line) vs. kh with 715 dofs

by the exciting velocity of the firewall up to kh = khEFGM
max .

The solid curve is the reference ratio coming from the FEA with 32024 dofs.
The dotted mark corresponds to the ratio coming from the validation of the
acoustic problem using the FEM with 715 nodes: for kh > khFEM

max , the FEM
updated curve clearly differs from the reference. A validation making use of
that model at such kh does not make sense.
The dashed line is the updated curve using the EFGM for kh ≤ khEFGM

max . This
line and the reference are nearly merged.

3.5 CPU-time comparison: FEM vs. EFGM to
validate models

Whether using the EFGM approximation to update an acoustic model exhibits
lower CLE level at a given frequency than the FEM for the same nodal dis-
tribution, the CPU-time needed to validate a model with one or the other
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Figure 3.8: Pressure amplitude normalized by the exciting velocity at the
driver’s ear vs. kh with 715 dofs when validating with FEM (dotted line)
and EFGM (dashed line). Continued line: reference ratio (FEA with 32024
nodes)

approximation method is not the same.
Indeed, the EFGM approximation is a little bit more expensive in terms of
CPU-time for a same nodal distribution. The reason is that a given node is
influenced by more nodes in the EFGM than in the FEM.
Consequently, the EFGM matrices K, M , and C are more crowded than their
FEM equivalent, which yields to an increase of the time needed to solve the
system.
Now, the question is to know which of both approximation methods is the more
efficient.
The answer is given in figure 3.9 where the relative CPU-time is plotted as a
function of kmax for both approximation methods. The relative CPU-time is
the computational time normalized by the running time of the most expensive
simulation. Like before, kmax is defined as the higher value of k such that the
CLE remains below the 5% level for a given node distribution. Each point of
the curves on figure 3.9 corresponds to a different discretization.
In order to make the results coming from both approximation methods com-
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parable, they are implemented in the same MATLAB c© environment, using
identical solvers, on the same processors.
Applying the EFGM for validating acoustic models seems to be more efficient
than the FEM, already at quite low wave numbers.
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Figure 3.9: kmax vs. CPU-time when validating with FEM (dotted line) and
EFGM (dashed line)

3.6 Conclusions

Throughout this paper, the important effect of the dispersion error on the re-
sults coming from a validation stage is emphasized.
It is shown that validating acoustic models for instance using the CLE is only
reliable if the discretization error is very low. For this reason, using the FEM
approximation to update acoustic models should only be achieved at low fre-
quencies, unless an extremely refined mesh generating very high computation
time is used.
The CLE updating technique appears to be very efficient using the EFGM as
an alternative to the FEM when increasing the wave number, since the EFGM
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yields to very low CLE level thanks to low dispersion effect at shorter CPU-time
compared to the FEM.
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We have recently reported the possibility of developing an updating tech-
nique for acoustic finite element models based on the constitutive law error
proposed by P. Ladevèze and co-workers in structural dynamics. Like with
every updating technique, we are confronted with and interested in reducing
the computational time.
The main idea of this paper consists in building a reduced modal basis made of
two contributions: static modes complete a truncated modal basis correspond-
ing to the frequency range of computation. The static modes are associated to
the system excitation (for instance a normal velocity boundary condition), but
also to the system damping and to the reference measurements.
Updating acoustic models using the reduced modal basis shows a significant
CPU-time saving with respect to the full non reduced system with an accept-
able accuracy.

4.1 Introduction

In the last years, computer efficiency has increased fast, enabling us to manip-
ulate very large models thanks notably to FEA codes running on a massively
parallel architecture. For instance, the Salinas numerical prediction software
was developed to run hundreds of millions of degrees of freedom (dofs) problems
split among up to tens of thousands of processors with almost linear speedup
factors (see [RR00]). These complex heavy models describe generally quite
well the geometry and allows us a higher frequency resolution of the problem.
Nevertheless, the numerical simulation results are still somewhat too far from
the recorded experimental data, which means that the model quality remains
unsufficient. A possible solution for improving the model quality makes use of
the experimental testing to update the numerical model.
The present paper uses a parametric updating technique based on the constitu-
tive law error (CLE). The fundamentals of the CLE were first developed by P.
Ladevèze in structural dynamics (see [Lad98]) and then applied to acoustics in
[DBDL04a]. The main idea in the CLE technique consists in splitting the data
and equations of the model into ’reliable’ information and ’less reliable’ one.
Whether one trusts a given data or equation has to be related to the assump-
tions made in its derivation. The choice of the CLE updating technique among
the different methods available in the literature is motivated in [DBDL04a].
The updating process is iterative: each step consists in computing new updat-
ing parameters and solving the problem using these new values. The computed
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pressure is compared to the measurements using the constitutive law error, and
the iterative process stops when the error is below a reference threshold value.
From a CPU-time point of view, an iterative process is very expensive since the
same large model with different parameters has to be computed at each itera-
tion to solve and to update the acoustic problem. From these considerations,
large industrial setups can only be updated if the system size is reduced.
In following sections, a reduced basis adapted to the updating of acoustic mod-
els with the CLE is formulated, assuming the knowledge of the excitations, the
location of measurements, and the possible variations of the updated param-
eters. The reduced basis is made of a truncated modal basis to which Krylov
vectors associated with the excitations are first added. The Krylov subspace
technique is well known and largely investigated in the field of structural dy-
namics ([Bui02]) or circuit simulation ([Fre00]), and references therein. This
basis is enriched by static corrections corresponding to forces located at the
sensors and to the variable parameters. The building of such a reduced basis
is explained and validated on a numerical example. The reason why this re-
duction technique is chosen among the other possibilities is that the present
approach reduces the cost of updating the model drastically. Though, there
exist other reduction techniques. For instance, the multimodel approach builds
a reduced basis made of truncated modal bases of the model for different values
of the parameters (see [Bal96]). The following techniques are quite similar in
principles to the one developed here: in [BLC97], the variation of the parame-
ters of the model through the iterations is interpreted as excitations applied to
the initial problem. Reduction techniques that are based on sensitivity vectors
are other variants of this method (see [Bal98]). Other than using a reduced
modal basis, there are alternative techniques, see for example the multipole
expansion technique ([Bur94, TA99]).
The paper is organized as follows: after describing the acoustic problem, the
CLE principles are shortly summarized. The updating process is explained, to-
gether with the discretization of the acoustic problem. The construction of the
reduced basis and its application to project the initial problem into a sub-space
of lower size enables one to update a numerical example within a significantly
lower computation time compared to the updating of the full model.
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4.2 The CLE applied to acoustics

4.2.1 Principles
We are dealing with an acoustic problem defined on a domain Ω with bound-
ary ∂Ω. In linear acoustics, one assumes small harmonic perturbations of the
particle velocity v, the pressure p and the density ρ of the isotropic medium so
that these oscillations around steady values are respectively written as follows: v = v′ejωt

p = p′ejωt

ρ = ρ′ejωt
(4.1)

where j2 = −1, ω is the angular frequency, and t the time.
The pressure field is the solution of the wave equation (called Helmholtz equa-
tion in the frequency domain) with associated Dirichlet, Neumann, and mixed
Robin boundary conditions on parts ∂1Ω, ∂2Ω, and ∂3Ω of the boundary re-
spectively. These equations are given by (4.2).

