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Abstract

Statisticians are used to model interactions between variables on the basis of observed
data. In a lot of emerging fields, like bioinformatics, they are confronted with datasets
having thousands of variables, a lot of noise, non-linear dependencies and, only, tens of
samples. The detection of functional relationships, when such uncertainty is contained in
data, constitutes a major challenge.

Our work focuses on variable selection and network inference from datasets having
many variables and few samples (high variable-to-sample ratio), such as microarray data.
Variable selection is the topic of machine learning whose objective is to select, among a
set of input variables, those that lead to the best predictive model. The application of
variable selection methods to gene expression data allows, for example, to improve cancer
diagnosis and prognosis by identifying a new molecular signature of the disease. Network
inference consists in representing the dependencies between the variables of a dataset by
a graph. Hence, when applied to microarray data, network inference can reverse-engineer
the transcriptional regulatory network of cell in view of discovering new drug targets to
cure diseases.

In this work, two original tools are proposed MASSIVE (Matrix of Average Sub-Subset
Information for Variable Elimination) a new method of feature selection and MRNET (Min-
imum Redundancy NETwork), a new algorithm of network inference. Both tools rely on
the computation of mutual information, an information-theoretic measure of dependency.
More precisely, MASSIVE and MRNET use approximations of the mutual information
between a subset of variables and a target variable based on combinations of mutual infor-
mations between sub-subsets of variables and the target. The used approximations allow
to estimate a series of low variate densities instead of one large multivariate density. Low
variate densities are well-suited for dealing with high variable-to-sample ratio datasets,
since they are rather cheap in terms of computational cost and they do not require a large
amount of samples in order to be estimated accurately. Numerous experimental results
show the competitiveness of these new approaches. Finally, our thesis has led to a freely
available source code of MASSIVE and an open-source R and Bioconductor package of
network inference.
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Chapter 1

Introduction

This work focuses on methods of variable selection and network inference using mutual
information, and their applications to microarray data analysis. In particular, we study
the notions of relevance, redundancy and complementarity of variables in order to design
new data-mining tools.

The increasing possibilities of collecting massive data are raising a major issue in sci-
ence: the extraction of information. A promising field to solve this issue is data-mining
[47] which is an automatized process of knowledge extraction from databases. Nowadays,
data-mining techniques are widely used. Fraud detection, credit risk analysis, sales pre-
diction, clients classification, texts, sounds, images or videos identification are among the
many problems that are dealt within this area of research [25, 139, 92, 62].

One major field of data-mining is the analysis of biological data, such as the ones
collected by microarrays [135, 104]. A microarray is a chip composed of thousands of
microscopic dots that measures gene expression or gene activity [59]. Gene expression
analysis leads to a better understanding of cells and their genomes [2]. As a consequence,
this research area has as goal to discover new diagnosis tools and new targets of treatments
for diseases such as cancers [4, 134, 51, 138].

From the data-miner point of view, microarray datasets are challenging, because they
are often made of few samples (the cells) and thousands of variables (the gene expressions)
measured using a (biological) process known to be noisy. Furthermore, a lot of known gene
relationships are non-linear and multivariate[15]. Finally, biomedical scientists are expect-
ing methods that produce intelligible/understandable models (by opposition to black-box).

Hence, an effective microarray analysis tool should be able to,

1. return intelligible/understandable models,

2. rely on little a priori knowledge,
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3. deal with thousands of variables,

4. detect non-linear dependencies,

5. deal with tens of noisy samples.

In this work, we focus on information-theoretic methods of variable selection and network
inference because 1) they fulfill the requirements enumerated above, and 2) they are known
to be effective [46, 83, 104, 148].

Variable selection is the subdomain of data-mining whose objective is to select, among
a set of input variables, those that lead to the best predictive model [57]. Applied to
microarray data, variable selection returns a set of genes whose particular expressions
characterize the state of a cell. This makes possible the identification of a cell signature
and it is used for diagnosis, i.e., differentiating malign tumor cells from benign ones, but
also for prognosis, i.e., detecting tumor cells sensitive to chemotherapy vs tumor cells not
responding to the treatment[136, 138].

Network inference is another area of data-mining. It purports to represent the depen-
dencies between the variables of a dataset with a graph [140]. Applied to gene expression
data, network inference returns a graph where arcs are meant to represent gene-gene inter-
actions. This is called transcriptional regulatory network inference and it purport to give a
global picture of the (regulatory network) cell [51, 135]. The inferred network can be used
to identify genes that could be targeted by new treatments[4, 51].

In order to deal with a large amount of variables that have non-linear dependencies,
an adequate relevance measure is required. Mutual information, which is an information-
theoretic measure of dependency, is chosen. This choice is partly motivated by successful
approaches [46, 83, 104, 49].

At this point, we have methods (variable selection and network inference) that return
intelligible outputs (cell signature and transcriptional regulatory network), able to deal
with non-linearities and large number of variables (using mutual information). However,
one problem remains: the limited amount of samples. Many state-of-the-art approaches
resolve this problem by estimating mutual information between only two random variables
[44, 104, 148, 19]. However, it will be shown that resorting to low-variate mutual informa-
tion neglects variable interactions such as redundancies and complementarities.

Our contribution is to provide a new information-theoretic variable selection and net-
work inference technique able of dealing with variable interactions, without requiring a
large number of samples. More precisely, our methods use approximations of the mutual
information between a subset of variables and a target variable, based on combinations of
mutual informations between sub-subsets of variables and the target.
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Figure 1.1: Data-mining through supervised learning consists in building a model from
data in order to predict a target function.

We shall now hark back to the notions that have been mentioned above and that
we treat in our work: the field of data-mining (in Section 1.1), the problems raised by
microarray data (in Section 1.2), the approach of variable selection (in Section 1.3) and
network inference (in Section 1.4), the strong points of information-theoretic methods (in
Section 1.5), the main problem of state-of-the art methods and our own solutions and
claims (in Section 1.6).

1.1 Data-mining

Data-mining typically uses machine learning to predict and/or understand variables of
a dataset. Machine Learning is defined as the study of computer algorithms that improve
automatically through experience [92]. This field lies at the frontier of statistics and com-
puter science. Modelling a target function connecting the variables of a system is a machine
learning task. The output or target variable, denoted by Y , is the one to be predicted and
the input variables, denoted by X, are the predictors. The estimated relationship between
X and Y is called a statistical or a predictive model.

The learning is supervised when the machine is trained with output and inputs values.
The aim of supervised machine learning is to estimate an input/output model from the
data in view of predicting the output value on new data (see Figure 1.1). It is a regression
task, if the output is a continuous value and a classification task if the output is a class
label. In this work, input and output variables are discrete (or discretized). Hence, we
focus on supervised classification rather than regression.

Machine learning algorithms can be applied to various domains of research with little
tuning. Nowadays, data-mining methods are increasingly used in businesses and industries
[25].
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Figure 1.2: Microarray platform [nhg].

1.2 Microarray Data

A particular type of biological data, called microarray, has given rise to a challenging
problem in data-mining. At first, let us introduce some biological notions1.

A cell is made of millions of proteins. Proteins are generated from the DNA (the
genes). Every cell of the same (multicellular) organism contains the same DNA, but cells
can be very different (for example, a tumor cell vs a normal cell) because of the different
concentrations of each protein. A protein is a molecular machine that achieves some specific
action. Each situation faced by the cell requires different proteins. The amount of each
type of protein in the cell is continuously adapted as a function of the environment [2, 59].
Hence, by measuring the protein quantities of a cell in different situations, a model of the
cell can be estimated.

A microarray is a blade composed of thousands of microscopic dots containing DNA
oligonucleotides (Figure 1.2). Each dot measures a gene expression or gene activity, which
occurs as an intermediary step in the production process of proteins. By using this technol-
ogy, genome-wide patterns of gene expression can be studied. In other words, a microarray
represents the state of a cell by a vector where each dimension is a different gene and
each component of the vector quantifies the activity of that gene in a cell. As a result,
microarray analysis is a key issue toward the understanding of genomics and cell biology.

These measures suffer nonetheless from several drawbacks. First, the data are noisy
because of the highly variable biological process measured [59]. Second, microarray exper-

1A more detailed biological background is available in Appendix A.1.
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Figure 1.3: Variable selection is a preprocessing step of learning composed of a search
algorithm combined with an evaluation function.

iments are expensive (around one thousand euros per experiment). For this reason, the
number of samples in datasets is relatively low. The fact that the data are noisy, and that
there are a small number of samples, make it difficult to estimate a statistical model. If
biomedical scientists have some knowledge of the underlying process that has generated
the data, they generally use that knowledge to validate the inferred model, rather than
as a priori knowledge on it. This is why there is a need for data-mining techniques, able
to return intelligible outputs (for biomedical scientists) dealing with thousands of vari-
ables, tens of noisy samples, non-linear dependencies between variables and little a priori
knowledge.

1.3 Variable Selection

In order to produce such intelligible models, variable selection techniques are often
used. Variable selection is the subdomain of data-mining whose goal is to select inputs
among a set of variables which lead to the best predictive model. In most cases, it is a
preprocessing step to learning (see Figure 1.3). On the one hand, eliminating variables
can lead to information losses. On the other hand, as shown in [11, 74, 76, 56], selecting
variables can:

1. improve the accuracy of a model (by improving the ability of generalizing).

2. increase the intelligibility of the model.

3. decrease the time and the memory taken by the learning and utilization of the model.

Algorithms for variable selection are typically made of a search algorithm exploring different
combinations of variables and of a performance measure evaluating the selected variables.
In this work, we focus on sequential search algorithms (rather than stochastic search) and
performance measures based on information theory because both are fast, efficient and
quite easy to understand for non-specialists.
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A problem generally encountered in microarray analysis is the prediction of effects of
medical treatments on patients. The predicted variable Y expresses the reaction of the
patient to treatment, (for instance, 1 if the treatment succeeded and 0 if not) and the
source of input data X for that kind of problems could be the expression of the genes in
a tumor cell tissue. Recently, by using microarray techniques, a 70-gene prognosis profile
has been identified as a predictor of early development of a distant metastasis in young
patients [136]. This profile has been generated using only 78 tumor samples of patients
and has been shown to outperform all clinical parameters in predicting distant metastasis
[134].

The issue of cell/patient classification can be addressed, by selecting the genes whose
activities allow to discriminate cells or patients. This is an example of a variable selection
task.

1.4 Network Inference

Network inference is another data-mining technique that returns intelligible models. It
represents dependencies between variables in a dataset with a graph [140]. Each variable
of the dataset is represented by a node in the graph. There is a link between two variables,
if these variables exhibit a particular form of dependency (the form of dependency depends
on the inference methods).

A gene can produce a protein that can activate or repress the production of another
protein (see Appendix A.1.2). Hence, there are circuits coded in the DNA of a cell. A con-
venient representation of the cell circuitry is a graph, where the nodes represent the genes
and the arcs represent the interactions between them. As a result, a network inferred from
microarray data can be interpreted as a transcriptional regulatory network. Transcriptional
regulatory network inference aims at giving a global picture of the (transcriptional network)
cell. Those networks also delineate the interactions between the components of a biologi-
cal systems, and tell us how these interactions give rise to the functions and behaviors of
that global system. This type of network inference differs from the so-called “reductionist
approach” that focuses on the characteristics of the building blocks of a system rather than
on the global behavior.

The reverse engineering of transcriptional regulatory networks from expression data alone
appears quite difficult, because of the combinatorial nature of the problem and of the
poor information of the data [135]. Moreover, by only focusing on transcript data, the
inferred network should not be considered as a biochemical regulatory network, but as a
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"The reductionist approach has successfully identified most of the components and many
of the interactions but, unfortunately, offers no convincing concepts or methods to

understand how system properties emerge...the pluralism of causes and effects in biological
networks is better addressed by observing, through quantitative measures, multiple

components simultaneously and by rigorous data integration with mathematical models"
Sauer et al. [117].

Figure 1.4: “The general strategy for reverse engineering transcription control systems:
1) The experimenter perturbs cells with various treatments to elicit distinct responses. 2)
After each perturbation, the experimenter measures the expression (concentration) of many
or all RNA transcripts in the cells 3) A learning algorithm calculates the parameters of a
model that describes the transcription control system underlying the observed responses.
The resulting model may then be used in the analysis and prediction of the control system
function”. Figure and caption from Gardner and Faith [51].

gene-to-gene network, where many physical connections between macromolecules might be
hidden by short-cuts. In spite of these obvious limitations, the bioinformatics community
has made important progresses in this domain over the last few years, by using machine
learning techniques of network inference [51] (see Figure 1.4).

By putting a cell in different situations, we can observe the different states correspond-
ing to each situation and infer the regulatory interactions present in the cell. Recently, the
reconstruction of regulatory networks from expression profiles of human B cells has been
proposed [4]. Validation of the network against available data led to the identification of
a particular gene as a major hub, which controls a network containing known interactions
as well as new ones which were biochemically validated.

Finally, the study of transcriptional regulatory network can lead to the discovery of
new drugs that can

1. block an interaction, such as an interaction leading the cell from a normal state to a
tumor state,
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2. activate an interaction, such as a transition from the state “tumor cell” to the state
“dead cell”.

1.5 Information-Theoretic Methods

Both fields expanded above, variable selection and network inference, are subdomains
of the data-mining field. However, few methods in these fields can deal with i) non-linearity
and ii) large number of variables, that are present in microarray data. We therefore need
to resort to more specific techniques. Information-theoretic methods offer an effective
solution to these two issues[104, 49, 46, 83]. These methods use mutual information,
which is an information-theoretic measure of dependency. First, mutual information is a
model-independent measure of information that has been used in data analysis for defining
concepts like variable relevance [130, 8, 75], redundancy [84, 141, 148] and interaction
[84, 67, 75]. It is widely used to redefine theoretic machine learning concepts [82]. Secondly,
mutual information captures non-linear dependencies, an interesting feature in biology
where many biological interactions are believed to be non-linear [15, 59]. Finally, mutual
information is rather fast to compute. Therefore, it can be computed a high number of
times in a reasonable amount of time, as required by datasets having a large number of
variables.

1.6 Problem and claim

Let us briefly summarize our generic goal and see how it is possible to solve it. In view
of analyzing microarray data, our objective is to build methods able to return intelligible
models, i.e., that biomedical scientists can directly or easily understand and manipulate.
Those methods should deal with thousands of variables, tens of noisy samples, non-linear
dependencies and little a priori knowledge.

• Data-mining algorithms help us to deal with little or even no a priori knowledge.

• Variable selection and network inference are data-mining techniques adequate for
producing intelligible outputs (cell signature and transcriptional regulatory network).

• Mutual information is an evaluation function adapted to large datasets and non-linear
relationships.

But, at this point, one problem remains: how can we deal with the limited amount of noisy
samples? Mutual information is difficult to estimate accurately with too few samples[100,
97]. In order to solve this issue, state-of-the-art techniques rely on the estimation of
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mutual information on two or three random variables[44, 104, 49, 19]. An instance of such
an approach is the ranking approach that ranks variables by their mutual information with
the output. Low-variate mutual information does not require a large amount of samples
in order to be estimated accurately. Hence, it is well-suited for dealing with microarray
data. However, relying on bivariate mutual information ignores informations coming from
interactions between the variables such as redundancies and complementarities.

Our thesis formalizes these notions of redundancy and complementarity. We then offer
a new approximation of the mutual information between a subset of variables and a target
variable. More precisely, we will use approximations of the mutual information between
a subset of variables and a target variable based on combinations of mutual informations
between sub-subsets of variables and the target. This will give rise to two new tools that
deal explicitely with variable interactions:

1. an original variable selection method, called MASSIVE (Matrix of Average Sub-
Subset Information for Variable Elimination)[90], based on a new information-theoretic
selection criterion (kASSI, the k-Average Sub-Subset Information) [86, 87].

2. an original network inference method, called MRNET (Minimum Redundancy NET-
work), inspired by a recently proposed variable selection technique [88]. Research on
MRNET has led to an open source R/Bioconductor package called MINET (Mutual
Information NETworks inference) [89] that will also be described in this work.

Numerous experimental results show the competitiveness of these new approaches with
state-of-the-art information-theoretic methods [90, 88, 99].

1.7 Outline

The next chapter explains the preliminary theories required for the thesis such as the
statistical foundations of machine learning or the basics of information theory. The state-of-
the-art in information-theoretic variable selection and network inference is discussed in the
third chapter. The fourth chapter contains variable selection contributions (MASSIVE),
network inference contributions (MRNET), as well as experimental contributions showing
the effectiveness of these new approaches. Finally, the fifth chapter presents the conclusions
of the thesis.

1.8 Contributions

1.8.1 Theoretical contributions

In this thesis, we develop an information-theoretic framework (Chapter 3) of
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• variable selection theory (Section 3.1),

• causality concepts (Section 3.6.1).

We also present (Chapter 3) a state-of-the-art of

• information-theoretic variable selection algorithms (Section 3.3).

• information-theoretic network inference algorithms (Section 3.5).

Original contributions are introduced in chapter 4:

1. a new criterion for variable selection, named the kASSI (Section 4.1).

2. the exploitation of two particular cases of the kASSI in variable selection algorithms,
i.e. (k = d− 1) PREEST and (k = 2) DISR (Section 4.2 and 4.3).

3. the MASSIVE algorithm which is an extension of DISR (Section 4.4).

4. MRNET, a new method of network inference based on variable selection (Section
4.6).

5. the open-source R/Bioconductor package MINET (Section 4.7).

1.8.2 Experimental contributions

The experimental contributions are exposed in chapter 4. These include

• a comparison of the forward selection with a variant (PREEST) on 7 datasets coming
from the UCI Machine Learning datasets repository (Section 4.2.1).

• a comparison of five state-of-the-art information-theoretic variable selection methods
on 11 public microarray datasets for cancer classification (Section 4.5.1).

• a comparison of MASSIVE and MRMR, two variable selection methods, on 15 syn-
tactic datasets (Section 4.5.1).

• an experimental comparison of three state-of-the-art of information-theoretic network
inference methods on 30 syntactic datasets (Section 4.8).

• an experimental comparison of entropy estimators in a network inference task using
12 synthetic datasets (Section 4.8).

• the application of network inference techniques on biological datasets (Section 4.8).
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1.8.3 Software Contributions

1. The C++ code of MASSIVE, a new variable selection algorithm freely distributed
on internet.

2. The open-source R/Bioconductor package MINET, conceived to infer transcriptional
regulatory networks from microarray data.

1.8.4 Publications in International Peer-Reviewed Journal

1. MINET: an R/Bioconductor Package for Network Inference using Mutual Informa-
tion
Patrick E. Meyer, Frederic Lafitte and Gianluca Bontempi.
Accepted for publication
In BMC Bioinformatics, 2008

2. On the Impact of Entropy Estimation on Transcriptional Regulatory Network Infer-
ence Based on Mutual Information
Catharina Olsen, Patrick E. Meyer and Gianluca Bontempi.
Accepted for publication
In EURASIP Journal on Bioinformatics and Systems Biology, 2008

3. Information-Theoretic Feature Selection Using Variable Complementarity in Microar-
ray Data
Patrick E. Meyer, Colas Schretter and Gianluca Bontempi.
In IEEE Journal of Selected Topics in Signal Processing, Volume 2, Issue 3,
Special Issue on Genomic and Proteomic Signal Processing, June 2008.

4. Information-Theoretic Inference of Large Transcriptional Regulatory Networks
Patrick E. Meyer, Kevin Kontos, Frederic Lafitte and Gianluca Bontempi.
In EURASIP Journal on Bioinformatics and Systems Biology, Volume 2007, Issue 1,
Special Issue on Information-Theoretic Methods for Bioinformatics, June 2007.

1.8.5 Publications in Lecture Notes in Computer Science and in Books

1. A model-based relevance estimation approach for feature selection in microarray
datasets
Gianluca Bontempi and Patrick E. Meyer.
Artificial Neural Networks (ICANN 2008).
In Lecture Notes Computer Science, volume 5164, pp. 21-31, Springer, 2008.
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2. Biological Network Inference Using Redundancy Analysis
Patrick E. Meyer, Kevin Kontos and Gianluca Bontempi.
1st International Conference on Bioinformatics Research and Development (BIRD
07).
In Lecture Notes in Computer Science, volume 4414, pp. 16-27, Springer, 2007

3. On the Use of Variable Complementarity for Feature Selection in Cancer Classifica-
tion
Patrick E. Meyer and Gianluca Bontempi.
4th European Conference on Evolutionary Computation, Machine Learning and Data
Mining in Bioinformatics (EvoBIO 06).
In Lecture Notes in Computer Science, volume 3907, pp. 91-102, Springer, 2006

4. Combining Lazy Learning, Racing and Subsampling for Effective Feature Selection
Gianluca Bontempi, Mauro Birattari and Patrick E. Meyer.
7th International Conference on Adaptive and Natural Computing Algorithms (ICAN-
NGA 05).
Springer Computer Science, Springer, pp. 393-396, 2005.

5. Collective Retrieval by Autonomous Robots
Patrick E. Meyer.
2th Starting AI Researchers’ Symposium (STAIRS 04).
In Frontiers in Artificial Intelligence and Applications, volume 109, pp. 199-204, IOS
Press, 2004.

1.8.6 Workshops - Conferences - Technical Reports

1. Inferring mutual information networks using the minet package
Patrick E. Meyer, Frédéric Lafitte and Gianluca Bontempi.
In R/Bioconductor package - R news may 2008, volume 8.

2. On the Impact of Entropy Estimator in Transcriptional Regulatory Network Infer-
ence
Catharina Olsen, Patrick E. Meyer and Gianluca Bontempi.
In Proceedings of the Fifth International Workshop on Computational Systems Bi-
ology (WCSB 2008).

3. Speeding up Feature Selection by Using an Information Theoretic Bound
Patrick E. Meyer, Olivier Caelen and Gianluca Bontempi.
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In Proceedings of the 17th Belgian-Dutch Conference on Artificial Intelligence (BNAIC
05).

4. Information-Theoretic Filters for Feature Selection
Patrick E. Meyer.
Technical Report nr 548 of the Computer Science Department of the Université Libre
de Bruxelles, 2005.

5. Information-Theoretic Feature Selection Using Variable Complementarity.
Patrick E. Meyer, Colas Schretter and Gianluca Bontempi.
Technical Report nr 575 of the Computer Science Department of the Université Libre
de Bruxelles, 2007.

1.9 Notations

Throughout the thesis, random variables are written with capital letters (Y ) and their
realizations are in lower-case letters (y). Statistical estimations wear a hat (Ŷ ) or have an
index m (θm). p(Y ) denotes the probability distribution of the random variable Y (with
some abuse of notation). Matrices and vectors are also in capital letters (T ) and their
elements are in small letters with indices (tij).

1.9.1 Probability and information theory

• Y : unidimensional discrete random variable representing the output, or the target,
of a model

• Y: the domain of the random variable Y

• y: a realization of the random variable Y

• X: a multidimensional discrete random variable representing the inputs of the model

• X : the domain of the random variable X

• x : a realization of X (in the discrete set X )

• p(y): probability that the discrete random variable Y takes the value y, i.e., P (Y = y)

• p(Y ): probability mass distribution of the random variable Y

• Ỹ : discrete random variable also defined on the domain Y
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• p̃(y):P (Ỹ = y)

• p̃(Y ): probability mass distribution of the random variable Ỹ

• u(Y ): uniform probability mass distribution defined on the domain Y, i.e., P (U =
y) = 1

|Y| , y ∈ Y

• |X |: the number of elements of the set X

• p(y|x): the conditional probability that Y = y knowing that X = x

• p(Y |x): the conditional distribution function of the target Y knowing that X = x

• p(Y |X): the conditional distribution function of Y given X

• L∗(X): Bayes error on the input X

• KL(p; q): Kullback-Leibler divergence

• LL(p): negative log-likelihood or cross-entropy

• H(p) orH(X): entropy

• H(Y |X): conditional entropy

• I(X;Y ): mutual information

• I(X;Y |X): conditional mutual information

• R(X;Y ;Z): multiinformation

• C(X;Y ;Z): Interaction information

1.9.2 Model / Estimation

• Λ: a parametric class of models

• Θ: set of parameters

• θ: vector of parameters (θ ∈ Θ)

• Dm: the dataset, composed of m realizations (yr, xr), r ∈ {1, 2, ...,m} of the random
variables (Y,X)

• m: number of samples in the dataset
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• xr: with r ∈ {1, 2, ...,m}, denotes the rth realization of the variable X in the dataset
Dm

• Ŷ : statistical estimation of Y

• θm: estimation of the parameters θ from Dm

• θ−K : estimation of the parameters θ from Dm\K with K a subset of the dataset Dm

• p̂(y | θm, x): estimation of the conditional probability that Y = y, knowing that
X = x using parameters θm

• p̂(Y |θm, X): the estimated conditional probability distribution of Y given X

• ŷ = g(x, θm): prediction of the value of Y at input point x (typically ŷ = g(x, θm) =
arg maxy∈Y p̂(y | θm, x))

• EX [f ] or Ep(X)[f ]: expectation of f : X → R averaged over all values of X

• EDm [g]: expectation of g : X × Y → R averaged over all datasets of size m

• #(x): the number of times that the value X = x is observed in the dataset Dm

• Rm(θ): empirical risk function

• L(yr, g(xr, θ)): loss function

• arg maxθ: argument of the maximum

1.9.3 Variable Set Notation

• n: dimension of the input space X , i.e., X = (X1, X2, ..., Xn)

• A: set of indices denoting the variables in X, i.e., A = {1, 2, ..., n}

• Xj : jth component of the vector X ( j ∈ A)

• Xj : domain of Xj

• xj : a realization of the input variables Xj

• xrj : with j ∈ A and r ∈ {1, 2, ...,m} denotes the rth realization (in Dm) of the jth
input variables Xj

• Xi,j : subset of variables composed of Xi and Xj , i.e., Xi,j = (Xi, Xj)
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• X−i: subset of variables composed of all the variables in X except the variable Xi

• XS : subset of variables selected by a selection method

• XR: subset of remaining variables in a variable selection method

• XMi : subset of variables denoting a Markov blanket of a variable Xi

• X−(i,S): subset of variables composed of all the variables in X except the variable
Xi and those in XS (Xi /∈ XS)

• XS−i: subset of variables composed of all the variables in XS except the variable Xi

(Xi ∈ XS)

1.9.4 Network inference notation

• T : adjacency matrix of the true (reference) network (with elements tij)

• W : weighted adjacency matrix of a network having as elements wij

• θ: threshold (parameter) of a network inference algorithm

• T̂ : adjacency matrix of an inferred network, usually obtained by thresholding W ,

i.e., t̂ij(θ) =
{ 0 if wij < θ

1 otherwise

• CM: confusion matrix with elements cmij

• MIM: matrix of (paired) mutual information with elements mimij = I(Xi;Xj)

• tpr: true positive rate

• fpr: false positive rate

• pr: precision

• re: recall

1.9.5 Acronyms

• FCBF: Fast Correlation Based Filter, variable selection method.

• REL: Relevance criterion, variable evaluation function.

• RANK: Ranking algorithm, variable selection method.
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• CMIM: Conditional Mutual Information Minimization, variable selection method.

• MRMR: Minimum Redundancy - Maximum Relevance, variable selection method.

• kASSI: k-Average Sub-Subset Information, subset evaluation function.

• PREEST: Algorithm based on a pre-estimation of the mutual information.

• DISR: Double Input Symetrical Relevance, subset evaluation function.

• MASSIVE: Matrix of Average Sub-Subset Information for Variable Elimination, vari-
able selection method.

• RELNET: Relevance Network, network inference method.

• CLR: Context Likelihood of Relatedness, network inference method.

• ARACNE: Algorithm for the Reconstruction of Accurate Cellular NEtworks, network
inference method.

• MRNET: Minimum Redundancy Network, network inference method.

• MINET: Mutual Information Networks, a R/Bioconductor package for network in-
ference.
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Chapter 2

Preliminaries

This chapter is composed of three parts. The first one (Sections 2.1, 2.2 and 2.3) in-
troduces some information-theoretic measures required for this thesis. The second part
(Section 2.4) addresses the statistical foundations of pattern recognition. The third part
(Sections 2.5, 2.6 and 2.7) discusses various algorithms of machine learning, entropy estima-
tion and discretization methods. The notions of information theory and pattern recognition
are required in order to define formally variable selection and network inference. Machine
learning algorithms, entropy estimation methods and discretization methods are tools that
will be used in the experimental sessions of this work.

2.1 Elements of Information Theory

Claude E. Shannon [124], the father of information theory, introduced in 1948, a theory
of data transmission and signal compression. Later, notions like entropy, mutual informa-
tion or interaction information gained wide interest in areas such as statistics, physics or
economics [26].

