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également pour leur encadrement: Guy Warzée pour sa gentillesse et sa patience ainsi que
Jean-Louis Migeot pour son soutien industriel et ses remarques pertinentes.
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fin de ce long parcours.

4



List of Symbols

Greek symbols

β :
√

1−M2
0

γ : Poisson ratio of specific heat capacities : cp/cv
Γ : interface separating the inner and the outer domains
ε : Error
µ : phase function [m]
ρ : mass density [kgm−3]
ρ0 : steady mean density [kgm−3]
ρa : acoustic density [kgm−3]
σ : stress tensor [Nm−2]
φ : velocity potential [m2s−1]
φ0 : mean velocity potential [m2s−1]
φa : acoustic velocity potential [m2s−1]

φ̃a : amplitude of the harmonic acoustic velocity potential [m2s−1]

φ̃h : numerical approximation of φ̃a [m2s−1]

φ̃Ih : numerical approximation in the outer region Ωo [m2s−1]
Φα : shape function for the αth degree of freedom
ΦIα : infinite shape function for the αth degree of freedom
ω : angular frequency [s−1]
Ω : domain
Ωi : inner region
Ωo : outer region
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Arabic symbols

ãn : normal acceleration of a vibrating wall [ms−2]
An : normal acoustic admittance [m2skg−1]
A±mn : incident and reflected modal amplitude [m2s−1]
c : speed of sound [ms−1]
c0 : steady mean part of the speed of sound [ms−1]
c∞ : speed of sound at large distance from the source [ms−1]
cp : specific heat capacity at constant pressure [JK−1]
cv : specific heat capacity at constant volume [JK−1]
dofs : number of unknowns of the approximation
E : energy flow out of a surface [J ]
E±mn : incident and reflected modal patern
f : excitation frequency [s−1]
G : geometric factor
h : mesh size [m]
H : Hilbert space
i : imaginary unit =

√
−1

I : Sound intensity [Wm−2]
J ′ : stagnation entropy [Jkg−1]
k : wavenumber [m−1]
k±r,mn : incident and reflected radial wavenumber [m−1]
kB : Boltzmann constant [JK−1]
K±
z,mn : incident and reflected axial wavenumber [m−1]

Ldj : Legendre polynomial of order d for node j
Ls : curve enclosing the boundary Ss
Lv : curve enclosing the boundary Sv
m : angular mode number
m′ : mass flux [kgm−2s−1]
m0 : radial order of the infinite element
mw : mass of a molecule [kg]
M0 : mach number
Mi : Mapping function for node/point i
n : outer normal to the domain
n : radial mode number
nId : number of infinite degree of freedom
n (j) : size of the local approximation space at node j
nni : number of infinite nodes
nodes : number of nodes
Ni : Partition of Unity function of node i
Nm : number of angular modes
Nn : number of radial modes
NM : number of reflected modes (unknown)
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p : fluid pressure [Pa]
p0 : steady mean fluid pressure [Pa]
pa : acoustic pressure [Pa]
p̃a : amplitude of the harmonic acoustic pressure [Pa]
p̃an : analytic amplitude of the harmonic acoustic pressure [Pa]
q : heat flux [Wm−2]
Qw : heat production [J ]
ro : distance to the source point [m]
R : specific gas constant [JK−1mol−1]
Rj : radial function for infinite node j
Rd
j : radial function of order d for node j

s : entropy [Jkg−1K−1]
S : boundary
Si : mapping functions for the interface Γ
SM : Modal boundary
Ss : soft wall
Sv : vibrating wall
t : time [s]
T : Temperature [K]
Tj : circumferential function for infinite node j
ũn : normal displacement of a vibrating wall [m]
v : fluid velocity [ms−1]
v0 : steady mean fluid velocity [ms−1]
v∞ : fluid velocity at large distance from the source [ms−1]
va : acoustic velocity [ms−1]
ṽa : amplitude of the harmonic acoustic velocity [ms−1]
V : the Sobolev space W 1,2 = H1 = {f : f,∇f ∈ L2}
Vjl : lth local approximation function of node j
w̃n : normal velocity of a vibrating wall [ms−1]
Wj : weight function of node j
W I

j : infinite weight function of the infinite node j
WM,nm : modal weight function of the angular and radial mode (m,n)

Operators

∇ : gradient operator
∇· : divergence operator
∇× : curl operator
∆ : Laplacian operator
D
Dt

: Total time derivative
: : the double dot product of two tensors
〈 〉 : time average
< : Real part
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2

Formulation

This chapter addresses the formulation of acoustic wave propagation within a flow in a
domain Ω ∈ R

n (n = 1 : 3). The relations are valid for the propagation in an unbounded
region and for indoor applications (bounded domains).

The sound field is considered as small perturbations of the flow, small compared to the
corresponding mean flow quantities. These acoustic perturbations represent the propaga-
tion of a wave and are chosen to have a time-harmonic variation.

We first establish the convected wave equation, by considering a compressible invis-
cid perfect isentropic irrotational gas flow. The unknown of this equation is the acoustic
velocity potential which is linked to the particle acoustic velocity, hence to the acoustic
pressure. The variational formulation is then derived from this equation by a weighted
residual method as procedure.

The basic equations and assumptions are described in section 2.1. The most interesting
result of this section is the convected wave equation which is a scalar partial differential
equation expressing the propagation of acoustic waves traveling in an irrotational mean
flow. Since it is not possible to solve this equation analytically for common applications, a
computational method is derived from the variational formulation of the convected wave
equation (section 2.2) for which typical wall boundary conditions are presented in section
2.3.

A literature review of available numerical methods is given at section 2.4. We detail the
Partition of Unity Finite Element Method (section 2.5), leading to the matrix system to
solve. This section is followed by the prescription of modal boundary conditions (section
2.6). Their conditions are not presented with the classical wall boundary conditions since
the author considered it easier, for comprehension, to explain them after introducing the
approximation scheme and the matrix formulation.

An additional numerical treatment has to be taken into account to deal with unbounded
applications. A literature review about these techniques is given at section 2.7. The Mapped
Infinite Partition of Unity Method, the selected treatment, is presented in section 2.8.
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2.1 Convected wave equation

The complete three-dimensional computational method has been expressed in an ax-
isymmetric formulation (section 2.9). This allows to save computational time when the
geometry of the application can be obtained by revolution.

2.1 Convected wave equation

The convected wave equation describes the propagation of an acoustic wave within a flow.
This equation is based on fundamental relations such as mass and momentum conservation
equations. The motion of fluids are based on the continuum approximation. This means
that flow quantities are smooth functions in (x, t). The convected wave equation is obtained
under a number of assumptions for the fluid and the flow field.

• The fluid is an ideal gas.

• It is considered in a local thermodynamic equilibrium.

• The fluid is non viscous and is non heat-conducting.

• Flow quantities can be separated in steady mean flow contributions and their harmonic
acoustic perturbations, where mean flow is uniform at large distance from the source.

• Gravity forces are neglected.

These assumptions correspond to a compressible perfect isentropic irrotational gas flow.
The previous notions are detailed in this section. The following equations that will be used
in the formulation have been inspired by references [67, 44, 36, 37, 38, 17].

The mass conservation is given by:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

where ρ is the mass density of the flow, t is the time and v is the fluid velocity vector.

The momentum equation is:
Dv

Dt
= −∇p

ρ
(2.2)

since we neglected the gravity forces and considered a non viscous fluid. The total derivative
(
D
Dt

)
is defined by:

D

Dt
=

∂

∂t
+ v · ∇ (2.3)

18



2.1 Convected wave equation

The energy equation is:

ρT
Ds

Dt
= −∇ · q+ σ:∇v +Qw (2.4)

where T is the temperature, q is the heat flux, Qw is the heat production per volume unit
and σ the stress tensor. Since we assumed no heat sources are present and the heat transfer
and viscous dissipation are negligible, the flow is isentropic Ds

Dt
= 0. We also assume the

flow being uniform at large distance which lead to a uniform entropy ∇s = 0. This is called
homentropic flow.

The three main flow quantities are related by the ideal gas law:

p = ρRT (2.5)

where p is the pressure, R is the specific gas constant, the ratio R = kB
mw

of the constant
of Boltzmann kB and the mass of a molecule mw. Since we assume a local thermodynamic
equilibrium for the flow, this implies for a homogeneous fluid that two intrinsic state
variables fully determine the state of the fluid (e.g. : s, ρ). Then:

dp =

(
∂p

∂ρ

)

s

dρ+

(
∂p

∂s

)

ρ

ds (2.6)

The flow is defined as isentropic (ds = 0), the speed of sound is defined by:

c =

√
(
∂p

∂ρ

)

s

(2.7)

For homentropic flows, the thermodynamic process is adiabatic:

p = Kργ (2.8)

where γ = cp
cv

is the Poisson ratio of the specific heat capacities at constant pressure and
constant volume, respectively.

Equation 2.7 becomes:

c =

√

γ
p

ρ
(2.9)

or, by using equation 2.8:
c2 = γKργ−1 (2.10)

We restrict the flow to be irrotational. This means that the flow velocity vector v can
be obtained from the scalar velocity potential φ:

v = ∇φ (2.11)
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2.1 Convected wave equation

Considering equations 2.3 and 2.11, momentum equation 2.2 becomes:

∇
(
∂φ

∂t
+
∇φ.∇φ

2
+

∫
dp

ρ

)

= 0 (2.12)

By using equation 2.8, the integral part becomes:

∫
dp

ρ
=

c2

γ − 1
(2.13)

We can write the so-called Bernoulli equation 2.14 from equations 2.12 and 2.13:

∂φ

∂t
+
v2

2
+

c2

γ − 1
=
v2
∞

2
+

c2∞
γ − 1

(2.14)

with v2 = v ·v, c∞ and v∞ being respectively the sound speed and the fluid velocity vector
at large distance from the acoustic sources where we assume the flow to be uniform.

The flow quantities are decomposed in their steady mean flow ()0 and harmonic acoustic
()a parts:

ρ = ρ0 + ρa (2.15)

p = p0 + pa (2.16)

v = v0 + va (2.17)

φ = φ0 + φa (2.18)

Note that acoustic perturbations are small compared to mean flow quantities. Equation
2.14 can be rewritten as:

c2 = c2∞ − (γ − 1)

(
∂φa
∂t

+
∂φ0

∂t
+
v2

0 − v2
∞

2
+ v0 · ∇φa +

∇φa · ∇φa
2

)

(2.19)

With the assumption that the uniform flow is stationary, neglecting second order terms
and exploiting equation 2.10, equation 2.19 becomes:

Kγ (ρ0 + ρa)
γ−1 = c20

(

1− γ − 1

c20

(
∂φa
∂t

+ v0 · ∇φa
))

(2.20)

where we define c0 as:

c20 = c2∞ − (γ − 1)

(
v2

0 − v2
∞

2

)

(2.21)

Then:

ρa = −ρ0 +

(
c20
Kγ

) 1
γ−1
(

1− γ − 1

c20

(
∂φa
∂t

+ v0 · ∇φa
)) 1

γ−1

(2.22)
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2.1 Convected wave equation

Equation 2.22 can be expressed as follows:

ρa = −ρ0 + ρ0

(

1− γ − 1

c20

(
∂φa
∂t

+ v0 · ∇φa
)) 1

γ−1

(2.23)

Then, developing the last term of equation 2.23 with a Taylor series, we finally obtain:

ρa = −
ρ0

c20

(
∂φa
∂t

+ v0 · ∇φa
)

(2.24)

or,

ρa = −
ρ0

c20

Dφa
Dt

(2.25)

The relation between the acoustic pressure and the acoustic potential is obtained from
the previous relation 2.25 by considering the linearized thermodynamic relation 2.7:

pa = −ρ0
Dφa
Dt

(2.26)

Taking into account the multiple scale decomposition, the mass conservation equation
2.1 becomes:

∂ρ0

∂t
+
∂ρa
∂t

+∇ · (ρ0v0) +∇ · (ρ0va) +∇ · (ρav0) +∇ · (ρava) = 0 (2.27)

As we assume that the mean flow is stationary, the first term of equation 2.27 is equal
to zero. The last term of the same equation is neglected. This equation is then decomposed
in a zero order (equation 2.28) and a first order (equation 2.29) equations. The zero order
equation can be used to solve the irrotational mean flow. This equation is non linear
because the mean flow density ρ0 depends on the mean flow velocity v0. It has to be solved
iteratively.

