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List

of Symbols

Greek symbols

Q

: acoustic velocity potential

: amplitude of the harmonic acoustic velocity potential
: numerical approximation of ¢3a

: numerical approximation in the outer region {2,

: shape function for the o degree of freedom

- infinite shape function for the a* degree of freedom

: angular frequency

: domain

:inner region

: outer region

i1 — M2

: Poisson ratio of specific heat capacities : ¢,/c,
s interface separating the inner and the outer domains
: Error

: phase function

: mass density

: steady mean density

: acoustic density

: stress tensor

: velocity potential

: mean velocity potential
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Arabic symbols

an

An
+

Amn

: normal acceleration of a vibrating wall [ms—2]
: normal acoustic admittance [m?skg™!]
: incident and reflected modal amplitude (m2s™!]
: speed of sound [ms™!]
: steady mean part of the speed of sound [ms™1]
: speed of sound at large distance from the source [ms™1]
: specific heat capacity at constant pressure [JK™1]
: specific heat capacity at constant volume [JK™1]
: number of unknowns of the approximation

: energy flow out of a surface [J]
s incident and reflected modal patern

: excitation frequency [s71]
: geometric factor

: mesh size [m]

: Hilbert space
s imaginary unit = v/ —1

: Sound intensity (Wm™2]
: stagnation entropy [Jkg™!]
: wavenumber [m 1]
s incident and reflected radial wavenumber [m~1]
: Boltzmann constant [JK™1]
- incident and reflected axial wavenumber [m™1]

: Legendre polynomial of order d for node j
: curve enclosing the boundary S

: curve enclosing the boundary .S,

: angular mode number

: mass flux [kgm=2s71]
: radial order of the infinite element
: mass of a molecule [kg]

: mach number

: Mapping function for node/point i

: outer normal to the domain

: radial mode number

: number of infinite degree of freedom

: size of the local approximation space at node j
: number of infinite nodes

: number of nodes

: Partition of Unity function of node

: number of angular modes

: number of radial modes

: number of reflected modes (unknown)



P : fluid pressure

Do : steady mean fluid pressure

Pa : acoustic pressure

Da - amplitude of the harmonic acoustic pressure
Dan : analytic amplitude of the harmonic acoustic pressure
a : heat flux

Quw : heat production

To : distance to the source point

R : specific gas constant

R; : radial function for infinite node j

R;l : radial function of order d for node j

S : entropy

S : boundary

S; : mapping functions for the interface I'

Su : Modal boundary

S : soft wall

Sy : vibrating wall

t : time

T : Temperature

T; : circumferential function for infinite node j
Up, : normal displacement of a vibrating wall

v : fluid velocity

%0 : steady mean fluid velocity

Voo : fluid velocity at large distance from the source
Vg : acoustic velocity

Vg : amplitude of the harmonic acoustic velocity
v : the Sobolev space W2 = H' = {f: f,Vf € L?}
Vit : ["" local approximation function of node j

Wy, : normal velocity of a vibrating wall

W; : weight function of node j

W] :infinite weight function of the infinite node j

Wt .nm : modal weight function of the angular and radial mode (m,n)
Operators

V :gradient operator

V. :divergence operator

V x : curl operator

A : Laplacian operator

D% : Total time derivative

. :the double dot product of two tensors
() :time average

R : Real part
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3

Axisymmetric formulation: Verification tests

This chapter compares numerical results obtained with the Mapped Infinite Partition of
Unity Method to analytical solutions or numerical results computed with the commercial
code ACTRANT™  The aim is to verify the axisymmetric formulation. Various applications
are illustrated with the aim to tackle all the potentialities of the model: closed or unbounded
domains, different boundary conditions, no-flow or convected simulations, topology of the
elements, enrichment functions and infinite shape function parameters.

The performances of the axisymmetric method with respect to formulation parameters
are evaluated in chapter 5 in terms of accuracy, computational time and frequency range.

