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Résuḿe

L’adaptation des surfaces pour des fonctions prédéterminées par le choix des matériaux métalli-

ques ou des couches minces ayant des propriétés mécaniques avancées peut potentiellement

permettre de réaliser des nouvelles applications à petites échelles. Concevoir de telles applica-

tions utilisant des nouveaux matériaux nécessite en premier lieu la connaissance des propriétés

mécaniques des matériaux ciblés à l’échelle microscopique et nanoscopique. Une méthode sou-

vent appliquée pour caractériser les matériaux à petites échelles est la nanoindentation, qui peut

être vue comme une mesure de dureté à l’échelle nanoscopique.

Ce travail présente une contribution relative à l’interprétation des résultats de la nanoindenta-

tion, qui fait intervenir un grand nombre de phénomènes physiques couplés à l’aide de simu-

lations numériques. A cette fin une approche interdisciplinaire, adaptée aux phénomènes appa-

raissant à petites échelles, et située à l’intersection entre la physique, la mécanique et la science

des matériaux a été utilisée. Des modèles numériquesde la nanoindentation ont été conçus à

l’échelle atomique (modèle discret) et à l’échelle desmilieux continus (méthode des éléments

finis), pour étudier le comportement du nickel pur. Ce matériau a été choisi pour ses propriétés

mécaniques avancées, sa résistance à l’usure et sa bio–compatibilité, qui peuvent permettre des

applications futures intéressantes à l’échelle nanoscopique, particulièrement dans le domaine

biomédical. Des méthodes avancées de mécanique du solide ont été utilisées pour prendre en

compte les grandes déformations locales du matériau (parla formulation corotationelle), et pour

décrire les conditions de contact qui évoluent au cours del’analyse dans le modèle à l’échelle

des milieux continus (traitement des conditions de contactunilatérales et tangentielles par une

forme de Lagrangien augmenté).

L’application des modèles numériques a permis de contribuer à l’identification des phénomènes

qui gouvernent la nanoindentation du nickel pur. Le comportement viscoplastique du nickel

pur pendant nanoindentation a été identifié dans une étude expérimentale–numérique couplée,

et l’effet cumulatif de la rugosité et du frottement sur la dispersion des résultats de la nanoin-

dentation a été montré par une étude numérique (dont les résultats sont en accord avec des

tendances expérimentales). Par ailleurs, l’utilisationde l’outil numérique pour une autre appli-

cation à petites échelles, la manipulation des objets parcontact, a contribué à la compréhension

de la variation de l’adhésion électrostatique pendant micromanipulation. La déformation plas-

tique des aspérités de surface sur le bras de manipulateur(en nickel pur) a été identifiée comme

une source potentielle d’augmentation importante de l’adhésion pendant la micromanipulation,

qui peut potentiellement causer des problèmes de relâcheet de précision de positionnement,

observés expérimentalement.

Les résultats présentés dans cette thèse montrent que des simulations numériques basées sur



la physique du problème traité peuvent expliquer des tendances expérimentales et contribuer

à la compréhension et l’interprétation d’essais couramment utilisé pour la caractérisation aux

petites échelles. Le travail réalisé dans cette thèse s’inscrit dans un projet de recherche appelé

‘mini–micro–nano’ (mµn), financé par la Communauté Française de Belgique dans lecadre de

‘l’Action de Recherche Concertée’, convention 04/09-310.



Abstract

The adaptation of surfaces for specific functions by the use of metallic materials and thin films

with advanced mechanical properties can potentially lead to novel applications on the small

scales. The conception of nanoscale devices taking advantage of new materials requires the

characterization of these materials on the micro– and nanoscales in the first place. One of the

frequently used methods of material characterization on small scales is the nanoindentation,

being conceptually a nanoscale hardness measurement.

This thesis presents a contribution to the interpretation of nanoindentation results, involving a

large number of coupled phenomena by using numerical simulations. For this purpose an in-

terdisciplinary approach was chosen, adapted to small scale phenomena combining concepts

from physics, mechanics and material science. Numerical models were developed to study the

behavior of pure nickel on the atomic scale (discrete description), and on the scale of continuum

mechanics (finite element method). This material was chosenfor its advanced mechanical and

wear properties coupled to bio–compatibility, which can lead to interesting future applications

particularly in the biomedical field. Advanced methods of solid mechanics were applied to

consider the local finite deformation applied to the material (using a corotational formulation)

and to take contact conditions into account in the finite element model (using an augmented

Lagrangian treatment of normal and tangential contact).

The application of the numerical models contributed to the identification of the physics govern-

ing the nanoindentation. The rate–dependent plastic behavior of pure nickel in nanoindentation

was identified in a coupled experimental–numerical study, and the cumulative effect of surface

roughness and friction on the dispersion of nanoindentation results was shown through a nu-

merical study (with results in good agreement with experimental trends). The continuum scale

numerical tool was used to model a different application on small scales, the manipulation of

objects by contact. The plastic flattening of the surface asperities of the microgripper (made of

pure nickel) was identified in a numerical study as source of an important increase of contact

adhesion during micromanipulation, which can potentiallyresult in release and accuracy issues,

also observed experimentally.

The results of this thesis show that physically–based numerical simulations yield results that

can potentially explain experimental trends and contribute to the better understanding of the

nanoscale world. The research work presented in this thesisand the related results contribute to

a research project entitled ‘mini–micro–nano’ (mµn) with the financial support of ‘Action de

Recherche Concertée’ convention 04/09-310 sponsored by the French–speaking Community of

Belgium.
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Chapter 1

Introduction

1.1 Motivation of the study

This thesis aims at giving a contribution to the understanding of the behavior of surfaces on the

micro– and nanoscale via numerical simulations.

The research work presented in this thesis and the related results contribute to a research project

entitled ‘mini–micro–nano’ (mµn) with the financial support of an ‘Action de Recherche Con-

certée’ convention 04/09-310 sponsored by the French–speaking Community of Belgium. This

part of the project spanned for 4 years including the prime objective of the present work, leading

to both fundamental and applied research tasks (design of a gripper on the microscale). This

project involved three departments of the Université Libre de Bruxelles (ULB), responsible for

the experimental tasks (Chemicals and Materials Dept.), the numerical modeling related to the

understanding of material behavior on the small scales (BATir Dept.) and the design of po-

tential future applications (Beams Dept.) exploiting the accumulated experience. This thesis

constitutes a part of the second contribution. For more detailed information on the objectives

and organization of themµn project the reader can consult [ARC(04/09-310) 2003].

The physics on small scales is different from the macroscalewe are familiar with and involves

more complex phenomena. For their understanding, and considering their complexity, numeri-

cal models can be very helpful.

As an example, the main issues of the manipulation of objectsby contact on small scales in

the high–precision industry and in medical applications are related to releasing them (in micro–

handling tasks under a microscope, pick, hold and place operations of micro–components or

in assembly operations of micro–mechanisms) disturbing their accurate spacing [Carpicket al.

2001, 2002]. Release problems stem from the adhesion between the object and the gripper arm

and its potential increase during the gripping and manipulating procedure. Identifying the key

physical phenomena governing the experiments on small scales via numerical simulations can



Introduction 1.1 Motivation of the study

Figure 1.1: Highlighted items of the chart correspond to thecontribution of this thesis to the

research tasks of themµn project [ARC(04/09-310) 2003].

for example substantially contribute to the identificationof the parameters of an applicable ma-

terial.

In micro–electro–mechanical system (MEMS) applications involving moving parts, improved

mechanical properties and wear resistance of the materialsused to produce components can

result in significant improvements of the performance and reliability of these microscale de-

vices. The frequently used base material, silicon, has manyadvantages in nano–fabrication

(considering the vast experience with this material in thisfield), but its mechanical properties

cannot be fitted for all demands. A recent field of interest is the use of metallic materials in

MEMS applications for their advanced mechanical and wear properties compared to silicon.

Particularly the use of pure nickel and pure titanium base materials on the nanoscale results

in significant additional advantages considering their bio–compatibility, which can potentially

lead to a broadening of the domain of application of MEMS to surgical and biomedical appli-

cations.

The use of novel materials and advanced single–or multi–layer material systems for adapting

the surface properties for a given function first implies characterizing their mechanical prop-

erties. This allows to identify their strengths and weaknesses for future applications. One of

the frequently used methods for material testing on small scales [Andréet al. 2007; Laconte

et al. 2004], particularly adapted for the characterization of thin film mechanical properties, is

the nanoindentation [Baker 2001]. Nanoindentation can be considered conceptually as a hard-

ness test made on the small scale, i.e. a hard indenter with a predefined geometry is pushed

2



Introduction 1.2 Outline of the thesis

in the sample material. Contrary to the traditional hardness measurements, the applied load–

indenter displacement curves (or shortly ‘load–displacement curves’) are continuously mon-

itored in nanoindentation. The load–displacement curves are considered to be the response

of the material and are the basis of analytical post–treatment methods (using a number of as-

sumptions), which aim at the identification of material properties of the sample, usually the

elastic modulus. However, since a large number of spurious and coupled contributions (e.g.

sample surface roughness and friction, effect of the substrate, etc.) can intervene in the load–

displacement curves and considering the complex physics ofthe nano–hardness measurement,

numerical models can give additional insight into the physics involved. They can help in assess-

ing the correctness of the underlying assumptions of the post–treatment methods and contribute

to the identification of the main sources of dispersion in nanoindentation results and to the in-

terpretation of experimentally observed trends.

In summary, the use of specific metallic materials (pure nickel and pure titanium) and sur-

face functionalization on the micro–and nanoscale by the application of thin films, can lead

to interesting applications, particularly in the biomedical field. Numerical models can poten-

tially contribute to the understanding of the behavior of these materials on small scales. Since

the overall material behavior is the convolution of physicsstemming from different scales, and

even though it is not purposed to investigate all the scales of interest, different types of nu-

merical models were set up on different scales, to investigate the various contributions to the

material behavior. As a result, the approach to solve the related problems uses advanced numer-

ical methods, and somehow involves interdisciplinary aspects between physics, mechanics and

material science.

1.2 Outline of the thesis

The plan of the thesis is as follows. First, to set the scene, the experimental material testing pro-

cedure considered here, i.e. the nanoindentation and the related issues, are presented in Chapter

2. This chapter explains in more detail how the convolution of the effects of different mate-

rial behaviors and sources of scattering may result in an unclear relationship between material

properties and the load–displacement curve, leading to serious ambiguities in the interpretation

of nanoindentation data. This is the reason why the contribution of numerical models to the

understanding and interpretation of nanoindentation results may be of importance.

In Chapter 3, the objectives and the related applications ofnumerical methods of nanoindenta-

tion on different scales are presented. An atomic level numerical model of nanoindentation was

set up to investigate the physics at the nanoscale. This discrete numerical model, has the prime

advantage of identifying trends related to the variation ofphysical parameters. The atomic scale

3



Introduction 1.3 Main contributions of the thesis

numerical model and the issued results are presented in Section 3.1. The main drawback of such

small scale discrete numerical models is the lack of possible direct quantitative correlation with

experimental results. For a direct qualitative and quantitative comparison with experimental

results a continuum scale numerical model, using the finite element method was developed.

In Chapter 4 the necessary numerical developments; adding contact constraints and nonlinear

material behavior in a finite deformation description on thecontinuum scale are presented and

discussed.

Chapter 5 illustrates the applications of this continuum scale numerical model to the problem of

nanoindentation (Section 5.1 to Section 5.4) and to micromanipulation (Section 5.5). Section

5.1 constitutes a preliminary numerical study investigating the influence of some indentation

parameters on nanoindentation results of pure nickel, using a rate–independent material model

(i.e. the material behavior is independent from the rate of strain). An interesting feature of

the developed continuum scale model is the possibility of a direct comparison with experi-

ments, which is exploited in Section 5.2, considering rate–dependent material effects in conical

nanoindentation of pure nickel. The objective of Section 5.3 is the numerical evaluation of

the dispersion in nanoindentation results of pure nickel due to the effect of sample surface

roughness and friction on the contact interface in realistic indentation conditions. Section 5.4

discusses the performance of two experimental post–treatment methods (implemented in a nu-

merical post–treatment tool) in the varying numerical indentation configurations considered in

Chapter 5 (different material properties and behavior, including surface roughness and friction).

The attention is then shifted to the problem of micromanipulation in Section 5.5, aiming for a

better understanding of the adhesive electrostatic effects and their variation due to the plastic

deformation of surface roughness in the gripper–manipulated object contact. Finally, the con-

clusions are made on the research work discussed in this thesis in Chapter 6, together with the

outlook and the further developments it implies.

1.3 Main contributions of the thesis

The contributions of this thesis can be divided in two groups: the development of numerical

models, and their application to the considered nanoscale problems, contributing to the under-

standing of phenomena on small scales.

Nanoindentation modeling is addressed on two scales in thisthesis: an atomic scale discrete

model (Section 3.1), and a continuum scale model using the finite element method (Chapter 4)

were developed using advanced numerical techniques. The special care taken in the choice of

the numerical ingredients allowed coupling experimental and numerical studies on the contin-

uum scale.

Applying the developed numerical models lead to the following main results.

4
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It is shown in a coupled experimental–numerical investigation that considering the rate–depen-

dent plastic behavior of pure nickel in conical nanoindentation is a physically–based need (Sec-

tion 5.2). All of the experimentally observed trends are reproduced in the numerical simulations

using a simple rate–dependent plastic material behavior, with a material parameter set in the

physically sound domain for metals.

It is shown, using a numerical model, that the effect of friction and of surface roughness on

the dispersion of nanoindentation raw and post–treated results are cumulative, i.e. considering

friction on a rough surface increases the scattering (Section 5.3). The resulting dispersion is

found to be sufficiently high, so that it could be wrongly interpreted as variations in the elastic

properties of the material.

It is shown through a two–scale mechanical model set up on thecontinuum scale, coupled to

electrostatic simulations that the flattening of the surface asperities during micromanipulation

gives rise to a significant increase of the contact adhesion (Section 5.5). The magnifying fac-

tor of the adhesive electrostatic forces due to the plastic deformation of the surface asperities

is evaluated and it is found to give a contribution to the difficulty to release objects when the

squeezing manipulation force is released.

5



Chapter 2

Material property measurement by

nanoindentation

Among the prime goals of the project, the characterization of bulk materials and coatings by

nanoindentation is the focus of this chapter of the thesis. The nanoindentation experimental

procedure and two methods used to derive an elastic modulus from the load–displacement

data are presented first. Then, some frequent sources of scattering in nanoindentation, and

the resulting ambiguities related to the difficulty of the deconvolution of the potential con-

tributions to the indentation response are discussed.

The relative movement on the contact interface of nanoscaledevices induces friction and wear in

the contacting material pair, which can have disturbing effects. Applying suitable surface coat-

ings on the substrate material can deliver substantial improvements considering performance

and reliability, and broaden the field of application to the biomedical field. The use of pure

nickel and pure titanium materials and metallic substrate with thin film coatings forming poten-

tially bio–compatible systems is of high interest, considering their interesting mechanical and

wear properties compared to the widely used silicon.

Surface engineering requires in first instance measuring the mechanical properties of the sub-

strate material and of the coatings. The success of small scale applications depends among

others on the solution of materials issues, such as mechanical properties associated with the

design and fabrication. The remarkably small thicknesses of the deposited film layers which

can be as thin as a few nanometers severely restricts the choice of applicable mechanical char-

acterization methods. This implies that the measuring equipment itself has to be adapted to the

nanoscale, which leads to one of the frequently used nanoscale material testing methods, the

nanoindentation measuring procedure.

A great deal of effort has been directed towards the development of techniques for character-

izing the mechanical properties of small volumes of material. Testing methods on small scales



Nanoindentation experiment 2.1 Experimental conditions

concurrent to nanoindentation can be found in Andréet al. [2007]; Laconteet al. [2004]. The

principle of the nanoindentation experiment is similar to the micro–hardness measurement but

in contrast to traditional hardness testers, the nanoindentation system allows the application of

a specified force (on the order of micronewtons) or displacement (on the order of nanometers)

to obtain a load–displacement curve. This continuously recorded load–displacement curve is

considered to be the mechanical fingerprint of the material response to the deformation, and

it is used to determine usually the elastic modulus of the sample material via analytical post–

treatment methods involving a number of simplifying assumptions. Nanoindentation is mainly

used for its advantage to allow a local measurement of material properties of bulk materials,

substrates coated with thin films and multi–layer sandwiches directly, in working conditions.

As opposed to most alternative testing methods, in nanoindentation the actual complete system

(substrate and thin film layers) is the subject of the measurement without changing its integrity

for the purpose of the measurement (by removing the substrate in a pre–measure etching step

to test the coating, for example). Moreover, since in real–life applications the material work-

ing conditions involve contact loading, the number of assumptions made for the prediction of

the performance of a material system by nanoindentation (using similar loading conditions) is

kept to a possible minimum. Respecting the complex stress and strain state resulting from con-

tact loading may be of importance in thin film delamination and fracture studies for example

[Abdul-Baqi 2002; Genget al. 2007; Latellaet al. 2007; van den Bosch 2007].

2.1 Nanoindentation, equipment and experimental conditions

The nanoindentation experiments of the research project were performed using a Hysitron Tri-

boindenter [Hysitron 2008]. The indentation equipment consists of a frame on which the in-

denter actuator, the thermally isolated indentation chamber (used because nanoindentation due

to its high accuracy is sensible to thermal gradients), and the sample holding plate are attached

(Fig.2.1). For a more detailed information on nanoindentation, the reader is referred to [Baker

2001]. The indenter tips are exchangeable, and can have different standard geometries (axisym-

metric or sharp–edged), and they are usually made of diamond. The choice of the diamond,

being the hardest natural material is necessary to enforce alow tip deformation for the sake of

accuracy [Jeong & Lee 2005], and reproducibility of the experiments. It has to be emphasized,

that the actual tip geometry is usually not known in detail. Moreover with an increasing number

of indentations a cumulative irreversible deformation of the indenter tip is usually observed. It

can be evaluated by adequate imaging techniques, as shown inSection 5.2, but it is far form

being a common practice, since it is extremely time–consuming.

In coupled experimental–numerical studies a conical indenter can be used for the sake of consis-

tency between the experimental conditions and the numerical model having an axial symmetry,
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Nanoindentation experiment 2.1 Experimental conditions

Figure 2.1: Schema of the nanoindentation equipment.

and thus avoiding 3D modeling. However, due to accuracy issues in the fabrication of spherical–

capped conical indenter tips, the agreement between the actual and the nominal radius of 2µm

seems to be in some regions approximate (Fig.2.2). The influence of this inaccuracy is studied

in Section 5.1. Potential tip misalignment may also be a source of error, however for conical

shaped indenters, its influence is rather small, at least as long as the indentation depth does not

exceed the height of the spherical cap [Pelletieret al. 2007].

Figure 2.2: The accuracy of the fabrication of the indenter tips cannot guarantee in all cases a

constant radius of curvature of the tipR1 > R2, SEM image presented in Tam [2006].

Important experimental parameters are determined by the sample preparation procedure, hav-

ing the goal to approach as much as possible the ideal nanoindentation configuration, i.e. to

reduce surface roughness, to decrease the effect of oxide layers and impurities, to remove work–

hardened layers, to relieve residual stresses and to decrease unwanted anisotropy.

8
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Spurious effects related to the sample surface roughness innanoindentation can have a high

influence in many practical configurations. This problem is addressed in Section 5.3. Surface

roughness effects are especially important in the small indentation depth regime [Berke & Mas-

sart 2006; Bouzakiset al. 2001; Wanget al. 2007b; Warren & Guo 2006; Yuet al. 2004].

Note that with special care in the sample preparation procedure used on pure nickel and pure

titanium bulk materials, the arithmetic roughness value ofthe sample surfaces could be kept

to a few nanometers only. This satisfying consistency between the experiments and idealized

numerical conditions allowed performing the coupled experimental–numerical study in Section

5.2. In practice however, the surface roughness of thin films, can reach average values of 30–

40nm [Barshilia & Rajam 2002; de Souzaet al. 2005, 2006; Fanget al. 2007; Kumaret al.

2006] which become comparable to the imposed indentation depth, limited by the film thick-

ness. In extreme cases the influence of surface roughness maylead to high dispersion, resulting

in difficulties in exploiting and interpreting nanoindentation results.

The actual nanoindentation set of the tested material is preceded by acalibration step, in which

the potentially varying testing procedure–related experimental parameters are evaluated, such

as: the approximation of the actual indenter geometry (tip area function), the evaluation of the

indenter frame stiffness (frame compliance) and spurious indenter displacement due to ther-

mal gradients in the indentation chamber (thermal drift). For a detailed presentation of these

standard notions the reader can consult [Tam 2006; Tripathy2005]. In this step a reference in-

dentation in a material with known properties, usually fused quartz is performed. The resulting

load–displacement curves are used as a reference in the post–treatment methods.

Nanoindentation follows a predefined loading sequence where the applied force is specified as a

function of time. Generally three parts of the loading sequence are distinguished (Fig.2.3): the

loading period where the applied force is increased until a peak value, the holding period where

for a prescribed amount of time this peak load is maintained,and finally the unloading period

where the applied force is decreased gradually to zero. The force levels are increased once

the indenter–sample contact is established. The first step,or load increment, made to establish

contact between the sample surface and the indenter tip causes a non–zero initial penetration,

and therefore results in a threshold in both force level and indentation depth with a relative

influence being the most pronounced in small indentation depth. The maximum value of the

applicable peak load is a characteristic for the nanoindentation equipment, and was fixed to be

under 10mN . The minimum value of the peak load is determined, dependingon the indenter tip

and the sample material to obtain meaningful results, considering that the scattering in nanoin-

dentation results is the highest in small indentation depth. The indenter speed usually varies

between some tens ofnm/s to someµm/s in the experiment. The duration of the holding

period is limited by increasing effects of thermal drift (indenter displacement due to spurious

9



Nanoindentation experiment 2.2 Post–treatment of the data

thermal gradients). Usually a large number of indentations(hundreds) are performed in one set,

which is a need to reach a stable average in nanoindentation [Bouzakis & Michailidis 2004].

Figure 2.3: Load–displacement curve portions corresponding to the loading, holding and un-

loading periods. The plotted experimental load–displacement curve is of pure nickel, with a

5s–10s–5s loading, holding and unloading time, respectively at 9000µN peak load in conical

nanoindentation [Tam 2006].

2.2 Post–treatment of nanoindentation data – numerical tool

The Young’s modulus of the sample can be extracted from nanoindentation data with various

post–treatment procedures. Note that material parametersobtained from nanoindentation are

relative values compared to a reference value associated tothe indentation of a material with

known properties, measured in the calibration step of the experiments [Baker 1997; Fischer-

Cripps 2006].

Two frequently used post–treatment methods for nanoindentation data were considered in this

work: a method proposed by Oliver and Pharr [Oliver & Pharr 1992] and another proposed in Ni

et al. [2004], both having the goal to identify the elastic modulusand the nano–hardness of the

tested material (more details concerning these methods aregiven in the corresponding section of

the Appendix). The nano–hardness of a material is not an intrinsic material property, since it is

usually defined as the ratio of the peak load and the projectedcontact areaHnano =
Fmax

Acont
proj

, and

thus depends on the elastic and plastic behavior of the material via Fmax and on the deformed

contact geometry viaAcont
proj. Hence, the focus in this work was rather set on the post–treated

elastic modulus, considered as an intrinsic material property.

The above experimentally applied methods are usually builtin functions within the measuring

10



Nanoindentation experiment 2.2 Post–treatment of the data

equipment. They were implemented in a numerical tool such asto allow the post–treatment

of raw experimental indentation data, as well as data issuedfrom numerical simulations in a

similar manner as in the experiments. The post–treatment tool aims for a large flexibility and

interactivity so that the user can intervene, and adjust some otherwise unaccessible parameters

of the post–treatment methods considered here; and allows following step–by–step the proce-

dure. Applying experimental post–treatment methods to numerical indentation data allowed to

study the influence of various parameters of indentation notonly on raw nanoindentation data

but also on the value of the post–treated elastic modulus, and to focus on the practical implica-

tions of the work.

Different post–treatment methods potentially show different performance in predicting the elas-

tic modulus of the tested material, which raises the question of which method should be pre-

ferred in which conditions. Section 5.4 aims at providing ananswer to this question by a

discussion on the performance of the two considered post–treatment methods based on the in-

dentation configurations considered in Sections 5.1 to 5.3 (with varying material properties and

behavior, surface roughness and friction).

The common simplifying assumptions of both post–treatmentmethods are:

• flat and smooth sample contact surface,

• frictionless contact between the indenter tip and the sample,

• the behavior of the indenter–sample contact in the unloading period is elastic and rate–

independent. This means that potential viscoelastic effects [Cheng & Cheng 2005; Ovaert

et al. 2003; Zhanget al. 2008] are not taken into account,

• the values of the Poisson’s ratio of both the sampleνsample and the indenter materialνind

are known, or approximated.

The first post–treatment method considered here is the most widely spread method, proposed

by Oliver and Pharr [Oliver & Pharr 1992], used for its simplicity and its broad range of ap-

plication. This method is based on the assumption of purely elastic unloading of the indenter–

sample frictionless contact. It only uses the unloading segment of the load–displacement curve

of nanoindentation to compute the contact stiffness for further processing. Along with this sim-

plicity, it requires the knowledge of a geometrical quantity called contact depthhc defined on

an actual deformed contact configuration, which itself depends on potential pile–up or sink–in

phenomena (Fig.2.4). The contact depth is evaluated from the maximum indentation depthhmax

by making simplifying assumptions. Note that a significant improvement for the approximation

of hc could result from the measurement of the experimental indent profile, which can further-

more give additional information about the deformation procedure during indentation [Bolzon

11
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Figure 2.4: Definition of the contact depthhc used in the Oliver and Pharr post–treatment

method. The influence of potential sink–in and pile–up phenomena onhc can become signifi-

cant in nanoindentation experiments.

et al. 2004; Nagyet al. 2006]. However, it is a complex and time consuming procedure, and

thereby it is rarely performed systematically after nanoindentation tests.

Post–treatment methods are also sources of nanoindentation scattering due to their assumptions

and approximations which are not always applicable practically. One of the main sources of

dispersion recognized in the literature is related to the approximation of the deformed shape of

the indenter imprint and thereby the value ofhc [Habbabet al. 2006; Taljat & Pharr 2004].

The second post–treatment method, proposed by Ni et al. [Niet al. 2004] has the goal to

overcome the main drawback of the Oliver and Pharr method, i.e. the evaluation of the contact

depth, and thereby increase the accuracy of the prediction in the case of spherical nanoinden-

tation. This post–treatment method is based on trends determined by numerical simulations of

nanoindentation using the finite element method. The assumptions of the numerical work of

this post–treatment method in addition to the common assumptions are:

• the indenter tip geometry is spherical,

• the material is elastic–plastic with isotropic power law hardening,

• the behavior of the material is rate–independent.

Based on the numerical results, Ni et al. defined non–dimensional functions of the indentation

problem in terms of the contact stiffness, the total workWt and the elastic work of indenta-

tion We, corresponding to the area under the loading and the unloading portions of the load–

displacement curve respectively. These functions are usedfor the evaluation of the Young’s

modulus of the tested material. The corresponding drawbackis that this method is more sen-

sitive to changes in any portion of the curve and to the variations in the load levels affecting
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directly the integrated work quantities.

Finally, for the sake of a more complete overview, energy–based methods [Beeganet al. 2005;

Kusano & Hutchings 2003] have to be mentioned, that use this latter type of methodology to

evaluate more advanced material properties, such as plastic flow data [Cao & Lu 2004; Gi-

annakopoulos & Suresh 1999; Maet al. 2003; Zhaoet al. 2006]. The identification of the

plastic material parameters from nanoindentation data wasnot considered in this work. For

more detailed information on the performance of frequentlyapplied post–treatment methods

of nanoindentation and for a detailed description of the post–treatment methods used here the

reader is referred to [Beeganet al. 2005; Kusano & Hutchings 2003] and [Niet al. 2004;

Oliver & Pharr 1992], respectively.

2.3 Nanoindentation results and sources of dispersion

The result of a nanoindentation experiment is the load–displacement curve, being considered as

the sample material response to indentation. Usually a relatively accurate set of nanoindenta-

tions presents a scattering of around 10-20% in the load–displacement curves. This dispersion

stems from various sources, among which some listed in the following frequently add to the

ones already discussed before (related to the machine inaccuracy, the tip geometry, the sample

preparation).

Pop–ins are sudden displacement bursts observed during theloading period, as shown in Fig.2.5.

They are characteristic in 10nm depth for conical indentations in pure nickel with the indenter

of 2µm radius of curvature. Pop–ins are usually explained in the literature by sudden dis-

location nucleations [Fujikaneet al. 2008; Zong & Soboyejo 2004]. Even though pop–ins

occur usually in small indentation depths, the load–displacement curves can be strongly altered

by this phenomenon, consequently giving questionable nanoindentation results. Note that the

post–treatment method of Oliver and Pharr is less sensitiveto pop–ins, since since it is based

on the unloading period of the load–displacement curve.

The residual imprint on the sample surface after nanoindentation is on the order of a micrometer

of diameter when considering high force levels (9mN) and a blunt indenter type with a conical

geometry (with a nominal radius of curvature of 2µm) leaving a relatively large imprint. In the

case of annealed pure nickel for example, the average grain size of the nickel sample was two

orders of magnitude larger than the imprint size. As a consequence nanoindentations could be

performed in crystalline materials in the middle of the grains to avoid grain boundaries, regions

that show a potentially different material behavior than the material inside the grain [Aifantis &

Ngan 2007; Lianet al. 2007]. Note that the grain material properties are aimed forin the case
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Figure 2.5: Pop–ins for nanoindentations of pure nickel at 2000µN peak load with a conical

indenter of 2µm nominal tip radius [Tam 2006].

of large grained crystalline materials, since their behavior is dominant in the overall material

response. Practically, however this is not always feasible, since this implies localizing the grain

boundaries using a time–consuming pre–measure surface scan. In the case of small grained

or nanocrystalline materials, one can hardly proceed in this manner anymore, since the size of

the grains can be on the same order of magnitude, or smaller than the nanoindentation imprint

size. Particularly for nanocrystalline materials the large volume fraction of grain boundaries

is the deliberate result of material processing, resultingin advanced plastic properties [Delincé

et al. 2006; Ebrahimiet al. 1999; Mirshams & Parakala 2004; Torreet al. 2002]. In this case

the grain boundaries are not considered to have spurious effects, since their contribution to the

behavior of the material is characteristic for the tested sample.

The indentation of quasi–brittle materials often results in sample damage by the propagation of

cracks in the material instead of plastic deformation [Jang& Pharr 2008]. Damage is a dissi-

pative phenomenon, which can result in easily recognizabledisplacement bursts in the load–

displacement curve, but a smooth load–displacement curve similar to the ones of elastic–plastic

material response can also be obtained (Fig.2.6). The sub–surface fracture can potentially in-

fluence the complete indentation response since by such damage the integrity of the material

under the indentation zone is compromised. Depending on theassumptions of the nanoindenta-

tion post–treatment methods, they may not remain applicable to quasi–brittle materials (e.g. the

post–treatment method of Ni et al. [Niet al. 2004] developed for elastic–plastic material behav-

ior). Moreover, since both plasticity and damage can have similar impact on load–displacement
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Figure 2.6: Residual deformation in nanoindentation of fused quartz with a Berkovich tip

(sharp–edged pyramidal shape), potentially caused by brittle fracture, in spite of the similar-

ity of the obtained load–displacement curve to an elastic–plastic material response. Load–

displacement curves presented in Tam [2006].

curves of nanoindentation, it is unrealistic to expect a straightforward interpretation of nanoin-

dentation results based solely on experimental load–displacement data, when no strongly moti-

vated assumption on the behavior of the sample material is possible to make.

Advanced problems in nanoindentation, such as the characterization of multi–layer systems and

substrates with thin coatings, where the interface betweenthe various material layers is prone to

fail, may present additional dispersion. The delaminationof the applied coatings is a potential

failure mechanism [Abdul-Baqi 2002; van den Bosch 2007], which works much like fracture in

the bulk material, discussed before, only localized to the thin film interface. The understanding

of the deformation and failure mechanisms of material systems composed of substrate material

and thin layers with different material ductility remains one of the major issues of nanoindenta-

tion [van den Bosch 2007; Xu 2004].

Different material behaviors (ductile and brittle) can result in load–displacement curves with

similar features. Following this line of thought it will be shown in Section 5.1 that similar

load–displacement data can result from different materialparameter sets using the same ma-

terial model, and in Section 5.2 that the same indentation data can be reproduced by a rate–

independent and a rate–dependent material model, while only the latter bears a physically mo-

tivated material parameter set for pure nickel.
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Moreover, despite all experimental efforts there is no guarantee that a single material parame-

ter set obtained by nanoindentation at a given depth could remain representative of the tested

material’s behavior in a wide range of indentation depths. The indentation response of a ma-

terial may indeed be potentially dependent on the magnitudeof the indenter penetration. This

phenomenon is generally referred to as indentation size effects (ISE), and may take important

proportions, leading to large variations in nanoindentation results.

2.3.1 Indentation size effects

Indentation size effects can originate from various sources, among which material–related and

surface–roughness–related effects (referred to as geometrical size effects) are the most com-

monly considered. They result in an increase of the post–treated material nano–hardness value

Hnano. In spite of its definition compacting all of the indentationparameters leading to a large

freedom of interpretation (effects of the indenter geometry, surface roughness, material behav-

ior), the nano–hardness value of a material is often used, asa characteristic of its resistance to

deformation. A stiffer material response to indentation causes an increase in the load levels at

fixed indentation depth, which leads to an increase ofHnano.