Helmholtz : ∆p + k2p = 0

Dirichlet B.C.: p|∂1Ω = p

Neumann B.C.: vn|∂2Ω
=

j

ωρ

∂p

∂n
|∂2Ω = vn

mixed Robin B.C.: vn|∂3Ω
= An(ω)p

(4.2)

where c is the sound speed, k = ω
c is the wave number, An(ω) is the admittance

coefficient, vn is the prescribed velocity exciting the acoustic medium, and p
is the imposed pressure on boundary ∂1Ω. In what follows, the frequency de-
pendence of the admittance coefficients will not be written explicitly and the
notation An will be used.
Principles of the CLE and its application to acoustics are explained in [DBDL04a].
Here is a short summary of what is necessary to understand the following de-
velopments. The idea is to split the available information into reliable and less
reliable data. It is assumed that the reliable equations are the Helmholtz wave
equation in the frequency domain, the Dirichlet boundary condition, and the
Neumann boundary condition. It has to be noticed though, that what is called
reliable or less reliable depends on each application.
The less reliable data considered in the present work is the admittance bound-
ary condition describing the sound absorption in porous media. Indeed, differ-
ent models exist to approximate the wall absorption, but none is completely
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reliable. The less reliable information yields a residue that is the constitutive
law error estimator. Updating a setup then consists in finding the admissible
pressure field minimizing the CLE.

4.2.2 Definition of the CLE

The CLE is an error measuring the satisfaction of the less reliable information.
The CLE ξ2

ω measuring the modeling error at angular frequency ω is given here
by:

ξ2
ω(p, vn) = ω2ρ2

∫
∂3Ω

(vn −Anp)∗(vn −Anp)dΓ (4.3)

where p, vn are independent fields on ∂3Ω. The relative error for each frequency
ω is obtained by dividing the CLE ξ2

ω by the following quantity that normalizes
the error:

σ2
ω =

ω2ρ2

2

∫
∂3Ω

((Anp)∗Anp + v∗nvn)dΓ (4.4)

The relative modified CLE is then written erel
ω = ξω/σω.

4.2.3 The modified CLE

Since we want to update a continuous model with reference to experimental
measurements, an additional measurement error is added to the error ξω caused
by the model formulation itself. Just as for the model, it is useful to define
the reliable and less reliable equations for the measurements and to build an
error measure on the less reliable experimental quantities. Measurement errors
are among others due to the positioning of the sensors and microphones, their
accuracy, calibration, measurement orientation,...
If we are dealing with pressure measurement by using microphones and we
assume that only the measured amplitudes are less reliable, then the relative
modified CLE is written:

erel
ω =

(
ξ2
ω

σ2
ω

+
r

1− r

‖Πp− p̃‖2

‖p̃‖2

)1/2

(4.5)
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4.2.4 Discrete updating problem
Approximated pressure variables (P,Q) are defined as follows on ∂3Ω:

p = P (4.6)
vn = AnQ (4.7)

A variational formulation of equations (4.2) allows the discretization of the
acoustic problem where nodal unknowns P, Q are associated to pressure fields
P , Q.

[K]P + jωρ[C]Q− ω2[M]P = [E]P (4.8)

where

• ph = NtP is the approximate pressure,

• [M] =
1
c2

∫
Ω

NtNdΩ is the mass matrix,

• [K] =
∫

Ω

∇tN∇NdΩ is the ’stiffness’ matrix,

• [C] =
∫

∂3Ω

AnNtNdΓ is the admittance matrix,

• [E] =
∫

∂2Ω

∇n
tNNdΓ is the system excitation matrix due to normal ve-

locities prescribed on boundary ∂2Ω.

The modeling CLE (4.3) is written for the discretized system :

ξ2
ω(P,Q) = ρ2ω2(Q−P)∗[D](Q−P) (4.9)

where [D] =
∫

∂3Ω

A∗
nAnNtNdΓ

The discrete form of the modified CLE (4.5) taking into account the experi-
mental error is given by:

e2
ω = ξ2

ω +
r

1− r
{ΠP− P̃}∗[Gw]{ΠP− P̃} (4.10)
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where [Gw] represents the error measure ‖.‖2, Π is a projection operator that
gives the value of the pressure at the corresponding sensors, p̃ is the measured
pressure, and P̃ the corresponding nodal value vector.
A projection operator Π is a matrix defined by: Πii = 1 if the dof i is measured

Πii = 0 if the dof i is not measured
Πij = 0 if i 6= j

(4.11)

In the numerical example of this paper, [Gw] is a square unity matrix of size
equal to the number of measurements. The weighting factor r

1−r is related to
the trust that we put in the measurements with respect to the model accuracy.
Reference [DLR04] shows that for usual noise level on the experimental data
and modeling error, r = 0.5 is a good choice.
The problem to be solved is :

Find sω=(P,Q) |
{

[K]P + jωρ[C]Q− ω2[M]P = [E]P
ξ2
ω(sω) is minimum (4.12)

The updating process consists in solving problem (4.12), which is done itera-
tively. At each iteration, the functional e2

ω (4.10) is evaluated and compared
to a required quality level e2

0 until e2
ω ≤ e2

0.

4.3 Model reduction
The minimization of e2

ω under the admissibility constraint is achieved here by
introducing Lagrange multipliers, which leads to equation (4.13).

1
2
(Q−P)∗[C](Q−P) +

r

2(1− r)
(ΠP− P̃)∗[Gw](ΠP− P̃)

+ Λ∗ {
([K]− ω2[M])P + jωρ[C]Q− [E]P

}
(4.13)

Problem (4.12) is solved by deriving equation (4.13) with respect to P, Q, and
the Lagrange multiplier Λ.
By eliminating the Lagrange multiplier, the previous system can be rewritten
under the form of two undamped forced vibration problems, the first in P and
the second in (Q−P):

([K]− ω2[M])P = b− jωρ[C]Q (4.14)

([K]− ω2[M])(Q−P) = jωρ[C](Q−P) + j
ωr

1− r
Πt[Gw](P̃−ΠP)(4.15)
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where b = [E]P. Such problems can be reduced using a truncated modal basis
to which Krylov vectors associated to the force-like terms in the right hand
side are added. This technique is inspired from paper [DLL02], that suggested
the idea in the case of the structural dynamics.

4.3.1 Truncated modal basis
Let us consider the following classical undamped forced vibration problem at
angular frequency ω, in its discrete form:

([K]− ω2[M])P = F (4.16)

For a system with N degrees of freedom, there are N pairs (Φi, ωi) that verify:

([K]− ω2
i [M])Φi = 0 (4.17)

A truncated model basis is built by taking L eigenmodes such that for i > L,
ω/ωi � 1.
The approximation can be improved by adding to the truncated modal basis
series of Krylov vectors associated with the excitation F. The series are defined
as follows:

[K]−1
(
[M][K]−1

)k
F, k = 0, 1, 2, . . . (4.18)

More details about Krylov series can be found in [Qu01]. The first term of the
series is the static response of the system to the excitation F, while the next
terms represent static responses to the forces

(
[M][K]−1

)k
F.

4.3.2 Application to the reduction of problem (4.12)
Excitations in equations (4.14) and (4.15)

The right hand side of equation (4.14) can be split into two different contribu-
tions:

• b (excitation applied to the system) = F1

• −jωρ[C]Q = F2

The right hand side of equation (4.15) shows also two contributions:

• jωρ[C](Q−P) = F3

• jω r
1−rΠ

t[Gw](P̃−ΠP) = F4
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Approximation of the excitations

Among the excitations F1 to F4, only F1 = b is known. The other forces are
approximated in what follows. The components of F4 are zero except for the
measured degrees of freedom. This force can be considered as the sum of unit
forces F4,i at each of the sensors:

F4 =
NS∑
i=1

aiF4,i (4.19)

where NS is the number of sensors.
The vector F2 is a function of Q, which can be approximated by:

Q = [T0]Qr (4.20)
with [T0] = [Φ1 . . . ΦL [K]−1F4,i . . . [K]−1F4,NS] (4.21)

Neglecting the [K]−1F4,i basis vectors that are a correction to the truncated
modal basis [Φ], F2 can thus be approximated by:

F2 =
L∑

i=1

ai[C]Φi (4.22)

This approach is similar to what is done in [BLC97], [Bal98] and [BB01].
Similarly with what has been done to approximate F2, the vector F3 can be
expressed as:

F3 =
L∑

i=1

bi[C]Φi (4.23)

Since the forces F2 and F3 are made of the same basis vectors (only the mul-
tiplying coefficients are different), only one of these forces has to be considered
concerning its contribution in terms of the basis vectors needed to build the
reduced basis.