3.1 Duct propagation

In this section we consider noise propagation in an infinite duct. The simulations are
performed by considering a finite section of the infinite duct and by prescribing modal
boundary conditions at both ends (fig. 3.1). As explained in section 2.9.2, the modal con-
dition allows us to prescribe the amplitude of the incident acoustic modes. It also permits
to avoid reflections of waves coming from the computational domain on the modal surface.
We consider one incident mode prescribed at the left modal boundary condition. We dis-
tinguish the left modal boundary condition to the right one by calling the right condition:
transmitted boundary condition as we do not prescribe incident mode from the right.

We simulate duct propagation within a finite duct (figure 3.1), bounded by modal
boundary conditions. This duct can be considered as a ‘closed domain’ as no infinite el-
ements have to be used. We use this application to verify our discretization method and
assess its performances (in 5.1) in ‘inner regions’.
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3.1 Duct propagation

Fig. 3.1. Geometry of the duct: infinite duct in grey, finite duct in blue and the axisymmetric computational
domain {2 given by the black rectangular domain.

Several simulations are performed to analyse different aspects and to illustrate the
propagation:

e Propagation of a propagating mode in a hard walled duct;
e Propagation of an evanescent mode in a hard walled duct;

e Propagation of a propagating mode in a partially lined duct (i.e.: acoustic treatment
of finite length applied on the inner duct walls);

e Convected propagation in a uniform mean flow in a hard walled duct;

e Convected propagation in a uniform mean flow in a lined duct.

As mentioned, the computations in this chapter are performed with an axisymmetric
model. The geometry of the whole duct is obtained by rotating the computational domain
around the axisymmetry axis and the pressure outside the computational plane is obtained
by multiplying the computed pressure by the factor e, where m is the azimuthal mode
and 0 the azimuthal angle (6 = 0 for the computational plane). The computational region
consists in a rectangular domain (figure 3.1). The modal boundary is located between
(z,7) = (0,0) and (0, Ry), where Ry is the radius of the duct. The transmitted boundary is
between (L,0) and (L, Ry), with L the length of the computational region. The wall of the
duct is located at r = R4. The radius has been chosen to be equal to R; = 0.5m and the
length L = 1m. A typical mesh of the computational region and the modal boundaries are
shown in figure 3.2. This mesh has been chosen so that there are more than 10 elements
per wavelength. The computed results may then be assumed to be accurate.

3.1.1 Propagating mode in a hard walled duct

The first application corresponds to the propagation of a wave at 800Hz (kRy4 = 7.39),
of the second radial mode (n = 2) of the first azimuthal order (m = 1). The wall of the
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3.1 Duct propagation
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Fig. 3.2. Computational domain meshed with 50 elements in the axial direction and 20 in the radial one. The
modal and transmitted boundary conditions are illustrated in red.

duct is chosen to be without acoustic treatment (hard wall). We assume there is no mean
flow in the duct. The mesh generated for the simulation is composed of 50 elements in
the axial direction and 20 in the radial one and the simulation is performed for a constant
enrichment: Vj; = {1}. The aim is to verify the method, the performances are analysed
further.

The MIPUM 0! computed results and the analytical solution are shown in figure 3.3
and figure 3.4, respectively. The analytical solution is given at section 2.6.1, by considering
the unique mode (m = 1,n = 2) at 800Hz. Figure 3.5(a) corresponds to representation of
the discrete L? norm (equation 3.1) and figure 3.5(b) illustrates the relative discrete L?
norm (equation 3.2). One may conclude that both solutions are close as the relative error
keeps under a level of 5%. Note that the differences grow with the axial direction so with
the wave propagation. This is due to the dispersion of the numerical scheme. The relative
L? norm is a good indicator of the accuracy of the computed solution. But care has to be
taken with this indicator, especially when the absolute part of the analytical solution is
close to zero as it is the case in this application for » = Om and r close to 0.35m.

