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Résumé

Cette thèse concerne le développement de techniques d’apprentissage (machine learn-
ing) afin de mettre au point de nouveaux outils cliniques basés sur des données molecu-
laires. Nous avons focalisé notre recherche sur le cancer du sein, un des cancers les plus
fréquemment diagnostiqués. Ces outils sont développés dans le but d’aider les médecins
dans leur évaluation du devenir clinique des patients cancéreux (cf. le pronostique).

Les approches traditionnelles d’évaluation du pronostique d’un patient cancéreux se base
sur des critères clinico-pathologiques connus pour être prédictifs de la survie. Cette évaluation
permet aux médecins de décider si un traitement est nécessaire après l’extraction de la
tumeur. Bien que les outils d’évaluation traditionnels sont d’une aide importante, les clini-
ciens sont conscients de la nécessité d’améliorer de tels outils.

Dans les années 90, de nouvelles technologies à haut-débit, telles que le profilage de
l’expression génique par biopuces à ADN (microarrays), ont été mises au point afin de
permettre aux scientifiques d’analyser l’expression de l’entièreté du génôme de cellules
cancéreuses. Ce nouveau type de données moléculaires porte l’espoir d’améliorer les outils
pronostiques traditionnels et d’approfondir nos connaissances concernant la génèse du can-
cer du sein. Cependant ces données sont extrêmement difficiles à analyser à cause (i) de
leur haute dimensionalité (plusieurs dizaines de milliers de gènes pour seulement quelques
centaines d’expériences); (ii) du bruit important dans les mesures; (iii) de la collinéarité entre
les mesures dûe à la co-expression des gènes.

Depuis 2002, des études comparatives à grande échelle ont permis d’identifier les méthodes
performantes pour l’analyse de groupements et la classification de données microarray,
négligeant l’analyse de survie pertinente pour le pronostique dans le cancer du sein. Pour
pallier ce manque, cette thèse présente une méthodologie originale adaptée à l’analyse de
données microarray et de survie afin de construire des modèles pronostiques performants
et robustes.

En termes d’applications, nous montrons que cette méthodologie, utilisée en combinai-
son avec des connaissances biologiques a priori et de nombreux ensembles de données
publiques, a permis d’importantes découvertes. En particulier, il résulte de la recherche
presentée dans cette thèse, le développement d’un modèle robuste d’identification des sous-
types moléculaires du cancer du sein et de plusieurs signatures géniques améliorant signi-
ficativement l’état de l’art au niveau pronostique.
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Summary

This thesis addresses the use of machine learning techniques to develop clinical predictive
tools for breast cancer using molecular data. These tools are designed to assist physicians
in their evaluation of the clinical outcome of breast cancer (referred to as prognosis).

The traditional approach to evaluating breast cancer prognosis is based on the assessment
of clinico-pathologic factors known to be associated with breast cancer survival. These fac-
tors are used to make recommendations about whether further treatment is required after the
removal of a tumor by surgery. Treatment such as chemotherapy depends on the estimation
of patients’ risk of relapse. Although current approaches do provide good prognostic assess-
ment of breast cancer survival, clinicians are aware that there is still room for improvement
in the accuracy of their prognostic estimations.

In the late 1990s, new high throughput technologies such as the gene expression profiling
through microarray technology emerged. Microarrays allowed scientists to analyze for the
first time the expression of the whole human genome (”transcriptome”). It was hoped that the
analysis of genome-wide molecular data would bring new insights into the critical, underlying
biological mechanisms involved in breast cancer progression, as well as significantly improve
prognostic prediction. However, the analysis of microarray data is a difficult task due to
their intrinsic characteristics: (i) thousands of gene expressions are measured for only few
samples; (ii) the measurements are usually ”noisy”; and (iii) they are highly correlated due
to gene co-expressions. Since traditional statistical methods were not adapted to these
settings, machine learning methods were picked up as good candidates to overcome these
difficulties. However, applying machine learning methods for microarray analysis involves
numerous steps, and the results are prone to overfitting. Several authors have highlighted
the major pitfalls of this process in the early publications, shedding new light on the promising
but overoptimistic results.

Since 2002, large comparative studies have been conducted in order to identify the key
characteristics of successful methods for class discovery and classification. Yet methods
able to identify robust molecular signatures that can predict breast cancer prognosis have
been lacking. To fill this important gap, this thesis presents an original methodology dealing
specifically with the analysis of microarray and survival data in order to build prognostic mod-
els and provide an honest estimation of their performance. The approach used for signature
extraction consists of a set of original methods for feature transformation, feature selection
and prediction model building. A novel statistical framework is presented for performance
assessment and comparison of risk prediction models.

In terms of applications, we show that these methods, used in combination with a priori bio-
logical knowledge of breast cancer and numerous public microarray datasets, have resulted
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in some important discoveries. In particular, the research presented here develops (i) a ro-
bust model for the identification of breast molecular subtypes and (ii) a new prognostic model
that takes into account the molecular heterogeneity of breast cancers observed previously,
in order to improve traditional clinical guidelines and state-of-the-art gene signatures.
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et de rédaction. C’est une tranche de vie, incluant tout son entourage. Je tiens à remercier
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Chapter 1

Introduction

This interdisciplinary work concerns the development of original predictive tools in medicine
based on molecular data. In particular, we focus our research on machine learning methods
for breast cancer prognostication from microarray data. Our approach stresses the robust-
ness of the predictive models, their biological interpretation, and their application to different
microarray technologies.

In recent decades, we have witnessed an increased incidence of cancer, rendering can-
cer one of today’s major public health issues. Currently, breast cancer is the most frequently
diagnosed malignancy in women in the Western world.

From the 1990s, new high throughput technologies have emerged and enabled the study
of disease at the molecular level. These technologies, such as gene expression profiling
through microarrays, carry with them the hope of bringing new insights to cancer biology
and improving current tools for cancer management.

In breast cancer, two main issues are prognostication and prediction of therapy benefit.
An accurate prognostic tool would enable doctors to anticipate the prospect of remission
from the usual course of disease, and therefore to spare patients from unnecessary anti-
cancer treatments (and their concomitant adverse side effects). An accurate predictive tool
would enable doctors to anticipate the response or resistance of a patient to an anti-cancer
treatment, and therefore to select the most suitable treatment available.

Traditional clinical tools for prognostication and prediction are based on a small set of
variables routinely measured in the clinic. These tools are far from perfect and much progress
is needed to yield accurate risk predictions. Clinical investigators have rapidly harnessed the
great potential of the high throughput technologies, not only for gaining new insights into
cancer biology, but also to improve these traditional clinical tools.

The objective of this thesis is to develop original prognostic and predictive tools using
molecular data generated by high throughput technologies in order to improve traditional
clinical tools. The complexity of the data and the interdisciplinary context of the problem
make this task extremely challenging.

The contributions of the thesis will be described in terms of medical implications, bio-
logical findings and methodology. While the novel methods we developed will be covered
in detail, we will present the medical implications and the biological knowledge we used or
generated to a somewhat more limited extent.

The Introduction describes the biomedical and bioinformatics contexts of the thesis. The
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medical questions of interest, the technology used to generate the data, and the state of
bioinformatics research at the time work on this thesis was begun are introduced in the
following sections. This chapter ends with a brief description of the contributions of this
thesis and the various notations used in it.

1.1 Breast Cancer

Breast cancer is a global public health issue. It is the most frequently diagnosed malignancy
in women in the Western world and the commonest cause of cancer death in European
and American women. According to estimates in 2002, there were 1,151,298 new cases
of breast cancer diagnosed, 410,712 deaths caused by breast cancer, and more than 44
million women living with breast cancer worldwide [Veronesi et al., 2005]. In Europe, one
out of eight to ten women, depending on the country, will develop breast cancer during her
lifetime [Parkin et al., 2001].

Thanks to the routine use of screening mammograms in developed countries, more and
more women diagnosed with breast cancer are detected at an early stage (early breast
cancer, small tumors and absence of lymph node invasion). Surgery is the primary treatment
in the majority of cases, alone or in combination with radiotherapy. Despite early detection,
up to 50% of these women will develop distant metastasis, i.e. development of new tumors
in different organs. Metastatic breast cancer is unfortunately incurable. As a result, since the
mid 1980s, randomized trials of adjuvant systemic therapy have been conducted in an effort
to reduce the rate of recurrence and to prolong the survival of patients with operable disease
[EBCTG, 2005].

Due to the importance of breast cancer for public health, this field has been the subject
of intense research for decades. Moreover, new high throughput technologies, such as gene
expression profiling, became readily available at the end of the 1990s, providing powerful
tools to study and fight this disease.

1.1.1 Biological Insights Through Gene Expression Profiling

Gene expression profiling, through microarray-based technology, is a powerful tool with
which to draw up a genetic portrait of a biological sample (e.g. a tumor sample). Contrary
to traditional molecular and genetic profiling methods that focus on a few genes at a time,
microarray techniques allow for the simultaneous evaluation of the expression of thousands
of genes. Clinical investigators rapidly harnessed the great potential of this technology for
gaining new insights into cancer biology.

Since the research carried out in this thesis involves gene expression data, this technol-
ogy is described in greater detail in Section 2.1. We present below the early studies in breast
cancer biology using this technology at the time research for this thesis was begun.

Clinicians have long recognized that breast tumors exhibit different natural histories and
responses to various treatments. Nevertheless, traditional histo-pathological characteristics,
i.e. microscopic examination of the diseased tissues anatomy, are unable to capture the
biologic heterogeneity of these tumors. Many early studies attempted to identify subtypes
of breast tumors using gene expression data without taking into account a priori biological
knowledge [Perou et al., 2000; Sorlie et al., 2001, 2003; Sotiriou et al., 2003]. These studies
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used a clustering method (unsupervised approach, see Section 2.2) to consistently show
that (i) genes related to estrogen receptor (ER) and human epidermal growth factor recep-
tor 2 (HER2) signaling pathways1 have the strongest association with the gene expression
profile of breast tumors; (ii) these tumors can be grouped into at least four subtypes, the
basal-like (ER-/HER2-), the HER2+ and two luminal (ER+/HER2-) subtypes characterized
mainly by different expression levels of proliferation genes; and (iii) each subtype exhibits
distinct clinical outcomes. Interestingly, these studies also revealed that clinically relevant
indicators such as menopausal status, tumor size and nodal status were not associated
with distinct gene expression profiles. This class discovery has been useful to highlight that
breast cancers are a heterogeneous group of diseases, and it has helped to better under-
stand breast tumor biology. However, it is difficult at this stage to use these results to improve
breast cancer prognostication or prediction (Sections 1.2 and 1.3), and this is due to the dif-
ficulty related to fitting such a clustering model and using it for new cases [Pusztai et al.,
2006]. Moreover, although these methods have been effective at highlighting biological dif-
ferences between tumors, they do not look for the differentially expressed genes with respect
to the clinical outcome of interest. Thus, they are ill-adapted to identifying relevant prognostic
and/or predictive genes.

1.2 Prognostication

The goal of prognostication is to predict the survival of a patient, or her risk to develop metas-
tases without treatment (Figure 1.1). Specifically, prognosis attempts to predict the prospect
of remission of a breast cancer patient from the usual course of disease after the initial
surgery. This information is extremely important because it assists oncologists in determin-
ing which breast cancer patients require chemo-, hormono- or other systemic therapies, and
which women can safely be treated with radiotherapy alone.

a

Breast surgery
+ radiotherapy

Follow-up
5-10 years

Recurrence RemissionDiagnosis
?

Prognosis

Figure 1.1: Breast cancer prognostication. Figure adapted from [Sotiriou and Piccart, 2007].

1See Section 3.1 for a description of the main biological processes involved in breast cancer.
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1.2.1 Traditional Approach

There are several clinical variables commonly used for breast cancer prognosis, as depicted
in Figure 1.2. The risk of recurrence is primarily determined by the age of the patient, nodal
status, tumor size, histological grade, the expression status of the hormonal receptors, i.e.
the estrogen (ER) and the progesterone receptors (PgR) as quantified by immunohistchem-
istry (IHC), and the expression (IHC) or the gene amplification (fluorescence In situ hybridiza-
tion, FISH) status of the HER2 oncogene. These clinical variables can provide prognostic in-
formation and are summarized in clinical guidelines, such as the National Institute of Health
(NIH; [Eifel et al., 2001]) in the USA or the St Gallen consensus criteria [Goldhirsh et al.,
2003] in Europe in order to assist clinicians and patients in adjuvant therapy decision-making.

AgeTumor
size

ER
IHC

HER2
IHC

Nodal 
status

Histological
grade

HER2
FISH

AOLNPI ChemotherapyHormonotherapy

Prediction

Prognostication

Clinical variables

PGR
IHC

Guidelines
NIH/St Gallen

Figure 1.2: Traditional prognostic and predictive tools for breast cancer used in the clinic
before the advent of new high throughput technologies such as gene expression profiling.
The clinical guidelines for prognostication use all the clinical variables available.

We illustrate below the use of a clinical variable for breast cancer prognostication through
histological grade. Histological grade [Scarff and Torloni, 1968] is a well-known histo-pathological
parameter routinely used in the clinic to measure tumor differentiation, i.e. how much tumor
cells look like the normal tissue from which they originated:

• Histological grade 1, or well-differentiated tumor cells, look very much like normal,
nearby breast tissue.

• Histological grade 2, or moderately differentiated tumor cells, exhibit an intermediate
differentiation stage between well and poorly differentiated tumor cells.

• Histological grade 3, or poorly differentiated tumor cells, show very few similarities to
normal breast tissue.
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Histological grade is known to be highly prognostic in breast cancer [Elston and Ellis, 1991].
Patients having a histological grade 1 tumor exhibit better survival than patients having a
histological grade 3 tumor. However, clinicians face a tremendous problem with patients who
have histological grade 2 tumors, because these tumors, which represent 30% to 60% of
breast cancer cases, are the major source of inter-observer discrepancy, uncertainty in his-
tological grade determination, and exhibit intermediate survival, making treatment decision-
making for these patients a great challenge [Singletary et al., 2002; Perez et al., 2006]. So,
the use of histological grade is not sufficient to predict precisely the clinical outcome of a
breast cancer patient.

To reduce uncertainty in prognosis, these clinical variables can also be combined into
multivariable outcome prediction models, like Adjuvant! Online (AOL; [Olivotto et al., 2005])
and the Nottinghman Prognostic Index (NPI; [Galea et al., 1992]). These tools use some
of the clinical variables to estimate the risk of recurrence of breast cancer patients (Fig-
ure 1.2). However, risk estimation based on these guidelines or prognostic models is far
from perfect and much progress is needed before it will be possible to clearly identify those
patients, especially with early (node-negative, i.e. nodal status equal to 0) breast cancer,
who would really need adjuvant systemic therapy [Isaacs et al., 2001; Sotiriou and Piccart,
2007]. As a result, many women are prescribed adjuvant chemotherapy who probably would
have had excellent long term outcomes without it, exposing them to the potential adverse
effects of chemotherapy such as cardiac dysfunction, second malignancies and premature
menopause. Therefore, better prognostic tools could avoid the adverse side effects of adju-
vant therapies, as well as the high costs of such treatments.

1.2.2 Gene Expression Profiling Approach

During the last two decades, several clinical and pathological parameters have been used
to evaluate the prognosis of breast cancer patients. Although different tools have been de-
veloped to assist clinicians in selecting patients who should receive adjuvant therapy (Fig-
ure 1.2), such as the St Gallen consensus criteria [Goldhirsh et al., 2003], the NIH guidelines
[Eifel et al., 2001], the Nottingham Prognostic Index [Galea et al., 1992] or Adjuvant! Online
[Olivotto et al., 2005], it still remains a challenge to distinguish those patients who would
really need adjuvant systemic therapy from those who could be spared such treatment.

Clinical investigators rapidly harnessed the great potential of gene expression profiling,
not only for gaining new insights into cancer biology (Section 1.1.1), but also as a powerful
prognostic tool. Unlike the traditional variables routinely measured in the clinic (Figure 1.2)
which are limited to few, sometimes subjective, measurements, this technology enables the
quantitative measurement of thousands of gene expressions in parallel (Section 2.1), making
possible the development of prognostic models with numerous molecular markers.

In order to develop a more accurate tool for early breast cancer prognosis, the Nether-
lands Cancer Institute (NKI) conducted a comprehensive, genome-wide assessment of gene
expression profiling [van’t Veer et al., 2002]. By using Agilent microarray technology (see
Section 2.1 for details), they identified the genes differentially expressed between two groups
of patients that differ in their survival. The low-risk group included patients who had not de-
veloped distant metastases within the first five years after diagnosis, a result that contrasted
with the high-risk group. The NKI group refined the set of relevant genes and built a risk
prediction model with 70 prognostic genes (denoted by GENE70). This set of genes (also
known as gene signature) included mainly genes involved in the cell cycle, invasion, metas-
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tasis, angiogenesis and signal transduction. This gene signature was then validated on
a larger set of patients, including both node-negative and node-positive breast tumors in
treated and untreated patients from the same institution [van de Vijver et al., 2002], and con-
sequently proved to be the strongest predictor for distant metastasis-free survival (DMFS,
see Section 5.1 for details), independently of several clinical prognostic indicators described
in Figure 1.2. To assess the clinical relevance of the GENE70 signature, the authors com-
pared its performance to that of current commonly used breast cancer risk classification
criteria, i.e. the National Institute of Health (NIH) consensus [Eifel et al., 2001], and the
St Gallen guidelines [Goldhirsh et al., 2003]. Citing as evidence the excellent disease free
outcomes for patients at five years, the NKI group found that the GENE70 signature, com-
pared to the NIH and St Gallen classifications, was better at predicting which patients should
have been spared adjuvant chemotherapy (low risk) and which patients should have been
prescribed adjuvant chemotherapy (high-risk). The authors concluded that the GENE70 sig-
nature could outperform current clinical risk classifications and therefore could significantly
impact on breast cancer management by sparing some women from over-treatment and the
unnecessary toxicity of chemotherapy.

Using a similar approach a few years later, Erasmus Medical Center and Veridex iden-
tified a prognostic gene signature (denoted by GENE76) that could be used to predict the
development of distant metastases within the first five years after diagnosis in early (node-
negative) breast cancer patients who did not receive systemic treatment [Wang et al., 2005].
In contrast to van’t Veer et al., this study used Affymetrix microarray technology (see Sec-
tion 2.1 for details) to build a risk prediction model that considered ER-positive patients
separately from ER-negative patients. This decision was based on the assumption that
the mechanisms for disease progression could differ for these two ER-based subgroups of
breast cancer patients. Similarly to the GENE70 signature, when compared to the classi-
fication results of two conventional sets of consensus guidelines, St. Gallen and NIH, the
GENE76 signature better identified the low-risk patients not needing treatment.

By using gene expression profiling to develop gene signatures that are advantageous
when compared to clinical guidelines, we could therefore significantly reduce the number of
patients subject to unnecessary treatment. This would ultimately also translate into savings
in cost and health resources, without sacrificing long term clinical outcome. However, a
careful validation of the gene expression profiling technology and prognostic gene signatures
is required before bringing this predictive tool into day-to-day clinical practice.

1.3 Prediction

The use of systemic adjuvant treatments has increased in the last ten years, with the ob-
jective of prolonging the survival of breast cancer patients. New treatments are continually
being developed in order to target specifically the cancer cells and to reduce toxicity for the
individual. The goal of prediction is to predict the response of a breast cancer patient to a
treatment.

There exist two settings for breast cancer prediction: the adjuvant (Figure 1.3) and the
neoadjuvant (Figure 1.4) settings [Mauri et al., 2005]. The adjuvant setting is similar to the
prognostication illustrated in Figure 1.1, except that the patients are prescribed a therapy. In
the neoadjuvant setting, the situation is more complex. First, a biopsy of the breast tumor
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is taken at diagnosis, before the neoadjuvant therapy. Second, breast surgery is carried
out to remove the tumor and to assess whether the tumor was affected by the treatment
(e.g. decrease in tumor size). A pathological complete response (pCR) is then defined as
the complete disappearance of tumor cells in the breast and the axillary lymph nodes and
it has been shown that a pathological complete response is associated with excellent long-
term survival. In this case, only the response or the resistance to the treatment is analyzed,
leaving aside the issue of the survival of the patients. In this thesis, we will focus on the
adjuvant setting to study prediction in breast cancer.
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Adjuvant
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Breast surgery
+ radiotherapy

Follow-up
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Therapy
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Therapy
benefit

Diagnosis

?

Prediction

Figure 1.3: Adjuvant setting for breast cancer prediction. Figure adapted from [Sotiriou and
Piccart, 2007].

Although accurate breast cancer prognosis allows for identification of the patients need-
ing treatment, clinicians also need to know which therapy will benefit the individual patient
most. Indeed, only a proportion of patients will respond to a particular treatment, whereas
most will experience its adverse side effects. Moreover, the current over-treatment of patients
results in major expenses for individuals and society.

1.3.1 Traditional Approach

Currently, there exist few tools for prediction. For instance, the expression status of the
hormonal receptors (ER and PGR) and the expression/gene amplification status of the HER2
oncogene are used to define the subset of individuals who may benefit from hormono- and
chemotherapy, respectively (Figure 1.2).

Despite the existence of the tools described above, current prediction models need to
be improved, since the accuracy of these tools is poor [Sotiriou and Piccart, 2007; Lonning
et al., 2007]. Numerous attempts have been made to identify prognostic groups based on
other pathological characteristics, mainly lymphovascular invasion or proliferation markers
such as S-phase fraction, which might better reflect tumor biology and serve as prognostic
and/or predictive markers that may aid in treatment decision making in the adjuvant set-
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Figure 1.4: Neoadjuvant setting for breast cancer prediction. Figure adapted from [Sotiriou
and Piccart, 2007].

ting (reviewed in [Colozza et al., 2005]). In addition, a variety of molecular tumor markers
have been studied both in the laboratory and in the clinical settings for their ability to predict
response to treatment [reviewed in [Colozza et al., 2005]]. Unfortunately, the studies ex-
amining the clinical utility of these tumor markers have usually used small, heterogeneous,
retrospective patient series, often with insufficient power to draw robust conclusions; more-
over, they have not been reported in a detailed enough fashion to provide information for the
reproduction and external validation of results [McShane et al., 2005]. There is also a lack
of well-designed, prospective clinical trials addressing the clinical utility of such markers.

Beyond this, given the complexity of breast cancer and the huge diversity in molecular
pathways dissected by basic research scientists [Konecny et al., 2004], isolated markers
might not be sufficient to predict response or resistance to treatment, and a comprehensive
view of the disease is needed.

These limitations have driven breast cancer research to develop more accurate molecular
predictors of clinical outcome and response to various anti-cancer therapies using a multi-
marker approach with the help of the quantitative gene expression profiling technologies.

1.3.2 Gene Expression Profiling Approach

Similarly to the use of gene expression profiling for prognostication, this technology carries
the hope to improve current breast cancer predictive tools by the development of new pre-
dictive models using numerous molecular markers.

The idea of applying gene expression profiling to identify new predictive signatures has
only been applied in a limited number of studies that have included patients treated with a
number of different standard systemic therapies.
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Benefit of hormonotherapy Two predictors have been identified for the benefit of tamox-
ifen therapy, the most widely used type of hormonotherapy.

Ma et al. developed a gene signature predictive of relapse free survival (RFS, see Sec-
tion 5.1 for details) from 60 patients treated with adjuvant tamoxifen [Ma et al., 2004]. The
signature was reduced to a two-gene expression ratio, HOXB13 versus IL17RB, transposed
onto a technology based on polymerase chain reaction (PCR) and validated on an indepen-
dent series using standard, formalin-fixed paraffin embedded tissue.

Similarly, Paik et al. developed a 16-gene assay on formalin-fixed paraffin-embedded
samples called the recurrence score (denoted by ONCOTYPE), which can predict the risk
of recurrence in patients receiving adjuvant tamoxifen [Paik et al., 2004]. The ONCOTYPE
signature can be used to estimate the probability of recurrence at 10 years or can be used
to classify patients into low-, intermediate-, or high-risk categories. ONCOTYPE perfor-
mance for distant metastasis prediction was assessed retrospectively in 668 patients with
ER-positive, node-negative breast cancers treated with tamoxifen who were enrolled in the
National Surgical Adjuvant Breast and Bowel Project B14 clinical trial [Paik et al., 2004]. The
three risk categories exhibited statistically different survival at ten years, with 30% of recur-
rence (distant metastasis) in the high-risk group. These results suggest that ER-positive
patients with high ONCOTYPE risk scores are not treated optimally with five years of tamox-
ifen therapy.

These gene signatures were developed with patients treated with adjuvant tamoxifen,
i.e. treated after surgery. Therefore, the clinical outcome fitted by these prediction models
was the survival of the patients or the appearance of metastases (survival analysis, see
Section 2.3) instead of the response to the treatment itself (only available in the neoadjuvant
setting, see Figure 1.4). This implies that these gene signatures predicted the natural history
of the tumors (prognosis) and the response to tamoxifen (prediction) as well, with these two
components being difficult to dissect.

Benefit of chemotherapy The study of gene expression profiles before and after treatment
with chemotherapy is potentially informative in terms of biology and prediction model. Fisher
et al. showed that the treatment of a tumor with chemotherapy before surgery (neaoadjuvant
therapy, see Figure 1.4) does not adversely affect the survival of the patient, and it provides
an in vivo assessment of response to chemotherapy [Fisher et al., 1998]. It is the ideal
scenario to study the molecular changes and to identify candidate genes associated with
drug response and resistance. The gene profiles derived prior to and after treatment have
the potential to predict clinical outcomes with particular chemotherapy agents in individual
patients. Two gene signature for chemotherapy response have been subsequently reported.

Ayers et al. identified a signature of 74 genes that discriminated between responders and
non-responders to neoadjuvant chemotherapy (complete pathological response, denoted by
pCR) in a cohort of 24 patients [Ayers et al., 2004]. No single clinical indicator or gene
yielded sufficiently good performance or pCR prediction. However, the signature combin-
ing the expression of several genes yielded high specificity buy low sensitivity, on a small
independent set of 18 patients.

Chang et al. identified a signature of 92 genes for chemotherapy resistance developed
from 24 breast cancer patients [Chang et al., 2005]. In this study, tumor samples were
classified as either sensitive or resistant to chemotherapy on the basis of the residual volume
of the tumor at the end of treatment. The signature yielded high sensitivity and specificity
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in cross-validation [Stone, 1974]. The investigators then validated their results using a small
independent set of 6 patients, whereby all were correctly classified.

Both of these studies used datasets that were too small to draw statistically robust con-
clusions about the performance of such prediction models. However, they do support the
concept that predictors of chemotherapy response can be developed.

1.4 Translational Research

The concept of translational research has been a center of focus in the biomedical commu-
nity over the last few years, being viewed as a new way of thinking about and conducting life
sciences research to accelerate healthcare outcomes [Woolf, 2008].

Translational research transforms scientific discoveries arising from laboratory or clini-
cal studies into clinical applications (”from bench to bedside”) to reduce cancer incidence,
morbidity, and mortality (Figure 1.5).

Clinic

New clinical 
tools

Lab

Research Applications

Figure 1.5: Translational research. Discoveries arising from laboratory or clinical studies are
translated into new clinical tools. The red double arrow represents such a translation.

By removing barriers to interdisciplinary collaboration, translational research has the po-
tential to drive the advancement of molecular-based medicine. By enabling doctors to lever-
age high throughput technologies, translational research could provide efficient clinical tools
for early detection of cancer and other diseases, for improving drug development, and for
making personalized medicine possible.

The movement of scientific discoveries into the clinic will accelerate only once doctors,
biologists, bioinformaticians and the various operational members of staff can work together
efficiently. To achieve this goal, translational research requires researchers and clinicians
to have ready access to two critical types of information: (i) clinical information, including
data contained in hospital systems and medical records, and pathology reports; and (ii)
biomolecular information, including genomics, proteomics, medical imaging and other high
throughput data.

The analysis of such data is one of the objectives of the Functional Genomics Unit at the
Institut Jules Bordet in Brussels, headed by Prof. Christos Sotiriou, acting in liaison between
the basic research laboratory and the clinical research setting to ensure faster application
of experimental findings to the clinic. We will see in Section 6.2.4 that some of the findings
presented in this thesis have been patented and commercialized in order to be used in day-
to-day clinical practice.
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1.5 Bioinformatics Context

In the early days of gene expression profiling studies, researchers used traditional statistics
to analyze these new data. In the process, numerous problems arose around the issues
of the small sample size, high dimensionality of the data, high level of noise and correla-
tions of variables (gene co-expressions, see Section 2.1.2), rendering traditional methods
unsuccessful [Zupan et al., 1999].

At that stage, machine learning techniques were picked up as candidates to circumvent
such difficulties. Indeed, machine learning, defined as a field of artificial intelligence related
to data mining and statistics, involves learning from data by dealing specifically with the curse
of dimensionality (small sample size compared to the dimensionality of the data, also called
the high feature-to-sample ratio), and the presence of noise [Mitchell, 1997].

During the early stages of microarray analysis, researchers used simple to complex ma-
chine learning techniques with some success, leading to high impact publications ([Golub
et al., 1999; Brown et al., 2000; Alizadeh et al., 2000; van’t Veer et al., 2002; Ramaswamy
et al., 2003] to name a few). However, the pitfalls in the analysis of microarray data for classi-
fication tasks were emphasized by many authors [Simon, 2003; Simon et al., 2003; Michiels
et al., 2005]. This includes the risk of overfitting [Everitt, 2002; Hastie et al., 2001] due to
the high feature-to-sample ratio and the lack of validation due to the absence of independent
datasets or incorrect use of cross-validation techniques [Stone, 1974]. Recently, Dupuy and
Simon reviewed the statistical methods used in 90 microarray studies published before 2005
[Dupuy and Simon, 2007]. The authors extended the previous reviews from classification to
class discovery and feature selection (called ”outcome-related gene finding” in the article),
drawing guidelines on statistical analysis. They found that 15% to 80% of the articles have at
least one major flaw, depending on the impact of the journal (see supplementary information
of [Dupuy and Simon, 2007] for a detailed list of flaws).

As the field became increasingly mature, it was unclear which methods yielded good
performance in microarray analysis. To address this issue, several authors conducted large
comparison studies of classification methods for microarray data [Ben-Dor et al., 2000; Du-
doit et al., 2002]. They found that simple methods (e.g. linear models) yielded similar results
or even outperformed complex ones (e.g. artificial neural networks, classification trees or
support vector machines) in several microarray datasets. These results, challenging the use
of complex classification models instead of simple ones, fundamentally changed the practice
of classification analysis of microarray data.

At the time work was begun on this thesis, few articles reported the use of methods from
survival analysis (Section 2.3) to build prognostic models from gene expression data, espe-
cially in breast cancer [Zupan et al., 1999]. Moreover, in contrast to the field of classification
described above, the field lacked large comparative studies of survival models. However,
there was an increasing interest in survival analyses of microarray data, the hope being to
improve current prognostic classification.

1.6 Justification of the Thesis

The medical context of this thesis has emphasized the need for improving prognostic and
predictive models in order to spare breast cancer patients from unnecessary anti-cancer
treatments (and their concomitant adverse side effects), as well as to predict the response
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or resistance to such treatments. The aim of this thesis is the development of novel methods
to extract from microarray and survival data, the relevant molecular markers able to improve
traditional prognostic models, bringing at the same time new insights into breast cancer
biology.

The complexity of microarray data (high feature-to-sample ratio, high level of noise, gene
co-expressions) makes their analysis a challenging task. In addition to their intrinsic com-
plexity, the analyst has to deal with dilemmas arising in real clinical studies, such as the
heterogeneity of populations of breast cancer patients under study and the use of different
microarray technologies to carry out the gene expression profiling. When this thesis was
begun, the field lacked the robust methods necessary to address these issues efficiently.

From a bioinformatics point of view, intense research efforts have been put into clus-
tering and classification analyses of microarray data, leaving aside the analysis of survival
data, which is particularly appealing for the development of prognostic models. Furthermore,
numerous review articles have highlighted major flaws in the initial publications, such as the
incorrect use of cross-validation techniques and the lack of validation data, shedding new
light on these promising early results. It is therefore the right time to develop a new method-
ology dealing specifically with the microarray and survival data in order to derive an honest
estimation of performance.

In this thesis, we will use machine learning techniques such as feature transforma-
tion/selection, local/additive prediction models, validation techniques and clustering, to de-
velop such a methodology. We will show that the use of simple models in combination with a
priori biomedical knowledge enables the building of efficient prognostic and predictive tools
for breast cancer. Indeed, given the complexity of microarray and survival data, we will
challenge the use of data-driven and complex models and demonstrate that simple models
outperform complex ones in the framework of breast cancer prognostication. This is made
possible by collecting numerous publicly available microarray datasets, which in turn enable
us to conduct robust performance assessments and comparisons of the prognostic models.

Lastly, we will contribute to the field of breast cancer prognostication by implementing
our novel methods in a publicly available R package and by identifying new prognostic gene
signatures, which are the subject of high impact publications. The detailed list of the contri-
butions of this thesis is provided below.

