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l’Institute of Sound and Vibration Research de l’université de Southampton. Je remercie
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pour leur amitié précieuse Vincent et Theresa, Luigi, Claire, Naoki, Rie, Sue, Lisa, Eugene,
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fin de ce long parcours.

4



List of Symbols

Greek symbols

β :
√

1−M2
0

γ : Poisson ratio of specific heat capacities : cp/cv
Γ : interface separating the inner and the outer domains
ε : Error
µ : phase function [m]
ρ : mass density [kgm−3]
ρ0 : steady mean density [kgm−3]
ρa : acoustic density [kgm−3]
σ : stress tensor [Nm−2]
φ : velocity potential [m2s−1]
φ0 : mean velocity potential [m2s−1]
φa : acoustic velocity potential [m2s−1]

φ̃a : amplitude of the harmonic acoustic velocity potential [m2s−1]

φ̃h : numerical approximation of φ̃a [m2s−1]

φ̃I
h : numerical approximation in the outer region Ωo [m2s−1]

Φα : shape function for the αth degree of freedom
ΦI
α : infinite shape function for the αth degree of freedom

ω : angular frequency [s−1]
Ω : domain
Ωi : inner region
Ωo : outer region
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Arabic symbols

ãn : normal acceleration of a vibrating wall [ms−2]
An : normal acoustic admittance [m2skg−1]
A±mn : incident and reflected modal amplitude [m2s−1]
c : speed of sound [ms−1]
c0 : steady mean part of the speed of sound [ms−1]
c∞ : speed of sound at large distance from the source [ms−1]
cp : specific heat capacity at constant pressure [JK−1]
cv : specific heat capacity at constant volume [JK−1]
dofs : number of unknowns of the approximation
E : energy flow out of a surface [J ]
E±mn : incident and reflected modal patern
f : excitation frequency [s−1]
G : geometric factor
h : mesh size [m]
H : Hilbert space
i : imaginary unit =

√
−1

I : Sound intensity [Wm−2]
J ′ : stagnation entropy [Jkg−1]
k : wavenumber [m−1]
k±r,mn : incident and reflected radial wavenumber [m−1]
kB : Boltzmann constant [JK−1]
K±

z,mn : incident and reflected axial wavenumber [m−1]
Ld

j : Legendre polynomial of order d for node j
Ls : curve enclosing the boundary Ss

Lv : curve enclosing the boundary Sv

m : angular mode number
m′ : mass flux [kgm−2s−1]
m0 : radial order of the infinite element
mw : mass of a molecule [kg]
M0 : mach number
Mi : Mapping function for node/point i
n : outer normal to the domain
n : radial mode number
nI
d : number of infinite degree of freedom

n (j) : size of the local approximation space at node j
nni : number of infinite nodes
nodes : number of nodes
Ni : Partition of Unity function of node i
Nm : number of angular modes
Nn : number of radial modes
NM : number of reflected modes (unknown)
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p : fluid pressure [Pa]
p0 : steady mean fluid pressure [Pa]
pa : acoustic pressure [Pa]
p̃a : amplitude of the harmonic acoustic pressure [Pa]
p̃an : analytic amplitude of the harmonic acoustic pressure [Pa]
q : heat flux [Wm−2]
Qw : heat production [J ]
ro : distance to the source point [m]
R : specific gas constant [JK−1mol−1]
Rj : radial function for infinite node j
Rd

j : radial function of order d for node j
s : entropy [Jkg−1K−1]
S : boundary
Si : mapping functions for the interface Γ
SM : Modal boundary
Ss : soft wall
Sv : vibrating wall
t : time [s]
T : Temperature [K]
Tj : circumferential function for infinite node j
ũn : normal displacement of a vibrating wall [m]
v : fluid velocity [ms−1]
v0 : steady mean fluid velocity [ms−1]
v∞ : fluid velocity at large distance from the source [ms−1]
va : acoustic velocity [ms−1]
ṽa : amplitude of the harmonic acoustic velocity [ms−1]
V : the Sobolev space W 1,2 = H1 = {f : f,∇f ∈ L2}
Vjl : lth local approximation function of node j
w̃n : normal velocity of a vibrating wall [ms−1]
Wj : weight function of node j
W I

j : infinite weight function of the infinite node j
WM,nm : modal weight function of the angular and radial mode (m,n)

Operators

∇ : gradient operator
∇· : divergence operator
∇× : curl operator
∆ : Laplacian operator
D
Dt

: Total time derivative
: : the double dot product of two tensors
〈 〉 : time average
< : Real part
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5

Axisymmetric formulation: performance analysis

This chapter analyses the performances of the axisymmetric Mapped Infinite Partition of
Unity formulation. We consider applications such as duct propagation, multipole radiation
or rigid piston radiation to illustrate the accuracy and the efficiency of the method. To
assess the performances, we plot two types of curves: convergence and performance. The
convergence curve plots the L2 relative error with respect to the number of degrees of free-
dom. This gives an indication of the accuracy of the method and the enrichment functions
with respect to the number of unknowns. However, it does not give any information on
the time required to compute the matrices (numerical integration), the bandwidth of the
matrices nor the time required to solve the system. The efficiency of the method is then
evaluated by comparing the time required to compute a solution which is under a certain
level of accuracy. This is the performance curve.

The L2 relative error is obtained by expression:

εr =

√

2π
∫

Ωi
r (p̃an − p̃h) (p̃∗an − p̃h∗)dΩ

√

2π
∫

Ωi
r (p̃an) (p̃∗an)dΩ

(5.1)

where p̃an and p̃h are the exact and computed pressure, respectively and p̃h∗ denotes the
complex conjugate of p̃h. This integration is performed following the Gauss Legendre inte-
gration scheme.

The computations are performed on a HP XC cluster Platform 4000 composed of 32
nodes. Each node is a HP Proliant DL 585 containing four CPUs AMD Opteron Dual Core
at 2GHz. We have been allowed to use a queue intended for 8 processor and 32GB of RAM
per job. The Mapped Infinite Partition of Unity Method is implemented in Matlab. The
linear system of equations is solved using UMFPACK 5.0.2 [45, 46, 47, 48, 49], a set of
routines solving sparse linear systems via LU factorization.
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5.1 Duct propagation

5.1 Duct propagation

This section illustrates the performances of the Mapped Infinite Partition of Unity Method.
Computed results are compared to analytical solutions. The method is also compared to
the Finite Element Method: ACTRANTM linear and quadratic elements. Results of the
linear Finite Element Method may also be obtained with the ‘degenerated’ Partition of
Unity Method.