5" (%;) = Pan (%;)] (3.1)

100 |]5h (Xj> — Dan (Xj)’ / |]5an (Xj)’ (3.2)

L MIPUM i—j—k corresponds to the Mapped Infinite Partition of Unity Method with an enrichment of polynomial
order i. Indices j and k correspond to the infinite radial and circumferential order respectively. They are omitted
in the case of inner region (no infinite elements)
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3.1 Duct propagation
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Fig. 3.3. MIPUM 0 computed results for the propagation at 800 Hz of the second mode of the first azimuthal
order in a hard walled duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic pressure.
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Fig. 3.4. Analytical results for the propagation at 800 Hz of the second mode of the first azimuthal order in a
hard walled duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic pressure.

o

-0.1
-0.2
-0.3
-0.4
-0.5

0.1
0.05

05 05
0.55
' 05
045
04 O
. 035 0.
03
0.25
' 02
’ 015

%

o

-0.1
-0.2
-0.3
-0.4
-0.5

3.1.2 Evanescent mode in a hard walled duct

This section illustrates the acoustic pressure distribution in the case of the prescription
of an evanescent mode. MIPUM 0 numerical result is compared to the analytical solution
as it has been done for the previous application. This application is quite identical to the
previous one, except for the radial mode which is prescribed. In this case, we choose to
prescribe the fourth radial mode of the first azimuthal test case n = 4 & m = 1. The mesh
generated for the simulation is composed of 50 elements in the axial direction and 20 in
the radial one (as for the previous application). The simulation is performed for a constant
enrichment: Vj; = {1}.
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3.1 Duct propagation
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Fig. 3.5. Propagation at 800 Hz of the second mode of the first azimuthal order in a hard walled duct: MIPUM 0
(a) Discrete L? norm (b) Relative discrete L? norm [%].

MIPUM 0 computed absolute and real part of the pressure are shown in figure 3.6.
Figure 3.7 illustrates analytical values where the analytical solution is given at section
2.6.1, by considering the unique mode (m = 1,n = 4) at 800 Hz. The comparison of the
analytical and computed results are shown figure 3.8. The relative discrete L? norm is not
shown here as a large part of the analytical solution is close to zero. This leads to high
values of relative discrete L? norm while the approximation is accurate. In this case, the
relative discrete L? norm is not a good indicator of the accuracy. We can conclude that
the method is suitable to analyse wave propagation in hard walled ducts and that we are
able to simulate as well propagating as evanescent duct modes.
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Fig. 3.6. MIPUM 0 computed results for the propagation at 800 Hz of the fourth mode of the first azimuthal
order in a hard walled duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic pressure.
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3.1 Duct propagation
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Fig. 3.7. Analytical results for the propagation at 800 Hz of the fourth mode of the first azimuthal order in a hard
walled duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic pressure.
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Fig. 3.8. Propagation at 800 Hz of the fourth mode of the first azimuthal order in a hard walled duct: MIPUM 0
discrete L? norm.

3.1.3 Propagating mode in a lined duct

We consider the same duct but we place a soft wall of finite length inside the duct. The
liner is uniform in the azimuthal direction, it is not segmented (there are no splices). It
is located between (0.14m, R;) and (0.42m, R;). The acoustic properties of the liner are
given by the normal admittance: A,, = 0.001 + 0.002i [m3N~1s~1kg~1].

We prescribe an incident mode through a modal boundary condition. The prescribed
mode is the same as prescribed for the first application: excitation frequency 800 Hz,
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3.1 Duct propagation

second radial order (n = 2) and first azimuthal order (m = 1). This choice has been done
to illustrate the effect of the liner. The first application shows the propagation in a hard
walled duct while this section illustrates the same conditions except for the presence of an
acoustic treatment.