{

∇ · (ρ0v0) = 0
v2
0

2
+

ρ
(γ−1)
0 Kγ

γ−1
= v2

∞

2
+ c2∞

γ−1

(2.28)

∂ρa
∂t

+∇ · (v0ρa) +∇ · (ρ0∇φa) = 0 (2.29)

Combining equations 2.29 and 2.25, we obtain the convected wave equation. In the
following, we assume the mean flow quantities to be known, such that the only unknown
is the acoustic velocity potential.
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2.2 Variational formulation

− ∂

∂t

(
ρ0

c20

Dφa
Dt

)

−∇ ·
(
ρ0

c20

Dφa
Dt

v0

)

+∇ · (ρ0∇φa) = 0 (2.30)

The small acoustic perturbations are considered harmonic:

φa (x, t) = <
(

φ̃a (x) e
iωt
)

(2.31)

where ω = 2πf is the angular frequency and f is the excitation frequency.

The convected wave equation 2.30 becomes:

∇ ·
(

ρ0∇φ̃a −
ρ0

c20

(

v0 · ∇φ̃a
)

v0

)

− iω

(
ρ0

c20
v0 · ∇φ̃a +∇ ·

(
ρ0

c20
φ̃av0

))

+
ω2ρ0

c20
φ̃a = 0 (2.32)

2.2 Variational formulation

The variational formulation is obtained by using a standard weighted residual procedure
for equation (2.32). The domain Ω is surrounded by a boundary S; W is a weight function
and V the Sobolev space W 1,2 = H1 = {f : f,∇f ∈ L2}.

Integrating the product of the convected wave equation times a weight function leads
to:

∫

Ω

W∇ ·
(

ρ0∇φ̃a −
ρ0

c20

(

v0 · ∇φ̃a
)

v0 − iω
ρ0

c20
φ̃av0

)

dΩ

−
∫

Ω

iωW

(
ρ0

c20
v0 · ∇φ̃a

)

dΩ +

∫

Ω

ω2ρ0

c20
Wφ̃adΩ = 0 ∀W ∈ V (2.33)

The first term is rewritten using the identity, F · ∇a = ∇ (Fa)− a∇ · F:
∫

Ω

∇ ·
(

ρ0W∇φ̃a −
ρ0

c20
W
(

v0 · ∇φ̃a
)

v0 − iω
ρ0

c20
Wφ̃av0

)

dΩ

−
∫

Ω

(

ρ0∇φ̃a −
ρ0

c20

(

v0 · ∇φ̃a
)

v0 − iω

(
ρ0

c20
φ̃av0

))

· ∇WdΩ

−
∫

Ω

iωW

(
ρ0

c20
v0 · ∇φ̃a

)

dΩ +

∫

Ω

ω2ρ0

c20
Wφ̃adΩ = 0 ∀W ∈ V (2.34)
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2.3 Boundary conditions

Following the divergence theorem applied to the first integral of the previous relation
2.34:

−
∫

Ω

(

ρ0∇φ̃a −
ρ0

c20

(

v0 · ∇φ̃a
)

v0

)

· ∇WdΩ

−iω
∫

Ω

ρ0

c20

(

Wv0 · ∇φ̃a − φ̃av0 · ∇W
)

dΩ + ω2

∫

Ω

ρ0

c20
Wφ̃adΩ

=

∫

S

ρ0

c20
W
(

v0 · ∇φ̃a
)

n · v0dS −
∫

S

ρ0Wn · ∇φ̃adS

+iω

∫

S

(
ρ0

c20
Wφ̃av0 · n

)

dS ∀W ∈ V (2.35)

where n is the normal of the boundary, chosen to be pointing outside the domain Ω.

In the following, we consider three-dimensional applications. The domain Ω is a volume
of fluid and the boundary S is a surface. Some three-dimensional applications have special
geometrical and flow properties. This is taken into account (section 2.9) and leads to an
axisymmetric formulation.

2.3 Boundary conditions

The integral over the boundary S allows for prescribing boundary conditions. It corresponds
to the acoustic mass flow rate

∫

S

(ρ0va + ρav0) · ndS but it is not a usual quantity to

prescribe. In common applications, the boundary is composed of a number of walls which
may vibrate or be covered by an absorbing material. This leads in flow respectively to
vibrating wall, and Myers (or admittance) boundary conditions. The Myers boundary
condition [39] allows to represent absorbing walls (such as curtains, liners, etc.) in presence
of mean flow. Instead of walls, the boundary can also represent the outlet of a duct radiating
in the domain Ω. It is then convenient to create the modal boundary condition which
enables to prescribe incident and reflected duct modes.

2.3.1 Vibrating wall boundary condition

We consider vibrating walls as a part of the boundary Sv ∈ S which moves harmonically
relative to a given frame with a normal displacement to the reference un = ũne

iωt. The
vibration is prescribed by giving the normal displacement of the wall ũn but it can also be
done by giving its normal velocity wn = w̃ne

iωt or normal acceleration an = ãne
iωt, as they

are related by:
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2.3 Boundary conditions

ũn = − iw̃n

ω
= − ãn

ω2
(2.36)

We assume that there are no voids at the wall interface and that the steady mean
flow velocity v0 is tangent to the undeformed stationary boundary (the boundary is an
impermeable wall thus the normal mean flow velocity is null v0 · n = 0).

Considering the last assumption and the relation ∇φ̃a = ṽa, leads to a simplification of
the boundary integral of the weak formulation 2.35.

∫

Sv

ρ0

c20
W
(

v0 · ∇φ̃a
)

n · v0dS −
∫

S

ρ0Wn · ∇φ̃adS

+iω

∫

Sv

(
ρ0

c20
Wφ̃av0 · n

)

dS

= −
∫

Sv

ρ0W ṽa · ndS (2.37)

The Myers expression [39] given at expression 2.38 expresses the proper impenetrable
boundary condition on the acoustic field in the presence of a base flow. It links the normal
part of the acoustic flow velocity ṽa ·n to the normal displacement ũn of the vibrating wall
Sv. This equation assumes the fluid to be inviscid and implies the continuity of particle
displacement and pressure through an infinitely thin boundary layer.

ṽa · n = iωũn + v0 · ∇ũn − ũnn · (n · ∇)v0 (2.38)

The boundary integral takes a form which is not convenient as it requires both the
gradient of the wall displacement and the gradient of the mean flow velocity. A more
suitable form has been proposed by Eversman [41]. It is based on the Myers expression
modified by the use of some vector identities and previous relations.

ρ0Wv0 · ∇ũn = ρ0v0 · ∇ (Wũn)− ρ0ũnv0 · ∇W
= ∇ · (Wρ0v0ũn)−Wũn∇ · (ρ0v0)− ρ0ũnv0 · ∇W
= ∇ · (Wρ0v0ũn)− ρ0ũnv0 · ∇W (2.39)

As
∇ · (ρ0v0) = 0

and, since v0 · n = 0; the following equation holds

ρ0Wũnn · (n · ∇)v0 = n · (n · ∇) (ρ0Wũnv0)− v0 · n (n · ∇) (ρ0Wũn)

= n · (n · ∇) (ρ0Wũnv0) (2.40)
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2.3 Boundary conditions

Considering these relations and the fact that n·n = 1 and that the vector triple product
(a× (b× c) = (a · c)b− (a · b)) c, the boundary integral 2.37 becomes:

−
∫

Sv

ρ0W ṽa · ndS = −
∫

Sv

(iωρ0Wũn − ρ0ũnv0 · ∇W )dS

−
∫

Sv

(∇ · (Wρ0v0ũn)− n · (n · ∇) (ρ0Wũnv0))dS

= −
∫

Sv

(iωρ0Wũn − ρ0ũnv0 · ∇W )dS

−
∫

Sv

n · ∇ × (n× (Wρ0v0ũn))dS (2.41)

As it is explained by Eversman in [41], the use of Stokes’ theorem on the last boundary
integral term leads to a line integral 2.42 over Lv which should enclose the boundary Sv. In
general, the vibrating wall is surrounded by a hard wall, like it is the case for a piston (fig.
2.1). Then, there is a curve (Lv) over which the integral 2.42 vanishes as the displacement
of a hard wall is null.

−
∫

Sv

n · ∇ × (n× (Wρ0v0ũn))dS = −
∫

Lv

(n× (Wρ0v0ũn)) ·dL

= 0 if ũn = 0 on Lv (2.42)

By considering equation 2.41, we can remark that boundary integral for a hard wall is
null as the displacement is null over the whole wall.

2.3.2 Admittance boundary condition

Contrary to hard walls, soft walls (such as curtains, liners, ...) react to the acoustic pressure.
The velocity of the soft wall (Ss) is linked to the acoustic pressure through the normal
admittance coefficient (An) where An = a + ib is a complex number (see equation 2.44).
This coefficient depends on the material covering the wall.

We assume that the soft wall is impermeable to the flow v0 · n = 0 and that the
Myers boundary condition 2.38 links the normal acoustic flow velocity va · n to the wall
displacement un. The main assumption to obtain Myers expression [39] consists in the
continuity of the particle displacement through an infinitely thin boundary layer. Then
the previous development for the boundary integral in the case of a vibrating wall can be
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2.3 Boundary conditions

Fig. 2.1. Representation of a vibrating piston (in red: Sv) included in a hard wall (in grey).

followed to obtain equation 2.41, as it has been done by Eversman [41]. Then by considering
that the displacement of the soft wall is related to the material property An and the acoustic
potential φ̃a given in equation 2.44, the boundary integral over the soft wall becomes:

−
∫

Ss

ρ0W ṽa · ndS =

∫

Ss

Anρ
2
0

(

Wv0 · ∇φ̃a − φ̃av0 · ∇W
)

dS

+iω

∫

Ss

Anρ
2
0φ̃aWdS

− 1

iω

∫

Ss

Anρ
2
0

(

v0 · ∇φ̃a
)

(v0 · ∇W )dS

+

∫

Ls

n×
(
Anρ

2
0Wv0

iω

(

iωφ̃a + v0 · φ̃a
))

·dL (2.43)

as

w̃n = Anp̃a

ũn = −An

iω
ρ0

(

iωφ̃a + v0 · ∇φ̃a
)

(2.44)

The previous remark concerning the line integration also stands here. If there exists a
surrounding curve (Ls) lying on a hard wall, this line integral vanishes.
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2.4 Literature review of numerical methods

2.4 Literature review of numerical methods

A common approach for simulating turbofan noise radiation in the frequency domain is
the use of the Finite Element Method, typically with linear or quadratic shape functions.
Note that these simulations could also be performed in the time domain with a mathemat-
ical model based on the Linearized Euler Equations (LEE) by the use of the Dispersion
Relation Preserving (DRP) scheme [82] or the Discontinuous Galerkin Method (DGM)
[87]. The frequency domain Finite Element Method is effective for axisymmetric models at
moderate frequencies but for three-dimensional models the simulation is limited to a range
of frequencies which does not include all the contributions needed for realistic applications.
The Finite Element Method is a deterministic approach in which the calculation domain is
meshed such that the waves can be represented accurately by polynomial shape functions.
This means that meshes are frequency dependent. A general rule of the thumb which is
widely used advocates the use of 6 to 10 linear elements to approximate a wavelength in
the solution. This rule has the virtue of simplicity, but has been shown to be invalid for
short wavelength problems for which Ihlenburg and others [1, 2, 3, 4] have shown that the
error (in relative H1 semi-norm) of the acoustic finite element solution for the Helmholtz
equation is composed of two terms, interpolation (a) and pollution error (b):

ε|H1 = C1 (p)

(
kh

2p

)o

︸ ︷︷ ︸

(a)

+C2 (p) k

(
kh

2p

)o+1

︸ ︷︷ ︸

(b)

(kh ≤ α < π) (2.45)

where ε|H1 is the error in H1 semi-norm, (C1, C2) are constants which does not depend
on the wavenumber k nor the size of the mesh h, p the polynomial order of the shape
functions (this notation may be confusing with the notation p corresponding to the fluid
pressure) and o = min (l, p) if we assume that the exact solution is of regularity l + 1.
The proof has been carried out for constant resolution, i.e. under the assumption kh ≤ α.
Equation (2.45) shows that keeping the term kh constant while increasing the frequency is
not sufficient to ensure a constant error. The effect of this relation is that the mesh should
contain more than the classic 6 to 10 elements per wavelength when applied to shortwave
problems in acoustics, such as turbofan radiation, where many wavelengths of the solution
are contained within the computational domain. This requires of course very large amount
of computer resources. For this reason, O.C. Zienkiewicz [5] classified in the year 2000 short
wave computations as unsolved problems for the finite element method.

