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Abstract

Motivated by the recent advances in nanosciences, we investigate the statistical 
and thermodynamical properties of mesoscopic Systems. In paxticular, we focus 
on the recently derived results collectively known as fluctuation theorems. These 
relations give us prédictions, on the behavior of varions dynamical quantities in 
far-from-equilibrium situations, while explicitly taking the fluctuations of the 
time évolution into account.

The first part of our study deals with the relationships between fluctuations 
and response theory. We start by deriving a functional relation for time-driven 
quantum Systems which generalizes the Jarzynski equality and whose expansion 
in the driving force can be used to recover results from linear response theory. 
We then pursue these considérations by looking at nonequilibrium steady States. 
This is done in the framework of stochastic processes, where we dérivé a fluctua­
tion relation for the nonequilibrium currents Crossing the System. This relation 
explicitly links the fluctuations to the thermodynamic driving forces, which 
allows us to work out its conséquences at the level of nonlinear response the­
ory. In this way we obtain new relationships between fluctuations and response 
coeflicients in the nonlinear régime.

In the second part of this work, we develop a recent connection relating irre- 
versibility to dynamical randomness. We présent experimental evidence showing 
that entropy production is expressed as the différence between two quantities 
measuring the symmetry breaking under time reversai at the level of the tem­
poral disorder. We then proceed to study the conséquences of this relation in 
the context of information processing’s energetics. In particular, we présent a 
generalization of Landauer’s principle for the erasure of information. Likewise, 
we relate dissipation to information génération by biological entities.
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1

Introduction

1.1 Motivations

Statistical physics is nowadays challenged by the recent advances in 
nanosciences. Feynman was actually the first to reveal the potentialities of these 
scales in his séminal lecture “T/iere's plenty of room at the bottom” [73], given 
in 1959 at Caltech. Herein, he imagined the possibility of writing the whole 24 
volumes of the Encyclopedia Britannica on the head of a pin, the manipulation 
of single atoms, the miniaturization of computers, the sequencing of human 
DNA thanks to more powerful microscopes to corne, etc. Finally, he issued two 
seemingly “impossible” challenges, each one backed by a $1000 prize: the first 
was to build a working electric motor no larger than a l/64th-inch cube, and 
the second was to write a page of a book on an area 1/25,000 times smaller “in 
such manner that it can be read by an électron microscope.” ^

About fifty years later, microscopy techniques such as Scanning Tunneling 
Microscopy (STM), Atomic Force Microscopy (AFM), and Transmission Elec­
tron Microscopy (TEM) allow us to see and manipulate single atoms [64]. An 
assembly of 17 molécules has been realized which can process instruction and 
control several attached molecular machines in parallel [13]. The sequencing of 
the genome was completed in 2003 and we now live in what has been called the 
“post-genomic era” in which information about genes expressed in our tissues 
can be used to diagnose and treat diseases. Eventually, artificial electric motors 
of the size of about 300 nm with an axis made of a multiwalled carbon nanotube 
can now be manufactured [71].

Tremendous advances were achieved in other directions as well. We here 
list a few examples. Electronic transport can now be envisaged in samples 
where phase cohérence is preserved along the structure [72]. At the oppo­
site, conduction in quantum dots and tunnel junctions is governed by the

* 11 months later, engineer William McLellan had constructed a 250-microgreim 2000- 
rpm motor out of 13 sepaxate parts that would fit inside a 0.4-mm cube, emd 
collected his reward against the first challenge. The second prize was won in 1985 
by Tom Newmem, who used e-beam lithography to write the first page of Dickens’ 
A Taie of Two Cities legibly in a 6.25-micron square.
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Coulomb interaction and single-electron effects [72]. Also, carbon nanotubes 
or conducting polymers offer new conduction possibilities [185]. Thanks to 
the development of fluorescence and force spectroscopy, we can now perform 
single molécules experiments. For instance, RNA segments axe mechanically 
stretched and their elastic response recorded in real time thanks to AFM and 
optical tweezers [146]. These techniques are crucial for processes that cannot 
be fully understood on the bulk level, such as the movement of myosin on 
actin fllaments in muscle tissue or the details of individual local environments 
in solids. Still at the single molécule level, rotaxy nanomotors hâve been con- 
structed by isolating the Fi-ATPase protein complex from mitochondria and 
gluing an actin filament or a gold bead to the axis of the motor [173, 232].^ In 
the time domain, femtochemistry allows us to résolve, and ultimately control, 
Chemical reaction pathways at time scales of 10“^® s [91]. Also, oscillating 
reactions involving as few as a hundred molécules are observed on nanometric 
tips of field électron (FEM) and field ion (FIM) microscopes [224].

The t3T5ical sizes of these Systems range from the micrometer down to the 
nanometer. Such Systems are thus of size intermediate between the niicroscopic 
World where the atomic features are apparent and the macroscopie world con- 
taining a number of particles of the order of the Avogadro number. Many in- 
triguing questions axise in this context.

Indeed, nanosystems are large enough for the onset of statistical behaviors 
such as friction, diffusion, viscosity, and sustained nonequilibrium motions to 
appear. Many studies show that statistical behavior starts to emerge already 
in relatively small Systems containing dozen, hundred, or thousand particles 
depending on the property of concern. For instance, the transport coefficients 
can be calculated in hard-ball Systems with a few dozen particles [221] while 
dynamical friction between double-walled nanotubes [200] or Rayleigh-Bénard 
convection rolls [153] can be simulated by molecular dynamics in Systems of 
several thousand particles. Nanosystems are thus of prime importance to gain 
profound insights into the transition from réversible équations of motion to 
statistical and irréversible behaviors.

Another fascinating resuit from the nanosciences is that self-organization 
already manifests itself at the scale of a few nanometers and this under both 
equilibrium or nonequilibrium conditions. The GlansdorfF-Prigogine dissipative 
structures [100] showed that self-organization is possible in macroscopie Sys­
tems under nonequilibrium constraints, whereas recent discoveries show that 
self-assembly and self-organization of matter already start at the nanoscale. 
The formation of micelles of about 10 nm in liquid mixtures or of nanoclusters 
of similar sizes at solid-gas or solid-liquid interfaces is an example of equilibrium 
self-organization at the nanoscale. On the other hand, the biological world func- 
tions under nonequilibrium conditions. This results from the need to possess 
a metabolism maintaining the autonomy of the organism with respect to the 
environment. Accordingly, biology présents a laxge variety of self-organization: 
biomolecules, proteins, RNA, DNA self-assemble into supramoleculax structures

^ In this thesis, multiple references are orgauized in chronological order.
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such as ribosomes, nanomotors, membranes, virus, organelles, bacteria, etc. 
This shows that structuration and complexification of matter already starts at 
the nanoscale.

Finally, observation reveals that molecular fluctuations play a crucial rôle 
in these Systems. This entails that we cannot engineer nanodevices based on 
macroscopie designs: they might not work at ail due to the relatively Icirge ther­
mal fluctuations présent at these scales. Accordingly, nanosystems must take 
advantage of the molecular fluctuations in order to présent cohérent space-time 
behaviors. This is accomplished thanks to the nonequilibrium conditions which 
break time-reversal symmetry and allow for the emergence of a dynamical or­
der. The fact is that, despite these fluctuations, the eflficiency and robustness of 
these nanosystems turn out the be quite impressive. For instance, conversion of 
Chemical energy into mechanical work by ATP consomption has been reported 
to be close to 100% eflficiency in certain nanomotors [126]. In this context, some 
general mechanisms to obtain directed motion from thermal fluctuations hâve 
now been studied in detail [186, 198] but a general understanding of transport 
or energy transduction (chemical reaction cycles, error rates, speed of operation, 
thermodynamic efficiencies, etc) in nanodevices is still lacking.

In summary, nanosystems are of technological importance and the develop­
ments of statistical tools able to cope with the equilibrium and nonequilibrium 
properties of these intermediate structures is of practical and fundamental in­
terest. It is in this recent context that this thesis is written and we summarize 
below some relevant works in this direction.

1.2 Past and recent developments

Since Newton, the motion has been conceived as regular and réversible. The 
description of the celestial motion of planets around the sun by Laplace along 
with the observations of Kepler were a brilliant vérification of the mechanical 
doctrine of these yeaxs. Still, in the early nineteen century, the French 
mathematician Fourier, motivated hy the problem of heat conduction, came up 
with an équation which presented a significant feature: unlike Newton’s laws 
of motion, Fourier’s équation is irréversible. In 1824 Sadi Carnot published 
his work Reflections on the Motive Power of Pire [36], a discourse on heat, 
power, and engine eflficiency. Herein, Carnot introduced us to the first modem 
day définition of “work”: weight lifted through a height. He concluded that a 
différence of température between two bodies could be used to perform work. 
In 1850 the mathematicaJ physicist Rudolf Clausius understood that heat 
and work are actually two different forms of the same quantity: energy. For 
a closed System, the transformation of energy into heat and mechanical work 
is an expression of the first law of thermodynamics. However, badly designed 
engines loose the possibility to perform work, pointing out the existence of 
dissipation and irréversible operations. Clausius introduced the quantity dQjT 
as a measure of the work lost during transfer of heat from a hot to a cold 
body. Thanks to this new quantity, which he called the entropy, the second 
law of thermodynamics can be easily stated: the entropy of an isolated System
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always tends to increase. Building on these foundations, this new discipline, 
named thermodynamics, brought these engine concepts into the thoroughfare 
of aJmost every modern-day branch of science.

At the same time, the idea of indivisible particles naturally led to the 
introduction of statistics and fluctuations. In the study of gases, Maxwell 
introduced the idea of random motion for the molécules. He suggested that, 
instead of tending to equalize the velocities of ail molécules, the successive 
collisions would produce a statistical distribution of velocities. At thermal 
equilibrium, he derived his famous distribution fonction for the velocities of 
the gas particles. In 1872 Boltzmann established its famous équation for the 
évolution of the single particle distribution fonction f{r,v,t), which describes 
the probability density to find a number of molécules / with a velocity v at 
position r and time t. Its time évolution is governed by a binary collision 
term, which is a good approximation for dilute gases. In this approximation 
and in order to close its équation, Boltzmann made the fondamental assump- 
tion that the velocities of colliding particles are uncorrelated. This is the 
so-called Stosszahlansatz, which became later known as the assumption of 
molecular chaos. He also noted that this collision term is responsible for the 
irreversibility: he derived his famous H-theorem, which shows that the quantity 
H = — f f\nf drdv always decreases in time until a Maxwell distribution is 
reached. The Maxwell distribution plays a spécial rôle as it is the more likely 
distribution to be found at equilibrium because it corresponds to the largest 
number of microstates. With this understanding, Boltzmann concluded that 
the approach to equilibrium corresponds to a transition from less probable 
microstates to more probable microstates. These insights led him to propose 
a novel expression for the entropy of a macrostate; 5 = A:b In J7, where f? is 
the number of possible microstates corresponding to the macroscopie State of 
the System. Subsequently, Gibbs expanded these considérations by introducing 
the concept of statistical ensembles. Since Boltzmann, a systematic expansion 
based on the reduced n-particle distribution fonction has been developed in 
the form of the BBGKY hierarchy. For instance, kinetic équations were derived 
for plasmas by Landau, Vlasov, and more recently by Balescu and Lenard who 
included the Debye screening of Coulomb interaction [12]. However, each such 
kinetic équation involves a stochastic assumption which is introduced by some 
troncation of the évolution équation in the low-density or weak-coupling limit. 
Furthermore, the dérivation of kinetic équations and transport coeflicients 
in the high-density limit leads to new difflculties in the form of diverging 
sériés expansions [54]. This will be one of the motivations in introducing the 
hypothesis of microscopie chaos and the study of chaotic Systems, as discussed 
below.

In kinetic théories, statistics enter as a description of the probable States but 
do not hâve an incidence on the dynamics. In contrast, Robert Brown observed 
in 1827 the very irregular motion of colloidal particles in a microscope [32]. He 
first observed minute particles within vacuoles in the pollen grains executing
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a continuons jittery motion. He then observed the same motion in partiales 
of dust, enabling him to rule out the hypothesis that the motion was due to 
pollen being alive. In the early twentieth century, Einstein attributed these 
fluctuations to the collisions of the Brownian partiale with the discrète atoms 
of the fluid [65]. He expressed the diflFusion coeflflcient of the Brownian partiale 
in terms of the mean-square of its displacement:

D - limt—*oo
([a:(t) -a:(0)]^) 

2t
(1.1)

He also noted that the same random forces which cause the erratic motion 
of a partiale in Brownian motion would also cause drag if the partiale were 
pulled through the fluid, obtaining in this way an early form of the fluctuation- 
dissipation theorem.^ For electrical Systems, Schottky [192] observed that the 
thermionic current in a vacuum tube présents rapid and irregular changes in 
magnitude, due to the random émission from the cathode. Johnson [123, 124] 
demonstrated experimentally that an electrical resistor automatically generated 
fluctuations of electrical voltage and concluded that the thermal agitation of 
the electric charges in the conductor is the cause of this phenomenon. Nyquist’s 
theoretical work [174] related these equilibrium voltage fluctuations to the sam- 
ple’s résistance, in complété accordance with Johnson’s experiments. In 1931 
Onsager exploited stochastic processes to discuss irréversible thermodynamics 
in the linear régime and dérivé his reciprocity relations [175]. The link between 
fluctuation and dissipation was further developed by Callen and Welton [34], 
who derived a general form of the fluctuation-dissipation theorem. These differ­
ent Works contributed to the establishment of the linear-response theory further 
developed in the fifties by Green [105], Kubo [131], and Mori [159], who related 
the transport coefficients to the intégral of time auto-correlation fonctions. For 
instance, the diffusion coefficient reads

■D=^/ {v{t)v{0)) dt. (1.2)

In parallel, Onsager and Machlup proposed a functional formula for the 
probability density of a stochastic process [176]. Their expression extends 
Boltzmann’s fundamental relationship between the entropy and the probability 
to the time domain. In summary, the main message of these works would be 
that equilibrium notions can be used to probe the nonequilibrium behavior of 
a System.

Yet, the aforementioned works exclusively deal with Systems in the so-called 
linear régime, i.e. Systems close enough to equilibrium for them to respond lin- 
eaxly to the thermodynamic forces. Surprisingly perhaps, the concept of ther- 
modynamic equilibrium itself has gradually evolved over the years. Thermody­
namic equilibrium was first defined as a State where no macroscopie changes oc- 
cur. However, in the context of Chemical reactions, R. Wegscheider [227] pointed

® This method was actually used by Perrin [179] in order to obtain Avogadro’s num- 
ber, giving evidence for the atomic hypothesis.
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out that the condition of vanishing rate does not necessarily coincide with the 
thermodynamic equilibrium condition. Indeed, stationarity does not rule out 
the possibility of “circular” processes, characterized by the presence of fluxes. 
This situation, which became known as Wegscheider’s paradox, was invoked 
by Lewis [143] as part of the justification for his general “law of entire equi­
librium”, which requires that every elementary process shall hâve a reverse 
process, and that their rates must balance at equilibrium. Nonetheless, Tolman 
[214] pointed out that the existence of a balanced reversed process has already 
been assumed in several works, for instance by Langmuir in 1916 in connec­
tion with the problem of évaporation and condensation [136] or by Einstein in 
deducing Planck’s radiation law. These assumptions were subsequently named 
microscopie reversibility principle or detailed balance conditions. Detailed bal­
ance also appeared in the study of collisions in particle physics, where the 
symmetries of the S matrix account for the principle of reversibility [43, 229].

However, it was not until the sixties that the violation of detailed balance 
was quantitatively associated with nonequilibrium properties. Hill [112], in the 
context of nonequilibrium stochastic models, expressed an irréversible entropy 
production in terms of fluxes and affinities, in analogy with macroscopie thermo- 
dynamics. These fluxes and affinities measure the brealcing of detailed balance 
along the cyclic trajectories of the System [112, 115, 113]. Schnakenberg [190] 
studied this form of the entropy production from a statistical point of view, 
starting from the Gibbs entropy. These works extend a resuit of Kolmogorov 
[129], who proved that a Markov process is réversible if and only if ail cyclic 
trajectories satisfy the detailed balance conditions. Later, these considérations 
were further developed by the Qians [121]. In ail these analyses, graph theory 
plays a central rôle. In 1847 already, Kirchhoff [127] expressed the steady state 
solution for the currents in an electrical circuit in terms of the maximal trees of 
the circuit. The analogy between networks and macroscopie thermodynamics 
was further studied by Oster and coworkers [177, 178].

In parallel, the general research on far-from-equilibrium Systems was 
pioneered by Haken [106, 107] and Prigogine [100, 169]. In the lineaj régime, 
equilibrium States are modified by the constraints preventing the System 
to reach equilibrium but no new structure appears. However, this situation 
changes drastically in far-from-equilibrium situations, where cohérent space- 
time behaviors can appear. The most remarkable observation is thus that 
nonequilibrium can be a source of order. Spectacular examples are oscillatory 
Turing patterns in the Belouzov-Zhabotinsky reaction or convection rolls in the 
Rayleigh-Bénard instability. The term dissipative structures has been coined in 
order to designate these self-organizing processes. The fact is that Boltzmann’s 
principle cannot account for these structures since it would associate a virtually 
zéro probability to the occurrence of a cohérent pattern involving a macro­
scopie number of molécules. The appearance of these new structures is actually 
accomplished via a succession of bifurcations. The mechanism put forward 
by the Brussels school is order through fluctuations: small fluctuations are 
amplified up to a macroscopie current by an instability reached after a certain 
threshold in the parameter space. These macroscopie fluctuations are in turn
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stabilized by the exchange of energy and matter with the outside world, which 
absorbs the internai entropy produced by the System, eventually leading to a 
cohérent space-time behavior. But nonequilibrium situations can also be at the 
source of other order mechanisms. For instance, long-range corrélations appear 
out of equilibrium, either in the time or spatial domains [166, 128]. Anyhow, 
this new paradigm résolves the apparent contradiction of the “thermal death” 
of the universe that could be anticipated on the basis of lineax thermodynamics.

Our perspective about irreversibility and the second law of thermodynam­
ics has further evolved under the influence of the new concepts coming from 
dynamical Systems theory [61]. One major challenge is to get rid of stochastic 
assumptions such as Boltzmann’s Stosszahlansatz in the dérivation of kinetic 
théories. Despite their justiflcation in some scaling lirait [204], a more funda- 
mental dérivation of transport processes in terras of the intrinsic properties of 
the underlying dynamics is searched for. A fruitful approach is based on the 
hypothesis of microscopie chaos.

The study of chaotic Systems in the eighties and early nineties has introduced 
new types of relationships within nonequilibrium physics. Following the work 
of Shannon [202] in information theory, it became cleaj that dynamical Systems 
could be as random as a coin-tossing process. The Kolmogorov-Sinai entropy 
per unit time hus characterizes the temporal disorder by analogy to the entropy 
per unit volume which characterizes the spatial disorder. This notion opened 
the way to the large déviation formalism of dynamical chaos introduced by Ru­
elle and Bowen [187], also called thermodynamic formalism. This formalism is 
based on the formai analogy between time randomness of chaotic trajectories 
and space randomness of a System configuration in equilibrium statistical me- 
chanics. Temporal randomness originates from a dynamical instability inducing 
an exponential séparation of two nearby trajectories. The Lyapunov exponents 
Ai characterize this sensitivity to initial conditions while the Kolmogorov-Sinai 
entropy per unit time measures the degree of dynamical randomness developed 
by the trajectories of the System during their time évolution. In this way, we can 
understand that dynamical instability is linked to the KS entropy via Pesin’s 
theorem

hxs = ^ ■ (1-3)
Ai>0

This sensitivity to initial conditions provides a natural justiflcation for the 
introduction of statistical ensembles.

In this regard, chaotic Systems may présent strong mixing properties, in 
which case the phase-space density will evolve towards an equilibrium distribu­
tion. This relaxation process is characterized by the eigenvalues or decay rates 
of the time-evolution operator which are known under the name of Pollicott- 
Ruelle résonances. On the other hand, transport processes such as diflFusion can 
be conceived in terms of chaotic scattering, which leads to the so-called escape- 
rate formulas [95] relating the diffusion coefficient to the Lyapounov exponents 
and the KS entropy:
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-T'= (
\Xi>0 / L

where L is the size of the System and 7 is the leading Pollicott-Ruelle résonance. 
We remark that this formula extends Pesin’s theorem to open Systems. The 
generalization of this escape-rate formula to other transport processes can be 
found in Refs. [55, 93]. Along these Unes, the hydrodynamic modes of diffusion 
as well as the nonequilibrium steady States hâve been calculated directly 
from the Liouvillian dynamics in pheise space. This approach establishes a 
direct connection between the phase-space dynamics and hydrodynamicaJ laws 
[82]. In particular, an ab initia dérivation of the transport properties and the 
entropy production of nonequilibrium thermodynamics can be achieved from 
the underlying Hamiltonian dynamics [83, 98]. The positivity of the entropy 
production is here associated with the fractality of the phase-space density due 
to the nonequilibrium boundary conditions. These new relationships link the 
large déviations or large fluctuations that the dynamical properties of a System 
may undergo during the time évolution to nonequilibrium statistical properties.

Large déviations are at the basis of important advances in nonequilibrium 
statistical mechanics during the last flfteen years [53]. In 1993 Evans, Cohen, 
and Morriss [69] found in numerical simulations a symmetry property of the 
invariant measure in nonequilibrium steady states. The first mathematical for­
mulation of this symmetry, the fluctuation theorem, was obtained in 1995 by 
Gallavotti and Cohen under strong chaoticity assumptions [79]. They proposed 
the chaotic hypothesis according to which, for the purpose of studying macro­
scopie properties, the time évolution of a many-body System in a stationary 
State can be regarded as a transitive Anosov System, i.e., a fully chaotic System. 
These authors suggest that this hypothesis constitutes the natural extension of 
the ergodic hypothesis in equilibrium statistical physics to out-of-equilibrium 
Systems. In this context, the fluctuation theorem appears as a test of the chaotic 
hypothesis.

The fluctuation theorem can be roughly summarized as follows. The key 
feature is to consider a trajectory-dependent quantity St that can be interpreted 
as the entropy irreversibly produced during the random évolution of the System. 
This interprétation is supported by the fact that the average value (St) jt can 
be identifled with the thermodynamic entropy production. Now, if we dénoté 
by P{St/t = C) the probability density that the quantity St/t takes a given 
value C, the fluctuation theorem reads

P{St/t = 0^é^ P{St/t = -0 (1.5)

at long times. For the nonequilibrium stationary states considered by Gallavotti 
and Cohen, St is expressed as the contraction rate in phase space integrated 
along the trajectory but, depending on the situation, it is better called the dissi- 
pated Work [133] or the entropy current [149]. This relation has the remarkable 
feature to be valid arbitrarily far from equilibrium. Moreover, it expresses a 
symmetry property of the large déviations since the fluctuating quantity C can
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significantly deviate from the statisticaJ average. Finally, Eq. (1.5) shows that 
it is exponentially more likely to observe a positive dissipation rather than a 
négative one, providing a more fundamental justification of the second law of 
thermodynamics.

In 1998 Kurchan showed that the fluctuation theorem holds for a class of 
diffusion processes in the form of a symmetry property of the évolution oper- 
ator [133]. Lebowitz and Spohn extended Kurchan’s resuit to general Markov 
processes [139] while Maes thought of the fluctuation theorem as a property of 
space-time Gibbs measure [148, 149]. The entropy production at the level of 
stochastic trajectories was discussed by Seifert [195, 189]. Transient versions of 
the fluctuation theorem were also derived [70, 194]. Gallavotti [78] and Evans 
[11] proposed a local version of the fluctuation theorem. These relations hâve 
been observed in different experimental setups such as turbulent flows [41], elec- 
tric circuits [81] or driven Brownian particles [226, 35], among others [212]. A 
general feature of these works is that the dissipation can be identified with the 
odd part under time-reversal of the action functional. The study of the even 
part was carried out by Maes and van Wieren [150]. A more detailed account 
of the many related works can be found in the recent reviews by Harris et al 
[109] or by Sevick et al [201].

Another family of recently derived relationships are the nonequilibrium work 
relations. In this setup, the System is controlled thanks to an external parameter 
A. The System starts with a parameter value Aq = A^i at time t = 0. The System 
is then driven in a time-dependent way by varying the parameter A in time 
following an arbitrary schedule that ends at the value At = As after a time t. 
For Systems starting at equilibrium, Jarzynski [118, 119] derived the following 
equaJity:

. (1.6)

Here, W is the work done during the process, which is a random variable de- 
pending on the initial condition of the trajectory. The average is talcen over 
a canonical ensemble of initial conditions at inverse temperatme /3 = l/fenT. 
AF = Fb — Fa is the free energy différence between a fictive System at equi­
librium with the parameter A = A^ and the initial System at equilibrium with 
the parameter A = A^. This resuit is independent of both the size of the System 
and the schedule for perturbing it.

Many works appeared in its wake, although we note that Bochkov and Ku- 
zovlev derived similar relations in the eighties [25, 26]. Crooks showed that 
Jaxzynski’s equality (1.6) can be recovered from a more detailed relation relat- 
ing the probability of the work done during the forward protocol to its opposite 
value done while performing the time-reversed protocol [50]. In the same setup, 
Kawai and coworkers expressed the mean value of the dissipated work as the 
logarithm of the ratio between two phase-space probability densities associated 
with the forward and backward processes, respectively [125]. The transition 
between nonequilibrium States was studied by Hatano and Sasa [110]. Quan­
tum versions were considered by Kurchan [134], Monnai [156], and Hànggi and 
coworkers [208, 207], among others [160, 120].
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These relations hâve several important conséquences. For instance, équation 
(1.6) relates the work IV performed on a System during a nonequilibrium process 
to the change in the value of a thermodynamic State function AF. Nonequilib­
rium properties can thus be used to extract equilibrium informations as well as 
potentials of mean force [117]. A remarkable resuit is that Jarzynski’s equality 
(1.6) implies Clausius inequality

{W)>AF, (1.7)

interpreted statistically. This relation results from Jensen’s inequality applied 
to expx.^ We can also use (1.6) to dérivé a more stringent inequality. For a given 
schedule At, let P{W < Xn) dénoté the probability of observing a work value 
no greater than Xn = AF — nkÿ,T, where n is an arbitrary positive constant. 
We can think of this as the probability of observing an apparent violation of 
the second law, where the magnitude of the violation is at least n units of 
fcsT. Jarzynski’s equality, combined with the general bound (A.2) presented in 
Appendix A, leads us to the following inequality:

P(VF < A„) < exp(-n). (1.8)

It reveals that the likelihood of an apparent violation of the second law di- 
minishes at least exponentially with the degree of violation: no matter how 
we drive the System, it is extremely unlikely that we will observe a violation 
whose magnitude is, e.g., at least 15 k^T since P < exp(—15) w 3.110“^. In 
a nanoengineering perspective, this would correspond to setting bounds on the 
probability for a device to operate “in reverse”.