This section defines the notions of Kullback-Leibler divergence, entropy and mutual
information for discrete variables. We will also show how these notions can be used to
define conditional mutual information, interaction information and multiinformation which
will be used, in chapter 3, in order to define relevance, redundancy and complementarity
of variables. Elementary concepts of probability theory needed for what follows are given
in Appendix B.1.

Let X and Y denote two discrete random variables having

• Finite alphabet X and Y,

• Joint probability mass distribution p(X,Y ),

• Marginal probability mass distributions p(X) and p(Y ),
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Let X̃ and Ỹ denote two discrete random variables defined respectively on X and Y,
with probability mass distributions p̃(X) and p̃(Y ) and joint probability mass distribution
p̃(X,Y ) defined on X × Y. Note that p(y) = P (Y = y) and p̃(y) = P (Ỹ = y).

2.1.1 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence [26] is a non-commutative measure of the differ-
ence between two discrete probability distributions.

Definition 2.1: The Kullback-Leibler divergence between p(Y ) and p̃(Y ) is

KL(p(Y ); p̃(Y )) =
∑
y∈Y

p(y) log
p(y)
p̃(y)

(2.1)

= EY

[
log

p(y)
p̃(y)

]
= EY [log p(y)− log p̃(y)] (2.2)

In the above definition, we use the convention (from [26]) that 0 log 0
0 = 0 and the conven-

tion (based on continuity arguments) that 0 log 0
p̃ = 0 and p log p

0 =∞.
The definition of the Kullback-Leibler divergence can be easily extended to a pair of

random variables since the latter can be considered as single random vector.

Definition 2.2: [26] The joint Kullback-Leibler divergence between two probability mass
functions p(X,Y ) and p̃(X,Y ) is

KL(p(X,Y ); p̃(X,Y )) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(x, y)
p̃(x, y)

(2.3)

Definition 2.3: [26] The conditional Kullback-Leibler divergence between p(Y |X) and
p̃(Y |X) is defined as

KL(p(Y |X); p̃(Y |X)) =
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log
p(y|x)
p̃(y|x)

(2.4)

This means that a conditional (discrete) Kullback-Leibler divergence can also be defined
as the expected value of the KL-divergence of the conditional probability mass functions,
averaged over the conditioning random variables.

Theorem 2.1: [Non negativity of Kullback-Leibler divergence] [26] Given two distribu-
tions p and p̃, it can be shown that

KL(p; p̃) ≥ 0 (2.5)
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with equality KL(p; p̃) = 0 iff p = p̃ (where p can denote p(Y ), p(X), p(X,Y ) or p(Y |X)
and equivalently for p̃).

The link between KL divergence, joint KL divergence and conditional KL divergence is
provided by a chain rule:

Theorem 2.2: [Chain rule for Kullback-Leibler divergence][26]

KL(p(X,Y ); p̃(X,Y )) = KL(p(Y ); p̃(Y )) + KL(p(X|Y ); p̃(X|Y )) (2.6)

2.1.2 Entropy

Let us decompose the KL divergence into two terms:

KL(p(Y ); p̃(Y )) =
∑
y∈Y

p(y) log p(y)−
∑
y∈Y

p(y) log p̃(y) (2.7)

The first term of the decomposition is the opposite of a particular information-theoretic
quantity called the entropy of Y .

Definition 2.4: [26] The entropy of a discrete random variable Y with probability mass
function p(Y ) is defined by :

H(Y ) = H(p(Y )) = −
∑
y∈Y

p(y) log p(y) = EY [log
1

p(y)
] (2.8)

The usual unit of the entropy is the bit. However, other units are sometimes chosen for
this measure. The unit depends on the base taken for the logarithm of Eq 2.8, base 2 for
bit, base 10 for ban. The deciban (one tenth of a ban) is also known as a useful measure
of belief since 10 decibans correspond to an odds ratio of 10:1; 20 decibans to 100:1 odds,
30 decibans to 1000:1, etc [69]. The natural logarithm (base e) is increasingly used for
computational reasons and in this case the unit is the nat.

Note that the value of the entropy depends on the distribution of p(Y ) and is maximum
for a uniform distribution u(Y ), [26] H(u(Y )) = log |Y|.

Note that by replacing p̃(Y ) by the uniform distribution u(Y ) in (2.7), we obtain

H(p(Y )) = log |Y| −KL(p(Y );u(Y )) (2.9)

This equation expresses the entropy of a random variable Y as the logarithm of the size
of the support set minus the KL divergence between the probability distribution of Y and
the uniform distribution on the same domain Y. The closer the probability distribution is
to a uniform distribution, the higher is the entropy. In other words, entropy measures the
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Figure 2.1: H(p) as a function of p (Bernoulli distribution)

“randomness” of Y . Figure 2.1 shows the graph of H(p) as a function of the probability
distribution p of a binary variable (Bernoulli distribution). The entropy is a concave
function that equals 0 when p = 1 or p = 0, i.e. when the variable is deterministic. The
entropy is maximal when p = 1

2 , which corresponds to the largest level of uncertainty [26].
Other interpretations of the entropy are available in Appendix B.2.

2.1.3 Multivariate entropy and conditional entropy

Let us consider a pair of discrete random variables (Y,X) with a joint distribution
p(Y,X),

Definition 2.5: [26] The joint entropy H(Y,X) is,

H(Y,X) = −
∑
y∈Y

∑
x∈X

p(y, x) log p(y, x) (2.10)

Note that the maximal joint entropy is reached with independent variables (i.e., p(Y,X) =
p(Y )p(X)). In this case, the entropy of the joint probability distribution is equal to the
sum of their respective entropies. An upper bound on H(Y,X) is provided by the following
theorem,

Theorem 2.3: [Independence bound on entropy][26]

H(Y,X) ≤ H(Y ) +H(X) (2.11)

with equality iff X and Y are independent.

Given a conditional probability distribution p(Y |X), a conditional entropy can be defined,
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Definition 2.6: [26] The conditional entropy of Y given X is,

H(Y |X) = −
∑
y∈Y

∑
x∈X

p(x, y) log p(y|x) (2.12)

This quantity measures the uncertainty of a variable once another one is known.
As for the KL divergence, the relation between entropy, conditional entropy and joint

entropy is characterized by a chain rule1.

Theorem 2.4: [Chain rule for entropy][26]
Let X1, X2, ..., Xn be drawn according to p(X1, X2, ..., Xn). Then,

H(X1, X2, ..., Xn) =
n∑
i=1

H(Xi|Xi−1, ..., X1) (2.13)

From the independence bound (Theorem 2.3) and the chain rule for entropy (2.4), it follows

H(Y,X) = H(X) +H(Y |X) ≤ H(X) +H(Y ) (2.14)

This is made explicit by the following theorem which shows that “conditioning reduces
entropy”.

Theorem 2.5: [Conditioning reduces entropy][26]

H(Y |X) ≤ H(Y ) (2.15)

with equality iff X and Y are independent.

In a prediction perspective where Y is a target variable and X is a predictor, this means
that adding variables can only decrease the uncertainty on the target Y .

2.1.4 Mutual Information

The reduction of entropy due to conditioning can be quantified by a symmetric measure
called mutual information [26]:

H(Y )−H(Y |X) = I(Y ;X) = I(X;Y ) = H(X)−H(X|Y ) (2.16)

1A word of caution about the notation is worthy here. In information-theoretic notations, the symbols ’;’
and ’|’ are used to separate random vectors whereas the symbol ’,’ is used to separate random components
of a random vector.
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Definition 2.7: [26] The mutual information between X and Y is,

I(Y ;X) =
∑
x∈X

∑
y∈Y

p(x, y) log(
p(x, y)
p(x)p(y)

) (2.17)

Mutual information can be also expressed as the Kullback-Leibler divergence between the
joint distribution p(X,Y ) and the product distribution p(X)p(Y ) [26].

I(X;Y ) = KL(p(X,Y ); p(X)p(Y )) (2.18)

or between the marginal distribution p(X) and a conditional distribution p(X|Y )

I(Y ;X) = KL(p(X|Y ); p(X)) = KL(p(Y |X); p(Y )) (2.19)

As a consequence, when two variables are independent, their mutual information is null.
In other words, the higher the dependency between two variables, the higher the value of
the mutual information. When the two variables are identical, this measure reaches its
maximum and is equal to the entropy of the variable, i.e., I(X;X) = H(X).

It follows from the non-negativity of the KL-divergence that mutual information, in a
discrete case, is also non-negative.

Theorem 2.6: [26] Non-negativity of mutual information

I(Y ;X) ≥ 0 (2.20)

with equality if X and Y are independent.

The Kullback-Leibler divergence and the mutual information are often used as measures
of dissimilarity and similarity, respectively, but do not fulfill the triangle inequality, hence
they are not distances in the mathematical sense [26].

2.2 Information Measures over Multiple Sets of Random Vari-
ables

So far, we have considered measures having at most two random vectors as arguments.
In this section, measures having at least two random vectors are introduced. These
measures play a major role in this thesis since they will be used in the chapter 3 in order
to define notions like relevance, redundancy and complementarity of variables.



25

2.2.1 Conditional Mutual Information

Definition 2.8: [26] The conditional mutual information of the random variable X and
Y given Z is,

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z)
= H(X|Z)−H(X|Z, Y ) = I(Y ;X|Z)

(2.21)

This quantity measures the reduction of uncertainty on Y (or X) due to the other variable
X (or Y ), when Z is given.

Definition 2.9: [95]Given random variables X, Y and Z, X is conditionally independent
of Y given Z, if and only if the probability distribution of X is independent of the value of
Y given Z that is

p(X|Y,Z) = p(X|Z) (2.22)

Conditional mutual information can be shown to be non-negative since conditioning reduces
entropy.

Theorem 2.7: [Non-negativity of conditional mutual information][26]

I(X;Y |Z) ≥ 0 (2.23)

with equality iff X and Y are conditionally independent given Z.

In terms of KL divergence, the conditional mutual information can be written as [140]:

I(X;Y |Z) = KL(p(X,Y, Z); p(X|Z)p(Y |Z)p(Z))
= KL(p(X|Y,Z)p(Y |Z)p(Z); p(X|Z)p(Y |Z)p(Z))

= KL(p(X|Y, Z); p(X|Z))

(2.24)

As well as for entropy, a chain rule formulation holds.

Theorem 2.8: [Chain rule for information][26] Let X1, X2, ..., Xn be drawn according to
p(X1, X2, ..., Xn). Then,

I(X1, X2, ..., Xn;Y ) =
n∑
i=1

I(Xi;Y |Xi−1, ..., X1) (2.25)

This chain rule leads to the following inequality.

Theorem 2.9: [Data processing inequality][26] if G and Q are conditionally independent
given D, then I(G;Q) ≤ min(I(G;D), I(D;Q)).
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Figure 2.2: Data processing inequality representation

Proof: By the chain rule

I(G;D,Q) = I(G;Q) + I(G;D|Q) = I(G;D) + I(G;Q|D) (2.26)

Since G and Q are conditionally independent given D, we have I(G;Q|D) = 0. Since
I(G;D|Q) ≥ 0, we have

I(G;Q) ≤ I(G;D) (2.27)

The same reasoning applied to I(Q;D,G) yields

I(G;Q) ≤ I(Q;D) (2.28)

hence I(G;Q) ≤ min(I(G;D), I(D;Q)) �

This theorem is called the data processing inequality because if D denotes the data and
Q is a function of the data (alone), then the data generating process G is conditionally
independent of Q given D (see Figure 2.2). This means that no (automatic) clever manip-
ulation Q of the data D can increase the information about the generating process G (on
average).

Another important property of conditional mutual information is that it is context
dependent, i.e. , it depends on the conditioning variable. We present here two illustrative
examples where the context (i.e. the conditioning) variable influences the information
existing between two variables.

Example 2.1: Let X,Y, Z and W be four discrete random variables and Y be a determin-
istic function of (X,Z) and W be a deterministic function of X.

Since Y = f(X,Z), we have I(X;Y |Z) > 0, I(X;Y ) > 0, I(Z;Y ) > 0 and as W = X,
then I(X;Y |Z,W ) = 0 (see Fig. 2.3). Therefore, conditioning can reduce the information.

At the same time, it is possible to increase the information of a variable by appropriate
conditioning, as shown in the following example.

Example 2.2: Let Y and X be independent random variables and Z be a deterministic
function of Y and X (see Figure 2.4).
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Figure 2.3: Graphical representation of the relationships between the variables of example
2.1
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Figure 2.4: Graphical representation of the relationships between the variables of Example
2.2

As X and Y are independent, we have I(X;Y ) = 0 and since Z = f(X,Y ), we obtain
I(X;Y |Z) > 0. As a result, the conditional mutual information is higher than the mutual
information, i.e. I(X;Y |Z) > I(X;Y ), which means that conditioning can also increase
information.

2.2.2 Interaction Information

Definition 2.10: The interaction information among n sets of random variables, X1, X2, ..., Xn

is defined as:

C(X1;X2; ...;Xn) =
n∑
k=1

∑
S⊆{1,2...,n}:|S|=k

(−1)k+1H(XS) (2.29)

The interaction information comes from the seminal paper [84] and from [27].
For n = 2, we have

C(X;Y ) = H(X) +H(Y )−H(X,Y ) = I(X;Y )
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X1 X2 Y = X1 ⊕X2

1 1 0
1 0 1
0 1 1
0 0 0

Table 2.1: Truth table of the XOR problem

while for n = 3:

C(Y ;X;Z) = H(Y )+H(X)+H(Z)−H(Y,X)−H(Y,Z)−H(X,Z)+H(Y,X,Z) (2.30)

C(Y ;X;Z) = I(X;Y ) + I(Z;Y )− I(X,Z;Y ) (2.31)

Note that the interaction information is order independent.

C(Y ;X;Z) = C(X;Y ;Z) = C(X;Z;Y )
= C(Y ;Z;X) = C(Z;X;Y ) = C(Z;Y ;X)

= I(X;Y )− I(X;Y |Z) = I(X;Z)− I(X;Z|Y ) = I(Y ;Z)− I(Y ;Z|X)

(2.32)

When the measure of interaction is strictly positive, it indicates that the n sets of
variables share a common information. Interaction can also be negative as in Example 2.2.
In this case, it means that the interacting variables are more informative together than
independently. We shall go back to negative interaction in chapter 3 in order to define
variable complementarity. Another known example of negative interaction is given by the
XOR problem.

Example 2.3: [XOR problem][74] Let us consider three binary random variables X1, X2, Y

where Y is a deterministic function of X1 and X2. More precisely, the variable Y is
obtained as an exclusive disjunction of X1 and X2, see Table 2.1.

In this example, X1 and X2 have a null mutual information with Y , separately, i.e.,
I(X1;Y ) = 0, I(X2;Y ) = 0, whereas the couple (X1, X2) has maximal mutual information
with Y , i.e. I(X1, X2;Y ) = H(Y ) > 0. Hence,

I(X1;Y )︸ ︷︷ ︸
0

+ I(X2;Y )︸ ︷︷ ︸
0

−I(X1, X2;Y ) = C(X1;X2;Y ) < 0

The link between mutual information and interaction information is provided by the
following theorem.
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Theorem 2.10: [mutual and interaction information relationship][75] Mutual information
between Y and n random variables Xi, i ∈ A = {1, 2, ..., n}, can be written as,

I(X;Y ) =
∑
i∈A

I(Xi;Y )−
∑

i,(j>i)∈A

C(Xi;Xj ;Y )+
∑

i,(j>i),(k>j)∈A

...+(−1)n+1C(X1;X2; ...;Xn;Y )

(2.33)

Mutual information can be seen as a series where the higher order terms are corrective
terms that represent the effect of the simultaneous interaction of several variables.

2.2.3 Multiinformation

Multiinformation, also called total correlation [67], will be used in Chapter 3, as a
measure of redundancy between variables. It comes from the seminal paper [84] but may
also be found in [129].

Definition 2.11: Multiinformation among n sets of random variables, X1, X2, ..., Xn is
defined as:

R(X1;X2; ...;Xn) =
n∑
i=1

H(Xi)−H(X1, X2, ..., Xn) (2.34)

This measure is symmetric, non-negative and non-decreasing with the number of variables.
Multiinformation can also be written as the KL divergence between the joint distribu-

tion of n input variables and their product distribution,

R(X;Y ) = KL(p(X1, X2, ..., Xn); p(X1), p(X2), ..., p(Xn))

= E
[
log p(X1,X2,...,Xn)

p(X1)p(X2)...p(Xn)

] (2.35)

Hence, for n = 2, multiinformation boils down to the mutual information,

R(X;Y ) = H(X) +H(Y )−H(X,Y ) = I(X;Y ) (2.36)

As shown by the following theorem, multiinformation can be decomposed in a sum of
interaction information.

Theorem 2.11: [multiinformation decomposition][27]

R(X1;X2; ...;Xn) =
n∑

i,(j>i)∈A

C(Xi;Xj)−
n∑

i,(j>i)(k>j)∈A

C(Xi;Xj ;Xk)+...+(−1)nC(X1;X2; ...;Xn)

(2.37)
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2.3 Normalized Measure of Information

Mutual information measures (usually in bits) the reduction of uncertainty on a variable
Y due to the variable X (or the other way round since it is symmetric). However, it is
sometimes useful to know which portion of the uncertainty of Y is “explained” by X. For
example, let the unknown entropy of the probability distribution of the random variable Y
be 6 bits. Sometimes it can be sufficient to know that X reduces the uncertainty of Y by
50% instead of knowing that the mutual information between X and Y amounts to 3 bits.
As a result, normalized mutual information measures have been proposed in the literature.

Definition 2.12: [116] The asymmetric uncertainty coefficients are given by:

AUY (X;Y ) =
I(X;Y )
H(Y )

(2.38)

AUX(X;Y ) =
I(X;Y )
H(X)

(2.39)

In a predictive setting where X is an input variable and Y is the output one, the
coefficient AUY , comprised between 0 and 1, indicates the amount of uncertainty of Y
that is “explained” by X. AUX can be interpreted as the information of the input variable
X compared to its entropy. In other words, the lower the entropy H(X) of the input (with
the same amount of information) the higher the value returned by the coefficient.

There also exists symmetric normalized measures of mutual information: the symmetric
uncertainty and the symmetric relevance,

Definition 2.13: [116] The Symmetric Uncertainty

SU(X;Y ) =
2I(X;Y )

H(X) +H(Y )
(2.40)

[147] The Symmetric Relevance

SR(X;Y ) =
I(X;Y )
H(X,Y )

(2.41)

Conditional mutual information can be normalized in the same way. However, in the
asymmetric case, normalization can be made w.r.t. H(Y ) or H(Y |Z).

Definition 2.14: Conditional asymmetric uncertainty coefficients

CAUY (X;Y |Z) =
I(X;Y |Z)
H(Y )

(2.42)
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CAUY |Z(X;Y |Z) =
I(X;Y |Z)
H(Y |Z)

(2.43)

Both coefficients take values between 0 and 1. CAUY yields the amount of Y explained
by X|Z and CAUY |Z measures the reduction of uncertainty of Y |Z given by variable X.

We will see in the next chapter how these normalized measures may be used by variable
selection algorithms in order to improve the selection.

2.4 Introduction to Pattern Recognition

Let us consider a prediction problem where we want to study the relationship between
a set of inputs X and an output Y . A model is adequate if it returns “good” predictions for
the output Y on new input data. “The capability of a model to realize good predictions on
independent test data is called the generalization performance” [60]. Actually, an infinity
of models can be constructed from some data points though only few of them will benefit
from good generalization performances.

In the following sections, we will sketch the basics of supervised learning in a classifica-
tion task. The presentation relies on some elementary notions of estimation theory which
are given in Appendix B.1.

2.4.1 Supervised Learning

Let Y ∈ Y denote a discrete valued random output variable and let X ∈ X denote a
discrete valued random vector of inputs. Let p(Y |X) be the target probability distribution
which maps the input values x onto an output value y. The aim of pattern recognition is
to create a classifier g(x) : X → Y which reliably guesses y once given x. An error occurs
at input point x if g(x) 6= y.

Definition 2.15: [35]The Bayes error L∗(X) is defined as,

L∗(X) = P (g∗(X) 6= Y ) (2.44)

It can be shown that the optimal classifier, w.r.t. Bayes error, is given by the Bayes decision
function.

Definition 2.16: [35]The Bayes decision function g∗(x) is defined as

g∗(x) = arg max
y∈Y

p(y|x) (2.45)
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In a supervised learning problem, the target distribution p(Y |X) and the input distribution
p(X) are fixed but unknown probability distributions. However, a dataset Dm made of
m independent and identically distributed (i.i.d.) samples (yr, xr), r ∈ {1, 2, ...,m} drawn
according to the joint distribution p(Y,X) = p(Y |X)p(X) is supposed to be available.

A learning procedure is conventionally made of two steps: parametric identification
and structural identification.

2.4.1.1 Parametric identification

In a parametric approach, one assumes that the conditional probability distribution
is of a known form (i.e., it belongs to the class of model Λ) but has an unknown vector
of parameters θ, i.e., p(Y |θ,X) [139]. Hence, the parametric identification problem con-
sists in identifying the probability distribution p̂(Y | θm, X) or the function g(x, θm) =
arg maxy∈Y p̂(y | θm, x) which “best” explains the data (with θm the estimated parame-
ters). The function g(x, θm) or the associated probability distribution p̂(Y |θm, X) is called
a classifier or a model.

Once the input variables X and the class of model Λ are fixed, a strategy to build a
model g(x, θm) that fits the data Dm, consists in minimizing an empirical risk function
Rm(θ) [60],

θm = θ(Dm) = arg min
θ∈Θ

Rm(θ) (2.46)

where Θ is the parameter set and the empirical risk is usually of the form,

Rm(θ) =
1
m

m∑
r=1

L(yr, g(xr, θ)) (2.47)

where L(y, g(x, θ)) is a loss function between the target value y and the model at an input
point x. This can be seen as a non-linear optimization problem in a multidimensional
space.

A convenient loss function in a classification problem is the 0-1 loss [39]:

L(yr, g(xr, θ)) =

{
0 if yr = g(xr, θ)
1 if yr 6= g(xr, θ)

(2.48)

Another empirical risk function is given by the (empirical) negative log-likelihood function
LLm(θ) (also called cross-entropy)

LLm(θ) = LLm(p̂) = −
m∑
r=1

log(p̂(yr|θ, xr)) (2.49)
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The Maximum Likelihood Estimators (MLE) are the values of the parameters of a
model that maximize the probability of obtaining a dataset. If the samples in a dataset
Dm are drawn independently and identically distributed (i.i.d.) from the distribution
p(X,Y ), then the probability p(Dm) of observing the dataset Dm is given by,

p(Dm) =
m∏
r=1

p(yr, xr) =
m∏
r=1

p(yr|xr)p(xr) (2.50)

Hence,

arg max
θ∈Θ

p̂(Dm|θ) = arg max
θ∈Θ

m∏
r=1

p̂(yr|θ, xr)p(xr) = arg max
θ∈Θ

m∏
r=1

p̂(yr|θ, xr) = θMLE (2.51)

The values of the parameters θ that minimizes the (empirical) negative log-likelihood
LLm(p̂) are precisely the maximum likelihood estimators (MLE), since

arg min
θ∈Θ
−

m∑
r=1

log p̂(yr|θ, xr) = arg max
θ∈Θ

m∏
r=1

p̂(yr|θ, xr) (2.52)

The minimum of the negative log-likelihood LL(p̂) also corresponds to the minimum of the
empirical Kullback-Leibler divergence KL(p; p̂) [17]. Indeed, the Kullback-Leibler diver-
gence between p(Y |X) and p̂(Y |θ,X) is given by (2.4)

KL(p; p̂) = EX,Y

[
log

p(y|x)
p̂(y|θ, x)

]
(2.53)

This can be decomposed into two terms (2.7) [115],

KL(p; p̂) = EX,Y [log p(y|x)]− EX,Y [log p̂(y|θ, x)] (2.54)

where the first term is the opposite of the conditional entropy,

H(Y |X) = EX,Y

[
log

1
p(y|x)

]
= H(p) (2.55)

and the second term of (2.54) is LL(p̂), the negative log-likelihood of p̂. (2.54) can be
written as

KL(p; p̂) = LL(p̂)−H(p) (2.56)

where the entropy term is independent from the model p̂ and, as a result, the argument of
the minimum of LL(p̂) corresponds to the argument of the minimum of KL(p; p̂).
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2.4.1.2 Structural identification

The second step of a machine learning procedure aims to identify the best family of
models able to represent the stochastic dependency between inputs and output.

A typical problem of the parametric identification is that it does not take into account
the sampling variability. In other words, a different dataset Dm would give a different
estimate θm of the parameters [139].

In the “non-parametric” and/or “semi-parametric” approaches that are adopted in this
work, the objective is to minimize EDm [LLm(p̂)] rather than LLm(p̂) in order to take into
account sampling variability.

By choosing a family of models, assumptions are made on the unknown distribution
of the target (e.g. neural network model or polynomial model). The more restrictive the
assumptions are, the smaller the class Λ of models is. To reduce the class of models one
can limit the number of parameters (for example, number of hidden neurons or linear
model instead of a second order polynomial). One can also reduce the number of potential
inputs X in order to reduce the number of parameters. Indeed, in a linear model there
is one parameter per input variable whereas most non-linear models use more (than one)
parameters per input variables (for example, neural networks). As a consequence, the
smaller the number of inputs, the smaller Λ is.

One can think that the best class of models is the largest one; however, this is not
the case because the empirical negative log-likelihood estimate LLm(p̂) has a tendency
to underestimate EDm [LLm(p̂)] for models with a large number of parameters. In other
words, the performances of a model p̂ are over-optimistic when using LLm(p̂) with a high
number of parameters.

Indeed, the expected value of the negative log-likelihood, over the ensemble of the
training sets with m samples, can be decomposed as in (2.56) (see also [57]),

EDm [LLm(p̂)] = EDm [KLm(p; p̂)] +H(p) (2.57)

where (2.54),

EDm [KLm(p; p̂)] = EDm

[
EX,Y [log p(y|x)]− EX,Y [log p̂(y|θm, x)]

]
(2.58)

Adding and subtracting EX,Y
[
logEDm [p̂(y|θm, x)]

]
we obtain

= EDm

[
EX,Y [log p(y|x)]

]
− EDm

[
EX,Y [log p̂(y|θm, x)]

]
−EX,Y

[
logEDm [p̂(y|θm, x)]

]
+ EX,Y

[
logEDm [p̂(y|θm, x)]

] (2.59)
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and reorganizing the terms,

= EX,Y

[
log p(y|x)− logEDm [p̂(y|θm, x)]

]
+EX,Y

[
logEDm [p̂(y|θm, x)]− EDm [log p̂(y|θm, x)]

] (2.60)

⇒ EDm [KLm(p; p̂)] = KL(p;EDm [p̂]) + EDm,X,Y

[
log

EDm [p̂(y|θm, x)]
p̂(y|θm, x)

]
(2.61)

From (2.57) and (2.61), we have

⇒
EDm [LLm(p̂)] =

noise︷ ︸︸ ︷
H(p) +

bias︷ ︸︸ ︷
KL(p;EDm [p̂])

+EDm,X,Y

[
log

EDm [p̂(y|θm, x)]
p̂(y|θm, x)

]
︸ ︷︷ ︸

variance

(2.62)

This formulation is known as the log-loss bias-variance trade-off [142]. The terms
are named bias and variance following the well-known squared error loss decomposition
[60], where the bias term KL(p;EDm [p̂]) measures how far (using the Kullback-Leibler
divergence) the average of the estimates is from the parameters being estimated, and where
the variance term EDm,X,Y

[
log EDm [p̂(y|θm,x)]

p̂(y|θm,x)

]
measures an average distance between the

estimates and the expected value of the estimates. The term H(p) represents the intrinsic
noise of the target distribution. Another decomposition of the bias-variance trade-off is
available in Appendix B.3.

Qualitatively, the higher the number of parameters of a model, the easier it becomes
to fit the training set. Hence, with enough parameters, it becomes possible to fit the noise
in the dataset (overfitting). On the one hand, decreasing the number of parameters of a
model tends to increase its bias. On the other hand, the variance of the prediction increases
with the number of parameters (see figure 2.5). This problem is illustrated by two extreme
modelling situations, known as underfitting and overfitting (see figure 2.6).

Consider a classification problem where the optimal decision function is represented by
the non-linear dotted line in figure 2.6:

• Underfitting (Figure 2.6 (a)) happens with a too “simple” linear model having many
errors on the data points.

• Overfitting (Figure 2.6 (b)) happens with a too “complex” model which has no error
on the training set but that generalizes poorly.

