
-

-

-

-

-

-

Dépôt Institutionnel de l’Université libre de Bruxelles /

Université libre de Bruxelles Institutional Repository

Thèse de doctorat/ PhD Thesis

Citation APA:

Vander Biest, A. (2009). Developing multi-criteria performance estimation tools for Systems-on-chip (Unpublished doctoral dissertation). Université libre

de Bruxelles, Faculté des sciences appliquées – Electronique, Bruxelles.
Disponible à / Available at permalink : https://dipot.ulb.ac.be/dspace/bitstream/2013/210356/4/804c76a1-a0b0-4114-9ca7-c8bb7bd71891.txt

(English version below)

Cette thèse de doctorat a été numérisée par l’Université libre de Bruxelles. L’auteur qui s’opposerait à sa mise en ligne dans DI-fusion est invité à

prendre contact avec l’Université (di-fusion@ulb.be).

Dans le cas où une version électronique native de la thèse existe, l’Université ne peut garantir que la présente version numérisée soit

identique à la version électronique native, ni qu’elle soit la version officielle définitive de la thèse.

DI-fusion, le Dépôt Institutionnel de l’Université libre de Bruxelles, recueille la production scientifique de l’Université, mise à disposition en libre

accès autant que possible. Les œuvres accessibles dans DI-fusion sont protégées par la législation belge relative aux droits d'auteur et aux droits

voisins. Toute personne peut, sans avoir à demander l’autorisation de l’auteur ou de l’ayant-droit, à des fins d’usage privé ou à des fins

d’illustration de l’enseignement ou de recherche scientifique, dans la mesure justifiée par le but non lucratif poursuivi, lire, télécharger ou

reproduire sur papier ou sur tout autre support, les articles ou des fragments d’autres œuvres, disponibles dans DI-fusion, pour autant que :

Le nom des auteurs, le titre et la référence bibliographique complète soient cités;

L’identifiant unique attribué aux métadonnées dans DI-fusion (permalink) soit indiqué;

Le contenu ne soit pas modifié.

L’œuvre ne peut être stockée dans une autre base de données dans le but d’y donner accès ; l’identifiant unique (permalink) indiqué ci-dessus doit

toujours être utilisé pour donner accès à l’œuvre. Toute autre utilisation non mentionnée ci-dessus nécessite l’autorisation de l’auteur de l’œuvre ou

de l’ayant droit.

 -- English Version ---
This Ph.D. thesis has been digitized by Université libre de Bruxelles. The author who would disagree on its online availability in DI-fusion is

invited to contact the University (di-fusion@ulb.be).

If a native electronic version of the thesis exists, the University can guarantee neither that the present digitized version is identical to the

native electronic version, nor that it is the definitive official version of the thesis.

DI-fusion is the Institutional Repository of Université libre de Bruxelles; it collects the research output of the University, available on open access

as much as possible. The works included in DI-fusion are protected by the Belgian legislation relating to authors’ rights and neighbouring rights.

Any user may, without prior permission from the authors or copyright owners, for private usage or for educational or scientific research purposes,

to the extent justified by the non-profit activity, read, download or reproduce on paper or on any other media, the articles or fragments of other

works, available in DI-fusion, provided:

The authors, title and full bibliographic details are credited in any copy;

The unique identifier (permalink) for the original metadata page in DI-fusion is indicated;

The content is not changed in any way.

It is not permitted to store the work in another database in order to provide access to it; the unique identifier (permalink) indicated above must

always be used to provide access to the work. Any other use not mentioned above requires the authors’ or copyright owners’ permission.

https://dipot.ulb.ac.be/dspace/bitstream/2013/210356/4/804c76a1-a0b0-4114-9ca7-c8bb7bd71891.txt
mailto:di-fusion@ulb.be?subject=Questions
mailto:di-fusion@ulb.be?subject=Questions

D 03662

Université Libre de Bruxelles Année Académique 2008-2009
Faculté des Sciences Appliquées

Developing Multi-Criteria Performance
Estimation Tools for Systems-on-Chip

Promoteur;
Prof. F. Robert

Thèse présentée par Alexis Vander Biest

en vue de l’obtention du titre de
Docteur en Sciences Appliquées

Université Libre de Bruxelles

003433233

Consultation

Signature :

AUTORISEE
(biffez la mention inutile)

Université Libre de Bruxelles

Faculté des Sciences Appliquées
Année Académique 2008-2009

Developing Multi-Criteria Performance
Estimation Tools for Systems-on-Chip

Promoteur:
Prof. F. Robert

Thèse présentée par Alexis Vander Biest

en vue de l’obtention du titre de
Docteur en Sciences Appliquées

Acknowledgments

My deepest gratitude goes to Prof. Frédéric Robert for his guidance and numerous tech-
nical advices ail along the thesis.

I would like to thank Pr. Dragomir Milojevic for his constant involvement in my Ph.D.
thesis and precious support during these last years.

I am also grateful to Prof. Pierre Mathys for his permanent availability and hosting
me in the Bio, Electro and Mechanical Systems division at the ULB.

I also thank Cédric Hernalsteens for his precious help on Nessie’s case study implé­
mentation and strong involvement during his few weeks work in our lab.

A very spécial thanks goes to Martin, Cédric and Michel who cheered me up when I
was down and highly participated in the success of this work.

Aliénor, Anthony and Geoffroy helped me a lot by reading over and over several parts
of this dissertation and giving me their opinion about different technical issues when I
needed, my deepest thanks go to you.

My gratitude also goes to ail my colleagues and friends at ULB; Catien, Marc, Kevin,
Vincent, Axel and Manu.

This research was funded by the Fond Régional de l’Industrie et de l’Agriculture
(FRIA).

I would also like to thank ail my friends for giving me support and cheering me up
ail the times I thought about giving up; Gilles, Noémie, Sébastien, Arnaud and Nicolas,
I really owe you.

My deepest gratitude goes to my grandmother whose encouragement during ail these
years helped me to succeed in my studies and the achievement of this présent work.

Finally, I am greately indebted to Sabrina for her patience and support even when I
was working ail day and night long; you’ve shown me that there is so much to expect from
life after this Ph.D.

m

IV ACKNOWLEDGMENTS

Abstract

The work presented in this thesis targets the analysis and implémentation of multicriteria
performance prédiction methods for System-on-Chips (SoC).

These new SoC architectures offer the opportunity to integrate complété heterogeneous
Systems into a single chip and can be used to design battery powered handhelds, security
critical Systems, consumer electronics devices, etc. However, this variety in ternis of appli­
cation usually cornes with a lot of different performance objectives like power consumption,
yield, design cost, production cost, Silicon area and many others. These performance re-
quirements are often very difficult to meet together so that SoC design usually relies on
making the right design choices and finding the best performance compromises.

In parallel with this architectural paradigm shift, new Very Deep Submicron (VDSM)
Silicon processes hâve more and more impact on the performances and deeply modify the
way a VLSI System is designed even at the first stages of a design flow.

In such a context where many new technological and System related variables enter
the game, early exploration of the impact of design choices becomes crucial to estimate
the performance of the System to design and rednce its time-to-market.

In this context, this thesis présents;

• A study of state-of-the-art tools and methods used to estimate the performances of
VLSI Systems and an original classification based on several feat lires and concepts
that they use. Based on this comparison, we highlight their weaknesses and lacks to
identify new opportunities in performance prédiction.

• The définition of new concepts to enable the automatic exploration of large design
spaces basexl on flexible performance criteria and degrees of freedom representing
design choices

• The implémentation of a couple of two new tools of our own:

— Nessie, a tool enabling hierarchical représentation of an application along with
its platfomi and automatically performs the mapping and the estimation of
their performance.

— Yeti, a library enabling the définition and value estimation of closed-
fomied expressions and table-based relations. It provides the user with input
and model sensitivity analysis capability, simulation scripting, run-time build­
ing and automatic plotting of the results. Additionally, Yeti can work in stan-

VI ABSTRACT

dalone mode to provide the user with an independent framework for model
estimation and analysis.

To demonstrate the use and interest of these tools, we provide in this thesis several
case studies whose results are discussed and compared with the literature.

Using Yeti, we successfully reproduced the results of a model estimating multi-core
computation power and extended them thanks to the représentation flexibility of our tool.
We also built several models from the ground up to help the dimensioning of interconnect
links and dock frequency optimization.

Thanks to Nessie, we were able to reproduce the NoC power consumption results of
an H.264/AVC decoding application running on a multicore platform. These results were
then extended to the case of a 3D die stacked architecture and the performance benefits
are then discussed.

We end up by highlighting the advantages of our technique and discuss future oppor-
timities for performance prédiction tools to explore.

Publication list

Tins thesis présents the results of niy research; part of this work lias been published in
tlie following conférence papers:

• A, Vander Biest, A. Richard, D. Milojevic, F. Robert, ”A multi-objective and liierar-
chical exploration tool for SoC performance estimation”, Lecture Notes in Computer
Science, Vol. 5114, Pages 85-95, 2008

• A. Vander Biest, D. Milojevic, A. Richard, F. Robert, "Framework for fast perfor­
mance évaluation of flexible models applied to interconnect delay”, Proceedings of
the DASIP conférence (workshop on Design and Architectures for Signal and Image
Processing), Grenoble, France, 27-29 September 2007

9 A. Vander Biest, A. Richard, D. Milojevic, F. Robert, ”A framework introducing
model reversibility in SoC design space exploration". Lecture Notes in Computer
Science, Vol. 4599, Pages 211-221, 2008

• A. Vander Biest, A. Leroy, D. Milojevic, F. Robert, "A flexible system-level design
methodology applied to NoC”, Spécial Inaugural Workshop on Future Interconnects
and Networks on Chip, DATE (The Design, Automation, and Test in Europe con­
férence), Munich, Gemiany, March 4-5 2006

• A. Vander Biest, D. Milojevic, F. Robert, "Key enablers for next génération system-
level design in microelectronics”, Proceedings of the lOth World Multi-Conference
on Systemics, Cybernetics and Infomiatics conférence (WMSCI), Orlando (Florida),
16-19 July 2006

• A. Vander Biest, F. Robert, D. Verkest, S. Vemalde "A taxonomy for technology
extrapolation", Proceedings of the lOth World Multi-Conference on Systemics, Cy­
bernetics and Infomiatics conférence (WMSCI), Oulu, Finland, 21-22 November
2005

vii

PUBLICATION LISTviii

Contents

Acknowledgments iii

Abstract v

Publication list vii

List of Acronyms xxv

Introduction xxvii

1 Context and motivation 1
1.1 Introduction... 1
1.2 Design.. 2

1.2.1 A bit of history: design process représentation évolution................... 2
1.2.2 VLSI Design nowadays... 7

1.3 Technology évolution... !)
1.4 Design: the big picture... 12

1.4.1 Prom system-level to transistors .. 12
1.5 Performance prédiction for better design.. 15
Bibliography ... 17

2 Yeti: Concepts, Design and Implémentation 21
2.1 Introduction... 21
2.2 State of the art...22

2.2.1 SUSPENS..22
2.2.2 Sai-Halasz model..23
2.2.3 Takahashi model..23
2.2.4 RIPE.. 23
2.2.5 GENESYS ... 24
2.2.6 Codrescu model .. 25
2.2.7 BACPAC.. 26
2.2.8 Summary..26

2.3 GTX, the ultimate prédiction tool?... 27
2.4 Concepts for advanced modeling ...31

ix

X CONTENTS

2.4.1 Parameters.. 32
2.4.2 Generic rules... 32
2.4.3 Relations.. 33
2.4.4 Behaviours.. 34

2.5 Algorithmic and advanced concepts in YETi^... 37
2.5.1 Generic Rules... 37
2.5.2 Relation... 4(i
2.5.3 Behaviour.. 40

2.6 Implémentation... 50
2.6.1 Introduction ..52
2.6.2 Generic rules... 52
2.6.3 Relation... 56
2.6.4 Behaviour..56
2.6.5 Parameters... 56
2.6.6 The big picture...59
2.6.7 Using the framework.. 60

2.7 Data support.. 62
2.8 Conclusions...62
Bibliography... 62

3 Yeti: Case Studies and Applications 65
3.1 Introduction... 65
3.2 Case Study 1: the Codrescu model... 66

3.2.1 Introduction .. 66
3.2.2 Codrescu model .. 67
3.2.3 Intégration of Codrescu’s model inside Yeti... 70
3.2.4 Extending Codrescu’s results.. 7;i

3.3 Case Study 2: stage delay modeling and applications..................................... 83
3.3.1 Introduction .. 83
3.3.2 Représentation of a stage.. 84
3.3.3 Modeling the stage delay into Yeti.. 90
3.3.4 Experiments with the stage delay model... 98

3.4 Yeti performances ... 110
3.5 Conclusions... 111
Bibliography... 111

4 State of the Art on Performance Prédiction Tools and Methods 115
4.1 Introduction... 115
4.2 A bit of vocabulary... 117
4.3 Literature survey.. 120

4.3.1 Behavioural languages...120
4.3.2 HW/SW codesign tools.. 125
4.3.3 Y-chart related tools.. 128
4.3.4 Design space exploration tools ...134

CONTENTS XI

4.3.5 UML... 141
4.4 Analysis and classification of literature..145
4.5 Conclusions..15(5
Bibliograpliy..158

5 Nessie: Concepts, Design and Implémentation 163
5.1 General concepts.. 1(54

5.1.1 D<=sign space exploration..1(54
5.1.2 Hierarchy.. 1(57
5.1.3 Rmctionality and platform consistency... 172
5.1.4 System hierarchical exploration..175
5.1.5 Summary.. 179

5.2 Platform description..181
5.2.1 Hierarchical platform structures..181
5.2.2 States.. 182
5.2.3 Criteria intégration...188

5.3 Functionality description..192
5.3.1 Biïsic features of a MoC for performance exploration purpose 193
5.3.2 Pétri Nets.. 193
5.3.3 Intégration of pétri nets inside Nessie ..19(5
5.3.4 Summary..2(K)

5.4 Mapping... 201
5.4.1 Introduction of the problem... 202
5.4.2 Existing mapping methods: high-level synthesis.................................... 204
5.4.3 Mapping in Nessie...209
5.4.4 Scheduling/allocation .. 218
5.4.5 Routing...220

5.5 The Nessie framework...234
5.5.1 Introduction ..234
5.5.2 Input and output files...234
5.5.3 XML format ..23(5

5.6 Implémentation...237
5.6.1 Performance criteria and degrees of freedom..237
5.6.2 Hierarchy..240
5.6.3 Rinctional structure and pétri nets...244
5.6.4 Platform structure...247
5.6.5 Mapping... 248

5.7 Conclusions... 2.50
Bibliography..251

6 Nessie: Case Studies and Applications 253
6.1 Introduction... 254
6.2 Design space exploration with Nessie... 254

6.2.1 Introduction ..254

CONTENTS

6.2.2 A single computation node architecture..2.'36
6.2.3 Multiple computing nodes architecture...26.'j

6.3 Modeling an H.264/AVC application inside Nessie ... 272
6.3.1 Introduction ..272
6.3.2 Description of the System.. 274
6.3.3 Formalization of the problem.. 279
6.3.4 Results ...238

6.4 Discussion of the use Nessie... 296
6.5 Conclusions... 297
Bibliography... 299

7 Future work 301
7.1 New concepts.. 301

7.1.1 Improving Nessie exploration layer... 301
7.1.2 Decreasing the estimation time... 302
7.1.3 Developing metrics for application and platform characterization . .305
7.1.4 Introducing design cost related issues inside nessie..............................305

7.2 Implémentation and future tool évolution.. 306
7.2.1 Nessie.. 306
7.2.2 Yeti... 309
7.2.3 XML parser update..310

7.3 Integrating Nessie inside an existing flow..310
7.3.1 Intégration method...310
7.3.2 Adding a GUI ...312
7.3.3 Resuit analysis...313

7.4 Summary.. 313
Bibliography... 314

8 Conclusions 317

A A complément to Yeti implémentation 319
A.l The shunting yard algorithm ...319

A. 1.1 Introduction ..319
A. 1.2 Available operators.. 319
A. 1.3 The algorithm .. 320

A. 2 Mutual class inclusion..323

B XML for Nessie/Yeti data support 327
B. l Some insight into XML ... 327

B. 1.1 Introduction ..327
B. 1.2 Implémentation...329

B.2 Yeti schema’s..331
B.2.1 Schema’s organization.. 331
B.2.2 Schema’s description... 333

xii

CONTENTS xiii

B.3 NESSIE schema’s...340
B.3.1 Schema’s organization..340
B.3.2 Schema’s description...340

Bibliography ... 3(i2

XIV CONTENTS

List of Tables

2.1 Summary of state-of-the-art prédiction tools.. 28

3.1 IPC and area for the different processor types... (59
3.2 Wire and gâte delays for the different processor types 69
3.3 Value of the smallest workload parallel fraction required to meet computa­

tion performances requirements for different types of processors................ 83
3.4 Physical constant input parameters values used in the stage delay model . . 92
3.5 Technological related input parameters values used in the stage delay model 92
3.6 Design related input parameters values used in the stage delay model.... 92
3.7 Design related input parameters values used for the ±25% input sensitivity

study .. 96
3.8 Results of the input sensitivity study of gâte geometry related parameters

perfomnxl for the stage delay model.. 96
3.9 Input parameters for the local wire sizing in 180 nm.................................. KM)
3.10 Input parameters for the global wire sizing in 180 nm 1(X)
3.11 Comparison of the miller effect and a ±5%/±10% technological input vari­

ation impact on the delay variability... 109
3.12 Performances of Yeti expressed in behaviours per second (B/s) and in basic

operations per second (BO/s)... 110

4.1 Functionality spécification of the state-of-the-art tools...............................146
4.2 Platform définition used by the state-of-the-art tools.................................. 148
4.3 Allocation and scheduling methods used by the state-of-the-art tools150
4.4 Performance criteria estimated by each state-of-the-art tools......................152
4.5 Design space exploration and optimization methods of the state-of-the-art.

tools.. 154
4.6 Synthesis capability for each state-of-the-art tools.. 155

6.1 Value of the functional primitive Fci,o parameters..................................... 258
6.2 Value of the platform primitive ^*^1,0 parameters representing the compu­

tation node..259
6.3 Value of the platform primitive Pti,i parameters representing the memory . 260
6.4 Value of the platform primitive Pti,2 parameters representing the bus . . . 263

XV

LIST OF TABLES

6.5 Energy and computation time for the mapping of a functionality on six
nodes based platforms with different topologies..271

6.6 Comparison of the original NoC power dissipation with Nessie estimations
for the 2D case study..289

6.7 Average wire power gain achieved by the use of 3D stacking for different
mapping scénarios and resolutions ...292

A.l Table of available operators classified by name, type(number of operands
required), precedence value, associativity and possibility of mathematical
exception.. 320

xvi

List of Figures

1.1 Représentation of a design using the 3-axis Y chart... 3
1.2 Design and design process représentation using the 5-axis rugby niodel ... 4
1.3 Double-Y chart methodology.. .I
1.4 The five resolutions axes of the VSIA taxonomy defining a représentation

of a VLSI System.. (i
1.5 Evolution of the abstraction levels during the forty last years in the context

of VLSI design... 7
1.6 Design productivity gap: design complexity versus designer productivity . . S
1.7 D,ynamic and static power évolution over different technological nodes ... 10
1.8 Gâte and wire delay évolution over different technology nodes....................... 11
1.9 Design flow hierarchy and associated design steps.. 12
1.10 Formalization of a generic design step allowing to move from abstraction

level V to lower level V -|- 1.. 13
1.11 Evolution of the EDA tool support over the last thirty years.......................... 15
1.12 Représentation of the design exploration ... 16
1.13 Combination of out two tools Yeti and Nessie for performance prédiction . . 16

2.1 GTX internai structure .. 29
2.2 The 3-level hierarchy inside YETi^ using parameters to communicate data

between each other... 32
2.3 Two different generic rules for the same relation.. 33
2.4 The définition of the dynamic power consumption relation with its four

associated generic rules .. 34
2.5 One example of behaviour composed out of 4 different relations without

orientation.. 35
2.6 Two behaviours differing from each other due to separate relation orienta­

tions: input parameters are drawn in red while output parameters are in
green... 3(5

2.7 A simple hypert,ree representing the expression P^j/n = Cgvntch * fdock * Vm
2.8 Evaluation of the dynamic power consumption tree using a depth-first al-

gorithm... 38
2.9 Evaluation of the constraints for an hypertree representing closed-formed

expressions ... 40

xvü

xviii LIST OF FIGURES

2.10 Case where constraints évaluation cannot be perfornied on our hypertree;
the same input parameter A takes different values 41

2.11 Représentation of a 3-dimensinal table where dimensions 1, 2 and 3 are
respectively 3, 2 and 3 éléments long..43

2.12 Example of a 3-dimensional table using a single value array to contain table
values and 3 dimensional arrays associating the index with the possible table
input values... 44

2.13 Evaluation of a table rule based on the dimensional indexes values: the
conversion formula to get the table index is particularized for the case of 3
dimensions ... 4.5

2.14 Représentation of an oriented behaviour with #0 outputs and #/ inputs . 4h
2.15 Illustration of the two conditions required to hâve valid exécutable graphs

on our example...49
2.16 Exploration of an hyper-graph to find loops: a) represents a wrong solution

while b) shows a cycle-free solution... 51
2.17 General UML diagram for the framework...53
2.18 UML diagram for the generic rule related classes...54
2.19 UML diagram for the relation related classes...57
2.20 UML diagram for the behaviour related classes..57
2.21 UML diagram for the behaviour related classes..58
2.22 Accélération of behaviour estimation thanks to common branches identifi­

cation .. 59
2.23 UML sequence diagram representing message passing between ail the classes

during model évaluation... 60
2.24 Functional view of the YETi^ framework...61

3.1 Seven multi-processor architecture candidates with a constant total Silicon
area are compared in terms of computation performance....................................68

3.2 The eight relations representing Codrescu’s model inside Yeti. The orienta­
tion of the relations is performed according to Codrescu: output parameters
are colored in green and input parameters in red.. 71

3.3 Computation performances VS workload parallel fraction ranging from 0 to
0.5 for Codrescu’s model... 72

3.4 Computation performances VS workload parallel fraction ranging from 0.9
to 1 for Codrescu’s model.. 73

3.5 Modification of the relations (in blue) orientation to express the parallel
fraction as an output and the computation performances as an input 75

3.6 Minimum required parallelism VS computation performance for the differ­
ent competing architectures... 75

3.7 Représentation of the three zones of the minimum parallelism curves 77
3.8 Orientation of Codrescu’s relations expressing the area as a fonction of the

processor type, workload parallel fraction and computation performances . 78
3.9 Total area VS parallel fraction for different processors architectures meeting

a 0.8 Gops performance constraint... 80

LIST OF FIG URES xix

3.10 Total area VS parallel fraction for different processors architectures meeting
a 0.9 Gops performance constraint... 81

3.11 Total area VS parallel fraction for different processors architectures meeting
a 6 Gops performance constraint.. 82

3.12 Représentation of the different zones composing a curve of the area VS
parallelism fraction... 83

3.13 Hierarchical représentation of a stage model in three layers: delay, electrical
scheme and technology... 85

3.14 Représentation of a square chip of area A and its N stages............................ 85
3.15 Logic représentation of a stage composed out of a gâte driving a 1 F04 load

through a wire... 8(i
3.16 Electrical représentation of a stage.. 87
3.17 Geometrical représentation of a transistor... 87
3.18 Geometrical représentation of a wire and its neighbours............................... 89
3.19 Yeti behaviour corresponding to the modeling of a stage delay: green pa-

rameters are physical constant, blue are Silicon process related and red are
geometrical parameters fixed by the designer ... 90

3.20 Comparison of five models estimating stage delay for a 0.1mm to 1cm wire
length range... 93

3.21 Dispersion and maximum error for the five models estimating stage delay . 94
3.22 ComparLson of five models estimating stage delay for a 0.01mm to 1mm

wire length range.. 95
3.23 Stage delay VS wire height for a -25%/+25% range around its nominal value 97
3.24 Stage delay VS wire spacing for a -25%/+25% range around its nominal value 98
3.25 Relations representing a chip maximum frequency based on a stage delay

model.. 99
3.26 Maximum frequency of a 54.8 mm global wire for different values of the

number of stages..102
3.27 ComparLson of the normalized frequency of 54.8nim long global wires for

different repeater sizes...103
3.28 Comparison of the normalized frequency for global wires with different

length (IX size repeaters)...103
3.29 Comparison of the normalized frequency for local wires with different lengt h

(IX size repeaters)...104
3.30 Bandwidth évolution for different wire spacing values and for a nominal

wire width of 700nm..106
3.31 Bandwidth versus wire width for a nominal wire spacing of 1300nm.............. 107
3.32 Nonnalized bandwidth versus wire width for different repeater sizes107
3.33 Illustration of the coupling capacitance variability resulting from the Miller

effect between two neighbour wires..108

4.1 Ptolemy hierarchical représentation of a System using nested actors.............. 121
4.2 Object hierarchy inside AADL using a 1 to n composition relation...............127
4.3 The Y chart methodology used within the MESCAL framework.....................129

XX LIST OF FIGURES

4.4 The application description in Design Trotter based on hierarchical HCDFG’s,
CDFG’s and DFG’s ..138

4.5 ROSETTA représentation of a System with interconnected components . . . 140
4.6 SysML System description based on four aspects: the structure, the be-

haviour, the requirements and the parametric aspect.....................................142

5.1 Performance évaluation interface offered by Nessie: inputs are the design
related degrees of freedom while outputs are the performance criteria165

5.2 Design space exploration based on the Nessie performance évaluation core . 167
5.3 Example of two different platform structures build upon a set of lower

abstraction level primitives ... 170
5.4 Example of two different functional structures for a functional primitive

build upon a set of lower abstraction level primitives.....................................171
5.5 The three degrees of freedom (functionality, platform and mapping) used

by Nessie to estimate performance criteria values...174
5.6 Estimation of performance criteria of a functional/platform primitives pair

through explicit mapping or the use of a Yeti model.....................................176
5.7 Yeti modeling for performance criteria estimation based on functional and

platform parameters.. 177
5.8 Locality for parameter name/value defintion inside Nessie.............................. 180
5.9 Example of platform structure modeling an architecture based on a shared

bus communication medium..183
5.10 Example of a microprocessor connected to two busses able to perform data

memorization, transmission and computation operations................................. 184
5.11 State machines and their transitions associated to the core and ports of a

platform block ... 185
5.12 Mandatory criteria for port and core States and their évaluation method . . 187
5.13 Criteria estimation for a platform structure based on time and structural

information... 188
5.14 Criteria estimation for a platform structure based on time and structural

information..190
5.15 Example of the maximum and additive composition rules for a platform

structure..191
5.16 a) The different éléments forming a pétri network ; b) an example of pétri

network before and after transition firing...194
5.17 Parallelism and sequentiality of operation in Pétri Nets.................................... 195
5.18 Confüct example in a pétri network resulting in two possible network states

after transition firing.. 196
5.19 Transformation of the operation a = b + c* d into a pétri network 197
5.20 Hierarchical building of a structure based on pétri nets.................................... 198
5.21 Introduction of dummy nodes for the transformation of the sequence of

operations 5.7 into pétri nets...201
5.22 Example of mapping and execution of a pétri net based functional structure

on a platform structure ..205

LIST OF FIG URES xxi

5.23 Example of mapping and execution of a pétri net based functional structure
on a platform structure (suite) ..200

5.24 Example of a DFG scheduling resulting from an ASAP/ALAP algorithm . . 20X
5.25 Co-simulation of the platform and functional structure.................................. 211
5.26 Internai simulation of the platform structure ... 212
5.27 Example of data token flows between producer/consumer platform blocks . 213
5.28 Example of timeline used for mapping process... 214
5.29 Example of deadlock due to platform blocks in blocking-mode: ail blocks

need to transmit a data token to the neighbour situated at their diagonal .217
5.30 General problematic of data tokens routing illustrated on an example of

platform structure. This figure shows different routing possibilities for pro-
ducers/consumers of the same data token DT\.. 221

5.31 Illustration of a graph representing a communication network: vertices are
communication nodes while edges represent communication links............... 223

5.32 Application of the neighbourhood identification rules to a platform struc­
ture (a) in order to obtain the équivalent graph représentation (b) required
by the Dijkstra’s routing algorithm..225

5.33 Example of the Dijkstra’s routing algorithm applied on a platform structure 227
5.34 Example of a Bellman Ford routing algorithm for a platform structure re­

sulting in infinité loop route..228
5.35 Example of the optimal route for the broadcast of a DT\ token from a

producer block P{DTi) towards ail the consumers C{DT\)............................230
5.36 Mechanism of event génération inside a platform block based on the results

of a routing operation...233
5.37 Input and output XML file organization in Nessie... 235
5.38 UML diagrams for criteria related classes in Nessie... 238
5.39 UML diagrams for tinie dépendance rule related classes239
5.40 UML diagrams for combination rule related classes... 239
5.41 UML diagrams representing degrees of freedom related classes...................... 241
5.42 UML diagrams representing the classes related to the functional and plat-

fonn hierarchy ...242
5.43 UML collaboration diagram describing the message passing mechanism be­

tween the different actors responsible for performance estimation..................... 243
5.44 UML diagrams representing functional structure related classes................... 245
5.45 UML diagrams representing platform structure related classes...................... 247
5.46 UML diagrams representing mapping related classes...................................... 249

6.1 Pétri newtork modeling the application used for our case study...................256
6.2 Single computation node architecture (a), with an additional external mem-

ory (b) and its communication bus (c).. 258
6.3 Impact of niemory access time on total computation time for three different

memorization bandwidths...261
6.4 Illustration of the minimum bandwidth matching mechanism performed

inside Nessie ..264

XXll LIST OF FIGURES

6.5 The seven fully connected homogeneous architectures conipetiiig for the
best mapping of functionality Fcq.o...265

6.6 Evolution of the total computation time with the number of platform blocks
composing a fully connected architecture..266

6.7 Cumulated relative computing activity for architectures with a growing
number of computing nodes... 268

6.8 Computation time versus energy for architectures with a growing number
of computation nodes .. 270

6.9 Ring and Star topologies for 7-nodes architectures..271
6.10 Energy consumed versus the static/dynamic proportion..................................273
6.11 The 3MF platform for multi-standard video decoding based on six ADRES

computation nodes...276
6.12 Functional block diagram for the H.264/AVC application 278
6.13 Platform structure used inside Nessie for the représentation of the 3MF

platform...281
6.14 Description of the H.264/AVC functionality with a Pétri network for the

data split scénario...283
6.15 Description of the H.264/AVC functionality with a Pétri network for the

functional split scénario... 284
6.16 Modification of pétri network for manual mapping: a) procedure to force

data fetching from a spécifie memory and b) method to force the memo-
rization of data inside a spécifie memory.. 286

6.17 Modification of pétri network to enable the functional description of data
split... 286

6.18 Contribution of wires to the power consumption of the 3MF architecture
running the AVC application for ten 3D stacked variants in the case of an
HDTV resolution..291

6.19 Contribution of wires to the power consumption of the 3MF architecture
running the AVC application for ten 3D stacked variants in the case of a
4CIF resolution... 291

6.20 Contribution of wires to the power consumption of the 3MF architecture
running the AVC application for ten 3D stacked variants in the case of a
CIF resolution ... 292

6.21 Contribution of the NoC to power consumption of the 3MF architecture
running the AVC application for ten 3D stacked variants in the case of a
CIF resolution ... 294

6.22 Power consumption réduction VS wasted area compared to the original 2D
layout of the 3MF architecture... 295

7.1 Pareto optimum curve of the computation performances versus power con­
sumption for the extended Codrescu model..303

7.2 Modeling of the performance criteria resulting from Nessie explicit mapping
by functional, platform and mapping parameter extraction..............................303

LIST OF FIGURES xxiü

7.3 Simultaneous représentation of the design activity and the chip hierarchy
organized in different abstraction levels... 307

7.4 Comparison of vertical and horizontal intégration of Nessie inside existing
design flows... 311

A.l Detailed procedure for the extraction of the AST out of the textual string
a = 6 * (c — log(83)) + 5 using the shunting yard algorithm................................322

A. 2 Graph représentation of a mutual inclusion class problem...................324

B. l Schéma organization for the YETi^ framework... 332
B.2 Schéma for the behaviour type - behvaviourType.xsd.................................. 333
B.3 Schéma for the orientation type - orientationType.xsd............................... 334
B.4 Schéma for the relation type - relationType.xsd...335
B.5 Schéma for the association type - associationType.xsd............................... 335
B.6 Schéma for the analytical rule type - analyticalRuleType.xsd336
B.7 Schéma for the table type - tableType.xsd.. 337
B.8 Schéma for the value type - valueType.xsd.. 338
B.9 Schéma for the constraints type - constraintsType.xsd...............................338
B. 10 Schéma for the value input - valueinput.xsd...339
B. 11 Schéma for the constraint input - constraintsinput.xsd...............................339
B. 12 Schéma for the scripting input - yetiScripting.xsd.. 340
B. 13 Organization and dependence of XML schémas inside Nessie......................... 341
B. 14 Schéma for the custom types for Nessie - customizedTypes.xsd............... 342
B. 15 Schéma for the Nessie simulation type - nessieSimulationXype.xsd 342
B. 16 Schéma for the criterion tj^e - criterionType.xsd.. 343
B. 17 Schéma for the functional hierarchy type - SWhierarchyType.xsd...... 344
B. 18 Schéma for the functional primitive type - SWtype.xsd.........................344
B. 19 Schéma for the functional structure t5T)e - SWstructure.xsd............... 347
B.20 Schéma for the functional primitive type - SWtype.xsd.........................348
B.21 Schéma for the platform hierarchy type - HWhierarchyType.xsd.....348
B.22 Schéma for the platform hierarchy type - HWhierarchyType.xsd.....350
B.23 Schéma for the platform primitive type - HWtype.xsd.................... 351
B.24 Schéma for the platform structure - HWstructureType.xsd.............353
B.25 Schéma for the degree of freedom type - DOFtype.xsd...............................354
B.26 Schéma for the nessie event schaluling - nessieSchedulingTj^je.xsd......... 357
B.27 Schéma for the activity report - activityReportType.xsd............................359
B.28 Schéma for the different solutions with the performance criteria and their

corresponding degrees of freedom - nessieSolutionType.xsd............................. 3(il

XXIV LIST OF FIGURES

List of Acronyms

ASIC Application-Specific Integrated Circuit
ASIP Application Spécifie Instruction Processor
AVC Advanced Video Coding
CFSM Codesign Finite State Machine
GIF Common Image Format
CPI Cycles Per Instruction
CPU Central Processor Unit
CDFG Control Data Flow Graph
CSDF Cyclo-Static Data Flow
CSP Communicating Sequential Processes
CT Continuons Time
DCT Discrète cosine transform
DE Discrète Event
DFG Data Flow Graph
DoF Degree of Freedom
EMIF External Memory Interface
FCFS First Corne First Served
FIFO First In First Out
FPGA Field Programmable Gâte Array
FSM Finite State Machine
GPP General Purpose Processor
HCDFG Hierarchical Control Data Flow Graph
HDTV High Définition Télévision
HW Hardware
IDCT Inverse Discrète cosine transform
ILP Instruction Level Parallelism
IP Intellectual Property
IPC Instructions Per Cycle
KPN Kahn Process Network
MIPS Million Instructions Per Second
MoC Model of Computation
MPSOC Multiple Processor System-on-Chip
MPU Micro-Processor Unit

XXV

xxvi LIST OF ACRONYMS

NIU Network Interface Unit
NOC
OBIS
PN
RTL
SAIF
SDF
SoC
SW
TLM
TLP
VHDL
VHSIC
XML

Network On Chip
Optimal Buffer Insertion and Sizing
Pétri Networks
Register Transfer Level
Switching Activity Interchange Format
Synchronous Data Flow
System-on-Chip
Software
Transaction Level Modeling
Thread Level Parallelism
VHSIC Hardware Description Language
Very High Speed Integrated Circuits
extensible Markup Language

Introduction

When introducing the general context of a thesis dissertation, it’s always difficult to chose
between presenting the naughty problem that we try to solve or the great opportunities
we coiild benefit from. So why wouldn’t we simply présent two different versions dealing
with each aspect?

Version 1: the bright side

Imagine you in five years; you are walking ont of the shop with your brand new handheld
in the pocket. It's a wonderfnl mobile device that has ail the features you hâve ever
irnagined: integrating a GPS, this phone disposes of powerful wireless functionalities like
videoconference, web browsing and communication with ail other surrounding embedded _
devices allowing their control. Beside these common functionalities, it is also a powerful
organizer, a 3D gaming station and a MPEG 4 video décoder making it very convenient
for entertainment.
You think back nostalgically on the past ten years: people had their pockets full of devices
to benefit from ail these functionalities but now everything is integrated. In fact, you
don’t know that this évolution is the product of researches in microelectronics that lead
to System-on-Chips allowing the intégration of the whole electronic System into one single
die.
Lost in your thoughts, you even forget the numerous and almost invisible sensors inserted
in your gamients that monitor your heart frequency, your body température and can
communicate with the handheld to contact the nearest hospital in case of emergency. Since
you own your garments, you hâve never changed their batteries: they are low-powered and
some are even taking their energy from the body movement.
The technological future is bright and full of conveniences, Lsn’t it?

Version 2: the dark side

Imagine you in five years: you are exhausted and worried, working day and night to
finish your project before the deadline. No, you’re not a PhD student, it’s much worse:
you are an integrated circuit designer. Don’t tell me you haven’t been warned enough:
during your studies and even after, people around you kept talking about increasing IC
complexity, unmanageable projects and technological issues. Researchers wrote tenths of

xxvu

INTRODUCTION

papers to describe these wicked Deep sub-micron (DSM) effects that occur when transistor
size scale down under lOOnm. Who could believe that a few billion transistors 35nm chip
could draw a total current of a few tenths A in its 10 km wires labyrinthine network?
But now, the fiction has corne true ; DSM effects make integrated circuits suffer from be-
haviour uncertainties due to process variations, bum a lot power even when the chip is not
Processing, make the manufacturing times and costs explode... Now, you’re going back to
Work with your team in the building where 800 persons work on the same project as you
since one year. The design tools that you are using are still optimising your integrated
circuit and you know that this optimisation step will once again fail leading you to iterate
this operation once again.

Could your situation be worse ? Yes, you could hâve been one of the project leaders.

The subject of this thesis revolves around opportunities, methods and tools for multicri-
teria performance estimation of heterogeneous System-on-Chip architectures. The main
contribution of this work lies in the design and implémentation of two different tools called
Nessie and Yeti whose combination enables fast design space exploration and flexible per­
formance estimation.
Yeti is a tool enabling the flexible représentation, combination and use of analytical/table-
based models to capture the link between performance and ail their related parameters.
Aside from enabling dynamic model building for model-based sensitivity analysis, Yeti en­
ables fast input sensitivity studies combined to powerful scripting and integrated plotting
functionalities.
Nessie is an automatic design space exploration tool capturing in a hierarchical way the
functionality along with the platform and enabling their automatic mapping. Tailored to
support user-defined performance criteria, Nessie banalizes ail possible design choices as
possible degrees of freedom and enables the use of any customizable exploration policy.

xxviii

The thesis is organized as follows:

Chapter 1 introduces the context of the thesis.

Chapter 2 describes the concepts and implémentation of Yeti.

Chapter 3 studies different design cases to demonstrate the main features of Yeti.

Chapter 4 defines the state of the art related to performance estimation tools and meth­
ods.

Chapter 5 describes the concepts and implémentation of Nessie.

Chapter 6 demonstrates the features of Nessie on different case studies including the
performance estimation of an H.264/AVC application running on a MPSoC.

Chapter 7 identifies future opportunities for the development of our tools.

Chapter 8 concludes this thesis.

Chapter 1

Context and motivation

Abstract
In this first chapter, we introduce the context of this work and ex-
plain why performance prédiction is so important in a VLSI design
process. We first start by presenting a brief history of the design
process représentations frorn which we extract the main aspects of
current VLSI design and challenges while focusing our talk on de­
sign hierarchy and functionality/platform séparation. To highlight
the close interaction between technology and the first steps of the
design process, we discuss sortie new technology shifts and their im­
pact on design.
Based on this context, we présent our formalization of the design
process through which we explain the concept of design itération, its
causes and why it is harmful the design. We finally propose perfor­
mance prédiction as a viable yet simple solution to enhance design
process and quality and briefîy summarize our personal contribution
to this domain that will be presented in this thesis.

1.1 Introduction

Nowadays, Moore’s law[l] has enabled such a high level of Silicon intégration that we hâve
reached a point where a complété microcontroller is taking a ridiculously small amount
of square millinieters. Now that more than 1 billion transistors can fit the same chip,
designers are able to integrate several components on a single die and build up hetero-
geneous platforms called systems-on-chip[2]. These architectures combine the respective
advantages of different components allowing the co-existence of FPGA’s and processors
communicating through complex networks-on-chip or mixing analog and digital blocks
onto the same chip.
AU this extra Silicon is not too much to implement ail the new ideas that the System
level guys can corne up with: rnulti-standard video decoding platforms, software defined
radio, wireless reconfigurable handhelds and many more. The question of converting ef-

1

2 CHAPTER 1. CONTEXT AND MOTIVATION

ficiently this Silicon into chips running these new fancy applications is however fai’ from
being obvions putting a lot of pressure on the design. Not only does it hâve to resiilt in
a chip running the desired application but non-functional aspects like power consumption
and reliability also need to be taken into account. Furthermore, the design itself must be
optimized to ensure reasonable complexity, minimize cost, lower time-to-market and guar-
antee high yield and cheap manufacturing. Considering this new perspective and ail the
possibilities offered by extra Silicon, the scope of the problem becomes way larger than it
was before in VLSI design; this introduction chapter focuses on these issues and identifies
opportunities for this dissertation.

In this chapter, we will first describe in Sec. 1.2 the évolution of the design process rep­
résentation over the last thirty years which will give us some insight inside nowadays
design methodology and the rise of the abstraction levels used for designing. Sec. 1.11 will
show us how technology related issues begin to deeply impact the first steps of a design
which makes system-level design decisions more and more dépendent on Silicon processes
and may compromise time-to-market by adding extra itérations to the design process (see
Secl.4). Finally, Sec.1.5 discusses methods to optimize and guide the design process by
using a priori performance estimation: our contribution to this domain is then presented.

1.2 Design

In this section, we will présent different design and design process représentations and see
how their évolution over time has progressively emphasized two major cunent trends of
EDA: design abstraction and functionality/platform co-design.

1.2.1 A bit of history: design process représentation évolution

We will now présent some of the major design process représentations in chronological or-
der and put the spell on how they captured the hierarchical représentation of an application
and its platform along with the progressive rise over time of the associated abstraction
levels.

Y-chart First introduced in the early eighties, the first Y-chart[3] is the most famous
design représentation widely used in microelectronics courses to introduce VLSI design to
student^ The Y-chart depicted in Fig.1.1 is organized in three axes:

• The behavioural axis describes what the designed System is supposed to do without
any information about its implémentation.

• The structural axis is the bridge between the behavioural and physical axis: it repre-
sents the mapping of the functionality onto a set of components and communication

’There is an extension of the Y-chart defined a few years later and called the X-chart[4j that adds one
axis for testing représentation to the original représentation. We thought it useful to mention it even if
the X-chart is much le.ss used than the Y-chart.

1.2. DESIGN 3

Figure 1.1; Représentation of a design iising the 3-axis Y ohart[3]

primitives. Physical components are represented as concurrent processes interacting
to execute the functionality.

• The geometrical or physical axis is totally abstracted of the functionality and focuses
on the spatial organization of the physical blocks described by the structural axis.

Concentric circles surrounding the axes describe the different levels of abstraction: the
doser we are to the Y-chart centre, the less implémentation details we hide in the Sys­
tem représentation. Originally the Y-chart abstraction levels were limited to the register
transfer, logic and circuit levels[5] but with the évolution of VLSI design in twenty five
years, the algoritlmiic and System level were progressively added on top of it.
If the Y-chart succeeds in hierarchically representing the design itself, it is however not
very appropriate for describing the design process: only simple design trajectories roughly
capturing the design activity can be represented on the Y-chart [6]. Refinement (describing
an axis in the lower abstraction level) and synthesis (mapping of the functionality on the
physical architecture i.e. moving from behavioural to structural axis) can be represented
while any parallel design task or step simultaneously involving different aspects of the
design cannot. These limitations, recognized by Gajski, the author himself, lead him to
rethink its design process représentation and propose a new one called the Rugby model.

The Rugby model This model was developed in 1999 to extend the deprecated Y-chart.
to current design méthodologies and enable a clarified distinction between the représenta­
tion of the design and the design process itself[7].
Depicted in Fig. 1.2, the rugby models introduces four different domains:

4 CHAPTER 1. CONTEXT AND MOTIVATION

Figure 1.2: Design and design process représentation using the 5-axis rugby model[7]

• The computation domain is a restricted vei'sion of the Y-chart functional axis

• The comm\mication domain merges structural and physical axes that were indeed a
bit redundant since they représentée! the same thing but at a logical and geometrical
point of view

• The data domain focuses on the data types used at the different levels of abstraction

• The tinie domain deals with important aspects of timing (constraints, causality,
clocked cycles etc.)

Additionally a fifth axis orthogonal to ail the other ones repnesents the design manipula­
tions allowing a separate description of the design process in different identified steps.
The rugby niodel is a first step towards the description of more heterogeneous Systems
since each axis rnay be divided in several branches with spécifie semantics that are more
appropriate depending on the targeted design style (FPGA or microprocessor for instance).
The general idea behind this représentation is the following; as we further refine the idea
of the System, the distinction between the four different aspects described by the axLs
becomes clearer and more details are added to the design. When we get close to the
Silicon implémentation, the distinction between functionality and platform becomes more
blur as they become deeply merged. This is why the model lias a rugby shape with its
axes diverging and converging for the higher and lower abstraction levels. This concept
shows the fact that the first steps of the design could benefit from anticipated information
of the lower abstraction levels where more details are available to characterize both the
design and design process performances.

1.2. DESIGN 5

Figure 1.3: Double-Y chart methodology

Double Y-cheurt In 2004 IMEC^ came up with the idea of adding a reverted Y-chart
on top of the exLsting Y-chart in order to propose an efficient methodology for the design
of complex systems[S]. As depicted in Fig. 1.3, the left top branch consists in optimizing
an input code and transforming it so that it can be efficiently mapped onto a generic
platform. The right top branch customizes a just flexible enough platform template and
instantiates it by defining the computation and communication resources to propose a
tailored platform for the functionality. Once these operations hâve been performed, the
classical bottom Y-chart methodology can be applied.
What’s interesting about this double Y-chart is the recurring idea of the functionality/-
platform séparation in design along with the définition of a platform template easy to tune
for a spécifie application[9].

VSIA taxonomy In 2001 the VSIA alliance, an international organization constituted
by many industrial actors involved in SoC design, released a document describing a tax­
onomy for the description of VLSI Systems. This taxonomy consists of five different axes
dfseribing the varions aspects of the System with different resolutions corresponding to
the abstraction leveLs (see Fig.1.4):

• Temporal résolution-, captures time with different accuracy levels (causality, trans­
actions, dock cycles)

^IMEC is a research center located in Leuveu Belgium and is cunently one of the major actor iu
microelectronics research.

() CHAPTER 1. CONTEXT AND MOTIVATION

liidec»s?»~>deritiv Desoit^a:

In Teinis of:

Tontporal R^oltition

/Resohition of INTERNAL (Komel) Details
\Resolution of EXTERNAL (Interface) Detafls

C5r«^ Prcp. Ctok^œ. Insü'. C?ycü?' Tck* *ii‘i Syst'êi'n 5v>^nt Portj'd
<p5) {fOsofi^S} (JCX)sof/>S/ t'/O^'OfuS) (’OCg oi'ijS) f/Ctî û//7î.'>> (''.xwx:;

Data Resolution
ni^iiR.x,

FojnSt ValueBU(Ci>0-l toi) ToKen(frnumtT^rttKii'} *r.Q.
Functiol^al Resolution

B
D giTLii Logiû

fÊojiiViT/.* o:>s*!i‘ii'onsj
Ahjonthmio

(BllijUvSO'ï
MCrtlVütTIOtlOCll

'/of
Strtictvfral Résolution

*^^s57êé:J,rGa» oe??i5r.(FLiS /r7yve777e/7&7&ti/î /rjjtv
Software Programming Resolution

HiJiR-.i»

Blt:»:rk Oiagrrin*iMfxor S/Cok's, iX>/7?/>:xSjî6- HCHn^Fi
{Go/T7e ym/jftf?;7Te/7S)COf7 Itiîo)

\c . rain
Sin^ile Blc»^ Bo>

(i\io ù'tii'jié'nys^'izaîjoi'! //îS.v

Coci^-
(1001O11)

fVE«3^>-Co3e A-ss's'nilrly-
Ccde

HLL <.An^.C)
Slatenients

DSF* Fruviitr^»?*
BlookOifei il€5j

i nrmf n r‘2'} {!:—!■*’ VJ (FFT{e..t:>,0))
(khiiw. ot^Ari: rjt^Bt2: acid: dsxniiixA^

N'IoJes
TVr/oA:?

l.ov*» oi II'<2Hci9r. «■ l-tlijh ol Al:ç;itT*;ii»:< i.
I ligh l'î-.soolLidoi I ol DgUiOg = l_c-w Lovei ot Airc^rcicUoi »«

Figiore 1.4: The five resolutions axes of the VSIA taxoïioniy defining a représentation of a VLSI
s>'stem[l,ü]

• Data resolution: defiiies the granularity and types of data iised for computation

• Emctional resolution: defines the basic operations that are used at each abstraction
level to specify the functionality (bitwise operations, boolean operations, matheniat-
ical opefators, algorithms etc.)

• Structural resolution: captures the description of the physical structure of the System

• Software prograrnming resolution: defines the level of abstraction used to program
the behaviour of the System (binary code, assembly code, objects etc.)

This taxoriomy eau be iiseful to classify different computation models or languages[l 1]
by considering the five different aspœts described earlier. Interestingly we can see that
this VSIA taxonomy again emphasizes the hierarchy composed out of different abstrac­
tion levels in the context of VLSI design and makes a cleai' distinction between what is
functional-related (functional, data and temporal axis) and platform-related (structural
axLs).

From these previous examples, we can see that there is no unique design process repré­
sentation: ail of them hâve evolved over the last thirty years according to the different

1.2. DESIGN 7

Système TLM-2.0 means

1 Model interoperability across simulators
2. System-level simulatorswill oommoditize
3. It's ail about the available IP models!

Multiprocessor
Systems on Chip

(MPSoC)

RTL

Gates

Transistors O

Ptatform Based

Hvr«l IHsiy Sea of Processors

HW+SW

Sea of Gates

Sm of Transistors

Complex Layouts

Figiire 1.5: Evolution of the abstraction levels during the forty last years in the context of VLSI
design [9]

design trends and are thus focusing on different aspects. We can however see two emerging
coinmon points that are at the centre of any of these représentations: the hierarchy and
the functionality/platfonn séparation of concerns.
In our next. section, both these topics in nowadays design will be further discussed as they
are central éléments of VLSI design and will be widely used during throughout this thesis.

1.2.2 VLSI Design nowadays

Design hierarchy During the last forty years, the growing intégration density has in-
credibly increased the design complexity making it impossible to design a System transistor
by transistor. This has lead to a progressive rise of the abstraction level used as a first
step of the design as depicted in Fig.l..'). Each abstraction level is based on a combination
of the primitives of the lower level so that the transistor and gâte levels hâve not disap-
peared from nowadays design fiow but are now the latest performed steps. At the top
of this hierarchy we hâve now multiprocessor system-on-chips architectures offering high
performance and allowing the designer to mix different design styles (FPGA’s, micropro-
cessors, ASIC’s). System-level design is now the first design task consisting in splitting
the System in different blocks, choosing the IP cores that will need to be used and the
blocks that will hâve to be designed from scratch. This step is left to the designer while
lower abstraction levels design activities require less and less manual intervention due to
the increased number of blocks that hâve to be manipulated at these low levels.
With the growing complexity of VLSI Systems and their design, we hâve increased the

8 CHAPTEE. 1. CONTEXT AND MOTIVATION

100,000,000

10,000,000 £
c

1,000,000 >,§
■> ■

100.000 t3 §

■a CO
10.000 2

û- en

100

10

Source:
SEMATECH

Figure 1.6: Design produc.tivity gap: design complexity versus designer prodiictivity[l2]

in 05 fO r- f— IT5
CO 00 00 05 05 O O
o> en 05 05 05 O O

T— T— T— CS4 CM

number of design decisions that hâve to be niade through the wliole flow. FVoni the
partitioning of the System to the choice of the technology used to manufacture the die,
each abstrac;tion level proposes a growing number of options over the years which makes
design decision very difiicult to make.
Abstraction is not only a way to deal with complexity but also increases design produc-
tivity. Fig.1.6 is commonly used to présent the so-called Design Produetwity Gap[l2\ and
lias been originally drawn by Sematec: based on numbers taken frotn existing designs. This
graph compares the évolution of the design complexity defined by Moore’s law with the
design productivity i.e. the numbers of transistors designed per man-month (based on
previous observations and future estimations). As we can read from Fig. 1.6, the com­
plexity grows at a 68% rate per year while the productivity only increases at a 21% pace
per year: this graph thus predicts an exponential growth of the design cost due to dra-
matic staff growing to compensate for the slower productivity growth rate. The rise of
the abstraction levels is a part, of the answer to that problem allowing the designer to be
more efficient by leaving the répétitive and time-consuming work of the lower abstraction
levels to autoniated EDA tools. Furthermore the use of existing IP blocks and multicore
architectures makes the complexity grow slower than the number of transistors in practice
since ail these transistors don’t need to be designed from scratch. In return, the designer
lias many design options to examine which makes the first choices much more crucial than
before as they will condition the performance results.

1.3. TECHNOLOGY EVOLUTION 9

Functionality and platform Since the last fifteen years, complex systenis are now
divided into two different parts during the first steps of thé design flow: the functional­
ity and the platform executing this functionality. This trend is clearly illustrated by the
Rubgy model throwing out the confusing functional and structural axes for the computa-
tion/conimunication axes separating clearly what the System is supposed to do from the
way it does it. With the new abstraction levels, this séparation of concerns between the
functionality and the platform becomes more and more important as it allows the designer
to focus on the functionality (using for instance vérification techniques from the software
World) at the very first stages of the design without having to be bothered by detailed
hardware concerns. However the functionality/platform interaction still remains crucial
as it defines the non-functional costs (power consumption, computation power etc.) and
thus needs to be tested at every stage of the design process to evaluate the performances.
In this context, a new standard at the transaction level modeling has recently emerged
with the adoption of SystemC TLM 2.0[13] in an effort to replace heterogeneous propri-
etary solutions used throughout the flow by a common language enabling increased model
interoperability. At such high abstraction levels as TLM, it’s already possible to estimate
tlie timing performances of a functionality/platform combination which is very valuable.
However non-functional aspects like area, power and cost are not taken into account lim-
iting at the moment the u.se of TLM to the eârly validation of functional properties of the
System.

1.3 Technology évolution

The constant Silicon manufacturing évolution has enabled a growing Silicon intégration
level and largely increased the available number of transistors per chip. As the feature
size has reached values below 90nm, some new effects (called DSM or deep-suhrnicron)
begin to deeply modify well known and established rules of thumb[14]. Getting rid of
the problems or limitations involved by the use of these technologies will however, as we
discuss in the following, require some pretty heavy design modifications at much higher
abstraction levels than Silicon process.

Static power Twenty years ago, CMOS-based transistors were known for their impres-
sive ability to consume a ridiculous amount of static power compared to the dynamic
power. From a designer point of view, optimizing the power consisted in minimizing the
dynamic power defined by Eq.1.1 with Cswitch being the total capacitance to switch,
fdock the dock frequency and the supply voltage.

Hdyn — Cswitch * fdock * ^dd (^-1)

With the feature size shrinking, the gâte capacitance scales quadratically and the voltage
supply is also reduced so that the dynamic power has been reduced over years. The static
power however grows at a very fast pace beyond 90nm due to current leaking in the OFF

10 CHAPTEE. 1. CONTEXT AND MOTIVATION

Year

Figure 1.7: Dynamic and static power évolution over different technological nodesllo]

state^. This relative évolution of the static and dynamic power over the technology nodes
is illustrated in Fig. 1.7 where we can indeed see that gates begin to consume more static
than dynamic power. Many techniques can be used to reduce the impact of static power at
the process level but this shift has also some major implications at the architectural level.
Minimizing the gâte count to run a given functionality, using and managing mechanisms to
bias the gâte threshold voltage, modifying the scheduling to shut dovm as long as possible
computation nodes and memory banks etc. are some of the techniques that deeply modify
the design and the associated CAD tools.

Wire delay Looking back in the past, traasistors had a very large delay compared to
wires: it was ail about minimizing the number of gates of the critical path regardless of
the number of wire segments connecting them. But this trend has changed with feature
size shrinking as it can be sœn on Fig.1.8: while the gâte delay decreases, the wire delay
increases to the point where it becomes greater for technology nodes smaller than 250nm.
If local wire delay remains constant with scaling because their length scales down with
the feature size, global wires still hâve to cross the whole chip so that their delay grows if
these wires are scaled[18]. This global wire delay increase has dramatic conséquences on
the layout and architectural design:

• Different .scaling schemes are proposed for semi-global and global wires[19] to make
the delay scale smoothly

• Since we expect global wire to work at higher frequencies for each new technology

® Many different cunent sources contribute to the total leakage cuirent and resuit froin very different
phenomena; for more information, we advise the reader to refer to [Ui] and [17].

1.3. TECHNOLOGY EVOL UTION 11

Figure 1.8: Gâte and wire delay évolution over different technology nodes[2:i]

node, the concept of a completely synchronous chip with a single dock becomes
obsolète. New architecdures known as GALS (Globally Asynchronous Locally Syn­
chronous) solve that issue by enabling synchronous communication at the local level
and asynchronous communication at the global level where more than one local dock
cycle Ls required to transmit information to another location of the chip[20], This
has lead to the paradigni of network-on-chips[2l] and has deeply modifiée! the way
global communication is perfomied between the different components of a chip

• In an effort, to reduce the wire power consumption and delay, new techniques calkd
3D stacking[22] are studied to stack several dies and reduce the average wdre length.
This makes new design «juestions arise like the partitioning of the different parts of
the System over the different layers, the number of layers, their size and so on.

From these two examples it is clear that the technology shift involves many changes at the
highest abstraction levels of the design. It makes eai ly design choices very difficult since the
system-level designer has to make very basic System partitioning choices whase relevance
and performance will however dépend on the technology. This system/technology gap is
even more difficult to fill due to the specialization of the different people involved in the
design: a process guy barely knows about RTL while a system-level engineer would hâve
some pain to figure ont what dnal damascene is good for. This communication issue is at
the centre of a design quality problem: Silicon processes need architectural information to
understand how they shoiild be optimized and system-level should know about process to
understand how we can use them and take benefit from them.
From these two examples of technology shift, we can conclude that early design choices
cannot be made anymore withont any considération for Silicon proctsis: tliLs exacerbated
dependence between very different abstraction levels is not without conséquence on the

12 CHAPTER 1 CONTEXT AND MOTIVATION

verity

Transactions

RTL

Gates ■B
—r- 2verty ”

Transistors _

« _ .y
ra verify _S

€
Layout

’i

Figure 1.9: Design flow hierarchy and associated design steps[9]

whole design process as we will see in the next section.

1.4 Design: the big picture

Now that we hâve discussed the design représentation, soine main characteristics of the
design proctss and some technology issues, it is time to draw the big picture of VLSI
design flow. We would like to answer the crucial question of how straightforv^ard it is to
move from a very abstracted system-level description to the complété layout of the chip.

1.4.1 From system-level to transistors

As previously mentioned, designing a VLSI System consists in a progressive refinement
through the different abstraction levels of an initial pencil and paper description of the
functionality and its platform down to the physical implémentation of the chip. A clear il­
lustration of this design activity is given in Fig.l .9 where we can see ail the most comrnonly
referred abstraction levels from TLM down to layout'*. This figure highlights that a top-
down design methodology always proceeds in the same way to move from one abstraction
to the lower one:

1. A synthesis operation is perfomied: functionality and platform descriptions are re-
fined usitrg primitives of the lower abstract ion level

"*Fig.l.9 represeuts top-down and bottom-up design flavoms: we will only focus in the first one ignoring
on this figure the arrows from the bottom to the top of the design hierarchy.

1.4. DESIGN: THE BIG PIGTUBE 13

I
T
E
R
A
T
I
O
N

Figure 1.10: Forinalization of a geiieric design step allowing to move from akstraction level N to
low(3r level + 1

2. A vérification step takes place to make sure that the synthesis bas left the functiorial
properties of the System intact.

If this description can be generalized to each design step, the précisé design activity is
however hidden under the syntliesize terni: its focus may move from functionality to
platform and become more and more automated as we go down in the design hierarchy.
Based on this simplified représentation of design process, we rnade the hyjiothesis that
e^w:h design step nioving the System description from an abstraction level N to the lower
level + 1 can be represented as illustrated in Fig. 1.10. We can identify different the
following operations:

1. The design step itself consLsts in refining the description of the functionality and
the platform from level A^ + 1 to level N and implies different design choices. For
instance, we could use different algorithms to define the functionality, define different
platfonns by changing the communication architecture or the number of processore of
a MPSoC platfomi or modify the way the functionality Ls mapped onto the platform.
AU these choices will hâve an impact on the performances.

2. The perfonnances are evaluated either manually or automatically using for instance
simulations tools or thanks to report.s generated by synthesis tools

3. The performances are compared to the functional and non-functional spec:ifications
and we test if they match. If this is the case, we are able to go on to the next.
abstraction level. If not, we hâve to iterate and call sonie previously ruade design
choices into question until performances match the recpiirements.

14 CHAPTER 1. CONTEXT AND MOTIVATION

So as we can see, a design flow is something not so straightforward with its itérations that
may be required to meet the performance spécifications. These itérations are very harmful
to the achievement of a project since they add extra design time to the initial planning and
may well jeopardize time-to-market estimations. Many factors can lead to these itérations
through the design flow: some of the most important reasons are discussed below.

Lack of information At the very beginning of a design, we don’t hâve many information
about the System so that it is very difficult to make confident design choices that will meet
the requirements. Most of the time, system-level designers take decisions based on their
own expérience or previous similar designs and set reasonable bounds on timing, power
and Silicon area that each part of the System should meet. Through the following design
steps, more and more information are added to the System description so that it becomes
possible to make more accurate estimations of its performances: that’s precisely when we
may discover that some non-functional requirements cannot be satisfied with the design
choices that hâve been made. Itérations are thus required to remove this performance
bottleneck and previous design choices need to be invalidated. Without any guideline
rules and understanding of the System, this process could well turn into a blind try-and-
test nightmare until we hopefully find a good solution. Itérations are thus intimately
linked to the nature of VLSI top-down design flows and resuit from the truncated and
partial knowledge of the System that we hâve at the very stages of this design.

The system/technology gap The system/technology gap that we hâve previously de-
scribed is an itération prone factor making things even worse. Indeed fractioning the
design into a growing number of steps with many new possibilities at each abstraction
level makes the number of possible combinations simply tremendous. The tight coupling
between architectural choices and technologies (see Sec. 1.3) along with the increased spe-
cialization of the many people involved in a whole design flow makes design choices more
and more difficult to make. Missing the big picture could well lead to suboptimal decisions
in ternis of performances and eventually entail itérations if the requirements are too tight.

Lack of tool support A last difficulty cornes from the lack of tool support to help
system-level designers to make their decisions. This is illustrated by Fig.1.11 where is
schematically represented the évolution of the tool support for different générations. As
we move towards higher abstraction levels and design manipulations more oriented to-
wards methodology, we see that tools offer a weaker support to the user while design steps
very close to the implémentation benefit from a much larger tool support. As years pass
by, the gap is not filled since design begins at more and more abstracted levels while tools
cannot keep up with such that pace. As a resuit, very few tools are available at the top
abstraction levels so that system-level designer hâve to consider and compare ail design
options almost by hand.

These three previously discussed points are crucial causes to design process itérations
and need to be removed in order to improve the quality of design. To do so, we can rely

1.5. PEBFORMANCE PREDICTION FOR BETTER DESIGN 15

5 ^ i. strong ^
E â S support ■— ~~—
- S « ---- - ------^^^^
.2f E Impie- Desisn Specifi- Require-
■0 mentation '' cation rrients
~ Design modelling abstraction levels

Figure 1.11: Evolution of the EDA tool support over the last thirty years[7]

on a very simple and logical idea: if you hâve many possible solutions to solve a problevn,
you should probably fîrst try to evaluate their relative potential oiitcorne to avoid wasting
time in successively implementing each of them. And that’s what perfomiance prédiction
is ail about: saving time by quantitatively comparing the different design solutions thanks
to modeling in the fastest possible waj'.

1.5 Performance prédiction for better design

To find better performance compromises for the final System and avoid itérations as much
as possible, we would thus like to be able to estirnate performances at the earliest stages
of a design flow in order to discard as soon as possible dead-end solutions. Indeed the
fundamental choices made during the first steps of the design flow should be the resuit
of objective and tpiantitative c:omparisons of the performance attributes of each solution.

Fig.LJ2 illustrâtes how modeling can take paît in the classical design process: while
the left part of tins figure shows one step of the design flow as it was described earlier in
Fig.1.10, the right part depicts a rnodel of this step trying to reproduce the non-functional
performances resulting from it. As it is a model, we expert it to require much less time to
estirnate than going through the design flow itself so that it becomes possible to explore
many more solutions in a same amount of time and therefore perform efficient and larger
design space exploration. The whole interest of modeling lies in the ability of making
information from lower abstraction leveLs available for the verj' first steps of the design
flow and enabling eaily testing and quantification of design choices on performances. Us-
ing the results from this performance model exploration, we are then able to feed these
information back to the design flow and therefore gnarantee better results and avoid as
much as possible itérations.

16 CHAPTEE. 1. CONTEXT AND MOTIVATION

F
A
S
T

I
T
E
R
A
T
I
O
N

Figure 1.12: Représentation of the design exploration

Higher
abstraction levels

NESSIE;
User-defined performance criteria

Automatic design space exploration

Functionality/platform
représentation

t Closing the System/
technology gap

Lower
abstraction levels C

YETI:
Flexible analytical and table-based

models

Technological
information

Figure 1.13: Combination of ont two tools Yeti and Nessie for performance prédiction

BIDLIOGRAPHY 17

To contribute to VLSI design performance prédiction, this work proposes an original ap-
proach relying on the combination of two different tools called Yeti and Nessie as depicted
in Fig. 1.13. While Nessie focuses on a detailed description of the System by separating the
functionality, the platform and its mapping, Yeti provides Nessie with models to estimate
the performances based on lower level parameters. Using this combination, we are able to
gather information from very different abstraction levels inside the same framework which
highly contributes to fill the system/technology gap.
In this dissertation, we will discuss the state-of-the-art in VLSI performance prédiction,
detail the principles that we will use to build our tools and propose many case studies to
validate our different concepts and demonstrate how we can propose good solutions for
dtsign varions problems.
We will start in the next chapter with the description of our Yeti framework.

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics,
vol. 38, no. 8, pp. 114-117, April 1965. [Online]. Available: htt])://dx.doi.org/10.
11 ()9 /.IP R()C. 1998.65X762

—[2] N. MuraMhSran, S. Wunnava, and A. Noël, “The System on chip technology,” in
Pro. of second LACCEI International Latin American and Caribbean Conférence for
Engineering and Technology, june 2004.

[3] D. D. Gajski, “design methodology for systems-on-chip,” in proceedings of OCCS
2002, Aug 2002.

[4] F. J. Hamming, Systematischer Entwurf Digitaler Système. B.G. Teubner, 1989.

[5] D. D. Gajski and R. H. Kuhn, “New vlsi tools,” Computer, vol. 16, no. 12, pp. 11-14,
1983.

[6] D. Stroobandt, A Priori Wire Length Estimâtes for Digital Design. Boston / Dor­
drecht / London: Kluwer Academie Publishers, 4 2001.

[7] A. Jantsch, S. Kumar, and A. Hemani, “The rugby model: a conceptual frame for the
study of modelling, analysis and synthesis concepts of electronic Systems,” in DATE
’99: Proceedings of the conférence on Design, automation and test in Europe. New
York, NY, USA: ACM, 1999, p. 54.

[8] IMEC Conceives "Double Y” Methodology for Design of Multi-Functional Devices,
2004.

[9] A. Sangiovanni-Vincentelli, “Defining platform-based design,” EEDesign of EETimes,
February 2002. [Online]. Available: http://www.gig;uscale.org/pubs/141.html

http://www.gig;uscale.org/pubs/141.html

18 CHAPTER 1. CONTEXTAND MOTIVATION

[10] VSIA, “Vsia System level design model taxonomy document,” 2001. [Online].
Available: htt])://www.vsi.oig/documents/vsiadocum<'nts.htm#sld221

[11] I. Panagopoulos, “Models, spécification languages and their interrelationship
models, spécification languages and their interrelationship for System level design,”
HPCL,The George Washington University, Tech. Rep., 2002. [Online]. Available:
htt P ://hpc .gwu.('(bi/%7Ehpc/iptooLs/pub.htm

[12] A. B. Kahng, “Futures for dsm physical implémentation: Where is the value, and
who will pay?” July 2000, 12th DA Show keynote.

[13] O. commitee, “Système tlm 2.0 standard,” Open SystemC Initiative, Tech. Rep.,
2008. [Online]. Available: http://www.s>-stemc.org/downloads/standards/tlm20/

[14] D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,” in ICCAD
’98: Proceedings ofthe 1998 IEEE/ACM international conférence on Computer-aided
design. New York, NY, USA: ACM, 1998, pp. 203-211.

[15] T. Sakurai, “Perspective of power-aware electronics,” in proceedings of ISSCC 2003,
February 2003, pp. 26-29.

[16] J. A. Butts and G. S. Sohi, “A static power model for architects,” in MICRO 33:
Proceedings of the 33rd annual ACM/IEEE international symposium on Microarchi­
tecture. New York, NY, USA: ACM, 2000, pp. 191-201.

[17] R. Krishnamurthy, A. Alvandpour, S. Mathew, M. Anders, V. De, and S. Borkar,
“High-perfomiance, low-power, and leakage-tolerance challenges for sub-70nm mi-
croprocessor circuits,” Solid-State Circuits Conférence, 2002. ESSCIRC 2002. Pro­
ceedings of the 28th European, pp. 315-321, Sept. 2002.

[18] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proceedings of the IEEE,
vol. 89, no. 4, pp. 490-504, Apr 2001.

[19] J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl,
“Interconnect opportunities for gigascale intégration,” IBM Journal of Research and
Development, vol. 46, no. 2-3, pp. 245-264, 2002.

[20] S. F. Smith, “The middle path: Globally-asynchronous locally-synchronous (gais)
design,” in IEEE Computer Society, Boise Section. Department of Electrical and
Computer Engineering, Boise State university, 2003.

[21] A. Leroy, “Optimizing the on-chip communication architecture of low power systems-
on-chip in deep sub-micron technology,” Ph.D. dissertation. Université Libre de Brux­
elles, 2006.

[22] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh, D. Mc-
Caule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley, S. Sharrkar, J. Shen,
and C. Webb, “Die stacking (3d) microarchitecture,” in MICRO 39: Proceedings of

http://www.vsi.oig/documents/vsiadocum%3C'nts.htm%23sld221
http://www.s%3E-stemc.org/downloads/standards/tlm20/

BIBLIOGRAPHY 19

the 39th Annual IEEE/ACM International Symposium on Microarchitechire. Wash­
ington, DC, USA: IEEE Computer Society, 2006, pp. 469-479.

[23] “International technology roadmap for semiconductors 2003.” [Online]. Available:
http : / / www. itrs. iH't /

20 CHAPTER 1. CONTEXT AND MOTIVATION

Chapter 2

Yeti: Concepts, Design and
Implémentation

Abstract
In tins chapter, we présent Yeti, our C++ library and standalone

tool for the flexible représentation and execution of analytical and
table-hased relations. From a review of the state-of-the-art, we first
identify a lack of support for such a kind of tool and explain the
different limitations of the actual tools. Based on that survey, we
define a new niodel représentation structure that will used to build
Yeti. Based on this new rnodel représentation organized in 3 loyers,
we propose a lot of new interesting features like easy model/input
sensitivity analysis, the possibüity of defining scripted simulations,
a rnethod to forrnalize analytical models into hypergraphs extending
their use, autornatic génération of resulting plots and the use of a
strict XML gramrnar to prevent the user frorn defining inconsistent
input data. Thanks to these features, Yeti removes most of the lim­
itations of state-of-the-art tools in the domain and offer the reliable
and effi.cient mathernatical engine that we require to build Messie
upon.

2.1 Introduction

At the beginning of oiir literature survey, we quickly found several papers revolving around
performance prédiction among which the very interesting [1] where its author defined the
concept of System-level performance modeling as follows:

System-level performance models can be defined as first order models that
attempt to capture the majority of relevant System design Issues in order to
provide usefid prédictions or early feedback to designers. As this perfectly
fell into our research concern, we gathered several related papers focusing on

21

22 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

very simple Systems, tools and simulators relying on very simple models like
closed-formed relations to predict the perfonnance of a VLSI System.

At the same moment, we were also looking for a way to provide our C++
framework (that would later become Nessie) with a dynamic mechanism to
represent and evaluate analytical relations.

The opportunity of improving the tools related to system-level modeling gave
us the idea to extend our initially simple C++ library into a standalone tool
providing additional services than the simple représentation and évaluation of
analytical relations: that’s the story of Yeti.

We will first start this chapter with a small state-of-the-art in system-level
modeling tools to highlight the different featlires that they propose and explain
why we felt necessary to implement a new tool to replace existing Systems.

2.2 State of the art

2.2.1 SUSPENS

SUSPENS (Stanford University System Performance Simulator) has been de-
veloped in 1990 by Bakoglu and is one of the earliest modeling tool for system-
level performance prédiction. This fairly simple framework is based on a set
of eleven analytical relations to estimate the most important performance fac­
tors of a generic CMOS CPU (maximum dock frequency, power dissipation
and System size). The model is based on technology, design and packaging
parameters and relies on the following assumptions.

• Clock period {Tdock) is evaluated using 2.1 where Tgate is the average
gâte delay (based on interconnect load), /m the logic depth and Tÿ^ew the
clock skew. This delay model may seem quite simple but was sufficient
at that time to deliver first order estimations (due to the limited impact
of interconnect on stage delay as previously explained in Sec.l .^l).

• Ail wire-length and Silicon surface estimations rely on Rent’s rule^.

• Power consumption only takes into account the dynamic contribution.

Tclock — Tgate * fld T (2.1)

Because SUSPENS is quite old now, it ignores many aspects that are now un-
avoidable in any performance prédiction System targeting CPUs (cache mem-
ory hierarchy, interconnect layer hierarchy, no throughput évaluation etc.).

‘ Rent’s rule is mathematical expression defining the relation between the number of pins of a circuit
and its gâte count[2]. Since its introduction in 1971, its main apphcation is the évaluation of the wire
length di.stribution on a chip[3].

2.2. STATE OF THE ART 23

2.2.2 Sai-Halasz model

In 1995 Sai-Halasz [4] proposée! a simulator to project future trends in high-end
microprocessors and used it to compare and predict bipolar and CMOS pro-
cessors évolution. The simulator enables the estimation of the optimal dock
frequency based on the choice between a complex uni-processor and multiple
processors exchanging information through off-chip communication. Compared
to other prédiction Systems, a particular focus is put on modeling of package
delays, via blockage and multi-tier wiring architectures. Based on the cycle de-
lay model, design parameters for ”ultimate” CMOS and bipolar processors are
determined (number of processors, die size, gâte lithography, wiring strategy
for each tier, gâte oxide thickness and power supply voltage). The simulator
also allows the user to perform parameter sensitivity studies and observe the
impact on cycle time.
The main relation for dock cycle 2.2 is composed out of the average wire-
length stage delay Dav, the longest wire stage delay J?;ong and the package
delay between two processors Dpack- The average wire-length is modeled using
a Rent’s rule based relation (2.3) where CP is the circuit pitch, FO the average
fan-out, IR the Rent exponent^, NC the circuit count and FF a numerical
factor determined by simulation.

_____________________ =____Tclock-^AX-^-DavA^DiQng-A-Dpiick (^•^)

NLav = FF*CP*{l + 0.1*log{NC))*{l + 0.3*{FO-l))*NC^^-°-^ (2.3)

2.2.3 Takahashi model

Takahashi presented in [6] an interesting extension of SUSPENS. Clock skew
model has been modified to take buffered clock trees into account and the
estimation of the average line length now relies on Davis’s expression [7] rather
than Donath’s[S] that is older and less accurate[5]. The complété model is
available to anyone as a java applet: input parameters are defîned by the user
using the GUI and results are then computed and displayed. The novelty
compared to previous tools cornes from the fact that model results can be
saved through the Internet on a server database and data can after^\'ards be
recallcd: this provides users with a simple way to exchange their simulations
results and to share knowledge.