We also focus on other considerations such as the use of a variable enrichment (i.e. not
the same enrichment on all the nodes of the mesh) and the evaluation of the condition
number and its effect on the solution.

5.1.1 Convergence and performance analyses

Convergence and performance curves analyse the method by means of L2 relative error
(5.1).

The convergence curve plots at a given excitation frequency, the L2 relative error of the
numerical solution with respect to the number of degrees of freedom. The number of degrees
of freedom gives an idea of the size of the matrices but it does not give any information
on the number of non-zero terms in the matrix, its bandwidth or the condition number.
Yet, all these parameters will influence the global computational effort. The performance
curve plots the time required by the algorithms to achieve the resolution under a certain
level of error. This is done for several non-dimensional wavenumbers (ka). This allows us
to compare the global performance, the real effort of the computation. Nevertheless, it is
difficult to compare methods coded in different languages.

We consider acoustic propagation in a hard walled infinite cylindrical duct of radius
Rd = 0.5m and then a diameter D = 1m. The computational domain corresponds to a part
of the duct which is L = 2m long1. Modal and transmitted boundary conditions simulate
semi-infinite ducts at both ends of the computational domain (fig. 2.18).

The analytical solution for the pressure (p̃an) in a duct is given by the following modal
decomposition [44]:

p̃an (r, z, θ) =
∞
∑

m=−∞

∞
∑

n=1

Jm (krmnr) e
imθ

(

a+

mne
−ik+

zmnz + a−mne
+ik−zmnz

)

(5.2)

where Jm is the Bessel function of orderm. The radial krmn and longitudinal k±zmn wavenum-
bers are obtained by resolving equations (5.3).

1 This is a difference with previous results in the verification section which were obtained for a duct length of
L = 1m. The length of 1m has been chosen to corresponds to the three-dimensional application such that figures
can be compared, while this analysis has been performed for paper [69].
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5.1 Duct propagation

J ′m (krmnRd) = 0

k±zmn =
∓kM0 +

√

k2 + (1−M 2
0 ) k

2
rmn

(1−M 2
0 )

(5.3)

The performance of the convected Mapped Infinite Partition of Unity Method is com-
pared to the Finite Element Method (linear and quadratic elements). In this case we
restricted the analysis by simulating the propagation of the second mode (n = 2) of the
first azimuthal order (m = 1). This is simulated by prescribing modal boundary conditions
(section 2.9.2 with E±n = Jm (kr,nr)) at both ends of the duct. The modal boundary condi-
tion at the inlet (x = 0 m) prescribes the second mode of the first azimuthal order traveling
in the duct direction

(

n = 2, m = 1, A+

2 = 1
)

, and allows the boundary to be permeable
to the propagation of all cut-on modes coming from the computational region: all (A−n )
such that k−z,n is real, are unknowns. At the outlet (x = 2 m), we allow the boundary to
be permeable to all cut-on modes going outside the domain. Modes coming from the right
end of the duct are set equal to zero to create an anechoic termination.

Figure 5.1 illustrates the distribution of the real part of the pressure in the duct. Note
that this figure corresponds to an axisymmetric cut in the duct (domain Ω). The pressure
in the whole duct can be obtained by rotating the presented results around the x axis with
a scaling factor of e−imθ, for this application, m = 1. The excitation frequency is chosen
equal to 800 Hz (kD = 14.78). This application has been analysed in the previous sections
for the ‘no-flow ’ and the convected cases. The convected wave propagation considers a
uniform mean flow (v = −100m/s1z) moving in the opposite direction of the wave.

(a) (b)

Fig. 5.1. Real part of the pressure of the second mode n = 2; azimuthal order m = 1, excitation frequency: 800Hz
(kD = 14.78) (a) No flow (b) Uniform mean flow with a mach number of (M = −0.2971z).

A convergence analysis is performed to illustrate and compare asymptotic convergence
rates on this duct application at 800 and 2000 Hz with a non-dimensional wavenumber
kD = 14.78 and kD = 36.96 respectively. The congergence curves for a frequency of 800
Hz are given in figure 5.2 and in figure 5.3 for 2000 Hz. The convergence curve gives
the relative error in percent with respect to the number of degrees of freedom (dofs). The
number of degrees of freedom corresponds to the size of the matrix system. It is equal to the
number of nodes and the number of modal unknowns for Finite Element Method. For the
Partition of Unity Method, it is the number of nodes times the degrees of freedom per node
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5.1 Duct propagation

and the number of modal unknowns. The convergence compares the Finite Element Method
(linear and quadratic elements) with the Partition of Unity Method. Several polynomial
enrichments are used. The order of these polynomial terms varies from 0 to 6 generating
complete and incomplete polynomial functions up to order six. All the meshes have been
generated by taking a number of elements along the z direction as being 3 times larger
than the number of elements in the r direction.

As expected, figure 5.2(a) shows that linear Finite Elements are equivalent to the Parti-
tion of Unity Method with a constant enrichment: Vj1 = {1}. The same remark stands for
quadratic Finite Elements compared to the first order enrichment. This can be explained
considering that the shape function is the product of the partition of unity function, which
is linear, and the enrichment (linear in this case). It leads to quadratic shape functions. It
is then easily understandable why simulations with a first order enrichment corresponds
to the quadratic FEM.

As predicted, the convergence rate of the Partition of Unity Method with a complete
quadratic enrichment is better than for the linear and the quadratic Finite Element Method.
A quadratic enrichment corresponds to the use of a cubic polynomial for the approxima-
tion. The convergence rate of the method depends on the polynomial order chosen for the
enrichment (as illustrated in figures 5.2(a) and 5.3(a)). Note that high polynomial functions
lead to instabilities but it occurs for very low level of errors.