1.6.1 Contributions

We have introduced several new methods, which constitute key steps in the design of mi-
croarray survival analyses and yield innovative gene signatures and risk prediction models.
In this section, we briefly describe these original contributions and we point the reader to the
sections where the contribution has been introduced.

1.6.1.1 Methodological Contributions

Critical analysis of a clinical study using microarray data: We wrote a book chapter about
a critical analysis of knowledge extraction from microarray and survival data in a clinical
study [Haibe-Kains et al., 2008a]. The chapter describes each step of the data analysis
procedure, from the quality control of data to the final validation, going through normal-
ization, feature transformation, feature selection, and model building. Each section
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proposes a set of guidelines and motivates the specific choice made for this particular
clinical study.

Biology-driven feature transformation: We introduced a genome-wide and a prototype-
based approach to reduce the dimensionality of the data, retaining relevant biological
information and keeping the data interpretable. The genome-wide approach, detailed
in Section 4.1.1, used a clustering approach in combination with gene annotations on
an independent dataset to compute cluster centroids in the dataset under study. This
approach was used in [Haibe-Kains et al., 2008a; Loi et al., 2008]. The second ap-
proach, detailed in Section 4.2.1, used a priori biological information to build modules
of genes specifically correlated to a prototype, i.e. a key gene involved in a biological
process of interest. This approach was used in [Desmedt et al., 2008].

Stability-based feature selection: We introduced a new statistic (Stab) to identify the sig-
nature size, i.e. the number of relevant features used to build a survival model, in the
framework of feature ranking. This statistic, detailed in Section 4.1.2.2, assesses the
stability of a signature of size k using a resampling procedure and allows for tuning
the signature size without optimizing directly the model performance. This statistic was
used in [Loi et al., 2008; Haibe-Kains et al., 2008a,c, 2009].

Robust model building: We used a robust model building approach consisting in the linear
combination of univariate survival models (Section 4.1.3.1). Although such a proce-
dure was well known in classification modeling, its application to survival analysis of
microarray data in combination with stability-based feature selection have interesting
properties and yielded good performance [Loi et al., 2008; Haibe-Kains et al., 2008c].

Modular modeling: The modular modeling approach, as detailed in Section 4.3.1, is based
on a divide-and-conquer strategy that consists in attacking the prognostication of the
global population of tumors by dividing it into subtypes, of which the specific survival
models can be combined to yield a global model for prognostication. This method was
used in [Haibe-Kains et al., 2009].

Performance assessment and comparison: We introduced a statistical framework to as-
sess and to compare the performance of survival models. This framework, detailed in
Section 4.4, is based on traditional statistics from survival analysis (but underused in
microarray survival analysis) and (non-)parametric paired statistical tests. This frame-
work was used in [Haibe-Kains et al., 2008c,b, 2009].

1.6.1.2 Software Contributions

Performance assessment and comparison: An R package, called survcomp, was impli-
mented for the performance assessment and comparison of survival models. The
package is fully documented and is publicly available from the comprehensive R archive
network [CRAN].

SWEAVE code: The analysis for [Haibe-Kains et al., 2008a,c, 2009] complies with the re-
search reproducibility guidelines proposed in [Gentleman, 2005], in terms of availabil-
ity of the code and reproducibility of results and figures. All the codes are publicly
available through http://www.ulb.ac.be/di/map/bhaibeka/research.html.
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1.6.1.3 Biomedical Contributions

In addition to the new biological insights into breast cancer that we have introduced in our
published articles, we have contributed to the field by identifying several prognostic gene
signatures:

GGI: The gene expression grade index [Sotiriou et al., 2006] elucidated the molecular basis
of histological grade, one of the most important clinical variables for breast cancer
prognostication.

TAMR13: The tamoxifen resistance signature (TAMR13; [Loi et al., 2008]) was shown to be
predictive of resistance to tamoxifen, the most widely used form of hormonotherapy in
breast cancer.

Gene modules: The gene modules ESR1, ERBB2, AURKA, STAT1, VEGF, PLAU, CASP3
[Desmedt et al., 2008] allowed for a robust quantification of the key biological pro-
cesses in breast cancer (Section 3.1). Using these gene modules, we revealed the
thread connecting breast cancer molecular subtypes, prognostic gene signatures, and
traditional clinico-pathological prognostic factors.

GENIUS: The gene expression prognostic index using subtypes [Haibe-Kains et al., 2009])
improved the state-of-the-art prognostic gene signatures by integrating the a priori bi-
ological knowledge about the existence of breast cancer molecular subtypes.

The list of annotated genes included in these signatures is provided in Appendix C.

Patents: A patent for the GGI signature was filled2, while the patent for the tumor invasion
and immune response modules have been submitted.

1.6.2 Publications

The articles published during the thesis are listed in the following sections. We distinguish
between the papers related to this thesis and those out of the scope of this thesis (referred
to as collaborative papers).

Thesis Related Papers

(Co-)First Author Note that the symbol * means that these authors contributed equally
to the work.

• Refining breast cancer prognostication according to the molecular subtypes. Haibe-
Kains B*, Desmedt C*, Rothé F, Piccart MJ, Bontempi G and Sotiriou C, submitted,
2009.

• Comparison of Prognostic Gene Expression signatures for Breast Cancer. Haibe-
Kains B*, Desmedt C*, Piette F, Buyse M, Cardoso F, vant Veer L, Piccart MJ, Bon-
tempi G and Sotiriou C in BMC Genomics, volume 9, number 394, September 2008.

2http://www.wipo.int/pctdb/en/wo.jsp?wo=2006119593
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• A comparative study of survival models for breast cancer prognostication based on
microarray data: does a single gene beat them all? Haibe-Kains B, Desmedt C,
Sotiriou C and Bontempi G in Bioinformatics, volume 24, number 19, pages 2200-
2208, July 2008.

• Biological processes associated with breast cancer clinical outcome depend on the
molecular subtypes. Desmedt C*, Haibe-Kains B*, Wirapati P, Buyse M, Larsimont
D, Bontempi G, Delorenzi M, Piccart MJ, and Sotiriou C in Clinical Cancer Research,
volume 14, number 16, pages 5158-5165, August 2008.

• Predicting prognosis using molecular profiling in estrogen receptor-positive breast can-
cer treated with tamoxifen. Loi S*, Haibe-Kains B*, Desmedt C, Wirapati P, Lallemand
F, Tutt AM, Gillet C, Ellis P, Ryder K, Reid JF, Daidone MG, Pierotti MA, Berns EMJJ,
Jansen MPHM, Foekens JA, Delorenzi M, Bontempi G, Piccart MJ and Sotiriou C in
BMC Genomics, volume 9, number 239, May 2008.

• Definition of clinically distinct molecular subtypes in estrogen receptor positive breast
carcinomas through use of genomic grade. Loi S*, Haibe-Kains B*, Desmedt C, Lalle-
mand F, Tutt AM, Gillet C, Harris A, Bergh J, Foekens JA, Klijn J, Larsimont D, Buyse M
Bontempi G, Delorenszi M, Piccart MJ and Sotiriou C in Journal of Clinical Oncology,
volume 25, number 10, April 2007.

– Reply: Expression profiling in breast carcinoma: new insights on old prognostic
factors? Loi S, Haibe-Kains B, Desmedt C, and Sotiriou C in Journal of Clinical
Oncology, volume 25, number 27, pages 4317-4318, September 2007.

Contributing Author

• The Genomic Grade Index (GGI) Is Associated with Response to Neoadjuvant Chemother-
apy in Patients with Breast Cancer. Liedtke C, Hatzis C, Symmans WF, Desmedt C,
Haibe-Kains B, Valero V, Kuerer H, Hortobagyi, Piccart MJ, Sotiriou C and Pusztai L
in Journal of Clinical Oncology, in press, 2009.

• Meta-analysis of Gene-Expression Profiles in Breast Cancer: Toward a Unified Under-
standing of Breast Cancer Sub-typing and Prognosis Signatures. Wirapati P, Sotiriou
C, Kunkel S, Farmer P, Pradervand S, Haibe-Kains B, Desmedt C, Ignatiadis M, Sen-
gstag T, Schutz F, Goldstein DR, Piccart MJ and Delorenzi M in Breast Cancer Re-
search, volume 10, number 4, R65, August 2008.

• Strong time-dependency of the 76-gene prognostic signature for node-negative breast
cancer patients in the TRANSBIG multi-centre independent validation series. Desmedt
C, Piette F, Loi S, Wang Y, Lallemand F, Haibe-Kains B, Viale G, Delorenzi M, Zhang Y,
Saghatchian dAssignies M, Bergh J, Lidereau R, Ellis P, Harris A, Klijn JG, Foekens JA,
Cardoso F, Piccart M, Buyse M and Sotiriou C in Journal of Clinical Cancer Research,
volume 13, number 11, pages 3201-3214, June 2007.

• Gene expression profiling in breast cancer: Understanding the molecular basis of his-
tologic grade to improve prognosis, Sotiriou C, Wirapati P, Loi S, Harris A, Bergh J,
Smeds J, Farmer P, Praz V, Haibe-Kains B, Lallemand F, Buyse M, Piccart MJ and
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Delorenzi M in Journal of National Cancer Institute, volume 98, pages 262-272, Febru-
ary 2006.

Book Chapter

• Computational Intelligence in Clinical Oncology : Learned Lessons from a Case Study.
Haibe-Kains B, Desmedt C, Loi S, Delorenzi M, Sotiriou C, and Bontempi G, Chap-
ter 10 in Applications of Computational Intelligence in Bioinformatics and Biomedicine:
Current Trends and Open Problems, Springer-Verlag in the series Studies in Compu-
tational Intelligence, September 2008.

Collaborative Papers

Contributing Author

• Gene expression profiling based on ZAP70 mRNA expression reveals differences in
microenvironment interaction between patients with good and poor prognosis. Stam-
atopoulos B, Haibe-Kains B, Equeter C, Meuleman N, Sorée A, De Bruyn C, Hanosset
D, Bron D, Martiat P and Lagneaux L in Haematologica, in press, 2009.

• MicroRNA-29c and microRNA-223 downregulation has in vivo significance in chronic
lymphocytic leukemia and improves disease risk stratification. Stamatopoulos B, Meule-
man N, Haibe-Kains B, Saussoy P, Van Den Neste E, Michaux L, Heimann P, Martiat
P, Bron D and Lagneaux L in Blood, in press, 2009.

• Knocking Down Galectin 1 in Human Hs683 Glioblastoma Cells Impairs Both Angio-
genesis and Endoplasmic Reticulum Stress Responses. Le Mercier M, Mathieu V,
Haibe-Kains B, Bontempi G, Mijatovic T, Decaestecker C, Kiss R and Lefranc F in
Journal of Neuropathology and Experimental Neurology, volume 67, number 5, pages
456-469, May 2008.

• Nucleolus and c-Myc: potential targets of cardenolide-mediated antitumor activity. Mi-
jatovic T, De Neve N, Gailly P, Mathieu V, Haibe-Kains B, Bontempi G, Lapeira J,
Decaestecker C, Facchini V and Kiss R in Molecular Cancer Therapeutics, volume 7,
number 5, pages 1285-1296, May 2008.

• UNBS5162, a Novel Naphthalimide That Decreases CXCL Chemokine Expression in
Experimental Prostate Cancers. Mijatovic T, Mahieu T, Bruyère C, De Nève N, Dewelle
J, Simon G, Dehoux MJM, van der Aar E, Haibe-Kains B, Bontempi G, Decaestecker
C, Van Quaquebeke E, Darro F and Kiss R in Neoplasia, volume 10, number 6, pages
573-586, May 2008.

• Evidence of galectin-1 involvement in glioma chemoresistance. Le Mercier M, Lefranc
F, Mijatovic T, Debeir O, Haibe-Kains B, Bontempi G, Decaestecker C, Kiss R and
Mathieu V in Toxicology and Applied Pharmacology, volume 229, number 2, pages
172-183, January 2008.
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• Quantification of ZAP70 mRNA in B Cells by Real-Time PCR Is a Powerful Prognostic
Factor in Chronic Lymphocytic Leukemia. Stamatopoulos B, Meulemans N, Haibe-
Kains B, Duvillier H, Massy M, Martiat P, Bron D, and Lagneaux L in Clinical Chemistry,
volume 53, number 10, August 2007.

• 4-IBP: A s1 Receptor Agonist Decreases the Migration of Human Cancer Cells In-
cluding Glioblastoma Cells In Vitro and Sensitizes Them In Vitro and In Vivo to the
Cytotoxic Insults of Pro-Apoptotic and Pro-Autophagic Drugs. Mégalizzi V, Mathieu V,
Mijatovic T, Gailly P, Debeir O, De Neve N, Van Damme M, Bontempi G, Haibe-Kains
B, Decaestecker C, Kondo Y, Kiss R and Lefranc F in Neoplasia, volume 9, number 5,
May 2007.

• Gene regulation by phorbol 12-myristate 13-acetate in MCF-7 and MDA-MB-231, two
breast cancer cell lines exhibiting highly different phenotypes, Lacroix M, Haibe-Kains
B, Hennuy B, Laes JF, Lallemand F, Gonze I, Cardoso F, Piccart MJ, Leclercq G and
Sotiriou C in Oncology Reports, volume 12, number 4, pages 701-708, October 2004.

1.7 Glossary

Adjuvant! Online The goal is to help health professionals make estimates of the risk of
poor outcome (cancer related mortality or relapse) without systemic adjuvant therapy,
estimates of the reduction of these risks afforded by therapy, and risks of side effects
of the therapy. These estimates are based on information entered about individual
patients and their tumors (e.g. patient age, tumor size, nodal involvement or histological
grade) These estimates are then provided on printed sheets in simple graphical and
text formats to be used in consultations.

Adjuvant therapy Therapy given after the breast surgery to increase the chances of a cure.
Adjuvant therapy may include chemotherapy or hormonotherapy.

Comparative genomic hybridization Comparative genomic hybridization (CGH) is a molecular-
cytogenetic method for the analysis of copy number changes (gains/losses) in the DNA
content of a given subject’s DNA and often in tumor cells. The method is based on
the hybridization of fluorescently labeled tumor DNA and normal DNA to to normal
metaphase chromosomes (or DNA probes). Using epifluorescence microscopy and
quantitative image analysis, regional differences in the fluorescence ratio of gains/losses
vs control DNA can be detected and used for identifying abnormal regions in the
genome. CGH will detect only unbalanced chromosomes changes. Structural chro-
mosome aberrations such as balanced reciprocal translocations or inversions can not
be detected since they do not change the copy number.

Cross-hybridization The hydrogen bonding of a single-stranded DNA sequence (see hy-
bridization) that is partially but not entirely complementary to a single-stranded sub-
strate. For instance, this can involve hybridizing a DNA probe for a specific DNA se-
quence to the homologous sequences of different species.

Cross-validation The cross-validation is the practice of partitioning a sample of data into
subsets such that analysis is initially performed on a single subset, while further sub-
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sets are retained ”blind” in order for subsequent use in confirming and validating the
initial analysis.

Dendrogram A hierarchy representation by a dichotomous diagram, in which the end of
a branch corresponds to an element and the level of a junction corresponds to the
dissimilarity from the two elements or the two groups that it connects.

Distant metastasis Type of recurrence (see Recurrence). Tumor initiated from the primary
breast tumor cells and that is located in another organ.

Estrogen receptor Estrogen receptor refers to a group of receptors which are activated by
the hormone 17β-estradiol (estrogen; [Dahlman-Wright et al., 2006 Dec]). The estro-
gen receptor (ER) is a member of the nuclear hormone family of intracellular receptors.
The main function of the ER is as a DNA binding transcription factor which regulates
gene expression. However the ER also has additional functions independent of DNA
binding.

Expressed sequence tag An expressed sequence tag or EST is a short sub-sequence of
a transcribed cDNA sequence [Adams et al., 1991]. They may be used to identify gene
transcripts, and are instrumental in gene discovery and gene sequence determination.
ESTs represent portions of expressed genes. The current understanding of the hu-
man set of genes includes the existence of thousands of genes based solely on EST
evidence. ESTs contain enough information to permit the design of precise probes
for DNA microarrays that then can be used to determine the gene expression. Some
authors use the term ”EST” to describe genes for which little or no further information
exists besides the tag.

Gene expression Concentration of messenger RNA (mRNA) after transcription of a gene.

Gene Ontology The Gene Ontology project, or GO, provides a controlled vocabulary to
describe gene and gene product attributes in any organism. It can be broadly split into
two parts. The first is the ontology itself, actually three ontologies, each representing
a key concept in molecular biology: the molecular function of gene products; their role
in multi-step biological processes; and their localization to cellular components. The
second part is annotation, the characterization of gene products using terms from the
ontology. The members of the GO Consortium submit their data and it is made publicly
available through the GO website3.

Genotype The entire set of genes (genetic constitution) of an organism.

Histological Relating to histology.

Histology Study of the microscopic anatomy of cells and tissues. It is performed by exam-
ining a thin slice (section) of tissue under a light microscope or electron microscope.
The ability to visualize or differentially identify microscopic structures is frequently en-
hanced through the use of histological stains.

Histo-pathological Relating to histo-pathology.
3http://www.geneontology.org/
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Histo-pathology Microscopic study of diseased tissue, is an important tool in anatomical
pathology, since accurate diagnosis of cancer and other diseases usually requires
histopathological examination of samples. Trained medical doctors, namely patholo-
gists, are the scientists who perform histopathological examination and provide diag-
nostic information based on their observations.

Human Epidermal growth factor Receptor 2 HER2 (also known as HER2/neu, ErbB-2 or
ERBB2) stands for ”Human Epidermal growth factor Receptor 2” and is a protein giving
higher aggressiveness in breast cancers. It is a member of the ErbB protein family,
more commonly known as the epidermal growth factor receptor family.

Hybridization Nucleic acid hybridization is the process of binding two complementary strands
of DNA. A DNA molecule has a very strong preference for its sequence complement,
so just mixing complementary sequences is enough to induce them to hybridize. Hy-
bridization is temperature dependent, so DNAs that hybridize strongly at low tempera-
ture can be temporarily separated (denatured) by heating.

Inflammatory response Inflammation occurs when tissues are injured by viruses, bacte-
ria, trauma, chemicals, heat, cold or any other harmful stimulus. Chemicals including
bradykinin, histamine, serotonin and others are released by specialised cells. These
chemicals attract tissue macrophages and white blood cells to localise in an area to
engulf (phagocytize) and destroy foreign substances. A byproduct of this activity is the
formation of pus, a combination of white blood cells, bacteria and foreign debris.

Lymph nodes Lymph nodes are components of the lymphatic system. Clusters of lymph
nodes are found in the underarms, groin, neck, chest, and abdomen. Lymph nodes act
as filters, with an internal honeycomb of connective tissue filled with lymphocytes that
collect and destroy bacteria and viruses. When the body is fighting an infection, these
lymphocytes multiply rapidly and produce a characteristic swelling of the lymph nodes.

Malignancy Cancerous cells that usually have the ability to spread, invade, and destroy
tissue. Malignant cells tend to have fast, uncontrolled growth due to changes in their
genetic makeup.

Mer Refers to the length of a probe sequence, e.g. 60-mer probe is a probe composed of
60 nucleotides (see Microarray ).

Microarray A DNA microarray is a multiplex technology used in molecular biology and in
medicine. It consists of an arrayed series of thousands of microscopic spots of DNA
oligonucleotides, called features, each containing picomoles of a specific DNA se-
quence. This can be a short section of a gene or other DNA element that are used as
probes to hybridize a cDNA or cRNA sample (called target) under high-stringency con-
ditions. Probe-target hybridization is usually detected and quantified by fluorescence-
based detection of fluorophore-labeled targets to determine relative abundance of nu-
cleic acid sequences in the target.

Neoadjuvant Therapy given as a first step to shrink a tumor before the breast surgery.
Examples of neoadjuvant therapy include chemotherapy, or hormone therapy.
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Nottingham Prognostic Index An index based on a combination of three prognostic fac-
tors: tumour size (cm x 0.2); lymph node stage (1 if node negative, 2 if ≤ 3 metastatic
nodes, 3 if > 3 metastatic nodes) and histological grade (1, 2, or 3, for lo, intermediate
and high histological grade respectively). Alternatively, lymph nodes can be classified
according to level of involvement. A prognostic index < 3.4 implies a good prognosis,
in [3.4, 5.4] a moderately good prognosis and > 5.4 a poor prognosis.

Pathological Indicative of disease through examination of organs or tissues for instance.
Relating to pathology.

Pathological complete response A pathological complete response is defined as the com-
plete disappearance of tumor cells in the breast and the axillary lymph nodes after a
neoadjuvant therapy.

Pathology Study and diagnosis of disease through examination of organs, tissues, bodily
fluids and whole bodies.

Pathway Biological network that relates to a specific physiological process or phenotype.
Set of linked biological components interacting with each other over time to generate a
single biological effect

Personalized Medicine Currently, much of medical practice is based on ”standards of care”
that are determined by averaging responses across large cohorts. The theory has been
that everyone should get the same care based on clinical trials. Personalized Medicine
is the concept that managing a patient’s health should be based on the individual pa-
tient’s specific characteristics, including age, gender, height/weight, diet, environment,
or genetic profile using the high throughput technologies described in this thesis (Sec-
tion 2.1).

Phenotype The expression of a particular trait, for example, skin color, height, behavior,
according to the individuals genotype and environment.

Polymerase Chain Reaction Exponential amplification of almost any region of a selected
DNA molecule.

Probes See Microarray.

Prognostication Prediction of the prospect of remission from the usual course of disease.
In other words, prognostication refers to the prediction of the clinical outcome of a
cancer patients in absence of anti-cancer treatment.

Prospective The two observation plans for clinical studies are the prospective and the ret-
rospective ones. For the retrospective observation plan, the survival data are retrieved
from patients medical histories. By prospective we mean that the observation of a set
of individuals starts at some well-defined point in time, and they are followed for some
substantial period of time, with the time at which the events of interest occur being
recorded. However, this observation plan is difficult to set up in practice, in that the
investigator has to wait the end of follow-up before getting the final survival data.

Prediction Prediction of the response or resistance of a patient to an anti-cancer treatment.
In other words, prediction refers to the prediction of the clinical outcome of a patient
when an anti-cancer treatment is prescribed (see adjuvant and neoadjuvant).
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Recurrence Occasionally breast cancer can return after primary treatment.

Relapse See Recurrence.

Retrospective The two observation plans for clinical studies are the prospective and the ret-
rospective ones. For the retrospective observation plan, the survival data are retrieved
from patients medical histories.

Reverse Transcriptase Polymerase Chain Reaction Molecular technique which uses upon
the reverse transcriptase to amplify a sequence of RNA and to transform it into DNA.

Scale parameter The effect of a scale parameter > 1 is to stretch the PDF. The greater
the magnitude, the greater the stretching. The effect of a scale parameter < 1 is to
compress the PDF. The compressing approaches a spike as the scale parameter goes
to zero. A scale parameter = 1 leaves the PDF unchanged (if the scale parameter is 1
to begin with) and non-positive scale parameters are not allowed.

Shape parameter Many probability distributions are not a single distribution, but are in fact
a family of distributions. This is due to the distribution having one or more shape
parameters. Shape parameters allow a distribution to take on a variety of shapes,
depending on the value of the shape parameter. These distributions are particularly
useful in modeling applications since they are flexible enough to model a variety of
datasets.

Single nucleotide polymorphism A single-nucleotide polymorphism (SNP, pronounced snip)
is a DNA sequence variation occurring when a single nucleotide – A, T, C, or G – in the
genome (or other shared sequence) differs between members of a species (or between
paired chromosomes in an individual). For example, two sequenced DNA fragments
from different individuals, AAGCCTA to AAGCTTA, contain a difference in a single nu-
cleotide. In this case we say that there are two alleles : C and T. Almost all common
SNPs have only two alleles. Variations in the DNA sequences of humans can affect
how humans develop diseases and respond to pathogens, chemicals, drugs, vaccines,
and other agents. SNPs are also thought to be key enablers in realizing the concept
of personalized medicine [Engle et al., 2006]. However, their greatest importance in
biomedical research is for comparing regions of the genome between cohorts (such as
with matched cohorts with and without a disease).

Systemic Treatment using substances that travel through the bloodstream, reaching and
affecting cells all over the body.

Tamoxifen Tamoxifen (Nolvadex) is a drug, taken orally as a tablet, which interferes with
the activity of estrogen, a female hormone. Estrogen can promote the development of
cancer in the breast. Tamoxifen is approved by the U.S. Food and Drug Administration
(FDA) for the prevention of breast cancer and for the treatment of breast cancer, as
well as other types of cancer.

Translational Research Translational research transforms scientific discoveries arising from
laboratory, clinical, or population studies into clinical applications to reduce cancer in-
cidence, morbidity, and mortality.
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1.8 Abbreviations

AFT Accelerated Failure Time.

AUC Area Under the Curve.

BIC Bayesian Information criterion.

BSC Brier score.

CDF Cumulative Distribution Function.

CGH Comparative Genomic Hybridization.

C-index Concordance index.

CRAN Comprehensive R Archive Network.

CVPL Cross-validated partial likelihood.

DMFS Distant Metastasis Free survival.

EASE Enrichment Analysis Systematic Explorer.

ER Estrogen Receptor.

EST Expressed Sequence Tag.

FISH Fluorescent in situ hybridization.

GENE70 Gene signature introduced in [van’t Veer et al., 2002].

GENE76 Gene signature introduced in [Wang et al., 2005].

GENIUS Gene Expression progNostic Index Using Subtypes [Haibe-Kains et al., 2009].

GG Gene expression Grade [Sotiriou et al., 2006].

GGI Gene expression Grade Index [Sotiriou et al., 2006].

GO Gene Ontology.

HER2 Human Epidermal growth factor Receptor 2.

HG Histological Grade.

IAUC Integrated area under the curve.

IBSC Integrated Brier score.

IGS Invasiveness Gene Signature [Liu et al., 2007]

IPA Ingenuity Pathway Analysis [Ingenuity Systems].

IHC ImmunoHistoChemistry.
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i.i.d. Independent and identically distributed.

KM Kaplan-Meier.

LMN Local Model Networks.

LOOCV Leave-One-Out Cross-Validation.

NA Not Available.

ONCOTYPE Gene signature for tamoxifen resistance [Paik et al., 2004].

OS Overall Survival.

P53 Gene signature for P53 mutation [Miller et al., 2005].

PCR Polymerase Chain Reaction.

pCR pathological Complete Response.

PDF Probability density function.

PgR Progesterone Receptor.

PL Partial likelihood.

PRESS Predicted REsidual Sums of Squares [Allen, 1974].

RFS Relapse Free Survival.

ROC Receiver operating characteristic.

RS Recurrence Score [Paik et al., 2004].

RTPCR Reverse Transcription Polymerase Chain Reaction.

SE Sensitivity.

SNP Single Nucleotide Polymorphism.

SP Specificity.

WOUND Gene signature of fibroblast serum response [Chang et al., 2004]

1.9 Notations

n Number of samples or patients.
p Number of input variables (probes or genes).
p′ Number of features.
X , Y , ... Upper case letters represent matrices.
x , y , ... Lower case letters represent the realization of ran-

dom variables or vectors.
X, x, ... Bold letters represent random variables.
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X Set of input variables, i.e. gene expressions.
X ′ Set of features.
B Set of objects (patients or genes).
K Set of clusters, i.e. set of objects b.
g Indicator variable for class (g = 0 for the low-risk

class and g = 1 for the high-risk class).
S Scoring function.
ti Time of event occurrence for the sample i , i ∈

{1, ... , n}.
δi Censoring indicator variable for the sample i , i ∈

{1, ... , n}.
β Coefficients of a linear regression model.
β̂ Estimated coefficients.
S(t) Survivor function depending on time t .
h(t) Hazard function depending on time t .
S(t) Survival function depending on time t .
se Standard error.
θ Set of parameters.
ν Number of parameters.
L Likelihood function.
PL Partial likelihood function.
CVPL Cross-validated partial likelihood function.
E Expectation of a random variable.
E∗ Expectation of a random variable from the uniform

distribution.
C(.) Clustering function.
d(., .) Dissimilarity (distance) function.
W (.) Within cluster dissimilarity function.
Gap(.) Gap function.
N Probability of Normal (Gaussian) distribution.
BIC(.) Bayesian information criterion function.
D Co-membership matrix.
ps Prediction strength function.
SE(., ., .) Sensitivity function.
SP(., ., .) Specificity function.
ROC(t) Receiver operating characteristic function depend-

ing on time t .
BSC(t) Brier score function depending on time t .
PRESS(m) Error in LOOCV of a linear model m as computed

by the PRESS statitstic [Allen, 1974].
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Chapter 2

Preliminaries

This chapter details the data and the state-of-the-art methods used in this thesis. The outline
of the chapter is the following. First, we describe in Section 2.1 the microarray technology
in terms of existing platforms and data generated. The characteristics of these data and the
traditional approach used to analyze such data are then introduced. Second, we present
the clustering methods, more particularly the hierarchical (Section 2.2.1) and model-based
(Section 2.2.2) clusterings. Lastly, survival analysis, set of key methods for breast cancer
prognostication and prediction, is presented in detail in Section 2.3.

2.1 Microarray Technology

To understand microarray technology, it is mandatory to have insight into the central dogma
of molecular biology [Crick, 1970], namely the production of proteins from DNA as illustrated
in Figure 2.1. Briefly, a specific sequence of DNA, called a gene, is translated into pre-mRNA
by the means of RNA polymerase. This RNA is then usually modified (splicing) by an RNA-
protein complex called the spliceosome1. Once the pre-mRNA is processed (maturation),
the resulting mRNA message is then translated by the ribosome in order to produce proteins
(translation). The expression of a particular gene is defined as the level (density) of mRNA
produced by the transcription of this gene. The set of all gene expressions is called the
transcriptome.

Microarray technology makes it possible to conduct expression profiling of thousand of
genes in parallel. The concept behind this technology relies on accurate binding, also called
hybridization, of strands of DNA with their precise complementary copies in experimental
conditions where one sequence is also bound onto a solid state substrate (glass). Basi-
cally, a microarray chip is composed of DNA fragments (probes) that represent specific gene
coding regions (see Figure 2.2). Purified RNA fragments from a biological sample are then
fluorescently or radioactively labeled and hybridized to the chip (see Figure 2.3). Once the
hybridization is complete, the chip is washed to remove non-hybridized fragments. The chip
is then processed by a laser scanner in order to detect the areas of the chip where hybridiza-
tions occurred (see Figure 2.4).

1Sometimes a pre-mRNA message may be spliced in several different ways, allowing a single gene to encode
multiple proteins (alternative splicing).
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Figure 2.1: Biology dogma, from the DNA (gene) to the protein. Please refer to [Werner,
2005] for a detailed description of the central dogma of molecular biology. Image from
[Wikipedia].

AA

Figure 2.2: Different views of a microarray chip. Left: the whole chip. Middle: a zoom on
a specific area of the chip with different set of probes. Right: a detailed view of each DNA
strand. Image from [Affymetrix].

26



 

Figure 2.3: Hybridization of purified fragments of RNA obtained from a biological sample of
interest. The fragments of RNA are labeled (red sphere). Image from [Affymetrix].

Figure 2.4: The labels (red spheres) are detected by the laser scanner in order to quantify
the level of hybridization (if any) for each area of the chip. Image from [Affymetrix].
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2.1.1 Microarray Platforms

Several variants of this technology have emerged since the late 1990s. The different mi-
croarray platforms can be classified with respect to their manufacturing (spotted cDNA or
oligonucleotide) and hybridization quantification (single or dual-channel).

In spotted microarrays, the probes are synthesized prior to deposition on the array sur-
face and are then ”spotted” onto the chip. A common approach utilizes an array of fine
pins or needles controlled by a robotic arm that is dipped into wells containing DNA probes
and then depositing each probe at specific locations on the array surface. This technique is
mainly used by research scientists to produce ”in-house” microarrays since one can easily
customize the probes and printing locations on the arrays. This provides a relatively low-cost
microarray that may be customized for each study, and avoids the costs of purchasing often
more expensive commercial arrays. However, Bammler et al. reported that in-house spot-
ted microarrays may not provide the same level of sensitivity as commercial oligonucleotide
arrays [Bammler et al., 2005].

In oligonucleotide microarrays, the probes are short sequences designed to match parts
of the sequence of known or predicted gene coding regions. Oligonucleotide arrays are
produced by printing short oligonucleotide sequences. These sequences are synthesized
directly onto the array surface. Sequences may be longer (60-mer probes such as the Ag-
ilent design) or shorter (25-mer probes produced by Affymetrix) depending on the desired
purpose; longer probes are more specific to individual target genes, and shorter probes may
be spotted in higher density across the array and are cheaper to manufacture. One tech-
nique used to produce oligonucleotide arrays includes photolithographic synthesis (Agilent
and Affymetrix) on a silica substrate, where light and light-sensitive masking agents are used
to build a sequence one nucleotide at a time across the entire array [Pease et al., 1994].

In single-channel microarrays, a single RNA source is hybridized on a chip and com-
parison of RNA levels between samples is made in-silico in a post-processing phase of the
experiment.