Nonequilibrium work relations were observed experimentally in different se- 
tups. The Jarzynski equality was verified by Ciliberto and coworkers for a tor­
sion pendulum [56] and for an inertial oscillator [57], while intégral fluctuation 
relations were observed by Schuler et al [193]. Jarzynski and Crooks relations 
were verified in single molécule experiments for the folding and unfolding of 
RNA segments [145, 47]. In Ref. [215], Hatano-Sasa’s relation was verified as 
well.

Ail these relationships share the common mathematical structure that they 
give an irréversible property as the différence between two decay rates of meso- 
scopic or microscopie properties [87, 88]. In this regard, they belong to the same 
family of large-deviation properties as the escape-rate and chaos-transport for­
mulas [95, 55, 92]. Here, the dissipation appears as a fiuctuating quantity that 
can be positive or négative. It is only by averaging over ail trajectories that we 
recover a positive dissipation in accord with the second law of thermodynamics.

The statistical nature of the second law was already envisaged by Maxwell. 
In his 1871 work [154], he discussed the problem of irreversibility in relation 
with molecular fiuctuations. He conceived his famous “démon” challenging the 
second law of thermodynamics:

Jensen’s inequality States that, for any convex function </), we hâve (<^(x)) > <j>{(x)).4
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if we conceive of a being whose faculties are so sharpened that he can 
follow every molécule in its course, such a being, whose attributes are 
as essentially finite as our own, would be able to do what is impossible 
to us. For we hâve seen that molécules in a vessel full of air at uniform 
température are moving with velocities by no means uniform, though 
the mean velocity of any great number of them, arbitrarily selected, is 
almost exactly uniform. Now let us suppose that such a vessel is divided 
into two portions, A and B, by a division in which there is a small hole, 
and that a being, who can see the individuaf molécules, opens and closes 
this hole, so as to allow only the swifter molécules to pass from A to 
B, and only the slower molécules to pass from B to A. He will thus, 
without expenditure of work, raise the température of B and lower that 
of A, in contradiction to the second law of thermodynamics.”

The démon, thanks to its ability to manipulate single molécules, can create 
température gradients from an initial isothermal condition.® In 1929 Szilard 
[206] argued on a mechanical analogue of the démon that any gained work 
is compensated by an équivalent loss that he attributed to the measurement 
process. Brillouin [31] came to a similar conclusion, and argued further that the 
dissipation must increase with the reliabüity of the measurement apparatus. In 
1961 Landauer correctly identified logical irreversibility as the source of the 
dissipation [135]. Logical irreversibility is a feature of many-to-one maps, i.e., 
non-invertible operations. For instance, during the erasure of random bits, two 
States 0 and 1 are mapped indistinctively to the unique State 0. The entropy 
change AS = — In 2 during this operation must be compensated by an entropy 
increase > ln2 in the environment, leading to a minimal dissipation of fcBTln2 
for an environment at température T.® von Neumann [223] had also envisaged 
a minimal dissipation of k^Tln 2 per “elementary act of information” but failed 
to associate it to information erasure. Subsequently, Bennett [17] showed that 
measurement could be performed at zéro cost and attributed the energy cost 
to the erasure of information, in concordance with Landauer. Maxwell’s démon 
can now be exorcised. Indeed, the démon must collect and store information 
about the molécules. If the démon has a finite memory capacity, he cannot 
continue to cool the gas indefinitely; eventually, information must be erased.

Along these Unes, Bennett found in 1973 that any computation can be 
performed using only réversible steps, and so in principle requires no dissipation 
and no power expenditure [15]. Interestingly, the simples! model of réversible 
computation can be accomplished using a billiard model [17]. However, the 
slightest perturbation will prevent the functioning of the computing device due 
to dynamical instabilities or chaos. Another family of models tries to exploit

® The démon reappeared under different forms over the years. For example, the rec­
tification of thermal fluctuations by a diode became known as Brillouin’s paradox 
[30], and is closely related to the difficulty of consistently teiking into account inter­
nai noise in nonlinear Systems [217]. More recently, it was discussed in the context 
of Brownian motors and the ratchet effect [186, 216, 199].

® Circa the year 2000, computers dissipated roughly 500 ^82^10 2 per elementary 
logical operation.
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the presence of thermal noise in the form of Brownian computers [17]. The 
computational pathway is here traveled as a random walk with nearly equal 
forwaxd and backward transitions. A small driving force is sufficient to put 
the System on the right computational track, hence the dissipation can be 
made arbitrary small if a correspondingly small computing speed is tolerated. 
However, in the presence of intrinsic hardware errors, a near zéro dissipation 
can not be achieved without incurring excessive errors. Error correction is 
another example of logically irréversible computation. We can here understand 
the constructive rôle of dissipation, which is necessary in order to prevent and 
correct errors in presence of noise.

1.3 Outline

The purpose of the présent work is to study the thermodynamics of meso- 
scopic Systems. At this scale, molecular fluctuations play an important rôle 
and nonequilibrium conditions are the norm. Previous arguments suggest that 
relationships between fluctuations, dissipation, and organization exist and are 
fundamental for nonequilibrium statistical mechanics and for the development 
of nanosciences. Précisé relationships can be established at different levels.

First, the nonequilibrium fluctuation relations can be conceived as exten­
sions of the fluctuation-dissipation theorem to the nonequilibrium realm. In 
particulax, such relations lead to new symmetry relations for the nonlinear re- 
sponse coefficients and the nonequilibrium fluctuations [5].

Second, the entropy production turns out to be directly related to the time- 
reversal symmetry breaking on a quantity that measures the randomness of the 
temporal évolution [86]. Thereby, out of equilibrium, the trajectories of a System 
are more ordered in time than at equilibrium. These results hâve been observed 
experimentally in two fluctuating mesoscopic Systems [9, 10]. This changes our 
perspective on the second law since it now appears to play a constructive rôle in 
the évolution of the System. In particular, these concepts link in a fundamental 
way the fluctuations and the dissipation to the physics of information.

The thesis is organized as follows. Chapter 2 is concerned with the quan­
tum aspects of the nonequilibrium work relations. We study the time-reversal 
symmetry for a quantum System driven by a time-dependent perturbation. We 
obtain a generalization of the quantum Jarzynski relation which can be used to 
recover the linear response theory. In this way, we can already understand how 
nonequilibrium relations reveal the interplay between fluctuations and dissipa­
tion in out-of-equilibrium Systems and generalize the near-equilibrium results. 
The study of nonequilibrium steady States is carried out in Chapter 3. Such 
steady States are obtained via a coupling of the System with réservoirs of energy 
and particles. We thus introduce the stocheistic description, as well as its for­
mulation in terms of cycles that allows us to link the mesoscopic description to 
the macroscopie one. In this framework, we demonstrate a fluctuation relation 
for the macroscopie currents Crossing the System in a nonequilibrium stationary
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State. This relation is then applied to several Systems of interests such as Chemi­
cal reaction networks, electronic transport in tunnel junctions, and the recently 
observed rotary molecular motors. In Chapter 4 we develop the conséquences of 
this new symmetry at the level of the nonlinear response theory. In particular, 
we show that Onsager’s symmetry along with the Green-Kubo formula are read- 
ily obtained at the level of linear response. The higher-order relations relate the 
response coefBcients to the nonequilibrium behavior of the fluctuations, leading 
to new symmetries generalizing Onsager’s relations. Chapter 5 addresses the 
problem of the thermodynamic entropy production in nonequilibrium station- 
ary States. We introduce the concepts of forward and time-reversed entropies 
per unit time, which characterize the dynamical randomness of the time évolu­
tion respectively in the forward and backward direction of time. The entropy 
production is equal to the différence between these two quantifies, showing that 
irreversibility occurs as a spontaneous time-symmetry breaking under nonequi­
librium conditions. We présent experimental evidence for a trapped Brownian 
particle and a current-driven RC circuit showing that the entropy production 
is related to the time-asymmetry in the temporal disorder. This work is the re­
suit of a collaboration with Prof. Ciliberto and his group at the Ecole Normale 
Supérieure de Lyon. Chapter 6 explores the perspectives generated by this new 
understanding of the second law of thermodynamics. We consider Landauer’s 
principle from the viewpoint of dynamical randomness, which allows us to gen- 
eralizé it to the case where the information to be erased is arbitrarily correlated. 
Furthermore, we study the entropy production in a model of copolymerization 
with an underlying template, as it is the case in DNA réplication or tran­
scription. As a matter of fact, the entropy production is closely related to the 
information about the template acquired by the copolymer. Conclusions and 
perspectives are drawn in Chapter 7.
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Quantum Work Relations

Nonequilibrium work relations hâve recently attracted much interest. They pro­
vide relations for the work dissipated in time-dependent driven Systems, inde- 
pendently of the form of the driving. They are therefore of theoretical interest 
but they also provide new tools to study nanosystems. In the nanoscopic world, 
the extension of these classical relations to quantum Systems is of particular 
importance and different approaches hâve been proposed.

A first scheme was introduced by Kurchan [134]. In this framework, a mea- 
surement of the System state is performed at the initial time. In the sequel, 
the System is perturbed by a time-dependent Hamiltonian before performing 
another measurement at the final time. The random work performed on the 
System is associated with the energy différence between the final and initial 
eigenstates. This setup leads to the quantum extension of Jaxzynski’s equal- 
ity and Crooks fluctuation theorem [210, 156, 208, 207]. Another possibility is 
to introduce a quantum work operator which measures the energy différence 
[157], in which cases quantum corrections to the fluctuation theorem must be 
taken into account. On the other hand, quantum fluctuation theorems hâve 
been obtained in suitable limits where the dynamics admits a Markovian de­
scription, allowing in paxticular the applications to nonequilibrium steady States 
[160, 52, 68, 108, 67]. Yet, the connection between the quantum work relations 
and response theory is still an open question even in the linear régime.

The purpose of the présent chapter is to dérivé a new type of work relations 
which involves a functional of an arbitrary observable. This generating func- 
tional can be related to another functional but averaged over the time-reversed 
process. This new work relation turns out to be of great generality since we can 
recover known results such as Jarzynski equality as spécial cases. Furthermore, 
this universal work relation allows us to formulate the response theory, to de- 
rive the quantum linear response functions, the quantum Green-Kubo relations 
[105, 131], as well as the Casimir-Onsager reciprocity relations [175, 37] in the 
régime close to the thermodynamic equilibrium.
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2.1 Functional symmetry relations

In this section, we shaU consider the effect of time-reversal symmetry on quan­
tum Systems driven by a time-dependent perturbation.

We suppose that the System is described by a Hamiltonian operator H{t, B) 
which dépends on the time t and the magnetic field B. The time-reversal oper­
ator O is an antilinear operator such that 0^=1 and which has the effect of 
changing the sign of ail odd parameters such as magnetic fields:

GH{t,B)e = H{t-,-B). (2.1)

We first introduce the forward process. The System is initially in thermal 
equilibrium at the inverse température 0 = The initial State of the
System is described by the canonical density matrix

'■(“> = -zWT'

where the partition fonction is given in terms of the corresponding free energy 
F(0) by Z(0) = tre“^^^°’®^ = Starting from this equilibrium situation
at the initial time t = 0, the System evolves until some final time t = T under 
the Hamiltonian dynamics. The corresponding forward time évolution is defined 
as

ih^UF{t-,B) = H{t-,B)UF{t-,B), (2.3)

with the initial condition î/f(0; B) = I. We can think of this time-dependence 
as arising from a control paxameter X whose magnitude is changing in time 
according to a given schedule. In the Heisenberg représentation, observables 
evolve according to

AF(t) ^ Ulit) AUF{t)

which also concerns the time-dependent Hamiltonian 

HF{t) = Ul{t)H{f,B)UF{t).

The average of an observable is thus obtained from

(Ap(f)) = trp(0)AF(t).

We note that the dependence on the magnetic field is implicit in these expres­
sions.

The backward process is introduced similarly but in the magnetic field 
reversed. The System is perturbed according to the time-reversed protocol 
H{T — t] —B), starting at the initial time t = 0 from the density matrix

P{T) = Z{T)
(2.4)
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where the free energy F{T) is given in terms of the partition function according 
to Z{T) = The System ends at time t = T with
the Hamiltonian i/(0; —B). The évolution operator of the backward process is 
defined as

B) = H{T - t; B)UK{t, B), (2.5)

with the initial condition Ur{0;B) = I, and is related to the one of the forward 
process by the following

Lemma 1. The forward and backward time évolution operators are related to 
each other according to

eUviT -1; B)UliT; B)6 = [/R(t; -B), (2.6)

where t is an arbitrary time 0 <t <T.

This lemma is proved by first substituting t to T — t in Eq. (2.3) to get

-t;B) = H{T - t; B)Uf(T -t-B).

Multiplying this équation by Up{T; B)G from the right and by G from the left, 
we find

p\
ih—GUpiT - t\B)U^{T\ B)G = H {T - t; -B)GUp{T - t; B)Ul{T\ B)G,

where we used the antilinearity Gi = —iG of the time-reversal operator and its 
further property (2.1). This shows that the expression GUp{T —1\B)Up{T; B)G 
obeys the same évolution équation (2.5) as UR,{t-,—B). Since they also satisfy 
the same initial condition, GUp{T\B)Up{T\B)G = Ur{0\—B) = I, we hâve 
proven Eq. (2.6). QED.

With this lemma, we can now demonstrate the

Theorem 1. Let us consider an arbitrary observable A with a definite parity 
under time reversai: GAG = £aA, with ca = ±1- It satisfies the following 
functional relation:

^ ^-0AF ff dtX(,T-t)AR(,t)'j ^ ^2.7)

where X{t) is an arbitrary function while the subscripts F and R stand for the 
forward or backward protocol, respectively. AF = F{T) — F{0) is the différ­
ence of the free energies of the initial equilibrium States (2-4) and (2.2) of the 
backward and forward processes.

In order to prove Eq. (2.7), we first consider the quantity Apit) which can 
be written as
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Apit) = Ul{t)AUF{t)
= UliT)Up{T) Ul{t)AUp{t) uI{T)Uf{T)
= eAUliT)eAR{T-t)OUF{T), (2.8)

where we hâve inserted the identity Up{T)Up(T) = I to obtain the second 
equality. At the third equality, we inserted = I between the évolution op- 
erators and we used GAO = €aA along with Eq. (2.6). The connection is thus 
established with the backward process. Integrating over time with an arbitrary 
function X{t) and taking the exponential of both sides, the previous expression 
becomes

exp dtX{t)AF{t)^ =Ul{T)Gexp(^eAj^ dt X{T - t) A^it)^ GUf{T) ,

after the change of intégration variables t — tin the right-hand side. 
Therefore, the left-hand side of Eq. (2.7) reads

tr p(0) exp dt A(t)i4p(t)^ exp[-PHF{T)] exp[/3i/(0; B)]

Z{0)

itA 1 dtX{T-t)AR{t)\
V
/

5 J
fT \

(

dtX{T-t)AR{t)\

dtX{T-t)AR{t)\

We used the invariance of the trace over cyclic permutations as well as the 
exponential of Eq. (2.8) at the first equality. In the second equality, we 
introduced the equilibrium density matrix (2.4) which is precisely the initial 
condition of the backward process. To obtain the last equality, we used that 
the partition functions hâve been expressed in terms of the corresponding free 
energies. This complétés the proof of the theorem. QED.

We notice that related results hâve previously been considered in the re- 
stricted case where there is no change in free energy AF = 0 [25]. The présent 
theorem allows us to recover the quantum Jarzynski equality as a spécial case 
of Eq. (2.7) if A = 0:

^g-^Hp(T)g/3i/(0;S) ^ ^ ^-PAF _

The factor inside the bracket can indeed be interpreted in the quantum setting 
in terms of the work performed on the System during the forward process [134, 
210, 208] in spite of the non-commutativity of the energy operators Hf{T) and 
H(0; B) and thanks to the protocol with von Neumann quantum measurements
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of the energy at the initial and final times. It is only in the classical limit 
that both energies commute and the classical work can be formed as Wc\ = 
\Hp{T) — i/(0;S)]^i, in which case both exponentials in the left-hand side of 
the relation (2.7) becomes exp(—/3Wci) which is the classical version of this 
relation.

Also, we can obtain varions corrélation functions by taking functionaJ 
dérivatives of relation (2.7). In particular, we show in the next section how to 
dérivé an expression of the linear response theory from the symmetry relation 
(2.7).

2.2 Linear response theory

In this section, we show how the generalized work relation (2.7) can be used to 
recover the linear response theory. For this purpose, we consider a perturbation 
of the form

H{t) = H{0;B) - X{t)B ,

where the perturbation X{t) is such that X{t) = 0 îor t < 0 and X{T) = 0 
for T < t. The observable B is arbitrary and should not be confused with the 
magnetic field. In order to obtain the linear response of an observable A with 
respect to the perturbation —X{t)B, we take the functional dérivative of Eq. 
(2.7) with respect to A(T), around A = 0. This yields

(Ap(T)e-^"-(^)e'5"(°^®))^ = {An{0))^ = , (2.9)

where we used that AF = 0 since A(0) = X{T) = 0. Since the reversed 
process also starts at equilibrium, the average in the right-hand side is an equi- 
librium average, albeit with a reversed magnetic field. Nevertheless, we hâve 
that ca (A)gq _g = (A)gq g by using time reversai. We now hâve to calculate 
the exponentials of the initial and final Hamiltonians. Since, in the Heisenberg 
représentation, the total time dérivative of the Hamiltonian equaJs its partial 
dérivative, dHp/dt = [dHldt)p, we can write

exp[-/îi/F(T)] = exp[-/3(//(0; B) + E)]

with

where the last equality foUows from an intégration by parts. We now use the 
expression

rl3
exp[/3(P + Q)] exp(-/3P) = 1 + / du exp[u(P + Q)]Q exp(-uP)

Jo
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which can be proved by differentiating with respect to /?. To first order in 
Q, we may neglect Q in the last exponential function, exp[u(P + Q)]. Taking 
P = —i/(0; B) and Q = —E and developing to first order in X, we get

= 1- f dtXit) + OiX"^)
Jo Jo

=-l- [ dtX{t) duÈ{t + ihu) + 0{X'^)
Jo Jo

where B{t) = exp{iHot/h)B exp{—iHot/h) since, at first order in the driving 
force, the time évolution proceeds under the unperturbed Hamiltonian Ho = 

Inserting this expansion into Eq. (2.9) and after some manipulations 
using the time invariance of corrélation function as well as the KMS property 
pA = A{ih0)p, we finally find

(Af(T)) = (^)eq,B+ r dtX{T-t)4>AB{t) + 0{X^) , (2.10)
JO

with the response function

<f>AB{t) = du {B{-ihu)A{t))eq . (2.11)
Jo

Equations (2.10) and (2.11) are the well-known expressions of linear response 
theory in the canonical ensemble, also known as the Green-Kubo formula 
[105, 131]. The Casimir-Onsager reciprocity relations for the conductivities 
[175, 37] are obtained by taking A = Jfi/V and B = Ji, in terms of the 
current ^nd^nij. and the volume V, in which case the time-reversal
symmetry implies (j)^t,u{t\B) = 4>v^{t;—B) and cr^y(w;S) = o-,^^(a;;—E) for the 
tensor of conductivities cr^v{uj-,B) = dte'^*‘4>^y{t,B). Higher-order terms in
the expansion can be obtained as well.

2.3 Summary

In this chapter, we investigated the time-reversal symmetry in driven quantum 
Systems. We hâve obtained a universal quantum work relation which involves 
arbitrary observables at arbitrary times. This resuit relates an average over 
the forward process ponderated by the quantum analogue of the work to an 
average over the reversed process. By taking functional dérivatives, we can 
obtain relations for arbitrary corrélation fonctions, which are the conséquence 
of microreversibility. In the simplest case, it can be used to recover the well- 
known Jarzynski equality. On the other hand, we can also straightforwardly 
dérivé from the universal relation the linear response theory of an arbitrary 
observable. In this regard, this relation unifies in a common framework the 
work relations and the response theory, thereby opening the possibility to obtain 
further general relations which are valid not only close to equilibrium but also 
in the far-from-equilibrium régime. In the next chapter, we proceed to study 
open Systems sustaining a nonequilibrium stationary State.
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Fluctuation Theorem for Macroscopie Currents

Out-of-equilibrium Systems are ubiquitous in nature and they play an essen- 
tial rôle in many physical, Chemical and biologicaJ phenomena [183, 168, 164, 
151, 169, 171, 122, 80]. In an isolated System, a nonequilibrium State will spon- 
taneously relax toward the state of thermodynamic equilibrium. However, a 
nonequilibrium steady state can be maintained in open Systems by exchanging 
energy or matter with thermostats or chemiostats. Such réservoirs may gener- 
ate thermodynamic forces - aJso called affinities [51] - because they introduce 
inhomogeneities in the température, the pressure, or the Chemical potentials of 
the different species of molécules. In turn, the thermodynamic forces or affinities 
generate fluxes of energy or matter across the System, which contribute to posi­
tive entropy production as described at the macroscopie level by nonequilibrium 
thermodynamics.

On the other hand, from the scale of the micrometer down to the nanome- 
ter, the molecular fluctuations manifest themselves and require a stochastic 
description. Thermodynamics concepts such as currents and affinities can be 
identified in the stochastic description thanks to a graphical représentation of 
the process. In this représentation, the cyclic trajectories play a crucial rôle. 
In this chapter, we will focus on the statistical behavior of the nonequilibrium 
fluxes Crossing the System in a steady state. We shall prove that the fluctuations 
of the macroscopie currents obey a fluctuation relation, which is a conséquence 
of an underlying fundamental symmetry of the dynamical évolution. In con- 
trast with Eq. (1.5), the fluctuation symmetry is here expressed in terms of 
the macroscopie affinities driving the System out of equilibrium. Finally, we 
will show how this resuit can be applied to several Systems of interest such as 
Chemical reactions networks or molecular motors.
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3.1 Mesoscopic description

3.1.1 Master équation

Many nonequilibrium phenomena are successfully described at the mesoscopic 
level in terms of Markovian random processes. Examples of such jump processes 
include birth-and-death processes in stochastic Chemical kinetics and population 
dynamics [168, 190, 169], as well as kinetic processes in quantum field theory 
[229] and in quantum optics [147]. In some simple Systems, such processes can 
be rigorously derived from the underlying deterministic or quantum dynamics 
by introducing an appropriate partition of the phase space [211, 84] or in some 
scaling limit [204].

Such continuous-time random processes are ruled by an évolution équation, 
called the master équation, for the probability to find the System in a coarse- 
grained state u> at time t:

[W,{w'\u)Pt{uj') - W,{uj\u;')Pt{u;)] . (3.1)

The quantities Wp{uj'\u)) dénoté the rates of the transitions allowed by
the elementary processes p = 1,2,..., r. Each one of these elementary processes 
may independently contribute to the entropy production so that it is impor­
tant to separate them in the master équation. This is for example the case 
in nonequilibrium reaction Systems where the variable p corresponds to the 
different reactions [122, 85].

A trajectory picture of this stochastic process is obtained as follows. When 
the System is in state uj, it waits a random time exponéntially distributed with 
an average l/R{uj), where R{uj) = Wp{w\u}'). It then jumps onto another
State üj' with probability Wp{u\ijj')/R{w). The probability of a full trajectory 
is obtained by iterating these steps. This description is at the basis of the 
simulation algorithm by Gillespie [99]. Ergodicity of these stochastic processes 
entails the équivalence between time and ensemble averages.

The master équation (3.1) is known to obey a if-theorem for the entropy

5t - J]5(a;)Pt(w) -5^Pt(o;)lnPt(w) (3.2)
U) (jJ

associated with the probability distribution Pt(w) describing the state of the 
System at the time t [190, 122]. 5(w) dénotés the entropy due to the statistical 
distribution of ail the degrees of freedom which are not specified by the coarse- 
grained State w [85]. For instance, if the coarse-grained state w only spécifiés 
the numbers of the particles of the different species, S{uj) is the entropy of 
the statistical distribution of the positions and momenta of the particles. The 
second term is the contribution to the entropy due to the statistical distribution 
Pt(w) of the coarse-grained States [85]. The entropy is here calculated in the 
units of Boltzmann’s constant — 1-38 10“^^ J/K. The time dérivative of the 
entropy is given by
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dt
diS dgS 
dt dt (3.3)

in terms of the entropy flux d^S/dt and the non-negative entropy production 

^ = 5 E (3.4)

where

Jp{uj,uj') = Pt{u>)Wp{Lü\Lj') - Pt{u')Wp{uj'\u})

is the current of the transition and

Pt{Lj)Wp{u\uj')
Ap{ui,uj') = In

Pt{uj')Wp{uj'\uj)

(3.5)

(3.6)

the corresponding aifinity [190, 122]. The /f-theorem asserts that the entropy 
production (3.4) is always non-negative in agreement with the second law of 
thermodynamics and thus characterizes the irreversibility of the process.