Several methods have been proposed to reduce the numerical error of deterministic
methods, see Thompson [6] for a recent review. The basic idea is, whatever the formulation,
to improve the interpolation scheme. An active field of research is based on the inclusion
of a priori solution in the approximation, i.e. local set of plane waves.

The first way is to enrich the existing Finite Element approximation. In the case of
the Partition of Unity Finite Element Method [7, 8, 9], the Finite Element functions are
multiplied by local enrichment functions which can be polynomial, trigonometric, etc. The
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2.4 Literature review of numerical methods

Generalized Finite Element Method [10, 11, 12, 13] is based on the same principles except
that the approximation is the combination of polynomial finite element and Partition of
Unity function. The Discontinuous Enrichment Method [14] separates the unknown field
in two scales, the first one (called coarse scale) constructed by piecewise polynomial Finite
Element functions and the fine scale, chosen to be particular solutions of the problem. The
fine scale is allowed to be discontinuous across element boundaries and the continuity is
then forced by Lagrange multipliers.

With the same objective, the Trefftz formulation presented in 1926 has been re-
examined by Desmet et al. under the name Wave Based Method [15]. The approximation is
assumed to be purely composed of local solutions of the problem within each element (plane
waves). No volume integration has to be performed, only integrals over the boundary to
prescribe boundary conditions and inter-elements boundaries to guarantee the continuity
of the solution. Gamallo and Astley [16] compared two Trefftz methods for wave problems
based on the Ultra Weak Variational Formulation [19, 20] and the Least Square Method
[21]. The Ultra Weak Variational formulation uses integration by parts to derive a varia-
tional formulation that weakly enforces appropriate continuity conditions between elements
via impedance boundary condition. While the Least Square Method enforces the continuity
across element boundaries by minimizing the least square difference of the solution and
its derivative. Gabard [54] shows that the Ultra Weak Variational Formulation is in fact a
subset of the Discontinuous Galerkin Method [55] with plane waves (note that the Discon-
tinuous Galerkin Method is in fact a variant of the Discontinuous Enrichment Method for
which the polynomial field is dropped).

Huttunen, Gamallo and Astley [18] compared the Partition of Unity Finite Element
method locally enriched with a set of plane waves to the Ultra Weak Variational Formula-
tion. In the Ultra Weak Variational Formulation, the approximation is purely constructed
with a set of plane waves while the Partition of Unity Finite Element approximation incor-
porates polynomial component. Both methods give high level of accuracy even with coarse
meshes (λ/h = 0.3 lead to 0.01% of error). These method reach tolerable accuracy for a
number of degrees of freedom per wavelenght close to 4.

Sevilla and Huerta [22] showed the importance of good representation of the geometry
with NURBS-Enhanced Finite Elements. They developed mapped elements whose approx-
imation is based on classical Finite Element interpolation functions. The mapping is chosen
such that the geometry is based on Non-Uniform Rational B-Splines (NURBS). The in-
fluence of correct representation of the geometry had already been pointed out by Hughes
[26] with isogeometric elements. The use of NURBS has a second advantage which allows
to quickly link the CAD model with the mesh. No additional communication is required
in the case of mesh refinement.

In this thesis, the Partition of Unity Method is explored. This method has attractive
features as it accommodates unstructured meshes, it generates a continuous solution at all
points and nodal definition is preserved, leading to a sparse matrix system. As explained
in the introduction, the Partition of Unity Method has already been applied to wave prop-
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2.5 Partition of Unity Method

agation with numerical solutions enriched by plane wave functions. This thesis considers
a polynomial Partition of Unity Method developed for convected acoustic propagation in
cavities or unbounded domains.

2.5 Partition of Unity Method

The Galerkin Method, based on the variational formulation, restricts the solution φ̃a to
belong to a subspace V h ⊂ V . The approximated solution φ̃h is built from basis (or
interpolation) functions (Φj (x) , x ∈ R

n) and nu unknown parameters (αj):

φ̃h (x) =
nu∑

j=1

Φj (x)αj (2.46)

This choice applied to the variational formulation (2.35), leads to one equation with nu
unknowns (equation 2.47).

−
∫

Ω

(

ρ0∇φ̃h −
ρ0

c20

(

v0 · ∇φ̃h
)

v0

)

· ∇WdΩ

−iω
∫

Ω

ρ0

c20

(

Wv0 · ∇φ̃h − φ̃hv0 · ∇W
)

dΩ + ω2

∫

Ω

ρ0

c20
Wφ̃hdΩ

=

∫

S

ρ0

c20
W
(

v0 · ∇φ̃a
)

n · v0dS −
∫

S

ρ0Wn · ∇φ̃adS

+iω

∫

S

(
ρ0

c20
Wφ̃av0 · n

)

dS, ∀W ∈ V (2.47)

The approximated solution is obtained by choosing nu number of weight functions
Wj constructed in the subspace V h and solving the linear system of nu equations and
nu unknowns. The continuous variational formulation has been transformed to a discrete
problem.

The Partition of Unity Method has originally been proposed by Melenk and Babuška
[8]. It is a Galerkin method for which the approximation space

(
V h
)
is based on a partition

of the domain Ω and defining the approximation functions on each subdomains.

The domain Ω ⊂ R
n is subdivided in a number of elements (e.g. lines for Ω ⊂ R

1;
quadrangles and triangles for Ω ⊂ R

2; hexahedron and tetrahedron for Ω ⊂ R
3). Nodes

are created at the vertices of each element. Note that elements sharing a vertex, share the
same node.
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2.5 Partition of Unity Method

In the case of Partition of Unity Finite Element Method, subdomains Ωj are created
with the union of elements sharing the node j (of coordinates xj). There is the same number
of nodes (let say nodes) than the number of subdomains.

We define Ωj as the open cover of Ω satisfying the pointwise overlap condition:

∃M ∈ N : card {j | x ∈ Ωj} ≤M ∀x ∈ Ω (2.48)

This notation introduced by Melenk and Babuška [8] means that a point x included in the
domain Ω is included in a finite number of open cover Ωj.

The Partition of Unity function Nj is defined over the subdomain Ωj such that it
satisfies: 





nodes∑

j=1

Nj (x) = 1 on Ω

‖Nj‖L∞(Rn) ≤ C∞
‖∇Nj‖L∞(Rn) ≤ CG

diamΩj

(2.49)

where C∞ and CG are constants. These relations have been introduced by Melenk and
Babuška [8] to define the Partition of Unity functions properties: these functions and their
derivatives are finite and the functions form a partition of unity.

In this work, the Partition of Unity functions are chosen to be the classical hat functions.
However, the Partition of Unity functions can be built with Shepard functions (based on
rational functions) or piecewise polynomial functions [43]. This allows for the construction
of approximations with any desired regularity.

Let the local approximation functions (Vj), also called enrichment functions, be chosen
in the local approximation space (Vj):

Vj ∈ Vj; Vj ⊂ H1 (Ωj ∩Ω) (2.50)

where Vj is a combination of functions included in Vj such that Vj =
n(j)∑

l=1

Vjlejl, with n (j)

being the size of the local approximation space, for the node j. It is equivalent to the
number of unknowns ejl at the node j. The size of this local space may vary from node to
node.

The Partition of Unity space is defined by:

V
h :=

nodes∑

j=1

NiVj =

{
nodes∑

j=1

NjVj | Vj ∈ Vj

}

⊂ H1 (Ω) (2.51)
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2.5 Partition of Unity Method

The approximated acoustic potential is given by:

φ̃h =
nodes∑

j=1

NjVj ∈ V
h ⊂ H1 (Ω)

=
nodes∑

j=1

Nj

n(j)
∑

l=1

Vjlejl

=
nodes∑

j=1

n(j)
∑

l=1

NjVjlejl

=
nu∑

αh=1

Φαeα

= {Φ}t {φa} (2.52)

where {φa} corresponds to the unknowns ejl such that they are written in a vector and nu
is the number of degrees of freedom, the size of the vector {φa}. The Partition of Unity
shape functions Φα = NjVjl are also written in a vector {Φ}.

We choose the weight functions Wα to be the complex conjugate of the shape functions
Φα, following a Petrov-Galerkin approach. This leads to the vector {W} = {Φ}∗.

The matrix form of the convected wave variational formulation is given hereafter:

(
[K] + iω [C]− ω2 [M]

)
{φa} = {F} (2.53)

Kαβ = −
∫

Ω

(

ρ0∇Φβ −
ρ0

c20
(v0 · ∇Φβ)v0

)

· ∇WαdΩ (2.54)

Cαβ = −
∫

Ω

ρ0

c20
(Wαv0 · ∇Φβ − Φβv0 · ∇Wα)dΩ (2.55)

Mαβ = −
∫

Ω

ρ0

c20
WαΦβdΩ (2.56)

Fα =

∫

S

ρ0

c20
Wα

(

v0 · ∇φ̃a
)

n · v0dS −
∫

S

ρ0Wαn · ∇φ̃adS

+iω

∫

S

(
ρ0

c20
Wαφ̃av0 · n

)

dS (2.57)
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2.5 Partition of Unity Method

The advantages of the Partition of Unity Method are the following:

• It accommodates unstructured meshes.

• It generates a continuous solution at all points.

• It preserves nodal definition, leading to a sparse matrix system.

• It permits to add a priori knowledge about the differential equation in the local ap-
proximation space (e.g.: plane waves, see [28, 9]).

• It allows to choose an appropriate local approximation space separately for each sub-
domain Ωi

• It may be used to construct approximation spaces of desired regularity.

In the following, we restrict the Partition of Unity functions Nj to be bilinear functions
defined over the subdomain Ωj. Nj takes the unity value at the node xj and is equal to
zero at the other nodes of the subdomain. We also focus on local approximation spaces V h

which are composed of polynomial functions.

The integration is performed numerically by the use of the Gauss-Legendre integration
scheme since the integrands are polynomials. The number of Gauss points NG used for
the numerical integration of a polynomial of order p follows at least the rule of exact
integration: NG = (p+ 1) /2.

We decided not to focus on local approximation spaces constructed with plane waves
(
e.g. eikx

)
or trigonometric functions (e.g. coskx, sinkx),as it has been done for instance

by Lacroix [68], Debel [24], Gamallo [28], Laghrouche [9] and others, for several reasons:

1. The variational formulation leads to the matrix form given at equation 2.53, whatever
is the local approximation space. When harmonic functions are used, the matrices be-
come frequency dependent as the excitation frequency appears in the shape and weight
functions. The matrices (K (ω) ,C (ω) ,M (ω)) have to be built for each frequency that
have to be taken into account for the application.

This is not the case for polynomial functions which lead to non frequency dependent
matrices. In this case, the computation of the acoustic potential at several frequencies
can be obtained by solving the system 2.53 without reconstructing the matrices.

2. Since we deal with non-uniform flow, the set of plane waves in the local approximation
space Vj has to take into account the local mean flow velocity at the node j (e.g. in
two-dimension, for a flow along x axis, θ being the direction of the plane wave and M0,j

the mean Mach number at the node j: e
−ik

(

cos(x)
1−M0,j cos(θ)

+
sin(y)

1−M0,j cos(θ)

)

). This means that
the size of the mesh does not only depend on the quality of the local approximation but
also on the variation of the flow velocity. The mesh therefore depends on the acoustic
resolution but also on the spatial variation of the mean flow velocity. An application
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2.5 Partition of Unity Method

with a large spatial variations of mean flow velocity would require a dense mesh with
highly oscillating functions to integrate.

3. This choice of enrichment functions requires a large number of integration points for
the numerical Gauss-Legendre integration. The numerical Gauss-Legendre integration
is, indeed, not appropriate to the integration of harmonic functions as it has been
designed to exactly evaluate the integral of polynomial functions (the integration of a
one-dimensional polynomial function of order p requires NG = p+1

2
Gauss integration

points, or NGn for x ∈ R
n). The integration of a harmonic function with NG Gauss

points with this technique is equivalent to the integration of a polynomial function of
order 2NG − 1. This explains the reason why the integration of harmonic functions
requires a high number of integration points if the Gauss-Legendre integration is used
instead of another technique more suitable to harmonic integration. To illustrate this
remark, note that Laghrouche [9] used 120*120 Gauss points per elements for simulating
a two-dimensional radiating cylinder with ka = 10π (a being the radius of the cylinder).
The size of the elements is such that an element contains 10 wavelength in the radial
direction and up to 12 in the angular direction. This gets worse for higher excitation
frequencies.

The numerical integration of the matrices considering a local harmonic basis is the topic
of current researches. Semi-analytical rules have been proposed [53] for straight edge
finite elements (two-dimensional quadrangle and triangle elements). Recently, Gabard
[88] defined exact integration of polynomial-exponential products for arbitrary poly-
gons in two dimensions and for arbitrary polygonal surfaces or polyhedral volumes in
three dimensions. These exact solutions require a limited number of operations and the
computational cost is independent of the wavenumber used in the integral.