In dual-channel microarrays, two RNA sources are used, each labeled differently. The
second RNA source is usually either a common reference against which all samples in an
experiment are compared to, or a sample coming from a tissue under an alternative condition
(e.g. disease vs non-disease), which allows direct comparison of RNA levels.

The number of probes and their composition depend on the microarray platform. The
design of probes is a complex task since the sensitivity and specificity of a probe depend
on the length and the sequence itself (see [Kane et al., 2000] for oligonucleotode microarray
platforms). Additionally, microarray may contain large portion of expressed sequence tag
(EST), i.e. transcribed sequence from unknown genes. This makes challenging the inter-
pretation of the results obtained from the analysis of such microarrays, since a large number
of probes lack of biological annotations. We refer the reader to [Murphy, 2002; Miller et al.,
2002] for a review of issues in microarray design.

Table 2.1 gives a list of some widespread microarray platforms used in cancer research.

2.1.2 Microarray Data

Microarray technology is complex from a biological and a technical point of view (see Sec-
tions 2.1 and 2.1.1 respectively), and microarray data have some characteristics that make
their analysis challenging:
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Companies Manufacturing Hybridization
quantification

Most recent chip Probes

Applied Biosystems Spotted cDNA Single-channel Human Genome
survey Microar-
ray v2.0

32,878

Eppendorf Spotted cDNA Single-channel DualChip Mi-
croarray

294

Agilent Oligonucleotide Dual-channel Whole Human
Genome Oligo
Microarray,
G4112A

43,931

Affymetrix Oligonucletide Single-channel HG-U133 Plus
2.0

54,675

Table 2.1: Widespread microarray platforms.

• High Dimensionality: Microarray technology generates a huge amount of data since it
allows for the measurement of the expression of thousands of genes (whole genome)
in parallel.

• High level of noise: A microarray experiment requires numerous steps, ranging from
the preparation of the biological sample to the final quantification of the gene expres-
sions. The purity of the samples as well as the technical variability inherent to each
biological experiment, dramatically influence the quality of the data generated by mi-
croarray technology. Although these data are biologically informative, they are usually
noisy (see [Chudin et al., 2001] for Affymetrix platform).

• Correlated measurements: The thousands of gene expressions measured through a
microarray experiment are not independent. Indeed, numerous gene expressions are
influenced by other genes, directly or indirectly. These interactions are partly explained
by the existence of biological pathways, i.e. networks of spatiotemporal interactions
between biological components as the products of gene expressions (proteins). These
biological pathways may involve only a few to several hundreds of genes, leading to
a high correlation of their gene expressions (also called gene co-expression, see Fig-
ure 2.5). We refer the reader to [Viswanathan et al., 2008] for a review of the analyses
of biological pathways.

These characteristics must be taken into account for the analysis of microarray data, as
we will see in the following sections.

2.1.3 Microarray Data Analysis

The analysis of microarrays is a complex task requiring biological and statistical expertise,
such as sketched in Figure 2.6. First, a biological question of interest must be defined. An
experimental design is then set up to assess the type and number of experiments to be
carried out in order to be able to answer this question [The Tumor Analysis Best Practices
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DNA-repair pathways. DNA repair has a significant role
in modulating cisplatin cytotoxicity. NER, the major
pathway that is responsible for the removal of cis-
platin–DNA adducts, has several steps. These include
the recognition of DNA lesions, excision and removal of
~30-base-pair single-stranded DNA fragments that
contain the lesions, and re-synthesis and ligation of the
newly synthesized repair patch to the pre-existing
strand152. There are two distinct sub-pathways of NER:
transcription-coupled repair (TCR) and global genomic
repair (GGR). TCR refers to the preferential repair of
transcribed strands of RNA polymerase II-transcribed
active genes, whereas GGR refers to repair throughout
the genome153,154. In human cells, the lesions are recog-
nized by different sets of proteins for GGR and TCR;
XPC/HR23B is involved in GGR155, whereas the COCKAYNE

SYNDROME genes CSA and CSB are involved in TCR156.
After the different modes of initial recognition, the two
sub-pathways share common subsequent repair events;
XPA and RPA are recruited and act as another damage-
recognition complex that might participate in lesion
verification. TFIIH is then recruited. This protein com-
plex is involved in both transcription and DNA repair.
XPB and XPD, the component helicases of TFIIH,
unwind the DNA duplex that surrounds the DNA
adduct before the incision step. Subsequently, XPF-
ERCC1 and XPG, two structure-specific endonu-
cleases, incise on the 5′ and 3′ sides of the DNA adduct,
respectively, to remove the 24–32-base oligonucleotides
that contain the lesion157. These steps are irreversible.

Cisplatin–DNA adducts are removed primarily by the
NER pathway in vitro and in vivo44,158–160. It has been sug-
gested that the favourable clinical response of testicular
cancer to cisplatin reflects its intrinsically low capacity for
removal of cisplatin–DNA adducts and low levels of the
nucleotide-repair proteins XPA and ERCC1-XPF161,162.
These observations are consistent with the idea that the
modification of DNA by cisplatin is the major mecha-
nism of its cytotoxicity and that the dominant cisplatin
lesions are primarily corrected by the NER pathway.

Human cells that lack functional p53 show partial
deficiency in GGR163. The ability of p53 to modulate
GGR depends on its control of the expression of p48.
BRCA1 upregulates p48 expression in a p53-dependent
manner following cisplatin treatment164,165. p48 is
involved in DNA-damage recognition, which is missing
in most XPE cell lines and in Chinese hamster ovary cells.
In addition, GADD45, a protein that acts downstream of
p53, has a role in GGR through coupling chromatin
assembly and DNA repair. Overexpression of GADD45
protects cells from cisplatin, whereas inhibition of
GADD45 expression by antisense DNA results in GGR
deficiency and increased cell sensitivity to cisplatin166,167.

The MISMATCH REPAIR (MMR) process involves the
recognition of base-pair mismatches or other DNA
damage, and assembles a multimeric complex that
coordinates subsequent repair events. The MMR path-
way also activates other cell-cycle regulators, such as
p53, p73 and c-ABL, which mediate the induction of
cell-cycle arrest and apoptosis168. Cisplatin-induced
activation of c-ABL depends on functional MutS protein

for repair. Failures to do so leads to the acquisition and
accumulation of genetic alterations, which can ultimately
cause tumorigenesis142. The G1/S checkpoint ensures that
damaged DNA is not replicated. Cisplatin does not cause
G1 arrest in all cases. In fact, the drug fails to induce G1
arrest in synchronized wild-type MEF cells, even though
it can activate p53 and cause S-phase arrest143. The G2/M
checkpoint allows for the repair of DNA that was dam-
aged late in the S or G2 phase of the cell cycle before
mitosis to prevent damaged DNA from being segregated
into daughter cells. It has been proposed that such G2
arrest is essential to the process of engaging cell death
following cisplatin treatment144. When DNA damage
occurs, ATM and its related ATR (ataxia-telangiectasia
and Rad3-related) kinase activate checkpoint kinases
CHK1 and CHK2 through phosphorylation, which in
turn phosphorylate cell division cycle 25C (CDC25C).
The phosphorylated CDC25C promotes its binding to
14-3-3 adaptor proteins and is thereby separated from
CDC2 by translocation of CDC25C to the cytoplasm.
As a result, CDC2 phosphorylation is elevated and
causes cells to arrest in G2 (REFS 145–151).

COCKAYNE SYNDROME 

A rare inherited disorder in
which people are sensitive to
sunlight, have short stature,
and have the appearance of
premature aging. Two genes
defective in Cockayne syndrome,
CSA and CSB, have been
identified so far, both of which
code for proteins that interact
with components of the
transcriptional machinery and
with DNA repair proteins.

MISMATCH REPAIR

A DNA-repair pathway that
removes mismatched bases and
corrects the insertion or
deletion of short stretches of
(repeated) DNA.

Active p53

Cell-cycle
checkpoints

Cell-cycle
arrest

Apoptosis

DNA repair

Pro-
apoptotic
genes

P21/Waf1, MDM2, 14-3-3σ,
GADD45 and so on

ATM/ATR

Cisplatin

XPC
RPA
TFIIH
PCNA
BRCA1
CSB

Figure 5 | Transduction of DNA-damage signals: p53 and
cisplatin. The p53 pathway can partially mediate cisplatin
cytotoxicity. p53 is linked to DNA repair, cell-cycle arrest and
apoptosis. Following DNA damage, p53 is activated and
subsequently trans-activates different sets of downstream
target genes, which in turn induce various cellular responses.
ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia
and Rad3 related ; BRCA1, breast cancer 1, early onset; CSB,
Cockayne syndrome B; GADD45, growth arrest and DNA
damage 45; MDM2, mouse double minute 2 homologue;
PCNA, proliferating cell nuclear antigen; RPA, replication A;
TFIIH, transcription factor IIH; XPC, xeroderma pigmentosum,
complementation group C.

Figure 2.5: Example of biological pathway involving several genes relevant for breast cancer.
Each directed arrow represents an interaction. Transduction of DNA-damage signals: p53
and cisplatin [Wang and Lippard, 2005].

Working Group, 2004; Affymetrix, 2004]. The microarray experiments are then effectively
carried out to generate the microarray data. These data are preprocessed in order to control
their quality and to remove systematic bias that may occur during experimentation. The data
are then ready for analysis. Due to the huge number of gene expressions compared to the
number of experiments (high feature-to-sample-ratio), it is often mandatory to reduce the
dimensionality of the problem through feature transformation or selection. Depending on the
biological question, different types of analyses are performed (e.g. unsupervised analysis
like clustering, or supervised analysis like classification). Finally, the results are interpreted
and validated. This may lead to new biological questions.

In this thesis, we focus on the feature transformation/selection and data analysis steps,
while we use state-of-the-art methods for the data preprocessing step in our analyses. We
briefly introduce these steps in the following sections.

2.1.3.1 Data Preprocessing

Profiling gene expressions is an expensive, time consuming and highly noisy process. As a
consequence, it is essential to make the best use of the information contained in the gene
expression data and to ascertain their quality. In this section, we will briefly describe quality
controls and normalization procedures in case of Affymetrix technology.

Quality Controls Before starting the data analysis, preliminary checks are suggested in
order to raise evidence of quality problems. In some cases, chips could appear beyond
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Figure 2.6: Overall design of an analysis of microarray data. Blue boxes refer to steps
requiring biological expertise. Yellow boxes refer to steps requiring statistical analysis.
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correction and the only recommended solution would be to discard them. For a review on
existing methods for quality control we refer the reader to [Gentleman et al., 2005].

Here we will focus on the quality guidelines issued by [Affymetrix, 2002]. Two types of
quality controls for Affymetrix chips are adopted :

• Single-chip quality controls: These controls concern one chip at a time. An example
is the use of raw image analysis to detect hybridization artifacts like large areas of low
intensity due to air bubbles.

• Multi-chip quality controls: These controls target a set of quantities whose ”values
should be comparable over all chips of a dataset” [Affymetrix, 2002], like scale fac-
tors, background intensities and percentage of present calls. Scale factors is a robust
measure of the mean level of intensities on a chip. Background intensity is the inten-
sity measured in an empty area (with no hybridization) and returns a measure of the
background level. Percentage of present calls measures the proportion of genes be-
ing expressed (intensity significantly higher than background) on the chip. Once these
quality controls have been carried out, the identification and the consequent discard of
the anomalous chips is done.

Normalization Once the quality is assessed, an additional step is warranted to remove
potential systematic bias, which may occur at each step of a microarray experiment (e.g.
batch effect or scanner detection drift).

Normalization deals with systematic variations between experimental conditions (techni-
cal variation) which are not related to effective biological differences. Normalization methods
aim to compensate for systematic technical differences between chips in order to enhance
the analysis of biological differences between samples. Plenty of normalization methods
specific to existing gene expression profiling technologies have been proposed in literature.
Similarly to quality controls, they can be grouped in two main classes:

• Single-chip normalization methods: These are low complexity methods which use only
one single chip to define the normalization transformation (e.g. mean scaling). A
widely used single-chip normalization for Affymetrix technology is the Microarray Suite
5 (MAS5; [Affymetrix, 2002]).

• Multi-chip normalization methods: These methods use a set of chips to fit a (possibly)
complex normalization transformation. This class of methods is sometimes referred to
as model-based normalization methods. Widely used multi-chip normalization meth-
ods for Affymetrix technology are the Robust Multichip Average (RMA; [Irizarry et al.,
2003]), RMA using sequence information (GCRMA; [Wu and Irizarry, 2004]), DNA-
Chip Analyzer (dChip; [Li and Wong, 2001] and Variance Stabilization Normalization
(VSN; [Huber et al., 2002]).

An overview of these normalization methods is given in [Gentleman et al., 2005]. Several
studies addressed the question about the impact of normalization methods on gene expres-
sion analysis [Ploner et al., 2005; Bolstad et al., 2003; Harr and Schlotterer, 2006]. Although
no gold standard has arisen in recent decades, guidelines have emerged from large com-
parison studies (see [Bolstad et al., 2003] for such a study for the Affymetrix platform). The
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MicroArray Quality Control project2 (MAQC), initiated by the Food and Drug Administration
in the US, is expected to provide standards in the coming years.

The normalized microarray data for p genes and n patients are denoted by Xn×p, such
that xij represents the expression of gene j of patient i .

2.1.3.2 Dimensionality Reduction

There exist two main classes of methods to reduce the dimensionality of microarray data:
feature transformation and feature selection. Depending of the design of the analysis, it can
be decided that the analysis should use none of these methods (no dimensionality reduc-
tion), only one of them, or one method after the other (typically, feature transformation is
performed first, followed by feature selection).

Feature transformation We refer to feature transformation as the method transforming the
input space (genes) into a feature space without using outcome data (unsupervised method,
see Figure 2.7 in the next section). The feature space is usually of a lower dimension in
order to reduce the complexity of the data to analyze.

Xn×p → X ′n×p′ : p � p′ (2.1)

where X is the matrix of p gene expressions for n patient and X ′ is the matrix of p′ features
after transformation.

Some properties of feature transformation methods are recommended:

• Interpretability: If the final results of the analysis (e.g. a gene signature and its corre-
sponding prediction model) have to be interpreted from a biological point of view, the
features computed by the feature transformation methods have to be interpretable as
well.

• Information: The new features should contain all the ”relevant” information from the
original input space. The relevance of the new features depends on the biomedical
question to address (outcome data). Since feature transformation methods do not use
these supervised data, it is difficult to assess the relevance of the information after
transformation before completing the whole analysis.

• Generalizability: Most methodologies do not assess the generalizability of feature
transformation methods. This may lead to poor performance of the method in an inde-
pendent dataset since a structure found in one dataset might not be generalizable to
another dataset.

Three main methods are available for unsupervised feature transformation: compression,
kernel and clustering methods. Compression and kernel methods transform the original
input space into a new one, the dimensions of which are a linear combination of the original
variables. These new variables (called features) are difficult to interpret from a biological
point of view. Examples of compression and kernel methods are the principal component
analysis [Jolliffe, 2002] and the kernel independent component analysis [Bach and Jordan,

2http://edkb.fda.gov/MAQC/
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2003], respectively. Overview of compression and kernel methods are given in [Cristianini
and Shawe-Taylor, 2000]. Clustering methods rely on the fact that many genes are co-
expressed and that their expressions are highly correlated. The approach consists in finding
clusters of highly correlated genes and in summarizing each set of clustered genes by the
centroid (or prototype) of the cluster [Guyon and Elisseeff, 2003]. The transformed variables
(called features) are expected to have lower variance than the original ones, yet remain easy
to interpret from a biological and medical point of view.

Feature selection While the role of feature transformation is to reduce the dimensionality
of the data without looking at the association with outcome data, feature selection [Kohavi
and John, 1997; Guyon and Elisseeff, 2003] seeks which features, among the available
ones, provide the largest amount of information for the prediction task (supervised method,
see figure 2.8 in the next section). There are several benefits of feature selection: (i) facili-
tating data visualization and data understanding; (ii) reducing the measurement and storage
requirements; (iii) reducing training and utilization times of the predictive model; and (iv)
defying the curse of dimensionality to improve prediction accuracy.

Some properties of feature selection methods are recommended:

• Computational cost: Given the high dimensionality of microarray data, feature selection
methods should be computationally effective.

• Information: The subset of selected features should yield good performance for the
prediction task while keeping this subset small enough to enjoy the benefits of feature
selection

There are three main categories of feature selection methods: filter, wrapper and em-
bedded methods. Filter methods assess the relevance of features, ignoring the effects of the
selected feature subset on the accuracy of the model. Wrapper methods assess subsets of
features according to their relevance for a given model. These methods conduct a search
for a good subset using the model itself as part of the evaluation function (e.g. forward,
backward and stepwise feature selections). Embedded methods perform feature selection
as part of the model fitting and are usually specific to given models (e.g. classification trees
and regularization techniques).

In case of breast cancer prognostication, the predictive model is a survival model as
described in Section 2.3.

2.1.3.3 Data Analysis

Depending on the biological question of interest, different analyses can be performed. There
are two main classes of such analyses: unsupervised and supervised [Hastie et al., 2001;
Webb, 2003].

An unsupervised analysis consists in finding a structure in the data without using exter-
nal information (see Figure 2.7). The output of unsupervised analysis is usually a grouping
of similar objects with respect to some criterion of similarity. This is referred to as clus-
tering, a method that makes it possible to identify groups of patients with similar gene ex-
pressions (also called ”genetic portrait”) or groups of genes with similar expression (gene
co-expression). Methods for clustering are described in detail in Section 2.2.
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Figure 2.7: Unsupervised analysis. The output of the biological phenomenon (in italic) is
hidden in the data and is not actually observed by the analyst.

As shown in Figure 2.8, a supervised analysis consists in finding a relationship (in the
form of a statistical model) between input data (e.g. gene expressions) and output (e.g.
response/resistance to a treatment or the survival of a patient). There are several types of
supervised analysis, the choice of which depends on the output of interest: (i) classification
analysis if the output is a discrete variable (binary or multi-class); (ii) regression analysis if
the output is a continuous variable; or (iii) survival analysis if the output is survival data. Since
survival analysis is intensively used in this thesis, it will be described in detail in Section 2.3.

2.2 Clustering

Cluster analysis is the grouping of objects (e.g. patients or genes) in a population in order
to discover some structure in the data. The objects within a group should be similar to one
another (i.e. share some traits to be defined by the analyst), but dissimilar from objects in
other groups. Clustering is fundamentally a collection of methods of data exploration, often
used to assess the presence of natural groupings in the data. If groups do emerge, their
properties can be summarized to reduce the information on the original dataset to informa-
tion about a small number of groups; alternatively, the original dataset can be divided to
reduce the complexity of the problem. However, different methods yield different groupings,
since each one implicitly imposes a structure on the data. Moreover, these techniques will
produce groupings even if there is no ”natural” grouping in the data. Therefore, the analyst
must be aware of the structures imposed by the methods and must choose them according
to the problem under consideration.

In this section, we denote by B the set of q ≥ 2 objects to be clustered. These objects are
either the patients or the genes in microarray survival analysis but, for the sake of clarity, we
will illustrate all the methods through the clustering of patients with respect to the expressions
of few genes. Figure 2.9 illustrates such a cluster analysis of breast cancer patients for
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Figure 2.8: Supervised analysis. Since the output is actually observed, the prediction error
of the model can be estimated (supervision).

whom we have measured the expression of two genes. Note that in biclustering [Cheng and
Church, 2000; Sheng et al., 2003], the clustering is performed at both levels, i.e. patients and
genes. In this thesis, we focus our research on hierarchical (Section 2.2.1) and model-based
(Section 2.2.2) clusterings.

From a mathematical point of view, a clustering function C(B) is a partitioning of the set
B of q ≥ 2 objects into a set K of u disjoint subsets (clusters) of objects with 1 ≤ u ≤ q.
C(B) is defined as

C(B) : B → K = {k1, ... , ku} :
u⋃

j=1

kj = B (2.2)

and i , j ∈ {1, ... , u}, i 6= j : ki ∩ kj = {} (2.3)

This definition is also referred to as hard partitioning since an object b is in a single cluster
kj . Relaxing conditions (2.3) to allow for an object to belong to one or more clusters leads to
soft partitioning [Jain et al., 1999].

We mentioned above that the objects within a cluster should be similar to one another, but
dissimilar from objects in other clusters. The definition of the (dis)similarity between objects
is based on a notion of distance in the data space such as the Euclidean and correlation-
based distances (see next section).

There is a vast corpus of literature on clustering and a wide range of application areas.
Eisen et al. introduced this methodology in microarray studies [Eisen et al., 1998] but nu-
merous clustering methods have been used since this seminal article: hierarchical clustering
[Eisen et al., 1998; de Souto et al., 2008], k -means clustering [de Souto et al., 2008], parti-
tion around medoids [van der Laan et al., 2003], self-organizing maps [Tamayo et al., 1999],
biclustering [Cheng and Church, 2000; Sheng et al., 2003] and quality-based clustering [De
Smet et al., 2002; Tseng and Wong, 2005] to name a few. We will now describe hierarchical

36



gene 1

ge
ne

 2

patients

(a)

gene 1

ge
ne

 2

cluster  2

cluster  1

cluster  3

(b)

Figure 2.9: Example of clustering: (a) patients drawn in a two-dimensional space defined by
the expression of two genes; (b) cluster analysis resulting in the discovery of three clusters.

clustering and mixture models, as these two methods are the most widely used clustering
methods in microarray studies.

2.2.1 Hierarchical Clustering

Hierarchical clustering methods produce a hierarchical representation of the objects in the
dataset. The clusters at each level of the hierarchy are created by merging clusters at the
next lower level. At the lowest level, each cluster contains a single object. At the highest level,
there is only one cluster containing all the objects. The height of each branch is proportional
to the measure of dissimilarity between two merged clusters. Figure 2.10 illustrates such a
hierarchical representation, also called dendrogram.
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Figure 2.10: Example of hierarchical representation (dendrogram) produced by a hierarchical
clustering analysis of 7 patients.

Hierarchical clustering methods are non-parametric, i.e. they do not rely on a probabilistic
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model that generates the observed data. However, they require that the analyst specifies the
strategy for building the dendrogram, the measure of dissimilarity (distance) and the linkage,
i.e. the measure of dissimilarity between two clusters. We describe below the hierarchical
clustering method using the agglomerative strategy with correlation-based dissimilarity and
average linkage (see [Hastie et al., 2001; Webb, 2003] for a review of alternative strategies,
dissimilarities and linkages).

Agglomerative building strategy Agglomerative building strategy is a bottom-up approach:
the algorithm starts at the bottom of the dendrogram and at each level merges a selected
pair of clusters into a single cluster. The pair chosen for merging consists of the two clusters
with the smallest dissimilarity.

Correlation-based dissimilarity Let d(bi , bj ) be the dissimilarity function between objects
bi and bj . The dissimilarity function used by hierarchical clustering methods is required to
satisfy the following conditions:

• Non-negativity: d(bi , bj ) ≥ 0 ∀i , j

• Identification mark: d(bi , bi ) = 0 ∀i

• Symmetry: d(bi , bj ) = d(bj , bi ) ∀i , j

Correlation-based dissimilarity defines dissimilarity between two objects bi and bj through
the Pearson correlation coefficient ρ [Rodgers and Nicewander, 1988]. If highly correlated
and anti-correlated objects have to be in the same cluster, the dissimilarity is defined as

d(bi , bj ) = 1−
∣∣ρ(bi , bj )

∣∣ (2.4)

In contrast, if highly anti-correlated objects have to be in different clusters, the dissimilarity
is defined as

d(bi , bj ) = 1− ρ(bi , bj ) (2.5)

Average linkage The average linkage defines the dissimilarity between two clusters kq
and kr as the average of dissimilarities between each pair of objects belonging to different
clusters such that

d(kr , ks) =

{
1

nkr nks

∑
i∈kr

∑
j∈ks

d(bi , bj ) if r 6= s
0 if r = s

(2.6)

where nkr and nks are the number of objects in clusters kr and ks respectively. Note that the
case r = s is never met in the procedure performing the hierachical clustering (Algorithm 1).

The algorithm building a hierarchical clustering using the agglomerative strategy, the dis-
similarity and the linkage defined above is given in Algorithm 1. Let us illustrate this proce-
dure with the hierarchical clustering of patients with respect to their gene expressions. Let
X be the gene expression matrix for n patients, the set of clusters K being initialized with
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one patient per cluster. The dendrogram hcl is initialized with this first set of clusters and a
dissimilarity equal to 0. For each step of the while loop, the two least dissimilar clusters are
identified. If the two clusters contain only the gene expression profile x of a single patient,
the dissimilarity is estimated using Equation (2.4) or (2.5), otherwise, Equation (2.6) is used.
Then the set of clusters K is updated by merging the two clusters of interest, and the den-
drogram hcl is updated with the new set of clusters and the dissimilarity d ′. Therefore hcl
contains all the clusters to be merged and their dissimilarity at each step of the algorithm,
enabling the construction of the dendrogram.

Algorithm 1 Hierarchical clustering

1: procedure HCLUST(X )
2: K ← {x1, ... , xn} . each cluster contains a single object from X
3: hcl ← {K , 0} . Initialization of the dendrogram hcl with K and dissimilarity 0
4: while |K | > 1 do . more than one cluster remained in K
5: {i , j} ← argmin

i ,j

(
d(ki , kj )

)
,∀i 6= j ∈ {1, ... , |K |} . find the clusters i and j with the

lowest dissimilarity
6: d ′ ← d(ki , kj )
7: ki ← ki ∪ kj . merge these two clusters in ki
8: K ← K \ kj . remove cluster kj
9: hcl ← {hcl , {K , d ′}} . update the dendrogram

10: end while
11: return hcl
12: end procedure

2.2.1.1 Number of Clusters

Although the hierarchical clustering method does not require the specification of u, the num-
ber of clusters, it is up to the analyst to cut the dendrogram at a particular level to produce u
disjoint clusters leading to hard partitioning of the dataset (Figure 2.11). However, the ana-
lyst could cut the dendrogram at different levels, and an object could then belong to several
clusters, rendering difficult the interpretation of the results3. This clustering should represent
a ”natural” grouping in the sense that objects within each cluster are sufficiently more similar
to each other than to objects assigned to different clusters at that level. The Gap statistic
[Tibshirani et al., 2001] can be used for the selection of u, the number of clusters.

The Gap statistic is a data-driven method to estimate u∗, the number of clusters present
in the original dataset. This statistic is based on the ”within cluster dissimilarity” Wu defined
as

Wu(B) =
1
2

u∑
r=1

∑
i∈kr

∑
j∈kr

d(bi , bj )

where the kr are clusters resulting from the partitioning of the objects in u clusters.
Wu characterizes the extent to which objects assigned to the same cluster tend to be

dissimilar to one another. The values W1, W2, ... , Wu generally decrease with increasing u
3In the literature, the hierarchical clustering method is always used for hard partitioning.
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Figure 2.11: Example of dendrogram of 14 patients. The dendrogram is cut by the function
cutree to get u = 4 clusters differentiated by colors.

since a large number of cluster centers will tend to fill the feature space densely, and thus
will be closed to each object.

The intuition underlying the approach is that if there are actually u∗ distinct clusters of
objects, then for u < u∗ the clusters returned by the algorithm will each contain a subset
of the true underlying clusters. That is, the clustering function will not assign objects in the
same naturally occurring cluster to different estimated clusters. To the extent that this is
the case, the within cluster dissimilarity value will tend to decrease substantially with each
successive increase in the number of specified clusters, Wu+1 �Wu, as the natural clusters
are successively assigned to separate clusters. For u > u∗, one of the estimated clusters
must partition at least one of the natural clusters into two subsets. This will tend to provide
a smaller decrease in the criterion as u is further increased. Splitting a natural cluster,
within which the objects are all quite similar to each other, reduces the criterion less than
partitioning the union of two dissimilar ones into their proper constituents. So there will be a
sharp decrease in Wu −Wu+1 at u = u∗. An estimate of u∗ is then obtained by identifying a
”kink” in the plot of Wu as a function of u. The Gap statistic compares the curve log Wu to the
curve obtained from data uniformly distributed. It estimates the optimal number of clusters
to be the place where the gap between these two curves is largest, i.e. maximizing

Gapu(B) = E∗{log(Wu(B))} − log(Wu(B))

where E∗ denotes the expectation from the uniform distribution.

2.2.2 Mixture Modeling

Mixture modeling assumes that the data is an Independent and identically-distributed (i.i.d.)
sample from a population described by a probability density function. This density function
is characterized by a parametrized model, taken to be a mixture of component density func-
tions, where each component density describes one of the clusters. The population B of
objects b is described by a finite mixture distribution of the form

Pr(b) =
u∑

r=1

πr Pr(b|r )
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where u is the number of clusters in the population, πr are the mixing proportions such
that

∑u
r=1 πr = 1, and Pr(b|r ) is the r th probability density function of b. The quantity πr is typ-

ically interpreted as the prior probability that a data point is generated by the r th component
of the mixture.

There are three sets of parameters to estimate: the values of πr , the parameters of the
probability distribution of each of the components, and the value of u. The usual approach
to clustering using finite mixture distributions is first to specify the form of the component
distributions, Pr(b|r ). Then the number of clusters, u, is prescribed. The parameters of the
model are estimated and the objects are grouped on the basis on their estimated posterior
probabilities of cluster membership. Using Bayes’ theorem, the object b is assigned to cluster
r if

Pr(r |b) ≥ Pr(s|b) ∀r 6= s with r , s ∈ {1, ... , u}

where Pr(r |b) =
πr Pr(b|r )∑u

s=1 πs Pr(b|s)
(2.7)

Although this method leads to hard partitioning of the dataset, the analyst could easily
use the probabilities of an object b to belong to each cluster to carry out soft partitioning.

The most widely used form of mixture distribution for continuous variables is the mixture
of normal (Gaussians) distributions, where the r th component Pr(b|r ) ∼ N (µr , Σr ), where µr
and Σr are the means and covariance matrix of a multivariate normal distribution. So

Pr(b) =
u∑

r=1

πr N (b;µr , Σr ) (2.8)

The estimation of the parameters of a normal mixture model can be achieved by the max-
imum likelihood procedure through the Expectation-Maximization (EM) algorithm [Dempster
et al., 1977]. The convergence of the algorithm may be poor, depending on the data distribu-
tion. However, constraints on the covariance matrix (e.g. diagonal matrix) reduce the number
of parameters to estimate, improving the convergence rate of the EM algorithm [Everitt and
Hand, 1981; Celeux and Govaert, 1995].

2.2.2.1 Number of Clusters

The selection of u, i.e. the number of clusters, is not trivial (Section 2.2.1.1,). In the case of
mixture models, this depends on many factors, for instance the shape of clusters, the sample
size and the dimensions of the data.

The Bayesian information criterion (BIC) [Schwarz, 1978] can be used to estimate the
likelihood of a mixture model with u clusters. The BIC is the value of the maximized log-
likelihood with a penalty for the number of parameters in the model, and allows comparison
of models with different parameterizations and/or different numbers of clusters. The BIC is
defined as

BICu(B) = 2
∑
b∈B

log Pr(b; θu)− νu log(|B|)
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where B is the set of objects b, θu is the set of parameters of the mixture of u com-
ponents, νu is the number of such parameters to be estimated (depending on the model),
and

∑
b∈B log Pr(b; θu) is the likelihood of the data given the mixture model of parameters

θu. The larger the value of the BIC, the stronger the evidence for the model and number of
clusters [Fraley and Raftery, 1998; Yeung et al., 2001]. Therefore, we can select the number
of cluster on the basis of the BIC.

2.2.3 Heatmap

A heatmap is a graphical representation of data, in which the values of the variables are
represented as colors in a two-dimensional map. This makes is possible to visualize a large
quantity of values, such as in microarray data. Although the heatmap is not part of the
clustering algorithm itself, it represents an important step towards visualizing the results.
Figure 2.12 illustrates the use of a heatmap in combination with hierarchical clustering in
order to visualize the gene expressions.
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Figure 2.12: Example of heatmap in combination with a hierarchical representation (dendro-
gram) produced by a hierarchical clustering analysis of 7 patients for whom we measured
the expression two genes.

Although most publications in microarray analysis include a heatmap in combination with
hierarchical clustering, the use of heatmaps is not limited to this method. Once the clustering
results (hard or soft partitioning) are generated, the objects can be sorted in order to reflect
these results.

2.2.4 Performance Assessment

The performance assessment in clustering analysis is a difficult task since the ”truth” remains
hidden to the analyst (unsupervised learning, see Figure 2.7). However numerous criteria
have been designed in the past few years, most of them allowing for the assessment of
the stability/variance of a clustering [Fraley and Raftery, 1998; Sugar, 1998; Tibshirani et al.,
2001; Ben-Hur et al., 2002]. These criteria have also been used to identify the ”good” number
of clusters, as described in Sections 2.2.1.1 and 2.2.2.1 for hierarchical and mixture modeling
clustering, respectively. Recently, Tibshirani and Walther introduced a new framework for
performance assessment of clustering analysis [Tibshirani and Walther, 2005]. The key idea
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is to view clustering as a supervised classication problem, in which we must also estimate the
true class labels. The resulting prediction strength measure assesses how well the clusters
can be predicted from the data.