Damping matrix modification during the optimization process

During the optimization process, the damping matrix [C] is modified at each
iteration and becomes [C + ∆C]. The forced vibration problems are conse-
quently modified by adding a term of the form Fc = [∆C]P on the right hand
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side. Using the same approach as in section 4.3.2, Fc is approximated by:

Fc =
L∑

i=1

ci[∆C]Φi (4.24)

The Robin boundary condition can be subdivided in H regions that correspond
to the different absorbing material regions. Each region is characterized by an
admittance coefficient An,j and an admittance matrix [Cj] whose coefficients
are zero at the nodes outside this region so that:

[C] =
H∑

j=1

An,j [Cj] (4.25)

It will now be shown that the modified damping matrices [∆Cj] (j = 1, . . . ,H)
are proportional to the local matrices [Cj].
If [.]k denotes the iteration number k, equation (4.25) becomes:

[C]k =
H∑

j=1

Ak
n,j [Cj] (4.26)

Defining the damping matrix modification at iteration k by

[∆C]k = [C]k − [C]0 (4.27)

combining (4.26) and (4.27) gives

[∆C]k =
H∑

j=1

(Ak
n,j [Cj]−

H∑
j=1

(A0
n,j [Cj] (4.28)

=
H∑

j=1

(Ak
n,j −A0

n,j)[Cj] (4.29)

=
H∑

j=1

[∆Cj]
k (4.30)
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Comparing the last two lines clearly shows that [∆Cj]
k is proportional to [Cj],

which yields:

Fc =
L∑

i=1

ci[∆C]Φi (4.31)

=
L∑

i=1

H∑
j=1

cij [Cj]Φi (4.32)

Model projection in the reduced space

The contributions to the excitation of the undamped vibration problems leads
to build a static basis Tstat. If only the first term of the Krylov series is
kept, the forces Fi (i = 1, . . . , 4) and Fc yield the corresponding static basis
contributions, that are expressed as follows:

F1 99K Tstat,1 =
[
[K]−1F1

]
(4.33)

F2,F3 99K Tstat,2 =
[
[K]−1[C]Φ1 . . . [K]−1[C]ΦL

]
(4.34)

F4 99K Tstat,4 =
[
[K]−1F4,1 . . . [K]−1F4,NS

]
(4.35)

FC 99K Tstat,c =
[
[K]−1[C1]Φ1 . . . [K]−1[C1]ΦL (4.36)

. . . [K]−1[CH]Φ1 . . . [K]−1[CH]ΦL

]
(4.37)

Finally, the static basis Tstat,2 is left out because its vectors are linear combi-
nations of the basis vectors of Tstat,c. The final reduced basis for the updating
system is :

[T] = [ [Φ] [Tstat,1] [Tstat,4] [Tstat,c] ] (4.38)

The reduced quantities can now be expressed as follows:

P = [T]Pr (4.39)
Q−P = [T](Q−P)r (4.40)

br = [T]tb (4.41)
[Kr] = [T]t[K][T] (4.42)
[Mr] = [T]t[M][T] (4.43)
[Cr] = [T]t[C][T] (4.44)
[Πr] = [Π][T] (4.45)
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Figure 4.1: Side and top view of the mesh of the light model of a car cabin

Note that the basis is orthonormalized to improve the system conditioning.
Note also that the reduced basis is built from undamped eigenmodes. Conse-
quently, that basis could only be used to represent the behavior of a slightly
damped system, assuming that its eigenmodes are close the one of the corre-
sponding undamped system.

4.4 Numerical applications

Two applications of the technique are proposed in this section. The first test-
case addresses a light model. The objective is to validate the technique feasi-
bility and check the ability of the different contributions of the reduced basis
to improve the quality of the updated results.
The second numerical application deals with a 20.000 node mesh for which pro-
jecting the initial model into a sub-space is of real interest. A detailed analysis
of the updated parameters is performed along the studied frequency range.

4.4.1 Validation of the reduced basis on a light model

The studied setup is a simplified model of a 3D car cabin that is presented in
figure (4.1). The finite element mesh contents 1171 nodes and 814 linear ele-
ments (69 wedges and 745 bricks), and it is excited by its firewall that vibrates
with normal velocity v0 = 1mm/s.
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64.3 137.4 183.9 221.4 261.3 280.8
107.9 151.1 189.9 244.8 269.0 286.7
118.9 158.7 217.5 260.1 277.2 294.5

Table 4.1: Eigenfrequencies of the light acoustic model (fig.4.1) in the range
[0-300] Hz

The roof of the car is covered by 5 different absorbing materials with admit-
tance coefficients An1, An2, An3, An4, An5. These parameters are complex and
frequency dependent and the goal is to update them by minimizing the CLE.
The remaining bounding surface of the car body is assumed to be rigid.
Measurements were not performed and the reference pressure field that is used
to validate the model comes from a finite element simulation with the exact
value of the 5 unknown parameters. A total of 16 nodal pressures simulating
as many sensors located near the absorbing materials are taken into account.
The validation of the model is achieved in the frequency range [0−150] Hz with
a frequency step of 2 Hz. The natural frequencies in the range [0 − 300] Hz
are presented in table (4.1). The initial values of the 5 admittance coefficients
at the first iteration of the optimization process are set to the double of their
exact values. The validation step is run using different reduced bases.
The results are reported in table (4.2), showing the residual CLE after validat-
ing the setup (column 2), the residual error on the 5 updated parameters, the
size of the basis used (number of vectors in the basis) and the CPU-time needed
to update the setup on the studied frequency range. The error levels (in %)

CLE An1 An2 An3 An4 An5 size(T) CPU-time
Basis # error error error error error

[%] [%] [%] [%] [%] [%] [minutes]
1 19.1 / / / / / 18 50
2 0.49 1.31 5.40 2.03 1.25 4.34 64 94
3 0.07 0.56 2.76 0.88 0.39 0.77 78 127

Table 4.2: Residual CLE after validating the setup (column 2), residual error
on the 5 updated parameters, size of the basis used (number of vectors in the
basis) and CPU-time needed to update the setup
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Figure 4.2: Side view of the car cabin mesh and its boundary conditions

are frequency average values. The error values on the admittance coefficients
for the basis 1 explode and are therefore not mentioned.
The description of the 3 reduced bases is the following one:

• basis 1: eigenmodes in the frequency range [0-300] Hz,

• basis 2: basis 1 + Tstat,1 + Tstat,c ,

• basis 3: basis 2 + Tstat,4

Table (4.2) shows that a classical truncated modal basis (basis 1) is unable to
simulate the behavior of the setup. Adding the static response of the system
to the excitation b and taking into account the forces related to the system
variations (basis 2) improves significantly the CLE threshold, but very low
error levels on the updated parameters can only be reached by adding static
responses linked to the unity vectors associated to the measured degrees of
freedom (basis 3).
Finally, the residual error levels on the admittance coefficients and the CLE are
very low (mostly less than 1%), which is comparable to the stop criterion e0
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that is used when updating the acoustic problem with the full discrete system.
So, the updating quality with the reduced basis is like the one of the full system,
which validates the reduced basis.

4.4.2 Acoustic absorption in a car cabin
This numerical application is intended to apply the constitutive law error up-
dating technique while using the reduced basis developed trough chapter 4.3 to
a model with a mesh density justifying the need for the model size reduction.
The geometry is pretty similar to the one of the first numerical example in the
sense that it represents also the acoustic domain of a car cabin. The outer
shape of the setup is nevertheless somewhat different (in this case the trunk is
not represented for instance) and the seat sketching was improved. The longi-
tudinal length of the present device is also somewhat shorter, which explains
why the eigenfrequencies are typically higher.
The mesh is made of 19.725 nodes and 100.087 linear tetrahedral elements.
One focuses on the acoustic absorption related to the materials covering the
roof, the floor and the back-rest of both the front and the rear seats of the car.
Admittance coefficients correspondence is the following one:

• An1 refers to the roof of the car as represented in fig.(4.2),

• An2 refers to the floor of the car,

• An3 refers to the back-rest of the rear seat of the car,

• An4 refers to the back-rest of the front seat.