Let us consider, for instance, the following second order polynomial enrichment 2.58,
in one-, two- or three dimensions, leading to respectively, 3, 6 or 10 functions in the local
approximation space. The creation of a shape function NjVjl is illustrated for the one- and
two-dimensional cases in figures 2.2 and 2.3, respectively.

V =
{
1, x, x2

}
in R

1

V =
{
1, x, y, x2, y2, xy

}
in R

2

V =
{
1, x, y, z, x2, y2, z2, xy, xz, yz

}
in R

3 (2.58)

The same local approximation space can be prescribed to all the subdomains Ωi or
this local approximation space can be defined from node to node, depending on the spatial
complexity of the local potential variation (e.g. high mach number, sharp geometry,...).

For the three-dimensional simulation, we developed a hexahedral mapped element with
8 nodes and 12 additional mapping points (figure 2.4). The nodes are located at the vertices
of the element, while the mapping points stand along the edges of the element. Global and
local coordinates are linked by the following mapping, where the mapping functions Mi

are given in appendix 10.1.
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2.5 Partition of Unity Method

−1

0

1

Fig. 2.2. Construction of the approximation: illustration for the node j (located at the center of the subdomain
Ωj which corresponds to the two elements) of the Partition of Unity function Nj (x) (left), the enrichment function

Vjl (x) (center) and the shape function φjl = Nj (x)Vjl (x) (right) with an enrichment Vjl (x) =
(x−xj)

hx
where hx

is the highest distance between the node j and any point in its subdomain Ωj in the 1x direction.

−1

0

1

Fig. 2.3. Construction of the approximation: illustration for the node j (located at the center of the subdomain Ωj

which corresponds to the four elements) of the Partition of Unity function Nj (x) (left), the enrichment function

Vjl (x) (center) and the shape function φjl = Nj (x)Vjl (x) (right) with an enrichment Vjl (x) =
(x−xj)

hx

(y−yj)
hy

where (hx, hy) are the highest distances between the node j and any point in its subdomain Ωj , respectively in the
1x and 1y directions. Note that in this case, the shape function has been normalized.







x =
∑20

i=1 Mi (ξ, η, ζ) xi
y =

∑20
i=1 Mi (ξ, η, ζ) yi

z =
∑20

i=1 Mi (ξ, η, ζ) zi

(2.59)

The geometry is constructed with all of the 20 nodes and points while the Partition
of Unity functions and the local approximation functions are defined only at nodes. The
aim of the 12 additional mapping points is to allow the element to have curved edges (or
non-planar faces). The representation of the exact geometry of the application with the
mesh is an important feature to obtain accurate numerical results (as we observed in [69]).
The lack of approximation of the geometry is a limiting factor for the numerical solution
[26]: ‘Then use of a fixed polynomial approximation to geometry has been shown by Szabó
et al. [27] to be limiting. As solution polynomial order is increased, the error plateaus at
some level and cannot be further reduced.’
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2.6 Modal and transmitted boundary conditions
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Fig. 2.4. View of an element in its local (ξ, η, ζ) (a) and global (x, y, z) (b) coordinates. The 8 circles correspond
to the nodes and the stars represent the 12 mapping points.

Note that classical linear finite element results can be obtained by a particular version
of the Partition of Unity Method. This is called ‘degenerated’ Partition of Unity Method.
Indeed, if the enrichment functions for all the nodes are constant and equal to {1}, the
approximation becomes:

φ̃h =
nodes∑

j=1

Nj (x) ej1 (2.60)

2.6 Modal and transmitted boundary conditions

The acoustic field in an infinite or semi-infinite hard-walled duct with uniform flow along
the duct axis can be expressed as a combination of fundamental solutions, called acoustic
modes [42]. The conditions at the inlet or exhaust plane of a duct can therefore often
be represented by a modal boundary condition (fig. 2.5). This is particularly useful in
application to mufflers, HVAC systems, and turbofan intake or by-pass ducts, since it
permits a ‘source’ to be defined explicitly in terms of the amplitudes of the incident modes.
It also permits the specification of an exact anechoic termination when the amplitudes of
all reflected modes are set to zero.

2.6.1 Propagation in a straight duct

Consider the case of a straight duct with arbitrary cross section where the mean flow in
the duct is uniform and oriented with the duct axis (let say z). We will restrict our study
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2.6 Modal and transmitted boundary conditions

(a) (b)

Fig. 2.5. An application with a cylindrical duct radiating in a box (a). The cylindrical duct is replaced by a modal
boundary condition on the surface SM (b) such that the computational domain to be considered is the box only

to hard-walled axisymmetric ducts, but the same developments can be performed for lined
ducts (see appendix 10.2) or other cross sections, i.e. rectangular [44] or arbitrary ones [54].

Wave propagation in an infinite axisymmetric duct can be decomposed in a series of
right and left traveling modes:

φ̃a =
∞∑

m=−∞

∞∑

n=0

(

A+
mnE

+
mne

−imθe−iK
+
z,mnz + A−mnE

−
mne

−imθe−iK
−
z,mnz

)

(2.61)

where (r, θ, z) are the cylindrical coordinates of the axisymmetric duct, (m,n) are respec-
tively the angular and radial mode numbers, A±mn are complex amplitudes of the right and
left traveling modes (E±mn) and K±

z,mn their corresponding axial wavenumbers.

The modes and wavenumbers are obtained by solving the convected wave equation 2.32
in a duct with uniform mean flow along the axial direction, by considering separation of
variables and appropriate boundary conditions.

The modified convected wave equation in cylindrical coordinates for uniform mean flow
(v0 = v0 1z) is:

∂2φ̃a
∂r2

+
1

r

∂φ̃a
∂r

+
1

r2

∂2φ̃a
∂θ2

+
(
1−M2

0

) ∂2φ̃a
∂z2

− 2ikM0
∂φ̃a
∂z

+ k2φ̃a = 0 (2.62)

where M0 = v0/c0 is the Mach number in the duct and k = ω/c0 is the wavenumber.

The solution is assumed to have the following form:

φ̃a = φrφze
−imθ (2.63)
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2.6 Modal and transmitted boundary conditions

This leads to a system of two equations (2.64, 2.65) where kr,mn is the radial wavenumber
such that k2 = k2

z,mn + k2
r,mn:

∂2φr
∂r2

+
1

r

∂φr
∂r

+

(

k2
r,mn −

m2

r2

)

φr = 0 (2.64)

(
1−M2

0

) ∂2φz
∂z2

− 2ikM0
∂φz
∂z

+ k2
z,mnφz = 0 (2.65)

Equation 2.64 can be rewritten as:

r2∂
2φr
∂r2

+ r
∂φr
∂r

+
(
k2
r,mnr

2 −m2
)
φr = 0 (2.66)

where solutions are given by Bessel functions of the first or the second kind, respectively
Jm (kr,mnr) and Ym (kr,mnr).

Equation 2.65 can be solved by looking for a solution of the following form φz = Aegz.
Equation 2.65 becomes:

β2g2 − 2ikM0g + k2
z,mn = 0 (2.67)

with β =
√

1−M 2
0 , or,

g = −i
−kM0 ∓

√

k2M2
0 + k2

z,mnβ
2

β2

g = −i
−kM0 ∓

√
k2 − k2

r,mnβ
2

β2
(2.68)

It follows that wave propagation in axisymmetric ducts is:

φ̃a =
∞∑

m=−∞

∞∑

n=0

(

A+
mnE

+
mne

−iK+
z,mnz + A−mnE

−
mne

−iK−z,mnz
)

e−imθ (2.69)

E±mn =
(
AJm

(
k±r,mnr

)
+BYm

(
k±r,mnr

))
(2.70)

K±
z,mn =

−kM0 ∓
√
k2 − k2

r,mnβ
2

β2
(2.71)

The radial wavenumbers and modes are obtained by considering appropriate cross sec-
tion and boundary conditions. In the case of a hard walled duct, the displacement of the
wall is null ũn = 0 and the normal component of the acoustic particle velocity ṽa · n or
∇φ̃a · n = 0 at the walls.

Note that the expression of the potential in the duct (equation 2.69) corresponds to
an infinite series but it can be truncated. As soon as the radial wavenumber is greater
than k/β, the square root in the expression of K±

z,mn becomes complex instead of purely
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2.6 Modal and transmitted boundary conditions

real. This means that e−iK
±
z,mnz corresponds to an exponentially decaying wave, as steep as

the imaginary part is big. The mode is said to be evanescent. Propagating and evanescent
modes are also known as cut-on and cut-off modes.

The potential can be computed with all the propagating and a few evanescent modes.
This allows us to truncate the infinite series.

Hard walled duct with a circular cross section

In the case of a cylindrical duct with a circular cross section of radius R, the hard wall

boundary condition becomes ∂φ̃a
∂r

∣
∣
∣
r=R

= 0. Radial modes 2.70 are Bessel functions of the

first kind. Those of the second kind have to be rejected as they are singular at the origin
(r = 0). This corresponds to A = 1 and B = 0.

The radial wavenumbers propagating in the duct are obtained by solving:

J ′m
(
k±r,mnr

)∣
∣
r=R

= 0 (2.72)

or, using well known mathematical relations:

Jm−1 (X)|r=R −
m

X
Jm (X)|r=R = 0

X = k±r,mnr (2.73)

Note that the right and left propagating radial wavenumbers k±r,mn are equal in the case
of hard-walled circular duct with uniform mean flow.

The propagation of a mode is illustrated in figure 2.6 in a cylindrical duct (circular
cross-section) with and without uniform mean flow.

Hard walled duct with an annular cross section

The cross section of the duct is composed by two circular walls, Ri and Ro being respectively
the inner and outer radius. Since both surfaces are assumed to be hard walled, the derivative
of the potential has to vanish for r = Ri and r = Ro. There is no difference between k+

r,mn

and k−r,mn. This leads to a system of two equations:

[
J ′m (kr,mnRi) Y

′
m (kr,mnRi)

J ′m (kr,mnRo) Y
′
m (kr,mnRo)

]{
A
B

}

=

{
0
0

}

(2.74)

The determinant of the matrix has to be equal to zero if solutions different from the
trivial A = B = 0 are sought.
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2.6 Modal and transmitted boundary conditions

(a)

(b)

Fig. 2.6. Three-dimensional pressure distribution for wave propagation in a hard-walled circular duct (R = 0.5m)
at 800 Hz (kR = 7.39) : the figures represent the propagation (real part of the pressure) of the second radial mode,
first azimuthal order (m = 1, n = 2) with zero mean flow (a) and with a mean flow velocity of 160m/s in the x
direction (b).

Roots of equation 2.75 give the radial wavenumbers:

J ′m (kr,mnRi)Y
′
m (kr,mnRo)− J ′m (kr,mnRo)Y

′
m (kr,mnRi) = 0 (2.75)

If A is chosen equal to 1, we can determine the value of B by using the first equa-
tion of system 2.74. The propagation in an annular duct is then given by the following
decomposition:

φ̃a =
∞∑

m=−∞

∞∑

n=0

(

A+
mne

−iK+
z,mnz + A−mne

−iK−z,mnz
)

e−imθ

(

Jm (kr,mnr)−
J ′m (kr,mnRi)

Y ′m (kr,mnRi)
Ym (kr,mnr)

)

(2.76)
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Fig. 2.7. Three-dimensional pressure distribution for wave propagation in a hard-walled annular duct
(ri = 0.4m, ro = 1m) at 800 Hz (kR = 7.39) : the figures represent the propagation (real part of the pressure)
of the second radial mode, second azimuthal order (m = 2, n = 2) with zero mean flow (a) and with a mean flow
velocity of 160m/s opposite to the wave direction (b).

The propagation of a mode is illustrated in figure 2.7 in a cylindrical duct (annular
cross-section) with and without uniform mean flow.

Energy

In practical applications such as turbofan radiation, the acoustic source is prescribed by
given modal intensities instead of modal amplitudes. Sound intensity I [52] is a vector
quantity and defined as the time average of the net flow of sound energy through a unit
area in a direction perpendicular to the area.