2.2.4 RIPE

The Rensselaer Interconnect Performance Estimator (RIPE) is a tool for early
prédiction of microprocessor perfonnance[9]. Starting from the assumption

"The Rent expoiient p expresses the wiiiiig topology and is a measuie proportional to the interconnect
deiLsity of the chip[-5].

24 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

that interconnect will the most limiting factor in increasing chip performance,
RIPE gives the designer the opportunity to explore different interconnect de­
sign decisions and détermine their impact on performances. Based on archi­
tectural and technology information (feature size, interconnect materials and
dimensions) the wirability^, performance and power dissipation are esthnated.
The results show relatively good accuracy (25% on average) for different tests
with the IBM, Alpha and Intel processors familles. The author points ont that
chip manufacturers often provide few information about their microproces-
sor so that parameters values like the gâte activity factor required for power
consumption estimation and critical path characteristics (number of stages,
average fan-out) hâve to be “guessed”. If letting the user define the value of
several parameters could at first sight seem a limitation of an integrated prédic­
tion System like RIPE, it emphasizes the fact that parameter input sensitivity
should be used in order to evaluate how this uncertainty impacts the output
parameters values. This particular issue will be further discussed in Sec.2.2.S.

2.2.5 GENESYS

Genesys[10] is a performance prédiction tool developed between 1994 and 1998
that particularly leams the lesson from previously designed Systems. Focusing
on the exploration of technological and architectural design choices, Genesys
proposes hard-coded physical and senii-empirical models for ASIC and proces-
sor perfonnance estimation. The main outputs of the model are the power
dissipation, the throughput, the Silicon area and the cycle time based on in­
put information available from the ITRS roadmap[ll] and from the literature.
The tool can either be used in a text-mode or through a win95 graphical user
interface.

The main contribution of Genesys consists in the introduction of a hierarchical
model organization in 5 different levels : namely the material, device, circuit,
interconnect and architectural layers. Besides lowering the model complexity
by distributing partial models among the different corresponding layers, it also
allows the user to visuahze some useful information relative to intermediate
layers that would otherwise be hidden in classical modeling tools. The main
features of the layers are the following :

• Material models include ail the material properties (dielectrics constant,
resistivity...) as well as information about Silicon properties (carrier
concentration, mobility, breakdown field etc.).

• Device models take into account many important effects on channel car­
rent (field effect on carrier mobility, subthreshold voltage dégradation
etc.) for bulk Si MOSFET devices.

®The wirability of a chip refers to information like the routing abihty, métal layer répartition, dock
distribution, via blockage ratio etc.

2.2. STATE OF THE ART 25

• Circuit models axe available for static CMOS logic family only and enable
the estimation of the delay propagation based on MOSFET switching
delay and distributed RC interconnect delay.

• Interconnect models include estimation of the wire-length distribution us-
ing Rent’s Rule, predefined wiring schemes for the user to choose among
(optimized single driver, optimal cascaded driver, optimal repeater inser­
tion), router efficiency estimation and inter-level wiring blockage ratio.

• System architecture models mainly consist in the définition of the critical
path (logic depth and région of synchrony) and a Cycle per Instruction
model (based on pipeline depth, stalls per executed instruction, super-
scalar properties and instruction latency).

2.2.6 Codrescu model

Codrescu published in 1999 a paper[12] exploring the microprocessor design
space for lOOnm microprocessors to find architectural candidates to keep up
with Moore’s Law for the coming years. The author sweeps the architectural
space from one big superscalar processor to a network of 256 simple paral-
lel processors while keeping for each solution the total Silicon area constant.
Performance is reflected by total computing power expressed in Mops (Eq.2.4)
where IPC Ls the number of issued instructions per dock cycle, Frequencydock
the dock frfxjuency and Speedup the multiplying performance factor account-
ing for the presence of multiple processors. While IPC is based on empirical
data, dock frequency estimation (Eq.2.5) relies on technological models for
gâte Dgate (using GENESYS, see 2.2.5) and interconnect delay of the longest
possible wire (manhattan distance) Dunre-

In opposition to many other prédiction performance Systems, Codrescu not
only takes platform related information into account but also includes a soft­
ware dependency thanks to the thread-level parallelism présent in the appli­
cation expn^ssed by Parallel-fraction. Using this information combined with
the number of available computing nodes =f^nodes, Amdhal’s law (Eq.2.6) is
used to cornpute the Speedup ranging from 1 for single-threaded application
to if=nodes for fully parallel applications.

Performance — Frequencydock * IPC * Speedup (2.4)

Frequencydock ~ Id * Egale T Ewire (^'^)

+ (1 - ParalleLfraction)

The paper concludes that only massively parallel processor architectures cou-
pied to multi-threaded software will be able to sustain the increasing demands
in computation performance imposed by Moore’s Law.

26 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

2.2.7 BACPAC

BACPAC[13] stands for Berkeley Advanced Chip Performance Calculator and
is probably one of the most advanced system-level performance prédiction tool
available yet. To allow the user to explore design choices and experiment
what if prédictions, BACPAC proposes to predict maximum dock frequency,
Silicon area, power consumption (including dynamic, leakage and short-cirucuit
power), yield and chip wirability. Compared to other tools, it mainly focuses
on DSM issues (leakage current, noise due to Miller effect) to maintain a good
level of accuracy even in leading-edge process technologies.

One of the most interesting capability of BACPAC is to consider both lo­
cal and global interconnect levels while other tools usually focus on only one.
Modules of 50k-100k gates contain ail the local interconnects wires and are
interconnected by global wires to communicate between each other: both lev­
els use Donath’s wire distribution. The tool also intégrâtes many concepts
from [14] where the total power consumption of a System is evaluated using
a hierarchical approach: each component is modeled separately and aie after-
wards gathered to form the entire System. BACPAC also performs built-in
optimization of the driver sizing for optimal interconnect delay and gâte siz-
ing for inter-module area minimization, I/O pad drivers optimization by using
optimal cascade drivers etc.

BACPAC models are very complété and take into account a large part of previ-
ous modeling efforts available through the literature: therefore the information-
seeking reader should refer to BACPAC website[1.5] providing a lot more details
about the model and an online exécutable version of BACPAC.

2.2.8 Summary

In this section we presented several performance prédiction tools mostly relying
on closed-formed models: they were selected and extracted from the literature
according to their relevance and their care for generality. Table 2.1 summa-
rizes the most important features of each tool: besides the output and input
parameters, we also included information about the model nature and tool
availability but also one example for the critical path. Input parameters are
classified in general categories: technology covers ail the process, material, de-
vice and interconnect sizing information, design includes ail the design aspects
(non related to the structure of the chip) that may hâve any influence on the
performances, architecture include ail the structural information at the chip
level (starting at circuit level) while System parameters account for structural
information outside the bounds of the chip (packaging, MPSoC, SiP informa­
tion etc.). It may seem surprising that our input parameter classification only
consists in four levels while GENESYS uses one more level without taking de­
sign into account. This choice has been made on purpose to avoid a certain

2.3. GTX, THE ULTIMATE PREDICTION TOOL? 27

redundancy between some GENESYS hierarchical levels and define a mutually
exclusive criteria based classification.
Looking back to table 2.1, we can draw the following conclusions:

• Ail the models use at least technology related information. The main idea
behind that is to provide the user with a model capturing the impact of
low-level design choices on varions performance metrics to enable design
space exploration and bridge the “design-technology gap” (see Sec. 1.2.2).
However very few tools ofFer the ability to exploit underlying models in
another way than a succession of what if experiments.

• Many of the critical path models are not completely specified: the number
of stages for instance has to be set by the user. The reason for that is
explaincxl in [13]: ”The critical path logic depth is also user-defined. This
is important as it can vary widely from company to company and design
to design.”
Since ail the Systems use different models for the critical path représen­
tation, it is very difficult to compare the produced results. However crit­
ical path is just an example amongst many others: interconnect, device
,wire distribution models may also vary significantly from one author to
another. In such a context no woiider that results differ a lot and are
therefore difficult to compare emphasizing the need for input and model
sensitivity analysis.

• Most of the underlying models rely on analytical relations but often lack
ail the information needed to reproduce the experiments.

• Each reviewed tool predicts at least the maximum dock frequency: Sai-
Halasz even uses the term performance to refer to dock frequency only.

Considering the hard-coded nature of certain tools, the redundant effort spent
on building models and the difficulty to compare predicted results due to dif­
ferent model assumptions, the GSRC decided to build a common platform for
the spécification and execution of system-level models: the GTX firamework.

2.3 GTX, the ultimate prédiction tool?

Introduction

GTX[lfi] stands for MARCO GSRC Technology Extrapolation System and
has been developed in 1999 in a joint effort by the GSRC group and the
MARCO team to cope with ail the limitations of previous closed-formed based
performance prédiction tools. As established in section 2.2.8, most of the
earlier attempts to implement this kind of tool unfortunately lead to : •

• Incomi^arable results due to different modeling assumptions

28 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

tool in
pu

t p
ar

am
et

er
s

ou
tp

ut
 pa

ra
m

et
er

s

m
od

el
 na

tu
re

av
ai

la
bi

lit
y JZ

d
lecq-:
C

SUSPENS technology,
design, Sys­
tem

power, dock
frequency,
chip area

analytical re­
lations

X user defined

Sai-Halasz teclinology,
architecture,
System

dock fre­
quency

simulator X 11 stages,
global wire
delay, pack­
aging delay

Takahashi technology,
design, Sys­
tem

power, dock
frequency,
chip area

analytical re­
lations

java applet user defined

RIPE technology,
architecture

dock fre­
quency,
power,
wirability

simulator X user defined

Codrescu technology,
architecture,
System

dock fre­
quency, CPI

analytical
relations and
tables

X 11 stages

GENESYS technology,
architecture,
design

dock fre­
quency,
power,
through-
put, chip
area

analytical re­
lations

WIN95 inter­
face

user-defined

BACPAC technology,
architecture

dock fre­
quency,
yield, chip
area, power,
wirability

analytical re­
lations

web interface 15 stages (by
default)

Table 2.1: Summary of state-of-the-art prédiction tools

2.3. GTX, THE ULTIMATE PREDICTION TOOL? 29

Figure 2.1: GTX internai striictiire[l(i]

• Hard-coded riiodel-bascd tools limiting the flexibility in modeliiig

• A larg(3 r«bindancy in the effort to develop ail these models

GTX copes with ail these limitations by ”providing an ooen. portable-fraTTie^
Work for spécification and coinparison of alternative modeling choice,s”[L(i]. In
otlier words the tool doesn’t really propose new rnodels but rather provides
the user with a way to integrate models from different horizons into a same
working environment to c:ompare and execute them more easily. This common
modeling platform was also meant to be an opportunity for different research
teams across the world to exchange their models on the web and share their
knowledge. However GTX never got the success it deseiwes and it seems that
the development stopped a few years ago.

Let us now review in details the features of GTX and what makes it so different
from ail ever developed performance prédiction tools.

Structure

The most fundaniental design decision in GTX Ls to separate model spécifica­
tion (knowledge) from the dérivation engine (implémentation and execution).
This séparation allows the user to enter models of its own and use loadable/sav-
able model libraries based on a GTX-defined ” human-readable ASCII grani-
mar”. The GTX structure is presented in Fig.2.1 and is composed ont of 3
different kind of objects:

O Pararneters are the basic data on which models operate. A parameter lias
several attributes among which a unique nanie, a data type, units and a

30 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

default value.

• Rules operate on data and tell the dérivation engine how to compiite the
value of one unique output parameter given a set of input parameter val­
ues. Different types of rules are available: ASCII rules (closed-formed ex­
pressions, lookup tables, if-then-else structures), externcd exécutable rules
(based on dynamically invoked PERL scripts) or code rules (directly in-
tegrated into GTX source code hence requiring recompilation).

• Rules chains are just a list of rules to form a more extended and complex
model. The order of rule évaluation is determined by GTX to turn indi-
vidual rules into acyclic graphs to avoid infinité loop execution. To make
sure that this condition is fulfilled, each output parameter can only be
used as input parameter of at most one other rule so that the resultung
graph is a simple tree.

Interface

GTX cornes as a multi-platform graphical user interface and requires ail the
data to be entered in the interface. The user is able to define parameters,
rules and rules chains. Input values can then be specified along with the type
of study (single value, sweep simulations) and results can then be plotted.
One last interesting feature concems the ability of adding constraints to the
évaluation: the user can fix a maximum or minimum value for the output
parameter. The solutions where values don’t fit within the constraints are
removed from the final resuit set.

How interesting and innovating GTX may seem compared to previous tools, it
suffers from some annoying limitations: •

• As explained above, each rule is defined so that one particular parameter
is meant to be the output, the other ones implicitly becoming inputs:
GTX then automatically composes the resulting rule chain. However
depending on the context of use, we may want to tum some inputs of the
model into outputs and inversely.
For instance, ail the microprocessor perfomrance évaluation systenrs pre-
sented in Sec.2.2 estimate the dock frequency based on technological pa­
rameters. However it could sometimes be much more useful for a designer
to express that same dock frequency as a model input rather than an out­
put so that he can fix constraints on its value and explore the technological
parameters values set that fits the requirements.

• Input parameter sensitivity is supported in GTX at the expense of evalu-
ating several times the same rule chain while varying each input param­
eter value around its nominal value. Its leads to multiply the number of
experiments hence the time required to carry them out. More efficient

2.4. CONCEPTS FOR ADVANCED MODELING 31

solutions should be provided to avoid exploding exploration times with
the scaling up of model complexity and input parameters number.

• GTX relies on ASCII textual files to specify rules and their meta-in format ion.
Some rnechanisms to manage parameter/rule name uniqueness were never
implemented and probably require a much stronger and more strict gram-
mar.

• Model sensitivity .studies require to replace some rules by others: ail tliese
operations hâve to be successively donc by hand using the graphical in­
terface. Large campaign simulations can quickly become time-consuming
due to manual intervention: a way of automating ail these actions could
surely relieve the user from repeating those tedious operations again and
again.

For our own usage, we decided to implement a C++ library featuring model
execution and spécification abilities and by the way tried to tackle ail the
previously rnentioned limitations of CTX by respectively:

• Introducing a three-level hierarchical model description to remove model
spécification restrictions due to fixed input/output parameter formulation
and extend model usage both at rules and rule chains levels

• Setting up a mechanism to support fast extrenia évaluation by using a
tree représentation_______ _______ ___________

• Using an XML based grammar to ofifer automatic vérification and pow-
erful élément constraint rnechanisms

• Providing the user with powerful scripting possibilities.

2.4 Concepts for advanced modeling

In the previous section, we presented CTX, the state of the art performance
prédiction tool and highlighted its weaknesses and limitations. To cope with
these issues, we decided to implement our own tool named YETi^ (or YETI
to make it short) which stands for ”Yet anothEr Tool for the représentation
of analyt.Ical relations”. The tool is basically divided into three different hier­
archical levels as represented in Fig.2.2. The levels are from the lowest to the
highest:

• The generic rule level is the model évaluation core providing the frame-
work with the fondamental mathematical and algorithmic rnechanisms

• The relation level enables model reuse by introducing the notion of model
fiexibility that will be discussed later

• The behaviour level that establishes a convenient interface to access ail
the services of the underlying including évaluation and the ability to reuse
the same model for different problems

32 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

Interface
= Parameters

[l :Generic Ruie

2 : Relation_____________

3 : Behaviour _____________

Figure 2.2; The 3-level hierarchy iiiside YETi^ iising pammeters to conimunicate
data between each other

Before further explaining these three different levels, we start. witli the param-
eter element that is the bond between generic niles, relations and behaviours.

2.4.1 Parameters

Parameters allow the different hierarchical levels to exchange data and commu-
nicate between each other. Therefore they rep)resent any element that may con-
tain a value: technology, application, system-related variables that are quan­
tifiable fall into that category. A parameter has the following propertfes: •

• A îiame that is unique among ail relations and behaviours in order to
enable the distinction between two different parameters

• A floating point value
• Constraints that define a lower and higher bound value for the parameter
• Parameters also hâve no spécial orientation meaning that on the contrary

of GTX, they are not fixed inputs or outputs of a niodel but can change
their nature depending on the context of model use (see 2.4.3 for more
details).

2.4.2 Generic rules

Generic rules are at the centre of model évaluation and value calculation.
Indetxi they allow the user to tell YETi^ how to estimate the value of one pa­
rameter (output parameter) based on the value of the other parameters (inputs
parameters). There is no limitation on the method used to evaluate the out­
put: itérative methods, algorithms, lookup tables, closed-fomied expressions
etc. Only the executability of the rule must be ensured: that’s why we called
them generic rules. If the number of inputs Ls not restricted, generic rules may
only evaluate the value of one sole output parameter.
The implémentation requirements for our generic rules are the following:

2.4. CONCEPTS FOR ADVANCED MODELING 33

^dyn“^switch ^clock

^switch '^dd ^clock *^switch '^dd ^clock~*^dyn^(*^switch ^^dd^^^

a) b)

Figure 2.3: Two different generic rules for the same relation

• Dynarnically built rules to allow the user to perform model sensitivity
analysis by exchanging models at run-time (without requiring the entire
code to be recompiled each time a model is added)

• Implémentation of the basic analytical rules and table-based rules while
offering easy extension possibilities of generic rules types for the future

• Spécial support for constraints estimation to enable easy and fast input
sensitivity analysis

• Efficient generic rules to provide YETi^ with a fast computing engine

To further explain further the important concepts inside YETi^, let us in-
troduce a guiding example that will be used through the whole chapter. We
chose the well-known model for Pdyn dynamic power consumption (équation
2.7) based on C^witch the total capacitance to switch, V^d the supply voltage
and fciock the operational dock frequency.

2.4.3 Relations

A relation is a link between a set of n defined parameters: it expresses that
they are interrelated in such a way that fixing the value of any set of n — 1
parameters détermines the value of the remaining parameter. If a relation
implies a dépendance between ail the contained parameters, it doesn’t specify
how each particular parameter can be evaluated based on the others: that’s
precisely why generic rules are encapsulated into relations. Each paramet.er
can be associated with at most one generic rule to tell YETi^ how to estimate
it.
The relation layer is responsible for adding inside YETi^ most of the flexibility
that other performance prédiction tools usually lack. To illustrate that let us

(2.7)

34 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

R^'ldynPow{f*dyn^ ^switch') fclocki

, ’^dyn — ^switch * fclock * ^dd

GR2 '-Cswitch ~ fclock^y^d

GR3 -fclock =

GRi -.Vdd = /_________
l^stuitch* fclock

Figure 2.4: The définition of the dynaniic power consumption relation with its foin
associated generic rules

hâve a look back at Eq.2.7 defining the dynamic power consumption. This
expression is very convenient when it cornes to evaluate the power consumption
based on the other parameters (left side of Fig.2.3) but what if a designer would
rather like to fix a certain power consumption and see the impact of his choice
on the maximum dock frequency? Using the same orientation as expression
2.7, he should probably set the values of Cswitch ^^nd and then perform
a sweep on the fdock values until he reaches the desired Pdyn- This method
is however as absurd as it is time-consuming when we hâve a closed-formed
expression at disposai. Indeed a much more straight-forward manner would be
to reverse the direction of the model so that Pdyn explicitly becomes an input
rather than an output and inversely for fdock (right side of Fig.2.:i). Relations
precisely represent this notion of model reversibility by allowing each parameter
to become the output thanks to the use of parameter spécifie generic rules
(illustrated for our case study in Fig.2.4). This feature increases the scope of
use of a model while keeping the complexity hidden inside the relation element
and adds a lot of flexibility compared to other existing performance prédiction
tools.

For this hierarchical level to be implemented, we only require some association
mechanisms and the possibility to integrate heterogeneous generic rules types
inside the same relation.

2.4.4 Behaviours

Behaviours offer the support for the représentation of complex models based
on a collection of relations. A behaviour doesn’t allow the user to see the
encapsulated relations but only provides him with an access to the inputs
and outputs of the modeled System. The way the model is structured remains
hidden to the user inside a black-box so that only the behaviour can be observed
from the outer (hence the name).

Let us illustrate that by taking back our previous dynamic power consumption

2.4. CONCEPTS FOR ADVANCED MODELING 35

Figure 2.5: One example of behaviour composée! ont of 4 different relations withoiit
orientation

relation exarnple of section2.4.3. ThLs single relation is not of great use on
its own but can be combined to other relations to compose a complété Sys­
tem. Therefpre we add.the following relations to it to compose a very simple
microprocessor model example:

• A relation linking Ptot the total power consumption, P^yn the dynamic
power consumption and P^yn the static power consumption

• A relation linking IPC the number of instructions, fdock the operational
dock frequency and FU the number of functional units of the micropro­
cessor

• A last relation linking fdock i Dgate the gâte delaj' and Dwire the wire
delay.

Fig.2..5 illustrâtes this behaviour composed out 4 non-oriented relations. Each
relation shares common parameters with the others allowing them to commu-
nicate data by forming a complété graph. However we need to détermine which
parameters are inputs or outputs before being able to execute the behaviour.

The left part, of Fig.2.6 shows the previous behaviour where ail relations are
associated to a spécifie output parameter. The resulting behaviour is a System
model estimating the output parameters (in green) Pioi and IPC based on the
input parameters (in red) Pgiat, Cswüch, Vdd, Dgau, Dyjne and FU. As we can
see we obtain a multiple inputs multiple outputs model (contrarily to generic
rules that oïdy permit a single output parameter) that has a given orientation
for each relation.

36 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

Orientation 1 Orientation 2

Figure 2.6: Two behaviours differing from eaeh other due to separate relation ori­
entations: input parameters are drawn in red while output parameters
are in green

However if this model is interesting on its own, it only answers some of the
questions a designer could hâve. For instance, observing the impact of design
parameters on the number of instructions per cycle and total power consump-
tion is easy but what if both these parameters are constrained by the require-
ments? In this last case, the expression of the model doesn’t fit the needs of
the designer as he will hâve to sweep ail the possible input values to find the
desired output values. Behvaiours offer instead a very simple solution: by re-
associating the relations, we can obtain a different set of inputs and outputs.
The right part of Fig.2.6 shows a possible behaviour orientation where IPC
and Ptot are now inputs while FU and V^d become outputs instead. It means
that the designer has now the opportunity to set values for the IPC and Ptot
and see which impact these requirements hâve on the design parameters.

So behaviours are not just multiple outputs exécutable relations but they take
modeling to a higher level by allowing the reuse of the same knowledge captured
by models for different problems without any additional effort. Some questions
however remain unanswered:

• Are ail the possible relation orientations leading to exécutable graphs?

• How to generate graphs starting from non-oriented relations?

• How to evaluate the output values of these graphs?

2.0. ALGOBITHMIC AND ADVANCED CONCEPTS IN Y ET fi 37

In

A A
*^switch * ^clock '^dd ^ ^

Figure 2.7: A simple hypertree representing the expression Pdyn = Cs^„uch * fdock *

The riext, section deals with ail these algorithniic questions relatée! to our 3-
layered structuied framework.

2.5 Algorithmic and advanced concepts in YETr’’

2.5.1 Generic Rules

analytical and table rules. Because of their spœificity and their different scope
of use, they deserve in-depth study.

Analytical Rules

Analytical rules allow the user to define and estimate the resuit of closed-
fonned expressions. As we want YETi^ to be able to load and build inodels
dynamically, it is very import.ant to find a proper représentation to support,
this functionality without adding too much overhead in ternis of execution
tiine. ThereTore we chose a tree repre.sentatiori that lias the advantage to be
scalable at will, easy to execute and fairly simple to build at run-time. Taking
back our guiding example of the dynamic power consumptiou (Eq.2.7), it can
be represented by the tree illustrated in Fig.2.7 where the initial expression is
dejcomposed into smaller mathematical operations that we call basic operations.
Nodes represent parameters while hyper-edges represent basic operations being
directed towards the outpiit parameter resulting from this particular basic
operation.

Y ET fi support,s_at the moment two different types of generic rules-namely

Evaluation Analytical trees are very easy to evaluate using a dejjtli-first
algorithm (see Algo.l). In a few words, this recursive algorithrn first explores
as deep as possible the tree until leaves are found: when ail the nodes of one

38 CHAPTER. 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

*^dyn

Figure 2.8: Evaluation of the dyiiamic power consumption tree using a depth-fiist
algorithm

hyper-edge hâve been explored, the basic operation can then be executed and
the resuit propagated towards the upper part of the tree. Fig.2.8 illustrâtes
this algorithm on our dynamic power consumption tree example; start.ing from
the root node, the tree is explored in the order of the numbered directed arrows
until the resulting value is finally returned to the root after six steps (three
function calls).

Algorithm 1 The recursive Depth-First Algorithm used to evaluate a tree
représentation with a first call to DepthFirst{RootNode)

1: if current node lias children then
2: Depth Fkst{leftNode)
3: Depth F\ist{rightNode)
4; else
5; return node value
6: end if
7: Calculate rootNode value based on leftNode and rightNode value

Constraints Constraints are part of parameters attributes and are composed
ont of a lower and an upper bound. They enable input sensitivity analj'sis by
giving the luser the opportunity to specify a certain range of uncertainty in
parameters input value. There are several practical cases where such a type
of study can be useful: for instance, testing the robustness of a model outputs
to possible input variations (process variations for instance) or representing
the output value uncertainty due to a lack of information in the model (for
instance the number of stages in the critical path, see 2.2.8).

Our tree représentation allows us to deal, in some some situations, more effi-

2.5. ALGORITHMIC AND ADVANCED CONCEPTS IN YETI^ 39

ciently with output constraints évaluation than usual tools do. To explain the
problem, let us consider a function / representing a N input parameters model
with their respective constraints (Eq.2.8).

f{Xu...,XN-l,XN)
COnstTü'ÎTltSXi ~ 1 ^ ^ ™ N (2.8)

For this function we can compute the partial dérivative (Eq.2.9) for ail input
parameters that represent the sensitivity of the function for each particular
parameter.

Sensitivityxi =-^f{Xi,...,XN-i,Xx) l<i<N (2.9)

When the function dérivative for one parameter (ail the other having a fixed
value) has a lot a zéros inside the constraints range, it means that the function
has a lot of local extrema. In this situation, finding function global extrema
can be very difficult and the use of numeric analysis methods is the only way
out.

However, if we face a strictly increasing or decreasing monotonous function
for a certain parameter (at least within the constraints range), the search
for extrema becomes much easier. Indeed we know that, for an increasing
(decreasing) monotonous function, the lower bound of the parameter will resuit
in the minimum (maximum) function value while the upper bound will resuit
in the maximum (minimum) function value. For instance, let us consider the
simple two parameters function C{A,B) described by Eq.2.10.

C{A,B)^A+ B (2.10)

If we respr'ctively set [Amini-^max] and [BminiBmax] constraints values for
parameters A and B, it is easy to find the extrema of the function. Since
operator -f is an increasing monotonous function for both parameters, we only
need to look at the extremiim constraints values to find the function global
extrema (Eq.2.11). Rather than sweeping ail the possible input values we are
able to find the function extremum values by doing one single évaluation based
on the knowledge of the operator properties.

Cmin ~ ^min "t .^min

Cmax — -^max V Bmax (^-H)

On this example, this property may seem obvions but it is possible to extend
it to a whole hypertree composed out of closed-formed expressions. Indeed we
know that each hyper-edge représenta a basic operation and each one of them
is a monotonous function of their input parameters (Table A.l in appendix A).
So for each hyper-edge, we are able to calculate in one sole évaluation the root

40 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

f
[-5.5,70.5]

Figxire 2.9: Evaluation of the coiiatraints for an hypertree representing closed-formed
expressions

node constraint.s if we know the constraints of the input node (or nodes if the
carrent basic operation is binary). Beginning with the leaves of the tree (whose
constraints values are the only one available at this i>oint), we can propagate
the constraints values froni the bottom to the top of the tree using again the
depth-first algorithm (see Algo.l). An example is provided in Fig.2.9 w’here we
can see how the expression is evaluated based on input parameters constraints
values (input constraints are in green while outpiit constraints are in red).

Using this method, we only need one single tree évaluation to get the output
constraints while usual methods would require much more time to find the same
solution. There are however some limitations where it becomes impossible
to use this technique. Fig.2.10 shows the tree représentation for expression
D = {A + B) * {C — A). As we can see, parameter A appears two times in
different hyper-edges; as a conséquence, Dmax would be computed using A^ax
for the left hyper-edge (to maximize A + B) and Amin for the left hyper-edge
(to maximize C — A). TliLs makes obviously no sense since A niay not hâve
more than one value simultaneously: this problem cornes from the fact that A
appears more than one time in our expression. Indeed we are not able anymore
to tell in such a situation if the function is still monotonous for this parameter
hence the method could not work anymore. So the only way to guarantee this
previous condition is to make sure that the parameter appears only once in
the function.

These limitations could seem annoying but our constraints évaluation inech-
anism takes the most ont of the closed-formed expression without retiuiring
any intervention of numerical solver. For relations involving parameters that

2.5. ALGORITHMIC AND ADVANCED CONCEPTS IN YETI^ 41

Figure 2.10: Case where constraiiits évaluation caiinot be perfonned on our hyper-
tree: the same input paraineter A takes different values

don’t fulfill the previous condition, we can use other methods while rnaintain-
ing our inethod for eligible parameters; mfadng both methods thus accelerates
the constraints évaluation time as fast as it could be.

Table rules

Sometirnes analytical rules are not suitable for model reprt^entation. This Ls
particularly true for functions where we only hâve a few points at disposai and
not a closed-formed expression or even for a list of values where continuons
input values don’t inake sense. For these situations we hâve introduced table
raies allowing the user to capture the model knowledge into n-dimensional
tables dynamically built at run-tinie.

Structure Representing a multi-dimensional table is very siinfrle as long as
the nuniber of dimensions n is fixed (or known before the building of the
table): when this information becomes only available at run-time, it beconies
however much more painful. Apart from providing tables with an efficient data
structure support (which will be discussed later), we need to find a inemory
model that enables both fast table search and efficient meinory occupation. To
justify our final choice we need to anticipate a little bit on the implémentation
part. Several methods usually exist in C++ Objef,-t-Oriented Programming to
represent tables:

42 CHAPTER 2. YETL CONCEPTS, DESIGN AND IMPLEMENTATION

• Statically allocated tables hâve meniory patterns that are completely spec-
ified at compiling-time. This type is of course completely useless in our
case

• Dynamically allocated tables are usually defined using the memory pointer
paradigni allowing the programmer to delay the table length choice until
run-time. If this mechanism is very powerful, it has the disadvantage of
being error-prone by exposing the memory addressing mechanism to the
user. Furthermore, if the length of tables is run-time defined, the number
of table dimensions still remains a compiling-time choice. Once the table
is built, the programmer has no possibility to get the length unless he
decided to save it into a spécial value.

• Library-based tables are defined in standard packages like STL to provide
the programmer with easy-to-use data structures coming with searchirig
and manipulation features. If the user is now able to dynamically specify
the length of the table and retrieve this information afterwards, it isn’t
still possible to specify the number of dimensions at run-time.

Since no standard library gave us a satisfying solution that fits our require-
ments, we had to build a data structure of our own. Two different solutions
were considered.

First it is possible to use an object-oriented approach to represent a dynamic
N-dimensional table. The most obvions solution is to choose a recursive class
description where each nested level represents an additional table dimension.
Each instance of the table class contains either a dynamic vector of table class
instances (except for the class instances related to dimension N) or a vector of
values (for the last dimension). Fig.2.11 shows a three-dimensional table built
on this concept where dimensions 1, 2 and 3 are respectively 3, 2 and 3 élé­
ments long. As we can see each additional dimension requires an exponentially
growing number of classes instances (with a complexity of 0{Ltable,toi/Ldim,N)
where LtaUe,tot is the total number of éléments contained in the table and Ldim,i
the number of éléments in dimension i). This increasing number of class in­
stances is very annoying as it uses very poorly the memory by adding a lot of
class information overhead and lowers the estimation speed due to the numer-
ous class methods calls and inter-class communication mechanisms. Another
solution has to be used to answer those issues.

Second we could use one single class to encapsulate the complété data structure
since we only need évaluation and building abilities. The structure implement-
ing a N-dimensional table consists in a set of N vector called dimensional
array (containing in increasing order ail the possible input parameter values
for each dimension) and one dynamically allocated array of floating point val­
ues called the value array (holding the table output values). The trick is to
gather consecutively ail the data into one single array rather than considering
a hierarchical data organization that a table would suggest. The structure is

2.5. ALGOIUTHMIC AND ADVANCED CONCEPTS IN Y ET fi 43

Figure 2.11: Représentation of a 3-dimensinal table where dimensions 1, 2 and 3 are
respectively 3, 2 and 3 éléments long

very simple, introduces alniost no overhead in memorizing the data but lias
the only drawback to occupy a lot of consecutive ineinory space.

Fig.2.12 shows for the previous exarnple (Fig.2.11) the value array and the
three dimensional array associating each index value with a floating point
value. As we can see, the 18 table values are the same in the two représentations
but how is it possible for the latest to access the éléments values based on the
index? The next part answers that question.

Evaluation The évaluation of a table consists in retrieving the table values
based on the input parameter values of each of the Nth dimension: therefore
we need to calculate the value table index associated with the value we are
looking for. We know that a fully populated A^-dimensional table is convert.ed
into a value array containing Liabie,tot éléments (Exj.2.12) where Tdim.i is tliP
number of éléments for dimension i. In our example, it gives us 3*2*3= 18
elemomts which can be seen in Fig.2.12).

To get the table array index, we proceed in two steps:

• For each of the N input parameter of the table, we need to search the
corres[)onding dimension,al array to get the dimension index Indexdim.i
for eac:h one. Several methods are possible but since tables rnay contain
a large number of éléments, a simple search starting from the first to the
last until a match is found is far too time-consuming. Therefore we took
advantage of the fact that values are ordered by increasing values inside
the dimensional tables and used a dichotomy based search. Tins method
requires at inost flogj Ldim,i] search steps to get the correct dimension
index value.

44 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

Index

Associated value

Index

Associated value

Index

Associated value

0 1 2

32 54 93

0 1

-5 7

0 1 2

-2 3 34

1 st dimension

2nd dimension

3rd dimension

Table values
45 4 -6 3 0 23 12 92 4 6 -2 55 7 73 9 -2 81

0 17

Figure 2.12: Exaiiiple of a 3-diniensionaJ table using a single value, array to contain
table values and 3 dimensional arrays associating the index witli the
possible table input values

• Once we retrieved ail the index value Indexdim,i for each dimensional
array, we can easily calculate the index of the table array to get the
output value of the table. To do so, we can use Eq.2.13 consisting in a
sum of N Products which introduces a very low overhead compared to
the previous solution where 0{Ltable,tot/Ldim,N) niethod class calls were
required.

The way top calculate the index of our current table is represented in Fig.2.13
which also particularizes Eq.2.1.3 for our three dimensional case. Let us imag­
ine that we would like to access the value associated with the 54, —5,34 input
values triplet: from Fig.2.12 and its three dimensional arrays, we can see that
the input values respectively corresponds to index values 1, 0 and 2. Inject-
ing these index values into our value array formula, we hâve to perform the
following operation: 2-|-0*3-fl*3*2 = 12. As a resuit we know that we
can find our final table output value in the value array position definrxl by the
12th index which gives us 92. This can be verified by taking bac:k our initial
représentation of the table in Fig.2.11 and following for each dimension the
arrow respectively associated with 1,0 and 2 index value until we find back the
resuiting value 92.

N
NumberNumberEieme.nts,Dimi (2-12)

î=i

N i-1
IndeXfahig = IndexQ — 1 (2.13)

1 j=0

2.5. ALGORITHMIC AND ADVANCED CONCEPTS IN Y ET fi 45

^dim,2=2

*-dim,1~^

Table 56 45 4 -6 3 0 23 12 92 4 6 -2 55 7 73 9 -2 81

0 17

'^dexdim,i 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

lndex^l^2 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1

'"dexdim,3' 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2

Index^gbie 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Figure 2.13: Evaluation of a table rule based on the dimeiisional indexes values: the
conversion formula to get the table index is particularized for the case
of 3 dimensions

46 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 2.14: Représentation of an oriented beliaviour with #0 outputs and #I iii-
puts

2.5.2 Relation

Relations don’t rec[uire the use of very spécifie algoiithnis hence we will skip
tliis section to go directly to the behaviour devoted section.

2.5.3 Behaviour

Structure

Oriented beliaviours are cornposed ont of relations representing a structure
with I inputs and O outputs as illustrated in Fig.2.] 4. Vertices pointed by only
one oriented hyi^er-edge represent output paranieters while vertices sharing
simple or multiple non-oriented hyper-edges are input paranieters.

EveJuation

Constraints and value, estimation of the behaviour can be caixied ont by using
again a depth-first algorithm at the scale of the relation rather than at the
scale of basic operations (see Alg. l) for each succe.ssive particular behaviour
output.

2.0. ALGORITHMIC AND ADVANCED CONCEPTS IN YETI^ 47

Orientation search

As explained in Sec.2.4.4, one behaviour can be used to solve different problems
by simply c^hanging the orientation of the imderlying relations. Given the
hypergraph structure of a non-oriented behaviour, we need to find ail the
possible cycle-free combinations that can be derived from it"*. Therefore we
will first fonnalize our problem into a mathematical représentation to find the
conditions that need to be satisfied to produce valid and exécutable oriented
behaviours.

Mathematical représentation A behaviour description is based on a list
of M relations for a total number of N different parameters. Each relation
Reli contains a set of PueU parameters which may vary from one relation to
another.

If we first consider only non-oriented relations, the behaviour can be written
as a mathematical system of M implicit équations (Eq.2.15).^. Among ail the
Xi J variables (the jith variable of the fth relation), there are only N different
variables, meaning that the ~ ^ others are common to at least
two équations.

Evaluating the represented behaviour output values simply cornes to solve this
System of équation. We suppose that ail the équations are independent so
that the dimension of the System equals M. This statement implies that no
équation can be found back using the M — 1 other équations: since relations
represent different models, this condition will likely be satisfied ail the time
(the user should make sure of that when composing a behaviour). As we now
hâve M independent équations and N different variables, the number degrees
of freedom of the system equals TV — M so that defining these N — M values
will entirely déterminé the M remaining variables values.

To explore ail the possible orientations of the hyperedges, we can turn each of
the M implicit équation into one of its explicit form (in other words associate
each relation with one of its generic rule) which leads to #PotentialSolutions
(Eq.2.14). Some of these solutions may however lead to mathematical discrep-
ancies as we will illustrate in our following example.

M
Ü^PotentialSolutions = (2.14)

i=l

Indeed let us consider as example one behaviour (Eq.2.16) composed out of
four relations {M = 4), seven different parameters (TV = 7) which leads to

^It must be emphasized that, although they are very similar, the hypergraph solutions we are looking
for {ire not hypertrees strictly speaking. Indeed severaJ hyperedges may share more than one vertex which
violâtes the condition for an hypergraph to be an hypertree[17].

®We used impheit (xjuations to emphasize the fact that related variables are not independent and that
this équation form isn’t suited to evaluate one variable value based on the others

48 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

108 different potential solutions (using Eq.2.14). If we focus on a particular
solution by ctioosing one explicit form for each équation (like for instance in
Eq. 2.17).

Relx{Xi^i,... ,Xi_Pj) = 0

Relj{Xj^i, Xj^p.) — 0

RelM{XM,i,-■ ■ ,Xm,Pm) = ^ (2-15)

Reh{A,C,D,E) = 0

Reh{B,E,H) = 0

Reh{D,F,G) = Q

Rek{E,G,H) = 0 (2.16)

E = GRReiM,G,D)

E^GRr,i,{B,H)

D = GRn,i,{F,G)

G = GRReu{E,H) (2.17)

There are two important things to notice when looking at the resulting équation
System.

1. The variable E is the resuit of two different équations which makes no
sense as it can only hâve a single value.

2. If we try to solve this System by a simple substitution of rules GRpeli-,
GRrs13 and GEr^i^ we get the resulting équation 2.18. As we can see,
this équation is not explicit because the parameter E appears in both
members which makes direct évaluation impossible.

E ^ GRr,i,{A,G,GRr,13{E,GRr,,u{E,H))) (2.18)

These two considérations give us the conditions to enable the équation System
to be converted valid hypergraphs:

1. Ail the explicit équations hâve to be oriented towards different variables

2. After making ail possible équation substitutions, no variable is allowed to
appear in both members in any équation

2.5. ALGORITHMIC AND ADVANCED CONCEPTS IN YETP 49

A

Figure 2.15: Illustration of the two conditions required to hâve valid exécutable
graphs on our example

Hypergraph transposition Corning back to our behaviour graph repré­
sentation, these two conditions on the niatheinatical représentation can be
respœtively translated into two rules that an oriented graph shoiild follow in
order to be valid and exécutable:

1. Each vertex of the oriented hypergraph should hâve one and only one
hyperedge pointing to it

2. The resulting hyi^ergraph must be acyclic (in other words, starting froin a
vertex, there should be no path of consecutive oriented hyper-edges that
could lead to the sanie vertex).

The previous example based on the équation set 2.17 can be converted into an
orientexl hyiiergraph (Fig.2.1.')). In this graph, both previous conditions aren’t
fulfillexl leading to the sanie conclusions as for the équation version. Indeed two
hyperdges point towards the same vertex (parameter E) and the hypergraph
contains a cycle of three relations resulting in infinité loop exet:ution when
attempting to evaluate it through a depth-first algorithm.

To find ail the solutions eligible for direct execution, we built a recursive al-
gorithni to explore the hypergraph and extract ail the oriented hypergraphs
compatible with our two rules ont of it. This algorithm proceeds in several
steps that are described in a pseudocode (see Alg.2). Some particular points
however deserve more attention: •

• At lie beginning of the algorithm, none of the M relations are assigned
with an orientation. One by one relations are then associated with each
possible orientation to explore the whole hypergraph.
If a ii6:w orientation either breaks the one oriented hypredge per node or
the acyclic graph condition, the current orientation is invalidated and ail
subséquent relations rfunain unexplored. This saves a lot of tinie since we
know that, whatever the other relations orientations, it will only resuit in
impossible solutions.

50 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

If the proposée! orientation is \'alid, we proceed with the next. relation
until ail of them hâve been explored.

• The condition of non-cycling hypergraphs is the most painful to verify.
One possible way to détermine if the adjunction of one relation will form
a loop is to simply explore ail yet oriented children relations of the hy-
pergraph. The exploration ends up in two cases:

1. Among the already explored parameters, we find back the oriented
parameter of the tested relation. This means that an oriented path
exists from at least one the children of the current relation to its root
parameter, hence a loop.

2. The oriented parameter of our relation under test has not been found
among the explored parameters and ail the hyperedges hâve been
explored: the resulting hypergraph is cycle-free and this solution is
eligible for évaluation.

This cycle détection process is illustrated in Fig.2.16: the left side shows an
hypergraph with a loop (path of red double arrows) while the right side shows
the same hypergraph free of any loop. The double arrows point towards ail
the parameters of already successfully associated relations that must be tested
to detect potential loops when the green circled relation is added to the hy­
pergraph.

Algorithm 2 Recursive algorithm extracting ail the valid hypergraphs for
évaluation based on a set of M relations and invoked using validHyper-
Graphs(firstRelation)

1: if (index(currentRelation) < M) then
2: while Ail associations of current Relation hâve not been tested do
3: if currentAssociation doesn’t create a loop inside the hypergraph V parameter

pointed by currentAssociation isn’t already associated then
4: validHyperGraphs(-l- -b current Relation)
5: end if
6: -f-fcurrentAssociation
7: end while
8: Remove currentRelation association
9; else

10; Save current solution
11: end if

2.6 Implémentation

This section discusses some important implenientation issues while focusing on
maintainability, fiexibility and practical questions.

2.G. IMPLEMENTATION 51

O Relation to test Non-oriented relation P Oriented parameter of
the relation to test

-C» Nodes explored
to find loops Oriented relation

J F J F

a) b)

Figure 2.16: Exploration of an hyper-graph to find loops: a) represents a wrong
solution wlüle b) shows a cycle-free solution

52 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

2.6.1 Introduction

YETi^ has been implemented in C++ using the multi-platform Eclipse 3.2.1
IDE combinée! to CDT 4.0 (the widest spread C++ plugin for Eclipse) which
relies on GCC 4.0.1 compiler. To keep YETi^ hierarchical structure intact, we
chose an object-oriented language and went for C++.

The translation of the hierarchical structure into an object-oriented structure
is almost immédiate: Fig.2.17 represents the general UML class diagram® of
YETi^. The main classes are:

• The hierarchical représentation of the three basic éléments is cleaily out-
lined by the UML relationships hnking the classes. Indeed relation is
linked to behaviour using a one-to-n composition relationship and so is
genericRule to relation. It means that the lifetime of the aggregated class
dépends on the lifetime of the other class: for example, ail the relation
instances will be destroyed if the behaviour is destroyed. Only the be­
haviour is visible outside of the framework through its methods and both
relations and genericRules classes remain hidden to the user.

• Parameter class is used as an interface mechanism to exchange data be-
tween the three main hierarchical classes. Therefore we used aggregation
relationships to link them. The parameter class also contains one value
and one constraint class instance.

• Parameter Metainformation and Relation Metainformation contain dif­
ferent temporary information used by the different algorithms but not
related to the structure.

Almost ail the relationships (except the ones between parameter and con-
straints/value) are bidirectional (no arrow at the other side of the relationship)
meaning that classes mutually know about each other. These mutual class de-
pendences mainly corne from the multi-level nested tree structure with shared
parameters: if this class structure seems quite obvions, it will however lead to
thorny implémentation problems that will be further discussed in Sec.A.2.

In the following sections, we présent the different hierarchical éléments and
explain how they provide useful services to the upper layers.

2.6.2 Generic rules

Generic rules are responsible for the computing capability of the framework
and offer the following services to higher level layers:

®This class diagram is very simplified: it contains only the class names and omits attributes, methods
and even some less important classes. We intentionally decided to represent only the relevant information
to avoid the diagram from being overloaded with unnecessary details. Through the rest of this dissertation,
we wiU always adapt the detail level of each UML diagram depending on the context of use.

2.6. IMPLEMENTATION 53

Figure 2.17: General UML diagram for the YETP frarnework

1. Evaluate is a ser\dce that triggers the estimation of the root parameter of
the generic nile based on its iii])ut parameter values

2. Evaluate construints triggei-s in the same way the constraints évaluation
of the generic rule root parameter

Fig.2.1S présents the UML elass diagram for the generic rule, analytical/table
rule an underlying classes. •

• Generic rule elass lias been implernented by making intensive use of in-
heritance mex;hanisms to provide the frarnework with a lot flexibility and
extension possibilities. Analytical rules and table rules dérivé from the
generic rule elass enabling easy rule extension if needed: derived classes
just hâve to implement the evaluate and evaluate constraints virtual func-
tions. These functions return a boolean with a true value if the value
e.stimation encoiinters no error and inversely. The kind of errors dépends
on the paiticular type of generic rule: analytical rules triggers an error
whenever one of its basic operation générâtes a mathematical error (di­
vision by zéro, négative logarithm basis etc.) and table rules whenever
one of the input parameter doesn’t correspond to any of the predefined
values.

• The internai tree .structure of analytical rule (see Sec.2..5.1 for more de­
tails) is composed out of n smaller basic operations that are implernented
by the arialytical Elément elass. These basic operation are simple tree
éléments with 1 or 2 leaves that can be cascaded to form deeper trees:
pai’arneters play the rôle of interfac:e between ail these basic operations.

• Each particular basic operation Ls defined insidc a separate elass that
inherits from the common analytical element elass. ThLs last one Ls defined
as an abstract elass so that only derived classes may be instanced.

54 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 2.18: UML diagram for the gerieric rule related classes

2.6. IMPLEMENTATION 55

Building analytical rules: the price of flexibility

Analytical rules are described by a string capturing the mathematical repré­
sentation of the rule. To tiim them into trees, we used the shunting yard
algorithrn which is explained in Sec.A.l but some particular implémentation
points deser\^e some attention.

Indeed when the input string is parsed, the algorithrn needs to be able to
identify an operator by its symbol and distinguish it from a parameter name.
To make this mechanism more flexible and to enable the later extension of basic
operators, we encapsulate ail the required infonnation (see tableA.l in Sec.A)
inside each particular derived analytical élément class élément using static class
attributes (as this information is common to ail instances). However, analytical
rule class tliat implements the shunting yard algorithrn needs in turn to know
about these classes as this is shown by the dependence relationships in the UML
class diagram. Hence we included a class attribute named available operators
which gather ail the existing derived analytical élément classes into a vector.
Ail these different instances don’t enclose any useful data but are just put
together so that we hâve a way to systematically check ail the possible basic
operators regardless of their number. Furthermore we included this vector as
a static attribute to avoid the burden of duplicating it for each instance of the
analytical rule class.When a match between the parsed string and an anal>Tical
elëment'symboTis'fOüridT'we first needÂô^upheate it before inserting it into
the tree structure. The problem is that we hâve to instantiate the chosen
derived anahdical élément class and not the super class. To do so, we used a
particular mechanism: each derived analytical élément implements an inherited
clone method that retums a pointer to a newly created instance of itself so
that we can use this new instance in ont tree.

To summarize, the only things that need to be done in order to add a new
basic operation to the current set is:

O To cretvte a new class that dérivés from the analytical élément class while
defining the clone, calculate and calculate constraints methods and to
deflne symbol, precedence and associativity static attribute values.

O To add the new derived class to the available operators vector of the
analytical rule (along with its header déclaration).

In return for these slight modifications, the shunting yard algorithrn is still
working properly even with anal}Aical rules using these new basic operations
can be used without any change.

Accelerating analytical relation évaluation

The évaluation speed of analytical relations is crucial in determining the global
perfonnance of YETi^. Therefore we used a mechanism to lower execution

56 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

times that takes the most out of the mathematical expression representing
the model: common terms will be merged into same branches of the tree so
that they require only one estimation to get the output value. The underly-
ing mechanism is very simple: whenever we parse an expression, we check if
we already came across any équivalent expression given the associativity (see
Table.'V.l). For instance, expressions A + B and B + A are similar since oper-
ator + is associative while expressions A — B and B — A will produce different
results due to the non-associativity of operator —. This ”tree compression”
procedure doesn’t take a lot of time and has to be done once and for ail during
the analytical rule building phase while increasing in turn model estimation
speed.

2.6.3 Relation

Relations hâve a very simple object structure since they only need to memo-
rize the orientation of each parameter associated and provide the user with a
mechanism to dynamically switch the association. Fig.2.19 présents the UML
class diagram associated to relation and highlights the main aspects of it:

• The most important class attributes are composed out a vector of pa-
rameters for the relation and a vector of associated genericRules. Only
non-constant parameters are gathered into the parameter s vector since
it makes no sense to associate the relation with a parameter that has
a constant value. Furthermore, constant parameters are different from
one generic rule to another so that none of them may be common to the
same relation. Finally some of the parameters could not be associated at
ail (NULL pointer value at the corresponding index in the genericRule
vector) if the related model is not réversible for that particular output
parameter.

• The evaluate and evaluateConstraints functions retum a boolean value
to indicate whenever the genericRule évaluation encounters an error (see
Sec.2.6.2). Both functions take as input the name of the output parameter
to tell the relation which genericRule should be used for the évaluation
and modify in turn the value or constraints of this parameter.

• A setGenericRule function can be used to change the generic rule asso­
ciated to one particular parameter allowing model sensitivity study.

2.6.4 Behaviour

Behaviour offer the upper-layer services that will directly be available for the
user. Fig.2.20 présents the most relevant methods and attributes of the class:

2.6. IMPLEMENTATION 57

Figure 2.19: UML diagrain for the relation related classes

Figure 2.20: UML diagram for the behavioiir related classes

• The main attributes are the output/input parameters and the relations
composing the behaviour

• aetInputParame.tersVa.lue allows the user to set the value of eaeh parani-
eter by specifying a single value, a list of values or a value sweep (start,
stop and step value). Values can be defineci using the scientific E notation
for 11 U mb ers.

• RunValueSirnulation and ranConstrairitsSimulation trigger a simulation
run based on the input parameters values and VTite the results in the
XML resultFüe. Ail the combinations of each input parameter possible
values are computed to get the complété input values set. •

• exploreOrientatioriH is a functiori that calls the algorithm for c.ycle-free
liyjiergraph extraction (.see Sec.2.1.4) and gather the valid orientations
into the XML resultFüe.

58 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

______________ Parameter_________
string name
value* myValue
constraints* myConstraints
vector <relation*> myRelations
relation* childRelation
static unsigned long evaluationState
unsigned long myEvaluationState
void calculateValueO
void calculateConstraintsO
bool hasBeenEvaluatedO
static void initializeNextEvaluationQ

Figure 2.21: UML diagram for tlie behavioiir related classes

2.6.5 Parameters

Parameters are the key to the hierarchical organization of our objeet structure
since they provide a communication interface between ail layers. Theii’ UML
class description (Fig.2.21) rnay seem surprisingly simple but contains however
a lot of crucial information.

Parameters attribvîtes include the name (unique for each parameter at the
relation level), the value/constraints and the orientation. The two methods
called calculateValue and calc.ulateConstraints trigger the computation of the
parameter value/constraints.

Since our framework is parameter-centric, we decided to include the informa­
tion about the orientation of the relation tree inside the parameter. Therefore
we used the childRelation attribute that points towards the relation that is
associated with this current parameter or is assigned with a NULL pointer
value (in the case of a leaf parameter).

To speed up the the behaviour évaluation, we set up a mechanism to spare a lot
of redundant évaluations associated with common hyperedges. Let us consider
one example of a behaviour represented by its hypergraph composed out of
relations (.see Fig.2.22). As we can see internai parameter named Intl is shared
by two hyperedges with root parameters name Oi and O2. In order to proceed
to the évaluation of the different trees output parameters values we first define
the value of each input parameter. Using the depth-first algorithm, we can
easily evaluate parameter Oi value by exploring the whole tree undemeath.
However, if we do the same for parameter O2 estimation, wedl waste some
precious computation time since the oriented hypergraph starting at parameter
Intl bas been evahiated previously. The solution to this problem is to keep
track of the already visited parameters and therr output values so that we don’t

2.(1. IMPLEMENTATION 59

Figure 2.22: Accélération of behavionr estimation thanks to conmion brandies iden­
tification

explore twice the saine liyperedge during one hypergrapli évaluation.

One solution to iinplenient tliis mechanism is to tag each parameter with a
marker eac;h tinie that they visited: when we corne across a parameter tliat
lias already been evaluated, we just gét the previoiisly estimated value instead
pLexploringJurther_the^h}"pergraph____________ ____________^--------------------—

2.6.6 The big picture

The behaviour value/constraints estimation is a very flexible and easy-to-use
process but puts in tum some stress on the message-passing mechanism be-
tween objects. Fig.2.2;i présents a UML sequence diagram^ describing how
objects exchange infonnation to get ail the behaviour parameters o^stimated:

• The user calls a run ValueSimulation (the principle remains the same for
constraints évaluation)

• For eacdi output parameter, the behaviour calls tlie calculate method that
uses tlie internai hasBeaiEvaluated method of parameter. If the resuit of
this function is true (meaning that either the parameter lias no oriented
lijqieredge pointirig at it or the parameter lias already been evaluated
previously) no other method call is inade. If it is false, the parameter
calls the evaluate method of relation by passing its name to deflne the
orientation of the relation.

• Relation call the polymorphie evaluate method of the generic rule class

^Object. lifotimc is iuteutioiially iiot reiu’eseuted sinc:<; ail objects remaiii alive during the c.stiniatiou
process.

60 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

g<actor>&
User

IBghaïjfiur^l I^Eatamger^l I^GenençRMlel

------------------------►>
runSimuatton(inputFile)

calculateO \
hasBeenEvaluatedQ

ait :
false

----1 ■ 1-------
1 1
1-------------------------- Pi
1 evaluate(this) i

1 1
1 1 evaluateO

1 " getValueO
1 t
1 t
1 1

—

true 1 1
1 1
1 1 1 1

Figure 2.23: UML sequence diagram representiiig message passiiig betweeri ail tlie
classes diiring inodel évaluation

• Any estimation process from a class derived from genericRule uses tlie
getValue method to get the paianieter values. This fimction works exactly
the sanie way as the parameter calculate Vnlue() hence triggers parameter
estimation if it hasn’t beeri estirnated yet.

The message passing structure could seem unnecessarily complex but it has
the enonnous advantage of providing extrernely easy extension possibilities.
Indeed it enables any class deriving from genericRule to be directly nsed inside
a relation without any change on the behaviour depth-first évaluation method.
This provides the programmer with a totally invisible yet powerful and very
flexible mechanism of évaluation.

2.6.7 Using the framework

YETi^ can be basically used in two different ways: either as a C++ library or
as a standalone tool using the XML scripting functionalities. While the first
operation mode can be used to easily extend an existing C++ application with
enhanced modeling capabilities, the second mode allows the user to use YETi^
without having to compile any code and directly script its experiments. Ail
the services available for the user to choose among are the following:

1. Building a behaviour

2. Specifying the orientation of a behaviour

2.6'. IMPLEMENTATION 61

Figure 2.24: Fiinctional view of tlie YETP franiework

3. Settirig the iripiit vahies/constraints

4. Perforniing a constraints/value estimation and generate the resuit in a
file

5. Detennining ail the valid orientations of a behaviour and write the resuit
into a file

6. Changing the generic ndes associated to a relation

7. Creating a ready-to-plot file based on the sélection of the desired variables

From a user perspective, the basic behaviour évaluation mechanisni of the
framework is described in Fig.2.21.

First the user needs to describe the different XML inpiit files (behaviour, input
values, behaviour orientation).

Second YETi^ reads the connnands list (either described using the C++ in­
terface or the XML script) and fetches the corresponding XML files before
executing each command. If one of the file isn’t valid regarding its grammar
defined by the corresponding schéma, the operation is aborted and the error
is displayed.

Third the operations are carried ont and the corresponding XML output files
are gencrated (valuc/constraints simulation and resuit from behaviour orien­
tation search).

62 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

2.7 Data support

YETi^ deals with a lot of data: three layered structured models, input/output
parameters values, behaviour orientations etc. Ail these structured informa­
tion need to be stored into files and should afterwards be easily turned into
object oriented éléments. To provide our framework with such functionalities,
we decided to use XML as data support format. The reason of tins choice,
the different language features and the XML related tools are topics tliat are
discussed in Sec.B.l while the details about the XML schémas defined for Yeti
can be found in Sec.B.2.

2.8 Conclusions

In this chapter we presented Yeti, our tool for flexible analytical and table-
based relations définition and évaluation. Compared to previous closed-formed
performance prédiction tools, Yeti has the advantage of being very flexible and
can be used either as a standalone tool or as a C-1-+ library. Its data support
defined using XML schémas guarantees that the framework will automatically
detect any error made by the user during the définition of the simulation.
The introduction of the notion of model reversibility also enables easy reuse
of existing models in different situations than the ones they were originally
meant for. Finally Yeti allows the user to script its simulations to gain a lot of
time and plot the results which make it usable to easily compare models and
perform input sensitivity studies.

To demonstrate the use features and how they can help to optimize VLSI
design decisions, the next chapter will be entirely devoted to the présentation
and discussion of several VLSI related case studies performed using Yeti.

Bibliography

[1] D. S. C. Hu, “Analytical modeling and characterization of deep-
submicrometer interconnect,” in Proc. IEEE, IEEE, Ed., vol. 89, 2001,
pp. 634-664.

[2] B. S. Landman and R. L. Russo, “On a pin versus block relationship for
partitions of logic graphs,” IEEE Trans. Comput., vol. 20, no. 12, pp.
1469-1479, 1971.

[3] P. Christie and D. Stroobandt, “The interprétation and application of
rent’s rule,” IEEE Trans. Very Large Scale Integr. Syst., vol. 8, no. 6, pp.
639-648, 2000.

[4] G. Sai-Halasz, “Performance trends in high-end processors,” Proceedings
of the IEEE, vol. 83, no. 1, pp. 20-36, January 1995.

DIBLIOGRAPHY 63

[5] D. Stroobandt, A Priori Wire Length Estimâtes for Digital Design.
Boston / Dordrecht / London: Kluwer Academie Publishers, 4 2001.

[6] S. Takahashi, M. Edahiro, and Y. Hayashi, “A new Isi performance pré­
diction inodel for interconnection analysis of future Isis.” in ASP-DAC,
1998, pp. 51-56.

[7] J. A. Davis, V. K. De, and J. Meindl, “A stochastic wire-lengt.h distri­
bution for gigascale integration(gsi) - part i: Dérivation and validation,”
IEEE Transactions on Electron Devices, vol. 45, no. 3, pp. 580-589, Mar
1998.

[8] W. E. Donath, “Wire length distribution for placements of computer
logic,” IBM Journal of Research and Development, vol. 25, no. 3, pp.
152-155,rnay 1981.

[9] R. Mangaser and K. Rose, “Facilitating interconnect-based vlsi design,”
in MSE ’97: Proceedings of the 1997 International Conférence on Micro-
electronics Systems Education (MSE ’97). Washington, DC, USA: IEEE
Computer Society, 1997, p. 139.

[10] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “A generic System
simulator (genesys) for asic technology and architecture beyond 2001,” in
ASIC Conférence and Exhibit proceedings, 1996, pp. 193-196.

[11] “International technology roadmap for semiconductors 2007.” [Online].
Available: http://www.itrs.net/

[12] L. Codrescu, M. D. Pant, T. M. Taha, J. Eble, D. S. Wills, and J. D.
Meindl, “Exploring microprocessor architectures for gigascale intégra­
tion.” in ARVLSI, 1999, pp. 242-255.

[13] D. Sylvester and K. Keutzer, “System-level performance modeling with
baepae - berkeley advanced chip performance calculator,” 1999. [Online].
Available: citeseer.ist.psu.edti/sylvester99systenilevel.html

[14] D. Liu and C. Svensson, “Power consumption estimation in emos vlsi
chips,” Solid-State Circuits, IEEE Journal of, vol. 29, no. 6, pp. 663-670,
1994.

[15] “Baepae - berkeley advanced chip performance calculator.” [Online].
Available: http://www.('(cs.uiiiich.('du/~dennis/l);u'p;u:/

[16] A. E. Caldwell, Y. Cao, A. B. Kahng, F. Koushanfar, H. Lu, I. L.
Markov, M. Oliver, D. Stroobandt, and D. Sylvester, “GTX: the
MARCO GSRC technology extrapolation System,” in Design Automation
Conférence, 2000, pp. 693-698. [Online]. Available: citfseer.ist.psii.edu/
caldwell00gtx.html

[17] F. Chapoton, “Hyperarbres, arbres enracin
’{e}s et partitions point
’{e}es,” HOMOTOPY AND APPLICATIONS, vol. 9, p. 193, 2007.

http://www.itrs.net/
http://www.('(cs.uiiiich.('du/~dennis/l);u'p;u:/

64 CHAPTER 2. YETI: CONCEPTS, DESIGN AND IMPLEMENTATION

[Online]. Available: htti)://www.citoba.sc.orf>;/abstrrU‘t?ul=oai;arXiv.oig:
inath/0604r>2.'i

Chapter 3

Yeti: Case Studies and
Applications

Abstract
In this chapter, we define two complété case studies to
demonstrate tlie different features of Yeti including sim­
ulation scripting, input parameter sensitivity study and au-
domatic.plot-generation.-Theffirst-case-study focuses~orl~tlîê
reuse and extension of a rnodel selected from tlie literature
for the estimation of the computation performance of multi-
core processors architectures. Besides the ability to easily
capture models and reproduce their results, we show how we
can take advantage of the model reversibility feature of Yeti
to get new results from existing models in almost no time.
In the second case study, we build a model from scratch
to estirnate the bandwidth and frequency of a communica­
tion path depending on its nuniber of stages. We compare
our results with the literature, explain sonie discrepancies
found between key papers and propose new wire planning
for optimized bandwidth. As a conclusion we présent the
calculation performances of Yeti and discuss its scalability
with model cornplexity.

3.1 Introduction

While the previous chapter focused on the theoretical and implémentation
concepts used for the design of Yeti, the current chapter demonstrates the use,
the different features and the performances of the Yeti framework on practical
cases. We therefore perfonned two different case studies:

65

66 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

1. In the first case study, we Ulustrate Yeti ability to reproduce results of
existing models and extend them using our reversibility feature. Therefore
we wül focus on a paper from the computer science literature describing
the computation perfomaances of multi-core processors and show how it
is possible using Yeti to dérivé new results with very almost no model
modification and time penalty.

2. The second case study demonstrates how Yeti can be used to perform
model/input parameter sensitivity studies allowing the user to see the
impact of some model/input variations on the model resuit calculated by
the engine. As an illustration, we will model from scratch a communi­
cation path to estimate its maximum frequency based on the number of
stages that it is composed out of. It will allow us to discuss the choice of
the stage model along with its impact on delay for different wire lengths
and examine how the different geometrical parameters of the gâte and
wire impact the resulting maximum frequency of the path.

Through these case studies, we will also illustrate the side functionalities of Yeti
that make user’s expérience much more comfortable like automatic plotting
based on the resulting XML files and simulation scripting.

3.2 Case Study 1: the Codrescu model

3.2.1 Introduction

The aim of this first case study is to demonstrate how it is possible to describe
an existing model taken from the literature using Yeti formalism and how we
are able to modify its orientation in almost no time to answer problems that
it was originally not meant for. Therefore we hâve chosen a model defined by
Lucian Codrescu in [1] studying the impact of the core number and tjqae of a
multi-processor architecture on computation performances of the platfonn and
its interaction with the application parallelism .̂ Although this study is a bit
old now (it was published in 1999), it is a very good example to demonstrate
the different features of Yeti:

• This study links technological parameters (like wire and gâte delay) to
high-level platfoim (like the Silicon surface and architecture granularity)
and functional (application parallelism) related parameters. This mod-
eling context based upon heterogeneous parameters from very different
design abstraction levels makes the concept of réversible modeling intro-
duced by Yeti very interesting to use and study.

' We hâve cilready briefly presented this model before in Sec.2.2.(i devoted to System-level prédiction
Systems. The generality of Yeti allows us to express this model inside our framework emphasizing in
practice its generality compared to previous analyticaJ models.

3.2. CASE STUDY 1: THE CODRESCU MODEL 67

• The paper details and référencés ail the intermediate niodels used so that
it LS possible to reproduce the published results. This particular point is
crucial since there are -unfortunately- very few papers that make ail the
models explicit while relying on a sufficient number of linked models.

• Analytical and table-based models are used at the sanie time in Codrescu’s
model allowing us to show how Yeti is able to mix different types of
models.

• Finally the presented results are limited to the study of the dependence of
the global platform computation performances with the application par-
allelism for different combinations of core type/number keeping the total
chip area constant. Since this practical use of the models is quite limited
regarding their number, there is room for perfomiing some more experi-
ments based on the very same models that only require to be reoriented.

Let us first explain in more details than Sec.2.2.6 the different models involved
in Codrescu's study before integrating them in Yeti and trying to reproduce
the paper results.

3.2.2 Codrescu model

---------Godrescu-s-model-targets-the representatiomof the”comj5ïïtation performances
of a multi-core processor architecture. Therefore different architectures are
compared from a large single processor to a network of 2.56 simple processors:
the number of processors for each architecture candidate is chosen so that the
total area remains constant making their comparison fair in ternis of total
Silicon surface. This situation is illustrated in Fig.6.1 where each architec­
ture is represented by its processor number and issue width^. The basic idea
behind this model was to find the most suitable candidate architectures for
next génération microprocessors that could sustain Moore’s law performance
level. Therefore the different architectures are compared in ternis of comput­
ing perfonnance for different levels of application parallelism: in other words,
the paper tries to détermine in which proportion Instruction Level Parallelism
(ILP) and Thread Level Parallelism (TLP) should be mixed in order to obtain
the best level of performances.

The computation performances are measured by the number of operations is-
sued per second for the complété architecture i.e. by ail the processors: this
is expressed by Eq.3.1 where Perf is the computation performances of the
platform (in Operations/s), Fdock is the dock frequency, IPC is the num­
ber of instructions issued per cycle and Sp is the speedup factor quantifying
how much the performances benefit from the adjunction of additional parallel

^The issue width represents the number of functional units exploiting the instruction level paraHehsm
to increase computation performance.

68 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

7 candidates architectures :
constant area

Focus on ILP
Aggressive nodes

--------------------------- ►
Focus on TLP

Multiple Processors

Figure 3.1: Severi multi-processor architecture candidates with a constant total sUi-
con area are comparée! in terms of computation performance in the studv
of [l]

microprocessors given the available level of application parallelism.

Perf = Fdock*IPC*Sp (3,1)

Each factor of Eq.3.1 is calculated based on other models which are precisely
dœcribed in the following paragraphs.

IPC The nurnber of instr>ictions per cyc.le IPC for eacdi type of processor lias
been estirnated using two different techniques depending on their issue widtli:

• Processors up to 4-way were well-known at the time of the paper; their
respective IPC has thus been estirnated based on average IPC values of
existing processors with the sanie issue width.

• To define realistic values for the IPC of processors over 4-way, the average
efficiency of superscalar processors has been estirnated (the ratio between
the effective IPC and the nuniber of functional units i.e. the instruction
issue width) for a large nuniber of processors. With typical values between
30% and 50% the géométrie iiiean value of this efficiency equals 40%.
Froni there, IPC vaines were inferred for processors with issues width
larger than 4-way: these values were partly confiniied by simulations
perforrned using SinipleScalar[2] and can be calculated from Eq.3.2 linking
the IPC with IW (the issue width).

The different IPC values are gathered in Table 3.1 for each type of niicropro-
cessor.

IPC = QA*IW (3.2)

3.2. CASE STUDY 1: THE CODRESCU MODEL 69

Processor type Area(mm^) IPC
16-way 416 6.4
12-way 208 4.8
8-way 104 3.2
6-way 52 2.4
4-way 26 1.6
2-way 6.5 0.8
1-way 1.6 0.4

Table 3.1: IPC and area for the different processor types

Processor type Wire delay (ps) Gâte delay (ps) Clock frequency (MHz)
16-way 972 400 0.73
12-way 687 400 0.92
8-way 486 400 1.13
6-way 344 400 1.34
4-way 243 400 1.56
2-way 122 400 1.92
1-way 61 400 2.17

Table 3.2: Wire and gâte delays for the different processor types

Clock Prequency The dock frequency Fdock of each microprocessor is based
on the critical path delay CP which is supposed to be composed ont of ten
stages. Eacdi stage is a gâte driving a wire segment whose length dépends on
the area of the microprocessor. The gâte delay Dgate and the total wire delay
Dwire are calculated using GENESYS [3] that we mentioned earlier in this work
(see Sec.2.2..')). No information is given about the technology node which the
gâte and wire delays are calculated for.

^clock
1

ÔP 10 * Dgtage 10 * {Pgate T Dix^re)
(3.3)

The gâte delay, wire delay and resulting clock frequency (calculated using
Eq.3.3) are given in Table 3.2.

Speedup Amdhal’s law[4] is used to estimate the speedup provided by the
use of multiple processors over a single processor. This law represented by
Eq.3.4 links the performance speedup Sp with the number of parallel execution
nodes #Nodes and the parallel fraction^ of the workload Par. As a resuit we

^The parallel frax;tion of a workload représenta the percentage of the program in size whose execution
can be parallehzed onto an arbitrary nmnber of execution nodes. The remaining of the program can only
be executed on a single node.

70 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

obtain the speedup comprised between 1 for single threaded programs and
4f^Nodes for fully parallelizable applications.

5p =
1

(3.4)

3.2.3 Intégration of Codrescu’s model inside Yeti

In this section we demonstrate how it is possible to build a model presented in
Codrescu’s paper and reproduce the results using Yeti.

Methodology

Converting ail the mathematical models used by Codrescu into Yeti relations
leads to 6 analytical and 3 one-dimensional table-based relations. These dif­
ferent relations are graphed in Fig.3.2 where they are ail oriented according
to the models of Codrescu. As we can see the resulting behaviour has three
inputs, the parallel fraction, the total area^ and the type of processor (in red
on the figure) and one output, and the computation performances of the whole
architecture (in green on the figure).

To reproduce these results with Yeti, we proceed as following;

• We define the behaviour with its oriented relations inside an XML simu­
lation file: to give an idea of its complexity, the file is 2.53 Unes long.

• An XML simulation script file defines ail the simulations that will be
performed with their respective input parameters values, desired output
files and plot file names. For each type of processor, we perform a single
simulation and sweep the parallel fraction parameter value so that we
obtain a simple plot files for each architecture candidate.

Once these files hâve been defined, we can launch the simulation and wait for
the different plot and output values files to be generated. Once this operation
is completed (it takes a few seconds depending on the number of solutions to
evaluate), we can directly visualize the resulting graphs by opening the plot
files into the chosen plotter {Plot©îor Mac OS X in our case).

"“It may aJso be mentioned that two additioual relations are présent on the graph respectively defining
the node area and Unking the total area with the number of nodes and their type. In the case study
provided by Codrescu in his paper, ail architectures are chosen so that their total sihcon surface remains
constant aUowing fair comparison. The related area parameters will however be used in some of our
following experiments with the model of Codrescu

3.2. CASE STUDY 1: THE CODRESCU MODEL 71

type

Figure 3.2: The eight relations representing Codrescu’s model inside Yeti. The ori­
entation of the relations is performed according to Codrescu: output
paraineters are colored in green and input parameters in red.

Experiments and results

We performed two different sweeps for the workload parallel fraction from 0
to 0.5 with a step of 0.1 and from 0.9 to 1 with a step of 0.01. In Yeti, it is
pretty easy to generate the second batch of results based on the first simulation
set: we just need to change the bounds and step value of the workload parallel
fraction sweep tag in the input parameters values file, a matter of no time.

The two resulting curves are respectively represented in Fig.3.3 and Fig.3.4;
taking back the paper results, we can see these curves are perfectly identical
and our calculations perfectly match the original values from the paper. This
demonstrates that Yeti is able to reproduce in a very reasonable time results
taken from a paper based on a set of mixed analytical and table-based models.

On the first graph 3.3, we can see that the 16-way single-threaded mono-
processor performs better than the other architectures for workload parallel
fractions values smaller than 0.1; over this value, parallel architectures with
smaller processors progressively reach a larger number of issued instructions per
second making them a better choice. The computation performances remain
of course constant for the single processor: whatever the level of parallelism, it
will execute the whole code sequentially. Over 0.5, the four represented parallel
architectures perform better than the mono-processor making intensive ILP
less interest ing than TL P.

On the second graph presented in Fig.3.4, we can observe the computation per­
formances for very high workload parallel fraction values comprised between

72 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Parallel fraction

Figure 3.3: Computation performances VS workload parallel fraction ranging from
0 to 0.5 for Codrescu’s model

0.9 and 1. This graph confirms the trend of highly parallel architectures be-
coming more and more interesting with the increasing parallel fraction; it also
shows the incredible level of performances reached by the 64 and 2.56 core ar­
chitectures which quickly outperforms other architectures for workload parallel
fractions values over 0.97. It’s only over 0.99 that the 256 cores architectures
becomes the most interesting out of ail the candidates.

In conclusion of its paper, Codrescu highlights the fact that reaching high-end
computation performances is only possible at the price of highly parallel archi­
tectures coupled to applications exposing a very high degree of parallelism. It
may be argued about this conclusion that with the years, the processor archi­
tectures hâve indeed shown a trend to embed a growing number of cores inside
the same package (up to four identical cores in the current state-of-the-art
of commercial GP processors [5]) but in a smaller number than the prédic­
tions made by Codrescu in his paper. The main reason for that may be the
fact that general purpose processors are precisely not meant for the execution
of applications with a high parallel fraction making the use of higher parallel
multi-core processors based architectures less profitable than a few complex su-
perscalar interconnected processors. Furthermore Codrescu completely ignores
the impact of shared memory and interconnect on his results while architec­
tures become more and more greedy for both these resources as the number of
cores increases; this is typically why we need to make use of network-on-chips

3.2. CASE STUDY 1: THE CODRESCU MODEL 73

Figure 3.4: Computation performances VS workload parallel fraction ranging from
0.9 to 1 for Codrescu’s model

when the number of tiles to interconnect grows. For highly parallel architec­
tures, this additional cost in terms of memory and interconnect requirements
probably makes those architectures prohibitive to design.

Now that we hâve shown how we hâve iinport.ed Codrescu’s model into Yeti
and found back the same results as those presented in the original paper, we
will demonstrate Yeti abilities to reuse the very same model to dérivé new
meaningful results based on two different case studies.

3.2.4 Extending Codrescu’s results

In this section we will demonstrate the reversibility feature of Yeti by inverting
the initial Codrescu’s model and perform two different experiments: •

• We first invert the model to express the computation performance as an
input and the workload parallel fraction as an output parameter allowing
the user to define the desired level of performance and get the minimum
parallelism value required by the application to meet that constraint.

• The second experiment consista in reversing the initial model to express
the total area as a function of the processor type, computation perfor­
mance requirements and the workload parallel fraction. As we will see.