Let Xn×p and Ym×p be two datasets of n and m objects to assign into u clusters in a
p-dimensional space. Let CX (Y ) denote the use, in the dataset Y , of the clustering model
C fitted on the dataset X . To summarize the result of the clustering CX (Y ), we define the
co-membership matrix D [CX (Y )]m×m as

D [CX (Y )]ii ′ =
{

1 if i , i ′ ∈ k
0 otherwise

(2.9)

where k ∈ K is a cluster of objects. In words, D is a matrix whose entry (i , i ′) is equal to 1 if
the objects i and i ′ fall into the same cluster, 0 otherwise.

Considering X as a training set and Y as an independent validation set, the main idea is
to: (i) cluster Y into u clusters (CY (Y )); (ii) cluster X into u clusters (CX (X )); and (iii) measure
how well CX predicts co-membership in Y (CX (Y )). We can define the prediction strength of
the clustering function C as

ps = min
1≤j≤u

1
nkj (nkj − 1)

∑
i 6=i ′∈kj

D [CX (Y )]ii ′ (2.10)

where the kj ’s with 1 ≤ j ≤ u, are the clusters defined by the clustering CY (Y ) and nkj

is the number of objects in cluster kj . In words, for each validation cluster defined by the
cluster function trained on the validation set, we compute the proportion of object pairs in
that cluster that are also assigned to the same cluster by the cluster function trained on the
training set. The prediction strength is the minimum of this quantity over the u clusters in the
validation set and lies in [0, 1]. Regarding the results obtained from simulated and real data
experiments, the authors considered as good a prediction strength ps ≥ 0.8 [Tibshirani and
Walther, 2005].

Although this performance criterion was originally introduced for hard partitioning clus-
tering, it is readily generalizable to soft partitioning. Indeed, if an object is assigned to
clusters through a weighting scheme, these weights can replace the {0, 1} entries in the
co-membership matrix D and the nkj in Equation (2.10).

2.2.5 Curse of Dimensionality

Clustering analysis of microarray data may be applied in different settings depending on the
objects to cluster, either the genes or the patients. The clustering of genes is not sensitive to
the curse of dimensionality, since the dimensionality of the problem depends on the number
of patients, which is usually smaller than the number of genes (n� p). However, the number
of objects to cluster is large, and some of them may be irrelevant from a biological point of
view (e.g. a cluster of non-expressed genes). In contrast, the clustering of patients suffers
from the curse of dimensionality since the number of genes is larger than the number of
patients (p � n, high feature-to-sample ratio). Therefore, clustering may be unstable and
prone to overfitting [Everitt, 2002; Hastie et al., 2001] in this setting.

Whatever the objects to cluster (genes or patients), clustering analysis would benefit
from a reduction in the number of genes. Indeed, the robustness of clustering methods is
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usually improved by selecting only a subset of ”relevant” genes. As clustering methods are
unsupervised, we should avoid the use of supervised feature selection methods.

In microarray analysis, feature selection methods based on unsupervised filtering are
widely used. These unsupervised methods assess the quality of a gene through a criterion,
such as its variance (genes with high variance may drive more relevant biological information)
or its level of expression compared to a reference (large difference in gene expressions may
be more biologically relevant) [Wessels et al., 2005; Saeys et al., 2007; Meyer, 2008]. This
makes it possible to select a small subset of genes with the hope to remove noise and to
improve the robustness of clustering methods.

2.2.6 Pitfalls and Dangers

Although clustering methods are unavoidable for the visualization and discovery of natural
groupings in microarray data, they should be used with caution. Indeed, several issues have
emerged since the first publications in the field. First, a clustering method always finds a
structure in the data, depending on the choice of the method and the corresponding param-
eters (such as the number of clusters). Because there is no ”truth” or supervision (see Fig-
ure 2.7), it is hard to assess the quality of a clustering and to compare quantitively different
methods (see Section 2.2.4). Second, due to the high feature-to-sample ratio of microar-
ray data, clustering methods may be highly unstable, i.e. the identification of clusters may
strongly depend on the data sample or the gene expressions under consideration. To reduce
the risk of overfitting, most analysts attempt to reduce the feature-to-sample ratio by filtering
the microarray data in order to remove noisy and uninformative genes (see Section 2.2.5).
This filtering step, although beneficial, makes the clustering methods more complex to apply.

Additionally, analysts sometimes use clustering methods to perform classification, divert-
ing the original purpose of such methods. In this case, the samples are labeled with respect
to the clusters found in the dataset. The use of an unsupervised learning algorithm to per-
form a supervised task raises important issues, such as the optimization of performance: if
a clustering method is used to classify a set of patients, it is not possible to optimize any per-
formance criteria (e.g. sensitivity/specificity [Webb, 2003]) due to the fact that the clustering
method does not use the supervised data (class of the patients) to build a model.

2.2.7 Concluding Remarks

At the time work related to this thesis was begun, clustering methods, especially hierarchical
clustering, were widely used to perform class discovery and class prediction. The intrinsic
characteristics of microarray data made difficult the validation of most of these results. We
will show in Sections 4.2 and 5.3 how the integration of a priori biological knowledge for fea-
ture transformation improves the identification of breast cancer molecular subtypes through
clustering analysis.

2.3 Survival Analysis

Survival Analysis is a class of statistical methods for studying the occurrence and timing
of events [Allison, 1995]. These methods are most often applied to the study of deaths
but can also handle different kinds of events, including the onset of disease and equipment
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failure for instance. An event can be defined as a qualitative change4 that can be situated
in time. For instance a disease consists of a transition from an healthy state to a diseased
state. Moreover, the timing of the event is also considered for analysis. Ideally, the transitions
occur virtually instantaneously, and the exact time at which the event occurs is known. Some
transitions may take a little time, however, and the exact time of onset may be unknown or
ambiguous.

For survival analysis, the best observation plan is prospective. By prospective we mean
that the observation of a set of individuals starts at some well-defined point in time, and they
are followed for some substantial period of time, with the time at which the events of interest
occur being recorded. However, this observation plan is difficult to set up in practice, in that
the investigator has to wait the end of follow-up before getting the final survival data. The
alternative observation plan is retrospective, i.e. the survival data are retrieved from patients’
medical histories. Yet these data present some potential limitations:

• The data are prone to errors; some events may be forgotten, especially when the
duration of follow-up is long.

• The sample of patients may be a biased sample of the initial population of interest.

Survival data have a common feature, namely censoring, that is difficult to handle with
conventional statistical methods. Consider the following example, which illustrates the prob-
lem of censoring. A sample of breast cancer patients were followed during 10 years after
diagnosis. The event of interest was the appearance of a distant metastasis (a tumor initi-
ated from the primary breast tumor cells and that is located in another organ). The aim was
to determine how the occurrence and timing of distant metastasis appearance depended on
several variables.

If we narrow our focus on a dichotomous dependent variable (free of distant metastasis or
not), conventional methods that could analyze such data are, for example, logistic regression,
linear discriminant analysis or support vector machines (see [Duda et al., 2001] for a review
of such classification methods). But this sort of analysis ignores information on the timing of
event. It is natural to suppose that patients who have a distant metastasis after 2 years have
a more aggressive cancer than those who have distant metastasis after 9 years. At least,
ignoring that information should reduce the precision of the estimates.

One solution to this problem is to make the length of time between diagnosis and appear-
ance of distant metastasis the dependent variable, and then estimate it by a conventional
linear regression [McCullagh and Nelder, 1989]. But it remains a problem with patients who
are free of distant metastasis during the 10 year period of follow-up. Such cases are referred
to as censored. Two obvious ad-hoc methods exist for dealing with censored cases, but
neither works well. One method is to discard the censored cases, but this proportion may be
large, and can result in large biases. Alternatively, the time of event could be set at 10 years
for all those who are free of distant metastasis. This is clearly an underestimate, however,
and some of those patients may never have a distant metastasis. Again, large biases may
occur.

The methods of survival analysis allow for censoring by combining the information with
the censored and the uncensored cases [Allison, 1995].

4A qualitative change is defined as a transition from one discrete state to another.
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2.3.1 Censored Data

An observation on a random variable t is right-censored if all you know about t is that it is
greater than some value c. In survival analysis, t is typically the time of occurrence for some
event, and cases are right-censored because observation is terminated before the event
occurs.

The simplest and the most common situation is depicted in Figure 2.13. Suppose that
this figure reports some of the data from a study in which all patients are diagnosed with a
breast cancer at time t = 0 and are followed for 10 years thereafter. The horizontal axis repre-
sents time. Each of the horizontal lines labeled A through E represents a single patient. The
symbol ”o” indicates that a distant metastasis appeared at that point in time. The vertical line
at 10 is the point at which the follow-up of the patients is stopped. Any distant metastases
appearing at time 10 or earlier are observed and, hence, those occurrence times are uncen-
sored. Any appearance occurring after 10 years are not observed, and those occurrence
times are censored at time 10.

Patients A, C and D have uncensored occurrence times, while person B and E have
right-censored occurence times. Observations that are censored in this way are referred to
as singly right-censored. Singly refers to the fact that all the observations had the same
censoring time. Observations that are not censored are said to have a censoring time, in
this case 10 years. It is just that their time of distant metastasis appearance did not exceed
their censoring time. Moreover, the censoring time is fixed and is under the control of the
investigator.
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Figure 2.13: Singly right-censored data.

Random censoring occurs when observations are terminated for reasons that are not
under the control of the investigator. This situation can be illustrated in our example. Patients
who are still free of distant metastasis after 10 years are censored by a mechanism identical
to that applied to the singly right-censored data. But some patients may move away, and it
may be impossible to contact them. Some patients may die from another cause. Still other
patients may refuse to participate after, say, 5 years. These kinds of censoring are depicted
in Figure 2.14, where the symbol ”+” for the patients A and C indicates that observation is
censored at that point in time.
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Figure 2.14: Randomly censored data.

Random censoring can also be produced when there is a single termination time, but
entry times vary randomly across individuals. Consider again our example in which breast
cancer patients are followed from diagnosis until the appearance of distant metastasis. A
more likely scenario is one in which patients are diagnosed with breast cancer at various
points in time, but the study has to be terminated on a single date. All patients still free of
distant metastasis on that date are considered censored, but their survival times from diag-
nosis will vary. This censoring is considered random because the entry times are typically
not under the control of the investigator.

Standard methods of survival analysis treat the right-censored data, but require that ran-
dom censoring be noninformative. Here is how this situation is described in [Cox and Oakes,
1984]:

A crucial condition is that, conditionally on the values of any explanatory vari-
ables, the prognosis for any individual who has survived to ti should not be af-
fected if the individual is censored at ti . That is, an individual who is censored
at t should be representative of all those subjects with the same values of the
explanatory variables who survive to t. (page 5)

The best way to understand this condition is to think about possible violations. In our exam-
ple, it is plausible that those patients who refuse to continue participating in the study are
more likely to be unsatisfied with their treatment because of cancer propagation and, hence,
are at greater risk of distant metastasis. The censoring is informative assuming that mea-
sured explanatory variables do not fully account for the association between drop-out and
cancer propagation. Informative censoring can, at least in principle, lead to severe biases,
but it is difficult in most situations to assess the magnitude or direction of those biases.

In this thesis we will focus on the analysis of right-censored data with random (noninfor-
mative) censoring.
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2.3.2 Survival Distributions

The standard approaches to survival analysis are based on statistical modeling. The times
at which events occur are assumed to be realizations of some random variable t. Three ways
of describing the probability distribution of t are presented in this section: (i) the cumulative
distribution function; (ii) the probability density function; and (iii) the hazard function.

2.3.2.1 Cumulative Distribution Function

The cumulative distribution function (CDF) of a random variable t, denoted by F (t), is a
function giving the probability that the variable will be less than or equal to any specific value
t , i.e. F (t) = Pr{t ≤ t}. In survival analysis, it is more common to work with the survivor
function, defined as S(t) = Pr{t > t} = 1 − F (t). If the event of interest is the appearance
of a distant metastasis, the survivor function gives the probability of being free of metastasis
until t . Because t cannot be negative, S(0) = 1.

2.3.2.2 Probability Density Function

When variables are continuous, another useful way of describing the probability distribution
is the probability density function (PDF). This function is defined as

f (t) =
dF (t)

dt
= −dS(t)

dt
(2.11)

Equivalently, we can write

f (t) = lim
∆t→0

Pr{t ≤ t < t + ∆t}
∆t

(2.12)

2.3.2.3 Hazard Function

In the case of continuous survival data, the hazard function is actually more used than the
PDF in order to describe distributions. The hazard function is defined as

h(t) = lim
∆t→0

Pr{t ≤ t < t + ∆t | t ≥ t}
∆t

(2.13)

The function h(t) quantifies the instantaneous risk that an event will occur in the small interval
between t and t+∆t . The probability in the numerator of (2.13) is conditional on the individual
surviving to time t because individuals who have already experienced the event should not
be considered.

The definition of the hazard function in (2.13) is similar to an alternative definition of the
PDF in Equation (2.12). The only difference is that the probability in the numerator is an
unconditional probability, whereas the probability in (2.13) is conditional on t ≥ t . For this
reason, the hazard function is sometimes described as a conditional density.

The survivor function, the probability density function and the hazard function are equiv-
alent ways of describing a continuous probability distribution. The relationship between the

48



PDF and the survivor function is given directly by the Equation (2.11). Another simple for-
mula expresses the hazard function in terms of the PDF and the survivor function:

h(t) =
f (t)
S(t)

(2.14)

Together, (2.14) and (2.11) imply that

h(t) = − d
dt

log S(t) (2.15)

By integrating both sides of (2.15), we obtain an expression of the survivor function in
terms of the hazard function:

S(t) = exp
{
−
∫ t

0
h(u)du

}
(2.16)

Together with (2.14), this formula leads to

f (t) = h(t) exp
{
−
∫ t

0
h(u)du

}
(2.17)

The hazard is a dimensional quantity that has the form number of events per interval of
time. This is why the hazard is sometimes called a rate. The units in which time is measured
must be known in order to interpret the value of the hazard. Suppose that the hazard of
having a distant metastasis at some particular point in time is 0.15, with time measured in
years. This means that if the hazard stays at that value during a period of one year, one
expects that a patient will have an distant metastasis 0.15 times during that year.

2.3.2.4 Simple Hazard Models

The hazard function is a useful way of describing the probability distribution for the time
of event occurrence. Every hazard function has a corresponding probability distribution.
This section examines some rather simple hazard functions and discusses their associated
probability distributions.

The simplest hazard functions specifies that the hazard is constant over time, that is,
h(t) = λ or, equivalently log h(t) = µ. Substituting this hazard into (2.16) and carrying out
the integration implies that the survival function is S(t) = e−λt . From (2.11), we get the PDF
f (t) = λe−λt . This is the PDF for the exponential distribution with parameter λ. Thus, a
constant hazard implies an exponential distribution for the time until an event occurs (or the
time between events).

Let now the natural logarithm of the hazard be a linear function of time:

log h(t) = µ + αt

where µ and α are real constant values. Taking the logarithm is a convenient way to ensure
that h(t) is nonnegative, regardless of the value of µ, α and t . We can rewrite the equation
as

h(t) = λγt
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where λ = eµ and γ = eα. This hazard function implies that the time of event occurrence has
a Gompertz distribution (Figure 2.15). Alternatively we can assume that

log h(t) = µ + α log t

which can be rewritten as
h(t) = λtα

with λ = eµ. This equation implies that the time of event occurrence follows a Weibull distri-
bution (Figure 2.16).
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Figure 2.15: Typical hazard functions (h(t) = λeαt with λ = 1, α being the shape parameter)
for the Gompertz distribution.

The Gompertz and the Weibull distributions coincide with the exponential distribution in
the special case α = 0. When α is not zero, the hazard is either always decreasing or
always increasing with time for both distributions. One difference between them is that, for
the Weibull model, when t = 0, the hazard is either zero or infinite. With the Gompertz model,
the initial value of the hazard is λ, which can be any nonnegative number.

We can extend each of these models to allow for the linear influence of covariates. For
instance, a covariate for the situation reported by the Figure 2.13 could be the age of the
patient or tumor size at the time of diagnosis. Thus, if we have covariates x1, x2, ... , xp, we
can write

Exponential : log h(t) = µ + β1x1 + β2x2 + · · · + βpxp (2.18)
Gompertz : log h(t) = µ + αt + β1x1 + β2x2 + · · · + βpxp (2.19)

Weibull : log h(t) = µ + α log t + β1x1 + β2x2 + · · · + βpxp (2.20)
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Figure 2.16: Typical hazard functions (h(t) = λtα with λ = 1, α being the shape parameter)
for the Weibull distribution.

2.3.3 Estimating Survival Curves

Prior to 1970, the estimation of S(t) was the predominant method of survival analysis [Gross
and Clark, 1975]. Nowadays, the workhorse of the survival analysis is the Cox regression
method [Cox, 1972]. Nevertheless, survival curves are still useful for preliminary examination
of the data and for computing derived quantities from regression models (e.g. the median
survival time or the five-year probability of survival).

There are two main methods to estimate survivor functions: the Kaplan-Meier (KM) and
the life-table methods. The KM method is most suitable for small datasets with precisely
measured event times. The life-table method may be better for large datasets or when the
measurement of event times is crude [Allison, 1995].

In this thesis, we will use the KM estimator since the number of samples is usually small
in survival analysis of microarray data.

Kaplan-Meier Method The KM estimator is the most widely used method for estimating
survivor functions. Also known as the product-limit estimator, Kaplan and Meier showed that
this estimator is the nonparametric maximum likelihood estimator [Kaplan and Meier, 1958].

When there is no censored data, the KM estimator is simple and intuitive. We have
seen in Section 2.3.2 that the survivor function S(t) is the probability that a time of event
occurrence (event time) is greater than t , where t can be any nonnegative number. In the
case of no censoring, the KM estimator is just the sample proportion of observations with
time of event occurrence greater than t .

If data are right censored, the observed proportion of cases with event times greater than
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t can be biased downward, because cases that are censored before t may have experienced
an event before t without our knowledge. Suppose there are r distinct event times, t1 < t2 <
· · · < tr . At each time tj , there are nj individuals who are said to be at risk of an event. At risk
means they have not experienced an event nor have they been censored prior to time tj . If
any cases are censored at exactly tj , they are also considered to be at risk at tj . Let dj be
the number of individuals who die at time tj . The KM estimator is then defined as

Ŝ(t) =
∏

j :tj≤t

[
1−

dj

nj

]
(2.21)

for t1 ≤ t ≤ tr . In words, the quantity in brackets can be interpreted as the conditional
probabilities of surviving to time tj+1, given that one has survived to time tj . So, Ŝ(t) is the
probability to survive to time t . For t < t1 (the smallest event time), Ŝ(t) is defined to be 1. For
t > tr (the largest observed event time), the definition of Ŝ(t) depends on the configuration of
the censored observations. When there are no censored times greater than tr , Ŝ(t) is set to
Ŝ(tr ) for t > tr . When there are censored times greater than tr , Ŝ(t) is undefined for t greater
than the largest censoring time.

Here is a small example concerning the survival of breast cancer patients. Consider
the data in Table 2.2. The corresponding survival curve using the KM estimator is given in

Patient id Survival time (years) Event
1 1 1
2 2 0
3 4 1
4 5 0
5 5 1
6 7 1
7 8 0

Table 2.2: Example of survival times for breast cancer patients, the event being the appear-
ance of a distant metastasis for instance.

Figure 2.17.
An estimate of standard error of the KM estimator can be obtained by the Greenwood

formula [Greenwood, 1926; Collett, 2003]:

σ̂2
G

{
Ŝ(t)

}
= {Ŝ(t)}2

∑
j :tj≤t

dj

nj (nj − dj )

ŝeG

{
Ŝ(t)

}
= Ŝ(t)

√√√√∑
j :tj≤t

dj

nj (nj − dj )
(2.22)

This is derived by estimating each term in the product expansion of Ŝ(t) separately. Alterna-
tively, the bootstrap method can be used to estimate the variance of Ŝ(t) [Akritas, 1986]. It
can be shown that the KM estimator is asymptotically normal according to the sample size,
with mean Ŝ(t) and variance estimated by the Greenwood formula [Meier, 1975]. Intervals
of confidence around KM estimates can be computed using these results.
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Figure 2.17: Survival curve estimated by the KM estimator from data in Table 2.2. The
symbol ”+” represents the censoring.

2.3.4 Estimating Regression Models

Survivor functions can be estimated by regression models. In survival analyses, there are
two categories of such regression models: the parametric and the semiparametric regres-
sion models.

2.3.4.1 Parametric Regression Models

The class of parametric regression models is known as the accelerated failure time (AFT)
class. In its most general form, the AFT model describes a relationship between the survivor
functions of any two individuals. If Si (t) is the survivor function for individual i , then for any
other individual j , the AFT model holds that

Si (t) = Sj (φij t)

where i , j ∈ {1, ... , n} and φij is a constant that is specific to the pairs (i , j). This model says
that what makes one individual different from another is the rate at which he or she ages. A
good example is the conventional wisdom that a year for a dog is equivalent to seven years
for a human.

In practice, the model commonly used is a special case of the AFT model that is quite
similar in form to an ordinary linear regression model. Let ti be a random variable denoting
the event time for the i th individual in the sample, and let xi1, xi2, ... , xip be the values of p
covariates for that same individual. The model is then

log ti = β0 + β1xi1 + · · · + βpxip + εi (2.23)
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where εi is a random disturbance term, and β0,β1, ... ,βn are parameters to be estimated.
In a linear regression model, it is typical to assume that εi has a normal distribution with

a mean and variance that are constant over i , and that the ε’s are independent across obser-
vations. This is the case for one member of the AFT class, the log-normal model5. However,
there are several alternatives that allow distributions of ε besides the normal distribution,
but retain the assumptions of constant mean and variance, as well as independence across
observations (see [Allison, 1995] for a description of the alternatives).

The main reason for the use of such alternatives is that they have different implications
for the hazard functions, which may lead to different substantive interpretations.

Recently, parametric regression models have been eclipsed by the semiparametric re-
gression model, the renowned Cox regression model. This is why this thesis will focus on
that method.

2.3.4.2 Semiparametric Regression Models

The semiparametric regression model refers to the method first proposed in 1972 by the
British statistician Cox in his seminal paper “Regression Models and Life Tables” [Cox, 1972].
It is difficult to exaggerate the impact of this paper. In the 1992 Science Citation Index, it was
cited over 800 times, making it the most highly cited journal article in the entire literature of
statistics. In fact, [Garfield, 1990] reported that its cumulative citation count placed it among
the top 100 papers in all branches of science.

This enormous popularity can be explained by the fact that, unlike the parametric meth-
ods, Cox’s method does not require the selection of some particular probability distribution
to represent survival times. For this reason, the method is called semiparametric.

Proportional hazards model Cox made two significant innovations. First, he proposed a
model that is standardly referred to as the proportional hazards model. Second, he proposed
a new estimation method that was later named maximum partial likelihood. The term Cox
regression refers to the combination of the model and the estimation method.

Model The model is usually written as

hi (t) = λ0(t) exp
(
β1xi1 + · · · + βpxip

)
(2.24)

This equation says that the hazard for individual i at time t is the product of two factors:

• A baseline hazard function λ0(t) that is left unspecified, except that it can not be nega-
tive.

• A linear function of a set of p covariates, which is exponentiated.

The function λ0(t) can be regarded as the hazard function for an individual, whose covariates
all have values of zero.

Taking the logarithm of both sides of (2.24), we can rewrite the model as

log hi (t) = α(t) + β1xi1 + · · · + βpxip (2.25)

5This model is called the log-normal model because if log t has a normal distribution, then t has a log-normal
distribution.
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where α(t) = logλ0(t). If we further specify α(t) = α, we get the exponential model with
covariates (see Equation (2.18)). If we specify α(t) = αt , we get the Gompertz model.
Finally, if we specify α(t) = α log t , we have the Weibull model. As we will see, however, the
great attraction of Cox regression is that such choices are unnecessary. The function α(t)
can take any form whatsoever.

This model is called the proportional hazards model because the hazard for any individual
is a fixed proportion of the hazard for any other individual. It can be shown by taking the ratio
of the hazards for two individuals i and j for i , j ∈ {1, ... , n}, and applying (2.24)

hi (t)
hj (t)

= exp
{
β1(xi1 − xj1) + · · · + βp(xip − xjp)

}
(2.26)

so that λ0(t) cancels out of the numerator and denominator. As a result, the ratio of the
hazards for any two individuals is constant over time. If we graph the hazard functions for
any two individuals, the proportional hazards property implies that the functions should be
strictly parallel as depicted in Figure 2.18.

t

h(
t)

individual i

individual j

Figure 2.18: Parallel hazard functions from the proportional hazard model.

Estimation Fitting the proportional hazards model given in (2.24) to an observed set
of survival data entails estimating the unknown coefficients, β1,β2, ... ,βp, of the covariates
x1, x2, ... , xp, in the linear component of the model. The baseline hazard function λ0(t) may
also need to be estimated. It turns out that these two components of the model can be esti-
mated separately. The β’s are estimated first, and these estimates are then used to construct
an estimate of the baseline hazard function [Collett, 2003]. This is an important result, since
it means that in order to make inferences about the effect of p covariates, x1, x2, ... , xp, on
the relative hazard, hi (t)/λ0(t), we do not need an estimate of λ0(t).

Since the estimation of β’s does not take into account the baseline hazard function, the
resulting estimates are not fully efficient. This means that their standard errors are larger
than they would be with the entire likelihood function. However, the loss of efficiency is quite
small in most cases [Efron, 1977]. In return, estimates have good properties regardless of
the actual shape of the baseline hazard function. Partial likelihood estimates still have two
of the three standard properties of maximum likelihood estimates: they are consistent and
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asymptotically normal6 [Cox, 1972].
Another interesting property of partial likelihood estimates is that they depend only on

the ranks of the event times, not their numerical values. This implies that any monotone
transformation of the event times will leave the coefficient estimates unchanged.

Using the same notation as before, we have n independent individuals, i ∈ {1, ... , n}.
For each individual i , the data consist of three parts: ti , δi and xi , where ti is the time of the
event occurrence or the time of censoring, δi is an indicator variable with a value of 1 if ti is
uncensored or a value of 0 if ti is censored, and xi = [xi1, xi2, ... , xip] is a vector of p covariate
values.

An ordinary likelihood function is typically written as a product of the likelihoods for all
the individuals in the sample. On the other hand, the partial likelihood can be written as a
product of the likelihoods for all the events that are observed. So we can write

PL =
n∏

i=1

Li (2.27)

where Li is the likelihood for the i th event. Next we need to know how the Li are constructed.
This is best explained by way of an example. Consider the data in Table 2.2 where we add a
column for a covariate x . The covariate x has a value of 1 if the tumor had a positive marker
for distant metastasis, 0 otherwise (see Table 2.3).

Patient id Survival time (years) Event x
1 1 1 1
2 2 0 1
3 4 1 1
4 5 0 0
5 5 1 1
6 7 1 0
7 8 0 0

Table 2.3: Example of survival times for breast cancer patients with the covariate x .

The first event occurred to patient 1 at 1 year. To construct the partial likelihood L1 for
this event, we ask the following question: “Given that an event occurred in year 1, what is the
probability that it happened to patient 1 rather than any other patients?”. The answer is the
hazard for patient 1 at year 1 divided by the sum of the hazards for all the patients who were
at risk in that same year:

L1 =
h1(1)

h1(1) + h2(1) + · · · + h7(1)
(2.28)

The second event occurred to patient 3 in year 4. Patient 1 is no longer at risk of event
because he or she already had an event before year 4. Patient 2 was not longer at risk
because he or she was censored at year 2. So L3 has the same form as L1, but the hazards
for patient 1 and 2 are removed from the denominator:

L3 =
h3(4)

h3(4) + · · · + h7(4)
(2.29)

6Partial likelihood estimates are also approximately unbiased and their sampling distribution is approximately
normal in large samples.
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The set of all individuals who are at risk at a given point in time is often referred to as the
risk set. At year 4, the risk set consists of patients 3 to 7.

We continue in this way for each successive event in order to construct each Li . The
general form is

Li =

[
eβXi∑n

j=1 yijeβXj

]δi

(2.30)

where yij = 1 if tj ≥ ti and yij = 0 if tj < ti (the y ’s are just a convenient mechanism for
excluding from the denominator those individuals who already experienced the event and
are not part of the risk set). Moreover, the censored information at ti is excluded because
δi = 0 for those cases7.

A general expression for the partial likelihood for data with covariates from a proportional
hazards model is

PL =
n∏

i=1

[
eβXi∑n

j=1 yijeβXj

]δi

(2.31)

Once the partial likelihood is constructed, it can be maximized with respect to β just like
an ordinary likelihood function. It is convenient to maximize the logarithm of the likelihood,
which is

log PL =
n∑

i=1

δi

βXi − log

 n∑
j=1

yijeβXj

 (2.32)

Most partial likelihood programs use some version of the Newton-Raphson algorithm
[Collett, 2003] to maximize this function with respect to β.

The formula to compute the standard error of the estimated parameter β̂ are given in
Appendix A of [Collett, 2003]. These standard errors can be used to obtain confidence
intervals for β’s. In particular, assuming that the estimated parameters β̂’s follow a normal
distribution, a (100 − α)% confidence interval for a parameter β is the interval with limits
β̂ ± zα/2se(β̂), where zα/2 is the upper α/2-point of the standard normal distribution.

Stratification An extension of Cox’s model allows for multiple strata. The strata divide
the individuals into disjoint groups8, each of which has a distinct baseline hazard function
but common values for the coefficients β. Assume that individuals i = 1, ... , n1 are in stratum
1, individuals n1, ... , n1 + n2 are in stratum 2, and so on until stratum s. The hazard for an
individual i , who belongs to stratum k is

hi (t) = λk (t) exp(βxi )

Analysis of multicenter clinical studies frequently uses stratification. Because of varying
patient populations and referral patterns, the different centers in a study are likely to have
different baseline hazards, ones that do not have the simple parallel relationship shown in
Figure 2.18.

7The censored information are taken into account to estimate the likelihood L until their censoring time is
reached. This ensures to make full use of the survival data to estimate the likelihood.

8Because they are used to divide the individuals into a disjoint set of groups, stratification variables are
effectively treated as categorical.
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Computationally, the overall log partial likelihood in (2.32) becomes a sum

log PL =
s∑

k=1

log PLk

where log PLk is precisely Equation (2.32), but summed over only the individuals in stratum k .
The main advantage of stratification is that it gives the most general adjustment for con-

founding variables. The disadvantage is that no direct estimation of the importance of the
strata effect is produced.

2.3.5 Performance Assessment

The output of a survival model (prediction) depends on the class of the model: for parametric
models, the time of event occurrence is estimated; for the semi-parametric Cox’s model, the
hazard is estimated. Since Cox’s model is widely used, we will focus on the performance of
this model.

The coefficients β in Cox’s model are estimated without the baseline hazard function λ0(t)
(Section 2.3.4.2). Since all the patients have the same baseline hazard function, the order of
the patients with respect to their hazard function h(t) depends only on the linear combination
βx , also called risk score in the literature. This risk score can be transformed into hazard
or survival probability using Equation (2.16) by estimating separately the baseline hazard
function λ0(t) [Therneau and Grambsch, 2000].

Clinicians often use the predicted risk scores, hazards or survival probabilities to derive
risk groups through the application of one or several cutoffs. Although the discretization of
individual risk scores into a finite (and often small) set of risk groups may introduce bias
[Gerds and Schumacher, 2001; Royston et al., 2006], this approach is very intuitive and
conforms to the daily decision making process of doctors, e.g. the attribution of either low or
high risk to patients.

We will present in the next sections several performance criteria to assess the accuracy
of a survival model through their risk score and risk group predictions. In the following the
quantity ri and gi will denote the risk score and the risk group for patient i , respectively. r is
a real value and g is either 0 or 1 for a low- or high-risk patient, respectively9.

Properties of a ”good” performance criterion Royston and Sauerbrei defined a set
of properties that a ”good” performance criterion should possess [Royston and Sauerbrei,
2004]. The properties are as follows:

Interpretability: The performance criterion should have a simple and intuitively appealing
meaning.

Generality: The performance criterion should be applicable to risk score and risk group
predictions.

Directedness: When the risk ordering changes, the performance criterion should change
in the appropriate direction. For example, if the risk ordering were reversed then the
performance criterion should change sign.

9All the formula presented hereafter are easily generalizable to more than two risk groups.
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Unbiasedness: The observed value of the performance criterion should be an unbiased
estimate of the true value. In particular, the expectation of the performance criterion
should be close to a known value when the proposed risk ordering bears on average
no relationship with the true risk ordering. This may occur when the model is useless,
or less commonly, when the dadasets holds no information relevant for the prediction
task.

Responsiveness: If the risk gradient were reduced, for example by omission of a covari-
ate highly relevant for the prediction task, then the performance criterion should move
substantially towards a known value.