MIPUM 0 numerical results are compared to the simulation obtained with the commer-
cial code ACTRANTM_ Both meshes are identical (50 elements in the axial direction and
20 in the radial one) and both simulations are carried out with quadrangles linear Finite
Elements (note that in our case it is equivalent to a constant enrichment (Vj; = {1}) as

demonstrated in section 2.5).
1 0.6
0.5
0.4
0.3
0.2
' 0.1
-0.1
0.2
-03
0.8 1

| .6
0.3
0.2
0.2 01
0 0.2 0.4 0.6 0.8 1 0.6

o

o

o
»

o

0.1

0.05

00 0.2

Il?

(a) (b)

Fig. 3.9. MIPUM 0 computed results for the propagation at 800 Hz of the second mode of the first azimuthal
order in a partially lined duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic pressure.

Both simulations (MIPUM 0 in figure 3.9 and linear finite elements (ACTRANTM)
in figure 3.10) give the same results and show the decay of the amplitude of the initial
incident wave. Also note that the outgoing noise at the end of the duct is no longer the
incident mode. The presence of the liner scatters the mode in a combination of radial order
modes n with the same azimuthal order m. This last remark stands only for liner without
splices. In the case of splices in the azimuthal direction (frequent in industrial applications
as it facilitates the manufacture and installation) the wave will also be scattered in the
azimuthal direction.
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3.1 Duct propagation
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Fig. 3.10. Computed results with ACTRANTM for the propagation at 800 Hz of the second mode of the first
azimuthal order in a partially lined duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic
pressure.

3.1.4 Convected propagation in a hard walled duct

This section illustrates wave propagation in the presence of flow. We keep the same config-
uration of the first application: propagating wave at 800 Hz in the axial direction, second
radial order n = 2 and first azimuthal order m = 1. The difference consists in considering
an axial mean flow vo = —100m/s1,. Note that the negative value indicates that the flow
goes in the opposite direction than the wave.

The flow modifies the distribution of the pressure?. In this case (upstream propagation),
we observe a shortening of the wavelength in the axial direction while the radial wavelength
has not been modified. The generation of the mesh for convected propagation require to
take into account the effect of the flow.

Figure 3.11 shows MIPUM 0 computed results and figure 3.12 illustrates the discrete L>
norms with the analytical solution calculated as explained in section 2.6.1. We observe as
expected that the effect of upstream flows (shortening of the axial wavelength by a factor
close to 0.7) decreases the accuracy of the approximation compared to the ‘no-flow’ case
with the same mesh (figure 3.5). The number of elements per wavelength has been divided
by a factor 1.4: from 30 elements per wavelength for the no flow application to 20 elements
per wavelength for the convected case. To increase the accuracy, a finer mesh should be
generated or a higher enrichment order has to be used.

2 The effect of uniform mean flow is illustrated in appendix 10.4 for free propagation of a plane wave in a two-
dimensional domain.
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3.1 Duct propagation
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Fig. 3.11. MIPUM 0 computed results for the convected (vog = —100m/sl.) propagation at 800 Hz of the second
mode of the first azimuthal order in a hard walled duct: (a) Absolute part of the acoustic pressure (b) Real part of
the acoustic pressure.
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Fig. 3.12. Convected (vo = —100m/sl.) propagation at 800 Hz of the second mode of the first azimuthal order
in a hard walled duct: MIPUM 0 (a) Discrete L? norm (b) Relative discrete L? norm [%].
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3.1.5 Convected propagation in a lined duct

This last application concerning duct propagation considers all the aspects together (i.e.
convected propagation in a lined duct). The wave which propagates with an excitation
frequency of 800 Hz in the duct is given by the mode (m = 1,n = 2). The mean flow is
uniform in the duct: vo = —100m/s1,. The liner (An = 0.001 + 0.0027) is located between
the positions (0.14m, Ry) and (0.42m, R,).
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3.1 Duct propagation

MIPUM 0 numerical results (figure 3.13) are compared to ACTRANT™ simulations
(figure 3.14) as it has been done for the non convected case.
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Fig. 3.13. MIPUM 0 computed results for the convected (vo = —100m/s1.) propagation at 800 Hz of the second
mode of the first azimuthal order in a lined duct: (a) Absolute part of the acoustic pressure (b) Real part of the
acoustic pressure.
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Fig. 3.14. ACTRANTM results for the convected (vo = —100m/s1.) propagation at 800 Hz of the second mode
of the first azimuthal order in a lined duct: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic
pressure.