Such a stiffness increase in the sample response to indentation can be related to the high strain

gradients in the sample material which therefore shows a size–dependent behavior [Al-Rub

et al. 2007; Fricket al. 2008; Zhaoet al. 2003]. Material size effects are recognized to be

responsible for an increase in the nanohardness value of thesame material by a factor as much

as 2 to 5 when decreasing the deformed volume [Al-Rub 2007; Quet al. 2006]. A reasonable

explanation for size effects in crystalline materials comes from the plastic deformation pro-

cedure. Size effects are results of low–level phenomena issued from the scale of dislocation

activity or as low as the atomic level, which appears on the nanoscale as an increase in the

material hardening in the plastic behavior. Material size effects in crystalline materials are the

subject of intensive research. They are often explained by the interaction of dislocations [Balint

et al. 2008], which causes a stiffer response to deformation of a small volume of material than

of the bulk. In nanoindentation, the localized severe deformation of a small material volume

induces high strain gradients, which is responsible for theappearance of size effects. Three ex-

amples of testing procedures, other than indentation, where material size effects were observed

are nanoscale bending [Stölken & Evans 1998; Wanget al. 2003], nanoscale torsion [Horste-

meyeret al. 2001; Radi 2008], and the compression of small–scale pillars [Frick et al. 2008].

The material–related indentation size effects are stronger in the small indentation depth regime

and weaken gradually with increasingly deep indentations [Tho et al. 2006]. In a numerical

model, they are often taken into account by using a strain gradient plasticity formulation [Fleck

& Hutchinson 1997, 2001; Qiuet al. 2003; Thoet al. 2006; Tymiaket al. 2001]. Depending
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on the considered model, size effects are reproduced numerically in a phenomenological man-

ner [Fleck & Hutchinson 2001], or based on physical quantities, such as the dislocation density

in the sample [Evers 2003; Gao & Huang 2003; Gaoet al. 1999; Qiuet al. 2003]. Higher order

theories taking material size effects into account were however not considered in this work, the

focus is set on other indentation–related phenomena.

Another interpretation of the indentation depth–dependent nanohardness is related to the pres-

ence of surface roughness. The energy necessary for the crushing of surface asperities was

recognized to be a significant term in the energy balance in indentation depths comparable to

the height of the surface asperities. With increasing indenter penetration, the relative contri-

bution of the surface roughness deformation in the total work of indentation decreases and the

contribution related to the the bulk deformation becomes dominant. In the literature indentation

size effects depending on the surface topology have been associated to this phenomenon [Gao

& Fan 2002; Kimet al. 2007; Qiuet al. 2003; Zhanget al. 2004], and denoted as geometrical

indentation size effects (GISE), as will be discussed in Section 5.3. The common feature in ma-

terial related and roughness related ISE is that their influence is strong in the small indentation

depth regime and weakens with increasing indentation depths.

2.4 Discussion on the nanoindentation experiment

Nanoindentation is a testing procedure with a simple principle, well adapted to characterize

the local behavior of bulk materials and thin films in workingconditions. The result of a

nanoindentation experiment is the load–displacement curve, being usually considered as the

sample material response to indentation. Actually, it is composed of the convolution of various

contributions: (i) the behavior of the material system (elastic–plastic [Cheng & Cheng 2004],

rate–dependent [Bucailleet al. 2004; Chudoba & Richter 2001], size–dependent [Al-Rubet al.

2007; Al-Rub 2007; Fricket al. 2008; Mirshams & Pothapragada 2006; Qiuet al. 2003; Tho

et al. 2006; Zhaoet al. 2003], the effect of residual stresses [Warren & Guo 2006]),(ii) the

geometry of the contact (sample surface topology and indenter geometry [Kimet al. 2005;

Lu & Bogy 1995; Yuet al. 2004], (iii) the potential indenter tip deformation and misalign-

ment [Jeong & Lee 2005; Pelletieret al. 2007]), and (iv) the effects of the contact interface

behavior (adhesion, friction) [Caoet al. 2007]. Conversely to its major advantage of being

a local and straightforward measurement, its main drawbackis the difficulty of the deconvo-

lution of a large number of potential contributions to the indentation response of the material

system. Similar load–displacement data may result from samples with different material behav-

iors. Therefore the interpretation of load–displacement curves obtained in ideal conditions of a

numerical model, without considering the majority of the experimental sources of dispersion is
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Figure 2.7: Different sources of scattering in nanoindentation.

already a complex task, let alone the challenge of interpreting experimental data. The problem

of convoluted effects can be somewhat alighted with the careful choice of experimental condi-

tions (e.g. when thin film material properties are addressed, the indentation depth usually does

not exceed 10% of the film thickness [Cai & Bangert 1995; Hainsworth & Soh 2003; Kusano

et al. 2003]). This however cannot be considered to be a generally feasible solution. Issues

related to high inaccuracies and the compromised validity of simplifying assumptions of the

post–treatment methods can result in varying degrees of success, particularly when indenta-

tions are made in small indentation depth.

A more detailed understanding of this testing method in relatively simple situations is there-

fore needed. An exhaustive study of issues in less complex nanoindentation setups is indeed

useful to build a knowledge base allowing the interpretation of observed trends in more more

complex systems. In view of the important interaction of experimental effects, this can be done

efficiently when experiments are coupled to numerical models, where all parameters are freely

adjustable. Numerical results obtained from such models can contribute to the interpretation of

the experimental results, since the analytical backgroundfor the interpretation of the measures

still lacks a full understanding of the physics encounteredduring the measurement process.

Experimental results are exposed to the convolution of different sources of scattering, that can

be enhanced or decreased by the experimental parameters. They must be defined such as to
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decrease to the minimum the effect of the sources of dispersion in nanoindentation, in order to

ensure exploitable results. This leads to one of the major objectives of numerical simulations of

nanoindentation: the identification of the dominant sources of scattering and the choice of the

indentation parameters that can potentially contribute totheir reduction.

These are the reasons why the development of an adapted numerical tool for the simulation of

nanoindentation coupled to experiments was defined as a prime objective of the research work.

The development of the numerical tools is the focus of the following two chapters of the thesis.
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Chapter 3

Nanoindentation modeling on different

scales

Numerical modeling can be useful in the understanding of thecomplex physics involved

on small scales. Different numerical modeling strategies of nanoindentation, adapted to

specific requirements are first presented in this chapter, leading to the particular choice of

the numerical models applied in this thesis: (i) an atomic scale numerical model, and (ii) a

continuum scale numerical model, using the finite element method. The atomic scale nu-

merical model set up to investigate some features of the nanoindentation procedure linked

to atomic scale mechanisms in very small indentation depth and its results are also dis-

cussed here.

In nanoindentation of thin film–substrate sandwiches if theindentation depth is too large the

substrate influences the response of the film. As a result, very small indentation depths are re-

quired to characterize the mechanical properties of thin films. As a rule of thumb to avoid the

effect of the substrate1/10 of the film thickness (under 1µm for thin films) is usually taken as

maximum indentation depth. In the case of such shallow indents various artifacts of the load–

displacement curve have been observed which cannot be reproduced by the ‘classical’ contin-

uum theory, particularly the increased hardness due to sizeeffects and appearance of pop–ins.

Considering the small size of the deformed material volume,the material response in such an

experiment is the combination of a behavior that can be described by continuum models and

the one of individual atoms. The shallower the indent is the more the atomic level behavior of

the material becomes dominant. Depending on the purpose of the simulation different aspects

of the nanoindentation procedure are addressed in different numerical models. Any numerical

modeling strategy is adapted to specific requirements, unfortunately it is rarely possible to di-

rectly compare the simulation results issued from different models. The reader can consult the

review paper of Gouldstone [Gouldstoneet al. 2007] considering different numerical models
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Figure 3.1: Domain of application and computational demandof the different numerical meth-

ods discussed in this section (an atomistic and a continuum scale numerical model were chosen

to study the nanoindentation procedure).

and techniques applied at different length scales of nanoindentation for further details. When

the numerical frame has to be coupled directly to experiments, the continuum models are most

frequently preferred because of their computational efficiency. These models are well adapted

to reproduce the overall average response of the material innanoindentation and to conduct

parametric studies addressing parameters which are difficult to access experimentally.

In order to describe the more complex physics of shallow nanoindentations where the size–

dependent response of the material has to be taken into account, the continuum methods are

specially adapted to microscale simulations, using higherorder theories in a finite element set-

ting [Fleck & Hutchinson 2001; Quet al. 2006] for example. However, when the purpose of

the numerical simulation is the understanding of the plastic deformation, models usually work

on smaller scales. The descent to scales where continuum mechanics is not applicable anymore

usually implies the use of computationally more expensive simulations. One of these computa-

tional numerical methods uses the discrete dislocation plasticity or dislocation dynamics models

which focuses on the plastic deformation of the crystallinematerial considering only the slip

planes without details on the positions of the atoms [Bulatov 2008; Kreuzer & Pippan 2004;

Miller et al. 2003; Nicolaet al. 2007; Shilkrotet al. 2004]. Experimental efforts are made

in order to investigate the deformation mechanisms on the corresponding scale using adapted

experimental techniques. The work of Kulkarni and Bhushan [Kulkarni & Bhushan 1996] con-

sidering nanoindentation with sharp tips used in atomic force microscopy (AFM) in very small
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indentation depth (down to 25nm) should be mentioned. In Nibur & Bahr [2003] the activated

slip systems of face–centered cubic (FCC) crystals in a microindentation setting is studied ex-

perimentally. Tanaka investigated the plastic zones and slip band formation around a crack tip in

silicon, observed together with the produced dislocation structure [Tanakaet al. 2004]. Finally,

the recent experimental work of Fujikane et al. gives insight into the elastic–plastic transition

in GaN crystals [Fujikaneet al. 2008].

When the details of the onset of the plastic deformation and the dislocation activity are in the

focus of interest, atomistic simulations investigating the lowest scale can be used. Generally,

atomistic models are used for system sizes smaller than 100nm (around the upper limit of the

range of thin film nanoindentations), a scale from which other numerical methods are more ap-

propriate to describe the behavior of the material [Gouldstoneet al. 2007]. The atomic level

models have the indisputable advantage of identifying the trends concerning the main physical

variables of a problem and give qualitative information forthe understanding of experimentally

observed complex phenomena. The main handicap of purely atomistic models for mechanical

applications is that they are computationally expensive. They therefore generally handle length

(in the order of tens ofnm) and time scales (someps) many orders of magnitude smaller than

in the experiments. Extending them is the main challenge of numerical modeling on the atomic

scale. This results for example in molecular dynamics simulations where the prescribed inden-

ter speed can reach 100m/s [Fanget al. 2003, 2006; Jianet al. 2006; Noreyanet al. 2005;

Richteret al. 2000] due to computational limitations, as opposed to the experimental values

in the range of someµm/s. Even though atomic level calculations are computationally expen-

sive, the increase in computational power in recent years allowed the adaptation of atomic level

models to interesting mechanical applications [Rafii-Tabar 2000]. Very large systems could be

modeled using parallel computational techniques with several million atoms [Leeet al. 2005;

Vashishtaet al. 2006]. The computational effort, directly related to the quantity of information

of atomic level models however still remains very large. Several numerical works using molec-

ular dynamics in the domain of tribology considered the problem of nanoscratching [Komanduri

et al. 2000; Noreyan & Amar 2008] or nanoscale machining [Linet al. 2007]; and were used

for the identification of different wear regimes [Zhang & Tanaka 1997] and for the explana-

tion of tribological phenomena, like the nanoscale stick–slip [Cho et al. 2005] and adhesion

[Song & Srolovitz 2006]. The possible qualitative comparison of the nanoscratch behavior of

Au and Pt issued from the numerical model and the experimental data [Fanget al. 2006] also

encourages the use of atomic level simulations for problemsconcerning nanocontact and fric-

tion [Harano 2004; Mate 2008].

Considering the modeling of the nanoindentation procedure, the review of Szlufarska [Szlu-

farska 2006] gives a general overview. The prime concern of such calculations is the under-

standing of the early stages of plastic deformation in the sample material (i.e. the determination
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of a suitable criterion defining the onset of defect nucleation [Vliet et al. 2003]), the study

of the dislocation nucleation [Kelchneret al. 1998; Lilleoddenet al. 2003; Miller & Rodney

2008], the observation of the indenter–sample contact [Christopheret al. 2001] and the induced

wear mechanism in the tip [Hagelaaret al. 2006]. From the point of view of the atomic scale

simulations presented in the following, one of the most interesting papers presents the results

of modeling the nanoindentation of pure nickel [Saraev & Miller 2006].

Finally, to complete this overview explaining the reasons of the particular choice of the numer-

ical models applied in this work, the complex but very promising hybrid methods and methods

using homogenization techniques have to be mentioned. These methods build a bridge between

scales using suitable numerical methods on each scale. The higher scales are fed by the lower

scale behavior allowing the seamless treatment of multiplescales. One member of this fam-

ily of methods is the quasi-continuum method which considers atomic and structural scales

simultaneously (using an adaptive FEM mesh [Knap & Ortiz 2001; Shenoyet al. 1999]) for

the analysis of fracture and plasticity [Milleret al. 1998, 2003]. Coupling atomic level mod-

els to other methods can be addressed for problems with largegeometrical size, e.g. discrete

dislocation methods [Miller & Rodney 2008; Shilkrotet al. 2004], quasi–continuum methods

[Vashishtaet al. 2006], or advanced finite element models [Vlietet al. 2003]. The atomic

scale model is used to catch precisely the local behavior of the material and the higher scale

model to prescribe more realistic boundary conditions to the atomic scale model. It has to be

noted however that finding the proper boundary conditions for each considered model (working

potentially at different length scales) to assure the transition between the different scales is far

from being obvious, especially in a multi–model numerical assembly. The main drawback of

these models is their advanced complexity compared to single model approaches.

Taking into consideration the different aspects of the presented numerical methods, and that

behavior of materials in nanoindentation stems from contributions of different scales, two nu-

merical descriptions of the nanoindentation procedure have been used:

• a finite element model working on the continuum scale (a detailed description is given in

Chapter 4)

– applied to small, moderate and large indentation depth

– to model the overall indentation response of the studied material on the continuum

scale together with experiments, and taking into account experimental parameters

– to study the influence of experimental parameters that are difficult to control in the

real–life setup
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• a single level purely atomistic numerical model (presentedin detail in the following sec-

tion)

– to simulate the nanoindentation procedure at very small indentation depths

– to contribute to the understanding of some features of the nanoindentation procedure

linked to atomic scale mechanisms in very small indentationdepth

3.1 A simple atomistic model of nanoindentation

In nanoindentation even for shallow indentation depths, the deformation of a very large vol-

ume of material has to be considered with respect to the atomic scale. A quantitative comparison

with experimental results is thereby not possible in the context of this study considering the ex-

tremely large computational effort necessary to model indentation, even with very sharp AFM

tips in indentation depths where the experimental scattering is small enough to obtain results

with a reasonable accuracy for the comparison [Kulkarni & Bhushan 1996]. The purpose of

this work is to gain some insight in the features of the nanoindentation in very small indentation

depths linked to the atomic scale in a numerical study. From the experimental point of view,

indents performed in nanoindentation are so small that theycan be made inside a grain and the

material properties corresponding to the ones of single crystals (with defects) can be measured.

For the sake of simplicity and to be able to handle large system size calculations in a most

efficient way, an atomic level numerical model using empirical potentials was chosen for the

simulation task. In the model all atoms of the considered nickel lattice are represented, with

three degrees of freedom of displacement corresponding to each atom. The choice of a quasi–

static simulation of the nanoindentation procedure is taken, as in Hagelaaret al. [2006]; Miller

& Rodney [2008], since the speed of the indenter can be considered to be negligible (varying

between some tens ofnm/s to someµm/s in the experiment) with respect to the speed of the

atom vibrations. This reduces the numerical problem to astructural optimizationwith quasi–

static increments calculated by the ‘NAMD Scalable Molecular Dynamics’ software [NAMD

2008]. NAMD is a parallel molecular dynamics code openly distributed, designed for high-

performance simulation of large biomolecular systems, with a quasi–static optimization feature.

The choice of a molecular dynamics solution has been rejected to avoid using non–physically

large indenter velocities, since it would be impossible to bridge the time scales between simu-

lations and experiments, and for the sake of computational efficiency.

The surface adhesion forces and the forces applied to obtainplastic deformation of the sample

This section is based on P. Berke, M.-P. Delplancke-Ogletree, A. Lyalin, V.V. Semenikhina, A.V. Solov’yov, ‘Sim-

ulation of the nanoindentation procedure on Nickel on the smallest length scale: a simple atomistic level model’

published in Latest Advances in Atomic Cluster Collisions:structure and dynamics from the nuclear to the biolog-

ical scale, edited by J.-P. Connerade and A.V. Solov’yov, Imperial College Press, London (2008)
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in the nanoindentation experiment are basically of different order (the latter being more impor-

tant). As a result, the surface adhesion forces are often neglected in the structural numerical

simulation on the continuum scale. However this assumptionis not satisfied generally anymore

on smaller scales. In order to remain consistent with the physics on the considered scale, the

rather rare choice is made to represent the diamond lattice of the indenter and the interaction

between the tip and the sample is taken into account [Christopheret al. 2001; Lilleoddenet al.

2003]. The atoms in the diamond lattice are frozen, the indenter is represented as an unde-

formable body. The interaction potentials of both the Ni–Niand Ni–C interactions are modeled

by Lennard–Jones type interaction potentials.

φLJ(r) = ǫ [(r0/r)
12 − 2(r0/r)

6] (3.1)

whereǫ [eV] is the energy well depth,r0 [Å] the equilibrium distance between two atoms, and

r [Å] the distance measured between two atoms. Even though this approximation might not be

the best choice to describe the behavior of the nickel material and the contact interaction, it is the

necessary implication of the use of NAMD code in one step of the simulation procedure (as de-

scribed later). A major difficulty in atomic level models is the choice of the interaction potential

and of its parameters to properly describe the behavior of the modeled material. An inaccurate

choice indeed results in the non–physical response of the numerical model (issues of stability of

the lattice, ‘crushing’ or ‘explosion’ of the lattice at indentation). Fortunately, Lennard–Jones

type potentials seem to represent (in a limited, but satisfactory manner) the atomic interaction in

FCC lattices, but the improvement of the model by using more adequate interaction potentials

is recognized to be an important development step in a futurework, before addressing more

advanced systems. The two sets of Lennard–Jones potential parameters were calculated to fit

the best possible the Morse type potentials obtained for Ni–Ni and Ni–C interactions, issued

from density functional theory (DFT) calculations [Shibuta & Maruyama 2007], and used to

describe the nanotribology of a small scale scratch test of nickel with a nanoindenter [Linet al.

2007]. The parameter sets used for the Ni–Ni interactions and for the Ni–C interactions are:

ǫNi−Ni = 0.4245eV , rNi−Ni
0 = 2.56Å andǫNi−C = 0.1eV , rNi−C

0 = 2.4Å. The indenter is

constructed from 3308 carbon atoms in a diamond lattice (with the lattice parameteradiam =

3.56Å [Kittel 1996]), the same material as in the experimental setting. Even though in reality

the nanoindenter has a tip radius ofR = [100...800nm] for the sharpest tips, in this study a

cono–spherical tip of 2nm radius has been considered due to computational limitations. The

chosen tip size and geometry is in good agreement with other works using atomistic models of

nanoindentation where the indenter tip radius ranges generally from 2nm [Fanget al. 2003;

Lilleoddenet al. 2003] to 18nm [Hagelaaret al. 2006]. The deformability of the indenter is

not taken into account in this numerical work,. The indentertip is modeled merely as a rigid

body, which is a common assumption, since both its elastic modulus as well as its yield limit

are orders of magnitude higher than those of nickel. A defect–free FCC lattice structure (with

25



Nanoindentation modeling on different scales 3.1 Atomic scale model

Figure 3.2: Applied boundary conditions in the atomic levelsimulation, the atoms in the inden-

ter are frozen.

the lattice parameteraNi = 3.52Å [Kittel 1996]) of parallelepipedic shape with dimensions

10nm× 10nm× 6.5nm built from roughly 65600 atoms was considered for the nickelsample,

corresponding to a defect–free single crystal indentationsetup. The sample was constructed

from unit cells with[001] orientation. The variation of the lattice orientation of the nickel struc-

ture was not considered in this study, keeping in mind however the dependence of the material’s

response on the lattice orientation [Richteret al. 2000]. This size of the lattice was found to

be sufficiently large with respect to the size of the diamond indenter with 2nm tip radius and

the imposed displacement of 0.8nm. The considered atomic scale model of nanoindentation

uses simple ingredients, however this relative simplicityis balanced by a computational effi-

ciency that allowed to reach a system size and an indentationdepth comparable to other works

in the field [Christopheret al. 2001; Linet al. 2007]. The displacement of the atoms on the

lateral and bottom sides of the nickel lattice are prescribed to be zero during the whole sim-

ulation, leaving only the upper contacting surface of the lattice and the enveloped volume to

deform (Fig.3.2). During the numerical indentation the indenter moves downwards and comes

into contact with the sample. The rigid indenter then deforms the sample volume and finally is

retracted upwards to its final position. The holding period present in the experiments is omitted

here, considering that the simulation is quasi–static. This methodology corresponds to a dis-

placement controlled simulation. The nanoindentation simulation is divided into quasi–static

increments; at the beginning of each increment the positionof the rigid diamond indenter is

updated and then an iterative structural optimization stepusing the structural optimization fea-

ture of the NAMD code is made recalculating the position of the free nickel atoms in order to

minimize the total energy of the system. A program was created to drive the whole calculation

as an external frame to the structural optimization step (communicating with the NAMD code
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Figure 3.3: Programmed external frame mimics an incremental iterative solution scheme, used

in nonlinear computations. This frame drives the computation, exploiting the structural opti-

mization feature of the NAMD code in one step of the procedure.

through its standard input and output parameters) and to process the results of the structural op-

timization (Fig.3.3). The structural optimization feature of the NAMD code is driven using the

following input parameters; the parameters of the Lennard–Jones type interaction potentials;

the initial configuration of the position of the atoms; the number of optimization steps which

are generated in an incremental iterative calculation scheme to solve the nonlinear indentation

problem. The outputs of the structural optimization step, i.e. the optimized configuration with

the updated position of the atoms; the total energy of the system; the gradient of the total energy

of the system are used to create the total energy–indenter displacement curve and to decide on

the convergence of the actual optimized configuration in theexternal frame.

An increment is considered converged when a gradient of the total energy satisfies the toler-

ance condition. The overall convergence of the indentationsimulation is ensured by a ‘bypass’

procedure increasing the prescribed tolerance value when the increment size had reached the

minimum prescribed value and the calculation still has not satisfied the convergence criteria

after a large number of optimization steps. This numerical maneuver allows the continuation

of the simulation and the configurations with a high tolerance value can be filtered out in the

post–processing step. Note that considering a path–dependent indentation response, this intro-

duces the assumption, that the converged configurations with a high tolerance still remain good

approximations of the corresponding actual equilibrium state. The average displacement step

of the indenter per increment in the simulation was 0.064Å, with a fixed minimum step size of

0.001Å.
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Figure 3.4: a. Variation of the total energy of the modeled system as a function of the in-

denter displacement b. Atomic level load–displacement curve derived from the total energy–

displacement curve.

Numerical results and analysis

The main results obtained from the atomic scale numerical model of nanoindentation are pre-

sented here. The main outputs of the numerical simulation are the total energy of the structure

as a function of the indenter displacement (Fig.3.4a), fromwhich the atomic scale reaction

force–displacement or load–displacement curve was computed (Fig.3.4b), and the positions of

the atoms in the deformed configurations (Fig.3.5). Since the carbon atoms in the indenter are

frozen, the change in the total energy of the structure is related to two contributions: the de-

formation of the sample volume and the contact interaction between the nickel and the carbon

atoms on the indenter–sample interface. The zero referenceenergy level corresponds to the

initial configuration with the defect–free, undeformed andrelaxed perfect nickel lattice, and the
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indenter sufficiently far so that there is no contribution ofthe sample–indenter interaction to the

energy balance. The convention is taken that the zero value on the axis of the indenter displace-

ment on all figures matches the position of the sample contactsurface and negative values stand

for separation between the contacting bodies in a geometrical sense.

In theapproach phasethe indenter moves towards the sample until contact is established. With

diminishing separation distance (from 0.8nm to 0.1nm) the total energy of the system first de-

creases (Fig.3.4a), the indenter and the sample volumes attract each other bulging up the nickel

contact surface. In force–controlled simulations the above-mentioned attraction between the

two surfaces may result in a jump–to–surface phenomenon, asmentioned in Hagelaaret al.

[2006]; Szlufarska [2006]. An experimental manifestationof jump–to–surface is called pull–

in in AFM experiments. This jump–to–surface, related to atomic attraction in the context of

nanoindentation can only be observed experimentally with the condition (among others) of

having to manipulate atomically clean surfaces. In experiments the major sources of attraction

between the indenter tip and the sample are electrostatic forces [Lambert & Régnier 2006], cap-

illary forces [Lambert 2007; Mate 2008] and Van der Waals forces [Israelachvili 1974; Mate

2008]. Further approaching the indenter to the sample (fromthe separation distance of around

0.1nm on), the interaction force between the indenter and the sample changes to repulsion, with

an increase in the energy of the system.

The next phase of the numerical nanoindentation starts whenthe repulsive interaction force

between the indenter and the sampledeforms the nickel lattice, causing a global increase in

the energy level of the system. In agreement with the theory of continuum solid mechanics,

based on observations on the macroscale, the sample deformation is first elastic followed by

an elastic–plastic regime. The transition corresponds to the start of the nucleation of disloca-

tions in the sample volume [Vlietet al. 2003] causing the first large energy jump in Fig.3.4a,

at around 0.24nm of indenter penetration. Until this point the elastic contact model of Hertz

[Hertz 1882], considering the approximation of a deformable body with a flat surface and a

rigid spherical body with 2nm of contact radius was applied to the problem, as in Lilleodden

et al. [2003]. A good agreement between the Hertzian contact modelwith a sample’s Young’s

modulus ofEsample = 5000GPa and the numerical results was obtained. This value is an or-

der of magnitude higher than the macroscopically measured average ofENi = 207GPa [ASM

1990]. A peak contact pressure of 1300GPa was calculated at yield by the Hertzian contact

model. This value is two orders of magnitude larger than the theoretical shear strength of the

nickel crystal defined byτmax = G/2π = 12GPa [Vlietet al. 2003]. Deviations of the results

of atomic scale numerical models from the predictions of continuum solid mechanics are often

observed (explained by the complex stress condition under the indenter) but generally with con-

siderably smaller magnitude. The large difference observed here is related to the (imposed) use

of Lennard–Jones interaction potentials. The plastic yielding in the present numerical model
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Figure 3.5: Snapshot in cut view of the deformed configuration of the nickel lattice in the

numerical model during indentation at indenter penetration of 4.38Å. The atoms on the left,

right and bottom sides are blocked (in green), the indenter carbon atoms are represented in

black.

seems to start off the symmetry axis of the indenter (Fig.3.5), in agreement with other atomic

scale models [Leeet al. 2005], but contrary to the predictions of the continuum and the Hertzian

contact model. With larger penetration of the indenter, up to the peak value of 0.8nm, the sys-

tem response is composed of subsequent energy and force jumps. The spacing of these energy

jumps on the total energy–indenter displacement curve is closer at larger indentation depths

(passing from around 0.11nm to 0.07nm and their magnitude is also increasing at large pen-

etration values (up to 62eV ) showing the increasing plastic deformation of the nickel lattice

(Fig.3.4a). The sharp falls in the total energy of the systemindicate the plastic relaxation of the

stresses in the lattice corresponding to the reorganization of the position of a larger number of

atoms via dislocation activity. In agreement with experiments and the theory of continuum solid

mechanics, the slope of the atomic scale load–displacementcurve of indentation in the purely

elastic domain is steeper than in the elastic–plastic deformation domain.

After reaching the maximum prescribed value of the indenterpenetration, the indenter is re-

tracted, corresponding to the beginning of theunloading phase. The initial decrease of the

total energy during unloading can be explained by the elastic relaxation (to some extent) of

the accumulated stresses in the nickel lattice. There are nosignificant energy and force jumps

in the beginning of the unloading up to an indentation depth of around 0.6nm suggesting the

mainly elastic nature of this nanoindentation phase (Fig.3.4a). The post–treatment method of

nanoindentation proposed by Oliver and Pharr [Oliver & Pharr 1992], based on the assumption
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of elastic contact unloading was applied to the numerical load–displacement curve in the un-

loading period and the following material properties have been obtained: a hardnessHOP
sample =

646GPa, two orders of magnitude larger than the documented values for bulk nickelHbulk
Ni =

4GPa [Pauleauet al. 2006] and a Young’s modulusEOP
sample = 4580GPa that matches well the

value found by Hertzian elastic contact analysis of the loading curve (less than 10% of devia-

tion). The source of the difference between the elastic moduli identified in the loading, and in

the unloading period is the effect of the increased contact interaction in the deformed configura-

tion, having a larger contact area. The fair agreement between the Young’s modulus calculated

by the Hertzian elastic contact approximation using the numerical loading curve and the value

obtained by the Oliver–Pharr post–treatment method confirms the validity of its simplifying ap-

proximations, particularly when contact adhesion is low. Note the similar multiplicative factor

of around two orders of magnitude of the initial yield strength and of the hardness of the mate-

rial in the numerical model with respect to the macroscopic material properties of pure nickel.

This can be explained by the dependence ofH on the elastic–plastic behavior of the material.

The sample–tip interaction is mainly responsible for the energy jumps during the retraction of

the indenter from penetration depth of 0.55nm on (Fig.3.4a), due to the rearrangement of a

large number of nickel atoms on the sample surface during contact separation by these adhesive

forces. This adhesive atomic interaction is witnessed again by the very similar shape of the

final unloading portion of the curve compared to the approachphase. Contact separation be-

tween the indenter and the sample occurs at around 0.1nm of penetration depth, which can give

an indication on the residual imprint depth. As expected, the final total energy of the system

suffering permanent deformation after indentation is higher than the one corresponding to the

initial defect–free configuration.

Conclusions and outlook

The numerical results issued from this simple atomic level model set up for nanoindentation

in very shallow indentation depths are consistent with the physics of the problem, and the na-

ture of the obtained total energy–displacement curve is in good agreement with other works

considering the indentation in materials with FCC lattice [Jianet al. 2006; Leeet al. 2005;

Lilleoddenet al. 2003; Richteret al. 2000; Saraev & Miller 2006; Vlietet al. 2003].

In spite of some differences stemming from the scale on whichthe numerical model is formu-

lated (i.e. important influence of contact adhesion) and allthe simplifying assumptions that can

be refined (Lennard–Jones interaction potentials) the overall response of the discrete model is

in good agreement with the experimental trends and the theory of continuum solid mechanics.

Conversely, this implies that the results of atomic scale numerical models, representative of the

considered problem can be used to derive trends that are applicable on the continuum scale,
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enforcing a potential practical interest of such low–scalesimulations. Hence, by adequate scale

transition assumptions, trends issued from atomistic numerical models can be used to formulate

or verify constitutive relationships formats for higher scales.

Since no matching is obtained from a quantitative viewpoint, some aspects of the developed

qualitative model are still to be revisited. The stiff response of the system is an inevitable result

of the use of Lennard–Jones potentials. The outlook of this study includes the use of more

realistic Embedded Atom Model (EAM) type potentials in order to describe the behavior of the

modeled nickel monocrystal sample better.

Furthermore, to ensure that atomic scale models remain representative of the (mechanical) prob-

lems in the context of this research, their geometrical sizeshould be further increased. Since

the computational effort of the considered numerical modelis relatively small the system size

can be increased without particular difficulties in a futurework. This can allow atomic scale

models to address a number of advanced issues in the outlook of this thesis, linked to atomic

scale phenomena, such as the study of thin film adhesion and delamination and material size

effects [Nairet al. 2008].

For very shallow indentations the atomic scale numerical modeling revealed interesting fea-

tures of the nanoindentation experiment concerning the plastic deformation of the sample (e.g.

off–axis yielding). In order to study the plastic deformation mechanism in the nickel lattice a

post–treatment method using the centrosymmetry parameterP , based on the property of central

symmetry of the defect–free, undeformed FCC lattice can be implemented.

P =
∑

i=1,6

|Ri + Ri+1|
2 (3.2)

with Ri andRi+1 the vectors corresponding to six pairs of opposite nearest neighbors in the lat-

tice. This would allow to study the influence of different tipgeometries on the onset of plastic

deformation, giving additional insight into the physics ofthe nanoindentation.

Finally it is noted, that despite the discrete nature of the model, the large scale transition and

the influence of contact adhesion during unloading, the Oliver–Pharr post–treatment method of

nanoindentation [Oliver & Pharr 1992] was applied to the numerical load–displacement curve,

and was shown to perform well, resulting in a deviation of less than 10% with respect to the

value obtained by the Hertz elastic contact analysis duringloading. This method can be contin-

ued to be applied in future studies to numerical load–displacement curves issued from atomic

scale simulations.

3.2 Continuum scale models of nanoindentation

Atomic level models are used generally for fundamental research aiming at the understanding

of complex phenomena by a low–level description. Such models can reproduce qualitatively
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the trends observed experimentally, potentially leading to the identification of the key physical

parameters of the studied phenomena. However, when the numerical frame has to be coupled

directly to experiments considering both qualitative and quantitative results on the scale of the

experiments, continuum models are most frequently preferred to the low scale description of

the material because of their computational efficiency.

The requirement of a direct coupling of the numerical model to experiments on a physical

basis lead to considering the nanoindentation simulation on the continuum scale. Continuum

scale numerical models have frequently proven their performance in the same context for prob-

lems such as: to develop more accurate post–treatment methods of nanoindentation [Niet al.