In a stationary State where dP/dt = 0, the master équation (3.1) can also 
be written in terms of the currents (3.5) as

^J>',u;)=0, (3.7)

which is nothing else than the Kirchhoff current law [190].
In the equilibrium stationary State, the conditions of detailed balance

Peq(w)VKp(w|w') = P^^(uj')Wpiuj'\u) (3.8)

Pare satisfied for aJl the possible forward and backward transitions 
Thereby, the currents (3.5) and the affinities (3.6) as well as the entropy 
production (3.4) ail vanish at equilibrium. An équivalent condition, known 
as Kolmogorov’s criterion [129], can be expressed in terms of the sole tran­
sition rates. Let us consider a cyclic path —» W2 —> ••• —> u>i.
Such a cycle will be denoted by c = (ujiuj2 • ■ ■ ujn) and the corresponding 
reversed cycle by c_ = {wiu>n ■ ■ ■ ^2)- Here, we define the quantities Wc = 
W{ijJi\(jj2) ■ ■ ■ W as the product of the transition rates along
the cycle c. The equilibrium conditions (3.8) are équivalent to

Wc = Wc_ (3.9)

for every cycle c. If this condition is violated for a cycle, the System is in a 
nonequilibrium stationary State characterized by the presence of non vanishing 
probability currents and a positive entropy production [190, 121]. This illus­
trâtes the importance of the cyclic trajectories in the stochastic process. This 
observation can be further elaborated, as done in the next section.
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3.1.2 Cycle représentation

As we observed in the previous section, thermodynamic equilibrium can be 
rephrased in terms of the cyclic paths of the stochastic process. Our purpose in 
this section is to show that the cyclic trajectories link in a fundamental way the 
transition rates of the stochastic process to the thermodynamic description.

At the macroscopie level, nonequilibrium constraints are imposed to a Sys­
tem if the température, the pressure, or the Chemical potentials differ between 
the réservoirs surrounding the System. These constraints are characterized by 
the global thermodynamic forces or affinities defined by the différences of the 
températures, pressures, or Chemical potentials of the réservoirs. These global 
affinities do not directly appear in the transition rates Wp(w|w') of the master 
équation (3.1). These rates dépend on the température, the pressure, or the 
Chemical potentials of the réservoir responsible for the transition w lj' and 
also on the States u and w'. In contreist, the global affinities {Aq} are defined 
by the différences of the températures, pressures, or Chemical potentials of 
the réservoirs and are indépendant of the particular States w or w'. In this 
regard, the global affinities are macroscopie. We shall show below how a 
cyclic représentation of the stochastic process can be used to recover these 
macroscopie afl[inities.

We now introduce the cycle analysis of the random process. For a System 
ruled by the master équation (3.1), a graph G is associated as follows: each 
State w of the System corresponds to a vertex or node while the edges representP
the different transitions allowed between the States. Accordingly, two
States are connected by several edges if several elementary processes p allow 
transitions between them. Several examples will be detailed in Sec. 3.3.

An orientation is given to each edge of the graph G. The directed edges are 
thus defined by

e = u-^Lj'. (3.10)

Let / be a directed subgraph of G. The orientation of the subgraph / with 
respect to its edges {e} is described by introducing the quantity

{-1-1 if e and / axe parallel,
-1 if e and / are antiparallel, (3-11)

0 if e is not in /,

where e and / are said to be parallel (resp. antiparallel) if / contains the edge 
e in its reference (resp. opposite) orientation.

A graph G usually présents a huge number of cyclic paths c. However, ail 
cyclic paths are not independent. They can be expressed by a linear combination 
of a smaller subset of cycles, caUed the fundamental set, which plays the rôle of 
a basis in the space of cycles. The fundamental set generalizes the concept of 
mesh currents introduced in the analysis of planar electrical circuits. A method 
has been provided by Schnakenberg to identify ail the independent cycles of a
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graph [190]. Formally, the method is based on the définition of a maximal tree 
T (G), which is a subgraph of the graph G satisfying the following properties:

• T contains ail the vertices of G;
• T is connected;
• T contains no circuit, i.e., no cyclic sequence of edges.

In general a given graph G has several maximal trees.
The edges l of G which do not belong to T are called the chords of T. If 

we add to T one of its chords /, the resulting subgraph T + I contains exactly 
one circuit, C(, which is obtained from T + / by removing ail the edges which 
are not part of the circuit. Each chord l thus defines a unique cycle ci called a 
fundamental cycle. Henceforth, we will use the convention that the orientation 
is such that 5;(c;) = 1, i.e., the cycles are oriented as the chords l.

For a graph with N vertex and E edges, there exist E — N -\- \ chords. 
However, the number of maximal trees cannot be easily calculated as it 
crucially dépends on the topology of the graph. ^

We can now formulate many important thermodynamic concepts in terms 
of cycles. In a stationary state, the mean number of cycles per unit time 7c± 
accomplished in the positive and négative orientations are related to each other 
by Jc+!Jc- = exp(iüc+/îi^c_) as shown in Refs. [113, 121]. It is therefore natural 
to define the affinity of a cycle as

>l(c)=ln-^. (3.12)
^C—

According to Kolmogorov’s criterion (3.9), these affinities consistently vanish 
at equilibrium.

Each cycle can now be decomposed in terms of the fundamental cycles [190]. 
For instance, the affinity of an arbitrary cycle c can be expressed as

A{c) = J2Si{c)A{ci), (3.13)
i

where the sum extends over ail the chords. This shows in particular that the 
affinity of an arbitrary cycle is a linear combination of the affinities of a fun­
damental set [190]. Accordingly, the maximal tree T can be chosen arbitrarily 
because each cycle C( can be redefined by linear combinations of the fundamen­
tal cycles. Equation (3.13) also implies that the equilibrium conditions (3.9) are 
redundant. Detailed balance will hold if and only if conditions (3.9) are satisfied 
for the fundamental cycles only. Indeed, if the affinities A{ci) = 0 of ail funda­
mental cycles vanish, so does the affinity of any cycle c as shown by Eq. (3.13), 
fulfilling relations (3.9). This illustrâtes the fact that the fundamental cycles 
constitute a basis identifying the independent contributions to the stochastic 
process.

' Kirchhoff’s matrix tree theorem relates the number of maximal trees to the product 
of the positive eigenvalues of the admittance matrix of the graph G.
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Finally, the entropy production (3.4) can be expressed in ternis of the fun- 
damental cycles as

where Ai = A{ct) and Ji is the flux (3.5) corresponding to the chord l. 
The entropy production is thus written as the product of the fluxes and the 
aSinities, in concordance with macroscopie thermodynamics [169].

These observations led Hill [113] and Schnakenberg [190] to identify the 
macroscopie nonequilibrium constraints of a System to the affinities of the 
fundamental cycles C( of the graph. This identification is verified in a large 
class of processes including diffusion processes in lattice gases, nonequilib­
rium Chemical reactions, and electronic transport in mesoscopic conductors 
[112, 115, 190, 139, 2, 3, 4], as will be show on several examples in section 3.3. 
These conditions are weaker than in Systems with external mechanical forces 
where the affinities can be directly identified at the level of the transition rates 
themselves.

We notice that there can still exist more cycles c; than macroscopie processes 
a. The reaspn is that the graph describes ail the possible States and transitions 
at the mesoscopic level while the currents a are typically macroscopie and 
fewer than the mesoscopic States. The affinities or thermodynamic forces A{ci) 
associated with the varions cycles c; of a graph G may thus take the same value 
for ail cycles corresponding to the same current a: A{ci) = Aa for ail ci G a.

3.2 Démonstration of the fluctuation theorem

In this section we shall dérivé a fluctuation theorem for the currents. Our con­
struction is based on Schnakenberg network analysis [190] which is used to 
obtain the independent physical processes in the System. We use the graphical 
représentation of the System where the nodes correspond to the States and the 
edges e correspond to transitions between the States of the System. The ob­
servables we are interested in are the independent currents. The instantaneous 
current on the chord l is defined by

+ 0O
ji{t)= ^ Si{en)S{t~tn), (3.14)

n=—oo

where tn is the time of the random transition e„ during a path of the stochastic 
process. We use the convention that ji is oriented as the graph G since 5j(e„) 
is equal to (—)1 if the transition Cn is (anti)parallel to the chord l. The current 
(3.14) is a fluctuating random variable. The so-called Helfand moment [111] 
associated with the current is defined by

Gi{t) ^ (3.15)
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The quantity of interest is the generating function of the independent cur- 
rents Crossing the chords of the System

F{X) = jlim In (e“ ^ (3

where the sum is taken over ail the chords. We refer to Appendix A for a 
discussion on the properties of such a generating function. It here describes the 
long time behavior of the probability distribution of the currents in the System. 
We notice that the generating function (3.16) can be written as [93]

F{\) = lim -iln/e-^<^‘^‘W\t—>00 t \ /

in terms of the Helfand moments (3.15). Our goal will be to prove the following 
symmetry relation

F{X) = F{A-X), (3.17)

where we introduced the vector A regrouping the fundamental aifinities Ai.

In order to prove Eq. (3.17), we define

Ft{cj,X) =

as the mean value of exp [— XiGi{t)] conditioned on the System being in State 
w at time t = 0. The generating function (3.16) is then obtained as F{X) = 
limt_oo(—1/t) Pst{oj)Ft{uj,X). We will first dérivé an évolution équation for 
the fonctions Ft{u),X). The quantity Ft+dt{<^,X) is calculated by considering ail 
the possible transitions occurring in an infinitésimal time dt starting from State 
U! at time t = 0, before evolving the ensemble average for a time t starting from 
the State w' reached at time dt. Ail these possible transitions must be weighted 
with their respective occurrence probabilities multiplied by the contributions of 
the exponential factors exp[—XiGi{t)]. For clarity purpose, we présent the 
case where only one type of transition between two States is présent, i.e., the 
variable p can be omitted. The démonstration can be extended to the general 
case as well [6|. We also introduce the quantities

z{uj\u>') = ^ Si{uj —» u)')Xi, 
l

which are expressed in terms of the orientation numbers (3.11) and where the 
sum is taken over ail chords. They take the values ±Xi when one of the transi­
tions l occur in the direct or reversed orientation and 0 otherwise. The quantity 
Ft+dt(w,A) can then be written as

Ft+dt(i^,X) = E Pdt(^k)e-^(“l‘"')Ft(w', À). (3.18)

In Eq. (3.18), the exponential factor cornes from the contributions of the quan­
tity exp [— A;G;(t)j during the transition u> —» u>'. corresponds to
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the probability that, starting from State ui, the System ends in State ui' after a 
time dt. This conditional probability is given by

With our conditions on the transition rates, the Perron-Probenius theorem is

By virtue of this relation, the limit in Eq. (3.16) exists and the leading 
eigenvalue of the operator (3.19) gives the generating function of the currents.

We now prove the symmetry (3.17). This was first accomplished in Ref. 
[6] using the déterminant expansion in terms of cycles. We will here présent a 
more direct approach. Our strategy to prove relation (3.17) will be to show that 
the évolution operator (3.19) présents the corresponding symmetry. Indeed, an 
appropriate change of basis U will show that

where T dénotés the transpose. As a conséquence, ail eigenvalues of the operator

This operator is invertible if none of the coefficients u is equal to zéro, in which

transitions w —» u;' which do not correspond to a chord, we impose that the 
ratios satisfy

|Ft(w,A) = Y. - W{uj\ij')Ft{u>,X)

= Ft{oj,X) (3.19)

with the initial condition Ft=o{oJ,X) = 1. Whereupon we find that

= YPst{^)Ft{oj,X) = YPst{uj)

of application and there is a unique maximal eigenvector V\ (which is positive)

LxVx = -F{X)Vy. (3.20)

(3.21)

L will présent the symmetry A ^ A — A. Since the generating function (3.16) is 
given by the largest eigenvalue of L according to (3.20), this will conclude the 
proof of the resuit (3.17).

The construction goes as follows. We consider an operator Ü of the form

= {l/uu)Su,,u' ■ In this new basis, the operator (3.19) is transformed 
= Luij'{'U‘ui/Uu'). We now proceed to choose the éléments For ail

(3.22)
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Thereby, the éléments of L now take the values

L'uw = (3.23)

if the transition w w' is not a chord, because = 0 and in
this case. These éléments are now symmetric.

At this point, we hâve fixed the value of - 1 ratios of the form (3.22). 
Indeed, if there are E edges in the graph and AT States, there exist E — N + l 
chords in the graph so that we hâve fixed E'—(£^-7V + l) = Af — 1 ratios. This 
is precisely the number of independent variables we can specify. The operator 
U is now determined up to a multiplicative factor.

The remaining éléments of L corresponding to the chords are now obtained 
as follows. For a fundamental cycle c; = (wi, ■ • • ,o;;), we hâve the identity

n U

y>uji

i-in
1

= 1, (3.24)

where wi+i = and the transition corresponds to the chord l in
the positive direction. By construction, a fundamental cycle C( only contains 
its associated chord l. Hence, using Eq. (3.22) as well as Eq. (3.12), équation 
(3.24) becomes

V^WlWi/

Accordingly, the operator éléments associated with the chord l read

îL,.,(Ai) = \/WWW& ^ - Xi)

because Zuicji(Xi) = Xi and This resuit, along
with Eq. (3.23), proves Eq. (3.21). Consequently, ail the eigenvalues of L\, 
including the generating function, will présent the symmetry (3.17). QED.

The fluctuation theorem for the current is thus related to a fundamental 
symmetry property of the évolution operator. It is also remarkable that this 
relation is valid arbitrarily far from equilibrium. In addition, in this new basis 
the évolution operator L takes a more symmetric form that is more stable for 
numerical algorithms searching for eigenvalues. Eventually, one can check in 
the same way that this construction can be extended to the case where there 
exist several transitions p between two States [6].

As explained in section 3.1.2, we can now regroup the different microscopie 
currents corresponding to a given macroscopie process a:

+00

ja{t) = '^ ^ Si{en) 6{t - tn) ■
n=—oo

(3.25)
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On the other hand, we may set A/ = Aq for ail / € a and define 
<5({Aq}) = F({A; = Ao}). Since ail fundamentaJ cycles contributing to 
a given transport process a hâve the same affinities, we hâve demonstrated the

Theorem 2. The generating function of the macroscopie currents

Q{\) = ^lim — In ^e 1» (* )^ (3.26)

obeys the symmetry relation

Q{X) = Q{A-X). (3.27)

We note that this symmetry property involves the ensemble of currents 
in the system. In Ref. [7], we derived the necessary and sufEcient conditions 
under which a fluctuation theorem will hold for a single macroscopie current. 
These conditions are expressed in terms of geometrical and thermodynamical 
conditions on the graph. In such a situation, a given current ja satisfies a 
fluctuation symmetry regardless of the other thermodynamic processes at stake
[7].

We also notice that Theorem 2 can be extended to the more general class 
of semi-Markov processes. In this framework, the waiting-time distribution 
between the jumps is non-exponential, implying a non-Markovian behavior. 
The démonstration of the fluctuation theorem (3.27) for this class of stochastic 
processes is presented in Appendix B.

As shown in the Appendix A, the generating functions are closely related to 
the large fluctuations. Large déviation theory indeed shows that, asymptotically,

= C) (t-»oo),

where Gt regroups the Helfand moments and I is the Legendre transform of Q. 
Hence, the fluctuation symmetry (3.27) is reflected on the rate function /(^) as 
follows:

7(0 = m^{Q(A) - AC}

= m^{Q(A - À) — AC}

= max{Q(A) - (A - A)C} 

= 7(-C)-A.C

or, equivalently.

p{Gt/t = C) ~ p(Gt/t = -C) (3.28)

in the limit t —* oo. This relation shows that the probability to observe a given 
positive fluctuation is exponentially more likely than the probability to observe
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the opposite one. This exponential dependence is proportional to time as well 
as to the affinities driving the Systems out of equilibrium.

Relations (3.27) and (3.28) contain more information than the fluctuation 
theorem for the entropy production obtained by Lebowitz and Spohn [139]. 
Indeed, this last relation can be recovered from the présent theorem by merg- 
ing the different currents onto a single quantity, which is accomplished by the 
substitution Aq —» XAa- In this case we find the symmetry Q'{\) = Q'{\ — A) 
[139, 6], but going the other way around is not possible. This shows that the 
fluctuation theorem for currents is more detailed than the usual fluctuation 
theorem for the entropy production.

In Chapter 4, we shall explore the conséquences of this symmetry for the 
nonlinear response theory. Here below, we will illustrate the results of this 
section on different mesoscopic Systems.

3.3 Applications

In this section, we survey a number of Chemical, physical, and biological Systems 
where the fluctuation symmetry (3.27) or (3.28) can be applied.

3.3.1 Chemical reaction networks

Chemical reactions can be driven out of equilibrium by pumping reactants into 
a reactor and allowing the outflow of products. If the reactor is continuously 
stirred and maintained at constant température, the System is homogeneous 
and isothermal. Under such conditions, the reacting System can be described 
by the randomly fluctuating numbers of molécules of the intermediate species.

Our purpose in this section is to illustrate Schnakenberg’s network theory 
with the example of the nonlinear Chemical network

Particles enter into the System from three different réservoirs. A, B, and C. The 
particles of the species X are produced by three different reactions from so many 
reactants. The reaction constants are denoted by k±p with p = 1,2,3. Out of 
equilibrium, fluxes of matter will cross the System between the three réservoirs. 
In a stationary state only two such fluxes will be independent and they will 
constitute the relevant macroscopie observables. According to the mass-action 
law [168, 164, 151, 169, 171, 122], the transition rates of these reactions axe 
proportional to the concentrations and given by

(3.29a)

/C2
B + X ^ 2X, 

k-2

C + 2X ^ 3X.

(3.29b)

(3.29c)
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Fig. 3.1. Graph G associated with the reaction network (3.29).

iyi(X|X + l) = ki[A]Ü,
Wi{X\X - 1) = k-iX ,
W2{X\X + \) = k2[B]X ,
W2{X\X - 1) = fc_2i7~^X(X - 1),
W3{x\x +1) = k3[C]n-^x{x -1),
W^3(X|X - 1) = - 1)(X - 2),

where X is the number of particles of the species X, [■] dénotés the mean con­
centration in the réservoirs, and ü an extensivity parameter such as the volume 
of the reactor. The transition rates are nonlinear fonctions of the internai state 
X. The State of the System is described in terms of the probability P{X, t) that 
the System contains the number X of particles of the species X at the time t. 
The master équation ruling the time évolution takes the form:

t) = è E 0 - W^p(X|X - u)P{X, t) .
P=1 l/=±l

We notice that neither the macroscopie currents nor the macroscopie afSnities 
are apparent in the master équation contrary to the Systems where the afhnities 
are given in terms of mechanical forces. In order to identify them, we use the 
graph anadysis of Schnakenberg [190]. The graph of this stochastic process is 
depicted in Fig. 3.1.

At equilibrium, the detailed balance conditions (3.8) hold which imply that

fcl[A] _ fc2[B] _ fc3[C] (X)ec,
fc_i fc_2 k-3 ü

and the equilibrium probability distribution Peq(X) is Poissonian of average 
(X)eq. Out of equilibrium, the detailed balance conditions are no longer satisfied 
and the probability distribution Ps^{X) of the nonequilibrium steady state is 
known to be non-Poissonian for such nonlinear Chemical networks [168, 164, 
151, 169, 171]. For the présent model, the steady state is given by;

X
Pst(x)=p,t(o) n

X=1
X]pVFp(x|2;-l)

P A fci[A]f? -I- fc2[B](a; - 1) -h fc3[C](a: - l)(a: - 2)1? ^ 
H k-ix + k^2x{x - l)f?-i + fc_3x(x - l)(x - 2)/2-2 ■
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An affinity can be associated with each reaction (p = 1,2,3) according to 
Eq. (3.6):

Ap{X) = In P,,{X)Wp{X\X + 1) 
Pst{X + l)Wp{X + l\X)-

These mesoscopic afRnities dépend on the internai state X, and thus fluctuâtes 
in time. Therefore, they do not correspond to the time-independent macroscopie 
affinities. These latter are instead given by the Schnakenberg conditions. A 
possible maximal tree is given by choosing ail edges corresponding to reaction 
P = 3. The chords correspond in this case to ail edges associated with the 
reactions p = 1,2. The corresponding cycles are depicted in Fig. 5.1. They 
start from the state X and go to the State A + 1 by the edge p = 3 and return 
to the State X by the edges p = 1 or p = 2. The corresponding macroscopie 
affinities are given by

_ W3{X\X + l)Wp{X + l\X) 
^ WsiX + l\X)Wp{X\X + 1)

/Il . ^-lfc3[C] 

k-3ki[A] ’
A2 = In fc-2fc3[C] 

k-3k2[B] ’
(3.30)

which are independent of the internai state X and thus constant in time as it 
should.

This example shows that the mesoscopic affinities (3.6) in general dépend 
on the State of the System and will thus fluctuate in time together with the 
corresponding currents (3.5) along a stochastic trajectory of the process. This 
problem is overcome by introducing the affinities defined by the conditions 
(3.12) and corresponding to the macroscopie affinities (3.30). These latter no 
longer dépend on the mesoscopic state and are thus independent of time as 
expected for nonequilibrium constraints from macroscopie réservoirs. The ap­
plication of these concepts to arbitrary networks of reactions can be found in 
Ref. [2].

3.3.2 Electronic transport in mesoscopic junctions

The nature of the current flow at low températures through mesoscopic 
structures has received a lot of attention during recent yeaxs. After initial 
focus on the conductance, which measures the average number of électrons 
transmitted in time, there has been an increasing interest for the noise power, 
a measure for the variance of the transmitted charge [24]. The next logical step 
is to study the full distribution function of the charge transmitted through a 
mesoscopic conductor, which is now within experimental reach [76]. After the 
pioneering work of Ref. [142], several methods hâve been developed in order to 
obtain the full counting statistics in mesoscopic conductors. In the semiclassical 
limit, Nazarov and Bagretz derived a circuit theory based on Keldysh Green’s
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function formalism [163]. The statistics of the currents can also be described in 
terms of a stochastic path intégral [181] or a cascade of Boltzmann-Langevin 
équations describing the fluctuations of the currents [161]. The purpose 
of this section is to apply the fluctuation theorem for currents in this re­
cent context, bcised on a master équation description [3, 67]. The fluctuation 
symmetry has also been shown using Keldysh Green’s function formalism [213].

We consider two mesoscopic tunnel junctions coupled in sériés as described 
in Ref. [1]. A schematic représentation of the System is given in Fig. 3.2. When 
the charging energy Ec = /2C, where C = Cl -I-Cr, is larger than the thermal
energy /crT, électron tunneling events across the junction become correlated 
and give rise to a vajiety of phenomena such as Coulomb blockade, leading to 
steps in the current-voltage characteristics [1]. The voltage in the central région 
between the two junctions Vm fluctuâtes depending on the number N of excess 
électrons in this région. The voltage drop across the left junction, Vl - Vm(A'), 
and the right junction, Vu{N) — Tr, are found using classical electrodynamics 
to be

Vl-Vm{N) = ^V + ^ + Vj,,

Vu{N)-Vk = ^V-^-V^.

The additional voltage Vp has been included to account for any misalignment of 
the Fermi level in the middle région with respect to the Fermi levels of the left 
and right leads when V and N are zéro [1]. In this semiclassicaJ description, the 
State of the System is determined by the probability P{N, t) to hâve a number 
of excess électrons N in the middle région, which obeys the master équation:

dP{N,t)
dt

[Wp{N ± l\N)P{N ±1,0- Wp{N\N ± l)P{N,t)] .
p=L,R ±

The System is controlled by four tunneling rates: the rate for électrons to tunnel 
into the central région from the left Wi,{N\N +1) and right VFR(iV]Af ± 1), and 
the rate for électrons to tunnel out of the central région to the left Wi,{N\N — l) 
and right Wr{N\N — 1). These rates are computed via Fermi’s golden rule and 
take the form

Wp(Af|N±l) =
1 ±e[VM{N) - Vp] - Ec

1 - Q0{Te[VM(N)-Vf,\+E^}

with P = L, R and the inverse température (3 = 1/(A:bT). This model success- 
fully reproduces the experimental data on the complicated structure of the I-V 
characteristics [1].

The graph of the System is depicted in Fig. 3.3. Calculating the quantity 
(3.12) along the cycle shown in Fig. 3.3, one flnds

Wr{N\N + 1)Wl{N + l\N) _ eF 
Wl{N\N + l)Wn(N ± IjAT) “ ksT '
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Fig. 3.2. Schematic représentations of the two junctions which ^lre denoted L for 
left and R for right. They hâve the résistances Rl and Rr, and capacitances Cl and 
Cr respectively. The two junctions are driven by an idéal constant voltage source V. 
I = J is the current intensity.

Fig. 3.3. Graph associated with the reindom process of the conductor of Fig. 3.2.

One can thus extract the potential différence applied to the double junction by 
considering the affinities of the cycles. The current fluctuation theorem can be 
applied and the distribution of the charge transmitted to the double junction 
therefore satisfies

P

P = -a
: exp I {t-> oo).

where p = L, R are the chords which can be chosen to correspond to the left 
or right junction. The fluctuation theorem for the currents can be extended to 
multi-terminal Systems, i.e., Systems with three or more junctions [3].