Figures 5.2(b) and 5.3(b) illustrate the effect of non complete polynomial sets at two
different frequencies until order 3. Complete sets of polynomials always have the best rates
of convergence. Some non complete bases also exhibit the same rate. These ‘performant’
non complete sets are those which does not have the cross terms. This is probably due to
the existence of the cross terms thanks to the product of partition of unity functions by the
enrichment terms. We also remark that the terms z and r should not be removed because
then the convergence does not behave like a p order approximation anymore.

A family of fourth order sets is presented in figures 5.2(c) and 5.3(c). The same conclu-
sions can be drawn. Some incomplete basis have the same convergence rate than the full
set (in general when some cross terms are removed) but there is a drop in accuracy when
xn (n < p) terms are removed. Note that instabilities appears for low level of error.

The performance curve is shown in figure 5.4. These curves correspond to the time
required to compute a solution under a level of relative error (εr < 5%). This is done along
a frequency range varying from 800 Hz (kD = 14.78) to 7000 Hz (kD = 129.36). Meshes
have been generated with 3 times more elements in the axial z direction than in the radial
r one. Figure 5.5 shows the coarsest mesh used for the simulation using the second order
enrichment at 800 Hz.

The advantage of this performance curve is that the CPU time takes into account the
whole process and so the real effort required for the computation. The drawback is the
difficulty to compare methods which have been implemented in different languages such as
C or MATLAB. This is the reason why only Partition of Unity curves are presented. These
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Fig. 5.2. Relative error (εr [%]) plotted with respect to the number of degrees of freedom (dofs): propagation of the
second mode (n = 2), first axisymetric order (m = 1) and excitation frequency 800 Hz (kD = 14.78). Enrichment
functions: Complete set of polynomial functions of order p up to order 6 (a) - Complete and incomplete sets up to
order 4 (b) - complete and incomplete sets for the fourth order (c).
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Fig. 5.3. Relative error (εr [%]) plotted with respect to the number of degrees of freedom (dofs): propagation of the
second mode (n = 2), first axisymetric order (m = 1) and excitation frequency 2000 Hz (kD = 36.96). Enrichment
functions: Complete set of polynomial functions of order p up to order 6 (a) - Complete and incomplete sets up to
order 4 (b) - complete and incomplete sets for the fourth order (c).
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Fig. 5.4. Computational Time (s) versus the non-dimensional wavenumber (kD) with an accuracy under 5%,
frequency varying from 800Hz to 7000Hz, the characteristic length D is the diameter of the duct. Enrichment
functions: Complete set of polynomial functions of order p up to order 6 (a) - Complete and incomplete sets up to
order 4 (b) - complete and incomplete sets for the fourth order (c).
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Fig. 5.5. Coarsest mesh of the duct used for the simulation of the propagation at 800Hz with the second order
enrichment .

results show the efficiency of the proposed method. A high polynomial order enrichment
requires less computation time to solve the application within an accuracy of 5% at a given
frequency. To solve the application with a kD equal to 31, the linear elements requires 263
seconds while the non-complete second order enrichment (without the cross term zr) only
requires 1.93 seconds. The gain is a speed up of a factor 136. From another point of view,
at the same CPU time, the high order enrichment allows to reach higher frequencies. For
instance, a CPU time of 35 seconds allows to solve the application with a kD equal to
20 for linear elements and a kD equal to 90 for the second order enrichment without zr.
The proposed method with the incomplete second order enrichment reaches frequencies
five times higher than the classical linear Finite Element Method within the same amount
of time. This is exactly the expected performance. While the polynomial order increases,
we expect the required amount of time to decrease. However, at high frequencies ka > 130
(figure 5.6), higher orders than 4 look to be less performant. This is due to a problem of
instability as it is also observed for the convergence analysis. Non-complete basis (without
zn or rn terms with n < p) are not efficient, as it has been observed during the convergence
analysis. However non-complete bases without cross terms behave like the complete one.
We can see in figure 5.4(c) that some non-complete fourth order bases are more performant
than the full fourth order. Due to instabilities at high order enrichment, we recommend
the use of polynomial enrichment up to order 4.

The Partition of Unity Method with a polynomial enrichment of order s behaves like
a p-FEM of polynomial order s + 1. The advantage of such a method compared to the
p-FEM one is the possibility to refine locally the solution without refining the mesh. In
many ducted problems for example one has ‘hot spots’ where the Mach number is high in
a small region and one must normally refine the mesh. This method would allow to enrich
the nodes of this region with higher polynomial functions.
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Fig. 5.6. Computational Time (s) versus the non-dimensional wavenumber (kD) with an accuracy under 5%,
frequency varying from 7000Hz to 16000Hz, the characteristic length D is the diameter of the duct. Enrichment
functions: Complete and incomplete sets of polynomial functions of order p up to order 6 .

5.1.2 Local enrichment

We will now discuss the effect of enriching nodes locally. The idea is to show that we can
easily enrich some nodes of the mesh. This is then illustrated on two applications2. We
first analyse the effect of local enrichment on the propagation of an evanescent wave in
a cylindrical duct. We then analyse the case of the non-uniform duct with uniform mean
flow.

The first application considered is a hard walled cylindrical duct (L = 1m,Rd = 0.5m).
We analyse the propagation of an evanescent mode at 800 Hz in the duct (m = 1, n = 4).
As it is an evanescent mode, we expect the pressure to decay exponentially (fig. 3.7). We
are interested in the accuracy of the solution in the whole domain, we hence compare
the L2 relative error of four different configurations on two different meshes (8 cases).
The first mesh is composed of 30 axial elements and 10 in the radial one. The second mesh
contains 50 elements in the axial direction and 20 in the radial one. The four configurations
correspond to the way nodes have been enriched:

• all nodes with the constant enrichment: Vj1 = {1}.
• the first 5 columns of nodes enriched with a second order subspace:

Vjl =
{

1, (z − z0) , (r − r0) , (z − z0)
2 , (r − r0)

2
}

,

the other nodes with the constant enrichment Vj1 = {1}.
2 A third application has been anlaysed but it does not correspond to acoustic propagation in ducts. Please refer
to appendix 10.5
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5.1 Duct propagation

• the first 10 columns of nodes enriched with a second order subspace:

Vjl =
{

1, (z − z0) , (r − r0) , (z − z0)
2 , (r − r0)

2
}

,

the other nodes with the constant enrichment Vj1 = {1}.
• all nodes with the second order enrichment:

Vjl =
{

1, (z − z0) , (r − r0) , (z − z0)
2 , (r − r0)

2
}

.