This completes the verification of the axisymmetric model in the case of bounded appli-
cations. We analysed modal and transmitted boundary conditions, admittance boundary
condition and the effect of uniform mean flow on the propagation.
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3.2 Propagation in a non-uniform duct

3.2 Propagation in a non-uniform duct

We illustrate simulations for a convected propagation by considering a non-uniform mean
flow. This is performed by considering the propagation in a duct with non-uniform cross
section. The geometry is inspired from the inlet of a turbofan (equations 3.3). This geometry
has been analysed previously by Rienstra and Eversmann [36] in comparing multiple scale
and Finite Element solutions and by Gamallo and Astley [17] in comparing the Partition
of Unity Finite Element Method with a set of plane waves as solutions and the Finite
Element Method.

Ry (2) = maz |0, 0.64212 — v/0.04777 + 0.98234z/2]

—11(1-a) _ ,—11

11

Ry (2) =1 —0.184532" 4 0.10158

— (3.3)
with Ry and Ry being the radii of the spinner and the outer wall respectively, 2’ = z/L and
L = 1.86393m. Note that computational region is composed of the geometry of the inlet
terminated by a uniform circular duct of 1m long. The aim is to move the terminal plane
far from mean flow non-uniformities so that we can assume the mean flow to be uniform
at the terminal plane. The mean flow mach number is illustrated in figure 3.15. The mean
flow has been computed by the software ACTRANTM by prescribing the normal velocity
on each duct termination. We considered the flow to be irrotational and incompressible.
Note that the mean flow is computed on the acoustic mesh of each simulations.

0.5

‘.I!’ -7 i o e

il.l‘:\; ;

0 05 i 15 2 25
Fig. 3.15. Mean flow mach number.

We analyse the propagation of a plane wave at 1600 Hz (ka = 29.57 for a = 1m). This is
prescribed by a modal boundary condition on the source plane and a transmitted boundary
condition on the terminal plane.
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3.2 Propagation in a non-uniform duct

We compare computational results obtained with the Partition of Unity Method
to the linear Finite Element Method (ACTRANZM). The Partition of Unity simula-
tion (fig. 3.16(a)) is based on a mesh with 200 Q4 elements in the axial direction
and 40 in the radial one. The enrichment functions are polynomials of second order:
Vii={1,(z—2),(r—ro),(z— 20), (r — 7’0)2}. This leads to 41226 degrees of freedom.
The ACTRANTM solution (figure 3.16(b)) is based on a finer mesh of 600 Q4 elements in
the axial direction and 70 in the radial one but the number of unknowns is quite the same:
42692 degrees of freedom. This corresponds to approximately 25 elements per wavelength
(an overview of the meshes generated is shown figure 3.17). Both simulations are very close,
showing that the enrichment functions are well implemented. This verifies the model for
non-uniform mean flows.
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Fig. 3.16. Computed results (real part of the pressure) for plane wave propagation at 1600Hz (ka = 29.57 for
a = 1m): (a) Second order enrichment for the Partition of Unity Method (41226 dofs) (b) Linear Finite Element
Method (42692 dofs).
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(a) (b)
Fig. 3.17. Mesh around the spinner: (a) mesh 200 x 40 (b) mesh 600 x 70.
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3.3 Multipole radiation

3.3 Multipole radiation

This section analyses the properties of the Mapped Infinite Partition of Unity Method
on the radiation of a multipole. We first verify the Mapped Infinite Partition of Unity
Method by comparing the numerical solution to the analytical one. We then examine the
parameters of the method and their effect on the accuracy (section 5.2).