88.3 212.5 290.2 347.3 393.4 434.9 480.9 517.6 549.0 596.7
126.5 234.2 298.8 350.3 399.6 439.5 490.5 522.9 555.5 598.6
144.7 245.0 304.8 362.8 407.8 446.0 500.7 526.8 568.4
154.6 255.9 308.9 369.6 410.9 453.6 506.4 530.6 577.8
172.2 269.2 318.4 375.5 422.5 463.0 508.4 534.2 583.3
192.6 277.7 323.2 381.1 426.6 464.3 514.1 538.3 589.5
197.3 285.8 329.5 390.3 430.2 470.7 515.1 544.8 594.1

Table 4.3: Eigenfrequencies of the acoustic domain of fig.(4.2) in the range
[0-600] Hz
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Figure 4.3: Updated admittance coefficients with 5% measurement noise (’o’
plot symbols) and without noise (’+’ plot symbols); the dotted line draws the
reference values
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The surface bounding the acoustic domain which is not covered by absorbing
materials is assumed to be rigid, with the exception of the firewall that vibrates
with a normal velocity v0 = 1mm/s and constitutes the only acoustic source.
Fig. (4.2) highlights the geometry together with the vibrating firewall and the
damping boundary conditions.
The device is updated in the frequency range [100-400] Hz and the modal basis
makes use of eigenvectors up to 600 Hz. The corresponding natural frequencies
of the setup are reported in table (4.3). The admittance coefficients are updated
every 25 Hz, and the initial values of the admittance coefficients at the first
iteration of the optimization process are set to the double of their exact values.
iThe nodal pressure is recorded at 50 different locations randomly distributed
into the acoustic domain to simulate the measurements.
The updating process is applied twice to the setup. During the second run, the
reference finite element pressure field replacing the measurements is polluted
numerically in order to simulate a slight discrepancies in the experimental data.
The noisy reference field is obtained by multiplying the real and imaginary parts
of each measurement by 1 + ω ∗N , where N is a random number chosen from
a normal distribution with mean zero and variance one, and ω is the weight
applied to the normal distribution, and so the average noise level that is set to
5%.
The updated admittance parameters are plotted in fig.(4.3). Both the real
and imaginary parts of the coefficients are reported and compared to the exact
values while updating the model with and without measurement noise. The
corresponding errors on the admittance magnitude are shown in fig.(4.4): the
maximum error level is about 5% with perfect experimental data, and it never
reaches 10% when polluting the reference pressure field. The average values
over the frequency range are significantly lower.
Fig.(4.5) draws the residual constitutive law error after updating along the
frequency range of interest. The CLE varies between 1 and 8.5% with noisy
measurements, and it drops significantly when using perfect experimental data.
The CPU time speedup is also plotted in fig.(4.5). It is computed by the ratio
of the running time of the full non reduced model updating process at a given
frequency and the corresponding time while projecting the model into the sub-
space, and this ratio moves around 110. Actually, the number of iterations
needed for updating the setup at a given frequency is about the same while
using the full or the reduced model (around 300 iterations).
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Figure 4.4: Updated admittance coefficient error with 5% measurement noise
(’o’ plot symbols) and without noise (’+’ plot symbols)
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Figure 4.5: CLE residue after updating and CPU time speedup (full/reduced
model updating time ratio): updating with 5% measurement noise (’o’ plot
symbols) and without noise (’+’ plot symbols)
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So, the speedup to update the system at each frequency is close to the ratio
of the CPU times needed to compute one single iteration with the full and the
light models. Note that the full model computations are achieved in a optimized
way, taking advantage of the sparse property of the finite element matrices and
using a skyline solver to invert the system of equations. The initial sparse
system size is 39450 (twice the number of nodes) while the reduced non-sparse
equation set size is 818 (twice the number of vectors in the reduced basis).
The order of magnitude for the time needed to update the 20.000 node models
on a single 2.4 GHz Linux processor is around 4 minutes for each frequency
when using the reduced basis. It yields to somewhat less than one hour to
update the system in the [100-400] Hz frequency range with an increment of
25 Hz. With a deceleration of ca. 110, the entire non reduced model updating
process runs for four days.

4.5 Conclusions
The paper discusses the problem of validating large acoustic setups of industrial
size by the mean of the constitutive law error technique. In order to update
such models, the optimization problem is rewritten under the form of a system
of undamped forced vibration problems.
That leads us to build a reduced basis with the following contributions:

• a truncated modal basis,

• the static response of the system to the excitation of the acoustic domain
(Krylov series),

• static responses to the forces related to the variations of the system during
the updating process,

• static responses associated to the measured degrees of freedom

The reduced basis is implemented and tested on two numerical examples. The
paper presents a very simplified model of a 3D car cabin: the updating of the
model is achieved using 3 different bases, the first being a classical truncated
modal basis, and the others adding progressively the static contributions listed
above. Comparing the results of the 3 validations shows that a very good
quality for the updating process is only reached when the reduced basis is used
with all the contributions proposed in the paper.
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A second application deals with a pretty similar geometry but with a refinement
of about 20.000 nodes. The absorbing materials covering the roof, the floor and
the the back-rest of both the front and the rear seats of the car are updated
with and without measurement noise. A detailed analysis of the numerical
results is presented. Compared to the validation step that uses the full non
reduced model, the CPU-time of the reduced updating process is about 110
times lower for this setup of average size.
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In the global framework of improving vibro-acoustic numerical simulations
together with the need to decrease the number of prototyping stages, improv-
ing the quality for acoustic models becomes increasingly important for many
industries such as automotive companies, for instance. This paper focuses on
achieving greater accuracy for acoustic numerical simulations by making use of
a parametric updating technique, which enables tuning the model parameters
inside physically meaningful boundaries. The improved model is used for the
next prototyping stages, allowing more accurate results within reduced simu-
lation times. The updating technique used in this paper is based on recent
works dealing with the constitutive relation error method (CRE) applied to
acoustics. The updating process focuses on improving the acoustic damping
matrix related to the absorbing properties of the materials covering the borders
of the acoustic domain.
The present study proposes a 2-stage optimization process, which exhibits many
advantages. Indeed, the computational time decreases, the frequency interpo-
lation of the material absorbing properties outside the studied frequency range
is easily performed, and comparing the correlation of several material absorb-
ing constitutive equations with experimental records is fast.
Additional originality of the work comes with the application of the CRE up-
dating method to a concrete real-life device, while previous works addressed
purely numerical setups without experimental data. The test-case is the TRI-
CARMO setup engineered by LMS International in Leuven, Belgium. The
TRICARMO setup is a simplified car cabin with rigid walls and car seats in-
side. Thanks to the 2-stage approach, the material property characterization
of the seat is improved by running the updating simulation process using a
physical absorbing material model.