Hence, a model with either a large bias or variance will typically generalize poorly.
Another way of presenting the results of a classifier is given by the confusion matrix

CM. The confusion matrix of a model g is the |Y| × |Y| matrix whose elements cmij are
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Bias Variance

Number of parameters

Figure 2.5: Bias-variance dilemma

(a) (b)
X1

X2

X1

X2

Figure 2.6: The output Y can take two values: square or bullet, the continuous line is
the model, the dashed line is the target function. In (a) a linear model that underfits the
target function. In (b) a complex non-linear model that overfits the target function (fits
the noise).
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Model\Truth 1 0
1 True Positive (tp) False Positive (fp)
0 False Negative (fn) True Negative (tn)

Table 2.2: Confusion matrix CM for a binary classification problem

Learning curve on the training set

Learning curve on a test set

Number of parameters

Performance
Measure

Figure 2.7: Learning curves on training set and test set

the number of elements of category yi ∈ Y that have been put in the category yj ∈ Y by
g (see Tab. 2.2). The sum of non-diagonal terms of the confusion matrix CM divided by
m is equal to the empirical risk of the 0-1 loss.

As for the negative log-likelihood, the empirical risk using a 0-1 loss has been shown
to be a biased estimate of the expected value [39]. Hence, the use of the empirical log-
likelihood or empirical risk to avoid overfitting is not recommended.

Several analytical criteria have been proposed to estimate the risk function. However,
these estimations are often based on strong assumptions (e.g. large sample datasets [115]).

Validation strategies are widely used because of less restrictive assumptions. The sim-
plest form of validation consists in splitting the dataset into two parts: the training set
and the validation set.

In practice, it is possible to increase the performances of a learning algorithm on the
learning set just by increasing the number of parameters. However, the performances on
an independent test set start decreasing when variance becomes too large compared to the
bias, see Figure 2.7 [25].

In the validation strategy, the training set is used to adjust the parameters of several
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models (parametric identification), then the validation set is used to choose the model
with the best generalization performances (structural identification). The most popular
method is the K-fold cross-validation. The principle is the following: the dataset is splitted
into K parts. First, the test set is the Kth part of the dataset and the training set is
made of all the other (K − 1) parts. The parameters are identified with the training set
(θ−K). That operation is repeated K times, the test set being each time another of the
K different parts. The cross-validation estimator of the error is the combination of the
various validation errors:

Rcvm(θ) =
1
m

m∑
r=1

L(yr, g(θ−K(r), xr)) (2.63)

where K(r) denotes the part of the dataset containing sample r.
The particular case K = m is called leave-one-out cross-validation (loo) (see [60]). The

validation set is then made of one sample and the training set, of all the otherm−1 samples.
The loo cross-validation estimator of the 0-1 loss, Rloom , is known to be an unbiased estimator
of the 0-1 loss, R. However, the loo cross-validation procedure can be computationally
expensive for non-linear models [60]. The use of cross-validation criteria allows the selection
of the structure expected to generalize the best.

In practice, we consider a nested sequence of classes of hypotheses Λ1 ⊂ Λ2 ⊂ ... ⊂
Λs ⊂ ... and the objective of the structural identification is to identify the class Λs leading
to the best performances.

scv = arg min
s
Rminm (2.64)

with
Rminm = min

θ
Rcvm(θ) (2.65)

After completing the structural identification, the parametrical identification is per-
formed on the complete dataset.

2.5 Machine Learning Algorithms

We briefly review here the principles of three popular classifiers, namely the naive
Bayes, the k-nearest-neighbour and the support vector machine. Additional details about
these algorithms can be found in [62, 25, 60, 92, 139].
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2.5.1 The Naive Bayes Classifier

This algorithm is a simple way to implement the classifier g(x) = arg maxy∈Y p̂(y|x),
when x is multivariate.

From the Bayes theorem, we have

g(x) = arg max
y∈Y

p̂(x|y)p̂(y)
p̂(x)

(2.66)

Since the denominator does not depend on y, it follows that

g(x) = arg max
y∈Y

p̂(x|y)p̂(y) (2.67)

The naive Bayes classifier assumes conditional independence in order to reduce the number
of parameters.

If the n input variables X1, X2, ..., Xn are conditionally independent given the output
Y , (2.67) becomes

g(x) = arg max
y∈Y

p̂(y)
n∏
i=1

p̂(xi|y) (2.68)

The probability distribution estimated by the naive Bayes approach is given by [93].

p̂(y|x1, x2, ..., xn) =
p̂(y)

∏n
i=1 p̂(xi|y)∑

y∈Y p̂(y)
∏n
i=1 p̂(xi|y)

(2.69)

The independence assumption is expected to increase the bias of the classifier at the
cost of a reduced variance. In practice, the naive Bayes model is surprisingly accurate in
front of few samples [40].

2.5.2 K-Nearest-Neighbors (KNN)

In KNN, the classification of the output variable Y given input values x is obtained
by a majority vote of the nearest neighbors of x. The point x being predicted is assigned
to the class most common amongst its k nearest neighbors. More formally, given a binary
output, the KNN rule [35] is given by,

g(x) =

{
1 if

∑m
r=1wrδ(Y = 1) >

∑m
r=1wrδ(Y = 0)

0 otherwise
(2.70)

where δ(·) is the indicator function and wr = 1
k if xr is among the k nearest neighbor of x

and wr = 0 elsewhere. k is typically a small odd positive integer [92, 43].
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In order to identify neighbors, the objects are represented by vectors in a multidimen-
sional variable space and the Euclidean distance is usually chosen. The best choice of k
depends on the data. If k = 1, then the object is simply assigned to the class of its nearest
neighbor. As k increases, the effect of noise is reduced but the boundaries between classes
become less distinct. Hence, there is a bias-variance trade-off in the choice of k (in practice
k = 3 is often taken). A strategy to select the number of neighbors on the basis of a loo
criterion is provided by the Lazy Learning algorithm [14].

2.5.3 Support Vector Machine (SVM)

Let us consider a binary classification problem where Y ∈ {−1, 1}. Then a hyper-
plane y = f(x, θ) ∈ Rn in the multidimensional space of inputs implements the following
prediction function:

ŷ =

{
1 if f(x, θ) > 0
−1 if f(x, θ) < 0

(2.71)

Such an hyperplane is a linear combination of the inputs,

f(x, θ) =
n∑
i=1

θixi + b = θ · x+ b (2.72)

(2.71) combined with (2.72) gives the following inequality:

y(θ · x+ b)− 1 ≥ 0 (2.73)

If two classes of points are linearly separable then there usually exists an infinity of
hyperplane that separate the data points. The optimal separating hyperplane is the hy-
perplane that maximizes the distance between two parallel hyperplanes that are as far
as possible from each other but still separating the data. In a SVM setting, we assume
that the larger the distance between the two parallel hyperplanes (also called margin in
the SVM literature) is the better the generalisation error of the classifier is. The distance
between the two hyperplanes is 2

‖θ‖ . As a result, maximizing the margin is equivalent to
minimizing 1

2‖θ‖
2 subject to y(θ ·x+ b)−1 ≥ 0. This optimization problem can be written

as [25, 60]

LP =
1
2
‖θ‖2 −

m∑
r=1

λr(yr(θ · xr + b)− 1) (2.74)

which is called the primal form of the Lagrangian, where λr are the Lagrangian multipliers.
Differentiating with respect to θ and equating to zero yields to the following optimiza-
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tion (called the dual form of the Lagrangian) [25, 60],

LD =
m∑
r=1

λr −
1
2

m∑
r=1

m∑
s=1

λrλsyrys(xr · xs) (2.75)

where ∀r, λr ≥ 0 and
∑m

r=1 λryr = 0. Only the λr corresponding to the closest points are
non-zero, these form the support vectors. Hence, the solution can be found by solving a
convex quadratic programming problem.

Non-linear classifications is possible by replacing the classical dot product (xr ·xs) with
a non-linear kernel function K(xr, xs) = (Φ(xr) ·Φ(xs)). For example, the Gaussian kernel
is given by

K(xr, xs) = e−‖xr−xs‖2/2σ2
(2.76)

where σ is a positive Gaussian kernel width. Note that the kernel function prevents from
dealing explicitly with an infinite dimensional space transformation Φ. Hence, the algo-
rithm fits the maximum-margin hyperplane in a higher dimensional feature space. As a
result, the classification by an hyperplane in the transformed space may be non-linear in
the original input space [25, 60].

2.6 Fast Entropy Estimation

Mutual information computation requires the determination of three entropy terms (see
Def. 2.7):

I(X;Y ) = H(X) +H(Y )−H(X,Y )

An effective entropy estimation is then essential for computing mutual information. En-
tropy estimation has gained much interests over the last decade [30] and most approaches
focus on reducing the bias inherent to entropy estimation.

For microarray datasets, bias reduction should not be the only criterion to choose an
estimator and bias reduction should be traded with speed/computational complexity of
the estimator. Indeed, in variable selection and network inference, mutual information
estimation routines are expected to be called a huge number of times and used for estimat-
ing tasks with the same number of variables and the same amount of samples. A similar
conclusion has been reached in [83].

For this reason, this section focuses on the fastest and most used entropy estimators.
We refer the reader to [100, 30, 7, 97, 28] for alternative approaches. These estimators will
be used in experiments of Chapter 4.
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2.6.1 Empirical Estimator and the Miller-Madow Correction

The empirical estimator (also called “plug-in”, “maximum likelihood” or “naive”, [100])
is the entropy of the empirical distribution.

Ĥemp(X) = −
∑
x∈X

#(x)
m

log
#(x)
m

(2.77)

where #(x) is the number of data points having value x. Because of the convexity of the
logarithmic function, underestimates of p(x) cause errors on E[ 1

log p(x) ] that are larger than
errors due to overestimations. As a result, entropy estimators are biased downwards, that
is,

E
[
Ĥemp(X)

]
≤ H(X). (2.78)

It has been shown in [100] that

1. the variance of the empirical estimator is upper-bounded by a term
(

(logm)2

m

)
which

depends only on the number of samples

2. the asymptotic bias is − |X |−1
2m and depends on the number of bins |X | [100]. As

|X | � m, this estimator can still have a low variance but the bias can become very
large [100].

The computation of Ĥemp(X) has an O(m) complexity cost.
The Miller-Madow correction is given by the following formula which is the empirical

entropy corrected for the asymptotic bias,

Ĥmm(X) = Ĥemp(X) +
|X | − 1

2m
(2.79)

where |X | is the number of bins with non-zero probability. This correction, while adding
no computational cost, reduces the bias without changing variance. As a result, the Miller-
Madow estimator is often preferred to the naive empirical entropy estimator.

A jackknifed version of the entropy estimator has also been proposed in the literature
[100]

Ĥjk(X) = mĤemp(X)− m− 1
m

m∑
i=1

Ĥemp(−i)(X) (2.80)

where Ĥemp(−i) is the empirical estimator computed without sample i.
While less biased, this estimator remains biased since it is an average of biased estima-

tors [100]. Also, it has an O(m2) complexity cost since it requires the computation of m
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empirical entropies, each on m − 1 samples. This makes this estimator less interesting in
tasks requiring a large number of entropy estimations.

2.6.2 Shrink estimator

The rationale of the shrink estimator [61], is to combine two different estimators, one
with low variance and one with low bias, by using a weighting factor λ ∈ [0, 1]

p̂λ(x) = λ
1
|X |

+ (1− λ)
#(x)
m

(2.81)

Shrinkage is a well-known technique commonly used to improve estimators for small
sample sizes [118, 119]. Let λ∗ be the value minimizing the mean square error, see [61],

λ∗ = arg min
λ∈[0,1]

E
[∑
x∈X

(p̂λ(x)− p(x))2
]

(2.82)

It has been shown in [118, 119] that the optimal λ is given by

λ∗ =
|X |(m2 −

∑
x∈X #(x)2)

(m− 1)(|X |
∑

x∈X #(x)2 −m2)
(2.83)

The entropy can then be estimated by

Ĥshrink(X) = −
∑
x∈X

p̂λ∗(x) log p̂λ∗(x) (2.84)

For values of λ∗ close to one, the estimated entropy is moved toward the maximal entropy
(uniform probability) whereas when λ∗ is zero the estimated entropy boils down to the
empirical one.

2.6.3 The Schurmann-Grassberger Estimator

The Schurmann-Grassberger estimator is a Bayesian parametric method that assumes
samples distributed following a Dirichlet distribution. The Dirichlet distribution is the
multivariate generalization of the Beta distribution [95]. More precisely, the density of a
Dirichlet distribution takes the following form

p(X; θ) =

∏
i∈{1,2,...|X |} Γ(θi)

Γ(
∑

i∈{1,2,...|X |} θi)

∏
i∈{1,2,...|X |}

xθi−1
i (2.85)

where θi is the prior probability of an event xi, xi being the ith element of the set X and
Γ(·) is the gamma function (see [61, 143, 97] for more details). In case of a priori ignorance,
the θi are all set to a fixed number N (θi = N, i ∈ {1, 2, ...|X |}) to mean that no event
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becomes more probable than another. Note that using a Dirichlet prior with parameter N
is equivalent to adding N ≥ 0 “pseudo-counts” to each event i ∈ {1, 2, ...|X |}. The prior
actually provides the estimator the information that |X |N counts have been observed in
previous experiments. From that viewpoint, |X |N becomes the a priori sample size.

The entropy of a Dirichlet distribution can be computed directly with the following
equation:

Ĥdir(X) =
1

m+ |X |N
∑
x∈X

(#(x) +N)(ψ(m+ |X |N + 1)− ψ(#(x) +N + 1)) (2.86)

with ψ(z) = d ln Γ(z)
dz is the digamma function [61, 143, 97].

Various choices of prior parameters have been proposed in the literature:

1. N = 1 known as Laplace’s prior [6],

2. N = 0 which boils down to consider frequencies as probabilities [143],

3. N = 1/2 known as Jeffrey’s prior [78],

4. N = 1
|X | , the Schurmann-Grassberger estimator [121], which is a less biased prior

[97].

Although most choices of prior have been used for entropy estimation, it was shown in
[97] that the choice of the prior often dominates the entropy estimation. As a result, an
algorithm has been proposed in [97] to choose a prior so that the distribution of the entropy
is close to being uniform. The latter estimator, called NSB, was shown to outperform the
other entropy estimators based on Dirichlet priors [97]. However, higher accuracy comes
at the cost of a complexity O(m2).

2.6.4 Entropy of a Normal Distribution

Let X be a multivariate Gaussian, having a density function,

f(X) =
1√

(2π)n|CO|
exp(− 1

2
(x−µ)TCO−1

(x−µ)) (2.87)

with mean µ and covariance matrix CO.
The entropy2 of this distribution is [26]

H(X) =
1
2

ln{(2πe)n|CO|} (2.88)

2It is rather the differential entropy, see [26].



45

where |CO| is the determinant of the covariance matrix [26].
As a result, the mutual information between two normal distributions is given by [62]

I(Xi, Xj) =
1
2

log
(
σiiσjj
|CO|

)
(2.89)

where σii and σjj are the standard deviations of Xi and Xj respectively. Hence

I(Xi, Xj) = −1
2

log(1− ρ2) (2.90)

with ρ being the Pearson’s correlation [71] between Xi and Xj .

2.6.4.1 Squared Pearson’s Correlation and Squared Spearman Rank Correla-
tion Coefficient

Since only the ranking of entropies is required for variable selection, using directly the
squared Pearson’s correlation ρ2 is more effective, with

ρ̂2 =
(
∑m

i=1 xiyi − α)2

(
∑m

i=1 x
2
i − α)(

∑m
i=1 y

2
i − α)

(2.91)

where

α =
1
m

(
m∑
i=1

xi)(
m∑
i=1

yi)

The complexity of ρ̂2 is in O(m), where m is the number of samples.
The Spearman rank correlation coefficient [71] is a special case of the Pearson correla-

tion in which the data are converted to ranks. Unlike the Pearson correlation coefficient,
the Spearman rank correlation coefficient is able to detect any kind of monotone relation
without making any assumptions about the frequency distribution of the variables.

2.7 Discretization Method

All the estimators discussed in the previous section, apart from the Gaussian one, have
been designed for discrete variables. If the random variable Xi is continuous and can
take real values lying between a and b, then it is required to partition the interval [a, b]
into |Xi| sub-intervals in order to adopt a discrete entropy estimator. The two most used
discretizing algorithms are the equal width and the equal frequency quantization presented
here. Other discretization methods can be found in [41, 81, 146].
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2.7.1 Equal Width

The principle of the equal width discretization is to divide [a, b] into |Xi| sub-intervals
of equal size [146, 41, 81]:

[a, a+
b− a
|Xi|

[, [a+
b− a
|Xi|

, a+ 2
b− a
|Xi|

[, ...[a+
(|Xi| − 1)(b− a)

|Xi|
, b+ ε[

Note that an ε > 0 is added in the last interval in order to include the maximal value in
one of the |Xi| bins. This discretization scheme has a O(m) complexity cost.

2.7.2 Equal Frequency

The equal frequency discretization scheme consists in partitioning the interval [a, b]
into |Xi| intervals, each having the same number, m/|Xi|, of data points [41, 145, 81]. As
a result, the intervals can have different sizes. If the |Xi| intervals have equal frequency,
then the computation of entropy is straightforward: log 1

|Xi| . However, if one of the bins
is more dense than the others, then the resulting entropy needs to be estimated. This
discretization is reported [146] as one of the most efficient method (combined with the
naive Bayes classifier) .

2.7.3 The choice of |Xi|

The value of the number of bins |Xi| controls the bias-variance trade-off. With a too
high |Xi|, each bin will contain a few number of points, hence the variance is increased,
whereas a too low |Xi| will introduce a too high loss of information [26]. Two classical
choices of |Xi| are discussed below.

2.7.3.1 The number of samples square root
√
m

In practice, |Xi| =
√
m is considered to be a fair trade-off between bias and variance

[145]. One justification given for that choice is that the ratio m/|Xi| becomes m/
√
m =

√
m, hence there are as many bins as the average number of points per bin. Note also, that

when estimating the entropy of a bivariate distribution where each variable has
√
m bins,

the number of bins of the joint distribution is upper-bounded by |Xi| ≤
√
m ×

√
m = m.

As a result, the empirical entropy estimator is not in the undersampled regime and should
not have a too high bias when combined with this choice of |Xi|.

2.7.3.2 Scott’s criterion

A criterion based on the standard error estimate of a normal distribution has been
proposed in [122]. It consists in choosing the number of intervals as a function of the
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Name Notation Definition
Kullback-Leibler divergence KL(p; q) 2.1

Entropy H(X) 2.4
Conditional entropy H(Y |X) 2.6
Mutual information I(X;Y ) 2.7

Conditional Mutual information I(X;Y |Z) 2.8
Interaction information C(X;Y ;Z) 2.10

Multiinformation R(X;Y ;Z) 2.11

Table 2.3: Information-theoretic measures of the chapter

variance σ2 of the distribution, the number of samples m and the range (b − a) of Xi.
More precisely, |Xi| =

⌊
(b−a)
h

⌋
where h = 3, 5 ∗ σ

3√m . The motivation for this criterion can
be found in [122].

2.8 Conclusion

Information theory deals with various functions of probability distributions to measure
predictability and dependency of random variables (see Tab. 2.3). The Kullback-Leibler di-
vergence, entropy, mutual information, multiinformation and interaction information have
been defined. In the chapter 3, these notions are used to define relevance, redundancy and
complementarity of variables.

In a finite sample size setting, a probability distribution can be estimated by identifying
the family, the number and the values of the parameters θm to describe a target distribution.
In other words, a statistical model is built by carrying out two steps:

1. a structural identification which consists in finding the “best” class Λ of models for
the target (the family and the number of parameters).

2. a parametric identification whose goal is to find the “best” model from the chosen
class of models (the values of the parameters θ).

Hence, in this approach, not only the values of the parameters but also the number of the
parameters θ depend on the data. As the number of parameters increases, the bias of a
model is reduced but the variance is increased. A higher number of parameters may then
reduce the estimation accuracy.

We have seen three machine learning algorithms (naive Bayes, nearest neighbors and
SVM), five entropy estimators (empirical, Miller-Madow, shrink, Schurmann-Grassberger,
Gaussian) and two discretization methods (equal frequency and equal width). In chapter 4,
these algorithms are used in the experimental sessions. These methods all deal, explicitly or
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not, with the bias-variance trade-off in order to extract information from data. In chapter
2.4, the bias-variance trade-off is used as a motivation to eliminate variables from models.
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Chapter 3

Variable Selection and Network
Inference: State-of-the-Art

This chapter presents the state-of-the-art of the two topics of this thesis: variable se-
lection and network inference. Variable selection literature is reviewed in the first three
sections and network inference is discussed in the last three ones. Section 3.1 deals with
variable selection theory and the two following sections address the two main steps of a
variable selection strategy: exploration of the space of subsets (Section 3.2) and evalua-
tion (performance measure) of subsets (Section 3.3). The fourth section is devoted to the
(undirected) network inference problem definition and the various assessment and valida-
tion tools used in the field. The fifth section focuses on mutual information networks, a
category of (undirected) network inference strategies able to deal with large number of
variables. Finally, the last section aims to connect Bayesian network inference (directed
network inference), causality and information theory.

3.1 Part I: Variable Selection

Variable selection is a combinatorial optimization problem where a subset of variables
is selected on the basis of statistical estimates of its performances.

We have seen in Chapter 2 that the generalization performance of a model is related
to its structure and its number of parameters θ. The number of parameters is typically
related to the number of inputs. For example, in a linear model, there is one parameter per
variable. Non-linear models happen to require several parameters per variable. Hence, in
general, adding variables boils down to adding parameters. As a result, “feature (variable)
selection is nothing else than a particular form of model selection”[112].

The selection of variables is an important step in learning. It is often preferred to have
rough estimations of the parameters of a model constituted by adequate inputs rather than
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having good estimations of parameters with poorly relevant variables. As a result, one of
the objectives of variable selection is to eliminate “useless” variables, which add variance
without any bias reduction. Another positive side effect of eliminating variables is that it
increases the intelligibility of a model, and at the same time, it decreases the measurements
and storage requirements [56]. However, by eliminating a variable, its information is lost.
Let X = (XS , XR) be composed of two subsets of variables, XS standing for the selected
variables and XR for the remaining or eliminated variables. By definition (Definition 2.8),
we have,

H(Y |X) = H(Y |(XS , XR)) = H(Y |XS)− I(XR;Y |XS) (3.1)

As a result, if XR possesses some information on Y given XS , i.e., if

I(XR;Y |XS) > 0

then eliminating XR increases the uncertainty on the output variable, i.e.

H(Y |(XS , XR)) ≤ H(Y |XS)

However, considering the bias-variance trade-off (2.61), eliminating information increases
noise but improves the reliability (less variance) of the estimation. All variables are not
equivalent regarding their noise and variance contributions.

3.1.1 Variable Selection Problem

For n input variables, the number of possible subsets is 2n. Hence the space of solutions
is exponential in the number of variables. Various results, like the following theorem by
Cover and Van Campenhout [35], show that variable selection is a hard problem,

Theorem 3.1: Let XS1 , XS2 , ...., XS2n be an ordering of the 2n subsets of A = {1, 2, ..., n},
satisfying the consistency property i < j if Si ⊂ Sj (therefore, S1 = Ø and S2n =
{1, 2, ..., n}). Then there exists a distribution of the random variables (X,Y ) such that

L∗(XS1) > L∗(XS2) > ... > L∗(XS2n ) ≥ 0 (3.2)

Given an empty set of input variables S1 = Ø, the Bayes error L∗(XS1) (2.44) is maximal.
As long as we add input variables to the model, the probability of error decreases and the
best probability of error L∗(XS2n ) could be reached when all the variables are selected.

In many problems, estimating a model with all the variables is impossible because of the
variance. The problem of estimating the error and the conditional probability distribution



51

from a limited amount of samples is not considered by this theorem.

Example 3.1: The following ordering (allowed by Theorem 3.1)

L∗(X3) > L∗(X2) > L∗(X1) > L∗(X1,2) > L∗(X1,3) > L∗(X2,3)

gives us X1 as the best predictor and X3 as the worst one (when taken alone) but the best
subset of two variables X2,3 is made of the two worst variables and the worst subset X1,2

is made of the two best variables.

This example can be extended to any subset of k variables. As a consequence, any algorithm
that aims at identifying the best subset of size k, out of n variables, must necessarily

investigate all the

(
n

k

)
possible combinations [35].

The following theorem, shown in [31], is another result that expresses the difficulty of
the variable selection problem.

Theorem 3.2: [31]The search of a subset of discrete variables XS of size |S| = k such that
there exists no two samples in a dataset Dm that have identical values for all the variables
in the subset XS but different values for the target, is NP-complete.

3.1.2 Relevant and Redundant Variables

The preceding results are rather pessimistic since exhaustive search is intractable in the
presence of a large number of variables. Although the optimal variable set is not reachable
in a reasonable amount of time, a number of experimental studies [11, 74, 108] have
shown that the removal of irrelevant and redundant variables can dramatically improve the
predictive accuracy of models built from data. We introduce here notions, like redundancy,
that can guide the search towards a good subset of variables.

Three degrees of relevance are defined in [74] :

Definition 3.1: [Strong and weak relevance]A variable Xj is “strongly relevant” in X iff
there exists some xj , y and x−j for which p(x) > 0, such that

p(y|x) 6= p(y|x−j)

A variable Xj is “weakly relevant” iff it is not strongly relevant, but there exists a subset
XS of variables of X−j for which there exists some xj , y and xS with p(xj , xS) > 0 such
that

p(y|xj , xS) 6= p(y|xS)

A variable is irrelevant iff it is not relevant (weakly or strongly).
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In other words, an input variable Xj is strongly relevant if the removal of Xj alone will
result in a change of the conditional probability distribution of Y . A variable is weakly
relevant if it is not strongly relevant, but in some context XS it may change the conditional
probability distribution of Y .

For example, let us consider a trivial prediction problem with four variables: the dis-
tance between two cities in kilometers, the distance between two cities in miles, the flight
time from one city to the other, the colour of the plane. Suppose we want to determine
at which average speed the plane flies. The flight time is a strongly relevant variable be-
cause it is relevant whatever the selected subset of variables from the dataset. The two
distances are weakly relevant variables because each one is relevant in the absence of the
other. Finally, the colour of the plane is irrelevant whatever the subset. In practice, it is
difficult to discover strong relevance from datasets with many variables, because it requires
the estimation of the stochastic relationship between the target variable and all the inputs.

Another notion which is important in order to identify irrelevant or redundant variables
is the “Markov blanket” [101, 76].

Definition 3.2: Let XMj ⊂ X−j . XMj is a Markov blanket for Xj if Xj is conditionally
independent of (Y,X−(j,Mj)) given XMj

In other words, the Markov blanket XMj does not only subsume the information of Xj

about Y but also the information of Xj about all the other variables X−(j,Mj) which are
not in the blanket. Although the existence of a Markov blanket allows to drop a variable
without any risk of information loss, it is not sufficient to distinguish between irrelevant
and redundant variables. The additional condition to label a variable as redundant was
introduced in [148]:

Definition 3.3: Xi ∈ X is redundant, iff it is weakly relevant and has a Markov blanket
in the set X.

The definitions of relevant and redundant variables are binary, that is, according to them
a variable is either relevant or irrelevant. It would be useful for practical purposes to
have a measure of relevance/redundancy in order to rank/select variables. In the following
sections, we introduce existing measures of relevance and redundancy .

3.1.3 Relevance measure

The mutual information (introduced in Definition 2.7) is a natural measure of relevance
since it quantifies the dependency level between random variables. The use of mutual
information and conditional entropy as relevance measure traces back to [27]. Later, [130]
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introduced a selection criterion called the information bottleneck which uses also mutual
information as a relevance measure.

In [8], the following information-theoretic definition of variable relevance is given,

Definition 3.4: The variable relevance V R(Xi;Y |XS) of Xi to a target Y given a context
XS is,

V R(Xi;Y |XS) =

{
I(Xi;Y |XS)
H(Y |XS) if H(Y |XS) 6= 0

0 otherwise
(3.3)

This definition states that the variable relevance is a function 0 ≤ V R(Xi;Y |XS) ≤ 1 that
indicates the relative reduction of uncertainty of Y knowing XS once the information of Xi

is given. This measure of variable relevance is a normalized conditional mutual information
(constrained between zero and one according to (2.43)).

The mutual information I(XS ;Y ) as a measure of relevance has been proposed in [75].

Definition 3.5: The relevance of a subset XS to a target variable Y is I(XS ;Y )

The relevance of a variable Xi, given a context XS , is evaluated as the gain brought by
the variable Xi to the context XS .