Table 5.1 gives the L2 relative error and the number of degrees of freedom obtained
for the two meshes with the four different enrichments: No column of nodes enriched, 5
columns of nodes enriched, 10 columns of nodes enriched and all nodes enriched.

Relative error No column 5 columns 10 columns all columns

Degrees of freedom

30 X 10 9.2755% 0.6162% 0.0887% 0.0835%

341 dofs 561 dofs 781 dofs 1705 dofs

50 X 20 2.33% 0.4853% 0.0796% 0.0065%

1071 dofs 1491 dofs 1911 dofs 5355 dofs

Table 5.1. Evaluation of the effect of local enrichment on the L2 relative error for the propagation of an evanescent
mode (800Hz,m = 1, n = 4) in a hard walled cylindrical duct (L = 1m,Rd = 0.5m)

By looking at the table we may first conclude that the more refined mesh and the more
enriched nodes, the best accuracy.

However, we are also looking for performance. This means we care about the accuracy
but also the number of unknowns. These applications show that enriching a few nodes
close to the modal boundary condition is more convenient and accurate that remeshing the
whole domain (e.g.: 0.6162% for 561 dofs compared to 2.33%, 1071dofs).

We then conclude that local enrichment is very efficient when the pressure shows com-
plex distribution on local area. It allows to increase the accuracy of the global solution
without refining the mesh.

Note that these results do not only stand for evanescent modes. What has to be un-
derstood is that enriching nodes close to complex pressure distribution is beneficial for the
performance (significant increase of accuracy without remeshing and providing low addi-
tional unknowns). This conclusion is also valid whatever the application as soon as we can
isolate the region to enrich: high Mach number, edges, evanescent modes.

The second illustration corresponds to the convected propagation of a plane wave at
800Hz (ka=14.8 for a=1m) in a non-uniform duct (same geometry as in section 3.2). We
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5.1 Duct propagation

obtained a reference solution with a Finite Element computation on a fine mesh: 101101
nodes. The flow (figure 3.15) has been computed on this fine mesh, it has then been
used for other computations (coarser meshes). We generated two other meshes: mesh1
with 4221 nodes and mesh2 with 20541 nodes and computed the acoustic potential for 4
configurations. The first one consists in enriching all the nodes with the constant enrichment
(p=0). We then enriched region A (figure 5.7) with polynomial functions of order 2 (p=2).
The third configuration correspond to enriching both regions A and B. And finally, we
consider the case with all nodes with an enrichment of order 2 (p=2).

Fig. 5.7. Illustration of the geometry of the application and the regions to be enriched.

Table 5.2 illustrates that the enrichment of local areas improves the accuracy of the
solution. It is then not necessary to generate a new mesh, finer at special regions. The
approximation may be improved by locally increasing the order of the enrichment functions.
Of course, it is obvious that enriching all the nodes or generating a finer mesh for the whole
application will give more accurate results than only modifying the enrichement functions
at some nodes. But then you have to deal with a larger computational system.

Relative error only p=0 Region A Regions A and B only p=2

Degrees of freedom

mesh1 4221 nodes 29.92% 26.05% 19.22% 5.65%

4240 dofs 5490 dofs 9270 dofs 25345 dofs

mesh2 20541 nodes 5.31% 4.9% 3.9621%

20560 dofs 26525 dofs 44975 dofs

Table 5.2. Evaluation of the effect of local enrichment on the L2 relative error for the convected propagation of
a plane wave in a non-uniform duct (800Hz,m = 0, n = 1). Note that the values for the case p=2 for all the nodes
of mesh2 are not indicated as it corresponds to more degrees of freedom than the reference solution.
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5.1.3 Conditioning

Conditioning is an important topic in computational methods such as the Partition of Unity
Method (polynomial or trigonometric enrichments [17, 18]), the Discontinuous Galerkin
Method [70], the Ultra Weak Variational Formulation [16, 19], etc.

In the case of plane wave bases, the condition number increases with the number of
nodes in the mesh. Note that this increases even quicker with a high number of plane
waves in the enrichment. One way of reducing this condition number is, for instance,
to use a non-uniform number of plane waves per nodes [19], another one is the use of an
appropriate preconditioner. This increase in condition number is due to linear dependencies,
very different sets of amplitude can represent the same acoustic field within an element
[17]. The risk is a loss of accuracy, but the authors cited in this section showed that
the solution remains accurate. They showed curves illustrating that the increase in the
condition number does not prevent the error to decrease. Gamallo et al. [16] showed that
as long as the solution is smooth, they obtain good accuracy even for high condition
numbers (e.g.: cond=1024). Figure 5.8 (issued from [18]) illustrates the decay of the L2

error with respect to the number of non-zero terms (nnz) populating the matrix and with
respect to the condition number. This has been obtained for the Partition of Unity Finite
Element Method (plane wave enrichment) and the Ultra Weak Variational Formulation for
the propagation in a two-dimensional hard walled duct of height h = 1m and length l = 2m.
They prescribed the propagation of the 12th mode for the non-dimensional wavenumber
kh = 40. For more details, please refer to [18]. Figure 5.8 shows that the increase of the
condition number, related to the increase of the number of non-zero terms, does not affect
the decrease of the error. Low level of error can be reached without being disturbed by the
conditioning.

However, Gamallo et al. [18, 16] showed that in the particular case of singular solutions
(e.g.: wave propagation in a L-shaped domain) the increase in condition number could
lead to a decrease in accuracy. This is illustrated in figure 5.9 (issued from [18]). The
results correspond to wave propagation in a two-dimensional L-shaped domain for the
wavenumber ka = 40 (for more details about the geometry, boundary conditions or the
analytic solution, please refer to [18]). Figure 5.9 shows that the error starts increasing from
a certain number of non-zero terms. This is unusual as we expect the error to decrease with
mesh refinement. The ill-conditioning has a negative effect on the accuracy. This prevents
the error to decrease below 1% in the coarse mesh. Note that the use of a non-uniform
number of plane wave in the basis functions allows to improve the condition number and
leads to better performances.