5.1 Introduction

In recent years, many industries have taken into account noise control con-
sideration during the design stages, either to satisfy code rules or to improve
the end-user’s comfort. To evaluate and further improve the numerical model,
experimental information remains highly useful.
Updating techniques aim at getting numerically simulated physical fields that
are closer to the measured ones. Among these techniques, some act on tun-
ing model parameters inside physically meaningful boundaries. Such methods
allow to use the new parameters in further computations while changing the
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configuration.
In [DBDL04a], the choice of using the constitutive relation error (CRE) method
to update acoustic models is motivated, and the principles of the CRE are ex-
tensively explained. The technique is also applied to 2D academic test-cases.
The good results encouraged the authors to apply the CRE technique to 3D
real-life test cases, but the developed technique showed a drawback in terms
of computational time. Indeed, the CRE updating technique requires solving
a matrix system that is larger than the initial one. Furthermore, the technique
being iterative, several hundred inversions of the larger matrix are performed
for each frequency. One of the goals achieved by the 2-stage approach presented
here is to decrease the running time.
To face real-life test cases, the admittance model that is used to evaluate the
absorbing properties of the porous materials has to be as accurate as possible.
The present paper uses Wilson’s admittance formulation ([Wil97]) to charac-
terize the porous compounds of the numerical applications.
The clue of the updating technique presented here is to split the updating pro-
cess into a first stage that has to be independent of any admittance model, and
a second stage that links the microstructural material properties to the material
absorbing behavior through an admittance model, as explained in chapter 5.2.
In the first stage, each absorbing material is characterized by a single complex
number for each updating frequency.
In the second stage, a physical admittance model is used to fit as well as possi-
ble the real and imaginary parts of the admittance coefficients that have been
found thanks to the first stage. This fitting stage is processed through the
studied frequency range for each absorbing material.
With the goal to compare several admittance models when updating an acous-
tic setup, the frequency correlation with the updated admittance coefficients
using a specific absorption model during the second stage is treated like a post
treatment analysis and is very cheap in terms of CPU time.
Mathematical foundation of the CRE updating method is formulated in chap-
ter 5.1.1. The wall admittance modeling is described in paragraph 5.1.2, and
part 5.1.2 presents the admittance model of Wilson that will be used later to
update the numerical applications treated in the article.
The 2-stage approach detailed description together with a validation study are
parts of chapter 5.2.
Chapter 5.3 addresses the updating of a real-life device : a concrete simplified
car engineered by LMS International, which is called TRICARMO. Car seats
are placed into the setup and are the only absorbing facilities damping the
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acoustic waves inside the TRICARMO car. The setup is instrumented with
many microphones recording the sound pressure level inside the car.
The 2-stage updating technique is used to update the driver’s seat absorbing
properties through a frequency range that goes from 50 to 350 Hz.
Finally, chapter 5.4 presents the conclusions about the ability of the 2-stage
updating approach to accurately improve the numerical simulation of acoustic
absorbing properties.

5.1.1 Updating acoustic models with the CRE
The present paper uses a parametric updating technique based on the consti-
tutive relation error (CRE). The fundamentals of the CRE were first developed
by P. Ladevèze in structural dynamics (see [Lad98]) and then applied to acous-
tics in [DBDL04a]. The main idea in the CRE technique consists in splitting
the data and equations of the model into ’reliable’ information and ’less reli-
able’ one. Whether one trusts a given data or equation has to be related to the
assumptions made in its derivation.

The reliable information

A solution has to verify the reliable information exactly. In what concerns
acoustics, it means that the pressure field p has to satisfy the Helmholtz wave
equation with the associated Dirichlet and Neumann boundary conditions on
parts ∂1Ω and ∂2Ω of the boundary respectively:

Helmholtz : ∆p + k2p = 0,
Dirichlet B.C.: p|∂1Ω = p,

Neumann B.C.: vn|∂2Ω
=

j
ωρ

∂p

∂n
|∂2Ω = vn,

(5.1)

where j =
√
−1, ω is the angular frequency, k is the wave number, ρ is the fluid

density, vn is the normal velocity, and p and vn are the imposed pressure and
normal velocity on parts ∂1Ω and ∂2Ω of the boundary respectively.

The less reliable information

The best candidate among a solution set satisfying the reliable information
minimizes the constitutive relation error estimator, which is built on the less
reliable information.
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In particular, through this paper, it is chosen that the Robin admittance bound-
ary condition together with the measured pressure field amplitude will not be
verified exactly, assuming that those data are the most questionable for the
present acoustic model. Practically, the pressure field q will satisfy the Robin
equation (5.2), and the distance between pressure variables p and q will be
minimized.

Mixed Robin B.C.: vn|∂3Ω
= An(ω)q, (5.2)

where An is the admittance coefficient, and ∂3Ω defines the absorbing boundary
where equation (5.2) applies. As to the uncertainty on the measured pressure
levels, discrepancies between computed pressure p and measured field p̃ has to
be minimized also.
The two contributions to the less reliable information result in building the
error estimator CRE (5.3).

e2
ω = ω2ρ2

∫
∂3Ω

(vn −Anq)∗(vn −Anq)dΓ +
r

1− r
‖p− p̃‖2, (5.3)

where vn =
j

ωρ

∂p

∂n
and (.)∗ denotes the complex conjugate. The weighting fac-

tor
r

1− r
is related to the confidence in the measurements in comparison with

the model accuracy. In the absence of a priori knowledge in the measurement
quality, r is set to 0.5, keeping in mind that 0 ≤ r < 1.

Discrete formulation of the CRE updating method

The continuous acoustic model can be approximated by a discrete formula-
tion, e.g. using the finite element formalism based on a variational form of
reliable equations (5.1) and (5.2). Updating the approximated discrete model
is achieved by solving the finite element matrix equation while minimizing the
CRE estimator, as presented in (5.4).

Find sω=(P,Q) |
{

[K]P + jωρ[C]Q− ω2[M]P = [E]P,
e2
ω(sω) is minimum, (5.4)

where the discrete form of the modified CRE (5.3) taking into account the
experimental error is given by:

e2
ω = ω2ρ2(Q−P)∗[D](Q−P) +

r

1− r
(ΠP− P̃)∗[Gw](ΠP− P̃). (5.5)
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The definition of the finite-element vectors and matrices is as follows:

• ph = NtP and qh = NtQ are approximated pressure fields (N being the
shape functions),

• [M] =
1
c2

∫
Ω

NtNdΩ is the mass matrix (c being the sound speed),

• [K] =
∫

Ω

∇tN∇NdΩ is the stiffness matrix,

• [C] =
∫

∂3Ω

AnNtNdΓ is the admittance matrix,

• [E] =
∫

∂2Ω

∇n
tNNdΓ is the system excitation matrix due to normal ve-

locities prescribed on boundary ∂2Ω,

• [D] =
∫

∂3Ω

A∗
nAnNtNdΓ.

[Gw] represents the error measure ‖.‖2 of equation (5.3), Π is a projection
operator that gives the value of the pressure at the corresponding sensors, and
P̃ is the nodal value vector of the measured pressure p̃.
In the numerical example of this paper, [Gw] is a square unity matrix of size
equal to the number of measurements.
The updating process is iterative: each step consists in computing new updating
parameters and solving the problem using these new values. The computed
pressure is compared to the measurements using the constitutive relation error,
and the iterative process stops when the error is below a reference threshold
value.

5.1.2 Modeling of the wall admittance

The sound absorption in porous media consists of 3 different contributions
([All93]):

• the viscous effects in the boundary layer close to the frame,

• the thermal diffusion process between the fluid and the frame,
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• the internal energy losses coming from the frame motion.

The main geometrical parameters of these absorbent materials are:

• the porosity Ω = Vf/Vt, where Vf and Vt are the fluid volume and the
total volume respectively,

• the tortuosity q,

• the average pore diameter d [m],

• the flow resistivity σ [Nm−4s].

Absorbing media and equivalent fluid

The modeling of the absorbing media is based on the concept of equivalent fluid
(see [All93]). The heterogeneous porous medium is made of a skeleton/frame
perforated by pores with various shape. Though, it is regarded as an homo-
geneous fluid, which is characterized by a complex propagation constant Γ , a
complex impedance Zc and a thickness de (see fig. 5.1). The local phenomena
occurring inside the absorbing material are not modeled. An acoustic wave
entering the material is supposed to be reflected and to exit the material at the
incidence location. This assumption is perfect for waves entering the medium
perpendicularly to its surface. The outgoing acoustic wave is computed from
the incident wave and the wall impedance representing the absorbing medium.
If the incident wave enters the absorbing medium perpendicularly to its surface,
the wall admittance Zn is given by equation (5.6).

Zn = Zc

Zc −
jZn0

tan(Γde)

Zn0 −
jZc

tan(Γde)

, (5.6)

where Zn0 is the wall admittance of the surface backing the absorbing material.
In the particular case where the layer of equivalent fluid is backed by a rigid
impervious wall, Zn0 →∞, and equation (5.6) reduces to (5.7).