2004]; to propose inverse methods of nanoindentation [Bolzonet al. 2004; Stausset al. 2003];

to broaden the scope of material properties obtained from the experimental load–displacement

curves [Bouzakiset al. 2001; Bouzakis & Michailidis 2004; Bucailleet al. 2004, 2003; Cao

& Lu 2004; Giannakopoulos & Suresh 1999; Krameret al. 1998; Maet al. 2003; Zhaoet al.

2006] on the basis of the comparison of numerically obtainedtrends with experimental results;

to study the the influence of various contributions to the measured load–displacement curves

[Jeong & Lee 2005; Walteret al. 2007; Youn & Kang 2005]; without aiming for an exhaustive

overview.

The most frequently used discretization in continuum models is the finite element method be-

cause of its computational efficiency, its broad domain of application and high flexibility. The

possibility of using a large variety of material behaviors (elastic–plastic material models, dam-

age models), including higher order theories to model material size effects; its direct applica-

bility to advanced problems, such as modeling the deformation and delamination of thin films

and thin film sandwiches [Abdul-Baqi 2002; van den Bosch 2007; Xu 2004] using different in-

terfacial and contact behaviors; and the possibility of coupled multi–physics simulations, using

models that can be defined in terms of physically meaningful parameters are interesting and

valuable features of the finite element method.

In the majority of the cited numerical works, the authors usecommercial finite element pack-

ages for the sake of simplicity. Commercial finite element codes are interesting for prototyping

of the potential need for a physical ingredient for example (unavailable in a research oriented

code, but preprogrammed with a simple model in the commercial code). However, due to their

often limited flexibility they potentially cannot always satisfy yet emerging demands of the re-

search. This motivated the development of the continuum scale numerical tool using the finite

element method presented in detail in the following chapter, with the objective of reaching a

maximum flexibility and accuracy by the proper choice of the numerical ingredients, adapted

for the problem of nanoindentation.
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Chapter 4

Developed continuum scale numerical tool

for large deformation contact

This chapter treats the development of the continuum scale numerical tool using the finite

element method, applicable to problems involving frictional contact, and the finite elastic–

plastic deformation of one of the bodies in contact. The mainsteps of the development con-

sist of including (i) the corotational finite deformation description, (ii) isotropic hardening

plasticity and (iii) normal and tangential contact constraints by the augmented Lagrangian

formulation.

Contact deformation gives a large contribution in the applications considered in this work

(nanoindentation and micromanipulation by contact), potentially inducing large elastic and plas-

tic deformations. These are aspects that a numerical model must be able to describe. For this

purpose a finite element code, programmed in MATLAB language, was further developed in

order to include the following features:

• finite deformation description

• material plasticity

• normal and tangential contact constraints

to the original code, which initially contained an element library with linear elastic and dam-

aging behavior in infinitesimal deformation description, and a nonlinear solver. The program

development was made keeping in mind computational efficiency, robustness and an emphasis

on maintaining a maximum degree of flexibility of the resulting code for future development of

new features and material/interface behaviors.

In order to be able to describe large local deformations the original finite element code had to
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be modified. The choice of the most adequate, efficient and robust numerical frame to describe

finite deformations in finite element models remains an open and actual question. Two fami-

lies of finite deformation descriptions are distinguished,e.g. hyperelastic [Areiaset al. 2003;

Liebe et al. 2003; Simo 1992] and hypoelastic formulations. The hyperelastic model uses a

hyperelastic potential (functional), defined in terms of strains from which stresses are derived.

This results in a formulation where the requirements of reversibility, of path–independence and

of no energy dissipation in a closed elastic cycle are naturally satisfied. This formulation is

frame invariant and therefore satisfies the strong objectivity criterion (stresses are only gen-

erated by strains without any contribution of rigid motion). When coupled to plasticity, this

formulation uses the multiplicative decomposition of the deformation gradient (relating the ini-

tial and deformed configurations) in its elastic and plasticparts. The basis of the formulation

of computational plasticity is the maximum plastic dissipation theorem. However, in spite of

its merits the hyperelastic formulation has a major drawback when considering its flexibility

for future developments, particularly including materialsize effects. Strain gradient plasticity

(SGP) models coupled to hyperelastic formulations are verycomplex [Chambonet al. 2001,

2004; Fleck & Hutchinson 1997], whereas SGP models coupled to hypoelastic formulations are

simpler [Fleck & Hutchinson 2001; Niordson & Redanz 2004] and perform well in reproducing

phenomenologically material size effects, resulting in the more efficient choice from the code

development point of view.

Hence a hypoelastic formulation was chosen to describe finite deformations in the finite ele-

ment code. Hypoelasticity coupled to plasticity can be considered as a rather straightforward

extension of the infinitesimal deformation theory, being a rate–type formulation. The main issue

of hypoelastic formulations is the choice of objective rates and objective integration schemes

of the rate equations, as explained later. In a purely elastic loading cycle, non–physical stresses

may appear using hypoelastic formulations, but considering that for the aimed applications usu-

ally the plastic response of the material is dominant this isnot considered to be a severely

penalizing error. Moreover some additional developments can restore the energy conservation

of an elastic cycle [Noelset al. 2004], if it is justified in the context of the considered applica-

tions by erroneous numerical results.

The corotational hypoelastic–plastic finite deformation formulation [Ponthot 1995, 2002] was

implemented in the existing code with the following salientfeatures:

• it is a trivially objective scheme, very efficient handling problems involving large rigid

rotations,

• it introduces a full decoupling of the contributions of material and geometrical nonlinear-

ities,
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• an analytical expression exists for the evaluation of the consistent tangent stiffness matrix,

• it consists of a straightforward development from the infinitesimal displacement and de-

formation theory.

In the majority of industrial applications the loading of a structural element is transferred by

contact (e.g. sheet metal forming [Zhanget al. 2003], tight interface fit [Yanget al. 2001], let

alone the tire industry). In the context of the project involving nanoindentation the capability

of describing contact conditions in a numerical model is obviously required. Including contact

loading to the original code represents an essential step tobe able to prescribe the evolving

boundary conditions related to contact evolution (of both normal and tangential contact condi-

tions).

The theory of contact mechanics is an interdisciplinary area, which via the coupling of structural

and contact behaviors needs input from different research areas such as tribology, mathematics,

computer science, mechanics, and for coupled multi–physics problems heat transfer [Idesman

& Levitas 1994; Xing & Makinouchi 2002], or electromagnetism or plasticity and damage for

example [Jefferson 2003; Stachowiak 2005]. Computationalcontact mechanics, sometimes

also presented as the numerical branch of tribology, solvesnumerically contact problems and

has become a vast domain of research. Indeed problems involving contact and friction are of

utmost importance in most engineering applications and their complexity usually requires the

use of numerical models for their understanding. In spite ofthe large number of contributions

in the domain, the choice of the most efficient numerical method to treat contact constraints still

remains an open and frequently discussed question.

In this work an augmented Lagrangian treatment of the normaland tangential contact con-

straints was added to the initial finite element code. This formulation was chosen considering

its principal advantages:

• it satisfies both normal and tangential contact conditions exactly,

• it avoids numerical ill–conditioning (penalty method) andthe use of an additional field of

variables (Lagrange multiplier method),

• it introduces a full decoupling of the contact nonlinearities from other contributions.

Its major disadvantage from a theoretical point of view is the use of a generalized Newton

method with a convergence rate which cannot be established rigorously at least in a general

setting, when friction with Coulomb type law is considered.

Problems related to finite deformations and contact, using nonlinear, non–differentiable con-

stitutive laws for the interface behavior lead to the use of advanced numerical methods. The

salient features of the chosen numerical methods and some more detailed discussion related to
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the major steps of the code development are presented in the following. Section 4.1 sketches

the main developments needed to describe material plasticity in the corotational finite deforma-

tion frame, introducing the main ingredients related to thedescription of finite deformations.

Section 4.2 gives basic notions of the general computational contact mechanics formulation,

the chosen Coulomb friction model and the induced numericaldifficulties to tackle. Then, the

development of the required one–node contact element satisfying the normal and tangential

contact constraints is presented. Finally, a discussion onthe choice and performance of the

numerical ingredients and on the development of the initialfinite element code is given.

4.1 Modeling the elastic–plastic material behavior in a coro-

tational finite deformation framework

Finite deformation formulations and related issues are treated in detail in several references the

interested reader can consult for a more general overview [Belytschkoet al. 2000; Laursen

1992; Ponthot 1995; Wriggers 2002; Zienkiewicz 2000]. The formulation presented in this

section considers the work of Ponthot [Ponthot 1995, 2002],who introduced a unified stress

update algorithm for elastic–plastic constitutive equations in a finite deformation framework

using acorotational formulation, within anupdated Lagrangian scheme.

4.1.1 Kinematics in finite deformation theory

Contrary to the infinitesimal deformation theory of continuous media, the finite deformation

theory necessarily distinguishes between the initial and the deformed configuration. Hence the

kinematics used to describe finite deformations have to be defined first.

The position of a material particle in the reference configuration of a body, corresponding to

a timet0 is denoted byX while its position in the deformed configuration of the body,corre-

sponding to a timet > t0 is noted byx = x(X, t). Note that considering an updated Lagrangian

scheme, the initial configuration att0 corresponds to the last converged equilibrium configura-

tion of the analysis. The deformation gradient relating thedeformed configuration to the initial

configuration is defined as

F =
∂x

∂X
(4.1)

By the polar decomposition theorem [Ponthot 1995] the stretch tensorU and the rotation tensor

R can be uniquely defined by

F = R U with R
T
R = I and U = U

T (4.2)
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with I representing the identity tensor. The spatial gradient of velocityL = ḞF
−1 (differentia-

tion with respect to the actual configuration) can be decomposed into

D = 1
2
(L + L

T ) the rate of deformation tensor

W = 1
2
(L− L

T ) the spin tensor
(4.3)

The rate equations used in modeling material plasticity arewritten in terms of the rate of defor-

mation tensorD in the chosen finite deformation theory, which is decomposedto its elastic part

De and plastic partDp by

D = De + Dp (4.4)

This assumption is usually made in hypoelastic–plastic formulations, causing a negligible error

for small elastic strains. This leads to a straightforward extension of the infinitesimal plasticity

theory based on the additive decomposition of the elastic and plastic strains and strain rates.

4.1.2 Plasticity constitutive setting

One of the most developed theories of material nonlinearityis the mathematical theory of plas-

ticity [Bushnell 1977; Hill 1956; Hult & Lemaitre 1981; Kachanov 1971], resulting in various

models describing the nonlinear plastic behavior of materials. The reader can consult [Be-

lytschkoet al. 2000; Crisfield 1995; de With 1999] for a general view on the theory of plasticity.

The common idea in all plasticity models is that the induced plastic deformation is irreversible.

In a simple elastic behavior, the structure returns to its original configuration as soon as the loads

are removed. Plastic behavior can be classified in two main groups: rate–dependent, and rate–

independent theories. The former group includes phenomenasuch as creep or viscoplasticity

[Bushnell 1977] where the magnitude of the irreversible deformation depends on the duration

of the loading and on the strain rate. Such a model is considered in Section 5.2 to describe the

behavior of pure nickel in nanoindentation.

The latter group corresponds to a particular case of the moregeneral rate–dependent models

with a simpler behavior of the material assumed to depend on the loading history only [Hugues

1984]. It is a common practice to use this type of material model to describe the plastic response

of metallic materials, when their rate–dependent effects are assumed to vanish. For similar rea-

sons a rate–independent plastic material model was implemented in the numerical tool.

In the theory of plasticity, contrary to the theory of elasticity, in which total elastic strains and

stresses are directly related, the relationship between the rate of strains and the rate of stresses

is postulated as

σ̂ = He (D−Dp) (4.5)

whereσ̂ is an objective rate (see below) of the Cauchy stress tensorσ andHe the elastic stiff-

ness tensor.

38



Continuum scale model development 4.1 Corotational FD framework

Detection of plastic straining, the yield function

Plastic deformation is triggered when stresses in the material reach a given limit. The phys-

ical origin of plastic straining in crystalline materials is the activation and propagation of dis-

locations generated by the applied stresses resulting in shear slip on a number of slip planes

[Bowman 2004; de With 1999; Hill 1956]. In the material model, a mathematical function

called yield function is used to detect an increase of plastic deformations. Yield functions de-

fine a surface, which envelops all physically possible stress states in rate–independent plasticity.

Stress states inside this contour cause only elastic deformations, while stress states on this yield

surface give rise to elastic–plastic deformations. By definition, in rate–independent plasticity

stress states outside the yield contourf are not admissible. These conditions are expressed

mathematically by the Kuhn–Tucker complementary conditions.















γ̇ ≥ 0

f ≤ 0

γ̇ f = 0

(4.6)

with γ the consistency parameter, which determines the magnitudeof plastic strain. The dot

superscript denotes the time derivative of the considered term.

The von Mises pressure–insensitive yield function for isotropic materials was chosen for the

numerical tool. This yield criterion is frequently assumedfor metals [de With 1999; Geers

2001; Hill 1956], furthermore it offers the numerical advantage that the gradients of the Von

Mises yield surface, which are used for the numerical solution procedure, are always uniquely

defined. Mathematically the von Mises contour is expressed as

f(σ, σv) =

√

1

2
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]− σv (4.7)

whereσ1, σ2 andσ3 are the principal Cauchy stresses andσv is the current yield strength of the

material, depending on its hardening behavior.

A Ludwik’s law, with a power law expression is used together with the von Mises yield function

to describe the hardening behavior of metallic materials inthe simulation

σv(κ) = σ0 + K κn (4.8)

whereσv(κ) is the current yield stress,σ0 stands for the elastic limit in uniaxial tension. The

scalar valued hardening parameterκ is typically dependent on the strain history through in-

variants of the plastic strain tensor.K andn are curve fitting parameters, called hardening

coefficient, and hardening exponent, respectively, chosento fit (4.8) to experimental stress–

strain data. Ludwik’s law describes well experimental stress–strain data for the considered base

materials, pure titanium and pure nickel well. Since the yield function depends on the loading
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history only through a scalar–valued hardening parameter,the yield surface can only expand or

shrink, but not translate or rotate in the stress space, i.e.no kinematic hardening is considered

here.

Plasticity evolution laws and the flow rule

Considering the definition of a yield surface, plastic straining occurs when the stress point

in the stress space is on the yield contour of a yield surface,and subsequently remains on this

contour as the loading progresses. This is expressed by the consistency condition

ḟ =
∂f

∂σ

σ̇ +
∂f

∂κ
κ̇ = 0 (4.9)

The evolution law of plastic deformation is defined by the flowrule

Dp = γ̇ n with n =
∂f

∂σ

(4.10)

n is the unit outward normal to the yield surface in the case of associated plasticity.

4.1.3 The essence of the corotational formulation

The major challenge of integrating the above rate equationsin the finite deformation framework

is to respectincremental objectivityduring a finite time step. The objectivity criterion means

that a pure rotation or rigid translation transformation should not cause any increment of strain

D and of stressδσ.

To solve this problem the equations are first rewritten in acorotationalmoving frame [Ponthot

1995]. This corotational frame is generated using a skew–symmetric tensorΩ = -ΩT in the

following. A group of rotationsr is generated by






ṙ = Ω r

r(t0) = I

(4.11)

This group of rotations implies a change of frame from the Cartesian reference axes to the

corresponding rotating axes. In these rotated axes the Cauchy stress tensor transforms as

σ
c = r

T
σ r (4.12)

and the rate of Cauchy stress is given by

σ̇
c = r

T (σ̇ −Ω σ + σ Ω) r = r
T

σ̂
c
r (4.13)

with σ̂
c a corotational objective stress rate (the Jaumann rate ifΩ = W).

In the new (rotating) reference frame the evolution equations take a simple form, similar to the

infinitesimal theory of plasticity

σ̂
c = H

c
e (Dc −D

c
p) (4.14)
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with














D
c = r

T
D r

n
c = r

T
n r

H
c
e = He

(4.15)

and the scalar quantities remain unchanged.

Numerical solution by return mapping algorithm

The main difficulty in elastic–plastic computation is the calculation of stresses [Argon 1975],

on which the internal forces and the global equilibrium of the system depend. The equations of

the mathematical theory of plasticity have to be integrated[Matthies 1989; Ortiz & Popov 1985;

Ortiz & Simo 1986] to obtain the stresses corresponding to the actual state of deformation. In a

finite element study the stresses are calculated at each integration point of every element. The

integration of the above rate equations is conducted using areturn mapping algorithm [Simo &

Taylor 1985] with an iterative forward Euler scheme. For more details on the numerical solution

of problems in plasticity the reader can consult [Owen & Hinton 1980; Simo 1988; Sussmann

& Bathe 1987]. Conceptually the return mapping schemes can be divided in an elastic predictor

step and a plastic corrector step.

Elastic predictor step

First an elastic predictor is established starting from thelast converged configuration assum-

ing the total incremental deformation elastic in theelastic trial step

σ
c
tr = σ

c
0 +

∫ t1

t0

He D
cdt (4.16)

The trial stressσc
tr is back–transformed in the initial Cartesian frame

σtr = r
T
1 σ

c
tr r1 = r

T
1

[

r
T
0 σ

0
tr r0 +

∫ t1

t0

He D
cdt

]

r1 (4.17)

Using the polar decomposition (4.2) and thatD = sym(L)

D
c(t) = r

T
1 D r1 =

1

2
r

T
1 R [U̇U

−1 + U
−1

U̇] R
T

r1 (4.18)

The following three assumptions are next introduced, as in Ponthot [2002] i.e. (i) that the

reference configuration is the configuration at timet0 (updated Lagrangian configuration)r0 =

I; (ii) we supposer(t) = R(t); and (iii) the following exponential map forU(t) is assumed

U(t) = exp

[

t− t0
∆t

C

]

(4.19)
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with C = lnU the incremental natural strain tensor between the reference configuration and the

actual configuration. Considering the above assumptions the trial stress tensor can be calculated

as

σtr = R [σ0 + He C] R
T (4.20)

The major features of this formulation are, that:

• all kinematic quantities are based on the deformation gradientF, which is derived in a

straightforward manner in a finite element frame

• R is computed exactly from the polar decomposition

• the logarithmic strain tensorC can be computed exactly [Ponthot 1995]

• the scheme is trivially incrementally objective, since in the case of rigid body motion

C = lnU = 0 and the stress tensor is updated asσt = R σ0 R
T for any finite rotation

• the formulation is not restricted to isotropic behavior, itconstitutes a natural frame for

anisotropy

Plastic corrector step

If the elastic trial step violates the yield condition aplastic corrector stepis used to return

to the evolving yield surface. The nonlinear system of equations to solve is:































H
−1
e (σ − σtr) + Dp = 0

Dp = γ̇

(

∂f

∂σ

)

f(σ, κ) = 0

κ̇ = γ̇

(4.21)

The linearization of this system of equations for the Newton–Raphson local iteration procedure

can be written as








σ
(k+1)

κ(k+1)









=









σ
(k)

κ(k)









− [Jp(σ
(k), κ(k))]−1

M
(k)









σ
(k)

κ(k)









(4.22)

where the superscripts in parentheses(k) represent the current iteration number.Jp(σ
(k), κ(k))

is the Jacobian matrix of the system (4.21), andM
(k)(σ(k), κ(k)) stands for the matrix of resid-

uals at thek-th iteration of a given increment of the local Newton–Raphson procedure.
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Consistent tangent stiffness matrix of the return mapping

The notion of the tangent stiffness matrixHt consistent with the integration algorithm of the

constitutive equations was introduced in Simo & Taylor [1985]. The local tangent stiffness

matrix calculated at the integration points of the elementsused in the assembly of the global

structural tangent stiffness matrix has to be consistent with the chosen algorithm of integration

of system (4.21) to keep the asymptotically quadratic rate of convergence of the global iteration

on the structural level, which is necessary for computational efficiency. The derivation ofHt (if

possible by an analytical expression) is essential to guarantee an efficient calculation.

The elastic–plastic operatorconsistentwith the stress integration algorithm is defined by the

relation [Ponthot 1995; Simo & Taylor 1985]

Ht = lim
D

(i→i+1)
n →0

σ
(i+1)
n − σ

(i)
n

D
(i→i+1)
n

(4.23)

with subscriptsn, and superscripts in parentheses(i) corresponding to the increment number

and the iteration number of the local iteration loop, respectively. D
(i→i+1)
n and (σ(i+1)

n −σ
(i)
n )

are the increment of strain and stress between non–equilibrium iterations(i) and(i + 1).

After some straightforward manipulations the Jacobian matrix J
(k)
p n issued from the linearization

of the nonlinear system of equations to solve at thek-th iteration of the incrementn can be

expressed

J
(k)
p n =

















[He]
−1 + κ̇

(k)
n

(

∂2f

∂2
σ

)(k)

n

(

∂f

∂σ

)(k)

n

+ κ̇(k)
n

(

∂2f

∂σ ∂κ

)(k)

n

(

∂f

∂σ

)(k)

n

T (

∂f

∂κ

)(k)

n

















(4.24)

The upper3× 3 matrix of the inverse of the Jacobian matrixJ
−1
p is the tangent stiffness matrix

consistent with the stress update integration algorithmHt [Simo & Taylor 1985]. The tangent

stiffness matrix consistent with the stress integration scheme is used in the code on local and

global levels for the sake of rapid convergence and efficiency. Once the local iteration con-

verged,Ht is further used to construct the material stiffness matrix (see below) of the global

structural iteration.

4.1.4 Evaluation of the structural consistent tangent stiffness matrix

As pointed out in the previous section, in order to guaranteethe asymptotically quadratic rate of

convergence of the Newton–Raphson iteration loop on the structural level, the structural tangent

stiffness matrix consistent with the stress integration schemeKs has to be used. An interesting

feature of the corotational finite deformation formulationis that an analytical expression of this
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matrixKs can be given by direct linearization. By definition, this stiffness matrix is given by

~̇f
(i)

int n = [Ks]
(i)
n d~̇x (i)

n (4.25)

at incrementn and at iteration(i). From here on the superscript in parentheses(i) referring to

the iteration number is omitted for the sake of a less complexnotation, keeping in mind however,

that the consistent tangent operator is defined between two non–equilibrated iterations.

In the current deformed configuration at timet the internal forces of a nodeI of the discretized

structure, in the directioni are evaluated using Einstein’s notation convention as

fint Ii =

∫

V (t)

BIj σji dV (4.26)

with BIj =
∂NI

∂xj
, NI being the interpolation function of the finite element. The expression of

the the consistent tangent operator is

ḟint Ii = Ks IJik ẋJk (4.27)

where the uppercase letters relate to nodes and lowercase letters correspond to directions. The

time derivative of (4.26) can be written as

ḟint Ii =

∫

V

[BIj σ̇ji dV + ḂIj σji dV + BIj σji dV̇ ] (4.28)

The first term on the right side of (4.28) expresses the influence of the change of stress (the

traditional notion of the stiffness matrix in infinitesimaltheory) and the second and third term

describes the influence of the change in the geometry on the internal forces.

The expression oḟσji depends on the chosen objective rate of stress. It was shown in Ponthot

[1995] that the Jaumann objective rate is consistent with corotational formulation considered

here. By the appropriate mathematical developments the expression ofKs can be established

as [Ponthot 1995]






















Ks IJik =

∫

V

BIj BJl Tijkl dV with

Tijkl = K
mat
ijkl + σijδkl −

1

2
σilδkj −

1

2
σikδjl +

1

2
σljδik −

1

2
σkjδil

(4.29)

with δnm denoting the Kronecker delta.Kmat
ijkl is the contribution to the structural stiffness matrix

related to the material behavior (defined in the constitutive law), in our case it is obtained from

Ht presented previously. The other terms ofTijkl can be condensed in a matrixKgeo
ijkl which

represents the contribution related to changes in the geometry.

Note, that in the case of infinitesimal displacement and deformation theoryKgeo does not exist,

since the initial and deformed configurations are assumed tobe similar. Equation (4.29) indeed

degenerates to the stiffness matrix of linear elasticity whenσ = 0 is taken andKmat is replaced

by the elastic tensor of Hooke. The corotational formulation considered here has the major

advantage of fully decoupling the treatment of material andgeometric nonlinearities, leading to

a high degree of flexibility for the choice of the material behavior.
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4.1.5 Conclusion

In this section the necessary ingredients of the corotational finite deformation formulation and

of mathematical plasticity used during the implementationof the finite deformation plastic be-

havior in the finite element code were presented.

The programmed elements use the von Mises yield function with isotropic nonlinear hardening

behavior. The necessary incremental iterative solution procedure was introduced. The notion of

the elastic–plastic tangent stiffness matrix consistent with the stress integration algorithm was

recalled. The latter, determined on the level of the integration points of the elements was used

in the global iteration algorithm for the construction of the material stiffness matrixKmat.

The finite deformation scheme used here is trivially incrementally objective, and the contribu-

tion related to changes in the geometry to the structural stiffness matrixKgeo, being specific to

finite deformation formulations can be determined analytically. The structural stiffness matrix

is defined asKs = K
mat + K

geo showing a full decoupling of material and geometric nonlin-

earities, being an interesting feature of the formulation.

In spite of the material and geometric nonlinearities considered in the formulation the asymptot-

ically quadratic rate of convergence of both the global and the integration point–level iterations

was ensured. The plastic element set was assessed using several benchmark problems, among

others, some presented in AFNOR [1990]. The simulations were successful for the considered

problems, the obtained results correspond to the analytical results of the benchmarks.
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4.2 Computational contact mechanics using augmented La-

grangian formulation

Several recent publications [Chabrandet al. 2005; Stadler 2007] and books [Meguidet al.

2004; Stachowiak 2005; Wriggers 2002; Wriggers & Zavarise 2004] are dedicated to exper-

imental and computational tribology and related issues. The reader can consult them for a

more general overview of the subject. Modeling contact conditions and contact evolution in a

numerical model is required to represent the evolving boundary and loading conditions of prob-

lems involving contact. In this work, contact problems withthe following assumptions were

addressed:

• rigid (undeformable) body–deformable body contact in two dimensions,

• the rigid body is described by parametric curves,

• whenever friction is assumed on the contact interface, a Coulomb model is used.

In the following subsections, basic notions of contact mechanics are first introduced, with con-

stitutive laws for frictionless normal contact and frictional behavior. The chosen Coulomb

friction model, coupled to normal contact conditions is finally discussed. This introduction

is followed by the presentation of the main steps of the developments necessary to include a

one–node node–to–facet contact element in the finite element code.

4.2.1 Contact mechanics

Contact kinematics

To put the problem in a general context, all contact relations will be formulated for finite de-

formations, for problems in which two bodies approach each other and come into contact on

parts of their boundaries. Two bodiesB1 andB2 are considered with boundariesΓ1 andΓ2

respectively in a structural analysis framework. The bodyB1 will represent a rigid body, and

bodyB2 will be considered deformable. When boundary conditions are applied on the bodies

Bi ; i = 1, 2, namely surface tractions onΓ2, body forces, and forced displacements; displace-

ment/strain and stress fields are generated as a response.

The rigid body is represented by a single or interconnected two–dimensional convex parametric

curves, which implies that the contact variables (see below) describing the contact kinematics

are well defined [Heegaard & Curnier 1995]. The assumption ofneglecting the deformation of

one of the bodies can be adopted in many engineering applications. Apart from the obvious

example of nanoindentation, this assumption could be performed even for materials in contact

with similar elastic moduli if they exhibit plastic yielding with strongly different yield strengths
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Figure 4.1: Definition of the contact variables for a. unilateral and b. tangential contact.

(in that case the low yield limit material is prone to suffer the majority of the deformation if

it enters the plastic domain during indentation while the other material remains elastic). If the

normal~n(x1, y1) at a pointa1(x1, y1) of surfaceΓ1 passes through the pointa2(x2, y2) of the

surfaceΓ2, then the distance‖ a1a2 ‖ is minimal. The pointa1(x1, y1) is the normal projection

of point a2(x2, y2). The choice of the pointa1 is not unique in general, unlessB1 is convex.

The signed normal distancedn can be defined as

dn(a2) = ~n(x1, y1) [~x(a2)− ~x(a1(a2))] ∀a2 ∈ Γ2 (4.30)

with ~x denoting the position vector in the two–dimensional space.If dn is positive the two bod-

ies do not inter–penetrate. Making the assumption of the quasi–static evolution of the contact

variables the relative contact velocitiesδ~d at timet can be written as

δ~d(a2, t) = δ~x(a2, t)− δ~x(a1, t) (4.31)

δ~dt is the projection ofδ~d on the tangent vector space toΓ1 representing the vector field of

tangential relative velocities. The normal contact distancedn and the tangential relative contact

velocity δdt are linear functions of the displacement vector~u.

Unilateral contact conditions

Frictionless normal contact, orunilateral contactconditions are usually characterized by the

following conditions:

• solids can separate, but not pull each other (since surface adhesion forces and contact

forces necessary for surface deformation are usually of different order – the latter being

more important),

• solids can press, but not penetrate each other,

which are classically expressed mathematically at a given point of the contact surface using

variablesdn andfn, representing respectively the normal separation distance and normal contact
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forces between the contacting solids:

dn ≥ 0; fn ≤ 0; fn dn = 0 (4.32)

These conditions are also referred to as the Hertz–Signorini–Moreau conditions in contact me-

chanics [Alart & Curnier 1991; Meguidet al. 2004]. Such conditions coincide with Kuhn–

Tucker complementary conditions in the theory of optimization.

Figure 4.2: Unilateral contact conditions, multivalued contact law.

The contact law relatingfn to dn (Fig.4.2) is a non–smooth, multivalued function (it is not dif-

ferentiable and can take an infinite number of values at the origin). Even simple, frictionless

contact problems are therefore difficult to formulate and solve numerically, since a weak form

of the contact mechanics problem is usually needed.

Friction contact laws

Practically all real–life contact problems involve frictional effects. Friction is a particularly

complex phenomenon that stems from and bridges multiple scales, from atomic level (atomic

interactions in Section 3.1) to the macroscale. Friction potentially depends on a variety of

parameters of the contact, i.e. the normal contact force, the relative sliding speed, the tempera-

ture, the humidity, the lubrication, the surface roughness, possible wear and particle detachment

forming a third body layer, etc. [Stachowiak 2005; Wriggers2002].

This results in a large number of friction models with varying complexity, developed and

adapted for different types of problems. In this work dry friction conditions (without lubri-

cation) were considered, since the aimed applications workusually in these conditions. The

most well–known and most widely applied dry friction model is the simplest one, defined by

one parameterµ (usually referred to as the coefficient of friction), the quotient of the normal

and the tangential forces on the contact surface, separating the states of sliding and sticking

under constant normal force. It is generally known as the model of Coulomb, or Amontons

[Mate 2008; Wriggers & Zavarise 2004]. Although this model is based on a phenomenological
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description of the frictional behavior on the macro–scale it has a vast field of application, and

it was shown to perform well in complex situations as well [Nosonovsky & Bhushan 2007].

Even though other, more complex constitutive laws may better describe the frictional behav-

ior of the contact interface on the considered micro-and nanoscale [Carpicket al. 1996, 1997,

2001; Deshpandeet al. 2007; Mate 2008; Nosonovsky & Bhushan 2007], the Coulomb’s law

remains the most frequently adopted law for friction in the literature (concerning the modeling

of nanoindentation, see [Antuneset al. 2006, 2007; Bolzonet al. 2004; Bressanet al. 2005;

Bucaille et al. 2004, 2003; Caoet al. 2007; Cao & Lu 2004; Carlssonet al. 2000; Habbab

et al. 2006; Mata & Alcalà 2004; Mesarovic & Fleck 1999; Qinet al. 2007; Taljat & Pharr

2004; Wanget al. 2007b]). It was therefore chosen in order to allow the results to be compared

to other works. However, the developments were performed such that other laws for friction

can be accounted for in future works.

This model is first presented for the particular case of solids in contact under constant normal

load (fn = const). The relative sliding speed between the solids and the tangential contact force

at a given point of the contact surface are represented byδdt andft, respectively. Two tangential

contact states can be distinguished:

• the state of stick: the tangential forces are under a limit value ‖ ft ‖< k, there is no

relative movement between the solids in contactδdt = 0,

• the state of slip: the tangential forces are equal to the limit value‖ ft ‖= k, and the solids

are in relative movement‖ δdt ‖> 0.

Keeping the limit value for stickk constant, the similarity of the Coulomb contact conditions

to the formulation of perfect plasticity is easily recognizable. The Coulomb contact law relat-

ing ft to dt (Fig.4.3) is a non–smooth, multivalued function. For similar reasons as in the case

of unilateral contact, this leads to difficulties in formulating and solving the tangential contact

problem in a numerical scheme.

Figure 4.3: Tangential contact conditions of the Coulomb friction model at constant normal

contact force, multivalued contact law.

49



Continuum scale model development 4.2 CCM with AL formulation

Coupling Coulomb friction law and unilateral contact conditions

The stick limitk is not a fixed value in the classical Coulomb friction model, but on the contrary,

it depends on the magnitude of the normal force via the coefficient of frictionµ by the relation:

k = µ fn. This results in a coupling between the unilateral and the tangential contact laws, as

illustrated in Fig.4.4.

Figure 4.4: Unilateral and tangential contact conditions resulting from the coupling of Coulomb

friction law and unilateral contact constraints.

Three contact states are thus to be considered:

gap: dn > 0 fn = 0 ft = 0

stick: dn = 0 fn < 0 ‖ ft ‖<‖ µfn ‖ δdt = 0

slip: dn = 0 fn < 0 ‖ ft ‖=‖ µfn ‖ ‖ δdt ‖> 0

(4.33)

The use of non–smooth, multivalued functions and the coupling of normal and tangential con-

tact behavior are the reason for which even the simplest Coulomb friction model requires ad-

vanced solution methods in computational contact mechanics.