Multipole radiation is simulated by prescribing acceleration on a vibrating sphere. The
radius of the vibrating sphere is rg and the interface I" separating the infinite domain in an
inner and an outer region is a sphere of radius r (figure 3.18). The inner region is meshed
either by Q8 elements® while the outer region is partitioned with infinite elements of radial
order my and the circumferential polynomial is of order by.

The analytical solution [30] for the multipole of order NV and azimuthal order m is given
by equation (3.4) where Py denotes the associated Legendre polynomial which reduces to
Legendre polynomial of order N in case of m = 0, 7 is the spherical polar angle, 6 the
azimuthal angle, r is the spherical polar radius and h%) the spherical Bessel function of
the second kind.

I A

71

¢ I

r

Z
Fig. 3.18. Multipole: axisymmetric domain and geometry.

This work investigates multipole radiation with m = 0 and N =1 or N = 7. This is
generated by prescribing an acceleration on the vibrating sphere: a,, = ag Py (cos (7)).

Wy (kr)

N V) pimé (3.4)
WY (krg)

Pan () = (5522) Pi (cos (7))

Figure 3.19 illustrates the distribution of the real part of the pressure of the dipole
(N = 1). The excitation frequency is 1100Hz (krs = 20.3), rg = 1m. The domain is infinite,
but the pressure distribution has been represented between the vibrating sphere and the
interface I', with rp = 3m.

3 Q8 elements are the elements described in the axisymmetric formulation 2.9.1 with 4 nodes and 4 mapping

points. We also developed a Q4 element which is not detailed in this work but corresponds to a classical element
with linear edges (no mapping points). The influence of the mapping is shown in section 5.2.
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3.3 Multipole radiation
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Fig. 3.19. Dipole radiation: real part of the computed pressure (1100H z, krs = 20.3), rs = 1m, rr = 3m, number
of elements in the radial direction: n, = 60, and in the circumferential one: ng = 60, radial order of infinite elements

mo = 2, circumferential order of infinite elements by = 1 and enrichment in the inner region V;1 = {1}: MIPUM 0
2 1.

Figure 3.20 illustrates the distribution of the real part of the computed pressure for the
radiation of a multipole of order N = 7. The excitation frequency is 700Hz (krg = 12.94),
rs = 1m and rr = 3m. The computed results are obtained by using an inner mesh of 70
elements in the radial direction and 70 in the circumferential one. The inner enrichment is
Vi1 = {1}. 70 infinite elements are attached to the inner mesh. Each infinite element is of
radial order my = 8 and the circumferential one is by = 1. The domain is infinite, but for
practical reasons the real part of the pressure has been represented in the inner region and
in an outer region bounded with z € [—4, 4] and r € [0, 4].
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Fig. 3.20. Multipole (N = 7) radiation: real part of the MIPUM 0 2 1 computed pressure (700H z, krs = 12.94),
number of elements in the radial direction: n, = 70, and in the circumferential one: ng = 70.

-0.08

The absolute part of the computed pressure is compared to the analytical one (fig-
ure 3.21). The region where the pressure is illustrated is given by the points satisfying:

V22412 < 8m.
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3.3 Multipole radiation

Fig. 3.21. Multipole (N = 7) radiation: Absolute part of the MIPUM 0 2 1 computed (a) and analytic (b) pressure
(700H z, krs = 12.94), number of elements in the radial direction: n, = 70, and in the circumferential one: ngy = 70.

Figure 3.22(a) represents the discrete L? norm [p" — fq,| and figure 3.22(b) illustrates
the relative discrete L? norm: 100 |p" — ﬁm| / |Pan|. We conclude that MIPUM 0 2 1 solution
is accurate even if we note that the relative discrete L? norm reaches 20%. This is due to
analytic values close to zero.

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
(a) (b)
Fig. 3.22. Multipole (N = 7) radiation: MIPUM 0 2 1 (a) Discrete L? norm (b) Relative discrete L? norm [%):
(700H z, krs = 12.94), number of elements in the radial direction: n, = 70, and in the circumferential one: ngy = 70.
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3.4 Rigid piston radiation

3.4 Rigid piston radiation

This section does not bring a lot of new indications compared to the previous case of
multipole radiation but it confirms what has been said. It illustrates the simulation of the
radiation of a rigid piston in a non-convected semi-infinite region (figure 2.16).