74 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

this study offers very interesting results when it cornes to inininiize the
total area for a given computation performance level.

Parallelism versus computation power

The results obtained by Codrescu in his paper were meant to find the archi­
tecture exhibiting the best computation performances given different levels of
workload parallelism; in other words, the aim of the model was to express the
computation power value as a function of the parallelism fraction value. For
a designer, it may however be convenient to select the desired level of perfor­
mance (hence the number of instructions issued per second) and get in return
the minimum parallelism fraction value required to sustain this level of perfor­
mances for each individual architecture choice. This information could be used
to check if the required level of workload parallelism seems reasonable given
the targeted application.

Setting up the experiment To answer that problem, we thus ntied to
change the orientation of the model to tum the parallel fraction Par into an
output of the model and the computation performances Perf into one of its
input: this is illustrated in Fig.3.-5. As we can see, ail the relations remain
the same except two relations which become oriented towards the Speedup
and towards Parallel fraction parameters as respectively expressed by Eq.3.-')
and Eq..3.(). We only need to manually define the new analytical rules and
to change the orientation of these two relations inside Yeti to initialize a new
simulation and get the results of this model inversion required to solve this
new problem.

Sv -
^ Fclock * IPC

(3.5)

r. ^-SpPar —-------- ;----- î----------- -
FP * (^Nodes 1)

(3.6)

The results are plotted for each architecture candidate proposed by Codrescu
in Fig.3.6 for performances ranging from 0 to 60 Gops/s. As we could expect,
the resulting graph actually represents nothing but the inverted function of the
graphs resulting from Codrescu’s original experiments. The only différence is
that we hâve used a smaller step and hâve extended the performances values
range to cover in one sole graph the whole range of values that were instead
represented in Codrescu’s paper on different plots. Although the graph plotted
in Fig.3.6 doesn’t really offer new information compared to the original results,
it is more convenient for our considered problem and has been obtained in
almost no time based on the previous model using Yeti.

M
in

im
um

 R
eq

ui
re

d P
ar

al
le

lis
m

3.2. CASE STUDY 1: THE CODRESCU MODEL 75

type

Figure 3.5: Modification of the relations (in bine) orientation to express the parallel
fraction as an output and the computation performances as an input

Figure 3.6: Minimum required parallelism VS computation performance for the dif­
ferent competing architectures

76 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Interprétation of the results The graph plotted in Fig.3.6 represents the
minimum application parallelism reqnired to meet a given level of computation
performances (number of instructions issued per second) for each of the candi­
date architecture. Based on this graph a user can easily choose a performance
level and deduce the workload parallel fraction for which the architecture can­
didates can meet these requirements. In the case of 10 Gops/s for in.stance,
ail architectures are able to deliver that level of performances except the 1x16-
way and the 2xl2-way candidates. As the level of performances increases,
more and more architectures give up and the minimum required parallelism
keeps increasing to quickly approach 1 where only 64x2-way and 256xl-way
architectures are able to deal with this level of performances.

If we further try to further interpret the shape of the resulting graph, we can
separate each curve in three different zones as depicted in Fig.3.7:

• Zone I represents the part of the curve where a performance level smaller
than A is always met whatever the level of parallelism. This means that
even one single processor of this type has a bigger computation power
than what is required by the designer: this is an opportunity for reducing
the frequency of the processors to save energy.

• Zone II LS defined by a required computation performance level ranging
from Ato B: this zone represents the curve in itself. As the performance
level increases, the minimum required parallelism also increases until it
reaches 1. It is interesting to mention that the parallelism fraction defined
by this curve exactly corresponds to the effective value of the required
computation performance while the points above this curve offer a higher
performance level than the one required: this is why we call the Y-axis
the minimum required parallelism.

• Zone III represents the part of the curve where the computation per­
formances level cannot be met by the architecture whatever the value of
the parallel fraction. This means that another architecture with more
parallelism has to be selected to meet the performances.

These three zones can be easily observed on Fig.3.6 for the different curves
representing the candidate architectures except for the mono-processor whose
zone II is reduced to a simple vertical asynrptote because its computation
performances don’t dépend on the workload parallel fraction value.

Some important mathematical considérations We hâve however to men­
tion two important things related to the mathematical inversion of the rela­
tions: •

• Since we generate workload parallel fraction values for ail the computa­
tion perfonnances values ranging from 0 to 60 Gops/s for each candidate

3.2. CASE STUDY 1: THE CODRESCU MODEL 77

Figure 3.7: Représentation of the three zones of the minimum parallelism curves
represented in Fig. 3. G

architecture, we sonietimes get for certain curves parallel fraction smaller
than 0 and bigger than 1. This is actually understandable because nothing
preverits the inverted matheniatical relations from generating non realistic
output values for input values ranges that were originally not explored;
it’s up to the user to interpret the results with a critical eye and not to__

_____________^blindly=generate-results-and-take-them-for"grantlcl.‘ THefefore we simply
discarded ail parallel fraction values outside the 0-1 range by limiting the
Y-axis values drawn on the plot.

O For the mono-processor, the inverted Amdhal’s law relation represented
by Eq.d.G leads to several non-valid solutions. Indeed when the number
of nodes is equal to 1, the denominator equals 0 which leads to an infinité
value: this is due the fact that the performance is independent from the
parallel fraction value. In a same way, when tlie speedup exactly equals
1 and the numerator equals 0, the mathematical évaluation leads to an
undetermined value^. To deal with that problem (see Sec.2.6.2 for more
details), Yeti detects a zéro division and tags the solution as invalid: each
invalid solution is not reported in the plot file to avoid erratic and non
significant values from being plotted in the resulting graph.

Although the user has to carefully interpret the results and exclude value
ranges that make no physical sense, it must be understood that the math­
ematical considérations are not harmful at ail to the good working of our
framework. Indeed several implemented mechanisms invisible to the user take
care of avoiding run-time mathematical errors and discarding invalid solutions
by removing them from the resulting data set.

^Due that mathematical problem, we needed to add the plot for the single node which is jast a vertical
liiie.

78 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

type

Figure 3.8: Orientation of Codrescu’s relations expressing the area as a function of
the processor type, workload parallel fraction and computation perfor­
mances

Relsixing the area constraint

Previous experiments based on Codrescu’s model elected the architecture can­
didates based on a strict constraint: the total area was supposed to remain
constant in order to offer a fair comparison between the different candidates.
Therefore the number of cores of each architecture had been selected so that
multiplied by the area of the particular processor type that it instantiated,
it always equalled the size of a single 16-way processor. In this case study,
we remove that area constraint so that we don’t impose the number of cores
for each architecture: instead we would like to déterminé the minimum area
(i.e. the minimum number of cores) required to meet a given performance
constraint. This problem can again be easily solved with very few effort using
the reversibility feature of Yeti.

Setting up the experiment Seen from point of view of Yeti, this problem
leads to the new behaviour orientation depicted in Fig.3.8. Compared to the
previous case, the parallel fraction Par and the computation performances
Perf are now both inputs while the only output that remains is the total
area.

Again very few changes are needed in the XML input simulation files to move
from the previous model orientation to our current example: Fig.3.8 tells us
that only the Amdhal’s law relation must be modified and expressed as a
function of the number of nodes instead of the speedup which results in Eq.3.7.

4!^ N odes =
bp * Par

1 - 5p * (1 - Par)
(3.7)

3.2. CASE STUDY 1: THE CODRESCU MODEL 79

This équation is interesting because we can see the presence of a ceil function
never nientioned in the list of the available basic operations (see Sec.A. 1.2).
Indeed the inversion of the Amdhal’s law allows us to calculate the number
of nodes instantiated from a particular processor type required to reach a
précisé perfonnance level defined by the user: due to the analytical nature
of the relations, nothing prevents tlie number of nodes from having floating
point values to meet that exact level of performances. However it is obvious
that a non-integer number of nodes makes no sense so that we decided to
apply a ceil function on the resiilt of the Amdhal’s law inversion formula.
Unfortunately Yeti didn’t offer such a function among its operation set since
we didn’t anticipate its need so that we had to add it for the purpose of our
experiment. By following the procedure described in Sec.2.6.2, it took only
twenty minutes to get our new operation® working from code modification to
successful testing.

Interprétation of the results Based on this setup, we decided to carry
out several experiments to observe how the total area dépends on the required
performance level, the parallel fraction and the processor type. Since we hâve
three different parameters, we represent in a single graph the total area versus
the parallel fraction for a fixed performance value; each processor type is then
represented by a single curve on this plot. Setting up_this_simulation^Ls-made-^—=-
much more easy thanks to the use of XML scripting enabling the définition in
a dedicated file of ail the separate actions to be performed to get the results
plots.

Fig.3.9 represents the total area versus the workload parallelism fraction for
a performance level of 0.8 Gops. As we can see ail the curves representing
the different processor types are horizontal rneaning that the area required is
independent from the parallel fraction and that the obvious choice is to take
the smallest 1-way processor. Actually the required area corresponds in this
case to the use of a single processor whatever the tjpe which means that a
single processor is sufRciently powerful to provide the required performance on
its own for a fully sequential workload (with a parallel fraction equal to 0).
When the parallel fraction increases, the single processor continues to perform
both sequential and parallel parts of the workload in a sequential manner
since single processor architectures offer no thread-level parallelism to benefît
from a potential parallel speedup: the performances thus remains the same.
Interestingly we could estimate the maximum perfonnance level for which ail
the processor types only require one core to be instantiated on the platform
to meet this performance requirement. Indeed this limit will be reached when
the less powerful processor exactly issues as much instructions per second on

"Aside from the ceil function, we added by the way the floor function as it may aJso be useful in the
frituie. Both operatioiLs are unary: the ceil function is represented by the] Symbol while the floor function

80 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Parallel fraction

Figure 3.9: Total area VS parallel fraction for different processors architectures
meeting a 0.8 Gops performance constraint

its own as what is required by the performance constraint: in other words, this
cornes to the performances évaluation of a single 1-way processor (speedup
equal to 1) which gives according to Eq.3.1 a wlue of 0.868 Gops. In Fig.3.10,
we performed the same experiment for a computation performance value of 0.9
Gops where we see a clear modification of the curve for the 1-way processor
(only the 0-0,1 range was represented to make it more clear): this change of
the curve between 0.8 Gops and 0.9 Gops is consistent with our theoretical
prédéterminât ion of 0.868 Gops. The shape of the new curve, surprising at
first sight, will be further explained and justified hereunder.

Fig. 3.11 shows the required area to meet a 6 Gops performance constraint for
the different processor types. As we can see, most of the previous horizon­
tal Unes hâve turned into curves showing a vertical asymptote at a certain
workload parallel fraction value and quickly decreasing for higher values of
this parallel fraction. As explained before, this curve shape modification can
be observed as soon as the performance constraint value exceeds the num-
ber of instructions issued per second by a single X-way processor represented
by Perfs.x- Fxceeding this performance threshold value entails the use of
additional instances of this processor to compensate the lack of instruction
level parallelism with thread level parallelism. In other words, to achieve the
performance constraint set to Perfugq instructions issued per second, we will
hâve one part of the code executing sequentially and the other in parallel in

3.2. CASE STUDY 1: THE CODRESCU MODEL 81

400

^300 ■

E
£
nj ® ,
cô
5
,o

200

1- way
2- way
4-way
6-way
8-way
12-way
16-way

100 -

0.02 0.04 0.06
Parallel fraction

0.08 0.1

Figure 3.10: Total area VS parallel fraction for different processors architectures
meeting a 0.9 Gops performance constraint

proportions described by Eq.3.8 (which is nothing more than Amdhal’s law
rewritteri).

PerfRe, = Perfseg + Per fPar = (3.8)

In tins équation, Perfueg can also be seen as the number of instructions that
need to be issued in one second and the two terms of the équation as the number
of instructions respectively issued sequentially and in parallel. However this
équation only holds if the sequential workload can be executed in less than
one second in order to leave some time for the parallel workload to execute: a
statement that is équivalent to say that the number of issued instructions from
the parallel workload must be positive. This condition can thus be written as
Eq.3.9 which leads to a limit parallel fraction Parumit expressed by 15q.3.1().

Per f Par = PerfReq - Perfseg > 0 (3.9)

Parumü > 1 - (3.10)
PerfReg

Below this parallel fraction value Parpimit, the time required by the sequential
workload to execute exceeds the total execution time required to meet the per­
formances constraints PerfReg: this means that this type of processor simply
cannot keep up with such a high performance level value for so small workload

82 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Figure 3.11: Total area VS parallel fraction for different processors architectures
meeting a 6 Gops performance constraint

parallel fractions. Based on this minimum parallel fraction value, we are thus
able to explain the different zones of the area curves as presented in Fig.3.12:

• Zone I is delimited by the range of parallel fraction values that are smaller
than Parumit', the required performances Perfu^q cannot be met.

• At a parallel fraction value of Parumit-, we can see a vertical asymptote
meaning that the area required to meet the desired performances tends to
an infinité value. Indeed for a such a parallel fraction value, the sequential
workload has completed its execution in the exact time that was allocated
to the total execution meaning that the remaining parallel workload has
no time left to execute its instructions. Mathematically, the only solution
to execute a finite amount of instructions in zéro time is to allocate an
infinité amount of resources to parallelize their execution leading to an
infinité area.

• Zone II is delimited by the range of parallel fraction values that are bigger
than Pariimit', the parallel workload now has a strictly positive time left
to execute its instructions. It is interesting to see that the area (hence
the number of cores) required to meet the desired performances quickly
decreases when we go towards higher values of the parallel fraction; this
makes parallel fraction close to Parumit very unfavourable.

The limit parallel fraction Parumit détermination method can be confirmed by

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 83

Figure 3.12: Représentation of the different zones composing a curve of the area VS
parallelism fraction

Processor type 1-way 2-way 4-way 6-way 8-way 12-way 16-way
Parallelism 0,8.55 0,744 0,584 0,464 0,397 0,264 0,221

Table 3.3: Value of the smallest workload parallel fraction required to meet computation
performances requirements for different t}rpes of processors

comparing the asymptote abscissa values of the 6 Gops area graph in Fig.3.11
with Table 3.3 calculated thanks to Eq.3.10 for each processor type. This
whole interprétation proves us that Yeti has efficiently and correctly enabled
the inversion of niodel to solve this new problem. Furthermore it has only
required one mathematical relation to be manually reverted and the framework
did ail the remaining operations including automatic plotting of the results.

Once the level of desired level of computation performances has been defined by
the user, the graphs can be generated in one single run and be used to déterminé
the architet:ture that minimizes the total area for a given parallel fraction.
Fig.3.11 represents such an example for a 6 Gops computation performance
constraint; as we can see there are many intersections between the different
curves highlighting the high dependence of the parallel fraction on the total
area and the interest of using such a graph to déterminé the best solution.

3.3 Case Study 2: stage delay modeling and appli­
cations

3.3.1 Introduction

The previous section demonstrated how it is possible to reproduce and extend
results from the literature by using the reversibility feature of Yeti. In this

84 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

case study, we will instead focus on the model/input parameter sensitivity
capabiliti&s of our Framework and therefore biiild a model from scratch, study
it and show how we can optimize output parameters values thanks to Yeti. As
an illustration, we hâve chosen to model the delay of a critical path of a chip,
measure the impact of wire/gat sizing on dock frequency and optimize data
bandwidth. We will also compare our results with the literature and use the
model we built to explain the origin of surprising dLscrepancies found among
well-known papers.

For this case study, we hâve chosen to model the delay of a critical path of a
chip of area A as represented in Fig.3.14. This delay allows us to détermine
the maximum dock frequency and the bandwidth which are very valuable
information from a designer perspective. The critical path will actually be
represented by N stages of same length where each stage is composed out of a
gâte driving a wire to transmit the signal to the other side of thLs interconnect.
This stage delay model actually involves many technological related parameters
which is a good example to illustrate how Yeti can be used to quickly bridge the
gap between system-level and technological abstraction levels (see Sec. 1.2.2).

Since the critical path is composed out of several stages, we will first hâve to
study their modeling in details. As depicted in Fig.3.13, we can represent and
model a stage at three abstraction levels:

• On top of the hierarchy, we hâve a model defining the delay based on the
electrical éléments of the circuit representing the stage.

• Beneath the delay model, we can define a stage as a gâte connected to
wire transmitting the information to several gates at the other end. These
drivers and wires can in turn be represented by electrical scheme of résis­
tances and capacitors.

• Each electrical element of the stage can finally be modeled by technolog­
ical and gate/wiring sizing parameters.

Before discussing the delay model and its impact on performances, we will first
address the question of the two bottom layers which are required to feed our
model with realistic values.

3.3.2 Représentation of a stage

Electrical représentation

Modeling a stage is not such an easy task due to the complexity of the lay-
out (particularly in full-custom designs): signal paths hâve different length
distributions[6] and each gâte may drive from 1 to several gates (the fan-
out)[7]. However we can use a simple yet realistic model to represent a stage

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 85

*^stage ~ "•

Permittivity Gâte width

Wiresize

Figure 3.13: Hierarchical représentation of a stage model in three layers: delay, elec-
trical scheme and tedmology

Clock
frequency ? Bandwidth ?

Détermine stage delay !

Figure 3.14: Représentation of a square chip of area A and its N stages

86 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

F04 load

Figure 3.15: Logic représentation of a stage composée! ont of a gâte clriving a 1 F04
load tlirough a wire

ns depicted in Fig.3.1.5: a gâte is driving a wire connected at the end to a 1
F04^ Ioad[IÜ].

To mode! the delay, we first hâve to turn tins représentation into an electrical
mode! as shown in Fig.3.16 where we can see the following elec-trical éléments:

• Vtr Ls the voltage source representing the driver switching by a voltage
step

• Rgai.e is the output resistaiice of the driving gâte

• Cgate is the output capacitance of the driving gâte; physically tins element
represents the diffusion capacitance created by to the overlap of tlie MOS
channel with the drain/source

• relire is the distributed résistance of the wire of length L-,^ire

• Cyjire is the distributed capacitance of the wire of length L-^ira

• Cioad is the total load capacitance of the wire (1 F04 in our case).

Technological représentation

Now that we hâve defined the electrical représentation of the stage, we still
need to link these different éléments to technological related parameters.

Gâte geometry and modeling Let us first hâve a look at the structure of
a transistor depicted in Fig.3.17. Frorn this représentation we can identify the
diffusion capacitance C^fj resulting froin the overlap between the drain/source

^Thc 4 (F04) refers to a load of 4 miriimum sized iuverters that, a gâte has to drive. Tins mût is
commouly nsed to represeut gâte delays because it bas beeu shown that any CMOS gâte delay is roughly
the same value when expressed in F04 number rcgardless of the technology node: since this metric is
iudeptuident from the technology, it Ls very conveniont to represeut delays[S]. Fuithermore some heuxistics
hâve shown that 1 F04 is a good average load value for drivers in a critical path[9].

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 87

r l_wire* wirewwv—
' r I'gâte wire* wire ^load

Figure 3.16: ElectricaJ représentation of a stage

Figure 3.17: Geometrical représentation of a transistor

and the transistor gâte® capacitance Ctrans,gate- Aside from the capacitances,
we can also observe the different geometrical characteristics represented on this
figure:

• Wgate is the width of the transistor gâte

• Lgate is the effective length of the transistor gâte

• Lov rei)resents the length of the overlap zone between the drain/source and
the transistor gâte: this overlap is a resuit of the lithography imperfection

^ Gâte Ls a veiy ambiguoiLs term however widely u.sed iu microelectrouics; it can either refer to a logic
gâte or to the condwtiug layer allowiug to control the transistor chaimel. To avoid any uiisuuderstauding,
we will simi>ly use the term gâte in the first acceptance of the term and caU it a transwtor gâte when we
lofCT to the .second meaning of it: we wiU stick to that convention in the entire text.

88 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

• Tgate,ox is the thickness of the transistor gâte oxide.

Based on these different geometrical parameters, we are able to define the
values of the three éléments of the electrical gâte Rgate^ O gâte and Cioad-

Cgate is represented by Eq.3.11 where eo is the vacuum permittivity and er^gate
the transistor gâte relative permittivity.

^ ^gate * 2 * Lg^ in
Cgate — ÊQ * ^r,gate * (a.llj

-t gâte,ox

Cioad is four times the transistor gâte input capacitance as represented by
Eq.3.12.

A /~i A ^gate * {Lgate ~ 2 * Lga) . .
Cioad — 4 * Ctrans,gate — 4 * €q * ^r,gate * rp (4.12)

J-gatefiX

Rgatei expressed by Eq.3.13, defines the average value of the gâte output résis­
tance when it is in ON state[ll]. This équation uses additional parameters like
Vijd the supply voltage, Id,sat the drain current of the transistor in the satura­
tion zone and A (the inverse of Early voltage). Id,sat can be calculated using
Eq.3.14 where is the électron mobility, Cqx the Silicon oxide capacitance
and Vt the threshold voltage of the transistor.

D ^*Vdd 5Rgate = ---- i------ * (1 - - * A * Vdd)
4 * Id,sat 6

^d,sat —
gâte

-'gâte
* Pn * Cqx *

{VdA - vtŸ

(3.13)

(3.14)

Wire geometry and modeling To represent the wire and its surrotmding
wires, we can use the model introduced by Bohr [12] and depicted in Fig.3.18.
The modeled wire is surrounded by four other wires; two parallel wires on the
same layer that will create a capacitance called the side-to-side capacitance
Cside and two orthogonal wires at the upper and lower layer that will create
the vertical capacitance Caert- Only plate-to-plate capacitances are taken into
account in this model, fringing capacitances® are neglected^®. This représen­
tation can be seen as a worst case wire organization since it assumes that
the neighbour wires hâve the same length as the modeled wire creating the
maximum parallel surface hence the highest capacitance value. This hypoth-
esis however holds for dense interconnect schemes and is widely used in the
literat ure [14] [15] [16] [9].

^FVinging capacitances resuit from electrical fields propagating between conductor plates that are pax-
aUel.

^°For more accurate wire capacitance estimation, we can use programs extracting these values from 3D
wire descriptions such as FastCap[l;l|. They hâve the drawbadk of dehvering models that are very spécifie
to the geometry of the wire and that are less easy to manipulate than Bohr’s model expression that gives
a reasonable approximation of the wire capacitance: this is why we preferred the last one.

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 89

Figure 3.18: Geonietrical représentation of a wire and its neighbours

Different geometrical characteristics can be observed on Fig.;5.18 (we suppose
that ail represented wires are in the same tier and thus share the same geo­
metrical dimensions):

• Ljuire is the length of the modeled wire

• Hwire is the height of the wire

• Wwire is the width of the wire

• Swire is the spacing between two neighbour wires, the sum of the spacing
and the width is often referred to as the pitch

• ^îüire is the height separating two successive layers

Based on these parameters, we are now able to détermine the total wire ca­
pacitance and résistance.

Cwire, represented in Eq.3.1.'), is the contribution of the four surrounding ca­
pacitances.

^vjire — 2 * {Csidg -f- C v̂ert) (3.15)

The side-to-side capacitance can be calculated by Eq.3.1(i where e-wire is the
wire relative permittivity optimized to be as small as possible in order to
minimize the impact of capacitive effects.

^ , , ^^wire * Lwire co i /?^
^side — ^wire * ^ (o.lOj

^wire

The vertical capacitance Cyert is expressed by Eq.3.17

_ . ^wire * Tyjifg co
Levert — ^wire * 0

wire

90 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

^ stage

Figxire 3.19: Yeti behaviour corresponding to the modeling of a stage delay: green
parameters are physical constant, blue are Silicon process related and
red are geometrical parameters fixed by the designer

The total wire résistance Rwire is given by Eq.3.18 where Pwire is the wire
copper resistivity.

Rwi: * — Pwire * (3.18)

3.3.3 Modeling the stage delay into Yeti

Now that we hâve successively defined the stage model at the logic, electrical
and technological level, we end up with input parameters whose value can be
easily extracted from the literature to feed our model. These different input
parameters are defined in the Yeti behaviour presented in Fig.3.19 with the
respective orientation of the different relations involved. Inputs are classified
into three different types: green inputs are constant physical values, blue inputs
define technological related parameters that are fixed by the chosen process
and finally red inputs are parameters whose value (mostly related to wire and
gâte geometry) can be adjusted by the designer once the technology has been
determined. On top of ail the previous relations, we hâve defined the delay
relation using ail the electrical éléments: we will now study this delay model
in details.

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 91

Model sensitivity study

Motivation One could probably wonder at first sight why it is so important
to evaluate the impact of different proposed models on the output parameters
values. If we take a look in the literature at models used to estimate the value
of stage delay, we will find a lot of results but it is often difficult to compare
them due to different input parameters values and assumptions. Their im­
pact of the chosen model on the presented results is therefore rarely estimated
making papers that predict the same output very difficult to compare. As an
example, huge discrepancies in wire delay estimation can be observed: while
Sylvester[lü] daim that a 1 mm long local wire in lOOnm would hâve a 340
ps delay, Meindl[14] gave a prédiction of 30 ps for the very same type of wire.
Comparing the underlying models is thus very interesting and important to
understand where such différences could corne from.

To illustrate model sensitivity capabilities of Yeti, we propose an original study
that consists in taking five models taken from significant contributions of the
literature about stage delay modeling and comparing these five models for sim-
ilar inputs. These different models were established for the 180nm tehcnology
node, a few générations from today top-notch technologies. The selected pa­
pers were written from 2000 to 2002, a period where the problem of growing
interconnect delays compared to fast decreasing gâte delays was taken very seri-
ously. A lot of very interesting papers from recognized authors and researchers
were published at that time, making their estimations and underlying models
worth comparing.

The five stage models The five different electrical models for the estima­
tion of stage delays are the following: Rabæy[17] (see Eq.3.19), Horowitz[9]
(see Eq.3.20), FED model[18] (see Eq.3.21), Meindl[14] (see Eq.3.22) and
Sakurai[19] (see Eq.3.23). Ail these models yield for the 180 nm technology
node and corne with no referenced assumption nor limitation for the input
paranieter value range: they only rely on different approximations to estimate
the very same delay value.

_ D . I ^wire * Rwire
^Rabaey — ^gate * ^wire "i 2 (o.iyj

^Hor — ^gate * {Cgate H" + Ctoa d) + -^ wire * i^load T
Cu (3.20)

Dp ED = 1.00724 * Rgate * Cyjire + 1.00426 * Rgate * Cload +

1.12524 * Cujire * Rwire T 1.04468 * R-wire * Cload (3.21)

92 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Parameter ^o[£] CoX[^] Mn[^l
Value 8.854e-12 39e-6 1

Table 3.4: Physical constant input parameters values used in the stage delay model

Parameter Vm[V] Vt[V] Lov\f^\ Pwire • cm] ^r,gate Cr,iüire
Value le-4 1 2.0 0.6 5e-9 2.2 2.3 •5.0

Table 3.5: Technological related input parameters values used in the stage delay model

^Meindl — Rwire * ^wire A 0.69 * Rgate * ^wire A
0.69 * Ciodd * {Rwire A Rgate^

R^Sakurai — 0.377 * Rwire * ^wire 0.693 * {^Ftgaie * ^load

Rgate * ^wire Rwire * R'ioad)

Before being able to estimate the model, we first need to give a value to each
input parameter of the behaviour represented in Fig.3.19. These values are rep-
resented in table 3.4 for the physical constants, in table 3.-5 for the technology
related parameters and finally in table 3.7 for the designer defined parameters.
For this study, we decided to use the most common technological parameters
values that could be found: we took ail the data from the ITRS roadmap
(missing information were filled in with plausible values).

Results and interprétation As a first experiment, we used Yeti to com­
pare the different models for a wire length ranging from 0.1 mm to 1 cm: the
resuit is depicted in Fig.3.19. At first sight, we can see that there are signif-
icant différences in the overall delay values except for Rabaey and Horowitz
models that are very close to each other and only differ by a wire length inde-
pendent term. To quantify the déviation between these different models, we
hâve calculated two different metrics represented in Fig.3.21.

The green curve of Fig.3.21 represents the maximum relative error (the différ­
ence between the maximum and the minimum predicted delay value divided
by the maximum value) between the different models for the different wire

(3.22)

(3.23)

Parameter [nm] Sxüire Rwire ^wire 'Rwire ^^gate Rgate 'Rgate,ox

Value 180 180 1 180 360 180 1 180 10

Table 3.6: Design related input parameters values used in the stage delay model

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 93

Wire length (cm)

Figure 3.20: Comparison of five models estimating stage delay for a O.linin to 1cm
wire length range

lengths. This fîrst metrics represents for a particular wire length the worst
error that we could do by selecting the two most diverging models.

The second metrics (red curve on Fig.3.21) defines the relative delay value
dispersion for different wire lengths. Usually a model is compared to a reference
(for instance an experiment performed to measure the values of the modeled
process) enabling the comparison: in our case we compare models together
so that there is no reference to compare with. Therefore this second metrics
will estimate the dispersion of the different models by calculating for each
particular wire length the mean value of the absolute différence between each
pair of predicted delay values and by dividing it by the mean value of the
predicted delay values. Since ail the pairs of values are tested, it prevents this
dispersion value from reaching very high values when one single point highly
differs from ail the others.

Looking at the resulting graph, we can see a certain corrélation between the
dispersion and the maximum relative error that both hâve very high values
for small lengths, decrease quickly and then increase slowly. For very small
wire lengt.hs, the ternis with a quadratic length dependence become negligible
making linearly dépendent and indépendant terms become dominating. This
can be observed on Fig.3.22 (which is the same as Fig.3.20 with a zoom on
smaller wire length values) where we can see that both Meindl/Sakurai and
Abou/Horowitz model curves superimpose on the graph because they hâve the

94 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Wire length (cm)

Figure 3.21: Dispersion and maximum error for the five models estimating stage
delay

same coefficient for the terni linearly dépendent of the wire length. Rabaey
model however gives very different delay estimations since it ignores the effect
of the load capacitance which becomes important at such small lengths: this
explains why the error is huge for small wire length values. Around 0.1 mm,
Rabaey intersects the other models making the relative différence much smaller
between the different models and also leading to smaller dispersions values.
The dispersion value then increases until 0.475 cm where we see an inflection
point resulting from another model curve intersection on graph 3.20.

For higher values of the wire lengths, we see that ail model curves show a
quadratic behaviour because the Cwire * Rwire begins to dominate due to its
quadratic dependence with the length: since ail models use different coefficients
for this term, the delay curves diverge more and more and both dispersion and
maximum relative error values continue to grow.

If we summarize our observations, we can see that the five compared models
show significant différences: the mean value of the maximum relative error
equals 44,6% while the mean dispersion equals 25,9%. This différence between
the compared models partly explains the tenfold différence for the predicted
wire delay presented as illustration example of this section. It must however
be made clear that none of these models can be considered as more accurate
than the others since there are no experimental measures that the resulting
prédiction could be compared to. In the next part of this chapter, we will

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 95

Figure 3.22: Comparison of five models estimating stage delay for a O.Olmin to liiim
wire length range

use Horowitz model delay prédiction not because this model is more or less
accurate but simply because it takes niany interactions between the different
electrical components of the stage model into account.

Now that we hâve examined how the model influences the stage delay output
value, let us evaluate quantitatively the impact of input parameter variations
on this delay.

Input sensitivity analysis

To measure the sensitivity of a model output to input variations, we can use
the constraints évaluation feature of Yeti (see Sec.2.5.1); we define upper and
lower bounds for the input mlues and observe the resulting values for the
outputs.

We performed an experiment to measure the ±25% input sensitivity of the
major geometrical parameters of the stage model: each of these inputs hâve
been set one aft,er the other to a lower and upper bound of respectively 75%
and 125% of the nominal value. The results of this experiment are summarized
in Tabled.X. The nominal values of these input parameters are presented in
Tabled.7 while other input parameters keep their previous values of Table 3.5.

96 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

1 Input parameter [mn] S-ioire f^wire w Twzre ^^gate ^gate ^'xuire
1 Nominal value 360 360 360 720 900 360 le±6

Table 3.7: Design related input paxameters values used for the ±25% Lnput sensitivity
study

Parameter Bound Model
Rabaey Horowitz Abou-Seido Meindl Sakurai

Twzre
Lower 11,1% 10,2% 10,1% 10,2% 10,2%
Upper -6,7% -6,1% ^^6(2% -6,1% -6,1%

Syjire
Lower 22,2% 20,3% 20,3% 20,3% 20,3%
Upper -13,3% -12,2% -12,2% -12,2% -12,2%

^wire
Lower -16,4% -15,0% -14,8% -14,7% -15,0%
Upper 16,4% 15,0% 14,8% 14,7% 15,0%

Wy y wzre
Lower -8,1% -7,4% -7,1% -7,0% -7,3%
Upper 8,2% 7,4% 7,3% 7,2% 7,4%

^^gate
Lower 33,1% 30,2% 29,9% 29,8% 30,2%
Upper -19,8% -18,1% -17,9% -17,9% -18,1%

Lgate
Lower -24,8% -26,4% -26,2% -26,1% -26,4%
Upper 24,8% 27,-5% 27,2% 27,1% 27,5%

Table 3.8: Results of the input sensitivity study of gâte geometry related parameters per-
formed for the stage delay model

Analyzing the results from this input sensitivity leads to some interesting con­
clusions. First we can see that the impact of an input variation on the stage
delay can be very different from one parameter to another. While some param-
eters lead to 6% delay variation, other make this value exceed 30%: averaged
over ail the input parameters, a 25% value variation leads to a 16,4% stage de­
lay variation. In this case, the output variation is thus smaller than the input
parameter value variation that created it but remains close to it: this means
that input variations hâve a significant impact on output values. Combining a
simultaneous 25% variation of ail these inputs parameters dramatically changes
the resulting stage delay value: between the maximum and the minimum, the
delay is multiplied by a factor 7.06.

Secondly it can be observed that the output value variations may be symmet-
rical with a positive or négative 25% input value variation (case of Hwire) or
not (case of Swire)- This can be confirmed if we draw for these two parameters
the stage delay versus an input parameter sweep within the -25%/±25% range
around the nominal value. The first graph (Fig.3.23) shows the delay versus
the wire height: as we can see the dependence is linear for ail the models
and the angular coefficient of the line doesn’t change much from one model
to another. The second graph (Fig.3.24) representing the wire spacing shows
instead an obvions non-linearity: this results from the wire capacitance which
is the sum of the side-to-side and the vertical capacitance. When the wire

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 97

Wire height (nm)

Figure 3.23: Stage delay VS wire height for a -25%/+25% range around its nominal
value

spacing increases, the side-to-side decreases as an hyperbolic function while
the vertical capacitance reniains constant: this leads to a ^ functionJwire
fomi that can be observed on the graph.

As a conclusion, we can see that the stage delay is highly sensitive to both the
model and value variations of the numerous input parameters. If we combine
the -25%/+25% with the model sensitivity, we even reach a multiplying factor
of 10.31 for the différence which is very close to the tenfold différence that we
mentioned in our first introducing example showing the wire delay prédiction
discrepancy. The same order of magnitude for the predicted and initial différ­
ence demonstrates that the combination of both model and input uncertainty
is enough to explain this very surprising discrepancy at first sight. We thus
recommend to be careful with papers delivering results relying on non-explicit
modeLs without their assumptions, with no restriction on the input parameters
values range and some missing input parameters values. These considérations
and more are discussed in one of our paper dedicated to model classification
and compai ison[20].

98 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Figure 3.24: Stage delay VS wire spacing for a -25%/+25% range around its nominal
value

3.3.4 Experiments with the stage delay model

Introduction

After discussing stage delay models and selecting one, we will now apply this
model to the study of a chip frequency and bandwidth and perform experiments
to draw original conclusions about:

• The optimum number of driving gates in a critical path

• An improved and more realistic définition of the wire bandwidth and its
optimization

• The objective impact of Miller effect on delay uncertainty

In order to perform these different experiments, we first need to add some
models to move from a single stage représentation to a whole chip représenta­
tion as it was presented in Fig.3.14. The different relations that were added
to our previous Yeti model (Fig.3.19) are represented in Fig.3.2,') with their
respective orientations. To represent a global communication link we use the
comer-to-corner length Lpath of the chip of area Area (Eq.3.24) and divided
it into N stages of equal length Lstage (Eq.3.2.')). Each stage delay Ls evalu-
ated using our previously discussed stage représentation (Eq.3.20) so that the
resulting path delay is simply obtained by multiplying the stage delay by the

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 99

Other
parameters

Figure 3.25: Relations representing a chip maximum frequency based on a stage
delay model

number of stages (Eq.;l.2()). The path frequency Fpat/i is obtained by inverting
the path delay^^ as expressed by Eq.3.27.

In the previous section we compared five different stage inodels using close
to minimum sized values for the wire geometrical parameters; this choice was
appropriate for a relative model évaluation. However if we want to draw results
that can be quantitatively compared with the literature, we need to use a more
realistic wiie sizing scheme. Different strategies are commonly used for wire
sizing depending on the length of the wires: [16] defines four different sizings
depending on the routing hierarchy (local, semi-global, half-fat wiring and fat-
wiring) for the 50nm technology node. We used this wire planning and adapted
it to 180nm by selecting only the two extreme wire sizing policies:

• Local wires connect gates in very small régions (.50k gates blocks^^) leading

''The different stage delays that we discussed in Sec..3.3,3 are 0% —► 50% delays meaning that they
represent the period of time re<juired for the voltage on the load to reach hadf the step voltage of the
source. This is however not sufiScient for the output gâte to switch so that we still need to wait an extra
time to hâve the output voltage stabihzed at the right vdue. Inverting this delay wiU thus not directly lead
to the frequency but to a value proportionaJ to it. Since we try to optimize the frequency (or any metric
including it in aU ovn further experiments), this will not change our results: only the absolute frequency
value would require a correction before being exploitable.

'^This 50k gâte block size refers to FSB[21](Functional System Blocks) that are simple blocks encapsu-
lating basic functions whose complexity is not beheved to grow with technology. More complex Systems
should use more of thcse interconnected blocks rather than increasing their size so that the assmnption of
a .50k gâte complexity for local wires makes sense[22j.

(3.24)

(3.25)

(3.26)

(3.27)

100 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Parameter [nm] Swirt H'wît'q ^^wire Tyjire

Value 180 540 360 216

Table 3.9: Input parameters for the local wire sizing in 180 iim

Parameter [nm] Syjire Htxjire ^^wire "^wire

Value 1300 1500 700 800

Table 3.10: Input parameters for the global wire sizing in 180 nm

to maximum wire lengths around the millimeter. These wires are allowed
to scale with technology because the wire delay increases linearly with
technology while the length decreases linearly at the same time so that
the wire delay remains constant from one technology to another[23]. For
the ISOnm node, we used the geometrical parameters described in Table
3.9 that were derived from [16].

• Fat wires connect régions across the whole chip and are used for global
communication. Since these wires connect régions at the scale of the chip
size, their length roughly remains the same over time since the chip area
is pretty constant from one technology to another. Global wires length
thus don’t scale with technology contrarily to local wires: that’s why they
are referred to as fat wires. These wires are usually between a few and a
few tenths millimeters long. The geometrical parameters values we used
for our following experiments are given in Table 3.10.

In the remaining of this chapter we will use these two types of interconnect
sizing as an input to our model to respectively dérivé results about local and
global wires.

Let us now examine the first case study: the frequency of a path versus the
niimber of stages.

Number of steiges for optimal frequency

Context Given a certain chip size or wire length, it may be interesting to
evaluate how the number of stages impacts the frequency of a path: in the case
of global wires, this problem is often referred to as OBIS[24] (Optimal Buffer
Insertion and Sizing) and can be defined as follows. For a long global wire,
we know that the delay is proportional to the square of its length^^: splitting
a wire into two equal parts seems thus very profitable as it divides the delay
by four. By doing so we however created another stage hence we need to add
a new driving gâte that also adds a delay in counterpart: if this gâte delay is

'^This square relation between wire length and delay results from the Cwire * Rwire term of stage delay
équation .3.20.

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 101

snialler than the wire delay gain obtained by wire splitting, this new solution Ls
better than the previous, otherwise not. While the gâte delay is constant, the
marginal delay gain resulting from an additional wire splitting decreases with
the nuniber of stages (due to the square length dependency of wire delay): this
entails that the overall delay gain will become négative at some point leading
to an optimum number of stages (or repeaters) to minimize the total path
delay.

Driver width dependency As a first experiment, we would like to com­
pare our model with the literature to see if our prédictions fit existing data.
Therefore we hâve calculated the maximum frequency versus the number of
stages for a global wire of a 750mm^ square chip (as suggested by [10]) which
gives according to Eq.;l.24 a length of 54,8mm. We chose IX sized inverters
and usexl the global wire planning scheme as it was described above for ail the
geometrical wire parameters. The resulting graph is plotted in Fig.;5.2(i where
we can immediately see several interesting things.

First of ail, the curve exhibits, as one would hâve expected, a maximum value
for a path composed out of 11 stages: this value can be compared with [16]
predicting a 14 value instead. Thèse values are quite similar and the différence
could easily be explained by ail the implicit assumptions (wire planning pol-
icy, technological parameters besides the feature size) that are made and the
missing rnodels (particularly the stage delay model). Such a différence is thus
very acceptable and shows that our model is suitable and sufîiciently realistic
to perform further experiments for optimum repeater insertion.

Secondly we can also notice that, although there is an optimum, the curve is
very flat so that the optimum frequency is only 1.2% better than a single gâte
driven wire. This small gain is however perfectly understandable due to the
IX sized driver (used for the sake of comparison with [16]): let us now see
what happens when these repeaters are sized up.

Fig.d.27 represents the path frequency for different size of repeaters from 1
to 50. Since frequency obviously increases with repeater size, it would hâve
been be difîicult to compare and represent the different curves on the same
scale. Rather than displaying the absolute frequency values, we hâve, for each
single curve, divide ail the points by the value of the first point corresponding
to a single repeater driving the path. This normalization process entails that
each curve will start at the same value of 1 making their comparison easier
and immédiate for higher values of the number of stages. As we can see on
Fig.;5.27, the larger the repeaters are, the higher percentage of frequency we
can gain from optimal repeater insertion. This gain grows much faster than
the repeater sizing up: this can be explained by looking at the form of the
delay expression. Indeed the delay for a wire segment can be separated into a
sum of capacitances multiplied by Rgate and another one multiplied by Rwire-

102 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Number of stages

Figure 3.26: Maximum frequency of a 54.8 mm global wire for different values of
the uumber of stages

while Rwire otily dépends on the wire sizing, Rgate dépends on the saturated
drain current (hence the gâte width). For small sized repeaters, Rgate is much
bigger than Rwire so that delay is roughly proportional to the length: there
is not much to gain from optimal repeater insertion. On the contrarj", when
repeaters are sized up, Rgate decreases so that it becomes doser to Rwire value:
the delay becomes quadratically proportional to the wire length which increases
the benefit that we get from splitting long wires into smaller segments. This
trend explains why the relative frequency gain increases with repeater size and
the slope becomes steeper around this maximum. Choosing a .50X gâte sizing
makes the relative frequency gain even reach 33% making it worse to spend
some effort on optimizing the number of stages.

Wire length dependency Now that we hâve observed the influence of the
gâte width, it could be interesting to measure the impact of wire length on
optimal repeater insertion curves. Therefore we hâve represented in Fig.3.28
the normalized frequency versus the number of stages for different lengths of
a global wire ranging from 1mm to 10cm. This experiment was performed
for IX sized repeaters driving the wires. As we can see from this figure, the
optimum number of stages decreases as the total length of the path decreases
while the slope of the curve becomes steeper and steeper past that point. This
phenomenon is in fact quite simple to understand: when the wires become

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 103

Figure 3.27: Coniparison of the normalized frequency of 54.8mm long global wires
for different repeater sizes

Figure 3.28: Cornparison of the normalized frequency for global wires with different
length (IX size repeaters)

104 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Number of stages

Figure 3.29: Comparison of the normalized ffequency for local wires with different
length (IX size repeaters)

shorter, their delay quickly decreases so that gâte delay increases relatively.
This makes the gain from wire splitting smaller and smaller compared to the
gâte delay remaining the same: the optimum number of stages thus decreases.
This goes on to the point where the insertion of a single additional repeater
even dégradés the total delay hence decreases the frequency making repeater
insertion harmful: this can be observed for global wire length of 5mm and
below on Fig.3.23.

This phenomenon of decreasing normalized frequency with shrinking wire lengths
also gives us a very interesting due about the proper length of these fat wires:
for lengths beyond 2.5cm, the curves show that repeater insertion is not ap-
propriate. Obviously, the sizing policy of fat wires makes them not suited at
ail for such small lengths. Indeed if we perform the same experiment for lo­
cal wires we can observe (Fig.3.29) the same phenomenon but for smaller wire
lengths: this différence cornes from the local wire sizing much more appropriate
for smaller lengths.

Bruidwidth study

Bandwidth optimization is often an important concern since data intensive
applications (like video encoding) imply a heavy data exchange between differ­
ent Processing units at the scale of global communication [25]. Increasing the

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 105

frequency of a communication link is the usual way to improve the amount of
data that flow on it. However performing this optimization blindly without
any considération for other parameters could lead to absurd solutions. As an
example, increasing the distance between neighbour wires decreases the side-
to-side wire ('apacitance hence increases the wire frequency but also the average
interconnect pitch lowering the number of links that can be aligned side-to-side
on a given Silicon area. The sole optimization of wire frequency would always
lead to increase the spacing between wires missing the opportunity to rather
increase bandwidth by using more but slower wires. That’s why we used a
much more fair metrics for bandwidth optimization able to describe the com­
promise between wire frequency Fyjire and its pitch Pitchwire as described by
Eq.5.28.

BW == ... =. (3.28)
Pztcn^j'Q Y

Impact of wire spacing on bandwidth Let us now see how the bandwidth
optimization based on this new metrics impacts the wire dimensioning as it
is defined by the global wire planning. Therefore we first decided to measure
the influence of the spacing on our bandwidth metrics for a 5cm long global
wire composed out of 10 stages driven by IX gates. The resulting graph is
represented in Fig.3.30 for a wire spacing ranging from 0.18/rm to 6/rm in
the case of the nominal wire width (700nm). The represented curve has a
maximum for a wire spacing value of IlOOnm around which the bandwidth
metrics value quickly drops.

For small wire spacing values, the side-to-side capacitance increases quickly
and contributes more and more to the total wire capacitance value: this makes
the frequency of the communication link decrease much faster than the pitch
does hence decreases the bandwidth.
For large spacing values, the side-to-side capacitance only decreases very slowly
contributing less and less to decrease the total wire capacitance while the pitch
grows linearly with the spacing: the frequency grows much slower than the
pitch does and the bandwidth decreases.

Interestingly the nominal wire spacing of 1300nm is quite close to the wire
spacing value of maximum bandwidth of IlOOnm with a small différence of
0.8% in terms of bandwidth: this means that the wire planning for fat wires has
been dimensioned so that a good compromise is found bewteen wire frequency
and pitch.

Impact of wire width on bandwidth As a second experiment, we wanted
to study the second parameter that has a direct influence on the pitch hence
the bandwidth metric: the wire width. We plotted the bandwidth versus the
wire width for the nominal wire spacing value of 1300nm in the case of a
global wire. As we can see from Fig.3.31 the curve has a maximum for a much

106 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Figure 3.30: Bandwidth évolution for different wire spacing values and for a nominal
wire width of 700nm

smaller value of the width than the nominal value of 700nm: by decreasing
its value to 180nm, we hâve a 100% gain for the bandwidth per pitch value.
Indeed when we start decreasing the wire width starting from 700nm while
keeping the wire spacing constant, the vertical wire capacitance value shrinks
inaking the total wire capacitance drop while the résistance increases due to
a smaller wire section: since the wire résistance is quite small compared to
the gâte résistance, the delay decreases (see Eq.3.20). This efFect coupled with
the width shrinking favours the bandwidth per pitch that quickly increases
for smaller widths until the wire résistance becomes too small and dégradés
the delay sufficiently to outweight the width réduction leading to the optimum
width value.

Such a small wire width optimal value could seem surprising but for larger
repeater sizes we can clearly see on Fig.3.32 that the optimal wire width value
actually grows with the repeater size: this directly results from the gâte résis­
tance decreasing. We can also notice that scaling up the gâte width makes the
dimensioning of optimal bandwidth more and more profitable because the rela­
tive contribution of the wire capacitance to the delay becomes more important
due to the smaller gâte résistance.

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 107

Figure 3.31: Bandwidth versus wire width for a nominal wire spacing of 1300nm

Figure 3.32: Normalized bandwidth versus wire width for different repeater sizes

108 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Figxire 3.33: Illustration of the coupling capacitance variability resulting from the
Miller effect between two neighbour wires

Impact of miller effect on delay

Context Timing closure bas become a very important task in nowadays
VLSI design particularly for high-end process with smaller and smaller feature
sizes[26]. It’s only after the place and route step that we are only able to
measure accurately wire delay and observe its impact on frequency: if previous
estimations were incorrect, it might well jeopardize the initially planned timing
and require re-design. One of the biggest source of possible timing violation
is the Miller effect introducing high variability on the delay: many authors
are worried about this problem as it may lead to serious critical path delay
penalties[27][14]. In this section, we will stndy Miller effect and compare its
effect on delay to other possible parameters to see how it contribntes to the
overall delay variation.

Miller effect modeling Miller effect results from the electrical field inter­
action occurring between neighbour switching wires and is more important at
the global communication scale. Fig.3.33 illnstrates this phenomenon for two
neighbour wires A and B: when A switches in one direction, its delay is lowered
(increased) when B simultaneously switches in the same (opposite) direction.

This effect resulting from the interaction of the electrical field of the both wires
is modeled by a side-to-side wire capacitance Cab- To represent this variation
of capacitance due to the neighbour wire switching, it is common to multiply
the side-to-side capacitance Cgide t>y a factor of correction FCMültr that is
lower (bigger) than 1 for a neighbour wire switching in the same (opposite)
direction as the victim wire. In our Yeti représentation we thus modify the
model for Cmre. in order to take Miller effect into account as shown in Eq.3.29
is.

F'wire = 2 * {Fermier * F/gide T f^uert) (3.29)

The value of the correction factor varies from one author to another: while [28]

3.3. CASE STUDY 2: STAGE DELAY MODELING AND APPLICATIONS 109

Technological
parameters Miller

Relative stage delay
Lower value Upper value

±5% 1 -6.8% 21.1%
±5% 0.5 ^ 1.5 -24.6% 55.2%
±10% 1 -13.4% 48.1%
±10% 0.5 ^ 1.5 -30% 76.4%

nominal 0.5 1.5 -19.1% 19.1%

Table 3.11: Comparison of the miller effect ajid a ±5%/±10% teclmological input variation
impact ou the delay variabUity

uses a [0,2] range, [29] identifies situations where this interval even extends to
[—1,3]. However in our work, we will use a more reasonable correction factor
range of [0.5,1.5] as proposed in [30].

Experiments To objectively quantify the impact of Miller effect on delay
variation, we decided to compare it relatively to other possible sources of vari­
ations: teclmological parameters. Since manufacturing processes cannot be
100% accurate (due to lithography, material properties change over the chip
from one production batch to another), dispersion is always present[31] so that

—it-must-be-taken-into-account-exactly“like”Miller^éfféctT“WéT;hose fhë~’follow-
ing technology related parameters: the relative gâte oxide permittivity, the
relative wire insulation permittivity, the gâte threshold voltage and the gâte
supply voltage. For each of these parameters we performed a ±5% and ±10%
input value sensitivity study that we compared and combined with Miller ef­
fect to measure the impact on delay: this can be estimated easily using bounds
instead of scalar values in Yeti. The results of this study are provided in Table
3.11 for a 5cm long global wire using the wire planning described earlier.

First of ail, we can see that the miller effect has symmetric effect on the delay
as expressed on last line of this table: this value of 19.1% is far from being
negligible and has a strong influence on delay variability. However, looking at
the teclmological parameters only we can see that we encounter higher delay
variations even for the ±5%. This shows clearly that if the Miller effect has a
strong effect on delay prédiction, so do other parameters whose variation with
process is unavoidable: most of the time, however, they are ignored in papers.
Combining the ±10% technological parameter variation with the Miller effect
we even reach more than 100% total variation around the nominal delay value
which is tremendous.

Secondly it is interesting to observe that the technological parameters, con-
trarily to the miller effect, hâve a non-symmetrical impact on delay variation:
the upper value is always bigger than twice the lower value. This makes pro­
cess variations even more annoying because only the upper value variation is

110 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Behaviour performances Basic operations performances
File génération ON 10.25 kB/s 184,56 kBOp/s
File génération OFF 88.0 kB/s 1.58 MBOp/s

Table 3.12; Performances of Yeti expressed in behaviours per second (B/s) and in basic
operations per second (BO/s)

a dimensioning criterion iised for the maximum frequency évaluation.
In summary we showed using this example that, using the bound estimation
feature of Nessie, it is possible to estimate the impact on the output of a model
for an input sensitivity analysis of several combined parameters.

3.4 Yeti performances

Now that we hâve examined the different features offered by Yeti during our
two previous case studies, we will provide the reader with some information
about the computation performances of Yeti.

To evaluate the performances of Yeti, we hâve compiled and run Yeti under
a Mac OS X Intel Core 2 Duo 2.0 GHz computer. We used our previous
example of Codrescu (see Sec.3.2.2) composed ont of 8 relations (3 table-based
and 5 analytical relations) and performed 10^ successive évaluations of the
behaviour. Since a behaviour évaluation time dépends on its complexity, a
much more fair measure would consist in expressing the performances in terms
of number of basic operations (addition, multiplication and so on) calculated
per second which is independent of the behaviour complexity and therefore
represents a better measure of the absolute computation performances of Yeti.
Our current model contains 18 basic operations once we summed them up
from the 8 relations (table-based relations were counted for one single basic
operation which won’t overestimate the performances). Each simulation was
performed several times to calculate an average value of the calculation time
over a sufficient number of simulations to get rid of too high variations on the
resulting value due to other threads executed simultaneously by the operating
System. The results of these measures are given in Table 3.12 with XML output
file génération successively disabled and enabled.

The first striking observation that can be made from the results of this table is
the huge différence of almost a tenfold factor between the performances with
and without XML output file génération. When XML output file génération
is enabled, Yeti spends most of its time writing data on the hard drive which
considerably slows the Yeti évaluations down. In our case, the generated output
file corresponding to 10® évaluations of the same behaviour and the displaying
of the two input and six output parameters lead to 42Mo file which is already
quite hea\^. XML is very easy to read for a human but the overhead introduced

3.5. CONCLUSIONS 111

by tags coniparecl to rough data is far from being negligible. If the user is only
interested in the model évaluation capability to directly exploit results in its
own program. we advise him to disable the output file génération to gain a lot
of computation time.

If we disable the file output génération, Yeti performs 1.58 Mops/s which is
quite satisfying and means that the overhead compared to rough compiled op­
erations is reasonable and makes Yeti suitable for large campaign simulations.
Furthemiore the way the relations are evaluated in Yeti (basic operations and
relations redundant évaluations avoidance) guarantees that the computational
complexity grows linearly with the addition of relations and basic operations
making Yeti still efficient for large behaviours. Conceming the C-l—t- obkect
structure building time from the XML initialization file, it took 30ms for the
complété behaviour of 8 relations which is almost negligible compared to the
duration recpiired to evaluate thousands of behaviours.

3.5 Conclusions

Through the two case studies we hâve presented in tins chapter the different
features of Yeti regarding scripting, input/model sensitivity analysis, auto-
matic plot génération. Based on this set of abilities, we hâve extended the
model"oLCodrescru“to~deriveTïew“resïilfs“witirâlmost no time penalty once
the initial model was entered into the framework. A second study has demon-
strated how it is possible to build models from scratch and proposed several
new results applied to the optimization of bandwidth and multiple stages max­
imum frequency.
If Yeti is probably quite powerful when it cornes to deal wheii analytical mod­
els, it has the drawback of requiring complex XML files to be entered manually
by the user which might be difîicult at the beginning. However once the files
hâve been defined, drawing automatically new plots between any pair of pa-
rameters of the models, changing the orientation of a model to get new results
or changing input value ranges is always a few characters typing away from the
expected resuit. When gaining expérience in using Yeti combined to an XML
editor, building up a model and initializing the simulation becomes faster and
faster. Anyway offering model spécification flexibility and very syntaxic and
semantics vérification will at some point require incompressible effort to put
in.

Bibliography

[1] L. Codrescu, M. D. Pant, T. M. Taha, J. Eble, D. S. Wills, and J. D.
Meindl, “Exploring microprocessor architectures for gigascale intégra­
tion.” in ARVLSI, 1999, pp. 242-255.

112 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

[2] D. Burger, T. M. Aiistin, and S. Bennett, “Evaluating future
microprocessors: The simplescalar tool set, Tech. Rep. CS-TR-1996-1308,
1996. [Online]. Available; citeseer.ist.psu.edu/buigerhOevaluating.htnil

[3] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “A generic System
simulator (genesys) for asic technology and architecture beyond 2001,” in
ASIC Conférence and Exhibit proceedings, 1996, pp. 193-196.

[4] G. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in AFIPS Conférence Proceedings. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1967, pp. 483-
485.

[5] Intel, “Intel core2 quad processor overview.”

[6] D. Stroobandt, A Priori Wire Length Estimâtes for Digital Design.
Boston / Dordrecht / London: Kluwer Academie Publishers, 4 2001.

[7] P. Zarkesh-Ha, J. Davis, W. Loh, and J. Meindl, “Stochastic interconnect
network fan-out distribution using rent’s rule,” Interconnect Technology
Conférence, 1998. Proceedings of the IEEE 1998 International, pp. 184-
186, Jun 1998.

[8] W. D., “Revisiting the fo4 metric,” Real World Technologies, p. 9, 2002.

[9] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proceedings of
the IEEE, vol. 89, no. 4, pp. 490-504, Apr 2001.

[10] D. Sylvester and K. Keutzer, “Getting to the bottom of deep submicron,”
in ICC AD ’98: Proceedings of the 1998 IEEE/ACM international confér­
ence on Computer-aided design. New York, NY, USA: ACM, 1998, pp.
203-211.

[11] J. Brockraan, “Cse 462 - vlsi design - net delay,” Course notes of VLSI
DESIGN - University of Notre Dame, Indiana, 2004.

[12] M. Bohr, “Interconnect scaling-the real limiter to high performance ulsi,”
Electron Devices Meeting, 1995., International, pp. 241-244, Dec 1995.

[13] K. Nabors and J. White, “Fastcap: a multipole accelerated 3-d capaci­
tance extraction program,” IEEE Transactions on Com,puter-Aided De­
sign of Integrated Circuits and Systems, IEEE Transactions onComjmter-
Aided Design of Integrated Circuits and Systems, vol. 10, no. 11, pp. 1447-
1459, 1991.

[14] J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and
P. A. Kohl, “Interconnect opportunities for gigascale intégration,” IBM
Journal of Research and Development, vol. 46, no. 2-3, pp. 245-264, 2002.

[15] J. Gong and D. Z. Pan, “Interconnect estimation and planning for deep
submicron designs,” in DAC ’99: Proceedings of the 36th ACM/IEEE
conférence on Design automation. New York, NY, USA: ACM, 1999, pp.
507-510.

BIBLIOGRAPHY 113

[16] D. Sylvester and K. Keutzer, “Getting to the bottom of deep
submicTon ii; A global wiring paradigin,” 1999. [Online]. Available:
(■it.(îS(Ha-.ist.j)su.(ubi/sylv(>.ster99g<?tting.htial

[17] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits
(Srd Edition). Prentice Hall, 2003, no. 702.

[18] A. Abou-Seido, B. Nowak, and C. Chu, “Fitted elmore delay: a sim­
ple and accurate interconnect delay model,” Computer Design: VLSI in
Computers and Processors, 2002. Proceedings. 2002 IEEE International
Conférence on, pp. 422-427, 2002.

[19] T. Sakurai, “Interconnection from design perspective,” in Advanced Met-
aüization Conférence conférence proceedings, 2000, pp. 53-58.

[20] A. Valider Biest, F. Robert, D. Verkest, and S. Vemalde, “A taxonomy
for technology extrapolation,” in NORCHIP Conférence, Oulu (Finland),
21-22 novembre 2005, 2005.

[21] “Us patent 6338158 - custom ic hardware modeling using standard ics for
use in ic design validation,” 2002.

[22] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigni,”
Computer, vol. 35, no. 1, pp. 70-78, Jan 2002.

[23] K. Saraswat and F. Mohammadi, “Effect of scaling of interconnections on
the time delay of vlsi circuits,” IEEE Transactions on Electron Devices,
vol. 29, no. 4, pp. 645 - 650, Apr 1982.

[24] C.-P. Chen, Y.-P. Chen, and D. F. Wong, “Optimal wire-sizing formula
under the elmore delay model,” in DAC ’96: Proceedings of the SSrd
annual conférence on Design automation. New York, NY, USA: ACM,
1996, pp. 487-490.

[25] D. Milojevic, L. Montperrus, and D. Verkest, “Power dissipation of the
network-on-chip in multi-processor system-on-chip dedicated for video
coding applications,” Journal of Signal Processing Systems, p. 15, June
2008.

[26] L. Scheffer, “Timing closure today,” in ASP-DAC proceedings. Cadence,
2001.

[27] D. Sylvester and K. Keutzer, “Impact of small process geometries on mi­
croarchitectures in Systems on a chip,” Proceedings of the IEEE, vol. 89,
no. 4, pp. 467-489, Apr 2001.

[28] Y. Cao, C. Hu, X. C. Huang, A. Kahng, S. Muddu, D. Stroobandt,
and D. Sylvester, “Effects of global interconnect optimizations on
perfoniiance estimation of deep submicron design,” in Proc. IEEE/ACM
Intl. Conférence on Computer-Aided Design, November 2000, pp. 56-61.
[Online]. Available: http://www.gigascale.org/])ubs/269.html

http://www.gigascale.org/%5D)ubs/269.html

[29] A. B. Kahng, S. Muddu, and E. Sarto, “On switch factor based analysis
of coupled RC interconnects,” in Design Automation Conférence, 2000,
pp. 79-84. [Online]. Available: citi.'Scer.ist.psu.edu/kalnigOOswitch.litrnl

[30] D. Haris and M. Bushnell, “332:578 course - cliapter 7: Crosstalk,” Course
notes of Deep Submicron VLSI course - Harvey Mudd College and Rutgers
University, Apr 2005.

[31] R.Preston, Managing variabüity on sub-100 nm designs, 2004.

114 CHAPTER 3. YETI: CASE STUDIES AND APPLICATIONS

Chapter 4

State of the Art on
Performance Prédiction Tools
and Methods

Abstract
This chapter defines the state-of-the-art for tools and meth-

~od,s^dedi'catëd^tô~VLSI sysférns performance estimation
based on a wide review of the literature. We start by re-
defining the basic vocabulary to remove the ambiguity usu-
ally associated to some embedded design terras. Based
on the description of 19 reviewed tools, we propose five
cornparison criteria (functionality description, platform de­
scription, rnapping methods, estimated performance cri­
teria and design space exploration capabilities) to extract
their cornmon méthodologies and concepts. Cornparing
those different criteria for each tool allows us to présent
the advantages and limitations of the state-of-the-art per­
formance estimation frarneworks and establish the require-
rncnts for a new more generalist and flexible tool.

4.1 Introduction

Looking at the literature, the scope of chip performance estimation methods
and tools ranges from simplistic and very compact models to completely inte-
grated flows also enabling sjmthesis. Such a variety is not easy to handle in a
single chapter and that’s why we separated the State of the art in two different
parts in order to simplify the classification of the tools and Systems;

115

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

• Closecl-formed modeling based performance estimation tools and Systems
were reviewed in the chapter related to Yeti (see Sec.2.2).

• Méthodologies and Systems that rely on the explicit séparation of the
functionality and the platform running it in order to perform System
performance évaluation will be reviewed and discussed in this chapter.

Even with this séparation, we still face a tremendous amount of tools to deal
with because performance estimation is a process carried out at very different
steps of the design flow for varions aspects of a System. If ail these frameworks
may sometimes seem very different from each other, they however rely on
common concepts, méthodologies and représentations: that’s why they deserve
a spécifie chapter to be discussed and compared.

Classification of the papers

Since performance estimation covers a wide area of the literature, claiming to
exhaustively review each single relevant paper would be difRcult to achieve
or altematively require an unbelievable amount of time. We tried instead to
select out the most innovative, comprehensive and fundamental publications
to be able to identify common concepts and méthodologies. To help the reader
finding its way among the different papers that we are going to review, we
decided to divide them into several categories based on their main concern;

• Panctionallty-centered tools and behavioral languages^ address the repré­
sentation and définition of the System functionality which is always the
starting point of a design: its knowledge is mandatory in a context of
performance estimation.

• HW/SW codesign tools cover many different aspects (spécification, sim­
ulation, synthesis etc.) with a focus on platform heterogeneity modeling.
These tools are usually meant for synthesis and try to find a direct path
from functional spécification down to implémentation.

• Y-chart based tools explicitly model the functionality, the platfonn and
their mapping and therefore make a very interesting substrate for perfor­
mance exploration. Most of the time they put the spell on the methodol-
ogy rather than implémentation.

• Design space exploration tools address the problem of exploring -or at
least providing exploration help- for a wide space of possible solutions in
order to extract the most interesting ones.

• UML is a modeling language coming from the software engineering field
and has inspired many authors for the development of performance éval­
uation and functionality spécification tools. Therefore we hâve chosen to
devote a section to UML-based tools and méthodologies.

' Lauguages describing how the System behaves (in other words its functionality)

4.2. A BIT OF VOCABULARY 117

• Software performance estimation tools enable the execution time pré­
diction of an application running on a given microprocessor. Since it’s
mostly ail about benchmarking/profiling for a given architecture, this
choice doesn’t satisfy our care for generality and we will thus discard it^.

However some of the publications we are going to discuss simultaneously fall
in several of the categories we previously defined and were therefore classified
based on their predominated aspect. Before starting the review of the different
tools, we will spend some time in defining clearly some ambiguous concepts
used in the world of embedded design.

4.2 A bit of vocabulary

If we first hâve a look at some very generalist papers about VLSI performance
prédiction Systems, we may well read some bad news for the coming State of
the art to establish[2]:

”There. are probably as many descriptions of system-level design as
there are System designers and codesign researchers.”

Unfortunately the more papers you’ll read on the subject,_tlm more.you’II agrée
witlfthaVstlît^menfrTdWoid'anÿ fürther ambiguity in the usage of terms that
will be often met in this chapter, we will spend sonie time to define different
concepts and the way we will use them through the rest of this text.

Let us start with some basic vocabulary that will be at the centre of perfor­
mance prédiction tools and Systems:

• System refers to the virtual and material sum of ail the designed entities
i.e. the functionality and the platform.

• Functionality defines what the System is supposed to do, in other words
how it will respond to its environment by generating outputs based on
input stimuli. The functional spécification covers ail the constraints that
the System need to fulfill in order to reproduce the behaviour defined by
the designer.

• Platform defines a set of material blocks that will provide the functionality
with different usable services and associate implémentation (i.e. non-
fucntional) costs to those services (like execution time, required Silicon
area, electrical power consumed etc.). That’s only when the platform has
been defined that the functionality can be back-annotated with those costs
to make sure that sure that the non-functional constraints are satisfied.

®The reader intere.sted in software performance évaluation is however strongly advised to hâve a look
at one of the niost exhaustive and astonishing survey[l) we came across during om literatme sui vey. If it’s
a little old now (2001) but it présents a very complété and critic review of related frameworks and tools.

118 CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

• The mapping operation consists in establishing the adequacy between the
functionality and the platform. This will be donc by defining spatially (the
allocation) and temporally (the scheduling) how each functional operation
will be associated with a platform élément.

• An Abstraction level refers to the description graniilarity of the fnnetion-
ality and the platform at a given design step. It establishes the different
primitive blocks they will be composed ont of as well as the timing gran-
ularity. The more we move down in the abstraction levels, the more
detailed and accurate the System description will be.

Aside from the préviens concepts, the magic words hardware and sofwtare
corne very often in front of the scene when looking at the literature. However
depending on the people using them and the context, their meaning can be very
different and sometimes misleading. In the next paragraphs we will expose our
critical analysis of their different définitions and set up the vocabulary that we
will use in the remainder of this chapter.

Programmer’s perspective

"Computers cannot do any useful work without instructions from
software; thus a combination of software and hardware (the com­
puter) is necessary to do any computerized work.” [3]

The high-level language programing community uses the term software as a réf­
érencé to the sequence of instructions defining the functionality of a computer-
based System. Software is a pure Virtual spécification while hardware is a
synonym of computer (i.e. a generic microprocessor-based machine able to run
any behaviour that can be specified by a programming language). Htu'dware
is never exposed to the programmer: ail the information related to the mi-
croprocessor type and instruction set are encapsulated into the compiler that
performs the mapping between the software (functionality) and the hardware
(the platform). Performance only refers to execution time resulting from the
hardware computation power, the programing skills of the software programer
and the compiler used.

Embedded design perspective

"Embedded controllers for reactive real-time applications are im-
plemented as mixed software-hardware Systems. These controllers
utilize Micro-processors, Micro-controllers and Digital Signal Pro-
cessors but are neither used nor perceived as computers.” [4]

The embedded System community gives a completely different meaning to
the previous terms: software refers to a microprocessor/microcontroller design

4.2. A BIT OF VOCABULARY 119

style while hardware means FPGA/ASIC design style. Compared to computer
programming where the material support is fixed and entirely defined, embed-
ded System designers hâve to specify the platfomi as well as the functionality
using spécifie tools and languages. One of the major task called HW/SW par-
titioning consists in dividing the functional spécification into smaller blocks
called tasks and to assign them to the different HW/SW components of the
chip. By moving one task from software to hardware or inversely, the designer
is thus able to compare different performance compromises (in terms of time,
power consumption etc.). The additional effort to tailor the platfomi to the
functionality cornes with a global improvement of the resulting general perfor­
mance (smaller execution times, higher throughputs, lower power consumption
etc.).

Y-chairt perspective

”The Y-chart is an itérative design methodology that allows concur­
rent development of hardware and software.” [5]

jfardware and software may_alsp_appear^once and-then-in-the context of Y- -
chart description; its use is in our opinion very inappropriate and incredibly
misleading. In the quotation at the beginning of this paragraph, hardware is
used for platforrn while software actually refers to the functionality. If this
niisuse of language is quite understandable, it entails a certain ambiguity with
the previous définition of the hardware and software terms^. Indeed the Y-
chart, defines at multiple abstraction levels how the functionality is mapped
onto the platfonn.

The functionality defines what the System is supposed to do whatever the
spécification language chosen by the designer. This functionality is totally
independent from any material or Silicon considération: this means no cost can
be associated with it, only can it be simulated to make sure that it reproduces
the behaviour the designer had in mind.

The platforrn is a physical support that provides the different services that
the functionality requires and associâtes costs with it. However this is not
sufficient to get our System running: we need to define where (the allocation)
and when (the scheduling) each subpart of the functionality will be executed on
the platforrn. That’s only when the functionality is mapped onto the platforrn
that the notion of performances makes sense, not earlier.

^It is iiiteiestiug to note that, in the programer’s view définition of ternxs, software however corresponds
to functionahty and liardware to the platforrn

120CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Hetrdwzire Description Language

A particular category of languages called HDL {Hardware Description Lan-
guage) are used for hardware design style: however their name deserves some
clarification since it coidd be misleading. If HDL are used as an entry-point
of FPGA- or ASIC-based Systems, it should be understood that they don’t
actually describe the hardware. On the contrary, HDL ofFer a way to specify a
hardware functionality independently from the platform and its structure by
providing data types, explicit concurrency and spécifie notions of times that
Object-Oriented languages don’t. Because these concepts are made explicit, it is
easy to make a one-to-one parallel between functional processes and platfomr
components: that’s why it is commonly said that HDL allow the user to also
describe the structure of a System and not only its behaviour.

In the remainder of this work and unless we explicitly mention the contrary,
we will adopt the following vocabulary convention:

• Hardware and software will be used as previously defined in the context
of embedded System design

• Functionality, platfomr, System and mapping will be used as explained at
the beginning of this section

• Behaviour and functionality are most of the time used to refer to the same
concept: we will consider them as perfect synonym

• Architecture and application are often used at the highest levels of ab­
straction to refer to the platform and the functionality. We will adopt this
vocabulary when the papers we are reviewing use these terms thernselves.

Now that these définitions hâve been established we are now ready to examine
the state-of-the-art tools in performance prédiction.

4.3 Literature survey

4.3.1 Behavioural languages

Ptolemy II

Ptolemy[(i] is a JAVA-based framework developed to deal with heterogeneity
in embedded System modeling: it has become quite popular since its release
and widely used in the research field.

Ptolemy specifically targets the spécification and co-simulation of heteroge-
neous models: it does not address any System performance estimation issue,
nor does it explicitly describe the platform. It rather focuses on a behavioral
représentation of the System seen as a structure of components called actors.

4.3. LITERATURE SURVEY 121

Figure 4.1: Ptoleiny hierarchical représentation of’a System iising nesteci actors {Ai)
conmiunicating tlirongh j^orts (/j)[fi]

The '^hierarcIvKMl heterogeneity'’’ results froni the structure adopted in Ptolemy:
actors are either composite (internally defined as a structure of several actors)
or atomic: (eiuphasizing the fact they are indivisible hence not composée! ont
of other cw;tors). Actors communicate with eacli others using ports that en-
capsulate the communication mechanisrn (FIFO, rendez-vous, messages etc.).
Fig.4.1 depicts a simple 2-level hierarchical model with composite and atomic

_____ ^actors switlutheu-respective^ports.—------------------ -------------------- ^ “

A model of computation [MoC^] defines the execution semantics of a structure
composed ont of actors: in other words it spet:ifies the order of execution of the
different acd.ors and how communication between them will take place. MoC’s
are implemented using five spécifie domains:

1. Comrnunicating Sequential Processes (CSP) use the mechanisrn of rendez-
vous points to communicate between actors.

2. Continuons Time (CT) domain defines the behaviour of processes based
on mathematical functions depending explicitly on time.

3. Discrète Event {DE) processes use discrète events chronologically ordered
and executed on a continuons timeline.

4. Process Network domain {PN) define actors comrnunicating witli each
other using FIFO’s with a non-blocking writing/blocking reading mecha-
nism.

5. Synchronous dataflow {SDF) use a token producer/consumer paradigra to
represent the synchronous execution of actors and their communication.

Accordingly to the paper, the introduction of domains nearly suppresses the

A vory comprehoiisive and complote classification of these MoC’s Ciui be found in [7j. It also provides
tlie reader with some guidoliiios to choose amoug the uuiueroas available MoC’s ba.scd ou the respective
fiuictioual asjiects tliat they capture.

122 CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

risk of emergent behaviours^ and therefore allows the user to hierardiically
build models without having to worry about some possible modifications of
the behaviour.

El Greco (CoCentric System Studio)

El Greco[8] (which has recently been turned into Synopsys CoCentric System
Studio[9]) is an environment for fast modeling, spécification and execution of
complex heterogeneous Systems. It is intended to be used for algorithm explo­
ration and for functional vérification. El Greco has many strong similarities
with Ptolemy regarding its hierarchical component modeling and co-execution
capabilities. Models are built by the user either in a top-down or bottom-up
flavour. Four types of hierarchical models are available:

1. Data flow graphs are graphs whose nodes may contain instances of other
models.

2. Or-models are made out of mutually exclusive States with transitions
between these states. States may be hierarchical (meaning they contain
other encapsulated models) or atomic (with their behvaiour defined using
C-h-1- code).

3. And-models -contrarily to the previous type of model- are able to represent
tasks whose execution can take in parallel.

4. Gated models contain 2-children nodes with mutually exclusive execution
triggered by a condition.

The first model type is meant to be used for control-free behaviours while
the three last models are best at representing control-dominated behaviours.
However, contrarily to Ptolemy which interprets the models to simulate their
behaviour, El Greco is able to compile them, leading to faster execution. To
enable the co-simulation of the different models, El Greco uses a dataflow
spécification based on cyclo-static graphs (CSDF®) and a control spécification
strongly inspired form Esterel control semantics (see Sec.4.3.1).

® Emergent behaviours correspond to imwanted behaviours that the user had not foreseen resulting from
the interaction and co-execution of the communication of different heterogeneous models.

®CSDF are a generalized version of SDF already briefly discussed in the section devoted to Ptolemy (see
Sec.4 .'t.l). While SDF actors consume a fixed number of input tokens number for each firing condition,
CSDF actors use a number of input tokens cycUcly selected out of a hst over time. This flexibility enhances
application paredlelism exposition but cornes at the price of a more complex static scheduling step. The
interested reader is advised to refer to the very compréhensible [10].

4.3. LITERATURE SURVEY 123

ESTEREL and other synchronous léinguages-based tools

Esterelfll] Ls a language belonging to the synchronous^ reactive® language
family relying on mathematical techniques to specify and verify the System
behaviour. This ability to mathematically prove some System properties is
called formai vérification and has been a driver for the industrial adoption of
those languages designed for safety critical applications (like in avionics).