In the special case of convected wave propagation in a non-uniform irrotational mean
flow free from entropy variations, the expression of the time average energy flow out of a
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2.6 Modal and transmitted boundary conditions

surface SM is given by Morfey [56]:

〈E〉 =
∫

SM

〈J ′ m′
i〉dSi (2.77)

〈J ′ m′
i〉 = 〈pava,i〉+

v0,i

ρ0c20

〈
p2
a

〉
+
v0,iv0,j

ρ0c20
〈pava,j〉+ ρ0v0,j 〈va,iva,j〉 (2.78)

where J ′ and m′
i are the stagnation entropy (J = h+ v2/2) and the mass flux (mi = ρ0vi),

both estimated to first order. pa (x, t) and va (x, t) are instantaneous acoustic pressure and
velocity.

In the case of the wave propagation in a duct, the mean flow is oriented along the duct
axis (v0 = v0,z1z). The component, along the duct axis, of the sound intensity I over the
modal boundary SM is given at equation 2.79 (A being the area of the cross-section).

〈I〉 = 1

A

∫

SM

<
(
p̃aṽ

∗
a,z

) (
1 +M2

0

)
+M0

(
p̃ap̃

∗
a

ρ0c0
+ ρ0c0ṽa,z ṽ

∗
a,z

)

dS (2.79)

In the case of cylindrical ducts, the acoustic pressure p̃a,mn and velocity ṽa,z,mn related
to the mnth mode are given by the set of relations 2.80.

p̃a,mn = −ρ0c0

(

ikφ̃a,mn +M0
∂φ̃a,mn
∂z

)

φ̃+
a,mn = A+

mnE
+
mne

−imθe−iK
+
z,mnz

p̃a,mn|SM = −iρ0c0A
+
mnE

+
mne

−imθ
(
k −K+

z,mnM0

)

ṽa,z,mn =
∂φ̃+

a,mn

∂z
ṽa,z,mn|SM = −iK+

z,mnA
+
mnE

+
mne

−imθ (2.80)

Substitution of expressions 2.80 into equation 2.79 gives the sound intensity Imn of the
mnth mode:

I+
mn =

((
1 +M2

0

)
k<
(
K+
z,mn

)
+M0

∣
∣k −M0K

+
z,mn

∣
∣
2 −M3

0

∣
∣K+

z,mn

∣
∣
2
)

ρ0c0 |A+
mn|2

2A

∫

SM

E+
mndS (2.81)

In the particular case of a circular cross-section of radius R, the integral of the radial
mode over the modal boundary is:

∫

SM

J2
m (kr,mnr)dS = π

(

R2 − m2

k2
r,mn

)

J2
m (kr,mnR) (2.82)

Equation 2.81 links the incident amplitude (A+
mn) of mode (m,n) to the incident inten-

sity (I+
mn) of the related mode. It is possible to prescribe a mode of known intensity.
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2.6 Modal and transmitted boundary conditions

2.6.2 Modal coupling

The axial z axis in the duct cylindrical coordinates is considered, in the present dissertation,
to be aligned with the x axis of the computational domain (figure 2.8). As the flow in the
duct is uniform and oriented with the axial direction, the flow on the boundary SM is also
considered as being uniform : v0 = v01x and its Mach number M0 = v0/c0. The definition
of Fα defined by expression 2.57 is then reduced, on the boundary SM , to:

Fα =

∫

SM

ρ0Wα

(

β2∂φ̃a
∂x

− iM0kφ̃a

)

dS (2.83)

Fig. 2.8. Computational domain (in blue) with its coordinate system (x, y, z) and the duct (in pink, (z, r, θ))
which will be replaced by a modal boundary condition by prescribing incident and reflected modes,

(
A+
mn, A

−
mn

)

respectively.

The modal boundary condition is based on the previous decomposition of the potential
in the duct. We replace the expression of the potential in equation 2.83 by the truncated
series representing the propagation in the duct at the modal boundary SM . Note that in
the duct coordinates, z is constant on SM , e.g. if on SM the cylindrical coordinates of the
duct are taken such as z|SM = 0 then e−iK

±
z,mnz = 1.

φ̃a

∣
∣
∣
SM

=
Nm∑

m=−Nm

Nn∑

n=0

(
A+
mnE

+
mn + A−mnE

−
mn

)
e−imθ (2.84)

∂φ̃a
∂z

∣
∣
∣
∣
∣
SM

=
Nm∑

m=−Nm

Nn∑

n=0

(
−iK+

z,mnA
+
mnE

+
mn − iK−

z,mnA
−
mnE

−
mn

)
e−imθ (2.85)

where A+
mn and A

−
mn are respectively incident (known) and reflected (unknown) amplitudes,

and E±mn are radial modes (depending on the cross section of the duct and the treatment
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2.6 Modal and transmitted boundary conditions

of the walls). Note that the incident and reflected radial modes E±mn are often identical
because the right and left traveling radial wavenumbers are equal excepted for a lined duct
with non-zero uniform mean flow (see appendix 10.2).

The system matrix 2.53 becomes underdetermined. It possesses a set of nu equations and
(nu +NM) unknowns, where nu is the number of degrees of freedom and NM the number of
reflected modes. NM equations have to be added to the system. These additional equations
(2.86) are NM weighted integrals of equation 2.84 where the potential φ̃a is replaced by its
numerical approximation φ̃h (equation 2.52).

∫

SM
WM,m′n′φ̃

hdS

=
∫

SM
WM,m′n′

(
∑Nm

m=−Nm

∑Nn

n=0 (A
+
mnE

+
mn + A−mnE

−
mn) e

−imθ
)

dS

(2.86)

where WM,m′n′ is the weight function for the n′th radial mode of the m′th azimuthal order
is given by expression 2.87.

WM,m′n′ = iρ0E
−
m′n′e

im′θ
(
β2K−

z,m′n′ +M0k
)

(2.87)

Note that the circumferential variation of the weight function is taken to be eim
′θ instead

of e−imθ. This has been done to avoid terms like e−2imθ which would have given zero terms
on the diagonal of the ‘modal’ matrices.

The unknown amplitudes of the reflected modes (A−mn) are sorted such as they can be
arranged in a vector {aM}. The same arrangement is applied to radial modes which are
sorted with a single index, e.g. E−α . Therefore the NM weight functions WM,m′n′ can also
be written with a single index: WM,α, such that:

Nm∑

m=−Nm

Nn∑

n=0

(
A−mnE

−
mne

−imθ
)
=

NM∑

γ=1

(
aM,γE

−
γ e

−imγθ
)

(2.88)

where mγ is the angular mode m for the index γ.

This vector of reflected modal amplitude is then included in front of the vector of
unknowns of the computational domain {φa}. This leads to the following matrix system:

[
[DM ] [CM ]
[AM ] ([K] + iω [C]− ω2 [M])

]{
{aM}
{φa}

}

=

{
{EM}
{BM}

}

+

{
{0}
{F}

}

(2.89)

where {F} corresponds to the contribution of all solicitations excepted the modal boundary
condition.
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The matrices coming from the modal boundary conditions are:

AM,αγ = iρ0

(
β2K−

z,γ +M0k
)
∫

SM

WαE
−
γ e

−imγθdS (2.90)

BM,α = −iρ0

NM∑

a=1

A+
a

(
β2K+

z,a +M0k
)
∫

SM

WαE
+
a e

−imaθdS (2.91)

CM,αγ = iρ0

(
β2K−

z,α +M0k
)
∫

SM

ΦγE
−
α e

imαθdS (2.92)

DM,αγ = −iρ0

(
β2K−

z,α +M0k
)
∫

SM

E−α e
imαθE−γ e

−imγθdS (2.93)

EM,α = iρ0

(
β2K−

z,α +M0k
)
NM∑

a=1

A+
a

∫

SM

E+
a e

−imaθE−α e
imαθdS (2.94)

where W and Φ are the Partition of Unity shape functions (equation 2.52). D is diagonal
for all cross sections as radial modes are Bessels functions which are orthogonal1. Matrices
AM ,CM ,DM are respectively of size (nu ×NM), (NM × nu) and (NM ×NM), while vectors
BM and EM have the following sizes: (nu × 1) and (NM × 1).

Transmitted boundary conditions can be treated as modal boundary conditions ex-
cepted that all incident amplitudes are nulls. This means that we only consider the ane-
choic termination allowing reflected modes to penetrate in the duct but that there is no
noise coming from the duct towards the computational domain.

2.7 Unbounded applications: state of the art

Since the current model must also be able to simulate exterior domains, a far field numerical
treatment is required which is able to represent an anechoic termination in the presence
of mean flow. There exist four families of techniques to simulate acoustic propagation
in an unbounded domain (a good overview of recent techniques is given in [57] and its
references): the Boundary Element Method (BEM), the Finite Element Method coupled
to Non-Reflecting Boundary Conditions (NRBC) prescribed on a truncated domain - the
Perfectly Matched Layers (PML) or local/global absorbing boundary conditions (ABC) -
and to Infinite Elements.

The Boundary Element Method [58] allows to compute wave propagation in a domain
Ω ∈ R

n by discretizing its boundary S ∈ R
n−1. However, this method results in fully

populated matrices. This is not convenient to solve the computational system (compared
to sparse matrices for the Finite Element Method). Studies showed that the Finite Element

1 Modal eigen functions are orthogonal for all cross sections not only for cylindrical ones, provided that the walls
of the duct are rigid.
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2.7 Unbounded applications: state of the art

Method is more cost-effective for exterior Helmholtz problems, considering the test cases
they report (see [33] and its references).

In the case of Non-Reflecting Boundary Conditions, the unbounded domain is trun-
cated and appropriate boundary conditions are applied to eliminate reflected waves on
the truncated boundary. These conditions may be based on absorbing (PML) or radiation
conditions (ABC).

The Perfectly Matched Layers proposed by Bérenger [59] is a popular method because
of its performances, the conceptual simplicity and the ease of implementation. The gen-
eral principles of the method consist in truncating the infinite domain, then surrounding
the truncated domain with a computational layer within the wave is considered as being
evanescent, i.e. the propagation possesses an exponential decay such as the waves vanish
before they get reflected in the computational domain. Note that a rapid decay corresponds
to strong gradients. Special care has then to be taken to avoid spurious reflections at the
truncated boundary, see for instance the influence of hp-adaptivity on the performance of
Perfectly Matched Layers [60].

Absorbing Boundary Conditions is based on radiation conditions. The infinite domain
is truncated. An appropriate boundary condition is prescribed on the truncated surface.
These conditions may be global (exact) such as the Dirichlet-to-Neumann (DtN) condition.
An infinite Fourier series represents the solution in the exterior region. This treatment leads
to high accuracy but dense blocks to include in sparse matrices. Another drawback of
the Dirichlet-to-Neumann condition corresponds to the geometry of truncated boundaries
which is limited to simple shapes, e.g. circle or sphere.

Local Absorbing Boundary Conditions preserve the sparsity of the problem and al-
low for complex shapes of the truncated boundaries. These local Absorbing Boundary
Conditions approximate the Sommerfeld radiation condition on the truncated boundary.
Higher order conditions are preferable to lower ones since they allow for a smaller computa-
tional truncated region. Since the early 1970s, Bayliss and Turkel [61] proposed a condition
based on n hierarchy operators that successively annihilates the first n terms of the far
field expansion of Wilcox-Atkinson (equation 2.97), Engquist and Majda [62] based their
method on the theory of pseudo-differential operators and Feng [63] proposed the trun-
cation of the asymptotic expansion of the Dirichlet-to-Neumann condition. More recently,
high-order boundary conditions have been developed. The Givoli-Neta formulation [64]
and the Hagstrom-Warburton absorbing condition [65, 66], both derived from the Higdon
condition, use auxiliary variables and functions to eliminate the computation of high order
derivatives from high order local boundary conditions.

In the current instance Partition of Unity Infinite elements will be used. The use of
conventional Infinite Elements is well established as a termination for traditional Finite
Element models with and without mean flow [30, 35]. They are used to mesh an infinite
domain with a finite number of elements but are generally unable to model the solution
accurately in the near field where the sound source is located. In practice, the unbounded
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2.8 Mapped Infinite Partition of Unity Elements

domain is therefore subdivided into an inner region and an outer region. A Partition of
Unity Finite Element method will be developed in this thesis for the inner region and a
Mapped Partition of Unity Infinite Element method for the outer region. The latter is
based on the Mapped Wave Envelope Infinite Element (MWEIE) developed by Astley [30]
for the case without mean flow and extended by Eversman [35] to the convected case.
Astley et al. [31] subsequently used Legendre polynomials instead of the original Lagrange
polynomials, for the radial basis in the infinite element region. This follows improvements
in accuracy and conditioning recorded by Shirron and Babuška for related elements [33].
An improved radial basis of this type, formed from shifted Legendre polynomials, is used
also in the current formulation, although Dreyer [32, 34] has suggested that the use of
Jacobi polynomials leads to even better conditioning of the resulting equations.