I(Xi;Y |XS) = I(XS,i;Y )− I(XS ;Y ) (3.4)

In this work, we adopt the following definition of the relevance measure:

Definition 3.6: Given three random variables Xi,Y and XS, the relevance of the variable
Xi to Y given the context XS is I(Xi;Y | XS)

The measure I(Xi;Y |XS) is the non-normalized version of V R(Xi;Y |XS). One major
aspect of variable selection is that relevance is conditionally dependent on the context XS .
This makes difficult to decide whether a variable should be labeled as relevant or not. In
fact, a variable can have a significant relevance given a context and a null relevance given
another one, see Example 2.1. This is in accordance with [74, 148], i.e., that a variable can
be labeled as “relevant” only with respect to a given set of variables. In order to instantiate
the notion of relevant variable in an information-theoretic framework, we can reformulate
Definition 3.1 of [74, 148] from the following result (proof given in Appendix C),

Theorem 3.3: [Information-theoretic weak and strong relevance] Given a set X of input
variables
A variable Xi is irrelevant to Y if:

∀XS ⊆ X−i : I(Xi;Y |XS) = 0 (3.5)
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A variable Xi is strongly relevant to Y if:

I(Xi;Y |X−i) > 0 (3.6)

A variable Xi is weakly relevant to Y if:

I(Xi;Y |X−i) = 0 AND ∃XS ⊂ X−i : I(Xi;Y |XS) > 0 (3.7)

Note that the reformulation of Definition 3.1 in information-theoretic terms establishes a
link between [74, 148] and the relevance measure (mutual information) used by [130, 8, 75,
27].

3.1.4 Redundancy measure

According to [141], a redundancy measure should be symmetric, non-negative and non-
decreasing with the number of variables. The monotonicity is justified by the fact that,
unlike relevance, the amount of redundancy of a variable can never decrease when more
variables are added. As a result, [141] proposed to use multiinformation as redundancy
measure, i.e.,

R(Xi; ...;Xn) =
n∑
i=1

H(Xi)−H(X1,..,n) (3.8)

This measure was also used in [104, 131] for the two-variables case, i.e.,

R(Xi;Xj) = I(Xi;Xj) (3.9)

Note that while the relevance measure concerns the relation between inputs and output,
the redundancy measure applies exclusively to input variables.

The simplest case of redundant variable is encountered when the measure of redundancy
takes its maximum value, i.e., a variable Xi is redundant with respect to a set XS if
R(Xi;XS) = I(Xi;XS) = H(Xi) or equivalently if H(Xi|XS) = 0. This is due to the fact
that H(Xi|XS) = 0 is equivalent to I(Xi;Y |XS) = 0 as shown by the following derivation

I(Xi;Y |XS) = H(Xi|XS)−H(Xi|Y,XS) = −H(Xi|Y,XS) ≥ 0⇔ (3.10)

H(Xi|Y,XS) = 0⇔ I(Xi;Y |XS) = 0 (3.11)

which holds because of the non negativity of the entropy. In other terms, if H(Xi|XS) = 0,
we may drop the variableXi since it is not able to bring any further conditional information
to Y . Note that if the measure of redundancy is maximal, i.e., I(Xi;XS) = H(Xi), then
XS is a Markov blanket of Xi since in that case I(Xi;Y,X−i,S |XS) = 0.
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Theorem 3.4: [Information-theoretic Markov blanket]Let X be a set of variables contain-
ing the variable Xj, XMj some subset of X−j and X−(j,Mj) the set of remaining variables.
XMj is a Markov Blanket for Xj, iff I(Xj ; (Y,X−(j,Mj))|XMj ) = 0.

Using the information-theoretic Markov blanket theorem (whose proof is given in appendix
C), the definitions of redundancy of [141, 104, 148], i.e., Definition 3.3, 3.8 and 3.9, are
brought together.

3.1.5 Complementarity measure

Variable complementarity measures the increase of information coming from a com-
bination of variables with respect to the information coming from sub-combinations of
variables. Variable complementarity has been observed in several studies [56, 74]. How-
ever, this phenomenon was first formalized in the variable selection process by [67] using
a three-way interaction gain defined as

IG = I(Xi,j ;Y )− I(Xi;Y )− I(Xj ;Y ) (3.12)

This quantity measures the gap between the joint mutual information of two variables
Xi and Xj with Y and the sum of the mutual informations. The joint information of two
random variables, i.e., I(Xi,j ;Y ) can be higher than the sum of their individual information
I(Xi;Y ) and I(Xj ;Y ). In [68] the interaction information C(Xi;Xj ;Y ) (Definition 2.10)
is adopted as a measure of interacting variables since this measure reduces to the opposite
interaction gain when used on two input variables.

Hence, in this work, we define complementary variables as following.

Definition 3.7: X1, X2, ..., Xn are said to be complementary if

(−1)nC(X1;X2; ...;Xn) > 0

The complementarity effect, also known as negative interaction in [68], has recently been
explicitly used in variable selection algorithms [75, 86, 150]. Figure 3.1 illustrates a sam-
pling of complementary variables given by the problem Y = X1 ⊕ X2, where ⊕ is the
exclusive disjunction function (XOR) (see Example 2.3).

Complementarity provides an alternative way to interpret Theorem 3.1. Since variables
can have a null relevance taken separately and a maximal relevance once taken together,
it follows that an optimal combination cannot be found on the basis of its subsets.
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X2

X1

Figure 3.1: XOR sampling: there are two inputs, X1 and X2, and the output Y = X1⊕X2

can take two values: square or bullet.

Figure 3.2: principle of a filter/wrapper approach

3.2 Variable Selection Exploration Strategies

According to [11, 74], there are three different approaches of variable selection: em-
bedded methods, filter methods and wrappers methods. In the first category, the process
of variable selection is embedded in the learning algorithms. Examples are the pruning
of a decision tree [110], the progressive non-zero weight of a neural network [105], the
ridge regression or the lasso [91, 60]. In the wrapper and in the filter approaches, variable
selection is seen as a preprocessing step of learning (see Figure 3.2). This step consists
in a search for a best subset of variables in the power set 2X where X denotes the set
of random variables. Hence, it is an example of combinatorial optimization problem [74]
which depends on:
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1. a method of exploring the space (including the starting point and stop criterion),

2. an evaluation function.

More formally the problem is, given n input variables X and a performance measure
Φ : 2X → R, find the subset XS ⊂ X which maximizes the performance ,

Xmax
S = arg max

XS∈2X
Φ(XS) (3.13)

Exploration strategies can be classified into three main categories of combinatorial
optimization algorithms namely optimal search, stochastic search and sequential search
(see [57], chapter 4).

1. Optimal search strategies include exhaustive search and branch-and-bound methods
[57]. Their high computational complexity makes them impracticable with a high
number of inputs and, for this reason, they are not discussed in this work.

2. Stochastic search strategies are also called randomized or non-deterministic [107]
because two runs of these methods (with the same inputs) will not necessarily bring
the same result [42]. These methods explore a smaller portion of the search space
2X by using rules often inspired by nature. Some examples are: simulated annealing
[42], tabu search [42] and genetic algorithms [144, 42]. Although these methods can
perform well in variable selection tasks [144], these are not explored in this work.

3. Sequential search strategies are also called deterministic heuristics [107]. These meth-
ods are widely used for variable selection [44, 103, 49, 20]. Most of them use a
neighbor search (two subsets are said neighbors if they differ from one variable) to
discover a local optimum. Some examples are: forward selection (see Section 3.2.1),
backward elimination (see Section 3.2.2), bi-directional search (see Section 3.2.3).
These sequential strategies are the topic of this section.

In the following, we denote by X the complete initial set of variables and by XMETH
i ∈

X, i ∈ A = {1, 2, ..., n} the variable selected at each step by the method METH. XS and
XR are the set of selected variables and the set of remaining variables respectively. Xi or
Xj usually denote a variable in XR or in XS , respectively.

3.2.1 Forward Selection search

Forward Selection [20, 74] is a sequential search method that starts with an empty
set of variables, XS = φ. At each step, it selects the variable Xt that brings the best
improvement (in terms of a given evaluation criterion Φ(·)). A pseudo-code of the method
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Algorithm 3.1 Pseudo-code of the forward selection search for variable selection
Inputs: input variables X, the output variable Y , a maximal subset size d > 0 and a
performance measure Φ(·) to maximize,
XS ← φ
XR ← X
while (|XS | < d)
maxscore← −∞
for all the inputs Xi in the search space XR

Evaluate Φ(XS,i) for the variable Xi with XS the subset of selected variables.
if ( Φ(XS,i)> maxscore)
Xt← Xi

maxscore← Φ(XS,i)
end-if

end-for
XS ← XS,t

XR ← XR−t
end-while
Output: the subset XS

is given in Algorithm 3.1. As a consequence of the sequential process, each selected variable
influences the evaluations of the following steps.

This search has been widely used in variable selection, (see [20, 11, 74]). The forward
selection algorithm selects a subset of d < n variables in d steps and explores only∑d−1

i=0 (n− i) subsets.
However, this search has some weaknesses:

1. two variables that are useful together (e.g. complementary, Definition 3.7) can appear
as not relevant once taken individually, hence ignored by this procedure,

2. selecting the best variable at each step does not mean selecting the best subset (see
Section 3.1.1).

3.2.2 Backward Elimination search

Backward elimination [20, 74, 91] is a search method that starts by evaluating a subset
containing all the variables XS = X and progressively discards the least relevant variables.
For instance, at the second step, the method compares n subsets of n − 1 inputs. The
variable Xt associated with the smallest change of the performances is eliminated. The
process is repeated until it yields the chosen number of inputs d (see Algorithm 3.2). This
method does not suffer from the risk of ignoring a pair of complementary variables as it is
the case for forward selection.
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Algorithm 3.2 pseudo code of backward elimination for variable selection
Inputs: input variables X (the input space), the output variable Y , a minimal subset size
d > 0 and a performance measure Φ(·) to maximize,
XS ← X
while (|XS | > d)
worstscore←∞
for all inputs Xj in the subset XS

Evaluate Φ(XS−j), with all inputs of the subset XS without Xj

if ( Φ(XS−j)<worstscore)
Xt← Xi

worstscore← Φ(XS−j)
end-if

end-for
XS ← XS−t

end-while
Output: the subset XS

3.2.3 Bi-directional search

The strengths of the forward selection and of the backward elimination can be combined
in different manners.

As an example, let 26 random variables constitute the search space and be denoted
by letters of the alphabet. Let the best subset of four variables be denoted by the letters
{B,E, S, T}. The forward and the backward approaches can be combined in different ways:

• by using a backward elimination on a subset selected with a forward search [20].
If a forward selection has selected the subset {C,B,E, S, T,D, F,G}, then, we can
use a backward elimination in order to keep the most important variables of the
subset, and reach the subset {B,E, S, T}.

• by performing a stepwise approach [91, 20]: At each step, choose the best action
between eliminating a variable or selecting one.
In our example, we may at some stage have selected the subset {E,A, S, T}. The
stepwise algorithm chooses between adding a variable that brings the best improve-
ment {B,E,A, S, T} or eliminating the less important variable {E,S, T}.

• by using sequential replacement [91, 20]: This procedure consists in replacing k ≥ 1
variables at each step.
In our example, we can imagine at some stage having the subset {P,E, S, T} that
becomes the subset {B,E, S, T} after an iteration. The pseudo-code of the algorithm
for k = 1 is described in Algorithm 3.3.
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Algorithm 3.3 Pseudo-code of the sequential replacement algorithm (with replacement
size k = 1)
Inputs: a selected subset of inputs XS , the set of remaining variables XR, the output
variable Y and a performance measure Φ(·) to maximize
do
for all inputs Xi in the remaining variables XR

Evaluate Φ(XS,i)
end-for
Xt1 ← arg maxXi Φ(XS,i)
for all for all inputs Xj in the subset XS

Evaluate the Φ(XS−j)
end-for
Xt2 ← arg maxXj Φ(XS−j)
XS ← X(S,t1)−t2
XR ← X(R,t2)−t1

end-do while Xt1 6= Xt2

Output: the subset XS

3.3 Information-Theoretic Evaluation Functions

Two main categories of evaluation functions have been used in variable selection: the
filter and the wrapper approaches.

The Wrapper Approach In the wrapper approach, the evaluation function is the vali-
dation outcome of a learning algorithm (see Section 2.5). These methods are typically too
computationally costly to be used in a variable selection task dealing with several thou-
sands of variables because of the validation cost. A k-cross-validation (see Section 2.4.1.2),
for example, is computationally expensive because learning is repeated for each of the k
learning sets. Although some learning algorithms such as the naive Bayes (Section 2.5.1)
or the lazy learning (Section 2.5.2) have a small validation cost compared to other learning
methods [92, 14], these methods cannot scale up to thousands variables. Hence, in this
work, the wrapper approach is not treated.

The Filter Approach Filter approaches differentiate from wrappers since their evalu-
ation function does not use a learning algorithm [11, 107, 76, 74]. Evaluation functions of
filters are mainly: inter-class distance measures [77], information-theoretic measures [76]
or probabilistic dependence measures [29]. These measures are considered as an intrinsic
property of the raw data because they use rather “simple” models compared to functions
returned by learning algorithms. As a consequence, evaluation functions of filters may be
fast and adapted to large number of variables.
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Some examples of filter algorithms are information-theoretic filters [38, 44, 49, 65, 148]
that are detailed in the following.

3.3.1 Information-theoretic filters

Let us start by stating the objective of an information-theoretic filter:
Given a training dataset Dm of m samples, an output variable Y , n input variables

X and an integer d < n, find the subset XS ⊂ X of size d that maximizes the mutual
information I(XS ;Y ).

In other words, the objective of filters variable selection is to find the subset XS , with
|XS | = d, such as:

Xmax
S = arg max

XS⊂X:|XS |=d
I(XS ;Y ), d fixed (3.14)

This is a particular case of (3.13), where the evaluation function Φ(XS) is the mutual
information I(XS ;Y ) and where the subset size d is fixed. The quantity d influences the
bias-variance trade-off (Theorem 2.5). We assume that the number of variables d has been
determined by some a priori knowledge or by some cross-validation techniques. As filters
often rank the variables according to their relevance measure, variables can be added one by
one in a predictive model, until the cross-validated performances decrease. This procedure
allows to reach an adequate number of variables for a given predictive model. Other
strategies can be adopted such as the information bottleneck [130], Bayesian confidence on
parametric estimations [72] or resampling techniques [50] .

In the following, we review the most important filter selection methods found in the
literature which are based on information theory. We present the algorithms by stressing
when and where the notion of relevance (Section 3.1.3), redundancy (Section 3.1.4) and
complementarity (Section 3.1.5) are used.

3.3.2 Variable Ranking (RANK)

This method (RANK) returns a ranking of variables on the basis of their individ-
ual mutual informations with the output. This means that, given n input variables, the
method first computes n times the quantity I(Xi, Y ), i = 1, . . . , n, then ranks the variables
according to this quantity and eventually discards the least relevant ones [44, 5].

The main advantage of this method is its low computational cost. Indeed, it requires
only n computations of bivariate mutual information. The main drawback derives from
the fact that possible redundancies between variables are not taken into account. Indeed,
two redundant variables, yet highly relevant taken individually, will be both well-ranked.
On the contrary, two variables could be complementary to the output (i.e., highly relevant
together) while being poorly relevant once each taken individually (see Section 3.1.5). As
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a consequence, these variables could be badly ranked, or even eliminated, by a ranking
filter.

3.3.3 Fast Correlation Based Filter (FCBF)

The Fast Correlation Based Filter is a ranking method combined with a redundancy
analysis which has been proposed in [148]. The FCBF starts by selecting the variable (in the
remaining variables XR) with the highest mutual information, denoted by XFCBF

i . Then,
all the variables which are less relevant to Y than redundant to XFCBF

i are eliminated
from the list. For example, Xi is removed from the remaining variable set XR if

I(Xi;XFCBF
i ) > I(Xi;Y )

At the next step, the algorithm repeats the selection and the elimination steps. The
procedure stops when no more variable remains to be taken into consideration.

In other words, at each step, the set of selected variables XS is updated with the
variable

XFCBF
i = arg max

Xi∈XR

I(Xi;Y ) (3.15)

and the set of remaining variables XR is updated by removing the set

{Xi ∈ XR−i : I(Xi;Y ) < I(Xi;XFCBF
i )} (3.16)

This method is affordable because a few (less than n2) evaluations of bivariate mu-
tual information are computed. However, although the method addresses redundancy, it
presents the risk of eliminating relevant variables. Indeed, it is possible that I(Xi;XFCBF

i ) >
I(Xi;Y ) with Xi strongly relevant, as shown in Example 2.2. One drawback of this method
is that it does not return a complete ranking of the variables of the dataset. In [148], this
approach is shown competitive with two filters [77][1]. Note that in [148], a normal-
ized measure of mutual information called the symmetrical uncertainty (2.40) is used, i.e.
SU(X,Y ) = 2I(X;Y )

H(X)+H(Y ) . This measure helps to improve the performances of the selection
by penalizing inputs with large entropies.

3.3.4 Backward elimination and Relevance Criterion

Let Xmax
S ⊂ X be the target subset, i.e., the subset XS of size d, that achieves the max-

imal mutual information with the output (3.14). By the chain rule for mutual information
(Theorem 2.8),

I(X;Y ) = I(Xmax
S ;Y ) + I(Xmax

R ;Y |Xmax
S ) (3.17)
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where XR = X−S is the set difference between the original set of inputs X and the set of
variables XS selected so far.

The backward elimination (using mutual information) [114] starts with XS = X and,
at each step, eliminates from the set of selected variable XS , the variable Xback

j having the
lowest relevance on Y ,

Xback
j = arg min

Xj∈XS

I(Xj ;Y |XS−j) (3.18)

In other words, Xback
j is an approximation of Xmax

R in (3.17). The approximation is exact
for a subset size d = n−1 of one variable less than the complete set. The elimination process
is then repeated until the desired size is reached. However, this approach is intractable
for large variable sets since the beginning of the procedure requires the estimation of a
multivariate density that includes the whole set of variables X.

3.3.5 Markov Blanket Elimination

The Markov blanket elimination [76] consists in approximating I(Xj ;Y |XS−j) in (3.18)
by I(Xj ;Y |XMj ) with XMj ⊂ XS−j a subset of variables having limited fixed size k. The
algorithm proceeds in two phases. First, for every variable Xj in the selected set XS , k
variables XMj are selected among the variables XS−j . Second, the least relevant variable
XMB
j (conditioned on the selected subsetXMj ⊆ XS−j) is eliminated, i.e.,XS = XS\XMB

j .

XMB
j = arg min

Xj∈XS

I(Xj ;Y |XMj ) (3.19)

The process is repeated until the selected variable set XS contains no more irrelevant
and redundant variables, or when the desired subset size is reached. The method is named
from the fact that XMj is an approximate Markov blanket (see Definition 3.4). Also, if
XMj is a Markov blanket then no relevant variables are eliminated from the candidate set.
In [76], the Pearson’s correlation coefficient [71] is used in order to find the k variables most
correlated to the candidate Xj . These k variables are considered as the Markov blanket
XMj of the candidate Xj . In this way, only linear dependencies between variables are
considered. However, more complex functions can make the algorithm very slow. In fact,
finding a Markov blanket is itself a variable selection task. As a result, this method is not
adapted to large dimensionality problems.
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3.3.6 Forward Selection and Relevance Criterion (REL)

A way to sequentially maximize the quantity I(XS ;Y ) in (3.14), is provided by the
chain rule for mutual information (Theorem 2.8):

I(XS′ ;Y ) = I(XS ;Y ) + I(Xi;Y |XS) (3.20)

where XS′ = XS,i is the updated set of variables. Rather than maximizing the left-hand
side term directly, the idea of the forward selection combined with the relevance criterion
consists in maximizing sequentially the second term of the right-hand term, I(Xi;Y |XS).
In other words, the approach consists in updating a set of selected variables XS with the
variable XREL

i featuring the maximum relevance (Section 3.1.3).
In analytical terms, the variable XREL

i returned by the relevance criterion at each step
is,

XREL
i = arg max

Xi∈XR

{I(Xi;Y |XS)} (3.21)

where XR = X−S is the difference between the original set of inputs X and the set of
variables XS selected so far. This strategy prevents from selecting a variable which, though
relevant to Y , is redundant with respect to a previously selected one. This algorithm has
been used in [8, 5, 13, 114]. In [8], the normalized version of relevance (2.43) is used.

Although this method is appealing, it presents some major drawbacks. The estimation
of the relevance requires the estimation of large multivariate densities. For instance, at
the d-th step of the forward search, the search algorithm requires n− d evaluations, where
each evaluation requires in turn the computation of a (d+ 1)-variate density. It is known
that for a large d, the estimations are poorly accurate and/or computationally expensive
[104]. In particular in the small sample settings (around one hundred), having an accurate
estimation of large (d > 3) multivariate densities is difficult. For these reasons, the recent
filter literature adopt selection criteria based on bi- and trivariate densities at most.

3.3.7 Forward Selection and Conditional Mutual Information Maximiza-
tion criterion (CMIM)

The CMIM approach [49] proposes to select the variable Xi ∈ XR whose minimal
relevance I(Xi;Y |Xj) conditioned to each selected variable taken separately Xj ∈ XS , is
maximal. This requires the computation of the mutual information of Xi and the output
Y , conditioned on each variable Xj ∈ XS previously selected.
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Formally, the variable returned according to the CMIM is

XCMIM
i = arg max

Xi∈XR

{ min
Xj∈XS

I(Xi;Y |Xj)} (3.22)

A variable Xi can be selected only if its information to the output Y has not been
caught by an already selected variable Xj .

The CMIM criterion is an approximation of the relevance criterion,

XREL
i = arg max

Xi∈XR

{I(Xi;Y |XS)}

where I(Xi;Y |XS) is replaced by minXj∈XS
(I(Xi;Y |Xj)).

[49] shows experiments where CMIM is competitive with FCBF [148] in selecting binary
variables for a pattern recognition task. This criterion selects relevant variables, avoids re-
dundancy, avoids estimating high dimensional multivariate densities and does not ignore
complementarity two-by-two. However, it does not necessarily select a variable comple-
mentary to the already selected variables. Indeed, a variable that has a high negative
interaction to the already selected variable will be characterized by a large conditional
mutual information with that variable but not necessarily by a large minimal conditional
information. In Examples 2.2 and 2.3, for instance, the complementary variable has a
null relevance taken alone. In that case, minXj∈XS

I(Xi;Y |Xj) = 0 and CMIM would not
select that variable.

3.3.8 Forward Selection and Minimum Redundancy - Maximum Rele-
vance criterion (MRMR)

The Minimum Redundancy-Maximum Relevance (MRMR) criterion has been proposed
in [104, 131, 103] in combination with a forward selection search strategy. Given a set XS

of selected variables, the method updates XS with the variable Xi ∈ XR that maximizes
vi − zi, where vi is a relevance term and zi is a redundancy term. More precisely, vi is
the relevance of Xi to the output Y alone, and zi is the average redundancy of Xi to each
selected variables Xj ∈ XS .

vi = I(Xi;Y ) (3.23)

zi =
1
|XS |

∑
Xj∈XS

I(Xi;Xj) (3.24)

XMRMR
i = arg max

Xi∈XR

{vi − zi} (3.25)

At each step, this method selects the variable which has the best trade-off between
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relevance and redundancy. This selection criterion is fast and efficient. At step d of the
forward search, the search algorithm computes n − d evaluations where each evaluation
requires the estimation of (d+1) bi-variate densities (one for each already selected variables
plus one with the output). As a result, MRMR avoids the estimation of multivariate
densities by using multiple bivariate densities.

A justification of MRMR given by the authors [104] is that

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (3.26)

with

R(X1;X2; ...;Xn) =
n∑
i=1

H(Xi)−H(X) (3.27)

and

R(X1;X2; ...;Xn;Y ) =
n∑
i=1

H(Xi) +H(Y )−H(X,Y ) (3.28)

hence

I(X;Y ) = R(X1;X2; ...;Xn;Y )−R(X1;X2; ...;Xn) (3.29)

where,

• the minimum of the second term R(X1;X2; ...;Xn) is reached for independent vari-
ables since, in that case, H(X) =

∑
iH(Xi) and R(X1;X2; ...;Xn) =

∑
iH(Xi) −

H(X) = 0. Hence, if a subset of variables XS is already selected, a variable Xi

should have a minimal redundancy I(Xi;XS) with the subset. Pairwise independency
does not guarantee independency. However, the authors approximate I(Xi;XS) with
1
|S|
∑

j∈S I(Xi;Xj).

• the maximum of the first term R(X1;X2; ...;Xn;Y ) is attained for maximally depen-
dent variables.

Qualitatively, in a sequential setting where a selected subset XS is given, independence
between the variables in X is reached by minimizing 1

|XS |
∑

Xj∈XS
I(Xi;Xj) ' I(Xi;XS)

and maximizing dependency between the variables of X and of Y , i.e., by maximizing
I(Xi;Y ).

Although the method addresses the issue of bivariate redundancy through the term zi,
it does not capture complementarity between variables. This can be ineffective in situations
like Example 2.2 where, although the set {Xi, XS} is very relevant, we have that
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1. the redundancy term zi is large due to the redundancy of Xi and XS ,

2. the relevance term vi is small since Xi "alone" is not relevant to Y .

3.3.9 k-Additive Truncation of Mutual Information

In [75], it is proposed to use the k first terms, denoted by I(k)(X;Y ), of (3.30) (Section
2.2.2):

I(X;Y ) =
∑
Xi∈X

I(Xi;Y )−
∑

Xi,j⊂X
C(Xi;Xj ;Y )+

∑
Xi,j,l⊂X

...+(−1)n+1C(X1;X2; ...;Xn;Y )

(3.30)
As a result, I(k)(X;Y ) can deal with complementarity up to order k.

The second and third orders, I(2)(X;Y ) and I(3)(X;Y ) are of practical interest for
selecting variables [75].

I(2)(X;Y ) =
∑
Xi∈X

I(Xi;Y )−
∑

Xi,j⊂X
C(Xi;Xj ;Y ) (3.31)

=
∑

Xi,j⊂X
I(Xi,j ;Y )− (| X | −2)

∑
Xi⊂X

I(Xi;Y ) (3.32)

I(3)(X;Y ) =
∑
Xi⊂X

I(Xi;Y )−
∑

Xi,j⊂X
C(Xi;Xj ;Y ) +

∑
Xi,j,l⊂X

C(Xi;Xj ;Xl;Y ) (3.33)

=
∑

Xi,j,l⊂X
I(Xi,j,l;Y )−(| X | −3)

∑
Xi,j⊂X

I(Xi,j ;Y )+

[(
| X | −1

2

)
− | X | +2

] ∑
Xi⊂X

I(Xi;Y )

(3.34)
However, the number of required mutual informations to compute I(2)(X;Y ) and

I(3)(X;Y ) is higher than for CMIM or MRMR. In [75], the method has reached suc-
cessful results on five artificial regression problems. A similar selection criterion will be
detailed in the contributions (Section 4.1).
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3.4 Part II: Network Inference

In chapter 4, network inference is seen as an extension of variable selection. Before
connecting information-theoretic methods of network inference and feature selection, we
present a state-of-the-art of network inference methods. Network inference consists in
representing the dependencies between the variables of a dataset by a graph [140]. The
exact semantics of an arc in the graph may differ from one inference method to another.
However, when network inference is applied to microarray data, arcs are usually meant to
represent a regulator/regulated gene interaction where the genes are represented by nodes
in the graph. The latter graph is called a transcriptional regulatory network [135].

Various network inference methods have been proposed in the literature such as,

• differential equation network where expression data are explained by systems of or-
dinary differential equations (ODEs) or stochastic ODEs [51].

• Boolean network where the state of a gene (on or off) is expressed as a Boolean
function of the input genes [51].

• correlation and partial correlation network that sets an arc between two genes if it
exhibits a high score based on correlation measures [119, 123].

• mutual information network that sets an arc between two genes if it exhibits a high
score based on pairwise mutual information [46, 83].

• Bayesian network that represents the probabilistic dependencies between variables
[102, 95, 128].

In the following sections, mutual information networks and Bayesian networks are investi-
gated. This choice is partly motivated by our desiderata of dealing with non-linear (and
probabilistic) dependencies.

First, we describe in generic terms the principles of (undirected) network inference.
Let us consider n (discrete) input variables X = (X1, X2, ..., Xn) and let us assume

that each variable Xj (j ∈ A = {1, 2, ..., n}) is a function of a causal subset XSj ⊂ X,

xj = fj(xSj ) + ε, j ∈ A, Sj ⊂ A (3.35)

where causal is used here in the sense (of direct causality) used in Bayesian network liter-
ature [102, 95, 128]. The following definition will be detailed in Section 3.6.1.