Robustness: The performance criterion should not be unduly influenced by a small number
of extreme risk predictions (outliers).

Precision: Confidence intervals for the performance criterion should be computed straight-
forwardly.

Independence of censoring: The performance criterion should be independent to the de-
gree of censoring (within the time frame of interest) in the data.

It is worth noting that all the performance criteria presented below are not independent
of the degree of censoring in survival data. However, the resulting bias is usually small (see
publications specific to each performance criterion).

2.3.5.1 Risk Score Prediction

In this section, we will present an inventory of performance criteria used for risk score pre-
diction. It should be observed that, due to the presence of censoring, there is no equivalent
in survival analysis to the concept of mean squared error, widely used in linear regression
[van Houwelingen et al., 2006]. This is the reason why different performance criteria were
developed to specifically deal with censoring.

Cross-validated partial likelihood This performance criterion was originally introduced in
penalized Cox regression to optimize the penalization term [Verweij and van Houwelingen,
1993]. However, it can be used to assess the performance of a risk prediction through the
computation of the partial log likelihood of a Cox model in a cross-validation framework.

Considering a Cox model with the risk score as input variable, h(t) = λ0(t) exp(βr ),
the cross-validated partial likelihood, denoted by CVPL, in a leave-one-out cross-validation
framework is defined as

CVPL = −
n∑

i=1

li
(
β̂(−i)

)
= −

n∑
i=1

[
l
(
β̂(−i)

)
− l (−i)

(
β̂(−i)

)]
(2.33)

where β̂(−i) is the partial likelihood estimate of the coefficient from the data without the i th

individual. The terms l(β) and l (−i)(β) are the log partial likelihoods with all the individuals
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and without the i th individual, respectively. The term li (β) is the contribution of individual i to
the log partial likelihood at β.

The risk prediction should maximize the sum of the contributions of each individual to the
log partial likelihood, and thus minimize the CVPL. The interpretation of the CVPL values is
dependent on the dataset under study. However we can normalize these values with respect
to the CVPL of the null model, i.e. β = 0. The normalized CVPL, denoted by CVPLnorm, is
defined as

CVPLnorm =
∑n

i=1
[
l
(
β̂(−i))− l (−i) (β̂(−i))]∑n

i=1
[
l(0)− l (−i)(0)

] (2.34)

where l(0) and l (−i)(0) are the log partial likelihoods of the null model with all the individuals
and without the i th individual, respectively.

It is worth noting that the CVPL is not restricted to leave-one-out cross-validation and can
easily be extended to other cross-validation frameworks.

Standard error To the best of our knowledge, there is no reference in the literature to
the standard error of the CVPL.

Properties CVPLnorm possesses the properties of generality and responsiveness.

Time-dependent ROC curve The receiver operating characteristic (ROC) curve is a stan-
dard technique for assessing the performance of a continuous variable for binary classifi-
cation [Sweets, 1988]. A ROC curve is a plot of sensitivity versus 1− specificity for all the
possible cutoff values of the continuous variable, denoted by c. In survival analysis, the
continuous variable is the risk score, and the binary class to predict is the event occurrence,
denoted by d(t). As the event occurrence is time-dependent, time-dependent ROC curves
are more appropriate than conventional ones. In [Heagerty et al., 2000], the authors pro-
posed to summarize the discrimination potential of a risk score r , estimated at the diagnosis
time t = 0, by calculating ROC curves for cumulative event occurrence by time t . Once we
define the sensitivity SE and the specificity SP as follows

SE(c, t , r ) = Pr{r > c |d(t) = 1} (2.35)
SP(c, t , r ) = Pr{r ≤ c |d(t) = 0} (2.36)

the ROC curve ROC(t) at time t is the plot of SE(c, t , r ) versus 1 − SP(c, t , r ) where the
cutoff point c is the parameter. In order to estimate the conditional probabilities in (2.35) and
(2.36), accounting for possible censoring, the nearest neighbor estimator for the bivariate
distribution function proposed by [Akritas, 1994] is used in preference to the KM estimator.
Indeed the KM estimator does not guarantee that sensitivity and specificity are monotone
(see [Heagerty et al., 2000] for an example).

From the time-dependent ROC curve ROC(t) we can summarize the performance of a
risk score by deriving the area under the curve quantity, denoted by AUC(t). Since AUC
depends on time t , we define the integrated area under the curve (IAUC) as the area under
AUC(ti ),∀i such that δi = 1.

Both AUC(t) and IAUC lie in [0, 1], the performance of the risk score produced by a
random model being equal to 0.5. The performance increases as the departure from 0.5
increases. See Figure 2.19 for ROC curves example.
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Figure 2.19: Example of ROC curves. The red diagonal line represents the performance of
the risk score of a random model. The green and violet curves represent the performance of
perfect and non perfect risk scores, respectively, such that large risk scores stand for high-
risk patients. The blue and orange curves represent the performance of perfect and non
perfect risk scores, respectively, such that large risk scores stand for low-risk patients.
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Standard error To the best of our knowledge, there is no reference in the literature to
the standard error of the AUC(t) or the IAUC.

Properties AUC(t) and IAUC possess the properties of interpretability, directedness,
unbiasedness, responsiveness and robustness.

Concordance index The concordance index (C-index) computes the probability that, for
a pair of randomly chosen comparable patients (see below), the patient with the higher risk
prediction will experience an event before the lower risk patient (or inversely). The C-index
takes the form

C-index =

∑
i ,j∈Ω 1{ri > rj}
|Ω|

(2.37)

where ri and rj stand for the risk predictions of the i th and the j th patient, respectively, and Ω
is the set of all the pairs of patients {i , j} for whom there is no tie in risk predictions (ri 6= rj )
and who meet one of the following conditions: (i) both patients i and j experienced an event
and time ti < tj or (ii) only patient i experienced an event and ti < cj .

Note that the C-index is a generalization of the AUC(t) (with similar interpretation), though
it is unable to represent the evolution of performance with respect to time [Harrell et al., 1996].

Standard error Standard error, confidence intervals and p-values for the C-index are
computed by assuming asymptotic normality [Pencina and D’Agostino, 2004].

Properties C-index possesses all the properties of a ”good” performance criterion.

Brier Score The Brier score, denoted by BSC, is defined as the squared difference be-
tween an event occurrence and its predicted probabilities at time t . Probabilities of event,
denoted by Q, can be derived from Cox’s proportional hazards model fitted with the risk
score r or risk group g predictions10. Intuitively, if a patient experiences no event at time t ,
the predicted probability of event occurrence should be close to zero. Symmetrically if the
patient experiences an event, the probability should be close to one. The BSC formalizes
this intuition by computing the time dependent quantity

BSC(t) =
n∑

i=1

(di (t)− qi (t))2W (2.38)

where the weights W are used to remove a large sample censoring bias [Graf et al., 1999;
Gerds and Schumacher, 2006].

A summary of the predictability error over time is provided by the integrated Brier score,
denoted by IBSC. Note that the lower the BSC, the better the predictability of patients’ risks
at time t . Similarly, the lower the IBSC, the better the average predictability of patients’ risks.

10As the computation of probabilities of event occurrence requires the estimation of the baseline hazard func-
tion λ0(t), the Brier score is rarely used to assess the performance of a survival model.
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For judging the (I)BSC, we usually rely on the score of a benchmark risk prediction model
that is obtained with the overall Kaplan-Meier estimator [Kaplan and Meier, 1958] for the sur-
vival function. This simple risk prediction model corresponds to a model that assigns the
same risk prediction to all patients. It ignores the information contained in explanatory vari-
ables completely and thus provides a suitable benchmark value similar to the one obtained
with the null model in linear regression.

Standard error To the best of our knowledge, there is no reference in the literature to
the standard error of the BSC(t).

Properties BSC(t) and IBSC possess the properties of generality and responsiveness.

D index The D index, denoted by D-index, is a measure of separation between the hazard
function of each patient [Royston and Sauerbrei, 2004]. It is based on an estimation of the
underlying spread of the log hazard ratios compared with the baseline hazard function in
Cox’s model (see Section 2.3.4.2)

From (2.25), Cox’s model can be written as

log hi (t) = logλ0(t) + si (2.39)

where si = βi ri with ri , the risk score for patient i .
Consider the distribution of the s values. Defining order statistics s(1) ≤ · · · ≤ s(n), we can

generally write
s(i) = µ + σui + εi

where ui is the i th expected standard Normal order statistic (rankit) in a sample size n [Blom,
1958]. Ordering the data on the si and substituting for s(i) in (2.39), we have

log hi (t) = logλ0(t) + µ + σui + εi

So far we have assumed no specific distribution for the si . Let us now suppose that si ∼
N (µ,σ2). The parameter σ is the standard deviation of the si values and is a natural measure
of separation. By definition, the regression of the s(i) on the ui is linear with E(s(i)) = µ + σui
and E(εi ) = 0.

To a first approximation, let set εi = 0. Then

log hi (t) ≈ logλ0(t) + µ + σui (2.40)

Under the normality assumption, Cox’s model (2.40) is approximately linear in each ui .
On fitting it to the data, the constant µ is absorbed into the baseline hazard function λ0(t)
and the regression coefficient σ̂ will estimate σ. The D index is defined as

D-index = exp(κσ̂)

where κ =
√

8/π.
Let zi = κ−1ui where the zi corresponding to the tied values in s(i) are averaged11. The

regression of Cox’s model (2.40) on the zi instead of the ui , estimates D directly.
11This is particularly important for risk group predictions where each group is represented by tied values.
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Scaling the ui by κ lends a direct interpretation to D, as follows. Asymptotically, the mean
of the positive zi is 0.5 and the mean of the negative zi is −0.5, deducible from the fact that

the mean of a standard half-normal distribution is
√

2
π , i.e. 1

2κ. Now suppose the s(i) are di-
chotomized by applying a cutoff at the median, or equivalently to the zi = 0. Cox’s regression
on the group-averaged zi (with values = ±0.5) provides the same regression coefficient as
Cox’s regression on a binary dummy variable distinguishing the groups (see hazard ratio in
the next section). Therefore, D is an estimate of the log hazard ratio comparing two equal-
sized risk groups. This is a natural measure of separation between two independent survivor
functions under the proportional hazards assumption.

The main advantage of the D-index compared to the hazard ratio is that the transforma-
tion of the risk scores in ranks allows for comparing performance of different datasets without
calibration since the risk scores have the same scales. Moreover, the D-index is robust to
outliers.

Standard error Once D is estimated through Cox’s model, the corresponding confi-
dence interval can be obtained from the standard error of β̂ = κσ̂ (see Section 2.3.4.2).
So, a (100 − α)% confidence interval for the true D can be obtained by exponentiating the
confidence limit for β because the distribution of the logarithm of the estimated hazard ratio
will be more closely approximated by a normal distribution than that of the hazard ratio itself
[Collett, 2003].

Properties D index possesses all the properties of a ”good” performance criterion.

2.3.5.2 Risk Group Prediction

In this section, we will present an inventory of performance criteria used for risk group pre-
diction. It should be noted that, although hypothesis testing does not allow for quantifying
the performance of a risk group prediction, it brings some insights into the significance of
this prediction compared to the performance of a null model (usually the random case).

Hypothesis testing Since the number of predicted risk groups is usually small, the corre-
sponding survivor functions (or survival curves) can be estimated. Testing for differences in
survivor functions is an important topic in survival analysis. For instance, if two groups of
patients are defined by a metastasis marker (appearance of metastasis or not), the obvious
question to ask is ”Did the two groups exhibit different survival?”. Since the survivor function
gives a complete accounting of the survival experience of each group, a natural approach for
answering this question is to test the null hypothesis that the survivor functions are the same
in the two groups: S1(t) = S2(t) ∀t > 0, where the subscripts distinguish the two groups.

There are several alternative statistics for testing this null hypothesis. We will present
here the logrank test (also known as the Mantel-Haenzel test), since this test is the most
widely used in this setting.

Logrank test Suppose that there are r distinct event times, t1 < t2 < · · · < tr across
the two groups, and that at time tj , d1j individuals in group 1 and d2j individuals in group 2
have an event occurrence, for j = 1, 2, ... , r . Suppose further that there are n1j individuals at
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risk of event occurrence in the first group just before time tj , and that there are n2j at risk in
the second group. Consequently, at time tj , there are dj = d1j + d2j event occurrences in total
out of nj = n1j + n2j individuals at risk. The situation is summarized in Table 2.4.

Group Number of
events at tj

Number surviving
beyond tj

Number at risk
just before tj

1 d1j n1j − d1j n1j
2 d2j n2j − d2j n2j
Total dj nj − dj nj

Table 2.4: Number of events at the j th event time in each of the two groups of individuals.

Each statistic can be written as a function of deviations of observed numbers of events
from expected numbers. If the null hypothesis that survival is independent of group is true,
we can therefore regard d1j , the number of events at tj in group 1, as the realization of a
random variable D1j , which can take any value in the range from 0 to min(dj , n1j ). In fact, D1j
has a distribution known as the hypergeometric distribution [Droesbeke, 1988], according to
which the probability that D1j in the first group takes the value d1j is( dj

d1j

)( nj−dj
n1j−d1j

)( nj
n1j

)
The mean of the hypergeometric random variable D1j is given by

e1j =
n1jdj

nj

so that e1j is the expected number of individuals who have an event at time tj in group 1.
For group 1, the logrank statistic can be written as

UL =
r∑

j=1

(d1j − e1j ) (2.41)

Since the event times are independent of one another, the variance of (2.41) is simply the
sum of the variances of the D1j . D1j having a hypergeometric distribution, the variance of D1j
is given by

var(D1j ) =
n1j (nj − n1j)dj (nj − dj )

n2
j (nj − 1)

(2.42)

so that the variance of UL is

var(UL) =
r∑

j=1

var(D1j ) = VL

Furthermore, it can be shown that UL has an approximate normal distribution when the
number of event times is not too small [Droesbeke, 1988]. It then follows that UL/

√
VL has

a normal distribution with zero mean and unit variance. The square of a standard normal
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random variable has a chi-squared distribution with one degree of freedom, denoted χ2
1, and

so we have that
U2

L
VL
∼ χ2

1

The p-value of the logrank test is calculated by using this chi-square statistic and a chi-square
distribution with one degree of freedom.

The logrank test readily generalizes to three or more groups, with the null hypothesis that
all groups have the same survivor function. If the null hypothesis is true, the test statistic has
a chi-square distribution with a degree of freedom equal to the number of groups minus 1.

Hazard ratio The hazard ratio can be defined as a summary of the difference between two
survival curves, representing the reduction in the risk of event between two different groups.
It is a form of relative risk. A proportional hazards regression model assumes that the relative
risk of event between the two groups is constant at each interval of time.

Let g be an indicator variable, which takes the value zero if an individual is in the first
group (e.g. low-risk group) and unity if an individual is in the second group (e.g. high-risk
group). If gi is the value of g for the i th individual in the study, i ∈ {1, ... , n}, the hazard
function for this individual can be written as

hi (t) = λ0(t) exp(βgi ) (2.43)

where gi = 1 if the i th individual is on the second condition or zero otherwise. Because of the
type of the indicator variable g, λ0(t) is the hazard function for an individual in the first group.
Moreover, the hazard function for any individual in the second group is ψλ0(t) (proportional
hazards). ψ is the relative hazard or hazard ratio (HR) with ψ = exp(β)

This is the proportional hazards model for the comparison of two groups. In this thesis,
the indicator variable g is unity for the high-risk group and zero for the low-risk group. So the
hazard ratio permits us to assess whether the risk of the high-risk group is higher than in the
low-risk group.

Standard error Once the parameter β is estimated, giving β̂, the corresponding esti-
mate of the hazard ratio is ψ̂ = exp(β̂). The confidence interval of ψ̂ can be obtained from
the standard error of β̂ (see Section 2.3.4.2). So a (100 − α)% confidence interval for the
true hazard ratio ψ, can be obtained by exponentiating the confidence limit for β because the
distribution of the logarithm of the estimated hazard ratio will be more closely approximated
by a normal distribution than that of the hazard ratio itself [Collett, 2003].

Properties HR possesses the properties of generality, directedness, responsiveness
and precision.

Other performance criteria The cross-validated partial likelihood, the concordance index,
the Brier score and the D index are applicable for risk group prediction as well, ri being
replaced by gi in the formula.
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2.3.6 Curse of Dimensionality

As for clustering methods (see Section 2.2), the regression of survival models (e.g. Cox’s
regression) is sensitive to the curse of dimensionality. Since the number of genes is larger
than the number of samples (p � n, high feature-to-sample ratio), the quality of the survival
models would benefit from the use of a reduced subset of relevant genes. In addition to the
filtering step described in Section 2.2.5, a supervised feature selection is usually performed.
This allows the analyst to select a small subset of genes relevant for the prediction of pa-
tients’ survival. However, due to the high dimensionality of microarray data, the high level
of noise and the correlation between variables (features) due to gene co-expressions (see
Section 2.1.2), the feature selection is a difficult task and is often referred to as a key step in
microarray data analysis (Section 2.1.3.2).

2.3.7 Pitfalls and Dangers

The main pitfall of survival analysis is the lack of a gold standard for performance assessment
of survival models. An inventory of performance criteria for risk score and risk group predic-
tion was presented in Sections 2.3.5.1 and 2.3.5.2, respectively. Authors usually have their
performance criterion of preference, making difficult the comparison of results from different
publications.

The main danger in the survival analysis of microarray data is the curse of dimensionality
as explained in the previous section. In addition to the computational cost to fit a survival
model with many genes, overfitting [Everitt, 2002; Hastie et al., 2001] usually prevents the
use of large scale multivariate models. Although we presented only linear survival models,
several authors have recently introduced non-linear survival models with some application
to microarray data analysis [Ripley et al., 2004; Molinaro et al., 2004; van Belle et al., 2007].
The aforementioned risk of overfitting also (even more) applies to such non-linear survival
models.

2.3.8 Concluding Remarks

Although survival analysis has a long history in epidemiology, psychology and clinical stud-
ies, these methods are not widely used in microarray data analysis, especially for breast
cancer prognosis. When this thesis was begun, the field lacked both a robust methodology
for signature extraction and a large comparative study to uncover the key characteristics of
successful risk prediction models.
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Chapter 3

State-of-the-Art

Clinicians have long recognized that breast cancer is a heterogenous disease, breast tumors
exhibiting different histo-pathological characteristics (ER status or histological grade, see
Section 1.2.1). However, traditional histo-pathological characteristics (Section 1.2.1) are
unable to capture the biologic heterogeneity of breast tumors, which makes it difficult to
assess the prognosis of patients. Indeed, patients having similar tumors in terms of histo-
pathological characteristics may exhibit dramatically different clinical outcome.

Clinical investigators have put great hope in gene expression profiling technologies and
the new type of data generated as a consequence, and view them as a means to improve
our understanding of breast cancer at the molecular level and to improve the traditional
prognostic models. These goals may be achieved by studying the molecular heterogeneity
of breast tumors and by identifying molecular markers exhibiting high prognostic value.

In the next sections, we will present the state-of-the-art of the following:

• The knowledge about the key biological processes involved in breast cancer tumorige-
nesis.

• The discovery of breast cancer molecular subtypes, which allow clinicians to better
understand which genetic traits are shared by tumors.

• The identification of global prognostic gene signatures, i.e. signatures extracted from
the whole dataset without considering the presence of different molecular subtypes.

• The identification of local prognostic gene signatures, i.e. signatures extracted from
specific molecular subtypes present in the whole dataset.

• The performance assessment of the prognostic models built from the global and local
gene signatures, and the comparison of the performance of traditional models versus
competitive gene signatures.

3.1 Breast Cancer Biology

After a quarter century of rapid advances, cancer research has generated a rich and com-
plex body of knowledge, revealing cancer to be a disease involving dynamic changes in the
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genome. Several lines of evidence indicate that tumorigenesis in humans is a multistep pro-
cess and that these steps reflect genetic alterations that drive the progressive transformation
of normal human cells into highly malignant derivatives [Hanahan and Weinberg, 2000].

Hanahan and Weinberg suggest that the vast catalog of cancer cell genotypes is a man-
ifestation of a small set of essential alterations in cell physiology that collectively dictate
malignant growth [Hanahan and Weinberg, 2000]. In breast cancer, the key biological pro-
cesses involved in tumorigenesis (Figure 3.1) are the following:

ER
signaling

HER2 
signaling

Proliferation

Tumor
invasionAngiogenesis

Immune 
response

Apoptosis

Figure 3.1: Key biological processes involved in breast tumorigenesis [Hanahan and Wein-
berg, 2000]. The arrows are drawn for presentation purpose and do not indicate the strength
of the relation between the biological processes and tumorigenesis. Actually, the biologi-
cal processes have different impact on tumor progression and are highly interconnected but
these relations are barely known.

ER signaling: The estrogen receptor (ER) is a protein found inside the cells of the female
reproductive tissue, some other types of tissue, and some cancer cells. The hormone
estrogen will bind to the receptors inside cells and may cause the cells to grow. The
majority of breast cancer cells are ER-positive and need estrogen to grow, and may
stop growing when treated with hormones that block estrogen from binding.

HER2 signaling: HER2, also called c-erbB-2 or human epidermal growth factor receptor2,
is a protein involved in normal cell growth. It is found in high levels on some breast
cancer cells and its overexpression has been found to correlate with more aggressive
forms of the disease.

70



Proliferation: Proliferation represents an increase in the number of cells as a result of cell
growth and cell division. Uncontrolled cell proliferation is one of the major hallmarks
of cancer and it has been widely investigated in breast cancer for its association with
neoplastic growth, progression, and metastatic potential.

Tumor invasion: Tumor invasion occurs when the tumor spreads beyond the layer of tissue
in which it developed and grows into surrounding, healthy tissues. It involves changes
in the physical coupling of cells to their microenvironment and activation of extracellular
proteases.

Angiogenesis: Tumor angiogenesis is the proliferation of a network of blood vessels that
penetrates into cancerous growths, supplying nutrients and oxygen and removing waste
products. Tumor angiogenesis actually starts with cancerous tumor cells releasing
molecules that send signals to surrounding normal host tissue. This signaling activates
certain genes in the host tissue that, in turn, makes proteins to encourage growth of
new blood vessels.

Immune response: The immune response is the activity of the immune system against for-
eign substances (antigens). When normal cells turn into cancer cells, some of the
antigens on their surface change. These cells, like many body cells, constantly shed
bits of protein from their surface into the circulatory system. Often, tumor antigens
are among the shed proteins. These shed antigens prompt action from immune de-
fenders, including cytotoxic T cells, natural killer cells, and macrophages. According to
the theory, patrolling cells of the immune system provide continuous bodywide surveil-
lance, catching and eliminating cells that undergo malignant transformation. Tumors
then develop when this immune surveillance system breaks down or is overwhelmed.

Apoptosis: Apoptosis is a type of cell death in which a series of molecular steps in a cell
leads to its death. This is the body’s normal way of getting rid of unneeded or abnor-
mal cells. The process of apoptosis may be blocked in cancer cells. It is also called
programmed cell death.

Each of these physiologic changes – novel capabilities acquired during tumor development –
represents the successful breaching of an anticancer defense mechanism hardwired into
cells and tissues.

3.2 Breast Cancer Molecular Subtypes

Since breast tumors are biologically heterogeneous and exhibit different clinical outcomes
(Section 1.1.1), an accurate identification of molecular subtypes would make it possible to
better understand breast cancer biology and to test the prognostic value of molecular mark-
ers with respect to these subtypes.

Bioinformatics studies dealing with the identification of breast cancer subtypes from gene
expression data (unsupervised learning, see Section 2.1.3.3) are usually confronted with the
following difficult choices:

• Which clustering method?

• Which subset of genes?
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• How many clusters?

• How to use the clustering model to classify new cases?

• How to validate the robustness of the clustering model?

Initial studies [Perou et al., 2000; Sorlie et al., 2001, 2003] used the hierarchical cluster-
ing method (Section 2.2.1) to highlight the presence of natural groupings of breast tumors.
We illustrate the method used in these initial publications in Figure 3.2. The authors selected
a subset of several hundreds of highly variant genes (e.g. the ”intrinsic gene list”, first men-
tioned in [Perou et al., 2000]). After performing hierarchical clustering, the dendrogram was
cut to identify the different subtypes, based on a subjective visualization assessment (Fig-
ure 3.2). As such, the hierarchical clustering model fitted onto the training set could not be
used directly to identify the subtype of a tumor of a new breast cancer patient. Indeed, any
new case should be added to the training set and the hierarchical clustering model should
be fitted again, leading to a potentially different dendrogram. To circumvent this difficulty,
the authors developed a method based on nearest centroid [Dudoit et al., 2002], called SSP
(Single Sample Predictor, see [Sorlie et al., 2003]): first, a mean gene expression profile
(called centroid) was created for each subtype (see Figure 3.2 for an example); second, the
gene expression profile of the new case was compared to each centroid and assigned by the
SSP to the nearest subtype centroid as determined by Spearman correlation (Figure 3.2).

We illustrate hereafter the use of this procedure in [Sorlie et al., 2001]. We can summa-
rize the new insights into breast cancer biology introduced by this study with the following
findings:

• ER and HER2 signaling pathways (see previous section for details) were shown to
have the strongest association with the gene expression profile of breast tumors. Sorlie
et al. stated that, although the intrinsic gene list includes several unknown genes, the
clustering was mainly driven by the genes related to ER (ESR1) and HER2 (ERBB2)
signaling pathways (Figure 3.3).

• Breast tumors can be grouped into at least four subtypes; these are the basal-like
(mainly ER- and HER2-), the HER2+ and two to three luminal (mainly ER+ and HER2-,
characterized by different expression levels of proliferation genes) as sketched in Fig-
ure 3.4.

• Each subtype exhibits a distinct clinical outcome, i.e. a different natural history or
response to various treatments (Figure 3.5).

Although these initial results were promising, several issues remained open [Pusztai
et al., 2006]:

• The use of hierarchical clustering did not allow for the easy classification of a new
patient and did not provide an accurate estimate of the classification uncertainty. Sorlie
et al. addressed the former issue by developing the single sample predictor (SSP) but
the later remained open.

• The use of a large number of genes – the intrinsic gene list contains more than 500
genes – might lead to a clustering model prone to overfitting (low robustness due to
high feature-to-sample ratio).
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Figure 3.2: Illustration of the method used by Perou et al. to identify breast cancer molecular
subtypes. A hierarchical clustering is performed by using the intrinsic gene list to generate
a dendrogram of patients’ tumors. The dendrogram is then cut to identify the different sub-
types (in this case, S1 to S4). A centroid is computed for each subtype. A nearest centroid
approach is used to classify a new patient’s tumor. In this case, the new tumor is highly
correlated with centroid S3, making this the nearest centroid. So the new tumor is predicted
to be of the subtype 3.
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ERBB2 amplicon

Novel (unknown)

Basal epithelial
cell-enriched

Normal breast-like

Luminal epithelial
gene (ESR1)

Gene cluster

Figure 3.3: Heatmap of the intrinsic genes in [Sorlie et al., 2001]. Sorlie et al. stated that
the clustering was mainly driven by the genes related to ER (luminal epithelial gene cluster,
ESR1) and HER2 (ERBB2 amplicon gene cluster) signaling pathways. The dendrogram at
the top of the heatmap is detailed in Figure 3.4.

Basal-like ERBB2+ Normal
Breast-like

Luminal
Subtype C

Luminal
Subtype B

Luminal
Subtype A

Figure 3.4: Breast cancer molecular subtype identification in [Sorlie et al., 2001]. In this
study, Sorlie et al. found six subtypes, namely the basal-like, ERBB2+, normal breast-like,
and luminal subtypes A, B and C.
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Figure 3.5: Survival curves of the different breast cancer molecular subtypes in [Sorlie et al.,
2001].

• The number of clusters (subtypes) that could be reliably identified from the gene ex-
pression data was selected in a subjective way (visualization assessment by the ana-
lyst). The field lacked of the use of existing statistics to address this issue.

• Similarly, only few studies used existing statistics to validate the robustness of a clus-
tering model, rendering it difficult to assess the reproducibility of the published results.

Concerned by the lack of robustness of these early results, a recent study, published by
Kapp et al., showed that only three subtypes could be robustly identified: the ESR1-/ERBB2-,
ERBB2+, and ESR1+/ERBB2- subtypes as defined by the expression of a pair of genes,
BCMP11 and ABCC11, highly correlated with ESR1 and ERBB2 genes respectively [Kapp
et al., 2006]. The authors used a hierarchical clustering method with only a pair of genes in
order to yield more robust classification (low feature-to-sample ratio). A measure similar to
prediction strength (Section 2.2.4) was used to assess the robustness of the clustering. The
robust subtypes these authors found were fairly similar to the previously described subtypes
in [Perou et al., 2000; Sorlie et al., 2001, 2003; Sotiriou et al., 2003]. This study addressed
most of the issues presented above, but the nearest centroid classifier used in the paper
suffers from the same problem as the one in [Sorlie et al., 2003], i.e. it does not provide an
accurate estimate of the classification uncertainty.

3.3 Prognostic Gene Signatures

Although we have witnessed in recent decades the development of several prognostic mod-
els using histo-pathological information (e.g. NPI or AOL, see Figure 1.2), it remains a
challenge to predict which breast cancer patients will suffer a recurrence and who should
therefore receive adjuvant therapy.
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Great hope was put into the analysis of gene expression data to improve traditional prog-
nostic models. However, the gene expression data generated through microarray technology
are complex (see Section 2.1.2), making their analysis challenging, especially in combination
with the survival data used in clinical studies. Studies dealing with breast cancer prognos-
tication from gene expression data (supervised learning, see Section 2.1.3.3) are usually
confronted to the following issues:

• The development of a prognostic model from gene expression data is prone to overfit-
ting [Everitt, 2002; Hastie et al., 2001]:

– Gene expressions are noisy, exhibit high correlation between measurements (gene
co-expressions) and are usually available for few samples only (high feature-to-
sample ratio).

– Due to the scarcity of biological samples and the cost of the technology, analysts
usually lack validation data, making it difficult to honestly assess the performance
of the prognostic models.

• The number of gene expressions used in the prognostic model may be large, making
the biological interpretation a challenge.

• The presence of censoring requires the use of methods from survival analysis in order
to make full use of the information in survival data. These methods are underused in
the field of breast cancer prognostication from microarray data.

• The field lacks a thorough performance assessment and comparison framework for
prognostic models.

In the following section we will present the state-of-the-art for the extraction of global and
local prognostic gene signatures from microarray data. These two types of gene signatures
differ from each other in the following way: the global gene signatures are extracted from the
whole dataset without considering the presence of different molecular subtypes, whereas the
local gene signatures are extracted from specific molecular subtypes present in the whole
dataset.

3.3.1 Global Prognostic Gene Signatures

Prognostication In 2002, van’t Veer et al. conducted a comprehensive genome-wide as-
sessment of gene expression profiling in order to build a new prognostic model [van’t Veer
et al., 2002]. Using a set of 78 tumor samples representative of a global population of
early (node-negative) breast cancer patients (subset of NKI dataset, see Table 5.1), these
investigators identified a set of genes whose expression is associated with patient survival
(supervised learning). The authors dichotomized the survival data into a group of patients
who had not developed distant metastasis (good prognosis, low-risk) and group of patients
who had developed distant metastasis (poor prognosis, high-risk) within the first five years
after diagnosis. A feature ranking was performed to sort the genes based on their correlation
with this survival-related binary outcome. The authors built a nearest centroid classifier [Du-
doit et al., 2002] using the set of the most relevant genes. A cross-validation was performed
to identify the best number of relevant genes to include in the nearest centroid classifier, by
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optimizing the sensitivity and the specificity of the resulting classifier. The final classifier is
composed of 70 prognostic genes and is denoted by GENE70.

Figure 3.6 sketches the heatmap of the genes included in the GENE70 signature with the
tumors sorted by their correlation with the good prognosis centroid. We can see that most of
the tumors of high-risk patients (patients having a distant metastasis with the first five years
after diagnosis, represented by white rectangles at the bottom of the figure), are correctly
classified.

The functional annotation for the genes provided insight into the underlying biological
mechanism leading to rapid metastases. Indeed, genes involved in cell cycle, invasion and
metastasis, angiogenesis, and signal transduction were significantly upregulated in the poor
prognosis signature (for example cyclin E2, MCM6, metalloproteinases MMP9 and MP1,
RAB6B, PK428, ESM1, and the VEGF receptor FLT1).

The same research group later published a validation study in which they showed the high
prognostic value of the GENE70 signature [van de Vijver et al., 2002]. The survival curves of
the good and poor prognosis groups were significantly different (logrank test p-value < 0.001,
Figure 3.7) and the good prognosis group exhibited a particularly good clinical outcome.
Moreover, the authors showed in the original article that the GENE70 signature outperforms
traditional clinical guidelines such as St Gallen and NIH.

When this thesis was started, the study by van’t Veer et al. was the first to identify a gene
signature for breast cancer prognostication. The authors did not use any a priori biological
knowledge, such as the presence of different molecular subtypes in the dataset, to build their
prognostic model. GENE70 is therefore referred to as a global prognostic gene signature.