Since the conditions of application of the current fluctuation theorem holds, 
we infer that the response coefficients obey the Onsager reciprocity relations 
as well as their higher-order generalizations as derived in the next chapter. 
In this regard, we notice that the zero-frequency current noise Ea0 can be 
computed from the generating function (3.26) by taking second dérivatives. This 
quantity is of central interest to characterize the fluctuations of the currents in 
mesoscopic conductors [24]. Furthermore, the knowledge of the power spectrum 
in the vicinity of equilibrium gives access to the nonlinear response coefficients 
and their nonlinear symmetries, as will be shown in Chapter 4.
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3.3.3 MoleculEU" motors

In this section, we introduce a discrete-state model describing the motion of the 
Fl motor studied by Kinosita and coworkers in Ref. [232]. The Fi protein com- 
plex is composed of three large a- and /3-subunits circularly arranged around a 
smaller 7 subunit. The three /3-subunits are the reactive sites for the hydrolysis 
of ATP, while the 7-subunit plays the rôle of rotation shaft to which a bead of 
40 nm-diameter is glued. The mechanism of rotational catalysis was proposed 
by Boyer using a bi-site activation [27]. Nevertheless, experimental data cannot 
distinguish for the moment between the bi-site and three-site activations. The 
observation [232] clearly shows that the rotation takes place in six steps: ATP 
binding induces a rotation of about 90° followed by the release of ADP and Pj 
with a rotation of about 30°. Therefore, the hydrolysis of one ATP corresponds 
to a rotation by 120° and a révolution of 360° to three sequential ATP hydrol­
ysis in the three /3-subunits. The six successive States of the hydrolytic motor 
M = Fl can thus be specified by the angle 9 of the shaft and the occupancy of 
the sites of the three /3-subunits as

Ml = [6> = 0,(ADP-hPi, 0, x)

[O'jr
0=y,(0, ADP + Pi, x)

M5= ADP + Pi)'

where x stands either for 0 or ADP for the bi- or three-site mechanism. If the site 
is empty, the Fi complex jumps to the following state with the rate fc+i[ATP], 
and with the rate fc+2 if the site is occupied. The backward transitions being 
possible, the complex can jump to the preceding state with the rate fc_i if the 
site is occupied and the rate fc_2[ADP][Pi] if it is empty. This process can be 
summarized by the following reaction scheme

fcj-1 fcj-2
ATP + ^ M„+i ^ M<,+2 + ADP -f Pi ((J = 1,3,5)

fc_l fc_2

with a cyclic ordering M7 = Mi. This is a six-state model with the transition 
rates

M2

M4

Me

0 = -,(ADP + Pi, ATP, x)

9 = ^,(x, ADP + Pi, ATP) 
b

0= iÿ^,(ATP, I, ADP + Pi)' 
b

w+i = /c+i[ATP],
W-i = fc-l ,
W+2 = fc+2 ,
u;_2 = fc-2[ADP][Pi].

The graph of this model is depicted in Fig. 3.4. The three-fold symmetry of the 
Fi-ATPase is taken into account in the model by the symmetry of the transition 
rates. Similar models can be used to describe the dynamics of others molecular 
motors such as kinesin [74, 196, 138, 144].

The afSnity of the cycle of Fig. 3.4 is given by
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3

Fig. 3.4. Graph associated with the six-state model.

fe+ifc+2[ATP]
(3.31)

The maximum work which can be doue per révolution by the Fi motor is 
3(jUATP — Madp — MPi) = AksT. The detailed balance conditions (3.9) should 
be satisfied at the thermodynamic equilibrium, which implies the vanishing of 
the alRnity (3.31). Accordingly, equilibrium is reached if w+iw+2 = w-iW-2- 
Since the standard free enthalpy of hydrolysis is equal to

AG° = GIt:p - G^dp ~ = 50 pN nm

and the température of the experiment of Ref. [232] is 23° Celsius, the equilib­
rium concentrations of the reactant and products obey

[ATPjeq
[ADPjeqpijeq

= ^-AG°/ksT ^ 4 gg 10-6 ,
k+ik+2

which is a constraint on the reaction constants from equilibrium thermody- 
namics. We notice that, under physiological conditions, the concentrations are 
about [ATP] ~ 10“^ M, [ADP] ~ 10““* M, and [Pi] ~ 10“^ M, so that ATP is in 
large excess with respect to its equilibrium concentration [ATP]eq ^ 4.89 10~^^ 
M, which shows that the System is typically very far from equilibrium.

The reaction constants k±p can be determined from the experimental data, 
yielding [4, 94]

k+i = (2.6 ±0.5) 10^ s~^,
fc_i = (138 ±34) 10-® s-^ 
k+2 = (387 ±27) s-^ 
fc_2 = (3.5 ± 0.8) 10® M-2 s-1.

We observe that these reaction constants range over about twelve orders of 
magnitude, which is characteristic of a stifî stochastic process.

The rotation of the motor can be described by the number of révolutions 
Rt accomplished during a time t. The corresponding generating function
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Q(A) = lim — ln(e-^'^‘)' ' t—oo t

is given by [4]

Q(A) = i ^W+i + W+2 + IW-l + W-2 - [(tu+i + W-2 + 1ü_i + W+2)‘ 

+ iw+iw+2 + e-- 1 - e-^/3) ] " } .

This generating function présents the symmetry

Q(A) = Q(A - A)

(3.32)

as it should. The rotation of the motor will thus satisfy the large-deviation 
relation

P{Rt/t -- +g) 
P{Rt/t = -a)

~ exp Aat (t —» oo). (3.33)

Another fluctuation relation can be derived for the cumulative number of 
steps St the motor performs during a time t. The generating function of this 
variable can be calculated at finite times [4] and shows the symmetry

P{St = s) ~ P{St = -s) e*^/® . (3.34)

In Fig. 3.5 we show that this fluctuation relation is indeed satisfied. For a given 
affinity, the fluctuation theorem (3.34) for the displacement of the motor is 
easier to observe experimentally than the one (3.33) for the full révolutions. As 
seen in Fig. 3.5, the probability distribution of the displacement here takes a 
spécifie form where the odd displacements are almost never occurring. Indeed, 
for these values of the concentrations of the Chemical species, the probability 
to be on odd sites is about 4 orders of magnitude lower than the probability to 
be on even sites. The System almost never stays on odd site and immediately 
jumps to the next or previous site.

The generating function (3.32) allows us to dérivé not only the mean current 
but also the higher-order moments by différentiation. The first dérivative cor­
responds to the steady-state current or mean rotation velocity, which is given 
by

y ^ W+iW+2 -W-iW-2
3(îc+l -I- w+2 + W-1 + W-2) ’

This corresponds to a kinetics of Michaelis-Menten type in the absence of the 
Products ADP and Pj of the reaction (i.e., in the limit A = -f-00) where the 
steady-state current is given by

fe+ifc+2[ATP] [ATP]
“ 3(fc+i[ATP] + k+2 + k-i) ~ [ATP] + Km ’

with the maximum value Knax = k+2/Z and the Michaelis-Menten constant 
Km = {k+2 + fc_i)/fc+i.
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s

Fig. 3.5. Probability P{St = s) (open circles) that the Fi motor performs s = 
St steps during the time interval t = 10“* s compared with the expression P{St = 
—s) (crosses) expected from the fluctuation theorem for [ATP] = 6 10“® M and 
[ADP][Pi] = 10-2

Fig. 3.6. (a) Mean rotation velocity V of the Fi motor with a bead of 40 nm-diameter 
versus the affinity A for different concentrations [ADP] [Pi] of the products. (b) Zoom 
of (a) giving the mean rotation velocity V of the Fi motor versus the affinity A around 
the equilibrium at A = 0 for different concentrations [ADP] [P,] of the products.

The mean rotation velocity is depicted in Fig. 3.6a as a fonction of the affin- 
ity (3.31) for different concentrations of the products. We observe that the V-A 
curve is highly nonlinear as a conséquence of the stifîness of the process. Even 
the vanishing of the mean velocity at the thermodynamic equilibrium A = 0 
is not visible in Fig. 3.6a. A zoom is carried out in the vicinity of equilibrium 
in Fig. 3.6b where we observe that, indeed, the mean velocity vanishes linearly 
with the affinity as expected. This linear régime does not extend by more than 
one decade around the equilibrium concentration. Typically, the motor is very 
far from equilibrium and is functioning in the nonlinear régime. This shows the 
crucial importance of these nonlinear régimes of nonequilibrium thermodynam- 
ics for the understanding of biologicaJ molecular motors.
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Fig. 3.7. Diffusion coefficient D of the Fi motor with a bead of 40 nm-diameter versus 
the adfinity A for different concentrations [ADP] [Pi] of the products.

A second dérivative of the generating function selects ont the diffusion co­
efficient

^ _ w+iw+2 + w-iW-2__________ (k;+i-u;+2 ~ w-iW-2)^

18 (w+l -I- W+2 +W-1 + W-2) 9 (tu+i -f W+2 -h W-1 + W-2)^ '

This diffusion coefficient chaxacterizes the fluctuations in the rotation of the 
motor. Another conséquence of the stiffness of the motor is that the diffusion 
coefficient depicted in Fig. 3.7 is small relative to the mean velocity. For most 
values of the affinity, the ratio of the mean velocity to the diffusion coefficient is 
about V/D ~ 6, which is chaxacteristic of a correlated rotation slightly affected 
by the fluctuations. The nonlinearities confer thus to these rotary motors a very 
robust dynamical behavior.

3.4 Summary

In this chapter, we derived a fluctuation relation for the macroscopie currents 
Crossing the System in a nonequilibrium steady State. This resuit is expressed 
by the symmetry property (3.27) for the generating function of the currents.

At the mesoscopic scale, the discreteness of matter résulta in a random 
évolution of the trajectories of the System. A statistical description is obtained 
in terms of a master équation for the évolution of the probability distribution 
in phase space. This probability distribution will evolve towards a stationary 
distribution which can be an equilibrium or nonequilibrium State, depending on 
whether the detailed balance conditions are satisfled or not. A nonequilibrium 
steady State is chaxacterized by the presence of probability currents, maintained 
by a différence of thermodynamic potentials between the réservoirs coupled to 
the System. In a nonequilibrium steady state, the violation of detailed balance 
along cyclic trajectories can be related to the macroscopie affinities. In this way, 
the connection with thermodynamics can be established.
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However, thermodynamic quantities such as the nonequilibrium currents 
fluctuate along the stochastic trajectories. The analysis carried ont at the level 
of a statistical ensemble of trajectories shows that the dynamics présents an un- 
derlying hidden symmetry (3.21). In turn, this symmetry property translates 
into the laxge-deviation relation (3.28) for the fluctuations of the macroscopie 
currents. This relation reveals that the probability to observe a positive value of 
the currents is exponentially greater than the probability to observe its oppo­
site value. The exponential behavior dépends on the thermodynamic afflnities, 
which entails deep connections between fluctuations and thermodynamic forces.

This resuit can be applied to a large variety of Systems, as shown here for 
Chemical, physicaJ, and biological Systems. These Systems typically fonction in 
the nonlinear régime, so that the fluctuation theorem is a favored tool to explore 
the nonequilibrium properties of mesoscopic Systems.

Since the fluctuation relation for the currents is expressed in terms of the 
macroscopie afflnities and is vaJid arbitrarily far from equilibrium, it is natural 
to explore the conséquences of this relation on the response theory. This will 
be the purpose of the next chapter.
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Nonlinear Response Theory

Onsager’s classic work of 1931 [175] has shown that the linear response co­
efficients relating the currents to the thermodynamic forces obey reciprocity 
relations as a conséquence of the reversibility of the underlying microscopie dy- 
namics. Subsequently, Green [105] and Kubo [131] independently expressed the 
response coefficients in terms of the equilibrium corrélation function of the cur­
rents. The fluctuation theorem is also closely related to microreversibility and 
is valid far from equilibrium. In particular, close enough to equilibrium where 
the response of the System is linear in the affinities, the Onsager reciprocity 
relations can be deduced from the fluctuation theorem [77, 139, 2[.

On the other hand, it is known that far-from-equilibrium Systems may 
présent nonlinear responses to nonequilibrium constraints. The response is said 
to be nonlinear if the currents Crossing the nonequilibrium System dépend non­
linear ly on the affinities. The coefficients characterizing such nonlinear responses 
are obtained by expanding the currents in the powers of the affinities. The terms 
linear in the affinities are the linear response coefficients obeying Onsager’s reci­
procity relations. The terms which are quadratic, cubic, quartic, etc... in the 
affinities are called the nonlinear response coefficients. We may wonder if the 
nonlinear response coefficients would obey relations beyond Onsager’s ones as 
the conséquence of the fundamental microreversibility.

In this chapter, we shall show that an affirmative answer can be given to 
this question thanks to the fluctuation theorem for the currents, proved in 
Chapter 3. In this framework, expressions for the response coefficients of the 
currents at arbitrary orders in the affinities are given in terms of the fluctuations 
of the cumulative currents. Remarkable relations are obtained which are the 
conséquences of microreversibility beyond Onsager reciprocity relations [5].
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4.1 Nonlinear expansion

The link between the mesoscopic and macroscopie scales is made thanks to 
the concept of ensemble or time averaging. The macroscopie currents J a are 
thus obtained from the mesoscopic currents (3.25) or their associated Helfand 
moments G a as follows:

Ja- lim J [ {ja{t'))dt'= lim . (4.1)t—>oo t Jq t—>oo t

In general, the macroscopie currents can be expanded as power sériés of the 
macroscopie affinities:

0
a,0-^0

1 ' AA ^+ ^ 2^ J-'a,0-yAf3A-y + -
0n

Lot,0yS-^0-^^-^6 “h . . . .
0,y,s

The linear response of the currents Ja with respect to a small perturbation 
in the affinities is characterized by the Onsager coefficients La,p and the 
nonlinear response by the higher-order coefficients La,p-y, La,0'yS, ■ ■ ■

On the other hand, the generating fonction (3.26) can be used to obtain the 
mean currents as well as higher-order cumulants by expanding in Taylor sériés

Q{X,A)c^'^JaXa + 0{\'^),
a

as shown in Appendix A. We here emphasize the dependence of Q on the 
affinities. The symmetry of the fluctuation theorem (3.27) reads

Q{X,A) = Q{A-X,A) (4.2)

and explicitly involves the thermodynamic forces. Our goal will be to explore 
the conséquences of this relation on the response coefficients.

A first observation is that the antisymmetric part of the generating fonction 
can be recovered from the symmetric part. We thus consider the symmetric and 
antisymmetric parts

Q±(A,A) = i [q(A, A) ± Q(-A, A)] = P±Q(A, A),

where we introduced the projection operators P±. Equivalently, we hâve

Q(A,A) = Q+(A,A) + Q_(A,A), (4.3a)
Q(-A,A) = Q+(A, A) - Q.{X,A). (4.3b)

Expressing the symmetry (4.2) in terms of the translation operator

GXY>{yd!dx)(j){x) = <p{x -I- y)

and substituting Eqs. (4.3) into the resulting expression gives
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[exp(-j4 • d/dX) + 1]<5_(A,j4) = [exp(-A • d/dX) - l]Q+(A,i4). 

Operating on both sides of this équation by [exp(—.4 • d/dX) + 1]“^, we hâve

(5_(A,i4) ^ -tanh Qa • Q+{X,A). (4.4)

We see that the odd part Q- is completely determined by the even part Q+. The 
fluctuation symmetry éliminâtes half of the degrees of freedom of the generating 
function. Now, substituting the projection operators P± into (4.4) yields

P-Q{X,A) = - tanh ^4 • P+Q{X,A). (4.5)

If we analyse the effect of the odd operator tanh(2 ^A • d/dX) on P+, we can 
verify that

tanh(2“^4 ■ d/dX)P+ — A. tanh(2~^4 • d/dX). (4.6)

By virtue of (4.6), équation (4.5) tahes the form

P_ Q(A,4) + tanh Q(A,A) = 0, (4.7)

yielding another expression of the fundamental symmetry (4.2).

We now explore the conséquences of this symmetry on the fluctuations and 
their response. A characterization of the fluctuations can be obtained from the 
Taylor sériés of the generating function of the currents

oo
Q(A,A) = V -:A„,,.„„(4)Ac....A„„, (4.8)

m!
m=l

where we use the convention to sum over repeated indices. Indeed, the coef­
ficients Kai...am related to the cumulants of the Helfand moments (3.15) 
as

Kc....aAA) = (-l)"^+\lim i((G.,(t). ..G^^{t))U • (4.9)

The coefficients Kai...a,„ can in turn be expanded in powers of the aflinities,

oo ^

Araj...Q. (A) = —.Loci...am,P\ -0n-^0\ • • • -^0n i n!
n=0

so that we can write the generating function (4.8) as

<3 = EE
m=\ n=0

m\n\ Lai...am,0i "0n^ai ■ ■ ■ ^am-^01 ■ ■ ■ -4/9n (4.10)
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The coefficients characterize the response of the quantities
Kai...a„ respect to the affinities ...Ap^. These coefficients are ob- 
tained by difïerentiating the function Q with respect to the parameters A and 
the afiBnities A. In particulax, the response coefficients of the macroscopie cur- 
rents are given by We notice that the action of the operators P± on
the sériés (4.10) is to multiply it by 1/2 and to select ont the terms for which 
(-1)'" = ±1.

We now consider the action of the operator A - d/d\ on the sériés (4.10) in 
detail. We hâve

dQ
'dK

oo oo ..

y" y"—-
, ^ —m=l n=0

l)!n! -17,/3i ./3„ Aai • • • Ap^ . . . Ap^A^

We may write the last sériés in the form

OO OO 1 P
/ ^ - ■ ■ ■ ■'^01 )
fe=l1=0

where
i

Lai...ak,0i---0i — ^ , Lai...ak0i,0i---0i-i0i+i---0i ■ (4-H)
i=l

We will treat (4.11) as the resuit of the action of an operator cr which transposes 
l^ai...ak-ki,0i --0i-i illto Lon...ak,0i---01-

Lai...ak,0i ..0i — i^^)oci-"O‘k+i,0i- -0i-i ■

Then, as a conséquence of (4.11), we hâve

l
{cTL)ai...ak,0i...0i = '^Lai...ak0i,0i...0i-,0i+i...0, ■ (4.12)

2=1

This formula defines the action of the operator cr. Thus, we see that the action 
of the operator A ■ d/d\ on Q is équivalent to the action of the operator a on 
the coeflBcients of the sériés. We now use this équivalence after inserting (4.10) 
into (4.7). Taking into account that P_ selects out the terms with property 
(—l)"i = we obtain

Pofi...Qm,/3i.../3„ = ~[tanh(cr/2)L]Q,j...Q,^^/3,...^^ (4-13)

for (—1)’" = —1. The function tanh(z/2) can be represented as

CXD

tanh(z/2)= (4.14)
j=0

where
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= 2^2j + 2)^2^+' ■

Here B2j+2 are the Bernoulli numbers. The first coefficients of (4.14) axe 

ci = -, C3 = - —, C5 = —, ....

By virtue of (4.14), équation (4.13) takes the form

= - ^C2j+i (4-16)
j>0

at ( — 1)’"+^ = 1. The number of terms on the right-hand side of (4.16) is finite. 
Indeed, we see from (4.12) that the action of the operator a decreases the 
number of subscripts appearing to the right of the comma. This number cannot 
be négative. For this reason ^ ^ == 0 for 2j + 1 > n. The
number of term in (4.16) is thus equal to the integer part of (n + l)/2. Using 
Eqs. (4.12),(4.15), and (4.16), we hâve for m = 1,3,5,...

La,...c^=0, (4.17)
—2 Tai...Om,/3 — ̂ ai...am/3 i (4-18)

— 2 Lcc-^...am,01 ~ ^ oci.. .a-ml ,0 ■ (4-19)
These relations correspond to the values n = 0,n=l,n = 2 respectively. Ail 
these relations and the others derived from (4.16) axe independent. We now 
consider relations (4.13) or (4.16) at successive orders in detail.

4.1.1 Linear response

We here consider ail independent two-subscript relations. They are given by 
Eq. (4.18) with m = 1, i.e.

^a,P — 2 •

This expression shows that the response coefficients are symmetric;

La,0 = Lp^a ■ (4.20)

These are the Onsager reciprocity relations [175].
By using Eq. (4.9), we obtain the Onsager coefficients as

1 1
La,p = 7^ {Ga{t)Gp{t))eq = — / {ja{t)jp{0))eqd,ij (4-21)

t-*oo i

in terms of the Helfand moments or in terms of the time corrélation functions 
of the instantaneous currents. Here, the statistical average is caxried out with 
respect to the State of thermodynamic equilibrium. In Eq. (4.21), the formulas 
giving the coefficients in terms of the Helfand moments or cumulative currents 
are known as the Einstein-Helfand formulas [65, lllj. The other formulas giving 
the coefficients in terms of the time corrélation functions axe known as the 
Green-Kubo formulas [105, 131] or the Yamamoto-Zwanzig formulas in the 
context of Chemical reactions [231, 233].
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4.1.2 Second-order response

We here consider ail three-subscript relations. Prom Eq. (4.17) with m = 3, we 
find

LafSy — d ) (4.22)

showing that the third cumulant vanishes at equilibrium. This is true for ail 
odd cumulants at equilibrium as can be seen from Eq. (4.17).

Another relation cornes from Eq. (4.19) with m = 1, i.e.,

La,P~i — 2 ■ (4.23)

The right-hand terms of this équation are related to the spectral fonction of 
the nonequilibrium current fluctuations defined by

/
+00

(ba(0 - (je)] MO) - M]) dt, (4.24)
•oo

where the statistical average is here taken with respect to the nonequilibrium 
steady State. Here, the quantities Lap,-y are expressed as

^a/3,7 = ^ j - (ja)] [jffiO) ~ (j>)]) dt
A=0

dA. -Eap{u} = 0)
A=0

(4.25)

which characterize the sensitivity of the current fluctuations out of equilibrium.
Thanks to the fluctuation theorem for the currents, we can therefore relate 

the second-order nonlinear response coefficients to quantities characterizing the 
nonequilibrium fluctuations such as the spectral fonctions of the currents in 
the nonequilibrium steady State. We notice that the number of dérivatives with 
respect to the afflnities has indeed been reduced.

4.1.3 Third-order response

We here consider ail four-subscript relations. Equation (4.18) with m — 3 shows 
that

d^af3'y,ô ~ 2 j (^’^h)

which relates the response of the third cumulant to the equilibrium fourth 
cumulant. In particular, we find that the tensor Laf3-y,s is totally symmetric, 
which is another non-trivial conséquence of the fluctuation theorem. Relations 
(4.17)-(4.19) do not lead to any other four-subscripts relations.

On the other hand, relation (4.16) with n = 3 and m = 1 reads

~ 2 (■^Of/5,75 T L'a'y,^5 "b ^aS,f3'y) "b ^ , (4.27)

which expresses the third-order response in terms of the second-order response 
of the power spectra and of the equilibrium fourth cumulant.
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4.1.4 Time-odd parameters

The symmetry relation (4.2) has been derived from a mesoscopic description 
with even variables under time-reversal symmetry. On the other hand, as al- 
ready indicated by Eq. (2.1), the time-reversal operation acts differently in the 
presence of odd variables such as magnetic fields. This situation cannot strictly 
be coped with a master équation description. In regard of the results of Chapter 
2, the stationary fluctuation theorem for the currents presumably generedizes 
to

Q{\,A,B)=Q{A-X,A,-B). (4.28)

This fluctuation relation has been verifled in a spécifie model of electronic trans­
port in Ref. [188]. Following the reasoning of Sect. 4.1, the symmetry (4.28) 
would lead to

i... (-'"i)»,..J. <-S) W-29)
j>Q

at the level of the response theory. In contrast with the zero-magnetic field 
case, the index m can here take any positive integer. We show below that this 
relation indeed leads to the Onsager-Casimir relations.

Relation (4.29) with m — 2 and n = 0 yields

La0{B) = La!3{-B),

so that the power spectrum is even in the magnetic field at equilibrium. When 
m = n = 1, we obtain

LaAB) = -La^A-B) - Lo,A-B) (4.30)

while the case m = 0 and n = 2 leads to

0 = L^A-B) + LpA-B) + LcA-B), (4.31)

where we used that L^a0 = 0. Finally, combining relations (4.30) and (4.31) 
gives rise to the Onsager-Casimir relations

L^AB) = LpA-B),

which generalize Onsager symmetry (4.20) in presence of a magnetic field [37].

4.2 Summary

In this chapter, we hâve shown that the fluctuation theorem for the currents 
(4.2) implies not only Onsager’s reciprocity relations along with the Green- 
Kubo and Einstein-Helfand formulas for the linear response coefficients, but also 
further remarkable relations for the nonlinear response coefficients at arbitrarily 
high orders. These results find their origin in the validity of the fluctuation
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theorem for the currents far from equilibrium in stochastic rate processes. The 
obtained relations axe thus the conséquences of the microreversibility.

The response coeflScients are defined by expanding the currents Crossing the 
nonequilibrium System in powers of the affinities. Therefore, the response co­
efficients are defined with respect to the equilibrium State where the affinities 
vanish. Nevertheless, we can estimate the currents further away from equilib­
rium if we use an expansion up to high powers of the affinities. This explains 
that we need a general property valid far from equilibrium, such as the fluc­
tuation theorem for the currents, in order to obtain relations on the nonlinear 
response coeflicients at arbitrary orders.

Tjq)ically, the relations described in the présent chapter connect quantities 
measuring the statistical corrélations among m fluctuating cumulative currents 
to corresponding quantities among m — nof them with n extra dérivatives with 
respect to an affinity. The former characterizes the fluctuations at order and 
the latter the n'^*' order sensitivity of the fluctuations at the lower (m — or­
der with respect to the nonequilibrium constraints. This is the case for instance 
for the equality (4.26) between the sensitivity of the nonequilibrium corrélations 
among three cumulative currents under changes of an affinity and the fluctua­
tions between four cumulative currents in the equilibrium thermodynamic State. 
This is the feature which is found in the relations here described. In particulax, 
and in contrast with lineax response, the nonlinear response coefficients are not 
always determined by equilibrium properties.

In conclusion, the theory developed in the présent chapter provides a gen­
eral framework to formulate the nonlinear response theory in nonequilibrium 
processes. These results hâve important applications for the nonlinear response 
properties of many nonequilibrium Systems such as the Chemical and biochemi- 
cal reactions, the fuU counting statistics in mesoscopic conductors, the effusion 
of idéal gases [42], or Van den Broeck’s démons [216]. The présent results could 
be especially important in nonequilibrium Systems at the micro- and nano- 
scales, where the nonlinear response properties turn out to be dominant, £is 
seen in the previous chapter.
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Time Asymmetry and Entropy Production

According to the second law of thermodynamics, nonequilibrium Systems pro­
duce entropy, which is a macroscopie concept, in a time asymmetric way. The 
lack of understanding of this time asymmetry in terms of concepts doser to the 
microscopie description of the motion of particles has always been a difiiculty. 
Only recently, general relationships hâve been discovered which allows us to 
express the thermodynamic time asymmetry at the mesoscopic level of descrip­
tion in terms of the probabilities ruling the molecular or thermal fluctuations 
in nonequilibrium Systems.

Recently, the concept of time-reversed entropy per unit time was intro- 
duced in analogy with the standard Kolmogorov-Sinai entropy per unit time 
[86, 87, 140, 162, 182]. These entropies per unit time characterize the expo­
nentiel decay rate of the typical paths and their time-reversed counterparts. 
Therefore, these entropies per unit time characterize dynamical randomness, 
alias temporal disorder, in time sériés of the nonequilibrium fluctuations.