Definition 3.8: [95] XSj is a direct cause of Xj if a manipulation of XSj changes the
distribution of Xj and there is no other variable or set of variables XW (that does not
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contain Xj or variables of XSj ) such that once we know the value of XW , a manipulation
of XSj no longer changes the probability distribution of Xj.

In other words, we assume an implicit underlying network T of relationships between the
variables, with elements

tij =

{
1
0

if Xi ∈ XSj or Xj ∈ XSi

else
(3.36)

Hence, the objective of a network inference algorithmN consists in producing a network
T̂ from a dataset Dm,

T̂ = N (Dm) (3.37)

that is as “close” (using performance measure Φ) as possible to the unknown (or partially
known) true network T .

T̂max = arg max
T̂

Φ(T̂ , T ) (3.38)

Qualitatively, we consider the following chain,

T −→︸︷︷︸
explains

X −→︸︷︷︸
measurements

Dm −→︸︷︷︸
inference

T̂ (3.39)

where T̂ is inferred from a dataset Dm that is generated according to the probability
distribution p(X) which is itself governed by T .

A network inference problem can be seen as a binary decision problem where the
algorithm N plays the role of a classifier. Each pair of nodes t̂ij is thus assigned a positive
label (1, i.e., an edge) or a null one (0, i.e., no edge). A reference network T is then required
to assess the performances of the inferred network T̂ . Two strategies are usually adopted
to define a reference network:

1. The dataset is artificially generated from a known network which allows to compare
performances of competing methods.

2. The inference concerns microarray measurements from a cell where a small amount of
genetic interactions have already been discovered by researchers. This list of known
interactions can then be used as a reference network. Since discovering (biologically)
a new gene-gene interaction is expensive, network inference techniques can support
the discovery process.

A positive label (an edge) predicted by the algorithm is considered as a true positive (tp)
or as a false positive (fp) depending on the presence or not of the corresponding edge in
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Inferred \Truth True edge (1) No edge (0)
Inferred edge (1) tp= #(t̂ij = tij = 1) fp= #(t̂ij = 1 6= tij = 0)
Deleted edge (0) fn= #(t̂ij = 0 6= tij = 1) tn= #(t̂ij = tij = 0)

Table 3.1: Confusion matrix CM

the reference network. Analogously, a null label is considered as a true negative (tn) or a
false negative (fn) depending on whether the corresponding edge is absent or not in the
underlying true network T , respectively (Table 3.1).

Many inference methods return a weighted adjacency matrixW of the network. Hence,
a threshold value θ is used in order to delete the arcs of the network that have a too low
score [51, 46, 18].

t̂ij =

{
1
0

if wij ≥ θ
otherwise

(3.40)

For each threshold value θ, a different inferred network T̂ (θ,W ) coming from the
weighted adjacency matrix W can be computed. As a result, a specific confusion ma-
trix CM (Section 2.4.1.2) is obtained for each θ.

In the following sections, we introduce three validation tools, namely ROC curves,
PR curves and F-scores, that will be used as performance measures Φ (3.38) of network
inference techniques.

3.4.1 ROC curves

A Receiver Operating Characteristic (ROC) curve is a graphical plot of the tpr (true
positive rate) vs. fpr (false positive rate) for a binary classifier system when the threshold
is varied [32], where the false positive rate is

fpr =
fp

tn+ fp
=

fp

#(tij = 0)
(3.41)

and the true positive rate is

tpr =
tp

tp+ fn
=

tp

#(tij = 1)
(3.42)

The tpr is also known as recall or sensitivity. The objective is to maximize tpr while
minimizing fpr.

By setting the threshold θ to its extreme values, it is possible to minimize the number of
false negative or false positive. In network inference, the threshold applied to the weighted
adjacency matrix plays that role. If θ is set to its minimum value, no arc is eliminated
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Figure 3.3: Example of ROC curves (generated with the R package ’minet’ [89])

from the network. Hence, the tpr and fpr are both maximal (tn = fn = 0, at point (1, 1)
on Figure 3.3). On the other side, if θ is maximal, all the arcs are eliminated, resulting in
a minimal tpr and a minimal fpr (tp = fp = 0, at point (0, 0)). A perfect classifier would
yield a point in the upper left corner or coordinate (0,1) of the ROC space, representing a
100% tpr (all true positives are detected) and a 0% fpr (no false positives are found). A
random guess gives a point along the diagonal line (the so-called line of no-discrimination)
that goes from the left bottom to the top right corners (see Figure 3.3). Points above the
diagonal line indicate good classification results, while points below the line indicate wrong
results.

It is recommended [109] to use receiver operator characteristic (ROC) curves when eval-
uating binary decision problems in order to avoid effects related to the chosen threshold θ.
However, ROC curves can present an overly optimistic view of an algorithm’s performance
if there is a large skew in the class distribution, as typically encountered in transcriptional
network inference because of sparseness. To tackle this problem, precision-recall (PR)
curves have been proposed as an alternative to ROC curves [12].
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3.4.2 PR curves

The precision quantity is given by

pre =
tp

tp+ fp
=

tp

#(t̂ij = 1)
(3.43)

It measures the fraction of real edges among the ones classified as positive.
The recall quantity (also called true positive rate (tpr)) is given by

rec = tpr =
tp

tp+ fn
=

tp

#(tij = 1)
(3.44)

It denotes the fraction of real edges that are correctly inferred. The objective of an inference
method is to maximize both precision and recall. These quantities depend on the threshold
chosen.

The PR curve is a diagram which plots precision (pre) against recall (rec) for different
values of the threshold [126](see Figure 3.4 for a PR curve corresponding to the ROC curve
in Figure 3.3). In a network inference setting, this diagram illustrates the trade-off between
eliminating many arcs (low recall due to high threshold) with confidence on the remaining
arcs (high precision) and keeping many arcs (high recall) with doubt on their significance
(low precision).

3.4.3 F-Scores

The F-score is a weighted harmonic average of precision and recall [126]:

Fβ(T̂ , T ) =
(1 + β)(pre)(rec)

βpre+ rec
(3.45)

where β is a non-negative real parameter denoting the weight of the recall w.r.t. precision.
This quantity lies between 0 and 1.

The three commonly used F-scores are β = 1,

F (T̂ , T ) =
2(pre)(rec)
pre+ rec

(3.46)

β = 2 (the F2-measure), which weighs recall twice as much as precision, and β = 0.5 (the
F0.5-measure), which weighs precision twice as much as recall.

A compact representation of the PR diagram can be returned by the maximum and/or
the average (avg) Fβ-score.

Fmaxβ (W, T ) = maxθ Fβ(T̂ (θ,W ), T )
F avgβ (W, T ) = avgθ[Fβ(T̂ (θ,W ), T )]

(3.47)
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Figure 3.4: Example of PR curves (generated with the R package ’minet’ [89])
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where θ is the threshold parameter.
These measures are used, in Chapter 4, as performance measure Φ of undirected net-

work inference methods (3.38).

3.5 Mutual Information Networks

Mutual information networks are a subcategory of inference methods. In these meth-
ods, a link between two nodes is set if it exhibits a high score based on pairwise mutual
information. The adoption of mutual information in the network inference task traces
back to Chow and Liu’s tree algorithm [23]. In Bayesian networks, mutual information has
been used by [101, 22, 80, 149] and later [120, 96] suggested the use of multiinformation
(Definition 2.11). In this section, a current state-of-the-art of network inference methods,
based on pairwise mutual information, is formulated.

Mutual information networks require the computation of the mutual information matrix
(MIM), a square matrix whose mimij element is given by,

mimij = I(Xi;Xj) (3.48)

It is the mutual information between Xi and Xj , where Xi is a discrete random vari-
able denoting the expression level of the ith gene in a transcriptional regulatory network
inference. An advantage of these methods lies in their affordable computational complex-
ity. This results from the fact that n(n−1)

2 calls of mutual information, based on bivariate
probability distributions, are required to compute the MIM. Since each estimation of a
bivariate distribution can be computed quickly and does not require a large amount of
samples, these methods are particularly adapted to dealing with microarray data. Mutual
information is a symmetric measure, hence it is not possible to derive the direction of an
edge. This limitation is common to all the following methods. However, this information
could be provided by edge orientation algorithms commonly used in Bayesian networks
(Section 3.6).

3.5.1 Chow-Liu Tree

The Chow and Liu approach consists in finding the maximum spanning tree on the
complete graph whose edge weights are the mutual information between two nodes [23].

In graph theory, a tree is a graph in which any two vertexes are connected by exactly
one path. A spanning tree is a tree that connects all the vertexes of the graph. The
maximum spanning tree is the spanning tree with the sum of edge weights more than or
equal to that of every other spanning tree.
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A maximum spanning tree can be done in O(n2 log n) using, for example, Kruskal’s
algorithm [94]. The drawback of this method lies in the fact that the resulting network
has a low number of edges. Precision and recall cannot be studied as a function of the
parameter. Chow-Liu tree is proved [83] to be a subnetwork of the network reconstructed
by the ARACNE algorithm described in Section 3.5.4.

3.5.2 Relevance Network (RELNET)

The relevance network approach [19] has been introduced for gene clustering and suc-
cessfully applied to infer relationships between RNA expression and chemotherapeutic
susceptibility [18]. It consists in inferring a network in which a pair of genes {Xi, Xj} is
linked by an edge if the mutual information I(Xi;Xj) is larger than a given threshold θ.
The complexity of the method is O(n2) since all pairwise interactions are considered.
This method does not eliminate all indirect interactions between genes. For example, if
gene X1 regulates both gene X2 and gene X3, this would cause a high mutual information
between the pairs {X1,X2}, {X1,X3} and {X2,X3}. As a consequence, the algorithm will
set an edge between X2 and X3 although these two genes interact only through gene X1.

Combining RELNET with the Gaussian estimator of mutual information (Section 2.6)
boils down to building a correlation network [70].

3.5.3 CLR Algorithm

The CLR algorithm [46] is an extension of the RELNET algorithm. This algorithm
derives a score from the empirical distribution of the mutual information for each pair of
genes. In particular, instead of considering the information I(Xi;Xj) between genes Xi

and Xj , it takes into account the score wij =
√
z2
i + z2

j where

zi = max
(

0,
I(Xi;Xj)− µi

σi

)
(3.49)

where µi and σi are respectively the mean and standard deviation of the empirical distri-
bution of the mutual information values I(Xi, Xk), k = 1, . . . , n. The pseudo code of CLR
is given in Algorithm 3.4. The CLR algorithm was successfully applied to decipher the
E. Coli transcriptional regulatory network [46]. CLR has a complexity in O(n2) once the
MIM is computed.

3.5.4 ARACNE

The Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) [83]
is based on the Data Processing Inequality (Theorem 2.9) stating that, if gene X1 interacts
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Figure 3.5: Figure from [46] illustrating the principle of CLR.

Algorithm 3.4 pseudo code of the normal version of CLR algorithm
Inputs: I(Xi;Xj), ∀i, j ∈ A = {1, 2, ..., n}
for all inputs Xi in the input space X
µi ← mean(I(Xi;Xj), j ∈ {1, 2, ..., n})
σi ← variance(I(Xi;Xj), j ∈ {1, 2, ..., n})

end-for
for each pair of variables Xi,j in the input space X
wij ← max

(
0, 1√

2
∗
{
I(Xi;Xj)−µi

σi
+ I(Xi;Xj)−µj

σj

})
end-for
Output: the weighted adjacency matrix W (having elements wij)
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Algorithm 3.5 pseudo code of ARACNE algorithm
Inputs: the MIM, i.e., I(Xi;Xj),∀i, j ∈ {1, 2, ..., n}
for each pair of variables Xi,j in the input space X
for each variable Xk in the space X−(i,j)

if(I(Xi;Xj) < I(Xi;Xk) and I(Xi;Xj) < I(Xj ;Xk))
wij ← 0

else
wij ← I(Xi;Xj)

end-for
end-for
Output: the weighted adjacency matrix W (having wij as elements)

with gene X3 through gene X2, then

I(X1;X3) ≤ min (I(X1;X2), I(X2;X3))

ARACNE begins by assigning to each pair of nodes a weight equal to their mutual
information. Then, as in RELNET, all edges for which I(Xi;Xj) < θ are removed, with θ
a given threshold. Eventually, the weakest edge of each triplet is interpreted as an indirect
interaction and is removed (see pseudo code Algorithm 3.5).

An extension of ARACNE removes the weakest edge only if the difference between the
two lowest weights lies above a threshold η. Hence, increasing θ lowers the number of
inferred edges while the opposite happens when increasing η.

If the network is a tree including only pairwise interactions, the method guarantees the
reconstruction of the original network, once it is provided with the exact MIM (see [83]).
ARACNE’s complexity is O(n3) since the algorithm considers all triplets of genes. In [83]
the method has been able to recover components of the transcriptional regulatory network
in mammalian cells and has outperformed Bayesian networks and relevance networks on
several inference tasks [83].

3.6 Bayesian networks and information theory

Bayesian network theory connects causality and probability theory. This connection
will give us a better understanding of mutual information networks and of complementary
variables. Therefore, this link is discussed here. However, most Bayesian network inference
algorithms (such as IC [102]) are too computationally costly for dealing with thousands of
variables such as microarray datasets and, for this reason, are not treated in this thesis.

A Bayesian network is a combination of a directed acyclic graph (DAG) G and a joint
probability distribution p. Bayesian networks use the graph G in order to encode the
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joint probability distribution p of a set of n variables. In particular, the DAG G can be
interpreted by saying that each variable Xi is independent, given its parents (variables
with arrows to Xi), of its non-descendants (variables to which there is no directed path
from Xi) [95].

p(X1, X2, ..., Xn) =
n∏
i=1

p(Xi|parents(Xi)) (3.50)

When a DAG G and a probability distribution p satisfy (3.50), the graph G is said to
satisfy the Markov condition, and is called a Bayesian network.

A word of caution is necessary here about the capacity of Bayesian networks to model
loops. Although cycles appear to have good possibilities for modelling feed-back and
feed-forward effects in transcriptional networks, there is no suitable joint probability to
model these situations. A distribution such as p(A|B)p(B|C)p(C|A) is not a well defined
probability distribution, apart from very special cases [140]. Furthermore, the notion of
loop is related to dynamics whereas we are modelling from i.i.d. samples (with no temporal
dependencies). Therefore, cycles are not allowed in Bayesian networks.

DAGs are imperfect representations of joint probability distributions. Indeed, not all
sets of conditional independence relations that might be satisfied by a probability distribu-
tion can be represented by these graphical models and two or more graphical models can
often represent the same conditional independence relations [123]. Hence, an additional
condition is required in order for G and p to match with (3.50):

Definition 3.9: [95] A DAG G and a probability distribution p satisfy the faithfulness
condition if the Markov condition entails all and only the conditional independencies in p.

A lot of definitions, properties and discussions have been made in order to assess or assume
that a graph G and a probability distribution p are faithful to each other, some of these are
discussed in Section 3.6.1. More information on that topic, can be found in [102, 95, 128].

An interesting property of faithful Bayesian networks is the following: the minimum
set that achieves optimal classification accuracy is the Markov blanket of a target variable
[132]. In a Bayesian network, the Markov blanket of a target variable is composed of
the variable’s parents, the variable’s children, and the variable’s children’s parents [101].
As a consequence, the optimal set of variables to predict a target is directly identified
in a Bayesian network. In the next chapter, experiments that rely on this property are
conducted.
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3.6.1 Causality

Bayesian networks not only offer a compressed view of a joint probability distribution,
but can bring a causal interpretation of the underlying process generating the distribution.
Let us stress this interesting feature, in information-theoretic terms, since it is related to
variable selection concepts such as variable complementarity.

Definition 3.10: [95] X is a cause of Y if there exists a value x ∈ X such that setting
X = x leads to a change in the probability distribution of Y .

The difference between seeing and acting is very important in the causal model literature.
[102] introduces the do(·) operator in order to formally make the difference.

Example 3.2: The probability that the pavement gets wet when we observe that the sprin-
kler is on is the same than the probability that the pavement gets wet when we set the sprin-
kler on p(pavement = wet|sprinkler = on) = p(pavement = wet|do(sprinkler = on)).
However, the probability to observe that the sprinkler is on given that we observe the
pavement wet is different than this probability when we set the pavement wet (by other
means than the sprinkler). When the pavement is wet, the probability that the sprinkler
was on, is increased, p(sprinkler = on|pavement = wet) > p(sprinkler = on). How-
ever, setting the pavement wet does not increase the probability that the sprinkler was on.
p(sprinkler = on|do(pavement = wet)) = p(sprinkler = on). An asymmetry appears
when using the do(·) operator. This is because the do(·) operator does not only set the
value of the conditioning variable to X = x, but also renders the conditioning variable X
independent of all its causes [102].

In the following, we denote “X causes Y ” using an arrow from X to Y , i.e., X → Y . A
causal link (undirected) between X and Y , i.e., X → Y or/and X ← Y , is denoted by
X ↔ Y .

The definition of causality states that a causal relation between two variables creates a
stochastic dependency between the probability distributions of causes and effects. Taking
mutual information as dependency measure, we obtain the following assertion:

Xi ↔ Y ⇒ I(Xi;Y ) > 0 (3.51)

However, (3.51) is not always true. A known example is the cancellation of two causal
pathways [95]. In most cases, a causality relationship implies a stochastic dependency
between the variables. As a result, in the following, we assume that causality implies
dependency.
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However, the converse is not true, dependency does not imply causality,

Xi ↔ Y : I(Xi;Y ) > 0

An objection to dependency implies causality relies on the common-cause effect. Indeed,
there is another possibility that can create a dependency between two variables: having
a common cause, i.e., Xi ← Xk → Xj . Two variables that have a common cause can be
dependent while manipulating one of them does not influence the other.

This is where the direct causality definition can help us. Let us repeat Definition 3.8
here,

X is a direct cause of Y if X is a cause of Y and there is no other variable W such
that once we know the value of W , a manipulation of X no longer changes the probability
distribution of Y .

This definition states that two dependent variables are no longer dependent once given
the direct cause. Or analogously, if there are no set of variables that cancel the depen-
dency between two other variables, then one of the variables is a direct cause of the other.
This remains true for the common-cause case since the dependency between the two conse-
quences should be cancelled given the true cause. In other words, we can state that if two
variables are dependent in every context, then these variables have a causal relationship.
Formulated in information-theoretic terms [22] it gives the following:

∀XS ⊂ X−(i,j) : I(Xi;Xj |XS) > 0⇒ Xi ↔ Xj (3.52)

There is an implicit strong assumption behind (3.52): no missing causes, that is all
the variables that cause at least two effects (two variables in the dataset) should also be
present in the dataset. Indeed, if there is a common cause to two observable effects, the
two effects are dependent in every context except once we condition on the common cause.
If the common cause is hidden then (3.52) can lead to false causality relationships.

Bayesian networks assume causal sufficiency, that is, there is no hidden common cause
(to two effects) in the dataset, i.e.,

∀(Xi, Xj) ∈ X, @(Xk /∈ X) : Xi ← Xk → Xj (3.53)

It should be noted that we can usually conceive intermediate unidentified variables
along each edge in the causal direction Xi → Xk → Xj , see the following example
from [128].

Example 3.3: If a is the event of striking a match and c is the event of the match catching
on fire and no other events are considered, then A causes C. However, if we add b which
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stands for the sulfur on the match tip that achieved sufficient heat to combine with oxygen,
then A no longer causes C directly. Rather A causes B and B causes C, i.e., A→ B → C.

When we consider an arc between a variable and its grand parent, the arc remains causal
since acting on the grand parent should change the distribution of the descendant variables.
However, if we miss a common parent and set a link between a variable and its brother,
then the link inferred with our rules is no longer causal. Indeed acting on the brother
does not change the distribution of the target variable. In the latter case, the semantic of
the link is lost. There are methods that try to remove the causal sufficiency assumption
by detecting some hidden variables but this goes beyond the scope of this work; for more
information on that topic, see for example [45].

At this stage, we do not know how to infer the directionality of a causality relationship.
If we would have some temporal information such as event x happens before event y, then
we could draw an arc from X to Y (assuming causality follows the arrow of time). If we
could manipulate the variables, we would see that the dependency between a cause and a
consequence remains when acting on the cause whereas it disappears when acting on the
consequence. In other words, acting on a consequence renders the consequence independent
from its cause(s), as seen in Example 3.2.

So the question that arises at this point is: can we infer the direction of an arc just
by making observations? Surprisingly the answer to that question is positive. This can be
done in some cases thanks to the explaining away effect.

Definition 3.11: [The explaining away effect] [95] Once the value of a common effect is
given, it creates a dependency between its causes because each cause explains away the
occurrence of the effect, thereby making the other cause less likely.

This is a common mechanism used by medical doctors when doing their diagnoses.

Example 3.4: Some cancer can cause headache but a lot of more probable diseases, such
as a cold, can also cause headache. Once a doctor has evidence that headaches are caused
by a cold, he stops searching for a cancer although having cold and having a cancer are two
independent events (see Figure 3.6).

Note that the explaining away effect is characterized by a negative interaction information
[67]. Hence, in information-theoretic terms [22] it can be expressed as follows:

Xi → Y ← Xj ⇒ I(Xi;Xj |Y ) > I(Xi;Xj) (3.54)

where I(Xi;Xj |Y ) > I(Xi;Xj) ⇔ I(Xi;Xj |Y ) − I(Xi;Xj) > 0 ⇔ C(Xi;Xj ;Y ) < 0.
Hence, the variables are complementary (see Section 3.1.5)
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Cancer Cold

Headache

Figure 3.6: Illustration of the explaining away effect

We have seen in Section 2.2.2 that interaction information is symmetric for the three
variables,

C(Xi;Xj ;Y ) = I(Xi;Xj)−I(Xi;Xj |Y ) = I(Xi;Y )−I(Xi;Y |Xj) = I(Xj ;Y )−I(Xj ;Y |Xi)
(3.55)

As a consequence, the reversal statement of (3.54) is not true,

Xi → Y ← Xj : I(Xi;Xj |Y ) > I(Xi;Xj)

However, given undirected causal links, we can orient them thanks to the interaction
information. This can be done in two ways:

First, if we have one variable Y , connected with two others, Xi and Xj , and there is a
complementarity between them, then the variable Y is a common effect of the two other
variables.

Xi ↔ Y ↔ Xj

I(Xi;Xj |Y ) > I(Xi;Xj)

}
⇒ Xi → Y ← Xj (3.56)

Second, if we have one variable Y that is a consequence of another variable Xi while
also connected to a third variable Xj and that there is no complementarity between them,
then the third variable is not another cause of the variable Y , hence it is a consequence.

Xi → Y ↔ Xj

I(Xi;Xj |Y ) ≤ I(Xi;Xj)

}
⇒ Xi → Y → Xj (3.57)

Note that these two last rules are an information-theoretic translation of the edge
orientation algorithm used in [102, 128]. Although edge orientation algorithms are not used
in this work, we have identified how complementary variables can be created artificially.
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3.7 Conclusion

With the increasing number of variables, exploration strategies of variable selection
algorithms have moved from an exhaustive search [1] to stochastic and sequential searches
[11, 74, 20]. The evaluation functions have also moved from wrapper approaches using a
learning algorithm as evaluation function [11, 74, 20] to the filter approach using simpler
evaluation functions such as mutual information [148, 49]. In a small sample setting, ap-
proximations of mutual information based on bi- and trivariate densities are often preferred
to the multivariate estimation of mutual information.

Network inference allows to model dependencies between variables using a graph. An
inference algorithm fed with microarray data returns a graph that can be interpreted as
a transcriptional regulatory network. Mutual information networks rely on the computa-
tion of a matrix of pairwise mutual informations. Since bivariate mutual information are
fast-to-compute, these techniques allow the inference of large networks, such as complete
transcriptional regulatory networks.

Bayesian networks infer directed acyclic graphs. While computationally too expensive,
these networks link causality, information theory and complementarity. This feature is
used in experiments depicted in the next chapter.

Information-theoretic variable selection and information-theoretic network inference
appear, at first sight, as two separate fields. However, the next chapter proposes a new
method that connects them.
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Chapter 4

Original Contributions

This chapter contains the main original contributions of the thesis:

1. A new criterion for variable selection (kASSI, Section 4.1) and its implementations
in

(a) a new forward selection algorithm [87](PREEST, Section 4.2) and its validation
(in Section 4.2.1).

(b) a new subset evaluation function [86] (DISR, Section 4.3) that is combined
with an effective implementation of the backward elimination [90] (MASSIVE,
Section 4.4). The experimental comparison between our new method and the
state-of-the-art methods is given in Section 4.5.1.

2. A new network inference method called MRNET (Section 4.6) that has lead to

(a) a new open-source R and Bioconductor package of network inference [89] (Sec-
tion 4.7).

(b) experimental studies on the impact of the intensity of noise, the number of sam-
ples, the number of variables, the estimators on information-theoretic network
inference [88, 99] (Section 4.8).

4.1 The k-Average Sub-Subset Information criterion (kASSI)

This section presents an original criterion for variable selection [87, 90] that maxi-
mizes the mutual information with the output without requiring the estimation of a large
multivariate density. The variable selection criterion is,

XkASSI
S = arg max

XS⊆X
{

∑
XV ⊆XS :|V |=k

I(XV ;Y )} (4.1)
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where XV denotes subsets of variables of XS (which is itself a subset of X). The rationale
behind the k-Average Sub-Subset Information (kASSI) criterion is that an approximation
of the information of a set of variables is related to the sum of the information of its subsets.
For instance, to estimate the mutual information I(X1,2,3,4;Y ) between the set of variables
{X1, X2, X3, X4} and the output Y , the criterion uses the sum of the mutual informations of
all the trivariate subsets: I(X1,2,3;Y ), I(X2,3,4;Y ), I(X1,3,4;Y ) and I(X1,2,4;Y ) (bivariate
subsets can also be used).

A theoretical justification for the criterion can be found in the following theorem stating
that the sum maximized in (4.1) appears in the lower bound of the quantity I(XS ;Y ).

Theorem 4.1: [Lower bound on mutual information]

1(
d

k

) ∑
XV ⊆XS :|V |=k

I(XV ;Y ) ≤ I(XS ;Y ) (4.2)

Proof: Since mutual information can only increase by adding variables (Section 2.1), we
have

max
i
I(XS−i;Y ) ≤ I(XS ;Y ) (4.3)

By definition of the average, one has:

1
d

d∑
i=1

I(XS−i;Y ) ≤ max
i
I(XS−i;Y ) ≤ I(XS ;Y ) (4.4)

�

Applying Theorem 4.1 recursively, we obtain

1
d

∑
i∈S

I(XS−i;Y ) ≥ 1
d(d− 1)

∑
i∈S

∑
j∈S−i

I(XS−(i,j);Y )

⇒ I(XS ;Y ) ≥ 1(
d

k

) ∑
XV ⊆XS :|V |=k

I(XV ;Y )

Another interpretation of the selection criterion (4.1) is provided by the averaging
estimators theory [60]. Suppose we aim to estimate the information per variable of a
subset XS , i.e., the quantity Iv(XS ;Y ) = I(XS ;Y )

d . In this case, the kASSI criterion boils
down to an estimator Îv of Iv which is the average of estimates of the target quantity
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computed for all the subsets of S of size k , i.e

Îv =
1(
d

k

) ∑
V⊆S:|V |=k

I(XV ;Y )
k

(4.5)

The criterion (4.1) can be interpreted as an averaging approach to the estimation of the
unknown quantity Iv which relies on the average of existing estimates of lower order.

Because of the combinatorial nature of the kASSI criterion, two particular values of k
are computationally interesting: the case k = d− 1 and the case k = 2.

The kASSI criterion is similar to the k-additive truncation of mutual information of
[75] (Section 3.3.9). We have developped the kASSI [87] without knowing [75].

Although both approaches are similar, the kASSI requires a smaller amount of compu-
tation of mutual information than the k-additive truncation.

4.2 The case k = d− 1: PREEST

The theoretical results described in the previous section have been implemented in a
new search algorithm for variable selection, hereafter denoted by PREEST. In this method
the (d− 1)ASSI becomes the estimator of the mutual information of a given subset.

The PREEST algorithm [87] is a variant of the forward selection (Section 3.2.1) com-
bined with the relevance criterion (Section 3.3.6). It relies on two different ways of assessing
the relevance of a subset of variables:

1. a classical estimation of the mutual information of I(XS ;Y ) using the empirical
entropy estimator and,

2. a pre-estimation of I(XS ;Y ) returned by the (d− 1)ASSI.

More precisely, we define the preestimation measure of a subset of variables as,

PREEST (XS) =
∑
i∈S

I(XS−i;Y ) (4.6)

The pre-estimation computation is fast since it only requires the computation of a
sum of d − 1 mutual informations (that have been computed in the previous step of the
forward selection). It follows that for a set of size d the pre-estimation has a computational
complexity of order O(d) whereas the evaluation of mutual information demands a cost of
order O(m× d) with m the number of training samples.