Esterel is mostly control-oriented relying on a mechanism of concurrently-
running and preemptive threads with a synchronization based on a single
dock®. This language has been converted into a commercial tool called Esterel
Studio[14] providing the user with a complété design flow aiound Esterel from
spécification, simulation and formai vérification to S)«tem-C/C code généra­
tion and VHDL/Verilog code génération.

Apart from ESTEREL, we can also mention other synchronous reactive lan­
guages like LUSTRE[L5] and SIGNAL[l(i] that are more suited to capture
data-flow oriented behaviours. Both languages gave birth to integrated tools
respectively called SCADE and SILDEX.

Système

Système is a hardware description language (see Sec.4.2) that can be viewed in
a certain extent as a successor for VHDL and Verilog. Compared to the latter,
it introduces a new abstraction level called TLM[17] to replace RTL allowing
the spécification of the System beahaviour with less effort while keeping it
exécutable.

Système isn’t a new language at ail in the sense that it extends e-|—L with a
complété and open source library. The underlying idea that has lead to the
development of Système is reuse: indeed C/C++ is a well-known software
programing language and reniains, despite of its âge, widely used. That’s why
several attempts to preserve its syntax while making it doser to the hardware
hâve been rnade: among them we can cite Hardwaree[lS] and Spece[19] which
focused on the extension of e rather than e-t-+.

^Synebronoas laaguages[12] are based ou the synchrouoas concunency model where processes are able
to peiform computation and exchange information in zero-time. Languages like VHDL faU not in the SDF
category because they need to introduce delta-cycles to résolve the simultaneous execution of concurrent
operations in order to emulate synchronism. It is important to understand that this zero-time execution
and communication <.:apabihty only affects simulation where the real value of the execution time associated
with an operation is not necessaiily known and only operation precedencc makes sense.

^Réactivé systemsiLl] are defined as Systems reactiug to stimuh présent in their environment by pro-
ducing the adéquate outputs within a certain amount of time. Examples of reactive Systems cetn be found
in avionics and mechanical control Systems.

®The exact mechanism of communication and synchronization goes well beyond the scope of our dis-
ciis.sion. For more details the reader is advised to refer to [i l]

124CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Système takes the approach to préservé C++ in its whole and implernents a
library that is adding ail the features related to hardware that it lacks. Since
then, Système has become really popular in the academie field and is promised
to a bright industrial future thanks to the adoption of SystemC TLM 2.0.

The major extensions to C++ introduced by SystemC are the following;

• Data types for hardware description need to be more spécifie than C++
classical types. SystemC therefore offers the support for logic and bit-
wise types. Beyond dedicated operations that can be carried out on them
(like logical AND, OR etc.), the list of values they can take is adapted
to represent hardware possible driver state (like high impédance output,
imdefined value, weak driving etc.).

• Concurrency is crucial to represent the inhérent parallelism of hardware
that a sequential language like C++ is natively unable to capture. Sys­
temC precisely fills that gap by defining a class named module whom
ail user-defined classes representing a hardware piece dérivé from. Inside
this class, the user is able to define concurrent functions (containing se­
quential operations) using processes or threads (whose execution can be
interrupted). Similarly to VHDL, SystemC also defines a sensitivity list
that holds a list of signais whose change will trigger the process. Finally
modules can be instantiated at will and composed hierarchically.

• Communication between modules is achieved through a mechanism re-
lying on ports and channels. Ports are interfaces enabling a module to
exchange information with another module and define the direction of
the data fiowing through it. Channels offer a very élégant way to ab­
stract communication by implementing different underlying communica­
tion mechanisms (FIFO’s based, sémaphores etc.) that remain transpar­
ent at the module level.

• Time is a notion completely missing in C++ where operations only hâve
to take place sequentially to comply with the functional spécification.
SystemC provides the user with different time concepts (notion of clock-
/cycle, introduction of delay in an operation etc.) that are mandatory
when trying to model a hardware block.

With its bit-wise data types, hierarchical building of concurrent processœ and
clock-based time paradigm, SystemC is able to extend C++ to capture hard­
ware description. Furthermore it can be combined to already existing C++
code describing an application so that HW/SW co-design becomes possible
within the same language.

4.3. LITERATUBE SURVEY 125

4.3.2 HW/SW codesign tools

POLIS

P0LIS[4] Ls a framework targeting the spécification, simulation, vérification
and synthesLs of embedded Systems. It offers a unified Hardware/Software
spécification approach allowing the user to explore the effect of different par-
titioning choices on execution time. Rather than re-implementing already ex-
isting tools, POLIS philosophy is to reuse as much as possible free/academic
tools and wrap them up into an integrated design fiow by filling the gaps. This
tool, referenced from many papers about HW/SW codesign, has been widely
used by varions authors and therefore deserves some attention.

POLIS uses a common HW/SW représentation based on an extension of fi-
nite State machines called Co-design Finite State Mac/imes(CFSM)^°. By us-
ing such a “neutral” spécification for both the hardware and the software, it
becomes easy to represent a System in its whole regardless of its particular
HW/SW paititioning.

The different steps from spécification to implémentation are the following:

• High Level Laiiguage Spécification consista in automatically tuming an
initial spécification written by the designer in_ ajiigh-level language-into
a CFSM model. It is interesting to note that POLIS offers no automatic
partitioning since ”these decisions are based heavily on design expérience
and are very difficult to automate” [4].

• Formai vérification takes place once the System model has been converted
into CFSM. POLIS is then able to translate that model in FSM which is
turn used as an entry point for an external vérification System.

• System co-simulation Ls used to provide the user with feedback on its
previous design choices. Simulation can be done by using Ptolemy or by
tuming the CFSM model into VHDL that can afterwards be exported
into commercial simulation tools.

• Hardware synthesis is done using an external tool named SIS[2l] that
perfoniis logic optimizations and provides a netlist of logic gates for the
chosen target library.

• Software synthesis consists in two different steps. After optimizing the
behaviour in a processor-independent représentation, it translates the re­
suit into standard C that can be used afterwards in a processor-dependent
compiler.

‘°Like FSM, CSFM(20] turn a .set of inputs into a set of outputs u-sing orüy a finite niunber of internai
States but difîer regaiding the communication paradigm. Instead of asing a synchronous communication
mechanism, CFSM define asyncbronous, finite, non-zero transition times representing the delay of execu­
tion. This transition time is of comse unknown at the veiy first steps of the design but its value is refined
through the different steps of the POLIS fiow.

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Thanks to the use of external toob integrated inside a seamless design flow,
POLIS is one of the first complété methodology for HW/SW co-simulation
and co-syntliesis. However the price to pay for invoking external tools is the
constant need for transforming the initial spécification into tool-specific in-
put formats: besides the overhead, the designer needs to make sure that the
functionality remains preserved.

AADL

AADL[22] which stands for Arhcitecture Analysis and Design Language is a
textual language developed for the combined description of an architecture
and its application forming together a System. First meant to be only used
in the avionics industry, AADL scope was finally proven to be broader than
this latter field; it is currently under a SAE^^ standardization process for the
spécification of real-time Systems.

In AADL, a System is a structure of different instantiated components defined
by a hierarchy of different objects as depicted in Fig.4.2:

• A category defines the nature of a component. AADL includes 11 different
categories divided in three subclasses: one application-related category
(process, subprogram, thread, thread group, data), one platform-related
category (processor, memory, device, bus) and finally the hybrid category
including application- and platform-related components (called System).

• A type is associated with one particular category and describes the inter­
face of a component in a way VHDL would do. The inputs and outputs
signais of components are connected by the mean of ports allowing com­
munication.

• An implémentation is associated with a type and defines the inner struc­
ture and properties of a component (like an architecture in VHDL) using
a syntax and a semantics that is peculiar to the category it belongs to.
The interesting point in here is that several implémentations may be asso­
ciated with a same type representing different possible choices for a same
component.

• An instance of a given implémentation/type/category combination de-
fines a component. Components may also contain inner sub-components
(again like VHDL) defining in turn a hierarchical structure.

Based on a System of components described by the user, AADL is able to
perform a time-based simulation and also verify aspects related to the security
and reliability of the behaviour. A tool called ADeS developed as a plug-in

“The SAE (Society Of Automotive Eugineers) is an association of industrial companies organizing
conférences and developing standards in the field of automotive cind avionics.

4.3. LITERATUB.E SUIîVEY 127

Figure 4.2: Objoct hierarchy iriside AADL iising a 1 to n composition relation

for the Eclipse environment allows the user to edit AADL code, visnalize the
resulting System and simiilate it.

Chinook

Chinook[2;5] is a tool for automated co-syntliesis of HW/SW mixed Systems
built from off-the-shelf components. It mainly focuses on control-dominated
applications and provides a straight-forward patli from spécification to the
netlist of interconnected components and compiled/syntliesized code for the
microprocessor/hardware nuits. Compared to other synthesis tools, Chinook
facilitâtes dœign space exploration thanks to a high-level of automation and de-
creases implémentation time and downtinies due to manual intervention which
allows the designer to easily try and compare different implémentation alter­
natives.

If Chinook is quite old now, it is one of the first tools introducing simulta-
neously the principles of a single functional spécification written in a unique
language, automatic interface and communication synthesis with timing con-
straints and an automated path down to a working HW/SW heterogeneous
architecture: that’s why it deserves some attention.

The main steps are the following:

• The spécification entirely in Verilog consLsts in a fnnctional part and a
structured/interfaee-based description of the architecture. Additionally
the designer has to provide a libraiy of the different available components
(microprocessors, FPGA’s, peripherals) containing timing and I/O infor-

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

mation. The partitioning of the different processes is done manually^^ and
each process can therefore be assigned to a particular computational unit
by tagging it in the Verilog code (untagged processes imply an htu-dware
implémentation). Finally the designer is able to add timing constraints
(response time, latency, rate, etc.) that will be further used during syn-
thesis.

• The Verilog processes are synthesized for the FPGA’s and compiled for
the micro-processors using vendor spécifie tools. Chinook assumes that
timing information can be drawn from these operations and fed back to
the rest of the design process.

• A static and non-prememptive scheduling is performed to deternùne the
execution order of processes on the different computational units with
respect to the different timing constraints.

• Interface and communication synthesis exploits the information présent
in the component library (I/O and timing diagrams) to synthesize and
generate the software interfaces and glue logic required for communica­
tion.

Aside from the synthesis, simulations can be carried out at varions levels:
behavioural level^^ using a Verilog simulator, co-simulation of the different
HW/SW blocks using C models emulating the microprocessors and assembly-
level simulations for debugging purpose.

4.3.3 Y-chart related tools

MESCAL

MESCAL[-5] (the Modem Emhedded Systems, Compilers, Architectures and
Languages project) is a methodology for fast design space exploration of archi­
tectures targeting network-processing applications. More precisely it is meant
to provide a correct-by-construct path from the functional spécification to its
mapping onto a network of ASIP’s.

MESCAL chooses a 3-hierarchical levels Y-chart based approach for the System
modeling as it is depicted in Fig.4.3. The functionality is defined independently
from the platform and a mapping is performed afterwards. Based on the results
of the performance analysis, the designer is free to iterate that process either
by modifying the application, the architecture or the mapping strategy. The
MESCAL methodology defines three levels of abstraction corresponding to

'^Like POLIS, Chinook assumes that the designer' is in better position to détermine the mapping of the
tasks on the computational units than automated tools would do.

Behavioural level, used in the context of HDL, means a coding style doser to a high-level language
than RTL and is here not at aU a synonym of functionality.

4.3. LITERATUBE SUEVEY 129

Figure 4.3: The Y chart methodology used witlün tlie MESCAL frainework [ôj

the levels of ’diaidware parallelism” that netwoïk-centik; applications can take
advantage of:

______ O The^arc/rttecfHre ./ct;e/.reDieseuts-tlie-arcliitectiire as-a-set-of coinnmnicât-
ing ASIP’s and accounts for the so-called processing-element parallelism.

• The micro-architecture level. represents the main internai blocks of an
ASIP where instruction-level parallelism can bc studied

• The bü-levd level represents the different computation units of the ASIP
at a bit-level and is snited for exploring the bit-level parallelism of an
algorithm for instance.

Since these levels are quite different from each other, the MESCAL methodol­
ogy defines a multiple view methodology to represent the platform. Each view
corre^sponding to a particular abstraction-level defines the appropriate seman-
tics for the description of the platform at this particulfir level which makes
further automated code-generation work way casier.

To perform design space exploration during the refinernent of the initial ar­
chitecture throughout the three different levels, MESCAL uses the TEEPEE
framework. TEEPEE is nothing more thaii an extension of the previously dis-
cussed Ptolemy framework (see Sec.4.TI) for the modeling of architectures. It
provides actors support, for the modeling of processing éléments, mernory and
on-chip communication (limited to network-on-chip). MESCAL reformulates
the mapping problem in an interesting way by coiisidering an application as
a set of components whose behaviour is definfxd by tlieir particular MoC and
by representing the architecture as a structure of viitual machines implement-
ing these MoC’s. The mapping problem then becomes a "matching” problem

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

between the Processing éléments and the application components that can be
solved as a communication networking problem^'*.

In summary MESCAL provides a framework for manual design space explo­
ration and aiitomatic code génération. However the authors admit that a joint
refinement of the application and architecture throughout the successive, iso-
lated and well-defined abstraction levels does not allow the designer to optimize
the perfonnances as much as a global multi-level optimization would do.

ARTEMIS

ARTEMIS[24] is a workbench focusing on the modeling and performance évalu­
ation of System-on-chip multiprocessors architectures particularly for multime­
dia applications. The tool is divided into a system-level modeling environment
called SESAME and a part devoted to the calibration of these models.

Following the Y-chart approach, SESAME décomposés the System model into
the application model (describing the functional behaviour of the System) and
the architecture model (enabling the execution of the functionality) capturing
the performance constraints. Thanks to an explicit mapping of the application
onto the architecture, performances can then evaluated.

• The application is described using Kahn Process Networks[2.5] (KPN)
which is a MoC consisting in a network of processes communicating via
unbounded FIFO channels with a blocking read/non-blocking write mech-
anism. KPN are either built manually based on user-defined XML files
either automatically using the Compaan tool by extracting them from a
code written in a subset of MATLAB. Exécutable code written in C/C-1—I-
is contained in KPN nodes.

• The architecture is defined in SystemC at a transaction level and is built
out of a several blocks picked up in a library of components coming with
performance annotations.

• The mapping consists in several successive steps that lead to the complété
scheduling of the application on the architecture. First the application
behaviour is simulated independently from any platfomr-related concem:
during execution KPN process nodes record ail the events relative to the
communication and computation to establish a complété execution trace.
After this step, the application is mapped onto a network of Virtual pro-
cessors (with execution capability and FIFO channels for communica­
tion): since there is a one-to-one relation between KPN process nodes
and those virtual processors, this operation is pretty straightforward.
The type of event scheduling can be chosen between FCFS, round-robin

'"'Very few details are given about tins mapping method but we thought it interesting to put the spell
on this supply and demand représentation of the architecture and the appheation.

4.3. LITERATVRE SURVEY 131

or user-clefined policy. Finally the description of the virtual processors
is gradually refined down to the actual platfomi where the total cost of
the platform can be evaluated. To optimize the mapping method and
enable design space exploration, SESAME uses a mathematical model
based on the computation/communication demands of the application
and architectural computation/communciation performances and power
consumption. This model is explored using multi-objective methods to
find a]>proximative Pareto-optimal mapping solutions.

Since SESAME uses very high-level descriptions of both the application and the
architecture, a satisfying level of accuracy is difficult to reach. Therefore some
perfomaance calibration can be done to profile the application on a configurable
processor by refining the description to the micro-code level (the intersted
reader should refer to the paper for more details).

SPADE

SPADE (System level Performance Analysis and Design space Exploration) [26]
is a methodology for performance estimation of the mapping of an application
onto an heterogeneous architecture at very high levels of abstraction. SPADE
follows the Y chart approach and models the application, the architecture
and its mapping,separately-so-that-their-impaGtmn-performances-can"be^es- * “ ^
timated individually. The whole methodology relies on traces capturing the
communication and computation order from the application to map them on
an architecture. SPADE offers behavioural simulation capability but doesn’t
handle synthesis.

Compared to most of the other tools, SPADE individually models the appli­
cation, the architecture and the mapping:

• The application is based on the KPN model of computation that has
been chosen because they are able to efficiently expose the parallelism
of an application described as processes exchanging information through
channels. SPADE offers an API allowing the user to manually specify
the application model in the C language: using a read/write function
that reads/writes to/from the KPN channel and an execute function that
triggers the execution of the related process. When the execution of
a KPN model is simulated, each of these three functions triggers the
recording of a new event entry inside an event vector to build the complété
trace of the communication and computation behaviour. This operation
results in the génération of the workload of the application that ls going
to be rnapped onto the architecture.

• The architecture is described using a structured description of instanti-
ated components taken from a predefined library. Each block able to
perfomi computation (called a Processing resource) is composed ont of

U2CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

a trace driven execution unit (TDEU) and an interface. The TDEU in-
terprets the trace entries and offer a way to execute the associated pro­
cesses. Each TDEU cornes with a list of symbolic instructions defining
the processes that can be executed by this particular component and their
associated latencies are defined by lower-level models or estimated thanks
to the designer expérience. The interface enables to connect the TDEU
to a communication block containing the protocol used to exchange data
(shared buses and point-to-point connections are supported). Although
a library of predefined components is already provided, the user Ls free to
add its own blocks.

• The mapping needs to be specified manually by the user in order to evalu-
ate how well the workload generated by the application will suit the archi­
tecture. Each process is mapped onto a TDEU in a many-to-one fashion
meaning that several processes can share the same functional unit over
time: this involves an explicit scheduling. Each process port is mapped
onto an I/O port in a one-to-one manner which is more restrictive but
doesn’t require any scheduling.

Once these three éléments hâve been defined, the simulation can take place to
deliver the performances to the user in terms of execution time and TDEU/-
communication usage. Traces are generated on-the-fiy from the application to
drive the simulation allowing ail the estimation to be carried out in one single
step.

SPADE is one of the most interesting tool that explicitly séparâtes mapping
concems from the architecture/application modeling but leaves ail the alloca­
tion/scheduling up to the user.

METROPOLIS

Metropolis[27] defines a metamodel with précisé semantics capturing ail the
éléments relevant in the context of embedded System modeling including the
application, the architecture, their refinement, their mapping and the varions
abstractions used throughout the different design steps. This metamodel is
believed to be a solution to the design discrepancies, spécification alteration
and bugs that occur during a design process due to communication problems
between the different design teams. Rather than providing an extensive set
of tools, design activity is centered around Metropolis metamodels and APFs
can be used to interface the framework with extemal tools while automatically
tuming the metamodel into the required input file format. •

• The application is represented as a set of concurrent processes with their
own execution thread holding sequential code. To exchange information,
these processes use communication ports connected to a medium specify-
ing the way data will be exchanged (the communication protocol).

4.3. LITERATURE SURVEY 133

Besicles this communication/computation separate modeling, the meta-
model also needs to specify the execution semantics. Therefore some in­
structions inside the threads are associated with events (execution start or
end of a piece of code) that are combined into event vectors defining a be-
haviour. Since the latter Ls non-determinstic due to its non-ordered event
based définition, the designer is able to add constraints on the precedence
of processes and respective execution order.

• The architecture takes into account two different aspects: the function-
ality that they implement and its efiîciency i.e. the cost associated to
it.

First tlie architecture is described as a network of processes like in the
application except that this network represents the physical structure
of the design rather than its behaviour. Each process contains several
services implemented as threads (depending on the type of functional
block it models) that can be accessed by the application in order to satLsfy
its needs.

Second events associated to these threads trigger the execution of a certain
nuniber of qunntüy managers evaluating the cost of using this particular
service. The type of each quantity can be chosen among a library or

--------- =- defined-by-the user—Interestingly time is"here’seen^âs“bnêljüantifÿ^type
among others and doesn’t hâve a spécial rôle compared to other tools.

• The mapping step consists in merging an application network and an
architecture network into what is called a mapping network. Basically this
is donc by synchronizing the events of the application and the architecture
while applying allocation constraints provided by the user: the resulting
mapping network can be seen as the implémentation of a certain service.

However different algorithms mapped on different architectures niay be
able to provide the same service for different costs: this is defined as a
platforrn. The designer is able to choose among those different implé­
mentations the cost combination that best suits its needs and fulfill the
requirements. Several platforms providing different services can then be
recursively assembled into a more complex platforrn providing a richer
.service. This hierarchical building of services enables in tum bottom-up
design flow and facilitâtes in a large extent the communication between
different teams or companies which can exchange platforms implementing
services.

Besides these mapping functionalities, Metropolis also offers vérification, sim­
ulation and synthesis possibilities.

lUCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

4.3.4 Design space exploration tools

MILAN

The MILAN (Model based Integrated simuLAtioN) framework[2S] aims at sim-
plifying SoC optimization and design space exploration by providing the user
with a unified environment for the interoperation of heterogeneous simula-
tors. Compared to other tools, MILAN is a component-centric tool where the
compromise between simulation speed and accuracy is made explicit and is de-
termined by the user needs. It relies on two different sub-tools called HiPerE
(High-level Performance Estimator) and GenM (Generic Model) respectively
used for the SoC performance estimation (limited to energy and latency) and
the flexible représentation of the SoC structure and properties.

GenM is a generic model for capturing SoC related information about the
platform, the application and its mapping:

• A SoC platform is composed out several instances of processors, recon­
figurable logic units, memories and interconnects. Additionally the user
has to specify ail the possible operating states^^ for each processor and
reconfigurable unit along with their possible supply voltage (if it can be
adjusted at run-time).

• An application is described using a data flow graph representing a network
of communicating tasks (with their amount of data input/output)

• Mapping information (called performance parameters) include the energy
and time for executing a given task on a particular microprocessor or
reconfigurable unit but also the Processing unit that each single task of
the application will be assigned to.

MILAN methodology for performance estimation basically consists in a 2-
hierarchical levels simulation process:

• The designer uses the graphical user interface to specify the architecture,
application and mapping model based on GenM. The combination of these
possibilities defines the design space that will be explored.

• The first performance évaluation takes place using HiPerE. Since the allo­
cation has been manually specified in the mapping model along with the
performance parameters, the performance évaluation task simply consists
in a scheduling using a FCFS policy in this case. The total energy and
latency Ls computed by integrating ail the performance parameters over
time: a report is then generated with the activity (including the idle
time ratio) of ail components to make bottlenecks identification easier.

'^Each component is described by a collection of .States representing ail the possible configurations that
this component may be in at a certain time. Additional information (again in terms of energy and latency)
for transitions between States hâve also to be provided.

4.3. LITERATURE SURVEY 135

This performance estimation is carried ont for ail the possible designs:
solutions with the most interesting time/energy compromises can then be
selected for more accurate performance estimation.

• To replace the rough performance estimations of each component defined
by the user at the first step, several techniques can be used to achieve
more accurate results (complexity analysis, trace analysis, cycle-accurate
simulations etc.). Based on the description of a task (in C/C++ or JAVA)
and the knowledge of the components composing an architecture, MILAN
is able to transform the task code so that it fits a chosen simulation tool
input requirement. Once the simulation results are known, the previous
perfomiance évaluation can be performed again based on these new and
more accurate values of performance parameters.

If MILAN is not particularly innovative regarding the design space exploration
methodology, it outshines any other tool when it cornes to model dynamically
reconfigurable SoC thanks to its interesting state-based modeling.

A design estimation and exploration environment

The franiework presented in [29] allows the user to perform design space ex­
ploration in a mu ch easier and niore in^itiye waythaai jdaæical_topls__do._____

^Füfthermore heterogeneous’predfcators^® can be used together in the same
environment sparing a lot of exploration time hence allowing the designer to
explore more solutions.

The franiework relies on the concept of domain^^ containing information about
a spécifie area of expertise related to design (for instance the ASIC architec­
ture, the technology, the cell library etc.). Each domain cornes with a lot of
information like identifiées (descriptive words related to that domain), associ-
ated domains, numerical parameters, associated tools and exécutable scripts.

Orthogonal domains can be gathered into what is called a design context con­
taining ail the useful information about the exploration that the designer wants
to perform. Contexts can either be defined manually or automatically in an
interactive way using the built-in search engine. The user enters a descrip­
tion in an textual fomi (for instance ”FFT 1024” or ”ASIC maxPower:=5mW
250nm FFT”) and the search engine selects domains ont of ail the available
ones to propose relevant contexts for the user to choose among. Once this is
done, he’s able to either refine the context by adding information suggested
by the already selected domains or execute commands (like area, execution

’®Au estimator is defined in tins papei' as any klnd of method that is able to predict a paiticular
performance-related metric. This includes commercial performance estimation tools, databases of perfor­
mance measmements, models regardless of theh complexity and nature, etc.

'^The notion of domain is totaUy independent and diflfeient from the one defined iu ROSETTA (see
Sec.d.d.d).

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

time, complexity etc.) to get a measure of the performances. The numbers
are automatically extracted from estimators invoked by the script ernbedded
inside the domain.

This framework cornes as a graphical user interface communicating with the
tool core by sending HTML requests based on client-server paradigm which
makes it very easy to put the tool online and share user-defined domains.

The SoC Architecture Explorer

This SoC Architecture Explorer tool[30] is designed for fast design space explo­
ration of SoC architectures and the évaluation of compromises between area
and execution time. Combining ail the design choice parameters values can
however quickly lead to an overwhelming number of possibilities almost im­
possible to explore in realistic time. This tool tries to cope with that issue by
proposing a 2-phases scheduling approach combined with a smart exploration
of the architectural choices.

The application and the architecture are modeled as following:

• The application is decomposed into communicating processes and de-
scribed using data flow graphs where channels represent the data ex-
changed between the Processing nodes.

• The architecture model is actually a set of parameters determining its
structure: the number of functional blocks, the bus width, theh opera­
tion frequency, the communication buffer size. These parameters along
with the mapping parameters (assigning a given process or a channel
to a functional unit or bus) define the design space that will be further
explored.

The performances estimation and architecture exploration takes place in sev-
eral phases.

First, the application is profîled to perform a data flow analysis and estimate
the data transfers between the different communication channels. After that a
pre-scheduling operation is carried ont based on the previous communication
profile to détermine the order of execution of the different processes of the
application. This results in the System-Level Execution Order Graph (SL-
EOG) built once an for ail.

Second, an architecture is selected by determining a value for ail the parameters
describing it: therefore trees representing orthogonal choices are drawn. A n-
deep tree represents n successive decisions to be taken so that leaves correspond
to a single solution. Tree pruning methods are used to explore them and select
a solution that could satisfy user-defined bounds on execution time and area.
Based on that architectural choice, a post-scheduling operation starting from
the SL-EOG is performed in order to refine the execution order of the processes

4.3. LITERATVRE SURVEY 137

matching the architectural constraints. This results in an Architectnre-Level
Execution Dependency Graph (AL-EDG) that can be analyzed to get a more
accurate estimation of the execution time and then fed back to the architectural
choice phase to déterminé the next solution to explore.

This method seems quite interesting since it reduces the number of solutions
to compare by using a smart design design space exploration policy. Results
are présentée! that show a 2700 factor réduction in exploration time between
exhaustive and custom approaches in the case of on audio/video decoding
System while getting close to the Pareto-optimal solutions (more results can
be found in the related paper).

EPICURE

EPICUE[31] is a methodology for the spécification, vérification, performance
exploration and synthesis of reconfigurable Systems. The main restriction con-
cerns the architecture based on a processor connected to a reconfigurable unit
trough a generic interface called IGURE. Besides enabling communication be­
tween previous units, IGURE manages ail the reconfiguration activity at run­
time and cornes with an API for the microprocessor allowing the programer
to easily trigger context switching of the reconfigurable unit. For specifica-

___tion and vérification, EPIGURE-relies on-Esterehstudio (see Sec.' 4t3.T) that '
translates afterwards that spécification into G. Rather than describing in more
details EPCURE, we will put the spell on the embedded exploration tool called
Design Trotter.

Design trotter is a JAVA-based tool meant for architecture performance explo­
ration in the context of multimedia applications. The design space exploration
is divided into two successive phases: the System and the relative estimation
steps[32]. While the first is used to reduce the design space size to select
the most interesting promising architectures, the latter provides the user with
refined relative performance estimations of the chosen architectures.

System évaluation The spécification, written as a G application^®, is first
refined into a Hierarchical Control Data Flow Graph (HCDFG). ThLs is a MoC
deriving from the data flow graphs and extending it to control and hierarchy
as depicted in Fig.4.4. Each HDGFG contains others HDCFG’s or GDFG’s.
CDFG’s are composed out of conditional nodes (representing if, for state-
ments) and DFG’s. A DFG is a structure built of non-conditional nodes ex-
changing data.

The architecture is defined by a User Abstract Rules file (UAR) defining the

'^The C used is uot fuUy ANSI compliant but only makes some restrictious on the subset of instructions
and imposes a certain writing style.

mCHAPTER. 4. STATE OF THE ABT ON PERFORMANCE PREDICTION TOOLS AND METHODS

HCDFG

Figure 4.4: The application description in Design Trotter based on hierarchical
HCDFG’s, CDFG’s and DFG’s[:tl]

4.,i LITERATVRE SURVEY 139

different resources for computation and the memory hierarchy with their re­
spective costs in ternis of relative execution cycles.

Once these files hâve been defined, the System estimation can take place by first
characterizing the application by its computation, memory and control needs
using the previously HCDFG. With that information, a list-based scheduling
is perfomied in order to find different compromises between resources require-
ments and the number of execution cycles which results in cost profiles. Since
the number of solutions to explore is very large, heuristic methods are used to
guide the choice of the initial number of each resource type.

Relative estimation The préviens cost profiles defîning a particular schedul­
ing for a given time constraint are used as a starting point for the relative
exploration step. Since this estimation is more accurate, it requires a more
précisé description of the architecture: therefore a hierarchical structure made
of functional éléments (memory or computation related) is defined. Then the
estimation jihase takes over, preceded by a projection phase (matching between
the memory/computation needs of the application and the existing architec­
tural resources) and a composition step (taking into account the resources
implementing the scheduling).

ROSETTA

ROSETTA[33] is a language meant for describing the constraints and re-
quLrements of very heterogeneous Systems. Compared to other languages,
ROSETTA does not focus on the sole functional aspects but also captures
ail non-bmctional aspects that are relevant in the modeled System. Further-
more it is not synthesizable and only partially exécutable (a certain subset of
the language supports execution). However if ROSETTA is very difficult to
compare with other languages^®, it obviously deserves some attention regard-
ing its very distinctive approach.
Modeling ail relevant aspects (especially the non-functional ones) of an het­
erogeneous System requires to ext,end the description syntax and semantics of
classical languages. Therefore ROSETTA introduces new concepts:

• Facets represent the different functional and non-functional aspects that
a designer would like to capture in its design. For instance, they can be
related to the power consumption, the delay constraint, the functionality
etc. Facets also implement an interface of input and output variables
enabling inter-facets information exchange.

'^lu [7], the uumerous spécification languages reviewed are classified into 3 categories plas one extra
category created especially for ROSETTA.

UOCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Figure 4.5: ROSETTA représentation of a System with interconnected components
(facets are defined within a given domain) [33]

• Domains define the semantics required to specify a facet. For instance,
a state-machine based behaviour will probably be described and inte-
grated differently than a maximum power consumption constraint would
be: that’s why domains are so important to describe heterogeneous Sys­
tems. Thus a facet is always defined within a given domain chosen among
a ROSETTA predefined domain library (logic, discrete-time, continuous-
time, finite-state, constraints).

• Interactions define how information are exchanged between different facets
that do not necessarily rely on the same semantics. For instance, interac­
tions enable to make synchronous reactive and state-based models coexist
and interoperate.

• Components are a collection of facets defining ail the conditions that a
model element should comply with in order to be valid.

The above concepts are illustrated in Fig.4..') representing a System described
in ROSETTA. It is organized as a structure of different components, ear;h one
composed out of different facets whose semantics is defined within a certain do­
main. The different components communicate information using interactions.

The System modeling process basically consists in selecting the different do­
mains the designer he’s interested in, defining the facets associated with the
previous domains, assembling them into components and instantiating them
in tum to form a structure representing the System. ROSETTA cornes with an
editor and a parser checking the syntax of the user description. Since the lan-
guage is for non-executable spécification purpose only, it is not synthesizable
and is meant to be refined manually in other languages. However to be able

4.3. LITERATURE SURVEY 141

to validate the resuit of further simulations against ROSETTA spécification,
the latter allows the user to automatically generate vector tests.

4.3.5 UML

UML[;14] is a modeling language coniing from the software engineering domain:
it is able to raodel a System in a general way by capturing its architectural and
behavioural aspects in a graphical way using diagrams. UML is particularly
well suited for object-oriented analysis and design but can also used in business
and organization structure modeling. A few years ago, many people came up
with idea of using UML to model VLSI Systems both at the fimctional and
platform side. Since the problem is addressed by a more software-oriented
community than EDA designers, the solution is quite distinctive and therefore
deserves sonie attention. Compared to more standard functional description
languages where code is entered by the user in a textual way, the graphical
modeling in UML makes it probably -from the user point of view- less spécifie
and easier to leam. Furthermore UML is a now an amazingly widespread
modeling language implying a lot of reusable knowledge and spécifie tools.

MARTE

MARTE[;5.ô] stands for Mbdeling~and Analysis of Real-Time and Embedded
Systems and is a UML profile^^ focusing on embedded Systems modeling.
Tins profile extends the previous SPT profile (Scheduling, Performance and
Time) [36] and will become a future standard approved by the OMG group^^
which probably ensures a certain support for the future.

MARTE relies on two different main sub-profiles:

• SPT is a profile used to verify extra-functional properties (like response
times, throughput, deadline, etc.) by performing Scheduling and Perfor­
mance analysis (more details can be found in [3G]). These properties are
quite related to timing issues but MARTE developers plan to extend it
to other ones (like memory size, power consumption).

• QoS & FT (Quality of Service & Fault Tolérance) UML Profile intro-
duces the notion of Quality of Services in an interesting way. Any virtual
resource can be used through a server providing access to it while clients
are the entities sending usage requests to the server. The server can pro­
vide a certain offered QoS and the client needs a required QoS to satisfy

■°A UML profile is a mechanism used to extend the semantics of UML to a particular domain (fi­
nance, network représentation, hardware modeling etc.). By defining higher-level models with stronger
représentation capabilities for that spécifie domain, modeling becomes faster and easier for the designer.

■'The Object Management Group group is an international non-profit computer industry consortium
that .strives for the development of modehng standards for the design, execution and maintenance of
software. Most of their act.ivity revolves around CORBA and UML modehng.

U2CHAPTER. 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

3. Requirements 4. Parametrics

Figure 4.6: SysML System description based on four aspects: the structure, tire
behaviour, the requirements and the parametric aspect[:i8]

the QoS contract. Tins définition of the QoS enables analyt.ical analysis
to détermine if the provided services can satisfy the QoS required by the
client.

Besides these profiles, MARTE also defines the QAM (Quantitative Analy­
sis Modeling) domain separating the concems of embedded System modeling
into four different parts: a workload, behaviour, allocation and platform view
accounting for both the functionality, the platform and their interaction.

SysML

SysML[37] is an extension of UML for the analysis, .spécification, design and
vérification of System-on-chip’s. Unlike MARTE that defines very specûfic
profiles with rich semantics, SysML takes a more general approach. As depicted
in Fig.4.(), SysML relies on four different major aspects: •

• The structure aspect describes how the System will be structured both
at a functional and platform point of view. SysML defines the assembly

4.3. LITERATUB.E SURVEY

concept that allows the user to describe in a hierarchical way any element
of the System (hardware or software part, digital or analog etc.) Ports
are used to interconnect point-to-point modules and enable data exchange
between them. Block définition diagrams are used to describe how blocks
are interconnected to each other while inner-block diagranas describe their
respective content creating a hierarchy. Since those profiles don’t offer a
rich semantic, their high abstraction level may provide the user with very
flexible modeling abilities.

O The beliavior aspect extends four standard UML diagrams to specify the
different facets of the System behaviour. The use case diagram describes
the functional services provided by the block, the activity diagram rep-
resent the data/control exchange between the different blocks of the Sys­
tem, the sequence diagram represents the interaction between the different
blocks and finally the State diagram describes the different states of the
blocks, transitions between them and conditions triggering the latter.

• The requirenients diagram describes in a textual way ail the functional
constraints that the System has to fulfill in order to be valid.

• The parametrics diagram spécifiés quantitative constraints on the values
of some parameters (delay, power consumption etc.).

To summarize, SvsML is_a_verv-flexible^UML-based-SoG-modeling tool~thanks~
to its high level of abstraction and hierarchical description of both the func-
tionality and the platform. However SysML pays the price for its generality by
requiring a larger design effort, and being potentially more ambiguous about
the resulting description due to its weak semantics.

KOSKI

KOSKI[d9] is a framework for the spécification, validation and synthesis of
multi-processor SoC’s based on UML functional/platform description. Com-
pared to other reviewed méthodologies, KOSKI trades some model flexibility
and generality for setting up a searnless and efficient design flow from spécifi­
cation down to FPGA prototypying. The philosophy of KOSKI is to dérivé the
best implémentation (the platfonn in our acceptation of the term) that meets
the spécifications using internai optimization processes; therefore a methodol-
ogy consisting in several well identified phases: •

• During the spécification and requirenients, the designer spécifiés the re-
quirements for the platform and the application by defining the maximum
total cost and the way to compute it (the cost function). This cost func-
tion is a user-defined mathematical combination of several factors (the
area, the power consumption, the latency and the throughput) that en-
ables an objective comparison of two different platforms.

UACHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

• The UML design phase consists in defining by the mean of UML mod-
els the functionality of the System (application model) that can then be
verified using functional simulations. The application description uses
the Khan Process Networks[2S] model of computation to represent the
communication of the different sub-tasks. Finally the different possible
architectures possibilities are also defined.

• The UML interface is a layer extracting simplified and abstracted models
from the application and the different architectures that will be used
during the automatic architecture phase.

• The architecture exploration phase aims at finding the best platform for
the specified application: in other words identifying the platfomi that
minimizes the previously defined cost fonction. To limit the exploration
times, this phase is divided into two different sub-phases:

- The static exploration methods évaluâtes roughly the cost function
of different architectures by using an allocation/scheduling method
based on a simplified représentation of the application. The aim is
to find good candidates for the the dynamic exploration phase. It is
also important to understand that no functional aspect needs to be
verified during this step since it has already been done earlier: the
functional accuracy can thus be very limited while the focus is now
put on non-functional properties of the System.

— The dynamic exploration phase performs a cycle-accurate exploration
based on a detailed allocation/scheduling. During allocation, tasks
are moved from one Processing element to another as long as it doesn’t
violate the previously established task inter-communication dépen­
dance. Thus little change can be done to the previously established
mapping: dynamic exploration can thus be seen as a local and deeper
optimization step on a limited number of solutions while the static
exploration phase is a global optimization step to select good solution
out of the numerous possible architectural choices.

• The physical implémentation phase takes place after the exploration phase
and automatically generates code for the defined target processor(s).

KOSKI cornes as a GUI allowing the user to simulate, optimize and synthesize
the platform for a given application. Finally KOSKI provides the designer
with different possible design scénarios (i.e. a predefined sequence of tools
calls) ranging from a single-processor design where no exploration needs to
be carried out to complex multi-processors platforms where both static and
dynamic exploration methods are required.

4.4. ANALYSIS AND CLASSIFICATION OF LITERATURE 145

4.4 Analysis and classification of literature

The previous section presented several academie and some industrial tools
centered around the topic of performance estimation at system-level. Because
they are very different from each other and pursue different goals, it is difficult
to compare them directly. Therefore we hâve chosen different criteria that we
use to compare different frameworks and extract the common concepts that
they share.

The chosen criteria are the following:

• The functionality description

• The platfomi description

• The allocation and scheduling policies

• The performance criteria

• The design space exploration capabilities

Functionality description

The functional spécification is probably the first thing that is defined when
starting a design. It captures the behaviour of the System ie the service that
it is “supposed"to-provide the-final-user^with :=it,is_thus_crucial io_ examine
its description for performance estimation. The functionality is defined in
table 4.1 for each previously reviewed tool by its spécification language or a
model of computation. Different interesting conclusions can be drawn from
the interprétation of this table.

First, it is obvious that, regarding the multiplicity of the functional descriptions
used by the tools, there is not one model of computation outshining ail the
others. Depending on the aspects that need to be captured (communication,
control/data dominance, memorization requirements etc.), the designer should
be able to use the MoC that corresponds the best to its needs. Representing
this modeling heterogeneity is the approach chosen by Ptolemy II (but also
El Greco in a smaller extent) and explains its success among the embedded
design community. However the common point among ail these models of
computation is that they ail try to explicitly expose in a way or another the
parallelism of the captured behaviour and its communication needs. This is
really important since it allows the designer (and automated synthesis tools)
to take advantage of the intrinsic platform parallelism and communication
structure.

Second, these models of computation are not necessarily used as an entry point
for design; the user has thus to translate mamially its favorite language to the
format required by the tool which can be quite a burden if not automated. Only
a few academie tools (like Design Trotter and Polis) include a parser enabling

U&CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Tool Behavioural spécification

Ptolemy II Hierarchical structure of lieterogeneous MoC’s (CSP, CT, DE,
PN, SDF)

El Greco Hierarchical structure of heterogeneous MoC’s (DFG, Or-model,
And-model, gated model)

Esterel Synchronous reactive language based on concurrent running pro­
cesses with focus on control

Système Hierarchical structure of concurrent processes containing
sequential-based threads

POLIS Codesign Finite State Machine (CFSM) description
AADL Hierarchical structure of nested processes

Chinook Verilog written at behavioural-level^^
MARTE A strong semantics UML-profile enabling the spécification of het­

erogeneous MoC’s
SysML A weak semantics UML-profile for the recursive and hierarchical

description of a functionality
KOSKI Functionality based on UML models describing Kahn Process

Networks
Mescal Based on Ptolmey’s Discrète Event model of computation

ARTEMIS Kahn Process Networks
METROPOLIS Network of concurrent processes with inner sequential C code

SPADE Kahn Process Networks
MILAN Data Flow Graphs

A DSE environment Abstract textual définition of the functionality relying on varions
embedded models

The SOC explorer Data Flow Graphs
Design Trotter Hierarchical Control Data Flow Graphs

ROSETTA Different domains of functional description (DE, CT, FSM) com-
posed hierarchically

Table 4.1: Fiuictionality spécification of the state-of-the-art tools

4.4. ANALYSIS AND CLASSIFICATION OF LITERATURE 147

conversion from a familiar language to a particular MoC while commercial
tools put a lot of efforts in automating as much as possible these tasks since
they try to reduce time-to-market and manual intervention.

Finally we can also notice that some tools and languages (AADL, SySML,
Ptolemy and SystemC) take into account the hierarchical nature of the func-
tionality and thus go for a recursive modeling. This spécifie aspect will be
dealt later on when we will discuss the allocation/scheduling criterion.

Platform Description

As already nientioned, the platform refers to the physical support that will be
used to execute the functionality. The platform is also intimately related to
the notion of cost: it’s only when the functionality uses the different services
provided by this platform that perfomiances (execution time, Silicon area, en-
ergy etc.) can be quantitatively estimated. We thus focus our classification on
topological description and physical cost of the platform: table 4.2 summarizes
the main related features of the reviewed tools.

From our comparLson table, we can see that almost each tool defînes its own
description of the platform. Indeed unlike functionality whose characteristics
are captured inside well-known and -identified modeLs of computation, the
platfomi lias no standard description format. ThLs entails a large variety and
heterogeneity in the resulting models used to represent these platforms: •

• Ail behavioural tooLs represented in the table entries hâve been filled
up with Not relevant mentions. That’s because they do not explicitly
represent the platform using a dedicated semantics although they are
able to capture the behaviour of the platform.

• Almost ail the tools model the platform in a way or another: most of
them go for for a structured network of components and only a few ones
enable a parameter-based description (like t/ie SoC explorer and the DSE
environment). However the instantiated components are usually chosen
inside small and predefined libraries that only include most of the time the
computational parts of the architecture. Some tools represent explicitly
either the memory or the interconnect part but very few consider the
three aspects simultaneously.

• Since platforms can be defined at very high levels of abstraction, the
inner components may themselves contain sub-components. If we already
came ac:ross this recursive-style description in behavioural modeling, it
makes even more sense to describe an architecture hierarchically since the
components hâve physical bounds (due to the divide-and-conquer policy
used by automated synthesis tools) that make them easier to separate
from each other.

U8CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Tool Platform spécification

Ptolemy II Not relevant
El Greco Not relevant
Esterel Not relevant

Système Not relevant
POLIS Only gâte libraries are defined for platform synthesis
AADL Hierarchical structure of components (memory, computation and

interconnect)
Chinook Components interface described in Verilog
MARTE Spécifie UML-profile
SysML UML-profile defining a hierarchical structure of components
KOSKI UML model of the platform
Mescal Based on TEEPEE extending Ptolemy with actors modeling the

behaviour of processing, communication and memory éléments
ARTEMIS System-C model for components with performance annotation

METROPOLIS Recursively defined network of processes representing the topol-
ogy of the architecture with attached quantity managers

SPADE Structure of components (communication and functional units)
instantiated from a library

MILAN Structured description of components (processors, interconnects,
reconfigurable units and memories) with annotated execution
time and energy consumption

A DSE environment Abstract textual définition of the platform relying on varions
embedded models

The SOC explorer Set of parameters defining the platform (bus frequency, func­
tional unit frequency, bus bit width, buffer size)

Design Trotter Structured description of memories and functional units
ROSETTA Non-hierarchical structure of interconnected domain-dependent

components

Table 4.2: Platform définition used by the state-of-the-art tools

4.4. ANALYSIS AND CLASSIFICATION OF LITERATURE 149

Basée! on this platform hierarchy. we can divide the reviewed tooLs into
two different categories: limited hierarchy and recursive hierarchy.
At one hand, limited hierarchy refers to the fact that only a limited
amount of well-identified abstraction leveis can be used to represent the
platform. This approach is commonly chosen by synthesis-centric tools
that need intemiediate platform représentations to get their work done
properly: most of the time the lower leveis remain hidden to the user and
are built automatically by the tool as a netlist of components.
At the other hand, recursive hierarchy is adopted by performance es­
timation centric tools that define the platform as an unlimited recursive
structure of components (like SysML, AADL and METROPOLIS). If this
last approach emphasizes the intrinsic hierarchy of a platform by repre-
senting it as unfolding trees, its recursive nature involves a shared -thus
weaker- semantics for ail leveis which entails a greater modeling effort.

• As already explained, the platform Ls just a physical support enabling
the execution of the functionality by providing it with several different
services; several of the already reviewed tools take advantage of this con­
cept:

— MARTE introduces the notion of quality of service by establishing the
cost and performances of a given platform component: the physical

------- -resource is-seen as a sercer providing a service to the c/fenf (the
application) for a certain cost.

— METROPOLIS uses a separate network of processes to describe the
functionality and the platform: each platform-related process en-
ables the execution of a given functional-related process. Ihirther-
more quantity managers are attached to the use of the resources so
that their usage co.st can be evaluated.

— SPADE defines components with inner execution units, each one Corn­

ing with a list of symbolic functional instructions that can be treated
by this particular execution unit.

This demand/offer approach is essential when it cornes to clearly separate
the functionality from the platfonn and associate costs to the use of a
component. Furthermore drawing such a clear and explicit link between
functionality and platform makes the work of the mapping tools much
easier.

Allocation and scheduling

Once the functionality and platform hâve been modeled, we need to define
where and when each operation will be executed on the architecture. These
two steps respectively called allocation^^ and scheduling are required in order

the case of the reviewed HW/SW codesign tools, the different tasks forming the functionality are
nmnually dispatched among the HW and SW components. This step is called task allocation and is just

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Tool Behaviour spécification

Ptolemy II Not relevant
El Greco Not relevant
Esterel Not relevant

Système Not relevant
POLIS Manual partitioning, automatic scheduling
AADL Manual allocation

Chinook Manual partitioning (verilog processes are tagged by the user),
automatic scheduling

MARTE Behaviour/platform interaction manually described in a UML
mode!

SysML Allocation specified manually
KOSKI Automatic allocation of tasks on processing éléments and

scheduling
Mescal Manual allocation of the application on the platform support

(Service/demand problem)
ARTEMIS Automatic allocation and scheduling (FCFS, round-robin or

user-defined)
METROPOLIS Manual allocation, automatic scheduling (functional and archi­

tectural networks are synchronized to form the mapping net-
work)

SPADE Manual allocation, manual scheduling
MILAN Manual allocation and FCFS scheduling

A DSE environment Script dépendent
The SOC explorer Manual allocation, automatic scheduling in two phases

Design Trotter Automatic mapping, list-based scheduling
ROSETTA Not relevant

Table 4.3: Allocation and scheduling methods used by the state-of-the-art tools

to make the adequacy between functionality and platfomi. The policy used
to carry them out will déterminé in a large extent the performance of the
resulting System (resource minimization, execution time maximization, static
power minimization etc.). Taking these methods into account is thus crucial in
performance estimation; table 4.3 présents the different methods as precisely
as possible given the information available in the papers.

Looking at this table, we can see that almost ail the tools deal with allocation
and scheduling in a way or another. While some of them only provide the sup­
port for the mapping représentation (for instance AADL and SysML), others
completely automate the process (like Artémis and Koski). Scheduling is also
much more automated than allocation mostly because the tools often assume

a particular case of allocation

4.4. ANALYSIS AND CLASSIFICATION OF LITERATURE 151

that the designer Ls in best position to take that type of decision. However, the
results of scheduling highly dépends on the initial allocation step: for instance
it’s obvions that allocating heavy computational tasks on slow functional units
will lead to poor execution times whatever the chosen scheduling policy. Unfor-
tunately tools that automate both allocation and scheduling usually perform
them separately failing to optimize the problem in its whole.

It Ls also interesting to note that almost ail allocation/scheduling methods
hâve fîxed policies that are most of the time focused on timing-related vari­
ables optimization. In the context of embedded systeras where performance
is a matter of multi-criteria optimization, tools should provide the user with
different policies to choose among depending on the most prédominant aspects.

Finally we can also note that SPADE, MESCAL, METROPOLIS and MARTE
ofFer easier allocation by adopting a demand/service approach for functionali-
tj'/platfrom représentation. However none of them offers automatic allocation
whereas it could be automated in a very élégant and proper way.

Performance criteria

AU the reviewed tools allow the.designer-to-make-performance-rerated measures
thanks to simulation or the use of models. However tehre are many différences
in the nature and number of these performance criteria^^: table 4.4 présents
for each of them the different types of performance criteria that resuit from
their use.

As we can see most of the performance évaluation revolves around time (usually
execution time) probably because it’s so important to measure for real-time
applications. Chip area (or some measurements of the architectural resources)
and power consumption are far less represented than time but deserve some
attention since timing constraints are not the onlj' constraints that need to be
met in a design. However when these last two performance criteria are con-
sidered inside a tool, it’s often as a constraint set by the user rather than a
resuit evaluated by the tool for a set of design choices. These constraints are
often used for internai optimization purpose only and the user is not able to
explicitly compare compromises between ail the performance criteria unless he
performs repeatedly different estimations while changing the constraints val­
ues.
Finally only two of the reviewed frameworks make iiser-defined performance
criteria possible. METROPOLIS embeds that feature inside its event-based

■■'Performance cormnouly refers to execution time and time-related measurements which is a bit restric­
tive in the field of embedded Systems where many othei' aspects need to be taken accomit. To extend the
meaning of performance, we hâve borrowed the term criterion from multi-criteria decision analysis: not
only does it relate to the fact that performance cover valions aspects but it aJso emphasizes the fact that
it’s a paiameter value the designer is interested in when making a design choice.

152CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Tool Behaviour spécification

Ptolemy II Execution time
El Greco Execution time
Esterel No

Système Time-related measurements
POLIS Execution time
AADL Time-related measurements

Chinook Time-related measurements (latency, throughput)
MARTE Time-related measurements (response times, throughput, dead-

line vérification)
SysML Execution time and power consumption
KOSKI Constraints on latency, power consumption, chip area and

throughput can be set by the user and tried to be met by KOSKI
during synthesis

Mescal Execution time
ARTEMIS Execution time and power considération are considered during

optimization
METROPOLIS Customizable quantity managers allow the user to define perfor­

mance criteria (by default only time and energy are included)
SPADE Time-related measurements
MILAN Latency and energy

A DSE environment Domain-dependent (area, time and power consumption are pro-
vided as examples)

The SOC explorer Execution time and area
Design Trotter Execution time and number of resources (an indirect measure of

area)
ROSETTA The constraint dom,ain allows the user to put constraints on the

value of any desired performance criterion

Table 4.4: Performance criteria estimated by each state-of-the-art tools

4.4. ANALYSIS AND CLASSIFICATION OF LITERATURE 153

simulation core: quantity managers can be attachée! to a process whose exe­
cution will trigger the latter évaluation. Ad dit ion al ly tlie user is also able to
define custom quantity managers (by integrating a piece of code calculating
the value of the evaluated performance parameter) that will automatically be
evaluated each time the associated process is triggered. ROSETTA also sets up
a way to define non-fiinctional constraints on parameters for each component:
however the tool is meant for spécification only and doesn’t provide any way
to estimate them based on the description of the functionality/platform.

Design Space Exploration

Apart from modeling the application, the platform and their interaction, the
designer needs to be able to evaluate and easily compare different design
choices: therefore many perfonnance estimation tools daim to provide him
with design space exploration. Design space exploration, as we intend it, con-
sists in exploring different design choices and results in compromises between
the performance criteria. The entire design space is determined by the dif­
ferent design degrees of freedom and associated values while the exploration
method ranges from exhaustive design space sweep to complex heuristics to
only explore spécifie parts of the design flow. The designerjiiseJhose'méthods\^

“tO'have'an OverView“bf'thé"impact~bf~clmices on performances: he thus lias to
explicitly define performance criteria, degrees of freedom and the exploration
method. The comparison of these different tools regarding the design space
exploration method is summarized in table 4.5. First of ail, we can see that
some tools don’t offer any support for design space exploration whereas others
hâve ”manual exploration capabilities”. However, there is no real différence
between these two types: indeed the term "manual” refers to the fact that the
designer is able to change some design parameter (regarding the functionality,
the platform or possibly the mapping method), make the estimation tool run
again and compare the resuit to the previous ones. Basically any tool générâtes
a set of outputs depending on its inputs: it’s obvions that changing the latter
values will certainly modify the output values. This leads to the conclusion
that any tool is able to perform ”manual exploration” of the design space,
the only différence being that some papers explicitly daim to support it while
other’s don’t: that’s why we made the distinction. We are totally aware that
the previous distinction could seem a bit absurd but it shows how misused and
overrated the "design space exploration” expression often is.

Aside from the previous tools which don’t really provide any spécial support
for design space exploration, we hâve a few ones that allow the user to define
several design choices to compare and explore them automatically afterwards.
MILAN, the SoC explorer and KOSKI ail work on a same principle of op-
timization: they define a cost function and try to minimize it for different
architectural competitors. This leaves us with ARTEMIS and Design Trotter

154CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Tool Behaviour spécification

Ptoleniy II No
El Greco No
Esterel No

Système No
POLIS Manual exploration (tasks can be swapped from SW to HW or

inversely)
AADL No

Chinook Manual exploration (tasks can be swapped from SW to HW or
inversely by tagging the Verilog code) and scheduling optimiza-
tion based on heuristics methods

MARTE Manual exploration (platform and functionality can be changed)
SysML No
KOSKI Automatic sélection among several architecture candidates based

on the estimation of a user-defined cost function (area, power
consumption, latency and throughput).

Mescal Manual exploration (platform and functionality can be changed)
ARTEMIS Automatic exploration of the mapping methodology based on

the computation/communicaiton performances and power con­
sumption resulting in Pareto-optimal curves

METROPOLIS Manual exploration (platform and functionality can be changed)
SPADE Manual exploration (platform and functionality can be changed)
MILAN Exhaustive exploration of ail the possible architectures

A DSE environment Manual
The SOC explorer Automatic exploration of the architectural parameters trying to

reduce the number of explored solutions
Design Trotter Internai heuristics used to explore different compromises between

the execution time and number of resources and discarding sub­
optimal solutions

ROSETTA No

Table 4.5: Design space exploration and optünization methods of the state-of-the-art
tools

4.4. ANALYSIS .AND CLASSIFICATION OF LITERATURE 155

Tool No
Ptolemy II No
El Greco No
Esterel Yes (using ESTEREL STUDIO)

Système Yes (using commercial tools to turn SystemC into synthesizable
RTL)

POLIS Yes (Hardware: translation to VHDL, Software: translation to
standard G followed by the use of vendor spécifie tools (FP-
GA/ASIC synthesis tool, compiling tool)

AADL No
Chinook Yes (targeting high multi-processor integrated with off-the-shelf

HW components + interface synthesis)
MARTE No (currently under work)
SysML No
KOSKI Yes. Synthesis towards multi-processor architectures SoC’s
Mescal Yes (only towards ASIP’s)

ARTEMIS No
METROPOLIS Yes (using dedicated extemal tools)

SPADE No
MILAN No

^ArDSE environment Nb
The SOC explorer No

Design Trotter No
ROSETTA No

Table 4.6: S}Tithesis capabUity for each state-of-the-art tools

which are the only ones falling into our "design space exploration” définition
by resiilting in different compromises for the user to finally choose among,

Finally we can also mention that none of the tools is able to simultaneously
play with design variables coming from more than one of the three different
degrees of freedom proposed in the Y-chart approach (mapping, functionality
and architecture). This last point is particularly annoying since it doesn’t
allow the designer to automatically study how different algorithms match a set
of architectures for instance.

Synthesis capability

Aside from the five previous criteria, we provide the interested reader with an
additional classification of the different reviewed tools based on the synthesis
capability and presented in Table 4.(i. As we can see most of the tools don’t
provide the user with synthesis capability, primarily because we put the focus

156CHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

on performance prédiction when we selected the different tools among the
literature. However it is interesting to see that the most abstracted tools
offering the most flexible modeling approach hâve no synthesis capability (like
Ptolemy, SySML and MILAN for instance). The reason for that is simple:
the doser we need to approach the implémentation level, the more details we
need to know about the architecture. Dealing with too many implémentation
details will however lead to a much longer time to estimate one single solution
which makes complex design space exploration more complicated: that's why
dedicated DSE rather go for more abstracted and less detailed représentations
making synthesis more difflcult.

To cope with that problem, the only way out is to proceed in two steps (like
KOSKI) by performing a first wide design space exploration based on rough
models of the components and then proceed to local exploration and opti-
mization in a second step. This allows tools to keep synthesis capability while
still exploring widely the design space. However HW/SW Systems synthe­
sis remains a problem because of the interfacing between these heterogeneous
components: KOSKI and Chinook solve that by restricting the number and
variety of components that the user can select to build the architecture.

4.5 Conclusions

In this chapter we hâve reviewed 19 different tools/langugages focusing on
VLSI System performance évaluation and design space exploration. We ex-
tracted the common concepts and méthodologies behind those tools and pro-
posed an original classification to compare them based on five different criteria:
the functional description, the platform description, the allocation/scheduling
strategy, the multi-criteria nature of performance estimation and finally the
design space exploration capabilities. Although these tools ail provide the user
with some estimation performance related features, their respective concern
revolves around different topics ranging from simple spécification to complété
and automated top-down implémentation. In their particular domain, they
offer most of the time very interesting ideas so that we may wonder if it is re-
ally worth spending time to redevelop another framework for pure performancé
estimation.

In fact trying to outshine these tools in their spécifie domain of interest would
probably be a mistake: PTOLEMY is unbeatable when it cornes to represent
a behaviour using heterogeneous modeling, POLIS is one of the rare tools
providing a seamless and complété flow, METROPOLIS allows the user to
specify custom performance criteria etc. Moreover some of the languages are
getting standardized -or at least widely adopted- while other hâve required a
lot of work and are still under development: duplication of the effort is surely
not what we are seeking. Instead we could bring together ail the different

CONCLUSIONS 157

interesting icleas and concepts behind each of these tools with our own into
one unique franiework dedicated to pure performance évaluation. For each of
the discussed criteria, we would like to improve the following points:

• Functionality and platform are most of the time represented separately us-
ing predefined description languages and offering only a limited hierarchy.
Modeling them recursively and jointly in a denmnd/supply style would
allow the user to specify costs for the utilization of the platform services
and fafûlitates the further work of the allocation/scheduling operation.

• Allocation and scheduling are performed separately in each tool, are not
always automated and policies cannot be custoniized or rarely selected
among a restricted list of choice. Since these mapping methods are crucial
in estiinating accurately the System performances, they need additional
support than what usual tools do provide the user with.

• Performance criteria are often limited to time-related variables only which
is too restrictive in the context of embedded System design.

• Design space exploration is probably one of the weakest point of ail the
reviewed tools. They fail in simultaneously representing the different
degrees of freedom coming from the functionality, the platform and the
mapping methods which restricts the design_space and doesn!t_enable — "

'"joint'optimi^tion. "Fürthé'rmore design space exploration is most of the
time performed internally inside the tool and does not provide the user
with the different compromises based on the performance criteria. When
it does, the exploration policy is always fixed and cannot be manually
determined.

By coping with ail these limitations, we will try to take performance estima­
tion centered tools a step further in terms of generality and flexibility: this is
precisely the topic of the next chapter describing our own tool called Nessie.

List of acronyms

ASIC Application-Specific Integrated Circuit
CFSM Codesign Finite State Machine
CSDF Cyclo-Static Data Flow
CSP Communicating Sequential Processes
CT Continuons Time
DE Discrète Event
FIFO First In First Out
FCFS First Corne First Served
FPGA Field Programmable Gâte Array
FSM Finite State Machine

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

HCDFG Hierarchical Control Data Flow Graph
HW Hardware
KPN Kahn Process Network
MoC Model of Computation
PN Process Networks
SDF Synchronous Data Flow
SoC System-on-Chip
SW Software
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits

Bibliography

[1] J. Russell, “Literature survey: Software performance estimation,” Univer-
sity of Texas at Austin, Tech. Rep., 2001.

[2] J. Platin and E. Stoy, “Aspects on system-level design,” in Proceedings
of the Seventh International Workshop on Hardware/Software Codesign,
1999, pp. 209-210.

[3] J. D. Yule, The Concise Encyclopedia of Science and Technolog, McGraw­
Hill Professional Publishing, Ed. McGraw-Hill, 2005.

[4] F. Balarin and P. D. Giusto, Hardware-Software Co-Design of Embedded
Systems: The Polis Approach. Kluwer Academie Publishers, 1997.

[5] A. Mihal, G. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S. Weber,
Y. Jin, K. Keutzer, G. Sauer, K. Vissers, and S. Malik, “Developing
architectural platforms: A disciplined approach,” 2002. [Online].
Available: citese<'r.ist.psii.('du/mihal02(h'veloi)iiig.html

[6] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. R. Sachs, and Y. Xiong, “Taming heterogeneity?the
ptolemy approach,” Proceedings of the IEEE, Spécial Issue on Modeling
and Design of Embedded Software, vol. 91, no. 1, pp. 127-144, January
2003. [Online]. Available: http://www'.giga.scale.org/pubs/393.html

[7] I. Panagopoulos, “Models, spécification languages and their interrelation-
ship models, spécification languages and their interrelationship for System
level design,” HPCL,The George Washington University, Tech. Rep.,
2002. [Online]. Available: http://hpc.gwu.('du/%7Elip(7iptools/pub.htm

[8] J. Buck and R. Vaidyanathan, “Heterogeneous modeling and simulation of
embedded Systems in el greco,” in CODES ’OO: Proceedings of the eighth
international workshop on Hardware/software codesign. New York, NY,
USA: ACM, 2000, pp. 142-146.

[9] (2007). [Online]. Available: htti)://www.s>uiopsys.com/products/
(lesignware/system-st udio/system jst ud io. ht ml

http://www'.giga.scale.org/pubs/393.html
http://hpc.gwu.('du/%7Elip(7iptools/pub.htm

DIBLIOGEAPHY 159

[10] T. Parks, J. Pino, and E. Lee, “A comparison of synchronous and
cyclostatic dataflow,” 1995. [Online]. Available: cit(î<e(T.ist.j)sn.e<ln/
parks9.5c()nii)aii.son.htnil

[11] F. Boussinot and R. de Simone, “The esterel language,” Proceedings
of the IEEE, vol. 79, no. 9, pp. 1293-1304, 1991. [Online]. Available:
htt p://ie«'exi)lore.i('<M‘.oig/xpLs/abs_all.jsi)?arnmiilKT=97299

[12] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L. Guernic, and
R. de Simone, “The synchronous languages twelve years later,” Proc, of
the IEEE, Spécial issue on embedded Systems, vol. 91, no. 1, pp. 64-83,
Jan. 2003.

[13] G. Berry, “The foundations of esterel,” in Proof, Language, and Inter­
action: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling, and
M. Tofte, Eds. MIT Press, 2000, pp. 425-454.

[14] (2007). [Online]. Available: htti)://www.ester('l-('(la.com/i)roducts/ind('x.
html

[15] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
dataflow programming language lustre,” Proceedings of the IEEE, vol. 79,
no. 9, pp. 1305-1320, September 1991.

[16] P. L. Guernic, T. Gautier, M. L. Borgne, and C. Lemaire, “Programming
real-time applications with signal,” Proc, of the IEEE, vol. 79, no. 9, pp.
1321-1336, Sept. 1991.

[17] O. commitee, “Système tlm 2.0 standard,” Open SystemC Initiative, Tech.
Rep., 2008. [Online]. Available: http://www.sy.stemc.org/downlomls/
St and a rds/t 1 m20 /

[18] D. Ku and G. DeMicheli, “Hardwarec - a language for hardware design
(version 2.0),” Stanford, CA, USA, Tech. Rep., 1990.

[19] W. Mueller, R. Dômer, and A. Gerstlauer, “The formai execution seman-
tics of specc,” in ISSS ’02: Proceedings of the 15th international sym­
posium on System Synthesis. New York, NY, USA: ACM, 2002, pp.
1.50-155.

[20] M. Chiodo, P. Giusto, H. Hsieh, A. Jureeska, L. Lavango,
and A. Sangiovanni-Vincentelli, “A formai spécification niodel
for hardware/software codesign,” in In Proceeding of International
Workshop on Hardware-Software Codesign, 1993. [Online]. Available:
<itese(T.ist.i)su.edu/chiodo93foniial.html

[21] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A.
Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and A. Sangiovanni-
Vincentelli, “SIS: A System for sequential circuit synthesis,” Berkeley -
center for electronic System design, Tech. Rep., 1992. [Online]. Available:
cit (sem.ist .])su.edu/scntovicIi92sis.html

http://www.sy.stemc.org/downlomls/

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

[22] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Scheduling and niemory
requirements analysis with andl,” Ada Lett., vol. XXV, no. 4, pp. 1-10,
2005.

[23] P. H. Chou, R. B. Ortega, and G. Borriello, “The chinook hardware/-
software co-synthesis System,” in ISSS ’95: Proceedings of the 8th inter­
national symposium on System synthesis. New York, NY, USA: ACM
Press, 1995, pp. 22-27.

[24] A. Pimentel, “The artemis workbench for System-level performance
évaluation of embedded System architectures at multiple abstraction
levels,” International Journal of Embedded Systems, vol. 1, no. 7, 2005.
[Online]. Available: http://darc.nva.nl/r('cord/22145S

[25] K. G., “The semantics of a simple language for parallel programming,”
Proc, of IFIP Congress, pp. 471-475, 1974.

[26] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers,
“A methodology for architecture exploration of heterogeneous signal
Processing Systems,” Journal of VLSI Signal Processing for Signal., Image
and Video Technology, vol. 29, no. 3, pp. 197-207, Nov. 2001,
spécial issue on SiPS’99. [Online]. Available: cit(^'er.ist.psn.('du/article/
licvcrsfD 11 lU't hodology. ht ml

[27] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic System
design environment,” Computer, vol. 36, no. 4, pp. 45-52, 2003.

[28] S. Mohanty, “Rapid System-level performance évaluation and optimization
for application mapping onto soc architectures,” 2002. [Online]. Available:
cites('cr.i.st.i)su.(xlu/mohantj’02rapid.htnil

[29] O. Bentz, J. M. Rabaey, and D. Lidsky, “A dynamic design estimation and
exploration environment,” in Design Automation Conférence, 1997, pp.
190-195. [Online]. Available: cit(«(vr.ist.psu.('du/bcntz97dynamic.html

[30] K. Ueda, K.AND Sakanushi, Y. Takeuchi, and M. Imai, “Architecture-
level performance estimation method based on system-level profiling,”
Computers and Digital Techniques, lEE Proceedings -, vol. 152, no. 1,
pp. 12-19, 14 Jan. 2005.

[31] J.-P. Diguet, G. Gogniat, J. L. Philippe, Y. L. Moullec, S. Bilavarn,
C. Gamrat, K. B. Chehida, M. Auguin, X. Fornari, and P. Kajfasz, “Epi-
cure: A partitioning and co-design framework for reconfigurable comput­
ing,” Microprocessors and Microsystems, vol. 30, no. 6, pp. 367-387, 2006.

[32] L. Bossuet, G. Gogniat, and J. Philippe, “Fast design space exploration
method for reconfigurable architectures,” 2003. [Online]. Arailable:
cit es(x'r. ist .psu .('du/bossu(‘t03fast. html

[33] P. Alexander, System Level Design with Rosetta (Systems on Silicon).
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2006.

http://darc.nva.nl/r('cord/22145S

BIBLIOGRAPHY 161

[34] J. Rumbaugh, I. Jacobson, and G. Booch, Ekls., The Unified Modeling
Language référencé manual. Essex, UK, UK: Addison-Wesley Longman
Ltd., 1999.

[35] H. Espinoza, H. Dubois, S. Gérard, J. L. M. Pasaje, D. G. Petriu, and
G. M. Woodside, “Annotating uml models with non-functional properties
for quantitative analysis.” in MoDELS Satellite Events, ser. Lecture
Notes in Computer Science, .J.-M. Bruel, Ed., vol. 3844. Springer,
2005, pp. 79”90. [Online]. Available: littp://dblp.uni-tri(T.de/db/conf/
uml/uiodeLs20().5se.html#EspinozaDGPP\V05

[36] H. Espinoza, H. Dubois, J. Médina, and S. Gérard, “A general structure
for the analysis framework of the uml marte profile,” in Lecture Notes
in Computer Science, S. B. . Heidelberg, Ed., vol. 3844/2006, 2005, pp.
58-66.

[37] Y. Vanderperren and W. Dehane, “Sysml and Systems engineering applied
to uml-based soc design,” in roceedings of the 2nd UML-SoC Workshop
at 42nd DAC, 2005.

[38] H. Gimbert, “Rapport sur les outils de modélisation des systèmes com­
plexes,” Ecole polytechnique - Sysmantic Paris-Région, Tech. Rep., 2007.

[39] T. Kangas, P. Kukkala, H. ürsila, E. Salminen, M. Hânnikâinen, T. D.
Hamalainen, J. Riihimaki, and K. Kuusilinna, “Uml-based multiprocessor
soc design framework,” Trans. on Embedded Computing Sys., vol. 5, no. 2,
pp. 281-320, 2006.

mCHAPTER 4. STATE OF THE ART ON PERFORMANCE PREDICTION TOOLS AND METHODS

Chapter 5

Nessie: Concepts, Design and
Implémentation

Abstract
In this chapter, we présent tlie design and implémenta­
tion of our tool for hierarchical performance estimation tool
called Nessie. Compared to state-of-the-art tools, Nessie
focuses on performance estimation and set up dedicated_ ___ _
Wiechânimis enahlihg easier and flexible design space explo­
ration by making explicit ail the design degrees of freedorn
(functional-, platforrn- and mapping-related) and deliver-
ing performance criteria defined by the user in retum.
The performance estimation is based on mixed mapping/-
analytical models (using our tool Yeti) and enable the hi­
erarchical exploration of the platforrn and functionality.
Based on a flexible description of the functionality and the
platforrn, Nessie is able to perform an automatic and hier­
archical mapping in three steps (scheduling, allocation and
routing) and dérivé the performance criteria values from
tins operation.
After presenting ail these new concepts illustrated by sev-
eral small examples, we explain how the framework can be
used to automatically generate graphs, activity reports and
scheduling reports at the end of the simulation. Some im­
plémentation questions will finally be discussed to illustrate
the flexibility of Nessie and how it can offer support to eas-
ily extend its current functionalities m the future.

163

164 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

5.1 General concepts

To begin this description of Nessie, we will first try to define the general philos-
ophy and main ideas that it relies. To organize this description, we will focus
on the criteria that hâve been established in the préviens chapter to classify
the different performance estimation related tools. In this section, design space
exploration methodology, représentation of the functional/platform structure,
mapping methodology, performance criteria spécification and estimation will
thus be discussed in the case of Nessie.

5.1.1 Design space exploration

In chapter 4 devoted to state of the art, we saw that most of the existing
performance prédiction tools only offer restricted design space exploration ca-
pabilities. The input parameters related to the System are often liniited to
the platform and rarely include the functionality and the mapping process.
Furthermore design space exploration doesn’t always rely on automated pro­
cesses so that solutions often need to be estimated one by one. Finally the
exploration policy is rarely explicit.
Nessie tries to cope with these limitations by providing the user with a seamless
exploration framework able to perform the évaluation of several solutions in a
single run according to a user-defined exploration policy.

Criteria and degrees of freedom

Nessie offers a very simple interface to estimate and compare different solu­
tions: a set of inputs defining the different degrees of freedom of the System that
the designer can tune and a set of outputs representing performance variables
related to different aspects of the System (called performance criteria). This
interface is depicted in Fig..5.1 where M inputs (degrees of freedom) and N out­
puts (performance criteria) are defined: seen from the outside, the estimation
of one particular solution just consists in assigning each input a value, trig-
gering the évaluation and observing the resulting outputs. Before discussing
further the different capabilities offered by this interface, let us first explain
in details the concepts of criteria/degree of freedom considered until now as
outputs and inputs of Nessie’s performance évaluation core.

Performcince Criteria Performance criteria refer to the different variables
that quantitatively represent the System quality and that the designer consid-
ers as worth evaluating^. Nessie doesn’t limit the number of criteria or restrict
their nature as long as the user is able to define how they are calculated. Exe­
cution time is the only criterion that is mandatory since the mapping process

'The term criteria bas been borrowed from the multi-criteria analysis field[l] emphasizing the fact that
these variables values are used for decision making (see Sec.7.1.1).

5.1. GENERAL CONCEPTS 16

'N-1

Figure 5.1: Performance évaluation interface offered by Nessie: inputs are the design
related degrees of freedoin wliile oiitputs are the performance criteria

166 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

includes the scheduling of the functionality where time plays a crucial rôle (see
Sec.5.4,4).

Degrees of freedom Degrees of freedom are ail the variables whose value
modification might hâve an influence on the System performance criteria. Nessie
supports different types of degrees of freedom (DoF):

• Parameterized degrees of freedom relate to the values that can be assigned
to one spécifie parameter of a Yeti mathematical model.

• Strv,ctured degrees of freedom describe ail the different structured de­
scriptions that can be used to represent one particular functionality or
platform primitive.

• Mappmg degrees of freedom refer to ail the possible choices that can be
made to modify the process that maps the functionality onto the platform.

Nessie completely banalizes the degrees of freedom in such a way that the
interface used to modify their value is the same whatever the DoF tyi^e. For
each degree of freedom, we can get information about the number of possible
values and choose one particular value among them: Nessie will, in a totally
invisble and automatic way for the user, do the appropriate changes to take that
new DoF value into account whatever its nature. Thanks to this mechanism
ail the degrees of freedom become banalized inputs which allows us to build
any exploration method on top of it.

User-defined exploration policy

Now that we hâve set up this interface, we need to define an exploration policy
for the design space. Many considérations may be taken into account like the
time devoted to exploration, the maximum number of solutions to explore etc.
In Nessie, the number of possible solutions only dépends on the number of de­
grees of freedom and respective number of possible values: the total number of
solutions is given by expression .5.1 where NumberooFi represents the number
of possible values for DoFi (the \th degree of freedom).

M

NumberOf Solutions = Numberoop. (5.1)

Fig.5.2 shows how it is possible to connect Nessie DoF/criteria interface for
performance estimation to a block driving the design exploration based on a
determined policy. The black box on the right part of this figure illustrâtes any
user-defined exploration policy which has access to the inputs and outputs of
the estimation core interface. To evaluate one solution, the exploration method
defines as input the values of the different design degrees of freedom and gets
in return the value of the different performance criteria. These values can then

5.1. GENERAL CONCEPTS 167

N performance criteria
N performance

constraints

▲ Evaluate new
solution

M degrees of freedom

Figure 5.2: Design spar:e exploration basée! on the Nessie performance évaluation
core

be coiïipared with the requireinents and can be u.s(xl to drive the exploration
process in an itérative way if required.
We are thus able to build any kind of exploration policy in Nessie thanks
to the performance estimation core which is encapsiilated inside the interface
presented in Fig.5.2. At the moment, Nessie only irnplements a full factorial
exploration policy performing an exhaustive design space exploration^.