Aware of all these considerations, we evaluate the effect of the condition number on the
accuracy of the simulation using the Partition of Unity Method with polynomial enrich-
ment. Figures 5.10, 5.11 and 5.12 illustrate the relation which exists between the number of
degrees of freedom, the condition number and the accuracy (represented by the L2 relative
error). These results correspond to the simulation of the propagation of the second radial
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Fig. 5.8. Reproduced from [18]. A comparison of the two strategies for improving the accuracy. The errors presented
using solid lines are computed by refining the mesh (hmax = 0.26m & hmax = 0.13m) and using a fixed number of
basis functions (12). Dotted line errors are computed in the coarser mesh (hmax = 0.26m) and by increasing the
basis dimension. The results are shown for the non-dimensional wavenumber kh = 40 and for the 12th mode.

mode n = 2 of the first azimuthal order m = 1 at 800 Hz in a hard walled duct. The duct
is 2m long and its radius is 0.5m.

As the mesh is refined, the number of degrees of freedom increases and the error de-
creases (fig. 5.10). The convergence rate depends on the enrichment used. Note that it is
not a good idea, in terms of accuracy, not to include the linear terms (z− z0) and (r− r0)
in the second order enrichment. Figure 5.11 illustrates the evolution of the condition num-
ber with respect to the number of degrees of freedom. The condition number is calculated
with the MATLAB function cond. If the matrix is well conditioned, cond is close to 1.
It increases for poorly condition systems. In the case of the enrichments Vj1 = {1} and
Vjl = {1, (z − z0)

2, (r − r0)
2}, the condition number increases with the number of degrees

of freedom. However, for other enrichments the condition number is directly around a high
value: cond = 1018. This means that the system is ill-conditioned even for coarse meshes.
This can be explained with the linear dependencies which exist in the shape functions:
NjVjl.

Hazard [71] also observed this ill-conditioning in the case of polynomial Partition of
Unity Method applied to plate vibration. He observed a difference between the size of the
matrix and its rank (number of linearly independent columns or rows). This illustrates the
presence of linear dependencies. Aiming at reducing the condition number, he proposed to
use shifted enrichment functions {z − z0} instead of {z} and prevent nodes with prescribed
essential boundary conditions to benefit from enrichment functions. However, he has not
used these modifications since he dealt with the UMFPACK solver [45] which handles well
bad conditioned matrices.
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5.1 Duct propagation

Figure 5.12 confirms that high condition numbers do not prevent to reach good accuracy
levels. It can also be seen in figure 5.10 that the convergence rates are not affected by
the increase of the number of degrees of freedom. Note that the same behavior is also
obtained for higher polynomial orders. For instance, the condition number of the complete
polynomial of order 6 has a condition number variyng between 1 1020 to 5 1020.
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Fig. 5.9. Reproduced from [18]. A comparison of two approaches for choosing the number of plane wave basis
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Fig. 5.10. Relative error [%] with respect to the number of degrees of freedom for the propagation at 800 Hz of
the second radial mode of the first azimuthal order in a hard walled circular duct (L = 2m;Rd = 0.5m).
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Fig. 5.11. Condition number with respect to the number of degrees of freedom for the propagation at 800 Hz of
the second radial mode of the first azimuthal order in a hard walled circular duct (L = 2m;Rd = 0.5m).
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Fig. 5.12. Evolution of the relative error [%] with respect to the condition number for the propagation at 800 Hz
of the second radial mode of the first azimuthal order in a hard walled circular duct (L = 2m;Rd = 0.5m).
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5.2 Multipole radiation

We examine the parameters of the Mapped Infinite Partition of Unity Method and their
effect on the accuracy. This takes into account the discretization (topology of elements,
mapping), the radial and circumferential orders of the infinite elements, and the choice of
the polynomial enrichment.

The performances of the Mapped Partition of Unity Infinite Element are analysed
on two applications based on multipole radiation. The dipole (N = 1) and the multipole
(N = 7) radiation.

5.2.1 Infinite element parameters

This section analyses the influence of the parameters of the infinite elements such as the
radial m0 or the circumferential b0 order and the effect of the discretization (number and
topology of infinite elements).

All the results from this section are computed for the multipole N = 7 radiation at
700Hz. The acceleration boundary condition is prescribed on the boundary rs = 1m. The
theory (section 2.8.1) recommends to use an infinite radial order of m0 = N + 1 = 8.

We first examine the influence of the radial order of the infinite element. We decide
to minimise the error due to other parameters such as the approximation in the inner
region or the tangential approximation in the infinite elements. Hence, the interface Γ
is taken close to the acceleration boundary condition rΓ = 1.01m and the inner mesh is
generated with only one strip (nr = 1) of mapped finite elements (Q8). The mesh size in
the radial direction is equivalent to take 48 elements per wavelength (λ = 0.485m). In the
circumferential direction the number of elements varies with the enrichment:

• Vij = {1} with nθ = 280,

• Vij =
{

1, (z − z0) , (r − r0) , (z − z0)
2 , (r − r0)

2
}

with nθ = 140,

• Vij =
{

1, (z − z0) , (r − r0) , (z − z0)
2 , (r − r0)

2 , (z − z0) (r − r0) ,

(z − z0)
3 , (r − r0)

3 , (z − z0)
2 (r − r0) , (z − z0) (r − r0)

2
}

with nθ = 100

The number of elements in the circumferential direction is chosen to keep quite the
same number of degrees of freedom whatever the enrichment (see table 5.3). The mesh
(inner and outer regions) is very fine, we can then analyse the error due to the infinite
radial approximation.