The rationale for the PREEST algorithm (see detailed pseudo-code in Alg. 4.1) is
that the evaluation assessment of a subset is carried out only if its pre-estimated value is
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sufficiently high. Two parameters are required: the number of the p best subsets returned
by the previous step, which has to be considered for further exploration and the number e
of the most promising subsets to be evaluated among the pre-estimated ones.

At each step, the algorithm first selects the p best subsets assessed so far and obtains
p× (n−d) new candidates by combining the p best subsets with the n−d remaining input
variables. The p×(n−d) sets are then pre-estimated by computing the kASSI. Eventually,
the e best subsets according to the pre-estimation assessments are evaluated by directly
computing the mutual information.

It follows that the algorithm carries out p×(n−d) pre-estimations and e evaluations at
each step. As a result, the complexity of each step has order O(max(p×n×d, e×m×d)).
In such situation, a conventional greedy strategy using mutual information would require
evaluating about n subsets per step, thus featuring a O(n×m× d) complexity per step.

Choosing p = m and e = n, we can shape the algorithm to have the same complexity
order as a classical greedy search (e.g. forward selection, Section 3.2.1). However, in this
case, our algorithm, besides evaluating e = n subsets, has the advantage of pre-estimating,
for an equal computational complexity, m times more subsets than the forward search. It
follows that the region of the variable space which is explored by the PREEST algorithm
is larger than the one considered by the greedy search.

A drawback of the algorithm resides in how to pre-estimate a variable set when its
subsets of size d − 1 have not been previously evaluated. This is expected to be a rare
event for small d but becomes exponentially more frequent for large d. Our solution is
to assign, by default, to these subsets the value of the worst evaluation of the preceding
step. This amounts to assume that the sets which have not been evaluated are presumably
non relevant subsets. This leads to a progressive bias of the pre-estimation assessment,
which for increasing d, tends to weigh more the best subsets of the previous evaluation.
Consequently, the method starts by exploring larger regions than the forward search for
small d but ends up converging to a classical forward search for increasing d.

A second version of the method consists in setting e = n
d , p = m

d in order to obtain a
computational cost equal to O(n×m).

4.2.1 Experiments on PREEST

The experimental validation of PREEST was done in collaboration with Olivier Cae-
len (see [87]). We carried out an experimental session based on seven datasets provided by
the UCI ML repository. The name of the datasets together with the number of variables
and samples are reported in Table 4.1. Each dataset is divided into a training set, used
to perform the variable selection, and an equal-sized test set. The continuous attributes
are discretized by first partitioning their domain into seven equal-sized intervals, and then
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Algorithm 4.1 Pseudo-code of the PREEST search algorithm
Inputs: the input variablesX, the output variable Y , a maximal subset size d, two numbers
e and p
LES is a list of pairs: teach variable of X together with its mutual information I(Xi;Y )
XS ← φ
while (|XS | < d)
for all the p best subsets XSj in the list of subsets LES
for all the inputs Xi

score← PREEST (XSj ,i)
if (score is among the e best scores)

add the subset XSj ,i in the list LPS of the e best preestimations
end-for

end-for
for all the e best subsets XSj in the list of preestimated subsets LPS
score← I(XSj ;Y )
if (score is among the p best scores)

add (XSj , score) in the list LES of the p best estimations
end-if

end-for
end-while
Output: the best subset XS of the list LES

associating a different class to each interval (see Section 2.7).
We compare the accuracy of the classical forward search and of two versions of the

PREEST algorithm. The two versions are obtained by setting two pairs of values for the
parameters p and e in order to shape properly their computational cost. In the first version
(PREEST1), we set e = n and p = m in order to impose the same complexity O(n×m×d)
as the forward search. In the second version (PREEST2), we set e = n

d , p = m
d in order to

obtain a complexity equal to O(n×m).
The accuracy of the three algorithms is assessed by performing ten selection tasks for

d = 1, . . . , 10 and measuring the mutual information (the higher, the better) in the test
sets. The value of the normalized mutual information 0 ≤ I(S;Y )

H(Y ) ≤ 1 averaged over the ten
test sets for the three algorithms is reported in Table 4.1. We have chosen this quantity
instead of the usual classification accuracy in order to avoid the bias deriving from the
adoption of a specific learning machine.

The column PREEST1 in Table 4.1 shows that the performance of the improved tech-
nique is equivalent to that of a classical forward search when we set the parameters in
order to obtain the same computational complexity.

The column PREEST2 shows that a drastic reduction of the complexity of the search
can be obtained without any major deterioration in the mutual information.
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dataset n m forward PREEST1 PREEST2
Wisconsin 32 97 0.79 0.79 0.77
Covertype3 54 5000 0.68 0.68 0.68
Lung-Cancer 57 16 0.83 0.84 0.84

Musk2 169 3299 0.78 0.75 0.72
Arrhythmia 280 226 0.73 0.74 0.71

Isolet 618 780 0.78 0.79 0.75
Multi-features 649 1000 0.88 0.88 0.88

Table 4.1: The first column indicates the name of the dataset coming from the UCI ML
repository, the two following columns indicate, respectively, the number n of variables and
the number m of samples of the selection set and test set. The three last columns report
the percentage of mutual information (averaged over the 10 test sets for d = 1, . . . , 10)
between the target and the subsets returned by the three algorithms.

4.3 The case k = 2: DISR

The kASSI criterion combined with a forward search for k = d is equivalent to the REL
approach (Section 3.3.6) and, for k = 1, it boils down to the ranking algorithm (Section
3.3.2). The case k = d − 1, considered in the previous section, can improve the forward
selection when there are enough samples to estimate a d− 1 variate density. However, in
microarray data, this is rarely the case.

Consider the case k = 2.

X2ASSI
S = arg max

XS∈X
{
∑

Xi∈XS

∑
Xj∈XS

I(Xi,j ;Y )} (4.7)

This formulation is particularly interesting since it can deal with complementarities up to
order 2 (like in Examples 2.2 and 2.3) while preserving the same computational complexity
as the MRMR and CMIM criteria (see Table 4.4).

A variant of criterion (4.7) is obtained by replacing the mutual information with a
normalized relevance measure defined by [147] (Section 2.3) as

SR(XS ;Y ) =
I(XS ;Y )
H(XS , Y )

(4.8)

This normalization aims to improve the selection strategy by penalizing inputs with large
entropies. We name the selection criterion double input symmetrical relevance (DISR).

XDISR
S = arg max

XS∈X
{
∑

Xi∈XS

∑
Xj∈XS

SR(Xi,j ;Y )} (4.9)

When DISR is combined with a forward selection (like the criteria MRMR, CMIM and
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REL, Section 3.3), the variable selected at each step is given by,

XDISR
i = arg max

Xi∈XR

{
∑

Xj∈XS

SR(Xi,j ;Y )} (4.10)

where XR = X−S .

4.3.1 A theoretical comparison of DISR with other criteria

It is interesting to compare the proposed criterion with respect to the state-of-the-art
methods of Section 3.3. The presented criteria can be analyzed under different perspectives.
We stress in Table 4.2,

1. which issues, among relevance, redundancy and complementarity, are taken into ac-
count, (based on our analysis of Section 3.3)

2. the ability of a criterion to avoid the estimation of large multivariate densities and

3. whether it returns a ranking of variables.

Table 4.4 reports a comparative analysis of the different techniques in terms of computa-
tional complexity of the evaluation step.

methods: RANK FCBF REL CMIM MRMR DISR
Select Relevance Yes Yes Yes Yes Yes Yes

Eliminate Redundancy No Yes Yes Yes Yes Yes
2th order Complementarity No No Yes No No Yes
Avoid Multivariate Density Yes Yes No Yes Yes Yes

Return Ranking Yes No Yes Yes Yes Yes

Table 4.2: Comparison of the properties (relevance, redundancy and complementarity,
ability to avoid estimation of large multivariate densities, ability to rank the variables)
that are taken into account in each selection criterion (based on our analysis of Section
3.3).

methods: REL CMIM MRMR DISR

calls of mutual information 1 d− 1 d d− 1

k-variate density d+ 1 3 2 3

computational cost O(d×m) O(d×m) O(d×m) O(d×m)

Table 4.3: The computational cost of a variable evaluation using REL, CMIM, MRMR,
DISR with the empirical entropy estimator.
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We observe from Tables 4.4 and 4.2 that the DISR criterion avoids redundant variables,
multivariate density estimation, but selects complementary variables (up to the second
order), at the same computational cost than CMIM and MRMR.

4.4 MASSIVE algorithm

The DISR maximization step can be expressed as a weighted Dense Subgraph Problem
(DSP) [3] or equivalently as a Dispersion Sum Problem [106]. The dense subgraph problem
is defined for a complete undirected graph on the node set A = {1, ..., n} where each edge
(i, j) takes a weight wij ≥ 0, with wii = 0. The goal is

maximize
∑
i∈A

∑
j∈A

wijvivj (4.11)

subject to
∑
i∈A

vi = d (4.12)

vi ∈ {0, 1}, i ∈ A (4.13)

which means to select a node subset S ⊆ A of fixed size |S| = d, such that the total edge
weight in the induced subgraph is maximal.

In the dispersion sum problem, n locations are given, where location i is distant from
location j by wij = I(Xi,j ;Y )

H(Xi,j ,Y ) , and the objective is to establish d facilities among the n
locations, as distant as each other (having the maximum average distance between facili-
ties).

The DISR optimization problem can be put in a DSP framework by setting:

1. the ith node represents the variable Xi,

2. the binary variable vi, i = 1, . . . , n takes the value 1 if the ith variable is selected and
0 otherwise

3. the weight wij = I(Xi,j ;Y )
H(Xi,j ,Y ) is the symmetrical relevance of the two variables linked

by the edge.

The DSP is a NP-hard problem since it can be reduced to the CLIQUE problem (see
[106]). However, there exists a branch-and-bound algorithm able to deal with up to 90
variables [106], and several promising results on the performance of greedy searches [21,
111]. [10] indicates that the backward elimination combined with a sequential search
(BESR) performs well on binary quadratic problems such as the DSP ([10] uses BESR
before a linear programming optimization). The BESR method starts with a set containing
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all the variables ( i.e. vj = 1 for all j ∈ A) and then selects the variable i whose removal
(i.e. vi = 1 ← 0) induces the lowest decrease of the objective function and so on, till the
adequate number of variable is reached (i.e.

∑
i∈A vi = d). The procedure is enhanced by

an iterative sequential replacement which, at each step, swaps the status of a selected and
a non-selected variable (i.e. swapping vi = 1 and vj = 0) such that the largest increase in
the objective function is achieved. The sequential replacement is stopped when no further
improvement is possible.

The combination of backward elimination and sequential search is a bidirectional search
(Section 3.2.3). The backward elimination strategy can be adopted here since considering
a n-variables-problem does not mean estimating a n-variate probability distribution as
is usually the case in variable selection (Section 3.2); instead, it increases the number of
elements wij that have to be summed in (4.9). The DISR criterion requires only symetrical
relevance of pairwise combinations of inputs, that are all computed and stored in the matrix
W .

The proposed method combines an evaluation function (DISR) able to select comple-
mentary variables and a search algorithm (the backward elimination) also able to select
complementary variables. We call this combination Matrix of Average Sub-Subset Infor-
mation for Variable Elimination (MASSIVE).

4.4.1 Computational Complexity

The proposed implementation works as follows:

1. the DISR-matrix is computed. This step demands n(n−1)
2 evaluations wij = I(Xi,j ;Y )

H(Xi,j ,Y )

since the average sub-subset information is symmetric.

2. a backward elimination is applied to the DISR-matrix. This computation has a O(n2)
complexity if the implementation for binary quadratic problems of [85] is adopted
(see Algorithm 4.2 for a detailed pseudo-code).

3. a sequential replacement is performed. This has also a O(n2) complexity [85].

Table 4.4 compares the computational complexity of the evaluation step of different
techniques. Note that the table reports a naive implementation of CMIM. A more efficient
implementation of CMIM is given in [49]. The total complexity of MASSIVE is in O(F×n2)
where F is the cost of an estimation of the mutual information involving m samples and
three variables (two inputs and one output). For instance, if the empirical entropy is
used (Section 2.6), MASSIVE has a cost O(m × n2). A complete ranking of variables
can be returned by MASSIVE, by selecting the subset composed of the n variables (with
no increase in the asymptotic computational cost). In that case, the ranking is given by
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Algorithm 4.2 Detailed pseudo-code of the backward elimination for quadratic optimiza-
tion problem (given a matrix of weights W ). The C++ code for this method is freely
available on the Internet http://www.ulb.ac.be/di/map/pmeyer/links.html.
Inputs: number d of variables to select, matrix of weights W (with elements wij) of size
n× n
S ← {1, 2, ..., n}
Initialize score vector: for k ∈ S: scorek ←

∑
j wjk

Select minimal score: b← arg mink∈S(scorek)
while |S| > d

Update subset by eliminating worst variable: S ← S \ b
Update score vector:scorek ← scorek − wkb, k ∈ S
Select minimal score: b← arg mink∈S(scorek)

end-while
Output: subset S

the backward elimination since there are no remaining variables to be used for sequential
replacement. Note that a conventional forward selection (up to d variables) based on
an information criterion (e.g., MRMR) demands O(n × d) evaluations, each having a
complexity depending on d and on the number of samples m (i.e. O(m× n× d2) with the
empirical estimator). A conventional backward selection, where the evaluation is performed
inside the loop and not precomputed as in MASSIVE, demands O(n2) evaluations (i.e.
O(m × n3) with the empirical estimator). Hence, the MASSIVE implementation makes
possible the adoption of a BESR strategy at a cost lying between the conventional forward
and backward approaches.

methods: REL CMIM MRMR DISR MASS

calls of evaluation function (n×d)
2

(n×d)
2

(n×d)
2

(n×d)
2

(n×n)
2

calls of MI by evaluation 1 d− 1 d d− 1 1
k-variate density d+ 1 3 2 3 3

Table 4.4: The number of calls of the evaluation function is n × d in a forward selection
strategy. Note that d = n for a backward elimination or for a complete ranking of the
n variables. The computational cost of the criteria REL, CMIM, MRMR, DISR and
MASSIVE is the number of calls of mutual information (MI) multiplied by the cost of an
estimation of the mutual information involving a k-variate density and m samples.
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4.5 Experiments with MASSIVE

4.5.1 Experiments on real data

The experimental validation of MASSIVE has been performed in collaboration with
Colas Schretter [90]. The validation consists mainly of four steps.

1. We select (or rank) a set of variables using all considered methods.

2. We choose the adequate number of variables to be selected by using a wrapper
approach on the ranking made by each method.

3. We assess each selected subset by counting the number of adequate classifications
using different learning algorithms. Since the same learning algorithm is used for all
the selection methods, the best selection technique is considered as the one leading
to the best classification accuracy.

4. We use a statistical test in order to assess when our method significantly outperforms
the others.

4.5.1.1 Datasets

The first experiment uses eleven publicly available datasets. The inputs are the gene
expressions of a tumor cell (from a patient) and the target variable is the type of cancer.
The dataset characteristics are detailed in Table 4.5 where n is the number of variables
corresponding to the number of gene expressions, m is the number of tumor samples, and
|Y| is the number of cancer classes.

Each continuous variable is discretized according to two different methods: equal width
and equal frequency (described in Section 2.7). The number of intervals of each input is
chosen with the Scott criterion (described in Section 2.7). The entropy estimation method
used on the discretized dataset is the empirical entropy (described in Section 2.6). This
estimator is known to be biased but fast to compute, i.e., in O(m× d). Note also that all
the variable selection algorithms are compared with the same entropy estimation method
(on the same number m of samples) and at each step of a forward/backward search, n− d
subsets of variables of exactly the same size are compared. As a result, the impact of the
bias of the estimator on the ranking of subsets (in each step of each algorithm) is assumed
to be weak (see Section 2.6).

MASSIVE has been compared with five state-of-the-art approaches discussed in Sec-
tion 3.3: the Ranking algorithm, the FCBF and three filters based on the Relevance
criterion, the MRMR criterion, and the CMIM criterion.
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datasets n m |Y| ts (min)
1 SRBCT 2308 83 4 0,7
2 Leukemia1 5327 72 3 3
3 DLBCL 7129 77 2 5,5
4 9_Tumors 7129 60 9 4,6
5 Brain_Tumor1 7129 60 2 4,5
6 Brain_Tumor2 12625 50 2 11,4
7 Prostate_Tumor 12600 102 2 23
8 Leukemia2 12582 72 3 16,5
9 11_Tumors 12533 174 11 43
10 Lung_Cancer 12600 203 5 46,4
11 14_Tumors 15009 308 26 198

Table 4.5: The 11 datasets of microarray cancer from http://www.tech.plym.ac.uk/spmc/.
The column n contains the number of different sequences measured in the microarray, m
the number of clinical samples and |Y| the number of cancer classes. The column ts reports
the time needed to select 15 variables with the C++ MASSIVE toolbox on a 3.4GHz Intel
Pentium4 processor with 2GB RAM.

A two-fold cross-validation is used to partition each dataset into separate datasets for
variable selection and validation. Each selection method selects d = 15 variables. Then a
wrapper approach (see Section 3.1) selects its optimal subset size among the 15 selected
variables. It occured in the experimental session that the classifiers required less than ten
variables in order to reach their optimal accuracy (for most datasets).

The learning procedure uses a 3-nearest neighbor classifier and a SVM learning algo-
rithm (with a Gaussian kernel) (Section 2.5). The assessment of each selection criterion
goes as follows:

1. The dataset is split into two equal parts: the selection set and the validation set.

2. The ranking of d = 15 variables is performed on the selection set,

3. a 10-fold cross-validation (for a number of variables ranging from 1 to 15, according
to the ranking returned by the filter) is performed on the validation set. In other
words, the validation set is split into ten parts in order to select the best number of
variables.

4. The best classification accuracy, i.e., # correct classifications
# samples , is computed (on the vali-

dation set) and reported in Section 4.5.1.2.

5. The selection set and the validation set are swapped and steps 1 to 4 are repeated.
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6. The adjusted p-value (using the method available in [9]) of a statistical paired permu-
tation test (with MASSIVE), is computed from the vectors of (classification) error,
and a bold-faced notation is used when the p-value is lower than 0.05.

As far as the implementation of the learning methods and of the statistical test is concerned,
we used the algorithms made available by the R statistical language [54].A word of caution
is necessary here concerning the classification accuracy measured using a 10-fold cross
validation. In theory, it would have been better to split the dataset into three parts
(selection, learning and validation). However, there are too few samples in microarray
datasets to do that. Since we are assessing the selection of variable, we choose to avoid the
selection bias by using a selection set and to accomodate with the learning bias introduced
by using the learning set as validation set.

4.5.1.2 Results

MASS CMIM MRMR FCBF RANK REL

1 83.13 42.17 78.31 57.83 77.11 53.01
2 87.5 80.56 91.67 70.83 86.11 68.06
3 81.82 80.52 90.91 76.62 84.42 75.32
4 6.67 5 10 0 8.33 6.67
5 63.33 60 63.33 55 65 61.67
6 74 58 64 58 72 54
7 91.18 91.18 90.2 83.33 90.2 78.43
8 88.89 79.17 87.5 43.06 80.56 54.17
9 60.92 42.53 54.02 22.99 49.43 34.48
10 79.8 80.3 81.28 74.88 77.83 80.3
11 19.48 12.99 18.51 12.01 19.48 12.99

Avg 67 57 66 50 65 53

Table 4.6: SVM classifier and equal width quantization: Accuracy with 10-fold
cross-validation on the test set. Bold notation is used to identify which techniques are
significantly different (pval < .05) from MASSIVE in terms of accuracy.
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MASS CMIM MRMR FCBF RANK REL

1 89.16 49.4 90.36 49.4 79.52 49.4
2 91.67 81.94 97.22 75 90.28 69.44
3 85.71 85.71 87.01 71.43 87.01 72.73
4 16.67 16.67 16.67 6.67 10 6.67
5 60 56.67 61.67 55 58.33 65
6 64 62 66 58 66 58
7 85.29 81.37 88.24 80.39 89.22 83.33
8 87.5 81.94 83.33 50 73.61 58.33
9 48.85 36.78 50.57 33.33 40.8-0.225 27.59
10 83.74 79.8 80.3 77.34 81.77 77.34
11 16.56 13.31 15.26 11.04 16.56 15.58

Avg 66 59 67 52 63 53

Table 4.7: 3NN classifier and equal width quantization: Accuracy with 10-fold
cross-validation on the test set. Bold notation is used to identify which techniques are
significantly different (pval < .05) from MASSIVE in terms of accuracy.

MASS CMIM MRMR FCBF RANK REL

1 79.52 38.55 79.52 49.4 72.29 43.37
2 87.5 81.94 88.89 81.94 83.33 81.94
3 94.81 80.52 92.2 77.92 81.82 80.52
4 15 8.33 8.33 5 8.33 6.67
5 65 65 65 63.33 65 65
6 76 54 68 60 60 52
7 91.18 84.31 94.12 81.37 92.16 84.31
8 93.06 61.11 90.28 51.39 90.28 63.89
9 46.55 33.33 53.45 19.54 52.3 34.48
10 82.27 74.88 83.25 74.88 78.33 71.43
11 17.53 15.58 22.4 8.44 19.16 11.04

Avg 68 54 68 52 64 54

Table 4.8: SVM classifier and equal frequency quantization: Accuracy with 10-fold
cross-validation on the test set. Bold notation is used to identify which techniques are
significantly different (pval < .05) from MASSIVE in terms of accuracy.
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MASS CMIM MRMR FCBF RANK REL

1 79.52 50.6 84.34 46.99 72.29 55.42
2 88.89 77.78 90.28 76.39 86.11 77.78
3 93.51 83.12 92.21 83.12 92.21 81.82
4 23.33 18.33 21.67 11.67 21.67 13.33
5 58.33 66.67 66.67 60 60 60
6 62 68 68 60 68 68
7 89.22 81.37 90.2 75.49 90.2 84.31
8 83.33 72.22 81.94 62.5 90.28 72.22
9 50.57 38.51 55.17 17.24 51.15 32.18
10 82.76 78.33 82.76 74.88 78.82 71.43
11 18.83 15.26 29.87 10.06 19.81 12.01

Avg 66 59 69 53 66 57

Table 4.9: 3NN classifier and equal frequency quantization: Accuracy with 10-fold
cross-validation on the test set. Bold notation is used to identify which techniques are
significantly different (pval < .05) from MASSIVE in terms of accuracy.

The experimental results show that the MASSIVE method is competitive with the
state-of the-art information-theoretic filters. In particular, MASSIVE is significantly better
than all other information-theoretic criteria, except MRMR. The results for the FCBF are
poor on some datasets because of its internal stop criterion (Section 3.3). Indeed, on several
datasets, the FCBF stopped after having selected one variable, only.

4.5.2 Experiments with synthetic datasets

The previous results show that MASSIVE is competitive with state-of-the-art ap-
proaches although it is not able to outperform the MRMR approach. A more detailed
comparison between MASSIVE and MRMR is then worthy to be done. This section con-
siders two synthetic experiments designed in order to

1. show a situation where the notion of complementarity may be advantageous, and to

2. assess the capability of the MASSIVE algorithm to select the optimal variable set
for a large number of samples.

4.5.2.1 Classification accuracy with complementary variables

This experiment shows that the notion of complementarity used by the DISR brings a
significant improvement with respect to MRMR (in terms of accuracy) if variable depen-
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dency follows specific causal patterns.
Let us consider a set of random variables A,B, Y, S,H whose statistical dependencies

are described by the Bayesian network (Section 3.6) of Figure 4.1 and the conditional
probability of Table 4.10. The interpretation of the Bayesian network is the following: an
abnormal cellular activity (A) can cause a cancer (Y) and activate a blood marker (B).
A possible symptom of that cancer is a headache (H). Luckily, headaches may have also
innocuous causes, like sinus infection (S).

Figure 4.1: Artificial Bayesian network describing the interaction of variables : abnormal
cellular activity (A), cancer (Y), blood marker (B), headache (H) and sinus infection (S).

p(A) p(B|A = 1) p(Y |A = 1) p(H|S = 1, Y = 0) p(H|S = 1, Y = 1)
(0.8,0.2) (0.3, 0.7) (0.3, 0.7) (0.2, 0.8) (0.1, 0.9)
p(S) p(B|A = 0) p(Y |A = 0) p(H|S = 0, Y = 1) p(H|S = 0, Y = 0)
(0.3,0.7) (0.7, 0.3) (0.7, 0.3) (0.2, 0.8) (0.9, 0.1)

Table 4.10: All variables are binary, p(X)=(P(X=0),P(X=1)). For example, the first
column indicates that 20% patients coming to the consultation have an abnormal cellular
activity and 70% have a sinus infection; the 4th column indicates that there is 80% chance
having some headache either if you have a sinus infection or cancer.

Let us consider a classification task where the goal is to predict the variable Y using
both the set {A,B,H, S} of variables and a set of ten irrelevant variables. The training
set is composed of 300 i.i.d. samples and the test set is composed of 700 i.i.d. samples.
A 3-Nearest Neighbor (Section 2.5.2) and a Support Vector Machine algorithm (Section
2.5.3) have been used to assess the performances of both filters using the five first variables
selected.

In this example only the three variables {A,S,H} are relevant for predicting Y . Indeed,
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MASSIVE MRMR
3NN 62 56
SVM 75 70

Table 4.11: Accuracy percentage with 10-fold cross-validation on the test set, boldfaced if
p-value by a paired permutation test <0.05. The learning algorithm consider the five first
variables selected by both filters.

they form the Markov blanket of Y (see Section 3.6.1) composed of the target’s parents,
the target’s children, and the target’s children’s parents. The Markov blanket of a variable
has been shown to be the minimum set that achieves optimal classification accuracy (see
Section 3.6.1).

We show in theoretical and experimental terms that MASSIVE is able to select {A,S,H}.
Indeed, variable S and H are complementary in order to predict Y since

C(S;H;Y ) = I(S;Y |H)− I(S;Y ) > 0

MRMR, instead, selects only the variables A and H which are relevant to the output
and discards all the others since they are either irrelevant or are redundant with A or H.
Indeed, in a pairwise setting S is independent of Y (null relevance) and redundant with
H. The different selections of MASSIVE and MRMR have a significant impact on the
classification accuracy (Table 4.11). The dataset and the R code used to generate it are
available with the MASSIVE C++ code.

4.5.2.2 Optimal variable set selection

Although the goal of these experiments is to assess the potentiality of the complemen-
tarity notion in small sample and real variable selection problem, it is worthy investigating
how the selection accuracy scales up with the number of samples. In order to carry out this
analysis we have used the SynTReN generator, a simulator designed to generate microar-
ray data by selecting subnetworks from E. coli and S. cerevisiae source networks [33]. The
mRNA expression levels for the genes in the network are obtained by simulating equations
based on the Michaelis-Menten and Hill kinetics under different conditions (see [33]).

The SynTRen simulator has been used to generate 14 different classification tasks where
the target is the simulated expression of a target gene and the set of relevant inputs is made
of seven genes which are connected to the target in the network. For each of the simulated
tasks 500 irrelevant variables were added to the seven genes that regulate the target and
training sets with increasing numbers of generated samples (m = 100, 1000, 2000). The
resulting dataset is then discretized using the equal frequency binning algorithm (see Sec-
tion 2.7). A MRMR and a MASSIVE variable selection (d = 7) was performed. For each
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MRMR MASS MRMR MASS MRMR MASS
2 3 3 4 3 6
5 6 6 7 6 7
5 7 6 7 6 7
2 2 3 2 3 6
2 3 3 3 3 6
2 2 3 3 3 6
1 1 2 1 2 6
2 2 3 3 3 6
3 4 3 3 3 7
2 2 3 3 3 2
2 3 3 6 3 7
1 1 2 1 2 6
2 3 3 4 3 7
3 3 4 5 4 7

35% 43% 48% 53% 48% 86%

Table 4.12: Table reporting the number of relevant variables selected by MRMR and
MASSIVE on 14 datasets of 507 input variables and 100 (column 2,3), 1000 (column 4,5)
and 2000 (column 5,6) samples, respectively. The expression of the target is generated by a
synthetic microarray data simulator based on Michaelis-Menten and Hill kinetics equations.
The last row reports the average covering of the selection.

dataset, the number of relevant variables selected by MRMR and MASSIVE is reported in
the table 4.12. We observe that

1. for both algorithms the quality of the selection increases with the number of samples
coherently with the conclusion reached in [66],

2. the quality of the MASSIVE selection converges more rapidly toward the optimum.