5.1.2 Hierarchy

Along our state-of-art chapter (see Sec.4), we classified the reviewed frame-
works into non-hierarchical and hierarchical tools divided themselves into re-
cursive^ and non-n?cursive hierarchy. For Nessie, we chose to implement a re­
cursive hierarchy both for the platfonn and the functional spécification. As we
will now see, this choice leads us to flexibility for functional/platform descrip­
tion and allows us to explicitly specify different algorithms and architecture

^This method has been chosen for its simplicity as a démonstration case to show how we oan automate
the exploration of the design spat:e. The implémentation of spécifie methods to efficiently explore a large
space of possible solutions goes outside the scoi>e of this thesis but wiU be discussed in the future work
(see Sec.7).

^As a remiuder, non-recursive hierarchy impUes a hmitod nmnber of abstrar:tion levels, each of them
asiug a well-defined description semantics and syntax. On the contraiy, recursive hierarchy defines recur-
sively each building block as a structure of lower-level blocks so that there is no limitation in the number
of aljstrac tion leveLs.

168 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

competitors to be compared.
To formalize our hierarchical approach, we start by clearly defining some im­
portant concepts and vocabulary accounting both for the platform and the
functionality.

Abstraction levels

The abstraction level defines the level of details used to describe the platform
or the functionality: the most abstracted a représentation is, the more we hide
less important details to focus on the most important aspects of the System
making its représentation more compact hence easier to handle. In a design
process, the chosen abstraction level often results from the details at disposai
about the System and the understanding level of the System behaviour that
the designer desires to acquire.
In Nessie, the different abstraction levels are numbered in consecutive order
starting from 0 on top of the hierarchy'*. Since Nessie implements a recursive
hierarchy, the définition of an ith abstraction level entails the existence of
i upper abstraction levels. Furthermore, each functional-related abstraction
level must hâve it platform counterpart in order to preserve consistency of the
System description and enable platfomi/functional matching at each level of
abstraction.

Primitives

Each abstraction level requires the définition of spécifie building blocks to
structurally describe both the platform and the functionality: we name them
platform/functioncd primitives. Each primitive defines a particular functional
operation or platform element that can be instantiated at will to build a struc­
ture: this primitive instance is simply called a block. Each platform/functional
primitive will be defined by its abstraction level L and a unique identifier I
inside this abstraction level: Fci^i and Pt^j notations will thus be used to
respectively refer to these two types of primitives.
There is no restriction on the number of primitives^ in each abstraction level
and their définition is entlrely left to the user. Depending on the abstraction
level, the primitives may thus be very different:

O Functional primitives may vary from complex tasks at the highest levels
of abstraction (decoding of a video stream, data encryption operation,
storing a picture in a memory, etc.) to simple arithmetic operations (ad­
dition, multiplication, etc.).

"'Let us mention that it is mandatory to define at least the abstraction level 0 (ALo) since it refers to
the functionality and the platform as a whole.

^We will aJso see in Sec.-5.1.3 that the number of platform and functional primitives is totally umelated
except for ALo of course where only one platform and one functionahty needs to be defined.

5.1. GENERAL CONCEPTS 169

• Platfonn primitives may vary from complex computing éléments at the
highest levels of abstraction (ASIC’s, FPGA’s, MPU’s, etc.) to micro­
architectural inner components (multipliers, barrel shifters, register banks,
etc.).

Structures

Structures describe a platform/functional primitive based on an organized col­
lection of instantiated primitives of the immediately lower abstraction level.
Each primitive may be associated with several structures; they obviously can-
not be chosen simultaneously but represent alternative implémentations that
the designer could be interested in comparing with each other. At the plat-
form point of view, it may enable System or micro-architectural exploration
for a given functionality while it makes algorithmic exploration possible at the
functional point of view. In other words the introduction of multiple structures
per primitive at one abstraction level allows the designer to evaluate the best
match between different platform/functional implémentation couples. There-
fore the structure selected for one particular performance estimation run is one
of the degrees of freedom that the user may be able to play with inside Nessie
(see Sec.5.6.1).
Fig..'!.3 gives an illustrating example of two structures defined for a platform
primitivë“‘P#^l)fièvel 2 abstraction level. These structures are built upon
instances of the 5 available platform primitives Pts,y defined inside abstraction
level 3. As an example, the first of the two possible structures {Structo{Pt2fi))
is defined by the connection of two instances of primitive Ptz,A-, one Pts,o and
one Pts,i while structure Structo{Pt2fi) uses a different number of primitives
connected differently.
This previous example shows that a structure does not necessarily hâve to
iristantiate ail the available primitives and that different structures for the same
primitive don’t hâve to instantiate the same primitives. More importantly, ail
the primitives of an abstraction level L share a common pool of primitives
of the lower abstraction level L -f 1 to build up structures. However some
structures describing a particular primitive of AL^ could be based only on a
subset of the AL/^+i primitives, the other ones being not relevant. For instance,
let us consider a microprocessor and an FPGA being two platform primitives
defined at the upper abstraction level and CLB’s® as a possible primitive of
the lower abstraction level. If we could easily imagine different structures of
an FPGA primitive based on a different amount of CLB’s connected using
different network topologies, it’s however obvions that microprocessor based
structures won’t be composed ont of CLB’s. So it’s up to the user to build
.structures using only lower abstraction level primitives that are relevant in the
context of this particular primitive.

'’Configuiable Logic Blocks are small Processing éléments usually connected by a dense interconnect
network and providing FPGA’s witli their high parallel computing capabilities

170 CHAPTER 5. NESSIE: CONCEPTS, DESICN AND IMPLEMENTATION

Abstraction
level 3

Pt 3,0 Pt 3,1 Pt 3,2 Pt 3,3 Pt 3,4

Podof^alUhe^Pt^gj^^

Figure 5.3: Example of two different platform structures build upori a set of lower
abstraction level primitives

5.1. GENERAL CONCEPTS 171

Abstraction
level 0

Abstraction
level 1

Abstraction
level 2

Figure 5.4: Exaiiiple of two different fimctional structiues for a fimctional primitive
bniki upon a sot of lower abstraction level primitives

Finally it may useful to mention tliat Nessie assumes that the different available
functional structures for a same primitive leave the functional spécification
unciiangrod: it means that for a given set of stimuli, the behaviour of the
System will remain unchanged.
To summarize, we can illustrate Nessie hierarchy as depicted in Fig.ô. l for the
case of the functionality. Starting from the top of the hierarchy (abstraction
level 0), we hâve the functionality of the entire System that can be described
in different manners by using spécifie structures. Tinsse different structures
are composée! out of instances of smaller functional primitive instances (called
blocks) of the lower abstraction level and repre.sent different ways to describe
the .‘partie functionality. Eac:h primitive can again be described by lower level
structures and so on for the whole hierarchy.

Hierarchy: the big picture

This hierarchical description mechanism shared by the functionality and the
platform hâve several advantages offering a lot of fiexibility inside Nessie;

• The semantics of each level is entirely described by the user using primitive
blocks.

• The entire hierarchy is sirnultaneously exposed making trade-offs between
depth of exploration and exploration time possible.

• Using the same hierarchical description formalism both for the function­
ality and tlie platform allows us to draw strong links between them and

172 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

makes the consistency between them easier to establish.

5.1.3 Functionality and platform consistency

Now that we hâve defined the hierarchical nature of Nessie platform and func-
tional représentation, we need to hâve a doser look on the way they interact.
Iirdeed functionality and platform represent two complementary aspects of the
System that need to be jointly represented in order to simplify the task of the
mapping process. To do so, we chose a demand/offer approach to character-
ize the functional requirements and the platfomi-related services that can be
delivered.

A demand/oflfer paradigm

From the pure functional point of view, it is impossible and absurd to de-
fine any kind of implémentation cost: only the conformance to a specified
behaviour can be tested (using for instance software formai vérification meth-
ods). Indeed it’s only when a functional block has been mapped onto a platform
component that the notion of implémentation cost appears (execution time,
energy consumed to complété the operation, Silicon area required, etc.). In
a software programer perspective, it may be tempting to believe that execu­
tion time of an application can be reduced by optimizing code independently
from the platform running it (a computer in the présent case). Even if we
can’t deny the potential efRciency resulting from the commonly used methods,
there is an implicit knowledge of the platform driving this optimization pro­
cess: each programmer knows that a microprocessor is a sequential machine
fetching instructions of heterogeneous complexity out of a hierarchical cached
memory. That’s why reducing the number of code Unes, organizing table mem-
ory accesses to avoid data swapping in and out of the cache memory as well as
decreasing the branches number in the code will probably tend to reduce the
execution time. For further optimizations, the programmer has to get a better
understanding of the platform, hence go for assembly-level code modifications
or rely on the compiler to do it. Annotating high-level instructions with cost is
another way to hide the platform dependency but these implémentation costs
are usually drawn from an analysis of the platform performances for any of
these possible high-level instructions ([2] [3]).
The previous discussion shows that the notion of cost is intimately related to
the platform: that’s why we decided to clearly separate platfonn from function­
ality and adopt an offer/demand^ interaction mechanism. This is an important
choice that highly impacts the way Nessie will work and that’s why we spent
some time to justify it.
Nessie thus defines the rôles of functionality and the platform as following:

’’lt is important to understand that the concept of offer/demand as we intend it has no relation with
its economical counterpart.

5.1. GENERAL CONCEPTS 173

• The functionality dernands a certain service to be delivered by the System
to meet the functional requirernents'. no cost is associated to the démand.
At any abstraction level, each functional primitive Fci^j thus defines a
particular service.

• The platform offers a certain service to the System with associated im­
plémentation costs which are precisely the performance criteria. At any
abstraction level, each platform type Ptcj thus defines one or several
services that can be delivered by the System with their respective costs.

From these preliminary définitions we can already draw some very important
implications.

Independent functional spécification The functionality is always speci-
fied independently from the platform: this is very important since it gives the
opportimity to explore different platfonn choices without having to modify
the functional spécification. If this choice may seem very interesting in a per­
formance exploration perspective, it however has the drawback of putting the
stress on the mapping tool since no functional customization will be performed
for the platform.

Platform implementation^osts The platformJs onjy rgsponsible for defin-
ihg" implëniëhtation costs associated to the service(s) that it delivers. However
knowing about the platform is not sufficient to compute the value of the perfor­
mance criteria: we first need to define which services of the different platform
blocks will be used and their activation order. This is precisely determined
by the functionality defining the number and type of services that need to be
activated and by the policy used to déterminé their activation order and the
platfonn coniponents that they will be assigned to. In other words, it’s the ad-
equacy between the functionality and the platfonn performed by the mapping
method that will lead us to the estimation of performance criteria values.
TVanslated into Nessie formalism, it means that mapping any functional type
Fc[^j instance onto a platform primitive instance Ptij will resuit in the es­
timation of the criteria defined by the user. This is illustrated in Fig..5.5.
that identifies clearly the three degrees of freedom (platform, functionality
and mapping policy) and shows how performance criteria are estimated.
Nessie thus defines performance criteria as being the values exchanged between
abstraction levels to enable their interaction and makes their évaluation manda-
tory for any platform/functional primitive adequacy whatever the abstraction
level.

Flinctional/Platform compatibility A particular platform component may
be able to deliver more than one service, each one at the price a different cost
i.e. different performance criteria values. Furthemiore, one particular ser­
vice can be delivered by more than one platform primitive: if this will make

174 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

NESSIE

Interface with AL(L-1)
I Criteria (Pt L,i, Fc LJ) 1

Degrees of
freedom =

Functionality
Platform
Mapping

Figure 5.5: The three degrees of freedom (fimctionality, platform and mapping) used
by Nessie to estimate performance criteria values

5.1. GENERAL CONCEPTS 175

no différence at the functional point of view, it wil) lead to different possible
perfomiance trade-offs and leave room for choice during the mapping. For in­
stance let us consider an FFT operation and two different platform components
able to deliver that sei-vice: a low-power micro-controller and an FPGA. If we
choose power consumption and execution time as the two relevant criteria, the
FPGA will probably execute the FFT faster than the micro-controller but at
the price of a higher power consumption.
In Nessie, each functional type defines a service required by the System and
each platform type cornes with a list of cornpatibility containing the different
services that it is able to provide the System with and the costs associated to
it.

5.1.4 System hierarchical exploration

In the previous subsections, we discussed the hierarchical approach chosen for
the représentation of the platform and the functionality inside Nessie. How-
ever we didnff explain how the exploration of this hierarchy can be performed
neither how it is possible to détermine the depth of exploration: in the current
section we deal with these questions.

-----Explicit*mapping VS Yeti mbdèl

Recursive hierarchy models both the functionality and the platform as trees
where each node represents a primitive that can be described by a structure
composed ont of lower abstraction level primitives i.e. children of that node
élément. However we cannot unfold this tree forever: at some abstraction level
(i.e. a certain tree depth), we need to define atomic primitives that will be
tree leaves and won’t be further decomposed hierarchically.
Defining how the functional/platform hierarchy will be explored consists in
distinguishing the primitives that will be deeper explored through the hierarchy
from those which won’t. Estimating the performance criteria resulting from
the mapping of a Fci^j block on a Pti,^i can be donc in two different ways that
are illustrated in Fig.5.(j:

1. Explicit mapping of the functional structure related to Fci^j on the plat­
form .structure related to (left part of Fig.5.6). This method will
estimate the performance criteria and perfonn the mapping of the func­
tionality onto the defined platform based on the recursive criteria estima­
tion of the immediately lower abstraction level primitives. This mapping
process is quite complex and will therefore be detailed in a spécifie section
(see Sec.5.4).

2. Yeti model-based performance estimation (right part, of Fig.5.(>). To es­
timate performance criteria of atomic primitives®, we hâve chosen to in-

*Atomic primitivos refer to the fact that they will not be explored further in the liierarchy. They are

176 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 5.6: Estimation of performance criteria of a functional/platform primitives
pair through explicit mappiiig or the use of a Yeti model

terface Nessie with Yeti nioclels to take advantage of its flexible modeling
capabilities. This model is fed with parameters^ capturing the character-
istics of the fimctionality and the platforni (more details are given in the
following section o.l . l.

Explicit rnapping has the advantage of using more detailed information about
the functionality and the platform than Yeti models do: results are therefore
expected to be more accurate. This accuracy gain however cornes at the price of
an increased exploration time: choosing between the two methods thus results
from a compromise between accuracy and time devoted to exploration.
In its current version, Nessie provides implémentation mechanisms for defining
different hierarchical exploration policies in a flexible way. At the moment,
we hâve implemented as a démonstration example a full-depth exploration
policy: hierarchy will be explored as deep as possible until atomic primitives
are reached. Many other policies could be considered: limited abstraction level
policy (the exploration goes on until abstraction level L is reached), estimation
time driven policies (limiting the exploration depth based on an upper bound
for estimation time), etc.

defiucd by asea’s structiue related degrees of freedom and not by the existence of the stnictuies for this
dascribed primitive.

“Piuameters hâve ahea<ly been defined in the chapter devoted to Yeti (see Sec.2.4.1). As a reminder,
they are simply named variables with an attached floating point value.

5.1. GENEBAL CONCEPTS 177

Abstraction
level L

Parameter;
- Name
- Floating point value

Criteria (Fc |_ j, Pt |_ j)

Functionality Platfornn

Figure 5.7: Yeti niodeling for performance criteria estimation based on fimctional
and platform parameters

Yeti for performance criteria estimation

If Yeti is also a stand-alone tool, it lias originally been designed to provide
Nessie with fast performance criteria estimation based on analytical models.
Its flexibility rnakes dynamic model loading and execaition possible which are
features used in Nessie to build models at rnn-time and define Yeti parameters
as possible func-tional/platform degrees of freedom. When we don’t want to
further explore the hierarchy of the different abstraction levels, Nessie uses a
Yeti model captnring the platform and functional characteristics to estimate
the perfomiances criteria.
Fig.ô.7 depicts how a Yeti model is defined at a particular abstraction level L
to estimate the performances criteria of a Fci^i/Pt^^j combination and shows
that the System is divided into two different parts:

• The functional part. consLsts of a set of parameters relative to the ith
functional primitive of abstraction level L.

• The platform part, consists of a set of parameters relative to the j th plat-
fomi primitive of abstraction level L but also includes the model rep-
resenting the link between the functional/platform parameters and the
criteria^

To link the model inpnt parameters with the funcd;ional/platform parameters,
Nessie simjily proceeds by name identification. It ineans that ail the inpnt
parameters defined in the Yeti model need to contain the union of the
and Ptij parameters, otherwLse Nessie will generate an error. This name

could wonder why the Yeti mcxlel used to couipute the criteria values is part of the platform and
not the functionality. We made that choice because the platform precisely déterminés the cost of the
System (the criteria in om' vocabulary) and that’s why the model is attached to the platform.

178 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

binding is realized once and for ail at the initialization of a Nessie performance
estimation run to save as much execution time as possible for the exploration
phase itself. Thanks to that name matching, a single change of the parameter
value of a given functional or platform primitive will immediately affect ail
the models where it is involved. Thanks to that mechanism it becomes very
convenient to associate a parameter with a degree of freedom and modify its
value.
Furthermore it is very important to mention that one model is defined for
each combination of a functional Fci^i and a platform Pt^j primitive. This
allows the user to define a different model for each possible couple of primi­
tives giving him a lot of flexibility to define the way a functionality matches
a platform. Parameters are not necessarily the sanie for ail the models of a
particular abstraction level so that a functional/platform primitive simultane-
ously encapsulâtes ail the parameters required for the execution of ail possible
models.
With the mechanism of parameters presented so far, there is still one big prob-
lem left that cannot be solved by name identification only: the parameter name
and value consistency between the different abstraction levels and primitives.
The upper part of Fig..5.8 illustrâtes the example of two abstraction levels L
and L -+• 1 for a System where power consumption is part of the performance
criteria. Therefore we define Yeti models for each primitive including a supply
voltage parameter named ”Vdd”. At abstraction level L, an architecture com-
posed out of different components connected to the same supply voltage will
thus be represented by a structure of blocks of the four platform primitives,
each of them with a parameter called ”Vdd”. However to hâve a common sup­
ply voltage, we will hâve to define for each of these parameters the same value
implying as many value changes as primitives and leading to potential consis­
tency problems. Furthermore if we would like to measure the overall imjjact of
a particular block supply voltage change for instance (block on the fig­
ure), there is no information available for the user to select the right parameter
among ail the parameterized degrees of freedom named ”Vdd”. To solve these
ambiguity and consistency issues, we hâve decided to separate parameters into
two categories: global and local parameters.

• A global parameter is defined for ail the abstraction levels and ail the
primitives. Each time a new model is created, each input parameter with
a name corresponding to a global parameter name will directly be asso-
ciated with it. Only one degree of freedom is created for this parameter
and changing its value will affect ail the models where this parameter is
used which prevents several parameters with the same name from having
different values solving the problem of inconsistency.

• A local parameter dérivés from a global parameter and particularizes its
value for a given primitive at a particular abstraction level. This allows
the user to define a default value by assigning it to a global parameter

5.1. GENERAL CONCEPTS

and by cnstomizing it for a particular primitive by using a local parameter
with the same name. However to define a dedicated degree of freedom for
each local parameter and avoid name ambiguities, Nessie aiitomatically
renames the local parameter with a suffix referring to its nature (func-
tional or platform related), abstraction level and primitive identification
key. To simplify user’s model définition, models always refer to the orig­
inal global parameter name instead of the local parameter: Nessie will
adapt the names and correctly link the local parameters to the model.

Using this mechanism of global/local parameters, we can see (lower part of
Fig..").S that we now hâve as many degrees of freedom and parameter names as
values removing both ambiguity and consistency problems.

5.1.5 Summary

Taking back the different classification criteria established for the tools re-
viewed in the State of the art, we can explain how Nessie performs compared
to previous tools:

• Platform and functional description: functionality and platfomi are both
hierarchically described by structures based on lower abstraction level
primitives. As an alternative for structure, each primitive may ' * be

-- = --described by-a-collection-oTparameters"Ffincti5nâlitynêscription is to-
tally independent from the platform and lias no notion of implémentation
cost contrarily to the latter.

• Allocation and schedtUing: the offer/demand paradigm adopted for the
description of functionality/platfonn clearly defines their interaction and
sets a good basis for the mapping. Allocation, scheduling and routing
hâve several degrees of freedom allowing the user to try and compare
different mapping strategies.

• Performance criteria: they are defined by the user based on the relevant
aspects of the System to represent and compare. There is no restriction
on the number of criteria as long as we are able to define how to com-
pute their value and combine them. Only execution time is a mandatory
performance criterion since it is required by the scheduling process.

• Design space exploration: Nessie performance estimation core relies on a
DoF/criteria interface so that any user-defined exploration policy can be
implernented. Additionally, Nessie also supports the spécification of user-
defined hierarchy exploration policies defining how deep in the abstraction
levels the hierarchy should be explored.

• Synthesis: no synthesis is currently supported, Nessie focuses on perfor­
mance estimation.

From these different criteria, we can see that, compared to other tool, Nessie
is especially meant for performance estimation and design space exploration
and combines many mechanisms to offer as many fiexibility as possible.

180 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

(a) No locality for parameters

Abstraction
level L

Parameter 1 ;
name ; Vdd
value : 2.5

Parameter 2:
name : Vdd
value ; 2.5

Parameter 3:
name : Vdd
value ; 1.8

Parameter 4:
name : Vdd
value : 2.5

Abstraction
level L+1

Parameter 5:
name : Vdd
value : 2.5

Parameter 6:
name : Vdd
value ; 2.5

Parameter 7:
name : Vdd
value : 3.3

3 different values for Vdd results In :
1 degrees of freedom and 7 different parameters Vdd

(b) Global and local parameters

Abstraction
level L

Parameter 1 : Parameter 1 : Parameter 2: Parameter 1 :
name : Vdd name : Vdd name : Vdd_Pt_L_3 name : Vdd
value : 2.5 value: 2.5 value: 1.8 value: 2.5

Abstraction
level L+1

Parameter 1 :
name : Vdd
value : 2.5

Parameter 1 :
name : Vdd
value : 2.5

Parameter 3:
name : Vdd_Pt_L+1_3
value : 3.3

3 different values for Vdd results in :
1 global parameter (default value): Vdd
2 local parameters: Vdd_R_L_3 and Vdd_Pt_L+1_3

Figure 5.8; Locality for parameter définition: a) shows the case of a System where a
common parameter ”Vdd” is defined for each primitive while b) shows
the same example with a global parameter for ail blocks and local param­
eters overriding the value of the global parameter for different primitives

5.2. PLATFORM DESCRIPTION 181

In the next section, we begin the complété description of Nessie with the plat-
fomi and its related models.

5.2 Platform description

So far we hâve described how Nessie allows the user to hierarchically describe
the platform using our structures built upon lower abstraction level primitives.
In this section we présent in details how those structures can be described for
the platform side of the System.
Contrarily to functionality, there is almost no standard format for structured
platfonn description so that many exploration tools (see Sec.4.4) choose to
define their own format. In our case we also decided to define our own format
in XML to ensure compatibility and guarantee easy intégration with Yeti file
format.
To define a structured description format for platforms, we established the
following requirements:

• Ensuring an easy recursive hierarchical description of the platform that
remains valid and unique for ail the abstraction levels

O Offering a way to describe ail the éléments of an architecture whose im-
--------plementatiominvolves'a"certainxosf (nôt’^nlÿ thEcomputâtiôïTblocks but

also memories and interconnects).

• Providing a mechanism to compute the performance criteria of a whole
structure based on the criteria values of the individual platform blocks

The next. subsections respectively discuss those three different questions.

5.2.1 Hierarchical platform structures

To define platform structures we went for a netlist-based approach describing
the different instantiated primitives and how they are connected. Basically
XML files describing these netlists contain a list of ail the platform blocks and
a list of point-to-point connections between these blocks (more details will be
given in Sec..5.4). This XML description is then automatically turned into a
platfonn structure attached to the corresponding platform primitives. The
resulting structure related to a platform primitive PtL-i.i is composed out of
three different types of éléments:

• Platform blocks are instances of the platform primitives : since ail
these primitives of abstraction level L— 1 may also themselves be described
using structures we obtain the desired recursive hierarchy.

• Ports are communication interfaces for the platform blocks and offer a
connœtion point for a link to another block. Depending on the abstrac­
tion level, ports may represent very different éléments of an architecture:

182 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

from a FIFO buffer in a network-on-chip router to a potential latdi be-
tween two logic gates for instance. Because ports may represent so many
varions components depending on the considered abstraction level, the
user is allowed to associate performance criteria representing their implé­
mentation cost^F

O Logical links connect two ports together and establish the communica­
tion topology of the different platform blocks. These links are not to
be mistaken for interconnect related éléments which are real components
with implémentation costs contrarily to logical links that don’t add any
overhead to performance criteria. Interconnect related éléments need to
be modeled as platform blocks instead since they participate in the total
implémentation cost of the System.

To illustrate these concepts, Fig..5.9 depicts an architecture composed out of
two microprocessors and one memory connected through a shared bus. This
architecture can be modeled as a structure describing a platform primitive
PtL-i,i based on three primitives of the immediately lower abstraction level
L representing the microprocessor, the memory and the shared bus. Instances
of these primitives are exchanging information through ports and logical links
defining the communication paths.
From this example, we can see that the interconnect part of the architecture
is modeled explicitly by a platform primitive. This shared bus is connected
to the other platform blocks by the mean of three ports: this shows how it is
possible to connect several blocks to a shared communication medium despite
the point-to-point connections established by the logical links between the
different primitives.

5.2.2 States

Operation on data

Nessie focuses on applications described from a data-centric point of view:
each functional block produces and consumes data that are exchanged with
other blocks. To make the parallel at the platform point of view, the platform
structure uses the concept of data token which is an amount of data of a
given size required or produced by a given platform block. In Nessie, we
identified three different and not mutually exclusive basic operations that can
be performed on these data tokens by a platform block:

1. Data Processing: the aim of a platform is to provide the material support
for the functionality specified by the designer which can be expressed in
a data-centric point of view as transforming an input data set into the

‘ ' Ports are required to properly describe the structure and their preseuce is therefore mandatory. In
the case where ports would not hâve any relevant implémentation in the real architectme, the user can
associate them with a nul! contribution to the performance criteria.

5.2. PLATFORM DESCRIPTION 183

(a) Architecture to model

Abstraction SHARED BUS

(b) Structure of Pt ,

Legend

Communication port :

Logical link :

Platform block :

□

Comp 2

Pt UO

Pt L,1

Pt L.2

Micro-processor

Memory

Bus

Figure 5.9: E.xaiuple of platform structure modeling au architecture basecl on a
shared bus communication medium

required output data set. A platform block performing such an operation
is tisually referred to as a computing node or processing element.

2. Data movement: a platform structure is built of several blocks performing
computational operations and tlierefore need to exchange data between
eacli other. The ability to move data across tlie surface of a platform
is therefore e^sential to feed computation blocks with input data and is
canied ont by ail interconnect resources devoted to communication on a
chip.

3. Data storiny. computing nodes need to be fed with input data resulting
from the processing of other nodes. However data are not alw'ays required
just after they are produced so that .storing them until they need to be
u,s«l is very important: this concept refers to memorization.

So far we hâve identified three different types of operations on data: computa­
tion, communication and memorization. From the designer point of view, the
functional spécification directly defines the different computation operations to
be perfonned while memorization and interconnec:t are unavoidable overheircl
required to map the functionality onto the platform^^.

'"This justifies the choiœ that wc need to inake in the functional s])ccification whcre only computatitm
related operations need to be mode explieit while niemorizatiou and communication is drawu from it to
best match the platform (sce Sec.-ô. 1..1).

184 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Architecture

a) Computation
operation

BUS

data token A

1 Microprocessor k BUS

1 COMPUTING 1 data token B

b) Communication ^ Microprocessor BUS

operation datl^d^ TRANSMITTING data token A

c) Memorization BUS Microprocessor 1 BUS

operation data token A MEMORIZING |

Figure 5.10: Example of a microprocessor connected to two busses able to perform
data meniorization, transmission and computation operations

Associating a platform with a single data manipulation operation (communica­
tion, computation and memorization) Ls not always simple and représentative
of its real operation mode.
For instance, let us consider a microprocessor connected to two different busses
like the one depicted in Fig..5.10: tlie processor may manipulate data in tluree
different ways. First the microprocessor can use a data token A coming from
one bus, perform a computation operation and put the resulting data token B
on the other bus (part a) of Fig.-5.10). Second, the microprocessor could act like
a bridge in a communication network and forward the same data token A from
one bus to another: in thLs case the microprocessor acts like a communication
élément rather than a computation element(part b) of Fig..5.10). Finally, if
the microprocessor has an internai memory it could use the data sent over
the input bus to store them until another computation élément requires to use
them (performing a memorization operation in that case, part c) of Fig.5.10).
From tins example of a simple processor we understand that assigning one
single data operation type to a platform block is too restrictive. Rather than
defining strict and isolated data operation based categories, we thus need to
find a mechanism able to represent how a functional block data operation is
able to evolve over time avoiding to attach this information to the block itself:
the following section deals with that issue.

Application to Nessie

As explained earlier, each platform block is composed out of a core connected
to logical links by the mean of communication ports. To represent the évolution

5.2. PLATFORM DESCRIPTION 185

Core States :
0 ; idie
1 : sieeping
2 : transmitting
3 : memorizing
4 - N : computing

Port States :
0 ; inactive
1 : receiving
2 : sending

State machineJojr gort

Figure 5.11: State macliines and their transitions associated to tho core and ports
of a platform block

over tinie of the core and its ports data operation mode, we define separate
State machines for each port and core as depicttxi on Fig.5.11. As in any State
machine, one State may be occupied at a time which reflects the fact that a
core or a port may only be in one single data operation mode at a time.
Let us first examine the core (left part of Fig, 5.11) and define the different
data operation States that it may occupy:

• Tmnsrnitting state relates to any operation sending a data token from
one block to another

• Memarizing state relates to a storing/fetching data token operation

• Idle State means that the platform block is currently associated with no
data operation but is ready and waiting to execute any operation

• Sieeping state is an additional state provided to represent power savings
modes that may partly switch off the platform block at the price of a
wake-up time. •

• Computing state Ls particular in the sense that it simultaneously encapsu­
lâtes different States relative to the functional primitive compatible with
the platform primitive associated with the current platfonn block. There
are as inany computing States as functional primitives compatible with
the platform primitive.

186 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Each transition from any State to another is allowed^^ and the user is able
to specify the transition times for each possible transition by adding a double
entry transitional time table to the state machine description. This feature
can be used to represent any latency between state switchings: for instance,
it can model the wake-up recovery time from sleep to idle mode of a given
component in power-save mode or the time overhead due to context switching
between two distinct threads in a microprocessor.
Each port instantiates its own state machine defined by the following possible
States (right part of Fig.5.11);

• Inactive state is occupied by a port when it’s not sending nor receiving
any data

• Receiving state refers to the réception of a data token

• Sending state refers to the émission of a data token

Each State must of course be associated with ail the user defined criteria but
some States require additional criteria in order to provide the mandatory infor­
mation for the scheduling and routing operations performed during a function-
al/platform structure mapping. Fig.5.12 summarizes ail the required criteria
for each core or port state: besides the user defined criteria, we hâve:

• Latency is a criteria required for transmitting and memorizing core States
but also receiving and sending port states. It represents the time sepa-
rating the activation from the real beginning of a data token transmission
operation^"*.

• BIF is a criterion needed for the States that also require latency. It
represents the data rate per time unit associated to a particular data
memorization or communication operation. For instance, the bandwidth
associated with a memory state represents the amount of data per time
unit that can be stored/fetched in/from a memory.

• time is a criteria exclusively required for the core computing states: it
represents the time required by the current platform block to execute the
functional primitive associated with the computing state.

Besides the criteria required for each data operation type, Fig.-5.12 illustrâtes
the fact that ail these criteria can only be modeled by the use of a Yeti model
except for computing states where an alternative explicit mapping method can
be used. This highlights the fact that criteria resulting from the mapping of a
functional block on a platform block can be computed using a recursive évalu­
ation based on the lower abstraction levels as explained in Sec.5.1.2. However
this leaves still one question unanswered: how it is possible to combine the

'^To avoid Fig.-'j.ll from being overloaded with axrows, only transitions from/to state 0 idle are repre-
sented in the case of the core state machine.

^^Purther information about the latency will be given in the section devoted to data token routing (see
Sec.5.4..5).

5.2. PLATFORM DESCRIPTION 187

Core States :
0 : idie
1 : sieeping
2 : transmitting
3 : memorizing
4 - N : computing

- User defined cirteria

- User defined cirteria

O
-BW
- latency

- User defined cirteria

O
- BW
- latency

- User defined cirteria- time
- User defined cirteria

Port States :
0 : inactive
1 ; receiving
2 : sending

O
- User defined cirteria i

I
I

O
-BW
- latency '

- User defined cirteria !
I

O
-BW I
- latency [

- User defined cirteria ^

I
/

Yeti model criteria estimation

Figure 5.12: Maridatory criteria for port and core States and their évaluation inethod

188 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

I
I
I
l

I
I
I
l

Platform structure

Il II 1 ^ 1 1 1 Il 1 ^
Il II

M tt
1 ^

'e

1 1 1
’’ tt

1 1 1 ^
tf‘

Core State
change event

Port State
change event

Evolution over time

Structure
criteria

values ?

Figure 5.13: Criteria estimation for a platform structure based on time and struc­
tural information

performance criteria values of the different blocks composing a platform struc­
ture to dérivé the global performance criteria values of this structure. This is
the question that the next section tries to answer.

5.2.3 Criteria intégration

Wc hâve seen that performance criteria values can be direct ly estimated based
ou a Yeti model but how it is possible to dérivé them when we perform an
explicit mapping? Therefore we first need to anticipate a bit on the mapping
process description^®.

GenerEil approach

Basically the mapping proceeds by successively allocating and scheduling the
different functional blocks on the platform blocks. This process results in
the complété scheduling of the functionality and the évolution over time of
ail the port/core States of each platform block of the structure (called the
platform activity). The acdivity of the platform structure and the knowledge
of the performance criteria for each state of each block composing this structure
(obtaincxl thanks to a Yeti model or through recursive mapping) are re<piired

’°Mon; details will be given in Sec..'.4 devoted to the mapping process.

2. PLATFORM DESCRIPTION 189

to compute the performance criteria values of the whole structure. This is
illustrated by Fig.5.18 depicting a platfonn structure composed ont of three
interconnected platfonn blocks representing two computation nodes (nodes 1
and 3 on the figure) connected by an intercormect link (node 2). For each
port/core of any block, we see a timeline where each timestamp represents
a State change hence different criteria values for this block. Startàng time tg
and ending time tg are common for ail the timelines of the platform blocks
composing the structure and respectively represent the absolute time of the
beginning and the end of the scheduling: their différence is thus the execution
time. This figure points out the essential rôle of time and platform structure
in the formulation of the problem: it’s only by combining them both that we
can obtain the value of performance criteria for the whole structure.

Criteria intégration over time and structure

Nessie proceeds in two different steps to compute the criteria values of the
platfonn structure;

1. For eafdi platform block, the value of each criterion over the whole time­
line is computed based on the évolution over time of the criterion value
according to a time-dépendent rule. _This,phase_is_relative-to--the=time
intégration of the criteria.

2. Based on the criteria values of each platform block, the value of each
criterion is computed for the whole structure by using a criterion spécifie
composition rule over space. This phase is relative to the structure-related
intégration of the criteria.

By defining these two rules, a user is able to define any criterion and the way
it is calculated: this is the mechanism that Nessie relies on to provide the user
with flexible multicriteria définition. Let us now define these two types of rules.

Time-dependent rule A criterion is defined by its time dependency thanks
to a time-dependence rule: based on the évolution over time of the criterion,
the final value for the whole timeline duration can be computed. A time-
dependent rule opérâtes on a timeline where each timestamp refers to an event
representing a potential change in criteria value. If we suppose that we hâve
a timeline with N events each of them corresponding to a timestamp U (with
i — 1... N) with an associated value Vc^n for criterion C, the time dependence
rule déterminés how to combine ail the Vc,ti to détermine the value Vc^nmeline
for the whole timeline. At the moment, Nessie implements the following time-
dependence rules:

O Additive time dependence rule successively adds ail the values as.sociated
with each timeline event of the considered criterion as represented (see

190 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

5 3 2 6 criteria value
Timeline
example

time0 5 34 47

Additive = S+3+2+6 = 16
Integrate = 5*(5-0)+3*(34-5)+2* (47-34) = 138
Maximum = Max (5, 3, 2, 6) = 6

Figure 5.14: Criteria estimation for a platform structure based on time and struc-

• Integrate time dependence rule adds for each event the value of the cri-
terion before state change multiplied by the time separating the previous
event from the current event (see Elq.5.3)

N-l

Integrate-timejTule : Vc,timeline = * (^i+i - U)) (5.3)

• Maximum time dependence rule simply selects the biggest criterion value
out of the different criterion values associated to the timeline events (see
Eq..5.4)

MaximumJtime-rvle : Vc^nmeline — 1 • • • (5-4)

• Time-independent rules are not dépendent on time: the value of the cri­
terion can be computed once and for ail for the complété timeline

As an illustration, Fig.5.14 describes an example where criteria values are
successively estimated for a common event timeline and an additive, integrate
and max different time dependence rules.

Structural combination rule a criterion is defined by its structural depen­
dence thanks to a structural composition rule: based on the platform blocks
criterion value, the value of the complété platform structure is computed by
integrating the criterion over the different platform blocks. In other words,
the composition rule defînes for a given criterion C how to combine the value

tmal information

Eq.5.2)
N

AdAitive-time-rule : Vc^umeline = (5-2)
i=l

i=l

5.2. PLATFORM DESCRIPTION 191

Platform
Maxrule=^° Addtiive^^lg= 152

Figure 5.15: Example of the maximiuu and additive composition rules for a platform
structure

of each of the M platform blocks Vc,ptj fo evaluate the criterion value of the
complété platform structure Vc,structure- N«>sie defines at the moment two
different ruks;:

• Additive composition rule sums the criterion value of each different plat-
fonn block up as represented (see Eq.ô.ô)

M
Additivejcomposition-rule : Vc^structure = J2Vc,P,.^ (5.5)

j=i •

• Maximum composition rule selects the maximum criterion value over the
different platform blocks composing the structure (see Eq.5.0)

Maximum-compositionjrule : Vc,structure = 'nxo.^{yc,Ptj) (5.6)

As an example of criteria intégration, Fig.5.15 shows liow to combine the cri-
teria values of the different platform blocks of a platfomi structure to get the
global criteria values. This mechanism is clone in two successive phases. First
the composition rulesi are applied inside eac:h platform block to the core and
the ports composing the platform block: this results in the criteria values for
each platform block. Second the composition rules are used to get the whole
platform criteria values based on the criteria values of the individual platform
blocks.
To illustrate that dependence on time and platform structure, here are a few
examples of criteria and their associated time and structural combination rules:

192 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

• The Silicon area of a chip is a parameter that is independent on time:
adding inner components will however increase the chip area by the sur­
face of these components. Area is thus a time independent criteria with
an additive structural combination rule.

• The total energy consumed by an architecture is the sum of the compo­
nents individual energies: the structural dependence rule is thus additive
for this criteria. Regarding the time dependence rule, two options are
possible. First we want to estimate the energy based on the power con-
sumption of each platform block: in this case, we use an integrate time
dependence rule to multiply the power consumed by the duration of each
platform block State to obtain the resulting consumed energy. Second if
each State change event of the timeline triggers an energy defined trans­
action, the criterion of the platform blocks represents the energy instead
of power and the time combination becomes additive.

• The température of the chip is an important design parameter to avoid
reliability issues due to overheating by taking appropriate heat dissipation
measures. If the maximum température is thus the dimensioning factor,
its associated criterion will thus be represented by a maximum structural
composition rule and a maximum time combination rule.

5.3 Functioiicdity description

In the previous section, we hâve discussed the hierarchical platform structure
that we adopted inside Nessie and explained why it is well suited to the évalu­
ation of flexible multi-criteria performance metrics: in the current section, we
présent its functional counterpart.
Contrarily to platform structures, there are plenty of ways to describe a func-
tionality and its execution semantics based on models of computation^®. AU of
these models of computation hâve their strengths and weaknesses so that re-
stricting Nessie from the beginning to one sole of these MoC’s would hâve been
too limiting for the future. However we don’t want to compete against tools
like Ptolemy or El Greco that hâve been designed for the particular purpose of
implementing a large variety of MoC’s. Therefore we decided to design a flex­
ible mechanisrn to enable easy addition of new MoC’s inside the performance
core of Nessie and to implement Pétri Nets as an example. Before describ-
ing further this particular model of computation, let us review the different
features that may be required for the représentation of the functionality in a
performance prédiction perspective.

Models of computation were previously defiued and briefly discussed in Sec.d.d.l.

5.3. FUNCTIONALITY DESCRIPTION 193

5.3.1 Basic features of a MoC for performance exploration pur-
pose

To select an appropriate model of computation for functional structure de­
scription, we must reniember that the only purpose of Nessie is the évaluation
of performance criteria based on the mapping of a functionality on a platform.
Therefore only the order and time spent in each State of the different platform
blocks resulting from the execution of the functionality are of interest: the
data results themselves are of no importance and won’t be calculated.
The chosen MoC should be able to represent ail the aspects of concurrency
présent in a functionality i.e. :

• Sequentiality: operations need to executed one after the other to preserve
the functionality

• Parallelism: operations can be performed in parallel without altering the
functionality

• Data dependency: one operation waits for a data to be produced by
another operation before starting its execution

• Control dependency: one operation waits for a control order to be trig-
gered before starting its execution

____ ^Among=the modeling=languages=thaTcan’represent“the-sequential'and'parallel
nature of the functionality, we chose Pétri Nets^^ that we slightly modified to
fit our needs: this topic will be discussed in next section.

5.3.2 Pétri Nets

Structure

Pétri Nets[4] are a graphical and mathematical tool to represent discrete-event
distributed Systems. The constituting éléments of a pétri network are depicted
in the upper part of Fig..5.16:

• Tokem are exchanged during the execution between the different places

• Places store tokens until they can be consumed by transitions

• Transitions establish conditions and execution dependency between the
different places

• Arcs link places to transitions and transitions to places and are tagged
with a weight representing a particular number of tokens.

The execution of a pétri network is paced by the consumption and production
of tokens exchanged between the different places. Transitions are said to be
enabled when each place connected to it contains at least as many tokens

'^Other MoC’s could probably bave beeu chosen to represent the functionality but we went for Pétri nets
because of the mathematical background they rely on but also because we had some previous expérience
with it.

194 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Token • Arc (+weight) 3

Place Transition
1

a) Eléments of a Pétri network

b) Execution of a simple Pétri network

Figure 5.16; a) The different éléments forming a pétri network ; b) an example of
pétri network before and after transition firing

as the associated incoming arc weight. When enabled, the transition may
fire: the tokens at the incoming arcs are removed from the places and tokens
are generated in each place connected to an outgoing arc: the number of
consumed/produced tokens dépends on the weight of the arc connecting the
place to/from the transition. This mechanism is illustrated in the lower part
Fig.-5.16 where a simple Network composed ont of three places is depicted.
Two input places are connected to the transition: the first place contains three
tokens while the second place contains two tokens. Since there is a snfficient
number of tokens présent in both input places according to the weights of
the respective arcs, the transition is enabled. After firing, three tokens are
consumed in the first input place and one token in the second input place to
produce two tokens at the output place.

Properties

The most important characteristics of Pétri Nets as a modeling language are
the following:

• Concurrent: both parallelism and sequentiality of operation can be easily
represented in a Pétri network (Fig.-5.17)

• Asynchronous: Pétri nets are asynchronous Systems in the sense that
there is no synchronization method to order the firing of the different

5.3. FUNCTIONALITY DESCRIPTION 195

a) parallel nets b) sequential nets

Figure 5.17: Parallelism and sequentiality of operation in Pétri Nets

transitions. Only one operation takes place at a time even if several
transitions are enabled so that Pétri Nets give no gnarantee on their
triggering order contrarily to a synchronous language where ail transitions
would be fired simultaneonsly.

• Non deterministic: some Pétri networks show some iinpredictability in
_______ ^^^the order.of execution of4he-transition*and the way tokens=are=generated^“"—

Fig.5.18 illustrâtes a conflict where two transitions are able to consume
the saine token, the order of firing will thus déterminé the transition that
will be triggered at the expense of the other.

• Formai: pétri nets rely on a strong matheniatical background allowing
the theoretician to define pétri places and their transitions using a matrix-
based formalism and to mathematically prove several static and dynamic
properties (liveness, boundedness, reachability^®, etc.) of the network.

Concurrency is a characteristic that we are looking for while asynchronism
is suitable for describing discrete-event parallel computing Systems. Non-
determinism, particularly due to conflict, is a little more annoying and that’s
why we decided to modify the possible networks to avoid that kind of problems.
Finally the mathematical theory related to Pétri nets could be interesting in
the perspective of future functional analysis and vérification. However we fo-
cus at the moment in Nessie on the practical aspects of pétri nets and exploit
their représentation potential to represent the execution of concurrent applica­
tions. From the mathematics behind pétri nets, we just kept the spécifications
required to properly and completely define a network: a set of places, transi­
tions, arcs, a list of weights with their associated arcs and an initial marking
(the number of tokens contained inside each place of the network before it is
executed).

'®The interested reader is advised to hâve a look at the very complété and compreheiisive [5] to hâve
fuithei- information about those properties.

196 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

a) before firing b) after firing

Figure 5.18: Coiiflict example in a pétri network resulting in two possible network
States after transition firing

In the next section we explain how we slightly modified pétri nets to cope with
the lack of predictability and data dependence représentation.

5.3.3 Intégration of pétri nets inside Nessie

If Pétri nets are very well suited to the description of concurrent distributed
Systems, they are not meant to explicitly represent the data exchanged between
the different places. This précisé point is however required to express the data
dependency présent in a functionality but also makes the mapping easier since
platform blocks communicate by exchanging data.

Turning transitions into data/control dependency

In order to represent the concurrency together with data/control dependency of
a functionality inside pétri nets, we attached semantical aspects to the different
constituting éléments of the network:

• Places represent the different operations to execute inside the functional­
ity. Each time a place is asked to generate a token, the operation linked
to this place begins: the place effectively generates a token after a time
corresponding to the execution time of the operation.

• A transition implies that the execution of the places pointed by the outgo-

5.3. FUNCTIONALITY DESCRIPTION 197

Legend

O Place = operation

Token = data/control
• dependency

(X data Units)

\ /' x,y okens required
Z operations generated

Figure 5.19: Transformation of the operation a = b + c* d into a pétri network

ing arcs is dépendent on the execution of the places linked to the incoming
edges (data or control dependency).

• Tokens represent the functional counterpart of control and data tokens
exchanged through the different communicating platform blocks. Each
tinie an operation ends, a token is generated in the corresponding place
while its équivalent data token is generated by a platform block as the
resuit of the operation. There is a one-to-one correspondence between
data tokens and tokens used inside pétri nets^®.

• Arcs hâve a different meaning depending on their orientation. Incoming
arcs (from a place to the transition) represent the data/control depen­
dency determining (according to their weights) how many pétri tokens
of each place are required for the transition to be fired. Outgoing arcs
weights (from a transition to a place) represent the number of pétri tokens
that will be generated in each connected place: in other words there will
be as many operations released by the transition as tokens generated by
the surn of ail outgoing arc weights.

As an example, Fig..5.19 depicts a Pétri network representing the different
operations composing the functional structure oî a = b + c * d. This network
shows the initial marking of the three pétri tokens corresponding to b, c and

'®To avoid any amliiguity, we wiU clearly refei' to data tokens wheu refeniug to data exchanged in a
platform structui'e and talk about pétri tokens for the tokens exchanged between the places of a pétri
network.

198 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Legend:
- Functional primitive FC|_ ^
- Data token size output Y

Structure describing a
L-1 primitive based on

L primitives

Structure describing
L,2 primitive based on

L+1-primitives

Structure describing
L,3 primitive based on

L-t-1-primitives

Figure 5.20: Hierarchical building of a structure based on pétri nets

d in places P4, P\ and P2: this means that these three data are available for
computation and can be used to fire enabled transitions. If we look a bit doser
at transition Ti, we can see two 1-weighted arcs linking places Pi and P2 and
one 1-weighted outgoing edge linking place P3: this construction implies that
one single operation related to place 3 will be triggered if one token is présent
in place Pi and one token in place P2. The transition will consume both tokens
(32 bits data) to produce a token in place P3 corresponding to the resuit of
the c* d operation (64 bits data). Once this new token has been generated,
the resuit of c* d can be added to b so that the next operation is now allowed
to take place: this shows how data dependency is expressed through this data
communication mechanism. From the network it may also be noticed that only
incoming arcs are tagged with data size values: the operation triggered by a
transition implicitly consumes ail the tokens flowing through the incoming arcs
as inputs so that only the size of the token resuit need to be specified.

5.3. FUNCTIONALITY DESCRIPTION 199

Hierarchical functional structure

As for the platform, functionality can be defined hierarchically by using re­
cursive structures through the different abstraction levels. In Fig.5.20, we
illustrate how this hierarchical structure building can be achieved with pétri
nets. In this figure we can see one structure representing a L — 1 functional
primitive based on functional blocks deriving from primitives of abstraction
level L, themselves described by structures based on primitives of abstraction
L-l-1. These structures are based on pétri networks where each place refers to
a particular functional type Fci^x that can itself be defined by another pétri
network. Furthermore each place is associated with a data token information
representing the size of the data resulting from the operation related to the
functional type linked to their place. This has a major impact on structure con-
sistency: indeed each pétri network representing the structure of a functional
primitive must comply with the number and size of the inputs and outputs
defined by this primitive. This is precisely the case for the place derived from
Fcifi that reçoives at the input a 30 data size token and produces in return a
20 data size token. The pétri network describing this Fcjr,,2 primitive thus has
the sanie number and size of tokens at the input and the output.
We can notice that the first node of this structure has no type and is instead
tagged as a D (dummy) place: this particular type of place has been added
to pétri nets to store tokens and does not represent any operation contrarily
to other places deriving from functional primitives. The consistency between
abstraction levels is left to the care of the user and Nessie doesn’t perform any
checking of this type at the moment. Initial token marking can be performed
by filling dummy nodes with tokens to détermine the initial State of the pétri
network.
If each pétri place can be hierarchically described by another structure, it is
not limited to other pétri networks: any functional structure could be used
as long as it respects the consistency constraints in ternis of input/ouput data
size. Using this mechanism it could be possible to mix different models of com­
putation in the same hierarchical performance estimation of a system allowing
the user to choose the best suited MoC for each functional structure. From the
mapping point of view, we however need a common interface to communicate
with the structure whatever the nature of the model of computation it relies

Dummy nodes

As we hâve seen in Sec.5.3.2, pétri nets are a non-deterministic model of com­
putation due to possible conflicts in the network illustrated in the previous
figure To avoid this problem, we restricted the building of pétri nets to
places with one single output arc: the token generated by a place thus has one

■'^This inteiface problematic will be further discussed in Sec..'5.4.:i.

200 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

and one possible output which avoids conflicts.
However by restricting places to one output arc, we hâve no possible way to
send a token to more than one output place which limits in turn the data de-
pendency between operations. To illustrate that issue, let us take the example
of a sequence of three operations given by Eq.-5.7. As we can see the first
operation computes the value of a which is then consumed by two other oper­
ations whose execution thus dépends on the completion of the first operation.
Translated into pétri networks (see Fig..5.21), we can express this dependence
by duplicating the token corresponding to the resuit of a using the transition
T2 and feed it back to two different intermediate places P5 and Fe linked to
the transitions T3 and T4 that will trigger the two operations Pg and Pg dé­
pendent on this token. These two intermediate places P5 and Pq are called
dumrny places because they don’t represent any operation contrarily to regu-
lar places and are just used as filler éléments inside pétri networks to enable
data dependence on more than one subséquent place.

a = 64-c;

d = 2* a + g-,

e — 3 * a + /; (5-7)

Dumrny nodes hâve the following characteristics:

• The token at the input is instantaneously transmitted at the output of
the dumrny place

• No associated operation: since dumrny nodes represent no operation, they
are not associated with a platform block so that they don’t add any cost
in terms of performance criteria to the complété platform.

Aside from resolving data dependence issues, dumrny nodes can be used to
establish the initial token marking of a network as previously explained.

5.3.4 Summary

In this section we hâve seen how Nessie hierarchically defines functional struc­
tures without restricting the choice of the model of computation. To provide
Nessie with an adéquate functional représentation in a performance prédiction
perspective, we hâve established the needs in terms of concurrency, parallelism
and data/control dependency représentation capabilities. As an example of
model of computation, we described pétri nets and how they are able to repre­
sent the above aspects of a functionality. We implemented pétri nets in Nessie
and attached some semantical aspects to represent the data/control depen­
dency more accurately to make further mapping of the functionality on the
platform easier.

5.4. MAPPING 201

DUMMY MODE =
- Transmission of the token at the ouput
- Représenta no operation
- Opérâtes instantaneousiy
- No cost in terms in criteria

Figure 5.21: Introduction of dummy nodes for the transformation of the sequence
of operations 7 into pétri nets

5.4 Mapping

So fax we hâve defined how Nessie hierarchically described the functionality
and the platform using structures respectively based on pétri nets and compo-
nent netlists. In a demand/offer fashion, the functionality defines a sequence
of operations that fulfills the functional requirements while the platform en-
ables the execution of these operations at the expense of a certain cost (the
performance criteria). Thus it’s not only the functionality or the platform that
defines these costs but the way we perform the adequacy between them: this
will détermine the activation order and time spent in each state for the differ­
ent platfonn blocks, hence the performance criteria. This operation that we
call mapping deserves a lot of attention in Nessie for two reasons:

1. The mapping is performed according to a given policy that détermines the
perfomiance criteria to be optimized (time, area, power, etc.) which can
thus lead to very different results for the same functionality and platform.

2. Nessie should be able to perform the adequacy between any type of func­
tionality and platform: this flexibility constraint therefore puts a lot of
stress on the mapping process.

This section is divided as follows: Sec..5.4.1 defines the problem and explains
on a concrète example how the functional and platform structure interact dur-

202 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

ing execution while Sec.5.4.2 reviews some of the cominon techniques used to
proceed to mapping. In Sec.•‘5.4.3, we présent the general methodology used to
enable the mapping and its different steps.

5.4.1 Introduction of the problem

The core of the mapping problem is the ability to define the functionality/-
platfomi interaction and extract their performance criteria whatever their re­
spective level of parallelism and topology. In the previous sections, we detailed
functional and platform structures but in order to further understand and de-
fine the mapping possibilities, we need to hâve a doser look at the possible
interaction between platform and functionality. To this end, we will comment
a simple example representing one of the possible mapping of a pétri network
on a platform structure and its execution over time. Fig..5.22 depicts a simple
pétri network composed out of three different places: Pi deriving from func­
tional primitive {FCi^i) and P2 {FC 1^2) represent parallel operations while P3
(PCl,3) requires the latter execution to be completed in order to start. The
platform is based on a simple shared bus connecting three different computa-
tional blocks with different compatibility lists offering the choice to déterminé
which functional block can run on which platform block.
The complété process of execution of the functionality on the platform goes
through different steps which are the following^^ (see Fig.5.22 and Fig..'>.23):

a The initial situation shows, according to the transition t\ of the pétri net­
work, that the operations I{FCl,\) and I{FC 1^2) are ready for execution.
The two platform blocks I{Ptc,o) and I{Ptc,i) are compatible with func­
tional block I{FCi^i) while I{FCifi) can be executed by both platform
blocks I{PtL,o) and I{PtL,2)- In our présent case, I{FCl^\) begins its
execution on block I{PtL^i) and I{FCi,^2) on block I{Ptifl).

b Execution of I{FCi^\) ends (in this case we suppose that I{FCl,i) exé­
cutés faster on I{PtL,i) than I{FCifi) does on I{PtLfi)). At the func­
tional point of view, the place Pi produces a pétri token to indicate that
execution is over and checks for the dependency of the transition t2 linked
to this place. Since the incoming arc linking P2 has a weight of 1 and
P2 currently contains no pétri token, the transition will not enabled until
I{FCifi) ends. At the platform point of view, the end of the execution
results in the production of the data token D\ whose size is determined
by the related functional primitive FCi^\ (600 bits in this case). This
token is then stored inside platform block I{Pti^\) for further use.

c Execution of I{FC 1^2) ends. As in the previous case, a pétri token is
generated in the place P2 corresponding to the operation /(PCl,2) and
a data token D2 (100 bits) is generated and stored inside platform block

insist. on the fact that each mapping decision (allocation, order of execution, etc.) of this example
hâve been chosen arbitrarily for the sake of simplicity.

5.4. MAPPING 203

liP'th.o)- Now that one token is présent in both places Pi and P2, tran­
sition Ï2 is enabled.

d Transition t2 is fired consuming orie token in both places P\ and P2 becom-
ing empty. Since there is only one single arc outcoming from transition
t2 with a weight of one pointing to place P3, it means that one instance
of functional block Pcl,3 linked to place P3 is generated. The transition
t2 implies a data/control dependency from ail the outcoming arcs linked
to functional blocks with the incoming arcs linked to functional blocks:
I{Pcl,3) thus needs to consume data tokens D\ and D2 before starting
its execution. The functional block I{Fcifi) can only be executed on
platform block I{Pt 1^2) and is thus assigned to it. To transfer the data
tokens to the platform block I{Pti^2), only the shared bus (7(PtL,3)) can
be used: the data token D2 is sent first from l{Ptifl) to I{PtLfi) where
it is stored.

e Once the data token D2 transmission is over, data token D\ can be sent
from I{Ptt^i) to I{PtLfi) where it is stored.

f Once data tokens Z?i and D2 hâve been transmitted to the I{Pti,fi) plat­
form block, the execution of I{Fci^z) niay begin.

g Execution of I{Fc[,^^) ends. A pétri token is produced in place P3 and_a.
data token P3^(200 bits) resulting from the computation of the functional
block is stored inside the platform block I{Pt 1^2)-

In thls example we presented a pétri net-based functional structure mapped
onto a platfonn structure and their interaction along the execution. In this ex­
ample, the mapping was implicitly solved and ail the possible decisions relative
to mapping choices were arbitrarily made for the sake of illustration. However
it allowed us to better understand the different aspects of the problem:

• Choice of the platform. block: we hâve seen in our example that some
functional primitives like Fc^^i can be executed by more than one plat­
form primitive {Pti^ and PtL,i)- So how do we décidé on which platform
block to execute a given functional block if we hâve multiple possibilities?
On which criteria should we make that choice?

• Scheduling of the operations: when several functional blocks are ready for
execution, how should we detemiine their execution priority?

• RoxLting of the data tokens: in our example we had a simple shared bus
linking the different computational platform blocks. In more complex
cases, how do we establish the route between a platform block producer
and consumer? Do we send a token to different consumers requiring it in
different transmissions or do we try to broadcast it?

• Memorizing resulting data tokens: in our example we supposed that the
platform blocks ail hâve the ability to store data tokens once they are
produced and until they are sent to ail the platform blocks consuming it.

204 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

But what about the blocks that hâve memorization capabilities: do we
send the produced tokens to a memorj- or directly to a block consuming
it?

The answer to these questions will détermine the way that the mapping pro-
ceeds and is the main topic of this chapter. In the next section, we first
investigate to find ont if existing mapping techniques can fit our needs and be
reused in Nessie instead of developing them from scratch.

5.4.2 Existing mapping methods; high-level synthesis

The problem of mapping as we defined it -the adequacy between a function-
ality and a platform at any abstraction level- is usually not addressed in such
a general manner in the literature. The closest problematic Ls the High Level
Stj7ithesis[a][7] that tries to convert a high-level description of a System be-
haviour (C, VHDL, state diagrams, etc.) into a netlist of components execut-
ing the required functionality. Additionally a component library gathering ail
the computational and communication resources is defined along with their
associated operations and area occupation. The optimization process driving
the high-level synthesis is usually based on area and time constraints while
some authors extended it to power consumption[8].

Before the high-level synthesis itself can take place, the functional descrip­
tion is often separated into two different parts: the control related part and
the data related part. The control-less parts of the functionality are turned
into data flow graphs (DFG) that will be used as input for the rest of the
high-level synthesis process. In our présent case, we will mostly discuss the
data related aspect since Nessie focuses on the data dependency.
The high-level synthesis problem is often divided in two successive parts:

1 The scheduling consists in defining the sequence of operations over time
with respect to their data/control dependency.

2 The allocafAon consists in associating each operation with a computation
block that will execute it.

Since the allocation efficiency highly dépends on the scheduling, both steps are
usually performed together: we will now briefly discuss both operations.

Scheduling

Scheduling usually starts from a data flow graph and tries to find a possible
order for the DFG operations execution to take place. The most common and
simple algorithms used to perform this scheduling are the AS AP (As Soon As
Possible) and AL AP (As Late As Possible) algorithms [9]. In a basic version,
they make a few assumptions:

5.4. MAPPING 205

Execution unit
(Fcl_i , FC|__2)

Execution unit
(Fcl.i)

Execution unit
(Fcl,2 . FC|__3)

Shared bus

output: 600 bits

output: 100 bits

output: 300 bits

Execution Execution

c) End of I(Fcl 2) execution

Data token D2 (100 bits) generated

Figure 5.22: Example of ma{)ping and execution of a pétri net based fimctional
structure on a platfonn structure

206 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

f) l(Fc L 3) begin the execution

g) End of I(Fcl 3) execution

data token Dg (200 bits)

Figure 5.23: Exarnple of mappiiig and execution of a pétri net based functional
structure on a platform structirre (suite)

5.4. MAPPING 207

• The execution time of each operation is supposée! to be the same. This
assumption may be relaxed in more advanced versions of the algorithnrs

• Each operation can be executed by only one resource and each resource
is uni-functional.

The ASAP (ALAP) algorithm will schedule each operation of the DFG as soon
(late) as possible with respect to the data dependency. In such a method we
suppose that we hâve an infinité pool of resources so that the execution of an
operation is never limited by the availability of a resource. Fig.-5.24 illustrâtes
the ASAP/ALAP scheduling for an example^^ of a sequence of operations
described in Listing 3: the resuit of the ASAP and ALAP algorithms show
two different possible schedulings respectively in part a) and b) of the figure.
From the scheduled graph, we can eâsily calculate the number of required
resources by determining for each different operation the maximum number
of simultaneous operations to perfomi in any control step. This gives us four
multipliers, one comparator, one adder and one subtracter for the ASAP policy
while the ALAP requires one less multiplier tan the previous solution.

Algorithm 3 Example of a code used
algorithms

as input for ASAP/ALAP scheduling

1 while X < a do ------^
2 x'i = ï + dx\
3 x\ = u— {^*x*u* dx) — {'i *y * dx);
4 2/1=2/+ {u*dx)-,
5 x = Xi;
6 2/ = 2/i;
7 II

8 end while

If ASAP and ALAP produce a latency minimum operation schedule (for a fixed
DFG i.e. with no tree-height reduction^^ allowed), they require a large number
of resources: other compromises in ternis of resource area and execution latency
are however possible. Other algorithms hâve therefore been developed that can
be classified in two different categories according to their policies:

• Resource constraint scheduling consists in minimizing the latency given a
constraint on the total number of resources

• Latency constraint scheduling consists in minimizing the number of re­
sources (or total resource area) given a certain latency constraint

"^This example i.s taken from [9] wheie more information r;an be found about the ASAP/ALAP algo­
rithms.

■®Tree-height réduction is a method used to change the expression of a DFG by using the associativity
of the mathematical operations performed in it[10]. Using this technique it becomes po.ssible to reduce
the number of control .steps required in the DFG stiieduhng depending on the mathematical expression
represented by the initial DFG.

208 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 5.24: Example of a DFG scheduling resultiiig from an AS AP/AL AP algo-
ritlmi for the operations presented in Alg.Ü

Most of the algorithms can be declined to answer both probleins like Integer-
linear programming[l 1], Hu’s heuristic algorithm[12] or list-based scheduling[l :î].
Some of these algorithms also rely on ASAP and ALAP algorithms results to
détermine the mobility^"*. Aside from the most common algorithms, we can also
mention simiilated annealing, path-based scheduling and DFG restructuring[!)].

Allocation

The allocation phase consists in converting the previously scheduled operations
into a register transfer level (RT) structure and is divided into two different
parts:

• Unit sélection déterminés the number and type of RTL components to be
used

• Unit binding associâtes each individual operation with an RTL component
(computational, interconnect or memory) according to the scheduling

Different methods can be used to perform the allocation, however the basic idea
is always to generate a RTL netlist based on the scheduling while Nessie tries
to evaluate the adequacy between a functionality and a predefined platfonn:
allocation is thus of no use in our problem. The interested reader Ls ad\dsed to

■^The mobility of an operation is mea-sured by the différence between the control step where this operation
is schfxluled in the ALAP and the control step in the .A.SAP pohey. It represents the criticaJity of an
operation: a low inobihty means that differing its execution will irrobably iucrease the lateucy compared
to the dolay optimal AS AP/AL AP scheduhng solution. Operations situated ou the critical path ail hâve
a zoro-mobihty measmo.

5.4. MAPPING 209

hâve a look at [9] for complementary information about the allocation related
algorithnrs.

High-level synthesis application within Nessie

As we just saw in the previous section, allocation cannot be applied to Nessie
but the question still remains for scheduling. Therefore let us consider the
different assumptions usually made in High-Level synthesis scheduling algo-
rithms:

• Many algorithms suppose that each operation will require the same exe­
cution time because such an assumption makes the scheduling easier

• The component library is usually defined in a way that each opera­
tion can usually be executed by only one resource type. Purthermore,
multi-functional units (like adder/suntracter) are not always accepted by
scheduling algorithms

• Algorithms are based on the optimization of the area/latency compromise
(area- or latency- constrained scheduling) and do not often take other
performance criteria into account (like power consumption or energy).

« Algorithms usually try to meet a given constraint so that they are_quite—
“cômpütatidn'intënsivë: some of them are even'based on heuTiStics rheth-

ods.

Ail these considérations about high-level scheduling methods don’t match Nessie’s
philosophy of separating the functionality frorn the platform description to ex­
amine how their different combinations perform. Purthermore, our needs for
generality in the mapping problem of Nessie are not compatible with and the
méthodologies proposed by high-level synthesis algorithms: therefore we will
hâve to develop new mapping methods to suit our needs.

5.4.3 Mapping in Nessie

Establishing the requirements

The main reciuirements for the mapping inside Nessie are the following:

• A mapping policy easy to customize and able to express different compro­
mises based on the performance criteria (not limited to area and latency
as in the case of the previously described scheduling methods)

• A method appropriate for the performance estimation and the exploration
of large design spaces. It may be less optimal than usual methods used in
practice but should give a good idea of the performances resulting from
the adequacy of a particular platform and functional structure and be
able to rank solutions in ternis of quality even if the absolute performance
numbers are not fully accurate. Furthemiore estimation speed remains

210 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

highly important since it détermines the number of solutions (hence the
size of the design space) that can be explored in a given amount of time.

• The generality of the mapping process should be preserved since the main
problematic addressed by Nessie is the performances comparison of Sys­
tems characterized by high functional/platform heterogeneities.

Genercd approach

To fulfill the requirements estabhshed for the mapping, we hâve chosen an on­
line mapping policy based on a discrete-event co-simulation of the functional
and platform structure. The method that we propose can be categorized in
the online methods since the fimctionality is mapped step by step on the plat­
form based on their évolution over time: the problem is solved little by little
contrarily to offline methods that examine the problem in its whole to proceed.
In Sec.5.4.1 we presented an example of a mapping resulting from the adequacy
of a pétri network and a platform structure: Fig..5.2.5 illustrâtes the approach
that we can take to address such a problem in a general way. The co-simulation
of the functional and platform structure execution can be represented as a
loop where the functional structure is initialized and provides the platform
structure with the first functional blocks to be executed. As the simulation
progresses over time, these functional blocks are executed by the platform
structure and stimulate, when their execution is over, the functional structure
that may provide in retum new functional blocks to be executed depending
on the data/control dependence of the functional structure. The co-simulation
goes on until ail the functional blocks generated by the functional structure
hâve been executed on the platform.
The great advantage of such a co-simuation engine is the ability to keep the
platform and functional spécifie simulation mechanisms indépendant while en-
abling them to internet through a general interface: the platform tells the
functionality which functional blocks hâve been executed while the functional-
ity sends new functional blocks to be executed independently from their inner
content. Furthermore this interface-based communication implies no restric­
tion on the internai functional/platform mechanism and représentation as long
as they are able to respond to the requests by generating the desired answer.
This is precisely how we allow different heterogeneous models of computation
to be encapsulated inside the functional structure and preserve the mapping
mechanism intact whatever the nature of the MoC.
Before going further, let us define briefly how the internai simulation core works
for both structures types.

Pétri network simulation For pétri networks, the réception of a functional
block end-of-execution event generates a pétri token inside the pétri place re-
lated to this functional block. The simulator checks the transition condition
related to this place and triggers it if the condition is fulfilled. The pétri net-

5.4. MAPPING 211

Figure 5.25: Co-simulation of the platfonn and functional structure

Work State is updated and the next functional blocks that need to be executed
according to the transition output places are generated and sent bar;k to the
platfonn structure. Time is not explicitly represented becausc it is related to
the platform costs: only the data/control dependencies determined by fiinc-
tional aspects intervene in tliLs simulation process. Aside froin the remarks
made in Sec..5.d.2, the siimdation is entirely driven by the pétri network exe­
cution sernantics.

Platform structure simulation The platfonn structure simulation is more
complicated than for pétri networks. Not only does it embed the scheduling/al-
location^®/routing mechanisms but also is it responsible for the online com­
putation of the performance criteria determined by the States of the different
platfonn blocks perfonning the execution. We will thus spend the remaining
of this section to talk about platform related aspects.

Platform simulation

Looking at the inside of the platform structure core, functional blocks issued
by the functional structure go through several steps illustratcxl in Fig..").2(i;

1 The functional blocks coming from the functional structure are first stored

Nessie, allocation is u-sed in a totally different nieaning than in the context of high-level synthe.sis:
rather than being the génération of a RT description, the allocation within Nessie consists in assigning a
funcdional block with a platform block where it will be exermted.

212 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Communication interface

Functional
block

génération

ALLOCATION

Ig(Fc)

l8(Pc) Allocate
functional

block

ROUTING

Ail data
tokens

received

l3(Fc)
Execution
finished

Figure 5.26; Internai simulation of the platforin structure

in a re.ady-for-allocation queue. Ail these functional blocks waiting in this
queue conipete for allocation.

2 An allocation policy décidés which functional block should be elected for
allocation and the platforin block where it should be allocated. Once a
functional block is allocated on a platform block, it is moved froin the
eady-for-allocation queue to the waiting for data tokens queue.

3 Once ail the data tokens required by a functional block hâve been trans-
niitted to the platform block to which it is allocated, the execution may
begin. This functional block is then transferred from the waiting for data
tokens queue to the executing queue.

Once the execution of the functional block Ls over, it leaves the executing queue
and a message containing this functional block is sent over to the functional
structure closing the loop.

A data token oriented mechanism The execution from the platform
structure point of view revolves around the création, exchange and storage of
data tokens^® and is based on a producer/consumer paradigm. A data token is

^®Data tokens may also represent control dependency mes.sages exehanged between platform blocks: in
that case, the amount of data linked to this token is equaJ to zéro. It may however seem surprising that
we caU them data tokeus but we used that terminology to distinguish them from pétri tokens generat.ed
inside the pétri network.

5.4. MAPPING 213

Memorized tokens;
DJf

DT,B

DT^ I Token DT^
I transmitted to
I consumer I

No memory
Pure interconnect

Memorized tokens:
DT^

DTD

Token waiting at the
port input to be

D consumed

Memorized tokens:
none

Data tokens involved
in simulation

DTb

producers : l-|

consumera : none

producers : l-| I2

consumera : I4

producers : l-|

consumers : I4

Figure 5.27: Exainple of data token flows bctween producer/consmner platforni
blocks

generated by a platform block once the execution of an associated functional
block ends: this token thus represents the data resulting froni the perfornied
computation. After its génération, a token can be stored inside the platform
block (if it has memorization capability) or remains inside the block blocking
it until the token has been transmitted: in both situations, the platform block
is said to be a producer for this partdcular token. The functional blocks that
dépend 011 this data token will be consumers of this particular token and by
extension the platform blocks that they will be mapperi onto.
To illustrate this concept, Fig..5.27 depicts a platfonn structure cornposfxl out
of four blocks exchanging data tokens; many interesting things can be observed
and illustrat<xl on this example:

• Eatdi platform block that has memorization capabilities has a list of ail the
productxl tokens: that’s the case of T, I3 and T but not for I2 that is a
pure interconnect (no computation and memorization State, see Sec..').2.2
for more infonnation about core States).

• A data token doran’t necessarily hâve to exist in one single instance: it
can be duplicated as many times as required, for instance to store it
in different meniories that will make them available to their immédiate

214 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 5.28: Exainple of tiineline used for niapping process

neighbours. However ail these instances refer to the sanie data and once
ail the consumers hâve been satlsfied with their reqnests for this particiilar
data token, ail these. data tokens instances becoine obsolète and can be
eraseil.

• A data token can be sent only to direct neighbours sharing the same link
or along a path where ail intermediate platfonn blocks hâve interconnect
capabilities. Looking at the figure, we see that h has been allowed to
send the data token DTd to h while h is able to send DT a to li through
I3 that has interconnect capabilities.

• To manage the consumer/producer information, each token Ls tagged with
a list of ail its consumer and producer platfonn blocks: this will make
further data token routing much easier (bottom of Fig..5.27).

Event-based mapping From the platfonn point of view, the mapping pro­
cess is based on the évolution over time of the platfonn blocks State and their
associated data tokens. To manage the dynamic nature of the platfonn struc­
ture, Nessie establishes a mechanism based on events driving the évolution
of the mapping process. Each decision taken by the mapping policy generates
events that are meant to be triggered at a defined time step so that the simula­
tion evolves from time step to time step. To implement this mechanism, Nessie
relies on a discrète tinieline containing ail the scheduled events as depicted in
Fig..'i.28.
A timeline is a représentation of ail the past and future events ordered by
triggering time: for each time step, a vector contains ail the associated events.

5.4. MAPPING 215

The simulation goes on from one time step to the next making the simulation
progress in time. At each time step, events are triggered one after another in an
FCFS order. When events are generated, they need of course to be scheduled
at the current time step or in the future since it niakes no sense to plan an
event for the past. If the time step associated to the new event doesn’t exist, it
is created; otherwise the event is added at the end of the corresponding vector.
The simulation thus progresses by triggering events for each successive time
step until they are no more.
Four types of events are currently defined and can be generated during the
mapping process^^:

• State change events trigger the core or port State change of a platform
block. The event contains the previous and new State and an informa­
tion conceming the platform part related to this State change (the core
or a paiticular port). When switching to another State, it means that the
performance criteria of this block might change: the performance crite-
ria values of this platform block aie updated based on the current time
step value and the previous time step value of the mapping as explained
previously in Sec.5.2.3.
Triggering thLs event will additionally check for the end of execution of a
platform block that occurs when a core change his State çomjyutiiig^^
to idle. In such a case, the data token is generated and handled according
to the data memorization policy while the functional structure is told that
a functional block has ended its execution and may generate in return new
functional blocks that are stored inside the ready-to-allocate vector (see
Fig.5.2t>).

• Platform release event Ls related to a particular platform block to check if
it can be released for the execution of another functional block. Indeed it
can be possible that this platform block may not be available for execution
because it is in blocking mode waiting for a data token to be consumed
by another platform block.

• Data token réception event notifies a particular platform block that a data
token it was waiting for has just arrived. If ail the data tokens required
by the functional block assigned to the platform block are either stored
inside this block core or présent at one of its input port, the execution
may begin.

• Data token memorization event notifies a platform block that a data token
is now stored inside its memory and that it is now able to use it or transmit
it to another block if required.

Alg.4 describes in details the sequence of operations driving this event-based
mapping:

’^The number of event types is not restricted and the implémentation easily allows the programmer to
add events and integiate them inside the mapping process (see Sec..

216 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

1 The functional structure is initialized and generates some functional blocks
to be executed

2 At each time step, events are popped ont of the vector and then triggered
until there are no event left. Then the mapping tries to schedule and
allocate the functional blocks available for execution. Events that might
hâve been generated from the previous allocation and schedule phase for
the current time step are then triggered. After that, the data tokens are
routed from the available producer to the consumer platform blocks and
the remaining events for the current time step are once triggered. This
process is iterated as many times as there are time steps in the timeline.

3 At the end of the mapping, the performance criteria that are independent
from time are estimated: the one dépendent on time hâve been progres-
sively estimated during the different events.