Under nonequilibrium conditions, the probabilities of the typical paths and 
those of the corresponding time-reversed paths break the time-reversal symme- 
try. The fact is that the decay rate of the typical time-reversed paths is larger 
than the decay rate of the typical paths. Their différence is positive and gives 
the well-known thermodynamic entropy production [86], so that the entropy 
production turns out to be directly related to the breaking of the time-reversal 
symmetry in the dynamical randomness of the nonequilibrium fluctuations. The 
entropy production thus finds its origin in the time asymmetry of dynamical 
randomness, alias temporal disorder, in Systems driven out of equilibrium.

The purpose of this chapter is to introduce these concepts and to provide 
experimental evidence for this remarkable connection. We investigate the time- 
reversal symmetry breaking in two Systems, namely a driven Brownian particle 
and a driven RC circuit. We show that the asymmetry in the time sériés of the 
nonequilibrium fluctuations is directly linked to the thermodynamic entropy 
production [9, 10].
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5.1 Dynamical entropies and entropy production

Newton’s équations are symmetric under time-reversal. This means that there 
exists an involution O that transforms a phase-space curve C solution of New­
ton’s équations into another curve OC also solution of Newton’s équations. 
However, an important observation is that the time-reversed curve OC does 
not need to be identical to the original curve C\

Ci^OC. (5.1)

This is the well-known phenomenon of spontaneous symmetry breaking, accord- 
ing to which the solutions of an équation hâve a lower symmetry than the équa­
tion itself. This is not always so; the phase-space trajectories of an harmonie 
oscillator are identical to their time-reversed counterparts. Yet, the breaking of 
time-reversal can already be observed for the motion of a free particle. In this 
case, the solution of Newton’s équations reads C = {xq -1- Vot, t € K} while the 
time-reversed curve OC — {xo — vot, t e R} is distinct from C in phase space 
if vo 7^ 0.

Accordingly, we can now understand the origin of time asymmetry: while the 
time-reversed trajectories are always possible, a sélection of initial conditions 
will break the time-reversal symmetry. The symmetry breaking (5.1) opens the 
possibility of giving a different statistical weight to the forward and backward 
trajectories. Specifically, suppose we hâve a partition V of phase space into 
cells {wi}. We observe the System at fixed time intervals r and we dénoté by 
//(o/owi • the probability to observe the path wqWi • • The princi-
ple of microscopie reversibility States that

p{ljouji ■ ■ ■ CJ„_i) = p{u)n-i ■ ■ ■ Wiwo) (5.2)

at equilibrium, i.e., the occurrence of a path or trajectory is as probable as 
the time-reversed one. In contrast, out of equilibrium a statistical sélection of 
trajectories occurs, which results in a violation of this equality.

An important problem is precisely to understand by which mechanisms this 
sélection process occurs in nonequilibrium situations. The fact is that fluxes of 
matter or energy imposed at the boundaries of an open System explicitly break 
the time-reversal symmetry. Indeed, in nonequilibrium steady States (NESS), 
the paxticles incoming at boundaries typically hâve a smooth probability 
distribution, whereas the outgoing particles hâve a probability distribution 
which dépends on their interaction inside the System and are therefore finely 
correlated. The time-reversed steady State is in principle possible but it would 
require the incoming particles to présent a probability distribution exactly 
correlated according to the interaction they will undergo inside the System. 
Since, in general, the environment from where the particles corne does not know 
about the interaction taking place inside the System, the occurrence of the 
time-reversed steady State is highly improbable [84]. Accordingly, in a NESS, 
the probability distribution of the microscopie trajectories inside the System 
differs from the probability distribution of the time-reversed trajectories so that 
the System is in an irréversible State. The irreversibility of a NESS thus finds its
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origin in the sélection of the initial conditions for the trajectories incoming the 
open System [211, 84]. The breaking of time-reversai symmetry may manifest 
itself for instance in some time corrélation functions and we may wonder if 
the time-reversal symmetry breaking would not also concern other properties 
closely related to both the dynamics and the thermodynamics. In particular, 
we expect that the degree of violation or, equivalently, the importance of the 
time-symmetry breaking would be a measure of the nonequilibrium conditions. 
Such a connection can be elaborated at the level of dynamical randomness.

Dynamical randomness is the fundamental property of temporal disorder 
in the time sériés. The quantity measuring the rate of production of infor­
mation and the dynamical randomness is the so-called entropy per unit time. 
The standard entropy per unit time is defined as the mean decay rate of the 
multiple-time probability as [48]

h = lim /uftuowi • • • w„_i)ln^(wo‘*^i • •• (5-3)
n—*oo TXT CJo^r-Wn-l

According to the Shannon-McMillan-Breiman theorem [23], the multiple-time 
probability indeed decays according to

p{u}oLüi---ÜJn-l)

for aJmost ail the trajectories if the process is ergodic. This resuit shows that 
the more rapid the spreading of the probabilities along ail possible paths, the 
higher will be the entropy per unit time. Therefore, the entropy per unit time 
characterizes the dynamical randomness of the time évolution observed with the 
measuring device. The entropy per unit time (5.3) is the rate of production of 
information by the random process, i.e., the minimum number of nats required 
to reliably record the time sériés during one time unit. The entropy per unit time 
(5.3) is thus the maximeil compression factor one can achieve when compressing 
data drawn from the distribution p [49]. The supremum of the dynamical en­
tropy (5.3) over ail the possible partitions V defines the Kolmogorov-Sinai (KS) 
entropy per unit time of dynamical Systems theory [48]. According to Pesin’s 
theorem (1.3), the KS entropy is given by the sum of positive Lyapunov expo- 
nents [61]. For stochastic processes, the KS entropy dépends on the sampling 
time as well as on the coarse-grained partition. Stochastic processes are usu- 
ally such that randomness can be found at ail spatial and time scales, which 
entails that the entropy per unit time will diverge for small time and spatial 
resolution [97]. This divergence will saturate at the microscopie scale where the 
deterministic feature of the underlying djmamics becomes apparent.

Analogously, a quantity characterizing the disorder in time for the reversed 
paths can be introduced. In order to compare with the properties of the time- 
reversed trajectories, we consider the time-reversed path w„_i • ■ ■ cuiWq. As ob­
served in Chapter 2, the dissipation is linked to the backward process with 
reversed nonequilibrium constraints. The backward process is characterized by 
an steady measure p, where ail the odd driving forces hâve been reversed. We 
are thus interested in the probability
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■ • -WlWo) ~ e

of occurrence of the time-reversed path taking place in the backward process. 
The decay rate of this multiple-time probability defines the time-reversed en­
tropy per unit time

= lim —^ /xfcuowi • • •o;„_i)ln/2(a;„_i • •-wicuo) ■ (5.4)
n—+00 TIT 'WotJl 'U^n— 1

We emphasize that the average is taken with respect to the probability of 
the forward path. We can say that the time-reversed entropy per unit time 
characterizes the dynamicaJ randomness of the time-reversed paths in the 
forward process of the NESS.

We now proceed to the link between these dynamical entropies and irre- 
versibility. The entropy production diS/dt in the stationary State of a random 
process is related to the différence between the time-reversed and standard 
dynamical entropies (5.4) and (5.3) according to the central resuit:

(5.5)
/cb ût

for small enough sampling time r. The non-negativity of the entropy production 
is an immédiate conséquence of the fact that the différence — h between 
Eqs. (5.4) and (5.3) is a relative entropy per unit time which is known to 
be non-negative [228].^ At equilibrium, the absence-of any driving force and 
the principle of microscopie reversibility (5.2) resuit in a vanishing différence 
between and h, as it should.

This remarkable resuit (5.5) has been shown for Markovian processes 
where the entropy production is given by Eq. (3.4) and for thermostatted 
Hamiltonian Systems where the phase-space contraction rate plays the rôle of 
the entropy production [86].^ In the next chapter, section 6.1, we shall argue 
that expression (5.5) corresponds to the entropy production of non-Markovian 
stochastic processes as well.

The expression of the entropy production as a relative entropy is interest- 
ing in itself. Relative entropies hâve deep information theoretic meanings. For 
instance, Stein’s lemma [49] relates the relative éntropy between two distribu­
tions to the statistical errors made when trying to discriminate the origin of 
data between the two distributions. The relative entropy is also related to the

^ A more stringent bound can be derived for the entropy production. The following 
inequality for the relative entropy D{P\\\P2) between two probability distributions 
can be found, e.g., in Ref. [49]:

D(Fi1|P2) > i II Pi - P2 1^

where we introduced the distance || Pi — P2 l|s |Pi(a:) — P2(x)|.
^ This interprétation is not always valid. See for example Refs. [60, 225]



5.2. Time asymmetry in nonequilibriuni fluctuations 55

extra cost of compressing a sequence drawn from a probability distribution by 
using an encoding scheme based on the incorrect one [49]. The entropy pro­
duction thus measures the information cost (in units of ksT) of describing the 
temporal évolution in the time-reversed frame of reference. In this sense, the 
entropy production can be understood as expressing the difl&culty to distinguish 
the arrow of time.

The non-negativity of the entropy production leads to the principle of tem­
poral ordering according to which, in nonequilibrium steady States, the tjqi- 
ical paths are more ordered in time than their corresponding time reversais 
[89]. Indeed, the probabilities of the forward paths decay more slowly in time 
than their time-reversed path since > h in nonequilibrium conditions. This 
changes our perspective on the second law of thermodynamic: nonequilibrium 
conditions perform a sélection of trajectories. This time ordering of the tra- 
jectories occur as soon as the System is driven out of equilibrium, in contrast 
with Glansdorff-Prigogine threshold for the apparition of dissipative structures. 
This time-ordering is possible at the expense of the spatial disorder of the total 
System composed of the subsystem plus its environment. The conséquences of 
these observations will be developed in Chapter 6.

The relationship which is here described belongs to the same family of 
large-deviation properties as the escape-rate and chaos-transport formulas 
[95, 55, 92], the steady-state or transient fluctuation theorem [69, 79], and 
the nonequilibrium work fluctuation theorems [118, 50]. Ail these relationships 
express an irréversible property as the différence between two decay rates of 
mesoscopic or microscopie properties [87, 88]. However, relation (5.5) is here 
expressed in terms of two quantifies characterizing the fine-grained dynamics. 
Indeed, dynamical entropies characterize the intrinsic time scales of the System 
and are expressed in terms of n-time corrélation functions, which are at the 
highest level of the hierarchy. We therefore probe the very fine scales of the 
dynamics. This will be further discussed in section 5.2.5.

5.2 Thermodynamic time cisymmetry in nonequilibrium 
fluctuations

We here présent the analysis of experiments on driven Brownian motion and 
electric noise in a RC circuit, showing that thermodynamic entropy produc­
tion can be related to the breaking of time-reversal symmetry in the statistical 
description of these nonequilibrium Systems [9, 10]. The experiments were per- 
formed by the group of S. Ciliberto at the Ecole Normale Supérieure de Lyon, 
France.

5.2.1 Stochastic description

We consider a Brownian particle in a fixed optical trap and surrounded by 
a fluid moving at the speed u. In a viscous fluid such as water solution at 
room température and pressure, the motion of a dragged micrometric particle is
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overdamped. In this case, its Brownian motion can be modeled by the following 
Langevin équation [218]:

= F{z)+au + ^t, (5-6)

where a is the viscous friction coefficient, F = -d^V the force exerted by the 
potential V of the laser trap, au is the drag force of the fluid moving at speed 
U, and a Gaussian white noise with its average and corrélation function given 
by

(et) = 0,
=2 ksTa

In the spécial case where the potential is harmonie of constant k,V = kz‘̂ f2, 
the stationary probability density is Gaussian

Pst{z) = / \2 (5.7)

with the relaxation time
tr-

a
k

and the inverse température 0 = (/cbT)”^. The maximum of this Gaussian 
distribution is located at the distance utr of the minimum of the confining 
potential. This shift is due to dragging and corresponds to the position where 
there is a balance between the frictional and harmonie forces.

The Work Wt done on the System by the moving fluid during the time interval 
t is given by [197, 219, 218]

Wt = - f U F{zf) dt'
Jq

while the beat Qt generated by dissipation is

Qt= [ {zf - u) F{zf) dt'.
Jo

(5.8)

(5.9)

Both quantifies are related by the change in potential energy AVt = V(zt) - 
V(^o) so that

Qt = Wt- AVt •

In a stationary state, the mean value of the dissipation rate is equal to the mean 
power done by the moving fluid since limt_oo(l/0('^^t) = 0. The thermody- 
namic entropy production is thus given by
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Brownian particle RC circuit
Zt qt - It
Zt qt-I

-SVt
a R
k l/c
U -/

Table 5.1. The analogy between the Brownian particle and the electric RC circuit. 
For the Brownian particle, zt is its position, zt its velocity, the Langevin fluctuating 
force, a the viscous friction coefficient, k the harmonie strength or stiffness of the 
optical trap, and u the fluid speed. For the electric circuit, qt is the electric charge 
passing through the resistor during time f, it = qt the corresponding current, SVt the 
fluctuating electric potentiel of the Nyquist noise, R the résistance, C the capacit2mce, 
and I the mean current source.

in the stationary state.^
An équivalent System is an RC electric circuit driven out of equilibrium by 

a current source which imposes the mean current / [218, 81]. The current fluc­
tuâtes in the circuit because of the intrinsic Nyquist thermal noise. This electric 
circuit and the dragged Brownian particle, although physicaUy different, are 
known to be formally équivalent by the correspondence shown in Table 5.1 [218].

Our aim is to show that one can extract the heat dissipated along a fiuc- 
tuating path by comparing the probability of this path with the probability of 
the corresponding time-reversed path having also reversed the external driving, 
i.e., U —t —U for the dragged Brownian particle (respectively, I ^ —I for the 
RC circuit).

For this purpose, we use a path intégral formulation. A stochastic trajectory 
is uniquely defined by specifying the noise history of the System Indeed, the 
solution of the stochastic équation (5.6), i.e..

Zq + f dt' Zf
Jo

= 2o -l- — ^ dt' |^F(2:(') -|- au + Çt'j

is uniquely specified if the noise history is known. Since we considér a Gaussian 
white noise, the probability to hâve the noise history is given by [176]

P[^t] oc exp
4fcBTa I ,

According to Eq. (5.6), the probability of a trajectory zt starting from the fixed 
initial point zq is thus written as

^ Although the mean values of the work W and heat Q are equal, the extra term 
AV between them does change their large fluctuations properties, as pointed out 
in Ref. [219].
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P[zt\zo] oc exp
1

AksTa
J dt' {az — F{z) — auj . (5.11)

We remark that the corresponding joint probability is obtained by multiplying 
the conditional probability (5.11) with the stationary probability density (5.7) 
of the initial position as

P[zt] oc P[zt\zo]pst{zo) ■

To extract the beat dissipated along a trajectory, we consider the probability 
of a given path over the probability to observe the reversed path having also 
reversed the sign of the driving u. The reversed path is thus defined by = 
Zt-v which implies z^ = —Zt-f- Therefore, we find that

P+[zt\zo] _ (^az + F{z) — auj — ^ai — F(z) 

^^V{zo)-V{zt)-uj\t' F{z)

AkeTa JqJJo
dt'

_Q^
ksT'

(5.12)

which is precisely the beat Qt dissipated along the path expressed in the ther­
mal unit ksT. The dissipation can thus be related to time-symmetry breaking 
already at the level of mesoscopic paths. Relations similar to Eq. (5.12) are 
known for Boltzmann’s entropy production [149], for time-dependent Systems 
[50, 195, 125], and in the context of Onsager-Machlup theory [209]. We em- 
phasize that the reversai of u is essential to get the dissipated beat from the 
way the path probabilities P+ and P- differ. This resuit can be generalized 
to the underdamped case and in the presence of a magnetic field, as shown 
in Appendix C. In addition to the driving u, the magnetic field must then be 
reversed as well, although neither the work nor the beat explicitly dépend on 
this latter. This stems from the time-reversal symmetry, which has the efîect of 
changing the sign of ail odd parameters.

We notice that the main différence between the path probabilities P+ and P_ 
cornes from the shift between the mean values of the fluctuations under forward 
or backward driving. Indeed, the average position is equal to (z)+ = uTji under 
forward driving at speed -l-u, and (z)_ = —utr under backward driving at 
speed —u. The shift 2utr in the average positions implies that a typical path of 
the forward time sériés falls, after its time reversai, in the tail of the probability 
distribution P_ of the backward time sériés. Therefore, the probabilities P_ 
of the time-reversed forward paths in the backward time sériés are typically 
lower that the probabilities P+ of the corresponding forward paths. The above 
dérivation (5.12) shows that the dissipation can be obtained in terms of their 
ratio P+/P_. We emphasize that this dérivation holds for anharmonic potentials 
as well as harmonie ones, so that the resuit is general in this respect.
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In the stationary State, the mean entropy production (5.10) is given by 
averaging the dissipated beat (5.12) over ail possible trajectories:

which results from the fact that the terms at the boundaries of the time interval 
are vanishing for the statistical average in the long-time limit. The mean entropy 
production (5.13) is thus given by a so-called Kullback-Leibler distance [132] 
or relative entropy [228], which is known to be always non négative. Therefore, 
the mean entropy production satisfies the second law of thermodynamics, as it 
should.

We point out that the beat dissipated along an individual path given by 
Eq. (5.12) is a fluctuating quantity and may be either positive or négative. We 
here face the paradox raised by Maxwell that the dissipation is non-negative on 
average but has an undetermined sign at the level of the individual stochastic 
paths. The second law of thermodynamics holds for entropy production defined 
after statistical averaging with the probability distribution. We remain with 
fluctuating mechanical quantities at the level of individual mesoscopic paths or 
microscopie trajectories.

5.2.2 Dynamical randomness and entropy production

The aim of this section is to présent a method to characterize the property 
of dynamical randomness in the time sériés and to show how this property is 
related to the thermodynamic entropy production when the paths are compared 
with their time reversais.

(e, r)-entropies per unit time

For random processes which are continuons in time and in their variable, the 
trajectories should be sampled with a resolution e and with a sampling time t. 

Therefore, the entropy per unit time dépends a priori on each one of them and 
we talk about the {e, r)-entropy per unit time. Such a quantity has been intro- 
duced by Shannon as the rate of information génération by continuons sources 
[202]. The theory of this quantity was developed under the names of £-entropy 
[130] and rate distortion fonction [19]. More recently, the problem of character- 
izing dynamical randomness has reappeared in the study of chaotic dynamical 
Systems. A numerical algorithm was proposed by Grassberger, Procaccia and 
coworkers [104, 44] in order to estimate the Kolmogorov-Sinai entropy per unit 
time. Thereafter, it was shown that the same algorithm also applies to stochas­
tic processes, allowing us to compare the property of dynamical randomness

(5.13)
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of different random processes [97, 84]. Moreover, these dynamic entropies were 
measured for Brownian motion at equilibrium [90, 29]. We here présent the 
extension of this method to out-of-equilibrium fluctuating Systems.

Since we are interested in the probability of a given succession of States 
obtained by sampling the signal Z{t) at small time intervals t, a multi-time 
random variable is defined according to Z = [Z{to), Z(to+r),..., Z{to+riT—T)], 
which represents the signal during the time period t — to = nr. For a stationary 
process, the probability distribution does not dépend on the initial time to- 
From the point of view of probability theory, the process is defined by the 
n-time joint probabilities

Pg{z;dz,T,n) = Pr{z < Z < z + dz; s} = pa{z)dz,

where p«(z) dénotés the probability density for Z to take the values z = 
(zo, zi,..., Zn_i) at times fo + ir {i = 0,1,2, ...,n — 1) for some nonequilib- 
rium driving s = u/\u\ = ±1. Now, due to the continuous nature in time and 
in space of the process, we will consider the probability P+{Z-m',£,T,n) for the 
trajectory to remain within a distance £ of some reference trajectory Z^, made 
of n successive positions of the Brownian particle observed at time intervals t 
during the forward process. This reference trajectory belongs to an ensemble 
of M reference trajectories {Zm}m=n allowing us to take statistical averages. 
These reference trajectories define the patterns, i.e., the récurrences of which 
axe searched for in the time sériés.

On the other hand, we can introduce the quantity P_(Z^;£, t, n) which 
is the probability for a reversed trajectory of the reversed process to remain 
within a distance £ of the reference trajectory Z„ (of the forwazd process) for 
n successive positions.

Suppose we hâve two realizations over a very long time interval Lr !» nr 
given by the time sériés {z±(fcr)}j^_j, respectively for the forward (+) and 
backward (—) processes. Within these long time sériés, sequences of length n 
are compared with each other. We thus consider an ensemble set of 1 <§: M C L 
reference sequences, which are ail of length n:

Zm = [Z(mr), • • • , Z(mT + nr - r)], m G {mi, ■ • • , tum} .

These reference sequences axe taken at equal time intervals in order to sample 
the forward process according to its probability distribution P+. The distance 
between a reference sequence and another sequence of length n is defined by

dist„(Zm,Zj) = max{]Z(mT) — Z(jr)], • • • ,\Z{TnT + nT-T) — Z{jT+nT — T)\}

for j = 1,2,..., L' = L — n + 1. The probability for this distance to be smaller 
than £ is then evaluated by

P+{Zm',£,'r,n) = Number{Zj : dist„(Z„i, Z^) < e} . (5-14)
L/'

The average of the logarithm of these probabilities over the different reference 
sequences gives the block entropy
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H{e,T, n)
M

M
^ lnP+(Z„; e,r,n),
m=l

(5.15)

also called the mean pattern entropy. The (e, T)-entropy per unit time is then 
defined as the rate of the linear growth of the block entropy as the length n of 
the reference sequences increases [104, 44, 97]:

h{e,T) lira lim -\H{e,T,n + — Hie.r.n) .
n—»ooL',Af-*oo r L

(5.16)

Similarly, the probability of a reversed trajectory in the reversed process 
can be evaluated by

P-{^\£,T,n) = ^ Number{Zj : dist„(2^, ~Zj) < e} , (5.17)

where 2^ = [Z{rriT + nr - r), • • ■ , Z(mr)J is the time reversai of the reference 
path Zm of the forward process, while are the paths of the reversed
process (with the opposite driving —u). In similitude with Eqs. (5.15) and 
(5.16), we may introduce the time-reversed block entropy

1 ^
i/^(e,r,n) = ^ lnP_(^;e,r,n) (5.18)

m=l

and the time-reversed (e, r)-entropy per unit time

h^{e,T) = lim lim - H^{e,T,n + l) — H^{e,T,n)
n—*ooL',M—KXi T L

(5.19)

We notice that the dynamical entropy (5.16) gives the decay rate of the 
probabilities to find paths within a distance e from a typical path Z = 
(Zo, Zi,Z2,..., Zn-i) with Zi = Z(to + ir):

P+(Z;e,T,n) ^ exp[~nTh(£,T)] (n —> oo)

as the number n of time intervals increases. In the case of ergodic random 
processes, this property is known as the Shannon-McMillan-Breiman theorem 
[23]. The decay rate h characterizes the temporal disorder, i.e., dynamical ran­
domness, in both deterministic dynamical Systems and stochastic processes 
[104, 44, 61, 97, 84]. On the other hand, the time-reversed dynamical entropy 
(5.19) is the decay rate of the probabilities of the time-reversed paths in the 
reversed process:

T, n) ~ exp[—nr/i^(£, r)] (n —> oo).

Since is the decay rate of the probability to find, in the backward pro­
cess, the time-reversed path corresponding to some typical path of the forward 
process, the exponential exp{—h^At) évaluâtes the amount of time-reversed 
paths among the typical paths (of duration At). The time-reversed entropy per
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unit time thus characterizes the rareness of the time-reversed paths in the 
forward process.

The dynamical randomness of the stochastic process ruled by the Langevin 
équation (5.6) can be characterized in terms of its (e, r)-entropy per unit time. 
This latter is calculated for the case of a harmonie potential in Appendix D. 
For small values of the spatial resolution e, we find that

h{e, r) = i In (i _ e-2-/r«) + o{e^), (5.20)

with the diffusion coefficient of the Brownian particle D = k^T/a. The (e, t)- 
entropy per unit time increases as the resolution e decreases, meaning that 
randomness is found on smaller and smaller scales in typical trajectories of 
the Brownian particle. After having obtained the main features of the (e, t)- 
entropy per unit time, we go on in the next subsection by comparing it with 
the time-reversed (e, r)-entropy per unit time, establishing the connection with 
thermodynamics.

Thermodynamic entropy production,

Under nonequilibrium conditions, detailed balance does not hold so that the 
probabilities of the paths and their time reversais axe different. Similarly, the 
decay rates h and also differ. Their différence can be calculated by evaluating 
the path intégral (5.13) by discretizing the paths with the sampling time r and 
resolution e;

diS kB f ^ r> r 1 1 -P+N

Jko 1 ^
= lim lim lim lim —— In 

e—*0 r—»0 n—*oo *oo riT Af

P+{Zm]£,T, n) 
n)

The statistical average is carried out over M paths of the forwaxd process and 
thus corresponds to the average with the probability P+\zt\. The logarithm 
of the ratio of probabilities can be splitted into the différence between the 
logarithms of the probabilities, leading to the différence of the block entropies 
(5.18) and (5.15). The limit n -> oo of the block entropies divided by n can be 
evaluated from the différences between the block entropy at n -|-1 and the one 
at n, whereupon the (s, T)-entropies per unit time (5.16) and (5.19) appear. 
Finally, the mean entropy production in the nonequilibrium stationary state 
is given by the différence between the time-reversed and direct (e:, r)-entropies 
per unit time:

= lim lim fce [h^(e,T) - h{e,T) 
dt e—»0r—►O L

(5.21)

The différence between and h characterizes the time asymmetry of the 
ensemble of typical paths effectively realized during the forward process. Equa­
tion (5.21) shows that this time asymmetry is related to the thermodynamic
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Fig. 5.1. (a) The time sériés of a typical path zt for the trapped Brownian particle in 
the fluid moving at the speed u for the forward process (upper curve) and —u for the 
reversed process (lower curve) with u = 4.24 x 10~® m/s. (b) Gaussian probability 
distributions of the forward and backward experiments. The mean value is located at 
±UTR = ±12.9 nm.

entropy production. The entropy production is thus expressed as the différence 
of two usually very large quantifies which increase for £ going to zéro [97, 84]. 
Nevertheless, the différence remains finite and gives the entropy production.