4.2.2 Numerical modeling of contact by an augmented Lagrangian for-

mulation

Analytical solutions of contact problems are restricted tosimple load cases with elementary

geometries [Hertz 1882] thereby calling for numerical simulations in most practical cases. The

most obvious change taking place when two surfaces come intocontact is related to the fact

that their displacements have to satisfy some restrictionson the contact surface, and that con-

tact stresses appear in the contact zone. Starting from thisobservation, contact mechanics, in

its first interpretation, can be considered as a particular set of boundary conditions that vary

within the analysis, rendering the overall structural problem nonlinear independently from the

constitutive law used to model the material behavior.
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Figure 4.5: As opposed to classical problems (left), when considering contact (right) the dis-

placements of bodyB have to satisfy contact conditions defined by the contact laws on the

contact surfaceΓc.

The nonlinear nature of the problem makes a proper consideration of these constraints not

straightforward, hence iterative algorithms are needed. Amethod based on minimization prin-

ciple was considered in this work. For a summary and a detailed description of the applicable

computational methods to contact mechanics problems the reader can consult [Meguidet al.

2004; Wriggers 2002; Wriggers & Zavarise 2004].

Search for equilibrium as an optimization problem

Without any loss of generality as for the treatment of the contact problem the assumption will

be made, that the mechanical equilibrium of the system without contact conditions can be de-

fined by the minimization of a functionalΠ(~u) (the free energy potential for example). This

allows the description of the continuum mechanics equilibrium problem as an optimization

(minimization) problem [Meguidet al. 2004]. The solution of the equilibrium problem of the

two discretized bodies in the absence of any contact can be expressed as

~u ∗ = argmin[Π(~u)] ←→ Π(~u ∗) ≤ Π(~u) ∀~u (4.34)

whereΠ(~u) is for example a hyperelastic or elastic–plastic functional [Lemaitre & Chaboche

1985] in terms of the global displacement vector~u, and the notationy∗ = argminf(y) denotes

the particular pointy∗ which realizes the minimum of the functionf(y). A necessary condition

for ~u ∗ to be a solution of the problem (which becomes sufficient ifΠ(~u) is strictly convex) is

[Heegaard & Curnier 1993; Pietrzak & Curnier 1999]

∇Π(~u ∗) = ~fint(~u
∗)− ~fext = ~0 (4.35)

where∇ denotes the gradient operator,~fint(~u) is the internal force vector and~fext the externally

applied force vector. Note that in elasticity any continuumproblem can be formulated as a min-

imization problem. This is based on the fact that the total potential energy realizes a minimum
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at the solution point. This is no longer valid in plasticity,where another functional has to be

introduced if one wishes to convert the problem of the searchfor equilibrium to a minimization

problem [de Borst & Mühlhaus 1992; Lemaitre & Chaboche 1985].

Including contact constraints

Contact conditions add new and potentially evolving kinematic constraints to the original prob-

lem. These constraints can be divided in two classes: the unilateral contact problem [Burguera

& Viano 1994; Chen 2001; Han & Sofonea 2000; Sofonea 1997] andfrictional contact problem

[Alart & Curnier 1991; Baillet & Sassi 2003; Fenget al. 2004; Kimet al. 2000; Kontoleon

& Baniotopoulos 2000; Kontoleonet al. 1999; Laursen & Simo 1993; Lin & Tseng 1998;

Meyeret al. 1991; Serpa & Iguti 2000; Wriggers 2002; Wriggers & Zavarise2004; Yanget al.

2005]. The former restrains the normal components of the displacement at the interface of

the contacting bodies to avoid inter–penetration, while the latter condition describes the tan-

gential (e.g. stick–slip) behavior in the contact zone. From the conceptual point of view, a

mechanical contact problem can be considered as a ‘classical’ mechanical problem (search for

equilibrium by minimizing a functionalΠ(~u)) with additional contact features related to the

inequality constraints [Barber & Ciavarella 2000; Wriggers 2002; Wriggers & Zavarise 2004].

The constrained optimization problem of finding~u ∗ subject to contact constrains transforms to

anunconstrainedoptimization problem using a generalized functional

Φ(~u) = Π(~u) + Cn(fn, dn(~u)) + Ct(ft, δdt(~u)) (4.36)

whereCn(fn, dn(~u)) andCt(ft, δdt(~u)) stand for functionals representing normal and tangen-

tial contact conditions.

With the assumption made that the equilibrium of the analyzed system is the minimum of a

functional, the solution of the structural – contact mechanics problem becomes from a mathe-

matical point of view an inequality–constrained minimization problem. It has to be realized that

the major difficulties in the algorithmic treatment of contact problems are related to adding the

inequality constraintsCn andCt and to the non–differentiability of normal contact and friction

terms. To overcome these difficulties, different formulations were developed, the best choice

still remains an open and frequently discussed question of computational contact mechanics.

The minimization problem is solved here using a primal–dualmethod, which means that prac-

tically the saddle point of an augmented Lagrangian function ΦAL = Π(~u) + CAL (having

conceptually a form similar to (4.36)) is searched for with aNewton type continuous multiplier

update procedure [Aroraet al. 1991; Heegaard & Curnier 1995; Pietrzak & Curnier 1999].

CAL = CAL
n + CAL

t is expressed using augmented Lagrangian multipliers (see below). Such a

solution procedure can be used, the gradients of individualcontact constraints are available.
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The augmented Lagrangian formulation is the convolution ofthe classical penalty and Lagrange

multiplier optimization methods [Nocedal 2000; Wriggers 2002], bearing the prime advantages

of both, however without inheriting their respective disadvantages.

In the penalty method, a penalty term is used to enforce the contact conditions. This method

can be preferred because only the primal displacement variables enter the formulation, which

leads also to a straightforward implementation. However, since this method is a regularization

method based on the penalty principle, this implies that constraints are exactly satisfied only at

an infinite value of the penalty parameter. As a result, thereis a compromise between satisfying

the contact conditions and numerical ill–conditioning.

Enforcing the contact constraints using Lagrange multipliers results in the exact satisfaction of

the contact conditions. At equilibrium the values of the Lagrange multipliers correspond to the

unknown contact forces. Conversely to this advantage, its numerical drawback is that in this

method the field of Lagrange multipliers and the displacement field both have to be discretized

(using interpolation functions for the Lagrange multipliers and kinematic contact variables)

[Wriggers 2002]. As a result the total number of unknowns is increased with respect to the un-

constrained problem, and has to be adapted when the contact interface varies during the loading

process.

The augmented Lagrange multiplier method is the combination of penalty and Lagrange multi-

plier methods, including a Lagrange multiplier term (λ, the dual variable) as well as a penalty

term:gn = λn + rndn andgt = λt + rtδdt. Contact is detected with a linear combination of pri-

mal and dual variables. Note that when the Lagrange multiplier terms are zero the expressions

of gn andgt correspond to the penalty method. This method ensures the accurate satisfaction

of the contact constraints, at the same time the regularization parametersrt andrn penalizing

dn andδdt, respectively, take small values (usuallyrt = rn = 10 to 100 was used), allowing to

avoid numerical ill–conditioning. This formulation allies the prime advantages of the penalty

and Lagrange multiplier methods, i.e. simple implementation and accurate solution, resulting in

an efficient and accurate computational contact mechanics method. Multiplier methods are dis-

cussed in the context of a general constrained optimizationproblem (for equality and inequality

constraints), and its solution in Aroraet al. [1991].

Before considering the complete mechanical problem, the focus on the additional termsCAL
n

andCAL
t related to contact constraints are first introduced. This would correspond to contact

configurations with rigid bodies only (i.e. without the functionalΠ(~u) describing the mechani-

cal behavior of the contacting solids).
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Contact contribution to the Augmented Lagrangian for unilateral contact con-

ditions (CAL
n )

For the sake of simplicity in a first step the unilateral contact problem is investigated (the as-

sumption is made that there is no friction between the contacting surfaces). It was shown in

Alart & Curnier [1991] that a functionalCAL
n expressing the frictionless, normal contact condi-

tions can take the following form:

CAL
n (λn, dn(~u)) = −

1

2 rn
‖ λn ‖

2 +
1

2 rn
dist2[gn, R+] (4.37)

where dist[p, C] = miny∈C ‖ p − y ‖; gn = λn + rndn is the augmented Lagrange multiplier

for normal contact; andR+ is the space of positive real numbers.

This form of the functionalCAL
n for normal contact in the augmented LagrangianΦAL sat-

isfies the normal contact conditions exactly, moreover it has the advantage that an analytical

expression of the consistent tangent stiffness matrix can be derived from it, which ensures that

the global structural iteration loop keeps its asymptotically quadratic rate of convergence when

unilateral contact conditions are prescribed [Alart & Curnier 1991].

Contact contribution to the Augmented Lagrangian for pure friction conditions

(CAL
t )

When pure friction conditions are considered (the assumption is made that the normal force

remains constant, implying that the stick limit valuek = const.), a functionalCAL
t express-

ing the corresponding contact conditions can take the following form [Alart & Curnier 1991;

Pietrzak & Curnier 1999]:

CAL
t (λt, δdt(~u)) = λt δdt +

rt

2
‖ δdt ‖

2 −
1

2 rt

dist2[gt, K] (4.38)

wheregt = λt + rtδdt is the augmented Lagrange multiplier for tangential contact, andK is a

segment ofR defined by the constant stick limit valuek, asK = [−k k].

This form of the functionalCAL
t for tangential contact at fixed stick limitk in the augmented

LagrangianΦAL satisfies the corresponding contact conditions exactly. Ifconsidering this par-

ticular form of friction law with a constant stick limit value (which can potentially be used to

model micro-and nanoscale contact behavior [Carpicket al. 1996, 1997, 2001]), it is possible

to derive an analytical expression of the consistent tangent stiffness matrix.
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Augmented Lagrangian for Coulomb friction conditions between deformable

bodies

The complete form of the functionalΦAL is now used including the functionalΠ(~u) describing

the mechanical behavior of the contacting bodies. The final form of the contact functionalCAL

for Coulomb friction in the augmented LagrangianΦAL used in the finite element code is the

combination of the expression used to describe unilateral contact conditionsCAL
n and the one

describing tangential contact conditionsCAL
t , taking however the dependence of the stick limit

on the normal force into account.

ΦAL(~u, λn, λt) = Π(~u) −
1

2 rn
‖ λn ‖

2 +
1

2 rn
dist2[gn, R+]

+λt δdt +
rt

2
‖ δdt ‖

2 −
1

2 rt
dist2[gt, Kµ]

(4.39)

whereKµ is a segment defined byKµ = [−µgn µgn], depending on the coefficient of friction

µ and the augmented Lagrange multiplier of unilateral contact gn. It must be stressed that

finding the saddle point of the augmented LagrangianΦAL = Π(~u) + CAL is not a standard

optimization problem, but only a quasi–optimization problem, since the convex setKµ depends

on the solution~u throughλn. The augmented Lagrangian is continuously differentiablewith

respect to~u, λn andλt if Π(~u) is continuously differentiable with respect to~u [Alart & Curnier

1991]. Consequently, the saddle–point of the augmented Lagrangian,(~u ∗, λ∗

n, λ
∗

t ) is unique,

resulting from the strict convexity ofΠ(~u). The necessary condition for(~u ∗, λ∗

n, λ
∗

t ) to be the

saddle point ofΦAL, i.e. to be the solution of the constrained optimization problem, is the

satisfaction of:














∇~u ΦAL = ∇~u Π(~u) +∇~u CAL = 0

∇λn
ΦAL = +∇λn

CAL = 0

∇λt
ΦAL = +∇λt

CAL = 0

(4.40)

The contact constraints in the discretized problem are applied through a set of one–noded, node–

to–facet type contact elements on the predetermined contact surface. For the sake of clarity and

simplicity the detailed development of the terms entering (4.40) isrestricted to the additional

terms due to contact constraintsCAL, considering one contact element in the following. In order

to calculate the involved gradients of the terms representing the contact constraints it is recalled

that the distance of a given pointp ∈ P to a convex setC can be expressed in accordance with

the projection theorem [Heegaard & Curnier 1993] as:

dist[p, C] =‖ p− projC (p) ‖ (4.41)

where projC (p) is the projection ofp onC. Moreover, the projections onC and on its comple-

mentary setC (for exampleR+ = R−) satisfy

p = projC (p) + projC (p) (4.42)
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This formula is the generalization of the decomposition of avector on two orthogonal subspaces.

Combining (4.41) and (4.42), the following expression can be written [Heegaard & Curnier

1993]:

∇p

(

1

2
dist2[p, C]

)

= projC (p) (4.43)

Thecontact contributionin the system of equations expressing the saddle point necessary con-

ditions (4.40) can be rewritten for one contact node as






















∇~u CAL = (∇~u dn)
T projR−

(gn) + (∇~u δdt)
T projKµ

(gt)

∇λn
CAL = −

1

rn

(λn − projR−

(gn))

∇λt
CAL = −

1

rt

(λt − projKµ
(gt))

(4.44)

It has to be noted that, sinceKµ is a segment with variable length, depending on bothλn and

dn(~u) throughKµ = [−µ (λn +rndn(~u)) µ (λn +rndn(~u))], obtaining the above expressions

using the projection defined in (4.43) requires the assumption thatKµ is constant. This is nec-

essary, because the dependence ofKµ on λn and~u cannot be given by analytical expressions.

This has implications on the rate of convergence of the computation when frictional sliding is

involved, the convergence is not asymptotically quadraticanymore. However, a fast conver-

gence is kept if the contact variables are updated at every iteration of the solution procedure

[Alart & Curnier 1991], this frequent update minimizes the error made by the assumption of

Kµ = const. As pointed out before, the asymptotically quadratic rate of convergence of the

global iteration loop can be restored when a constant stick limit k, independent of the normal

contact force is chosen (ifk is supposed to be an intrinsic property of the contact interface),

since in this case the expressions in (4.44) can be evaluatedconsistently.

Contact forces and generalized contact Jacobians on the level of a single contact element for

the three contact states (i.e. gap, stick, slip) are derivedfrom (4.44). At the element level the

contact operatorFe derived fromCAL can be written

F
e =









~f e
cont

λe
n

λe
t









=











































































































F
e
gap =









~0

−λn/rn

−λt/rt









F
e
stick =









ge
n[∇~u de

n(~u)]T + ge
t [∇~u δde

t (~u)]T

de
n

δde
t









F
e
slip =









ge
n[∇~u de

n(~u)]T − signµge
n [∇~u δde

t (~u)]T

de
n

−(1/rt)(λ
e
t + signµge

n)









(4.45)
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with

sign=







+1 if ge
t > 0

−1 if ge
t < 0

(4.46)

taking into account that frictional forces point in the opposite direction to the direction in which

the relative movement occurs. This contact element contribution combined with the structural

finite elements leads to a mixed formulation of the contact problem in the sense that both primal

~u and dualλn andλt quantities are independent variables.

The usual system of equations in a structural finite element analysis (4.35) has to be modified

to take into account the contribution of the contact elements (the enforcement of the contact

constraints). Let us consider the two–dimensional deformable body,B2 described in a numeri-

cal model, discretized withn degrees of freedom. Adding a numberc of contact elements, the

system has to be extended ton + 2c equations, since two dual variablesλn andλt are added at

each contact node.

~fint(~u)− ~fext − ~fcont = ~0 (4.47)

where ~fint(~u) = {{fn
int}, {0

2c}}T , ~fext = {{fn
ext}, {0

2c}}T are the internal force vector and the

vector of externally applied forces, both of increased dimensionn + 2c. {02c} represents the

2c–dimensional zero vector. Then+2c dimensional contact force vector is assembled from the

contact operatorsFe determined on the element level for thec number of contact elements

~fcont =
⋃

c

F
e (4.48)

with
⋃

c

representing the assembly operator of the contact element generalized forces.

4.2.3 Numerical solution of the contact problem - generalized Newton

method

To solve numerically (4.47), the system of equations defining the saddle point necessary con-

ditions (4.40) giving the solution to the general problem has to be linearized. Since operators

for normal and tangential contact are piecewise linear, they are not differentiable everywhere.

They possess a weak notion of derivative, called the generalized Jacobian [Alart & Curnier

1991; Pietrzak & Curnier 1999]. An extension of Newton’s scheme to non–differentiable but

continuous equations is

~u (i+1)
n = ~u (i)

n − [Ks
(i)
n + Jc

(i)
n ]−1{ ~fint − ~fext − ~fcont}

(i)
n Jc

(i)
n ∈ ∂ ~fcont(~u

(i)
n ) (4.49)

with subscriptsn, and superscripts in parentheses(i) corresponding to the increment number

and the iteration number of thestructural loop, respectively.∂ ~fcont(~u
(i)
n ) is a generalized Jaco-
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bian of ~fcont atu (i)
n , assembled from the contact Jacobians of the contact elements.

J
e
~u,λn,λt

=









∇~u,~u CAL ∇~u,λn
CAL ∇~u,λt

CAL

∇λn,~u CAL ∇λn,λn
CAL ∇λn,λt

CAL

∇λt,~u CAL ∇λt,λn
CAL ∇λt,λt

CAL









(4.50)

The contact Jacobian of each contact element depends on the contact state of the particular

contact element, according to






















































































































































J
e
gap =









0 0 0

0 −(1/rn) 0

0 0 −(1/rt)









J
e
stick =









Nstick + Tstick (∇~u dn)T (∇~u δdt)
T

∇~u dn 0 0

∇~u δdt 0 0









with Nstick = rn(∇~u dn)
T (∇~u dn) + gn(∇

2
~u dn)

andTstick = rt(∇~u δdt)
T (∇~u δdt) + gt(∇

2
~u δdt)

J
e
slip =









Nslip + Tslip (∇~u dn)T − signµ(∇~u δdt)
T 0

∇~u dn 0 0

−signµ∇~u dn −signµ/rt −1/rt









with Nslip = rn(∇~u dn)T (∇~u dn) + gn(∇2
~u dn)

andTslip = −signµrn(∇~u dn)T (∇~u δdt) + gn(∇2
~u δdt)

(4.51)

Thereby the structural iteration loop, solved by a Newton–Raphson method transforms to a

generalized Newton solution scheme when contact constraints are added. This formulation in-

troduces a full decoupling of the contributions of contact constraints from other material (plas-

ticity) and geometrical (finite deformation) nonlinearities, keeping a high degree of flexibility

and the modular structure of the resulting finite element code.

4.2.4 Discussion

Aiming for the most efficient, most accurate and reliable algorithm, this augmented Lagrangian

formulation for the Coulomb friction model was integrated in the numerical tool, bearing in

mind to keep the necessary flexibility for further development. The chosen formulation intro-

duces a full decoupling of the contributions of contact constraints from other material and geo-

metrical nonlinearities related to the structural behavior. Adding other friction laws in the code

is possible, and planned in a future work. Particularly, a relatively easy development promising

valuable results is the use of a fixed value of the stick limitk, for micro-and nanoscale contacts.

The ‘classical’ alternate treatment of the primal and dual variables results in a solution scheme
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with multiple loops [Wriggers 2002]. Here the simultaneoustreatment of both variables in the

structural iteration loop is considered, referred to as a continuous multiplier update procedure

[Alart & Curnier 1991], promising a more efficient computation. Even though the convergence

of the generalized Newton method, applied to non–differentiable, but continuous equations was

not established in a general manner, in practice the method was observed to be robust [Pietrzak

& Curnier 1999].

In agreement with Alart & Curnier [1991]; Pietrzak & Curnier[1999] the unilateral contact

problem was found to converge in practice for all consideredcases. When friction is involved

the rate of convergence of the global iteration loop is asymptotically quadratic in the state of

stick, but cycling between stick and slip states can occur. The resulting decrease in the rate

of convergence depends on the number of cycling contact elements and the coefficient of fric-

tion µ. These convergence issues can be decreased by the choice of the penalty parameters

0 < r < 2 λmin(K), with λmin(K) the smallest eigenvalue of the complete stiffness matrix of

the systemK = Ks+Jc as proposed in Pietrzak & Curnier [1999]. Slip state shows the slowest

rate of convergence, stemming from the approximation that the contact forces and Jacobians are

determined for a fixed value of stick limit in an iteration.

The contact element has been assessed using simple benchmarks on the element level (partic-

ularly for the frictional case), and more complex benchmarks considering coupled structural–

contact problems [Hertz 1882; Simo & Laursen 1992]. The simulations were successful, the

obtained numerical results and trends correspond to the analytical and numerical results given

for the benchmark problems. With the above verifications we can conclude that the implemen-

tation of the contact element was successful.

4.3 General discussion on the model development

A finite deformation description with plasticity and computational contact mechanics features

were incorporated within an existing nonlinear finite element code. A 2D elastic–plastic ele-

ment set with 4–noded linear and 8–noded quadratic elementsusing plane strain, plane stress

and axisymmetric assumptions in the corotational finite deformation frame was created together

with a one–node contact element that ensures the exact satisfaction of both normal and tangen-

tial contact constraints on the element level. In the simulations, the contact elements correspond

to the nodes of structural elements on the predetermined contact surface. A special care was

taken for the choice of the numerical ingredients that are the most adapted, precise and efficient

with an emphasis on keeping the maximum degree of flexibilityof the resulting code.

The finite deformation framework uses the corotational formulation [Ponthot 1995, 2002],

which has the advantage to be trivially incrementally objective and hence to be capable of

handling arbitrary large rigid rotations. Contact constraints on the contact interface were taken
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into account using the high–precision augmented Lagrangian method [Alart & Curnier 1991;

Heegaard & Curnier 1995; Pietrzak & Curnier 1999] with a Newton type continuous multiplier

update procedure.

All sources of nonlinearities (material - plasticity, geometric - finite deformation and contact)

are fully decoupled in the resulting code keeping its high degree of modularity. In spite of all in-

volved nonlinearities, the asymptotically quadratic rateof convergence of the computation is en-

sured when frictionless contact is considered. Including frictional contact constraints decreases

the rate of convergence, however keeping it reasonable. This drawback is compensated to a

certain extent by the relatively simple form of the contact formulation and the efficient one–step

continuous multiplier update procedure. The convergence of the coupled structural–frictional

contact problem was obtained for all considered cases, eventhough the general convergence of

the generalized Newton method cannot be stated rigorously.Consequently the performance of

the resulting numerical tool is considered satisfying.

Both the developed structural element set and the contact element were verified using bench-

mark problems and were shown to perform as expected. An example of the validation of the

the programmed features through the problem of the extrusion of an aluminum cylinder with

elastic–plastic material behavior with friction on the contact interface is presented in the Ap-

pendix A.2. Thereby the developed numerical tool satisfies the predefined requirements of ac-

curacy, robustness, efficiency and flexibility and thus can be applied for modeling purposes. It

can be currently applied to problems involving frictional or frictionless contact and the elastic–

plastic finite deformation of one of the contacting bodies, with a behavior approximated by a

power law hardening and using the von Mises yield criterion.
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Chapter 5

Application to the nanoindentation

interpretation and to the

micro–manipulation

The aim of this chapter is to apply the continuum scale modeling tool described previously

to material characterization by nanoindentation and to micromanipulation. The focus of the

mµn project, the work presented in this thesis is part of, was seton potentially biocompat-

ible materials. The following sections address different aspects of nanoindentation, i.e. (i)

a study of the influence of the variation in the indentation parameters on the dispersion in

nanoindentation results, (ii) an investigation of the rate–dependent plastic behavior of pure

nickel in nanoindentation, (iii) an evaluation of the dispersion in nanoindentation results

due to the coupled effect of sample surface roughness and friction. Finally, the numerical

tool is used for the estimation of the variation of contact adhesion due to the plastic flatten-

ing of surface asperities during micromanipulation.

In all research works in this thesis the studied material waspure nickel. This choice was made

considering the potential bio–compatibility of small scale devices made of pure nickel or a

coated nickel substrate; and in view of the large quantity ofavailable experimental information

and numerical studies on this material on the nanoscale, compared to titanium. The numerical

tool using the finite element method, presented in Chapter 4 was used entirely, or partly in the

majority of the research. The appropriate choice of the numerical ingredients, specially adapted

for the considered applications (among other requirementsof numerical–experimental consis-

tency) allowed to conduct a coupled experimental–numerical study, and ensured the necessary

confidence in the obtained numerical results and trends.

The following sections address different aspects of nanoindentation and micromanipulation,

with a special attention given, so that all presented works allow to draw conclusions that are
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important from both a modeling and an experimental point of view. For this purpose, in the

research work considering the problem of nanoindentation via numerical modeling, the post–

treatment tool (Section 2.2) was systematically applied tonumerical results, with an emphasis

to simulate the complete experimental measuring procedureending in the evaluation of the elas-

tic modulus of the tested material. This enforced the practical interest and applicability of the

results of purely numerical studies.

Sections 5.1 to 5.4 relate to the problem of nanoindentationwith a special attention to consis-

tency between numerical simulations and experimental conditions. Section 5.1 can be consid-

ered as a preliminary study evaluating the influence of some indentation parameters on nanoin-

dentation results of pure nickel, using a ‘classical’ rate–independent material model (i.e. the ma-

terial behavior is independent from the rate of strain). Theobtained trends pointed out the need

for a rate–dependent material behavior for the sake of consistency with experimental results,

as explained in Section 5.2. Numerical simulations dedicated to the rate–dependent behavior

of pure nickel coupled to nanoindentation experiments conducted at various indentation depths

and at different loading rates on pure nickel are studied in Section 5.2. The study parameters

are carefully chosen to ensure a priori the closest possibleconditions between the experiments

and the numerical simulations. It is shown that a good agreement between the experimental

and the numerical results can be obtained for both the load levels and the so–called indentation

creep phase (displacement–time curves in the holding period) when taking into account a sim-

ple model with rate–dependent material behavior, and usinga material parameter set that is in

the acceptable domain for metals. Results of Section 5.1 and5.2 show that a variation in the

considered indentation parameters influences the dispersion in the elastic modulus identified

by the post–treatment methods of nanoindentation. In the same line of thought, the objective

of Section 5.3 is the numerical evaluation of the dispersionin shallow nanoindentation results

due to the effects of sample surface roughness and friction on the contact interface. The si-

multaneous account for sample surface roughness and friction in the context of nanoindentation

modeling was apparently not performed yet. It shows the important cumulative effect of the

two considered contributing terms of surface effects in shallow indentation depth. The line of

studies dedicated to nanoindentation ends with a short discussion on the performance of the con-

sidered post–treatment methods in the previously studied indentation configurations in Section

5.4. The attention is then shifted to the problem of micromanipulation in Section 5.5 aiming

for a contribution to the understanding of the adhesive electrostatic effects and an estimation

of their variation due to the plastic flattening of surface asperities in the gripper–manipulated

object contact. A rate–independent material law for pure nickel is used in this study, because

the strain rates are assumed to be small, as opposed to nanoindentation. The observed effect

in the numerical model clearly gives a contribution to the difficulty to release objects when the

squeezing manipulation force is removed.
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5.1 Influence of testing conditions on conical nanoindenta-

tion of nickel with a rate–independent material model

The response to nanoindentation of a material is the convolution of a large number of contribu-

tions, which potentially cause variations in the resultingload–displacement curve. An important

general issue of the nanoindentation procedure is the interpretation of the results and the iden-

tification of the sources of their potential variation.

The purpose of the numerical study presented in this sectionis the evaluation of the effects

of indentation parameters and how they influence nanoindentation results of pure nickel in a

simple numerical model with the particular choice of a rate–independent material model. Con-

sidering the identification of the key parameters of the general nanoindentation problem and the

effects of various material parameters, the reader can consult [Zhanget al. 2008] and the review

article of [Cheng & Cheng 2004]. A parametric study in realistic nanoindentation conditions

(inspired from the coupled experimental–numerical study of Section 5.2) is conducted here,

with the possibility of addressing each considered indentation parameter separately to evaluate

their deconvoluted effect on both raw and post–treated nanoindentation results. The influences

of the variation of the elastic (Section 5.1.1), and of the plastic material parameters (Section

5.1.2), and the most frequently considered geometric inaccuracy, the influence of a variation in

the indenter tip radiusR were investigated.

The numerical tool, presented in detail in Chapter 4, using the finite element method is used

for this purpose. The considered indentation setup and numerical model correspond to the ones

used in Section 5.2 for the simulation of conical nanoindentations in a pure nickel sample ma-

terial. The modeling assumptions are:

• The conical diamond indenter, with 2µm nominal radius is modeled as a rigid body.

The assumption of neglecting the indenter deformation can be a source of error for very

hard sample materials where the overall deformation in the contact is taken partly by the

sample and partly by the indenter [Jeong & Lee 2005]. In the case of the pure nickel

sample however, the assumption that the indenter can be modeled as a rigid body holds

because both its elastic modulus as well as its yield limit are orders of magnitude lower

than those of diamond.

• The contact between the indenter and the sample surface is assumed to be frictionless.

Since the focus here is set on the influence of the variation ofmaterial parameters and

contact geometry, for the sake of deconvolution friction isneglected. Frictional effects

are treated in detail in Section 5.3.

• The contact surface of the sample is perfectly flat and smooth, the surface roughness is

neglected. The effects of surface roughness are treated in Section 5.3.
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• The sample material is assumed to be homogeneous and to obey isotropic hardening with

a Ludwik’s evolution law, recalled here as

σv = σ0 + Kκn

whereσv is the current yield stress, determined here using the von Mises yield function,

σ0 stands for the elastic limit in uniaxial tension.κ is the scalar valued hardening parame-

ter depending on the strain history,K andn are curve fitting parameters, called hardening

coefficient, and hardening exponent, respectively, chosensuch as to fit Ludwik’s law to

experimental stress–strain data of pure polycrystalline nickel extracted from uniaxial ten-

sion measurements [Kovács & Vörös 1996]. The following parameter set was calculated

by this fit: E = 207GPa,ν = 0.31,σ0 = 59MPa,K = 1165MPa, andn = 0.56.

The error made by the power law approximation is reasonably small, the obtained harden-

ing curve fits the experimentally measured behavior well. The obtained elastic and plastic

parameter set has been compared to other works [ASM 1990; Hollanget al. 2006; Nayer

1997; Ross 1992; Torreet al. 2002] and are found to be in good agreement. It is rec-

ognized that the grain size has an impact on the hardening behavior of nickel [Ebrahimi

et al. 1999; Li & Weng 2007]. However, even for grain sizes of 10µm that are much

smaller than the experimentally observed value, the power law model seems to fit the

data well. Note that the initial yield strengthσ0 of pure nickel with nano–sized grains

[Hollanget al. 2006], and that of nickel alloys can be many times higher.

The material model is rate–independent, which means that noviscous effects are included,

the material response is independent of the strain rate, being a common assumption in

numerical simulations of nanoindentation in metallic materials [Antuneset al. 2006;

Bressanet al. 2005; Pelletier 2006], while it will be challenged in Section 5.2.

• Considering the axial symmetry of the indentation problem,stemming from the above

mentioned assumptions it is described in the numerical model using 8 noded axisymmet-

ric elastic–plastic elements (in the corotational finite deformation framework).

The finite element mesh is refined in the contact zone (Fig.5.1), and consists of more than 14000

degrees of freedom to be able to reproduce with high precision the stress and plastic strain evo-

lution during the quasi–static simulation. The geometrical size of the mesh in all cases is chosen

sufficiently large such that a homogeneous stress distribution at the boundary of the model is

obtained for the imposed maximum indenter penetration of 430nm. The side nodes of the mesh

are constrained in the horizontal direction. The deformable body is prescribed to move upward

to come into contact with the rigid indenter which has a fixed position in space.

The two experimentally used post–treatment methods presented in Section 2.2 (and in Appendix

A.1) were applied to the numerical results to evaluate the influence of the variation of the consid-

ered material and contact parameters (E, ν, σ0, K, n andR) on the post–treated elastic modulus
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Figure 5.1: Finite element mesh used in the parametric studywith zoom on the refined region

near the indenter tip. The continuous curve represents the conical indenter with2µm nominal

tip radius modeled as a rigid body.

[Ni et al. 2004; Oliver & Pharr 1992]. The combination of these material parameters resulted

in the numerical indentations, described in Tab.5.1. It is recalled, that material parameters ob-

tained from nanoindentation data are relative values compared to a predefined value associated

to the indentation of a material with known properties, measured in the calibration step of the

experiments [Baker 1997; Fischer-Cripps 2006]. There may appear thus naturally a difference

between the input material parameters and the ones identified as output by the post–treatment

procedures. Different post–treatment methods may result in different values of the output elas-

tic modulus for the same load–displacement curve. It is emphasized that their relative variation

with respect to the reference value of the chosen method holds the only meaningful information.

This variation is defined by:

∆Emethod =
Emethod

out −Emethod
ref

Emethod
ref

=
Emethod

out

Emethod
ref

− 1 (5.1)

with Emethod
out the Young’s modulus identified from the load–displacement curves by the consid-

ered post–treatment method. The elastic modulus obtained for the indentation with the reference

indentation parameter set (R = 2000nm, E = 207GPa,ν = 0.31,σ0 = 59MPa,K = 1165MPa,

n = 0.56) gives the reference value for each of the considered post–treatment methods:

EOP
ref = 261.5MPa and ENi

ref = 318.2MPa.

Note, that since pure nickel has a low yield limit the indentation response was observed to

be essentially plastic from the early stages of indentation. This low value of the yield limit
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has particular implications on the influence of different material parameters on nanoindentation

results. First the elastic material properties are considered.