Algorithm 4 General algorithm for the event-driven mapping method inside
Nessie___

1: Get the first functional blocks from the pétri network initialization;
2; while No time step remains in the timeline do
3; Go to next time step;
4: Trigger ail the remaining events;
•5: Schedule and allocate functional blocks;
6: Trigger ail the remaining events;
7: Route data tokens;
8: Trigger ail the remaining events;
9: end while

10; Calculate the values of the time-independent performance criteria;

Deadlock détection As previously explained, when platform blocks don’t
hâve memorization capabilities and produce a token as a resuit of an operation,
they switch to blocking mode: no interconnect or computation operation can
be performed until the produced token has been consumed by another platform
block. This blocking mode may however be problematic since it could possibly
lead to deadlocks because some routes may be unavailable due to blocked
platform blocks along the path.
This deadlock problem is depicted in Fig.5.29 presenting a platform structure
composed out of four different blocks without memorization. Each of them
hâve finished their execution and hâve produced a data token DT, where i
corresponds to the block ID for the sake of simplicity in this example. Platform
block I4 needs to consume data token DT\ but cannot receive it because the
blocks {I2 and Iz) on the path are currently blocked. To be released, blocks I2

and I3 need to deliver their produced token respectively to I3 (impossible since
I4 is blocked) and to I2 (impossible since h is blocked). This cyclic dependence

5.4. MAPPING 217

Consuming DT^
Producing DT^

Consuming DT2

Producing DT3

Consuming DT3

Producing DT2

Consuming DT^
Producing DT4

Figure 5.29: Exainple of deadlock due to platform blocks in blocking-mode: ali
blocks neod to transmit a data token to the rieighbour situated at their
diagonal

is a deadlock and cannot be solved if no block gives up transmitting a data
token to frœ a path for other blocks to send their data tokens.
Deadlocks resuit froni the définition of a platform structure with too few re-
sources (or limited data transmission capability) compfired to the available
parallelism of the functionality combined to the greed of the allocation maf>
ping policy. Two solutions are possible to avoid deadlocks;

• Limit the. reaource utüization: by limiting the resource usage ratio at
any time of the online mapping process to a given maximum percentage,
we decrease the chances of facing a deadlock. However this percentage
dépends on the functional structure, the number of links between the
functional blocks and their topology so that it is difficult to define a
resource usage ratio for which we can guarantee the absence of deadlocks.

• Recover from (leadlock.<i: when facing a deadlock, we could use a back-
trac:king method to recover from it. Going back in the timeline of events,
we could prevent the functional block creating the cyclic token depen-
dence from being allocated and differ it until enough resourcœ hâve been
released.

Since the aim of Nessie is the prédiction of performance of a functionality/plat-
form/mapping combination and not optimization, no deadlock removal policy
lias been implemented to avoid some solutions from taking too long évaluation
times due to computational intensive backtracking methods. However we must
mak(' sure that Nessie is able to detect a deadlock when it occurs and warn the

218 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

user about it by invalidating the particular solution. Therefore, the mapping
engine checks if ail functioiial blocks vectors {ready-for-allocation, waiting for
tokens, executing vectors) are empty when there are no remaining events to
trigger in the timeline: if this is not the case, we are in a deadlock situation.

In summary, the mapping core inside Nessie relies on the co-simualtion of
the functional and the platform structure by establishing a mechanism based
on events to make both structure and platform block States evolve over time.
The main advantage of such a technique is that it leaves the scheduling, al­
location and routing policy completely independent of the simulation core so
that we can modify and define these operations without changing an>thing to
the general mapping mechanism. The next section describes in more details
the scheduling, allocation and routing methods.

5.4.4 Scheduling/allocation

At the beginning of each time step of the co-simulation, we need to test which
functional blocks out of the ready-for-execution ones can be executed and on
which platform block: the choice of the functional block and its associated
platform block are precisely determined by the scheduling and the allocation^®.
Like we explained in Sec.5.4.2, the performances results of the allocation highly
dépends on the scheduling and that’s why both operations are usually carried
out simultaneously and so does Nessie.

Scheduling

Contrarily to the scheduling performed in high-level synthesis, the execution
time of each operation is not fixed. Indeed usual HLS scheduling algorithms
suppose that each operation can only be mapped onto one single type of plat­
form block which entirely détermines the duration of each operation. In the
case of Nessie, each functional type may be simultaneously compatible with
several platform types which makes the execution time dépendent on the plat­
form block choice hence on the allocation policy. The notion of mobility -at
the basis of several HLS scheduling- makes no sense in our case since the lower
and upper possible execution start/end time cannot be determined anjuiiore.
In such a context scheduling thus becomes more about determining the order
of execution rather than determining the absolute execution control step for
optimality (see Sec.5.4.2).
Though very complex scheduling policies could be implemented inside Nessie,
we hâve chosen a simple FCFS method for the sélection of the functional block
in an effort to optimize the execution time. Among ail the possible functional

Nessie, we define allocation as the action of associating a functional block with a platform block.
This shghtly dilfers from high-level synthesis where allocation refers to the génération (and not the the
as.sociation) of a platform at a RT level for a pre-scheduled DFG.

5.4. MAPPING 219

blocks waiting in the ready-to-allocate queue, we will try to allocate the first
one présent in the queue, then the second and so on until we reach the end
of the queue. When a functional block is elected, it is simply erased from
the queue (whatever its position which inakes it slightly different from a pure
FCFS policy). Step by step, functional blocks that haven’t been elected yet
will slowly move on to the front of the queue which gives theni a growing
priority with time: this policy thus avoids the phenomenon of starvation^®.
This policy is well adapted to the scheduling of functionalities described by
pétri nets that are regular in terms of data/control dependency i.e. that hâve
paths of fairly similar depth. The analysis of this dependence based on the
notion of mobility generalized to niulti-functional platfomi blocks could cer-
tainly lead to better results but such a topic is sufficiently large and complex to
deserve a spécifie research so that we don’t investigate it further in the context
of this work.

Allocation

The allocation task consista in associating a functional block elected by the
scheduling policy with a platform block. The sélection of the platform block
relies on two criteria:

--------—1—The selected platform-block-need to~be"able to execute tlfe'functional ^
block, this is verified using the compatibility list (see Sec.-5.1.il).

2 Second the platform block that will be selected out of the compatible ones
will be the niost efficient for the particular functional block to execute.
Silice the notion of efficiency is relative to the concems of the designer,
it’s up to Nessie’s user to define how to calculate the execution efficiency
of a functional/platform couple.

This allocation efficiency is represented by a weight value calculated using
a Yeti model for ail the competing functional/platfonn couples determined.
This model uses ail the possible user-defined performance criteria^® as inputs:
the model can be purely based on execution time, energy, area etc. or any
mathematical combination of these input parameters. Based on the weight
calculated by this Yeti model, ail the competing platform blocks are compared
and the one with the smallest weight^^ is selected for allocation. If the user
lias no idea how to define the sélection policy, defining a model independent

^^Stai vatiou is a phenomenon that may appear in Systems managing the attribution of shaied resources
based ou a priority mechauism: it is a commonly encountered issue in computer science and particularly in
thread management. Starvation happens when a low priority consumer of a resource gets uever provided
with it becaase of the constant existence of competitors with higher priority that always get served before.
The solution to that problem edways revolves eiround priority modification with time.

*°The criteria always include the execution time that is the default criterion for each computing State
of a platform block.

■^'The smallest weight wiU always be selected: if the user desires to select the maximum weight iiistead,
he just ueed to calculate the inverse value of the weight by modifying the underlying model.

220 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

of any criterion and equal to a constant will make the policy degenerate to a
pure FCFS policy.
Our policy that relies on a user-defined model based on performance criteria
values is thus very flexible, enables the use of multi-functional platform blocks
(unlike many algorithms) and is well suited for an online mapping algorithm.
Clever use of the models used to compute the weights for allocation sélection
allows the user to represent different performance compromises with the same
mechanism. The model for allocation weight calculation deflnes a mapping-
related degree of freedom that the user is able to modify.

5.4.5 Routing

In the previous section, we hâve explained how scheduling/allocation works,
the first operation performed at each time step of the functional/platfotm co­
simulation. It’s now time to discuss the second operation called routing.

The problem of routing

The routing process basically consists in determining the path through the
communication network that data/control tokens will take to flow from the
producer platform blocks to the consumers. Although it may Sound quite
simple, there are many problems surrounding the routing as illustrated in
Fig..5.30;

• Determining a route: platform structure définition in Nessie is entirely left
to the user so that no assumption can be made a priori on the complex-
ity of the interconnect topology: a routing method independent from the
communication network and supporting bidirectional and unidirectional
links is thus required to solve our problem. Aside from route détermina­
tion, we would like this method to rely on a user-based définition of the
quality of a route rather than on a predetermined metrics.

• Events détermination: if the scheduling détermines the functional blocks
to be executed first by allocating them on platform blocks, the exact tim-
ing relative to the activation and execution start of the different platform
blocks is determined by data tokens progressing from one block to an-
other. We thus need to flnd a method to generate these activation events
depending on the latency and the bandwidth of the different blocks.

• Sélection of the data producer/consumer couple: at a précisé time step,
several functional blocks mapped onto platform blocks may be simultane-
ously waiting for data tokens in the queue. Since interconnect capabilities
are often limited, ail requests for data token sending cannot always be sat-
isfied: therefore we hâve to elect the producer/consumer pair among the
competing ones for data token transmission. Should we favor platform
blocks in blocking mode to release them for the execution of other op-

5.4. MAPPING 221

Sending DT^ or
Receiving DT2?

Sending DT^ or
Receiving DT3 ?

P(DT^) = producer of token DT^
C(DT^) = consumer of token DT^

Figure 5.30: General problematic of data tokens routing illustrated on an example
of platform structure. Tlüs figure shows different routing possibilituis
for producers/consumers of the sanie data token DTi.

222 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

eration or not? In the case of multiple producers, which one should we
choose? Which consumer should be served first?

• Token broadcasting: sometimes a same data token may be consumed by
different platform blocks at the same time: when the interconnect network
supports it, data token broadcast may offer more interesting compromises
in ternis of laténcy and be more friendly regarding network congestion
than several point-to-point communications. The questions of defining
a method to détermine those multiple paths routes and evaluating these
different compromises however need to be answered.

These different points will be the topics discussed in this section devoted to
routing: as a starting point, we will describe a general method to détermine a
route between a producer and its potential consumer.

Dijkstra’s routing algorithm

To enable the routing of data tokens, the very first step lies in the ability to find
a route from a given source to a destination node. Since the communication
architecture Ls totally defined by the user, we need a very flexible method to
perform the routing: therefore we chosen Dijkstra’s routing algorithm.
The Dijkstra’s routing algorithm[14], widely used in networks, flnds the short-
est path from a source to any reachable node of a communication architecture
represented by a graph of vertices linked by non-negative edges. Fig..5.fll illus­
trâtes such a graph with vertices representing communication nodes while the
edges linking them represent the communication links with weights defining
their usage cost: the higher the weight, the less interesting it is to take that
path. Dijkstra’s algorithm also supports unidirectional links represented by
oriented edges instead of non-oriented edges for bidirectional links.
Dijkstra’s routing algorithm is described in Alg..5 where V is the set of ail
vertices présent in the input graph while U is the set of vertices left to explore.
Each vertex V{ of the graph will be defined by two attributes evolving during
the Dijkstra’s shortest path search: the precedent vertex in the shortest path
and its distance i.e. the cumulated weight of ail edges from the source.
This algorithm proceeds basically in two successive phases:

1 The vertex among the unexplored list U with the smallest weight is chosen
as the next vertex to explore.

2 Ail the neighbours around this vertex are explored: their distance and
the previous vertex in the shortest path are updated if necessary.

This process goes on until ail vertices hâve been explored (until U is empty)
or if the destination vertex has been found if it was specified.
The Dijkstra’s algorithm complexity grows like O(fV^) where N Ls the number
of communication nodes: it can even be reduced to 0{N *log N) if some efforts
are spent on the minimum distance vertex élection in line 10 of Alg..5.

5.4. MAPPING 223

Legend :

Vertex i =
communication node i

Edge with weight Wj j =
communication link
linking node / to node j

Figure 5.31: Illustration of a giaph represeriting a conununication network: vertices
are communication nodes wlüle eciges represent conununication Links

Algorithm 5 Dijkstra’s routing algorithni(y,Ü5o.u,.c,;)
1: {Initialization of ail the vert.ices of the graph}
2: for Ail vertice,s a, of V do
3: Set the distance of Vi to infinité
4: Set the previous vertex of vt to undefined
5: end for
6: Set the source vertex v^ouTce distance to zéro
7: Copy vertices of V into U
8: {Beginning of the algorithm in itself}
9: while U is not einpty do

10: Fine! vertex v„iin with the smallest distance and reniove it front U
11: for each veitex Vj neighbour of v^in do
12: {Thls step compares the current distance of each vertex siirrounding v^in and

checks for each of them if the new path lias a smaller distance or not}
13: if dist{vmin) + weight{vrnin-.Vj) < dist{vj) then
14: Previous vertex of Vj in the shortest path beconies Vmin
15: The distance Vj bœomes eqnal to dist{vmin) + weight{vmin, Vj)
16: end if
17: end for
18: end while

224 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Applying Dijkstra’s algortihm to platform structures

Although the Dijkstra’s algorithm is very flexible and general, platfonii struc­
tures make some assumptions that prevent us from directly using this routing
algorithm. Indeed the input graph of the Dijkstra supposes that computation
nodes are vertices and communication links are edges. Such a simple séparation
cannot be done for platform structure since some platform blocks may be able
to perform both communication and computation operations. Furthermore
there may be more than one interconnect node separating two computation
blocks: this makes the use of a single edge between two vertices problematic.
To solve these issues, we established two important rules to define which blocks
can be crossed and how the source/destination distance will be calculated based
on the weight of the individual blocks présent on the path.
First, each time a platform block -whatever its nature- is crossed, its weight
is added to the total distance of the path Crossing it. This means that ail the
blocks (except the source) présent in a route contribute to the total distance
of the path: several successive interconnect blocks will thus hâve their weight
added as if they were one block with a weight equal to the sum of their re­
spective weights. Links connecting ports are virtual and don’t represent any
implémentation cost: they won’t contribute to the path cost.
Second, due to the different States (computation, memorization and commu­
nication) that a given platform may occupy at different times, we need to
establish rules to détermine if a block can be crossed or not depending on its
actual State. Source and destination blocks will always be computation blocks
producing/consuming a data token or blocks sending/receving the content of
a memory. To transmit a data token from a consumer to a producer we need
to find a path exclusively composed out of blocks having communication ca-
pabilities. In other words, this means from the Dijkstra’s algorithm point of
view that a platform block Ptcenter will hâve surrounding neighbours only if:

• The directionality of the port doesn’t prevent Ptcenter from sending data
tokens to the potential neighbour

• Ptcenter has communication capability or Ptcenter is the source block used
to initialize

• The tested neighbour is in idle mode i.e. actually not busy and not
reserved for a future transaction.

Given these simple rules, it becomes possible to use Dijkstra’s routing algo­
rithm on a platform structure. Left part of Fig.5.32 présents an example of
platform structure composed out of platform blocks with and without commu­
nication capability (respectively with green and red backgrounds) linked by a
network of logical links. Using our previous rules for the identification of valid
and reachable neighbours, we can see the resulting graph that is a valid entry
point for the Dijkstra’s algorithm initialized with block I\ as source (right part
of Fig.5.32). As we can see in this example, one platform structure with no

5.4. MAPPING 225

a) Initial platform structure b) Graphs ready for Dijkstra's routing

Communication capability distance when Crossing block /

Figure 5.32: Application of the neighbourhood identification rules to a platform
structure (a) in order to obtain the équivalent graph représentation
(b) required by the Dijkstra’s rotiting algorithm

isolated block results in two disjoint graphs representing the nodris that can
exchange data tokens with each other. This resnlts froni the fact that block I5
splits the platfonn structure in two parts that cannot coinrnunicate together
since /g has no communication capability. Visually it is very easy to identify
pairs of blocks that are able to cornmunicate: the source 7i must be separated
from the destination by a path of successive green blocks only with links di-
rected towards the data flow direction. We may also note that since Ii is a
source block, it is able to communicate with 1$ even if there are no interme-
diate interconnect block in their way; this can be useful to allow the u.ser to
evaluate the performances of a System where computation nodes communicate
immediately together with no interconnect overhead.
Additionally, each directrnl edge of the graph is annotated with a weight as-
sociattnl with the destination vertex: this weight will be addal to the total
distance when including the pointed vertex to the route. When a link is uni-
dircx’tional (as it is the case for the I\ to /g buk), only one directed edge will
be présent in the resulting graph.

Dijkstra’s algorithm example To illustrate Dijkstra’s routing algorithm,
let us take back our previous platform structure example and explain step by
step using Fig..5.33 how it works when 7i is the source node:

226 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

1 Since the source is initialized with a zéro distance, we select it as tlie
starting block. Ail the neighbours around the source may be explored if
they are currently unused since a non-communication capable block may
be the neighbour of the source block. AU these neighbours hâve not been
explored yet (infinité distance) and their distance is thus updated with
the sum of the current distance of the path (0) cumulated with the weight
of each neighbour; the algorithm lias established three initial routes to
blocks Is, h and E- Source block is now popped ont of the unexplored
block list and the block with the smallest weight is elected for the next
itération: in our case this is Is-

2 il is the sole neighbour that can be reached from the currently exjilored
block Is- Dijkstra’s algorithm will discard this option for the smallest
route élection since adding Ji weight to the current route distance of
block Is will increase the distance of I\ from 0 to 8 -f 5. Thanks to this
mechanism, the Dijkstra can guarantee us that no route with cycles will
appear as long as the assumption of strictly positive weights is respected
for ail blocks. Is is tagged as explored and I2 becomes the next block to
explore since it has the smallest distance among the remaining unexplored
blocks.

3 I2 explores its two neighbours and updates the distance of Is (15-1-6) that
becomes the new unexplored block with smallest weight. The link from
I2 to Is is now included inside the shortest path.

4 Is explores its two neighbours and updates the distance of /s (21-f7) and
a route towards it is established. Is is tagged as explored and h becomes
the next block to be explored (because its distance is smaller than R).

5 74 explores its two neighbours: no change is made since both blocks 7i
and 7s hâve a smaller distance than the potential new one. J5 becomes
the new block to explore.

6 Is has no neighbour since it has no communication capability and thus
cannot transmit anything to any contiguous block. The algorithm ends
here since the two blocks Iq and R that remain unexplored hâve an infinité
distance meaning that they cannot be reached. This resuit could hâve be
anticipated from the fact that there were no directed edge leading from
7i to Iq and Ij in the graph represented in Fig.5.32.

The only assumption made by the Dijkstra’s algorithm is the non-negativity of
the weights of the input graph representing the communication architecture.
In practice, this hypothesis entails that a route cannot become better whenever
a block is added to it. However the non-negativity of weights assumption could
be relaxed using other routing methods such as Bellamn Ford algorithm[15]. If
this algorithm is able to handle négative weighted edges at the price of a longer
Processing time than the Dijkstra, some important measures are to be taken to
avoid the création of infinité cycles during the routing process. Such a case is

5.4. MAPPING 227

No communication capability

Communication capability

B
AIready

explored block

Unexplored
block

Currently
explored block

Eléments being
changed since lest step

□□

1)

3)

5)

7

Inf

Inf

6

21+7

Inf

Figure 5.33; Example of the Dijkstra’s routiiig algorithm applied on a piatform
structure

228 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 5.34: Example of a Bellman Ford routing algorithm for a platform structiue
resulting in infinité loop route

illustrated in Fig.o.34 for a simple 2 by 2 mesh platfonn structure where each
block lias a négative weight. The source block for the routing algorithm is set
to block I\ and the smallest weight route is progressively established through
blocks I2, h and I4. Each time a block is crossed, the route becomes less
and less costly since each négative weight decreases the total distance of the
route. Once the routing algorithm will get to block 7i, it will be included in
the smallest route for the same reason so that we hâve retumed to the initial
block. However, Crossing again and again the blocks using the same path will
c.onstantly improve the quality of the route by decreasing its total distance so
that the routing process will infinitely loop on the same path which leads to a
deadlock in the routing algorithm.
Several techniques exLst to avoid this loop problem but for the sake of sirnplicity
and Processing time we will only use the Dijkstra’s algorithm prohibiting at the
same time the use of négative weights. Any attempt to use négative weights
for the routing will thus resuit in a run-time error generated by Nessie.

Weight détermination

In order to allow the user to give its own définition of the quality of a route, the
weight used for the routing algorithm is user-defined as it was already the case
for allocation weights. We aLso define a Yeti model conimon to ail abstraction
levels that can be customized and involve several parameters relative to one
platform block of the network^^ :

• latency of a platform block corresponds to the time separating the com­
plété réception of a data token from its complété sending

^■^Thc de.scribed paaameters for weight détermination are refened to their current name m the model:
the user should respect these names wh(m using these parameters iiLside the Yeti model.

5.4. MAPPING 229

• BW Ss, the bandwidth of the platform block

® numberOfNeighhours is a parameter representing the number of neigh-
bours around the platform block. This can be useful since a route passing
through a block with many neighbours will be more penalizing in terms
of network congestion since ail these neighboiir blocks won’t be able to
use this route anymore until this block is released.

• number Of Compatibles Wtypes represents the number of functional primi­
tives that the crossed block is compatible with; if it has no computation
capability, this parameter will be equal to zéro. If a route is established
through a block compatible with several possible functional primitives,
thLs block cannot be used for allocation making this route potentially less
interesting than others.

• hasInterconnectCapability, hasComputationCapability and IiasMemoriza-
tionCapability are boolean parameters whose value is equal to 1 if the
block has interconnect, computation or memorization capability and 0
otherwLse.

Based on these parameters, the user is able to build any mathematical combi­
nation representing different possible policies for the choice of the route without
having to change the Dijkstra’s routing algorithm. In networks, the most sim­
ple measure of a route distance is the hop count i.e. the. number^oLcrossed...^
blocks whatever their characteristics. This hop count routing distance mea­
sure can be easily implemented inside Nessie by defining a weight model always
equal to 1: each time a block is crossed, the weight equal to 1 will be added to
the path distance so that the resulting distance will be equal to the number of
crossed blocks.
It may also be mentioned that the implémentation is sufficiently flexible to
enable the easy addition of new parameters for the weight calculation aside
from the aheady existing ones.

Data token broadcast

Sometimes several platform blocks require to consume the same data token at
the same time so that sending it simultaneously to ail the consumers could
be more time efficient than sending it separately to each consumer. If the
communication blocks enable it, data token broadcasting could therefore be
an interesting option and we thus included that functionality inside Nessie.
Based on the Dijkstra’s algorithm, it is fairly easy to find the best route from
a producer P{DTi) to multiple consuriiers Ci{DT\) for the transmission of a
given data token DTi\ this situation is depicted in Fig..5.d.5. The different
steps required to get the route are the following:

• Select the producer for the desired token as the source block of the Dijk­
stra’s routing algorithm

• Perform the Dijkstra’s routing algorithm

230 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

C(DT^)

Figure 5.35: Example of the optimal route for tlie broadcast of a DTi tokeii from a
prodiicer block P{DT\) towards ail the consumers C[DTi)

• For ail the reachable consumers, trat:e back the route until the source is
reached and memorize the different interniediate blocks

• Merge the different coinmon parts of the individual routes of each con­
sumer into a single path

As we can see on Fig.r).35, the application of this niethod results in a graph
representing the best route from the producer block P{DTi) to ail the consumer
blocks C{DTi). The broadcast routfis towards ail the consumers can thus be
built for ail the produced tokens of a part.icular source block without having
to perform again the Dijkstra’s routing algorithm.

Producer/consumer block sélection policy

Now that we are able to find a route, we need to define a policy to détermine
the consumer platform blocks that will be served first. Ail the blocks w'aiting
for data tokens présent in the waitingForDataTokens (pieue compete for the
use of the communication network so that we hâve to use it as efficiently as
possible to maximize the data token total bandwidth.
For each consumer Ci in the list, we can get ail the data tokens D^ missing for
execution and get the different producers Pj for these data tokens. The policy
established for the sélection of the routes is described by Algo.b and relies on

5.4. MAPPING 231

two major points:

1 The sélection of the consumer block(s) for data routing

2 For each selected consumer block, the détermination of the most profitable
data token/producer pair

Algorithm 6 Policy for the sélection of the consumer/producer/data token
combination elected for routing

1: for Each data token consumer Ci in the order of the queue of waiting consumers do
2; Déterminé the set D of data tokens awaited by Ci
3: for Each possible producer Pi of a token of D do
4: Perfomi the Dijkstra’s algorithm with Pj as the source
5: for Ail the tokens Dk produced by Pj at destination of Ci do
6: Evaluate the route distance Dist{Pj,Ci)
7: Evaluate the route broadeast distance Dist{Pj,Consumers{Dk))
8: Select the highest value among Dist(p,,c,) ^he

memorized value and put it back in memory as the better solution found yet
9; end for

10; end for
11: Commit the routing of the path with the biggest _____ _ _ ___________
T2i Réserve airflië"blôcks along the selected route
13: end for

The attribution of the communication network for data token routing ends
when ail consumer blocks hâve been explored.

Sélection of the consumer block Consumer blocks are selected based on
a FCFS policy to ensure that the first tokens arrived in the waitingForTokens
queue will be tested before the others/

Sélection of the data token/producer Once the consumer has been cho-
sen, the algorithm will try to find the most profitable route transmitting one
of the token that the consumer is waiting for. We first proceed by establishing
a list of ail the producers able to deliver one of the expected data tokens to the
consumer. For each of these producers, we perfomi a Dijkstra’s routing algo­
rithm and then test ail the tokens produced. For ail the generated data token
Dfc/producer Pj pairs, we will calculate the metrics represented by Eq.-5.8 and
select the biggest value representing the most profitable route. This metrics is
based on the two following paranieters:

• ij^consumers{Pj,DC représenta the number of consumer blocks that can
be reached given the current occupation state of the platfomi blocks for
a route starting from Pj and distributing token Dk

232 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

• Dist{Pj, Consumers{Pj, D^)) is the total distance of the path linking the
producer Pj to ail the currently reachable consumers C{Pj,Df^) of data
token Dk'. this route includes, of course, the consumer block Ci tliat has
the priority for data token routing. The total distance is calculated by
adding only once the routing weight of each platform belonging to the
broadcast path so that blocks that are part of common segments will
contribute only once to the distance. Indeed a segment used for broad-
casting doesn’t cost more in terme of network occupation or performance
criteria cost than a segment used for a single route.

^ . ^consumers{Pj, Dk)
Metnctokenlproducer sélection = Dist{P^^Cansumers{Pj, Dk)) (5.8)

Basically the idea lying behind that metric is that we want to find the solution
that has the smallest total distance per data token sent. This is a much more
fair method for comparing different producer/data token pairs since having
more consumers served by a route of a given distance increases its profit.
Once the consumer/producer/data token solution has been chosen, ail the
blocks along the path are reserved meaning that they cannot be used for any
other transaction until the data token has crossed them. This mechanism of
réservation avoids the overbooking of a block for multiple data token transmis­
sions and several émissions of the same data token to a particular consumer
block. The only drawback of this method is that the consumer block won’t
be available until it has received the data token: however in a System where
network latencies are short, this should not be an issue^^.

Calculating events

When a route has been established between a source and one or multiple
destinations, the last operation left is the détermination of the events for the
different blocks involved in the data token transmission. This is required to
maintain the consistency of the block States and calculate their release time to
allow other routes to use them as soon as possible after they hâve been used.
The first thing to do is to compute the value of the bandwidth for the whole
path. Since several communication blocks can be chained with different indi-
vidual bandwidth values, we set the bandwidth of the complété path to the
minimum value BWmm of the different block bandwidths. A token DTi of
SizeoTi data size will thus be sent from the source to the consumer(s) at a
rate of BW^in meaning that a block without any latency will complété the
émission of this token after temissi<m time units as described by Eq..5.9. If
we consider that a path from a source block to a consumer contains N inter-
mediate blocks, ail the latencies from the source, the destination and the N
blocks must be added to the émission time to get the total transmission time
tirans,DTi from the moment where the token begins to be sent from the source

’’A solution to this problem will be discu-ssed in the chapter dedicated to future work (see Sec.7.2.1).

5.4. MAPPING 233

Data token arrives at
the input port

\
\

H+

* State change event
(inactive => receiving)

Path from
Block

Path to
Block

input port
timeline

core timeline

- State change event
(transmitting => idie)

output port
timeline

- State change event
(inactive => sending)

- State change event
(sending => inactive)
- Block release event

Data token leaves
the output port

Figure 5.36: Mecliaiiisin of event génération inside a platform block based on the
results of a routmg operation

to the inoiiiont where the token lias been entirely received by the destination
block. ThLs transmission time is given by Eq-'i.lO where ti^iat,inPort is the la-
tency of the input port, of the block i, mit Port >s the latency of the output
port, tijat,core ts the transmission latrmcy of the block i and turansitionm^^trar.,
is the transition time from the idle State to the transmitting State for block i.

^ émission, DTi
BWmin

SizeDTi
(5.9)

ttTans,Dl\ — tsource,lat,outPort “b idestination,lat,inPort "b temission.DTi +
N

^ ^ i^i,transitionidie=>trans "b ti,lat,core "b ti^iat,outPort "b ti^iax^inPort) (5.10)
i=l

Fig.5.3() illustrâtes how the mechanism of event génération works for ail the
platform blocks along the route. Considering one intermediate block i through
which flows a token, events are generated separately for the input port, the
output port, and the core of the block. The mechanism is always the same for
the different parts (core and ports) of the block:

234 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

• Once the data token arrives, an event changing the State of the port/core
is scheduled

• After a duration corresponding to the latency, the data token really begins
to be sent meaning that the following block part is stimulated

• Once the token has been sent (after a t^rnissicm tinie), the block part state
is reverted back to its idle State and an additional event to release that
block is scheduled.

Events are scheduled using this method for ail the blocks until we reach the
destination where an event for the réception of the data token is scheduled.
Prom the figure we can also mention that the core related events are sched­
uled while taking into account the potential transition time associated to state
change (see Sec.-5.2.2).

5.5 The Nessie framework

In this section, we describe from a user point of view the input and output
of Nessie, give some hints to deal with the management of the input files and
explain the different mechanisms used to detect errors in the input files.

5.5.1 Introduction

Nessie is a C-|—I- framework entirely interfaced by the mean of XML files as de-
picted in Fig..5.37. The program receives only one argument which is the name
and location of the input file setting up the performance prédiction experiment
and its parameters along with other dépendent XML input files. Once the in­
put files hâve been read and turned into a structure of C+-I- objects, the Nessie
internai core proceeds to the évaluation of the performance criteria according
to the defined hierarchy and mapping policy. Each possible combination of the
degrees of freedom is tested one after the other and the results are reported
inside the output files.

5.5.2 Input and output files

The XML files used as input for Nessie are the following:

• Simulation.xml is the main file used to initialize a Nessie performance
prédiction simulation. It contains the platform and functional description
(structure définition for the different abstraction levels and a reference to
Yeti performance criteria models) and the different structural and param-
eter related degrees of freedom with their possible values. Additionally,
this file defines the different performance criteria and the way to compute
them based on their dependence over time and the platform structure.
The name of this file is user-defined and is passed to the C-l—I- program
as main argument.

5.5. THE NESSIE FRAMEWORK 235

Figure 5.37: Input and outpiit XML file organization in Ne.ssie

• allocationWeight.xnü is a file defining a Yeti model for tlie calculation of
thc weight of the different platform blocks competing for allocation. This
riiodel yields for ail the abstraction levels and the file name defining it
miist be respected by the user.

• routiny Weight.xml defines a Yeti model for the calculation of the incré­
mental cost of the extension of a route through a particular block. This
model yields for ail the abstraction levels and the file name defining it
must be respected by the user.

• performanc.eCriteriaModels.xml defines Yeti models for performance cri-
teria estimation and each of these files is associated to a part.icular plat-
form/functional primitive combination.

The performance criteria model files may quickly become numerous as the
number of abstraction levels and the nurnber of possible functional/platform
I)rimitives increases. Although no file naming convention Ls imposed to the
user, it may be interesting to define one and stick to it to avoid file name am-
biguitics and allow the user to handle the files more easily. We thus advise the
user to use the following file naming convention based on a HW JCW^STATE
description. HW^ is used as a prefix referring to the définition of the plat-
fomi perfonnance criteria model, X is the abstraction level of the platform

^''We may woudor why we deliberately ase tlie prefix HW (SW) to refer to platform (fimctfoiiality)
while wo established rlearly the différence of vocabulai'y bet.ween Chose two words iu Sec. f.2. The rea.sou is
simple: a part of the C++ code iind XML schémas were writteu before we decided to make that différence
so that we keep here the terms hardware and soft.ware to remain consistent with the code. Furthermore
HW and SW préfixés are much more self-speaking thau PT and FC to onyone who is not familiar with
(31U' vocabulmy.

236 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

primitive and Y is the ID of the platform primitive inside abstraction level X.
Finally STATE is the state of the platforrn primitive core/port for which the
model is defined: it can be INACTIVE, SENDING or RECEIVING for a port
and IDLE, TRANSMITTING, MEMORIZING, INACTIVE, SLEEPING and
COMPUTING-Z (where Z is the ID of the compatible functional primitive
associated with the platform primitive) in the case of a core state. Allowing
this convention leads to a clear organization of the XML files in the repository
of models and avoids many possible confusions.
The output files generated by Nessie after a performance évaluation are the
following:

• NessieCriteriaResults.xml is a file summarizing the results of ail the per-
formed estimations: it gives the different performance criteria for each
tested combination of degrees of freedom.

• timeLine.xml files gives for each solution the sequence of events result-
ing from the mapping of a particular platform structure on a functional
structure. These information deliver the complété scheduling of the func-
tionality and allow the user to visualize how Nessie exactly perfonned the
mapping. Each generated file is named following a particular convention
NessieTimeLine^SOLM-ALM-HW-K.SW-L where I is the ID of the
solution among the pool of explored solutions, J is the abstraction level
and K is the platform primitive mapped onto functional primitive L.

• activityReport, xml is a file containing information about the absolute and
relative occupation time of each platform block involved in a mapping.
For each state and each part of any block of a platform structure, we
can hâve these occupation time information which can be very helpful to
détermine the average time of computation or transmission of a particular
block and estimate the efïiciency of a particular platform structure. The
activity report files follow the same file naming convention as timelines.

• plotFile.plot is a file containing ail the values of the variables to plot and
can directly be interpreted by a plot program to deliver the desired graph.
The axes values may be selected among degrees of freedom or performance
criteria so that it is very easy to visually compare different performance
trade-offs.

Sometimes the génération of the activity report and the tirneline files is not
necessary: Nessie allows the user to disable it when only the final resulting
performance criteria values are required. This has the advantage of speeding
up the exploration and sparing a lot of memory since simple simulations may
quickly generate very large XML output files.

5.5.3 XML format

To define a simulation and its parameters, the user has to croate and fill ail the
XML files with the required information. To avoid any risk of syntax error, ail

5.6. IMPLEMENTATION 237

the XML files used in Nessie corne with an associated schéma; this enables the
automatic vérification of the compliance of the XML file with a structured and
well-defined grammar (see Sec.B.l for more details). The Nessie framework
will validate the document and generate a run-time exception before exiting if
any validation error is found during the parsing. Additionally, Nessie checks
some other aspects that schema’s are not able to define or constraint. Among
others, Nessie will generate an error if there are abstraction level discrepancies
in the définition of structures, undefined block ID’s to build a structure, degrees
of freedom referring to undefined values, undefined models for some required
States in a platform block etc. A complété description of XML files, their
content and the different aspects checked by Nessie is given in Sec.B.3.1.
Defining complex XML files by hand may quickly become a burden if no ap-
propriate tool is provided to the user. An XML editor is therefore of great
iKe since it is able to automatically complété a document with the mandatory
content defined by the user leaving only the user with the only task of entering
the pure data and tag-less content. Furthermore a graphical user interface
could be easily built in the future above the XML input file layer so that we
could keep the vérification process intact and integrate it in the core of the
tool.

5.6 Implémentation

With over than 60 classes (even without Yeti) and a few ten thousands Unes
of codes, Nessie is a program with a quite complex architecture. Trying to
describe it in details from a software point of view is pointless so that we will
in this section focus on the most important aspects that bring flexibility and
explain the features of the tool. As we also did for Yeti in Sec.2.6, we will only
use partial UML diagrams keeping only visible the most relevant information
for the pur]>ose of our discussion. Due to the complexity of the complété UML
diagram, we will split it into several parts and divide the rest of this section
according to them.

5.6.1 Performance criteria and degrees of freedom

Performance criteria and degrees of freedom are the outputs and the inputs of
the performance estimation core and are therefore grouped in the same section.

Criteria The criteria related classes are criteria, criteriaResults and criteri-
aSet and are depicted in Fig..'i.38.
The criteria class attributes include the name, a time dependence rule and a
structural combination rule defining the way to calculate this particular crite-
rion for a platform block. EstimateCriteria is the main method of this class
enabling the calculation of the criteria value évolution over time and over the
different parts of a platform block: this method uses the value of the criterion

238 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Figure 5.38: UML diagrams for criteria related classes in Nessie

at the previous time step and its value for the port,s and core of tlie platforin
at the current time step and retums the resulting criterion value.
The criteriaSet class is used to gather ail the criteria defined withiri the current
performance estimation simulation and classifies them into time dépendent and
time independent categories to provide the mapping rnethod with consistent
information about the different criteria.
The crüermResults class represents the results of the criteria estimation includ-
ing ail the time (in)dependent criteria along with time, latency and bandwidth
if relevant. This Ls particularly useful to communicate with other cla.sses and
encapsulate into one object the criteria resulting from the mapping of a func-
tional structure onto a platfonn structure. Furthermore this object can then
be stored to avoid the évaluation of already calculated criteria and the waste
of time resulting ftom redundant évaluations.

Time dependence and combination rules Time.DependenceRules and
CombinationRules respectively represent the rnethod used to combine criteria
values over time and over the platfonn structure to obtain the resulting criteria
value (see Fig.a.3!) and Fig..").40). For both classes we hâve defined subclasses
to specify different time and combination rules and rnake use pol>miorphous
methods for their évaluation.
The timeDependenceRule has three different subclasses:

• üdditiveTimeDependenceRule adds the current criteria value to the crite­
ria value of the previous time step

• rmixTirneDependenceRule compares the current criteria value with the

Ji. IMPLEMENTATION 239

timePependenceRule

value' combineCriteriaValues
(float previousTittie, (loat currentTime, value'
previousCriteriaValue. veclor<value'>*
HWblockCriteria Values)

additiveTimePependenceRule maxTimePependenceRufe

value' combineCriteriaValues
(float previousTime, float currentTime, value'
previousCriteriaValue, vector<value’>'
HWblockCriteria Values)

value* combineCriteriaValues
(float previousTime, (loat currentTime, value'
previousCriteriaValue, vector<value*>'
HWblockCriteria Values)

integrateTimePependenceRule

value' combineCriteriaValues
(float previousTime, (loat currentTime, value'
previousCriteriaValue, vector<value*>’
HWblockCriteria Values)

Figure 5.39: UML diagrarns for tinie dependence rnle related classes

combinationRule

Virtual value* combineCriteriaValues
Jvector<j^ju^^

addtitiveCombinationRule maxîmumCombinationRule

value* combineCriteriaValues
(vector <value*>* inputCriteriaValues)

value* combineCriteriaValues
(vector <value*>* inputCriteriaValues)

Figure 5,40: UML diagraras for combination rule related classes

240 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

criteria value of the previous time step and selects the maximum

• integrateTimeDependenceRule adds to the previous criteria value the dif­
férence of the current value and the previous criteria value multiplied by
the différence of the time stamps.

The combinationRule has two different subclasses:

• additiveCombinationRule sums ail the criteria values of the different parts
of a platform block or the different blocks of a platform structure

• maxCombinationRule selects the block/part of the platform block with
the maximum criteria value.

Thanks to this inheritance mechanLsm, new rules can be easily added in no
time by defining new subclasses deriving from the corresponding superclass.

Degrees of freedom Each degree of freedom is represented inside Nessie
by an instance of the DoF class containing ail the information to change the
different degrees of freedom values that define one particular solution. This
super class contains a static reference to the explorer (see Sec.-5.6.2) to enable
DoF subclasses to change parameters related to the hierarchical exploration.
The two main methods allow the other classes, whatever the exact nature of the
degree of freedom defined by the subclass, to get the number of possible values
for their degree of freedom and to set it to one of these possible values. Thanks
to this mechanism, we are able to modify a degree of freedom independently
of its nature which is very convenient to establish a transparent interface to
build any design space exploration on top of it.
The three different classes deriving from the DoF superclass are the following
(see Fig..5.41):

• HWstructureDoF is a degree of freedom defining the platform structure
used for a spécifie abstraction level and platform primitive

• SWstructureDoF is a degree of freedom defining the functional structure
used for a spécifie abstraction level and functional primitive

• valueDoF is a degree of freedom defining the value of a Yeti local or global
parameter used in an analytical model for performance estimation.

5.6.2 Hierarchy

This part describes ail the classes and implémentation mechanisms surround-
ing the hierarchical functional/platform description and évaluation in Nessie.
Fig.-5.42 represents a UML diagram summarizing the different classes and their
composition that we describe in the coming paragraphs.

SWtypes and HWtypes SWtype and HWtype are the classes representing
the functional and platform primitives and are very similar due to the close
interaction existing between the functionality and the platform.

.6. IMPLEMENTATION 241

_______ DoF
static explorer* myExplorer;
Virtual unsigned int getNumberOfPossibleValues()
Virtual void setValue(un^ne^intl

HWstructureDoF SW stru ctu reDoF

unsigned int getNumberOfPossibleValuesO
void setValuefunsigned int)

unsigned int getNumberOfPossibleValuesO
void setValue(unsigned int)

ValueDoF

unsigned int getNumberÔfPossibleValues()
voidsetValue^un^^

Figure 5.41: UML diagiains represeiititig degrees of freedom related classes

The SWtype contains attribiites to define t.he abstraction level, the ID inside
thls abstraction level. the size of the outpnt tokens produced by tliLs functional
]>rirnitive and ail the possible functional structures that can be used to define
this functional primitive at the lower abstraction level. Additionally the class
contains a list of ail the functional parameters used in Yeti rnodels and a list
of ail the platforni primitives that can extxaite this functional primitive at this
abstraction level.
Tlie HWtype contains attribntes defining the abstraction level, the ID of this
platfonn primitive within the abstrrudion level, platfonn structures related to
this primitive and a list of the platfonn parameters used for the Yeü rnodel.
More importantly, platfonn primitives define Yeti behaviour objects for the
perfonnance criteria évaluation of the core States, the computing state associ-
ated with the different functional primitives and the port States. The methods
contained in HWtype enable the use of Yeti niodels (in the case where no fur-
ther liierarchical exploration needs to be performed) and retum a criteriaResult
object holding the evaluated performance criteria values.
One of the important rôle of the HWtype is also to store the ciüeriaB.esults
objects resiüting from the func.tional/platfomi mapping combinations already
explored: this saves a lot of computation time by avoiding many nxlundant
évaluations.

SWhierarchy and HWhierarchy SWhierarchy and HWhierarchy respec-
tively contain ail the functional and platfonn primitives organized by abstrac­
tion levels and ID in vector to enstire an easy access to these data.

242 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

Mapper
explorer' myExplorer
CTiteriaSel* myCriteriaSet
criteriaResult' map(SWslructure',
HWstructure*, crileriaResuIf)

Explorer
unsigned int solution
SWhierarchy" mySWhierarchy
HWhierarchy’ myHWhierarchy
vector <vector <vector <SWstructure*>»>

1_ mySWstructures

myHWstructures
Virtual criteriaResult* getCriteria(SWblock*,
HWblock', criteriaSet')
void setInitializeNextSolutionO;

HWblock r y/x // FullExplorerMapper
CTiteriaResult' getCriteria (SWblock',
explorer', criteriaSet')

Y
SWhierarchy HWhierarchy

vector cvector <HWtype'> > myHWtypes vector cvector <HWtype*> > myHWtypes

SWstructure

HWtype
vector<SWtype*> compatibleTypes
vector<behaviour*> coreModels
vector<behaviour*> compulingModels
vector<behaviour*> portModels
vector<parameter*> myHWparameters
vector<HWstructure*> myStructs
unsigned int ID
unsigned int abstractionLevel________________________
criteriaResult' getCriteria (coreStateType, criteriaSet’);
criteriaResult* getCriteria (lOstateType, criteriaSet*);
criteriaResuir^etCriteri^^ criteriaSet*);

SWtype
vector<HWtype*> compatibleTypes
vector<SWstructure*> myStructs
vector<parameter*> myHWparameters
unsigned int dataOut
unsigned int ID
unsigned int abstractionLevel__________

Figure 5.42: UML diagraiiis representing tlie classes related to the fiinctional and
platfonn liierarchy

5.6. IMPLEMENTATION 243

Figure 5.43: UML collaboration diagram describing the message passing mechaiiisin
between the different actors responsible for performance estimation.

Explorer The explorer and the mapper hâve an important rôle in the per­
formance criteria e\'aluation: the first one defines the method of hierarchical
exploration while the second one maps a fnnctional structure onto a platform
structure and retums the resulting criteria values.
The exjdorer contains a reference to ail the platfomi and fnnctional structures
organized by abstraction levels providing ail the necessary information to im-
plement any hierarchical exploration policy. It also maintains a counter of the
curreritly performed solution and can reset ail the parameters of the platform
and fnnctional structure to initialize the exploration of a new solution. To
enable the easy définition of different design space exploration policies, sub­
classes of explorer can redefine the virtuial method estimateCriteria. At the
moment, only the full-depth exploration policy lias been defined which consists
in exploring the hierarchy as long as there are structures associated with prim­
itives (tins is defined by the structured degrees of freedoms). This inheritance
mechanism enables to easily add other policies in the future without having to
add anything else than a new subclass in the code.
The message passing between the different classes involved in mapping and
exploration is described in the collaboration diagram of Fig..3.13. To initiate
the performance criteria estimation, we call the explorer getCriteria method
for the abstraction level 0 coixesponding to the mapping of the application on

244 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

the chip. According to the exploration policy of the explorer subclass, we hâve
two different possible choices:

1 No exploration of the lower abstraction level is desired. In that case,
the getCriteria HWtype method is called, triggers the évaluation of the
corresponding Yeti model and the criteriaResult object is returned to the
explorer.

2 The exploration of the lower abstraction level is required. In that case, a
functional and a platform structure determined by the explorer (according
to the degrees of freedom or its internai exploration policy) are passed as
parameters to the map function of the mapper class to get the resulting
criteriaResult object. Following its own policy, the mapper will map the
functional structure onto the platform structure and will, when necessary,
call the getCriteria method of the HWhlock. The latter will in turn ask
the explorer for the performance criteria estimation of a functional/plat-
form block couple of the lower abstraction level: this will trigger a new
request for exploration enabling the recursive estimation of criteria along
the different abstraction levels. This exploration will thus go on until the
exploration policy defined by the explorer décidés not to go down in the
hierarchy and uses Yeti models to get the performance criteria.

This message passing mechanism has two main advantages:

• The mapping and the exploration processes are completely indépendant
thanks to the mapper and explorer class séparation and their communica­
tion mechanism. Changing the exploration policy inside the mapper class
will thus hâve no impact on the explorer and inversely.

• The explorer is always called when a functional block is mapped onto a
platform block and will, before deciding to call the mapper or use a Yeti
model, check if this combination has already been tried. If it’s the case,
the explorer will thus provide the memorized criteriaResult as a resuit
instead of performing the performance estimation once again sparing a
lot of computational time.

5.6.3 Functional structure and pétri nets

This section deals with the implémentation of the functional structure and
describes how Nessie provides the support for multiple models of computation
while presenting the current pétri net implémentation. The UML diagram
including both these aspects is pictured in Fig.-5.44.

Functional structures Inside Nessie, we define the superclass SWstructure
from which dérivés each particular functional structure representing a model of
computation: this enables to handle ail the functional structures independently
from the nature of the underlying MoC. Each functional structure may be

.6'. IMPLEMENTATION 245

Figure 5.44: UML diagrams representiiig functioiial structure related classes

cornposed ont of their own building blocks (nodes, arrows, places, transitions,
conditions, etc.) but from the outer side, they connnunicate using SWblocks
which are instances of functional primitives (also called functional blocks).
The two main polymoi^^hous methods of SWstructure are initiateExecution
and endSWexecution that respecd.ively retuni the first SWblocks to execute af-
ter initialization of the structure and the SWldocks that may be triggered after
the execution completion of a particular SWlûock on a given HWlüock. These
functions tue totallj' independent from the underlying model of computation
execution semanties and enable therefore an easy communication interface vvith
classes using it. However once the SWblocks Lssued by a SWstructure hâve beeri
executed ou the platfomi, we need in retum to send additional information
that are spécifie to this particular SWstructure subclass: this is why SWblocks
contain another object inherited from the SWstructureInterface class.

SWblocks and SWstructureInterface The SWblock objects represent in­
stances of functional primitives tagged with an ID upon their création by a 5VF-

246 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

structure. Additionally it has an attribute called interface that is an instance
of the SWstructureinterface superclass. This class contains attributes pro-
viding information enabling the SWblock communication with the functional
structure that created it and its execution on the platform. Aside from the
SWstructure that produced the SWblock, this classs defines a vector containing
ail the data tokens required by the SWblock for execution and the HWblock
that the SWblock is mapped onto. Since SWstructureInterface is a superclass,
additional information about the spécifie model of computation can be added
in the subclass allowing the SWblock to be used again by the stucture once it
has been executed. In our case we can see that a petriSWstructureInterface
has been defined as a potential subclass containing the place inside the pétri
newtork where a pétri token should be generated upon SWblock execution
completion.

SWstructure communication: the big picture Now that we hâve de-
scribed the different individual mechanisms for functional structure implémen­
tation, let us describe point by point the different steps used from the création
of SWblock until its execution completion for the example of a pétri net func­
tional structure:

• A SWblock is created by the pétri network

• A new petriSWstructureInterface is attached to the this SWblock and its
place attribute points towards the pétri net that will reçoive a token trpon
SWblock execution completion

• This SWblock object is returned to the mapper class for execution on the
platform

• Once the execution is finished, the polymorphous endExecution method
is called using the SWstructure object reference of the SWstructureInter­
face-. the method will thus be called in the petriNetwork class.

• Before the petriNewtork can generate the tokens, test the transition con­
ditions and generate resulting SWblocks if required, we need to extract
the information related to the pétri network out of the SWstructureInter­
face of the SWblock. The trouble is that we hâve a pointer referring to
the superclass instead of the subclass petriSWstructureInterface: to solve
that issue, we make a dynamic cast of the object. If this method is often
quite risky since it may generate run-time errors, we hâve no problem in
our situation since we know that a SWblock starts and ends its life in the
scope of the same SWstructure subclass instance.

Pétri net-work The petriNetwork offers different methods for the execution
of pétri networks and is built of transition and place objects.
The place class has attributes indicating the functional primitive of the opera­
tion linked to this place, a link to the output transition and a flag to make the

5.6. IMPLEMENTATION 247

HWstructure
vector <HWblock*> myHWblocks
vector <HWblock*>* findRoute

link
HWblock* firstHWblock
bool firstBIockTransmissionReady
HWblock* second HWblock
bool secondBlockTransmissionReady
getters and setters

H WblockMetal nformation
list <dataToken’> storedTokens
list <dataToken*> producedTokens
bool resen/ationBit
getters and setters

HWblock
coreState myCoreState
SWblock* associatedBlock
vector<link*> myPorts
HWtype* myType
routelnformation*
HWmetaInformation*
vector <HWblock*> getReachableBlock();
criteriaResult* getCriteria (coreStateType,
explorer* criteriaSet*);

V
*

dataToken
list <HWblock*> HWproducerUst
list <HWblock*> SWeonsumerList
unsigned int ID
unsigned int dataSize
getters and setters

Figure 5.45: IUVIL diagrams representing platform structure related classes

différence between normal and dnmniy nodes (see Sec.')..4.4 for more details
about dummy nodes).
The transition class contains a vector of input and output places, tlie number
of tokens required for eardi place to cross the transition and the number of
tokens generated in retum.

5.6.4 Platform structure

Contrarily to functional structures setting up implémentation meclianisms to
suppoid the interoperability of different MoC’s inside the performance esti­
mation core, there Ls only one single possible représentation for the platform
■structure: its implémentation is thus much simpler. The diagram for the plat-
fonn structure related classes ls representfxJ in Fig-r. 1.^)

HWstructure The platform structure Ls represented by the HWstructure
class contaiuing a vector of HWblock objet:ts whose ports are connected to-
gether by the mean of links. Apart, from getters and setters, the HWstructure
c:lass contains ail the methods used to explore the platform structure and find
routes from a source block to a destination block.

248 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

HWblocks The HWblock objects represent instances of a platfonn primitive
and include ail dynamic information about the block. The attributes contain,
apart from the reference to the platform primitive, a list of ail the instantiated
ports and the state of the core. In addition, the HWblock contains a H^Tlock-
Metalnformation object containing a list of ail the data tokens stored in the
memory of the block or available at the input ports but also an object route-
information holding several useful information for the routing process. The
HWblock contains methods related to routing and estimation of the perfor­
mance criteria based on the state and Yeti performance model of the different
parts of this block (the core or the ports).

Links The link class contains ail the information about the connected blocks
and the bi-directionality of the connection.

5.6.5 Mapping

The mapping process concentrâtes a large part of the total code inside Nessie
and describing it in details would be a waste of time. In this section, we will
try to highlight the most important aspects related to the time management
in the performance estimation process. Fig.-5.46 illustrâtes the different classes
involved in the mapping part of the implémentation namely the rnapper, the
timeLine, the timeNode and the inherited event classes.

Events The event superclass main rôle is to define how an event reacts when
triggered. Since there are many different possible events, we hâve define for the
four different types of events subclasses inheriting from the superclass event
and redefining the polymorphous method triggerEvent. Each subclass lias its
own attributes to characterize the nature of this précisé event and contains
getters to access to it. We also need to mention that the event class includes a
reference to the rnapper that issued it: its use will be justified in the following
part devoted to the description of the rnapper.

The rnapper The rnapper is one of the most complex classes because it con­
tains ail the methods related to the mapping and manages the three different
stacks of SWblocks used during the mapping process (more details about these
stacks can be found in Sec.5.4.4). Among the methods, we hâve the map fiinc-
tion used to trigger the estimation of the performance criteria, the rotde and
the scheduleAndAllocate methods.
Since the rnapper manages the performance estimation from an event-centric
point of view, each event will hâve an impact on the state of the different
SWblock instances and their position in the three stacks. However these at­
tributes (and many others) are part of rnapper class so that the triggerEvent
method of the events should hâve access to ail these attributes. From the im­
plémentation point of view, this is not a good idea for two different reasons.

.6'. IMPLEMENTATION 249

mapper
list<SWblock*> readyToScheduleSW
list<SWblock*> waitingForTokensSW
list<SWblock*> executIngSW
timeLine* myTimeLine
veclor <HWblock*> HWnodes
criteriaResuIf map(SWstructure",
HWslmcture’)
void HWreleaseEventLislener
(HWreleaseEvenr)
void HWstateChangeEventüslener
(HWslateCbangeEvent*)
void SWdataReceptionUstenerEvenlUstener
(SWdataReceptionUstenerEvent*)
void dalaTokenMemorizationEventüslener
(dataTokenMemorizationEvenf)
void routeO
voi^scheduleAndAII^^

timeUne

boo^^oToNexjTjmeSlepÇ^

I*
timeNode

unsigned floattime
vector <event*> myEvents
bool GoToNextTimeStepQ

avant
mappar* myMappar
Virtual void trig

dataMemorizationEvent HWreleaseEvent
HWblock* myHWblock HWblock* myHWblock
dataToken* myDataToken void triqgerEventO
void triqgerEventO

HWstateChanqeEvent
SWdataReceptionEvent HWblock* myHWblock

SWblock* mySWblock coreStaleType* newCoreStateType
dataToken" myDataToken lOstateType* newIOstate
port* myPort port* associatedPort
void trigqerEventO void triqgerEventO

Figure 5.46: UML diagrams representing mapping related classes

First, almo.st ail these mapper attribntes should be passai to ail the cveuts
wliicli is neither efficient neither safe in ternis of attribute encapsulation. Sec­
ond, the process triggered by an event is part of the mapping so that it shoidd
not belong to events and be split among ail the event subclasses.
To avoid that problem, we hâve implemented an event listener inspired niec.h-
anisrn. Eacli time an event is prodiiced by the mapper, it is stored inside a
timeline keeping track of the progression of the simulation. Once this event is
popped ont of the stack to be triggered, the triggerEvent rnethod Ls called in
the related event subclass: this fimction will then call in retiirn a inethod of
the mapper class (using the mapper reference of the event superclass) called an
event listener and spécifie to the part.icular event that called it. This ILstener
function will receive as parameter the event subclass that called it so that the
mapper is able to extract the information contained in this event by invoking
spécifie getters. This mechanism has the double tidvantage of putting back ail
the mapping related code inside the mapper and partitioning the event infor­
mation inside dalicated subclasses. Adding a new t>q)e of event thus consists
in defining a new subclass inheriting froin the event superclass and adding the
Ciorresponding event listener rnethod inside the mapper class.
Many other attribntes and methods are also]>resent in this class but we advise

250 CHAPTER 5. MESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

the reader to refer to the code to hâve more details about it.

timeline To give the support to events management, we hâve defined a class
called timeLine allowing a very dynamic and simple use of events. The time­
line is based on an internai time reference holding the current time value of
the simulation and the last triggered event that has been accessed. The main
advantage of the timeline over a simple array management is that it will au-
tomatically order in time an event when it is added and provide a very easy
way to explore ail the contained events. Furthermore it allows forward and
backwards traversai and holds ail the past events which is quite convenient to
generate reports related to the event activity.

5.7 Conclusions

In this chapter, we hâve discussed ail the concepts, algorithms and implémenta­
tion issues related to our performance prédiction tool called Nessie. Compared
to other performance prédiction tools defined in the State of the art of the
previous chapter, Nessie tends to offer more flexibility regarding the design
space exploration exploration policy, the mapping process and the platform/-
functionality représentation.
In summary, we can say that Nessie provides the user with the following fea-
t lires:

• Automatic design space exploration based on a user-defined policy. This
mechanLsm relies on an interface hiding the performance évaluation core
to only expose inputs (degrees of freedom describing the design choices)
and outputs (performance criteria) to the design space exploration policy.

• Flexible performance criteria spécification: the user defines how to calcu-
late each criterion over platform blocks and over time

• Separate hierarchical description of the functionality and the platform for
easier mapping

• Automatic mapping of a functionality onto any generic platform made
out of computation nodes, memories and communication blocks. The
mapping policy is performed in three steps (scheduling, allocation and
routing) and is driven by user customizable models defining an objective
function used to optimize the allocation and the routing.

• Interfacing with Yeti, our closed-formed based models description and
évaluation library. These analytical and dynamically built models bring
a lot of flexibility to Nessie and provide an alternative to complété func-
tional/platform mapping at any abstraction level.

• Automatic génération of resuit files incliiding resulting performance cri­
teria values files, activity reports and time lines reports defining in details
the different steps performed by the mapping process

DIDLIOGRAPHY 251

• Strict vérification of the user input files relying on an XML schéma gram-
mar combined with run-time error management to make simulation ini-
tialization and running easier for the user

Now that we hâve presented in details Nessie, we still need to validate its dif­
ferent features on practical cases to demonstrate the proper working of Nessie
and show how it can model realistic Systems and estimate their performances:
this is the topic of the next chapter.

Bibliography

[1] A. Scharlig, Décider sur Plusieurs Critères, Panorama de l’Aide à la
Décision Multicritère. Lausanne: Presses Polytechniques et Universi­
taires Romandes, 1985.

[2] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for
architectural-level power analysis and optimizations,” in ISCA, 2000, pp.
83-94. [Online]. Available: cit('se<-r.i.st.i)su.edu/l)rooks(X)wattch.htnil

[3] J. Laurent, N. Julien, E. Senn, and E. Martin, “Functional level power
analysis: An efficient approach for modeling the power consumption of
complex processors,” in DATE ’04: Proceedings of the conférence on De­
sign, automation and test in Europe. Washington, DC, USA: IEEE Com­
puter Society, 2004, p. 10666.

[4] W. Reisig, Pétri nets: an introduction. New York, NY, USA: Springer-
Verlag New York, Inc., 1985.

[5] T. Murata, “Pétri nets: Properties, analysis and applications,”
Proceedings of the IEEE, vol. 77, no. 4, pp. 541-580, 1989. [Online].
Available: hfti)://i('<'explore.i('ee.org/x])ls/aI)s_all.jsi)?arnumb(T=24143

[6] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw­
Hill Higher Education, 1994.

[7] K. Bazargan, “Ee 5301 - vlsi design automation i : High level synthesis,”
University of Minnesota, Tech. Rep., 2003.

[8] W.-T. Shiue, “High level synthesis for peak power minimization irsing
ilp,” in ASAP ’OO: Proceedings of the IEEE International Conférence on
Application-Spécifie Systems, Architectures, and Processors. Washington,
DC, USA: IEEE Computer Society, 2000, p. 103.

[9] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin, High-level
synthesis: introduction to chip and System design. Norwell, MA, USA:
Kluwer Academie Publishers, 1992.

[10] G. N. Mangalam, S. Narayan, P. van Besouw, L. Avra, A. Mathur, and
S. Saluja, “Graph transformations for improved tree height réduction,”
in VLSID ’OS: Proceedings of the 16th International Conférence on VLSI
Design. Washington, DC, USA: IEEE Computer Society, 2003, p. 474.

252 CHAPTER 5. NESSIE: CONCEPTS, DESIGN AND IMPLEMENTATION

[11] C. Chang, C. Chen, and C. King, “Using integer linear programniing for
instruction scheduling and register allocation in multiissue processors,”
1997. [Online]. Available: citcs<w.ist.psu.(xlu/articlc/<'hHng97using.litml

[12] T. C. Hu, “Parallel sequencing and assembly line problems,” Operations
Research, vol. 9, no. 6, pp. 841-848, 1961.

[13] R. Walker and S. Chaudhuri, “High-level synthesis: Introduction to
the scheduling problem,” 1995. [Online]. Available: citese<T.ist.i)su.('du/
walker95highlevel.litnil

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269-271, 1959. [Online]. Available:
littp://jnividal.cï<e.sc.edu/library/dijkstra59a.pdf

[15] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics,
vol. 16, no. 1, pp. 87-90, 1958.

Chapter 6

Nessie: Case Studies and
Applications

Abstract
In this chapter, we ülustrate Nessie features through dif­
ferent case studies and dernonstrate how it cari be used to
perform design spuce exploration by sirnultaneously expos-
inqjleqrees of freedorn of the avvlication.-the-vlatform-and—
the rnapping.
In the first part, we propose different design studies rely-
ing on fairly simple and hypothetic architectures and ap­
plications to enable easy interprétation of the results and
confront thern with intuition. Even with such simple ex-
arnples, we will be able to draw very interesting results and
dernonstrate how Nessie performs an automatic exploration
ofthe solutions based on an automatic application/platform
rnapping in order to allow the designer to graphically com­
pare the different design trade-offs on a multicriteria per­
formance basis.
In the second part, we show how we can use Nessie flexible
représentation to rnodel an existing H.264/AVC decoding
application and its network-on-chip based platforrn. We
compare our results with several experiments to validate
thern and extend thern to the case of a SD stacking ar­
chitecture for a very srnall effort. We discuss the power
consumption réduction achieved and compare it to the dif­
ferent costs related to the use of 3D stacking techniques.
Finally we define the strengths and weaknesses of Nessie
approach based on the expérience relative to the two previ-
ous case studies.

253

254 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

6.1 Introduction

In the previous chapter, we hâve extensively discussed the different featnres of
Nessie and explained ail the related algorithms and underlying mechanisins. In
order to validate our Framework, this chapter focuses on different case studies
to test and demonstrate the most important features which are:

• Separate description of the fiinctionality and the platform

• Automatic mapping of the functionahty on the platform

• Multicriteria performance estimation

• Définition of multiple design degrees of freedom (parameter-based, plat-
form/functionality structure)

• Automatic plotting of each possible DoF/performance combination

The case studies will be divided into two different parts:

• We First map a simple hypothetical application on different architectures
in order to illustrate the basic mechanisms of Nessie and demonstrate how
easy and straight-forward it can be to perform design space exploration
using our tool. Even if we tried as much as possible to use realistic values
for the different input parameters, we wanted to keep examples quite
simple so that we easily interpret the results demonstrating that Nessie
is doing what w'e expect from it.

• To prove that Nessie is able to handle more complex and realistic exam­
ples, we took a research case studied in our team and tried to formalize
it inside Nessie. The case study consists in a H.264/AVC functionahty
mapped onto a MPSoC platform for which power consumption of the
network-on-chip has been determined experimentally. In this example we
will try to reproduce these power consumptions values and see in which
extent we can apply the case study to 3D-satcking architectures to eval-
uate Nessie fiexibility.

In this chapter we won’t demonstrate design speed up resulting from the use
of Nessie compared to a design flow without performance prédiction. Indeed
such a démonstration would require to exhaustively study a real design case
(including its design time) to establish a fair comparison of our method with
a classical approach which requires too much time to be studied in this thesis:
another ongoing PhD is currently addressing this particular problem.

6.2 Design space exploration with Nessie

6.2.1 Introduction

This first part of the chapter focuses on the démonstration of Nessie features
and design space exploration capabilities. As an illustration, we start from a

6.2. DESIGN SPACE EXPLORATION WITH NESSIE 255

simple application and architecture that we progressively make more complex
by adding degrees of freedom and testing more complex structures. Through
these different examples we examine the évolution of three design criteria (the
computation time, overall energy and surface) and show how Nessie can help
the designer to take decisions based on the results delivered by the simulation.
We will try to explain the conclusions resulting from the interprétation of the
automatically generated curves and see how they match intuition.
Since we only try to demonstrate Nessie functionalities and prove that it deliv-
ers the expected results in simple cases, we don’t want to define too complex
case studies where interprétation would be too difficult. Therefore we hâve
chosen to define fictive structures both for the application and the architecture
but tried as far as possible to use realistic values for the parametric degrees of
freedom in order to deliver significant results.

Methodology For this case study, we will proceed in two different steps:

1 We describe a single Processing node with internai memory that has to
execute an application exhibiting some parallelism. We then remove the
internai memory and replace it by an external one for the computing node
to communicate with and examine the impact on performance.

2 We use the previous application and map it onto a parallel platform to
measure the performance gain on computing time and see the impact on
energy. We compare different platfomis and topologies and discuss the
results.

To initialize a Nessie simulation, we first hâve to define the application and
platform structures, the performance criteria used to compare the different
solutions and the degrees of freedom that we can play with.

Performance criteria Through these following case studies, we will always
use three different performance criteria:

• The energy criterion is additive on the surface and based upon the intégra­
tion over time of the power consumption value of the different instantiated
platform blocks (both static and dynamic)

• The computation time represents the total time for the functionality to
complété its execution

• The surface criterion is independent on time but additive on the different
blocks which gives at the end the total Silicon area of the die.

The.se criteria of different nature are interrelated and dépendent on each other
so that their simultaneous optimization will probably require some compro­
mises hence offer some interesting discussions.

256 CHAPTER 6. NESSIE: CASE STUDIES AND APPLICATIONS

Figure 6.1: Pétri newtork modeling the application used for our case study

6.2. DESIGN SPACE EXPLORATION WITH NESSIE 257

Application For the purpose of our case stiidy, we define an hypothetic ap­
plication whose operation execution dependency is defined by the Pétri network
represented in Fig.tt.l. As we can see it contains 19 places and ail transitions
require only one token to trigger so that the conipletion of the Pétri network
execution will require 19 operations. Examining the topology of the network,
we can see that its major part is composed out of two identical operation flows
that meet at transition tg where ail the tokens are sent to place 14. These pre-
vious flows offer sonie very interesting parallelism possibilities with a maximum
of 6 potential operations being performed at the same time. This application
shows a good mix of different execution dependency patterns and will thus be
used as a benchmark for our different architectural candidates.
Conceming the different functional primitives, we will only hâve to define the
size of the data tokens produced by the associated operation. Our only pa-
rameter related to the functional primitive will be the number of enclosed
instructions to perform called and is Op.

Architecture The architecture (hence the platform structure) will be specif-
ically defined for each case that will be examined in the Corning sections. How-
ever we hâve to specify models associated to platform primitives in order to
be able to estimate the performance criteria of each atomic instance using Yeti
(see Sec..').!,;! for more information about atomic blocks). Since each func­
tional primitive is defined by the number of instructions to execute, the plat­
form primitive will offer a certain execution throughput expressing how many
instructions per second can be processed, in other words the IPC parameter.
The performance criterion t, the time required to complété the execution of
the associated operation, will thus be simply defined by Eq.fi.l.

Op
Jpc (6.1)

To calculate the energy criterion value, we hâve to define the power of each
platfonn primitive in the different possible States: the dynamic power will cor­
respond to the power consumed in the computing State while the static power
will be associated to the idle State. The dynamic. power P^yn will be explic-
itly defined for each block while the static power Pstat will be calculated using
Eq.().2 where Area is the performance criteria corresponding to the platform
primitive aiea and Coefstat is a multiplication coefficient.

Pstat = Coefstat * Area (6.2)

Ail these different models will be defined in Yeti and instantiated for each
platform primitive using global or local parameters when required (see Sec.-5.1.4
for a detailed explanation about the locality of parameters).

Degrees of freedom Since degrees of freedom dépend on the architecture,
application and mapping, we will define in time the different available degrees

258 CHAPTER 6. NESSIE: CASE STUDIES AND APPLICATIONS

a) Single computation node
with internai memory

b) Single computation node
connected to an external memory

c) Single computation node
connected to external memory

through an interconnect

Figure 6.2: Single computation node ardiitectme (a), with an additional external
memory (b) and its commiuiication bus (c)

Primitive Data token size (bits) Niimber of instructions

FCl fl l.Oe-l-5 1.0e-b8

Table 6.1: Value of the functional primitive parameters

of freedom.

Now tliat we are done, let us start with the first case study: the single com­
putation node.

6.2.2 A single computation node architecture

The first corisidered architecture is a single and isolated computation node
with internai memory (as represented on top of Fig.().2). The first question
that we would like to answer Ls how and in how much time will this simple
architecture be able to extK'.ute our application?

Degrees of freedom emd peirameter values

To simplify the problem and ensure an casier interprétation of the results, we
first assume that ail places of the Pétri network (sœ Fig.(i.l) refer to the same
functional primitive Fcifi with parameters values defined in Table b.l. The
platfoirn primitive used for the définition of the computation node lias
parameters values expressed in Table fi.2. These numbers were chosen so that
they fit realistic embedded processors performances for a 180nm technology:

• The absolute area of ARM7 based cores ranges frorn half a square mil-

6.2. DESIGN SPACE EXPLORATION WITH NESSIE 259

Primitive area(mm*'^) Goefstai IPC PdynimW)

Ptifi 1 0.01 l.Oe-l-8 100

Table 6.2; Value of the platform primitive Ptj,o parameters representing the computation
node

limeter to a few square millimeters[l]. Therefore we choose 1mm? as a
realistic value for the area of a processor of that génération.

• A realistic value of 100 MIPS was chosen for this computation node.

• Embedded processors of that génération show usual numbers around 1
MlPS/niW regarding the power efficiency[2]: with the chosen IPC, we
thus obtain a value of 100mIV for the dynamic pow^er.

• The static power coefficient Coefstai is defined so that the static power
leaking when the processor is in idle State equals a tenth of the dy­
namic power consumption (lOmlV in our case). This ratio between static
and dynamic power consumption is a very realistic value for a ISOnm
processor [3].

As a resuit of these parameters values, the execution of one instance of the
______ functional primitive_exactlv_takes-one-second since the number-of-ooerations-----

to perform equals the IPC of the platform primitive. This will highly simplify
the interprétation of further results as we will see in the coming sections.

Czise of an isolated node

Now that ail the degrees of freedom hâve been determined along with their
values, we are able to define our XML input files (the simulation file and the
different Yeti model files) and test the mapping of our application on the single
node.
The results from the simulation are the following: the application takes 19
seconds to complété its execution for a total energy of 1.9J. These numbers are
of course veiy predictable and consistent with the computation paradigm and
the mapping defined inside Nessie. Indeed this node is only able to execute
one functional block at a time and then stores the resulting data token inside
its internai memory for further use. In the case of internai memories, Nessie
assumes that the read/write accesses add no penalty to the total execution
time^ : as a resuit the execution of the application simply consists in executing

‘If memory accesses need to be explicitly defined, their contribution to the total execution time can be
easily estimated in two different ways asing either Yeti models or Nessie structural représentations. Fhst
we can modify the Yeti model to add a term to the execution time model representing the time penalty
due to read/write operations defined by a parameter. Second we can represent the single computation
node and the functional instance at a lower abstraction level: on the platform side, we define one or several
platform blocks devoted to pme computation exchanging data with data memories and on the functional
side, we use a pétri uetwork based structure to describe the operation and memory accesses patterns.

260 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

1 Primitive | area(mm''^) | Nbits 1 Latency | Freq(MHz) 1 PaiatimW) 1 Pd„„(mW) 1

1 Pti.i 1 0.3 64 1 0 1 1 1_______ ^_______30______ 1

Table 6.3: Value of the platform primitive Pti,i parameters representing the memory

functional blocks one after the other and using the stored data tokens to trigger
the following one. Running the application on this platform thus residts in
nineteen successive executions of a one second long operation leading to a
total execution time of 19s. Since the Processing node is always computing,
it always stays in the computing state where power equals lOOmW during 19s
leading to an energy consomption of 1.9J.
To move towards a more realistic architecture, let us now examine how the
introduction of an external memorj' modifies the performances.

Single computation node with memory

In this case, we decided to add a memory to the architecture and remove
the internai memory froni the computation node to observe the impact on
performances. This architecture is represented in the middle of Fig.6.2 and is
composed out of the memory node directly connected to the computation node
through ports. To simplify the problem, we hâve supposed that ail ports hâve
zéro latency and an infinité bandwidth so that the transmission rate is only
limited by the memory itself. This memory is represented by the new platform
primitive Pti,i and is, as previously, defined with ail the appropriate Yeti
performance models. The different parameters for this functional primitive
are summarized in Table G.3: again we tried as much as possible to keep
reasonable and realistic values.
As we can see from this table, the bandwidth of this memory equals the prod-
uct of the Word width NijHg by the write/read frequency Freq which gives
64Mbits/s. As a reminder, the data token produced by the Fcifi functional
primitive equals 1Mbit.
Launching a Nessie simulation with these parameters gives a computation time
of 19.54s and an energy consumption of 1.97J. Again these results were quite
predictable: each time an operation is completed, the computing node with
no internai memory first tries to send the resulting data token to a nearby
memory. Since the only node that has memorization capability is the second
platform block, the computing node will transmit its resulting data token to
the latter. The computing node is now in idle mode and ready to execute
another operation which will require a previously saved data token: these data
will be fetched from the memory and sent to the computing node. Given
this mechanism and the relatively small data token size/bandwidth ratio, data
transmission time will be small compared to the computing time leading to
performance criteria values close to the single computing node case.
If this external memory doesn’t change a lot the computation time compared

6.2. DESIGN SPACE EXPLORATION WITH NESSIE 261

Memory access time (ms)

Figure 6.3: Impac:t of memory access time on total computation time for three dif­
ferent memorization bandwidths

to a single computing node case, it would however be interesting to quantify
how much different values of memory latency and bandwidth would. Therefore
we made the latency vary from 0 to 10ms for three different bandwidth cor-
responding to 1, 0.75 and 0.5 Mhz/word bit: the resulting graph is plotted in
Fig.G.d. This plot was obtained using the plot file génération feature of Nessie:
we just had to specify in the input simulation file that we wanted performance
criterion Time versus access time Latmcrn to be represented and the resulting
plot was automatically generated after the simulation.
At first sight, we see a clear influence of the memory bandwidth on the com­
putation time: the delay penalty seems to grow much than the bandwidth
decreases. This is of course related to the hyperbolic relation linking the band­
width and the transmission time. We saw that in the case of the 64Mbits/s
bandwidth, the computation penalty is quite low making further memory band­
width increase not that interesting. However decreasing that bandwidth too
much quickly begins to hâve a significant impact on performance beyond that
value.
Looking at the computation time dependency with memory access latency,
we can observe that it is similar for ail the bandwidth and quite small (a
maximum penalty of 1.3% compared to a 0-latency memory in the 64Mbits/s
bandwidth case). This resuit is again easy to explain: latency only delays the
data emission/reception of a fixed time and is thus independent of the data

262 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

size contrarily to the bandwidth. In this précisé case the computation time
penalty is very small even for a high latency of 10ms, meaning that slow mem-
ories to access are still suited in the case of our current application/platform
combination.
As we can see from this experiment, it is very easy to explore the imj>act of
one degree of freedom inside Nessie; ail we need to do is to change the value of
the required degrees of freedom, tell to the framework which variables should
be represented on the graph and run the simulation. In a matter of seconds, it
is thus possible to obtain a completely new resuit from the previously defined
simulation with very changes in the input file.