5.2.3 Driven Brownian motion

The first experimental System we hâve investigated is a Brownian particle 
trapped by an optical tweezer, which is composed by a large numerical aper- 
ture microscope objective (x63, 1.3) and by an infrared laser beam with a 
wavelength of 980 nm and a power of 20 mW on the focal plane. The trapped 
polystyrène particle has a diameter of 2 /rm and is suspended in a 20% glycerol- 
water solution. The particle is trapped at 20 fim from the bottom plate of the 
cell which is 200 fj,m thick. The détection of the particle position Xt is done using 
a He-Ne laser and an interferometric technique [191]. This technique allows us 
to hâve a resolution on the position of the particle of 10“^^ m. In order to ap- 
ply a shear to the trapped particle, the cell is moved with a feedback-controlled 
piezo actuator which insures a perfect linearity of displacement.

The potential is harmonie: V = kz'^12. The stiffness of the potential is 
k = 9.62 10“® kg s“^. The relaxation time is tr = a/k = 3.05 10“^ s, which 
has been determined by measuring the decay rate of the autoccorrelation of 
Xt- The variable Xt is acquired at the sampling frequency / = 8192 Hz. The 
température is T = 298 K.

The mean square displacement of the Brownian particle in the optical trap 
is (T = y/ksT/k = 20.7 nm, while the diffusion coefficient is Z? = Itr =
1.4 X10“*^^ m^/s. We notice that the relaxation time is longer than the sampling 
time since their ratio is Jtr = 25.

In order to test experimentally that entropy production is related to the 
time asymmetry of dynamical randomness according to Eq. (5.21), time sériés 
hâve been recorded for several values of |u|. For each value, a pair of time
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sériés is generated, one corresponding to the forward process and the other to 
the reversed process, having first discarded the transient évolution. The time 
sériés contain up to 2 x 10^ points each. Figure 5.1a depicts examples of paths 
Zt for the trapped Brownian particle in the moving fluid. Figure 5.1b shows 
the corresponding stationary distributions for the two time sériés. They are 
Gaussian distributions shifted according to Eq. (5.7).

The analysis of these time sériés is performed by calculating the block en­
tropy (5.15) versus the path duration nr, and this for different values of e. 
Figure 5.2a shows that the block entropy increases linearly with the path dura­
tion nr up to a maximum value fixed by the total length of the time sériés. The 
forward entropy per unit time h{e, r) is thus evaluated from the linear growth 
of the block entropy (5.15) with the time nr.

Similarly, the time-reversed block entropy (5.18) is computed using the same 
reference sequences as for the forward block entropy, reversing each one of 
them, and getting their probability of occurrence in the backward time sériés. 
The resulting time-reversed block entropy is depicted in Fig. 5.2b versus nr for 
different values of e. Here also, we observe that grows linearly with the time 
nr up to some maximum value due to the lack of statistics over long sequences 
because the time sériés is limited. Nevertheless, the linear growth is sufficiently 
extended that the backward entropy per unit time /i.^(e, r) can be obtained 
from the slopes in Fig. 5.2b.

Figure 5.2c depicts the différence between the backward and forward block 
entropies and H versus the time nr, showing the time asymmetry due 
to the nonequilibrium constraint. We notice that the différences — H are 
small compared with the block entropies themselves, meaning that dynamical 
randomness is large although the time asymmetry is small. Accordingly, the 
values — H are more affected by the experimental limitations than the 
block entropies themselves. In particular, the saturation due to the total length 
of the time sériés affects the linearity of — H versus nr. However, we observe 
the expected independence of the différences — H on e. Indeed, the slope 
which can be obtained from the différences — H versus nr cluster around 
a common value (contrary to what happens for H and H^). According to 
Eq. (5.21), the slope of - H versus nr gives the thermodynamic entropy 
production.

This prédiction is indeed verified. Figure 5.3 compares the différence 
r) — h{e, r) with the thermodynamic entropy production given by the 

rate of dissipation (5.10) as a fonction of the speed u of the fluid. We see the 
good agreement between both, which is the experimental evidence that the 
thermodynamic entropy production is indeed related to the time asymmetry of 
dynamical randomness.

The dynamical randomness of the Langevin stochastic process can be further 
analyzed by plotting the scaled entropy per unit time r/i(£, r) versus the scaled 
resolution 6 = e/^/l — exp(—2t/tr) for different values of the time interval r, 
as depicted in Fig. 5.4a. According to Eq. (5.20), the scaled entropy per unit 
time should behave as rh{e, r) ~ ln(l/J) -f-C with some constant C in the limit
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Fig. 5.2. (a) The block entropy (or mean pattern entropy) as a function of time nr 
for the trapped Brownian particle in the fluid moving at the speed u = 4.24 x 10“® 
m/s. The different curves correspond to different values of £ = A: x 0.558 nm with 
k = 1,... ,20 given in the right-hand column. The distance used in this calculation 
is defined by taking the maximum among the distances \Z{t) — Zm{t)\ for the times 
t = 0, r, ...,(n — l)r. The larger slopes correspond to the smaller vedue of e. The 
linestr growth persists up to a maximal value of the mean pattern entropy given by 
the total length of the time sériés: /fmax = ln(1.4 x 10^). (b) The mean reversed 
block entropy as a function of time corresponding to (a). After a linear growth, 
saturâtes and falb down to zéro (not shown) because of the finiteness of the time 
sériés which limits the statistics. (c) Différences between the backward and forward 
(£,r) dynamical entropies in (b) and (a) for e between 5.6-11.2 nm for the Brownian 
particle. Straight lines are fitted to the first part of the curves and their slopes give 
the entropy production according to Eq. (5.21).

5 —► 0. Indeed, we verify in Fig. 5.4a that, in the limit 5-^0, the scaled curves 
only dépend on the variable 5 with the expected dependence ln(l/(5).

For large values of 5, the experimental curves deviate from the logarithmic 
approximation (5.20), since this latter is only valid for 5^0. The calculation 
in Appendix D shows that we should expect corrections in powers of to be 
added to the approximation as ln(l/(^).

In Fig. 5.4b, we depict the scaled direct and reversed (e, r)-entropies 
per unit time. We compare the behavior of with the behavior rh^ ~ 
r {hd\S/dt) expected from the formula (5.21). This figure shows that
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Fig. 5.3. Entropy production of the Brownian particle versus the driving speed u. 
The solid line is the well-known rate of dissipation given by Eq. (5.10). The dots depict 
the results of Eq. (5.21) calculated with the différences between the (e, r)-entropies 
per unit time.

8 (m) 8 (m)

Fig. 5.4. (a) (e,r)-entropy per unit time of the Brownian particle scaled by the time 
interval r as a function of 5 = — exp(—2r/riî), for different values of the time
interval r = l//,2//,4//,8//, with the sampling time 1// = 1/8192 s. The dots are 
the results of the computation from the time sériés for the speed u = 4.24 x 10~® m/s. 
The solid line depicts the expected behavior according to Eqs. (5.20) and (5.21). (b) 
Scaled reversed eind direct (e, r)-entropies per unit time for t = 4//. The solid line is 
the resuit expected from Eq. (5.21).

the direct and reversed (e, r)-entropies per unit time are quantities which are 
large with respect to their différence due to the nonequilibrium constraint. This 
means that the positive entropy production is a small effect on the top of a sub- 
stantiai dynamical randomness.

Metxwell’s démon vividly illustrâtes the paradox that the dissipated heat 
is always positive at the macroscopie level although it would take both signs 
if considered at the microscopie level of individual trajectories. The resolution 
of Maxwell’s paradox can be remarkably demonstrated with the experimental 
data. Indeed, the heat dissipated along an individual stochastic trajectory is
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given by Eq. (5.9) and can be obtained by searcliing for récurrences in the time 
sériés according to Eq. (5.12). The conditional probabilities entering Eq. (5.12) 
are evaluated in terms of the joint probabilities (5.14) and (5.17) according to

P+{Z-,£,T,n\Zo) = P+{Z-,£,T,n)/P+{Zo;e,T,l) , (5.22)
P_(Z^;£,T,n|Z„_i) = P_(Z'^;£,r,n)/P_(Z„_i;e,r, 1), (5.23)

where we notice that the probabilities with n = 1 are approximately equal to 
the corresponding stationary probability density (5.7) multiplied by the range 
dz = 2s. The beat dissipated along two randomly selected paths are plotted in 
Fig. 5.5. We see the very good agreement between the values computed with 
Eq. (5.9) using each path and Eq. (5.12) using the probabilities of récurrences 
in the time sériés. We observe that, at the level of individual trajectories, the 
beat exchanged between the particle and the surrounding fluid can be positive 
or négative because of the molecular fluctuations. It is only by averaging over 
the forward process that the dissipated beat takes the positive value depicted in 
Fig. 5.3. Indeed, Fig. 5.3 is obtained after averaging over many reference paths 
as those of Fig. 5.5. The positivity of the thermodynamic entropy production 
results from this averaging, which solves Maxwell’s paradox.

5.2.4 Electric noise in RC circuits

The second System we hâve investigated is an RC electric circuit driven out of 
equilibrium by a current source which imposes the mean current I [81]. The 
current fluctuâtes in the resistor because of the intrinsic Nyquist thermal noise 
[218]. The RC electric circuit and the dragged Brownian particle, although 
physically different, are known to be formally équivalent by the correspondence 
given in Table 5.1.

The electric circuit is composed of a capacitor with capacitance C = 278 pF 
in parallel with a resistor of résistance R = 9.22 Ml7. The relaxation time of 
the circuit is tr = RC = 2.56 x 10“^ s. The charge qt going through the resistor 
during the time interval t is acquired at the sampling frequency / = 8192 Hz. 
The température is here also equal to T = 298 K.

The mean square charge of the Nyquist thermal fluctuations is cr = 
s/kÿTC = 6.7 X 10^ e where e = 1.602 x 10~^® C is the électron charge. The 
diflfusion coefficient is D = ct^/tr = 1.75 x 10^*^ e^/s. The ratio of the relaxation 
time to the sampling time is here equal to /tr = 21.

As for the first System, pairs of time sériés for opposite drivings ±7 are 
recorded. Their length are 2 x 10^ points each. Figure 5.6 depicts an example 
of a pair of such paths with the corresponding probability distribution of the 
charge fluctuations.

The block entropies are here also calculated using Eqs. (5.15) and (5.18) 
and the (e, r)-entropies per unit time are obtained from their linear growth as 
a function of the time nr. The scaled entropies per unit time rfi are depicted 
versus ô in Fig. 5.7a. Here again, the scaled entropy per unit time is verified 
to dépend only on <5 for 5 ^ 0, as expected from the anal}dical calculation in 
Appendix D. In Fig. 5.7b, we compare the scaled reversed {s, r)-entropy per
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Fig. 5.5. Measure of the heat dissipated by the Brownian particle along two randomly 
selected trajectories in the time sériés of Fig. 5.1. The fluid speeds are ±w with u = 
4.24X 10~® m/s. (a)-(b) Inset: The two randomly selected trajectories. The conditional 
probabilities P+ and P_ of the corresponding forward (filled circles) and the backward 
(open circles) paths for e = 8.4 nm, as evaluated by Eqs. (5.22) and (5.23). These 
probabilities présent an exponential decrease modulated by the fluctuations. At time 
zéro, the conditional probabilities are not defined and, instead, we plotted at this 
time the stationary probabilities for indication, (c)-(d) The dissipated heat given by 
the logarithm of the ratio of the forward and backward probabilities according to 
Eq. (5.12) for different values oi s = k x 0.558 nm with fc = 12,..., 19 in the range 
6.7-10.6 nm. They are compared with the values (squares) directly calculated from 
Eq. (5.9). For small values of e, the agreement is quite good for short time and are 
within experimental errors for larger time.

unit time to the behavior rh^ ~ t (h + k^^d\S/dt), expected by our central 
resuit (5.21).

The différence between the time-reversed and direct (e, r)-entropies per unit 
time is then compared with the dissipation rate expected with Joule’s law. We 
observe the nice agreement between both in Fig. 5.8, which confirms the validity 
of Eq. (5.21).

5.2.5 Discussion

In this section, we discuss about the comparison between the présent results 
and other nonequilibrium relations.
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Fig. 5.6. (a) The time sériés of a typical path qt — It for the Nyquist noise in the RC 
electric circuit driven by the current I (upper curve) and opposite current —/ (lower 
curve) with / = 1.67 x 10“^^ A. (b) Gaussian probability distributions of the forward 
and backward experiments. The unit of the electric charge qt — It is the Coulomb (C).

8 (C) 5 (C)

Fig. 5.7. (a) (e, r)-entropy per unit time of the RC electric circuit scaled by the time 
interval r as a function of <5 = — exp(—2r/r/î), for different values of the time
interval r = 1//, 2//, 4//, 8//, with the seimpling time 1// = 1/8192 s. The dots are 
the results of the computation from the time sériés for the current I = 1.67 x 10“*® A. 
The solid line depicts the expected behavior according to Eqs. (5.20) and (5.21). (b) 
Scaled reversed and direct (e, r)-entropies per unit time for r = 4//. The solid line is 
the resuit expected from Eq. (5.21). The unit of S is the Coulomb (C).

The relation (5.21) expresses the entropy production as the différence be- 
tween the backward and forward (e, r)-entropies per unit time. The backward 
process is obtained by reversing the driving constraints, which is also a charac- 
teristic feature of Crooks relation [50], However, Crooks relation is concerned 
with Systems driven by time-dependent external Controls starting at equilib- 
rium. In contrast, our results apply to nonequilibrium steady States. Another 
point is that Crooks relation deals with the fluctuations of the work performed 
on the System, while the présent relation (5.21) gives the mean value of the 
entropy production and, this, in terms of path probabilities. In this respect, 
the relation (5.21) is doser to a formula recently obtained for the mean value 
of the dissipated work in Systems driven from equilibrium by time-dependent
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Fig. 5.8. Entropy production of the RC electric circuit versus the injected current I. 
The solid line is the Joule law, TdiS/dt = RI^. The dots are the results of Eq. (5.21).

external Controls [125]. This formula relates the mean value of the dissipated 
work to the logarithm of the ratio between two phase-space probability den­
sifies associated with the forward and backward processes, respectively. These 
phase-space probability densifies could in principle be expressed as path prob- 
abilities. Nevertheless, these latter would be defined for Systems driven over 
a finite time interval starting from the equilibrium State, although the présent 
équation (5.21) applies to nonequilibrium steady states reached in the long-time 
limit.

We now compare our results to the extended fluctuation theorem, which 
concerns nonequilibrium steady states [219, 218, 81]. The extended fluctuation 
theorem is a symmetry relation of the large-deviation properties of the fluctu- 
ating beat dissipation (5.9) during a time interval t. The probability that this 
fluctuating quantity takes the value

decays exponentially with the rate

J(0=^lhn-ilnp|c<^<C + dc}- (5.24)

The extended fluctuation theorem states that the ratio of the probability of a 
positive fluctuation to the probability of a négative one increases exponentially 
as exp(Cf) in the long-time limit t —> oo and over a range of values of (, which 
is limited by its average (() [219, 218, 81]. Taking the logarithm of the ratio 
and the long-time limit, the extended fluctuation theorem can therefore be 
expressed as the following symmetry relation for the decay rate (5.24):

c ks for - (0 < C < (0 ■

In this form, we notice the analogy with Eq. (5.21). A priori, the decay rate 
(4.25) can be compared with the (e, r)-entropy per unit time, which is also a
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decay rate. However, the decay rate (5.24) concerns the probability of ail the 
paths with dissipation ^ while the (e, r)-entropy per unit time concerns the 
probability of the paths within a distance e of some reference typical paths. 
The (e, r)-entropy per unit time is therefore probing more deeply into the fluc­
tuations down to the microscopie dynamics. In principle, this latter should be 
reached by zooming to the limit £ —» 0.

A doser comparison can be performed by considering the mean value of the 
fluctuating quantity ^ which gives the thermodynamic entropy production:

(0 = lim - 
t—*oo t T dt

Since the decay rate (5.24) vanishes at the mean value, J((C)) = 0i we obtain 
the formula

(0 = kBJ{ - (0) ,

which can be quantitatively compared with Eq. (5.21) since both give the ther­
modynamic entropy production. Although the time-reversed entropy per unit 
time h^{e,T) is a priori comparable with the decay rate J(—C), it turns out 
that they are different and satisfy the inequality h^{e,r) > J{—{Q) since the 
entropy per unit time is always non négative h{e, t) > 0. Moreover, h{e, t) is 
typically a large positive quantity. The greater the dynamical randomness, the 
larger the entropy per unit time /i(£,r), as expected in the limit where e goes 
to zéro. This shows that the {e, r)-entropy per unit time probes flner scales in 
the path space where the time asymmetry is tested.

5.3 Summary

We hâve here presented detailed experimental results giving evidence that the 
thermodynamic entropy production finds its origin in the time asymmetry of 
dynamical randomness in the nonequilibrium fluctuations of two experimental 
Systems. The first is a Brownian particle driven by an optical tweezer moving 
a constant speed 0 < |u| < 4.3 /im/s. The second is the electric noise in an 
RC circuit driven by a constant source of current 0 < |/| < 0.3 pA. In both 
Systems, long time sériés are recorded, allowing us to carry out the statistical 
analysis of their properties of dynamical randomness.

The dynamical randomness of the fluctuations is characterized in terms 
of (£, r)-entropies per unit time, one for the forward process and the other 
for the reversed process with opposite driving. These entropies per unit time 
measure the temporal disorder in the time sériés. The fact that the stochastic 
processes is continuons implies that the entropies per unit time dépend on the 
resolution e and the sampling time t. The temporal disorder of the forward 
process is thus characterized by the entropy per unit time h{e,r), which is 
the mean decay rate of the path probabilities. On the other hand, the time 
asymmetry of the process can be tested by evaluating the amount of time- 
reversed paths of the forward process among the paths of the reversed process. 
This amount is evaluated by the probabilities of the time-reversed forward
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paths in the reversed process and its mean decay rate, which defines the time- 
reversed entropy per unit time h^{e,T). The time asymmetry in the process 
can be measured by the différence r) — h{e,r). At equilibrium where 
detailed balance holds, we expect that the probability distribution ruling the 
time évolution is symmetric under time reversai so that this différence should 
vanish. In contrast, out of equilibrium, detailed balance is no longer satisfied 
and we expect that the breaking of the time-reversal symmetry by the invariant 
probability distribution of the nonequilibrium steady State. In this case, a non- 
vanishing différence is expected,

The analysis of the experimental data shows that the différence of (£,r)- 
entropies per unit time is indeed non vanishing. Moreover, we hâve the remark- 
able resuit that the différence gives the thermodynamic entropy production. 
The agreement between the différence and the thermodynamic entropy produc­
tion is obtained for the driven Brownian motion up to an entropy production of 
nearly 120 /cbT/s. For electric noise in the RC circuit, the agreement is obtained 
up to an entropy production of nearly 200fcBT/s. These results provide strong 
evidence that the thermodynamic entropy production arises from the breaking 
of time-reversal symmetry of the dynamical randomness in out-of-equilibrium 
Systems.



6

Dynamical Randomness and the Physics of 
Information

Information is something that can be encoded in the state of a physical System, 
and a computation is a task that can be performed with a physically realizable 
device. Thus the quest for better ways to acquire, store, transmit, and process 
information leads us to seek more powerful methods for understanding and con- 
trolling the physical world. Information and algorithmic théories are concerned 
with theoretical concepts and formulations while the physics of information 
studies the varions physical constraints governing information processing and 
computational tasks. In this respect, we show in this chapter that the temporal 
ordering principle introduced in Chapter 5 provides novel perspectives on these 
problems.

In this direction, the concepts introduced in the previous chapter are used to 
show that Landauer’s principle can be understood in terms of time asymmetry 
in the dynamical randomness generated by the physical process of the erasure 
of digital information. In this way, Landauer’s principle is generalized, showing 
that the dissipation associated with the erasure of a sequence of bits produces 
entropy at the rate k^D per erased bit, where D is Shannon’s information per 
bit [8].

In addition, we survey general fluctuating copolymerization processes, which 
présent the ability to store dynamical fluctuations in the organization of its con­
stitutive éléments. The dissipation associated to these nonequilibrium processes 
turns out to be closely related to the information generated. This shows in par- 
ticular how information acquisition stems from the interplay between stored 
patterns and dynamical évolution in nonequilibrium environments. We apply 
these results to the process of DNA réplication, showing that information ac­
quisition can be neaxly maximal by purely entropie elîect, that is, in the low 
dissipation régime.



74 6. Physics of Information

6.1 Landauer’s principle

Landauer’s principle asserts that the minimal dissipation accompanying the 
erasure of one bit of information produces an entropy equal to fca ln2, where 
/cb is Boltzmann’s constant [135]. This important resuit is based on the obser­
vation that the processing of digital information is a physical process among 
others and should thus obey the laws of thermodynamics. Landauer’s resuit 
has therefore supported the idea that information processing devices working 
at température T should dissipate at least kB.T\n2 of energy during an ele- 
mentary act of information [31, 223]. Later, Bennett’s work clarified the point 
that Landauer’s dissipation is the feature of logically irréversible operations on 
data, i.e., operations whose inverse is not unique, such as data erasure [15]. 
Moreover, Bennett used Landauer’s resuit to résolve Maxwell’s démon paradox 
[17], as discussed in the Introduction. Since then, Landauer’s principle has been 
explicitly verified in spécifie cases, for instance, in bistable potentials with white 
noise [203], for a bit in contact with a thermal réservoir [180], or from coarse 
graining in phase space [125].

Landauer’s resuit has been verified using case studies and it is only recently 
that nonequilibrium statistical mechanics has been sufiiciently advanced in or- 
der to reach its understanding in a general framework. Indeed, it has been 
established in Chapter 5 that the second law of thermodynamics finds its ori- 
gin in the time asymmetry of the property of dynamical randomness, i.e., the 
temporal disorder that a physical process develops during its time évolution. 
Dynamical randomness is characterized by the decay rates

for the forward and time-reversed process, respectively. The paths are observed 
every time interval t (considered as the unit time) and, in contrast with Eqs. 
(5.3)-(5.4), the entropies (6.1) and (6.2) are here defined as entropies per step 
and are dimensionless. These dynamical entropies may be considered as rates of 
production of information generated by the fluctuations of the process during 
its time évolution. In this sense, they chajacterize the dynamical randomness of 
the process. The différence between these quantities gives the thermodynamic 
entropy production

WiUl2..Wn

and

^(wiW2 .. .a)n)ln/ü(w„ .. .W2W1) (6.2)

AiS = kB{h^-h) (6.3)

where is the entropy produced during the unit time r. Equation (6.3) 
explicitly shows that the thermodynamic entropy production cornes from the 
time asymmetry in the more microscopie property of dynamical randomness.
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In this section, we shall show that the aforementioned formula (6.3) allows 
us to relate the thermodynamic entropy production to the information as it is 
physically recorded in space inside some information processing device, general- 
izing in this way Landauer’s principle. We here consider the process of erasure 
of statistically correlated random bits, that is a sequence of bits aia2 ■ ■ ■ o’m • • • 
(with (jj = 0 or 1). We assume that this sequence is initially recorded on some 
spatially extended support such as a recording tape inside the device. The 
recorded data axe described by some probability distribution p{cria2 ■ ■ ■ (7m) 
giving the occurrence frequencies of the sequences (Jicr2.. ■ crm in the memory 
of the device. This probability distribution is general with possible spatial cor­
rélations among the bits a^. The randomness of the sequence is characterized 
by the quantity

This is an entropy per bit of information in the sense of Shannon, which we call 
the information or disorder D per bit of the sequence. In the case the bits are 
randomly distributed with equal probability and independehtly of each other, 
the information per bit is equal to Z) = In 2. In general, we hâve the inequality 
D < ln2.

The thermodynamic entropy produced during the process of erasure of the 
aforementioned sequence can be obtained using the formula (6.3) according to 
the following reasoning. We suppose that one bit is erased every unit tirae r. Let 
us associate a State w, with the sequence of bits (... Cm • • • <7i+icri. 000...), as 
done in Fig. 6.1. When viewed forward in time, the erasure process transforms 
the State Wj into Wi+i. Therefore, the process of erasure does not generate 
dynamical randomness since the outcome is unique every time a bit is erased. 
Accordingly, the dynamical entropy per unit time (6.1) vanishes, h = 0, since 
the probability measure p, takes the unit value for the unique path followed 
during erasure and vanishes for ail the other paths. On the other hand, the 
backward process corresponds to the génération of a sequence of bits. This 
reversed process is not unique and generates dynamical randomness at the rate

= D given by the information contained in the sequence of bits (see Fig. 
6.1). Indeed, the sequence of bits (a\a2 ■ ■ ■ <Jm) now appears at random with the 
probability p((Ti (72 ... cTm) and the probability measure p. of this reversed process 
is distributed among several possible time-reversed paths. This observation can 
be understood by the following example. Let us consider a particle in a bistable 
potential, where the left and right wells correspond to the bits 0 and 1. We 
can slowly deform the potential in order to force the particle to end in the 
left well, which is équivalent to the erasure of the initial bit. Since we want to 
minimize the dissipation, any such deformation must pass through a potential 
with a single minimum. Undoing the latter transformation will thus resuit in 
the particle being in the left or right well with equal probability. This is the 
analog of our backwajd process, where the sequences of bits are now generated 
according to their respective probabilities. In this way, we can understand how 
dissipation is closely related to logical irreversibility [135]. Finally, we infer from

P((71C72 . . . (7m) lnp(c7iC72 . . . (Tm) ■ (6.4)



76 6. Physics of Information

Eq. (6.3) that the thermodynamic entropy production of the erasure is given 
by

/ii5 = kB{h^ — h) = ksD per bit. (6.5)

Landauer’s principle is recovered in the particular case of statistically indepen- 
dent random bits of equal probability for which A^S = kgD = /cb In 2 [85]. This 
shows that Landauer’s principle can be understood from concepts uniquely 
based on dynamical randomness. Therefore, it is completely model indepen- 
dent and ksD is the minimal dissipation one can achieve for correlated random 
bits. Another way to obtain this resuit is to note that there exist universal 
coding schemes [49] that will asymptotically compress any ergodic sequence of 
length m to its maximal possible value mD^ (the subscript 2 indicates that 
the information is calculated with logarithms in base 2). It is essentiel that 
this compression step can be made without any dissipation, which results from 
Bennett’s work on réversible computation [15]. Once compressed, the sequence 
is composed of uncorrelated random bits with relative probability one half.^ 
The usual Landauer principle can then be applied to this compressed sequence 
which leads to a dissipation of keD2\n2 = k^D per bit.