Although the initial results were promising, these first studies had several major flaws
[Dupuy and Simon, 2007]:

• The authors did not make full use of survival data since they dichotomized the survival
data with respect to the appearance of a distant metastasis within the first five years
after diagnosis. The precise timing of the event occurrence or the censoring is then lost,
replaced by a five-year dichotomy. This might lead to poor estimation of the relevance
of each gene for survival prediction.

• Due to the small sample size of the study, feature ranking was not performed inside
the cross-validation loop. Indeed, the feature ranking was performed using the whole
dataset, while the optimization of the signature size was performed in a cross-validation
framework. This might lead to an overly optimistic estimation of the performance, as
shown in [Ambroise and McLachlan, 2002; Michiels et al., 2005].

• The dataset used in the validation study included a subset of the 78 samples from the
initial study. This might also lead to overly optimistic performance estimates [Michiels
et al., 2005].

• The datasets used in these studies contained heterogeneously treated patients (mix
of untreated patients and patients treated by either chemotherapy or hormonotherapy).
Since the treatment should affect the clinical outcome of the patients, the type of treat-
ment might be a confounding factor from a prognostic point of view.

Prediction In this thesis, we focus on the prediction of resistance to tamoxifen, a widely
used hormonotherapy for ER-positive breast cancer patients (Section 1.3.2). Tamoxifen sig-
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Figure 3.6: Heatmap of the genes included in the GENE70 signature with the tumors sorted
by their correlation with the good prognosis centroid in the training set [van’t Veer et al.,
2002]. The gene names are given in the right side of the heatmap. The solid and dashed
yellow lines represent the cutoffs selected to yield best accuracy and sensitivity, respectively.
At the bottom of the figure are the risk scores (correlation for each tumor with the good
prognosis centroid) and the corresponding risk (black indicates patients who continued to be
disease-free for at least five years, white otherwise).
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Figure 3.7: Survival curves of the poor and good prognosis groups predicted by the GENE70
signature in the population of patients having early (node-negative) breast cancers [van de
Vijver et al., 2002].
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nificantly reduces tumor recurrence in certain patients with ER-positive breast cancer, but
efficient markers predictive of treatment failure have not been identified. In 2004, two studies
published a model predictive of resistance to tamoxifen based on gene expression profiling
technology, but using different supervised learning approaches [Ma et al., 2004; Paik et al.,
2004].

In [Ma et al., 2004], the authors conducted a genome-wide analysis of a set of 60 ER-
positive breast cancer patients treated with adjuvant tamoxifen monotherapy (MGH dataset,
see Table 5.1). The survival data (distant metastasis free survival, DMFS) were dichotomized
in patients who developed distant metastasis with a median time to recurrence of four years
(high-risk) and patients who remained disease-free with median follow-up of 10 years (low-
risk). A feature ranking was performed to sort the genes based on their differential expression
between these two groups (Student t test). A set of nine genes was selected using an
arbitrary significance threshold (p-value < 0.001). A ratio of two of these genes, namely
HOXB13 and IL17BR, was shown to optimize the area under the ROC curve (Section 2.3.5).
The survival curves of the low and high-risk groups predicted by this two-gene ratio are
sketched in Figure 3.8. The two groups exhibited significantly different survival (logrank test
p-value < 7E-8) in the training set.

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

Months

Pr
ob

ab
ilit

y 
of

 m
et

as
ta

sis
-fr

ee
 s

ur
viv

al
 

Low risk
High risk

Figure 3.8: Survival curves of the low and high-risk groups predicted by the two-gene ratio
in the training set [Ma et al., 2004].

This two-gene ratio was further validated in an independent study of 206 ER-positive
breast cancer patients [Goetz et al., 2006]. The survival curves of the risk group predictions
(low-risk vs high-risk) computed with the two-gene ratio were significantly different (logrank
test p-value < 0.001), although the difference in survival was less impressive (hazard ratio
of 2.01) than in the original study.

So the authors concluded that the two-gene ratio (HOXB13:IL17BR) might be useful
for identifying patients appropriate for alternative therapeutic regimens in early-stage breast
cancer.

In [Paik et al., 2004], the authors used a multistep approach to study resistance to ta-
moxifen. First, a low-throughput real time reverse transcriptase polymerase chain reaction
(RT-PCR) method was developed to perform the gene expression profiling of sections of

80



P < 0.001

Low risk

High risk

Years

Pr
ob

ab
ilit

y 
of

 m
et

as
ta

sis
-fr

ee
 s

ur
viv

al

0 6 8 102 4
0.0

0.2

0.6

0.8

0.4

1.0

Figure 3.9: Survival curves of the low and high-risk groups predicted by the two-gene ratio
in the validation set [Goetz et al., 2006].

fixed paraffin-embedded tumor tissue. Second, the authors selected 250 candidate genes
from the published literature, genomic databases, and experiments based on DNA arrays
performed on fresh-frozen tissue [Golub et al., 1999; Perou et al., 2000; Sorlie et al., 2001,
2003; van’t Veer et al., 2002; van de Vijver et al., 2002]. Third, the authors analyzed data
from three independent clinical studies of breast cancer involving a total of 447 patients to
test the relation between the expression of the 250 candidate genes and the recurrence of
breast cancer. The predictive model fitted to these datasets consisted in the linear combi-
nation of the expression of 16 genes involved in proliferation, tumor invasion, ER and HER
signaling pathways (see Section 3.1 for details). This set of genes is referred to as ON-
COTYPE. Fourth, the authors used this model to predict the resistance to tamoxifen in an
independent dataset of 668 ER-positive early (node-negative) breast cancer patients. The
risk groups predicted by the ONCOTYPE signature exhibited significantly different survival
(logrank test p-value < 0.001), as depicted by the survival curves in Figure 3.10.

Although these initial results were also promising, these studies had several flaws:

• In [Ma et al., 2004], the authors did not make full use of survival data since they di-
chotomized the survival data with respect to the appearance of a distant metastasis
within the first four years of adjuvant tamoxifen therapy. The precise timing of the oc-
currence of the event or the censoring is then lost, replaced by a four-year dichotomy.
This may lead to poor estimation of the relevance of each gene for survival prediction.

• In [Ma et al., 2004], the sample size of the training set was small (60 patients). However,
the authors succeeded to validate their results in [Goetz et al., 2006], although the
performance in the validation study was poorer (Figure 3.9).

• In [Paik et al., 2004], the authors limited their gene expression profiling to 250 genes
extracted on the basis of their relevance in the published literature. Although the re-
sulting predictive model yielded good performance, this limitation has restricted the
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Figure 3.10: Survival curves of the low, intermediate and high-risk groups predicted by the
ONCOTYPE signature in the validation set [Paik et al., 2004].
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development of new biological insights into the mechanisms responsible for tamoxifen
resistance.

3.3.2 Local Prognostic Gene Signatures

Prognostication In 2005, Wang et al. conducted a study similar to [van’t Veer et al., 2002;
van de Vijver et al., 2002], involving 286 tumor samples from early (node-negative) breast
cancer patients (subset of VDX dataset, see Table 5.1) [Wang et al., 2005]. The authors
dichotomized the survival data in the same way as [van’t Veer et al., 2002]. Wang et al. were
the first to propose the development of a prognostic model by dividing the global population
of patients into subgroups based on their ER status as defined by immunohistochemistry.
A feature ranking was performed for the ER+ and ER- patients separately. For each of the
subgroups, risk prediction was computed as a linear combination of univariate Cox’s models.
A final risk prediction was computed by combining the risk prediction for the two subgroups.
The prognostic model was trained on part of the full dataset (115 patients) and validated on
the remaining samples (171 patients). The best number of genes to include in the prognostic
model was identified by optimizing the sensitivity and the specificity of the prognostic model
in the training set. The list of prognostic genes for the ER- and ER+ is denoted by GENE76.

Figure 3.11 (a) shows the ROC curve (Section 2.3.5) of the GENE76 risk group predic-
tions (good vs poor prognosis groups) in the validation set. We can see that the ROC curve is
far from the diagonal with an area under the curve (AUC) of 0.694. However, the authors did
not provide the significance of such an AUC compared to the null model (diagonal line). The
survival curves corresponding to these risk group predictions, are given in Figure 3.11 (b).
The difference between the two curves was significant (logrank test p-value < 0.0001) with
a hazard ratio of 5.67.

The genes included in the GENE76 signature belong to many functional classes, which
suggested that different paths could lead to disease progression. The signature included
well-characterized genes and 18 unknown genes. This finding could explain the superior
performance of this signature compared with other prognostic factors. Although genes in-
volved in cell death, cell proliferation, and transcriptional regulation were found in both groups
of patients stratified by ER status, the 60 genes selected for the ER-positive group and the
16 selected for the ER-negative group had no overlap. This result supported the idea that
the extent of heterogeneity and the underlying mechanisms for disease progression could
differ for the two ER-based subgroups of breast-cancer patients.

The performance of the GENE76 signature was further validated in an independent study
of 180 early (node-negative) breast cancer patients from multiple institutions [Foekens et al.,
2006]. The authors reported the survival curves for the good and the poor prognosis groups
as predicted by the GENE76 signature (Figure 3.12). The difference between the two curves
was significant (logrank test p-value < 0.0001), with an impressive hazard ratio of 6.50.

When beginning with this thesis, the study of Wang et al. was the first to identify a
prognostic gene signature for breast cancer taking into account the molecular heterogeneity
of the ER phenotype. Although the stratification of the dataset based on the ER status
of the tumors (defined by immunohistochemistry) is not as precise as the identification of
the molecular subtypes from microarray data, GENE76 can be considered as the first local
prognostic gene signature.

Although this prognostic model yielded a promising performance, some issues arose
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Figure 3.11: Performance of the GENE76 risk group predictions (good vs poor prognosis
groups) in the validation set [Wang et al., 2005]: (a) ROC curve; (b) Survival curves.
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Figure 3.12: Survival curves of the poor and good prognosis groups of patients with node-
negative breast cancers [Foekens et al., 2006].

regarding the methodology used:

• The authors considered only two subgroups of patients (ER- and ER+), without taking
into account the HER2+ subgroup, shown to be a relevant breast cancer molecular
subtype (see Section 3.2).

• Binary IHC evaluation of ER was used to identify the subgroups of patients, leading to
hard partitioning of the dataset (no estimation of the uncertainty of this stratification).

• The prognostic model specifically developed for ER- tumors was trained on few sam-
ples (35 patients) and yielded poor performance in validation study [Foekens et al.,
2006] (data not shown).

3.3.3 Concluding Remarks

Although these initial results for global and local gene signatures were promising, several
issues remained open:

• The relationship between traditional histo-pathological parameters and gene expres-
sions. Since such parameters were previously shown to be highly prognostic, it would
be interesting to study their molecular basis with the hope to improve their measure-
ment and their prognostic value. In this thesis, we will present the experimental findings
of such a study of histological grade in Section 5.2.1.

• The studies related to the prediction of resistance to tamoxifen considered either only
few samples [Ma et al., 2004] or few gene expressions [Paik et al., 2004]. There is a
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need for a genome-wide study with large sample size to bring new biological insights
into tamoxifen resistance and to build a robust predictor. In this thesis, we will present
the experimental findings of such a study in Section 5.2.3.

• The relationship between the prognostic genes and the breast cancer molecular sub-
types. When work began on this thesis, only few studies attempted to identify the
genes and the corresponding biological processes involved in prognosis with respect
to the breast cancer molecular subtypes. In this thesis, we will present the experimental
findings of such a study in Section 5.4.1.

• The integration of the molecular subtype identification into the development of a prog-
nostic model. Extending the method used in [Wang et al., 2005], it would be interesting
to develop a prognostic model integrating an accurate method of subtype identification
and the discovery of specific prognostic signatures. In this thesis, we will present the
experimental findings of such a study in Section 5.4.2.

3.4 Performance Assessment and Comparison of Prognostic Gene
Signatures

Performance assessment and the comparison of prediction models are key steps in microar-
ray data analysis dealing with risk prediction. These steps are often overlooked and may
be biased in favor of the risk prediction model presented in the corresponding paper, lead-
ing therefore to overly optimistic conclusions. This is particularly true in the field of breast
cancer prognostication using microarray data, in which gene signatures have been shown to
systematically outperform the traditional clinical tools in an initial paper, these conclusions
being rarely confirmed in subsequent validation studies [Eden et al., 2004; Tibshirani and
Efron, 2002].

3.4.1 Performance Assessment

Several criteria exist for the performance assessment of risk score and risk group prediction
(Section 2.3.5). However, there is no gold standard for the choice of a performance criterion
in survival analysis. Most studies dealing with risk prediction in breast cancer use the hazard
ratio as computed by Cox’s regression (Sections 2.3.4.2 and 2.3.5) or the logrank test for
difference between survival curves (Section 2.3.5.2); see [van de Vijver et al., 2002; Wang
et al., 2005], to name a few. When beginning this thesis, only few studies used alternative
performance criteria such as the concordance index in [Kattan, 2004]. To the best of our
knowledge, no study has used several criteria to assess the impact of the choice of the
performance criterion on the results of the analysis.

Although hazard ratio is by far the most widely used performance criterion in survival
analysis, it suffers from some drawbacks:

• Since the hazard ratio is estimated through Cox’s regression, the proportional hazards
assumption must hold. The impact of the departure from this assumption is difficult
to assess, although it does not seem to affect the hazard ratio estimation dramatically
[Cox, 1972] .
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• The interpretation of the hazard ratio depends on the scale of the input variable (e.g.
risk score), since this ratio represents the difference in risk per unit and per time in-
terval. For instance, let r be a risk lying in [−1, 1]; a hazard ratio of 2 means that the
hazard of a patient of risk r = 1 is twice the hazard of a patient of risk r = 0 and four
times the hazard of a patient of risk r = −1. The scale of the input variable is not always
interpretable, rendering difficult the interpretation of the hazard ratio, except in case of
ordered class indicators. In the case of binary groups, e.g. low and high-risk groups,
the hazard ratio simply represents the difference in risk between any pair of low-risk
and high-risk patients.

• The estimation of the hazard ratio is not robust with respect to the presence of outliers.

As for the logrank test, it allows the analyst to assess the significance of the risk group pre-
dictions, but it does not allow for quantifying the performance itself. This is a major drawback,
especially for performance comparison, as we will see in the next section.

3.4.2 Performance Comparison

Once the performance of the different risk prediction models is assessed, it would be inter-
esting to be able to compare them in order to highlight the potential improvement of any new
method or model for breast cancer prognostication for example. The two approaches widely
used in the field are the following:

• The multivariate Cox analysis.

• The univariate Cox analysis and naive comparison.

Let r1 be the risk predictions (risk scores or risk groups) computed by a state-of-the-art
method and r2 be the risk predictions computed by a new method.

3.4.2.1 Multivariate Cox Analysis

One of the comparison procedures widely used to show the superiority of the risk predictions
r2 over r1 is to fit a multivariate Cox model with r1 and r2 as explanatory variables:

h(t) = λ0(t) exp(β1r1 + β2r2)

From this multivariate model, the significance (p-value) of each coefficient β is computed in
order to assess the relevance of each risk prediction controlling for the other (Section 2.3.4.2).
There are three possible cases:

1. One of the risk predictions is significant, the other is not: for instance, if r2 is significant
and r1 is not, we can observe that, in most papers, the authors do not hesitate to
conclude that r2 outperforms r1. In fact, this conclusion is only partly true, depending
on the correlation between r1 and r2. Let r1 and r2 be highly correlated. Since r2 is
slightly more relevant for prediction than r1, the optimization algorithm used to estimate
the coefficients β1 and β2 in the multivariate model may estimate a large β2 and a small
(close to zero) β1. This means that, the two risk predictions being highly correlated,
they are not complementary and only r2 is required to yield good performance in the
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dataset under study. However, if the dataset is small, the superiority of r2 over r1
may be not generalizable. Moreover, this procedure does not quantify the potential
improvement of using r2 instead of r1. Now let r1 and r2 be poorly correlated. If r2 is
significant and r1 is not in the multivariate model described earlier, we can reasonably
conclude that r2 yields better performance than r1. However, the analyst is not able
to assess whether there is enough evidence in the data to ensure that the superiority
observed in the dataset under study will be generalizable.

2. Both risk predictions are significant: in these settings, the two risk scores should not be
highly correlated in order to exhibit a certain complementarity from the prediction point
of view. So the use of both risk predictions as explanatory variables in a new model
should yield better performance.

3. None are significant: both risk predictions and their combinations do not appear to be
relevant from a prediction point of view. A careful univariate analysis (see next section)
can confirm the poor performance of each risk prediction.

Using this approach, the analyst attempts to answer two different questions simultane-
ously: (i) ”Does r2 outperform r1?”; and (ii) ”Are r2 and r1 complementary?”. As we have
seen above, the conclusions may be misleading depending on the correlation between the
two risk predictions. Moreover, this approach does not quantify the potential improvement of
r2 over r1. This is particularly important in breast cancer prognostication using microarray,
since microarray technology is expensive and the experiments are difficult to carry out. So
the performance gain should be large enough to justify the use of this technology instead of
traditional prognostic models.

3.4.2.2 Univariate Cox Analysis and Naive Comparison

This approach requires to fit a univariate Cox model for each risk prediction. So for r1 and
r2, we have

h(t) = λ0(t) exp(β1r1)
h(t) = λ0(t) exp(β2r2)

where the hazard ratios for the risk predictions r1 and r2 are equal to HR1 = exp(β1) and
HR2 = exp(β2), respectively.

Unlike the multivariate analysis approach, the univariate analysis of the risk prediction r1
and r2 makes it possible to assess the performance of each prediction separately (HR), and a
naive comparison of these performance estimates can help the analyst show the superiority
of some risk prediction over another, e.g. HR2 > HR1. Such a comparison is referred to
as naive, since the standard error inherent to each performance estimation is not taken into
account. Thus the analyst is unable to assess whether there is enough evidence in the data
to ensure that the superiority observed in the dataset under study will be generalizable.

To assess the complementarity of the risk predictions under study, the analyst can build a
model combining them and assessing the performance of such a model. If the performance
of this model is better than it is for each risk prediction separately, this suggests that the risk
predictions are complementary. Again, the standard error of the performance estimation is
not taken into account, meaning that the analysist is unable to ensure that the superiority
observed in the dataset under study will be generalizable.
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3.4.3 Concluding Remarks

As mentioned above, few studies used performance criteria other than the hazard ratio and
the logrank test. As we will see in Section 4.4.1, alternative performance criteria presented
in Section 2.3.5 have attractive properties that make them good candidates for assessing
and comparing performance between risk predictions.

The two usual approaches for performance comparison described above share a com-
mon drawback; namely, they do not allow the analyst to assess the significance of the po-
tential superiority of one risk prediction over another or the combination of several risk pre-
dictions. In this thesis, we will present in Section 4.4.2 a novel framework for statistical
performance comparison to address this issue.
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Chapter 4

Methodological Contributions

This chapter details the original methods developed in this thesis. The outline of the chap-
ter is the following. First we present the set of methods used for the identification of global
prognostic gene signatures, i.e. signature extraction without taking into account the molec-
ular heterogeneity of the breast tumors. Then we describe our novel clustering model to
accurately identify the breast cancer molecular subtypes. Lastly, we present the original
methodology allowing for the identification of local prognostic gene signatures, i.e. signature
extraction integrating the breast cancer molecular identification.

For each of these topics, the methods are presented using the structure below:

1. Description of the motivations to develop a novel methodology in the context of the
state-of-the-art.

2. Description of the method itself.

3. Presentation of the corresponding algorithm if required.

(a) Step-by step description of the algorithm.
(b) Discussion of the methods’ hyperparamaters and their selection procedure.

4. Description of the pros and cons of the method.

4.1 Identification of Global Prognostic Gene Signatures

In this section, we will present the methods we developed or adapted to extract prognostic
gene signatures from the whole dataset, without taking into account the presence of the
subtypes (Section 3.2).

Due to the intrinsic complexity of microarray data (see Section 2.1.2), signature extraction
is a difficult task prone to overfitting [Everitt, 2002; Hastie et al., 2001]. Signature extraction
involves many steps as sketched in Figure 4.1. The steps are the following:

1. Feature transformation: This step allows for reducing the dimensionality of the data
in an unsupervised manner (Section 2.1.3.3). We adopt here methods which find a
structure in the microarray data and exploit such a structure to select part of the genes
or to summarize several gene expressions by a new variable, called a feature [Hastie
et al., 2001; Webb, 2003].
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2. Feature selection: This step allows for selecting a small set of relevant features in a
supervised manner (Section 2.1.3.3), to be used in the prediction model.

3. Model building: This step uses the selected features to build a risk prediction model.

In the following sections, we will present in details the methods for each step of the sig-
nature extraction (Figure 4.1). For the preprocessing step, we refer the reader to [Gentleman
et al., 2004].

4.1.1 Genome-Wide Feature Transformation

Feature transformation aims at reducing the dimensionality of the input space while retaining
most of the information present in the data (Section 2.1.3.2). In the context of the identi-
fication of global prognostic gene signatures, we seek to develop a feature transformation
method with the following properties:

• The method is able to reduce the dimensionality of genome-wide data, without a priori
biological knowledge1.

• The method keeps the new features interpretable from a biological point of view. In-
deed, the goal of the identification of prognostic gene signatures is twofold: (i) the build-
ing of an efficient prognostic model and (ii) the identification of novel prognostic genes
in the signature bringing new biological insights. Feature transformation methods com-
puting complex features should be avoided, since this might dramatically complicate
the interpretation of the prognostic signature.

• The method facilitates the computation of the features in datasets using different mi-
croarray technologies. Due to the scarcity of frozen tissue samples and the cost
of microarray technology, it is often necessary to collect numerous publicly available
datasets (Section 5.1) to answer a biomedical question of interest.

Compression and kernel methods (Section 2.1.3.2) do not fulfill these requirements since
the computed features are complex, i.e. (non-)linear combinations of large numbers of gene
expressions. In contrast, the clustering methods allow to compute features of low complexity,
i.e. summaries of highly similar gene expressions. However, some clustering-based feature
transformation methods for microarray data require the specification of the number of fea-
tures to compute [Sheng et al., 2005]. Without a priori biological knowledge, the analyst
should then tune this hyperparameter, which might be a difficult task. Other feature transfor-
mation methods alleviate this issue given that the clustering can be computed without spec-
ifying the number of clusters [Eisen et al., 1998; De Smet et al., 2002; Tseng and Wong,
2005]. Such methods include clustering based on hierarchical clustering (Section 2.2.1).
However, the biological relevance of the features is not guaranteed since a small number of
unknown genes might be clustered together, preventing any interpretation of these clusters.
Therefore the clusters of genes should include a number of annotated genes, large enough
to be able to link them to known biological pathways.

1We will see in Section 4.2.1, how to reduce the dimensionality of the input space when a priori biological
information are available.
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Our approach for genome-wide feature transformation ensures the biological interpre-
tation of the features while facilitating the computation of these features in datasets using
different microarray technologies. It consists in identifying clusters of similar genes from the
whole set of gene expressions (genome-wide data) in order to summary these clusters by
few features (Figure 4.2.):

1. Hierarchical clustering is used to compute the full dendrogram of the gene expressions.

2. This dendrogram is then cut to identify clusters of highly correlated genes.

3. An additional selection is performed to isolate the clusters including a sufficient number
of annotated genes in order to facilitate their biological interpretation.

4. Lastly, each cluster of gene expressions is summarized by a feature, therefore reducing
drastically the dimensionality of the data.

The procedure is described in Algorithm 2. First, a hierarchical clustering is performed
using the function hclust (Algorithm 1) in order to identify the nested correlation structure of
the gene expressions matrix X . The correlation-based dissimilarity and the average linkage
are used in the hierarchical clustering (Section 2.2.1).

Algorithm 2 Genome-wide feature transformation

1: procedure GW.FEATRANSF(X , h, s)
2: hcl ← hclust(X )
3: K ← cutree(hcl , h)
4: l ← {} . cluster of discarded genes
5: R ← {} . set of prototype genes
6: for all kq ∈ K do
7: if (# annotated genes in kq) < s then . use of biological annotations
8: K ← K \ kq
9: l ← {l , kq}

10: else
11: R ← {R, medoid(kq)}
12: end if
13: end for
14: return (K , R, l)
15: end procedure

Once the dendrogram is built, the set K of clusters is identified by cutting the dendrogram
at height h using the function cutree (Figure 4.2). The hyperparameter h controls for the
number of clusters and the collinearity of the gene expressions in the clusters (see next
paragraph).

In order to facilitate the biological interpretation of the clusters, those composed of less
than s annotated genes2 are removed from the set K of clusters and the corresponding
genes are stored in the cluster l referred to as the cluster of discarded genes. Therefore K is
composed of clusters with a number of annotated genes large enough to link them to known

2The annotations retrieved from public databases, see paragraph on hyperparameters.
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Figure 4.2: Genome-wide feature transformation. The gene are hierarchically clustered in
a dendrogram. The dendrogram is cut at a certain height to identify the clusters of similar
genes (clusters are differentiated by colors). Clusters that do not include at least 2 annotated
genes (the symbol ”*” represents the annotated gene) are discarded. Lastly, each remaining
cluster is summarized by a new feature.
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biological pathways. The cluster l contains all the genes which belong to clusters of small
size and/or with not enough annotations, possibly empty.

For each cluster of K , a prototype is selected. The prototype of a cluster is its medoid,
i.e. a gene selected to represent the cluster of interest and to keep track of the correlation
structure [van der Laan et al., 2003]. Indeed, since the correlation-based distance, 1− |ρ| in
Equation (2.4), is not influenced by the sign of the correlation estimation, the gene expres-
sions within a cluster may be positively or negatively correlated. We will see in Algorithm 3
how to use this set R of prototype genes to compute the features from the gene expressions
within the clusters.

The resulting clustering, composed of the set K of clusters and possibly the cluster l of
discarded genes, respects the properties presented in Equations (2.2) and (2.3). Algorithm 2
returns the set K of clusters as well as their prototypes R, and the cluster l of discarded
genes.

To complete the feature transformation, the set K of clusters is summarized by few fea-
tures in order to reduce the dimensionality of the gene expressions as described in Equa-
tion (2.1). To do so, we summarize each cluster by computing a weighted average of the
expressions of all the genes within this cluster as described in Algorithm 3. The weights are
defined as the signs of the Pearson correlation coefficient ρ of the gene expressions with the
prototype r representing the cluster of interest (Algorithm 2). This ensures to have a posi-
tive correlation structure within each cluster, each weighted gene expression being positively
correlated with the prototype gene. This procedure, from the matrix X of p gene expressions
for n patients, returns X ′, a matrix of features of lower dimensions than the original matrix of
gene expressions.

Algorithm 3 Clustering summary

1: procedure FEATRANSF.SUMMARY(X , K , R)
2: for all clusters kj ∈ K do
3: for all i ∈ {1, 2, ... , n} do
4: x ′ij ←

1
|kj |

∑
m∈kj

sign(ρ(xm, xrj ))xim . weighted average

5: end for
6: end for
7: return X ′ . matrix of features
8: end procedure

Hyperparameters There are two hyperparameters for the genome-wide approach for fea-
ture transformation: the height h at which the dendrogram is cut and the minimum number s
of annotated genes in a cluster.

The height h controls for the number of clusters and the collinearity of the gene expres-
sions in the clusters. On the one hand, if h is close to 1, only few clusters composed of large
number of genes, will be considered and the pairwise correlation of the gene expressions
within the clusters might be low. On the other hand, if h is close to 0, numerous clusters will
be considered, each containing few highly correlated gene expressions. This hyperparam-
eter can be fixed by the analyst either (i) by requiring a minimal pairwise correlation of the
gene expressions within a cluster to be h; (ii) by optimizing the performance of the clustering
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(Section 2.2.4); or (iii) by optimizing through cross-validation [Stone, 1974] the performance
of the whole procedure, from the feature transformation to the performance assessment and
comparison steps (Figure 4.1). The last procedure is prone to overfitting despite the use of
cross-validation techniques due to the high feature-to-sample ratio of the microarray data.
Therefore, we do not try to optimize this hyperparameter in our experiments and use instead
a value h = 0.5 since this value yields good results (Section 5.2.3).

Microarrays may contain numerous probes representing EST, i.e. transcribed sequence
from unknown gene, a significant portion of probes being not annotated. This makes the
corresponding gene expression not interpretable from a biological point of view. The mini-
mum number of annotated genes s can be fixed by the analyst by looking at the biological
database which are publicly available such as:

• NCBI Entrez Gene, http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene.

• e!Ensemble, http://www.ensembl.org/index.html.

• The gene ontology, http://www.geneontology.org/.

For instance, the minimum number of genes in the biological pathways present in databases
can provide insights into a good number of genes required to be annotated in a cluster to be
able to link it to these biological pathways. In our experiments described in Section 5.2.3, we
set this hyperparameter to s = 5. This facilitated the biological interpretation of the resulting
prediction model.

Pros The procedure for feature transformation we developed, has several pros in the
framework of microarray data analysis:

• The computation of a feature involves expressions of a sufficient number of annotated
genes to facilitate its biological interpretation. The use of tools based on gene ontology
[Ashburner et al., 2000] such as Ingenuity Pathway Analysis [Ingenuity Systems] and
EASE [Huang et al., 2008], enables to figure out what are the key biological processes
in which the clustered genes are involved.

• The features average correlated gene expressions, reducing the variance compared
to the original gene expressions. This is beneficial for linear regression (such as Cox
regression) as shown in [Park et al., 2007].

• The method facilitates the computation of features in different microarray platforms.
Indeed, different microarray platforms are composed of different sets of probes, repre-
senting different genes. If few genes of a cluster are absent in the microarray platform
of interest, it is still possible to compute the corresponding feature by averaging the
expressions of the remaining genes. It may also happen that, in case of very small
microarray platforms, all the genes within a cluster are missing, making the computa-
tion of the corresponding feature impossible. Fortunately, this is not the case for the
datasets used in our experiments (Section 5.1).

• The method takes advantage of the fact that the number of clusters must not be spec-
ified in hierarchical clustering to uncover the correlation structure in the original gene
expression matrix. Therefore, once the dendrogram is built, the hyperparameters may
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be tuned easily. In contrast, the use of a K -means clustering would have required to
fit a new clustering model for each number of clusters to identify [Sheng et al., 2005],
making the tuning of this hyperparameter computationally burdensome.

• The generalizability of the feature transformation method can be assessed by identify-
ing the clustering (K , l) on a dataset and by validating it (Section 2.2.4) on an indepen-
dent dataset that will be used for further analysis (feature selection, model building and
performance assessment and comparison). This avoids any spurious correlation be-
tween the feature transformation step and performance assessment, allowing to obtain
dimensionality reduction without increasing the risk of potential overfitting.

Cons

• Unlike compression methods (Section 2.1.3.2), our genome-wide feature transforma-
tion method does not allow for estimating the amount of information from the original
gene expression matrix that is retained in the smaller matrix of features.

Note that, although the dimensionality of the input data is reduced dramatically, several
hundreds of features usually remain, making of feature selection (Section 4.1.2) a necessary
step to build a robust predictive model (Section 4.1.3).

4.1.2 Stability-Based Feature Selection

Feature selection allows for selecting a subset of relevant features used to build a prediction
model (see Section 4.1.3). In the context of the identification of global prognostic gene
signatures, we seek to develop a feature selection method satisfying the following properties:

• The method is not computationally burdensome. The number of possible subsets of
features to test is exponential (2p for p features). Therefore an exhaustive search is not
feasible, even after feature transformation, and heuristic approaches are adopted (e.g.
ranking or forward/backward feature selection, see [Guyon and Elisseeff, 2003] for a
review). The search algorithm used by the feature selection method should be efficient
enough to deal with thousands of features.

• The method is robust to overfitting, meaning that the features selected as relevant in
the training are also relevant in the independent datasets. Indeed, due to the high
feature-to-sample ratio and the noise of microarray data, the feature selection task is
challenging and prone to overfitting. Several publications highlighted the lack of stability
of the feature selection from the early studies of breast cancer microarray data, no
intersection being observed between gene signatures from different datasets [Michiels
et al., 2005; Ein-Dor et al., 2005].

• The hyperparameters of the method are easily tuned. Since each feature selection
requires the definition of a stopping criterion specifying how many features should be
in the gene signature, its tuning should be efficient and intuitive.

Among the three main categories of feature selection methods, namely the filter, wrap-
per and embedded methods (Section 2.1.3.2), Wessels et al. showed that, in microarray
analysis, simple filter methods such as the feature ranking, are particularly adapted thanks
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to their low computational cost and their reduced risk of overfitting [Wessels et al., 2002,
2005]. However, the tuning of the stopping criterion, i.e. the number of selected features to
include in the signature, is a difficult task given the reduced number of samples and the need
of using the same dataset for both feature selection and model building. This is particularly
important in clinical studies involving microarray data since this determines the size of the
gene signature which is distinctive of the phenomenon under examination.

The traditional approach to identify the best signature size relies on supervised tech-
niques optimizing the performance of the predictive model [Guyon and Elisseeff, 2003]. We
will present in this thesis a novel unsupervised technique to achieve this goal.