4.5.3 Conclusion

As shown by the experiments, MASSIVE is a competitive information-theoretic variable
selection algorithm. It outperforms four out of five state-of-the-art approaches tested
on eleven real datasets. Although MRMR is an effective variable selection technique on
these datasets, it is easy to build examples where MASSIVE outperforms MRMR. This
is because the combination of DISR and backward elimination allows MASSIVE to select
complementary variables. MRMR typically discards indirect interaction characterized by
complementarity variables such as the variable sinus infection (S) in the example given
in Figure 4.1. However, in the next section (Section 4.6) we introduce a new method of
network inference that benefits from this weakness of MRMR.



103

4.6 Minimum Redundancy Networks (MRNET)

This section introduces our original approach to network inference based on variable
selection technique. Using variable selection strategies for network inference has many
advantages [65, 133]. For instance:

1. variable selection algorithms can often deal with thousands of variables in a reason-
able amount of time. This makes inference scalable to large networks.

2. variable selection algorithms may be easily made parallel, since each of the n selec-
tions tasks is independent.

3. variable selection algorithms can use a priori knowledge. For example, knowing the
list of regulator genes of an organism improves the selection speed and the inference
quality by limiting the search space of the variable selection step to this small list of
genes. The knowledge of existing edges can also improve the inference. For example,
in a sequential selection process, as used in the forward selection, the next variable
is selected given the already selected variables. As a result, the performance of the
selection can be strongly improved by conditioning on known relationships.

However, there is a major disadvantage in using a variable selection technique for network
inference: it selects indirect interactions (such as variable’s children’s parents). Indeed, we
have seen that the objective of variable selection is selecting, among a set of input variables,
those that lead to the best predictive model. We have also seen that the minimum set
that achieves optimal classification accuracy in a faithful Bayesian network is the Markov
blanket of a target variable, composed of the variable’s parents, the variable’s children, and
the variable’s children’s parents. The problem is the following: the variable’s children’s
parents are indirect relationships. Hence, drawing a link between the selected variables and
the target leads to false conclusions. In order to avoid the problem, one should determine
which of the selected variables are indirect links (such as the variable’s children’s parents)
and which are direct. The latter feature render these techniques much less attractive.
However, since MRMR relies only on pairwise interactions, it does not take into account
the information gain due to conditioning. As a result, the MRMR criterion is less exposed
to the inconvenient of most variable selection techniques while sharing their interesting
properties. Paradoxically, the weakness of MRMR in the variable selection setting renders
that criterion attractive for a network inference task.

The matrix wij = I(Xi,j ;Y )/H(Xi,j , Y ), computed in MASSIVE, allows a fast approx-
imation of the mutual information between any subset and the output Y . However, if
we change the target variable Y ′, another matrix w′ij = I(Xi,j ;Y ′)/H(Xi,j ;Y ′) has to be
computed. In the case of MRNET, the matrix mimij = I(Xi;Xj) is the same for every
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target variable Y = Xi, i ∈ A = {1, 2, ..., n} of the dataset. Hence, a series of supervised
MRMR gene selection procedures, where each gene in turn plays the role of the target
output Y , can be performed from a single matrix.

4.6.1 MRNet Algorithm

The MRMR method has been introduced together with a forward selection for per-
forming filter selection in supervised learning problems (Section 3.3.8). Let us consider
a supervised learning task where the output is denoted by Y and X is the set of input
variables. The method ranks the set X of inputs according to a score that is the difference
between the mutual information with the output variable Y (maximum relevance) and the
average mutual information with the previously ranked variables (minimum redundancy).
The rationale is that direct interactions should be well ranked whereas indirect interactions
(i.e. the ones with redundant information with the direct ones) should be badly ranked
by the method. The forward selection starts by selecting the variable Xi having the high-
est mutual information to the target Y . The second selected variable Xj will be the one
with a high information I(Xj ;Y ) to the target and at the same time a low information
I(Xj ;Xi) to the previously selected variable. In the following steps, given a set XS of
selected variables, the criterion updates XS by choosing the variable which maximizes the
MRMR score (see Section 3.3.8). At each step of the algorithm, the selected variable is
expected to allow an efficient trade-off between relevance and redundancy.

The network inference approach, that we call MRNET, consists in repeating this se-
lection procedure for each target gene by putting Y = Xi and inputs X−i = X \ {Xi},
i = 1, . . . , n, where X is the set of the expression levels of all genes. For each pair {Xi, Xj},
MRMR returns two (not necessarily equal) scores si and sj according to (3.25). The score
of the pair {Xi, Xj} is then computed by taking the maximum between si and sj . A
specific network can then be inferred by deleting all the edges whose score lies below a
given threshold θ (as in RELNET, CLR and ARACNE). Thus, the algorithm infers an
edge between Xi and Xj either when Xi is a well-ranked predictor of Xj (si > θ), or when
Xj is a well-ranked predictor of Xi (sj > θ).

An effective implementation of the forward selection using a similarity matrix is given
in [85] (see Algorithm 4.2 for backward implementation and Algorithm 4.3 for forward im-
plementation in network inference). This implementation demands an O(f×n) complexity
for selecting f variables. It follows that MRNET has an O(f × n2) complexity since the
variable selection step is repeated for each of the n genes. In other terms, the complexity
ranges between O(n2) and O(n3) according to the value of f . Note that the lower the f
value, the lower the number of incoming edges per node to infer and consequently the lower
the resulting complexity. In practice, we stop the selection of variables when the average
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Algorithm 4.3 Detailed pseudo-code of the MRNET algorithm (given the MIM).
Inputs: a matrix of weights MIM (with elements mimij) of size n
Initialize W matrix to n× n zeros
for each variable i ∈ A = {1, 2, ..., n}
S ← b with b the index of the maximum value in the column i of the MIM
wbi ← mimbi

R← A \ {i, b}
Initialize relevance vector: for k ∈ R: relevancek ← mimik

Initialize redundancy vector: for k ∈ R: redundancyk ← mimbk

while wbi > 0 and |S| < n
Select best variable:b← arg maxk∈R(relevancek − redundancyk/|S|)
wbi ← relevanceb − redundancyb/|S|
Update subset by selecting best variable: S ← {S, b}
Update search space by removing best variable: R← R \ b
Update redundancy vector:redundancyk ← redundancyk +mimbk, k ∈ R

end-while
end-for
Output: the weighted adjacency matrix W

redundancy exceeds the relevance. The backward elimination could also be adopted with
this implementation. However, this would lead to a computational complexity of O(n3)
even if the inferred network is sparse. Hence, adopting a forward selection accelerates the
inference.

Mutual information is a symmetric measure. As a result, it is not possible to derive
the direction of the edge from its weight. This limitation is common to all the mutual
information network inference methods presented so far. However, this information could
be provided by edge orientation algorithms commonly used in Bayesian networks (see
3.6.1).

4.7 The R/Bioconductor package MINET

R is a widely used open source language and environment for statistical computing
and graphics [54]. It is a GNU version of S-Plus that has become a reference in statistical
analysis [137]. A particular strength of R lies in the ability to write packages containing
specific methods that can interact with existing generic tools such as plotting functions for
graphs and curves. Bioconductor is an open source and open development software project
for the analysis and comprehension of genomic data [53]. The latter is mainly based on
the R programming language.

In this work, we have designed the R/Bioconductor package minet, which stands for
Mutual Information NETwork inference. This package has been written in collaboration
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DISC MIM NET NORM

estimator methoddisc.method nbins

Figure 4.2: The four steps in the minet function (discretization disc, mutual information
matrix build.mim, inference mr.net, aracne.net, clr.net and normalization.

with Frédéric Lafitte [89] and is freely available on the R CRAN package resource [54] as
well as on the Bioconductor website [53].

4.7.1 Network inference

Once the R platform is launched, the package and its description can be loaded using
the following command:

library(minet)
library(help=minet)

The main function of the package is

minet(dataset, method, estimator, disc, nbins)

where dataset is a matrix or a dataframe containing the data, method is the inference
algorithm (such as ARACNE, CLR or MRNET) and estimator is the entropy estimator
(such as Miller-Madow, shrink, Dirichlet or empirical).

All the estimators require discretized data. The disc argument allows the user to choose
between two binning algorithms (i.e. equal frequency or equal width) and the parameter
nbins sets the number of bins. This function returns the inferred network as a weighted
adjacency matrix with values ranging from 0 to 1. The higher a weight, the higher the
evidence that a gene-gene interaction exists.

The function minet sequentially executes the four subroutines mentioned in Figure
4.2.

4.7.1.1 Discretization

The discretization step uses the function

discretize( data, disc= "equalfreq", nbins=sqrt(nrow(data)) )
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where data is the dataset to be discretized and disc can take two values: "equalfreq"
and "equalwidth" (default is "equalfreq"). nbins, the number of bins to be used
for discretization, is by default set to

√
m, where m is the number of samples, as rec-

ommended in [146]. Other choices are possible through internal R functions such as
nclass.scott(data), nclass.fd(data) or nclass.sturges(data).

4.7.1.2 MIM computation

The computation of the mutual information matrix happens with the function

build.mim(data, estimator="mi.empirical")

The arguments are data, the gene expression dataset (or any dataset where columns
contain variables/features and rows contain outcomes/samples) and estimator, that is the
mutual information estimator. The package implements four estimators : "mi.empirical",
"mi.shrink", "mi.sg","mi.mm" (default:"mi.empirical") - refering to the estimators ex-
plained above.

4.7.1.3 Network inference

Three network inference methods are available in the package. They receive as ar-
gument the MIM matrix and return a matrix which is the weighted adjacency matrix
of the network. aracne(mim), clr(mim), mrnet(mim) implement respectively CLR,
ARACNE and MRNET.

It should be noted, that the modularity of the minet package allows to test network
inference methods on other distance matrices than the MIM or for example to use other
mutual information estimators to build the MIM. A correlation matrix can be computed
using the R function cor(data,mehod=”pearson”).

4.7.1.4 Normalization

In the minet function, a final normalization step sets all weights of the inferred adjancy
matrix between 0 and 1 by subtracting the minimum value and dividing by the maximum
value of the adjacency matrix.

4.7.1.5 Visualization

In order to display the inferred network, the Rgraphviz package can be used with the
following commands (see Figure 4.3):
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Figure 4.3: Graph generated by minet and plotted with Rgraphviz

library(Rgraphviz)
graph <- as(returned.matrix, "graphNEL")
plot(graph)

4.7.2 Validation

In order to assess the methods, the package is equipped with different validation tools.
The validate(net, syn.net,steps=50) function allows to compare an inferred network
net to a reference network syn.net, described by a Boolean adjacency matrix. The valida-
tion process consists in removing the inferred edges having a score below a given threshold
and computing the related confusion matrix, for steps thresholds ranging from the mini-
mum to the maximum value (in the matrix). A resulting dataframe table containing the
list of all the confusion matrices is returned and can be analyzed.

In particular, the function pr(table) returns the related precisions and recalls, rates(table)
computes true positive and false positive rates while the function fscores(table, beta)

returns the Fβ−scores. The functions show.pr(table) and show.roc(table) allow the
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Figure 4.4: Precision-Recall curves plotted with show.pr(table)

user to plot PR-curves and ROC-curves (Figure 4.4), respectively, from a list of confusion
matrices.

data(syn.net)
net <- minet(syn.data)
table <- validate(net, syn.net)
show.pr(table)

4.7.3 Additional Material

In addition to all the available functions implemented in the minet package (Table
4.13), there is a dataset syn.data of 50 genes and 100 samples that has been generated
from the network syn.net using the microarray data generator Syntren [33]. A demo
script (demo(demo)) shows the main functionalities of the package using this dataset.

For the sake of computational efficiency, all the inference functions as well as the
discretization are implemented in C++. As a reference, a network of five hundred variables
may be inferred in less than one minute on an Intel Pentium 4 with 2Ghz and 512 DDR
SDRAM.
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Function Action

discretize(data, disc,
nbins)

Unsupervised discretization

build.mim(data,
estimator)

Mutual information matrix estimation

mrnet(mim) MRNET algorithm

aracne(mim) ARACNE algorithm

clr(mim) CLR algorithm

validate(net1,net2) Computes confusion matrices

pr(table) Computes precisions and recalls from confusion matrices

rates(table) Computes true positive rates and false positive rates from
confusion matrices

show.pr(table) Displays precision-recall curves from confusion matrices

show.roc(table) Displays receiver operator characteristic curves from
confusion matrices

fscores(table) Returns a vector of Fβ-scores from confusion matrices

Table 4.13: Functions in the package minet
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4.8 Experiments on MRNET

The experimental framework consists of four steps (see Figure 4.5): the artificial net-
work and data generation, the computation of the mutual information matrix, the inference
of the network, and the validation phase.

Original

Network

Artificial

Dataset

Mutual
Information

Matrix

Inferred

Network

Precision-
Recall

Curves and
F-Scores

Network and Data Generator

Validation Procedure

Entropy Estimator Inference Method

Figure 4.5: An artificial microarray dataset is generated from an original network. The
inferred network can then be compared to this true network.

4.8.1 Comparing network inference methods

This section details each of the four steps of Figure 4.5. These experiments have been
conducted with Frédéric Lafitte [88].

4.8.1.1 Syntactic Microarray Data Generators

In order to assess our algorithm and compare it to other methods, we created a set
of benchmarks on the basis of artificially generated microarray datasets. In spite of the
limitations of synthetic data, this makes a quantitative assessment of the accuracy possi-
ble thanks to the availability of the true network underlying the microarray dataset (see
Figure 4.5).

We have used two different generators of artificial gene expression data: the data gen-
erator described in [113] (hereafter referred to as the sRogers generator) and the SynTReN
generator [33]. The two generators, whose implementations are freely available on the
World Wide Web, are sketched in the following paragraphs.

sRogers generator. The sRogers generator produces the topology of the genetic net-
work according to an approximate power-law distribution on the number of regulatory
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connections out of each gene. The steady-state of the system is provided by integrating a
system of differential equations. This generator offers the possibility to obtain 2k different
measures (k wild-type and k knock-out experiments). These measures can be replicated R
times, yielding a total of N = 2kR samples. After the optional addition of noise, a dataset
containing normalized microarray measurements is returned.

SynTReN generator. The SynTReN generator generates a network topology by select-
ing subnetworks from E. coli and S. cerevisiae source networks. Then, transition functions
and their parameters are assigned to the edges in the network. Eventually, mRNA ex-
pression levels for the genes in the network are obtained by simulating equations based
on Michaelis-Menten and Hill kinetics under different conditions. As for the previous gen-
erator, after the optional addition of noise, a dataset containing normalized and scaled
microarray measurements is returned.

Generation. The two generators have been used to synthesize thirty datasets. Table 4.14
reports for each dataset the number n of genes, the number N of samples and the Gaussian
noise intensity (expressed as a percentage of the signal variance).

4.8.1.2 Mutual Information Matrix Estimation

In order to benchmark MRNET versus RELNET, CLR and ARACNE, the same MIM is
used for the four inference approaches. Several estimators of mutual information have been
proposed in literature [100, 83, 7, 46]. Here we test the Miller-Madow entropy estimator
and a parametric Gaussian density estimator (see Sec. 2.6). The data were discretized
using the equal width algorithm (see Sec. 2.7) with |Xi| =

√
m. Note that the complexity

of both estimators is O(m), where m is the number of samples. Since the whole MIM
cost is O(m × n2), the MIM computation could be the bottleneck of the whole network
inference procedure for a large number of samples (m >> n). We deem, however, that at
the current state of the technology this should not be considered as a major issue since the
number of samples is typically much smaller than the number of measured variables.

4.8.1.3 Results and Discussion

A thorough comparison would require the display of the PR-curves (Figure 4.6) for
each dataset. However, the PR-curve information can often be replaced by the maximum
F-score (Section 3.4.3) as done in Table 4.15.

Also, in order to asses the significance of the results, a Macnemar’s test (Appendix
D.1) is performed .

We may summarize the results as follows:
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Dataset Generator topology n N noise
RN1 sRogers power-law tail 700 700 0%
RN2 sRogers power-law tail 700 700 5%
RN3 sRogers power-law tail 700 700 10%
RN4 sRogers power-law tail 700 700 20%
RN5 sRogers power-law tail 700 700 30%
RS1 sRogers power-law tail 700 100 0%
RS2 sRogers power-law tail 700 300 0%
RS3 sRogers power-law tail 700 500 0%
RS4 sRogers power-law tail 700 800 0%
RS5 sRogers power-law tail 700 1000 0%
RV1 sRogers power-law tail 100 700 0%
RV2 sRogers power-law tail 300 700 0%
RV3 sRogers power-law tail 500 700 0%
RV4 sRogers power-law tail 700 700 0%
RV5 sRogers power-law tail 1000 700 0%
SN1 SynTReN S. Cerevisae 400 400 0%
SN2 SynTReN S. Cerevisae 400 400 5%
SN3 SynTReN S. Cerevisae 400 400 10%
SN4 SynTReN S. Cerevisae 400 400 20%
SN5 SynTReN S. Cerevisae 400 400 30%
SS1 SynTReN S.Cerevisae 400 100 0%
SS2 SynTReN S. Cerevisae 400 200 0%
SS3 SynTReN S. Cerevisae 400 300 0%
SS4 SynTReN S. Cerevisae 400 400 0%
SS5 SynTReN S. Cerevisae 400 500 0%
SV1 SynTReN S. Cerevisae 100 400 0%
SV2 SynTReN S. Cerevisae 200 400 0%
SV3 SynTReN S. Cerevisae 300 400 0%
SV4 SynTReN S. Cerevisae 400 400 0%
SV5 SynTReN S. Cerevisae 500 400 0%

Table 4.14: Datasets with n the number of genes and m the number of samples.
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Miller −Madow Gaussian

RE CLR AR MR RE CLR AR MR
SN1 0.22 0.24 0.27 0.27 0.21 0.24 0.3 0.26
SN2 0.23 0.26 0.29 0.29 0.21 0.25 0.31 0.25
SN3 0.23 0.25 0.24 0.26 0.21 0.25 0.31 0.26
SN4 0.22 0.24 0.26 0.26 0.21 0.25 0.28 0.26
SN5 0.21 0.23 0.24 0.24 0.2 0.25 0.27 0.24
SS1 0.21 0.22 0.22 0.23 0.19 0.24 0.24 0.23
SS2 0.21 0.24 0.28 0.29 0.2 0.24 0.27 0.25
SS3 0.21 0.24 0.27 0.28 0.2 0.24 0.28 0.25
SS4 0.22 0.24 0.27 0.27 0.21 0.24 0.3 0.26
SS5 0.22 0.24 0.28 0.29 0.21 0.24 0.3 0.26
SV1 0.32 0.36 0.41 0.39 0.3 0.4 0.44 0.38
SV2 0.25 0.28 0.35 0.33 0.25 0.35 0.36 0.32
SV3 0.21 0.24 0.3 0.28 0.21 0.28 0.3 0.27
SV4 0.22 0.24 0.27 0.27 0.21 0.24 0.3 0.26
SV5 0.24 0.23 0.29 0.29 0.22 0.24 0.31 0.26

S-AVG 0.23 0.25 0.28 0.28 0.21 0.26 0.30 0.27
RN1 0.59 0.65 0.6 0.61 0.89 0.87 0.92 0.93
RN2 0.5 0.57 0.5 0.49 0.89 0.87 0.92 0.92
RN3 0.5 0.55 0.5 0.52 0.89 0.87 0.92 0.92
RN4 0.46 0.51 0.47 0.47 0.89 0.87 0.92 0.91
RN5 0.42 0.46 0.41 0.4 0.88 0.86 0.91 0.91
RS1 0.1 0.11 0.09 0.1 0.19 0.19 0.19 0.18
RS2 0.35 0.32 0.31 0.31 0.45 0.44 0.47 0.46
RS3 0.38 0.32 0.36 0.38 0.58 0.56 0.6 0.6
RS4 0.47 0.54 0.47 0.5 0.75 0.75 0.8 0.79
RS5 0.58 0.68 0.6 0.64 0.9 0.86 0.93 0.93
RV1 0.52 0.38 0.46 0.46 0.72 0.75 0.72 0.72
RV2 0.49 0.53 0.49 0.53 0.71 0.71 0.71 0.71
RV3 0.45 0.5 0.45 0.48 0.69 0.69 0.71 0.71
RV4 0.47 0.51 0.48 0.48 0.69 0.7 0.74 0.72
RV5 0.47 0.52 0.47 0.48 0.7 0.68 0.74 0.73

R-AVG 0.45 0.48 0.44 0.46 0.72 0.71 0.74 0.74
Tot-AVG 0.34 0.36 0.36 0.37 0.47 0.49 0.52 0.51

Table 4.15: Maximum F-scores for each inference method using two different mutual in-
formation estimators. The best methods (those having a score not significantly weaker
than the best score, i.e. p-value < 0.05) are typed in boldface. Average performances on
SynTReN and sRogers datasets are reported respectively in the S-AVG, R-AVG lines.
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Figure 4.6: PR-curves for the RS3 dataset using Miller-Madow estimator. The curves are
obtained by varying the rejection/acceptation threshold.

1. Sensitivity to the number of variables: The number of variables ranges from 100 to
1000 for the datasets RV1, RV2, RV3, RV4 and RV5, and from 100 to 500 for the
datasets SV1, SV2, SV3, SV4 and SV5. Figure 4.8 shows that the accuracy and the
number of variables of the network are weakly negatively correlated. This appears
to be true independently of the inference method and of the MI estimator.

2. Sensitivity to the number of samples: The number of samples ranges from 100 to
1000 for the datasets RS1, RV2, RS3, RS4 and RS5, and from 100 to 500 for the
datasets SS1, SS2, SS3, SS4 and SS5. Figure 4.7 shows how the accuracy is strongly
and positively correlated to the number of samples.

3. Sensitivity to the noise intensity: The intensity of noise ranges from 0% to 30% for the
datasets RN1, RN2, RN3, RN4 and RN5, and for the datasets SN1, SN2, SN3, SN4
and SN5. The performance of the methods using the Miller-Madow entropy estimator
decreases significantly with increasing noise, whereas the Gaussian estimator appears
to be more robust (see Figure 4.9).

4. Sensitivity to the mutual information estimator: Figure 4.10 exhibits that the Gaus-
sian parametric estimator gives better results than the Miller-Madow estimator. This
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is particularly evident with the sRogers datasets.

5. Sensitivity to the data generator: The SynTReN generator produces datasets for
which the inference task appears to be harder, as shown by Table 4.15.

6. Accuracy of the inference methods: Table 4.15 supports that MRNET is competitive
with the other approaches.
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Figure 4.7: Impact of the number of samples on accuracy (sRogers RS datasets, Gaussian
estimator).
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Figure 4.9: Influence of the noise on MRNET accuracy for the two MIM estimators
(sRogers RN datasets).



118

200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

MRNet 700 Genes, Rogers Datasets

Samples

F1
Sc
or
e

Empirical
Gaussian

Figure 4.10: Influence of mutual information estimator on MRNET accuracy for the two
MIM estimators (sRogers RS datasets).

4.8.2 Study of the impact of the estimator

In the previous experiment, two simple estimators have been used for variable selection
and network inference. This results from the assumption we made, that the bias of an
entropy estimation should penalize equally (with the same number of samples and the
same number of variables) all subsets for the task at hand. In the following experiments,
we study the impact of the combination estimator-discretization on network inference task
containing noise and missing values in the dataset. These experiments have been performed
with Catharina Olsen [99].

4.8.2.1 Network generation

The synthetic benchmark relies on twelve artificial microarray datasets generated by the
SynTReN generator [33]. This simulator emulates the gene expression process by adopt-
ing topologies derived from subnetworks of E.coli and S.cerevisiae networks. Interaction
kinetics are modeled by non-linear differential equations based on Michaelis-Menten and
Hill kinetics.

The datasets are described in Table 4.16 with respect to the number m of samples and
the number n of genes.
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No. Dataset source net n m

1 ecoli_300_300 E.coli 300 300
2 ecoli_300_200 E.coli 300 200
3 ecoli_300_100 E.coli 300 100
4 ecoli_300_50 E.coli 300 50
5 ecoli_200_300 E.coli 200 300
6 ecoli_200_200 E.coli 200 200
7 ecoli_200_100 E.coli 200 100
8 ecoli_200_50 E.coli 200 50
9 ecoli_100_300 E.coli 100 300
10 ecoli_100_200 E.coli 100 200
11 ecoli_100_100 E.coli 100 100
12 ecoli_100_50 E.coli 100 50

Table 4.16: Generated datasets. Number of genes n, number of samples m.

4.8.2.2 Introducing missing values

In order to study the impact of missing values, expression values have been removed
from the generated datasets. The number of missing values is distributed according to the
β(a, b) distribution with parameters a = 2 and b = 5. The maximal allowed number of
missing values is a third of the entire dataset. This distribution was used, instead of the
uniform distribution, in order to have input variables with different probabilities of missing
values.

4.8.2.3 Setup

For each experiment, ten repetitions were carried out. Each dataset was analyzed
using three inference methods (i.e. MRNET, ARACNE and CLR, Sections 3.5 and 4.6)
and the following estimators: Pearson correlation, empirical, Miller-Madow, shrink and
the Spearman correlation coefficient (Section 2.6). The empirical, the Miller-Madow and
the shrink estimator were computed applying the equal width and the equal frequency
discretization approaches. Furthermore, the computation was carried out with and without
additive Gaussian noise (having 50% variance of the observed values). Each of these setups
was also assessed with introduced missing values.

4.8.2.4 Validation

The maximal F-score has been computed for each experiment (see Section 3.4.3). Using
a paired t-test, the maximal F-scores were then compared and statistically validated.
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4.8.2.5 Results

The results of the synthetic benchmark are collected in Table 4.17 which returns the F-
score for each combination of inference method, mutual information estimator and nature
of the dataset (noisy vs. not noisy, complete vs. missing data). Note that the maximal
F-score is highlighted, together with the F-scores which are not significantly different from
the best.

We analyse the results according to four different aspects: the impact of the estimator,
the impact of the discretization, the impact of the inference algorithm and the influence
of sample and network size. The section concludes with the identification of the best
combination of inference algorithm and estimator.

Impact of the estimator:

1. No NA and no noise: the empirical and the Miller-Madow estimator with equal
frequency binning lead to the highest F-scores for the MRNET and the ARACNE
inference methods. The Spearman correlation is not significantly different from the
best, in case of ARACNE, and close to the best in case of MRNET. The CLR
method is less sensitive to the estimator and the best result is obtained with the
Pearson correlation.

2. Noisy data or missing value (NA): the Pearson correlation and the Spearman corre-
lation lead to the highest F-score for all inference methods. A slight better accuracy
of the Pearson correlation can be observed in presence of missing values. The Spear-
man correlation outperforms the other estimators in MRNET and ARACNE when
complete yet noisy datasets are considered. In CLR, Pearson and Spearman lead the
ranking without being significantly different.

Impact of the discretization:

1. No NA and no noise: the equal frequency binning approach outperforms the equal
width binning approach for all discrete estimators. The gap between the two dis-
cretization methods is clearly evident in MRNET and less striking in ARACNE and
CLR.

2. NA or noise: the differences between binning algorithms are attenuated.

Impact of the inference algorithm:

1. No NA and no noise: the MRNET inference technique outperforms the other algo-
rithms.
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MRNET
Estimator no noise noise no noise noise avg

no NA no NA NA NA
Pearson 0.2006 0.1691 0.1790 0.1611 0.1775
Spearman 0.3230 0.1771 0.1464 0.1333 0.1950
Emp eqf 0.3420 0.1551 0.1136 0.0868 0.1744
Emp eqw 0.2028 0.1650 0.1036 0.0822 0.1384
MM eqf 0.3396 0.1524 0.1140 0.0924 0.1746
MM eqw 0.1909 0.1592 0.1068 0.0883 0.1363
Shr eqf 0.3306 0.1506 0.1150 0.0788 0.1688
Shr eqw 0.1935 0.1574 0.1090 0.0839 0.1360

ARACNE
Pearson 0.1117 0.1082 0.1054 0.1069 0.1081
Spearman 0.1767 0.1156 0.1167 0.1074 0.1285
Emp eqf 0.1781 0.1042 0.0993 0.0765 0.1145
Emp eqw 0.1287 0.1082 0.0892 0.0727 0.0997
MM eqf 0.1786 0.1032 0.0985 0.0783 0.1147
MM eqw 0.1217 0.1049 0.0931 0.0767 0.0881
Shr eqf 0.1736 0.1000 0.1009 0.0697 0.1111
Shr eqw 0.1152 0.1045 0.0898 0.0717 0.0953

CLR
Pearson 0.2242 0.1941 0.2231 0.1911 0.2081
Spearman 0.2197 0.1915 0.1806 0.1582 0.1863
Emp eqf 0.2123 0.1729 0.1847 0.1397 0.1774
Emp eqw 0.2098 0.1724 0.1799 0.1327 0.1737
MM eqf 0.2128 0.1729 0.1860 0.1427 0.1786
MM eqw 0.2083 0.1723 0.1845 0.1384 0.1759
Shr eqf 0.2096 0.1670 0.1864 0.1311 0.1735
Shr eqw 0.2030 0.1659 0.1822 0.1333 0.1711

Table 4.17: Results using MINET with inference methods MRNET, ARACNE and CLR;
noise 50% of the signal variance (“noise”), number of missing values maximal one third of
the dataset (“NA”); Estimators: Pearson, Spearman, empirical, Miller-Madow and shrink,
the last three with equal frequency (“eqf”) and equal width (“eqw”) binning approaches; in
bold: maximum F-scores and not significantly different values.
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2. The situation changes in presence of noisy or missing values. Here CLR appears to
be the most robust by returning the highest F-scores for all combinations of noise
and missing values.