To avoid this computational step and in the case where the exact probability 
distribution p of the bits remains unknown, we can still obtain the minimal 
entropy production (6.5) as follows. The extra cost of compressing data using 
an a priori distribution q instead of the correct distribution p is the relative 
entropy D{p\\q), given by [49]

D{p\\q) = lim —
m—»oo Tïl

^ P(ctiCT2 . .
C1 <T2 " • • O'm

CTm)ln
P(c71C72 . . . O771)
q{p\G2 . . . (rrn)

It has been proven in Ref. [230] that there exista a stationary ergodic process 
q with the property to hâve a vanishing relative entropy, D{p\\q) = 0, with 
respect to any other stationary ergodic process with probability distribution p. 
Therefore, the erasure process can be done assuming this particular distribution, 
which results in no extra cost with respect to the minimal entropy production 
(6.5).

We notice that the disorder D is positive if the probabilities p{cria2 ■ ■ - (Jm) 
characterizing the sequence of bits decay exponentially. Nevertheless, informa­
tion can be sporadically distributed along the sequence of bits, in which case 
the probabilities p{ai(J2 ■ ■ •o’m) decay as stretched exponentials so that the in­
formation per bit vanishes D —> 0 in the long-sequence limit m —> 00. The 
fact is that such sporadic sequences axe not uncommon in complex Systems 
[96, 58, 59, 165, 167]. Accordingly, the above considérations lead to the in- 
teresting resuit that dissipation can be arbitrarily small during the erasure of 
sequences of sporadically distributed information.

^ Otherwise it would be possible to further compress the sequence, leading to a 
compression smaller than D2 in contradiction with Shannon’s bound on data com­
pression.
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eraser

\
••• 060504030201-00 00000000 ••• ► SpâC6

ü)l ... 0 1 1 0 1 1 1 0 0 1-00 0000 00 00
(Ü2 ... 1 0 1 1 0 1 1 1 0 0-0 0 0000 00 00
CÛ3 ... 1 1 0 1 1 0 1 1 1 0-0 0 0000 00 00
(1)4 ... 1 1 1 0 1 1 0 1 1 1-00 0000 00 00
CO5 ... 1 1 1 1 0 1 1 0 1 I-OO 0000 00 00
“6 ... 0 1 1 1 1 0 1 1 0 1-00 0000 00 00
Ü>7 ... 0 0 1 1 1 1 0 1 1 0-0 0 0000 00 00
(Üj ... 1 0 0 1 1 1 1 0 1 1-00 0000 00 00

time

Fig. 6.1. Space-time plot of the physical process of erasure of a sequence of bits 
(71(72 ... (7m ... of information. The bits are distributed along the space axis on the 
recording tape of the information Processing device. The eraser is located somewhere 
along the recording tape and transforms eeich bit into a zéro in this illustrative ex£im- 
ple. At every instant of time, the State of the System is given by the current sequence of 
bits: u/j = ... cTj+20'j+icrj ■ 00000 ... where the dot dénotés the location of the eraser.

Finally, we point out that, as long as Landauer’s principle is équivalent to the 
second law of thermodynamics [18], the agreement between the argument based 
on dynamical randomness and the universal compression procedure shows that 
Eq. (6.3) is the appropriate measure of dissipation for general ergodic stationary 
stochastic processes.

6.2 Nonequilibrium génération of information in 
copolymerization processes

The origin of biological information is one of the major challenges for our under- 
standing of the living organisme. Since the discovery of DNA, the biochemical 
support for the storage of genetic information is known. DNA is a copolymer 
which keeps the memory of information on the living organism in its structure. 
This molecular structure is stable at ambient températures by the binding en- 
ergy between the nucléotides, allowing the heredity of genetic information across 
générations. As observed m vitro in évolution experiments on RNA and viruses 
[155, 22], the processing of biological information can be discussed in terme 
of the dynamics of populations associated with the different possible genetic 
sequences, the populations evolving by réplications and mutations into quasi- 
species [63, 62]. Such population dynamics are nonequilibrium processes where 
dissipation is compensated by energy supply and the entropy produced by dis­
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sipation is evacuated to the environment of these open Systems. However, this 
view relies on macroscopie concepts such as the population sizes, which are 
largely separated from the nanoscale of the genetic sequences. Moreover, ob­
servations reveal that biological Systems hâve structures and functions at every 
scale down to the molecular level and the understanding of their origin is a 
challenge.

Actually, the information in DNA copolymers is processed and replicated 
by mechanisms taking place at the molecular level in the presence of thermal 
fluctuations. These fluctuations are due to the random motion of the atoms 
and molécules composing DNA, the transcription or réplication machinery, and 
their environment. In this regard, biological information processing is ruled 
by the statistical laws of motion and thermodynamics. At the thermodynamic 
equilibrium, the principle of detailed balance implies that no information can be 
spontaneously processed or generated because each random motion is statisti- 
cally balanced by the corresponding reversed motion. Therefore, equilibrium is 
the stage of erratic motion where information génération is highly improbable.

On the other hand, as shown in Chapter 5, nonequilibrium fluctuating Sys­
tems présent a time asymmetry in which the typical random paths followed 
by the System during its time évolution turn out to be more probable than 
their time reversai [86, 89, 9, 10]. The remarkable resuit is that this temporal 
ordering of nonequilibrium fluctuations is the conséquence of the second law 
of thermodynamics. This phenomenon explains that dynamical order can be 
naturally generated in moleculax motion under nonequilibrium conditions.

The goal of this section is thus to show that the implication of this nonequi­
librium temporal ordering in copolymerization processes is the génération of 
information. Indeed, copolymerization can store in space the dynamical order 
which is generated in time by the nonequilibrium processes, establishing a cou- 
pling from time back to the spatial support of information. The possibility 
of such transfers of information has already been envisaged at the macroscopie 
level [170] and is here shown to arise at the molecular level. We study copolymer­
ization processes with or without the presence of an underlying template. Such 
processes hâve the ability to store information in the copolymer pattern, which 
in turn influences back the dynamics of the System. Information génération 
can thus be understood as a natural conséquence of driving out of equilibrium 
Systems with the ability to store and retrieve molecular information.

We first explain the tradeoff between dissipation and information in copoly­
merization processes in the framework of nonequilibrium statistical thermody­
namics. We then proceed with the illustration of these results in the case of 
DNA réplication.

6.2.1 Dissipation-information tradeoff

Copolymerization processes can be described at the macroscopie level in terms 
of the population sizes, i.e., the Chemical concentrations of the monomers, 
dimers, trimers, etc... In this macroscopie description, the rate of dissipation, 
in particular, due to metabolism can be estimated by the thermodynamic en- 
tropy production given in terms of the Chemical concentrations [101]. Since we
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are interested in the molecular structure generated during copolymerization, 
we adopt a mesoscopic description at the scale of a single copolymer chain.

The stochastic growth process will be modelled by continuous-time random 
processes ruled by an évolution équation of the form (3.1). For many processes 
at fixed pressure and température T, the ratio of forward to beickward transition 
rates can be expressed in terms of the free enthalpies G{uj) of the coarse-grained 
States U according to

_ G{oj)-G{u')
W{u)',u) ksT

where kg is Boltzmann’s constant [114]. In this framework, the thermodynamic 
entropy of the System is given by

St = ^Pt(w)5(ai) - A:b ^Pt(w)lnPt(w), (6.6)

where 5(u;) is the entropy of the coarse-grained state u) [85]. The entropy (6.6) 
varies in time with the probability distribution ruled by the évolution équation 
(3.30). It is known that these variations dS/dt are due to the exchange of 
entropy with the environment deS/dt and the internai production of entropy

djS _ dS deS ^ Q
dt dt dt

(6.7)

which is always non négative in agreement with the second law of thermody- 
namics [190, 169, 122]. The exchange of entropy is given by

"Æ - T—

in terms of the time variation of the mean enthalpy of the System: 
{^)t = Hw enthalpy H{u>) of the coarse-grained
State w is related to the corresponding free enthalpy and entropy by Gibbs’ 
relation: G{lj) = H{uj) — TS{uj). In a stationary state, the entropy does not 
change in time, dS/dt = 0, so that the entropy produced inside the System is 
evacuated to its environment; diS/dt = —deS/dt.

We first consider a copolymerization process without template and with M 
diflFerent monomers (see Fig. 5.1a). An arbitrary chain uj can grow by adding a 
monomer m or shorten by removing the last monomer m of the actual chain: 
U) + m ^ um. The length l of the chain ui is supposed to range from zéro to 
infinity so that the growth process can go on without limit and possibly reach 
a régime where the synthesized copolymer has stationary statistical properties 
[45, 46]. It is assumed that, in the stationary régime, the probability to hâve a 
certain chain tj at time t becomes

Pt(w) =Pt(l)

where pt{l) is the probability distribution of the lengths l at time t and pi{u>) is 
the probability to hâve a chain tu provided that its length is l. The distribution
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O
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(a)

Fig. 6.2. Schematic représentations of: (a) a copolymerization process without a tem- 
plate; (b) a copolymerization process with a template. The circles depict the monomers 
and the square the catalyst of polymerization.

gives the composition of the copolymer in the stationary régime and is 
normalized as = li where the sum is restricted to ail the chains ui of
length l. The entropy (6.6) can thus be written as

St = Y^pt{l) S{ij) (6.9)
l,UJ

-fcB^Pt(OMi(‘^)lnw(‘^) - fcB^Pt(01npt(/).
l^LJ l

The first term is the contribution from the thermodynamic entropy S{u)) of 
the copolymer ui in its environment. In the stationary régime, we may introduce 
the mean entropy per monomer as

s = lim y ^ fM{w) S{uj), (6.10)
l—^oo l ^^UJ

so that the first term becomes (1)^ s with the mean length {l)^ = Pt{l) The 
growth velocity is thus given by

V =
d{l)t_

dt
(6.11)

The second term in Eq. (6.9) can be expressed in terms of the disorder in 
the composition of the copolymer. This disorder can be characterized by the 
Shannon entropy per monomer defined as

£)(polymer) = lim — pi{ui) In . 
I—>oo l *—'

(6.12)

The disorder takes a value in the range 0 < D <\nM limited by the number 
of different monomers composing the copolymer. In the stationary régime, the 
second term is controlled by the disorder in the chain since

lyUJ l
~ {l)^ D(polymer)
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at long times.
The third term in Eq. (6.9) is the Shannon entropy of the distribution of 

lengths. Since this distribution broadens in time and may extend from / = 0 to 
I = Wm&xt where lümax is the largest among the growth rates VE(w,wm), this 
term typically increases logarithmically in time and does not contribute to the 
variation rate of the entropy because limÉ_oo(-l/t) Pt{l) lnpt(0 = 0-

Hence, we find that the time variation of the entropy is given in the station- 
ary régime by

dS S{t) ,
— = lim ------ = V s + v £>(polymer),
dt t—>oo t

where we hâve chosen physical units where /cb = 1 for the simplicity of nota­
tions. On the other hand, the entropy exchange rate (6.8) is equal to

(6.13)

in terms of the mean enthalpy per monomer which has a définition similar as 
Eq. (6.10). Finally, the entropy production (6.7) reads

djS
dt

= vA>0

with the growth velocity (6.11) and the thermodynamic force or affinity per 
monomer

A = —^ + £)(polymer) = e -I- D(polymer), (6-14)

where g = h —Ts is the free enthalpy per monomer and e = —gjT is the mean 
driving force. In the case the growth velocity is positive, the affinity (6.14) can 
be interpreted as the entropy production per added monomer. The affinity has 
two contributions: the first from the driving force e given in terms of the mean 
free enthalpy of copolymerization and the second due to the disorder (6.12) 
of the monomers in the chain. This shows in particulax that the copolymer 
can grow by an entropie efîect of disorder even when the driving forces are 
slightly négative. Indeed, the randomness incorporated in the chain has a non- 
negative contribution in the form of the disorder (6.12) to the thermodynamic 
force or affinity per monomer (6.14). This already shows how the stored pattern 
can influence back the dynamics of the System. The growth stops when each 
monomer is included with its equilibrium distribution, or equivaJently when the 
mean driving force is equal to minus the equilibrium disorder.

In general, the transition rates W{u,uj') dépend on the spécifie structure 
and composition of the whole chain w so that nonlocal or cooperative effects can 
generate long-range corrélations along the chain, thereby reducing the disorder 
(6.12). In many cases, the transition rates only dépend on the few monomers at 
the end of the chain, in particular, if the copolymerization process is controlled 
by the free enthalpy changes of the reactions u) + m ^ wm. In the most local 
process, the transition rates only dépend on the last monomer m which is added 
to or removed from the chain. In this case, the transition rates axe denoted as 
W{u,u)m) = k+rn and W{üjm,uj) = and the quantities



82 6. Physics of Information

£„ = ln^ (6.15)

represent the driving forces favoring the chain growth. They are given by the 
free enthalpy changes of the Chemical reactions and are measured in units 
of the thermal energy: £m = (G(w) — G(wm)j /(ksT). We notice that these 
driving forces dépend in general on control parameters such as the Chemical 
concentrations of the different monomers in solution around the copolymer 
chain. Under the assumption of Eq. (6.15), the mean value of the driving 
forces can be calculated as £ = Mi (Tn)£m by averaging them over the 
normalized distribution of monomers. If we further assume that there is
no free enthalpy différence between the chains wm, the rates are equal to each 
other and Em = £ for ail m, whereupon equilibrium occurs when the afRnity 
(6.14) vanishes ^eq = 0 which implies that the driving force takes the value 
£eq = — InM and the disorder reaches its maximum value £>eq = InM.^ On 
the other hand, we notice that, for fixed positive values of the thermodynamic 
entropy production and the growth velocity, the disorder can be reduced at 
the expense of the driving force e according to Eq. (6.14). Therefore, the 
nonequilibrium drive may contribute to some extend to the ordering of the 
copolymer.

We next consider a copolymerization process under the influence of a tem- 
plate, which détermines the probabilities to add or remove monomers (see 
Fig. 5.1b). This is typically the case during the DNA transcription or repli- 
cation processes where the DNA sequence influences the probabilities to add 
the monomers, favoring the Watson-Crick pairing rule A-T and C-G. The tem- 
plate is thus composed of a chain a = a\a2 .. .ai... and the transition rates 
now dépend on this underlying substrate: W(w, w'|o:). In this ceise, the previous 
considérations are modified in the following way. The entropy (6.6), the velocity 
(6.11), and the mean driving force are now averaged not only over the distri­
bution of monomers but also over the template. We suppose that the teraplate 
is described by a stationary distribution vi{a) — Ui{aia2 ■ ■ - ai) which is nor­
malized to unity — 1 for ail the chains of length l. In the stationary
régime, the probability to hâve a chain uj at time t here takes the form

at long times, where pi{ijj\a) is the distribution of chains u of length l grown 
on the template a. We expect that the template ensemble average corresponds 
to the average over a typical realization of the template sequence. We can here

^ Precisely, at £eq = — In M we hâve a semi-infinite random-walk type of dynamics 
where no stationary distribution is reached. Detailed balance conditions hold when 
e < — In M, in which case the probability distribution of a polymer of length l 
is proportional to exp(Ze), independenly of its spécifie composition. In the more 
general case where a free enthalpy différence exists between the chains, detailed 
balance conditions are satisfied when exp(em) < 1. The equilibrium probability 
distribution of the polymers is then proportional to exp(—nmCm), where Um 
is the number of monomer of type m.
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also introduce the mean entropy (6.10) and enthalpy per monomer by averaging 
over the template. The growth speed (6.11) is now obtained with a long tsT^ical 
sequence of the template.

On the other hand, the disorder (6.12) now becomes the Shannon conditional 
entropy of the copolymer with respect to the template:

£)(polymer| template) = lim —7^^ i^i{a)y^ /i((o;|a)ln/ii(u)|a). (6.16)
1—»oo l ^

a w

The conditional entropy between two random variables can also be expressed 
in terms of the mutuaJ information^

J(X,Y) = D(X)-T>(X|Y)

between the two variables [38]. The mutual information is bounded according 
to 0 < /(X, Y) < min {D{X), D(Y)} and measures how much the knowledge on 
one of these variables reduces the uncertainty about the other. It is zéro when 
the two variables are independent so that we recover the previous results (6.12) 
and (6.14) when the substrate does not influence the copolymerization process. 
Accordingly, the afRnity here becomes

A = e + £)(polymer| template)
= £ + D(polymer) — /(polymer, template) (6-17)

and is thus directly expressed in terms of the mutual information that the 
copolymer acquires from its template or more generally from its environment. 
The mean driving force is given by e = —g/T as in Eq. (6.14).

To be spécifie, we can take transition rates of the form W{u,um\a) = k+mn 
and W{ujm,tjj\a) = k-mn if n = 0(+i is the template at the position l + 1 and 
w is a Chain of length l. The corresponding driving forces

emn = In ^ (6.18)

now dépend on the substrate as well. Accordingly, in the case (6.18), the mean 
driving force is given by e = Ylm n where ui{n) is the distri­
bution of monomers on the template.

If the copolymer grows and v > 0, the affinity is the entropy production 
per added monomer so that Eq. (6.17) shows that substantial information can 
be generated if the mean driving force e is large enough. We illustrate this 
fundamental resuit with DNA réplication in the next section.

6.2.2 DNA réplication

In this section, we consider the process of DNA réplication. In this case, the 
four nucléotides NTP, with N = A,T,C or G, constitute the monomer units

^ As shown by Shannon [202], the maximal rate at which information can be sent 
with an arbitrarily small probability of error over a noisy trainsmission channel is 
given by the supremum of the mutual information over input data distributions.
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as well as the template. The DNA pol5Tnerase copies the DNA with a fairly 
small error rate. In the actual DNA réplication, an exonuclease will act as a 
proofreading mechanism in order to correct possible errors. Proofreading allows 
one to decrease the error rate up to the discrimination squared [116, 172, 16]. 
This mechanism can be modeled by considering several reactions /x during 
the copolymerization, namely These additional pathways will
change the average driving force and speed, but the disorder (6.16) will remain 
unchanged for a given distribution of nucléotides.

To analyze purely kinetic effects, we will assume in the following that no free 
enthalpy différence exists between correct and incorrect chains, implying Smn = 
e. We will thus consider the different effects as a function of this parameter. The 
transition rates and the driving forces (6.18) incorporate external conditions 
such as the Chemical concentrations of the monomers. Accordingly, the driving 
force e will typically be a function of such control parameters.

For concreteness, we consider the case of the DNA polymerase Pol 7, which 
replicates the human mitochondrial DNA. Forward kinetic constants for the 
incorporation of both correct and incorrect nucléotides are available [141] and 
we used these for our simulations. The human mitochondrial DNA is 16.5 kb 
long and can be obtained from GenBank."* To hâve a good statistical estima­
tion of the disorder (6.16), we used longer DNA sequences generated from the 
same triplet distribution as the original mitochondrial DNA. Random trajecto- 
ries corresponding to the master équation (3.30) are obtained with Gillespie’s 
algorithm [99].

The minimal error rate rjmn one can achieve for a base m instead of n is 
given by r]mn — fc+mn/ ^+mn and occurs in the infinité dissipation limit. In 
this limit, the maximal speed is given by vi {n)/{Ylrn ^+mn) which is
here of about 34 bases per second. The maximal mutual information is given by 
Em,n Wi^i(n)ln[77nm/]Cn Wi^iCn)] and takes the value 7max - 1-337 nats. 
Since we assumed no free enthalpy différence between the chains, equilibrium 
occurs when e = — ln4, where each nucléotide is inserted with equal probability. 
Therefore, at equilibrium, the velocity and the mutual information vanish, while 
the error rate is 0.75.

In Fig. 6.3, we depict the fraction of errors as a function of the driving force 
and, in Fig. 6.4, the velocity of the réplication process. These two observables 
présent a steep decrease (respectively, increase) as the driving force e becomes 
positive.

In Fig. 6.5, we represent the affinity (6.14) per copied nucléotide, which gives 
the corresponding entropy production since the growth velocity is here positive. 
This curve is non monotonie and présents a minima around e ~ 0.015. On the 
left-hand side of it, the external driving force is weak or négative and dissipation 
occurs chiefly due to the positive driving caused by the incorporation of errors 
whereas, on the right-hand side, dissipation is mainly due to the external driving 
force. This transition also corresponds to the sharp behavior observed in the

Homo sapiens DNA mitochondrion, 16569 bp, locus AC 000021, version 
GI; 115315570, http : //www. nebi. nlm. nih. gov.
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Fig. 6.3. Percentage of misincorporations as a function of the driving force e. The 
minimal error rate is given by 1 — — l'c'Hoc — i^ovcg — 8.3 10“®.
The maximal error rate occurs at equilibrium where detailed balance conditions are 
satisfied, aiccording to which esÆh nucléotide insertion is balanced by its removal from 
the Chain. Under this condition and if emn = £ for ail m and n, every nucléotide is 
included with equal probability and the error rate is 0.75. The kinetic constants of 
Watson-Crick pairing are taken to be /c+ta = 25 s“*, A:+at = 45 s”*, k+cG = 37 s“^, 
and fc+GC = 43 s~* [141]. The discrimination dmn = k+mn/k+n„ between nucléotide 
m and template n is given by ^aa = dxG = doA = 1/280000, dcA = 1/210000, cItt = 
1/250000, dcT = 1/570000, dcx = 1/3600, dAC = 1/71000, dxc = 1/640000, dcc = 
1/2300000, dxG = 1/59000, and doG = 1/110000. The reversed kinetic constants are 
taken as k-mn = k+m.ne~^ according to Eq. (6.18) with £mn = £ (see text).

Fig. 6.4. Velocity of the réplication process as a function of the driving force e. The 
maximal speed is given by about 34 nucléotides per second as explained in the text.

number of errors and in the velocity of the process. The same behavior can 
also be observed in the mutual information I between the original and the 
copied DNA strands, as depicted in Fig. 6.6. It increases with the driving force, 
reaching nearly its maximal value after the threshold point. Afterwards, nearly 
ail the original information has been acquired. The resuit is that the increase of 
mutual information corresponds to a réduction of disorder and allows fidelity
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Fig. 6.5. Affinity per copied nucléotide as a function of the driving force e. The 
local minimum is around e ~ 0.015 and indicates the transition between the error 
driven régime and the externally driven régime. Since the growth speed is positive, 
this affinity is the entropy production par copied nucléotide.

Fig. 6.6. Mutual information between the copied DNA strand and the original strand, 
as a function of the driving force e. The saturation occurs after the transition between 
the error driven and the externally driven régimes. The value of the mutual informa­
tion at saturation is 7max — 1.337 nats.

in the transfer of information. Contrary to the situation at equilibrium where 
this transfer is not possible, the nonequilibrium conditions turn out to induce 
the génération of mutuEÜ information.

6.3 Summary

In this chapter, we hâve investigated two different problems in the field of the 
physics of information. The second law of thermodynamics has fundamental 
implications on the way information is processed in physical Systems and the 
principle of temporal ordering enlights this problem with new understandings.
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We hâve here obtained a generaJization of Landauer’s principle on the basis 
of recent advances in nonequilibrium statistical mechanics showing that the 
second law of thermodynamics can be understand in terms of time asymmetry in 
the property of dynamicaJ randomness [85, 87, 89, 9]. These advances allow us to 
relate the thermodynamic entropy production during the erasure of a sequence 
of bits to the information contained in this sequence, taking into account the 
possible statistical corrélations among the bits [8].

Furthermore, we hâve developed the nonequilibrium statistical thermody­
namics of copolymerization processes, delineating the rôle of disorder in copoly- 
mer chains. In particular, we hâve shown how information can be generated out 
of equilibrium in these fluctuating processes. We hâve observed a transition be- 
tween two régimes. At small or négative external driving forces, the growth 
process is essentially driven by the incorporation of errors in the copolymer 
chain while, beyond a threshold, it is driven by free enthalpy sources. After 
this transition point, it turns out that the extra dissipation does not lead to a 
substantial increase in the fidelity of the replicated strands, as measured by the 
error rate or the mutual information between the original and the copied DNA 
strand. Information acquisition thus appears to hâve an energy cost analogous 
to information erasure [135, 17, 8]. Similar or enhanced effects are expected 
in the presence of autocatalysis [101], possibly, with different dependences on 
control parameters.

Albeit the results apply to every copolymerization process, they are fon­
damental for DNA réplication and transcription and the understanding of in­
formation acquisition by biological entities. Biologiced Systems are chaxacter- 
ized by several properties such as metabolism and self-reproduction. Each of 
them can be said to be encoded in the genetic code. While metabolism refers 
to nonequilibrium thermodynamics, self-reproduction involves information Pro­
cessing. The présent work establishes an essentiel connection between both 
properties on the basis of nonequilibrium statistical thermodynamics. In this 
perspective, dissipation allows the emergence of temporal ordering and the 
spontaneous génération of information, explaining in this way a key featme 
of complex Systems [167]. Information génération can thus be understood as re- 
sulting from the réduction of disorder in copolymers growing out of equilibrium 
and the ability to store and retrieve information in nonequilibrium environ- 
ments. If furthermore this information can be copied and processed back by 
the nonequilibrium dynamics of the System, the self-reproduction of biological 
Systems could be explained. Prom this viewpoint, we could say that biological 
Systems are physico-chemical Systems with a built-in thermodynamic arrow of 
time.
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Conclusions and Perspectives

The présent thesis has been devoted to the study of the thermodynamics of 
nanosystems, in the light of recent results in nonequilibrium statistical me- 
chanics.