As supervised approaches, cross-validation techniques have been proposed in literature
to select the best number of features [Ambroise and McLachlan, 2002]. Although a cross-
validation strategy relies on a multiple fold training and test strategy, it is important to remark
that it is still prone to overfitting [Everitt, 2002; Hastie et al., 2001] if it is not kept independent
with respect to the model building procedure (see Section 4.1.3). For instance re-using a
dataset already employed to select a feature set (e.g. by cross-validation) in order to assess
the quality of a predictive model (e.g. again by cross-validation) would return over-optimistic
results about the quality of the modeling procedure [Ambroise and McLachlan, 2002]. An-
other limitation of cross-validation criteria is due to the fact that, like other sampling frame-
works (e.g. bootstrap), it generates different subsets of features for each fold or repetition
[Michiels et al., 2005; Ein-Dor et al., 2005]. This is particularly annoying in a clinical setting
where the variability of the selection reduces the confidence of the doctors in the efficiency
of the feature selection procedure.

As an alternative to supervised approaches, Dunne et al. introduced an unsupervised
technique, i.e. a technique which does not rely on the performance optimization of the predic-
tive model [Dunne et al., 2002]. This technique attempts to improve the wrapper approach
for feature selection by assessing its stability in a sampling framework. Since this initial
publication, the stability assessment of feature selection methods received much attention,
especially in high dimensional spaces [Kalousis et al., 2005, 2007; Davis et al., 2006; Krizek,
2008]. In this thesis, we develop a stability criterion to identify a good signature size for fea-
ture ranking in microarray data analysis. Although the stability of the signature only reduces
the variance component of the prediction error (expressed conventionally as a bias/variance
sum; [Turney, 1995; Friedman, 1996]), the large amount of noise and the high dimensionality
of the input space suggest that this term could be the most important to address in the bias-
variance trade-off. The second advantage deriving from the use of stability measures would
be a reinforced confidence of doctors in the gene signature outcomes of clinical studies.

4.1.2.1 Feature Ranking

Feature ranking, whose procedure is described in Algorithm 4 consists in two steps:

1. The relevance of each individual feature is assessed according to a univariate scoring
function S supposed to be proportional to the relevance of the feature of interest with
respect to the prediction task.

2. All the features are ranked in a decreasing order according to the scores returned by
S.
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Let y be the survival data, i.e. the time of event t and the censoring indicator c for each
patient. Let X be the matrix of p features such that xj is the j th feature of a patient. Since
the prediction task concerns the prognostic of breast cancer patients, the relevance of each
feature is defined as its prognostic ability, i.e. the prediction of patients’ survival. Each of the
performance criteria for survival analysis presented in Section 2.3.5 can be used as scoring
function S. Hereafter, we will use the concordance index as scoring function to assess the
prognostic relevance of the features since this performance criterion enjoys nice properties
in survival analysis (Section 4.4.1). So, the scoring function is defined as

S(xj , y ) =
∑

k ,l∈Ω 1{xkj > xlj}
|Ω|

(4.1)

where xkj and xlj stand for the value of the j th feature of the k th and the l th patient, respectively,
and Ω is the set of all the pairs of patients {k , l} for whom there is no tie in feature values
(xkj 6= xlj ) and who meet one of the following conditions: (i) both patients k and l experienced
an event and time tk < tl or (ii) only patient k experienced an event and tk < cl where cl is
the censoring time of patient l .

The procedure returns the set of features F containing the k features x(1), x(2), ... , x(k ) hav-
ing the highest ranking with respect to their prognostic relevance s. This subset of features
(signature) will be used to build the prognostic model (see Section 4.1.3).

Algorithm 4 Feature ranking

1: procedure FEATRANK(X , y , k )
2: for all j ∈ {1, 2, ... , p} do
3: sj ← S(xj , y ) . scoring function
4: end for
5: F ← {x(1), x(2), ... , x(k )} where rank(s(i)) < rank(s(j)) if i < j
6: return F . the k most relevant features
7: end procedure

Hyperparameter The only hyperparameter of the method is the number k of selected fea-
tures (called the signature size). In the next section, we present an original unsupervised
criterion used to tune this hyperparameter. This novel criterion allows to select the signature
size yielding the highest stability.

4.1.2.2 Signature Stability

We present here a criterion assessing the ranking stability with respect to signature size in
order to select the size leading to the most stable signature. We adopt an approach based on
sampling scheme [Efron, 1981; Good, 2006] to estimate the stability of the feature ranking.
The idea is to estimate the distribution of signatures identified through the feature ranking
by sampling the original dataset to derive a robust estimate of the signature stability. We
illustrate the procedure in Figure 4.3:

1. We sample the original dataset of n patients and select n′ patients such that n′ < n.
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2. From these n′ patients, we compute the feature ranking to select the k most relevant
features (Algorithm 4).

3. The resulting signature is stored and this procedure is performed m times.

4. The stability of the selection of the k most relevant features, denoted by Stab(k ), is
then estimated from the signatures computed at each of the m sampling steps.

Note that we use sampling without replacement (e.g. jackknife or cross-validation; [Efron,
1981]) since the ties artificially created by sampling with replacement (e.g. bootstrap; [Efron,
1981]) require complex procedures to be handled properly in survival analysis [Therneau and
Grambsch, 2000]. In the experiments described in Chapter 5, we use a sampling procedure
which typically samples 90% of the patients to the original dataset.

Dataset

sampling

Signatures

Feature ranking

n patients

n' patients

k features

m times

Signature 
stability

m signatures 

Stab(k)

Figure 4.3: Sampling procedure to estimate the stability of a signature of size k selected
through feature ranking. The stability of the signature of size k is denoted by Stab(k ).

Let illustrate this procedure by an example. Let X be a dataset of p = 100 features for
n = 300 patients. We want to assess the stability of a signature of size k = 4 by sampling
m = 1000 times the original dataset by selecting randomly 90% of the patients each time, so
n′ = 270. For each sampling, the signature including the 4 most relevant features is identified
through the feature ranking (Algorithm 4). We can observe in Figure 4.4 that the signature
is not always composed of the same 4 features but its composition depends on the sample.
Nine features were selected at least once during the sampling procedure. The stability is
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proportional to the blue area of the 4 most frequently selected features. In this example,
the signature is fairly stable since the red area is small, the top 4 features being selected
frequently during the sampling procedure.

feature10

feature2

feature34

feature24

feature5

feature67

feature45

feature89

feature1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency

Figure 4.4: Example of stability assessment of a signature composed of 4 features. Smaller
is the red area, more stable is the signature.

More formally, let X be the set of p features and freq(xj ) be the number of sampling steps
in which a feature xj ∈ X has been selected out of m samplings without replacement. The
set X is sorted by frequency into the set {x(1), x(2), ... , x(p)} where freq(x(i)) ≥ freq(x(j)) if i < j
where i , j ∈ {1, 2, ... , p}. A first measure of stability for a given signature size k is returned
by

Stab(k ) =
∑k

l=1 freq(x(l))
k m

This statistic is equal to 1 if the same signature is always selected over sampling steps. In

the case of no overlap, Stab is equal to
1
m

if k > 0 and 0 otherwise. However, since the
Stab statistic can be made artificially high by simply increasing k , we formulate an adjusted
statistic

Stabadj (k ) = max
{

0, Stab(k )− k
p

}
Thanks to the penalty factor k

p , the Stabadj criterion is now equal to 0 for the two extreme
cases, i.e. when either no feature or all of them are selected. Moreover, the penalty increases
proportionally with the signature size.

Pros The stability-based feature ranking we developed is an intuitive technique which en-
joys interesting properties:

• Computational scalability: Feature ranking is computationally efficient since it requires
only the computation of the p scores (p being the number of features in the dataset)
and the consequent sorting.
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• Statistical scalability: Feature ranking, like many filter methods, avoids the estimation
of multivariate models to account for the relevance of a set of features. If on the one
hand, this exposes the technique to some redundancy (large bias), on the other hand it
preserves the approach from overfitting risks (low variance) [Hastie et al., 2001]. This
property is particularly appealing in the context of microarray data analysis where the
noise is high and the number of features is large, even after feature transformation.

• Hyperparameter: The assessment of signature stability allows for the automatic tuning
of the number of selected features while reinforcing confidence for stable gene signa-
tures.

Cons

• Feature ranking usually leads to the selection of a subset of redundant features, i.e.
features that could be avoided in the model building procedure without affecting the
prediction accuracy [Jakulin and Bratko, 2004]. However, we will see in Section 4.1.3
that the redundancy of the features may be managed at the prediction level by the use
of a combination scheme to build the prediction model.

• Feature ranking does not allow to detect complementary features [Wienholt and Send-
hoff, 1996; Meyer, 2008]. If several features are irrelevant for prediction individually but
highly relevant when combined, feature ranking will not select them since their rank will
be large.

4.1.3 Robust Model Building

There exist several alternatives to perform the complex task of building a risk prediction
model. Here we enumerate some of the hardest dilemmas to be solved:

• Linear vs non-linear: On the one hand, linear models are simpler, more stable than
non-linear models but unable to deal with complex dependencies. On the other hand,
the higher complexity of non-linear models reduces the prediction bias at the cost of
an increased variance.

• Univariate vs multivariate: Multivariate models deal more effectively with redundancies
than univariate ones but demand ill-conditioned and computationally intensive estima-
tion procedures.

The nature of microarray data (large dimensionality even after feature transformation, few
samples and high noise) evokes the potential risks of a non-linear and multivariate approach.
Actually, we showed in [Haibe-Kains et al., 2008c] that multivariate linear models for risk
prediction in breast cancer, although promising in the training set, yielded poor performance
in independent datasets. Non-linear risk prediction models, through the use of support vector
machine for survival analysis [van Belle et al., 2007], yielded poor performance as well (data
not shown). These results highlighted the risk of overfitting with overcomplex risk prediction
models. At the same time, a simple univariate model would not be able to account for the
multiple interactions underlying the cancer phenomenon. Consequently, there is a demand
for a multivariate model which should be able at the same time to return accurate prediction
and to avoid instability. An attractive solution to this problem comes from the additive models.
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Additive models are alternatives to multivariate regression models to deal efficiently with the
curse of dimensionality [Stone, 1985; Hastie and Tibshirani, 1990].

Let y be the dependent variable (response) and X be the matrix of k independent vari-
ables (predictors). The traditional multivariate linear regression models assume y takes a
linear form

y = β1x1 + β2x2 + · · · + βkxk (4.2)

The additive models estimate an additive approximation to the multivariate regression func-
tion such that

y = s1(x1) + s2(x2) + · · · + sk (xk ) (4.3)

where s1(x1), s2(x2), ... , sk (xk ) are smooth functions of the independent variables.
The benefits of an additive approximation are twofold. First, since each of the individ-

ual additive terms is estimated using a univariate smoother, the curse of dimensionality is
avoided, at the cost of not being able to approximate universally. Second, estimates of the
individual terms explain how the dependent variable changes with the corresponding inde-
pendent variables.

The interest of such an additive approach in microarray data analysis lies in the fact that
the linear combination of several univariate models returns a model which is simple, yet able
to address multivariate tasks. What is less attractive in a context of survival analysis of mi-
croarray data is the need of estimating the smooth functions s (backfitting algorithm; [Hastie
and Tibshirani, 1990]). A simple method avoiding to fit these functions is provided by combi-
nation schemes, commonly used in machine learning literature [Perrone and Cooper, 1993;
Kittler et al., 1998], to combine several models in an effective manner. The following sec-
tion presents the additive solution adopted in the context of the model building for signature
extraction.

4.1.3.1 Combination of Models

Several techniques to combine prediction models have been proposed in the literature (see
[Kittler et al., 1998] for a review). In this section, we develop an additive prognostic model
which combines a set of univariate models to make the risk prediction. Such an additive
model takes the form

r =
k∑

j=1

sj (xj ) (4.4)

where {x1, x2, ... , xk} is the set of selected features (signature of size k , see Section 4.1.2.1),
sj (xj ) is the risk predicted by the j th univariate model (smooth function) and r is the final risk
prediction.

Let us start considering the use of univariate Cox models in (4.4). The univariate Cox
model using feature xj as explanatory variable can be written as

h(t) = λ0(t) exp(βjxj )
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Since the patients have all the same baseline hazard function λ0(t), the risk of a patient
depends only on rj = βjxj , called the risk score in the literature Section 2.3.5. We can thus
rewrite (4.4) as

r =
k∑

j=1

βjxj (4.5)

where the βj are fitted using xj only (univariate model) in contrast to Equation (4.2).
Due to the complexity of microarray data, we seek to avoid the estimation of the coeffi-

cients βj in order to reduce the risk of overfitting. Equal weights linear regression may be
an effective answer to this issue. Indeed, several authors showed that under specific con-
ditions, a linear model with equal weights yields robust performance in a validation setting
[Wainer, 1976; Green, 1977]. These conditions are the knowledge of the ”direction” of the
coefficients, i.e. sign(βj ), and the positive inter-correlation of the explanatory variables xj .
Under these conditions, a linear model with equal weights may yield similar or even better
performance in independent data than linear model whose weights are estimated from the
training data [Wainer, 1976]. Compared to data-driven estimation of the regression coeffi-
cients, equal weights regression enjoys two interesting properties. First, it is not sensitive to
overfitting since the data are not used to estimate the coefficients. Second, the presence of
outliers does not influence the coefficients estimation.

Based on these results, we put equal weight to each univariate model by replacing βj

by β′j = 1
k sign(βj ). Since only the ”direction” of the coefficients βj should be known to es-

timate β′j , as an alternative to the fitting of a univariate Cox model, we can use the scores
(concordance indices) computed during the feature selection step (Section 4.1.2.1) such that

β′j =
{
− 1

k if C-index < 0.5
+ 1

k otherwise

Equation (4.5) then becomes

r =
k∑

j=1

β′j xj =
1
k

k∑
j=1

sign(βj )xj (4.6)

which reduces Equation (4.5) to a signed average of the selected features xj with respect to
the ”direction” of their prognostic value.

Pros The method for risk prediction model building we propose above is adapted to suvival
analysis of microarray data since:

• Additive combination of univariate models allows for addressing multivariate tasks,
while exhibiting lower variance than multivariate models.

• Although additive combination of univariate models is less efficient than multivariate
modeling to deal with the potential complementarity between features, this class of
models is less sensitive to the presence of redundant features, also known as multi-
collinearity in regression. It is typically the case when feature ranking is used to select
the relevant features to build the risk prediction model as in this thesis. In this setting,
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the prediction accuracy of a multivariate prediction model may dramatically decrease
with respect to its complexity, i.e. the number of features used in the model [Myers,
1994]. Additive models are therefore appealing to manage the issue of multicollinearity
since only univariate models are used.

• The method used to build the risk prediction model has low computational cost as it
avoids the estimation of univariate survival models (e.g. Cox’s model) by reusing the
scores computed during the feature selection step and by following an equal weights
approach.

Cons

• Additive models are not able to deal with complementarity of features [Wienholt and
Sendhoff, 1996]. This may lead to a lower prediction accuracy of the model.

4.1.4 Concluding Remarks

The original signature extraction methodology presented in this section was designed keep-
ing the following constraints in mind:

• Interpretability: The prognostic gene signature and the resulting predictive model should
be interpretable from a biological point of view. To do so, we developed a genome-
wide feature transformation method which facilitates the biological interpretation of the
resulting features (average of highly correlated annotated gene expressions, see Sec-
tion 4.1.1) and a simple, yet robust model enabling the interpretation of the contribu-
tions of each feature (Section 4.1.3).

• Robustness: The prognostic model should be useable in datasets using different mi-
croarray technologies, implying that numerous probes may be missing. In order to
respect this constraint, we developed a genome-wide feature transformation method
(Section 4.1.1) facilitating the computation of features in various microarray datasets.

• Computational efficiency: The signature extraction should be computationally efficient
since we are dealing with thousands of gene expressions. The drastic dimensionality
reduction through the genome-wide feature transformation (Section 4.1.1), the fast fea-
ture selection through stability-based feature ranking (Section 4.1.2.1) and the robust
model building through the combination of univariate models (Section 4.1.3.1) facilitate
the extraction of prognostic gene signature from microarray data.

• Accuracy: The prognostic model should yield good performance. Since the variance
term in the bias-variance trade-off has a strong impact on the model performance [Ben-
Dor et al., 2000; Dudoit et al., 2002; Haibe-Kains et al., 2008c], we designed a signature
extraction methodology exhibiting low variance thanks to the summarization of gene
expressions in feature transformation (Section 4.1.1), the stable selection of relevant
features in stability-based feature selection (Section 4.1.2) and the building of robust
(low variance) prognostic model (Section 4.1.3).

Although the method has the desirable properties of interpretability, flexibility, efficiency
and robustness, this was made possible at the cost of the capacity to detect complex rela-
tions between gene expressions and clinical outcome. Indeed, the stability-based feature
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selection prevents to detect complementarity between features while the model building is
not able to detect non-linear relations between the gene expressions and the outcome vari-
able. However, numerous authors showed that the intrinsic complexity of microarray data
make this task prone to overfitting and difficult to achieve in practice [Ben-Dor et al., 2000;
Dudoit et al., 2002; Haibe-Kains et al., 2008c].

4.2 Identification of Breast Cancer Molecular Subtypes

The early microarray studies in breast cancer [Perou et al., 2000; Sorlie et al., 2001, 2003;
Sotiriou et al., 2003] highlighted the molecular heterogeneity of breast tumors (Section 3.2).
However, the identification of the molecular subtypes appeared to be unstable due to the
complexity of microarray data and the small number of samples [Pusztai et al., 2006].

Kapp et al. recently showed that only three subtypes can be robustly identified from
microarray data: the ESR1-/ERBB2-, ERBB2+ and ESR1+/ERBB2- subtypes. The resulting
clustering model was based on numerous genes correlated with ESR1 and ERBB2 genes
and was validated in two independent datasets.

Concerned by the lack of robustness of these initial clustering models, we sought to de-
velop an unsupervised method able to robustly identify the breast cancer molecular subtypes
such that:

• The clustering model deals efficiently with different microarray platforms and normal-
ization procedures.

• The clustering model returns an accurate estimate of the classification uncertainty, i.e.
for each subtype, the probability for a patient to have a tumor of this subtype.

• The clustering model yields good performance in independent datasets.

The novel method we developed to fulfill these requirements, is composed of two steps
(Figure 4.5):

1. Feature transformation: The genome-wide microarray data are transformed into few
features quantifying the activity of key biological processes in breast cancer (Sec-
tion 3.1). This transformation makes possible the identification of breast cancer molec-
ular subtypes in a low dimensional feature space, thus defying the curse of dimension-
ality particularly relevant in microarray data analysis. In this thesis, we propose a novel
feature transformation method which uses a robust estimation of gene co-expression
and a priori knowledge about the biological processes of interest, to efficiently trans-
form the input space as described in Section 4.2.1.

2. Subtypes identification: we develop a simple, yet robust, model-based clustering in
the low dimensional space defined in the previous step, to identify the breast cancer
molecular subtypes. This clustering model is described in Section 4.2.2.

4.2.1 Prototype-Based Feature Transformation

The aim of the prototype-based feature transformation is to reduce the dimensionality of the
genome-wide microarray data using a priori biological knowledge provided by experts. In
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Figure 4.5: Design of the novel unsupervised method used to identify the breast cancer
molecular subtypes. The steps delimited by the dashed red box are described in details in
the corresponding sections.
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particular, we want the new features to quantify the activity of key biological processes in
breast cancer (Section 3.1). The features should be specific to the biological process they
represent, i.e. a feature representative to a biological process should not be also repre-
sentative to another biological process. This property is referred to hereafter as biological
affinity3.

Similarly to the genome-wide feature transformation (Section 4.1.1), the approach adopted
for the prototype-based feature transformation is composed of two steps. First, the genes
sharing a biological affinity to the same biological process are clustered together. Second,
each cluster of genes is summarized by a single feature quantifying the activity at the gene
expression level of the corresponding biological process. However, this method differs from
the genome-wide feature transformation in the fact that the feature transformation is driven
by the a priori selection of the key biological processes to study.

To do so, we designed a novel clustering method able to cluster genes with respect to
their biological affinity to key biological processes of interest. This method is composed of
the following steps:

1. Prototypes selection: In order to select the biological processes to study, the analyst
specifies a prototype gene for each of them. A prototype gene is a gene known to be
representative to the biological process of interest. The choice of prototypes will be
described in Section 4.2.1.1.

2. Dissimilarity estimation: For each gene to cluster, the dissimilarities between this gene
and the prototype genes are computed to quantify their co-expression4. We will in-
troduce in Section 4.2.1.2 a novel dissimilarity estimate to quantify such a gene co-
expression.

3. Assignment: Once the dissimilarities are computed, a decision is made to assign the
gene to one of the clusters represented by the prototype genes. The framework for
this decision making process will be also the subject of a contribution presented in
Section 4.2.1.3.

This method is illustrated by the example in Figure 4.6. In this case, the gene expression
profiling for three patients was performed. Three prototypes, P1, P2, and P3, are selected
by the analyst to represent three biological processes of interest (prototypes selection). In
order to cluster gene j , the dissimilarities between this gene and each of the prototypes are
computed (dissimilarity estimation). Since the dissimilarity (co-expression) between gene j
and P3 is significantly lower (larger) than with the other prototypes, gene j is assigned to the
cluster represented by P3 (assignment).

This approach shares many similarities with the k -means method [MacQueen, 1967;
Hartigan and Wong, 1979], where the number of centers and their position are defined in the
prototypes selection step. The novelty of the prototype-based clustering lies in the biology-
driven selection of the centers, the dissimilarity estimation and the assignment procedure as
we will see in the next sections.

3In the original publication [Desmedt et al., 2008], this property was referred to as specificity. In this thesis,
we use biological affinity instead to avoid confusion with the common meaning of specificity in statistics.

4The dissimilarity is inversely proportional to the level of co-expression (Section 4.1.1). So, two genes exhibit-
ing low dissimilarity are said to be highly co-expressed.
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Figure 4.6: Example of prototype-based approach. The three steps of the method are illus-
trated to finally assign gene j to the cluster represented by prototype P3.

4.2.1.1 Prototypes

In order to drive the feature transformation by some biological processes of interest, the
analyst has to specify a prototype gene for each of them. The choice of these prototypes
is crucial for the prototype-based feature transformation, since a single gene will be used to
represent a whole biological process. Fortunately, in breast cancer, key biological processes
were identified these last decades (see [Hanahan and Weinberg, 2000] for a review) and
the key genes involved in these biological processes as well. We refer the reader to the
Sections 3.1 and 5.3 for a detailed description of the key biological processes in breast
cancer and their corresponding prototype genes, respectively.

4.2.1.2 Dissimilarity

We tackle the problem of the reliable estimation of dissimilarity between genes and proto-
types from a prediction point of view and use an efficient cross-validation technique for linear
models, namely the PRESS (prediction sum of squares) statistic [Allen, 1974].

The PRESS statistics addresses the main issue of cross-validation that is the computa-
tionally intensive training-testing procedure for each fold of the cross-validation (Figure A.1
in Appendix A). Indeed, Allen introduces an efficient estimation of the leave-one-out cross-
validation (LOOCV) error for linear models as a byproduct of the identification of the linear
model coefficients through least squares optimization procedure (see Appendix A for detail)

For the sake of clarity, we define PRESS(m) as the function returning the vector of
LOOCV errors of the linear model m through the computation of the PRESS statistic. Let R
be the set of prototypes. Similarly to hierarchical clustering (Section 2.2.1), our prototype-
based feature transformation requires the estimation of the dissimilarity between a gene and
a prototype (called univariate dissimilarity hereafter) and the dissimilarity between a gene
and a group of prototypes (called multivariate dissimilarity hereafter).

Univariate dissimilarity: To estimate the dissimilarity between a gene j and a prototype
rq ∈ R, we calculate

d(xj , xrq ) = PRESS(m), m : xj = βrq xrq (4.7)
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where PRESS is the mean of LOOCV errors computed by the PRESS statistic. In other
words, the dissimilarity between the j th gene and the qth prototype gene is defined
as the LOOCV error of the linear model regressing the expression of gene j on the
expression of prototype rq.

Multivariate dissimilarity: Similarly to the linkage in hierarchical clustering (Section 2.2.1),
we define the distance between a gene j and a group of prototypes {r1, ... , rq, ... , ru} =
R′ ⊆ R as

d(xj , xR′) = PRESS(m), m : xj = βr1xr1 + · · · + βrq xrq + · · · + βru xru (4.8)

where m is the multivariate linear model regressing the expression of gene j on the
group of prototypes {r1, ... , rq, ... , ru}.

Using the dissimilarity measures defined above, we are now able to reliably quantify the
co-expression between a gene and each single prototype (univariate dissimilarity) or group
of prototypes (multivariate dissimilarity).

4.2.1.3 Assignment

Based on the dissimilarity estimates defined above, we have to define the procedure to as-
sign the genes to the clusters. Traditional methods assign the gene j to the cluster for which
the dissimilarity is the lowest [Hastie et al., 2001; Webb, 2003]. However, these methods
might be highly unstable since small differences between dissimilarities can be dataset de-
pendent, especially for microarray data given the high feature-to-sample ratio. To address
this issue, we develop a new framework for the assignment of the genes to the clusters.

The idea is the following:

1. Set of dissimilarities M: For a gene j , we estimate the dissimilarities to all the sin-
gle prototypes (univariate dissimilarities) and to all the possible groups of prototypes
(multivariate dissimilarities). This set of dissimilarities is denoted by M.

2. Selection of the lowest dissimilarities M ′: We use the Friedman test [Friedman, 1937]
to identify the set of significantly lowest dissimilarities. The Friedman test is a non-
parametric statistical test similar to the analysis of variance [Fisher, 1935], often used
in model selection to detect differences in errors across multiple statistical models [Bi-
rattari et al., 2002]. Therefore, thanks to the Friedman test, we can identify from M the
subset M ′ of the significantly lowest dissimilarities such that the dissimilarities in M ′ are
significantly lower than the dissimilarities in M \M ′.

3. Biological affinity: Once the set M ′ is identified, we then evaluate the biological affinity
of the gene j . The gene j is said to be specific to prototype rq if the dissimilarity between
gene j and the prototype gene rq is the only univariate dissimilarity in M ′. It means
that the gene j is significantly more co-expressed to prototype rq than to all the other
single prototypes (univariate dissimilarity) and that the co-expression to prototype rq is
not significantly lower than the co-expression to any groups of prototypes (multivariate
dissimilarity).
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4. Assignment: The gene j is assigned to a cluster based on its biological affinity. Since
the prototype-based feature transformation aims at identifying cluster of genes specifi-
cally co-expressed with prototype genes representing biological processes of interest,
we only consider clusters represented by single prototypes. So, if a gene j is specific
to prototype rq (biological affinity between gene j and prototype rq), it is assigned to
cluster corresponding to prototype rq. Otherwise, the gene j is assigned to a cluster of
unspecific genes (these genes will not be used for the computation of features).

Figure 4.7 illustrates the use of this method on the example sketched in Figure 4.6. We can
see that the genes having low dissimilarities with more than one prototype are not assigned
to any cluster since they are not specific (no biological affinity to a single biological process
represented by a prototype). The regions delimited by the dashed colored lines are defined
by the Friedman test as the regions in which the genes are specific.
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Figure 4.7: Illustration of the prototype-based clustering method on the example sketched in
Figure 4.6. Black dots are discarded genes, i.e. genes that are not assigned to any cluster
due to the absence of biological affinity to a single biological process represented by one
of the prototypes. Colored dots are genes assigned to one of the clusters. The regions
delimited by the dashed colored lines are defined as the regions in which the genes are
specific.

In practice, the computation of the dissimilarities to all the prototypes and groups of proto-
types for each gene is not feasible due to the number of such dissimilarities

∑|R|
q=1

(|R|
q

)
= 2|R|

when the number of prototypes |R| is large [Devroye et al., 1997]. For instance, perform-
ing the clustering algorithm described above with 7 prototypes for 10,000 genes, requires
to compute 1,270,000 dissimilarities. Therefore, we limit the set of dissimilarities to the
univariate ones and the lowest multivariate one. However, finding the lowest multivariate dis-
similarity for a gene j requires to find the best set of prototypes to predict the expression of
gene j in Equation (4.8), which is known to be a NP-complete problem [Davies and Russell,
1994]. Therefore we used a forward feature selection [Kohavi and John, 1997] to identify this
best set of prototypes. In particular, we use the orthogonal Gram-Schmidt feature selection
since this method was shown to be efficient in combination with the estimation of the PRESS
statistic used to compute the dissimilarities [Chen et al., 1989].

The full procedure of the prototype-based clustering is detailed in Algorithm 5. First the
set of clusters K is initialized such that each cluster contains a single prototype from the
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set of prototypes R. Then, for each gene j from the matrix of gene expressions X , the
univariate dissimilarities and the lowest multivariate dissimilarity are computed and put in the
set M. These dissimilarities are computed through the PRESS function which returns the
PRESS statistic of a linear regression model (Section 4.2.1.2). The multivariate dissimilarity
is computed through the orthogonal .Gram.Schmidt function which returns, from the gene
expression matrix X , the set of prototypes and the gene j , the best multivariate linear model
to predict the expression of the gene j using the prototypes as explanatory variables.

Algorithm 5 Prototype-based feature transformation

1: procedure PROTOTYPE.FEATRANSF(X , R, c, e)
2: K ← {r1, r2, ... , r|R|} . clusters initialized with the prototypes
3: l ← {} . cluster of discarded genes
4: for all gene j do
5: M ← {} . set of dissimilarities
6: for all rq do
7: m← xj = βrq xrq . univariate linear model
8: M ← {M, PRESS(m)} . univariate dissimilarity
9: end for

10: m← orthogonal .Gram.Schmidt(X , R, j) . ”best” multivariate linear model
11: M ← {M, PRESS(m)} . multivariate dissimilarity
12: M ′ ← Friedman.test(M, c) . set of lowest dissimilarities
13: if only one univariate dissimilarity dq is in M ′ ∧ dq < e then
14: kq ← kq ∪ {j} . assign gene j to cluster kq
15: else
16: l ← l ∪ {j} . discard gene j
17: end if
18: end for
19: return (K , R, l)
20: end procedure

Once the set M of dissimilarities is populated, the Friedman test is used to identify the set
M ′ of significantly lowest dissimilarities. The function Friedman.test(M, c) returns the set of
significantly lowest dissimilarities given a critical value c such that the dissimilarities present
in M ′ are significantly lower than models that are not in M ′ (p-value < c) and dissimilarities
present in the set are equal (p-value ≥ c).

If only one univariate dissimilarity dq is present in the set M ′ and if this dissimilarity
dq < e where e is the largest acceptable dissimilarity (see the description of the hyperpa-
rameters), then the gene j is identified as specific to prototype rq and is assigned to cluster
kq. Otherwise, the gene j is not specific (the gene j has no biological affinity to any biological
processes of interest) and is therefore assigned to the cluster l of unspecific genes.

The resulting clustering, composed of the set of clusters K and the cluster of unspe-
cific genes l , respects the properties presented in Equations (2.2) and (2.3). The algorithm
returns the set of clusters K as well as their prototypes r , and the cluster l of discarded
genes.

To complete the feature transformation, the set of clusters K , called gene modules here-
after, are summarized in order to quantify robustly the activity of biological processes of
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interest. As for the genome-wide feature transformation (Section 4.1.1), we summarize each
cluster by computing a weighted average of the expressions of all the genes included in this
cluster (Algorithm 3). The resulting values are referred to as gene module scores in the rest
of the thesis.

Hyperparameters There are two hyperparameters for the prototype-based approach fea-
ture transformation: the critical value c for the selection of the significantly lowest dissimilar-
ities (Friedman test) and the largest acceptable dissimilarity e for a specific gene.

The critical value c ∈ [0, 1] allows the analyst to control the error of type I in the Friedman
test, i.e. to reject the null hypothesis that two dissimilarities are equal when it is not the
case. In our experiments, we use typically a c = 0.05 since this value yields good results
(Sections 5.3 and 5.4.1).

The largest acceptable dissimilarity e ∈ [0, 1] allows the analyst to control the strength of
the biological affinity. On the one hand, a value of e close to 1 will allow to identify a gene
as specific to prototype rq though its dissimilarity with the prototype rq is large. On the other
hand, a value of e close to 0 will identify genes as specific only if its dissimilarity with the
corresponding prototype is very low. In our experiments, we use a e = 0.95 since this value
leads to an identification of gene modules large enough for the key biological processes in
breast cancer (Sections 5.3 and 5.4.1).

Pros The procedure for feature transformation presented above, enjoys interesting proper-
ties in the framework of microarray data analysis:

• The features are well defined from a biological point of view since the prototypes are
chosen to represent known biological processes.

• The features are computed from specific genes, i.e. genes having a biological affinity
to a biological process but not to the others. This ensures the features to be represen-
tative to only one biological process, controlling for the others.

• Similarly to quality-based clustering methods [De Smet et al., 2002; Tseng and Wong,
2005], the clustering is not influenced by genes being poorly co-expressed with any
other genes. Indeed, these genes are not relevant for clustering and may decrease the
robustness of the clustering.