Einput [GPa] ν σ0 [MPa] K [MPa] n ∆EOP
out [%] ∆ENi

out [%]

103.5 0.31 59 1165 0.56 -50 -50

414 0.31 59 1165 0.56 +102 +98

207 0.25 59 1165 0.56 -3 -4

207 0.35 59 1165 0.56 +3 +3

207 0.31 29.5 1165 0.56 -3 -2

207 0.31 118 1165 0.56 +3 +1

207 0.31 59 582.5 0.56 +4 0

207 0.31 59 2330 0.56 -3 -1

207 0.31 59 1165 0.28 +5 +2

207 0.31 59 1165 1 -2 -3

Table 5.1: Nanoindentations with varying elastic and plastic input material parameters (high-

lighted items in the upper and in the lower half of the table, respectively).∆EOP
out and∆ENi

out

represent the variation of the post–treated Young’s modulus (the decimals are rounded off) with

respect to reference values of the post–treatment method ofOliver and Pharr and of Ni et al.,

respectively.

5.1.1 Elastic material properties

In this section the influence of the elastic material properties,E andν on nanoindentation results

is studied. Two additional values, representing a variation of 50% in the input elastic modulus

of the sample were considered (Tab.5.1). The variation in the Poisson’s ratioν of the material

is rarely considered in numerical studies. Furthermore, there is no efficient experimental proce-

dure to measure the value and the potential variation ofν on the nanoscale. Here two additional

values of the Poisson’s ratio were studied 0.25 and 0.35. Theraw output data in nanoindentation

experiments, the resulting load–displacement curves are analyzed first. Pure nickel, being a low

yield limit material shows only a low sensitivity of the loadlevels to elastic material properties,

since the material response to indentation is plastic from nearly the beginning of the loading

period.

However, considering the post–treated elastic modulus, the variation in the input elastic mod-

ulus gives the most pronounced effect, independently of thepost–treatment method considered

(Tab.5.1). The relative variation in the output Young’s modulus is observed to be practically

equal to the relative variation in the input Young’s modulus, when it is the only varied parame-
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Figure 5.2: Influence of the elastic propertiesE andν on the load–displacement curves. Right:

zoom on the unloading period.

ter, independently of the post–treatment method.

γAB
input =

EA
input

EB
input

= γAB
output =

EA
output

EB
output

(5.2)

This result was expected, it shows that the post–treatment methods considered here satisfy their

primary goal. The slope of the unloading curve is highly sensible to the input elastic modulus

(Fig.5.2), which explains the good performance of the Oliver and Pharr post–treatment method,

mainly based on the unloading period of the load–displacement curve. Note that this is observed

on both the continuum scale as well as on the atomic scale (Section 3.1).

Ideal post–treatment methods would be sensible only to the variation in the material property

at which they are aimed. The main issue of nanoindentation experiments is the potentially

simultaneous variation of a large number of experimental conditions and material parameters,

other than the Young’s modulus of the sample, to which post–treatment methods potentially

show a spurious sensibility. The Poisson’s ratio of the material is recognized to be a parameter

of small importance since only a small variation in the post–treated elastic modulus (around 3%

for pure nickel for both considered post–treatment methods) was found, as reported in Tab.5.1.

All effects related to the elastic behavior of the material are most pronounced in the unloading

period. Conversely, the plastic material properties, treated in the following are prone to have the

largest effect on the load levels considering that the indentation response is practically plastic

from the beginning.

5.1.2 Plastic material properties

A variation in the plastic material properties may influencethe material response to nanoinden-

tation as well. Here the sensitivity of the nanoindentationresults to: the initial yield limitσ0;

the hardening coefficientK; and the hardening exponentn of the hardening law is examined.
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Initial yield limit σ0

The initial yield limit or yield strengthσ0 defines the boundary between the elastic and the

plastic domain of the material for the initial yielding. An increase in the yield limit shifts higher

the curve of the stress–strain relationship of the model material on the vertical axis in Fig.5.3.

Naturally nanoindentation is highly sensitive to this parameter, as it influences the balance of

the elastic and the plastic material response to indentation. In this parametric study two values

of σ0 were chosen to demonstrate its effects.

Figure 5.3: Effect of the variation ofσ0 on the material law. The von Mises equivalent stressσv

is plotted as a function of the cumulated plastic strain measureκ.

As expected, the increase inσ0 results in the increase in the indentation load levels, since

the elastic response of the material to deformation is significantly stiffer than the plastic one.

The highest yield limit considered hereσ0 = 118MPa still remains a relatively low value for

nickel–based metallic materials used in common engineering applications. The yield limit of

nickel alloys and of pure nickel with nano–sized grains can be considerably higher [ASM 1990;

Ebrahimiet al. 1999; Hollanget al. 2006].

A relatively moderate increase in the initial yield limit ofthe model material results in a signif-

icant increase in the indentation load levels, without however a significant effect on the post–

treated Young’s modulus. Indeed, the unloading curve, the primary information for the post–

treatment method of Oliver and Pharr, is rather insensitiveto the variation of the initial yield

limit of the material. Considering that the unloading of theindenter–sample contact is generally

assumed elastic this trend is not surprising.

In the case of the post–treatment method proposed by Ni et al., taking into account the complete

load–displacement curve (both loading and unloading periods), a larger dispersion in the identi-

fied Young’s modulus could be expected. It has to be recalled however, that this more advanced

post–treatment method was specifically designed to decrease the scattering in the post–treated

Young’s modulus related to variations in the plastic material parameters, based on the results of
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Figure 5.4: Influence of the initial yield limitσ0 on the load–displacement curves. Right: zoom

on the unloading period.

finite element simulations with the same assumptions on the material behavior. This is the rea-

son why the dispersion related to the variation in the initial yield limit of the material remains

rather low for both post–treatment methods considered here(Tab.5.1).

Hardening coefficientK

To clarify the meaning of the hardening coefficientK, the example of the frequently adopted

linear hardening model is the most adequate. In such a model,generally chosen for its simplic-

ity, since it can be defined using only two material parameters, σ0 andK (a linear hardening

assumption impliesn = 1), K defines the slope of the linear hardening law.

Figure 5.5: Effect of the variation of the hardening coefficientK on the material law. The von

Mises equivalent stressσv is plotted as a function of the cumulated plastic strain measureκ.

In this parametric study a power–law describes the isotropic hardening of the model material,

the effect of varyingK on the stress–strain law is less straightforward to see, as sketched in
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Fig.5.5. It has to be emphasized that the highest value ofK = 2330MPa alters significantly

the hardening behavior of the model material. Indeed, the area under the stress–strain curve in

the plastic deformation domain is related to the energy dissipation due to plastic deformation

in the material. In the large deformation domain this area isroughly doubled with respect to

the material with the initial parameter set. An increase in the indentation load levels, shown in

Fig.5.6, due to the increasing material hardening as a result of a higher value ofK can be fore-

seen. However, much like the initial yield strength, and forthe same reasons, i.e. the unloading

tangent is relatively insensitive to the value ofK (Fig.5.6); and because the post–treatment

method of Ni et al. corrects variations of the output Young’smodulus due to plastic material

parameters, a variation in the hardening coefficient does not induce considerable variations in

the post–treated Young’s modulus (Tab.5.1), this independently of the post–treatment method

considered.

Figure 5.6: Influence of the initial yield limitK on the load–displacement curves. Right: zoom

on the unloading period.

Hardening exponentn

The hardening exponent,n defines the shape of the hardening law, when all other parameters

are kept the same (Fig.5.7). Consequently it plays also an important role in the essentially plas-

tic indentation response. Moreover in Kimet al. [2006] the value ofn is related to predictions

on the pile–up and sink–in behavior of the material. This aspect was not considered here, since

the contact depth was calculated by the standard assumptions of the Oliver–Pharr method, as in

the actual experimental procedure. The focus is set on its influence on the load–displacement

curves and on the post–treated Young’s modulus.

Much like the hardening coefficientK, the hardening exponent plays a determinant role in the

hardening law of the model material (Fig.5.7). The lowest value of n = 0.28 describes a more

drastic hardening, compared to the material with the initial parameter set. A significant influ-

ence ofn on the load levels can be predicted. The unloading curve is rather insensitive to a
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Figure 5.7: Effect of the variation of the hardening exponent n on the material law (n ≤ 1 is

assumed). The von Mises equivalent stressσv is plotted as a function of the cumulated plastic

strain measureκ.

variation in the value ofn (Fig.5.8). As all plastic material properties, the variation of n has

only a relatively small influence on the post–treated Young’s modulus (Tab.5.1), for the reasons

exposed earlier.

Figure 5.8: Influence of the initial yield limitn on the load–displacement curves. Right: zoom

on the unloading period.

5.1.3 Tip radius effect

The most frequently considered geometrical inaccuracy in nanoindentation is a variation in the

tip geometry [Kimet al. 2005; Lu & Bogy 1995; Wanget al. 2007b; Warren & Guo 2006;

Youn & Kang 2005]. In the experimental work related to this thesis conical indenters were used

exclusively for the sake of consistency between the experimental conditions and the numerical

model having an axial symmetry. Consequently the focus is set on the evaluation of the effect

of a variation in the radius of curvature of the considered conical tip having a spherical cap of
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2µm radius. A variation of 10% in the value of the nominal radius of curvature was considered,

resulting in two additional simulations with 1800nm and 2200nm tip radius.

Figure 5.9: Influence of a 10% variation in the tip radius of the indenterR on the load–

displacement curves. Right: zoom on the unloading period.

An increase in the tip radius, due to tip deformation or potential tip wear, results in the defor-

mation of a larger volume of sample material at a given imposed indenter penetration. Con-

sequently the applied force necessary to reach the same indentation depth with a blunter tip is

higher, as shown in Fig.5.9. For the same reasons, an indenter tip with a smaller tip radius, due

to fabrication inaccuracies penetrates deeper at the same load level. Indentations with blunter

tips at a given load level induce less severe loading conditions than sharp tips, which cause

more easily plastic deformation. The indentation load–displacement curve, keeping all material

parameters constant is shown to be very sensitive to variations in the tip radius. Since it alters

the size of the deformed volume and the volume fraction of domains with elastic and plastic

response under the indenter it has naturally an influence on the unloading contact stiffness.

The variation in the post–treated elastic modulus of the sample as a consequence of tip radius

change is reported in Table 5.2. Two cases are distinguished, corresponding to two experimental

situations:

• The indenter geometry had varied (irreversible deformation, tip wear) since the last cal-

ibration, and this variation has not been detected. The areafunction determined in the

last calibration, corresponding to a tip radius of 2µm is considered in the post–treatment

procedure.

• The indenter geometry is approximated in a calibration stepfirst before starting the exper-

iments, the actual indenter geometry is taken into account in the post–treatment method

(marked with a star superscript in Tab 5.2)

The numerical results considering the variation of the tip radius emphasize the necessity of fre-

quent repetition of the tip calibration step preceding the actual nanoindentation measures, since
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it reduces significantly the dispersion related to the non–perfect tip geometry and its potential

variation (Tab.5.2).

R [nm] ∆EOP
out [%] ∆EOP∗

out [%] ∆ENi
out [%] ∆ENi∗

out [%]

1800 -6 -1∗ -7 -1∗

2200 +8 +1∗ +8 +2∗

Table 5.2: Influence of the indenter tip radius on the post–treated Young’s modulus is repre-

sented by∆EOP
out and∆ENi

out (the decimals are rounded off), calculated with respect to reference

indentations (R = 2000nm) of the post–treatment method of Oliver and Pharr and of Ni etal.,

respectively.∗Values with a star superscript are computed with the actual tip radius in the post–

treatment procedures, making the assumption that the variation in the tip radius was measured

in a calibration step.

5.1.4 Concluding remarks

The results of the parametric study, considering the variation of the indentation parameters in

a rate–independent material model with isotropic hardening allow to draw the following salient

conclusions.

• The elastic material parameters have a small influence on theload levels of indentations

considering the pure nickel low yield limit material.

• The variation in the input Young’s modulus has the far most significant influence on

the post–treated Young’s modulus issued from the numericalload–displacement curves,

independently of the considered post–treatment method. The relative variation in the

input Young’s modulusγinput results in a practically same relative variation in the post–

treated Young’s modulusγoutput = γinput for both post–treatment methods considered

here.

• The variation of the post–treated Young’s modulus due to variations in the material prop-

erties, other than the input Young’s modulus is considered as dispersion in the results.

These material parameters, considered separately were shown to have only a slight influ-

ence on the value of the post–treated Young’s modulus (under6% of relative variation).

It has to be emphasized, that the results of this study cannothowever lead to a conclu-

sion about the effect of their simultaneous variation, which might induce more important

variations.

• The indentation load levels are sensitive to a variation in the plastic material parameters

σ0, K, andn. The results of Section 5.1.2 imply that the same load–displacement curves
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can be reproduced by different combinations of the plastic material parameters, i.e. the

same load levels at the considered indentation depth can be reached [Cheng & Cheng

2004]. It can be shown that by a purely numerical manipulation (but lacking a physically

sound motivation) by increasing the initial yield limit to four times its valueσ
′

0 = 4 ×

σ0 or by doubling the value of the hardening coefficientK
′

= 2 × K the same load

levels, corresponding to the experimental indentation data are reached. Special care has

thus to be taken if the identification of plastic material properties from complete load–

displacement indentation data is aimed for as in [Bouzakis &Michailidis 2004; Bucaille

et al. 2004, 2003; Cao & Lu 2004; Zhaoet al. 2006], since various plastic parameter

sets can reproduce the same load–displacement curves.

• Geometrical issues related to the actual tip geometry and its variation influence both the

load levels at a given indentation depth significantly and the unloading slope (thereby

the contact stiffness, used in the post–treatment methods). Consequently this results in a

variation in the post–treated elastic modulus of the sample. The dispersion this generates

can be reduced by a systematic verification of the actual indenter geometry in calibrations

steps preceding the nanoindentation measure.
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5.2 Rate–dependent behavior of pure nickel in conical nanoin-

dentation

This contribution investigates the rate–dependent plastic behavior of pure nickel in nanoinden-

tation through a coupled experimental–numerical study based on the consistency of experimen-

tal and numerical conditions. The rate–dependent plastic behavior of non–metallic materials

[He & Swain 2007], of metals [Goodall & Clyne 2006] and of somethin films [Fanget al.

2007] was already observed during indentation. The rate–dependent behavior of aluminum

films was documented in Wanget al. [2007a]. The creep of titanium during nanoindentation

was presented recently in [He & Swain 2007]. For the present study, the most interesting refer-

ences to experimental work describe the rate–dependent behavior of nickel with micron–sized

grains [Chudoba & Richter 2001; Goodall & Clyne 2006] and nano–sized grains [Mirshams

& Pothapragada 2006; Yinet al. 2001]. Based on published experimental results, mainly for

polymer materials, rate–dependent material laws have beenused in numerical models of in-

dentation. In Kermoucheet al. [2007] the viscoplastic behavior of a sample material without

work hardening and a conical indenter with a perfectly sharpidealized geometry is considered.

Gomez and Basaran analyzed the effect of viscoplasticity onthe nanoindentation of Pb/Sn sol-

der alloys in a numerical study under small strain and small displacement assumptions with an

idealized sharp conical indenter geometry [Gomez & Basaran2006], in which a good agree-

ment between numerical and experimental results was found.

In the present work, the correlation between the response ofa numerical model and the ex-

perimental nanoindentation results of pure nickel is investigated, with a specific attention for

the need to account for the rate–dependent plastic behaviorof nickel. Considering the com-

plexity of the nanoindentation experiment involving many convoluted effects, special care has

been taken to ensure the best possible decoupling of the effects related to the viscoplastic be-

havior of nickel from other potential spurious contributions. This special effort to ensure the

best consistency between modeling assumptions and experiments allowed the use of a relatively

simple numerical model defined by a limited number of parameters; yet still performing well at

the task of describing qualitatively the studied features of the experiment. Keeping the number

of assumptions in the numerical model relatively low, with aphysically sound basis, and the

consistency between the experimental conditions and the assumptions of the numerical simula-

tions, constitutes the main argument supporting the incorporation of the rate–dependent plastic

behavior of nickel.

This section is based on P. Berke, E. Tam, M.-P. Delplancke, T.J. Massart, ‘Study of the rate–dependent behav-

ior of pure nickel in conical nanoindentation through numerical simulation coupled to experiments’ accepted for

publication in Mechanics of Materials (DOI: 10.1016/j.mechmat.2008.09.003)
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The experimental procedure and its results, performed by E.Tam, are presented first, in Sec-

tion 5.2.1. The description of the numerical model and the comparison of the experimental

and numerical results are treated in Section 5.2.2, followed by a discussion on the need for in-

cluding rate–dependency in the material model and its implication on the determination of the

elastic modulus obtained from nanoindentation data. Finally the conclusions of this work are

presented.

5.2.1 Experimental procedure and results

Choice of the cono–spherical indenter tip

A conical indenter tip with a nominal curvature radius of 2µm was chosen for the nanoin-

dentation experiments. This choice is made to avoid modeling indenter shapes without an axial

symmetry, as well as to decrease as much as possible any effect of large strain gradients in the

sample in the region near the tip.

Non–axisymmetric indenters, like the popular Berkovich and the Vickers geometry are de-

scribed in numerical simulations using either a 3D model [Antuneset al. 2006; Warren & Guo

2006] resulting in a computationally demanding calculation, or alternatively with an equivalent

axisymmetric geometry based on the projected area to depth ratio equivalence [Lichinchiet al.

1998]. The significant influence of the size effects related to high strain gradients generated

at the edges of non–axisymmetric indenters on the global variables of indentation (load level,

indenter displacement) was not confirmed in a coupled numerical–experimental study. How-

ever, numerical research works using higher order strain gradient plasticity formulations were

performed in Al-Rubet al. [2007]; Al-Rub [2007]; Thoet al. [2006] to account for the depth

related size effect obtained in shallow indentation. A reasonable agreement was found between

experimental data and the results of numerical simulationsmaking simplifying assumptions on

the indenter geometry. Here, the choice of a conical indenter was made to avoid using any

assumption on the subsurface stress and strain behavior in the numerical model with respect to

the experiments.

Sample preparation procedure

Samples were cut from 3mm thick pure nickel plates. The surface preparation aimed at mini-

mizing surface roughness, to approximate an ideally smoothsurface. The sample surfaces were

polished first and then etched to remove the work–hardened surface layer. Finally, the samples

were annealed to relieve any residual stresses and to eliminate possible anisotropy due to the

fabrication and preparation procedures.

The average grain size of the nickel sample after surface preparation (around 100µm) turned out
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to be much larger than the imprint size (of a few micrometers in diameter). As a consequence,

all indentations have been performed in the middle of the grains with arbitrary orientation so

as to avoid any grain boundary effects and to have an average,grain orientation–independent

material response. Experimental results are thus considered to be an average response of pure

nickel for conical indentation with a cono–spherical tip of2µm radius.

Machine calibration and monitoring of the experimental conditions

The compulsory tests of machine calibration, the verification of the extent of the thermal drift

and the thermal drift correction were performed before eachset of indentations to ensure the

accuracy and good reproducibility of the measurements.

The load–displacement curve of a nanoindentation experiment especially in the small indenta-

tion depth regime may be affected by the surface roughness and more generally by the contact

geometry of the indenter–sample surface contact [Berke & Massart 2006; Bouzakiset al. 2001;

Wanget al. 2007b; Warren & Guo 2006; Yuet al. 2004]. The measurement of the surface

roughness as well as the verification of the actual indenter geometry are therefore of crucial

importance. The surface scan showed that the arithmetic mean roughness value (Ra) of the

undeformed surfaces was in the order of 1nm, and it was confirmed that the conical tip was

proper and that the curvature radius was approximately 2µm.

Experimental test conditions

The experimental test conditions address the problem of rate–dependent material behavior of

pure nickel. It is recalled that the experiments followed a predefined loading sequence in which

the applied force was specified as a function of time. Generally, three parts of the loading se-

quence are distinguished: the loading period where the applied force is increased up to a peak

value, the holding period where for a prescribed amount of time this peak load is maintained,

and finally the unloading period where the applied force is decreased to zero.

During the holding period, the indenter displacement may bedifferent from zero. This phe-

nomenon is called indentation creep in nanoindentation experiments [Fischer-Cripps 2004], and

is clearly related to a rate–dependent feature of the materials response [Goodall & Clyne 2006].

The length of this displacement plateau observed during theholding period together with the

load levels obtained in the load–displacement curves are the focus of interest of this study.

In order to investigate the rate–dependence of pure nickel afirst set of indentations with a

maximum load of 2000µN was conducted at different loading rates (1000µN/s, 400µN/s and

100µN/s, with a holding time of 10s) and different holding times (10s and 50s with a loading

rate of 400µN/s). A further increase in the holding time was not considered because of the
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increasing influence of thermal drift for long holding periods.

In order to observe the potential influence of the size effects in nanoindentation, two new sets

of experiments were defined: one resulting in shallow indents and one in the large indentation

depth regime (with maximum load levels of 1000µN and 9000µN , respectively). In these ex-

periments, the loading, holding and unloading times (5s–10s–5s, respectively) have been kept

constant resulting in two additional loading rates (200µN/s and 1800µN/s, respectively). It

should be recalled that the indentation size effects are recognized to be stronger in the small

indentation depth regime and weaken gradually with increasingly deep indentations [Thoet al.

2006]. If any, their influence is thus expected to be larger innanoindentations with 1000µN

and 2000µN peak loads (corresponding to a 54nm and a 100nm indentation depth) than on the

9000µN indentations (with 430nm penetration). However, a significant variation of the size ef-

fects with increasing indentation depths in the consideredrange could not be clearly confirmed

by the obtained experimental results.

The combination of these test conditions therefore resulted in six sets of nanoindentation exper-

iments.

Discussion

The experimental results of the six sets of nanoindentations with 6 to 8 indentations per set

are shown in Fig.5.10 to Fig.5.13. Note that for the case of shallow indentations the pop–in

phenomenon is quite frequently observed, which increases significantly the scattering in the

experimental results. The scattering is the smallest for the deepest indentations, as expected.

An important observation is that the variation of the loading rate in the studied range (from

100µN/s to 1000µN/s for the experiments with 2000µN peak load) does not seem to have

an influence on the loading curves (Fig.5.12). More generally, the loading period of all load–

displacement curves obtained at different maximum loads and at different loading rates (up

to 1800µN/s) are found to coincide at small and moderate indentation depths (Fig.5.10). At

first this could suggest that the deformation process involved during nanoindentation is rate–

independent as in Schwaigeret al. [2003], at least in the range investigated in the present study.

However a displacement plateau always appears in the load–displacement curves (Fig.5.10) dur-

ing the holding period, which on the contrary suggests a rate–dependent behavior of the pure

nickel material. This holding displacement plateau can be further analyzed, based on Fig.5.11,

5.12 and 5.13 which depict the obtained indenter displacement as a function of time during the

holding period, as performed for instance in Chudoba & Richter [2001] for different values of

the the holding period length, of the loading rate, and of thepeak load, respectively. Fig.5.11

allows the identification of the effect of the holding periodlength, with other parameters fixed

(peak load kept at 2000µN with 400µN/s loading rate). The average indenter displacement
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Figure 5.10: Experimental and numerical results for three series of indentations at different

loading rates and different indentation depths. Solid curves represent the results of a numeri-

cal rate–dependent material model, dashed curves represent the results of the numerical rate–

independent material model of Section 5.1.

during the holding period is increased by a factor of approximately 1.7 when the holding period

is increased by a factor of 5 in the measurements. The loadingrate also has an influence on

the holding plateau length, as can be seen from Fig.5.12. Fora fixed peak load of 2000µN

and holding time of 10s, an increase in the loading rate from 100µN/s to 400µN/s and to

1000µN/s results in an increase of the plateau length by a factor of approximately 1.2 and 2

respectively. Finally, the effect of the peak load can be observed in Fig.5.13 which respectively

match 1000µN , 2000µN , and 9000µN peak load, keeping the holding time 10s. The holding

plateau length increases by a factor of approximately 1.8 and 6 when the peak load is increased

from 1000µN to 2000µN and 9000µN , respectively. Note that even though the loading rate

effect is convoluted in this increase, the peak load effect remains clearly recognizable since the

observed variation is much more important than when varyingthe loading rate alone.

Therefore, considering the presence of the displacement plateau, another interpretation of the

observations is that the material has a viscoplastic response for which the rate effect has already

saturated at the applied strain rates. The saturation of theviscoplastic effects implies that there
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Figure 5.11: Influence of the holding time: experimental andnumerical results for nanoinden-

tation at 2000µN peak load. a. Load–displacement curves; the dark grey patchand the curves

with plus marks represent the experimental and numerical results, respectively forThold = 10s;

the light grey patch and the curves with plus marks representthe experimental and numerical

results, respectively forThold = 50s b. to c. Experimental (grey) and numerical (black plus

marks) displacement–time curves during holding period.

is no significant increase in the stresses in the sample (thusno gain in the reaction force) with a

further increase in the strain rate. This is why the rate–dependent effects on the global response

are potentially masked during the loading period. In other words, significant viscoplastic defor-

mations are only observed experimentally during the holding period, where the strain rates are

relatively small.

5.2.2 Numerical analysis of rate–dependency

The motivation of the numerical simulations is to confirm this interpretation of experiments by

investigating whether the rate–dependent behavior of purenickel indentation can be reproduced

using a simple viscoplastic law.

Modeling a nanoindentation experiment is a task requiring to take into account complex phys-

ical phenomena such as contact evolution and the elastic–plastic deformation in a finite defor-

mation setting, since the globally small deformation of thesample volume leads to locally large

deformations and rigid rotations. The first requirement is needed to simulate the experimental,
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Figure 5.12: Influence of the loading rate: experimental andnumerical results for the indenta-

tion experiment at constant 2000µN peak load with 10s holding time. a. Load–displacement

curves; the dark grey patch and the curves with circle marks represent the experimental and

numerical results, respectively at 100µN/s; the light grey patch and the curves with diamond

marks represent the experimental and numerical results, respectively at 1000µN/s; the patch

with the intermediate shade and the curves with plus marks represent the experimental and nu-

merical results, respectively at 400µN/s b. to d. Experimental (grey) and numerical (black plus

marks) displacement–time curves during holding period.

yet idealized evolving boundary conditions and the latter to account for the correct behavior of

the material in the model.

General assumptions of the model

The diamond indenter is modeled as a conical rigid body (since both the elastic modulus and

the yield limit of pure nickel are orders of magnitude lower than those of diamond) having a

spherical cap with a 2µm radius of curvature as verified by microscopy.

With all of the precautions taken in the experiments to avoidthe presence of work–hardened

layers, residual stresses, and potential anisotropy due tosample preparation, it is assumed that

the response obtained is the nanoindentation of pure nickelonly. In the numerical model a ho-

mogeneous sample material with isotropic hardening is assumed. This assumption is generally
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Figure 5.13: Influence of the holding force (convoluted to the loading rate effect): experimental

(grey) and numerical (black solid curves) results for nanoindentation at 1000µN , 2000µN and

9000µN peak load. a. Load–displacement curves b. to d. Experimental (grey) and numerical

(black plus marks) displacement–time curves during holding period.

used for FCC metals, which have a large number of slip planes.As in Section 5.1 using a rate–

independent material model, an isotropic hardening behavior for pure nickel obeying Ludwik’s

law, was considered in this work

σv = σ0 + Kκn

whereσv [MPa] stands for the current yield limit,σ0 [MPa] the initial yield stress,K [MPa] the

hardening coefficient,κ the cumulative plastic strain measure andn the hardening exponent.

The simulations with the rate–dependent material model were conducted using the general

purpose SAMCEF finite element package (the contact conditions are treated using Lagrange

multipliers). Due to the limitations of this code the viscoplastic material model can only be

combined with a linear hardening behavior, i.e.n = 1). Considering the shape of the experi-

mental stress–strain curve (approximated in the rate–independent material model of Section 5.1

by the parameter setE = 207GPa,ν = 0.31,σ0 = 59MPa,K = 1165MPa, andn = 0.56), the

chosen material parameter setσ0 = 59MPa,K = 2230MPa of this linear approximation imposed

by SAMCEF needs justification. The initial yield strengthσ0, playing a major role in the inden-

tation response of the material, was kept the same as the measured value of 59MPa for the sake

of consistency. Consequently, the hardening coefficientK is the only free material parameter
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to be adjusted in the linear fit of the material law obtained from [Kovács & Vörös 1996]. This

coefficientK defines the tangent of the linear hardening law in Fig.5.14. It was chosen such as

to find a suitable approximation to the experimental stress–strain curve taking into account the

range of the magnitude of the cumulative viscoplastic deformation measure during indentation.

By this approximation the imposed linear hardening is not a severely penalizing assumption of

the rate–dependent material model.

Figure 5.14: Material law for pure nickel: the von Mises equivalent stressσv is plotted as a

function of the cumulated plastic strain measureκ. Solid line: power law fit to uniaxial tension

measurements [Kovács & Vörös 1996] used in the rate–independent material model; Dashed

line: linear hardening approximation used in the rate–dependent material model.

Note that high strain gradients promoted by nanoindentation could also be responsible for a po-

tential difference between the experimental results and the numerical predictions knowing that

the numerical model used here does not take into account the dependence of hardening on the

strain gradients.

The experimental indentation geometry was chosen so as to exhibit an axial symmetry. The

sample is therefore described in the numerical model using 8–noded axisymmetric elastic–

plastic elements using a finite deformation theory. The contact surface of the sample is assumed

perfectly flat and smooth. Three meshes were created for the three different indentation depths

(corresponding to three different peak loads of 1000µN , 2000µN and 9000µN) observed in the

experiments: 54nm, 100nm and 430nm. Each consisted of more than 14000 degrees of free-

dom to be able to reproduce with high precision the stress andplastic strain evolution during the

simulation. The geometrical size of the mesh in all cases waschosen sufficiently large such that

a homogeneous stress distribution at the boundary of the model was obtained. The side nodes

of the mesh were constrained in the horizontal direction andthe displacement of the bottom

nodes was prescribed in the vertical direction. Friction onthe contact interface was neglected
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in the numerical model to keep the focus on the rate–dependent material effects.

Numerical ind. Fmax [µN ] Load. rate [µN/s] Thold [s]

1 1000 200 10

2 2000 100 10

3 2000 400 10

4 2000 400 50

5 2000 1000 10

6 9000 1800 10

*7 1000 400 10

*8 9000 400 10

*9 9000 900 10

Table 5.3: Studied sets of nanoindentation configurations in the simulations. Cases marked with

a star were added to study the effect of the viscoplastic material parameters.

Rate–dependent constitutive model

A rate–dependent material behavior was incorporated in a numerical model to attempt to re-

produce the experimental results with a special attention to both the loading and holding period.

The applied loading conditions respect the experimental loading sequence (i.e. the duration of

each period).

It is emphasized that all of the experimental curves for all different loading rates are super-

imposed in the small indentation depth regime. This suggests the use of a viscoplastic model

with a saturation behavior at high strain rates (i.e. for which a further increase in the strain rate

does not influence the flow properties anymore). Taking this into consideration, a Perzyna–type

viscoplastic behavior [Ponthot 1995] was chosen to incorporate the rate–dependent behavior of

pure nickel.

The relation between the variation of stresses and strains is written as:

σ̂ = He (D−Dvp) (5.3)

with σ̂ an objective rate of stress,D the total andDvp the viscoplastic strain rate, andHe the

elastic stiffness tensor. The yield function that defines the viscoplastic domain for the Perzyna

model is given by:

f = σ − σv − σc(Dvp)
1/nvp = 0 (5.4)

with σ [MPa] the calculated equivalent von Mises stress,σc [MPa.s1/nvp] the comparative stress

or viscosity parameter, andnvp the viscosity exponent.σv [MPa] is the current yield stress de-

termined from the linear hardening law.
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The viscoplastic parameters of the Perzyna–type model weredetermined in an iterative proce-

dure adjusting bothσc andnvp simultaneously such that the numerical curve fits both the loading

and holding periods of the 430nm deep experimental nanoindentation data (reaching 9000µN

peak load), as reported in Fig.5.10 and Fig.5.13. An iterative parameter search was necessary

because of the coupled and nonlinear effect of both viscoplastic parameters on the response of

the material in the numerical indentation:σc has a major influence on the load levels of in-

dentation and changes slightly the displacement–time curves, whilenvp has an important effect

on indentation creep (displacement–time curves in the holding period) and influences the load

levels as well. The purpose of choosing the deepest indentation for the identification of the vis-

coplastic material parameter set was the relative decreaseof the material size effects appearing

in shallow indentation depths, resulting in the best possible decoupling of the rate–dependent

effects. The uniqueness of the proposed viscoplastic parameter setσc = 265MPa.s1/nvp and

nvp = 65 can however not be stated, and a number of sets in the vicinity of the proposed pair

may also perform well. However, the obtained parameter set seems a fair approximation in

view of the good agreement of the numerical and experimentalresults for both the load levels

(Fig.5.10) and the indentation creep (Fig.5.11, 5.12, and 5.13). The values ofσc andnvp are

in the acceptable domain for metals [Ponthot 1995]. A low value ofnvp would correspond to

a highly viscous material whereas the rather high value of the viscosity exponent determined

for pure nickel shows a material behavior with less pronounced rate–dependent effects, which

might mask rate–dependent effects of the behavior in some cases [Schwaigeret al. 2003].

5.2.3 Numerical results and discussion

Comparison with experimentally obtained load levels and indentation creep

Two aspects of the viscoplastic behavior nickel were investigated, which have equally important

implications on the results of the nanoindentation procedure: (i) the load levels in nanoinden-

tation, represented in Fig.5.10; and (ii) indentation creep, represented in the displacement–time

curves plotted during the holding period (Fig.5.11, 5.12, and 5.13).