2.8 Mapped Infinite Partition of Unity Elements

Unbounded problems Ω will be divided into a finite inner region Ωi and an infinite outer re-
gion Ωo, separated by an interface Γ [30]. The inner region is partitioned by using Partition
of Unity finite elements as described in section 2.5 and the outer region Ωo is discretized
using Partition of Unity Infinite elements that are compatible to the Partition of Unity
finite elements on the interface Γ .

Fig. 2.9. Illustration of a vibrating body of surface S which radiates in an unbounded domain Ω. The infinite
region is decomposed into an inner and an outer region (respectively Ωi and Ωo). In the outer region, the mean
flow is assumed to be uniform while it is allowed to be non-uniform in the inner region.

The inner region contains the geometry of the application and all the sources. The
steady mean flow in the outer region is assumed to be uniform and oriented along the x
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2.8 Mapped Infinite Partition of Unity Elements

direction while it is allowed to be non-uniform in the inner region as long as it remains
irrotational (figure 2.9).

Following these assumptions, the convected wave formulation becomes, in the outer
region:

∫

Ωo

(

∇W · ∇φ̃a −M2
0

∂W

∂x

∂φ̃a
∂x

)

dΩ

+

∫

Ωo

(

ikM0

(

W
∂φ̃a
∂x

− ∂W

∂x
φ̃a

)

− k2Wφ̃a

)

dΩ = 0 (2.95)

There is no boundary integrals as we assume the interface Γ free from boundary con-
ditions and we will choose the shape and weight functions such that the integral over the
boundary at infinity vanishes (see section 2.8.4).

The outer region (Ωo) is partitioned by mapped infinite elements. These infinite ele-
ments are mapped such as represented in figure 2.10. Each infinite element is defined in
global coordinates by four nodes (1, 2, 3, 4) and four mapping points (5, 6, 7, 8) located on
the interface Γ separating the inner and the outer region. Eight other mapping points
(1′, ..., 8′) represent the source locations (focal points for the mapping) and define the in-
finite radial direction, e.g. orientation (2′2). The numerical integration will be performed
on the parent element (ξ, η, ζ), each infinite element is then mapped on a cubic element
(mapping functions are detailed in appendix 10.1).

The approximation of the acoustic potential in the outer region is based on specific
shape functions which take into account the decay and the oscillatory behaviour of the
radiated waves. A typical infinite element approximation φ̃Ih is created by infinite shape
functions ΦIj , for all infinite nodes j. The infinite shape function consists of the product of
three separate factors:

• a radial function (R) which contains a decay proportional to powers of 1
ro

with ro the
distance from the source,

• an outwardly propagating wavelike factor
(
e−ikµ

)
,

• and a circumferential interpolant (T ) defined such that the potential is compatible at
the finite element/infinite element interface.

ΦIj (x, ω,M0) = Rj (x)Tj (x) e
−ikµ(x,M0) (2.96)

Note that there is more than one unknown coefficient per infinite node, this is detailed
in following sections.
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2.8 Mapped Infinite Partition of Unity Elements

(a) (b)

Fig. 2.10. Topology of a three-dimensional infinite element in local (a) and global (b) coordinates.

2.8.1 Radial functions

Following the Wilcox-Atkinson expansion [31], the radial decay should have the form given
at equation 2.97 (with aj constant and ro the distance from the source point).

Rj (x) ≈
(
a1

ro

)

+

(
a2

ro

)2

+ · · ·+
(
am0

ro

)m0

(2.97)

An expansion of this type with m0 terms contains a radial basis for spherical Bessel
functions up to the order (m0 − 1) [30]. A first order element (m0 = 1) is then able to
model accurately the radial behaviour of an acoustic monopole, a second order element to
model that of a dipole and so on. Radial approximation 2.97 is constructed at each node
j with shifted Legendre polynomials

(
Ldj
)
of order d (figure 2.11). The value of the radial

function Rd
j (figure 2.12) on the interface Γ (i.e. ζ = −1) is equal to zero except for d = 1.

In this case, L1
j is set to 1.

Rd
j (x) =

1− ζ

2
Ldj (ζ) (2.98)

Rj (x) =

m0∑

d=1

Rd
j (x) ejd (2.99)
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Fig. 2.11. Shifted Legendre polynomials for d = [1, 5] along the radial direction in a parent element: ζ = [−1, 1]
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Fig. 2.12. Radial functions for d = [1, 5] along the radial direction in a parent element: ζ = [−1, 1]

2.8.2 Outwardly propagating wavelike factor

The wavelike factor along the infinite edges is chosen to represent outwardly propagating
solutions of the convected wave equation. The phase function µ (x,M0) at any position
of the infinite element depends the definition of the phase along the infinite edges and
mapping functions Si (ξ, η) defined over the base of the infinite element.
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2.8 Mapped Infinite Partition of Unity Elements

µ (x) =
8∑

i=1

Si (ξ, η) (Ψi (xi)− Ψ1,i) (2.100)

Ψi (xi) =
2Ψ1,i

1− ζ
(2.101)

Ψ1,i =
1

1−M2
0

[−M0 (xi − x′i) +H1,i] (2.102)

H1,i =
√

(xi − x′i)
2 + (1−M 2

0 )
(
(yi − y′i)

2 + (zi − z′i)
2) (2.103)

with (x′i, y
′
i, z

′
i) the coordinates of source points and (xi, yi, zi) the coordinates of the four

nodes and the four mapping points lying on the interface Γ (fig. 2.10). The development
of this results is shown in appendix 10.3.

2.8.3 Circumferential functions

The circumferential functions must ensure the continuity of the acoustic potential through
the interface Γ . Note that, by definition on this interface, the wavelike factor equals to 1
(because µ = 0) and the radial functions equal to zero except for d = 1.

The originality of the Mapped Infinite Partition of Unity Method consists in the way
that the circumferential shape functions are defined. When d = 1, the circumferential
functions of a node j consist of the product of nodal Partition of Unity functions and
enrichment functions. The enrichment is chosen to be the same as the enrichment defined
at the same node j but inside the inner region (figure 2.13).

T 1
j = Nj (xΓ )

n(j)
∑

b=1

abVjb (xΓ ) (2.104)

where xΓ is the projection of the coordinate x on the interface Γ .

Note that this infinite circumferential function is constant along the radial direction.
This means that the Partition of Unity and enrichment functions are constructed over the
base of the infinite element and taken constant within the radial direction. This ensures
the compatibility between the circumferential function and the projection on the interface
Γ of the inner shape functions. Both “inner” and “outer” functions take the same values
along the interface Γ . The degrees of freedom of the infinite shape functions with d = 1 are
chosen to be the same as those of the inner nodes lying on the interface. This prescribes
the continuity.

Radial functions for which d > 1 are equal to zero on the interface Γ . The continuity
does not depend on the circumferential functions linked to radial functions with d > 1.
Circumferential functions for d > 1 are defined by:
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2.8 Mapped Infinite Partition of Unity Elements

Fig. 2.13. This figure illustrates the continuity between the inner and the outer regions. On the left side (a), the
figure represents an inner element with an enrichment function at the node j : (Vjb (x)). Figure (b) shows the outer
infinite element which shares the nodes lying on the interface Γ of element (a). The function which is presented
is the circumferential function Vjb (xΓ ). This function is equal to the values taken by the inner enrichment Vjb on
the interface and is constant along the radial direction.

T 2
j = Nj (xΓ )

b0∑

b=1

abN
(b−1)
j (xΓ ) (2.105)

where b0 is a parameter defining the circumferential order of the infinite functions. Note
that N

(b)
j corresponds to the bth power of the Partition of Unity function at node j.

2.8.4 Infinite shape and weighting functions

Equation 2.96 describes the fact that an infinite shape function is composed of the product
of radial functions, circumferential functions and a wave factor. We decide to define two
different circumferential functions depending on the radial degree d variying between 1 and
the radial order m0. In the case where d = 1 (first radial order), the circumferential shape
function is taken to be the projection of the Partition of Unity shape functions on the base
of the element as it is represented in figure 2.13. The other circumferential shape functions
(d > 1) are described by equation 2.105.

The infinite shape function at node j can then be written as:

ΦIj (x, ω,M0) =

(

Rd=1
j (x)T 1

j (x) +

m0∑

d=2

Rd
j (x)T

2
j (x)

)

e−ikµ(x,M0) (2.106)

The Mapped Infinite Partition of Unity approximation is given by:
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2.8 Mapped Infinite Partition of Unity Elements

φ̃Ih (x, ω,M0) =
nni∑

j=1

e−ikµ(x,M0)



R1
j (x)Nj (xΓ )

n(j)
∑

b=1

Vjb (xΓ ) ej1b

+

m0∑

d=2

Rd
j (x)

b0∑

b=1

(
N b
j (xΓ )

)
ejdb

)

(2.107)

where nni is the number of infinite nodes. The coefficients ejdb are the unknowns of the
outer region. In fact, at an infinite node j, there is m0 radial shape funcitons. For the
first radial shape function (d = 1), there are n (j) circumferential shape functions and then
n (j) unknowns ej1b with b = 1 : n (j). Note that the b unknowns of infinite node j (ej1b)
correspond to existing degrees of freedom, those from the inner node sharing the same
location than the infinite node j. For each other infinite radial function (d = 2 : m0) at
node j there is b0 circumferential shape functions. The unknown coefficient of the infinite
shape function of node j corresponding to the bth circumferential function of the dth radial
order is ejdb.

It is convenient to rewrite equation (2.107) as

φ̃Ih (x, ω,Mo) =
nni∑

j=1





n(j)
∑

b=1

Υj1b (x) ej1b +

m0∑

d=2

b0∑

b=1

Υjdb (x) ejdb



 (2.108)

where {
Υjdb (x) = e−ikµ(x,M0)Rd

j (x)Nj (xΓ )Vjb (xΓ ) for d = 1
Υjdb (x) = e−ikµ(x,M0)Rd

j (x)N
b
j (xΓ ) for d > 1

(2.109)

The definition of the approximation in the infinite elements can be further simplified
by noting that the summation over the indices could be combined to give a summation
over a single index αI say which varied from 1 to nId where n

I
d is the total number of degree

of freedom of the model in the outer region (the sum of the number of unknowns at each
infinite node). The way in which the index is assigned to the single index αI is unimportant
provided that there is a one to one mapping. The approximation in the infinite outer region
then becomes (ΦI

αI
and eαI denote Υjdb and ejdb)

φ̃Ih (x, ω,M0) =

nI
d∑

αI=1

ΦIαIeαI (2.110)

The infinite weighting functions
(
W I

αI

)
are chosen to be the complex conjugates of the

infinite shape functions
(
ΦI
αI

)
, following a conjugated Galerkin scheme. This choice leads

to the cancellation of wavelike terms
(
e±ikµ

)
in the infinite integrals.

W I
αI (x, ω) = G (x)

(
ΦIαI (x, ω,M0)

)∗
(2.111)
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2.9 Axisymmetric formulation

where G is a geometric factor chosen to conduct to proper integrals for the infinite elements.

G (x) =




H1,i

√

(x− x0)
2 + (1−M 2

0 )
(
(y − y0)

2 + (z − z0)
2)





q

q ≥ 3 (2.112)

The combination of the Wilcox-Atkinson expansion 2.97 and the solution of the con-
vected wave element in the outer region 10.21 leads to the following asymptotic dependen-
cies of the shape functions:

φIαI (x, ω) ≈ f
e−ikµ

R′

W I
αI (x, ω) ≈ Gf

eikµ

R′
(2.113)

where f represents the variation of the shape functions in the circumferential direction and

R′ =
√

x2

β2 + y2 + z2.

The factor G is taken to be proportional to 1
R′q

. The parameter q is chosen such that
the integral over the boundary vanishes at infinity and to lead to proper integrals in the
outer region (eq. 2.95) [30, 35].

2.9 Axisymmetric formulation

The convected wave equation (2.32) is solved for axisymmetric geometries. The three-
dimensional solution therefore can be computed on the two-dimensional domain Ω. The
whole three-dimensional domain is obtained by rotating the computational domain Ω and
boundary S (figure 2.14) around the axial z axis (z and r are axial and radial coordinates.).