We analyse the radiation of a piston of radius r, = 0.5m at 500 Hz. The vibration is
prescribed by an acceleration boundary condition (G, = 1m/s?). The inner region is limited
by the square (0,0) x (1,1). It is meshed with Q4 elements.

Figure 3.23 illustrates the radiation by the absolute and the real part of the pressure.
The simulation has been computed with the constant enrichment functions {1}. The mesh
is composed of 36 elements in the radial direction and 19 in the axial one. The infinite
radial order is equal to mo = 4 (it has been verified for this mesh that an increase in radial
order does not improve the accuracy).

The numerical results are compared to the analytical solution in figure3.24. The analyt-
ical solution is obtained by Rayleigh integrals. The piston S, is considered as a continuous
distribution of monopoles [30, 74, 75, 76]. The analytical solution at a point xg = (zg,rg)

is given by:
~ —ikR
~ —pPoln e
Pan (XQ) - o // R dSp

Sp

R = \/(zg2 + 1) + 12— 2rqreos (0) (3.5)

Fig. 3.23. MIPUM 0-4-1 computed results for the radiation of a rigid piston at 500 Hz. The black line represents
the interface I" separating the inner and outer region. (a) Absolute part of the acoustic pressure (b) Real part of
the acoustic pressure.

Note that the discrete L? errors in figure 3.24 are equal to zero at the piston. This has
been prescribed manually.
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3.5 Radiation of an infinitesimal cylinder within a uniform mean flow

L~

2

Fig. 3.24. MIPUM 0-4-1 computed results for the radiation of a rigid piston in an infinite domain at 500Hz: (a)
Discrete L? norm (b) Relative discrete L? norm.

This analysis confirms that the formulation is appropriate to simulate vibrating walls in
infinite domains. This also illustrates that the shape of the interface I" does not necessarily
be a circle.

3.5 Radiation of an infinitesimal cylinder within a uniform mean
flow

This section illustrates the Mapped Infinite Partition of Unity Method in the case of
convected radiation. The application analysed is the radiation of an infinitesimal cylinder
surrounded by a uniform mean flow along the axial direction vg = v91lz (mach number
M). The cylinder is of length L = 0.5m and has a radius which tends to zero (a ~ 0). As
the radius is infinitesimal, we assume that the distribution of the flow is not perturbed by
the presence of the cylinder. This application has been previously analysed by Astley [77].

We prescribe a traveling structural wave (of wavenumber k) on the cylinder by giving
the normal displacement: o
Uy = uoezwt—zksz (36)

This leads to prescribe on the cylinder:

00q ks
%“:a = iwug (1 + M?elk“) (3.7)

The analytical solution is derived by considering the cylinder to be a distribution of
monopole sources and by integrating the contributions on the cylinder (o = waug = 1).
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3.5 Radiation of an infinitesimal cylinder within a uniform mean flow

L/2
5 la ks 1 —ikez —i
¢an <Z7T) - ? (1 - M?> ﬁe( ks kkv)dzl
—L/2
R = \/(z—z’)2+ (1— M2)r2
M(z—-2)+ R
- 1\22 (3.8)

The mesh used for the computation is shown in figure 3.25. The inner region is deter-
mined by the half circle: 22 + 72 < 1m and r > Om. The mesh is generated by giving
the number of mapped Q8 elements along the cylinder (n,) and the number of elements in
the radial direction (n,.). Note that the number of elements along the interface (hence the
number of infinite elements) equals the number of elements along the piston increased by
two (n, + 2).

Fig. 3.25. Infinitesimal cylinder radiation: Mesh in the inner region (n, = 8,n, = 8). Elements are in blue, nodes
are black circles and mapping points are red triangles. The cylinder is on the range [—0.25,0.25].