Figure 5.13 illustrates the evolution of the accuracy with the radial order m0. The ac-
curacy is represented by the L2 relative error in the inner region. We expect the error to
decrease with the radial order until the recommended value m0 = 8 is reached. The decay
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Degrees of freedom m0 = 1 m0 = 2 m0 = 3 m0 = 4 m0 = 5 m0 = 6 m0 = 7 m0 = 8 m0 = 9

Vij constant - b0 = 1 562 843 1124 1405 1686 1967 2248 2529 2810

Vij quadratic - b0 = 1 1410 1551 1692 1833 1974 2115 2256 2397 2538

Vij quadratic - b0 = 2 1410 1692 1974 2256 2538 2820 3102 3384 3666

Vij cubic - b0 = 2 2020 2222 2424 2626 2828 3030 3232 3434 3636

Table 5.3. Number of degrees of freedom for the different enrichments with respect to the infinite radial order.

of the error is the same for all the inner enrichments. This sounds logical as the mesh is
very fine and the error is only due to the radial approximation in the infinite elements. As
the radial functions are the same whatever the enrichment in the inner region or whatever
the infinite circumferential functions, we observe that all curves are superimposed. Never-
theless, the behaviour becomes different as the infinite radial order gets close to m0 = 8.
We note that the error reaches a limit value. This is due to the accuracy of the approxima-
tion in the inner region and along the circumferential direction in the outer region. This
error will drop if the mesh of the inner region is refined but is not dependent on the radial
interpollation of the infinite elements. For instance, we observe that the use of a second
infinite circumferential order b0 = 2 with the quadratic enrichment is more accurate at
high radial order than the case with b0 = 13. This verifies the fact that at a radial order
close to m0 = 8, the accuracy is led by the circumferential approximation.

The simulations are performed with a circumferential order equal to b0 = 1 for the
constant enrichment, b0 = {1, 2} for the quadratic enrichment and b0 = 2 for the cubic
enrichment. Other simulations show it is not interesting (from the accuracy point of view)
to get higher infinite circumferential order than those used for this application.

The infinite circumferential approximation is analysed by varying the number
of elements in the circumferential direction and comparing the simulations with different
infinite circumferential orders (b0 = {1, 2, 4}). The simulation of the multipole N = 7
radiation is performed by taking an inner region comprised between rS = 1m and rΓ = 3m.
The inner mesh is generated with nr = 100 mapped Q8 elements in the radial direction and
a variable number of elements in the circumferential one nθ. The enrichment is composed
of second order functions and the radial order of the infinite elements is m0 = 8.

Whatever the circumferential order, the error decreases with the number of degrees
of freedom (i.e.: nθ) (fig. 5.14). We notice that the error is lower (nearly one order of
magnitude) for the case b0 = 2 than b0 = 1 with coarse meshes. But this difference
vanishes with fine meshes. This can be explained by the quality of the approximation
in the infinite element. It exists two ways to improve the approximation: increasing the
infinite polynomial order (increasing b0) or increasing the number of elements. We notice

3 This has also been observed by Astley [30] who noticed that quadratic infinite elements are more accurate than
linear ones
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Fig. 5.13. Evolution of the accuracy with respect to the radial order of infinite functions for three different
enrichments. The mesh is generated by one strip of elements between rS = 1m and rΓ = 1.01m. Radiation of a
multipole N = 7 at 700Hz (krS = 12.94).

an advantage to increase the polynomial enrichment rather than increasing the number of
elements.
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Fig. 5.14. Radiation of a multipole N = 7 at 700Hz (krS = 12.94), rS = 1m, rΓ = 3m, nr = 100, second
order enrichment. Influence of the number of elements in the circumferential direction (i.e. the number of infinite
elements) and the the order of circumferential infinite function.

It is not necessary to increase the infinite circumferential order above b0 = 2 (for this
application). Figure 5.14 shows that the use of a circumferential order b0 = 4 does not
increase significantly the accuracy compared to the b0 = 2 case. As the inner enrichment
is of second order, these results show that it is not necessary to have a circumferential
approximation of higher order in the outer region than in the inner one (as it does not
improve the quality of the solution). The accuracy is dependent of the whole mesh and not
only of the accuracy of the approximation in the outer region (infinite elements).
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We also compare the choice of the enrichment in the inner region and the influence of
the type of the elements (Q4 or Q8)4. We analyse the radiation of the multipole (N = 7)
at 700 Hz. The inner region is defined by rS = 1m and rΓ = 1.01m. It is meshed by one
strip of elements nr = 1. The infinite radial order is m0 = 7 and the circumferential order
b0 = 1 for the constant enrichment Vjl = 1 and b0 = 2 for the others (we verified that an
increase of b0 does not improve the accuracy measured by the L2 relative error in the inner
region).

Figure 5.15 illustrates the L2 relative error in the inner region for the use of two dif-
ferent elements (Q4 and Q8) and two different numbers of elements in the circumferential
direction (nθ = 10 or 30). This shows that the use of Q8 elements has a huge impact on
the quality of the solution. This can be explained by the improvement of the geometry and
the improvement in the definition of the phase µ.
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Fig. 5.15. Radiation of a multipole N = 7 at 700Hz (krS = 12.94), rS = 1m, rΓ = 1.01m, nr = 1, nbθ is the
number of elements in the circumferential direction. Influence of the type of element on the accuracy.

The same analysis is performed by using the inner enrichment function as infinite
circumferential functions. This is not detailed in the formulation chapter but it consists in
using the same circumferential function for all the radial functions (d = 1 : m0) instead of
defining the T d>1

j (equation 2.152). The results are shown in figure 5.16. It compares the
simulations where the circumferential functions are the same for all the radial functions
with those where the circumferential functions for radial orders d > 1 are defined by the
T d>1
j of equation 2.152. We notice that there is no improvement by using the same functions

for the whole infinite radial orders. Moreover this formulation has some drawbacks such
as the number of unknowns and the lack of robustness. If for instance we consider the
4 Q4 are classic quadrangle elements with four nodes and linear edges. The related Q4 infinite elements have
two nodes on the interface Γ and a linear edge. Q8 mapped elements are constructed with four nodes and
four mapping points (described at section 2.9.1 and illustrated in figure 2.15). The related Q8 mapped infinite
elements have two nodes on the interface Γ and one mapping point (described at section 2.9.3 and illustrated
in figure 2.20). Note that the degrees of freedom are located at nodes but not on the mapping points
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‘cubic’ enrichment (10 unknowns per node) in the inner region and an infinite radial order
m0 = 7, this means that each infinite node will have 70 unknowns. In the other case, the
infinite circumferential order enrichment b0 = 2 leads to 22 unknowns per infinite node
(10 for d = 1 and 2 for each d = 2 : 7). The other drawback corresponds to cases where
the infinite edge is along the r or the z direction. The enrichment function (1− r0)

i, for
instance, is then equal to zero in the whole infinite element which creates zero lines and
columns in the matrix. This leads to a singular problem.
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Fig. 5.16. Influence of the discretization and the enrichment on the accuracy (a) Circumferential infinite functions
are the same as the enrichment functions in the inner region (b) Use of circumferential functions given by equation
2.152. Multipole (N = 7) radiation: (700Hz, krS = 12.94), number of elements in the radial direction: nr = 1, and
in the circumferential one: nθ = {10, 30, 140}

We also obviously notice that if the infinite radial order is not appropriate (m0 = 3),
the error is bounded to the same value whatever the number elements in the circumfer-
ential direction (nθ). This means that the error is due to the bad representation in the
infinite direction radial direction and the accuracy does not improve by increasing the
circumferential approximation.