We assume that the steady mean flow variables do not vary in the azimuthal direction.
The acoustic variables however are assumed to vary as e−imθ, m being the azimuthal order.
The three-dimensional acoustic perturbation is also assumed to vary harmonically in time
with frequency f . The unsteady acoustic velocity potential φa (x, t) can therefore be written
as

φa (x, t) = <
(

φ̃a (z, r) e
iωt−imθ

)

(2.114)

A weighted residual procedure is applied to the three-dimensional convected wave equa-
tion 2.32 over the volume of revolution generated by the domain Ω. A complex weighting
functionW (z, r)e+imθ is used and the divergence theorem is applied, in the usual way. Since
the azimuthal variation of φ̃a and W are as e−imθ and e+imθ respectively, all variations with
θ are removed from the resulting volume and surface integrals reduce to area and contour
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2.9 Axisymmetric formulation

Fig. 2.14. Representation of the geometry of a cylindrical duct obtained by rotating the domain Ω around the
axial z axis

integrals over Ω and S where, S denotes the boundary of Ω in the plane of revolution
(excluding the axis of symmetry).

The weighted integral statement is then given by

2π

∫

Ω

r

((

ρ0∇φ̃a
)

· ∇W −∇W ·
(
ρ0

c02
v0

(

v0 · ∇φ̃a
)))

dΩ

+ 2πiω

∫

Ω

r

(
ρ0

c02

(

v0 · ∇φ̃a
)

W −∇W ·
(
ρ0

c02
v0φ̃a

))

dΩ

− 2πω2

∫

Ω

r

(
ρ0

c02
φ̃aW

)

dΩ

= 2π

∫

S

rWρ0

(

− 1

c02
v0 · n

(

v0 · ∇φ̃a
)

+∇φ̃a · n
)

dS

− 2πiω

∫

S

r

(

W
ρ0

c02
v0φ̃a · n

)

dS ∀W ∈ V (2.115)

where V the Sobolev space H1.

Note however that although φ̃a is now a function of z and r only, the operators ∇() and
∇.() in the above equation are the three-dimensional gradient and divergence operators.
The prescribed azimuthal variation in the acoustic quantities must therefore be taken into
account when interpreting quantities such as ∇φ̃a in the above equation. That is to say,
the operator ∇ when is applied to φ̃a includes a third component in the θ direction. This
operator will be called ∇θ and must be written

∇θφ̃a =
∂φ̃a
∂z

1z +
∂φ̃a
∂r

1r −
im

r
φ̃a1θ, (2.116)

where 1z, 1r and 1θ are unit vectors in the the axial, radial and azimuthal directions,
respectively. The acoustic pressure amplitude p̃a can be recovered, if required, from the
acoustic potential φ̃a through the linearised momentum equation 2.26
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2.9 Axisymmetric formulation

p̃a = −ρ0

(

iωφ̃a + v0 · ∇θφ̃a

)

(2.117)

Since the weighting functionW has a prescribed azimuthal variation of e+imθ, care must
be taken when interpreting ∇W which must in fact be written

∇θW =
∂W

∂z
1z +

∂W

∂r
1r +

im

r
W1θ. (2.118)

2.9.1 The Partition of Unity Method

The Partition of Unity Method has been presented in section 2.5 for the three-dimensional
case. The same developments can be done in the axisymmetric case. Here are the major
points needed to consider.

The Partition of Unity approximation is built as the product of Partition of Unity
functions Nj (z, r) and enrichment functions Vjl (z, r):

φ̃h =
nodes∑

j=1

Nj (z)

n(j)
∑

l=1

Vjl (z) ejl (2.119)

where nodes is the number of nodes, n (j) denotes the number of enrichment functions Vjl
composing the local approximation space of node j.

The Partition of Unity approximation is based on the property that the nodal shape
functions Nj(z) (where z = (z, r)) of a Finite Element mesh satisfy

nodes∑

j=1

Nj (z) = 1. (2.120)

A set of enrichment functions is attributed to each node of the mesh. This can differ
from one node to another. For instance, the following second order enrichment (2.121), with
(zj, rj) are the coordinates of the node j, means that six degrees of freedom are attributed
to the node j.

Vj (z) =
{
1, (z − zj) , (r − rj) , (z − zj)

2 , (r − rj)
2 , (z − zj) (r − rj)

}
(2.121)

The method is implemented with quadrilateral elements and the degrees of freedom
are attributed to four nodes located at the vertices of the element. Four additional points
can be added to generate a mapped element (figure 2.15). These additional geometrical
points do not contain any degrees of freedom but give an information about the geometry
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2.9 Axisymmetric formulation

of the element. The geometry of the element is then based on quadratic mapping functions
(see appendix 10.1), with respect to the four nodes and the four mapping points. The aim
of using such elements is to better represent the geometry of the boundary, and hence
to improve the accuracy of the numerical solution [26]. If mapping functions of mapped
elements are quadratic, the Partition of Unity Nj functions remains bilinear.

Fig. 2.15. Topology of a mapped finite element (b) and its parent element (a)

Before proceeding further, it is convenient to rewrite expression (2.119) as

φ̃h =
nodes∑

j=1

n(j)
∑

l=1

Φjl (z) ejl where Φjl (z) = Nj (z)Vjl (z). (2.122)

This can be further simplified by noting that the double summation over the indices j
and l could be combined to give a summation over a single index α say which varied from
1 to nu where nu is the total number of degree of freedom of the model (the sum of the
number of enrichment functions at each node). The way in which the index pair (j, l) is
assigned to the single index α is unimportant provided that there is a one to one mapping.
Expression (2.122) then becomes

φ̃h =
nu∑

α=1

Φα (x) eα (2.123)

where φα and eα denote φjl and ejl. Trial solution (2.123) is then substituted into variational
formulation (2.115) and the resulting expression evaluated for a complete set of weighting
functions (Wβ(z), β = 1, 2..nu). This leads to a set of linear equations

(
[K] + iω [C]− ω2 [M]

)
{φa} = {F} (2.124)

where {φa} is a vector of length nu which contains the unknown degrees of freedom eα.
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2.9 Axisymmetric formulation

The matrices [K] , [C] , [M] and {F} have components

Kαβ = 2π

∫

Ω

rρ0∇θWα · ∇θΦβdΩ

−2π
∫

Ω

rρ0

(
v0

c0
· ∇θWα

)(
v0

c0
· ∇θΦβ

)

dΩ (2.125)

Cαβ = 2π

∫

Ω

rρ0

c02
(Wα (∇θΦβ · v0)− Φα (∇θWβ · v0))dΩ (2.126)

Mαβ = 2π

∫

Ω

rρ0

c02
WαΦβdΩ (2.127)

Fα = 2π

∫

S

rWα

[(

ρ0∇θφ̃a

)

− ρ0

c02
v0

(

v0 · ∇θφ̃a

)]

· n dS

−2πiω
∫

S

rρ0

c02
Wα

[

φ̃a

]

(v0 · n) dS. (2.128)

where the terms in square brackets [ ] in the expression for Fα will be further modified by
the application of boundary conditions.

The current formulation is completed by defining the weighting functions to be the
same as the trial basis functions, i.e. a traditional Petrov-Galerkin scheme in which

Wα(z) = Φα(z), α = 1, 2..nu. (2.129)

This reduces to a conventional linear Finite Element formulation for the ‘degenerated’
case when a constant is used as the unique enrichment function at each node, i.e. when
Vj (z) = {1} .

2.9.2 Application of the boundary conditions

Boundary conditions to consider correspond to prescribed surface accelerations and pre-
scribed modal descriptions of the sound field at intake and outlet planes. The current
method can also deal readily with more complex boundary conditions such as the presence
of a locally reacting surface in the presence of grazing flow (the ‘Myers’ condition [39, 40]).

Surface acceleration

We consider the case where an impervious surface located at (Sv) vibrates with a pre-
scribed, time harmonic normal acceleration of amplitude ãn. The corresponding normal
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2.9 Axisymmetric formulation

displacement, un = ũne
iωt, is given by ũn = − ãn

ω2 . Myers and Eversman in their develop-
ment of local impedance boundary conditions for flow problems [39, 41] showed that the
normal velocity of the vibrating surface and the normal particle velocity in the fluid at
the inner edge of an infinitely thin boundary layer are consistent provided that the normal
acoustic velocity on the surface ṽa,n and the normal particle displacement are related by

ṽa,n = ∇θφ̃a · n = iωũn + v0 · ∇θũn − ũnn · (n · ∇θ)v0. (2.130)

Fig. 2.16. Representation vibrating piston mounted on a hard wall. The vibrating piston is in pink surrounded
by a purple contour γ. This figure shows the three-dimensional geometry of the application and the axisymmetric
computational domain Ω needed for the numerical simulation

If the vibrating wall is stationary (in a mean sense) and impervious then (v0 · n = 0),
and in these circumstances the contribution to Fα defined by expression (2.128) becomes
[41]:

Fα = −2π
∫

Sv

rρ0
ãn
ω2

(iωWα − v0 · ∇θWα) dS +

∫

γ

(

n×Wαρ0
ãn
ω2
v0

)

· dγ (2.131)

where γ is a 3-D boundary curve which encloses the surface of revolution generated by
the vibrating boundary S. Figure 2.16 illustrates a vibrating piston: the three-dimensional
geometry - the axisymmetric computational domain - the contour γ - the boundary Sv.
The second integral vanishes if the bounding curve γ can be constructed so that it lies
on a hard wall, as it is always the case if the vibrating segment is of finite length [41].
Note also that in the case of a rigid surface (ãn = 0) both integrals vanish and there is
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2.9 Axisymmetric formulation

no contribution to Fα. This confirms that an acoustically ‘hard’ boundary is the ‘natural’
condition for this formulation.

Vibrating walls can also be prescribed by the knowledge of the harmonic normal dis-
placement ũn or velocity w̃n of the wall. This is done easily by taking into account the
following relations:

an =
∂2 (ũne

iωt)

∂t2
= −ω2un

an =
∂ (w̃ne

iωt)

∂t
= iωwn (2.132)

Admittance boundary conditions

Acoustic absorbants are modelled by admittance coefficients An. At the soft wall, the
pressure is related to the wall velocity through the normal admittance:

w̃n = Anp̃a or

ũn = −An

iω
ρ0

(

iωφ̃a + v0 · ∇θφ̃a

)

(2.133)

Fig. 2.17. Representation of a duct partially lined. The soft wall is in pink surrounded by a purple contour. In
axisymmetric applications, only the line (Ss) and points (1, 2) have to be considered.

The wall displacement ũn is related to particle acoustic velocity va · n through the
relation 2.130, with ∇θφ̃a · n = va · n. As it has been done for the wall motion boundary
condition, the admittance boundary is impermeable to the flow. We assume that the steady
mean flow is tangent to the boundary.
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2.9 Axisymmetric formulation

−2π
∫

Ss

rρ0Wαṽa · ndΓ = 2π

∫

Ss

rAnρ
2
0

(

Wαv0 · ∇θφ̃a − φ̃av0 · ∇θWα

)

dS

+2πiω

∫

Ss

rAnρ
2
0φ̃aWαdS

−2π

iω

∫

Ss

rAnρ
2
0

(

v0 · ∇θφ̃a

)

(v0 · ∇θWα)dS

−2π
[

r
Anρ

2
0Wαv0,t

iω

(

iωφ̃a + v0 · ∇θφ̃a

)]
∣
∣
∣
∣
1

+2π

[

r
Anρ

2
0Wαv0,t

iω

(

iωφ̃a + v0 · ∇θφ̃a

)]
∣
∣
∣
∣
2

(2.134)

with v0,t, the tangential part of the mean flow along the wall.

The previous remarks 2.3.1 concerning the line integration stands also here. If it exists
a surrounding countour which lies on a hard wall, then the terms in brackets [ ] vanish. This
is illustrated in figure 2.17. A soft wall of finite length is inserted in a cylindrical duct. The
figure illustrates the three-dimensional geometry, the axisymmetric computational domain,
the soft wall boundary Ss and contour γ. φ̃a in expression 2.134 is the amplitude of the
acoustic potential which is unknown on Ss. It is replaced by the approximation φ̃h (eq.
2.123).

Modal boundary conditions

We consider a case where the flow in the duct is uniform and oriented with the duct axis
z. SM is the cross-section, perpendicular to the z axis. The expression for Fα defined by
expression (2.128) then reduces to

Fα = −2π
∫

SM

rρ0Wα

(

ikM0φ̃a − β2∂φ̃a
∂z

)

dS (2.135)

where M0 is the Mach number of the uniform mean flow in the duct.