Zn =
−jZc

tan(Γde)
. (5.7)
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Figure 5.1: Layer of equivalent fluid (thickness de) representing an absorbing
material backed by a rigid impervious wall

Admittance models in the literature

The admittance models presented in the literature can be split in 3 kinds of
models:

• the empirical models,

• the microstructural models,

• the phenomenological models.

The microstructural models are derived by calculating the exact solution for
the propagation of sound waves in pores of constant circular cross section. The
resulting equations are tuned to accommodate more complicated geometries
using one or two shape factors. While microstructural models provide a quite
accurate absorption description for a broad range of frequencies and materials,
their equations are very complicated to handle and require many experimental
data to be provided.
Phenomenological models propose a compromise between microstructural and
empirical models: they are derived from simplified propagation models inside
porous media. They provide relations for Γ and Zc that usually describe the
absorbent materials nearly as well as microstructural models do. Hence, phe-
nomenological models are easier to handle and less experimental information
is required. Additional information about admittance models can be found in
the literature of [Wil97].
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Wilson’s model

Wilson’s model is particularly interesting in the framework of updating updat-
ing materials because it can be described by 1, 4 or 5 parameters, and the
model is able to mimic the frequency behavior of any empirical or microstruc-
tural admittance model. Wilson’s equations describe the propagation of sound
in porous materials as follows ([Wil97]):

Zc

ρc
=

q

Ω

[(
1 +

γ − 1√
1− jωτent

) (
1− 1√

1− jωτvor

)]−1/2

, (5.8)

Γ
ω/c

= q

[(
1 +

γ − 1√
1− jωτent

)
/

(
1− 1√

1− jωτvor

)]1/2

, (5.9)

where ρ is the fluid density, c is the sound velocity, γ is the specific heat ratio,
q is the tortuosity, Ω is the porosity, and σ is the flow resistivity, an intrinsic
property of the material that measures the resistance to an air flow through
it. σ lies between 5000 and 105 Nm−4s for materials like fiberglass and open-
bubble foam.
τent is the relaxation time (i.e. the time necessary to return to an equilibrium
state after a perturbation is introduced) related to the temperature gradient
between the fluid and the frame. τvor is the relaxation time of the pressure
gradient related to the fact that the fluid sticks to the frame.
By default, Wilson’s model exhibits 4 parameters which are q, Ω , τent, and

τvor. With X =
ρf

σ
being the reduced frequency and f =

ω

2π
the frequency,

the model of Wilson supposes to evaluate τent and τvor at low and high re-
duced frequencies, let say at X = 0.01 and X = 1. Interpolating between these
reduced frequency values gives the characteristic impedance and the propaga-
tion constant at mid frequencies. If one is interested in a given microstructural
model, it is possible to mimic its behavior by computing τent and τvor by mak-
ing use of the equations for Zc (5.8) and Γ (5.9).
In the particular case of the well known Delany-Bazley model ([DB70]), it is
assumed that Ω = 1 and q = 1. This is actually in good agreement with that
simple model. Since this empirical model exhibits only one material depen-
dent parameter, τent and τvor are computed at the average reduced frequency
X = 0.1. The system of 2 equations (5.8, 5.9) with 2 unknowns then yields to
relations (5.10) and (5.11), which are functions of the reduced frequency, and
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then of the flow resistivity only.

Zc

ρc
=

[(
1 +

γ − 1√
1− j19X

) (
1− 1√

1− j13X

)]−1/2

, (5.10)

Γ
ω/c

=
[(

1 +
γ − 1√

1− j19X

)
/

(
1− 1√

1− j13X

)]1/2

. (5.11)

In chapter 5.3.3, one uses Wilson’s model for which τent and τvor are computed
by comparing relations (5.8) and (5.9) to the microstructural model of Biot-
Allard [ADN+90] at low and high frequencies. The relaxational times solving
the equalities are:

τvor = 2
ρq2

Ωσ
, (5.12)

τent = NPrS
2
b τvor, (5.13)

where NPr is the Prandtl number. That version of Wilson’s model needs 4
absorbent material dependent parameters like the initial one of Biot-Allard.
These parameters are the porosity Ω , the tortuosity q, the flow resistivity σ,
and a shape factor Sb.

5.2 The 2-stage approach

5.2.1 Principles
The 2-stage updating method splits the process in 2 phases. Compared to the
CRE technique presented in chapter 5.1.1, the 2-stage approach solves the same
system of equations (5.4). The main difference resides in the optimization loop
aiming at minimizing the error estimator (5.5).
In the former CRE updating technique, the optimization process uses a clas-
sical gradient based method to chose the next candidate for each admittance
coefficient. The choice consists in evaluating the gradient of the error estimator
(5.5) with respect to each parameter of the admittance coefficients to find the
best optimization direction minimizing the CRE. The time needed to find the
next best candidate from iteration k to k + 1 is proportional to the number of
parameters characterizing each absorbing material.
The first stage of the new updating technique then reduces the running time by
characterizing each admittance coefficient using only two variables : the real
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and imaginary parts. Indeed, most of the admittance models use at least four
intrinsic parameters to determine the absorbing properties of a given porous
material. Knowing also that increasing the number of optimization parameters
makes the search of the optimum solution more difficult, reducing the size of
the variable space yields to stabilizing the optimization process. The first stage
is run at a few frequencies evenly spread within the studied frequency range.
Then, the second step is launched to get a continuous description of each admit-
tance coefficient through the frequency range. Based on an admittance model
that is parameterized in terms of frequency and intrinsic structural material
properties, the second stage consists in finding the best combination of param-
eters that generates a smooth frequency interpolation of the discrete set of real
and imaginary parts found during the first stage. The fitting process of the
second stage is once again based on a gradient optimization technique. This
stage is though much faster since the functional to be minimized is the distance
between two admittance coefficients while during stage one, each evaluation of
the error estimator requires solving the finite element system of equations. For
each absorbing material, the second stage can be written following expression
(5.14).

Find s = (αm)|(m=1,...,M)|
L∑

l=1

‖Aup
n,l −An,l(ω, s)‖ is minimum, (5.14)

where:

• αm are the intrinsic parameters of the admittance model with m =
1, . . . ,M ,

• L is the number of updating frequencies,

• Aup
n,l is the updated complex admittance coefficient from stage 1,

• An,l(ω, s) is the admittance coefficient computed using a frequency de-
pendent model based on structural parameters αm.

In summary, the first stage looks for the best complex admittance coefficient
for each material of the setup at a given frequency. The introduction of a
particular admittance model is achieved through the second stage, which fits the
complex admittance coefficients that were calculated during the first updating
stage through the frequency range of interest. The variable parameters of the
admittance model are physical properties of the absorbing material and can
vary inside plausible boundaries.
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Figure 5.2: Flowchart of the conventional CRE updating method versus the
2-stage approach
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Figure 5.3: Academic setup used to validate the 2-stage method : the car cabin
is equipped with 4 absorbing materials An1→4 and the noise inside the acoustic
domain is generated by the dashboard vibrations with normal velocity vn

5.2.2 The 2-stage approach vs. the former CRE method
A flowchart comparing the former CRE updating technique versus the 2-stage
version is presented in fig. 5.2. The darker boxes highlight the differences be-
tween the two CRE based updating technique process flows.
From top to bottom in fig. 5.2, the first discrepancies concern the frequency
increment ∆f between two updating frequencies. The 2-stage technique allows
for larger frequency increments since a frequency dependent admittance model
is used during the fitting step of the second stage.
The second darker box indicates the use of a second stage only for the new
updating process flow.
The bottom dark boxes explain the differences in the gradient based optimiza-
tion process of the first stage as mentioned in paragraph 5.2.1 : the former
updating technique calculates partial derivatives of the functional with respect
to structural parameters of the absorbing materials, while the 2-stage approach
considers only the derivatives with respect to the real and imaginary parts of
the admittance coefficients.