From these analyses, we can conclude that the accuracy of a simulation in an infinite
domain depends on several parameters. The radial order has to be appropriate: it depends
on the complexity of the acoustic field within the infinite elements. The topology of the
elements and the circumferential approximation has also a significant influence on the
accuracy. We recommend here to use Q8 finite and infinite elements and circumferential
infinite functions of order b0 = 2 when the inner enrichment is higher than Vij = {1}. A
last obvious point to ensure good accuracy is to have a good approximation in the inner
region as it has been observed in [30].

5.2.2 Dipole radiation: performance analysis

A convergence analysis is first performed on the dipole (figure 5.17) at 1100Hz. This figure
gives the relative error with respect to the number of degrees of freedom. The meshes used
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5.2 Multipole radiation

for the computation contains the same number of elements along the radial direction as
those along the circumferential one.
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Fig. 5.17. Dipole radiation at 1100Hz (krS = 20.3): Convergence curves showing the relative error εr with respect
to the number of degrees of freedom (dofs).

Several conclusions can be drawn from figure 5.17. It compares the proposed method
with the Finite Element Method (linear and quadratic elements). It also shows the perfor-
mances of the Mapped Infinite Elements developed.

The mesh used for Partition of Unity computations can be either Q4 elements or Q8
elements, whatever the enrichment. The Q4 element is a classical quadrangle element with
four nodes and straight edges. Each node contains a number of degrees of freedom cor-
responding to the enrichment used. The Q8 element is described by four nodes at the
corners of the element and four mapping points. These mapping points allow mapped ele-
ments with curved edges but they are not linked with degrees of freedom. The Q8 element
possesses quadratic mapping functions but the Partition of Unity functions Nj remain
bilinear functions.

Two different Q8 meshes are considered. The first one is an element mapped such as
it matches as well as possible the geometry of the application. The second one is a Q8
element chosen such as it has the same topology than a Q4 element. This is the reason
why it is called Q8quad, for quadrangle Q8 element.

The linear Finite Element Method and the¿degeneratedÀ Partition of Unity Method
are similar and have the worst properties of all in terms of accuracy. Note that figure 5.17
shows the constant enrichment {1}, for the Q8 element only as other elements give results
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which superimposes the plotted Q8 curve. The quadratic Finite Element and the first order
enrichment also correspond. The convergence rate for the second order enrichment with
Q8 elements performs better than the others.

Looking at the second order enrichment (figure 5.17), the Q8 element is, as expected,
more efficient than the Q4 one. The circular geometry is better represented with mapped
elements. But one should expect the Q4 to have the same properties than the Q8quad,
as they have the same geometry. It is not the case because the Q8 element, even with a
quadrangle topology, improves the Infinite Element formulation, especially for the definition
of the parameter µ (with the summation over two base nodes and one mapping point (Q8,
Q8quad) instead of the summation over two base nodes (Q4)).

Figure 5.19 illustrates converged solutions bounded by an error of 5%. It represents the
time required to solve the dipole radiation within the frequency range: 100Hz to 3600Hz.
Figure 5.18 shows the coarsest mesh used for the simulation using the second order enrich-
ment at 100 Hz. As for the previous case, the constant enrichment is only represented for
the Q8 element. The two other types of elements (Q4, Q8 quad) give results close to the
one on the figure. These curves confirms what was expected. The coupling of the method
with infinite elements is effective and gives good results. This allows either for reducing
the computational time while solving the same application or, for increasing the range of
frequencies which can be analysed.
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Fig. 5.18. Coarsest mesh used for the simulation of the dipole at 100 Hz with the second order enrichment. As it
can be noticed, the inner region is partitioned with Q8 elements and dashed lines represent the infinite elements.

Note also that for each enrichment, the three discretizations tend to give the same
results, except for the second order enrichment. In this case, there are 5 degrees of freedom
per node. A small number of elements is thus sufficient to compute an accurate solution.
However, this few number of elements does not allow a good representation of the circular
geometry with Q4 elements. This is the reason why the Q8 element is more accurate than
the Q4 one at small non-dimensional wavenumber.
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Fig. 5.19. Computational time (s) versus the non-dimensional wavenumber (krS) with an accuracy under 5%,
frequency varying from 100Hz to 3600Hz.

We can draw the same conclusion as for the application without Infinite Elements. The
Mapped Infinite Partition of Unity Method behaves like a p-FEM with infinite elements.
The advantage of this method compared to a p-FEM is the ability to locally adapt the
enrichment instead of refining mesh.

5.2.3 Multipole N = 7 radiation: performance analysis

The convergence curve analysing the accuracy of the numerical solution with respect of
the number of degrees of freedom is shown in figure 5.20. It is obtained by the radiation of
a multipole N = 7 at 700 Hz. The inner region is meshed with Q8 finite elements between
rS = 1m and rΓ = 3m. The number of elements varies and is proportional to nr = 5j and
nθ = 10j. The infinite elements, attached to the interface Γ , are of infinite radial order
m0 = 8 and circumferential order: b0 = 1 for Vjl = {1} and b0 = 2 for the others.

We illustrate the convergence rate of the enrichments. As expected the worst enrichment
is the constant Vjl = {1} which corresponds to the classic linear Finite Element Method.
The convergence rate increases until enrichment order p=2. However, for enrichments equal
or higher than p=4, the curves does not correspond to what was expected. The instabilities
with high polynomial orders deteriorates the quality of the simulation.