If SM supports a modal boundary condition, the acoustic potential can be described
by a combination of modes:

φ̃a

∣
∣
∣
SM

=
∞∑

n=1

(

A+
nE

+
n (r)e

−ik+
z,nz + A−nE

−
n (r)e

−ik−z,nz
)

(2.136)

The summation over the circumferential index m has been removed since axisymmetric
computations can only deal with one value of the angular mode number at each computa-
tion.
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2.9 Axisymmetric formulation

Fig. 2.18. Infinite duct modelling (MBC: Modal Boundary Condition; TBC: Transmitted Boundary Condition)

∂φ̃a
∂z

∣
∣
∣
SM

=
∞∑

n=1

(

−ik+
z,nA

+
nE

+
n (r)e

−ik+
z,nz − ik−z,nA

−
nE

−
n (r)e

−ik−z,nz
)

(2.137)

where A+
n , A

−
n are respectively the known (prescribed) and unknown (reflected) amplitudes

of the downstream and upstream modes, E+
n e

−ik+
z,nz and E−n e

−ik−z,nz, respectively. As asso-
ciated modes are evanescent above the cut-off frequency, the infinite summation can be
truncated.

Such a boundary condition adds unknowns (corresponding to the reflected amplitudes)
to the system. A new set of equations has then to be added. We use a weighted integral
form of equation (2.136), using as weighting functions Êq = iρ0

(
kM0 + β2k−z,q

)
E−q . The

system to solve becomes:
[
[DM ] [CM ]
[AM ] ([K] + iω [C]− ω2 [M])

]{
{aM}
{φa}

}

=

{
{EM}
{BM}

}

+

{
{0}
{F}

}

(2.138)

where {F} corresponds to the contribution of all solicitations excepted the modal boundary
condition.

The matrices coming from the modal boundary conditions are:

AM,αγ = 2πiρ0

(
β2k−z,γ +M0k

)
∫

SM

rWαE
−
γ dS (2.139)

BM,α = −2πiρ0

NM∑

a=1

A+
a

(
β2k+

z,a +M0k
)
∫

SM

rWαE
+
a dS (2.140)

CM,αγ = 2πiρ0

(
β2k−z,α +M0k

)
∫

SM

rΦγE
−
α dS (2.141)

DM,αγ = −2πiρ0

(
β2k−z,α +M0k

)
∫

SM

rE−αE
−
γ dS (2.142)

EM,α = 2πiρ0

(
β2k−z,α +M0k

)
NM∑

a=1

A+
a

∫

SM

rE+
a E

−
α dS (2.143)

where W and Φ are the Partition of Unity shape functions (equation 2.123). D is diagonal
for cylindrical cross sections as radial modes are Bessel functions which are orthogonal.
Matrices AM , CM , DM are respectively of size (nu ×NM), (NM × nu) and (NM ×NM),
while vectors BM and EM have the following sizes : (nu × 1) and (NM × 1).
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2.9 Axisymmetric formulation

Radial modes E±n are solutions of the three-dimensional convected wave equation. Ax-
isymmetric radial modes are then equal to the three-dimensional ones (see section 2.6.1).

A similar development is done for the transmitted boundary condition except that,
in this case, the amplitudes A−n are set to zero since it is assumed that there are no
waves coming from the TBC region. Illustration of the concept of modal and transmitted
boundary conditions is shown in figure 2.18.

2.9.3 Mapped Infinite Partition of Unity Elements

Unbounded problems Ω will be divided into a finite inner region Ωi and an infinite outer
region Ωo (figure 2.19), separated by an interface Γ [30]. The inner region is partitioned by
using Partition of Unity finite elements as described in section 2.9.1 and the outer region Ωo

is modelled using Partition of Unity infinite elements that are compatible to the Partition
of Unity finite elements on the interface Γ .

Fig. 2.19. Computational domain of an axisymmetric turbofan radiating in an infinite moving medium.

The inner region contains the geometry of the application and all the acoustic sources.
The flow in the outer region is assumed to be uniform and oriented along the axial z
direction.

Following these assumptions, the outer region formulation becomes [35]:

2π

∫

Ωo

r

(

∇θW · ∇θφ̃h −M2
0

∂W

∂z

∂φ̃h
∂z

)

dΩ

+2π

∫

Ωo

r

(

ikM0

(

W
∂φ̃h
∂z

− ∂W

∂z
φ̃h

)

− k2Wφ̃h

)

dΩ = 0 (2.144)

The infinite element is mapped such as represented in figure 2.20. The outer region (Ωo)
is partitioned by mapped infinite elements (fig. 2.20(a)). Each infinite element is defined in
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2.9 Axisymmetric formulation

Fig. 2.20. Topology of an infinite element and its parent element: global coordinates of nodes (1 or 2) or mapping
point (3) are (zi, ri) and source points (1′, 2′ or 3′) are (z′i, r

′
i)

global coordinates (fig. 2.20(b)) by two nodes (1, 2) and one mapping point (3). They are
located on the interface separating the inner and the outer region. Three other mapping
points (1′, 2′, 3′) represent the source location (focal point for the mapping) and the infinite
radial direction, e.g. orientation (2′2). The numerical integration is performed on the parent
element (ξ, η), each infinite element is then mapped on a square element (fig. 2.20(c)).

The approximation of the acoustic potential in the outer region is based on specific
shape functions which take into account the decay and the oscillatory behaviour of the
radiated waves. A Typical infinite element approximation φ̃Ih is created by infinite shape
functions ΦIj , for all infinite nodes j. This infinite shape function consists of the product of
three separate factors:

• a radial function (R) which contains a decay proportional to powers of 1
ro

with ro the
distance from the source,

• an outwardly propagating wavelike factor
(
e−ikµ

)
,

• and a circumferential interpolant (T ) defined such that the potential is compatible at
the finite element/infinite element interface.

ΦIj (z, ω,M0) = Rj (z)Tj (z) e
−ikµ(z,M0) (2.145)
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2.9 Axisymmetric formulation

Radial functions

Following the same developments as those made for the three-dimensional case (section
2.8.1), the radial functions are given by:

Rd
j (z) =

1− η

2
Ldj (η) (2.146)

Rj (z) =

m0∑

d=1

Rd
j (z) ejd (2.147)

Outwardly propagating wavelike factor

The definition of the phase function µ (z,M0) at any position of the infinite element depends
on mapping functions Si (ξ) defined over the two nodes and the mapping point creating the
base of the element and solutions of the convected wave equation along the radial direction
(η).

µ (z,M0) =
3∑

i=1

Si (ξ) (Ψi (zi)− Ψ1,i) (2.148)

Ψi (zi) =
2Ψ1,i

1− η
(2.149)

Ψ1,i =
1

1−M2
0

[−M0 (zi − z′i) +H1,i] (2.150)

H1,i =

√

(zi − z′i)
2 + β2 (ri − r′i)

2 (2.151)

with (z′i, r
′
i) the coordinates of source points and (zi, ri) the coordinates of the two nodes

and the mapping point lying on the interface Γ .

Circumferential functions

The same idea as that presented in section 2.8.3 is used to create axisymmetric circumfer-
ential functions. The only difference is that elements are two-dimensional. Circumferential
functions for d > 1 are then defined by:

T 2
j = Nj (zΓ )

b0∑

b=1

ab

(

0.5b−1 (1 + ξ0ξ)
b−1
)

(2.152)

where b0 is defined by the user, ξ0 = ±1 is the local ξ coordinate of the node j in the
infinite parent element and zΓ is the projection of the coordinate z on the interface.
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2.9 Axisymmetric formulation

Infinite shape and weighting functions

The Mapped Infinite Partition of Unity approximation is given by:

φ̃Ih (z, ω,M0) =
nni∑

j=1

e−ikµ(z,M0)



R1
j (z)Nj (zΓ )

n(j)
∑

b=1

Vjb (zΓ ) ej1b

+

m0∑

d=2

Rd
j (z)Nj (zΓ )

b0∑

b=1

(

0.5b−1 (1 + ξ0ξ)
b−1
)

ejdb

)

(2.153)

where nni is the number of infinite nodes.

It is convenient to rewrite equation (2.107) as

φ̃Ih (z, ω,M0) =
nni∑

j=1





n(j)
∑

b=1

Υj1b (z) ej1b +

m0∑

d=2

b0∑

b=1

Υjdb (z) ejdb



 (2.154)

where
{
Υjdb (z) = e−ikµ(z)Rd

j (z)Nj (zΓ )Vjb (zΓ ) for d = 1

Υjdb (z) = e−ikµ(z)Rd
j (z)Nj (zΓ )

(

0.5b−1 (1 + ξ0ξ)
b−1
)

for d > 1
(2.155)

The definition of the approximation in the infinite elements can be further simplified
by noting that the summation over the indices could be combined to give a summation
over a single index αI say which varied from 1 to nId where n

I
d is the total number of degree

of freedom of the model in the outer region (the sum of the number of unknowns at each
infinite node). The way in which the index is assigned to the single index αI is unimportant
provided that there is a one to one mapping. The approximation in the infinite outer region
then becomes

φ̃Ih (z, ω,M0) =

nI
d∑

αI=1

ΦIαIeαI (2.156)

where ΦI
αI

and eαI denote Υjdb and ejdb.

The infinite weighting functions
(
W I

αI

)
are chosen to be the complex conjugates of the

infinite shape functions
(
ΦI
αI

)
following a conjugated Galerkin scheme. This choice leads

to the cancellation of wavelike terms
(
e±ikµ

)
in the infinite integrals.

W I
αI (z, ω,M0) = G (z)

(
ΦIαI (z, ω,M0)

)∗
(2.157)

where G is the geometric factor chosen to conduct to proper integrals for the infinite
elements.
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2.10 Summary

G (z,M0) =




H1,i

√

(z − z0)
2 + β2 (r − r0)

2





q

q ≥ 3 (2.158)

2.10 Summary

In this chapter, we expose the Mapped Finite and Infinite Partition of Unity Method
applied to convected wave propagation applications. The model problem is first presented
in its strong form from which the variational formulation is derived.

A review of numerical methods in the field of acoustic propagation is presented for
cavity or unbounded domain applications. The Partition of Unity Method is applied to
the variational formulation of the convected wave equation. We restricte the enrichment
to be polynomial, all the reasons for this choice are explained. The concept of Infinite
Elements, originally designed for the Finite Element Method, is updated to be consistent
to the Partition of Unity Finite Element Method.

The developments are presented to analyse three-dimensional and axisymmetric appli-
cations.
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sation, PhD thesis, Univesité Libre de Bruxelles (2007).

72. G. Gabard, R.J. Astley, M. Ben Tahar, Stability and accuracy of finite element methods for flow acoustics. I:
general theory and application to one-dimensional propagation, Int. J. Numer. Meth. Eng. 63, (2005) 947-973.

73. G. Gabard, R.J. Astley, M. Ben Tahar, Stability and accuracy of finite element methods for flow acoustics. II:
Two-dimensional effects, Int. J. Numer. Meth. Eng. 63 (2005) 974-987.

74. A. Goldstein, Steady state unfocused circular aperture beam patterns in non attenuating and attenuating
fluids, J. Acoust. Soc. Am. 115 (2004) 99-110.

75. T. Douglas Mast, F. Yu, Simplified expansions for radiation from baffled circular piston, J. Acoust. Soc. Am.
118 (2005) 3457-3464.

76. T. Hasegawa, N. Inoue, K Matsuzawa, A new rigorous expansion for the velocity potential of a circular piston
source, J. Acoust. Soc. Am. 74 (1983) 1044-1047.

77. R.J. Astley, A finite element, wave envelope formulation for acoustical radiation in moving flows, J. Sound Vib.
103 (1985) 471-485.

78. J.M. Tyler, T.G. Sofrin, Axial flow compressor noise studies, SAE Transactions 70 (1962) 309-332.

173



References

79. M.C. Duta, M.B. Giles, A three-dimensional hybrid finite element/spectral analysis of noise radiation from
turbofan inlets, J. Sound Vib. 296 (2006) 623-642.

80. H.H. Brouwer, S.W. Rienstra, Aeroacoustics research in Europe: The CEAS-ASC report on 2007 highlights, J.
Sound Vib. Article in Press (2008) doi:10.1016/j.jsv.2008.07.020.

81. http://en.wikipedia.org/wiki/Aircraft noise, 4th September 2008.
82. Y. Park, S. Kim, S. Lee, C. Cheong, Numerical investigation on radiation characteristics of discrete-frequency

noise from scarf and scoop aero-intakes, Appl. Acoust. Article in press (2008) doi:10.1016/j.apacoust.2007.09.005.
83. General Electric Company, http://www.ge.com, http://www.turbokart.com/about ge90.htm, 4th September

2008.
84. R.J. Astley, J.A. Hamilton, Modeling tone propagation from turbofan inlets - The effect of extended lip liner,

AIAA paper 2002-2449 (2002).
85. V. Decouvreur, Updating acoustic models: a constitutive relation error approach, PhD thesis, Université Libre
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