Single computation node with memory and interconnect

In the previous example, the computing node was directly connected to the
memory which allowed us to focus on the memorization interaction. In this
case, we would like to examine the impact of a bus transmitting the data on the
performance criteria: therefore we insert between the existing computation and
memorization node an instance of a newdy defined primitive Pti_2 representing
the interconnect.
To dérivé the performance criteria of this platform primitive, we used spé­
cifie Yeti models relying on the following parameters whose value is given in
Table.6.4; •

• The wire length L^i^e set to 1mm like the side length of the computing
node

• The wire capacitance C^ire that is associated with a value of IpF for a
1mm long global wire in 180nm. This value is perfectly consistent with
our estimation in the chapter devoted to Yeti results (see Sec:5.2.2) and
with numbers taken from the literature[4]

• The wire frequency F^ire whose value impact will be explored in the
following

• The number of wires Nyjire set to 64 which matches the word width of
the memory

• The voltage swing over the wire V^ire that we chose equal to 2..5 V

• The area of the wire is neglected since it will likely be routed above the
tw^o previous components

• The latency is also set to 0 since it will likely be negligible compared to
memory access time

Based on these different parameters we can easily calculate the bandwidth Bi,us
defined by Eq.6.3.

B^bus ~ Fyjire * ^wire (^‘^)

6.2. DESIGN SPA CE EXPL ORATION WITH NESSIE 263

1 Primitive area(Tnm^) 1 Latency | Trei?„ire(MHz) | A,„ire 1 Wire(V) |

1 T/,1,2 1 0 1 1 1 0 1 Variable | 64 | 2.5 |

Table 6.4: Value of the platform primitive parameters representing the bus

Regarding tlie power consumed by the wire when it is transmitting data
Pbus,inire we usc Eq.6.4 to make a worst case estimation^.

>uSyWire — Finirf> * Niuirp. * Cii * ^wire (6.4)

Running a simulation with these parameters gives exactly the same results as
the previous case: computation time penalty is simply null since we decided
to neglect the latency and defined a total wire bandwidth value equals to
the memor>' bandwidth. Furthermore if we calculate the resulting switching
power when the wire works at IMHz, we obtain a tiny value of 0.4/iW which
makes bus power highly negligible compared to the static or dynamic power
consumption of the two other blocks.
However this case is interesting to see how Nessie performs the effective band­
width calculation for the data token transmission rate. To illustrate that, we
hâve plotted the total computation time versus the bus bandwidth for different
output data token sizes of Fci^ and did the same again while setting the bus
b'andwidthTo avëfy’'Kigh value (bvëPiGbits/s)^. The resulting graph (plotted
in Fig.6.4) shows us three sets of superposed curves that diverge beyond a wire
bandwidth of 64Mbits/s. This effect results from the minimum wire bandwidth
matching performed inside Nessie: the data token will be sent at a rate that
is equal to the smallest bandwidth of ail the encountered éléments bandwidths
along the path. In our case, this mechanism prevents the wire from sending
the data faster than the memory is able to store: this explains that the curves
become flat when the memory bandwidth of 64 Mbits/s is exceeded. This per­
formance limitation is not really problematic since we are already close to the
lowest computation time value reachable in the single computation node case:
the différence between the red and the black curve remains very small after
the bandwidth threshold value. However in the case of bigger data tokens,
the différence between the two curves grows more past that 64Mbits/s value
offering sonie potential optimization for the global computation time: memory
bandwidth progressively becomes a bottleneck. We may also notice by looking
at the different set of curves that the performance gain for a fixed bus band­
width increase becomes more important as the data token size grows. One

"This model supjx)ses that each wire capacitance of the bus will be toggled each time a chunk of 64 bits
is sent over the bus. The model of Eq.(i.4 is thus often multiphed by an additionaJ factor representing the
average activity factor when transmitting data, factoi' that is around 0.5 in practice but that we imphcitly
considei’ equal to 1 to take the worst case.

^At the moment, if it is possible to disable the effect of latency by setting its value to 0, Nessie doesu’t
allow the user to define infinité bandwidth. Instead we simply define bandwidths values so that the
traiLsmission time of a data token becomes neghgible compared to other operations.

264 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

Wire Bandwidth (MHz)

Figxire 6.4; Illustration of the minimum beindwidth matching mechanism performed
inside Nessie

last observation that can be made on this graph is that the computation time
grows very fast for small bandwidths: this is nothing more than a visualization
of our considération on bandwidth hyperbolic relation with data transmission
time made in the previous architectural case.

Summary

Through these different examples, we tried to illustrate the basic features of
Nessie on a simple hypothetic case that we progressively made more complex.
When the input simulation files hâve been defined, it is only a matter of seconds
to modify the degrees of freedom values so that other experiments can easily
be performed for another set of values. To get an approximate idea of the
input simulation files complexity, it approximately required one hour to get ail
the input files defined and initialized for the different examples presented in
this section.
Now that we hâve examined how Nessie perfomis for a single node, it would
be interesting to know how it is able to exploit the parallelism offered by
the application: the next section will be devoted to the study of multiple
computation nodes cases.

6.2. DESIGN SPACE EXPLOBATION WITH MESSIE 26

1 node 2 nodes 7 nodes

Figure 6.5: Tiie seveii fully connectée! hoinogeneous architectures competuig for the
best rnapping of functionality Fco,o

6.2.3 Multiple computing nodes architecture

In tliLs .section we will quantify the impact of multiple computation nodes archi­
tectures on performances and examine the trade-off between computing time
and consumée! energJ^ Al! results were obtained using the same application
(functiona! structure) as described in the previous section and al! hinctional/-
platforni pararneters values are kept the same unless explicitly rnentioned.

Improving computation time

Tiie first interesting experiment that could be performed is to evaluate how the
parallelism offered by a platform cari be used to speed up the execution of our
application described by Fig.h.l. Therefore we will define several competing
architectures with a growùng number of computation nodes and see how they
couvert this additiona! platform parallelism into smaller computation times.
As depicted in Fig-b..'), we hâve built seven architectures ranging from 1 to 7
computing nodes derived from platform primitive Ptifi: the communication
architecture Ls fully connected meaning that there is always one path (bidirec-
tional virt.ual link) between each pair of block.
From the Nessie point of view, we define seven different platfonn structures for
the primitive Pto.o and map the application for the seven values of tliLs new
structural platform based degree of freedom. The resulting graph is plotted in
Fig.6.6: we can see that the computation time decreases with the number of
computing nodes meaning that Nessie indeed couverts these additional com­
putation nodes into faster application execution. However this improvement is

To
ta

l c
om

pu
ta

tio
n

tim
e (

s)

266 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

18

16

14

12

10

8

6

□

■a

................□

1 2 3 4 5 6 7
Numberof nodes

Figure 6.6: Evolution of the total computation time with the number of platform
blocks composing a fully connected architecture

6.2. DESIGN SPACE EXPLORATION WITH NESSIE 267

far from being linear: while two computation nodes bring the execution time
from 19s down to 10.1s, the gain from additional blocks beyond that value
tends to decrease until the addition of a seventh node doesn’t improve the
computation time anymore (still requiring 5.1s). This can be justifîed quite
easily looking at the application described by the Pétri network: indeed at any
possible stage of the application execution, we hâve only a maximum of six
functional blocks that can be processed at the same time (parallel places 2-7
and 8-13). Therefore our application doesn’t benefit from the addition of a
seventh node that is never used due to the limited available parallelism; the
execution time thus doesn’t decrease after the sixth computing node. However
the reason for the two nodes architecture to perform so well compared to the
single node solution is that there is almost ail the time a set of two potential
operations that can be simultaneously executed. The efficiency of the different
architectures can be confirmed and further investigated by having a look at the
activity reports^ generated during the previous simulation at the same time as
the plot and timeline files.
In our case we hâve used these activity reports information to represent the
cumulated relative time spent in the computing State: this metrics results
in something very close to the speedup factor defined in Amdhal’s law (see
Sec.2.2.6). In other words it quantifies how much the application benefits from
more parallel platform blocks:. a.cumulated-relative-activity-value-oPN-for-a-N-
nodes architecture means that each of the platform block is computing 100%
of the time. Looking at the graph, we can see that the cumulated relative
computation time increases with the number of nodes until six where it keeps
the same value: the seventh node is in idle mode 100% of the time so that it
doesn’t improve the total computation time at ail. The 2-nodes architecture is
however far more efficient: node 1 and node 2 compute respectively 99% and
89% of the time leading to an effective conversion of the platform parallelism
into decreased computation time. Furthemiore this graph shows us that when
the number of nodes grows, the average efficiency of each node decreases and
the workload is split among them so that the total execution time keeps on
decreasing after the addition of a second node but at a slower pace. Interesting
to mention is the fact that, inside each architecture, the computing activity
always decreases for platform blocks with growing ID values. This reffects the
way Nessie proceeds to allocation using the default policy: a functional block
is mapped onto the first compatible platform block that is found among the
pool of available blocks. For instance, block 1 relative computing activity is
always close to 1 since it is the first candidate in line for allocation.
If the previous analysis is interesting, it focused only the sole computation
time aspect neglecting other possible performance criteria like energy. Let
us now evaluate and discuss this compromise between consumed energy and

“'As a lemiuder the activity report describes for each node of the aichitecture the absolute and relative
time spent in each State (more details can be found in Sec..‘i..').2).

C
um

ul
at

ed
 re

la
tiv

e
ac

tiv
lty

 in
 co

m
pu

tin
g S

ta
te

268 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

Number of nodes in architecture

■ Node 1 ■ Node 2 Node 3 ■ Node 4 ■ Mode 5 ■ Node 6 ■ Node 7

Figure 6.7: Cumulated relative computing activity for architectures with a growing
lumiber of computing nodes

6.2. DESIGN SPA CE EXPL ORATION WITH NESSIE 269

computation time.

Energy VS computation time

Now that we hâve set the simulation parameters values in our previous ex-
periment, we just need to change the input and output parameters of the
plot resuit file to express the total computation time versus the energy. The
graph representing this compromise Ls depicted in Fig.6.8 where each point is
tagged with its corresponding architecture®. Based on this graph, we can draw
very different conclusions compared to the previous ones: if it always good in
terras of computation time to increase the number of computation nodes, it is
certainly not when we take energy into account. However more nodes doesn’t
necessarily imply more energy consumed to complété the application execution:
the 5-nodes architecture is for instance simultaneously less energy efficient and
takes more time to execute the application than the 6-nodes architecture. In
fact the energy efficiency simultaneously dépends on the execution time and
activity of the different platform blocks: the longer they stay in idle State, the
more static power they draw increasing in turn the total energy required to
complété the execution. This wasted energy thus grows with the number of
blocks in idle mode and the proportion of the time spent in this state. Taking
back our ciïrhïïlâfêdTëlâfiVe compiiting activity graph of Fig.6.7, it becomes
thus clear that architectures -5 and 6 score much worse than architecture 2 in
ternis of energy efficiency since their mean activity is much lower for a higher
number of nodes.
Looking bac;k at our time-energy graphs, we can easily find the pareto optimal
solutions by discarding ail the dominated solutions®: architecture 1, 2, 3, 4
and 6 thus remain. Depending on the constraints and requirements, one of
these solutions could be selected by the designer as the solution to further
implement. The architecture composed out of 7 nodes has the same execution
time as architecture 6 for an increased energy since the seventh node is never
used due to limited parallelism of the functionality and is only consuming
static power 100% of the time. We could be tempted to prefer the 2 nodes
solutions to the 1 node solution since a small increase in energy almost divides
the computation time by a factor 2 but again this is only true if we don’t take
the area criterion into account for which architecture 1 performs better.

^Contrarily to paiameters, degrees of freedom that represent functional/platform choices hâve a hmited
set of values siuce tliey represent different structures: plotting the solutions as a continuons cuive thus
niakes httle sense. However this can be useful to easily distinguish the di6Ferent estimated points (in oui'
case based ou the number of nodes of the architecture) and to describe the shape of the solutions envelope
to see how the points evolve with a given paiameter. To emphasize the fact that intermediate values hâve
no meaniug, we will thus use in the rest of this work dashed lines to hnk this type of solutions.

"A solution is said to be dominated if there is at least one other solution that has aU criteria scoring
better than the latter. This solution is thus of no interest (at least cousidering the examined criteria) and
is always discai’ded.

To
ta

l c
om

pu
ta

tio
n

tim
e (

s)

270 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

.
- Cl 1 node

2'çodes
□...... 3 nodes

-a
- 4 nodes

b-.
- ■ • ■.. 5 nodes

- V 7 nodes

! 1 . . . 1 6 nodes □........................□
1,9 1.95 2 2.05

Total energy (J)

Figure 6.8; Computation time versus energy for architectiues with a growing number
of computation nodes

6.2. DESIGN SPACE EXPLORATION WITH NESSIE 271

Ring topology Star topology

Figure 6.9: Ring and Star topologies for 7-nodes architectures

Topology Fully conneeffed Star Ring

Computation time (s) 5.11 8.41 9.97
Energy (J) 2.04 3.01 3.43

Table 6.5: Energy and computation time for the mapping of a functionality on six nodes
basée! platfonns witli different topologies

Alternative topologies

While swœping the nuniber of computation node.s présent in the architecture,
we only usée! fully connected communication network topologies: in tliLs section
we nreasure the impact of other topologies on performances. We therefore
choose a ring and star topology (both depicted in Fig.fi.!)) to compare with our
fully connected topology. Simply initializing Nessie with these new topologies
however jrrovides the user with two invalid solutions meaning that Nessie was
not able to find a suitable solution to the problem. ThLs is explained by the
fact that, contrarily to the fully connected topology, ring and stars topologies
don’t hâve connections between ail pairs of nodes: since the Ptyo block doesn’t
hâve any interconnect capability, data tokens are only able to flow from one
bloc:k to a directly connec;ted one. This restriction combined with the greedy
allocation policy of Nessie leads to deadlocks as explained in Sec.-'), l.il. To
avoid these problems and enable Nessie to be able to find valid solutions, we
frdded the communication State defined in Pt\,2 to Ptyo to allow data tokens
to flow through the different blocks. The valid solutions are represented in
Tablefi..').

272 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

As we can see, the penalty from using these topologies in terms of energy and
computation time is far from being negligible. This decrease in performance
can be explained by the fact that some computation blocks are sometimes
ready to execute but lack a free path to receive the data token required to
begin the execution. The situation is worse for the ring topology: when a data
token needs to be sent to ail blocks, it has to be separately sent to ail the
blocks while, in the other case, it can be sent once and for ail to ail the blocks
from the centre node; this explains the différence in terms of execution time.

Static/dynamic effect on total energy

As part of the sensitivity analysis of Nessie results to input parameters changes,
we hâve performed an additional experiment to evahiate how energy evolves
with the static/dynamic power ratio. To this end we performed the mapping
of the functionality Fcq,o on the different candidate platforms while making
the static power vary from 0.1% to 30% of dynamic power: the residting
plot is represented in Fig.(i. 10.
As we can see, the total energy scales very differently with increasing static
power from one architecture to another. While the 2-nodes architecture reacts
with a very slow global energy increase, the larger architectures see theh' global
energy scale much worse. This différence in the slope of these different Unes can
be explained by taking back our previous activity graph of Fig.6.7 combined to
the total computation time of each architecture: the cumulated absolute time
spent in idle State grows with the number of nodes. Increasing the static power
will thus hâve a bigger impact on the total energy for larger architectures.
That said, the mapping is still sufficiently efficient in our précisé case to prevent
the static power from dominating (a 30% static/dynamic power leads in the
worst case of the 6-nodes architecture to a 18% increase in energy compared to
a zéro static power situation). However we can see that dynamic/static power
proportion however has some impact on the choice of the architecture: for
instance, the 6 nodes architecture is very interesting for static/dynamic values
under 4% while it becomes the most power hungry over 15%. Finally we can
also notice that the different architectures tend to energy values very close to
1.9J for small values of the static power: this is because the total dynamic
energy is constant for any architecture. The small différence for static power
values close to 0 is only due to different memory and communication activation
patterns for the different architectures.

6.3 Modeling an H.264/AVC application inside Nessie

6.3.1 Introduction

While the previous case study demonstrated the different features of Nessie
on basic examples, this section focuses on the modeling of a System that has

En
er

gy
 (J

)

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE 273

Figure 6.10: Energy consumed versus the static/dynamic proportion

274 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

already been studied and whose performances hâve been estimated and used
as a référencé for comparison with our framework. This case study relies on a
work done by Dragomir Milojevic and published in[5], a reference that will be
used as the main source of data for our study. This case study has been entirely
performed by a student under our supervision: with no particular knowledge
in microelectronics, he learned to use Nessie and Yeti, modeled and integrated
the System of this case study into Nessie and finally performed the different
experiments that are presented in this section in only three weeks of work.
This gives an idea of the time required to get into grips with our tools and
produce significant results.
The basic idea of this paper was to evaluate the power dissipated in the different
components of a network-on-chip (interconnect links, network interface units
(NIU) and switches) for a realistic traffic pattern generated by a multimedia
application and compare it to the overall power consumption of the platform to
prove network-on-chip efficiency in terms of energy. Different mapping scénario
of the application on the platform hâve also been studied to measure the impact
on the total power consumption.
The aim of our case study is to see in which extent it is possible to model such
a realistic System in Nessie and try to reproduce the results. Based on this
modeling, we will then extend the previous results for an architecture layout
based on 3D stacking^ and evaluate the expected power réduction achieved
through the mean wire length réduction.
First of ail we will briefly define the functionality, the platform and their map-
ping.

6.3.2 Description of the System

Functionality

The functionality used in this case study is a simple profile® H.264/AVC real-
time video decoding application[7] studied for three different resolutions (GIF,
4CIF and HDTV) [8]. Resolution has a significant impact on the data amount
exchanged between the different decoding operations since it is directly pro-
portional to the number of macroblocks® required to code the video stream.
The higher the resolution, the more macroblocks per frame will be exchanged
between the different operations leading to an absolute increase in data band-
width for a fixed framerate. * *

^3D stacking basically consists in stacking diffeient active Silicon layers to reduce the average wire
length: more details will be given in Sec.6.3.4.

*H.264 offers a lot of different capabihties regarding the inter- and intra-predictiou: profiles includiug
packages of capabihties hâve therefore been defined to suit the needs of different types of appheations.
The simple profile is primarily used in the case of Systems with heavy resources coustraints and mobile
appheations: more information about profiles can be found in [ü].

®Each frame of a video stream is divided into 16x16 pixels blocks called macroblocks.

6.3. MODELING AN H. 264/AVC APPLICATION INSIDE NESSIE 275

Platform

The H.264/AVC decoding is performed on the 3MF MPSoC platform devel-
oped by Imec and designed to support different video coding standards (such
as MPEG4, AVC, SVC)[9]. The architecture depicted in Fig.fi. 11 is composed
out of thirteen nodes:

• The six computational nodes are instances of the ADRES processor[10]
with onboard L1 data and instruction memory. This architecture is based
on a VLIW processor connected to a matrix of reconfigurable functional
units and is meant for low power, high computation performances appli­
cations.

• Two instruction memory nodes L2Isl and L2Is2

• Two data memory nodes L2D1 and L2D2

• One FIFO memory that buffers the compressed and uncompressed data
stream

• One extemal memory interface (EMIF) connecting one L3 off-chip mem­
ory to the System

• One ARM microprocessor responsible for the MPSoC control and the
______ _ audio subsystem._____ ___________ _____________ ________ ,____ .

To interconnect the different nodes, an Arteris NoC[ll] is used allowing dif­
ferent transaction based communication protocols to be used. A separated
communication architecture is implemented for data and for instructions as
illustrated in Fig.fi.ll:

• The data network-on-chip uses a fully connected NoC with a 2x2 mesh
topology to minimize the latency so that a maximum of 2 hops is required
to reach a destination node. Each of the four switches is connected to a
spécifie cluster of nodes (two clusters of ADRES, one containing the data
memories and the last one to the FIFO).

• The instruction network-on-chip is only made out of one switch connecting
the different instruction memories to the six ADRES nodes so that any
communication takes one single hop. Additionally it is connected to the
data network-on-chip to enable tlie communication between instruction
memories and any other node of the architecture.

Each communication architecture is actually split into two different network-
on-chips (see Fig.fi.ll); one request NoC carrying the data payload and a
response NoC used for acknowledgement only. Finally arbitration is based on
a Round-Robin algorithm and the routing is performed statically at design
time so that only route between initator/target^° pair is allowed.

''^The initiator is simply the source uode of the data while the target is the destination node for that
same data.

A
O

R
 E

SI

I ^AOfteS2
I f A0

R
ES

3

276 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

Figure 6.11: The 3MF platform for multi-standard video decoding based on six
ADRES computation nodes[9]

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE 277

Original mapping

As explained in the original paper, the functional block diagram is depicted in
Fig.().12 where the different operations (memorization and computation) are
represented with the amount of exchanged data. The units of these data are
expressed in byte per macroblock so that they represent the amount of data
exchanged between the different operations for one simple macroblock.
Many possibilities exist to map the encoding application on the 3MF platform
but three spécifie mapping scénario hâve been selected and compared in [.5]:

• The data split consists in dividing the video stream in six equal parts
that will be processed in parallel by the six different ADRES nodes. This
scénario puts the stress on the instruction NoC due to the encoder code
size.

• The functional split strategy relies on the distribution of the different
operations over the six ADRES cores. Three ADRES are dedicated to
motion estimation (ME), one to intra prédiction, DCT, IDCT and mo­
tion compensation, one to the computation of the deblocking filter and
finally the last one to entropy encoding. Compared to the data split, the
functional split is more friendly with the instruction NoC but doubles the
amount of data flowing on the data NoC.

• The hybrid scénario is a compromise between the previous solutions: the
heaviest computational task (the motion estimation) is mapped onto three
ADRES nodes using a data split while the remaining tasks are mapped
onto the three other ADRES nodes according to the functional split scé­
nario.

For each mapping, the paper contains a table with the data throughput of the
different platform nodes communicating to execute the application described
by the functional diagram of Fig.(i.l2.

Power dissipation modeling

To estimate the power dissipation of the complété network-on-chip, we model
the individual power consumption of each element that the NoC is composed
of. Basically power consumption can be separated into a dynamic P^yn and an
idle Piiiie (when the element is not transmitting data) contribution as described
by Eq.().5.

Ptot — Pidle T Pdyn (^'^)
The switch and NIU power consumption are respectively modeled by Eq.b.b
and Eq.6.7 where Cj are experimentally determined coefficients representing the
idle and dynamic power consumption. The A term of the équation represents
the activity of the element, in other words the percentage of time during which
the element is active and transmitting data.

Pswitch — Cl A * C2 (6.6)

278 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

Figure 6.12: Fimctional block diagram for the H.264/AVC application including tlie
different memorization ajid computation operations with their data
transfers (in bytes per macroblock) [5]

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE 279

Pniu = C3 + a* a (6.7)

In the ArterLs NoC, each link Ls composed ont of several fixed length segments,
each segment containing a certain number of wires with their associated re-
peaters. Tlie link dynamic power consumption Pi is thus the product of the
segment power consumption Pg by the length of the link l as described by
Ec|.().S. The contribution of the segment to the power dissipation involves the
number of wires w, the NoC frequency /yvoCi tlie capacitance per segment unit
C (including the contribution from both wires and repeaters), the activity of
the wire A, the supply voltage f^nd the average toggle probability of a wire
Ptoggle ■

Pl=^l*Ps=l*U>*C*A* fNoC * Vdd * Ptoggle (6.8)

To feed these models with input values, a three step methodology was u.sed in
the original paper:

1 The Arteris NoC explorer tool is used to generate traffic patterns based
on the three mapping scénarios described earlier.

2 Based on these traffic traces. Synopsis VCS is used to perform a func-
tional RTL simulation that will resuit in SAIT files (Switching Activity
Interchange Format). These files contain ail the detailed activity of the
different components that will be required to compute the power con-
sumption.

3 Based on the SAIF, the power analysis is performed using the Magma
Blast Power tool operating at a gate-level.

The different numerical values for the coefficients of the power model of the
link, switch and NIU resulting from these experiments can be found in the
original paper. To compute the total power consumption of the NoC, ail the
initiator-taiget consumptions are summed up (results for the different mapping
scénarios are detailed in the paper).

6.3.3 Formalization of the problem

Introduction

Now that we hâve completely defined the System, we are ready to discuss how
it can be translated into the formalism accepted by Nessie. We will then use
this model to calculate the power consumption using Nessie and see if these
estimations match the results of the original paper.
From the description that was made in the previous section, we can already
make several straight-forward considérations about the general methodology
that will be used to integrate ail these data inside Nessie.

Abstraction hieremchy In the previous section, we hâve made a structural
description of the functionality and the platform with their mapping. This

280 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

mearis that this problem will be translatée! into two abstraction levels inside
Nessie: application/chip will both be described by structures based on func-
tional/platfonn primitives of the abstraction level just below. To evaluate the
performance criteria of the different functional/platfomi blocks pairs deter-
mined by the mapping we will use the different power consomption models
described in the paper and integrate them inside Yeti.

Mapping In the original case study, three different mapping scénarios (the
data split, the functional split and the hybrid scénario) hâve been tested, each
one defining which operation (a functional block from the Nessie point of view)
is supposed to be mapped onto which platform node (a platform block). How-
ever Nessie is a tool meant for dynamic and automatic mapping in the context
of HW/SW co-design and assumes that both functionality and platform are
described separately. In the original case study, the mapping has however
been performed manually and the functionality is not described independently
from the platform. To make the problem description compatible with Nessie
formalism we will thus hâve to "iinmap” the functionality from the platform
and successively associate each functional block with one platform block to
properly describe the mapping.

Performance criteria The original paper computed the power consump-
tion of each individual element based on its activity factor and summed them
up to get the total power consumption of the NoC. Nessie however performs an
online event-based mapping that will estimate the activation order and time
of each operation mapped onto the platform. To calculate the power con­
sumption, we will thus define an additional criterion representing the energy
consumed by each block and integrate that value over time to get the total
power consumption. Additionally we will also estimate the area of the plat­
form based on the individual area of each block. This gives us a total of three
performance criteria:

1 Computation time : one mandatory criterion in Nessie used to dérivé the
value of ail the other criteria

2 Energy: an integrate time criterion that is additive over the surface

3 Area: a time-independent criterion that is additive over the surface

Platform and aissociated Yeti models

To represent the 3MF platform inside Nessie, we hâve modeled each separate
element (switches, links and computation nodes) as a platform block. As we
can see in Fig.(j.13 the connection topology between the different éléments is the
same as the original structure presented earlier in Fig.6.11. The sole différence
is that we only included the request NoC carrying the data payload and not the
response network that is much less used and for which we don’t hâve sufficient

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE

Figure 6.13: Platform structure usecl inside Nessie for the représentation of the 3MF
platforni

information to establish a correct model. Since the request network carries
niuch more data than the respond network, neglecting the latest will hâve a
very sniall impact on the overall power consumption.
Each platform block (memories, ADRES nodes, switches and links) dérivés
from a given j)latform primitive associated with a model to estimate perfor­
mance criteria (time, energy and area). Energy is however a partlcular crite-
rion because it is the suni of thrc'e different criteria: the NIU energy, the wire
energy and the switch energy. By separating the contribution of these differ­
ent éléments, we are able to establish a more detailed analysis of the power
consumption budget.
For each platform primitive, we define two different States with different values
for the criteria: an idle State and a memorization/transmission State (depend-
ing on the block primitive nature: a memory or a link/switch). The time spent
in the memorization/transmissioii State divided by the total computation time
corresponds to the activity fac:tor A defined in the previoius équations of the
power consumptions Eq.6.7 and Eq.O.fi. Nessie will change the States of the
different platform blocks according to the performed rnapping so that it will
reproduce their respective activity factors.
The different parameters used as inputs for the Yeti models are those previ-
ously defined by power consumption équations (except the activity factor A).
We tried as much as possible to reduce the number of parameters ending up
as degrees of freedom by making a clever use of the parameter local/global
définition (see Sec.-').1.1). Each prurameter that needs to hâve a single value for

282 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

the whole chip is defined as a global parameter: this is tlie case for the supply
voltage, the toggle probability Ptoggie etc. Using this technique, the value will
only appear once in the degrees of freedom so that changing this value will
affect ail the models that use this parameter. On the contrary, some param-
eters like the wire length take values that are dépendent of the instantiated
platform block: therefore we hâve assigned this parameter with local values so
that each link can be assodated with its own length. Other combinations are
also possible to group several links together in order to define their length by
a unique degree of freedom value.

Application

In our problem, it is not possible to directly reuse the description of the func-
tionality inside Nessie but we hâve ail the necessary information to enable its
transformation into the format required by Nessie. Indeed the functional dia-
gram depicted in Fig.6.12 details the different operations, the amount of data
exchanged and the memories towards which the data produced by the different
nodes will be sent. Based on this diagram, we hâve manually extraded the
data dependency to expose the maximum parallelism of the operations and
couvert this information into a pétri network: Fig.6.14 and Fig.G.Lû respec-
tively depict the resulting pétri nets représentation for the data split and the
functional split. Each operation requiring to send data is represented by a
place (with the required data bandwidth) and the operations that consume
these produced data are connected through a transition representing the data
dependency. If these pétri networks are fairly easy to interpret, we hâve to
mention two particularities regarding the explicit memorization and the data
split that will hâve an impact on the resulting pétri network: both questions
are further discussed in the following paragraphs.

Explicit memorization As explained in chapter .5 devoted to its complété
description, Nessie is primarily meant for automatic mapping of a functionality
on a platform. To perform this mapping, the communication and memoriza­
tion needs are implicitly defined by the data dependencies of the pétri network
describing the functionality so that it should only contain computation opera­
tions. Based on this pétri network, Nessie maps the different operations onto
the platform, automatically transmits data tokens between platform nodes
when required, memorizes data tokens inside the platform block that lias pro­
duced it when memorization ability is available or transmits it otherwise to a
distant memory.
In our case however, the mapping is completely fixed for each scénario and the
data resulting from the different operations are assigned to spécifie memories
so that Nessie is not allowed to choose them arbitrarily as it would hâve done
normally. To force manual mapping, we thus hâve to make data memorization
operations explicit in the pétri network: this can be illustrated by transitions

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE 283

Tl ; FIFO to EMIF

T2 :EMIFto ADRES i

T3 : ADRES i to L2D2 i

T4 : L2D2 i to L2D2

T5 : L2D2 to L2D1

T6 : L2D1 to ADRES i

T7 : ADRES i to FIFO

TB : FIFO output

Figure 6.14: Description of the H.264/AVC functionality with a Pétri network for
the data split scénario

284 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

T10

T11

52.7 MB/S

Tl ; FIFO to EMIF

T2 : EMIF to ADRES 1 and 3

T3:ADRES 1 to ADRES 2

T4 : ADRES 2 to ADRES 3

T5 ; ADRES 3 to ADRES 6 and 4

T6 : ADRES 4 tO L2D2 and ADRES 5

T7 : ADRES 5 to L2D1

T8 : L2D2 to L2D1

T9 : L2D1 to ADRES 1

T10 ; ADRES 6 to FIFO

T11 : To OL/TPUT

Figure 6.15: Description of the H.264/AVC functioiiality with a Pétri network for
the functional split scénario

6.3. MODELING AN H. 264/AVC APPLICATION INSIDE NESSIE 285

Tl, Tl and T4 for the data split scénario of Fig.6.14 for instance. However
this pétri network gives a simplified view of what is really happening in order
to prevent the figure from being overwhelmed with too many places. There
are two distinct procedures depicted in Fig.6.10 that can be used to force the
memorization (fetching) of a data into (from) a spécifie memory:

• Data fetching from a spécifie memory can be achieved by inserting a
dummy place before the place representing the operation that needs to
consume the stored data token (see left of Fig.O.lO). Place Pi contains a
dummy operation (with zéro execution time) what is only compatible^ ^
with the spécifie memory that should contain the data token required by
place P2. Due to this unique compatible platform block, Nessie will thus
map the operation associated to P\ onto this memory which will require
a zéro execution time and produce the data token that will immediately
be memorized. Operation associated with P2 that requires this token will
thus tell Nessie to route the data token from the memory to the platform
node where operation P2 has been mapped. This mechanism can thus
be used to define data tokens stored in a spécifie memory which can be
useful for instance to set where first data are physically available on the
platform for a functionality to start.

• Data memorization to a spécifie memory can be achieved by inserting
a dummy place after the place representing the operation producing the
data token to be stored (see right of Fig.fi.K)). Place P4 contains a dummy
operation (with zéro execution time) wdiich is only compatible with the
spécifie memory that should store the data token produced by place P3.
Once place P3 has produced its data token, Nessie will route and transmit
it to the spécifie memory compatible with operation P4. Because it is a
dummy operation, P4 will instantaneously produce a token of the same
size as the token it received and memorize it. This mechanism is very
useful to force the resuit of an operation to be stored in a spécifie memory
used as interface with the outside of the System for instance.

Data split Looking at the functional block diagram in Fig.(5.12 we can see
that some parts of it {EMIF to ADRESi for instance) require a data split.
When mapped onto the platform, this means that the data coming out of the
platform source block (the EMIF) are equally divided into six data chunks
individually sent over to the different ADRES nodes. However such a data
split cannot be represented in a straight-forward manner in our pétri network
because each place may only produce one single token. Enabling places to
produce more than one token as a resuit of a functional block execution com-
pletion doesn’t solve that issue since these tokens would be sent to ail the
places connected to the output transition anyway.

"As a remainder, a compatible list establishes the different platform primitives that can execute a

286 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

; dummy operation
generating a data
token in a spécifie

memory

Pg : operation
consuming this

data token

Pg : operation producing a

data token

P4 : dummy operation

compatible with a spécifie
memory consuming this

token and memorizing it

a) data fetching b) data memorization

Figure 6.16: Modification of pétri network for manual mappiiig: a) procedure to
force data fetching from a spécifie memory and b) niethod to force the
memorization of data inside a spécifie memory

P.| mapped onto C.|
Pg mapped onto C2

Pg mapped onto Cg
P J mapped onto C4

Platform

execution nodes

Functionality

Figure 6.17: Modification of pétri network to enable the fimctional description of
data split

6.3. MODELING AN H. 264/AVC APPLICATION INSIDE NESSIE 287

To overcome this limitation and enable a given token to be sent towards a
spécifie place, we can make use of zéro-execution places. Fig.6.17 présents a case
where we would like a place Pi to send one individual token of size A, B and C
respectively to places P5, Pq and P7. To do so, three additional places P2, P3,
P4 hâve been inserted between the original places and the destinations: these
new places are zero-execution places, ail of them only being only compatible
with platform block Ci. When Ci ends the execution of the functional block
related to place Pi, transition Ti is fired and places P2, P3 and P4 are ready
for execution. Since these three places relate to zero-execution operations
compatible with platform node Ci, they will consume data token D and execute
instantaneously on Ci: as a resuit, three tokens A, B and C are generated
and stored in Ci. As each place P2, P3 and P4 are connected to individual
transitions T2, T3 and Pj, each token will be sent individually to the platform
block onto which the functional block related to one of those three next places
P5, Pe and P7 will be mapped (respectively C2, C3 and C4 in our case).
This techniciue has the advantage of being quite simple, doesn’t change the
execution time calculation and is sufîiciently flexible to solve any issue regard-
ing the number of generated tokens and the functional blocks that require to
use it. Indeed we just need to insert as much zero-execution places as required
tokens and link them to transitions connected to ail the places requiring each
individual token. We hâve used this mechanism as often as it was necessary to
describe data split in our AVC functionality inside the pétri network formal-
ization.

Mapping

As we hâve already explained earlier, the mapping operation is reduced to
its simple expression in our case since we went for a manual allocation of
the functional blocks on the platform blocks to represent the case study as
accurately as possible. Some important remarks are however to be made to
detail the conditions required for Nessie mapping to be relevant in our AVC
case study.

Explicit memorization To perform the manual mapping according to orig­
inal paper, each operation needs to be made explicit: not only computation
operations are specified in the pétri network based functional description but
also data memorizations. This is required to explicitly define inside Nessie ail
the pairs of platform blocks that will exchange data which will then enable
proper routing.

Routing In the original paper, routing is performed statically at design time
with the objective of enabling a maximum number of nodes to communicate

paiticular functional primitive.

288 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

simultaneously. Only one path is allowed between any pair of nodes so that
the traffic is entirely deterministic over the network-on-chip. In Nessie, routing
is however performed online so that the mapping core will détermine a route
dynamically whenever a platform block needs to send data to another node.
We could solve this problem using the same technique as the memory manual
mapping: each platform block belonging to the route should be compatible
with a dummy operation in order to force the data token to take a given path
from the source to the destination. Adding these information to tlie pétri
network would however lead to a severe overhead in terms of description com-
plexity and wouldn’t make much sense. Furthermore Nessie always performs a
greedy routing to simultaneously use as much routes as possible: the différence
with the optimized static routing of the paper should thus be quite small in
terms of wire activity.

6.3.4 Results

In order to validate the previous modeling of our AVC case study, we will
first try to reproduce the results of the original paper and see to which extent
Nessie can accurately predict the NoC power consumption. In a second step,
we will extend the 3MF model to the case of a 3D stacked architecture and
see if the average link length réduction can be efficiently converted into power
consumption savings.

Results based on the original 2D architecture

This first experiment consists in estimating the NoC power consumption of the
AVC application running on the 3MF platform thanks to their modeling inside
Nessie (see Sec.6.3.3). The input values of the analytical models of Sec.6.3.2
hâve ail been taken from the reference paper [9] except for the length of each
link that has been estimated based on the 3MF floorplanning.
For the three scénario and three possible resolutions, Table 6.6 represents the
original results for the total NoC consumption, the estimations made by Nessie
based on the model and finally the relative différence between them. As we can
see Nessie performance prédictions for the total power consumption are very
close to the original values with a mean absolute error of 0.77% when averaged
over ail the experiments. This error is only related to link approximations but
not to NIU or switch since input parameters, activity (defined by the functional
diagram) and models used to estimate their power consumption estimation do
not differ from the original paper. Indeed if we estimate the power consumption
contribution from links only (representing on average 8% of the total power),
the mean error reaches 11.8% demonstrating that only links contribute to the
total error. This error on wire power consumption estimation cornes from two
different sources:

• The dynamic routing perfomed inside Nessie may differ firom the static

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE 289

Resolution Power Data split Functional split Hybrid

HDTV
Original results [mW] 21.37 21.27 17.01
Nessie results [mW] 21.19 21.19 16.87
Relative error [%] -0.82 -0.38 -0.80

4CIF
Original results [mW] 19.35 17.73 14.77
Nessie results [mW] 19.15 17.91 14.92
Relative error [%] -1.05 1.02 0.98

GIF
Original results [mW] 18.16 15.64 13.46
Nessie results [mW] 17.99 15.74 13.50
Relative error [%] -0.93 0.65 0.33

Table 6.6: Cornparison of the original NoC power dissipation with Nessie estimations for
the 2D case study

routing used in the original paper. The data tokens taking a different
path will then change the total activity of the wires hence their power
cons uinpt ion

• Due to a lack of précisé data, we used approximations of wire lengths
which is directly proport.ional to the power consumption.

The combination of both these sources of error explains wliy we don’t liave the
exact results and proves that Nessie is able to accurately estimate the perfor­
mances of a System as long as we use précisé models and data. Furt,hermore
the error is small enough on average to reasonably extend this model to the
case of a 3MF architecture implemented on a 3D stacked die and measure the
overall impact of this architecture change on the NoC power consumption.

Extension to a 3D stacking based architecture

In this experiment, we try to evaluate the power consumption gain achieved
through the use of a 3D stacking architecture for the 3MF platform to replace
its original 2D layout.
To eut to the Chase, 3D die stacking is a technique consisting in stacking
different active Silicon layers to increase the intégration density[12]. The main
advantage lies in the decrease in the average wire length; different parts of the
chip are able to communicate through short interconnects by vertically Crossing
the thin active layers rather than having to run along the whole chip side length
as it would be the case in a 2D layout. This average wire length réduction leads
to smaller latencies, higher throughputs and wire power consumption savings.

Formalization This modification of the architecture is very easy to represent
inside Nessie since we only need to change each individual link length which is
a parameter of the Yeti models used to estimate the performance criteria. Each
link length was already associated with a degree of freedom so that we only

290 CHAPTER 6. NESSIE: CASE STUDIES AND APPLICATIONS

needed to change its value in the previous simulation file: no other modification
is required to move to the 3D case^^.
To compare with the 2D layout, we hâve defined ten possible variants of the
3D stacked 3MF architecture composed out of two or three active layers. For
each variant, we detail the nodes that hâve been floorplanned on layer 1 (and
layer 2 if the architecture contains three layers) while the remaining nodes that
hâve not been explicitly mentioned are placed on the upper layer 1 :

1) Layer 2 contains L2I1 and L2I2 memories

2) Layer 2 contains L2I1 memory while layer 3 contains L2I2 memorj'

3) Layer 2 contains L2I1, L2I2, L2D1, L2D2 memories and EMIF

4) Layer 2 contains FIFO and EMIF

5) Layer 2 contains L2I1, L2I2, L2D1, L2D2 memories and EMIF while layer
3 contains ADRESl and ADRES4

6) Layer 2 contains ADRESl, ADRES2, ADRES3 and FIFO while layer 3
contains L2I1 and L2I2 memories

7) Layer 2 contains L2I1 and L2D1 memories while layer 3 contains L2I2
and L2D2 memories

8) Layer 2 contains L2I1 memory, ADRESl, ADRES2 and ADRES3 while
layer 3 contains L2I2 memory, ADRES4, ADRES5 and ADRES6

9) Layer 2 contains the switch of the instruction NoC, the EMIF, L2D1 and
L2D2 memories

10) Layer 2 contains ADRESl, ADRES4 and and L2D1 memory while layer
3 contains ADRES3, ADRES6 and L2D2 memory

The nodes of each variant hâve been manually floorplanned on the additional
layer(s) to minimize the overall wire length compared to the initial architecture.
We chose a vertical distance of 15/rm between each layer (consistent with the
current technology[13]) so that reasonable link power savings could be expected
from moving the initial 48.66 mm^ die to a 3D stacked architecture. Listing
the length of ail the individual links for each variant would be way too long
and not of great interest since they can be easily found in the simulation files.

Power résulta For the three different resolutions we hâve evaluated the per­
formance criteria of the ten 3D stacked architectures running the H.264/AVC
application: wire power consumption for HDTV, 4CIF and GIF are respec-
tively represented in Fig.6.18, Fig.6.19 and Fig.6.20. From these figures,
we can see that some interesting wire power réductions can be achieved by
switching from a 2D to a 3D layout for the 3MF architecture. The average

^^Since the connection topology between the different nodes of the 3MF architecture remains the same
for the 2D and 3D case, we can keep the platform structure intact inside Nessie which is a great benefit
from our approach.

6.3. MODELING AN H.264/AVC APPLICATION INSIDE NESSIE 291

Original Variant Variant Variant Variant Variant Variant Variant Variant Variant Variant
123456789 10

Architecture type

■ Data split ■ Functional split Hybrid

Figure 6.18: Contribution of wires to the power consumption of the 3MF architec­
ture running the AVC application for ten 3D stacked variants in the
case of an HDTV resolution

Original Variant Variant Variant Variant Variant Variant Variant Variant Variant Variant
123456789 10

Architecture type

■ Data split ■ Functional split Hybrid

Figure 6.19: Contribution of wires to the power consumption of the 3MF architec­
ture ruiming the AVC application for ten 3D stacked variants in the
case of a 4CIF resolution

292 CHAPTER 6. NESSIE: CASE STUDIES AND APPLICATIONS

Original Variant Variant Variant Variant Variant Variant Variant Variant Variant Variant
1 23456789 10

Architecture type

■ Data ■ Functional Hybrid

Figure 6.20: Contribution of wires to the power consumption of the ÜMF architec­
ture ruiming the AVC application for ten 3D stacked variants in the
case of a GIF resolution

Power gain (%) Data split Functional split Hybrid
HDTV 43.0 32.8 41.4
4CIF .54.3 36.5 52.6
GIF 55.3 54.2 49.7

Table 6.7: Average wire power gain achieved by the use of 3D stacking for different mapping
scénarios and resolutions

gain for each resolution and mapping scénario can be found in Table 6.7. With
vaines ranging from 32.8% to .55.3%, we can state that 3D stacking efficiently
converts the average wûre lengtdi réduction into wire pow'er savings. However
it is possible to push the analysis a bit further and observe several interesting
things from the three graphs:

• Variants 4, 9 and 10 perfomi not very well compared to the original 2D
layout particularly for the functional data split scénario. If we look at
the 3D layer distribution of the different éléments of these thrœ different
variants, we can see that the FIFO and EMIF are placed on dedicated
layers in order to decrease the wire length used to connect them to the
different ADRES nodes. However [-5] tells ns that less than 5% of the
total data bandwidth is implied in data transfers betw^een/to the EMIF
and the FIFO: this explains why reducing their average wire length to the

6.:J. MODELING AN H. 264/AVC APPLICATION INSIDE NESSIE 293

other nodes does not lead to great power savings.

• If we observe the three figures one after the other, it is striking to see that
the overall power gain relatively increases compared to the 2D layoïit as
the resolution decreases. Since the resolution is directly proportional to
the amount of data exchanged over the data NoC but does not change the
size of the code transmitted over the instruction NoC, lower resolutions
tend to hâve on average higher instruction/data ratio to transmit. This
entails that, based on our ten different variants, the instruction NoC tends
to benefit more on a power consumption point of view from a move of the
architecture towards a 3D layout than the data NoC does.

• Let us now hâve a look at the hybrid mapping scénario compared to the
others. For the HDTV resolution, the hybrid solution is better for each
of the ten variants and so is it in the case of the 4CIF resolution even
if the différence becomes smaller. However for the lowest resolution, the
functional split slightly beats the hybrid and becomes the best solution.
As we explained earlier, the instruction/data relative bandwidth ratio de­
creases when the resolution decreases so that the instruction NoC activity
contributes more and more to the total power consumption budget. The
functional split has the advantage over the data split and the hybrid scé­
nario of minimizing the instruction bandwidth by avoiding to send the
sarne piece of code multiple times over different ADRES nodes. When
the resolution decreases, the instruction bandwidth optimization thus be­
comes more and more important relatively to data bandwidth to the point
where the functional split beats the hybrid solution. The optimal choice
of the mapping scénario is thus dépendent on the size of the code and
the resolution so that any change in the AVC functionality implémenta­
tion is to be taken into account to efficiently minimize the wire power
consumption.

Based on these different observations and the analysis of each 3D stacking
variant, we can define guidelines for the floorplanning and distribution over
the different layers of the platfomi nodes. In order to optimize the wire power
consumption by short,ening the wires, we should follow this priority to bring
the different nodes doser:

1 The ADRES nodes and the instruction memories

2 The ADRES nodes and the data memories

3 The ADRES nodes between each others

4 The ADRES nodes and the EMIF/FIFO

Until now we hâve seen that the 3D stacking technique used to modify the orig­
inal 3MF architecture has shown very interesting réductions of the wire power
consumption but how does it perform regarding the whole communication ar­
chitecture? To answer that question, let us examine Fig.6.21 that represents

294 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

Original Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6 Variant 7 Variant 8 Variant 9 Variant
10

Architecture type

■ Data split ■Functional split Hybrid

Figure 6.21 : Contribution of the NoC to power consumption of the 3MF architecture
nmning the AVC application for ten 3D stacked variants in the case of
a GIF resolution

the complété network-on-chip power consumption for the GIF resolution for
which we reached the best results in ternis of wire power saving. As we can see
the power consumption gain achieved through wire length réduction thanks
to 3D die stacking is very small when we consider the entire network-on-chip.
Indeed choosing the most power friendly 3D stacked architecture in the data
split scénario only leads to a 9% overall power gain for the complété NoC com-
pared to the original 2D layout while the saine gain is only around 3% for the
functional split and hybrid scénarios. These same power consumption savings
would even look smaller when compared to the power of the different platfonn
nodes.

3D stacking and manufacturing yield Now that we hâve discussed the
power gain achieved through 3D stacking, we will try to give some insight into
the cost associated with the use of this technique. Since 3D stacking processes
are still under rœearch and not ready to be fully transferred to fabs, it is
difRcult to define realistic manufacturing costs: however we can relatively rank
our ten 3D variants in terms of efficiency and yield.
To do so, we hâve calculated the wasteA area that we define as the différence
between the cumulated total area of each layer in the 3D layout and the area
of the 2D layout. Since ail layers don’t hâve the same number of components,
some Silicon area may be wastcni while it could hâve been used to etcli useful

6.3. MODELING AN H. 264/AVC APPLICATION INSIDE NESSIE 295

Wasted area

♦ Data split a Functional split Hybrid

Figure 6.22; Power consuniption réduction VS wasted area coinpared to tlie original
2D layout of the 3MF arcliitecture

coniponents instead. In other words for a sanie design, wasting sorne Silicon
area will thus -for a sanie anionnt of nianufacturing tinie and resources^^- turn
into a smallcr luimber of nianufactured dies coinpared to a single active Silicon
layer aicliitfx;ture: tliLs leads to a snialler nianufacturing yield henœ to more
expensive dies to produc;e.
Fig.6.22 quantifies tliLs potential yield loss by comparing the total NoC power
consuniption gain for the GIF resolution achieved by usirig the different 3D
variants with the wasted area in percentage of the original 2D layout area. We
assume that the floorplanning is 100% efficient so that each layer total useful
area is just the suni of the different coniponents area that it is coniposed ont
of.
On this graph, we seek the solutions that sinmltaneously minimize the wasted
area while maximizing the power consuniption savings: the more interesting
solutions are thus those situated on the top left of the graph. At fir.st sight,
it is striking to see on this figure how spread is the wasted M'ea value ranging
from 2.6% to 118%) for the the wnrst solutions. On the contrary, the power
consuniption réduction of the whole network-on-chip vary in a niuch snialler
range from 0.25% up to 8.74%. Taking into account the w'asted area is thus

* *VVe implicitly assiune that a 3D stacked die coiuposed ont of N active Silicon layers requires luore than
N times the dmation ueedeil to mauufaiduie a single active sihcou layered die of the same area. This
assinuption is more than rcasonablo since ail layers of the 3D layout will anyway requhe to be etched
scpcuatcly so that their asseiubly is an unavoidablc oveiheail.

296 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

iiiuch more crucial in the optimization process than looking at the single power
savings.
With the absolute numbers being underestimated by the perfect floorplanning
assumption, our example demonstrates that the wasted area (hence manu-
facturing yield) is much more sensitive to 3D stacking organization than the
power consumption réduction is. The stress is put on design tools and designer
Work to prevent additional design and manufacturing costs from making the
achieved power savings insignificant.
Based on these different results, we may thus wonder if 3D stacking is really
worth the effort? The answer to that question is however not so simple: from
a pure energy and design/manufacturing cost, it is clearly not. Indeed the
power dissipated in the communication wires will probably always represent a
very small part of the global platform power budget so that the global power
réduction will always be outweighed by the design time and money spent in it
(more etching masks, more complex design, beat dissipation issues etc.). On
the other hand using 3D stacking has some side advantages that hâve not been
quantified in our comparison:

• One important effect of wire length réduction achieved through the use
of 3D stacking is the réduction of the communication latency and the
increase of its bandwidth: two benefits that we didn’t evaluate because it
was out of the scope of this study focusing on power consumption.

• Instead of simply assigning the platform components to the different lay-
ers, using 3D stacking could allow the designer to perform the floorplan­
ning of a single component on several layers improving both their indi-
vidual performance and the platform performances.

• By using different Silicon processes for each layer, it is possible to opti-
mize the technology for the component type that is etched. For instance,
memory and pure logic are often implemented using different technologies
as highlighted in the ITRS roadmap[14].

In summary, we could answer that even if moving to 3D stacking is not very
effective in reducing the power consumption of an existing platform, it has
other side advantages that we could benefit from at the expense of putting the
stress on EDA tools to maintain reasonable cost and efiiciency.

6.4 Discussion of the use Nessie

Through our two previous case studies we hâve used different functionalities
of Nessie and performed several experiments with it. Based on these results
we are now able to discuss what Nessie is good for and its current limitations:

• Fast to execute but long to initialize: Nessie executes fast but first re-
quires a lot of informations from the designer to model the System and its
performances. For instance, our AVC case study only takes 10 seconds

6.5. CONCLUSIONS 297

(when disabling the console information display) to generate the 30 func-
tionality/platfonn combinations that we explored even if the main XML
input file is ten thousand Unes long. We could lower this data entry com-
plexity by helping the designer with a graphical user interface although it
will not lower the modeling effort that will anyway be required to estimate
perfonnances.

• Automated: Design space exploration and automated plot génération
makes Nessie very comfortable to use thanks to the concept of degrees
of freedom and performance criteria. In our first case study, this allowed
us to successively sweep on a parameter and automatically perforai for
each of them a new simulation. In the AVC case study, the automation
provided by Nessie gave us the opportunity to perforai a batch of 30
simulations at once while other tools might hâve required 30 successive
simulations to be initialized and launched.

• Strict: Nessie uses a strict définition of the System i.e. a hierarchical de­
scription of both the functionality and the platforai with Yeti performance
models associated to the atoniic platforai primitives. This clear sépara­
tion between functionality and platforai is inherited from the HW/SW
co-design approach: any System described differently from our conven­
tion will thus be more difficult to represent. That’s the case of our second
case study that already had a single unified description of the function­
ality mapped onto the platform and forced us to “unmap” them. Nessie
intentionally discourages the user from using such descriptions since we
believe that separating the functionality from the platform should be the
best way to describe a System in a design space exploration perspective.

• Extendable: Nessie could not at the moment prétend to be the top notch
design space exploration tool because there is still so much to do in the
domain. It introduces many different concepts (flexible mapping, auto-
matic exploration of the design space, degrees of freedom etc.) that hâve
ail been implemented but could be extended in many ways. The car­
rent im])lenientation has been thought as flexible as possible so that these
different aspects could be extended easily without having to start from
scratch: these extensions will be further discussed in the next chapter
devoted to future work.

6.5 Conclusions

In this chapter we hâve demonstrated the proper working, the use and the dif­
ferent feat lires of Nessie based on two different case studies respectively focus-
ing on design space exploration for an hypothetical yet realistic design and on
the modeling of the power consumption of a platform running an H.264/AVC
application.

298 CHAPTER 6. MESSIE: CASE STUDIES AND APPLICATIONS

In the first case study we started froni an hypothetical application and mtipped
it onto several architectures ranging from a single computation node to multi­
ple nodes architectures with different communication topologies. We hâve per-
formed different experiments including the estimation of the computation time,
the compromise between energy and computation time as well as the influence
of the static power on the total energy. These different experiments illustrated
some of the different features (input parameter sensitivity analysis, automatic
exploration of the solutions, flexible performance criteria définition) applied
to examples helping the designer to quantify design performance compromises
and enabling an easier dimensioning of the different design parameters.
In the second case study we hâve demonstrated how Nessie is able to model
a real System based on the 3MF platform running an H.264/AVC decoding
application. We hâve then performed several experiments to estimate the
power consumption of the whole communication architecture for three different
mapping scénarios of the application and compared it to the results of the
original paper resulting in a very reasonable average error of 0.77%. For ten
possible \'ariants of the 3MF architecture based on different 3D layouts, we hâve
reached a maximum 9% power réduction for the communication architecture
but highlighted potential yield losses making the use of 3D stacking subject to
caution.
Looking at the different aspects that we investigated during our two case stud-
ies, we can State that Nessie is able to represent the most important aspects of a
System by representing explicitly the application and the platform. Automatic
exploration of the design space based on the degrees of freedom combined to
the flexible définition of performance criteria could make such a tool very use-
ful for a designer. In counterpart Nessie pays its flexibility by an important
modeling effort to get to that resuit.
First, XML files are quite heavy and may become painful to define for very
complex Systems but this issue can be partly addressed by using a graphical
user interface (this topic will be further discussed in the next chapter devoted
to future work). However once a simulation has been initialized, it is very easy
to change the degrees of freedom, generate new plots based on ail performance
criteria and degrees of freedom values, swap a platform for another and so on:
the initial effort may be high but performing new simulations require much
less time.
Second, the designer needs to capture the whole application/platform and
the models for performance estimation in a strict way which may be a time-
consuniing task. If this could be seen as an overhead, I personally think that
it has the merit to make this modeling task mandatory which should be part
of any design: it’s the price to pay to benefit from accurate and flexible per­
formance estimation.

DIBLIOGRAPHY 299

Bibliography

[1] ARM corp., “Arm doi 0035-4 - arm? familiy guide,” ARM,
Tech. Rep., 2005. [Online]. Available: htti)://www.anii.coni/i)dfs/
ARM7 J huuil)_Hyer J55M.pdf

[2] O. Sentieys, “Gestion intelligente de l’énergie : Gestion intelligente de
l’énergie : aspects matériels et logiciels,” ENSSAT - Université de Rennes
1, Tech. Rep., 2002.

[3] H. Hanson, “Static energy réduction techniques for microproces-
sor caches,” 2001. [Online]. Available; citcseer.ist.psu.edu/aiticle/
hansonOlstat ic.html

[4] M. Horowitz, “Circuits and interconnecta in aggressively scaled cmos,” in
proceedings of ISCA 2000, 2000.

[5] D. Milojevic, L. Montperrus, and D. Verkest, “Power dissipation of the
network-on-chip in inulti-processor system-on-chip dedicated for video
coding applications,” Journal of Signal Processing Systems, p. 15, June
2008.

[6] G. Sullivan, P. Topiwala, and A. Luthra, “The h.264/avc advanced video
coding standard: OverView and introduction to the fidelity range exten­
sions,” in SPIE Conférence, on Applications of Digital Image Processing
XXVII, vol. 5558, Aug 2004, pp. 53-78.

[7] I. Richardson, “White paper: An overview of h.264 advanced video cod­
ing,” Vcodex: Video compression design, analysis, Consulting and re-
searsch, Tech. Rep., 2007.

[8] R. L. Myers, Format and Timing Standards published in Display Inter­
faces. Wiley-SID Sériés in Display Technology, 2003.

[9] D. Milojevic, L. Montperrus, and D. Verkest, “Power dissipation of the
network-on-chip in a system-on-chip for mpeg-4 video encoding,” in Solid-
State Circuits Conférence, 2007. ASSCC '07. IEEE Asian. Los Alamitos,
CA, USA: IEEE Computer Society, 2007, pp. 392 - 395.

[10] F. Bouwens, M. Berekovic, B. D. Sutter, and G. Gaydadjiev, “Architec­
ture enhancements for the adres coarse-grained reconfigurable array,” in
HiPEAC, 2008, pp. 66-81.

[11] Arteris TM, “Network-on-chip network-on-chip : The future of soc power
management,” in CDN Live, June 2006.

[12] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,
D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb, “Die stacking (3d) microarchitecture,”
in MICRO 39: Proceedings of the 39th Annual lEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE Com­
puter Society, 2006, pp. 469-479.

http://www.anii.coni/i)dfs/

300 CHAPTER 6. NESSIE: CASE STUDIES AND APPLICATIONS

[13] E. Beyne and B. Swinnen, “3D System Intégration Technologies,” Inte-
grated Circuit Design and Technology, 2007. ICICDT ’Ol. IEEE Interna­
tional Conférence on, pp. 1-3, May 2007.

[14] “International technology roadmap for semiconductors 2007.” [Online].
Available: http : / / . itrs. ik4. /

Chapter 7

Future work

Throiigh this dissertation we hâve presented our contribution to prédiction
perfonnance tools with the combination of two original tools called Nessie and
Yeti. We hâve successively explained how we built them from scratch, the prin-
ciples they rely on and eventually demonstrate their abilities to solve electronic
Systems design problems. During this work we hâve highlighted new problems
and questions that could do some very interesting new research topics. We
decided to croate a single chapter entirely devoted to the présentation of these
new ideas that arose from this thesis in order to draw a complété picture of
the future work.
This chapter will be divided in three main parts:

• Concepts describe the new ideas that still hâve to be largely explored
before being implemented.

• Implémentation details the different new features that do not require any
further conceptual work and that we would like to appear in the coming
versions of Nessie and Yeti. Most of these changes are almost ready to be
coded but were either ont of scope either highly time consuming and not
crucial for the purpose of this work.

• Design flow intégration discusses the benefits and methods of integrating
our tools inside existing design flows.

Let us start. with the new concepts that we would like to implement.

7.1 New concepts

7.1.1 Improving Nessie exploration layer

As explained in the chapter related to Nessie (see Sec.5.1.1), we provided our
tool with a simple interface defining a solution as a set of inputs (the degrees of
freedom gathering the different design choices) and outputs (the performance
criteria representing the different figures of merit of a given solution). The
advantage of such an interface lies in the abstraction of the inner mapping

301

302 CHAPTER 7. FUTURE WORK

and performance évaluation core so that we could implement any exploration
policy above tliis interface to define how to explore the design space. At the
moment, we hâve only implemented a full factorial solution exploration policy
as a demonstrator: ail combinations of degrees of freedom are tested and the
resulting performance criteria are then explored for each of them. If this policy
is suited for a small number of solutions, more clever solutions could be used
to explore larger design spaces.
As part of a prospective work, we supervised a student work[l] that consisted
in the study of methods and tools for the exploration of large solution spaces
and its application on a practical case taken from the computer science litera-
ture. We selected the model of Codrescu (see Sec.3.2.2 for more details) that
we completed with some new models in order to define power consumption as
an additional criterion to computation power. With the help of a department
specialized in multicriteria analysis in our university, we surveyed several meth­
ods and selected two metaheuristics methods: the taboo list and the sinmlated
annealing^. The experiments were performed on a design space composed out
of 200k solutions generated by the value sweep of three inputs parameters feed-
ing our model and showed very promising results. Exploring the entire design
space took 20 minutes using Matlab while the simulated annealing method
only took 20 seconds to generate the whole set of Pareto optimal solutions
while discarding suboptimal solutions. The resulting Pareto optimal curve is
represented in Fig.7.1 where each point represents a different solution with a
different compromise between power consumption and computation power.
This prospective work has put into light very interesting methods for the im­
plémentation of new design space exploration policies above Nessie’s interface.
Such metaheuristics could drastically reduce the exploration time of large de­
sign spaces while finding out good (meaning not too far from the optimum)
solutions.

7.1.2 Decreasing the estimation time

While Nessie is able to estimate performance criteria based on an explicit
mapping of the functionality on the platform in reasonable times, it could be
désirable to provide the user with the ability to find the same values without
performing the whole mapping and for a smaller computation time. This
could be donc using a Yeti model that would be able to extract the essential
information out of functional/platform structures and the mapping policy and
use them in return to estimate the performances as accurately as possible. Such
a process depicted in Fig.7.2 is expected to offer reduced estimation times hence
enable the exploration layer to explore wider portions of the design space in a
given amount of time.
The calibration of the models used inside Yeti could however be a real problem *

* More information about multicriteria analysis and metaheuristics can be found in [2] and [3]. We won’t
further detail these topics since it goes out of the scope of this discussion.

7.1. NEW CONCEPTS 303

Figure 7.1: Pareto optimum curve of tiie computation performances versus power
corjsiimption for tlie extended Codrescu model[l]

NESSIE :
explicit mapping

YETI (or other représentation) :
model of the mapping performances

Functionality I i Fr> I i\ flritoria fPt I i Fn I jj

Extracting parameters

Figure 7.2: Modeling of the performance criteria resiüting from Nessie explicit map­
ping by fimctional, platform and mapping paranieter extraction

304 CHAPTER 7. FUTURE WORK

to guarantee a sufficient level of accuracy. To tackle this issue, we could imagine
to add some leaming abilities to Nessie by replacing the fixed Yeti model
with a black box that would progressively build a model leaming from the
previously performed experiments. The general mechanism of such a leaming
based model would be the following: each time Nessie performs an explicit
mapping, the functional, platform and mapping parameters are extracted and
associated with the output performance criteria. This new expérience resuit set
can then be fed back to the leaming tool that will use it to refine its previous
performance model to match the prédictions with the new dataset. The more
we use Nessie, the more accurate the model of the mapping performances will
become. The exact underlying leaming mechanism could be chosen among the
state-of-the-art methods of intelligent leaming (for instance expert system[4],
neural networks[5], data mining[6], etc.).
To accelerate the leaming process and calibrate the models faster, we could
imagine to submit different automatically generated cases to Nessie and let
it leam as long as required. Several practical limitations could however be
anticipated:

• It LS difiicult to predict how many parameters from the functionality, plat­
form and the mapping should be used and if they would ail significantly
influence the resulting performance criteria. If we need too many pa­
rameters to characterize these three, we could end up with a tremendous
number of experiments to perform to build up a sufficiently large sam-
ple of cases to train the model: this would limit the practical use of this
approach due to limited computation power. A study should be made
to anticipate this problem and demonstrate whether or not this rnethod
could be feasible: design of experiments[7] could therefore be of great
help.

• We could also wonder if randomly generated applications and platforms
could represent a relevant set of training cases to build a model that would
afterwards be used on realistic applications and architectures. It’s prob-
ably up to the user to wisely déterminé the parameter range and define
some limitations on their values and possible combinations/patterns in
order to avoid the génération of structures that will never be encountered
in practice and therefore bias the model

Whether or not we use models based on progressive leaming, it would be very
interesting to explicitly represent the compromise between the accuracy of the
results predicted by the model and their estimation time in order to take this
information into account at the exploration layer.

7.1. NEW CONCEPTS 305

7.1.3 Developing metrics for application and platform charac-
terization

As we described in the above section, extracting the parameters of a function-
al/platform structure is a crucial task before being able to train the leaming
tool. Aside from this particular use, parameter extraction from structures
(particularly for the functionality) would also be a nice feature to quantita-
tively compare different conipeting implémentations based on objective crite-
ria. These different extracted parameters could be used as input parameters in
our automatically generated plot which would give more précisé and quantified
information about a functionality and platform than just its type.
We will not try to set an exhaustive list of ail the possible parameters but we
could think of the following ones for the platform: the number of blocks, a
measure of their heterogeneity, the mean number of connections between the
blocks, a possible regular topology etc. Regarding the functionality we could
enumerate the critical path^, the mean data/control dependence of functional
blocks, the average data token size, the proportion of the different functional
types etc.
The détermination of relevant and non-redundant parameters capturing the
essential infomiation of functionality or platform is still a wide research topic
that has been partly investigated in a master thesis on application profiling
[8].

7.1.4 Introducing design cost related issues inside nessie

At the moment, Nessie focuses its performance évaluation on the properties
of the designed chip (the Silicon area, the energy, etc.) but does not take into
account the cost of the design process that leads to this chip. Manufacturing,
testing and design costs, yield, design time[9] are some examples of criteria
whose values should be put in balance with the chip properties[10] : for instance,
how many additional dollars per manufactured die am I willing to spend on an
overall 2% power consumption réduction? The compromise between chip and
design related performance criteria could thus provide the designer with new
relevant information in the design choice: this strives for the explicit modeling
of design related activities and costs inside Nessie.
Many points should still be investigated before being able to develop such an
integrated framework, here are however some promising ideas:

O As a starting point we should be able to evaluate the design time and com-
plexity of any functional/platform block mapping. We could be tempted

^The number of consecutive functional blocks is not sufficient to détermine the critical path of a func-
tionahty since the different blocks hâve execution times both depending on the functional type and the
platform block that it will be mapped on. This is exactly the reason why we previously emphasized that
AS AP and ALAP methods make few sense in the context of our problem (see Sec.-5.4.2). Instead of the
number of blocks, we could use statistical distributions of the execution time of a given path.

306 CHAPTER 7. FUTURE WORK

to State that design time is directiy proportional to the size of tlie de-
signed block however, as demonstrated in [11], the number of transistors
designed per man-month is very dépendent on the type of architecture
making the previous approximation quite inappropriate. A full survey of
the related literature and the possible development of design time/cost
models would probably be worth a dedicated reaserach.

• We could reuse our multiple abstraction levels formalization for the pur-
pose of design flow modeling; this situation is depicted in Fig.7.3. Besides
the previously defined abstraction axis (see Sec.5.1.2), we hâve added an
horizontal axis representing the évolution of the design process in itself
where each graduation is a design step (refinement, mapping, itération
etc.). Using this paradigm we can represent the hierarchical évolution of
the chip description for each design step and use a model to define the ab-
solute time separating two successive design steps by taking advantage of
the available functional, platform and mapping information. Parallel de­
sign activities could also be represented by superposing different timelines
above each other.

• There is a striking analogy between the functional/platform mapping
problem and the design activity; as the different functional blocks are
mapped onto the platform structure in order to optimize time or other
performance criteria, the design process consists in allocating design re-
sources (manpower, tools, etc.) to design tasks in order to meet the
deadlines while minimizing design cost and time. Design planning is, in a
certain extent, nothing more than a scheduling/allocation problem where
design tasks require the expertise of designers offering a certain design
productivity. If it is not guaranteed that methods used in the case of
functional/platform mapping could be directiy reused for design process
modeling but some concepts could at least be transfered or used.

The modeling and study of design cost is thus relevant in the context of elec-
tronic System optimization and could therefore be an interesting subject of
research.

7.2 Implémentation and future tool évolution

7.2.1 Nessie

Nessie has now reached a stable implémentation state but could in the future
benefit from new or extended features to optimize its performances and make
it more flexible. These different ideas are detailed in the following sections.

Improving mapping

As explained in Sec..5.4.3, the mapping is divided in three parts: the alloca­
tion, scheduling and routing. We hâve developed different methods to perform

7.2. IMPLEMENTATION AND FUTURE TOOL EVOLUTION 307

Model of design time

b ...
Refine ment

1
Performance

1
Performance

criteria (1q) criteria (t.j)

FeO RO FeO RO

Design
step

1 --

Abstraction
level

^ Structure ^

Fc 1,0 Fc1,N

Figure 7.3: Sirrniltaiieous représentation of the design ar;tivity and the chip hierarcliy
orgauized in different alDstraction levels

these thrcîe mapping steps but new ones coiild be explored or tested to enhance
the performances. For instance the allocation of a functional block is, at the
moment, perforrned based on the minimization of a cost function defined by
a mathematical combination of the different performance criteria of each po-
tential platfomi block. A possible extension woiild be to define the allocation
priority of the different functional blocks while taking functional structure into
account (minirnization of the execution time différence between parallel paths,
defining higher priority for functional blocks whose exœution coinpletion will
allow the génération of a maximum new functional blocks, etc.).
At the moment, we hâve only defined one single policy for allocation, scheduling
and routing but in order to enable the use and choice of new mapping methods,
we should think of a mechanism to add new degrees of freedom defining which
exact method should be used for each mapping step. The modification in Nessie
would consist in defining for each mapping step a super class that woidd hâve
several derived classes associated with each paiticular method of a mapping
step. Tins would enable the définition of degrees of freedom for the mapping
and allow the user to define more flexible mapping policies instead of having
tliem hard coded in the franiework.

Automatic génération of platform structures

Instead of explicitly defining ail the platform structures, it could be very use-
ful to hâve a generator of regular topologies (mesh with different connection
topologies, bus wdth N connected blocks, ring and star topologies etc.). From

308 CHAPTER 7. FUTURE WORK

a user perspective, this woiild reduce the time spent on filling XML files with
répétitive content and avoid error-prone copy/paste operations.

Automatic génération of functional structures

As for the platform structure, the automatic génération of functional struc­
tures could be very useful to simplify the description of the application but
also to provide Nessie with automatically generated cases for evaluating the
performances of a given mapping method or performing model leaming.

Memorization policy

Two interesting extensions still need to be added to the current version of
Nessie concerning the memorization of data tokens.
First, each memory has, at the moment, an infinité size and the area is only
fixed by the criteria of the platform block. To make it more realistic, w'e
should tum the area mandatory criterion into an area per bit value so that
we could calculate the total memory area from the maximum data amount
that was ever contained in the memory (an information only available after
the mapping process).
Second, we should define flexible memory policies to manage the data tokens
stored in the different memories during the mapping process. At the moment,
the hardcoded policy consists in keeping track of ail the memorized data to­
kens and removing ail the instances of a particular data token when there is
no functional block that still needs to consume it: this policy acts a bit like
a garbage collecter in a software. More complex policies could however con-
tribute to decrease the total required memory size or decrease the execution
time by transferring a data token to distant memories when the activity of
the chip is under a certain threshold in order to move it doser to its future
cons U mers.

Modifying the routing block réservation policy

During the routing process, Nessie uses a mechanism to reserve ail the platform
blocks along the determined path in order to make sure that no other route
using those blocks will be established during the data token transfer. When
the token completely leaves a block belonging to the route, it is put back in
the pool of available blocks for routing. If this method works perfectly, it has
the drawback of reserving blocks that won’t necessarily be used at once: the
doser we are to the destination, the longer the block will hâve to wait for the
data token to effectively pass through it. However these platform blocks could
hâve been used instead to perfomi another operation meanwhile: transforming
the bit réservation into a réservation timeline scheduling ail the time intervals
where the block is unavailable would solve this issue and optimize the platform
block usage. If we are in a case where data transfers don’t take much time

7.2. IMPLEMENTATION AND FUTURE TOOL EVOLUTION 309

compared t.o computation operations, the benefit would however be small or
even inexistent: that’s why we decided to leave the implémentation of this
feature for future work.

Additional functional structures

As mentioned in Sec.5.3.1, Nessie lias been implemented to enable the simul-
taneous use of different models of computation to represent the data/control
dependency. Aside from Pétri nets, functional structures based on DFG and
KPN (see Sec.4.3.3) would give more flexibility to Nessie and enable its inter-
facing with a larger number of existing tools.

7.2.2 Yeti

Additioned operations

At the moment, Yeti already knows a lot of basic mathematical operations but
could still use some new analyt.ical operations but also a set of boolean opera­
tions. As we hâve shown in Sec.2..5.1, it is very simple to add new operations
to the current framework in a matter of minutes: if required in the future, any
missing operation should be added without hésitation.

Statistical pcurameter hcmdling

Currently Yeti only rnanages scalar values as input and output parameters of its
models. The addition of statistical distributions based values for parameters
and the création of dedicated operations to handle them could provide the
user with new features to model the uncertainty on fluctuating values instead
of using input parameter sensitivity to figure ont the model output variation.

Releasing Yeti

At several finies, we were asked during conférences if Yeti was available for
download and use. This demand could probably lead to a near future in the
online availability of Yeti in two possible formats: an online repository of
models or a standalone client tool. While the first option has been chosen by
the GSRC for their GTX tool, we hâve to admit that, although the initiative
was very encouraging, it didn’t get the success it deserved and alniost no
models were added to this online repository. There is no reason why we could
do better, the second option should therefore be preferred.
Making this tool available will however require a lot of support: XML input
file documentation and user guide manuals will hâve to be written and sonie
time should obviously be spent on user support and framework maintenance to
take into account reported bugs or user comments. We felt useful to mention
this opportnnity in this chapter devoted to future work since it emphasizes a

310 CHAPTER 7. FUTURE WORK

demand from the community that could be profitable for our department to
increase its réputation in the domain seen from the outside.

7.2.3 XML parser update

At the beginning of this work we chose the APACHE XercesC library to parse
our XML documents using SAX but at the time of version 2.7, no support
was provided for XPath and Xinclude. With the recent release of XercesC 3.0,
these two XML technologies hâve been integrated in the library offering new
interesting features that could be exploited in the context of our work:

1 Xinclude allows the inclusion of an XML file, into other documents by
simply referring to their names. This feature is very useful to avoid XML
content from being duplicated whenever it is necessary enabling a better
data consistency. In our case we could imagine to store relations, SW/HW
structures, SW/HW primitives in separate files to build up a repository of
models and représentations and use Xinclude to include them as necessary.

2 Xpath allows the user to perform powerful queries on an XML document
to extract the required infomration. Many functionalities are available to
sort out the data of a document and make the manipulation of large files
particularly easy: some ideas to use Xpath are given in Sec.7.3.3 of this
chapter.

7.3 Integrating Nessie inside an existing flow

Nowadays there is a strong demand for languages enabling the description a
functionality and a platform at very high abstraction levels while still allowing
the designer to simulate the behaviour. If languages like SystemC TLM 2.0
follow that trend and offer very interesting features regarding the functional
point of view, we could probably combine them with Nessie’s capabilities in
performance estimation of non-functional performance variables. In this sec­
tion, we discuss the opportunities and possible issues for the intégration of
Nessie into existing design flows.

7.3.1 Intégration method

Nessie is a standalone tool requiring an explicit description of the platform,
functionality and degrees of freedom in order to deliver performance criteria
estimations. At the moment ail these information need to be gathered by the
user and then entered manually into Nessie: this process requires too much
fornialization and work to seduce users in the perspective of an integrated
design flow.
As depicted in Fig.7.4, two solutions are therefore possible to combine Nessie
with existing design flows:

7.3. INTEGRATING MESSIE INSIDE AN EXISTING FLOW 311

Vertical intégration

Platform/Functionality
information

/ Design tool 1 \
i + Nessie j

/ Design tool 2 \
l + Nessie J

Funclional +
non-functional
performances

— Funclional +
non-functional
performances

Horizontal intégration

Figure 7.4: ComparLson of vertical and horizontal intégration of Nessie inside exist-
ing design flows

1 Vertical intégration: Nessie engine or some of its performance évaluation
niethods and concepts are directly integrated inside existing tools to pro­
vide non-functional performance estimation. If this approach leads to
the total intégration of our framework into a seaniless design fiow, it has
the drawback of requiring some heavy modifications to exLsting tools and
languages which Ls not very realistic.