Figure 5.21 illustrates the computational time required for the simulation with respect
to the non dimensional wavenumber. We may also conclude that the most performant
enrichment orders are p=2 or p=3. For higher orders, there is a ‘loss’ of performance.
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We then recommend the use of polynomial enrichment of order 2 or 3 while the mesh
is coupled to infinite elements.
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Fig. 5.20. Multipole (N = 7) radiation at 700Hz (krS = 12.94): Convergence curves showing the relative error εr
with respect to the number of degrees of freedom (dofs).

0 10 20 30 40 50
0

50

100

150

200

250

300

350

kR

C
P

U
 T

im
e 

[s
]

 

 

p=0
p=2
p=3
p=4
p=5

Fig. 5.21. Multipole (N = 7) radiation from 100Hz (krS = 1.85) to 2900Hz (krS = 53.6): Performance curves
showing the required CPU time [s] with respect to the non dimensional wavenumber kR.
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5.3 Rigid piston radiation

Convergence analyses have been performed to illustrate the performances. The convergence
curves showing the L2 relative error in the inner region with respect to the degrees of
freedom compare the enrichment functions and the topology of the elements (Q4 or Q8).
Two different interfaces have also been chosen (figures 5.22 and 5.24). The simulations
have been performed with a frequency of 500 Hz and an infinite radial order m0 = 4. The
circumferential functions are of order b0 = 1 for the constant enrichment and b0 = 2 for the
others (it has been verified that it is not necessary to increase further the circumferential
approximation in the infinite elements).
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Fig. 5.22. Mesh of the inner region with the interface formed by two straight lines. The mesh is composed of 8 Q8
elements in the radial direction and 5 in the axial one. The nodes are represented by black circles and the mapping
points by red triangles. The mesh with Q4 elements is the same as the one illustrated without the mapping points.

The results obtained for the first mesh (straight interface), are shown figure 5.23(b)
for Q4 elements and figure 5.23(a) for mapped Q8 elements. The number of elements in
the radial and in the axial directions are proportional to 2n and n + 1, respectively. The
results are similar for both types of elements except for the cubic enrichment. This means
that at high polynomial order enrichments, the accuracy is dependent on the definition
of the phase µ as it is the only difference between the two computations: same shape
of elements, same number of degrees of freedom (the mapping points do not correspond
to unknowns), same boundary conditions, same shape functions (inner enrichment, same
radial and circumferential function).

The error stops decreasing after reaching a certain value. It has been found that this
limitation is due to the accuracy of the analytical solution (equation 3.5) which has been
evaluated by a numerical integration.

The same application has been analysed with an other interface Γ (figure 5.24). We take
the same number of elements in the radial, in the axial directions and along the interface.
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Fig. 5.23. Radiation of the piston at 500 Hz: Convergence curves showing the relative error εr with respect to the
number of degrees of freedom (dofs) with the interface formed by two straight lines (a) mapped Q8 elements (b)
Q4 elements. Two results exists for the second order and the cubic enrichment. The difference is the accuracy in
the integration of the analytical solution, illustrating that the limitation of the error is due to the accuracy of the
analytical solution. (Some simplifications have been made in the legend. For the cubic enrichment {z}, for instance,
meant {z − z0}).
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Fig. 5.24. Mesh of the inner region with the interface formed by an open circle. The mesh is composed of 6
elements in the radial direction, 6 in the axial one and 6 along the interface Γ . The nodes are represented by black
circles and the mapping points by red triangles. (a) mapped Q8 elements (b) Q4 elements.

The two topologies of elements are compared during a convergence analysis (figure 5.25).
We clearly see that the mapped Q8 elements provide better accuracy than the Q4 one.

We then recommend the use of high order enrichment and mapped Q8 elements as the
results obtained with Q4 and Q8 elements are quite the same or better for linear interfaces
and more accurate for Q8 elements in the case of curved interfaces.

A performance analysis (figure 5.26) comparing the time required to compute a solution
under an error of 5% with respect to a variation of the excitation frequency shows the
advantage of using a high order enrichment instead of a constant enrichment.

We remark that the accuracy is not limited by the condition number. Even for very
high condition number, we reach excellent accuracy: around 0.5% (fig. 5.27). For this
application, the error is bounded by the quality of the analytical solution (obtained by
numerical integration).

5.4 Conclusion

This chapter analyses the characteristics of the axisymmetric Mapped Infinite Partition of
Unity Method.

Convergence and performance analyses explore the accuracy and the efficiency of the
method for cavities and exterior applications. This leads us to suggest high order enrich-
ment for Mapped Infinite Partition of Unity simulations.

A section on the conditioning shows that the method leads to high condition numbers.
This has no influence on the solution as we use an appropriate solver. Bad conditioning
does not prevent for convergence but may perturb the accuracy. Then we recommend the
use of preconditioning.
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5.4 Conclusion

We also showed that the method could be used to improve locally the approximation.
This can been done by enriching the nodes where the approximation has to be modified.
We showed that this technique prevent for remeshing and leads to improved accuracy in
the whole domain.

The sections on exterior applications analysed the effect of radial and circumferential
infinite functions. They also illustrated the interest of meshing the domain with mapped
Q8 elements instead of the classical Q4 ones.
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Fig. 5.25. Radiation of the piston at 500 Hz: Convergence curves showing the relative error εr with respect to the
number of degrees of freedom (dofs) with the interface formed by an open circle (a) mapped Q8 elements (b) Q4
elements. (Some simplifications have been made in the legend. For the cubic enrichment {z}, for instance, meant
{z − z0}).
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Fig. 5.26. Radiation of the piston at 500 Hz: Curves showing the computational time (s) versus the non-dimensional
wavenumber (krp) with an accuracy under 5% with the interface formed by two straight lines for Q8 elements .
(Some simplifications have been made in the legend. For the cubic enrichment {z}, for instance, meant {z − z0}).
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Fig. 5.27. Radiation of the piston at 500 Hz: Curves showing the relative error εr with respect to the condition
number with the interface formed by two straight lines for Q4 elements. (Some simplifications have been made in
the legend. For the cubic enrichment {z}, for instance, meant {z − z0}).
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