The loading period of the numerical load–displacement curves matches the experimental data

for all six experiments with the chosen parameter set. The effect of saturation (observed ex-

perimentally) is reproduced by the Perzyna law: all curves with loading rates ranging from

100µN/s to 1800µN/s (Fig.5.10 and Fig.5.12) are nearly superimposed in the shallow and

moderate indentation depth domain. The slightly stiffer response in the experimental loading

curves at the small and moderate indentation depths (Fig.5.10) might be attributed to size effects

at shallow indentation depths, and to a potential local variation in the actual indenter tip radius

due to fabrication inaccuracy. Indeed, an important issue in modeling the shallow nanoinden-

tation experiment is related to the high strain gradients inthe sample material resulting from
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the penetration, resulting in a size–dependent behavior atthis scale [Al-Rubet al. 2007; Al-

Rub 2007; Fricket al. 2008; Zhaoet al. 2003]. Due to its size and symmetry, the selected

tip reduces strain and strain gradient effects at the indentation depths considered [Mirshams &

Pothapragada 2006]. If in a rigorous sense these effects cannot be neglected, their influence

is larger at small indentation depths and can be felt even forthe case of spherical indentation

according to [Quet al. 2006]. However, these size effects were not taken into account in the

present numerical model since the focus is on rate–dependent material behavior. The stiffness

of the experimental curves in the displacement domain up to 430nm was found to vary only

slightly (Fig.5.10); whereas at large indentation depths the influence of size effects should be

relatively smaller. Therefore no significant variation in the size effects with increasing inden-

tation depth could be deduced from experimental results, which seems to show that neglecting

size effects was indeed a sensible assumption.

The computed displacement–time curves of the numerical model are inside the envelope de-

fined by the experimental results, except for Fig.5.12 wherethe numerical prediction of the final

plateau length for 1000µN/s loading rate is slightly under the experimentally measuredvalues.

The length of the plateau formed during the holding period inall six series of experiments is

well approximated by the numerical simulations (Fig.5.11 to 5.13) using the same parameter

set that describes the gain in hardening due to rate–dependent effects in nickel. The simple vis-

coplastic model reproduces the experimental trends well, when the experimental parameters are

varied similar to the testing procedure. The computed indenter displacement during the holding

period is 1.5 times larger, compared to a factor of roughly 1.7 in the experimental average val-

ues, when the holding period is increased by a factor of 5 (Fig.5.11). When the loading rate is

increased from 100µN/s to 400µN/s and to 1000µN/s for a fixed peak load of 2000µN and

holding time of 10s (Fig.5.12), the numerical model predicts an increase of theholding plateau

length by a factor of approximately 1.4 and 1.7, respectively. These values approximate rea-

sonably well the increase in the experimental average valueof 1.2 and 2, respectively. Similar

to the experimental trends, the holding plateau length is found to be the most sensitive in the

numerical model to variations in the peak load. When the peakload is increased from 1000µN ,

to 2000µN , and to 9000µN , keeping the holding time at 10s (Fig.5.13) the computed holding

plateau length increases by a factor of approximately 1.5 and 6.3, respectively, compared to an

increase in the experimental average values of 1.8 and 6. Thepeak load effect remains clearly

recognizable from both the experimental and the numerical data since the observed variation

is much more important than when varying the loading rate alone. The length of the holding

plateau is found to be directly proportional to the maximum applied load, which is in agreement

with the experimental trend. The magnitude of the applied peak load necessary to reach a given

indentation depth is related to the stresses in the sample material. Since the viscoplastic strain

rate is directly proportional to the magnitude of the overstress in the used viscoplastic model,
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the result is a high sensitivity of the holding plateau length (being related to the time integral of

the viscoplastic strain rate) on the value of the peak load.

This fair agreement between the predictions of the numerical model and the experimental re-

sults was reached, resulting from fitting the parameters of the viscoplastic material model to

experimental data in a single testing condition corresponding to the deepest considered nanoin-

dentation. Even though the simplest viscoplastic model wasused, it was shown to perform

rather well in all other considered testing conditions as well, concerning both indentation load

levels, displacement–time curves plotted in the holding period and holding plateau length. The

results suggest that the rate–dependent behavior of pure nickel has to be taken into account to

remain consistent with the physics encountered during nanoindentation experiments [Chudoba

& Richter 2001]. The reason for this is merely the nature of the experiment itself; causing large

local deformations in the sample material near the indentertip at high strain rates, as opposed

to classical applications in which the strain rates are muchlower.

On the need of rate–dependency

Even though it is obvious that a rate–independent material model cannot reproduce the holding

plateau considering the rate–dependent nature of this feature of the measurement, it was pointed

out, based on experimental results, that rate–dependent effects are potentially masked during the

loading period. As a result, rate–independent material models were often used in nanoinden-

tation simulations without taking the creep phenomenon into account [Antuneset al. 2006;

Bressanet al. 2005; Pelletier 2006]. Following this idea simulations with a rate–independent

material behavior using the same spatial discretization were conducted (corresponding to the

study in Section 5.1) to evaluate how well the load levels during the loading period using an

experimentally measured constitutive law for pure nickel agree with the experimental ones.

It can be seen from Fig.5.10 that the load levels obtained in asimulation using an experimentally

measured constitutive law for pure nickel, with a rate–independent material model (presented

in Section 5.1) are lower by 40% to 50% than the experimental ones at large indentation depth

(430nm) and at small (54nm) to medium (100nm) indentation depths, respectively. The reason

for this large difference here is clearly the lack of the description of a key physical feature of

the experiment in the numerical model (i.e. the rate dependent effect). As shown previously,

the slope of the load–displacement curve in the loading period depends on the combination of

the plastic parameters (keeping the Young’s modulus of the material constant), thus the same

loading curve can be obtained with different rate–insensitive plastic parameter sets; and the load

levels of the numerical loading curve can be increased to fit the experimental data in various

ways, by simply adjusting the material parameters.

The initial yield limit and the hardening behavior have the largest influence on the loading
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period of the load–displacement curves in nanoindentationof nickel using a rate–independent

material model (Section 5.1). Therefore, an obvious (but poorly physically motivated) choice

would consist in varying the corresponding material parameters so as to fit the numerical re-

sults. A fairly good agreement between the loading period ofthe experimental and the numer-

ical curves could be reached with such a numerical manipulation by increasing the initial yield

stress to four times its initial value (σ
′

0 = 4 × σ0 = 236MPa) or by doubling the hardening co-

efficient (K
′

= 2 ×K). However, the low yield limitσ0 = 59MPa is a physically–based value

for the studied pure nickel material [ASM 1990; Hollanget al. 2006; Kovács & Vörös 1996].

Moreover, increasingK to the double of its initial value would change the hardeningbehavior

of the modeled material significantly. As a consequence, an agreement between experimental

and numerical results using a rate–independent material model can only be reached by a drastic

increase in the considered plastic material parameters, a manipulation which is clearly difficult

to motivate from a physical point of view.

Note that changing the frictionless contact assumption to even very large values of the exper-

imental friction coefficient on the contact interface wouldnot explain the observed difference

between the experimental and the numerical data with the rate–independent material model.

In light of this, it is apparent that the viscoplastic effects presented above should be considered,

as it allows to account for both the load levels and the holding plateau present in the experi-

ments, and avoids non physically motivated numerical manipulations.

On experimental post–processing procedures

It has to be noted that the viscoplastic behavior alone potentially influences the post–treated

Young’s modulus, even though it has a considerably smaller effect than the variation of elastic

material properties.

The detection of the point of initial unloading and the numerical curve fitting to the unloading

curve used in the post–treatment procedures influence the post–treated elastic modulus (as ex-

plained in Appendix A.1). This can be referred to as ‘nanoindentation dispersion related to the

post–treatment procedure’, and can be felt particularly inthe case of long holding periods. With

a special attention to decrease these effects, the variation of the post–treated Young’s modulus

issued from the results of the numerical model with rate–dependent material behavior for the six

sets of indentations considered in the experiments was∆EOP
out =+7%

−8% for the Oliver–Pharr post-

treatment method. Note that this remains in the order of magnitude of the scattering observed

experimentally. The post–treatment method of Ni et al. performed better with∆ENi
out =+4%

−2%.

Finally, the implications of these findings on advanced post–treatment methods for the identi-

fication of plastic material parameters should be emphasized. In post–treatment methods using

the complete load–displacement curves (such as the energy based methods), the potentially
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rate–dependent plastic behavior of the tested material is included in a natural way in the exper-

iment. Therefore, care should be taken in the choice of the material model to avoid identifying

overestimated rate–independent material parameters.

5.2.4 Conclusions

It has been shown through coupled experimental–numerical investigation that the rate–dependent

behavior of pure nickel may be important in conical nanoindentation. An experimental pro-

gram has been set up to study the material response of pure nickel with a specific selection of

experimental conditions to decouple rate–dependent effects from other potential spurious con-

tributions, and to investigate the agreement between a numerical model using the finite element

method and the experimental data.

A simple material model taking into account rate–dependenteffects in plasticity was cho-

sen in the simulations reproducing the experimental nanoindentation program. The material

parameters governing the viscoplastic behavior were obtained by fitting the numerical load–

displacement curve to the experimental results at the deepest indentation, and are situated in a

physically acceptable domain for metallic materials. The rate–dependent numerical model for

nickel seems to describe the experiments rather well, basedon the good agreement between

both the loading and holding periods of the numerical and theexperimental load–displacement

curves, and indentation creep obtained for all considered experimental data. The experimen-

tally observed trends concerning the variation of the testing conditions are reproduced in the

numerical simulations for all considered cases.

89



FE model applications 5.3 Nanoindentation on rough surface with friction

5.3 Coupled friction and roughness surface effects in shallow

spherical nanoindentation

When nanoindentation is used for thin film characterization, the penetration of the indenter

is usually limited to shallow indents to avoid the spurious effect of the substrate, a regime in

which the surface effects, related to the contact behavior are the most pronounced. Therefore,

the variation in the obtained mechanical properties due to surface effects may wrongly be at-

tributed to the thin film mechanical behavior. A numerical study is conducted with the intention

to investigate how frictional and surface roughness effects interact in a numerical model of

nanoindentation of pure nickel and their influence on the output data. In this numerical study

two major mechanical contributions to surface effects are distinguished and investigated:fric-

tional andsample surface roughnesseffects.

In the majority of the experiments only an estimation of the frictional behavior is postulated and

its influence on the output data is unknown. Moreover friction cannot be easily varied exper-

imentally in dry friction conditions keeping the same contacting material pair. This motivates

numerical modeling efforts having the objective to evaluate the influence of friction and its vari-

ation on indentation problems. Numerical studies having this objective are mostly considering

a perfectly smooth sample surfaceand result in varying conclusions. Friction is recognized to

have the largest influence when using sharp indenters [Bucaille et al. 2004, 2003; Qinet al.

2007] in indentation depths comparable to or larger than thecurvature radius of the indenter

[Caoet al. 2007]. The importance of frictional effects also depends onthe choice of the sample

material model, for example the indentation of an elastic–perfectly plastic material is rather in-

sensitive to friction when considering high friction [Wanget al. 2007b]. This has lead to some

dispersion in the conclusions of works considering the global effect of friction on the indenta-

tion results: some conclude that the global indentation behavior is unaffected by friction on the

contact interface [Antuneset al. 2006; Carlssonet al. 2000; Wanget al. 2007b], while other

findings show that friction can be a significant source of scattering [Caoet al. 2007; Habbab

et al. 2006; Mata & Alcalà 2004].

As a second surface effect, a special attention in the literature is given to issues related to inden-

tations on rough surfaces, both with experimental and numerical approaches, since roughness

is recognized to give a significant contribution to the indentation response. A large number of

experimental works evaluated its influence on the nanoindentation results [Kumaret al. 2006;

Qasmi & Delobelle 2006; Waiet al. 2004], sometimes with the aim to propose post–treatment

corrections allowing to decrease the dispersion in the output data due to surface roughness

This section is based on P. Berke, F.E. Houdaigui, T.J. Massart, ‘Coupled friction and roughness surface effects in

shallow spherical nanoindentation’ submitted for publication
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[de Souzaet al. 2005, 2006]. The influence of the surface roughness is found to be the most

important in small and moderate indentation depths, comparable to the height of the surface

asperities. This indentation–depth–dependent effect is sometimes interpreted as an indentation–

size–effect depending on the contact geometry [Gao & Fan 2002; Kim et al. 2007; Qiuet al.

2003; Zhanget al. 2004].

In numerical approaches, this effect is observed to be significant even for low average rough-

ness (with respect to the considered nanoscale), assuming that the energy balance of indentation

is constituted from two contributions: the elastic–plastic deformation of the surface asperities

and of the bulk material [Kimet al. 2007], without taking frictional effects into account. Nu-

merical studies incorporating the roughness of the contactsurfaces in indentation problems

use almost exclusivelyfrictionlessmodels. The rough sample surface topology is described in

two–dimensions [Bobji & Biswas 1999] or three–dimensions [Bobji et al. 1999; Zahouani &

Sidoroff 2001] with fractal–based [Boraet al. 2005; Taoet al. 2001] and polynomial [Tao

et al. 2001] modeling assumptions. The reader can consult [Persson 2006] for a more detailed

review on rough surface contact mechanics. Even with a frictionless contact assumption, a good

qualitative(if not quantitative) agreement can be found with experimental trends in the increase

of the dispersion in the results due to surface roughness [Walter et al. 2007].

The demanding computational effort of simulating numerically the problem of multiple fric-

tionless contacts with a rough surface, coupled to the extrapolation of the conclusions of some

of the previous works, showing a negligible frictional effect in indentation problems on perfectly

flat surfaces, resulted in the fact that references analyzing both surface effects simultaneously

are scarce. Even though the observed dispersion is solely attributed to surface roughness effects,

the frictional effects are obviously naturally convolutedwith the effect of surface roughness in

the experiments. Therefore the present study investigatessurface effects in nanoindentation

convoluting the effects of the sample surface roughness andfriction on the contact interface. In

order to illustrate the coupled effect of friction and roughness practically, an estimation of the

scattering in the post–treated elastic material properties due to surface effects is calculated by

the two considered post–treatment methods presented in Section 2.2.

The numerical model of indentation used in this study is described first. The issues of indenting

on a flat surface considering friction on the contact interface and indenting on a frictionless

rough surface are revisited in Section 5.3.1. The attentionis then shifted to the evaluation of

the coupled effect of friction and surface roughness on nanoindentation results in Section 5.3.2.

This is achieved by conducting a numerical parametric studyusing a simplified description of

the surface topology in a first step. A more realistic description of the surface topology is then

used to confirm the obtained results. This contribution endswith the conclusions involving a
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discussion focusing on the implications of the findings on the interpretation of the nanoinden-

tation output data, and on the contribution of the frictional energy dissipation on the contact

interface.

Numerical modeling of the indentation setups

The main purpose being to contribute to the understanding ofsurface effects in nanoindenta-

tion, a model of the experimental setup and program in which such effects play a significant role

needs to be considered. A special attention was therefore given to the definition of the numer-

ical indentation parameters, in order to use quantities consistent with a real–life experimental

setup used for the characterization of thin films. The modeled situation is the nanoindentation

of pure nickel material with depths ranging from 0 to 45nm, using a cube corner indenter. The

loading sequence considered here is 5s–0s–5s loading, holding and unloading time respectively.

Such shallow indents are generally imposed in experiments following the rule of thumb of

making indents not deeper than one tenth of the thickness of the deposited thin film to avoid

spurious effects of the substrate [Cai & Bangert 1995; Hainsworth & Soh 2003; Kusanoet al.

2003]. The surface roughness of thin films can become comparable to the imposed penetration

[Barshilia & Rajam 2002; Fanget al. 2007; Kumaret al. 2006; Qasmi & Delobelle 2006],

which motivates the choice of roughness input parameters used here and emphasizes the prac-

tical interest of this numerical study. A non–perfect, realistic cube–corner indenter geometry is

Figure 5.15: Schema of the cube corner nanoindenter tip geometry approximated in this study

by a rigid sphere of 100nm radius.

considered with a nominal curvature radius of 100nm (Fig. 5.15). The sharp–edged cubic ge-

ometry transforms in a 30–35nm high smooth spherical cap at the tip of the diamond indenter.

This assumed indenter geometry is approximated by a rigid spherical body in all simulations,
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since the considered indentation depth of 45nm is comparable to the height of the spherical

cap. The transition zone between the cubic and the sphericalgeometry potentially triggers ma-

terial effects related to high strain gradients [Al-Rubet al. 2007; Al-Rub 2007; Mirshams &

Pothapragada 2006; Qiuet al. 2003; Thoet al. 2006; Zhaoet al. 2003]. It is here smoothened

out by the spherical shape assumption.

Since the main concern here are surface effects, the potentially present material size–effects in

shallow indentations are not considered, however keeping in mind their importance in the case

of a direct comparison between experimental and numerical data. The behavior of the tested

pure nickel material is modeled as elastic–viscoplastic, using the constitutive model and the

material parameter set obtained in Section 5.2 in all simulations.

Figure 5.16: The boundary conditions of the considered axisymmetric numerical models and

the parameters defining the geometry of the model surface asperity (A, λ).

The numerical work is conducted using the general purpose commercial finite element code

SAMCEF, taking into account the material and geometric nonlinearities due to local finite de-

formation and contact evolution. For each studied case, different 2D finite element meshes of

8 noded quadratic quadrilateral elements were used, consisting of more than 48000 degrees of

freedom each, with up to 160 nodes in the estimated contact area to be able to reproduce with

high precision the stress and plastic strain evolution during the simulation. The frictional con-

tact problem is solved using a Lagrange multipliers approach. The geometrical size of the mesh

in all cases is chosen sufficiently large such that a homogeneous stress distribution is obtained

at the lower and side boundaries of the model. The side nodes and the bottom nodes of the
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mesh are constrained in the horizontal and in the vertical direction, respectively. The indenter is

prescribed to reach a penetration of 45nm in the deformable sample which has a fixed position

in space in the displacement controlled numerical indentations (Fig.5.16).

Each studied configuration was calculated using both plane strain and axisymmetric model-

ing assumptions, providing respectively a lower and an upper bound of the frictional effects.

Indeed, considering the plane strain assumption, the modeled problem corresponds to the in-

dentation of a deformable half–space with a rigid cylinder.Friction only acts in the in–plane

direction, as unidirectional forces pointing to the centerline of the contact area, which gives

the lower bound of frictional effects. The axisymmetric model implicitly incorporates a three–

dimensional effect of both radial and tangential friction,which describes well the indentation

of a perfectly flat surface. When the indentation of rough surfaces is considered, the roughness

profile is naturally described in the axisymmetric model by concentric circular rings showing a

stiffer response to indentation than the real three–dimensional surface with randomly distributed

surface asperities in the contact area. This lateral stiffening effect is particularly important when

indenting in the middle of a roughness ring, which results inan increase in the normal contact

forces. When combined with a Coulomb type friction law, thisresults in the increase of the fric-

tion forces, giving an upper bound of the frictional effects. By default, all simulations presented

in this section are performed using an an axisymmetric assumption. The qualitative comparison

of the predictions of the plane–strain and axisymmetric models will however be used to verify

the agreement of the obtained trends concerning frictionaland surface roughness effects.

5.3.1 Uncoupled surface effects in shallow indentation regime

The influence of friction on the numerical indentation of pure nickel considering a perfectly flat

sample surface and the influence of surface roughness in a frictionless indentation are consid-

ered in this section applied to the particular case of cube corner nanoindentation of pure nickel

material in shallow indentation depth. The trends observedconsidering first the uncoupled ef-

fect of friction and of surface roughness help the interpretation of the results issued from the

more complex coupled models of Section 5.3.2.

Effect of friction on a flat surface indentation

The nanoindentation on a perfectly flat surface with a cube–corner indenter of 100nm tip radius

in pure nickel is first considered with a special focus on the effects of friction on the results. A

simple Coulomb friction model as presented in Section 4.2, is the most frequently adopted law

for friction in the literature concerning the modeling of nanoindentation [Antuneset al. 2006,

2007; Bolzonet al. 2004; Bressanet al. 2005; Bucailleet al. 2004, 2003; Caoet al. 2007;
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Cao & Lu 2004; Carlssonet al. 2000; Habbabet al. 2006; Mata & Alcalà 2004; Mesarovic

& Fleck 1999; Qinet al. 2007; Taljat & Pharr 2004; Wanget al. 2007b]. The same contact

law is assumed on the contact interface with a perfectly flat surface in the following simulations.

Generally, friction is shown to have a considerable influence on the local variables [Antunes

et al. 2006; Carlssonet al. 2000; Mesarovic & Fleck 1999], while a lower impact is observed

for the global variables, e.g. the indentation load. The main evidence of frictional effects in the

considered simulations are:

• Variation of the imprint topology, and therefore of the pile–up magnitude [Bolzonet al.

2004; Bucailleet al. 2003; Mata & Alcalà 2004; Mesarovic & Fleck 1999; Taljat &

Pharr 2004], influencing the contact depthhc used in the Oliver–Pharr post–treatment

method. Although the real contact depth could be obtained ina straightforward manner

from simulation results, no correction will be used here, toremain consistent with the

contact depth calculated by the standard assumptions of theOliver–Pharr method, as in

any actual experimental procedure. This feature is thus notconsidered in more detail here,

focusing rather on variations of the load–displacement curves and their implications.

• Change in the load–displacement curves load levels [Caoet al. 2007], and the possible

change in the initial unloading segment of the load–displacement curves [Tsouet al.

2005], inducing a variation (an increase) in the post–treated material properties.

The most obvious effect of friction observed on the load–displacement curves is an increase

in the load level necessary to reach a given indenter penetration in the loading phase, com-

pared to the frictionless numerical indentation, as shown in Fig.5.17a. This stiffening of the

load–displacement curve is however triggered only after reaching some value of the indenter

penetration (around 25nm on Fig.5.17a) for axisymmetric simulations, from which on this fric-

tional effect seems to exhibit a monotonic increase. The size of the area formed between the

loading curve of a frictionless indentation and one considering friction is related to the frictional

energy dissipation on the contact interface, increasing with deeper indents. A considerable vari-

ation, up to 20% in the load levels of spherical nanoindentation due to friction is documented in

[Caoet al. 2007], stating that the frictional effects are the most important when the penetration

of the indenterh becomes comparable to the radius of the indenterR, i.e., fromh/R = 0.3

on. The results reported in Fig.5.17a are in reasonable agreement with this statement, since the

indentation configuration in the curves even surpasses the statedh/R ratio.

The magnitude of frictional effects in indentation on the load–displacement curves, as well as

on the material properties obtained by post–treatment methods (Fig.5.17b) is strongly related to

the friction coefficientµ. In agreement with the observations in Bucailleet al. [2003]; Carlsson

et al. [2000]; Habbabet al. [2006], for values ofµ larger than a given threshold (aroundµ =
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Figure 5.17: a. Load–displacement curves computed for the nanoindentation of pure nickel

with a 100nm spherical rigid body considering friction on the perfectlyflat sample surface with

different coefficients of frictionµ, with an axisymmetric modeling assumption. b. Variation

of the post–treated Young’s modulus with respect to the reference value, as a function of the

coefficient of frictionµ on the contact interface considering the Oliver–Pharr post–treatment

method [Oliver & Pharr 1992] (dot marks) and the one proposedby Ni et al. [Ni et al. 2004]

(hollow circle marks).

0.3 in Fig.5.17a) no essential difference can be observed between the load–displacement curves

obtained for higher values of the coefficient of friction, i.e. a saturation appears in the frictional

effect. From a practical point of view, the frictional effects responsible for the increase in the

load levels are thus relatively independent of the actual value of the coefficient of friction for

µ > 0.3. As expected the same trends are observed when a plane strain assumption is adopted

in the numerical model, even though the effect of friction onthe load level obtained is slightly

less important. As a result of the post–processing procedure, although keeping the same input

material properties in the numerical model, a variation in the load–displacement curves due to
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friction induces variations in the post–treated material properties, as depicted in Fig.5.17b. The

post–treated material properties obtained from the numerical indentation satisfying the assump-

tions of the considered post–treatment methods (flat, frictionless sample surface) are considered

as reference values. The simulation of the indentation in pure nickel with a perfectly flat fric-

tionless surface yields the following Young’s modulus valuesEOP
ref = 229GPa andENi

ref =

260GPa, respectively for the classical Oliver–Pharr post–treatment method and for the work–

of–indentation based post–treatment method proposed by Niet al.

Unsurprisingly the work–of–indentation based post–treatment method of Ni et al. [Niet al.

2004], considering the entire load–displacement curve is the most sensitive to frictional effects

resulting in a variation in the output Young’s modulus, defined by

γflat
fric =

Eflat
fric

Eref

− 1 (5.5)

up to nearly 20% with respect to the reference valueENi
ref . Note that even though less sensitive

to purely frictional effects, the classical post–treatment method of Oliver and Pharr also shows

an overestimationγflat
fric up to more than 10% of the reference valueEOP

ref . It is also worth noting

that the largest variation in the post–treated material properties is observed at a moderate value

of µ = 0.2, lower than the values assumed to correspond to a purely adhesive contact, for both

considered post–treatment methods.

These results point out that friction indeed affects significantly the results of nanoindentation of

pure nickel in the considered configuration with a perfectlyflat sample surface.

Effect of surface roughness without friction

In order to evaluate the related physical trends and to set the scene for a coupled study of

friction and roughness, in this section the issue of indentation on a frictionless rough surface is

revisited in a parametric study. Obviously deactivating friction (µ = 0) on the contact interface,

just like in the cited references in the introductory section, aims at evaluating the variation in the

nanoindentation response related to the sample surface roughness only. This manipulation is of

course only feasible in numerical simulations conducting virtual indentations. In practice, the

surface roughness of thin films can reach average values of 30-40nm [Barshilia & Rajam 2002;

de Souzaet al. 2005, 2006; Fanget al. 2007; Kumaret al. 2006] which becomes comparable

to the imposed indentation depth, limited by the film thickness. In this work, the considered

indentation setup potentially falls in this category of shallow indentations.

A brief review of the rough surface models is presented in order to better motivate the choice

of the simple representation used here. The roughness of a real surface has a multi–level nature

calling for multiscale description in the numerical models. In a most general fashion a rough-
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ness profile can be considered as the convolution of single profiles with various wavelengths

and different amplitude to wavelength ratios. The description of the experimentally observed

surface roughness in a numerical model depends on the physics involved. One family of models

uses the fractal description of the surface roughness. Thislatter has been applied for example to

the surface of polycrystalline Si for MEMS applications [Bora et al. 2004, 2005] and for ns–C

films [Buzioet al. 2003]. Another type of models consider a single level or multi–level descrip-

tion using asperities with statistical height distribution, like initially proposed in Greenwood &

Williamson [1966]. Some numerical works considering roughsurface contact address the prob-

lem of cross–property connections [Sevostianov & Kachanov2008], such as the variation of

contact conductance [Ciavarellaet al. 2008]. Most frequently, in the mechanical simulation of

rough surface deformation, a purely elastic response of thematerial is considered [Bellet al.

1998; Sevostianov & Kachanov 2008], and depending on the modeled problem a fair agreement

between experimental and numerical results can be found. Inmany numerical models consider-

ing the plastic behavior of rough contact, the interaction between neighboring asperities is not

taken into account in order to reduce the computational effort.

For the mechanical behavior studied here, the surface roughness is chosen to have the sim-

plest representation, considering only the first level of a protuberance–on–protuberance type

roughness description, similar to [Jackson & Streator 2006; Kumar et al. 2006] for the sake

of computational efficiency and easy interpretation of the resulting trends. Furthermore, the

assumption is made that the shape of a single roughness profile i can be well approximated by

a sine function

yi(x) =
Ai

2
sin

(

2π

λi
x + θi

)

(5.6)

with Ai the peak to peak amplitude,λi the wavelength andθi the phase shift of the profile.

In this section only a single roughness asperity is considered on the sample surface, placed as

shown in Fig.5.16 to reduce the computational effort. This means that the influence of the in-

teraction between the neighboring asperities of a real rough surface is not taken into account.

The response of the surface roughness to deformation has been shown to depend on the shape

of the roughness asperities experimentally [Buzioet al. 2003]. In order to cover a large range

of roughness asperity shapes from relatively sharp to smooth geometries, the amplitudeA =

[5...30nm] and the wavelengthλ = [100...800nm] of the profile was varied in physically sound

ranges, resulting in 16 different surface asperity geometries.

Surface roughness can have a twofold effect resulting in either a higher or a lower contact stiff-

ness depending on whether the indentation is performed in a roughness valley or on the tip of an

asperity, respectively. This aspect, and the way the samplesurface roughness affects the load–

displacement curves as a function of the position of the indent is shown later in Section 5.3.2

considering a more representative case with a more realistic roughness description. A variation
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in the resistance to deformation as well as a change in both the loading and unloading contact

stiffnesses due to the presence of surface roughness, whichaffects the indentation response is

thus expected. Despite keeping the same input model material parameters, when indenting on

a rough surface a change in the post–treated results is found, and is illustrated in Fig.5.18a for

the Oliver–Pharr and Ni et al. post–treatment methods for the axisymmetric simulations. These

maps are created by interpolating between the calculated grid point values corresponding to the

16 simulated configurations. On these maps the variation of the output Young’s modulus with

respect to the reference values, defined by:

γµ=0
rough =

Eµ=0
rough

Eref
− 1 (5.7)

is represented as a function of the non–dimensional parameters defining the initial geometry of

the asperity,A/R andλ/R. The indentations made on the rough surfaces with various geome-

tries result in an overestimation of up toγµ=0
rough = 10% of the reference valueEOP

ref using the

Oliver–Pharr post–treatment method, which is highly sensitive to the variation in the unloading

contact stiffness. As expected, the largest overestimation with respect to the reference value

is obtained for the surface asperities for which the indenter and the sample contact interfaces

form well–conforming surfaces, resulting in a high contactstiffness. Unsurprisingly, the low-

est variation with respect to the reference value of the Young’s modulus (calculated from the

frictionless indentation on a flat surface) is observed for asperity shapes with large wavelengths

and small amplitudes, i.e., the flattest profiles for both post–treatment methods.

Contrary to the Oliver–Pharr post–treatment method, the one proposed by Ni et al. shows a gen-

eral tendency to underestimate the Young’s modulus with respect to the reference valueENi
ref

for the same input material parameter set. This underestimation is the most important for sharp

asperities, reaching a value ofγµ=0
rough = -15%. Unlike for the Oliver–Pharr method, here the

wavelength of the initial asperity shapesλ seems to be a dominant parameter affecting signifi-

cantly the post–treated results, forming vertically oriented bands on the map of Fig.5.18a. The

amplitudeA is observed to have a less important influence. The interpretation of these trends

is not straightforward, considering the large amount of compacted information processed in

the work–of–indentation based methods. The results based on the complete load–displacement

curve implicitly incorporate the balance of the elastic vs.the history–dependent plastic defor-

mation of the sample, as well as effects related to the contact evolution during indentation.

The presented trends are independent from the modeling assumption (axisymmetric or plane

strain), and results are consistent with the other works [Qasmi & Delobelle 2006; Walteret al.

2007]. The surface roughness in frictionless indentationsin small indentation depth is shown to

affect significantly the results of nanoindentation. A dispersion ofγµ=0
rough = 10-15% is found in

the post–treated Young’s modulus due to the roughness effect, depending on the post–treatment
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method. The largest variation is observed for initial asperity shapes with wavelengthsλ com-

parable to the radius of the indenter tipR.

5.3.2 Effect of friction on rough surface nanoindentation

In indentation experiments conducted on rough surfaces, the variation of the indentation re-

sponse is usually attributed to the effect of the contact geometry only, even though the effects

of surface roughness and friction are naturally coupled. Adding friction on the rough contact

interface in the simulations should thus lead to a more realistic modeling of nanoindentation.

The convolution of both effects considered separately until now may enhance the global surface

effects, thereby affecting the scattering of nanoindentation results. This motivates the numerical

study presented in this section considering the indentation on rough surfaces with friction on

the contact interface, i.e. friction and surface roughnessare combined. First, the single asperity

surface roughness model used before (Fig.5.16) is updated by incorporating friction on the con-

tact interface. As a subsequent step an attempt is made to model the indentation of pure nickel

considering friction with a more realistic surface roughness representation.

Frictional effects in a contact with one surface asperity - aparametric study

From a practical viewpoint, the frictional effects were found to be relatively independent of

the actual value of the coefficient of friction as soon asµ > 0.3 in the previous section. The

value of the coefficient of friction between two surfaces in micro–and nanoscale applications

is generally measured by so–called scratch tests [Lafayeet al. 2008; Li & Weng 2007]. Such

tests however have the drawback of lacking a straightforward interpretation as the plastic be-

havior is convoluted with the frictional effect, especially when pile–up is present [Bellemare

et al. 2007, 2008]. Since a single parameter is used to model the complex multiscale frictional

behavior between two surfaces, being potentially dependent on the actual contact area, on the

relative tangential velocity and many other quantities, this leads to large dispersions in the value

of this parameter. For these reasons, the variation of the imposed coefficient of friction of the

Coulomb friction model in numerical simulations of nanoindentation in the literature is impor-

tant and ranges from 0.1 [Bressanet al. 2005; Bucailleet al. 2004; Cao & Lu 2004] to 1

[Wanget al. 2007b], chosen more or less arbitrarily. Here the value ofµ = 0.5 is assumed for

the coefficient of friction, which is a physically sound approximation for dry friction between

a diamond and a clean metal surface for the previously adopted phenomenological model of

Coulomb [Guidry 1999; Kojimaet al. 2007; Lafayeet al. 2008; Noreyan & Amar 2008]. The

previously discussed effects of friction (increase in the load levels with respect to the frictionless

case resulting in variations in the post–treated material properties) are confirmed in the case of

indentations of the single roughness asperity model when adding friction on the contact inter-
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Figure 5.18: Map of the variation of the post–treated Young’s modulus issued from the axisym-

metric simulations for a.γµ=0
rough, b. γfric

rough, c. γc as a function of the parameters defining the

initial geometry of the single roughness asperity in frictionless indentation for the Oliver–Pharr

post–treatment method [Oliver & Pharr 1992] and the one proposed by Ni et al. [Niet al. 2004].

face. Focusing first on the post–treated results, coupled frictional and surface roughness effects

are illustrated in the maps plotted in Fig.5.18c representing the variation of the post–treated

Young’s modulus with respect to the reference value for bothpost–treatment methods, defined

by:

γc =
Eµ=0.5

rough

Eref

− 1 (5.8)
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The cumulated dispersionγc stemming from the convoluted effect of rough surface indentation

γµ=0
rough and frictional effects is reaching nearly 30%, much higher than in the case of the friction-

less assumption, confirming that frictional effects increase the scattering in the nanoindentation

results.