2 Horizontal intégration: Nessie remains a standalone tool and works in
parallel with the existing tools/languages of the design flow. To lower the
overhead of entering manually models inside Nessie for non-functional
paramr'ter estimation, we can benefit from the information provided any-
way to design flow tools, analyze and convert theni into the input fonnat
required by Nessie.

In the context of a smooth intégration of Nessie into an existing design flow,
we think that the horizontal approacdi is more realistic and doesn’t reqnire
both the exLsting tools of the flow and Nessie to be modified. In return we
need to translate the existing functionali and platform descriptions into Nessie
input fonnat files. Regarding the functionality, different tools exist to extract
data/control dependency from an existing C code (like for instance in Design
Trotter, see Sec.4.3.4). Concerning the platfonn, the topological description
format maj' largely differ from one tool to another: the extraction of these
information to transfonn them into Nessie platform structures should however
not be a problem at ail. Finally the infonnation about the different func-

312 CHAPTER 7. FUTURE WORK

tional/platfomi primitives and their performance models should need to be
explicitly provided by the user since they are missing in functional vérification
focused tools: this is however the price to pay for non-functional performance
estimation. The analysis and platform/functionality information extraction
could also be reused in a pure design space exploration context to allow the
user to define the functionality and the platform in other formats than the
ones defined by Nessie.

7.3.2 Adding a GUI

The only way to specify the inputs of Nessie currently consists in writing the
different required XML input files. If the task is simplified by an XML editor
performing tag autocompletion based upon Nessie and Yeti XML schémas, this
method isn’t still very user-friendly. A graphical user interface could instead
make this work rnuch less fastidious for the user and provide him with a few
interesting features:

• Graphical functionality and platform structure édition to build the oper­
ation dependency and the architecture topology

• Interactive édition to build Yeti model using parameter-based degrees of
freedom

• Based on the previously defined graphical représentations of the platfor-
m/functional structure, we could, once the simulation is over, u.se the
resulting timeline files to illustrate the co-execution of the functionality
on the platform. The idea is to allow the user to see how the different
data tokens are exchanged between the different platform blocks, watch
the évolution over time of the execution of different SW blocks, etc. By
adding a filter, we could also monitor the activity of a particular plat­
form block or pétri place to give further understanding of the resulting
scheduling, allocation and routing. AU the information required to build
this interactive simulation are contained in the generated timeline files
and only need to be graphically translated.

The GUI should thiis provide the user with the ability to enter ail the informa­
tion in a graphical way and then automatically generate the XML input files
according to the previous descriptions. The user could then be able to launch
the simulation and analyze the results or get a report in the case of run-time
en'ors due to bad information provided to Nessie. We hâve to mention that the
input data syntaxical and semantical vérification is entirely left to Nessie that
embeds the XML document validation using the different schémas of Nessie
and Yeti provided. This makes the work of the GUI much easier since it only
lias to report the errors generated by Nessie to the user.
The development of such a GUI is a priority to simplify and accelerate the use
of Nessie and is the subject of a currently ongoing master thesis.

7.4. SUMMARY 313

7.3.3 Resuit analysis

Easy analysis of the output results is crucial in order to simplify the task of
the designer; thousands Unes long reports are often discouraging and worth
nothing if they cannot be interpreted quickly and efficiently. At the moment,
Nessie already performs with honor in that domain by providing the user with
automatic plotting of any combination of the performance criteria/degrees of
freedom along with the génération of activity reports providing information
over the efficiency of the mapping for a given solution. However we could go a
step further.
In the previous section, we described the prémisses of an interactive simulator
based on the timeline report files. This could be used to understand why a
given platform/functionality combination performs better or worst than an-
other solution.
Another improvement would be to provide the user with some statistical analy­
sis features of the different solutions generated by the exploration policy. Using
the Xpath support of the new XercesC 3.0 library in a separate C+-f- program,
we could be able to query the resulting XML file summarizing the different so­
lutions (with the performance criteria and associated degrees of freedom):

• How many and which solutions hâve a criterion X value greater than Y ?

• What is the distribution of criterion X \'alue ?

e What are the top five solutions that maximize the X*Y criteria values
product?

Such a feature would incredibly simplify the work of the user, allow him to
classify the different solutions and to extract those which fulfill these condi­
tions.

7.4 SummEiry

In this chapter we hâve identified different ideas and great opportunities for
the future of Yeti and Nessie. We classified them in three categories: new
prospective concepts, implémentation improvements that could optimize the
performances and fiexibility of both frameworks and finally some hints for their
possible intégration inside an existing design flow.
If Yeti, in its standalone version, is sufficiently mature to be released, we
will still need some efforts to make Nessie usable by the computer science
community without having to read this entire thesis.
Sorting out the different presented options for immédiate implémentation, I
personally believe that the most promising developments to enhance Nessie
and Yeti are the implémentation of a GUI, the intégration of tools to convert
existing functional descriptions from widely used languages to Nessie functional
structures and finally the addition of advanced analysis methods of the results.

314 CHAPTER 7. FUTURE WORK

Regarding the more conceptual parts of the work to do, we could imagine to
extract two research works that could lead to PliDs.
The first subject is about the development of new exploration policies for fast
design space exploration and would consist of the following tasks:

• Extensive study of the different methods to efficiently explore spaces with
a large number of solutions applied to the field of VLSI Systems

• Development of methods/rule of thumbs to select the different parame-
ters of exploration policies (total exploration time, spécifie values of the
heuristics parameters, etc.)

• Adding some flexibility to the different mapping steps in order to make
explicit ail the degrees of freedom for mapping

• Defining several case studies and benchmarking the exploration methods
to prove their efficiency to explore large design space and identify good
solutions in reasonable times

The second subject would be related to the development of cost models for
VLSI design flows and their intégration mside chip performance prédiction
tools consisting of several tasks:

• Surveying of the literature about manufacturing/design time and cost,
yield and ail performance metrics related to the efficiency of the design
flow

• Extracting useful information of project management techniques and in-
vestigate if we can reuse chip allocation techniques for the optimization
of design time and resources

• Integrating the cost modeling of this design activity into Nessie to ex-
plicitly evaluate the compromise between chip and design activity perfor­
mance

• Identifying several case studies by studying existing design projects and
extracting relevant data

• Showing in which extent the combined study of chip/design related perfor­
mance can lead to better compromises and help to meet project deadlines
while improving overall chip design performances.

Bibliography

[1] N. Simons, “Optimisation des architectures numériques: formulatin du
"design flow” sous forme d’un problème d’aide à la décision multi-critères,”
Université Libre de Bruxelles, Tech. Rep., june 2006.

[2] P. Vincke, Multicriteria Decision-Aid. J. Wiley, New York, 1992.
[3] J. Dréo, A. Pétrowski, P. Siarry, and E. D. Taillard, Métalieuristiques pour

l’optimisation difficil. Eyrolles, September 2003.

BIBLIOGRAPHY 315

[4] J. C. Giaxratano and G. D. Riley, Expert Systems: Principles
and Programming, 3rd ed. Course Technology, February 1998.
[Online]. Available: http://-R'w\v.amazon.ca/ox(‘c/()bidos/redire<-f't.ag=
(■it<udik(<)9-20\&ami);i)ath=ASIN/05349.50531

[5] L. Francis, “The basics of neural networks demystified,” in Contingencies
Workshop, 2001, pp. 55-61.

[6] M. Kantardzie and A. N. Srivastava, “Data mining: Concepts, models,
methods, and algorithins,” Journal of Computing and Information
Science in Engineering, vol. 5, no. 4, pp. 394-395, 2005. [Online].
Available: http://dx.doi.org/10.1115/1.2123107

[7] D. C. Montgomery, Design and Analysis of Experiment. Wiley, 2000,
vol. 5 édition.

[8] P. Pilavachi, “Application profiling: State of the art and case study,”
Université Libre de Bruxelles, Tech. Rep., June 2006.

[9] D. Harris, “Introduction to cmos vlsi design - scaling and économies -
course given at harven mud college - claremont usa,” 2005.

[10] A. B. Kahng, “The cost of design,” IEEE Design & Test of Computers,
vol. 19, no. 4, pp. 136, 135, 2002.

[11] Numctrics Management Systems Inc., “Design complexity and preductiv-
ity,” Numetrics Management Systems Inc., Tech. Rep., 2004.

http://-R'w/v.amazon.ca/ox(%E2%80%98c/()bidos/redire%3C-f't.ag=
http://dx.doi.org/10.1115/1.2123107

316 CHAPTER 7. FUTURE WORK

Chapter 8

Conclusions

In this dissertation, we hâve developed a combination of two original tools,
called Nessie and Yeti, in the context of design space exploration and perfor­
mance estimation methods for VLSI Systems. The main contributions of our
work are:

• A characterization of VLSI performance estimation tools/methods based
on five classification criteria. Based on this review of the literature, we
hâve identified new opportunities to cope with the limitations of existing
solutions and enhance them.

• The design of and implémentation Yeti, an innovative C++ library/s-
tandalone tool for the flexible and dynamic calculation of mathematical
relations. Yeti enhances the current State of the art tool in that domain
by:

- Providing the user with flexible scripting capabilities to make large
simulation campaigns easier

- Introducing the notion of model reversibility to facilitate and encour­
age existing model reuse

— Relying on a very strict XML grammar to enable easy and automatic
vérification of user’s input

- Offering easy input/model sensitivity analysis features.

• The design and implémentation of Nessie, a new tool for performance
estimation that explicitly represents the functionality and platfomi and
proposes the following features:

— Automatic hierarchical mapping of a "functionality” onto a "plat-
form” based on flexible allocation, scheduling and routing policies

— Estimation of user-defined multicriteria variables to drive the design
decision process

- Flexible design space exploration policy relying on an interface gath-
ering performance criteria and degrees of freedom describing ail the

317

318 CHAPTER8. CONCLUSIONS

design choices in a generalized way (platform, functionality and map-
Ping).

— Intégration of Yeti to enable fast performance estimation based on
flexible closed-formed models

• The démonstration of Nessie’s and Yeti’s proper working, performance
évaluation features and abilities to solve a flrst realistic set of design cases
including:

— The extension of a multi-processor model for computation power es­
timation taken from the literature

— The optimization of dock frequency and bandwidth based on a stage
delay model built from scratch

- The successful power consumption modeling of an AVC decoding ap­
plication running on an MPSoC platform and the reproduction of the
results with an average error lower than 1%.

As a conclusion, if we hâve already explored some preliminary case studies
to prove the proper working and practical interest of both our tools, some
additional validations on larger case studies taken from industrial designs are
still required to prove the concept and are currently being investigated in the
context of an ongoing PhD. The main benefit of our approach certainly lies
the ability to quantitatively test and compare different design solutions by si-
multaneously changing functional, platform and mapping related parameters.
Estimating the impact on performances of several architectural or functional
variants thus becomes incredibly fast and easy at the expense of a relatively
modest modeling effort. If many opportunities to reduce this modeling cost
(like the introduction of a GUI or the automatic extraction of modeling infor­
mation from existing design descriptions) hâve been presented in our analysis
of the future work, Nessie and Yeti intentionally encourage this process of mod­
eling since we believe this is a key to performance estimation.

On a Personal level, I believe the main contribution of this thesis lies in the
gathering of existing concepts with new ideas of my own to build, what is to
my knowledge, one of the most flexible framework for design space exploration.

Appendix A

A complément to Yeti
implémentation

A.l The shunting yard algorithm

A. 1.1 Introduction

The shunting yard algorithm has been developed in the early seventies by
computer scientist Dijkstra. This algorithm, named after its creator because
of its similarities with a railroad shunting yard, is mainly used to couvert infix
mathematical expressions into RPN{Reverse Polish Notation) and is nowadays
widely used in any common calculator. However another interesting applica­
tion of this algorithm is the ability to tum a closed-formed expression into
an y45T(Abstract Syntax Tree) whose nodes are operands and directed hyper-
edges represent operators. In the simple tree example of Fig.2.7, we can see
how is represented the expression A = B + C*78 where Inti is an intermediate
node added to make the tree structure valid. Thanks to this représentation, a
closed-formed expression can evaluated at run-time without having to make it
hard-coded.

A. 1.2 Available operators

Ail yet available operators are defined in table A.l. They are classified by the
following criteria;

• Operator name

• Operator type refers to the number of operands required for this précisé
operator: both unary and binary operators are available

• Symbol is the string associated with an operator and defines how it will
appeai- in a closed-formed expression. It is interesting to mention that
Symbol - is used both for the binary suhtraction and unary opposite op-

319

320 APPENDIX A. A COMPLEMENT TO YETI IMPLEMENTATION

Operator name Type Symbol Precedence Associativity Exception
Addition Binary -b 1 Yes No

Subtraction Binary - 1 No No
Multiplication Binary * 2 Yes No

Division Binary / 2 No Yes
Logarithm Unary log 3 No Yes
Opposite Unary - 4 No No
Exponent Bmary 3 No No

Table A.l: Table of available operators classified by name, type(number of operancls
reqiiired), precedence value, associativity cind possibility of mathematical
exception

erator. How confusing it may seem, we wanted to keep this Symbol for
both operators because of their common use.

• Precedence refers to the priority for the évaluation order of an expression:
considering two successive operators (without brackets), the one with the
highest precedence value will be evaluated first. For instance, the expres­
sion a = b + c * d requires c * d to be evaluated first rather than b + c
because of respective values of + and * operators (see table A.l)

• Associativity of the operator
• Exceptions may occur during expression évaluation for the logarithm (nég­

ative basis or argument) and division (null denominator). These excep­
tions must, of course, be detected at run-time.

A. 1.3 The algorithm

Algo.7 présents in details the way the shunting yard algorithm is performed.
To illustrate it, we took the expression represented by the textual string A.l.
The different steps are detailed in Fig.A.l while the explanation follows.

O = 6 * (c — log(83)) H-5 (A.l)

1 The OperandStack and the OperatorStack are created. At the begin-
ning, they are empty. The string is then parsed: the first expected element
is the destination operand a and then the = operator. At this point, every-
thing is initialized for the algorithm to start: the string is parsed and each
element is read and classified into two categories operands and operators.

2 Operand ”b” is parsed and pushed onto the OperandStack

3 Operator is parsed and pushed onto the OperatorStack

4 Element ”(” is parsed and pushed onto the OperatorStack

5 Operand ”c” is parsed and pushed onto the OperandStack

A.l. THE SHUNTING YARD ALGORITHM 321

Algorithm 7 Shunting Yard Algorithm tuming an infix into an AST repre-
sentation___

1: Define OperatorStack
2: Define OperandStack
:i: while String is not empty do
4: Parse next element
ô; if eiement=operand then
6: Push currentOperand onto the OperandStack
7: else if element=Operator then
8; if currentOperator precedence > OperatorStack[lastElement] precedence then
9: Push currentOperator onto OperatorStack

10: else
11: Pop the last operator ofF the OperatorStack and the required number of

operands off the OperandStack
12: Push this newly created operand onto the OperandStack
13: end if
14: else if currentOperator = ”)” then
15: while OperandStack ^ ” (” do
16: Pop the last operator off the OperatorStack and the required number of

operands off the OperandStack
17: Push this newly created operand onto the OperandStack
18: end while
19: end if
20: end while
21: while OperandStack and OperatorStack aren’t empty do
22: Pop the last operator off the OperatorStack and the required number of operands

off the OperandStack
23. Push this newly created operand onto the OperandStack
24: end while
Ensure: The OperatorStack must be empty and the OperandStack must only contain

the final operand value

322 APPENDIX A. A COMPLEMENT TO YETI IMPLEMENTATION

Operands Operands b c 83
1. 9.

Operators Operators * (- log (

Operands b Operands b c 83
2. 10.

Operators Operators * (- log

Operands b Operands b c t1
3.

Operators Operators * (-

Operands b Operands b 12
4.

Operators * (Operators *

Operands b c Operands 13

5.
Operators * (i Operators

Operands b c Operands t3 5
6.

Operators - (- Operators +

Operands b c Operands a
7.

Operators * (- log Operators

Operands b c
8.

Operators - (- log (

Figure A.l: Detailed procedure for tlie extraction of tlie AST ont of the textual
string a = b* {c~ log(83)) + 5 using the sliunting yard algorithm

A.2. MUTUAL CLASS INCLUSION 323

6 Operator is parsed and pushed onto the OperatorStack

7 Operator ”log"’ is parsed and pushed onto the OperatorStack

8 Operator ”(” is parsed and pushed onto the OperatorStack

9 Operand ”83” is parsed and pushed onto the OperandStack

10 Operator ”)” is parsed and ail the operators are popped ofï the Opera­
torStack until a ”(” is found. As ”(” is at the top of the stack, it is only
popped ofF and nothing else is done.

11 Operand ”)” is parsed:
(a) Operator ”log” (unary operation) is popped off the OperatorStack,

operand ”83” is popped ofî the OperandStack and the resulting operand
tl — log(83) is created and pushed back onto the OperandStack

(b) Operator ”-” is popped ofF the OperatorStack while operands ”tl”
and ”c” are popped ofF the OperandStack and the resulting operand
t2 = c — log 83 is pushed back onto the OperandStack

Finally the création oF operands ends with ”(” being popped ofF the Op-
eratorStack.

12 Operator ”+” is parsed, its precedence is compared to the one oF operator
on top oF the OperatorStack: because it is smaller, it means that

operator has to be executed prier to ”+”. A new operand t'i — b* t2
is created and pushed onto the OperandStack.

13 Operand ”5” is parsed and pushed onto the OperatorStack

14 There is no element to parse anymore From the expression string: ail re-
maining operators are popped ofF OperatorStack. Operand t4 = t3 + 5
is created and pushed onto the OperandStack. As we can see, the Oper­
atorStack is empty as it should be and the OperandStack only contains
the destination operand (thereFore renamed with the operand destination
name a memorized at the beginning of the algorithm).

A.2 Mutual class inclusion

Many times during our C++ implémentation we hâve run into the same com-
piling problem related to mutual class inclusion. To overcome once and for ail
this récurrent and naughty issue that prevents the compiling from succeeding,
we présent here a systematic solution to solve it.
This particular problem occurs when two classes defîne mutually dépendent
instances of the other class in their attributes. The code sample of List.A.1
illustrâtes this particular issue. Two classes A and B are definexl: A contains an
instance of class B and B an instance of A. In a classical way, one would tend
to include the header file définition of class A (B) inside class B (A) so that
they know about each other (line 2 and 19 of List.A.1). However this will cause
the compilation to fail because the compiler will start reading Class-A.hpp (line

324 APPENDIX A. A COMPLEMENT TO YETI IMPLEMENTATION

Class A Class A

()
Class B Class B

Figure A.2: Graph représentation of a mutual inclusion class problem

2), jump to Class^B.kpp définition (line 19), jump to Class-A.hpp and so on
until it gives up. The problem is that we hâve created a deadlock due to the
mutual dependence of classes A and B: A requires B to be completely defined
before going on but B also requires A to be completely defined before going on.
If we represent this dependence between classes as a loop, the solution simply
consista in breaking this cycle so that one of the two classes can be entirely
defined before the other one. To do so, we modify ClassJ^.hpp by replacing
line 2 by a prototype of the class B (see List.A.2). This mechanism provides
the compiler with a temporary définition of class B so that it can proceed with
the compiling process of class A and afterwards finish the compilation of class
B: the reference to the temporary class B is finally overwritten with the new
définition during linking.
Since the solution to the mutual class inclusion issue is to find a way to break
the mutual class dependence, it can be represented using a graph where nodes
are classes and edges represent the dependences: solving our problem then
just consists in breaking graph cycles (Fig.A.2). If the graph transposition can
seem a bit complex to solve a problem with so few classes, it cornes at hand for
multiple class dependences where complexity becomes quickly overwhelming.
In a funny but ironie way, we already solved that cycle détection problem
using our previous behaviour hypergraph exploration algorithm (see Sec.2.■'3.3)
... however our algorithm was not usable yet because we precisely needed to
answer the mutual class inclusion problem to get YETi^ compiled. The UML
class diagram of the whole framework (see Fig.2.(i.l) shows a lot a mutually
referring classes: hence we had to graph ail the classes and manually break the
cycles to get our framework compiling.
An alternative method to graph cycle breaking is incrémental compiling. This
method, somewhat more brutal but paradoxically very subtle, can be combined
to the previous one when graph complexity becomes too overwhelming. It
simply consists in commenting the mutually referring part of the code of one
of the class that triggers a mutual inclusion problem: since the dependence
is broken (actually hidden inside the comments) the compiler and the linker
get the work done properly. Afterw'ards we release the previously commented
portion of the code, recompile the entire code ... and it works! This can be
explained through the fact that only modified classes need to be recompiled
while the others hâve already been linked hence their methods/attributes are
already part of the symbol table. This incrémental compiling technique may

A, 2. MUTUAL CL ASS IN CL USION 325

Listing A.l: Essai
1 //Définition of " Class-A . hpp”
2 #include ” Class.B. hpp”
3 class A
4 {
5 public :
6 A(B* _myB);
7 private:
8 B* myB;
9 };

10
11 //Définition of " Class-A . cpp”
12 #include ” Class-A. hpp”
13 A : : A(B* -myB)
14 {
15 myB — _myB;
16 }
17
18 //Définition of ”Class-B . hpp”
19 #include ” Class_A, hpp”
20 class 6
21 {
22 public:
23 B (A* _myA) ;
24 private:
25 A* myA ;
26 };
27
28 //Définition of ''Class-B . cpp"
29 #include ”B.hpp”
30 B::B(A» _myA)
31 {
32 myA — _mvA ;
33 }

seem a bit magic but works perfectly when the previous method gives up.

326 APPENDIX A. A COMPLEMENT TO YETI IMPLEMENTATION

Listing A.2: Essai
1 //Définition oj " Class-A . hpp’’
2 class B;
3 class A
4 {
5 public :
6 A(B* _myB);
7 private:
8 B* myB;

Appendix B

XML for Nessie/Yeti data
support

B.l Some insight into XML

B. 1.1 Introduction

XML (eXtended Markup Language) is a W3C standard defining a generic
syntax used to mark up data with simple, human readable tags. Usually
assodated with web technologies, XML is also a powerful language for anyone
wanting to define its own file structure to manipulate data. An example of
XML document is shown in List.B.l representing a simple behaviour élément
containing two empty relations élément with their own attribute.
In the context or our work, XML offers a lot of advantages compared to user-
defined file structures:

• Standard interfaces (namely SAX and DOM) hâve been defined for object-
oriented languages to manipulate XML documents easily and extract data
from the structure.

• XML grammar is completely independent of the C++ framework so that
we can easily verify the validity of a document using an extemal validating
parser

• Since it is a standard, many useful surrounding technologies hâve been
defined and many tools are available to manipulate and croate XML based
content

• Turning XML files into browsable content is very easy and offers very
promising opportunities for the possible perspective of building an online
model repository.

The main drawback of using XML is the size of the resulting documents. Pro-
ducing human-readable documents implies a lot of structural information to
establish a clear data structure hence a lot of unnecessary and redondant infor­
mation. So in ternis of memory occupancy, XML documents score very poorly

327

328 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

Listing B.l: Example of an XML code containing one behaviour element and two
nested relation éléments with their name attribute

1 <behaviour>
2 <relation name=” Rel 1 ”X/re 1 at ion>
3 <relation name=” Rel2 ” \>
4 </behaviour>

compared to raw data files which can become a problena when the amount of
information increases.
There are many XML related technologies and describing them in details would
be a Waste of time: for the purpose of our talk we will only introduce the very
essential notions that will be used through this work:

• XPath is a language able to select parts of an existing XML document by
performing searches on the tag structure and the contained data. In other
words this is very similar to querjdng the document (like in a database)
and particularly useful to sort or extract data from large documents.

• Xinclude is a technology recently developed by the W3C to combine dif­
ferent independently valid documents to form a new valid file. This is
especially useful when we hâve different existing documents whose con­
tent must be included into another XML file: it avoids to unnecessarily
duplicate document parts hence to maintain data consistency.

XML document vérification

If XML enables the spécification of almost any type of data, some vérification
mechanisms are obviously required to track structural and content errors.
Two types of vérifications hâve been set up to respectively check the syntax
and the semantic of an XML instance:

• First a document Ls said to be well-formed if the structure respects a few
constraints (ail data hâve to be put inside tags, no closing tag is allowed
if it isn’t preceded by its corresponding opening tag, nested tags must
be ordered properly, etc.). This first syntaxic vérification is performed to
check whether or not the file is an XML document regardless of its data.

• Second the semantic of the XML file is verified to make sure that the
document is valid against a defined grammar. The data types, éléments
occurrence and number, attributes number are verified to guarantee that
the document has a meaning as intended by the grammar.

There are many different technologies to describe the grammar of an XML
document: we only considered the two W3C standards to guarantee as far as
possible tool compatibility.

• DTD (Document Type Définition) is the first W3C standard grammar. It
has the particularity to be very concise allowing to specify in a few Unes

B. 1. SOME INSIGHT INTO XML 329

the structure of a document at the expense of being very cryptic. Since
DTD’s are quite old now, they suffer from a lot of limitations: very few
possible constraints on data (no value énumération, no predefined types)
and no element occurrence restrictions.

• Schéma is the most recent W3C standard grammar developed to cope
with ail the limitations of DTD’s. While extending the data and struc­
ture constraints capabilities, XML schéma is niuch more strict and deal
with the lack of DTD expressivity. However, schémas pay their price for
extended functionalities by being much more verbous and complex than
DTD’s especially because a schéma is in itself a valid XML document.

We finally chose schémas rather than DTD’s for their enhanced grammar spéc­
ification capabilities particularly regarding the data constraints. To simplify
the implémentation of the schéma, we used XML Oxygen 8.0 that provides the
programmer with a graphical environment to build its schéma’s along with a
lot of other available XML technologies.

B. 1.2 Implémentation

Once the schémas hâve been defined and XML files instantiated, we hâve to
couvert the contained information into C-I--I- classes to make it usable inside
our framework and produce afterwards XML resuit files.

Reading an XML file

To read the information from the files, the best solution is to take profit of the
standard API interfaces named DOM3 and SAX2:

• DOM parses the whole document and completely stores it in the memory:
when tins is donc, the user can invoke methods to extract the desired data
out of it by querying the memorized structure.

• SAX Works very differently: it parses the document step by step and
each time an XML related entity is identified (opening tag, attribute,
closing tag etc.) an event occurs calling the corresponding method. The
programmer has just to implement what has to be donc when such a
method is invoked.

DOM is probably easier to use but introduces a certain memory overhead
(that can be as big as the document itself) while SAX consumes very low
memory. Since we hâve to parse the complété document, SAX becomes the
obvions choice. It is however important to note that depending on the object
structure, the order of appearance of each XML element or complex type may
greatly complicate the programmer’s task forcing him to store important parts
of the XML file if some further information are required in order to build
the objects. Hence the order of tag appearance has been chosen to simplify

330 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

the programming while keeping it simple for tlie user to enter the XML file
information.
XML schémas are parsed thanks to the XercesC 2.7 API [1] using SAX2 to
extract data. Despite being one of the widest spread and most complété XML
parser for C++, Xerces does not implement ail XML features and technolo­
gies^ . For instance, Xinclude which enables easy data inclusion from one XML
document into another one is currently not supported. This feature is however
particularly well adapted to our purpose: Yeti relations might be defined in
separate documents and a behaviour could then just consist in an énumération
of XML documents containing relations. Apart from making behaviour build­
ing much more easy than relation eut and paste operations it further avoids
redundancy of information and potential errors. To cope with that lack, we
hâve implemented our own Xinclude processor thanks to a simple Perl script
that replaces ail occurrences of Xinclude tags by their linked XML file content
while preserving the validity of the resulting file.

Creating an XML document

XML documents an be created in two different in the context of Yeti and
Nessie: either manually (input files for the program) or automatically (as a
resuit of the model estimation).
Creating documents manually may quickly become boring for the user due to
the complex structure that may be needed to support the data. A nice way to
solve this problem is to use an XML editor that guides the user when building
the document thanks to the schéma définition (embedded feature in XML
Oxygen). For a new document, the editor automatically inserts the minimal
tag structure required to hâve a valid document and leaves the user with the
only task of entering the data. To complété the document by adding éléments
where it’s necessary, the editor proposes interactive choices to the user and
then performs auto-complet ion of the structure. With such a tool, the user
doesn’t need to enter any single character related to the structure and only
fills in the document with useful data while respecting the grammar since it is
added by the editor itself.
Creating documents automatically (using C++ in our case) has to be done us­
ing string manipulation because, contrarily to document reading, no standard
API has been defined to do that. Anj^vay this task remains much more simple
than the XML file reading operation even with the help of SAX2 and DOM3
dedicated APPs.

' At the time we programmed Yeti, only the 2.7 XercesC version Wcis available but, with the very recent
release of the 3.0 version, sonie new XML technologies hâve been introduced inside the hbr;uy.

B. 2. YETISCHEMA’S 331

B.2 Yeti schema’s

Introduction

Each élément/attriubute meaning and content are explained and eventual re­
strictions on data are presented. We refer to éléments and attributes us-
ing the standard Xpath language with a path relative to the root element
of the schéma file. Ail the éléments are included into the same namespace
http://heams.ulb.ac.be/avdbiest using the prefix yeti in schema’s. Besides the
path of the element and its description, we also provide information about the
tjqje since we defined a lot of types for our own usage that may sometimes
be very paiticular. To guarantee the validity of the document, we made an
extensive use of xs:key, xs:unique and xs:keyref éléments when it was possi­
ble. However to supply for the limitations of the schema’s data constraints
mechanism, we need to difîer part of the vérification until parsing at run-time.
That’s why we clearly define during element description which data constraints
violations will trigger run-time errors or schéma validation errors.

B.2.1 Schema’s organization

In this section, we describe the different schema’s to provide the user with
ail the necessary details to understand the input and output XML files used
inside Yeti. In order to simplify the conversion of XML files into Yeti classes,
we wanted to keep our 3-layered hierarchical model représentation inside our
XML schéma description. Therefore we encapsulated each of the Yeti element
(parameter, generic rule, relation, behaviour, etc.) inside a <xs:complex type>
schéma element composed ont of a collection of more simple types (like it it
the case in ejich class). We can afterwards use each XML element by including
its définition (using the <xs:includë>) inside a new schéma to build new and
more complex types. Besides the improved file organization, this mechanism
enables the propagation of the changes made to one schéma to ail the schema’s
that use it so that type consistency is always preserved.
The YETi^ schéma design is described in Fig.B.l^ where each box represents a
schéma defining a particular element type while arrows link a schéma to another
one using it. At the top of the figure we may recognize our three basic model
entities separately modeled in the XML schéma architecture {associationType
approximately corresponds to the generic rule). Let us also notice that only
top schéma files are instantiated types (no "type” at the end of the name)
while ail other schémas contain complex type éléments. That’s because the
<xs:incldue> tag simply copies the content of the referenced file (with some
minor changes in header tags): the included schéma can then be instantiated
in the higher level schéma.

"Uulike UML for object-orient.ed lauguages, schéma don’t hâve a standardized représentation format
thiis the way we are describing the schéma organization Ls of our own and has not to be mistaken for a
stimdard

http://heams.ulb.ac.be/avdbiest

332 APPENDIX B. XML FOR. NESSIE/YETI DATA SUPPORT

constraintlnput.xsd constraintsResuIt.xsd

constraintType.xsd

valueinput.xsd value Resuit.xsd

valueType.xsd

Figure B.l: Schéma orgaiüzation for the Y ETP framework

B.2. YETISCHEMA’S 333

B.2.2 Schema’s description

In the following sections, we describe one by one of the different schémas,
explain their rôle and detail each élément and the meaning of the data that it
contains.

behaviourType.xsd

The behaviour schéma (Fig.B.2) contains ail the useful data’s required to build
a behaviour class. It Ls composed ont the following éléments:

• ./@name {yetimonEmptyString): name of the behaviour

• ./relationList {xs:cornplexType): list of ail the relations présent in the
relation

• ./relationList/relation {xsxomplexType named relationType): descrip­
tion of the content of a relation. A key guarantees the uniqueness of
./relation@name attribute values.

• ./orientationList {xs:cornplexType): contains the list of ail possible orien­
tations for the behaviour

• ./orientationList/orientation [xsicomplex type named orientation Type):
orientation of the behaviour

Figure B.2: Schéma for the behaviour type - behvaviourType.xsd

orientationType.xsd

The orientation related schéma (Fig.B.3) contains ail the information required
to specify the orientation of ail the relations of a given behaviour. YETi^
triggers a run-time error whenever the XML parser cornes across a parame-
ter/relation name that doesn’t exist in the considered behaviour.

• ./@orientationName {yeti:nonErnptyString)-, name of the orientation

• ./inputParameter {yetimonEniptyString): the set of ail these éléments
represent ail the input parameters of the current behaviour orientation

334 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

• ./outputParanieter {yeti:nonEmptyString)-. the set of ail these éléments
represent ail the output parameters of the current behaviour orientation

• The sequences of ,/relationName {yeti:nonEmptyString) and ./oriented-
Parameter {yetiinonEniptyString) éléments define for each relation (rela-
tionName) the corresponding parameter (orientedParameter) that it will
be associated with for the current orientation.

Figure B.3: Schéma for the orientation type - orientationType.xsd

r elat ionTyp e.xsd

The relation schéma (Fig.B.4) describes the structure of a relation and provides
the support for different types of generic rules. A relation is composée! out of
the following éléments:

• ./@name {yetimonEmptyString): name of the relation
• ./content/parameterList {xs:complexType) : list of ail the extemal param­

eters of the relation (except the constant parameters which may absolutely
not be referred in that list, see Sec.2..5.1).

• ./content/parameterList/parameter {yetimonEmptyString): name of the
parameter

• ./content/association {xs:complexType named associationType): defines
the possible associations for the previously defined parameters. At least
one association must be defined (otherwise the relation would not be ex­
écutable) and the maximum number of possible associations equals the
number of defined parameters (since each parameter can be associated
with only one single generic rule). YETi^ triggers a run-time error when-
ever the XML parser cornes across a parameter name that doesn’t exist
in the considered relation.

associationType.xsd

The association schéma (Fig.B..5) defines the association for one parameter and
enables a kind of inheritance mechanism allowing the user to mix heterogeneous

B.2. YETISCHEMA’S 335

^—I association [b

—i @ name ij
1

'•—i i@ Mcp;//www.w3.org/XML/l998/namespace

;ron-i. f€t.il--ori'i'ypé.jisd

Figure B.4: Schéma for the relation type - relationType.xsd

generic rules inside the same relation.

• ./associatedParameter {yetùnonEmptyString): name of the parameter.
YETi^ triggers a run-time error whenever the XML parser cornes across
a parameter name that doesn’t exist in the considered relation.

• The association points towards a generic rule that may either be an an-
alytical rule (element ./analyticalRule) or a table-based rule (element
./tableRule).

Figure B.5: Schéma for the association type - associationType.xsd

analyticalRuleType.xsci

The schéma (Fig.B.fi) related to analytical rules spécifiés ail the information
required to build them based either on a simple textual string capturing a
closed-formed expression or on a collection of basic operations fomring together
the final analytical rule. •

• ./collection [xs:œmplexType) defines a collection of basic analytical élé­
ments that can be gathered to form the complété analytical rule.

• ./collection/analyticalElement {xs:cornplexType) describes basic operation
éléments (see Sec.A.1.2) forming a tree and may contain either:

type. asaciCialionType frotr:; rgiatiQnType.xsd

http://www.w3.org/XML/l998/namespace

336 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

1 A single root parameter (./collection/rootParameter) in case of a leaf
parameter

2 A unary operation is represented by a root parameter, one sub-
parameter (./collection/subParameter) and one unary operation Sym­
bol element (./collection/unarySymbol). This unarySymbol élément
is a string (yetiamaryOperationSymbolType) restricted to the ”log”
(logarithm operation) and (opposite operation) values so that any
other value will trigger an XML validation error.

3 A binary operation is represented by a root parameter, two sub-
parameters (./collection/subParameterl and ./collection/subParam-
eter2) and one binary operation Symbol operation (./collectiou/bina-
rySymbol).
This binarySymbol element is a string (yeti:binaryOperationS>-mbolType)
restricted to the ”/” and (power operation) values .
so that any other value will trigger an XML validation error.

• ./expression {yetimonEmptyString) defines a textual expression repre-
senting the analytical rule. Although XML schéma features regular ex­
pression vérification through the use of facets, it is not of great use in our
case since the expression has a recursive structure: vérification is thus
delayed until run-time.

analyücàJBulèT^

—(□)a----- ------------------- 1 anAlytlcaJEltinent |s I AatAntlytltalDtTOntTyDt^B—I rooiParan>«l«r]B

! [unarySymbol |i

\ tubPatam«(cr i

] &ubPar«m«irrl

-j Ü~^cttKev |b
expreaitofi [P1

Figure B.6: Schéma for the analytical rule type - analyticalRuleType.xsd

tableRuleType.xsd

The schéma (Fig.B.7) related to table rules defines a recursive structure able
to capture the structure of a multi-dimensional table (with a variable number
of dimensions) and its content.

• ./@rootParameter [yetimonEmptyString] contains the name of the out-
put parameter of the table

• ./tableListEntry {xs:complexType) spécifiés ail the information relative to
the input parameters of the table and is composed out of a succession of:

B. 2. YETISCHEMA’S 337

1 ./f'^blelnputParameter {yetimonEmptyString) contains the name of
the input parameter

2 ,/p^^anaeterValue {xs:float) defînes ail the possible input values asso-
ciated with the corresponding input parameter. The table will only
be defined for these values and any attempt to use the table with
input values than the predefined ones will resuit in run-time error
messages.

O ./tableStructure [xs:complexType named tableElementType) is the root
élément for the table structure and sets up the recursive structure by
defining dimension by dimension the table (see Sec.2.5.1 for more details).
It LS composed ont of the following éléments:

1 ./tableStructure/tableParameterName {yetimonEmptyString) contains
the parameter name of the currently defined table dimension

2 ./tableStructure/vàlueList {xs:cornplexType) defines for each value of
the considered parameter the substructure of the table. The value is
defined by the ./tableStructure/valueList/parameterIndex {xs:positiveInteger)
elernent corresponding to the index of the value in the ./tableEn-
try/parameterValue éléments sequence. With each of these values
is associated either a ./tableStructure/valueList/tableValue elernent
{xs:float) if we reached the last table dimension or a ./tableStruc-
ture/valueList/subTable {yeti:tableElementType) if we hâve further
table dimensions to define.

tableTypê^&j—)Bi—| lablelnputPafameterijst |B-i——)b-----1 lableÜstEntry |b-------(Q~)B---- (■■■■JS-i—| tablelnputParamcte"

pafameterValue [b
1..»

] U tablelnputParameterNameUnique^B-i—(~^ ./tabklnputParametef-/tab

^—I tableStructure [
(O tableElementT^e)b-] tableParametcrName [b

^—I va>ueüst~{a—(cf)B------ paramctetlndex |l

subTable S)

tableValue |a

—i @ rootParameter -B

Figure B.7: Schéma for the table type - tableType.xsd

valueType.xsd

This schéma (Fig.B.S) defines the input values associated with a parameter
using either lists, sweeps or single values:

338 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

• ./©pararneterName {yetimonEmptyStrmg) contains tlie nanie of the pa-
rameter for which input values are defined

• ./single {xs:float) defines a single float value for the parameter

• ./sweep [xsicomplexType] complex type contains three different float {xs:float)
called start (./sweep/start), step (./sweep/step) and stop (./sweep/stop).
yETi^ will automatically generate based on these éléments a list of val­
ues starting from value start till value stop with an incrémental step (if
the différence between the next to last value and the stop value is smaller
than the step, the last value is assigned with the stop value).

• ./list {xsxomplexType) element contains a list of ./list/item [xs:fîoat) él­
éments, each one defining a float value.

schemâï B------(□ valueType)B single |B

sweep],a—(: start-------
stop

item

1..0O

(H) parameterName

Figure B.8: Schéma for the value type - valueType.xsd

constraintsType.xsd

This schéma (Fig.B.9) defines the input constraints associated with a param­
eter. Apart from the ./©parameterName {yeti:nonEmptyString) element, the
constraints type contains the lower (./lowerBound) and upper (./upperBound)
floating values bounds.

Figure B.9: Schéma for the constraints type - constraintsType.xsd

B.2. YETISCHEMA’S 339

valueinput .xsd

This schéma (Fig.B.10) defines one element (./inputSet) containing a list of
input values (./inputSet/values defined by yeti:valueType) for the ./input-
Set/@behaviourName element.

schéma [Eh inputSet
&]

; r>on£mptyStriiig :
http://beams.ulb.ac.be/avdbie5t ; @ behavtourName :

valueType
values

1..00

Figure B.10: Schéma for the vîJue input - valueinput.xsd

constraintsinput.xsd

This schéma (Fig.B.11) defines one element (./inputSet) containing a list of
input constraints (./inputSet/constraints defined by yetixonstraintsType) for
the ./inputSet/@behaviourName element.

schéma |eh inputSet
http.//beams.ulb.acbe/avdbie&t

Figiore B.ll: Schéma for the constraint rnput - constraintsinput.xsd

yetiScripting.xsd

This schéma (Fig.B.12) defines the script structure of ail the macro possible
operations that can be carried out using YETi^. The schéma is composed out
of a sequence the following éléments: •

• ./behaviourBuidling {complexType named behaviourBuildingType) builds
a behaviour defined in file ./behaviourBuilding/@inputFile

• ./orientationChange {œmplexType named orientationChangeType) changes
the orientation (based on input file ./orientationChange/@inputFile) of
the previously built behaviour

• ./valuesimulation {complexType named valueSimulationType) triggers a
value simulation based on the input file ./valueSimualtion/@inputFile and
stores the resuit into the output file ./valueSimulation/@outputFile.

• ./constraintsSimulation {complexType named constraintsSimulationType)
triggers a constraints simulation based on the input file ./constraintsSimu-

http://beams.ulb.ac.be/avdbie5t

340 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

lation/OinputFile and stores the resuit into the output file ./constraintsSim-
ulation/QoutputFile.

• ./orientationSearch {complexType named orientationSearchType) launches
a search based on the input file ./orientationSearch/@inputFile and stores
the resuit as a sériés of valid orientationType éléments in the output file
. / orientationSearch / @outputFile.

Figure B.12: Schéma for the scripting input - yetiScripting.xsd

B.3 NESSIE schema’s

B.3.1 Schema’s organization

This section is dedicated to the description of the different XML schémas used
for the représentation of the input/output data inside our framework Nessie.
This part of the dissertation should be used as a reference guide for the user
wanting to understand the XML schéma structure and the meaning of each
element composing it: we really advise anyone interested in using Nessie to
make a careful and thorough reading of this chapter.
The global architecture of Nessie XML schémas is pictured in Fig.B.13. Each
schéma is represented as a box filled with the corresponding file name while
the arrows represent a dependence between two files. The prefix nessie defines
the namespace ”http://beams.ulb.ac.be/avdbiest” used for ail the schémas of
Nessie and their exported complex types.

B.3.2 Schema’s description

In the following sections, we describe one by one of the different schémas,
explain their rôle and detail each element and the meaning of the data that it

http://beams.ulb.ac.be/avdbiest%E2%80%9D

B.3. MESSIE SCHEMA’S 341

Figure B.13: Orgaiiizatiou and depeiidence of XML schémas iiiside Nessie

contains.

customizedTypes .xsd

Th<; cu.stoTnizedHjpes schéma (Fig.B.l l) gathers different simple types ext,erid-
ing jjredefined XML types. We rnay mention that tins schéma is widely used
in ail the othcr prescnted schémas of Fig.13.13 so that we intentionally omitted
the arrows going to the different other schémas for the sake of clarity. The
different tjqies defined within our présent schéma are the following:

• nonEmptyString (base type is xs:striny) restricts the possible vaines of
tins type to strings containing at least one élément. Althoiigh it may
seem a very simple and apparently useless restriction, it offers the benefit
of generating enors during validation when a string élément is left empty
in an XML document: this Ls always a precious vérification for distracted
uscis.

• positiveinteger (base type is xsrinteger) restricts the integer type possible
values to positive, (including zéro) values. This type is mostly used for
the identifiers of the different éléments used in the other schémas.

• xmlFileType (base type is xs:stTin(j) limits the basis type possible values
to strings with a non-empty prefix followed by the ".xml” extension. The
prefix is restricted to the concaténation of literal cliaracters and numbers
that may be sepmated by the symbol to define the file path of the

342 APPENDIX B. XML FOR MESSIE/YETI DATA SUPPORT

XML file.

schéma nonEmptyStrin9)&

-<E positivelntege^B-

''—([Z xmlFileType^B-----

------ (D><1 restricts: xs:string)j3

—(iXI restficts: xs:integer)j3

{ restricts: xs:string)j3

Figure B.14: Schéma for the custom types for Nessie - customizedTypes.xsd

nessieSimulationType.xsd

The nessieSimulationType schéma (Fig.B.1-5) is the top level XML file used to
initialize a performance estimation run in Nessie:

• ./criteriaList {xs:complexType): list of ail the criteria that need to be
estimated for this simulation

• ./SWdescription {xs:complexType): description of the functional System
part composed ont of a SWhierarcliy élément {nessie:SWhierarchyType)
defining the functional hierarchy and a list of functional structures [nessie:SWstractureType)
each one associated with a particular functional primitive

• ./HWdescription {xs:complexType)\ description of the platform System
part composed ont of a HWhieraTchy element [nessie:HWhierarchyType)
defining the functional hierarchy and a list of platform structures
{nessie:HWstructureType) each one associated with a particular platform
primitive

• ./DOF {xs:complexType): contains ail the degrees of freedom of the car­
rent simulation run.

(□yhessiéSirnulationTyp^B------ criteriaList |b------(□)b------(• • ■ •)b------ criterion

SWdescription J3------Cd^B------(»-»-»-•)jB|^ SWhierarchy

SWstructuresList

HWdescription |B-----(P)j3------- (» * » *^B-|— HWhierarchy |b

G HWstructuresList B

DOF B

Figure B.15: Schéma for the Nessie simulation type - nessieSimulationType.xsd

B.3. MESSIE SCHEMA’S 343

criterionType.xsd

The criterionType schéma (Fig.B.16) defines a criterion by its name, its de-
pendence over time and over the platform:

• ./@name [nessie:nonEmptyString)\ name of the criteria restricted to a
non-empty string value

• . /©timeDependent (nessie:timeDepence Type simple string-based type with
value restriction): defines the time dependence of this criterion by a string
whose value is restricted to none, maximum, integrate and additive. Any
other attribute value will trigger a validation error.

• ./@combinationRule {nessiedimeDepenceType simple string-based type
with value restriction): defines how the values of this criterion are com-
bined over different platform blocks by a string whose value is restricted
to additiveRule and maxBule. Any other attribute value will trigger a
validation error.

Figure B.16: Schéma for the criterion type - criterionType.xsd

SWhierarcahyType.xsd

The SWhierarchyType schéma (Fig.B.17 defines the hierarchy from the func-
tional point of view by listing for each abstraction level the different associated
functional primitives. The different éléments are the following:

• ./abstractionLevel {xs:complexType): defines an abstraction level by an
identifier {©abstractionLevel) of simple type xsnnteger and by its differ­
ent functional primitives (./abstractionLevel/SWsubTypes). Since each
identifier must be unique and hâve an incrémental value starting from 0,
the framework performs a run-time vérification and triggers an error if
this condition is violated.

344 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

• ./abstractionLevel/SWsubTypes {xs:cornplexType iiained SWtype): col­
lection of ail the functional primitives defined within the current abstrac­
tion level.

(□ SWhierarchyTypë^B------

Figure B.17: Schéma for the functional hierarchy type - SWhierarchyType.xsd

SWtype.xsd

The SWtype schéma (Fig.B.18) defines a functional primitive and is composed
out of the following éléments;

• {nessie:positiveInteger): identifier ofthe functional primitive unique
among each functional abstraction level

• ./SWparameterList {xs:complexType)-. list of ail the functional parame-
ters used in the Yeti models for performance criteria.

• ./SWparameterList/SWparameter {xs:complexType): functional parame-
ters are defined by a nonEmptyString simple type representing the name
of the parameter that is extended by a boolean value attribute (QlocalPa-
rameter) defining if this parameter value will only yield for this particular
functional primitive or will be used for ail functional parameters with the
same name whatever the primitive and abstraction level.

• ./dataOut {nessie:positiveInteger): size of the data resulting from the
operation represented by this functional primitive

(□ SWtype)b- B------(□)s------ (*-*-»-«)b------ SWparameter

0,.

-i @ ID iB

Figure B.18: Schéma for the functional primitive type - SWtype.xsd

SWstructureType.xsd

The SWstructureType schéma (Fig.B. 19) defines a functional structure at a
particular abstraction level for a given functional primitive. The complex type

B.3. MESSIE SCHEMA’S 345

SWstriictureType begins with a xs:choice element to allow the sélection the
model of computation that will be used for this functional structure (at the
moment, only pétri networks are available). The different éléments composing
the schéma are the following:

O ./@SWtypeID [nessie:positiveInteger)\ the functional primitive identifier
for which the functional structure is defined

• ./@abstractionLevel {nessie:positiveInteger): the abstraction level of the
functional primitive ./@SWtypeID for which the functional structure is
defined

• ./petriNetwork {xs:complexType): element describing a complété pétri
network based on a netList and transitionsList element.

• ./petriNetwork/netList {xs:complexType): contains ail the places of the
pétri network that can either be a normal petriNet or a dummyPetriNet
type.

• ./petriNetwork/netList/petriNet {xs:complexType): a place of the pétri
network

• ./petriNetwork/netList/dumniyPetriNet (xstcomplexType): adummynode
that simply forwards the token from its input to its output

• .//@ID {nessie:positiveInteger): defines the identifier of a place and guar-
antees its uniqueness thanks to a key relative to it. Additionally Nessie
will check during object building if ail identifiers hâve succeeding values
starting from 0: if not fulfilled, this condition will trigger a run-time error.

• ./petriNetwork/netList/petriNet/@type {nessie:positiveInteger)\ defines
the functional primitive identifier which the place refers to at tlie imrne-
diately lower abstraction level

• ./petriNetwork/transitionList [xs:complexType)-. defines ail the transi­
tions used in the pétri network and linking the places. We may also
mention that there is a unique element {transitionUnique) guaranteeing
the uniqueness of the identifiers of the different transitions and that Nessie
checks the identifier value succession at run-time as for the places. Ad­
ditionally the key defined on the places {petriNetsIDkey) is used as a
reference for a keyref element {ouputPetriNetlDkeyref) to guarantee that
each place identifier used in the transitions actually refers to an existing
place identifier. This mechanism maintains consistency between the place
and transition définition and prevents the using from making référencés
to undefined places in any transition.

O ./petriNetwork/transitionList/stratingTransition {nessie:transitionType):
defines the starting transition for where output places will be triggered
once the pétri network Ls initialized. Using this particular transition,
we define the initial token marking: this element is thus required in the
schéma whatever the number of transitions

346 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

• ./petriNetwork/transitionList/transition {nessie:transitionType)\ defiiies
ail the transitions except the starting transition.

transitionType.xsd

The transitionType (see Fig.B.20) defines a transition linking places in a pétri
network and is composed ont of the following attributes and éléments:

• ./@transitionID {nessie:positiveInteger): transition identifier with a unique
value within the pétri network (uniqueness checked at the pétri newtork
level see B.3.2).

• ./inputPlaceList {xs:complexType): list of ail the input places
• ./outputPlaceList {xs:complexType): list of ail the output places
• ./inputPlace {xs:complexType)\ defines one input place linked to the tran­

sition
• ./outputPlace {xs:œmplexType): defines one output place linked to the

transition
• .//@placeID [nessie:positiveInteger): identifier of the input/output place

used in the transition. The identifier value is checked by the XML parser
to verify if it corresponds to an existing place defined in the network.

• .//@numberOfTokens {nessie:positiveInteger): number of tokens recpired
in an input place to fulfill the transition condition or number of tokens
generated to an output place after transition firing

H WhierarcahyTyp e. xsd

The HWhierarchyType schéma (Fig.B.21 defines the hierarchy from the plat-
form point of view by listing for each abstraction level the different associated
platform primitives. The different éléments are the following:

• ./abstractionLevel {xs:coniplexType): defines an abstraction level by an
identifier (©abstractionLevel) of simple type xs:integer and by its dif­
ferent platform primitives (./abstractionLevel/SWsubTypes). Since each
identifier must be unique and hâve an incrémental value starting from 0,
Nessie performs a run-time vérification to trigger an error if this condition
is violated.

• ./abstractionLevel/HWsubTypes {xs:complexType named HWtype): col­
lection of ail the platform primitives defined within the current abstraction
level.

HWtype.xsd

The HWtype schéma (Fig.B.23) defines a functional primitive and is composed
out of the following éléments:

[;□ SWstnîctureTypé^B
'®r

petriNetwork 0- -(D)b~(^I3 I petriNet [b------)Bt—: @ ID -B
---------------- i 1

< @ type

dummyPgtriNct~|B------(^~)b------ i @ ID

I iransitionsList]b------ (^D^B------—[transition

0..«

I stanIngTransition B

petriNetsIDkcÿ^Eh—.//pgtfiNct|.//dummyPetriNet^

B @1D 1

—1|§^ outpuiPetnNeilDkevref->rel:petriNetslDkey]eh—.//inputPlace|.//outputPlace^

Q @place(D I

^ peirlNetstDkey IBh—(-^ .//pculNet|.//dummyPecrîNei)}____________^ O
B I

j U transitionUnique |lEh|—.//transition|.//staftingTransitio^j

—I B @transitionlD^

I abstractionLevel

—i @ SWlypelD js

Figure B.19: Schéma for the functional structure type - SWstructure.xsd

B.3.
N

ESSIE SC
H

EM
A

’S
347

348 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

(□ trâhslttonType)B-|—(■ • ■ Eh—| inputHaceList |b------(□)b------■ ")b------------[inputPIace \b----- —i @ placelD jB
[,.T....................... .
'—! @ numberOfTokens :B

•..-I

outputPlaceLis!"{B-- 1 outputPIace |b——(^D*)b-|—i @ placelO ÎŒ
0..OO t

—j @ numberOfTokens

: @ transitionlD

Figure B.20: Schéma for the functional primitive type - SWtype.xsd

(□ HWhjèrarchyty ------ abstractionLevel
1..00

HWsubTypes
1..0O

i @ abstractionLevelNumber ;0

Figure B.21: Schéma for the platform hierarchy type - HWhierarchyType xsd

• {nessie:positiveInteger): identifier of the platform primitive unique
among each platform abstraction level

• ./HWparameterList {xsicomplexType) : list of ail the platform parameters
used in the Yeti models for performance criteria.

• ./HWparameterList/HWparameter {xs:complexType): a platform param-
eter is defined by a nonEmptyString simple type representing the name
of the parameter and extended by a boolean value attribute {©localPa-
rameter) defining if this parameter value will only yield for this particular
platform primitive or will be used for ail platform parameters with the
same name whatever the primitive and abstraction level.

• ./models {xs:complexType)\ contains ail the models used for performance
criteria estimation of the core States, the port states and for the different
computation states associated to each compatible functional primitive.

• ./models/coreStateList {xs:complexType): list of ail the core State models
associated to the platform primitive

• ./models/coreStateList/coreStateModel {xs:complexType): this element
defines the performance model for one particular core state and is com-
posed ont of two different éléments:

— A behaviour element {nessie:xmlFüeType) defining the XML file name
that describes the Yeti model characterizing the performance criteria.
This element is optional since some states could remain undefined (for
instance memorizing or transmitting states) meaning that a platform
block based on this primitive could not enter this state and therefore
be unable to provide the associated service. Nessie will verify during

B.3. NESSIE SCHEMA’S 349

the object building phase if the mandatory States are defined and
trigger a run-time error otherwise.

— The coreState attribute defines the name of the State which the model
is associated with. The type of this attribute is nessie:coreStateType
restricting the string simple type to the ”idle”, ”sleeping”, ”memo-
ri/ing” and "transmitting” values.

To guarantee that each core State will be defined once and only once,
we hâve set an occurrence constraint equals to 4 on the coreStateModel
element combined to a unique élément constraint on ©coreState to avoid
the définition of core States with similar names. The combination of those
two constraints together with the définition of the restricted coreStateType
involves that exactly four different core States with their exact names will
be required for the document to be valid.

• ./models/compatibleSWlLst {xsxomplexType): list of the computing States
associated with ail the functional primitives compatible with the current
platfonii primitive

• ./models/compatibleSWlLst/computingModel {xs:complexType): perfor­
mance model defined by the behaviour element [nessie:xmlFileType) for
the associated functional primitive with identifier @ID defined at the same
abstraction level as the current platform primitive

• ./models/IOstateModeLsList {xs:cornplexType): ILst of the port State mod-
els associated with the platform primitive

• ./models/IOstateModelsList/IOstateModel {xsxomplexType): this element
defines the performance model for one particular port State and is com-
posed out of a hehavioiir element {nessie:xrnlFileType) and the attribute
©lOstateName with a type {nessie/IOStateType) restricting the string
t>T>e rallie to ”inactive”, "sending” and ”receiving”. Again the unique
element constraint on ©lOstateName and the occurrence constraint on
lOstateModel set to three guarantees that ail the three port States will be
defined once and only once.

• ./models/transitionalTimeTable (xsxomplexType named transitionalTimeTable-
Type): a double entry table to specify the time delay required to jump
from one core State to another.

The nessieitransitionalTimeTableType is defined inside the nessie:HWtype XML
file and not in a separate file like other types usually are. The éléments of this
tjqie are presented in Fig.B.22:

• ./start.State {xsxomplexType): contains the State from where the transi­
tion starts. The ./startState/@coreState attribute is a nessiexoreGeneralStateType
adding "computing” to the list of acceptable strings defined by nessie:-
coreStateType

O ./start.State/endState {xsxomplexType): defines the State to which the
transition ends and is composd out of a float value xs:float defining the

350 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

transitioiial time extended by a @coreState attribute defining the name
of the ending State.

(□ trahsitionalTimeTabreTypë^B-------------------------- startState B-—(□)eh—
0..1 1..0

endState B
J

1..00

@ coreState iB

Figure B.22: Schéma for the platform hierarchy type - HWhierarchyType.xsd

HWstructureType.xsd

The HWstructureType schéma (Fig.B.24) defines a platform structure at a par-
ticular abstraction level for a given platform primitive. The different éléments
composing it are the following:

• ./@HWtypeID [nessie:positiveInteger)-. the platform primitive identifier
for which the platform structure is defined

• ./@abstractionLevel {nessie:positiveInteger): the abstraction level of the
platform primitive ./@HWtypeID for which the platform structure is de­
fined

• ./localizedElements/HWstructure {xs:complexType): contains a descrip­
tion of the platform structure based on a collection of platform blocks
connected by links.

• ./localizedElements/HWstructure/HWblockList {xs:complexType)-. con­
tains the platform blocks {HWblock element) of the platform structure.

• ./localizedElements/HWstructure/HWblockList/HWblock {xsxornplexType):
platform block defined by its two attributes

— @ID {nessie:positiveInteger): identifier of the block inside the plat­
form structure

— @type {nessie:posüiveInteger): represents the platform primitive iden­
tifier at the immediately lower abstraction level.

We also set a key element to guarantee the uniqueness of the identifier
for each platform block.

• ./localizedElementsHWstructure/linkList {xs:œmplexType named linkType):
list of ail the links connecting the platform blocks together

• ./localizedElementsHWstructure/linkList/link {xs:complexType): element
defining a link between two platform blocks and composed out of the fol­
lowing éléments:

— ./localizedElementsHWstructure/linkList/link/source [nessie:positiveInteger)
source block identifier

HWtype^B- —------ 1 HWpafametersUst {b------(P------ 1 HWparameter [b------(P js------ ------------------- (^<lt> extends^ rel:nonEmptyStfing^Ë

models Jtg------ (P)b-----(»*■-•)& —[coreSrareLIsT]B- —(P^B------- B------------------ 1 cofeSîateWodel Jb------ (P)b- —B-*—[

(Tï^

behaviour B

• coreState

U coreStateUniqueTag [Sn—./cofcStateModcl^

Q l^oreState I

[compatibieSwïist |p------(p)j3------ --------------------- 1 compmingModel |b------ ('p^

0..OO
B------ 1 bchavioü7]E)

ID ;b

lOstateModelsList |jEh—------(*-»^)b------ 1 lOstateModel |b------(P)b-

3..3 Hïl^ behaviour B

0..1

@ lOstateName

^1 U lOstateüniqueTag jp-i—./lOstateModeT)̂

P ^OstateName I

transitionalTimeTable BrJj
H @ ID !B

Figure B.23: Schéma for the platform primitive type - HWtype.xsd

B.3.
N

ESSIE SC
H

EM
A

’S
351

352 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

- ./localizedElementsHWstructure/linkList/link/sink {nessie:positiveInteger)
sink block identifier

— ./localizedElementsHWstructure/linkList/link/@bidirectional (xs:boolean):
boolean defining if the link is bidirectional or not. If the link is not
bidirectional, data will only be able to flow from the source to the
sink block.

We hâve defined a reference to the key HWblockIDkey to make sure that
both source and sink éléments relate to existing identifiers: if this con-
straint is not fulfilled the validating parser will trigger an error.

DOFtype.xsd

The DOFtype element (Fig.B.25) defines the different degrees of freedom that
can be specified for a performance estimation run using Nessie. It supports
both the détermination of the different possible values for a Yeti model pa-
rameter and the définition of the different functional and platform possible
structures; the combination of ail these degrees of freedom defines the design
space that can be explored. The different éléments présent in this schéma are
the following;

• ./valueDOF {xs:complexType named valueType): defines, as a degree
of freedom, ail the possible values that the parameter named ./valueD-
OF/@parameterName {nessiemonEmlptyString) can take.

• ./structureDOF [xs:comlexType named structureDOFtype) détermines as
a degree of freedom which functional/platform structure will be used to
explore a particular primitive. It is composed out of different éléments;

— ./structureDOF/@typeOfStructure {nessie:HW-SWstringType)\ de-
fines the nature (functional or platform) of the structure and the
related primitive. This simple type used restricts the string to the
”HW” and ”SW” values.

— ./structureDOF/@abstractionLevel {nessie:positiveInteger): abstrac­
tion level of the primitive for which the structure is defined

— ./structureDOF/@ID {nessie:positiveInteger): identifier of the primi­
tive within the corresponding astraction level for which the structure
is defined

— ./structureDOF/structureChoice {nessie:positiveInteger)-. list of ail
the different possible structures identifiers defining the current prim­
itive

valueType.xsd

The yeti:valueType element has been initially defined inside Yeti (see Sec.B.2.2)
and is reused inside Nessie to define the values of the degrees of fireedom. As

HWstrucriireType^&HJj^bJ"" localIzedCiementsHWstructure B

—\ @ abstracTlonLevel

@ HWtypcib ;Q

-CS),^Q!3 I HWblocVUsi |b----- (O^B----- --------------------1 HWblock |b (Ü^Bl—i @ ID j£... i ^ ï;^ I
—i @ typé

I llntUsl |b----- (O])0-)P—fli^E
0..OO

(□ tlnkType)E

•yoe, linjcType

I HWfalocklDkeyjB|—(-^ .//HWblock)j

0 @ID

HWblocklOkeyRef->fel:HWblocktOkey]s-|—.//&ourte|.//sink)|

B .

•—I sink |b

H @ bidirectional ;S)

[g. HWblockIDktY |Bi—.//HWblock);B|—.//HWb

H B l!

Figure B.24: Schéma for the platforin structure - HWstructureType.xsd

B.3.
M

ESSIE SC
H

EM
A

’S
353

354 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

(□ DOFtype)B------ valueOOF Ël
0..O

structureDOF
0..O

(R. siructureDOFtvpe)B-|—----- 1 struciureChoice |b
l.-OO

typeOfStructure ÎE

-i @ abstractionLevel ;B

-j @ ID ;a

ivrip. str^cîurf^OOi-'vvpe,

Figure B.25: Schéma for the degree of freedom type - DOFtype.xsd

a remainder, the values can be either defined as a single value, picked amorig
a list or generated based on a sweep process.

nessieSchedulingType.xsd

The nessieSchedulingType element (Fig.B.26) contains ail the information rel­
ative to the event creation/triggering involved in the mapping of a functional
structure on a platform structure. This file can be used for scheduling and
timing analysis but also to understand how Nessie proceeds to the different
allocation, scheduling and routing steps. The files generated are generally very
large even for simple simulation due to the large event related activity of the
mapping core: if only performance criteria results are desired, we advise the
user to disable the génération of these scheduling files to reduce Nessie com­
putation time. A nessieSchedulingType element is composed out of several
occurrences of the ./timeStep complex type element containing:

• ./timeStep/@timeStamp {nessie:tinieType): defines the time stamp asso-
ciated with the addition or triggering of events. This type is a restriction
of the xs:float simple type to positive numbers (including zéro) to prohibit
négative times.

• ./timeStep/addEvent [xs:complexType named addEventType): mentions,
at the current time stamp, the création of one event (selected among the
four po&sible types of events) scheduled to be triggered at a time defined
by ./timeStep/addEvent/@timeStamp {nessie:timeType)

• ./timeStep/triggerEvent (xs.-coTnpfe.TTî/pe named triggerEventType): men­
tions the triggering of one event (selected among the four possible types
of events) at the current time stamp

The four different possible events are the following^:

^To avoid long notations, the path describing the different attributes of the event type éléments are
considered as relative to an element instantiating the given event type

B.3. NESSIE SCHEMA’S 355

• The SWdataTokenReceptionExientType is an event related to the réception
of a token at a given port or in the memory of a platform block requiring
thLs token for execution. It is characterized by the following attributes:
- ./@HWblockID {xsmonNegativeInteger): identifier of the platform

block receiving the token
- ./@HWtype {xsmonNegativeInteger): platform primitive from which

the ./©HWblocklD platform block dérivés
- ./@SWblockID {xsmonNegativeInteger): identifier of the functional

block associated with the ,/@HWblockID platform block and waiting
for the token

- ./@SWtype {xsmonNegativeInteger): functional primitive from which
the ./@SWblockID functional block dérivés

- ./QdataTokenlD {xsmonNegativeInteger): identifier of the data token
transmitted to the platform block

- ./@memorized {xsihoolean): boolean indicating if the token is mem-
orized or transmitted to a port of the platform block

- ./@HWblockLinkedToPort {xsmonNegativeInteger): reference to the
platform block connected at the other end of the link that has sent
the token. This information is useful to identify a port by their link
which is more explicit than the identifier port in a token transmission
context

• The HWreleaseEventType is an event related to the release attempt of a
platform block: if ail the required conditions are gathered, the block will
eventually be released. It is characterized by the following attributes:
- ./@HWblockID {xsmonNegativeInteger): identifier of the platform

block being potentially released
- ./@HWtype {xsmonNegativeInteger): platform primitive from which

the ./©HWblocklD platform block dérivés
• The HWstateChangeEventType is an event related to the state change

of a platform block core or port and is characterized by the following
attributes:
- ./@HWblockID {xsmonNegativeInteger): identifier of the platform

block whose state will change
- ./@HWtype {xsmonNegativeInteger): platform primitive from which

the ./@HWblockID platform block dérivés
- ./QnewCoreStateType {nessie:coreStateNarneType: new core state

value of the platform block. This type restricts the string simple type
to ”idle”, "sleeping”, ”memorizing”, "transmitting” and "computing”
values

- ./ïîHWblockLinkedToPort {xsmonNegativeInteger): reference to the
platform block connected at the other end of the link related to the
current port

356 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

— ./portID {xsmonNegativelnteger): identifier of tlie port whose State
is switched

— ./newIOstateType (nessieTOstateNameType): new port State value
of the platform block. This type restricts the string simple type to
"inactive”, "receiving” and "sending”.

It is important to mention that both core and port will not necessarily
switch at the same time: the different attributes are thus optional so that
only the required attributes could appear depending on the part of the
platform which has switched State.

• The dataTokenMemorizationEvent is an event relative to the réception of
a data token in a platform block that is not associated with a functional
block. This means that the platform will thus only be used to store the
data token and deliver it afterwards to another block.

— ./@HWblockID [xsmonNegativelnteger): identifier of the platform
block receiving the data token to memorize

— ./@HWtype [xsmonNegativelnteger): platform primitive from which
the ./©HWblocklD platform block dérivés

— ./@dataTokenID [xsmonNegativelnteger): identifier of the data token
transmitted to the platform block

activity Report Type.xsd

The activityReportType element (see Fig.B.27) represents the results of the
timing analysis of the different blocks platform blocks based on the scheduling
that has been performed. For each port and the core of each platform block,
the absolute and relative time (expressed as a percentage of the a percentage
of the total execution time) spent in each State is computed and reported in
this XML file. This information is very useful to estimate the impact of the
degrees of freedom value changes on the resulting scheduling. The different
éléments composing the activityReportType are the following:

• ./©duration [xsmonNegativeFloat): the period of simulation time sepa-
rating the beginning and the end of the scheduling or in other words the
execution time resulting from the mapping of a given functional structure
on a platform structure

• ./HWblockActivity [xs:complexType): describes the activity for the plat­
form block defined by the identifier ./HWblockActivity/@ID [xsmonNeg­
ativelnteger). The activity is split into two different parts; the core and
the port related activity. •

• ./HWblockActivity/coreActivity [xs:complexType): gathers ail the activ­
ity measures for the different core States

0.. w
I timeStep I

I (□ timeStepTypc^B
I l^n addEvgniTypc^B- —i SWdaiaTokenReceplionEvent js

I HWreleaseEvent El

I HWstateChangeEvent Q

I dataTokenMemorizationEvent El

I tImeStamp

! ip-pe addt-vs;)î1VjM>

—I triggerEvent |
ÇD tflggerEveniTy^ SWdataTokenReceptIonEvent (9

HWreleaseEvent B

HWstateChangeEvent B

datâTokenMemortzationEvent El

! @ CimeStamp |(2]

j tyc».-' *î?nrSrçp-Tv^ptî

Figure B.26: Schéma for the nessie event scheduling - nessieSchedulingType.xsd

B.3.
N

ESSIE SC
H

EM
A

’S

358 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

O ,/HWblockActivity/coreActivity/coreState (xsicomplexType): defines the
activity measures for one particular core. The different éléments compos-
ing it are the following:

— ./@name {nessie/coreStateName)-. defines the name of the core state
(idle, sleeping, transmitting, memorizing, computing)

— ./@relativeTimeOccupation {xs:nonNegativeFloat): total tirne dur-
ing which the platform block has remained in the ./@name state
expressed as a percentage of the execution tinie

— ./®ï^bsoluteTimeOccupation {xsmonNegativeFloat): total time dur-
ing which the platform block has remained in the ./@name state

• ./HWblockActivity/portActivity {xs:complexType): gathers ail the activ­
ity measures for the different port States

• ./HWblockActivity/portActivity/port {xs:complexType): port with iden­
tifier ./HWblockActivity/portActivity/port/@ID {xsmonNegativeInteger)
for which the activity measures are calculated. There is no limitation in
the number of instantiated ports in a block so that the XML schéma
doesn’t put any occurrence constraint on the number of those éléments.

• ./HWblockActivity/portActivity/port/portState {xsxomplexType): de-
fines the activity measures for one particular port. The different éléments
composing it are the following:

— ./@name {nessie/portStateNanie): defines the name of the port State
(inactive, receiving, sending)

— ./@relativeTimeOccupation {xs:nonNegativeFloat)\ total time dur-
ing which the platform block has remained in the ./@name state
expressed as a percentage of the execution time

— ./@relativeTimeOccupation (xsmonNegativeFloat): total time during
which the platform block has remained in the ./@name state

nessieSolutionType.xsd

The nessieSolutionType élément (see Fig.B.28) describes ail the different solu­
tions explored during a performance estimation run: each solution is composed
ont of a list of the estimated performance criteria and a list of the correspond-
ing degrees of freedom values. The schéma is composed out of the following
éléments for the criteria related part:

• ./criteria {xs:complexType): list of ail the performance criteria values enu-
merated for the current solution

• ./criteria/time {xs:nonNegativeFloat)\ value of the execution time for the
current solution. Since time is a cornerstone value for the mapping pro-
cess, this attribute is mandatory and will always be available whatever
the different defined criteria.

CD) HWb.oc>Atll^„ |B— (□ HWbl.Cl.A.,ivll,Typ.) ■j C0fgAftiviï71&i—(*□^0 ■■ ------ 1 cofcStatt |b—(□)B]—| @ |B

-j @ retativeTimeOrcupatlon jQ]

i> absoluteTimeOccupation jB

^—[U coreNameUnlque [e

■PponSlatë~)D (D)e

3,.3
■1—! g) rume |B

—i (i> re^ativeTimeOccupaiion !E)

0 abioIuleTimeOccupation il

U portNameUnique |b

—I U ponIDUnIquc [ffl

i ^ 10 ;b
nOTNegaîlvelmegef)B------(M rescricis: xsimegef)ffl

([7 nonNcgatlvenoâr)B—(ftXI feitrlcts. xs:noat)g)

Figure B.27: Schéma for the activity report - activityReportType.xscl

B. 3.
M

ESSIE SC
H

EM
A

’S
359

360 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

• ./criteria/timeDependetCriteria [xs:complexType): list of ail the tinie dé­
pendent criteria values for the current solution

• ./criteria/timelndependetCriteria {xs:complexType): list of ail the time
independent criteria values for the current solution

• .//criterion {xs:complexType)\ float élément defining the value of the cri-
terion named .//name {xsistring)

• ./DoFs {xstcomplexType): list of ail the degrees of freedom corresponding
to the current solution. This list is composed out of three types of degrees
of freedom respectively associated to the value of one parameter, the
functional structure choice or the platform structure choice.

• ./DoFs/valueDOF {xs:complexType): degree of freedom defining the value
of a Yeti parameter model. It is composed out of the following éléments:

— ./©parameterName {xs:string)-. name of parameter whose value is set
by the current degree of freedom

— ./©value [xs:float). parameter value chosen for this degree of freedom
— ./numberOfPossibleDOFs [xsinonNegativelnteger): number of possi­

ble parameter values for the current degree of freedom
— ./©DOFindex {xs:nonNegativeInteger)\ index of the chosen degree of

freedom within the vector of ail possible degrees of freedom values
• ./DoFS/HWstructureDOF {xs:cornplexType): degree of freedom defining

the structure chosen for a given platform primitive:
— ./©abstractionLevel [xsinonNegativelnteger)-. abstraction level of the

platform primitive for which we choose a structure
— ./©HWtypelD {xs:nonNegativeInteger): identifier of the chosen plat­

form structure
— ./numberOfPossibleDOFs {xsmonNegativeInteger): number of possi­

ble structures associated with the platform primitive for the current
degree of freedom

— ./©DOFindex {xsmonNegativeInteger)-. index of the chosen degree of
freedom within the vector of ail possible degrees of freedom values

• ./DoFS/SWstructureDOF {xs:complexType): degree of freedom defining
the structure chosen for a given functional primitive:

— ./©abstractionLevel [xsmonNegativeInteger): abstraction level of the
functional primitive for which we choose a structure

— ./©SWtjpelD [xsmonNegativeInteger): identifier of the chosen func­
tional structure

— ./numberOfPossibleDOFs [xsmonNegativeInteger): number of possi­
ble structures associated with the functional primitive for the current
degree of freedom

— ./©DOFindex [xsmonNegativeInteger): index of the chosen degree of
freedom within the vector of ail possible degrees of freedom values

(□' nessieSolutionType)B------ criteria 0-

DoFs

0..O

time S

tirriEOependentCriteria B------(□)b------ criterion
0..OO

timeIndependentCriteria B------(^^B------ criterion

0..OO
valueDOF EH @ parameterName ilîl

-i @ value !0
■y..... -I

—; @ OOFindex iia

@ numberOfPossibleDOFs iiîly ■-V...............--i
HWstructurePOF |b------(□)b @ abstractionLevel ;EI

@ HWtypelD iB

—; @ DOFindex iB

@ numberOfPossibleDOFs

SWsiruclurePOF |b------(□)e -i @ abstractionLevel |B

SWtvpelD ;b

—; @ DOFindex ;B

-i @ numberOfPossibleDOFs ;B

Figure B.28: Schéma for the different solutions with the performance criteria and their corresponding degrees of freedom - nessieSolu-
tionType.xsd

B.3.
N

ESSIE SC
H

EM
A

’S
361

362 APPENDIX B. XML FOR NESSIE/YETI DATA SUPPORT

Bibliography

[1] “Xercesc 2.7 parser documentation,” 2007. [Online]. Available: http:
//xnil.api«'lie.org/xerces-c/