Figure 3.26 illustrates the distribution of the pressure in the inner and the outer
region with a uniform mean flow: v = —85m/s 1z. The interface I" is represented
by the black line. The mesh is composed of n, = 30 elements along the piston and
n, = 30 in the radial direction. The structural and acoustic wavenumbers are equal:
ks = k = 924 m™ (f =500Hz). The inner enrichment is the constant one: V;; = 1.
The infinite radial order is mg = 4 and the circumferential one: by = 1.

The performances of Mapped Infinite Partition of Unity Method are analysed by com-
paring the computed and analytic pressures along the interface I' for three enrichments
(the circumferential enrichment is by = 1 for the constant enrichment and by = 2 for other
enrichments):

e constant function with n, = 30, n, = 30 (1151 dofs) in figure 3.27,
e second order functions with n, =12, n, = 12 (1120 dofs) in figure 3.28 and
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3.5 Radiation of an infinitesimal cylinder within a uniform mean flow

Fig. 3.26. Computed results for the infinitesimal cylinder radiation at 500 Hz with a uniform mean flow vy =
—85m/s 1z: (a) Absolute part of the acoustic pressure (b) Real part of the acoustic pressure

Pressure
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Fig. 3.27. Infinitesimal cylinder radiation with a constant enrichment at 500 Hz with a uniform mean flow
vo = —85m/s 1z, n, = 30, n, = 30: illustration of the analytical and the computed pressure along the interface
I': absolute (blue), real (red) and imaginary (black) part of the pressure.

e third order functions with n, = 8, n, = 8 (1126dofs) in figure 3.29.

The relative difference along the interface is plotted on the same figure for these three
results (fig. 3.30). We can observe that the best accuracy is reached for high enrichment
orders (note that all computations have the same number of unknowns).

We may conclude that the proposed method is verified for convected propagation.
We want to warn the reader that we observed that ill-conditioning could lead to a small
loss of accuracy (for more informations on the conditioning please refer to section 5.1.3).
We observe that the computation with the cubic enrichment of the infinitesimal cylinder
radiation at 500 Hz with a uniform mean flow vy = —85m/s 1z and a mesh given by
n, = 12 and n, = 12 leads to a L? relative error (equation 5.1) of 5.1%. The condition
number of the system is very high: cond = 7.7 107 as it is generally observed for the
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3.5 Radiation of an infinitesimal cylinder within a uniform mean flow
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Fig. 3.28. Infinitesimal cylinder radiation with a second order enrichment at 500 Hz with a uniform mean flow
vo = —85m/s 1z, n, = 12, n, = 12: illustration of the analytical and the computed pressure along the interface
I': absolute (blue), real (red) and imaginary (black) part of the pressure.
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Fig. 3.29. Infinitesimal cylinder radiation with a third order enrichment at 500 Hz with a uniform mean flow
vo = —85m/s 1z, n, = 8, n, = &: illustration of the analytical and the computed pressure along the interface I:
absolute (blue), real (red) and imaginary (black) part of the pressure.

Partition of Unity Method (section 5.1.3). We artificially improve the conditionning by
adding on the diagonal of the matrix a term proportional to the highest value of the
diagonal. This is a correction method classicaly used in preconditionning techniques for
solving ill conditionned systems. If this proportion is taken to be 107'* the L? relative
error drops to 3.37% and to 1.83% for 10719, Ill-conditioning has a slight negative influence
on the accuracy but we note that a basic preconditionning technique allows to reduce the
effect of ill conditionning.
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3.5 Radiation of an infinitesimal cylinder within a uniform mean flow
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= —85m/s 1z: illustration of

Fig. 3.30. Infinitesimal cylinder radiation at 500 Hz with a uniform mean flow vg
the relative difference [%] along the interface I'. (Some simplifications have been made in the legend. The third

order terms {z,y, ...} have to be read as {(z — z0),(y — yo),...})
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