γc = γµ=0
rough × γfric

rough > γµ=0
rough (5.9)

The frictional effects on the rough surface indentation considered here in terms of the output

material properties can be characterized by:

γfric
rough =

Eµ=0.5
rough

Eµ=0
rough

− 1 (5.10)

corresponding to the variation in the post–treated Young’smodulus due to friction only with

respect to the values obtained from the frictionless indentation of the surface asperities. Un-

surprisingly the influence of friction aloneγfric
rough on the post–treated material parameters is

observed to be dependent on the contact geometry, i.e. the initial topography of the considered

surface asperity (Fig.5.18b.) An increase up toγfric
rough = 20-25% in the output material parame-

ters independently of the choice of the post–treatment method is shown, emphasizing the need

of taking the cumulative effect of friction and surface roughnessinto account. Note, that in

agreement with the findings in the previous section, friction is shown to increase the value of

the post–treated Young’s modulus with respect to the frictionless case (Fig.5.18b).

Frictional effects in indentation on a realistic rough surface

The use of a simple roughness model may restrain the domain ofvalidity of the obtained trends,

which motivates the consideration of a more realistic surface roughness representation. The

surface profile of the sample, depicted in Fig.5.19 is described by the sum of four sine functions

with different amplitudes, wavelengths and phase shifts, to reproduce qualitatively the nature of

real surface profiles for a mechanical problem. In the adopted roughness model increasing am-

plitudes are associated to increasing wavelengths. The previously used Coulomb friction model

is assumed here, with a coefficient of friction ofµ = 0.5. Eight different indentation positions

were considered, plotted in Fig.5.19. The indentation depth of 45nm after initial contact is

prescribed in each case.

The obtained load–displacement curves for the axisymmetric assumption, shown in Fig.5.20a

are highly sensitive to the position of the indent. The significant variation in the load levels of

the load–displacement curves is due to the convolution of the surface roughness and friction

effects. In order to evaluate the effect brought by frictionseparately, the set of indentations was

performed for the same geometries in a frictionless numerical setup (Fig.5.20b). The conclu-

sions are similar to Section 5.3.1, i.e., frictional effects strongly depend on the contact geometry

defined by the initial surface topology. For some configurations, friction plays an important role

102



FE model applications 5.3 Nanoindentation on rough surface with friction

Figure 5.19: Representation of the surface roughness used for modeling a real–life indentation

program. The marks correspond to the considered indentation positions. Note that the scale

of the profile height on the top figure is amplified for the sake of clarity with respect to actual

profile shown in the bottom figure.

in the load–displacement curves (Positions 6, 8 on Fig.5.20), whereas in other cases it only has

a minor influence on the nanoindentation response (e.g. Position 7 on Fig.5.20). The sam-

ple surface roughness can have a twofold effect: it either increases or decreases the contact

stiffness during indentation depending on the position of the indent, affecting the load levels

necessary for reaching a given indentation depth. In agreement with the physics of nanoinden-

tation, the highest load level is obtained when indenting inthe deepest roughness valley forming

a well conforming contact surface with the indenter (Position 8 on Fig.5.19). Conversely, the

indentation on the highest roughness peak shows the most deformable response (Position 7 on

Fig.5.19).

These trends are observed independently of the modeling assumption (plane strain or axisym-

metric). The only noticeable difference is the expected larger influence of surface effects in

the axisymmetric models (as pointed out before). The dispersion in the maximum force lev-

els of the load–displacement curves stemming from the convoluted effect of friction and sur-

face roughness is around 40% in the axisymmetric simulations, larger than in the previous

parametric study on a single asperity. The post–treated average Young’s modulus is shifted to

EOP = 248.1GPa+33.6GPa
−70.7GPa andENi = 292.7GPa+72.3GPa

−55.1GPa with respect to the reference values,

with a dispersion of∆EOP =+13.5%
−28.5% and∆ENi =+24.7%

−18.8%.
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Figure 5.20: Load–displacement curves obtained for the indentations in the predefined eight

positions in Fig.5.19 for the axisymmetric models (a.) considering friction and (b.) for the

frictionless case Note the increase in the dispersion of theload levels when considering friction.

It is emphasized that the parameters of the presented set of numerical indentations are defined to

respect the best possible the experimental conditions of aneventual real–life setup, and have not

been fine–tuned with the intention to obtain the most significant surface effects. Nonetheless,

the obtained scattering in the post–treated results which is exclusively related to the convoluted

effect of friction and roughness is found to be considerablyhigh, and in good agreement with

experimental observations in Qasmi & Delobelle [2006]. Thecumulative effect of friction and

surface roughness on the scattering in the raw (Fig.5.20) and post–treated (Fig.5.21) nanoinden-

tation results was confirmed in this set of simulations with amore realistic description of the

sample surface roughness.
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Figure 5.21: Variation of the output Young’s modulus with respect to the reference value for

cases a. with friction; and b. without friction as a functionof the indentation positioni defined

in Fig.5.19 for the Oliver–Pharr post–treatment method [Oliver & Pharr 1992] (square marks)

and the one proposed by Ni et al. [Niet al. 2004] (hollow circle marks).

5.3.3 Concluding remarks

In this numerical study considering indentations on rough surfaces, the effect of friction on

nanoindentation results is found significant, yielding a scattering level comparable to the one

met in experiments [Qasmi & Delobelle 2006]. Surface effects stemming from friction and

surface roughness were found to depend on the initial surface topology, partly because of the

high sensitivity of the frictional effects on the shape of the indented asperity and partly due to

the variation of the deformability of the asperities with different shapes. The results show a

strong interaction between these two contributing terms tosurface effects and allow to draw the

following salient conclusions.
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• Their effect on the dispersion of nanoindentation raw and post–treated results is found to

be cumulative: considering friction in a numerical model with roughness increases the

scattering in both the force levels of the load–displacement curves (Fig.5.20) for a given

indentation depth, and in the post–treated elastic material parameters (Fig.5.21). Friction

should thus be included in a thorough description of rough surface nanoindentation.

• Surface effects were found to shift the average value of the identified material parameter.

If surface effects are not considered, the large dispersionand this shift in the post–treated

average elastic modulus could be wrongly interpreted in terms of variations of the material

behavior, or of other potential sources of nanoindentationscattering. The numerically

obtained range of dispersion may give an indication to whether this interpretation of the

results can be assumed or not.

• The predictions of the simple single asperity roughness model considered in the para-

metric study and the results from the simulation on a more realistic surface roughness

description agree well, leading to interesting conclusions from a practical point of view.

The results of the single asperity surface roughness model showing the most pronounced

surface effects for wavelengthsλ comparable to the radius of the indenter tipR may be

used as a simple/basic guideline for surface preparation steps when they are not prescribed

by the fabrication procedure otherwise.

• Surface effects contribute to the energy balance of the indentation problem. The surplus

energy necessary for the crushing of surface asperities hasalready been recognized to

be a significant term in the energy balance in small indentation depth and size–effects

depending on the surface topology have been associated to it[Gao & Fan 2002; Kimet al.

2007; Qiuet al. 2003; Zhanget al. 2004]. The dissipative frictional effects depending

on the contact geometry are also found to be considerable here.

• For the same reasons the work–of–indentation based methods[Beeganet al. 2005; Ku-

sano & Hutchings 2003] are more sensible to surface effects.In particular, if the param-

eters of the plastic behavior of thin films is intended to be identified [Cao & Lu 2004;

Giannakopoulos & Suresh 1999; Maet al. 2003; Zhaoet al. 2006], the dispersion in the

post–treated results as a consequence of the surface roughness and friction is expected to

be even more important.

In order to avoid a misinterpretation of the presented numerical results, the trends concerning

surface effects have been verified with plane strain simulations. The same trends were observed

for both modeling assumptions in all considered configurations confirming the significant in-

fluence of the interaction of friction and surface roughnesseffects in nanoindentation based on

similar observations on the load–displacement curves.
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5.4 Discussion on the performance of nanoindentation post–

treatment methods for the prediction of the sample elas-

tic modulus

The presented two post–treatment methods of nanoindentation (Section 2.2) were applied sys-

tematically in all nanoindentation simulations (Sections5.1 to 5.3). The variation of the post–

treated elastic modulus due to variations in the indentation parameters, other than the input

elastic modulus is considered as dispersion in the nanoindentation results. This leads to an im-

portant general issue of the nanoindentation procedure addressed here, i.e. the evaluation of the

performance of post–treatment methods.

As expected, both methods perform well when the post–treatment assumptions are satisfied.

It is noted, that a simple calculation, presented in Appendix A.1 showed, that the Oliver–Pharr

method was rather insensitive to effects of pile–up and sink–in in the indentation configurations

studied in Section 5.2, with a conical indenter with 2µm nominal radius. Both methods consid-

ered here are sensitive to an undetected variation in the tipgeometry (radius), which results in

a similar dispersion. The corresponding dispersion can be efficiently reduced by a systematic

evaluation of the actual tip geometry preceding the experiments (Section 5.1).

On one hand the post–treatment method proposed by Ni et al. shows a lower sensitivity

to changes in the plastic properties of the sample material when the elastic–plastic material

behavior is rate–independent (Section 5.1), and particularly when the material behavior is

elastic–viscoplastic (Section 5.2). On the other hand, this work–of–indentation based post–

treatment method is more sensitive to frictional effects (Section 5.3), since frictional energy

dissipationWfric potentially alters the ratio of the reversible elasticWe, and of the total work

Wt = We + Wp + Wfric. This was observed for nanoindentations on both flat and rough sur-

faces.

The contact stiffness of indentations, determined on the unloading portion intervenes in both

post–treatment methods, therefore they are sensitive to potential variations in the unloading

curve. Since the contact stiffness of indentations on roughsurfaces may vary, this can result

in a considerable dispersion in the post–treated elastic modulus for both methods (Section 5.3).

Note that a potential viscoelastic material behavior [Cheng & Cheng 2005; Ovaertet al. 2003;

Zhanget al. 2008] may influence the unloading slope of the load–displacement curves as well.

When taking frictional effects into account in nanoindentation of rough surfaces, due to the

coupled effect of friction and surface roughness the resulting dispersion increases significantly

(as shown in Section 5.3), reaching very important proportions.

The overall performance of the two post–treatments methodsis similar (the method of Ni et al.
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was found more accurate when the plastic material properties were varied, and the Oliver–Pharr

method performs better for the coupled effect of friction and surface roughness). In view of the

comparable performance of the two methods for identifying the elastic modulus, the use of the

post–treatment method proposed by Oliver and Pharr [Oliver& Pharr 1992] remains advisable,

considering its simplicity, which allows a more straightforward interpretation.

Indeed, the main drawback of the work–of–indentation basedpost–treatment method is the dif-

ficult interpretation of the potential variation in the output elastic modulus, considering the large

amount of compacted information. The results based on the complete load–displacement curve

implicitly incorporate a larger number of potentially spurious contributions (material plasticity

and damage, contact evolution and behavior, etc.) than methods based solely on the unloading

portion showing a relative independence on the contributions influencing principally the load-

ing period of indentation.

However, when material parameters related to the plastic behavior of the material are aimed for,

work–of–indentation based methods are usually applied [Cao & Lu 2004; Giannakopoulos &

Suresh 1999; Maet al. 2003; Zhaoet al. 2006]. It was shown that the same indentation data can

be achieved numerically for different material parameter sets, and the significant variation in the

load–displacement curves as a consequence of rate–dependent material effects, friction and sur-

face roughness was demonstrated. Care should therefore be taken when using such methods in

the choice of the material model to allow identifying parameters consistent with the underlying

physics, and in the interpretation of the (potentially non–unique) resulting parameter set and its

variation.

108



FE model applications 5.5 Contact adhesion vs. rough surface deformation

5.5 Variation of the adhesion due to the deformation of sur-

faces roughness during micromanipulation

In this contribution the continuum scale numerical tool (presented in Chapter 4, satisfying the

particular requirements for the simulation of nanoindentation) is applied to the problem of ma-

nipulation of objects on the microscale. The manipulation of objects between 10µm and 1mm

is often disturbed by the adhesion between the contacting surfaces [Carpicket al. 2001, 2002].

The spurious adherence between the manipulating equipmentand the object can lead to the

impossibility of releasing the handled object. It is therefore of high interest to study the forces

responsible for these perturbations and which, although negligible at macroscopic scale, are of

great importance at microscale/nanoscale. This originates from the different balance between

surface and volume forces on the microscale/nanoscale: thesurface-to-volume ratio is indeed

much more important on the small scales.

Various surface forces can be identified as potential sources of adhesion, i.e. capillary forces

[Lambert 2007; Mate 2008], van der Waals forces [Israelachvili 1974; Mate 2008] electrostatic

forces [Lambert & Régnier 2006] and the chemical bonding ofsurfaces. This numerical study

focuses on the electrostatic forces because they are the most significant for grasping and manip-

ulating parts of micrometer size [Fearing 1995], since their magnitude is such that they alone

can be important enough to perturb the manipulation. These long–range forces are active for

separation distances in the order of the radius of the manipulated object.

A significant decrease in the magnitude of surface forces wasobserved [Bhushan 2003; Lh-

ernouldet al. 2007; Rabinovichet al. 2000] due to the presence of surface roughness. Con-

versely the change in the surface topology by the flattening of the asperities during microma-

nipulation can give rise to an increase of the contact adhesion. Indeed, when the handled object

is in contact with the gripper it is unavoidable that the asperities on the contacting surfaces are

crushed to some extent due to the grasping force. The prime purposes of this work are to con-

tribute to the understanding of how the induced deformationof the contacting rough surfaces

influences the electrostatic adhesive forces, and to give some insight into the physics of the

evolution of adhesion during micromanipulation through anadapted multi–physics numerical

study. The computational work can be divided into two parts coupled unilaterally (Fig.5.22).

The first one involves the computation of the elastic–plastic deformation of surface asperities

on the gripper arm during micromanipulation with the numerical tool presented in Chapter 4.

The assumption is made that the deformation of the gripper arm surface gives the main contri-

This section is based on M. Sausse Lhernould, P. Berke, T.J. Massart, S. Régnier, P. Lambert, ‘Variation of the

adhesive electrostatic forces on a rough surface due to the deformation of roughness asperities during microma-

nipulation of a spherical rigid body’ submitted for publication
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Figure 5.22: Scheme of the uncoupled multi–physics simulation investigating the effect of sur-

face roughness deformation on adhesive electrostatic forces during micromanipulation.

bution to the considered physics. The second part aims at theevaluation of the variation of the

contact adhesion during micromanipulation based on the computed deformation of the surface

asperities using an electrostatic numerical model. This part of the work was performed by M.

Sausse Lhernould. This unilateral coupling of the electrostatic simulations introduces the as-

sumption that the electrostatic force levels are much smaller than the ones necessary to deform

the surface asperities, therefore that the electrostatic forces and their variations do not influence

the obtained deformation (this will be confirmed later on). The adhesive electrostatic forces

on the surface asperities in the initial, undeformed and in the final deformed configuration are

calculated and compared to evaluate the variation of their magnitude during micromanipulation.

This study is structured as follows. Section 5.5.1 deals with the mechanical problem of the de-

formation of the gripper arm during micromanipulation on the scale of the object (the macroscale)

and on the scale of the surface roughness asperities (the microscale). In Section 5.5.2 the results

of the electrostatic simulations working on the microscaleare presented and discussed. The in-

crease of the adhesive electrostatic force during micromanipulation is found to be significant in

all studied cases. Finally the assumptions used in this study, and their implication on the ob-

tained results and trends are discussed, explaining why theobserved effect seems to be a lower

bound of the real one.
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Figure 5.23: The two considered contact models working on different scales. Left: macroscale

model of the micromanipulation considering realistic loading conditions and an axisymmetric

description with the manipulated object modeled as an undeformable body.F0 is the manipu-

lating force,Robj the radius of the manipulated object. Right: microscale contact model of the

flattening of one surface asperity on the surface of the gripper arm, using a plane strain assump-

tion. λ is the wavelength of the sine function describing the asperity shape, the manipulated

object is modeled as a rigid flat plane in view ofRobj = [10µm...1mm] >> λ.

5.5.1 Contact deformation modeling

This part of the work addresses the problem of the evaluationof the deformation of a pure

nickel gripper arm during manipulation using the numericaltool presented in in Chapter 4. Two

numerical models have been set up on two different scales forthis purpose.

• The macroscale contact model working on the scale of the manipulated object is used to

evaluate the deformation of the gripper arm when a realisticsqueezing force is applied

to grab spherical objects with sizes ranging from 10µm to 1mm. The magnitude of the

obtained macroscopic deformation gives an indication for the deformation level to be

applied on the surface roughness asperities in the microscale model.

• The microscale model is used to determine the deformed shapes of the roughness asperi-

ties considering the chosen deformation level. The resultsof the microscale model are the

input data for the electrostatic simulations that determine the adhesive electrostatic forces

in the contact.
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This separation of scales was indispensable merely to allowthe calculation of the considered

problem.

Macroscopic contact model of micromanipulation: surface roughness defor-

mation estimate

This numerical model works on the scale of the manipulated object, which is assumed to have

a perfect spherical geometry with a radius varying in the range of sizes of the potentially ma-

nipulated objectsRobj = [10µm...1mm] [Agnus et al. 2004]. For the sake of simplicity and

computational efficiency the roughness of both surfaces of the gripper arm and of the manipu-

lated object is neglected on the macrolevel.

At this macroscale the gripper arm is considered to be made ofpure nickel and is modeled as

a deformable body having a perfectly flat frictionless contact surface. Frictional effects are not

taken into account in this study in order to reduce the complexity of the numerical models and

to ensure the computational efficiency. In the numerical model the isotropic rate–independent

hardening behavior of pure nickel, used in Section 5.1 is assumed, because the strain rates are

assumed to be small, as opposed to nanoindentation.

The manipulated spherical object is considered to be undeformable and is modeled by a rigid

body (this assumption will be validated later).

The applied squeezing force varies in the range of the real manipulation forceF0 = [1mN ...600mN ]

[Agnuset al. 2004].

Considering the symmetry of the problem the finite element meshes are two dimensional (Fig.5.23)

and built from 8 noded elastic–plasticaxisymmetricelements capable of handling finite defor-

mations. The models consisted of more than 33500 degrees of freedom to be able to reproduce

with high precision the stress and plastic strain evolutionduring the simulation. During the sim-

ulation the side nodes of the mesh are constrained in the horizontal direction, the deformable

body is prescribed to move upwards to come into contact with the rigid object having a fixed

position in space. The nodes on the bottom side of the model are not constrained in the horizon-

tal direction. The geometrical size of the meshes in all cases is chosen sufficiently large such

that a homogeneous stress distribution at the boundary of the model is obtained.

Two extreme contact configurations were analyzed on the macro level:

• A. The largest manipulated objectRmax = 1mm is combined with the smallest manip-

ulation forceF min
0 = 1mN . This macroscopic contact generates the smallest contact

stresses and corresponds to the least severe loading conditions. The behavior of the ma-

terial remains mainlyelastic, with a contact area radius ofamacro = 1,653µm close to the

elastic contact radius approximation by the theory of Hertz[Hertz 1882]. The obtained

penetration of the rigid body ishmacro = 2.3nm.
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• B. The smallest objectRmin = 10µm is manipulated with the largest force levelF max
0 =

600mN . In this case the contact response is dominated by theplasticdeformation of the

gripper arm due to the high contact stresses. The calculatedmacroscopic contact radius

is amacro = 10µm, almost 4 times the elastic approximation by the theory of Hertz. The

penetration of the rigid body is also strongly increased andbecomes comparable to the

radius of the sphere withhmacro = 10µm.

In both of the studied theoretical contact cases the finite deformation of the gripper arm was

observed. In micromanipulation it is necessary to squeeze objects in order to hold them firmly.

CaseA. taking the largest object with the smallest gripping force most probably gives a lower

bound to the contact stresses and the deformation of the gripper arm in the macroscopic level

model with respect to the real configuration.

Microscopic rough contact model

The objective of this series of numerical simulations is themodeling of the deformation of

the surface roughness of the gripper arm made of pure nickel during micromanipulation. For

this a numerical model has been defined on the scale of the surface roughness asperities, i.e. on

the microscale.

The surface roughness is chosen to have the simplest representation in this work approximated

by a sine functionyi(x) = Aisin

(

2π

λi
x

)

, considering only the first level of a protuberance-

on-protuberance type roughness description, as in Section5.3. For the sake of simplicity the

amplitudeAi and the wavelengthλi of each asperityi of the surface roughness composed of

n interconnected asperities are defined to be the same in this study. In order to cover a large

scope of roughness asperity shapes considering their sinusoidal description, the ratio between

the amplitude and the wavelength of the sine function is varied. In the model the wavelength

of the asperities has been kept fixedλi = λ = 200nm and 13 different values of the amplitude

(Tab.5.4) were chosen in the rangeAi/λ = [0.01...0.85] from the bluntest to the sharpest pro-

files (Fig.5.24).

In the multi–level description of the surface roughness, the shape of the asperities can poten-

tially change on different levels. The considered model describing the surface asperities with

sine functions has the advantage to be easily adaptable in studies for such multi–level repre-

sentations or for a fractal description. From the point of view of electrostatic simulations, the

same choice of a sinusoidal representation of the geometry was made in Kostoglou & Karabelas

[1995] to compute the electrostatic repulsive energy between two rough colloidal particles.
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The assumption that the size of the manipulated object is much larger than the wavelength

of the roughness profiles

Robj = [10µm...1mm] >> λ = 200nm (5.11)

on the microscale generally holds for the majority of practical cases [Jamari & Schiper 2007].

As a consequence, in view of (5.11) some simplifying assumptions can be applied to the mi-

croscale numerical model, such as:

• The contact radius of the manipulated object is considered to be infinite in the microscale

numerical contact model, and this object is thus modeled as arigid flat plane on this scale.

• The neighboring roughness peaks are assumed to deform homogeneously in the vicinity

of a chosen roughness asperity.

If every roughness peak is assumed to deform in the same way onthe considered scale as per-

formed in Kumaret al. [2006], the characterization of the behavior of one roughness peak is

sufficient using a periodicity condition at the boundary of the model. Consequently, the interac-

tion between asperities is neglected in this study, which isa common practice used to achieve a

reasonable computational efficiency in numerical models ofrough surface contact [Boraet al.

2005; Larssonet al. 1999]. Note that the results of some experimental works investigating the

difference in the response of single and multi–asperity contact on small scales show that this

assumption may alter the overall response of the contact, particularly for cases when the contact

penetration is comparable to the height of the asperities [Buzioet al. 2003; Kumaret al. 2006;

Nicola et al. 2007; Rajendrakumar & Biswas 1997]. Considering the finite deformation of the

gripper arm on the macroscale with realistic loading conditions, the flatteningdi of a modeled

roughness asperityi in the microscale model using the periodicity condition waschosen to be

di/Ai = 2/3 corresponding to a moderate deformation on scale of the surface roughness.

This set of assumptions, based on (5.11) on the microscale thus introduces the assumption

of a full separation of the length scalesof the manipulated object (the macro scale) from those

defining the conditions of the contact between the roughnesspeak and the object (the micro

scale) as shown in Fig.5.23.

In the numerical model the geometry is two–dimensional withaplane strainassumption. Only

the half of the sinusoidal profile is considered due to the symmetry of its shape. All thirteen fi-

nite element meshes with differentAi values are built from8 noded elastic–plastic plane strain

elements in the corotational finite deformation description with more than 14800 degrees of

freedom. The geometrical size of the meshes is chosen such that a homogeneous stress dis-

tribution is found on the bottom side of the model. The left and right sides of the deformable
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body are blocked in the horizontal direction in order to represent the above-mentioned peri-

odicity condition. The bottom side of the body is free in the horizontal direction and moves

upwards in the vertical direction by the value ofdi = 2Ai/3 (the prescribed flattening) using

a displacement–controlled simulation. Unilateral contact conditions without friction are used

between the contact nodes on the top side of the deformable body and a rigid horizontal plane

representing the manipulated object. The same elastic–plastic rate—independent constitutive

law with isotropic hardening is used for the nickel deformable body as before.

In a contact setting, both contacting objects often suffer both elastic and plastic deformations

due to the high contact stresses. The assumption that the handled object can be considered unde-

formable was verified to hold. This was achieved by simulating the microscale contact problem

with a deformable object made of S45C carbon steel (ES45C = 205GPa,σS45C
0 = 400MPa)

using the SAMCEF commercial finite element code. Indeed, theplastic deformation is found to

take place only in the nickel roughness peak, because of the lower elastic limit of pure nickel.

In the considered contact although the elastic properties of both materials are similar, due to

the lower yield limit of pure nickel, it reaches the plastic domain, while the carbon steel still

shows an elastic contact response. Moreover the elastic deformation of the carbon steel object

is also confirmed to be negligible. The rigid body modeling ofthe handled object appears thus

reasonable for objects made of materials with substantially higher yield limit than the nickel

base material of the gripper arm. The initial and deformed shapes of the considered profiles

are presented in Fig.5.24. The reaction force per roughnesspeak generated by the imposed

flattening of the asperities in the microscale contact simulations are depicted on Fig.5.25. Note

the nonlinear variation of the response of the roughness peaks as a function of their shape. The

elastic springback, i.e. the difference between the profile geometry at maximumload level and

Figure 5.24: Studied asperity shapes in the initial and in the deformed configuration at peak

load. a. blunt asperitiesAi/λ = [0.01..015], b. sharper asperity shapesAi/λ = [0.2..045], c.

sharpest asperity shapesAi/λ = [0.55..085].
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after unloading due to the elastic relaxation of the material, was analyzed for all considered

geometries and was found small from the mechanical point of view.

Linking the microscale and the macroscale contact models

The results of the microscale model were obtained for a chosen crushing of the roughness

profilesdi, being function of the initial amplitudeAi. It is possible to show using a simple

assumption that the chosen flattening of the surface asperities on the microscale gives reac-

tion forces in the same order of magnitude as the manipulating force on the macroscale. The

essence of the method is to check whether by filling uniformlythe projected contact areaAmacro

obtained from the macroscopic scale model with deformed sinusoidal roughness peaks of the

microscale model at the prescribed crushing, the induced reaction force is in the order of mag-

nitude of the macroscopic manipulating force.

Figure 5.25: Reaction forces per roughness peak generated by the flattening of the asperities in

the microscale model as a function of theAi/λi ratio of their initial shapes.

This relation is expressed by (5.12). Note that the approximation of having a uniformly crushed

surface roughness in the contact areaAmacro limited by the macroscopic contact radius corre-

sponds to the cylindrical rigid flat punch of the rough surface with an imposed crushingdi.

F
P

micro =
∑

Amacro

Ri = Nasperity × Ri = o (F macro
0 ) (5.12)

Applying the above linking assumption to

• caseA. of the macroscale simulations (object–gripper contact working mainly in the elas-

tic domain), the overall reaction forcesF
P

micro = [1.37mN ...5.2mN ] of the4.3× 104 de-

formed peaks filling the macroscopic contact area are in the same order of magnitude as

the macroscopic manipulating force. This suggests that theassumed plastic deformation
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in the microscale contact problem matches the order of magnitude of the real plastic de-

formation of the roughness peaks. It is emphasized that the loading conditions in the case

A. (largest object seized with the smallest manipulating force) are probably less severe

than the practically used ones.

• caseB. (object–gripper contact showing mainly plastic response on the macro scale),

the overall reaction forcesF
P

micro = [50mN ...190mN ] of the 1.57 × 106 peaks filling

the macroscopic contact area are lower than the macroscopicmanipulation force. This

means that the roughness peaks are crushed in average much more severely in reality

than in the microlevel model. This interpretation is confirmed by the deep penetration of

the object of around 10µm calculated in the macroscale contact model. Consequently,

considering the generally large contact stresses in the macroscopic level micromanipu-

lation model, most of the surface asperities in the contact area can be assumed severely

crushed. Unlike in works reporting surface asperity persistence at considerably smaller

relative penetration with respect to the height of the surface asperities (and sometimes in

lubricated contact conditions) [Jamari & Schiper 2007; Larssonet al. 1999; Rajendraku-

mar & Biswas 1997], in the considered micromanipulation setup the surface roughness is

probably practically flattened, as in Azushimaet al. [2006].

The force levels obtained from the microscopic scale computation and upscaled by the con-

sidered simple cylindrical flat punch assumption remain forall considered cases almost in the

same order of magnitude as the macroscopic manipulation force. However, the assumed num-

ber of contact points in the contact zone with similar asperity densities as on a Si polycrystalline

surface [Carpicket al. 2002] is an order of magnitude larger than computed in Carpick et al.

[2002], thereby resulting in an overall reaction force alsoan order of magnitude higher. This

means that the plastic deformation of the surface asperities in the microscale problem is most

probably a lower bound with respect to the real micromanipulation setting, and the obtained

numerical results can be considered to give a lower bound to the surface asperity flattening.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13

Ai/λ 0.01 0.03 0.05 0.10 0.15 0.20 0.25 0.35 0.45 0.55 0.65 0.75 0.85

Ai[nm] 2 6 10 20 30 40 50 70 90 110 130 150 170

di[nm] 1.34 4 6.67 13.34 20 26.67 33.34 46.67 60 73.34 86.67 100 113.34

Ri[µN ] 0.0320 0.0530 0.0696 0.0970 0.1132 0.1198 0.1212 0.1184 0.1158 0.1154 0.1156 0.1168 0.1178

lpeak
i [nm] 76.2 77.2 80.1 84.6 85.6 87.6 87 81.4 75 72.8 69.6 68.2 67.2

lunload
i [nm] 69.8 69 70.2 65.8 63 64 66.2 66.2 63 58.8 57.8 55.4 54.8

Finit[µN/m] 9.1 5.1 3.9 2.8 2.3 1.9 1.7 1.5 1.3 1.1 1.0 1.0 0.9

F peak
def [µN/m] 24.6 23.3 23.5 24.0 24.6 24.8 24.6 23.1 21.5 20.8 20.1 19.7 19.4

F unload
def [µN/m] 22.8 21.4 21.3 21.1 21.2 21.4 21.4 20.4 19.1 18.3 17.7 17.3 17.0

Table 5.4: Studied roughness and related results – simulations on the microscale with a plane strain assumption.Ai is the initial amplitude,λ = 200nm

the wavelength,di the prescribed flattening of the asperities,Ri the generated reaction force per roughness peak,lpeak
i and lunload

i are the plateau length at

peak load and in the unloaded configuration respectively.Finit, F peak
def andF unload

def stand for the electrostatic force on the asperity for the initial shape, for the

deformed shape at peak load and for the deformed shape in the unloaded configuration respectively for a potential difference of0.1V .

1
1
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FE model applications 5.5 Contact adhesion vs. rough surface deformation

5.5.2 Analysis of the results of the uncoupled multi–physics numerical

model

As mentioned before, the output of the microscale mechanical simulations (the deformed shapes

of the roughness asperities) was used for the numerical evaluation of the adhesive electrostatic

force between the gripper and the object, both conductors atthe release of the manipulated ob-

ject (performed by M. Sausse Lhernould). At contact some models (JKR [Johnsonet al. 1971;

Mate 2008], DMT [Derjaguinet al. 1975; Mate 2008]) provide closed form expressions of the

adhesive force due to the interactions occurring in the contact area of roughelasticcontacts.

These theories are obviously no longer valid in the considered problem of micromanipulation,

which induces significant plastic deformation of the surface roughness on the gripper arm.

To avoid these oversimplifying assumptions, the electrostatic numerical calculations are cou-

pled (unilaterally) to the mechanical simulations of the surface roughness deformation described

in the previous section. The adhesive electrostatic forcesin the contact are considered to have

no influence on the deformation of the surface roughness. When two dissimilar metal objects

Figure 5.26: Results of the electrostatic simulation. Adhesive electrostatic forces before (solid

lines) and after deformation (dotted lines) as a function oftheA/λ ratio of the initial asperity

profiles. Square marks stand for an applied voltage of 0.1V , triangle marks for 0.3V and circle

marks for 0.5V . Left: for deformed shapes at peak load. Right: for the unloaded configuration.

are brought closer to each other, electrical interaction generates a contact potential difference,

ranging usually for metals fromU= 0V to 0.5V Bowling [1986], which depends on the proper-

ties of the considered conducting materials. The result is an attractive (or repulsive) electrostatic

pressure. The electrostatic forces between two conductorsare governed by the potential differ-

ence (materials), the permittivity (surrounding environment) and the area of contact (contact

geometry). The electrostatic simulations here were performed at contact, i.e. at a chosen small

separation distance (e.g.z = 0.4nm, as in Bowling [1986] to evaluate the electrostatic adhesion

between the gripper and the object.
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The numerical results are manifold considering the distribution of charges and the electrostatic

force levels before and after the deformation of the roughness peak. The initial shape of the

surface roughness was observed to have a significant influence both on the mechanical response

to deformation (Fig.5.24) and on the magnitude of the generated electrostatic forces on the as-

perity surface (Fig.5.26). Electrostatic forces decreasewith the increase of the amplitudeA

(for sharp geometries). The main concern of this study, i.e.the variation of the electrostatic

force as a consequence of surface roughness deformation is considered in the following. The

multiplicative factorγ between the electrostatic forces acting on the undeformed rough profile

Finit and on the deformed profileFdef was found to be in the rangeγ =
Fdef

Finit
= [2...20] for the

considered cases depending on the ratio of the amplitudeA/λ of the initial profiles (Fig.5.27).