5.2.3 Validation of the 2-stage technique
The goal of this part is to validate the 2-stage technique on a simple academic
model inspired from [Nef82]. The setup is a two dimensional car cabin that
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is covered with 4 different absorbing materials and excited by its firewall as
described in fig. 5.3. The absorption of the 4 layers is characterized using a 4
parameter Wilson’s model with standard material properties for porous foam.
The thickness of layers 1 to 4 is 3, 4, 5 and 6 cm respectively, and the corre-
sponding material properties are initially determined to build a finite element
reference pressure field that replaces the experimental data.
Then, the setup is updated to find back the right admittance properties, the
initial values being voluntarily biased by about 30 percents. The updating fre-
quency range goes from 50 to 500 Hz.
The device is firstly updated using a standard CRE method, which means using
a 4 parameter description of the absorbing materials (Wilson’s model) and a
frequency increment of 10 Hz for instance.
Then, the 2-stage technique is applied to the academic device, updating the
absorbing materials using its real and imaginary parts and a frequency incre-
ment of 40 Hz. The fine frequency description of the admittance coefficients is
obtained thanks to the second stage of the method that smoothes the discrete
admittance values using its 4 parameter description.

Admittance Porosity Tortuosity Flow resistivity Shape factor
coefficient Ω q σ [Nm−4s] Sb

An1→4 0.95 1 10000 1

Table 5.1: Microstructural parameters of the absorbing materials for the aca-
demic setup 5.3

On this simple example, the 2-stage technique runs 15 times quicker than the
standard one. The quality of the results is examined in fig. 5.4 by looking at
the frequency plot of the 4 admittance coefficients provided by both updating
techniques. The discrete values computed using the standard updating tech-
nique (tick marks in fig. 5.4) and the smoothed interpolation calculated via
the 2-stage approach (based on raw data that are not represented in fig. 5.4)
match perfectly, which validates the fast 2-stage method.
The microstructural parameters characterizing the absorbing materials that are
used to build the reference pressure field are reported in table 5.1. The same
microstructural properties are used for all materials, the only changing pa-
rameter being the layer thickness, which is sufficient to change the admittance
properties of the absorbing materials. The discrepancy between the reference
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parameters and the updated ones never reaches 1% no matter the updating
technique, so that only reference values are presented in table 5.1.
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Figure 5.4: Admittance coefficients computed with the standard discrete up-
dating method (tick marks), and with the 2-stage approach (lines). Material
1, solid line; material 2, dashed line; material 3, dotted line; material 4, dash-
dotted line

5.3 Updating a real-life test case setup

5.3.1 TRICARMO setup description

The TRICARMO setup is a simplified concrete car cabin that has been de-
veloped by LMS International in Leuven (see fig. 5.5) in the framework of a
research project founded by the Flemish Institute for the promotion of scientific
and technological research in industry (IWT) [BBKD02]. The acoustic domain
is excited by a loudspeaker that simulates the vibration of the dashboard, and
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a driver’s seat lies in the car cabin. Experimental pressure fields to be used in
the first updating stage are recorded in a few locations of the acoustic domain.
The updating process aims at characterizing the absorbing properties of the
seat.

Figure 5.5: TRICARMO concrete car with driver’s seat (courtesy of LMS
International)

5.3.2 Driver’s seat modeling

The TRICARMO setup can be equipped with different seat configurations.
While it is possible to achieve measurements with front and rear seats inside
the concrete car, the results presented here focus on the "driver’s seat only"
configuration.
The seat modeling is split into a backrest and an horizontal cushion. Both
cushions are represented by a two layer material. The bottom layer is a thick
open cell foam (material 1 in fig. 5.6). The top layer consists of a thin foam
layer covered by a fabric skin (materials 2+3 in fig. 5.6). The cover fabric is
not modeled separately and materials 2+3 in fig. 5.6 are merged together in
one absorbing material for the numerical simulations. So, each seat cushion
is regarded as the superposition of two absorbing materials with admittance
coefficients An1 and An(2+3) and the equivalent wall admittance of the assembly
is computed using equation (5.6).
The backrest and bottom cushion average thickness is respectively 60 and 55
mm. In both cases, material 2+3 accounts for 8.25 mm of the total thickness of
the cushion. Samples of those materials were analyzed by the "Laboratorium
voor Akoestiek en Thermische Fysika" of the Catholic University of Leuven
(K.U.L.), Belgium. Material properties such as density, tortuosity, porosity,
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Figure 5.6: Car seat analysis : backrest and bottom cushions are modeled by
layers of porous materials. 1) thick open cell foam, 2) thin foam layer, 3) fabric
skin (material sample pictures from [KJL01])

flow resistivity, etc., were evaluated to run deterministic numerical simulations
with highly refined seat mesh in the framework of other studies. Some of these
material properties will be used to check the updated results of the present
analysis.

5.3.3 Updating results

The updating process looks for the best parameter combination to describe the
frequency behavior of the absorbing materials of the seat. The updating is
achieved through a frequency bandwidth of [50-350] Hz with a frequency step
of 25 Hz. Running the first stage provides the complex discrete admittance
coefficients at frequencies 50, 75, 100, . . . , 350 Hz. Running the second stage
then needs to choose an admittance model. For instance, this stage is run first
with an empirical Delany-Bazley model, and then with a 4 parameter Wilson’s
phenomenological admittance model based on the Biot-Allard’s microstructural
one. Initial values for the parameters at the first iteration are set to Ω = 1,
q2 = 1, σ = 104 Nm−4s, and Sb = 1. As discussed before, the second stage
is very cheap in terms of CPU time compared to the first stage, as shown in
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Figure 5.7: Pressure/velocity ratio at the driver’s ear : measured (solid line),
computed without absorption from the seat (dotted line), and computed with
updated absorption properties of the seat (dash-dotted line)

table 5.2 where the second stage typically accounts for about 1% of the total
computational time. The entire updating process runs for 2 hours on a single
2.4 GHz Linux processor.
The second stage provides continuous values of the admittance coefficient from
the discrete updated results. The smooth values are used to build the updated
pressure field at the driver’s ear in fig. 5.7. The updated pressure/velocity ra-
tio, which is called mobility, is plotted (actually its amplitude, in dB) together
with the experimental curve and the ratio computed without taking into ac-
count the absorbing properties of the seat (i.e. the undamped dotted FRF, fig.
5.7). The updated FRF (dash-dotted line) fits rather well the measured one
(solid line). This result could not necessarily have been foreseen since no infor-
mation was provided for the porous material of the seat excepted its average
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stage 1 stage 2 (Delany-Bazley) stage 2 (Wilson)
CPU time [%] 98.1 0.8 1.1

Table 5.2: Relative CPU time comparison for the different stages: stage
time/total updating time

thickness. Though, for this particular case, the slow frequency dependence of
the homogenized parameters characterizing the porous media potentially im-
proves the result quality of the method (see fig. 5.8).
The updated material properties of the seat yield to admittance coefficients
that are compared to the coefficients coming from the material properties mea-
sured in the lab. The comparison in fig. 5.8 deals with the real and imaginary
parts of the admittance coefficients of the backrest and bottom cushions of the
seat. The real and imaginary parts computed with the measured material prop-
erties are slightly different from the ones calculated with the updated material
characteristics. That can be partially explained by the fact that most of the
measurement techniques do not take into account the tridimensional behavior
of the tested material sample.