7.1 OverView

In the past fifteen years, new relationships hâve been discovered in nonequilib­
rium statistical mechanics. These relationships characterize the large fluctua­
tions of several dynamical quantifies in far-from-equilibrium situations. Today, 
these findings hâve signiflcantly changed our understanding of thermodynamics 
by showing, for instance, how to formulate entropy production in fluctuating 
Systems at the nanoscale [33]. In this work, we essentially developed two differ­
ent aspects of this emerging field.

The first part aimed at presenting à unifying framework relating fluctuations 
and response in nonequilibrium Systems. We first considered quantum Systems 
driven by a time-dependent perturbation, in a setup similar to Crooks [50]. 
In this framework, we use the time-reversal symmetry operator to express the 
average of an arbitrary observable as an average, over the time-reversed process, 
weighted by a quantum version of the work. The quantum Jarzynski relation 
appears as a spécifie case of this functional relation. Besides, we can expand 
this relation in powers of the perturbation in order to connect the response 
of an observable to its fluctuations. In this way we can recover, in an unified 
framework, both response relations and fluctuation relations.

In this direction, we also considered nonequilibrium steady States in a 
stochastic framework. This approach allows us to connect thermodynamical 
properties such as currents or aflfnities to transition rates in the stochastic 
description. On this basis, we can dérivé a fluctuation relation for the macro­
scopie currents Crossing the System in nonequilibrium situation. This symmetry 
property of the dynamics is expressed in terms of the aflflnities, connecting in a 
fondamental way the fluctuations to the nonequilibrium drives. In particular, 
the conséquences of such a connection hâve been derived at ail the orders of 
perturbation.
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In the second part of this study, we gave experimental evidence showing that, 
at the level of both the individual trajectories and the statistical ensembles, 
entropy production can be understood as a symmetry breaking of time rever­
sai under nonequilibrium conditions. This symmetry breaking is measured on 
mesoscopic quantities that characterize dynamical randomness in the forward 
or time-reversed direction, connecting in this way dissipation to temporal disor- 
der. These developments led us to the field of the physics of information. Lau- 
dauer’s principle can indeed be understood as arising from a time-asymmetry in 
dynamical randomness. Moreover, we illustrated on a model System of copoly- 
merization the following nonequilibrium organizing scheme. In nonequilibrium 
Systems, the principle of temporal ordering shows that the random fluctuations 
should be biased, allowing the emergence of a dynamical order. If this dynamical 
order can be memorized by the System (here in the organization of the constitu­
tive units), we can understand that information can be generated. If furthermore 
this information can be restored back to the nonequilibrium dynamics of the 
System, we hâve achieved a sustained nonequilibrium organization.

In conclusion, thermodynamic concepts can be consistently formulated at 
the nanoscale, in the form of large-deviation relations. In this respect, this work 
gives new insights into the thermodynamics of small Systems, in particuleir on 
the problem of nonlinear transport as well as on the origin of irreversibility 
and its constructive rôle in nonequilibrium processes. We comment in the next 
section on several topics that could be further investigated.

7.2 Open questions

Many questions remain open at this point. Large-deviation relations offer new 
promising approaches that might help establish the foundation of a Sound 
nonequilibrium statistical mechanics. Also, the applications of the fluctuation 
relations to the vast existing range of nanosystems, especially electronic and 
biological Systems, is expected in the next few years, both at the theoretical 
and experimental levels. In regard of these general problems, we here detail 
some more spécifie issues and possible future research directions.

The fluctuation relations and their conséquences oflfer many new perspec­
tives. It is thus essentiel to explore at the fundamental level their range of 
validity and their repercussions on energetics and transport properties.

At the quantum level, virtually ail fluctuation relations hâve been derived 
for System starting at equilibrium. Indeed, the construction of nonequilibrium 
stationary States in open quantum Systems is still problematic. Accordingly, the 
analogue of the steady-state fluctuation theorems that would be expressed only 
in terms of the System observables (i.e., without the bath) is still lacking.

Also, a generalization of the fluctuation theorem for the currents in a purely 
Hamiltonian framework would be of fundamental interest. Such a generaliza­
tion can be envisaged in the following circumstances. Let us suppose we hâve an 
open System in contact with réservoirs of particles at different concentrations.
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If we assume that the réservoirs are at equüibrium at each time step and indé­
pendant of the State of the System, the effect of a réservoir is to inject particles 
in the System with a Poissonian distribution, the average of which is equal to 
the réservoir concentration. The net flux of particles can be measured at any 
boundary and is given in terms of the outgoing and incoming particles. Accord- 
ingly, the distribution of particles at the boundary is given by the différence 
between two Poissonian distributions with density pout and pi„, respectively. 
Now, the fact is that the différence of two Poisonnian distributions is a Skellam 
distribution, which has the property to satisfy a symmetry relation with an 
exponential factor given by Pout/Pin- In this way we can directly obtain a fluc­
tuation theorem for the currents. A more general statement might be obtained 
along these lines.

Another question concerns the statistical behavior of the nonequilibrium 
fluxes under time-dependent drivings. To address this issue, it appears neces- 
sary to include additional “inductive” éléments in the graph formulation of the 
stochastic process in order to account for the conservation of the currents. This 
problem is relevant for many applications, for example in the study of noise 
and electronic transport in quantum dots [205].

Eventually, the nonlinear relations presented in Chapter 4 might also 
provide new insights into the mechanisms used by nanosystems in order to 
take advantage of the molecular fluctuations. In this respect, nonlinear effects 
are expected to be important in the understanding of the transport properties 
at the nanoscale. The nonlinear relations and their symmetries might give rise 
to new transport mechanisms or peculiax modes and régimes of functioning. 
Brownian motors with several nonequilibrium drivings offer model Systems to 
further explore these possibilities.

On the other hand, statistical physics is nowadays chaJlenged by the rapid 
development of nanosciences, and in particular of the biological science. In 
relation with our work, a fondamental problem pertains to the impact of noise 
on information transmission in biology. Indeed, biological Systems hâve to 
solve many problems of computation and signal processing at the biochemical 
level. Surprisingly, many such crucial biological processes operate with small 
numbers of molécules and it is essential to assess the impact of noise associated 
with these small numbers [20, 102]. Remarkably, recent experiments suggest 
that these intraceUular signaling processes operate with a précision close to 
the fondamental physical limits. This is the case for example in Escherichia 
Coli, where régulation of gene expression by transcription factors and control 
of the flagellar motor both appear close to a “noise floor” independent of 
ail the details of the Chemical kinetics [21]. These observations on functional 
performance suggest that, given the structural constraints coming from 
evolutionary and developmental compromises, varions dynamical networks 
governing crucial tasks could resuit from a compromise between specifleity 
and flexibility. For instance, noise in the flagellar motor of E. Coli appears to 
optimize the exploration of the environment while allowing a reliable response 
to external perturbations such as gradients of nutrients [66]. This view is in
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contrast with the idea that bacteria would hâve evolved toward a deterministic 
motion always selecting the largest gradients of nutrients.^ In this example, 
these aspects can be linked to the architecture and nonlinear behaviors of 
the underlying genetic and Chemical networks [66], showing that some of the 
intricate machinery of the cell can be understood as a principled solution to 
these problems of noise and computation. In this direction, we believe that the 
link between fluctuation, dissipation, and information génération put forward 
in Chapter 6 could be further developed to address these questions. For 
instance, the inclusion of nonequilibrium thermodynamics to rate-distortion 
theory could provide us with new understandings on the physical limits to 
physical signaling in biological Systems.

Finally, the time-ordering principle and the nonequilibrium self-organization 
scheme presented in Chapters 5 and 6 open new perspectives in varions direc­
tions.

First, nonequilibrium Systems présent a generic temporal and spatial order, 
characterized for instance by the presence of long tails in the corrélation fonc­
tions [166, 128]. In this context, nonequilibrium constraints hâve already been 
identified as the source of the long-range corrélations in some spécifie models 
[166, 128]. This observation seems closely related to the time-ordering principle 
and to the link between entropy production and dynamical randomness. Thus, 
general relationships could potentially be established and would be of great in­
terest to further understand the origin, behavior, and constructive rôle of these 
phenomena.

Second, even though réversible computation is possible, the presence of noise 
or intrinsic errors results in a finite amount of dissipation if a device is to fonc­
tion properly. A quantitative formulation of these problems would be highly 
désirable, both at the fondamental level and for potential applications. In this 
direction, we mention the work of von Neumann [222], who had already en- 
visaged this problem in a different context, although he did not incorporate 
energy dissipation in his analysis. He showed that reliable computation could 
be achieved from unreliable components under the condition that the noise 
level was below a certain threshold, but not otherwise. This is reminiscent of 
the already fairly low intrinsic error rates found in the functioning of the ge­
netic apparatus. More generally, the existence of error-correcting schemes in 
DNA transcription and réplication is an evidence that strategies optimizing the 
combination dissipation-reliability can be achieved.

Third, we believe that the new self-organizing scheme illustrated in section
6.2.2 on DNA réplication provides a first step in the understanding of the prob­
lem of information acquisition by biological organisms, and especially on the

^ Putting aside the problem of developing the (necessaxily more complex) machin­
ery associated with such a behavior, randomness here appears favorable due to 
the compétition between bacteria. The remarkable resuit that optimal strategies - 
independently of any physical implémentation - are probabilistic rather than de­
terministic or reflex-like finds its origin in the séminal works of von Neumann and 
Nash in economy and game theory.
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problem of self-reproducing entities. Indeed, self-reproduction would be a par- 
ticular case of a sustained non-equilibrium organization where the information 
about the structure and function of the entity is copied and processed back 
by the nonequilibrium dynamics. In this regard, we could envisage more com- 
plex polymerization dynamics that could lead to more evolved self-reproducing 
entities. For instance, nonlinear and autocatalytic reaction pathways, multiple 
reactive States or cooperative efîects could already lead to complex patterns. 
Another possible direction would be to combine this organizing principle to the 
cellular automata approach. Self-reproduction in this context was first envisaged 
in the classical work of von Neumann [223]. He understood that machines could 
easily achieve trivial forms of self-reproduction based on template-replication or 
crystal-like growth. In contrast, he speculated that, unlike machines, biological 
organisms hâve the ability to increase their complexity without limit via self- 
replication (open-ended évolution). His insight that open-ended évolution re- 
quires the séparation of a universal constructor from its own description (which 
needs to be copied separately) is ail the more remarkable because it preceded 
the discovery of the structure of the DNA molécule as a genetic information 
storage in biological Systems. The ability to achieve open-ended évolution lies in 
the fact that errors in the copying of the description can lead to viable variants 
of the automaton, which can then evolve via natural sélection, von Neumann’s 
original model was actually fairly complicated since he required its automaton 
to act as a Turing machine in addition of a universal constructor.^ On the other 
hand, it has been pointed out that far simpler machines achieve self-replication 
[137], although none of these simpler machines are capable of open-ended évo­
lution.^ Anyhow, ail models developed so far are purely deterministic, whereas 
the fluctuations and the energetics aspects should play an important rôle in 
metabolism and évolution. The inclusion of these aspects might provide new 
insights into this fascinating problem. The understanding of the physical princi- 
ples constraining self-reproducing entities could also deeply transform our views 
on the origin of life.

^ Primordial biological entities probably do not satisfy such strong requirements. 
^ We refer the interested reader to the reference book by Freitas and Merkle [75].
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Large déviation theory

Large déviation theory aims at describing the occurrence of rare events. It has 
therefore found many applications in the fields of geology, economy, statistical 
physics, and time sériés analysis, among others. In this appendix, we briefly 
summarize some important results of this field.

We first introduce some standard tools in probability theory. A continuons 
random variable Y is characterized by its probability density function p{y). It 
is normalized to unity and we dénoté by (•) the average with respect to this 
probability distribution: / + 00

f{y)p{y)dy.

•OO

The generalization of this appendix to discrète and vector-valued random vari­
ables is straightforward.

Another représentation of the probability distribution is obtained as follows. 
We introduce the moment-generating function of the random variable Y as

m ■

It can be calculated from the moments of the random variable as

*<■» = E ri
71 = 0

and, conversely, the moments can be obtained from the moment-generating 
function by a sériés expansion in A. This operation is réversible: the probability 
distribution function can be obtained as

1 f+°°
p{y) = {6{Y -y)) = ^ d\ e-‘«V(fA), (A.l)

where we used the Fourier transform of the Dirac delta distribution 5(y). The 
information content of the two représentations is thus identical.
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The moment-generating function also provides a useful bound. Applying 
Maxkov’s inequality to the positive random variable exp(Ay), we get that, for 
ail A > 0,

P(Y >a)< e-^“i/>(A). (A.2)

Since this inequality holds for ail positive A, we can optimize over A to get 
P{Y >a)< minA>o{e~-^“^(A)}.

The moment generating function can be written as the exponential of the 
cumulant-generating function:

F(A) = ln(e^^)

with

°° A"

n=0

The first cumulants are given in terms of the central moments 
((y - (y))*^) as follows:^

Kl = m,

K2 = ^J.2 ,

«3 = M3 1
Ki — ï

«5 = M5 - 10/i2M3 •

Similarly to the moment-generating function i(i, the cumulants are obtained by 
dérivation of the function F. In order to underline the random variable Y, we 
will also use the notation {{Y'^)) to dénoté the cumulant.

The cumulants hâve no direct interprétation. However, we note a theorem 
by Marcienkewitz [152] which shows that the probability distribution function 
will violate its positiveness if its cumulant generating function is a polynomial 
of degree greater than two. Thus, two possibilities occur for the cumulants. 
Either only the two first cumulants are non-zero and Eq. (A.l) proves that p is 
a Gaussian, or one cumulant of order above two is nonzero and then an infinité 
number of cumulants are non-zero.

We now consider a sequence {5n} of random variables. We would like to 
describe the asymptotic or large n behavior of the sequence. In many applica­
tions, n corresponds to a time parameter while is typically a sum over several 
random variables: Sn = {l/n) Yk- In this case, the fluctuations around the

* The cumuleints cein also be expressed in terms of the moments as follows. Let p be 
a integer between 0 and A: — 1. Let us write down k times the character Y. Then 
let us divide this writing in p-l- 1 subsets with brackets: {YY){Y)...{YYY). Let us 
call Cp the sum of ail these kinds of terms. Then, the cumulant of order k is given 
by the sum ((y'=>) = EpIÔ(-l)VCp.
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average are described by the central limit theorem. We now want to show how 
to characterize the large déviations further away from the mean.

Assume that the sequence of functions

F„(A) = -ln(e"^^") 
n

exists for ail A and converges to some difïerentiable fonction

F{\) = lira F„(A).
n—*oo

Then, the Gaxtner-Ellis theorem [220] asserts that the sequence {S„} satisfies 
the large-deviation principle

P{Sn = C) ~ for n —» 00

or, equivalently,

lim -- In P(5„ = C) = ^(0 ,n—*oo U

with the rate function given by

/(C) = sup{AC - F(A)} .
A

The rate function 7(^) characterizes the fluctuations or déviations from the 
average. It is positive and vanishes only at the mean value Co = limn_oo {Sn)- 
By convexity, the rate function is quadratic around ^Oi which corresponds to the 
Gaussian fluctuations as described by the central limit theorem. The higher- 
order ter ms correspond to déviations further away from the mean. In this sense, 
the large fluctuations are characterized by the rate function I or, equivalently, 
by the generating function F.
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Fluctuation theorem for semi-Markov processes

Our goal in this Appendix is to extend the fluctuation theorem for the currents 
to semi-Markov stochastic processes. Such an extension has been discussed in 
Ref. [184] for the beat dissipated. We here présent the case of the fluctuation 
theorem for the macroscopie currents. Memory effects are known to occur 
in cases such as the transport of ions in membranes [14], enzyme kinetics, 
electronic transport in single-level quantum dots or metallic single-electron 
transistors which are strongly interacting Systems [28], or dynamical mode 
transitions in noisy quantum dynamics. Such memory effects could also play a 
rôle in some recently observed molecular motors.

A semi-Markov process is a discrète non-Markovian renewal process which 
is fully described by the set of probability densities rpuui' (t) for making random 
transitions within the time interval [r, t -f dr] from the State w to the State u'. 
These probability densities are necessarily positive and obey the normalization 
conditions

w'
for ail U) = 1,2,..., AT. The subséquent résidence-time intervals between the 
jumps are assumed to be mutually uncorrelated. The residence-time distribution 
iPu{t) in the State u reads

f
1puu'{T)dT = 1 , (B.l)

where (j)uj{T) is the survival probability of the State uj obtained as

<j)u ipu,{t)dt.

The probability of a trajectory of the form

ti t2 tfiUq UJl • • • —> Lün (B.2)

and ending at time t is thus given by
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^n) l) (^2 tl) '*/’wiUo(^l ^o) • (®'3)

This constitutes a general scheme for continuous-time random-walk theory 
[158].

Several descriptions for such non-Markovian processes hâve been developed 
[217, 40, 103]. We will here focus on the description introduced by Goychuk 
who also discussed the équivalence between ail these theoretical schemes [103]. 
In this framework, the probability densities V' are given by

= ‘lpui{T)Pu,u,'

with time-independent transition probabilities p^^|^l. In this case the normaliza- 
tion conditions (B.l) become

The Maxkovian case is recovered when the survival probabilities are ex-
ponential fonctions of time. We then hâve

exp ( - y] , p^^' = — .
U.'

The résidence-time distribution V’w(t) and the transition probabilities p^u' 
can be deduced from sampled trajectories. The study of the statistics of the 
residence-time intervals allows us to obtain the corresponding probability 
densities hence the survival probabilities Purthermore, the
statistics of the transitions from one state to ail the other States allows us to 
dérivé the corresponding conditional probabilities p^u' ■

We now dérivé the fluctuation theorem for the currents in close analogy to 
the démonstration of Chapter 3. The generating fonction of the currents (3.26) 
is now averaged with respect to the probabilities (B.3). Therefore, the quantity 
Fuu'{t) = (exp—A • Gt)u)w', where the System starts in state w at fo = 0 and 
ends in state w' after a time t reads

OO rt

-b / dti---dtn (B.4)

^ ^ (^l)^WltL»2 (^2 ' ' ' ^UJn-lUJni^n ^71—l)0Wn(^ ^7l) ^U/'uJri^

ijJl,-" ,Wn

where the intégration is subject to the condition t\ < t2 < ■ ■ • < tn- The 
quantifies 2^0,'(t) are defined as

-2wu7'(A,0 = ipuuj'{t)exp ^ w')A(] .

These fonctions incorporate the contribution of the transitions to the Helfand 
moments G;. To further study this process, we introduce the Laplace transform 
of the survival probabilities:
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and similarly for and t£)o,u;'(5). These quantities can be regrouped in
matrix form as

The Laplace transform of Eq. (B.4) is given by

00

n=l

{çf(s)[l-Z(5)]-l}
^ J u>u>

The long-time exponential behavior of , and thus of the generating fonction 
Q = Yluüi' ■Pst(w)Fa,o)', is given by the largest sq = —Q such that the matrix

Mu,u,'{s) = [l - Z{s)]^^>

présents a vanishing déterminant: detM(so) = det[l — ^(so)] = 0.
We can now proceed analogously to the démonstration of Sec. 3.2. Under 

the linear transform

where the fonctions tto, satisfy the conditions

__ I Pu!u'

the matrix M becomes

if the transition c*; —> w' is not a chord and for aJl s. For a chord /, we obtain

(s- ^i) = (s, Ai-Xi).

With this change of basis, we arrive at the fondamental symmetry

M; = ÛM^Ù-^ = mZx -

whereopon we find that ail the eigenvaloes of M as well as the generating 
fonction Q satisfy the same symmetry: sq = —Q(X) = —Q(A — A). QED.





c
Dissipation and time reversai of Kramers’ 
process

In this appendix, we generalize the calculations of Chapter 5 to the case of an 
underdamped charged Brownian particle in the presence of a magnetic field. For 
this purpose, we consider a Brownian particle in a two-dimensional {x—y) plane 
and immersed in a viscous fluid. The particle has a charge g and is subjected 
to the Lorentz force g{v y. B) due to a magnetic field aligned with the normal 
axis of the plane: B = Bl^. The particle is trapped in a potential well which 
is driven at speed u = in the diagonal direction 1^; + Ij,. The fluctuating 
équations of motion read

mx + JX- gBÿ - Fx{x -vt,y - vt) = ^i(t) 
mÿ + 72/ + gBx - Fy{x -vt,y- vt) = ^y{t),

where Fa{x,y) = —dVIda is the force acting on the particle in the direction 
a = X OT y. 7 is the viscous friction and the random noise is correlated as

{îa(t)^p{t')) = 2kBT'yôal3 <5(t — t'). (C.l)

In the following, we will work in the comoving frame

{q = x — vt 

r = y — vt

so that the équations of motion become

mq + jq + jv- gB{f + u) - F,(ç, r) = ^g{t) (C.2a)

mr + 'yr + JV + gB{q + v) - Fr{q, r) = ^r(t), (C.2b)

The dissipated work over a time interval t is given by

W = v [ dt'[Fg{qt>,rt>) + Fr{qt',rt')]
JO

as the magnetic field does not perform any work (although the work does not 
explicitly dépend on the magnetic field, the average work does).
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Since we consider a Gaussian white noise with statistical properties (C.l), 
the probability to hâve the noise history is given by

^[C9(0.Cr(<)] oc exp
1

AksT^ f cZt'[Ç,(0]" + [Cr(0]"
Jo

(C.3)

To extract the heat dissipated along a trajectory, we consider the probability 
of a given path over the probability to observe the reversed path having also 
reversed the sign of the driving u as well as the magnetic field B. The reversed 
path is thus defined by = Zt-v which implies ij} = -it-t' and zj} = 
with Z = q ox r. According to Eqs. (C.3) and (C.2), we find after some algebra

In
P+[qt,rt\qo,ro]

- AK- AV\=Q.

Here,

AK = Y j^(9f + vf - {qo + vŸ + {h + vŸ - (ro + u)^]

is the différence of kinetic energy between final and initial States expressed in 
the comoving frame while

AV = V{qurt)-V{qo,ro)

is the corresponding différence of potential energy. The heat Q dissipated along 
a random path can thus be obtained from the probabilities of the mesoscopic 
trajectories in the underdamped case as well, provided that we reverse the sign 
of both the driving constraint u and the magnetic field B. We emphasize that, 
although the work and the heat do not dépend explicitly on the magnetic field, 
it is only when reversing this latter that we obtain the heat dissipated from the 
underlying path probabilities.
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Dynamical randomness of the Langevin process

In this appendix, we evaluate the (e, T)-entropy per unit time of the 
Grassberger-Procaccia eilgorithm for the Langevin stochastic process ruled by 
Eq. (5.6) in the case of a harmonie trap potential. In this case, the Langevin 
process is an Ornstein-Uhlenbeck stochastic process for the new variable

y = Z- UTfi.

The probability density that the continuons random variable Y{t) takes the 
values y = (j/oi î/ii •••, Vn-i) at the successive times 0,r, 2r,(n —l)r factorizes 
since the random process is Markovian:

p{yo,-, Vn-i) = Pst{yo)G{yo, yil r) • • • G{yn-2, yn-i;r), (D.l)

where the Green fonction

G{yo,y\t)
1

—, =exp
\/27r(j2(i — e“2t/TB^

(y - e '
2(t^(1 —

is the conditional probability that the particle moves to the position y during 
the time interval t given that its initial position was yo [39]. The stationary 
probability density is given by the Gaussian distribution

Pst(y) = lim G{yo,y,t)
%/27Tcr^

exp y
'2cr2

with the variance
ksT

k ■
Denoting by the transpose of the vector y, the joint probability density 
(D.l) can be written as the multivEiriate Gaussian distribution

p{yo,-,yn-i)
exp(-^y'^-Cn^-y) 

(27r)t(det C„)^

in terms of the corrélation matrix
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Cn = (T^
J.2 J.

\r"

r2 . j.n-1

r j.n—2

1 . ^n-3

,n—3 .. 1

with
r = exp(-T/rfl). 

The inverse of the corrélation matrix is given by

/ 1 —r
—r 1 +

c-i =
(1 -r2)

0

0 —r 1 +

and its déterminant by

0 0 \ 
0 0 
0 0

0 0 0 ... 1 + —r
V 0 0 0 ... -r 1 /

detC„ = (T""(l-r^)"-'. (D.2)

The (e, r)-entropy per unit time is defined by

ç+co r+oo
h{e,T) = lim-----------/ dyo • • • / dyn-i p{yo, ■■■, yn-i)71-.CX3 nr

/+£ r+Ê
dr/o • • • y drjn-i p{yo + rjo, + T7n-i),

where {y' = yj + represents the tube of trajectories satisfying the con­
ditions \y'j — yj\ < £ with j = 0,l,...,n — 1, and centered around the refer- 
ence trajectory sampled at the successive positions {yj}^Io- After expanding 
in powers of the variables pj and evaluating the intégrais over —e < rjj < -l-e, 
the logarithm is obtained as

In/
+£

drio--- J dr]n-\ p(yo+ %,•••, yn-l +Pn-l)
-e

— In r-iy’'-c.-‘.y + 0(e»).
(27t) 2 (det C„) 2 2

The intégrais over —oo < y^ < +oo can now be calculated to get the resuit 
(5.20) by using Eq. (D.2). We find

= + (D.3)

Since the relaxation time is given by tr = a/k and the diflFusion coefficient by 
D = ksT/a, the variance of the fluctuations can be rewritten as cr^ = kgT/k =
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Dth. Substituting in Eq. (D.3), we obtain the (e, T)-entropy per unit time given 
by Eq. (5.20). The above calculation shows that the (e, r)-entropy per unit time 
of the Ornstein-Uhlenbeck process is of the form

h{e,r) =

with some function (j>{s,r) of s = Drufe^ — and r = exp(-r/r/î).
In the limit where the time interval r is much smaller than the relaxation 

time TR, the only dimensionless vajiable is the combination Dr In this case, 
we recover the resuit that the (e, r)-entropy per unit time is given by

h{e,T) for T ^tr.

This (e, T)-entropy per unit time is characteristic of pure diffusion without trap 
potential, as previously shown [97, 84, 90].
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