Figure 5.27: Variation of the multiplicative factorγ of the initial electrostatic force in the de-

formed configuration as a function of the amplitude to wavelength ratioA/λ of the initial as-

perity shape.

For the initially flattest peak the attractive electrostatic force before and after deformation is

already doubled, and the most significant increase is observed for the sharpest asperities (with

increasingAi/λ). The significant increase in the adhesive electrostatic forces is related to the

change in the distribution of the charges on the initial and on the deformed shape of the surface

asperities.

Figure 5.28 depicts the typical electrostatic force and charge distribution in the initial and in

the deformed configuration (for profile number 5 of Tab.5.4).The electrostatic forces are con-

centrated at the peak of the undeformed asperity. The deformed shape however has a portion

with an almost flat surface (plateau) where the forces are uniformly distributed. Since electro-

static forces rapidly decrease with the separation distance, in the majority of cases the sides of

the profile have almost no influence on the total adhesive electrostatic force. Consequently the
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FE model applications 5.5 Contact adhesion vs. rough surface deformation

length of the formed plateau is a major parameter determining the overall electrostatic force in

the deformed configuration. An exception is formed for bluntprofiles with values ofAi/λ <

0.01 where the side effects cannot be neglected anymore.

Figure 5.28: Charge and electrostatic force distribution in the undeformed (left) and in the

deformed (right) configuration of profile number 5. In the undeformed configuration the charges

are concentrated on the tip of the asperity, after deformation they are quasi uniformly distributed

on the formed flat surface.

Considering the relatively simple charge and electrostatic force distribution in the initial and in

the deformed configuration observed in the numerical model,two closed–form expressions can

be proposed for the evaluation of the overall adhesive electrostatic force.

• In the undeformed configuration, the electrostatic force acting on the sinusoidal profile is

evaluated using an analytical approximation for a cylinder–plane contact [Smythe 1968].

• In the deformed configuration the analytical expression is derived from the model for

contact between two infinite planes [Fearing 1995], adding the length of the plateaul as

parameter.

Taking the highest point of a roughness profileatop, the plateaul is defined by all the points

within a vertical cutoff distance of 0.4nm from atop. The results are given both at peak load and

in the unloaded configuration. The unloaded profiles slightly differ due to the elastic spring-

back, a difference which influences the resulting electrostatic forces, especially for the blunt

asperities. The length of the plateau at peak loadlpeak
i increases untilAi/λ reaches 0.2 and

then decreases while the length of the plateau in the unloaded configurationlunload
i taking into

account the elastic springback globally decreases with increasingAi/λ values (Tab.5.4). The

prediction of the numerical simulations and of the analytical approximations are in good agree-

ment (Fig.5.29). The results of the geometrical approximation in the initial configuration are

more reliable for small ratios ofA/λ since the approximation of using a circle matches better

the sinusoidal profiles in that case. The error remains less than 10% for profiles withA/λ <

0.4. There is less than 5% error for most ratiosAi/λ in the deformed configuration at peak

load. The geometrical approximation becomes unreliable only for Ai/λ < 0.01 due to side

effects (non–negligable contribution of the sides of the profile to the electrostatic forces) on
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Figure 5.29: Comparison between the analytical expressionand the numerical model predic-

tions. Left: for initial profile shapes. Right: in the deformed configuration for maximum load

(triangle marks) and in the unloaded configuration (circle marks).

the blunt profile. The error is of course larger in the unloaded configuration due to the elastic

springback which slightly curves the plateau on the sides. Indeed the plateau length definition

is less accurate in this configuration but the side effects are also more important. From the

above approximations it is possible to estimate with a rather good accuracy the magnification

factorγ of the electrostatic forces on the surface asperities in theinitial configuration and after

deformation, knowing the shape of the initial profiles and the length of the formed plateau.

γ =
2l

λ

√

2A

z
(5.13)

with l the length of the plateau,λ andA the wavelength and amplitude of the sine approxima-

tion, respectively andz the separation distance. The good agreement between the analytical

expression and the numerical predictions in both cases confirms that for most profiles the pres-

ence ofthe plateau plays the significant roleand the side effects can be neglected.

5.5.3 Concluding remarks

The important effect of surface roughness deformation was demonstrated using an uncoupled

multi–physics numerical model, since the initial electrostatic forces on the asperities are magni-

fied by a factorγ = [2...20] after plastic deformation. The small magnitude ofthe electrostatic

interaction forces with respect to the mechanical forces necessary to deform the asperities (Tab.

5.4) confirms the unilateral coupling of the electrostatic model to the microscale contact model.

The observed effect clearly gives a contribution to the difficulty to release objects when the

squeezing manipulation force is released. The key role of the flat surface formed on the de-

formed profiles on the increase of electrostatic forces was identified and confirmed using a

closed form approximation of the electrostatic forces based on the plateau length.
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The obtained magnifying factor of the electrostatic forcesrelated to the plastic deformation

effectγ = [2...20] seems merely a lower bound of the effect of the surface roughness deforma-

tion on electrostatic adhesion. As pointed out before the imposed flattening in the microscale

model ofdi = 2Ai/3 gives probably a lower bound to the magnitude of the deformation of

the surface asperities with respect to the real micromanipulation setting. Moreover, in the case

of real surfaces, considering the predictions of the numerical model used for the evaluation of

the electrostatic forces the charges would concentrate on the tip of asperities of the highest or-

der roughness, thereby further decreasing the initial electrostatic forces. During deformation

more than one level of asperities (considering the protuberance-on-protuberance model) can be

crushed andγ could reach even higher values than the ones reported here.

These observations lead to the conclusion that decreasing the plastic deformation of surface as-

perities could substantially contribute to decrease release problems related to electrostatic forces

in micromanipulation by contact (e.g. application of coatings with elastic behavior in a more

extended range).
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Chapter 6

Conclusion and perspectives

The objective of the conducted research work was to build a more complete understanding of

the behavior of surfaces and of the nanoindentation as one ofits characterization tools. The cor-

responding experience can be used as a set of information forthe interpretation of the nanoin-

dentation experiment. Numerical models were set up on different levels and were shown to give

insight into the physics of some of the phenomena related to the behavior of pure nickel mate-

rial on the nanoscale. Valuable information can be obtainedfrom numerical models, since all

parameters are accessible and can be freely varied, which becomes particularly advantageous

when numerical simulations are coupled to experiments. However, care has to be taken to keep

physically–based arguments for such models.

In the present work, adapted numerical tools were developedto study the behavior of pure

nickel.

• The atomic level model of quasi–static nanoindentation of pure nickel has the interesting

feature of being a natural frame for the identification of physically based trends. The

main drawback of lacking the possibility of a direct comparison with the experiments

(impossibility of bridging the different time and length scales) is balanced by this prime

advantage. A relatively efficient computation was conducted in Section 3.1 due to the

simplifying assumptions.

• The continuum scale model, presented in Chapter 4 is applicable to a large variety of

metallic materials, and has the major advantage of being directly comparable to the ex-

periments. Hence a good qualitative and quantitative agreement with the experimental

data can be searched for, allowing trends and dominant sources of scattering to be iden-

tified using coupled experimental–numerical studies. The model development required

adding nonlinear material behavior (plasticity) and transforming the initial infinitesimal

deformation description to a corotational finite deformation formulation to represent the
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material behavior correctly. Furthermore normal and tangential contact constraints of

the Coulomb dry friction model were included in an augmentedLagrangian formula-

tion solved using a continuous multiplier update scheme to represent the experimental

evolving contact conditions. These developments satisfy the predefined requirements of

efficiency, relatively simple implementation and flexibility. Flexibility is ensured since all

sources of nonlinearities are fully decoupled in the resulting program, which implies that

changing the material or contact behavior or the finite deformation formulation, leads to

changing the corresponding building block only.

The prime objectives of the research work were reached, since important contributions to the

understanding of pure nickel material were given on the material characterization level (nanoin-

dentation)

• different contributions to the atomic scale response were identified using the atomic scale

discrete model,

• taking into account the rate–dependent plastic behavior ofpure nickel in nanoindentation

was shown to be a physically–based need by a coupled experimental–numerical study

using a continuum scale model,

• the large influence of the coupled effect of friction and sample surface roughness was

identified and evaluated in a numerical study using a continuum scale model.

On the level of microscale applications (microgripper) thelarge influence of irreversible surface

asperity deformation on the increase of electrostatic–based adhesion between the gripper and

the object was identified and the factor of increase evaluated.

Additional results with a practical interest are the evaluation of the performance of the consid-

ered nanoindentation post–treatment methods in realisticindentation configurations.

Outlook and perspectives

The numerical developments necessary for obtaining the above results required using advanced

numerical methods. The logical order of constructing a basis of knowledge starting from the

analysis of simple cases before advancing to more complex subjects had to be respected con-

sidering the complexity of the numerical developments and the difficulty of interpreting ex-

perimental results even for simple configurations. The acquired experience for the considered

simple cases could be extended for more advanced applications in a future work.

Additional studies to conduct and numerical building blocks to be added can be identified from

the results presented here, to broaden the field of application of the developed numerical tools.

The most relevant ones of this context are presented in the following without however consti-

tuting an exhaustive list.
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• The presented numerical models were set up on the smallest (atomic level discrete model)

and on the largest (continuum description) scales. The description of the nanoindentation

experiment on an intermediate scale, potentially buildinga bridge between the studied

atomic and continuum scales (by dislocation dynamics [Widjaja et al. 2007], or the

quasi–continuum methods for example) could allow exploiting results issued from small

scales on larger scales on a physically sound basis.

• The present study should be extended on pure titanium (having a hexagonal crystalline

structure, implying a different material and frictional response) to confirm a potential

generalization of the results for all considered metallic substrate materials in the project

mµn, having a potential biomedical application. Since the experimental results are avail-

able and the numerical tools are directly applicable to the case of pure titanium on the

continuum scale, this study is readily feasible.

• The study of the rate–dependent material behavior and its influence on nanoindentation

results [Cheng & Cheng 2005; Ovaertet al. 2003] can be continued. Including a rate–

dependent plastic model in the existing code will result in the more representative de-

scription of the behavior of the considered metallic materials.

• In view of the potential significant influence of material size effects in small indentation

depth (potentially used for thin film characterization), including a material model with

size–dependent plastic behavior [Evers 2003; Gao & Huang 2003; Gaoet al. 1999; Gao

& Fan 2002; Qiuet al. 2003] in the continuum model, in convolution with a coupled

experimental–numerical study aiming for the identification of material size effects in the

considered metallic materials can be of interest. Two main issues of this development

step were identified: (i) definition of an experimental program that sheds light to material

size effects of the considered metallic materials, and (ii)choice and implementation of the

adequate gradient plasticity formulation, which can be potentially included in the present

numerical scheme.

• Frictional effects in nanoindentation of rough surfaces were found to be significant in the

numerical study of Section 5.3. This trend could be verified experimentally in controlled

indentation configurations in a future work. Experimentally the variation of the friction in

the indenter–sample contact can be obtained by applying a thin silver coating on the sam-

ple surface to reduce friction. This first step sketched hereis prone to lead to an extensive

coupled experimental–numerical investigation of frictional effects in nanoindentation.

• In the present study the phenomenological Coulomb frictionlaw was used. More adapted

friction models for the considered scale can be included in the continuum model to study
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the influence of the tangential contact behavior in a future work. As pointed out in Chap-

ter 4 a tangential contact law, independent of the normal contact force seems in some

cases to describe the nanoscale contact behavior well [Carpick et al. 1996, 1997, 2001].

Including such a contact law in the numerical tool can be considered as ‘downgrading’

the present Coulomb friction model. This manipulation is straightforward and has an

additional beneficial effect on the convergence rate of the computation. The procedure

of identifying the value of the constant stick limit parameter remains however to be dis-

cussed. The trends obtained from the numerical study could be verified in an experimental

program.

• The analysis of the behavior of thin films and multi–layer sandwiches [Xu 2004], to help

the interpretation of the experimental data compacting allexperimental effects are among

the most important extensions of the present study from the point of view of practical

applications. An important branch of this step is the study of the deformation and delam-

ination of thin films both on the continuum level [Abdul-Baqi2002; Genget al. 2007;

van den Bosch 2007] and on the atomic (or some intermediate) scale to identify major

physical trends [Nairet al. 2008]. For this purpose an increase in the size of the atomic

scale model and the use of more realistic potentials to describe inter–atomic interactions

are necessary in the first place, to obtain a better representation of the physics of nanoin-

dentation. The continuum numerical model should incorporate interface elements capa-

ble of representing this type of damage in a finite displacement and deformation theory,

leading to a relatively complex formulation [van den Bosch 2007].

• A future goal is to broaden the scope of the identified material parameters (particularly

the ones related to the plastic material behavior) by implementing more advanced work–

of–indentation based post–treatment methods of nanoindentation [Cao & Lu 2004; Ma

et al. 2003; Zhaoet al. 2006] in the numerical post–treatment tool. In a parametricnu-

merical study the performance of some of these methods couldbe addressed, which could

potentially contribute to the interpretation and a deeper understanding of nanoindentation

results.

• The development of an advanced multi–physics finite elementmodel, including adhesive

effects (stemming from electrostatic, van der Waals, and capillary forces) in mechanical

simulations for applications of micromanipulation is alsoof interest, allowing a direct and

coupled treatment of the mechanical deformation and the contact adhesion. The resulting

numerical tool could have a large domain of application on small scales. It would be

particularly useful for the study of pull–off effects in AFMexperiments, for which the

coupled effect of plastic deformation and adhesion are probably responsible.

127



Conclusion and perspectives

All listed aspects can be addressed based on the research work summed up in this thesis. The

further development of the present numerical tools, and potentially the exploration of the in-

termediate scales by adapted numerical methods are among the main challenges of the future

work. Similarly to the present research, the in–depth investigation of the mechanical behavior of

materials and single–or multi–layered material sandwiches will be best ensured by experiments

coupled to numerical simulations.
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Lemaitre, J., & Chaboche, J. 1985.Mécanique des matériaux solides. Dunod, Paris.
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Appendix A

A.1 Post–treatment methods of nanoindentation

The focus is set here on how material properties are extracted from the raw nanoindentation data,

the load–displacement curves. Two frequently used post–treatment methods for nanoindenta-

tion data are considered in this work. These experimentallyapplied methods were implemented

in a numerical tool that allows the post–treatment of indentation data issued both from experi-

ments and from numerical simulations. Both post–treatmentmethods have the goal to identify

the Young’s modulusE, and the nano–hardness valueHnano of the tested material with high

accuracy and a low sensitivity to a variation in the experimental conditions (surface roughness,

friction, etc.) and in the material properties other than they are designed to evaluate. Since the

nano–hardness is not an intrinsic material property generally defined as the ratio of the peak

load and the projected area at contact depthhc: Hnano =
Fmax

Aproj(hc)
, the focus was rather set

on the value and the variation of the post–treated Young’s modulusEout. Material parameters

obtained from nanoindentation data are relative values compared to a reference value associated

to the indentation of a material with known properties, measured in the calibration step of the

experiments [Baker 1997; Fischer-Cripps 2006].

The Young’s modulus of the sample can be evaluated from nanoindentation data is various ways.

The first post–treatment method considered here is the most widely spread method, proposed

by Oliver and Pharr [Oliver & Pharr 1992], and used for its simplicity and its broad range of

application. This method is based on the assumption of purely elastic unloading of the indenter–

sample frictionless contact. It only uses the unloading segment of the load–displacement curve

of nanoindentation to compute the contact stiffness for further processing. Conversely to its

simplicity, it has the corresponding drawback that a geometrical quantity called contact depth

hc, defined on an actual deformed contact configuration (depending on potential pile–up or

sink–in phenomena), has to be reasonably well–known. The contact depth is calculated from

the maximum indentation depthhmax by making simplifying assumptions. Even though the

measure of the indent profile can give additional information about the deformation procedure

during indentation [Bolzonet al. 2004; Nagyet al. 2006], and is helpful for a better approxi-
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Figure A.1: Flowchart of the two post–treatment methods of nanoindentation considered in this

work.

mation ofhc, it is a complex and time consuming procedure, and thereby itis rarely performed

systematically after nanoindentation tests.

The second post–treatment method, proposed by Ni et al. [Niet al. 2004] has the goal to

overcome the main disadvantage of the Oliver and Pharr method; by avoiding the evaluation of

the contact depth potentially leading to a higher accuracy.This post–treatment method is de-

veloped for the case of spherical nanoindentation. It is based on trends identified by numerical

simulations of nanoindentation using the finite element method. Based on the numerical re-

sults, non–dimensional functions of the indentation problem were set up defined in terms of the

unloading stiffnessS, the total workWt and the elastic work of indentationWe, correspond-

ing to the area under the loading and the unloading portion ofthe load–displacement curve

respectively. These functions are used for the evaluation of the Young’s modulus of the tested

material. The corresponding drawback is that this method ismuch more sensible to changes in

any portion of the curve and to the variations in the load levels affecting directly the integrated

work quantities.
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A numerical tool was set up for the post–treatment the nanoindentation results issued from

experiments and simulations, aiming for a large flexibilityin their assessment. The code is

such that the user can intervene, and adjust some otherwise unaccessible parameters of the

post–treatment methods considered here, if necessary. It also allows to follow step–by–step the

post–treatment procedure.

Oliver and Pharr method, based on the unloading slope

Some assumptions are common to both considered nanoindentation post–treatment methods.

These are recalled here:

• flat and smooth sample contact surface,

• frictionless contact between the indenter tip and the sample,

• the behavior of the indenter–sample contact in the unloading period is elastic and rate–

independent. This means that potential viscoelastic effects of the material [Cheng &

Cheng 2005; Ovaertet al. 2003; Zhanget al. 2008] are not taken into account; but also

that a rate–dependent effect of the contact behavior itselfis disregarded,

• the values of the Poisson’s ratio of both the sampleνsample and the indenter materialνind

are known, or approximated.

In addition, the projected areaAproj of the tip as a function of the indenter penetrationh, de-

pends on the actual geometry of the indenter. It is approximated by a polynomial function in

Step 1, determined in the calibration step of the experiments.

Aproj(h) = c1h
2 + c2h + c3h

1/2 + c4h
1/4 + c5h

1/8 (A.1)

For the sake of clarity, a simple example of the definition of the projected area is given. In

the case of a spherical indenter, at a heighth
′

from the tip, the projected area is defined as

Aproj(h
′

) = π

(

d(h
′

)

2

)2

, with d(h
′

) the diameter of the spherical tip at heighth
′

.

Moreover, for the approximation ofhc (in Step 2), the shape of the indenter is taken into account

by a coefficientǫ that varies as a function of the tip geometry.

Post–treatment procedure

Step 1

Determine the coefficientsc1 to cn of the area function of the indenter. The coefficients in (A.1)

are fitted to describe the shape of the indenter. When load–displacement curves issued from

numerical simulations are treated, an ideal shape with a given nominal radius is considered.
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Step 2

Determine the contact stiffnessS from the unloading curve of nanoindentation. For this the

point of initial unloading is identified first. Note that, particularly in the presence of rate–

dependent effects, the choice of the point of initial unloading may potentially vary depending

on the prescribed tolerance of detection, as shown in Fig.A.2.

Figure A.2: Zoom on an experimental load–displacement curve of nanoindentation of pure

nickel with a conical indenter of 2µm nominal radius. The size of the rectangular envelop

depends on the tolerance values used to detect the point of initial unloading. The segment ‘a’ of

the holding period is constituted of points that can potentially be identified as the point of initial

unloading, satisfying ‘Tolerance criterion 1’.

Then a function with the following form is fitted to the unloading curve.

Funload(h) = s1(h− s2)
s3 (A.2)

This fit uses weighting coefficients, such that the points of the unloading curve with load levels

between 10% to 85% of the peak load have the largest influence for the sake of accuracy.

Indeed the initial part of the unloading segment (down to load levels of around 90% of the peak

load) can be subject to variations related to friction between the indenter and the sample [Tsou

et al. 2005]. The user can adjust freely the domain of interpolation of high influence, if this

becomes necessary. The contact stiffnessS is then evaluated at the indentation depth, where the

unloading begins, by:

S = s1s3(hunload − s2)
(s3−1) (A.3)

The position of the point of initial unloading, together with the curve fit influences the value

of the contact stiffnessS, and thereby the post–treated elastic modulus. Such effects can be

considered as nanoindentationdispersion related to the post–treatment procedure.
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These effects can be decreased by adapting the parameters ofthe automatic fitting procedure,

being an available option in the programmed tool.

Step 3

The contact depthhc and the projected area at contact depthAproj(hc) are evaluated by the

approximation:

hc = hmax − ǫ
Fmax

S
(A.4)

wherehmax andFmax stand for the maximum indentation depth and the peak load level, re-

spectively.ǫ is a model parameter depending on the indenter shapeǫ = 0.75 for spherical and

parabolic indenter geometries andǫ = 0.72 for conical indenters. The main drawback of this

simple approximation is that it does not take into account potential pile–up and sink–in phenom-

ena, which depend on the plastic behavior of the sample material [Habbabet al. 2006; Maneiro

& Rodriguez 2005; Taljat & Pharr 2004]. This can lead to post–treatment errors, whose mag-

nitude varies as a function of the indenter geometry and the sample material. In the case of the

cono–spherical indenter geometry with 2µm nominal tip radius used in Sections 5.1 and 5.2

the influence of the variation of the contact depth for indentations in pure nickel at 1000µN ,

2000µN , and 9000µN peak loads (corresponding to 55nm, 100nm, and 430nm indenter pene-

tration, respectively) was found to be very low with respectto other potential sources of scatter

Figure A.3: Effect of potential sink–in and pile–up, resulting in variation in the value ofǫ =

hc

hmax
on the post–treated elastic modulus of the sample for different indentation depths of cono–

spherical nanoindentation of pure nickel with a tip of2µm nominal radius. . Note the very large

range of variation ofǫ, resulting in a small variation of∆Eoutput =
Eǫ

output

Eǫ=0.75
output

− 1.
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(Fig.A.3). Aproj(hc) is evaluated using (A.1) substituting the value ofhc.

Step 4

The reduced modulusEred of the contact is evaluated in this last step of the post–treatment pro-

cedure. The assumption of the elastic contact unloading between the sample and the indenter is

used here. The reduced modulus is a quantity related to the elastic contact between the indenter

and the sample materials and is calculated using the following approximation [Oliver & Pharr

1992]:

Ered =
S

2

(

π

Aproj(hcont)

)1/2

(A.5)

Step 5

Finally the Young’s modulus of the sampleEsample can be determined from the reduced modulus

Ered making the assumption of an elastic contact behavior.

Esample =
Ered (1− ν2

sample)

(1− Ered

Eind
) (1− ν2

ind)
(A.6)

Generally a reasonable approximation of the Poisson’s ratio of the sampleνsample is made when

its value is not available in the literature. The Poisson’s ratio of the diamond indenter material

is most frequently takenνind = 0.07. The values of the Poisson’s ratio have a small influence

on the value ofEsample, therefore the potential inaccuracy in their values is not significantly

penalizing, as shown in Fig.A.4. The elastic modulus of the indenter in the post–treatment pro-

Figure A.4: Influence of the Poisson’s ratio of the sampleνsample (red crosses) and of the

indenter materialνind (black circles) on the post–treated Young’s modulus in (A.6), keeping

the reduced elastic modulusEred and the elastic modulus of the indenter materialEind constant.

∆Esample =
Eoutput

Eref
with Eref determined forEred = 260GPa,Eind = 1040GPa,νsample =

0.3, andνind = 0.07.
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cedure is taken to be very large when indentation results issued from numerical simulations are

evaluated, since the indenter is modeled as a rigid body in the numerical model. Otherwise the

value of the diamond materialEind = 1140GPa is used.

To sum up, this post–treatment method of nanoindentation depends on the following functions,

and parameters:Aproj(h), S, ǫ, hmax, Fmax, and in the final step, common to both methods

considered here:νsample, νind, andEind.

Method of Ni et al., based on the work of indentation

The post–treatment method proposed by Ni et al. [Niet al. 2004] is based on the trends

identified from finite element simulations of spherical nanoindentation. This implies that the

post–treatment method performs well for experimental cases that are in fair agreement with the

conditions which were modeled in the numerical simulations. Therefore it is important to recall

the assumptions of the numerical work on which this post–treatment method is based on, that

add up to the common assumptions listed before;

• the indenter tip geometry is spherical,

• the material is elastic–plastic with isotropic hardening,

• the hardening of the material is modeled by a power law,

• the behavior of the material is rate–independent.

The essence of this method is the use of non–dimensional functions of the indentation issued

from simulations, defined in terms of the contact stiffnessS, the total work of indentationWt

and the elastic work of indentationWe. No additional information on the deformed contact

geometry is needed to evaluate the elastic modulus of the sample materialEsample.

Post–treatment procedure

Step 1

Two parameter sets of a power law expression, similar to (A.2) are fitted to describe the com-

plete loading and the complete unloading periods of the load–displacement curve. The contact

stiffnessS is evaluated at maximum indentation depth from the expression of the unloading

curve fit. The holding period is approximated by a simple linear function.

Step 2

The area under the loading, holding and unloading period of the load–displacement curve is

determined by analytical integrals. The total work of indentation Wt and the elastic work of
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indentationWe, correspond to the area under the loading and holding periods and under the

unloading period of the load–displacement curve, respectively. The work dissipated by plastic

deformationWp is the difference between the total work of indentationWt and the reversible

elastic work of indentationWe.

Wp = Wt −We (A.7)

Issues related to the approximation of the numerical fit of the load–displacement curve (par-

ticularly in the case of experimental data usually showing ahigher dispersion than in the sim-

ulations), referred to previously as ‘nanoindentation dispersion related to the post–treatment

procedure’ of course play a role in this step.

Step 3

The reduced elastic modulus of the indenter–sample contactis determined using the following

expression:

Ered =

0.4657 S2

(

We

Wt

)(

hmax

R

)0.62

Fmax
(A.8)

with R the nominal radius of the spherical indenter,hmax the maximum indentation depth and

Fmax the peak load level of the indentation. Equation (A.8) compacts the trends issued from a

numerical model of spherical nanoindentation, considering a wide range of materials. It is em-

phasized that contrary to the Oliver and Pharr method, for obtaining the reduced elastic modulus

of the indentation, the area function of the indenter is not evaluated and the contact depth is not

approximated.

Step 4

This step is identical toStep 5of the Oliver and Pharr post–treatment method. The elastic mod-

ulus of the sample is determined from the reduced elastic modulus making the assumption of

an elastic contact between the indenter and the sample.

To sum up, this post–treatment method of nanoindentation depends on the following param-

eters:Wt, We, S, R, hmax, Fmax, and in the final step, common to both methods considered

here:νsample, νind, andEind.
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A.2 Benchmark: extrusion of an aluminum cylinder

This section presents the numerical benchmark test of the extrusion of an aluminum cylin-

der with friction [Laursen 1992; Simo & Laursen 1992], used (together with other benchmark

problems) for the validation of the implemented features offinite element code. This problem

is particularly challenging from a computational viewpoint, since it involves nonlinearities due

to the varying normal and tangential contact conditions, material nonlinearities (elastic–plastic

behavior), and geometrical nonlinearities due to the finitedeformation of the cylinder.

Figure A.5: Snapshots of the deformed mesh at different imposed displacementsd, when

Coulomb friction is considered on the contact interface (µ = 0.1), as shown in Labilloy [2006].

d = 0mm corresponds to the initial, undeformed configuration. Notethe large deformation of

the cylinder in the final stages of the extrusion.

The considered problem is the extrusion of an aluminum cylinder of 5.08cm radius and 25.4cm

initial length, which is forced into a coaxial, perfectly rigid conical matrix with a10˚ cone an-

gle. The imposed displacement at the free end of the deformable cylinder is 17.78cm. The

behavior of aluminum is assumed to be elastic–plastic, withlinear hardening, and without rate–

dependent effects. The von Mises yield criterion is used with the following material parameter

set: Young’s modulusE = 68.95GPa, Poisson’s ratioν = 0.32, initial yield limitσ0 = 31MPa,

hardening coefficientK = 261MPa and hardening exponentn = 1, in Ludwik’s hardening law

(σv(κ) = σ0 + K κn, whereσv(κ) is the current yield stress). A Coulomb friction law, with a
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coefficient of friction ofµ = 0.1 is considered on the contact interface.

The deformable cylinder is described in a 2D axisymmetric model with 80 4–noded finite el-

ements using the corotational finite deformation formulation, presented in Section 4.1 (with

20 elements in the direction of extraction and 4 elements in the radial direction, as shown in

Fig.A.5). There are 24 nodes in the predefined contact interface, declared as contact elements.

The contact problem involving friction is solved using the augmented Lagrangian formulation,

presented in Section 4.2.

This computation was addressed in Labilloy [2006]. The regularization parameters of the aug-

mented Lagrangianrn andrt for the normal and for the tangential contact conditions, respec-

tively were chosen fixed values in the calculationrn = 10 andrt = 20. Note the small

magnitude of these parameters with respect to the ones used in the classical penalty method

pn = 1.55× 1013 andpt = 1.55× 1010 to solve the same problem [Laursen 1992].

The size of the imposed displacement increments had to be chosen relatively small for the

computation of the contact behavior and for the computationof stresses considering the elastic–

plastic material behavior, i.e. in order to guarantee the convergence of the local iteration loop.

The average increment size in the computation was 0.1mm.

In the beginning of the extrusion only one node is in sliding contact, in this case the convergence

rate is fast, nearly quadratic (Tab.A.1).

iincr = 60

iiter = 1 conv = 1.5963 Change

iiter = 2 conv = 3.2451

iiter = 3 conv = 1.2625

iiter = 4 conv = 0.17438

iiter = 5 conv = 0.0049619

iiter = 6 conv = 7.804e-05

iiter = 7 conv = 1.6353e-10

Table A.1: Convergence rate of the computation in the early stage of the extrusion with one

node in sliding contact with the matrix. The first column corresponds to the iteration number,

the second to the obtained magnitude of the force residuals.‘Change’ refers to a change in the

contact state in the iteration.

A decrease in the rate of convergence potentially appears only when several contact nodes are

already in contact. It depends on the number of cycling contact elements between the state of

stick and the state of slip (Tab.A.2). Even though these convergence issues could potentially be

decreased by the choice of larger regularization parameters 0 < r < 2 λmin(K), with λmin(K)

the smallest eigenvalue of the complete stiffness matrix ofthe system (proposed in Pietrzak &

Curnier [1999]), this was not considered here for the sake ofsimplicity. An update of the reg-

158



Appendix A.2 Benchmark: extrusion of an aluminum cylinder

iincr = 203

iiter = 1 conv = 5.0608 Change

iiter = 2 conv = 21.011 Change

iiter = 3 conv = 139.72 Change

iiter = 4 conv = 106.42 Change

iiter = 5 conv = 238.96 Change

iiter = 6 conv = 50.568 Change

iiter = 7 conv = 73.804 Change

iiter = 8 conv = 36.246 Change

iiter = 9 conv = 20.042 Change

iiter = 10 conv = 13.981 Change

iiter = 11 conv = 10.76 Change

iiter = 12 conv = 9.3644 Change

iiter = 13 conv = 10.084 Change

iiter = 14 conv = 10.55 Change

iiter = 15 conv = 9.328 Change

iiter = 16 conv = 13.249 Change

iiter = 17 conv = 20.025 Change

iiter = 18 conv = 59.202 Change

iiter = 19 conv = 11.192 Change

iiter = 20 conv = 66.55 Change

Table A.2: The convergence rate of the computation is decreased when oscillation between the

state of stick and the state of slip occurs for several contact nodes. The first column corresponds

to the iteration number, the second to the obtained magnitude of the force residuals. ‘Change’

refers to a change in the contact state of one or more contact elements in the iteration.

ularization parametersrn andrt during the computation is planned in a future development to

overcome the convergence issues related to the oscillatingcontact state of the contact elements.

In this computation a less efficient but simple strategy was chosen; keeping the values ofrn

andrt constant, the maximum number of iterations related to a change of the contact state was

limited. If in 20 iterations no stable contact state had beenreached, the increment was restarted

with a reduced size. Generally an increment converged when astable contact state had been

reached within 5 iterations for the given example.

The obtained deformed shape of the extruded cylinder (Fig.A.5), as well as the trend in the

evolution of the reaction forces induced by the forced extraction (Fig.A.6) were found to be in

good agreement with [Laursen 1992; Simo & Laursen 1992], where this problem was initially

proposed. The quantitative comparison of the obtained extrusion force–displacement curves

was not considered, because the computations performed in Laursen [1992]; Simo & Laursen
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[1992] use a different (hyperelastic–based) finite deformation formulation (described in detail

in Simo [1992]).

Figure A.6: Extraction force as a function of the displacement of the cylinder for frictional

(µ = 0.1), and for frictionless contact (µ = 0). The large difference between the two curves

demonstrates the importance of frictional effects in the considered problem.

The important increase in the extraction force level between 10cm and 11cm of imposed dis-

placement is the result of the contact between the deformable cylinder and the rigid matrix in the

complete lateral contact zone. When this contact is realized the deformation of the aluminum

cylinder is unconstrained only on the upper surface.
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