Porosity Tortuosity Flow resistivity Shape factor
Ω q σ [Nm−4s] Sb

An1 (measured) > 0.95 1.28 9053 -
An(2+3) (measured) > 0.95 1.16 7282 -

An1 (updated) 0.99 1.32 10505 1.05
An(2+3) (updated) 0.99 1.19 7337 0.86

Table 5.3: Measured versus updated microstructural parameters of the porous
media

The resulting microstructural parameters of the porous media are reported in
table 5.3 together with the experimentally measured material properties. The
shape factors cannot be measured, which explains why there is no correspond-
ing data in table 5.3.
For this particular setup, the backrest and bottom cushions are made of the
same absorbing material, the only difference being the thickness of the cush-
ions. Then, during the second stage optimization process, the backrest and
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Figure 5.8: Real and imaginary parts of the admittance coefficients of the back-
rest and bottom cushions constituting the seat computed with the measured
and the updated microscopic properties. Measured bottom cushion, dashed
line; updated bottom cushion, solid line; measured backrest cushion, dotted
line; updated backrest cushion, dash-dotted line

bottom cushions are updated simultaneously, and the intrinsic properties of
the materials are imposed to be identical for both cushions.
It is also interesting to compare the FRF built using the updated admittance
values to the FRF based on the initial guest that would be used if no experimen-
tal data were available and the updating process was not performed (i.e. Ω = 1,
q2 = 1, σ = 104 Nm−4s, and Sb = 1). Figure 5.9 presents the mobility at the
driver’s ear. The experimental mobility is compared to the mobility computed
using standard material properties and using the updated values. In bottom
graph of fig. 5.9, the authors want to quantify the improved fitting between the
measured FRF and the FRF computed based on the updated material prop-
erties versus standard material damping data. The frequency accumulated L2

norm between the measured and computed FRF’s sums the distance separating
the curves along the frequency range. The larger the accumulated error, the
worse is the curve fitting through the frequency band. Bottom graph in fig.
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5.9 shows that the measured versus computed mobility distance, which is ac-
cumulated through the frequency range, is much larger when using admittance
coefficients calculated with standard material properties compared to updated
parameters.

5.4 Conclusions
A 2-stage updating process based on the constitutive relation error technique
was successfully tested and validated : it makes the CPU time slow down and
allows an easy and costless comparison of different admittance models.
The CRE updating technique has been applied to the TRICARMO simpli-
fied concrete car to describe the absorbing materials of the seat of the driver.
The pressure/exciting velocity ratio coming from the updating stage is com-
pared to the experimental ratio at the driver’s ear. The CRE technique, which
minimizes the global error inside the whole acoustic domain, provides a quite
good improvement of the computed FRF at the particular location where the
updated and experimental FRF’s are compared.
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Figure 5.9: Top figure: mobility amplitude from 1) measured pressure (solid
line), 2) computed pressure using updated An (dash-dotted line), 3) computed
pressure using standard material properties (dotted line). Bottom figure: fre-
quency accumulated error (L2 norm) between measured and computed mobility
using 1) updated An (dash-dotted line) 2) standard material properties (dotted
line)



Chapter 6

Conclusions and perspectives

While the present work initially aimed at investigating the ability of the consti-
tutive law error updating technique to improve the acoustic numerical model
quality by the use of experimental data, the work soon started offering more
and more opportunities in a quickly moving research area proposing many ad-
ditional side developments potentially applicable to the acoustics.
Consequently, the concluding remarks are divided into two sections, the first
one dealing with the main findings of the research so far, and the second part
proposing a few recent theories to be considered for future works.

6.1 Major findings summary

Inspired by similar developments in structural dynamics, the constitutive law
error (CLE) technique is successfully applied to acoustics. A first application
on a bidimensional longitudinal cut of a car cabin demonstrates the ability of
the method to update acoustic admittance coefficients covering several loca-
tions of the setup boundary. The admittance parameters are described in a
frequency band in presence of measurement noise, and the error recorded on
the updated coefficients is less or equal to the average noise level.

Knowing that the CLE updating technique deals with the improvement of
given less reliable numerical model laws and does not count for additional error
sources like for instance the discretization error (imprecise geometry approxi-
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mation, dispersion error inherent to the Helmholtz equation), the effect of the
numerical pollution on the model updating quality is examined.
In particular, the element-free Galerkin method (EFGM) and the usual finite
element technique are used simultaneously to update the same model while
increasing the frequency and controlling the dispersion error thanks to a highly
refined reference model. It is shown that for mid frequencies, it is computation-
ally more efficient to use an approximation method whose frequency behavior
is more robust, the updating with the EFGM being significantly more effective
then the classical FEM for increasing frequencies.

Then, the problem of updating large models is addressed and a dedicated re-
duction subspace is developed based on the re-writing of the updating system
under the form of a set of undamped forced vibration problems. The reduced
basis accounts for numerous contributions, namely a truncated modal basis and
Krylov series, which are static responses of the system to the excitations and
system variations during the updating process, but also vectors associated to
the measured degrees of freedom.
Updating a 3D simplified car model of still rather small size (≈ 1200 nodes)
with the reduced basis increases the CLE level by less than 0.1% while the
running time drops with a factor of 40 compared to the full model updating
time. Simulations on a similar setup but using a refined mesh of about 20.000
nodes decreases the CPU time by a factor 110 compared to the non-reduced
model.

Based on the CLE updating technique, a 2-stage process is implemented. The
first stage makes the optimization procedure much easier by decreasing the
number of parameters to be tuned when driving down the CLE estimator. The
technique is developed in the particular case of updating acoustic admittance
parameters whose frequency behavior can be described more or less accurately
by using different models available in the literature. The 2-stage technique
takes into account the admittance model formulation through the second stage
only, which makes testing several admittance formulations when updating the
acoustic setup costless, the second stage being very cheap.
The 2-stage formulation is applied to the TRICARMO simplified concrete car
developed by LMS International. Available pressure measurements are used to
improve the description of the driver’s seat absorbing materials, decreasing the
gap between measured and numerical frequency response function inside the
car.
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6.2 Perspectives/opportunities for enhancement

The most straightforward improvement of the implemented technique has to
do with the optimization algorithm to be used when minimizing the CLE es-
timator with respect to the admittance parameters. Indeed, the choice of the
optimization algorithm was not investigated into details through the disserta-
tion. And it is not clear whether the mono-objective algorithm has to be global
or if a local optimization process makes the deal. Most of the updating works
performed during the study used a local minimization technique of gradient or
simplex ([MN65]) type. Some trials with a genetic algorithm based global opti-
mization technique ([FC04]) did not improve significantly the solution quality
while obviously increasing the computational time.
In such a context, a systematic sensitivity study of the error estimator with
respect to the coefficients of a given admittance model using for example a
design of experiments (DOE) approach could improve the technique efficiency.

Additional future works could deal with vibro-acoustic model updating, the
acoustic pressure field being potentially improved by updating the structural
displacement of the surrounding boundary interacting with the fluid thanks
to the coupling matrices, and vice-versa. So, the acoustic pressure updating
could be performed thanks to accelerometers located on the structure instead
of using microphones.

The Extended Constitutive Relation Error estimator proposed in [DLR04,
LPDR06] for a family of quasi-identical structures in the context of uncer-
tain experimental data could be applied to the acoustics. The measurements
are described by a probability density function, and since very little statisti-
cal information is available, the authors use only the mean value for noise-free
measurements from deterministic excitation. A probabilistic structural model
is obtained by introducing uncertainties like material characteristics into the
model parameters. The updating process then addresses validating a proba-
bilistic model based on noisy measurements. The newly developed technique
enables an engineer to quantify the quality of a given probabilistic model. The
authors define a stochastic model to be exact if for any excitation the prob-
ability density function of the model solution equals the probability density
function of the solution extracted from the experimental data set.

Other new concepts of interest were recently developed in [LPR06b, LPR06a]
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and define the notion of Lack Of Knowledge (LOK) in model validation. The
goal is to be able to quantify the quality of a dynamic structural model by
globalizing the various sources of errors on the substructure level by means of a
scalar internal variable (the LOK variable). These variables are defined over an
interval whose lower and upper bounds (the lower basic LOK and upper basic
LOK) are described by a probability density function. The intervals, which are
defined for each substructure, are then propagated rigorously throughout the
mechanical model. Competing methods, which were developed by other au-
thors [Dem68, Sha76], belong to the family of imprecise probabilities [Wal90]
and are pretty similar.
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