Impact of the number of sample and network sizes:
The role of network size is illustrated in Figure 4.11, which shows how the F-score

decreases as long as the network size increases. This behavior can be explained by the
increasing difficulty of recovering a larger underlying network in front of an increasing
dimensionality of the modelling task.

In Figure 4.12, the values of the F-score are not clearly in favour of the larger sample
sizes. It can be observed that starting from the case m = 200 the three curves increase.

Conclusion: It emerges from Table 4.15 that the most promising combinations are rep-
resented by the MRNET algorithm with the Spearman estimator and the CLR algorithm
with the Pearson correlation. The former seems to be less biased because of its good per-
formance in front of non-noisy datasets while the latter seems to be more robust since less
variant in front of additive noise.

4.8.3 Comparison on Biological Data

We proceeded by i) setting up a dataset which combines several public domain microar-
ray datasets about the yeast transcriptome activity, ii) carrying out the inference with the
two selected techniques, and iii) assessing the quality of the inferred network with respect
to two independent sources of information: the list of interactions measured by means of an
alternative genomic technology and a list of biologically known gene interactions derived
from the TRANSFAC database.

4.8.3.1 The dataset

The dataset has been built by first normalizing and then joining ten public domain
yeast microarray datasets, whose number of samples and origin is detailed in Table 4.18.
The resulting dataset contains the expression of 6352 yeast genes in 711 experimental
conditions.

4.8.3.2 Assessment by ChIP-chip technology

The first validation of the network inference outcome is obtained by comparing the
inferred interactions with the outcome of a set of ChIP-chip experiments. The ChIP-
chip technology, detailed in [16], measures the interactions between proteins and DNA by
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Figure 4.11: Mean F-scores and standard deviation with respect to number of genes, for
all 10 repetitions with additive Gaussian noise and no missing values. a) MRNET, b)
ARACNE and c) CLR
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Figure 4.12: Mean F-scores and standard deviation with respect to number of samples,
for all 10 repetitions with additive Gaussian noise and no missing values. a) MRNET, b)
ARACNE and c) CLR
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Datasets Samples Origin
1 7 [34]
2 7 [24]
3 77 [127]
4 4 [48]
5 173 [52]
6 52 [63]
7 63 [64]
8 300 [64]
9 8 [98]
10 20 [55]

SUM 711 [99, 79]

Table 4.18: datasets

identifying the binding sites of DNA-binding proteins. The procedure can be summarized
as follows. First, the protein of interest is cross-linked with the DNA site it binds to, then
double-stranded parts of DNA fragments are extracted. The ones which were cross-linked
to the protein of interest are filtered out from this set, reverse cross-linked and their DNA
are purified. In the last step, the fragments are analyzed using a DNA microarray in
order to identify gene-gene connections. For our purposes it is interesting to remark that
the ChIp-chip technology returns for each pair of genes a probability of interaction. In
particular we use, for the validation of our inference procedures, the ChIp-chip measures
of the yeast transcriptome provided in [58].

4.8.3.3 Assessment by biological knowledge

The second validation of the network inference outcome relies on existing biological
knowledge and in particular on the list of putative interactions in Saccaromyces Cerevisiae
published in [125].

This list contains 1222 interactions involving 725 genes and in the following we will
refer to this as the Simonis list.

4.8.3.4 Results

In order to make a comparison with the Simonis list of known interactions, we limited
our inference procedure to the 725 genes contained in the list.

The quantitative assessment of the final results is displayed by means of a receiver
operating characteristics (ROC) and the associated area under the curve (AUC). This
curve compares the true positive rate (tpr) to the false positive rate (fpr) (see Section
3.4.1)
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method AUC
Harbison 0.66

CLR-Pearson 0.55
MRNET-Spearman 0.54

MRNET-Miller-Madow 0.53
CLR-Miller-Madow 0.52

random 0.5

Table 4.19: AUC for: Harbinson, CLR with Gaussian, MRNET with Spearman, CLR with
Miller-Madow, MRNET with Miller-Madow.

Figure 4.13 displays the ROC curves and Table 4.19 reports the associated AUC for
the following techniques: the ChIP-chip technique, the MRNET-Spearman correlation
combination, the CLR-Gaussian combination, the CLR-Miller-Madow combination, the
MRNET-Miller-Madow combination and the random guess.

A first consideration to be made about these results is that network inference methods
are able to be significantly better than a random guess also in real biological settings. Also
the two combinations which appeared to be the best in synthetic datasets confirmed their
supremacy over the Miller-Madow based techniques also in real data.

However the weak, though significative, performance of the networks inferred from
microarray data requires some specific considerations.

1. It is worth mentioning that the information coming from microarray datasets is
known to be less informative than the one coming from the ChIP-chip technology.
Microarray datasets remain nowadays however more easily accessible to the exper-
imental community and techniques able to extract complex information from them
are still essential for system biology purposes.

2. Both the microarray dataset we set up for our experiment and the list of known
interactions we used for assessment are strongly heterogeneous and concern different
functionalities in yeast. We are confident that more specific analyses on specific
functionalities could increase the final accuracy.

3. Like in any biological validation of bioinformatics methods, the final assessment is
done with respect to a list of putative interactions. It is likely that some of our
false positives could be potentially true interactions, or at least deserve additional
investigation.
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4.9 Conclusion

Variable selection algorithms are composed of two parts: a search strategy and an
evaluation function. We have proposed at first to improve the classical search strategy
called the forward selection, by using a faster evaluation function ((d-1)ASSI), that is
an approximation of the mutual information. Although our new search method performs
as well as the forward selection with a smaller computational cost, it is not adapted to
the low number of samples typically encountered in microarray dataset. However, the
approximation (DISR) using combinations of only tri-variate (two inputs, one output)
probability distributions is well suited for microarray data. This new criterion (DISR) has
the following strengths:

1. it copes with complementarities up to order two, while having the same complexity
as state-of-the-art methods,

2. it is proved to be in the lower bound of the quantity approximated (mutual informa-
tion),

3. finding the best subset in terms of DISR evaluation reduces to a well-known quadratic
optimization problem (the DSP). This consideration has lead us to bring back the
backward elimination strategy in variable selection algorithms. Actually, backward
elimination is more adapted to the selection of complementary variables, than forward
selection.

Although MRMR is an effective variable selection technique, it omits complementary vari-
ables from the selection. This drawback in variable selection becomes a strength for net-
work inference. Indeed, network inference can be performed through successive variable
selection procedures if only direct interactions are selected. Hence, algorithms that select
complementary variables are less adapted to network inference. MRMR also relies on pair-
wise mutual informations. Hence, it can be called from a matrix of mutual information
(MIM) such as ARACNE or CLR. Our new method, MRNET, has been shown competitive
with the state-of-the-art techniques on many datasets. In particular, the combination of
MRNET with the Spearman rank correlation outperforms nearly all other information-
theoretic inference methods on many synthetic and real datasets. Finally, an open-source
package that implements MRNET, CLR and ARACNE methods is now available on the
CRAN repository and on the Bioconductor repository.
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Chapter 5

Conclusion

This thesis has provided variable selection and network inference methods for datasets
having thousands of variables, tens of noisy samples, non-linear multivariate dependencies
between variables and little a priori knowledge. Our objective has been motivated by the
analysis of microarray data whose applications can lead to new diagnosis tools (using vari-
able selection) and new target of treatments of various diseases (using network inference).

5.1 Variable Selection

Variable subset selection in the filter/wrapper approach for datasets with many vari-
ables can be seen as a combinatorial optimization problem in a very large dimensional
space. The evaluation function and the search engine have to be improved consequently in
order to deal with problems of high dimensionality. A large number of variables requires

1. a fast evaluation function

2. a search algorithm able to converge towards a “good” solution with as few evaluations
as possible.

Furthermore, the low number of samples and the noise, typical in microarray data, render
the use of conventional approaches difficult. Finally, the lack of assumptions and the
poor knowledge of the “non-linear combination of features” existing in genomics make the
situation even worse.

We have introduced a new information-theoretic filter for mining microarray data and
we compared it with state-of-the-art approaches. Theoretically, our new selection criterion
(kASSI) is justified by maximizing a term appearing in the lower bound of the mutual in-
formation of a subset. The normalized second-order approximation of our criterion (DISR)
is well suited for microarray data because
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1. its low computational cost in function of n allows to deal with a large number of
variables,

2. large multivariate mutual informations are approximated by combining trivariate
mutual informations. As a result, the method can deal with few samples

3. complementarity two-by-two influence the selection (at the same computational cost
as state-of-the-art methods). The latter feature is interesting in biology where gene
or protein combinations have to be detected.

An appealing aspect of our method lies in the fact that it forms a well-known quadratic
optimization problem: the DSP. This observation has led towards a search strategy: back-
ward elimination combined with sequential replacement. This expensive method (in terms
of the number of subset evaluations) was made possible through the computation and
memorization of the DISR-matrix. The experimental results of that method are on par or
better than the other state-of-the-art approaches reviewed here.

5.2 Network Inference

Network inference can be seen as an extension of variable selection. Inferring a network
can be done by selecting relevant variables for each variable of the dataset. Since datasets
are large, variable selection methods should be fast. In this work, we have introduced a new
network inference method, called MRNET. This method relies on an effective method of
information-theoretic variable selection called MRMR. Similarly to other network inference
methods, MRNET relies on pairwise interactions between genes, making the inference of
very large networks (up to several thousands of genes) possible.

MRNET has been experimentally compared to three state-of-the-art information-theoretic
network inference methods, namely RELNET, CLR and ARACNE, on various tasks. Mi-
croarray datasets have been generated artificially with two different generators, in order
to effectively assess their inference power. Also, different mutual information estimation
methods have been used. The experimental results showed that MRNET is competitive
with the benchmarked information-theoretic methods. This conclusions remained valid
when methods have been compared on real data.

Finally, an open-source R package, where MRNET, RELNET, ARACNE and CLR are
implemented, has been accepted as an official package of the R CRAN software and of the
open library of bioinformatics software: Bioconductor.
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5.3 Discussion

This thesis relied on the following claims:

1. Microarray data analysis is a major biomedical issue.

2. Capturing non-linear dependencies leads to better results than assumptions of lin-
earity.

3. The study of variable interactions is relevant to data analysis.

The work developped in the thesis makes now possible a critical discussion of these claims.

Microarray data analysis is a major biomedical issue Microarray experiments al-
low for the observations of a patient transcriptional response to a disease or to a treatment.
We can expect, that with the maturation of microarray technology, the datasets will be-
come bigger (more samples and more variables) and less noisy. Hence variable selection
techniques, based on mutual information (non-linear, quite sensitive to noise compared to
correlation, fast w.r.t. number of samples and of variables) would become more and more
attractive.

Though microarrays have an important future, other new techniques are coming to
light, such as proteomic measurements or ChIP-chip experiments, we are convinced that
variable selection and network inference algorithms will play a major role in the analysis
of these data, too.

Capturing non-linear dependencies leads to better results than the assumption
of linearity Our last experiments clearly show that estimators based on linear correla-
tions are more robust to noise than the other estimators. Can we conclude that the data
exhibits a linear behavior?

As you assume linearity you are reducing the variance of the estimators because the
number of parameters is reduced. However, it may also increases the bias if the dependen-
cies are strongly non-linear. This is the bias-variance trade-off introduced in Section 2.4.1.2.
The variance reduction issue might be more important than the bias reduction issue. How-
ever, microarray technology is improving, we can expect to have datasets with lower noise
and more samples from which non-linear relationships could be easily extracted. For this
reason, we believe that information-theoretic methods should become more popular in the
future.
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Variable interactions are relevant to data analysis The thesis introduced two main
variable interactions: redundancy and complementarity. From the experiments, it clearly
appears that dealing with redundancy is essential. Our method of variable selection focuses
on complementarity by using second order interactions. However, other applications with
a lower number of variables and a higher number of samples would allow to use a higher
order of complementarity. The kASSI criterion expresses a kind of bias-variance trade-off:
as the dimensionality of the multivariate density used for computing mutual information
is increased, higher order interactions can be captured. However, doing so can decrease
the accuracy of the estimation (and increases the computational cost).

An additional role of complementarity is causality detection via the explaining away
effect. Hence, the study of complementarity should remain a promising field.

5.4 Future Direction

This section aims to sketch some future directions to improve this work. We mention
three main research axis:

1. Algorithmic improvements:

(a) Discretization methods: indeed, the last experimental study (Section 4.8) has
shown an important impact of discretization on network inference. Hence, new
discretization techniques are required to improve the inference.

(b) Entropy estimators: Spearman and Pearson based estimators appear to be the
best ones (Section 4.8), but other estimators based on continuous data should
be investigated.

(c) Search engines for variable selection: many heuristics and meta-heuristics have
been omitted from the field of investigation of this work. However, combining
them with our evaluation function (DISR) could give rise to new results.

(d) Subset evaluation function: information-theoretic methods form a subfield of
variable selection strategies. There are other non-linear information measures
that should be tested in the future.

(e) Network inference: it appears from our experiments that methods based on
linear assumptions are competitive with non-linear ones. As a result, partial
correlation and differential equation networks, that have been partly discarded
because of their linearity, should be studied.

(f) Causal inference: in this work, causality is studied under the framework of
Bayesian networks. However, causality is also studied in philosophy, statistics
or economics. These fields should be investigated and related to this work.
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2. Biological validation: our work has focused on theoretical and experimental valida-
tion of our original methods. We have shown that they are competitive with state-
of-the-art approaches. However, applications of these methods to biological data
have to be performed in view of discovering new gene interactions. For instance, the
inference of the human transcriptional regulatory networks is a promising field.

3. Extension of techniques: the tools of variable selection and network inference devel-
oped in our thesis can be considered as starting points for further developments.

(a) MASSIVE and MRNET could benefit from the ability to deal with time series
datasets. The dynamics of genetic interactions have been omitted in this work
but it is becoming more and more important in bioinformatics.

(b) The ability of detecting hidden variables should significantly improve the accu-
racy of our methods, because MASSIVE and MRNET implicitly assume that
all the relevant variables are in the dataset.

(c) The arcs produced by MRNET are not oriented, arcs orientation algorithms
could improve network inference.

(d) The trade-off between relevance and redundancy adressed by MRMR weights
arbitrarily redundancy and relevance equally. Furthermore, the forward selec-
tion might not be the most adequate algorithm to efficiently adress a trade-off
as evaluation function. New search methods and new weighting strategies could
also lead to better minimum redundancy networks.
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Appendix A

Introduction

A.1 Biological Background

Biological applications have motivated many choices of methods and algorithms in this
work. As a consequence, we depict here a short biological background. A word of caution
is necessary here: the mechanisms described in the following are a crude picture of the
much more complex processes of gene expression and regulation that happen inside a cell.
More details can be found in [59].

A.1.1 Gene expression

A protein is a molecule composed of a sequence of amino acids. This sequence deter-
mines the shape of the protein and its function. From the DNA coding sequence composed
of the four letters A, C, G, T, denoting the bases, to the operational protein, there are two
main steps. In the first one, called transcription, proteins called RNA-polymerase “stick”
to the DNA and copy, letter by letter, the coding sequence on a molecule which is called a
messenger RNA (mRNA). In the second step, called translation, cellular structures called
the ribosomes, read the mRNA, by words of three letters, called codons and assign an
amino acid to each codon. Hence, the linear structure of coding DNA determines the
linear sequence of amino acids that forms the protein [59], see Figure A.1.

A.1.2 Gene regulation

Some particular proteins, called transcription factors, can bind to the DNA in a region
close to a coding sequence. The presence of that protein bound to the DNA can have
various effects. If the molecule has some affinity with the RNA-polymerase, then the latter
will bind more easily to the DNA, resulting in a facilitated transcription of the coding
sequence. As a result, the concentration of mRNA of the coded sequence increases which
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Figure A.1: Principles of gene expression: transcription and translation [nhg]

in turn increases the concentration of the coded protein. In that, the transcription factor
is said to activate the transcription and is called an activator. However, a transcription
factor can also prevent the RNA-polymerase to stick on the DNA, hence blocking the
transcription process and reducing the production of the resulting protein. In the latter
case, the transcription factor is called a repressor [59].

In a bacteria called Escherichia coli, there is a transcription factor that regulates the
three genes responsible for the metabolism of lactose. The presence of this transcription
factor prevents the RNA-polymerase to transcribe the three genes. Hence, it is a repressor.
However, when the cell is in presence of lactose, the transcription factor reacts with the
lactose and its structure is changed. As a consequence, the transcription factor cannot
bind to the DNA anymore, hence it does not block the transcription process anymore. The
three proteins are then being produced and the metabolism of lactose happens. Once the
cell is back in an environment without lactose, the concentration of the transcription factor
in its original conformation increases and the concentration of the proteins responsible for
the metabolism of lactose decreases. This sort of mechanism prevents a cell to continuously
produce proteins that are not required [59].

Each protein is a molecular machine that achieves some specific action. Each situation
encountered by the cell requires different proteins. The amount of each type of protein in
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the cell is continuously adapted as a function of the environment [2]. These mechanisms
of regulation can also explain the apparent paradox of cellular differentiation. Indeed,
every cell of the same (multicellular) organism contains the same DNA. However, these
cells can be very different (for example, a skin cell vs an eye cell) because of the different
concentrations of each type of proteins present in it.

A.1.3 Microarray

Microarray is a technology that allows to measure the concentrations of a huge set
of mRNA in one experiment. The principle of a microarray experiment is the following.
Sequences of genes mRNA are generated synthetically and put on a blade. This blade
is composed of thousands of different dots. Different dots correspond to different mRNA
sequences, each dot including thousands of identical sequences. The whole mRNA of the
cell is taken and by a biological inverse transcription process, a copy of the original DNA
(called a cDNA) is created. A supplementary fluorescent marker is then added to that
cDNA. When the fluorescent cDNA is in contact with the blade containing the synthetic
mRNA, an hybridization between them occurs. Each hybridization increases the level of
fluorescence of the small square containing the mRNA sequence being measured. Hence, the
higher the fluorescence of a square, the higher the concentrations of that mRNA sequence
present in the cell. The level of fluorescence of each square is finally measured with an
optical measurements (see figure A.2) (more information on DNA chips and microarray
experiments can be found in [73]).
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Figure A.2: Principle of DNA chips (from [59])
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Appendix B

Preliminaries

B.1 Probability and Estimation Theory

B.1.1 Probability Space

Definition B.1: A probability space is a triple (Ω,F , P ), where Ω is the set of all possible
outcomes, F is the σ-field of Ω, and P is a probability measure on the σ-field, which satisfies

1. 0 ≤ P (a) ≤ 1 for a ∈ F

2. P (∅) = 0 and P (Ω) = 1

3. If a1, a2, ... is a finite or a countably infinite sequence of disjoint sets belonging to F ,
then

P (
⋃
k

ak) =
∑
k

P (ak)

Theorem B.1: Product rule

P (a ∩ b) = P (a, b) = P (a|b)P (b) = P (b|a)P (a)

where p(a|b) = p(a,b)
p(b) if p(b) 6= 0.

Theorem B.2: Sum rule

P (a ∪ b) = P (a+ b) = P (a) + P (b)− P (a, b)
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Theorem B.3: Bayes Theorem

P (a|b) =
P (b|a)P (a)

P (b)

Theorem B.4: Law of Total Probability

P (b) =
∑
k

P (b, ai)

B.1.2 Random Variable and Expectation

A random variable X is specified by the set X of values x that the random variable X
can assume, and a probability assignment {p(x); x ∈ X}. More formally,

Definition B.2: A real-valued random variable X defined over a probability space (Ω,F , P )
is a real-valued function (i.e., X : Ω→ R), such that {ω : X(ω) ≤ x} ∈ F for each real x.

Definition B.3: The expectation of a real-valued random variable X that admits a prob-
ability density function f(x), is denoted by E[X] and is defined by

E[X] =
∫ ∞
−∞

xf(x)dx

Definition B.4: The expectation of a discrete random variable X that can assume values
−∞ ≤ x ≤ ∞, denoted by E[X] is defined by

E[X] =
∞∑

x=−∞
xp(x)

B.1.3 Estimation

Definition B.5: An estimator for θ for sample size m is a function θ̂ : (X × Y)m → Θ

Definition B.6: The error of the estimator θ̂ for a given sample xk is defined as L(xk) =
θ̂(xk)− θ(xk).
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Definition B.7: The mean square error (MSE) of θ̂ is defined as the expected value
(probability-weighted average, over all samples) of the squared errors; that is, MSE(θ̂) =
E[(θ̂ − θ)2].

Definition B.8: The variance of θ̂ is defined as var(θ̂) = E[(θ̂ − E[θ̂])2].

Definition B.9: The bias of θ̂ is defined as B(θ̂) = E[θ̂]− θ.

B.2 Interpretations of entropy

Let’s take the following example: there are several horse races with the same 8
horses programmed next month and we have to send which horse is the winner of the race
to 100 people via a network. Let assume now that we have to pay 1 euro for every bit sent
on the network. The simplest way of coding the result could be to send three bits that
refer to the index of the winning horse (see Table B.1). Indeed, all the combinations of
zeros and ones on three different positions make 23 = 8 possibilities. In that case, it costs
us 3bits× 100people× 1euro = 300euros by race.

However, it is possible to gain some money if the a priori probability of winning for
each horse is known. Indeed, in this case it makes sense to use shorter descriptions for
more likely events (see coding 2 in Table B.2).

H(Horses) =
1
2
×− log2

1
2︸ ︷︷ ︸

1bit

+...+
4
64
×− log2

1
64︸ ︷︷ ︸

6bits

(B.1)

The average length of the new coding scheme is: 1
2 × 1bit+ 1

4 × 2bits+ 1
8 × 3bits+ 1

16 ×
4bits+ 4

64 × 6bits = 2bits. As a result, it costs us on average: 2bits× 100people× 1euro =
200euros instead of 300. Note that this is an average, it might be possible to pay more
than 300 euros on one race but averaged over a large number of races it should not be
the case. This minimal average number of bits required to describe a random variable is
precisely its entropy (where the base of the logarithm is two). In other words, “the more
the randomness, the higher the number of bits required to describe the variable”.

Note that it is possible to have an even better coding scheme, such as coding 3 in
Table B.2. However, this code is not uniquely decodable. In other words if you receive
the sequence of several races, such as 10001. You cannot tell if it is 1-0-001, 10-00-1 or
1-00-01 that has been sent. In other words, entropy measures the minimal average number
of bits necessary to code a probability distribution with the additional constraint that each
sequence of events has only one possible interpretation given the code.
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Horses 1 2 3 4 5 6 7 8
coding 1 000 001 010 100 011 110 101 111

Table B.1: Three bits indicates one of the eight horses.

Horses 1 2 3 4 5 6 7 8
probabilities of winning 1

2
1
4

1
8

1
16

1
64

1
64

1
64

1
64

coding 2 0 10 110 1110 111100 111111 111101 111110
coding 3 0 1 01 10 00 11 001 011

Table B.2: In these coding schemes, several bits refers a horse in function of its probability
of winning (the higher the probability of winning, the lower the number of bits required).

Another intuition for entropy is given by a guessing game. In the guessing
game, player one chooses one of the eight horses in his mind and player two has to guess
player one’s choice. If player one chooses a horse according to the distribution of Table B.2,
then the minimal average number of YES-NO questions before the identification of player
one’s choice is precisely the entropy of the distribution. In this example, two questions are
needed in average to find the right horse (have you chosen horse 1? have you chosen horse
2?...). In other words, entropy is a measure of unpredictability of a random variable.

B.3 Bias-variance trade-off

SinceKL(p; p̂) is not symmetric, one can also developEDm [KL(p̂; p)] instead ofEDm [KL(p; p̂)].
That is,

EDm [KL(p̂; p)] = EDm [
∑
y∈Y

∑
x∈X

p̂(y, x) log p̂(y|x)−
∑
y∈Y

∑
x∈X

p̂(y, x) log p(y|x)]

= EDm [
∑

y∈Y
∑

x∈X p̂(y, x) log p̂(y|x)]−
∑

y∈Y
∑

x∈X EDm [p̂(y, x)] log p(y|x)
−
∑

y∈Y
∑

x∈X EDm [p̂(y, x)] logEDm [p̂(y|x)] +
∑

y∈Y
∑

x∈X EDm [p̂(y, x)] logEm[p̂(y|x)]

= EDm [
∑

y∈Y
∑

x∈X p̂(y, x) log p̂(y|x)]−
∑

y∈Y
∑

x∈X EDm [p̂(y, x)] logEDm [p̂(y|x)]
+
∑

y∈Y
∑

x∈X EDm [p̂(y, x)] logEDm [p̂(y|x)]−
∑

y∈Y
∑

x∈X EDm [p̂(y, x)] log p(y|x)

= EDm [KL(p̂;EDm [p̂])]︸ ︷︷ ︸
variance

+KL(EDm [p̂]; p)︸ ︷︷ ︸
bias

Here the variance term is precisely the expected divergence between the model and the
expected model over all datasets.
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Appendix C

State-of-the-art

C.1 Theorem 3.3

[Strong and weak relevance]A variable Xj is “strongly relevant” iff there exists some
xj , y and x−j for which p(x) > 0 such that

p(y|x) 6= p(y|x−j)

A variable Xj is “weakly relevant” iff it is not strongly relevant, and there exists a subset
of variables XS of X−j for which there exists some xj , y and xS with p(xj , xS) > 0 such
that

p(y|xj , xS) 6= p(y|xS)

A variable is irrelevant iff it is not relevant (weakly or strongly).
Hence, a variable is irrelevant if

∀XS ⊆ X−j : p(Y |XS , Xj) = p(Y |XS)

and relevant otherwise

∃XS ⊆ X−j : p(Y |XS , Xj) 6= p(Y |XS)

by applying Theorem 2.7, we obtain:

p(Y |XS , Xj) = p(Y |XS)⇔ I(Xj ;Y |XS) = 0

and
p(Y |XS , Xj) 6= p(Y |XS)⇔ I(Xj ;Y |XS) > 0
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A variable is strongly relevant if

p(Y |X−j , Xj) 6= p(Y |X−j)

and weakly relevant if

p(Y |X−j , Xj) = p(Y |X−j) and
∃XS ⊂ X−j : p(Y |XS , Xj) 6= p(Y |XS)

by Theorem 2.7:

p(Y |X−j , Xj) = p(Y |X−j)⇔ I(Xj ;Y |X−j) = 0

and
p(Y |XS , Xj) 6= p(Y |XS)⇔ I(Xj ;Y |XS) > 0

As a result, a variable Xj is irrelevant to Y if:

∀XS ⊆ X−j : I(Xj ;Y |XS) = 0 (C.1)

A variable Xj is strongly relevant to Y if:

I(Xj ;Y |X−j) > 0 (C.2)

A variable Xj is weakly relevant to Y if:

I(Xj ;Y |X−j) = 0 AND ∃XS ⊂ X−j : I(Xj ;Y |XS) > 0 (C.3)

C.2 Theorem 3.4

Let XMj ⊂ X−j . XMj is a Markov blanket for Xj if Xj is conditionally independent
of (Y,X−(j,Mj)) given XMj

Using theorem 2.7 to the definition, we have:
Xj is conditionally independent of (Y,X−(j,Mj)) given XMj

⇔ I(Xj ; (Y,X−(j,Mj))|XMj ) = 0.
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Appendix D

Contributions

D.1 McNemar test

The McNemar test [36] states that if two algorithms A and B have the same error rate,
then

p

(
(|NAB −NBA| − 1)2

NAB +NBA
> 3.841459

)
< 0.05

where NAB is the number of incorrect edges of the network inferred from algorithm A that
are correct in the network inferred from algorithm B and NBA is the counterpart.
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