• The features are average of gene expressions, reducing the variance of the measure-
ments. This is beneficial for linear regression (such as Cox regression) as shown in
[Park et al., 2007].

• Similarly to the genome-wide feature transformation (Section 4.1.1), the method facil-
itates the computation of features in different microarray platforms. Indeed, different
microarray platforms are composed of different sets of probes, representing different
genes. If few genes of a cluster are absent in the microarray platform of interest, it is
still possible to compute the corresponding feature by averaging the expressions of the
remaining genes. It may also happen that, in case of very small microarray platforms,
all the genes within a cluster are missing, making the computation of the correspond-
ing feature impossible. Fortunately, this is not the case for the datasets used in our
experiments (Section 5.1).
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Cons

• A limitation of the prototype-based feature transformation method lies the fact that only
one prototype can be selected to represent each biological process of interest. We will
see in Section 5.3 that, using expert knowledge, the key biological processes involved
in breast cancer can be resumed by single prototypes. However, this might not be
true for other biological processes or other types of cancer where some biological
processes should be represented by more than one prototype.

• The procedure used for prototype-based feature transformation is computationally in-
tensive. Indeed, the computation of the dissimilarities, although based on an efficient
error estimation technique (PRESS) and reduced to a small set of dissimilarities (only
one multivariate dissimilarity), remains computationally intensive in the setting of thou-
sands of genes to cluster.

4.2.2 Subtype Clustering

Thanks to the prototype-based feature transformation method presented above, we are now
able to represent the patients in a low dimensional space defined by gene module scores
quantifying the activity of the biological processes of interest. In order to identify the breast
cancer molecular subtypes, we require the clustering model (i) to return accurate estimate
of the classification uncertainty, i.e. the probabilities for a tumor to belong to each of the
subtypes; and (ii) to be easily applicable to new data. Note that, unlike the prototype-based
feature clustering which clusters the genes, the clustering model described below groups the
tumors/patients with respect to their subtype (Figure 4.8).
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Figure 4.8: Illustration of the subtype clustering. Left side: Representation of the patients’
tumors in the low dimensional space defined by the three gene module scores gm1, gm2
and gm3 computed using the prototype-based feature transformation. Right side: Clustering
of the patients’ tumors according to their subtype (in this case, three subtypes of different
colors).

To fulfill these requirements, we develop a model-based clustering that is a mixture
of Gaussians (Section 2.2.2) in a low dimensional space. The input space is defined by
few gene module scores computed through the prototype-based feature transformation pre-
sented above.

Let Xn×p be the matrix of p gene module scores for n patients and xi be the profile of the
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i th patient. A mixture of Gaussians model (Section 2.2.2) can be written as

Pr(xi ) =
u∑

r=1

πr N (xi ;µr , Σr ) (4.9)

where u is the number of Gaussians, πr is the prior probability of xi to be generated by the
r th Gaussian N (xi ;µr , Σr ) of mean µr and covariance matrix Σr .

From Equation (2.7), we define the probabilities to belong to each subtype r as

Pr(r |xi ) =
πr N (xi ;µr , Σr )∑u

s=1 πsN (xi ;µs, Σs)
(4.10)

So, Pr(r |xi ) is the probability that the patient having the profile xi has a breast tumor of
subtype r .

In order to reduce the complexity of the mixture of Gaussians, and so the risk of overfitting
[Bishop, 1994; Yeung et al., 2001], we constraint the covariance matrices to be diagonal and
equal across the Gaussians such that

Σr =


σ2

1 0 0 0 0

0
. . . 0 0 0

0 0 σ2
q 0 0

0 0 0
. . . 0

0 0 0 0 σ2
p

 ,∀r ∈ {1, 2, ... , u} (4.11)

It remains to estimate the parameters of the mixture of Gaussians: (i) the number u of
Gaussians and (ii) the parameters of these Gaussians, i.e. the means µ and the matrix of
covariance Σ. To do so, we adopted (i) the BIC criterion to identify the most likely number of
Gaussians (Section 2.2.2.1) and (ii) the EM algorithm (Section 2.2.2; [Dempster et al., 1977])
to estimate the parameters of the Gaussians.

Pros

• The low dimensional input space, defined by the gene module scores computed by the
prototype-based feature transformation, yields a low feature-to-sample ratio, increasing
the robustness of the clustering model.

• The low dimensional input space facilitates the representation of the results. In the
case of breast cancer molecular subtypes, the patient are represented in a 2D plot
(see Section 5.3 for details).

• Unlike the hierarchical clustering method used in the initial publications [Perou et al.,
2000; Sotiriou et al., 2003] which returns a hard partition of the dataset (Section 2.2.1),
the mixture of Gaussians allows for a soft partitioning of the dataset (Section 2.2.2)
through the straightforward estimation of the posterior probability to belong to each
subtype (classification uncertainty).

• Unlike the hierarchical clustering used in the initial publications [Perou et al., 2000;
Sotiriou et al., 2003], this model-based clustering can be easily used to predict the
subtype of a new tumor given its gene expression profile.
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Cons

• Although the use of few features, defined by the gene module scores, is beneficial for
the robustness of the method (low feature-to-sample ratio), it also prevents us to find
any new subtypes based on unknown sets of genes relevant for breast cancer molec-
ular subtypes. However, Kapp et al. showed in a genome-wide study without a priori
selection of genes for the clustering, that robust subtypes were only identified using
genes associated with two well-known biological processes, namely ER and HER2
signaling pathways (Section 3.1) [Kapp et al., 2006]. We will see in Section 5.3, that
the use of the gene module scores representative to these two biological processes, in
our subtype clustering model yields robust identification of the breast cancer molecular
subtypes.

4.2.3 Concluding Remarks

The novel method we developed for the breast cancer molecular subtypes identification uses
few biologically meaningful features and a model-based clustering of low complexity. This
method has several advantages, the most important being the robustness thanks to the low
feature-to-sample ratio and the accurate estimation of the classification uncertainty.

It is worth to note that we did not attempt to find new breast cancer molecular subtypes
from scratch, but we used instead the results of previous publications, especially [Kapp et al.,
2006], to build a robust subtype clustering model. Although this prevents to find new sub-
types and to bring new biological insights, the use of some a priori biological knowledge
about the relevant biological processes involved in breast cancer biology enables the devel-
opment of a simple, yet robust, method. The robustness of our method will be validated in
Section 5.3.

4.3 Identification of Local Prognostic Gene Signatures

The global approach described in Section 4.1 aims at extracting a gene signature from a
global population of patients. Such a global risk prediction model makes the assumption that
the relationship between the gene expressions and the risk of a patient can be described
by an analytical function over the whole domain of the input space. Moreover, it solves the
problem of learning by extracting the hypothesis which is expected to approximate the best
the whole data distribution. Given that breast cancer, in addition to being a clinically het-
erogeneous disease, is also molecularly heterogeneous (Section 3.2), global risk prediction
is a challenge since the risk prediction model should deal with this heterogeneity to reduce
prediction error.

The divide-and-conquer paradigm is an attractive alternative to the global risk prediction
approach. It originates from the idea of relaxing the global modeling assumption. It attacks
a complex problem by dividing it into simpler problems whose solutions can be combined to
yield a solution to the original problem. This principle presents two main advantages. First,
simpler problems can be solved by simpler estimation techniques such as the adoption of
linear models. Second, the model can better fit the properties of the available dataset since
the combination of local linear models can achieve non-linear modeling of the data.
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In this section, we will present the use of the divide-and-conquer paradigm for modular
modeling. Modular modeling techniques replace the global risk prediction model with a mod-
ular architecture where the modules cover different parts of the input space. Radial Basis
Functions [Moody and Darken, 1989], Local Model Networks [Murray-Smith and Johansen,
1997] or Classification and Regression Trees [Breiman et al., 1984] are well-known exam-
ples of this approach. In this thesis we propose an original method based on a modular
modeling approach to improve breast cancer prognostication (Figure 4.9). In this case, the
modules are defined as the molecular subtypes and the local prognostic signatures are ex-
tracted specifically for each subtype in order to combine these risk predictions into a global
risk prediction for each patient.

The outline of this section is as follows: Section 4.3.1 introduces the modular modeling
approach, Section 4.3.2 defines the modules and Section 4.3.3 describes the local risk pre-
diction models, especially the identification of prognostic gene signatures in this framework.

4.3.1 Modular Modeling Approach

The approach for modular modeling used in this thesis is derived from the Local Model
Networks (LMN), first introduced in [Johansen and Foss, 1993]. A LMN is a set of different
models which are weighted according to the input (Figure 4.10). Each model is used in
parallel, the output being multiplied with a basis function and summed to give the local model
network output. Essentially the basis functions control the smoothness of the transition as
the operating point moves from one local model to another. Indeed each local model has a
validity region where the model is most active.

The smooth combination provided by the LMN formalism enables non-linear models on
the basis of simpler modules. See the example in Figure 4.11 which allows the combination
in a two dimensional input space of three local linear models whose validity regions are
represented by Gaussian basis functions.

The general form of a LMN is

y =
m∑

j=1

ρj (x , θj )hj (x ,αj ) (4.12)

where x and y stand for gene expressions and survival data respectively, ρj (x , θj ) is the j th

basis function depending on x and the parameters θj , hj (x ,αj ) is the j th local risk prediction
model depending on x and the parameters αj . The ρj in Equation (4.12) are constrained to
satisfy

m∑
j=1

ρj (x , θj ) = 1 (4.13)

This means that the basis functions form a partition of unity [Murray-Smith, 1994]. This
ensures that in every point of the input space, the prediction is a weighted average of the
local models hj .

Note that the LMN method adopted in this thesis for the identification of local prognostic
gene signatures, has a lot in common with the mixture of experts [Jacobs et al., 1991] and
its extension, the hierarchical mixture of experts [Jordan and Jacobs, 1994]. For instance, in

118



Subtype 
clustering

subtype
signature

subtype
signature

subtype
signature

Model 
building

subtype 
risk score

subtype 
risk score

subtype 
risk score

Combination

{P
r(1

), 
Pr

(2
), 

...
, P

r(m
)}

P(1)

Feature 
selection

risk predictions

Pr(1) Pr(2) Pr(m)

Microarray data of
breast cancer patients

Clinical data of
breast cancer patients

Feature 
selection

Feature 
selection

Model 
building

Model 
building

normalized
gene expressions

clinical outcom
e

S1 S2 Sm

P(2) P(m)

Data 
preprocessing

Section 4.3.2

Section 4.3.3

Figure 4.9: Design of the original modular modeling methodology which consists in dividing
the global population of patients’ tumors with respect to the m molecular subtypes (with prob-
abilities Pr(1), Pr(2), ... , Pr(m)). Then the feature selection (identification of prognostic genes
in the subtype signatures) and the building of the risk prediction model are performed for
each subtype. Lastly, the resulting local risk predictions (subtype risk scores) are combined
to compute the global risk prediction of the patients (risk predictions). The novel methods
developed for the steps delimited by the dashed red boxes are described in details in the
corresponding sections.
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Figure 4.10: General form of Local Model Networks. The input data are denoted by X , basis
functions by ρ, local models by h and output data by y .

both methods, the prediction is a weighted combination of the predictions of the local models
or experts [Bontempi, 1999].

In the following sections, we will present the identification of the modules through the
basis functions ρ and the signature extraction method used to build the local models and the
corresponding local prognostic gene signatures.

4.3.2 Modules

In order to apply the modular modeling approach, we need to partition the input space in
modules. These modules are defined as the breast cancer molecular subtypes described in
the literature (Section 1.1.1 and 3.2). The corresponding basis functions ρ are defined as
the probability density functions to belong to each of these subtypes. These probabilities are
estimated through the novel subtype clustering model presented in Section 4.2.

4.3.2.1 Breast Cancer Molecular Subtypes

From Equation (4.9), we define the basis functions of Equation (4.12) as

ρj (x) =
πj N (x ;µj , Σj )∑m
l=1 πl N (x ;µl , Σl )

(4.14)

where πj is the prior probability of x to be generated by the j th Gaussian N (x ;µj , Σj ) of mean
µj and covariance matrix Σj . In this case, the set θj of parameters of the j th basis function is
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Figure 4.11: Example of Local Model Network with m = 3 local models. The non-linear
model in (c) is obtained by combining the three local linear models in (a) according to the
three basis functions in (b). Figures from [Bontempi, 1999].
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composed of µj and Σj . So, ρj (x) is the probability that, given the gene expression profile x ,
the breast tumor belongs to the j th molecular subtype.

We can see that Equation (4.14) satisfies Equation (4.13) that is

m∑
j=1

ρj (x) =
m∑

j=1

πj N (x ;µj , Σj )∑m
l=1 πl N (x ;µl , Σl )

= 1

In order to reduce the complexity of the local basis functions, and so the risk of overfitting,
we constraint the covariance matrices to be diagonal and equal across the Gaussians as in
Equation (4.11).

It remains to estimate the parameters of the local basis functions, i.e. the number m of
Gaussians, the means µj and the matrix of covariance Σ for the Gaussians. As described in
Section 2.2.2, the parameters of the Gaussians are estimated by the EM algorithm [Demp-
ster et al., 1977]. The number of Gaussians m is estimated using the BIC estimate [Schwarz,
1978; Fraley and Raftery, 1998].

4.3.3 Local Models

Along with the basis functions, we need to define the local risk prediction models in Equa-
tion (4.12). In this thesis, we adapt the methodology for global prognostic gene signature
extraction (Section 4.1) to build the local risk prediction models. To do so, we replace the lo-
cal risk prediction model hj (x ;αj ) in Equation (4.12) by our robust linear risk prediction model
defined in Equation (4.6)

y =
m∑

j=1

ρj (x)

 1
k (j)

k (j)∑
l=1

sign(βl )xl

 (4.15)

where x and y are the gene expression profile and the survival data of the patient respec-
tively, k (j) is the number of selected features (signature size) used to build the j th local risk
prediction model and βl is the coefficient of the l th feature in the corresponding univariate
Cox model (see Section 4.1.3.1 for a detailed description of the risk prediction model).

We can see that the local risk prediction model in brackets in Equation (4.15) differs from
the global risk prediction model in Equation (4.6) by the fact the feature ranking selecting
the k most relevant features depends now on the subtype j , denoted by k (j). This is made
possible by an original adaptation of the feature ranking (called local feature ranking) to
select relevant features specific to each module as presented below.

4.3.3.1 Local Feature Ranking

In order to take advantage of the modular framework, we adapt the feature ranking method
presented in Section 4.1.2.1 to identify the prognostic genes in a specific module, i.e. a
breast cancer molecular subtype in this thesis. Actually, we introduce a weighted version
of the concordance index used as scoring function S in the feature ranking (Algorithm 4), in
order to select genes relevant for a specific subtype. The weights were defined as ρj , i.e. the
probability for a patient’s tumor to belong to the subtype j .
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Weighted Concordance Index We introduce here a weighted version of the concordance
index, denoted by C-indexwted , as scoring function for the modular feature ranking. The
weighted concordance index of the gene i for the subtype j takes the form

Swted (xi , y , ρj ) =
∑

k ,l∈Ω wkl1{xki > xli}∑
k ,l∈Ω wkl

(4.16)

where wkl = ρj (xk )ρj (xl ) is the weight for the pair of patients {k , l}. So the weights are defined
by the probabilities returned by the basis function ρj for the patients k and l . If one of the
patient (or both) is unlikely to have a tumor of subtype j , the comparison of the expressions
of gene i , i.e. 1{xki > xli}, will have a small impact on the concordance index estimation due
to small weight wkl in Equation (4.16). In contrast, if both patients are likely to have a tumor
of subtype j , the impact of their risk scores comparison will be large.

This scoring function enables the ranking of the genes with respect to their prognostic
ability in each module separately, i.e. in each breast cancer molecular subtype in this thesis.
The signature size k (j) for the subtype j used in Equation (4.15), is then identified through
the signature stability procedure described in Section 4.1.2. The resulting local prognostic
gene signatures can therefore be used to build the local risk prediction models required to
compute the final risk predictions (Figure 4.9).

Pros The modular modeling approach to identify local prognostic gene signatures has sev-
eral pros listed below:

• The modular modeling approach enables the use of robust linear risk prediction models
to perform non-linear modeling. This is particularly important in survival analysis of
microarray data where complex risk prediction models are prone to overfitting [Haibe-
Kains et al., 2008c].

• From a biomedical point of view, our novel risk prediction model is easily interpretable
by the doctors. Unlike global risk prediction models, this model brings two types of
information relevant for the risk prediction of a patient: (i) the probabilities for a patient’s
tumor to belong to each breast cancer molecular subtype; and (ii) the risk predictions
conditional to the subtype.

• The local prognostic gene signatures may bring more biological insights into breast
cancer biology than the global ones, since these signatures take into account the
molecular heterogeneity of breast cancer. In particular, different biological processes
might yield good prognostic performance according to the molecular subtypes.

Cons

• A disadvantage of the modular modeling approach is that, at the same level of com-
plexity, local models are more variant than global ones since only part of the original
dataset is used for fitting the local models. In our method, some breast cancer molecu-
lar subtypes might contain only few patients being likely to have a tumor of this subtype,
increasing the variance of the corresponding local models.
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4.3.4 Concluding Remarks

The modular modeling approach we presented in this section, is an attempt to improve breast
cancer prognostication through the development of a non-linear risk prediction model while
controlling the risk of overfitting, particularly annoying in survival analysis of microarray data
[Haibe-Kains et al., 2008c]. Indeed, we kept the local models robust by the use of a combi-
nation of linear univariate models (Section 4.1.3).

A key step in the modular modeling approach is the definition of the modules. This
task may be challenging and may dramatically influence the performance of the final risk
predictions. However, thanks to the a priori biological knowledge we used to develop our
novel subtype clustering model, the modules can be effectively defined as the breast cancer
molecular subtypes. In these settings, we will show in Section 5.4.2 that our novel risk
prediction model yields good performance and significantly outperforms the state-of-the-art
prognostic model in breast cancer.

4.4 A Tool for Performance Assessment and Comparison of Prog-
nostic Gene Signatures

Performance assessment and comparison of risk prediction models are key steps in sur-
vival analysis of microarray data. A thorough performance assessment should enable the
honest estimation of the quality of a model to predict the risk of new patients. Additionally,
performance assessment is also extremely useful to tune the hyperparameters of methods
in survival analysis (Section 4.1). A thorough performance comparison framework should al-
low to highlight the significant improvement of a novel method over the state-of-the-art while
quantifying the increase in performance.

At the time work was begun for this thesis, only few performance criteria had been used
to assess the performance of risk prediction models in breast cancer studies using microar-
ray data (Section 3.4). Since there is no gold standard for the choice of a performance
criterion, each criterion having its own advantages and disadvantages, the analyst should
be able to pick up one depending on his expertise or the data to analyze. Unfortunately, the
performance criteria presented in Section 2.3.5 were never implemented in the same tool to
facilitate the analysis.

The field also lacks of thorough performance comparison framework (Section 3.4). In-
deed, in contrast to the naive comparison methods, a statistical framework would enable to
assess whether there is enough evidence in the data to demonstrate the superiority of a risk
prediction model over another.

During the thesis, we have implemented numerous performance criteria (Sections 2.3.5
and 4.4.1) as well as a novel performance comparison framework (Section 4.4.2) in order to
facilitate the performance assessment and comparison of risk prediction models. This tool
has been written in R, a language and environment for statistical computing and graphics
[R Development Core Team]. The R package, called survcomp, is fully documented and is
publicly available from the comprehensive R archive network [CRAN].

In the following sections, we will present our original software contributions for the perfor-
mance assessment and comparison in survival analysis.
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4.4.1 Performance Assessment

Assessing the performance of a risk prediction model is not trivial since there is no gold
standard for the choice of a performance criterion in survival analysis. We have seen in
Section 3.4.1 that the hazard ratio is by far the most widely used performance criterion in
the field of breast cancer prognostication using microarray data, despite serious drawbacks.
These drawbacks raise the question of the use of alternative performance criteria in survival
analysis. We propose in the survcomp package, an implementation of all the performance
criteria described in Section 2.3.5. Compared to hazard ratio, these criteria have interesting
properties:

D index: This performance criterion has two advantages compared to the hazard ratio from
which the D index is derived. First, similarly to non-parametric statistics [Wasserman,
2007], it uses ranks instead of the original values of the input variable making its es-
timation robust to outliers. Second, its interpretation does not depend on the scale of
the input variable anymore (Section 2.3.5). We refer the reader to ’?D.index’ for the
details about the implementation of this performance criterion5. The hazard ratio from
which the D index is derived is also implemented, see ’?hazard.ratio’.

Concordance index: Unlike hazard ratio, the concordance makes no assumption about the
hazard of the patients. It is robust to outliers since only the order of the risk predictions
matters. Its interpretation is simple and equivalent to the area under a ROC curve,
well-known in supervised classification theory [Hastie et al., 2001; Webb, 2003]. We
refer the reader to ’?concordance.index’ for the details about the implementation of
this performance criterion.

Time-dependent ROC curves: This performance criterion has the same advantages as the
concordance index, i.e. no assumption and robust to outliers, and is particularly useful
for interpretation. Indeed, the analyst is able to visually assess the trade-off between
sensitivity and specificity for the classifications computed by applying each possible
cutoff (Figure 4.12). The analyst is also able to assess the overall performance of an
input variable by computing the area under the curve. ROC curves are widely used in
supervised classification theory [Hastie et al., 2001; Webb, 2003]. We refer the reader
to ’?tdrocc’ for the details about the implementation of this performance criterion.

Cross-validated partial likelihood: This performance criterion has the advantage to use
the same quantity than the cost function in Cox’s regression, i.e. the partial likelihood.
Several authors used this criterion to tune the penalization parameter in regularized
Cox’s regression [Gui and Li, 2005; van Houwelingen et al., 2006]. However, there is
no easy interpretation of this performance criterion and it is not robust to the presence
of outliers. We refer the reader to ’?cvpl’ for the details about the implementation of
this performance criterion.

Brier score: This performance criterion has a form very similar to the mean squared er-
ror, well-known in supervised classification theory [Hastie et al., 2001; Webb, 2003].
The main drawback of the Brier score is that it requires to estimate the baseline haz-
ard function in case of Cox’s model, which is a difficult task (Section 2.3.4.2; [Collett,

5Using R, one can easily access to the manual page of a function foo by entering the command ’?foo’.
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2003]). Moreover, this performance criterion is not robust to the presence of outliers.
We refer the reader to ’?sbrier.score2proba’ for the details about the implementation
of this performance criterion.
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Figure 4.12: Example of ROC curves. The red diagonal line represents the performance of
a random model. The violet curve represent the performance of a risk score such that large
risk scores stand for high-risk patients. The two boxes illustrate the regions of the plot where
different trade-offs (obtained by applying different cutoffs) can be reached.

Depending on the purpose of the risk prediction model, several criteria can be used to
assess its performance and to better understand the trade-offs obtained by applying different
cutoffs in case of risk group predictions from risk scores as illustrated by the time-dependent
ROC curve in Figure 4.12.

4.4.2 Performance Comparison

Similarly to performance assessment, performance comparison is a key step in survival
analysis of microarray data. Indeed, at the end of the comparison study, the authors should
be able to claim that a new risk prediction model is competitive with the state-of-the-art or not.
We have seen in Section 3.4.2 that the two main approaches to performance comparison in
breast cancer prognostication studies rely on the multivariate Cox analysis and the univariate
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Cox analysis and naive comparison. These two approaches have the common drawback to
prevent the assessment of the significance of the superiority of a risk prediction model over
another. In other words, these performance comparison methods do not answer the question
whether there is enough evidence in the data to demonstrate such a superiority. This issue
is particularly relevant in microarray data analysis since the sample size is often small and
validation data are rarely available.

To address this issue, we propose below a novel approach allowing for statistically com-
paring risk predictions computed with different models.

4.4.2.1 Statistical Performance Comparison

The original framework for performance comparison we propose, borrows the principle of
the univariate Cox analysis approach (Section 3.4.2) but makes possible the use of any
performance criterion (not limited to the hazard ratio) and allows to assess the significance
of a potential performance improvement.

The idea is first, to assess the performance for each risk prediction separately and sec-
ond, to test the null hypothesis that the two performance estimates are equal. To do so,
we used different statistical tests depending on the performance criterion. These statistical
tests have been implemented in the survcomp package through the ’name of criterion.comp’
functions (e.g. hazard.ratio.comp).

Let r1 and r2 be the risk predictions computed by two different models from the same set
of n patients. Let p1 and p2 be the performance estimates of r1 and r2 respectively.

Hazard ratio, concordance index and D index: We have seen in Section 2.3.5 that the
standard error for the concordance index [Pencina and D’Agostino, 2004] and for the
natural logarithm of the hazard ratio and the D index [Collett, 2003] can be computed
straightforwardly. In this case, p1 and p2 are estimated through the concordance index
or the natural logarithm of hazard ratio or D index. Let se1 and se2 be their respective
standard errors. Assuming that p is normally distributed (see [Pencina and D’Agostino,
2004] for the concordance index and [Collett, 2003] for the hazard ratio and the D
index), we can test the superiority of p2 over p1 using a paired Student t test

tstat =
p1 − p2√

se2
1 + se2

2 − 2 ρ se1 se2

where ρ is the correlation coefficient between the risk predictions r1 and r2 and tstat fol-
lows a student t distribution of n−1 degrees of freedom. We reject the null hypothesis,
that is p2 ≤ p1, if the tstat reaches a critical value specified by the analyst (typically a
value of tstat such that the corresponding one-tailed p-value is < 0.05).

Cross-validated partial likelihood, time-dependent ROC curves and Brier score: Unlike
hazard ratio, concordance index and D index, the standard error of the cross-validated
partial likelihood, the area under the time-dependent ROC curve and the Brier score
can not be computed straightforwardly (Section 2.3.5). Therefore, we use a non-
parametric test, that is the Wilcoxon signed-rank test [Wilcoxon, 1945] to test the su-
periority of p2 over p1. For the cross-validated partial likelihood, p1 and p2 are vectors
of partial likelihoods corresponding to each fold in the cross-validation. For the area
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under time-dependent ROC curve and the Brier score, p1 and p2 are vectors of values
corresponding to each point in time t for which we observe an event occurrence. So,
the Wilcoxon signed-rank test takes the form

T = min
{∑

R+,
∑

R−
}

where
∑

R+ is the sum of the ranks of the positive difference scores p2 − p1 < 0 and∑
R− is the sum of the ranks of the negative difference scores p2 − p1 ≤ 0. The T

statistic is interpreted by employing a table of critical T values reported in [Wilcoxon,
1945].

Additionally to demonstrate the superiority of a risk prediction model over another, the an-
alyst is usually interested in highlighting the potential complementarity of these two models,
two models being complementary if their combination in a new prediction model yields better
performance than the two models separately. In our performance comparison framework,
the complementarity between two risk predictions can be shown similarly to the univariate
Cox analysis approach for performance comparison (Section 3.4.2). Indeed, the analyst can
build a model combining the risk predictions and assess the performance of such a model. If
the performance of this model is significantly better than for each risk prediction separately,
this suggests that the risk predictions are complementary.

4.4.3 Report for Large Comparative Studies

In case of a large comparative study with numerous risk prediction models, datasets and
performance criteria, it may be difficult to report comprehensively a large amount of results.
To do so, we use a textual and graphical representation adapted from the literature.

4.4.3.1 Textual Representation

The textual representation of the results simply reports the estimates of the performance
criteria in a table such that a performance significantly better than a benchmark, i.e. a risk
prediction model from the state-of-the-art, is written in bold face. This allows for easily point-
ing out the risk prediction models which outperform consistently the benchmark with respect
to the performance criterion and the dataset under study. Such a textual representation of
the results from the performance assessment and comparison is illustrated in Table 4.1. In
this example, M1 outperforms the benchmark model only in the dataset D2 for the D index
and the IAUC. On the contrary, M2 is always significantly better than the benchmark model
in the dataset D2 and only for the concordance index in the dataset D1.

4.4.3.2 Graphical Representation

The standard error of the concordance index and of the natural logarithm of the hazard ratio
and D index can be computed straightforwardly (Section 2.3.5). Since we assumed that
these estimates follow a normal distribution, we can compute their (100 − α)% confidence
interval as p±zα/2se(p), where p is the performance estimate and zα/2 is the upper α/2-point
of the standard normal distribution.
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Model C-index D index IAUC IBSC
D1 D2 D1 D2 D1 D2 D1 D2

Benchmark 0.636 0.609 2 1.92 0.683 0.601 0.178 0.144
M1 0.606 0.618 2.13 2.4 0.602 0.643 0.185 0.143
M2 0.658 0.633 2.33 3.02 0.688 0.637 0.164 0.131

Table 4.1: Example of textual representation of results from performance assessment and
comparison of three risk prediction models (Benchmark, M1 and M2) in two independent
datasets (D1 and D2) using four performance criteria (C-index, D index, IAUC and IBSC,
see Section 2.3.5).

To graphically represent a large number of performance estimates and their confidence
interval, we use a forestplot [Lewis and Clarke, 2001] as illustrated in Figure 4.13. The
performances are shown as squares centered on the point estimate of the performance of
each model. A horizontal line runs through the square to show its 95% confidence interval.
The vertical grey line represents the performance of a null model. The red vertical line is
centered on the point estimate of the performance of the benchmark model. The p-value on
the right side of each performance is the significance of the superiority of the corresponding
model over the benchmark model.

Benchmark
M1
M2

0.5 0.6 0.7 0.8 0.9 10.5 0.6 0.7 0.8 0.9 1

Test superiority
M vs Benchmark

0.002
0.65

Test superiority
M vs Benchmark

0.07
0.43

D1 D2

Figure 4.13: Example of a graphical representation of the concordance index performance
criterion using a forestplot. The vertical grey line represents the performance of a null model.
The red vertical line is centered on the point estimate of the performance of the benchmark
model. The p-value on the right side of each performance is the significance of the superi-
ority of the corresponding model over the benchmark model. In this case, M1 significantly
outperforms the benchmark model in dataset D1 and tend to be better in dataset D2 (but it
does not reach statistical significance, p-value ≥ 0.05). In contrast, M2 is not significantly
better than the benchmark model whatever the dataset.

For the IAUC and the IBSC performance criteria (Section 2.3.5), we can easily represent
the evolution of the area under the curve (AUC) and the Brier score (BSC) respectively, with
respect to the time as illustrated in Figures 4.14 and 4.15.
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Figure 4.14: Example of a graphical representation of the IAUC performance criterion.
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Figure 4.15: Example of a graphical representation of the IBSC performance criterion.
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4.4.4 Concluding Remarks

We proposed in this section an original framework for performance assessment and com-
parison of risk prediction models. This framework was implemented in an R package, called
survcomp. This implementation allows the analyst to choose one or more criteria to assess
the performance of risk prediction models using the same tool, thus facilitating the analysis.
In addition, we proposed a textual and a graphical representations of the results obtained
from large comparative studies as in [Haibe-Kains et al., 2008c].
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Chapter 5

Experimental Findings

This chapter details the experimental findings which were made possible by means of the
original methods presented in this thesis. The outline of the chapter is as follows: first we
introduce in Section 5.1 the numerous microarray datasets we collected in order to develop
prognostic gene signatures. Then, in Section 5.2 we report the experimental findings re-
sulting from the development of two global prognostic gene signatures. In spite of the good
performance of these signatures, we sought to improve them by integrating the biological
knowledge related to the breast cancer molecular subtypes into their development. We re-
port in Section 5.3 the experimental findings related to our novel subtype clustering model.
Finally, using this clustering model, we report in Section 5.4 the experimental findings derived
from the development of several local prognostic gene signatures.

For each specific study, the experimental findings are presented according to the follow-
ing structure:

1. Motivations of the study.

2. Methods and hyperparameters used in the analysis.

3. Results:

(a) The gene signature extracted using the methods presented previously, description
of the data, and the intermediate results obtained during signature extraction.

(b) Performance assessment of the gene signature using the performance criteria
discussed in Section 4.4.1.

(c) Performance comparison between the gene signature and the state-of-the-art,
based on the statistical framework presented in Section 4.4.2.

4. Findings of the study.

In the next sections, the main experimental findings are summarized, and the reader is
directed to additional results published in the original articles.

5.1 Datasets

Early breast cancer microarray studies lacked data for extracting a gene signature and val-
idating it. This scarcity of data is due to the high cost of microarray technology and the
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scarcity of frozen tumor tissues. To address this problem, we collected, with the help of Dr.
Pratyaksha Wirapati from the Bioinformatics Core Facility (Swiss Institute for Experimental
Cancer Research, Lausanne, Switzerland), numerous breast cancer microarray datasets.
These datasets were retrieved from

• Original author’s website.

• Journal article’s supplementary materials.

• Public repositories:

– Gene Expression Omnibus (GEO; [Barrett et al., 2005]).

– ArrayExpress (AE; [Parkinson et al., 2005]).

– Stanford Microarray Database (SMD; [Hubble et al., 2009]).

• Third party curators:

– Cleanex [Praz et al., 2003].

– Oncomine [Rhodes et al., 2007].

Data collection and preparation is a tedious task involving numerous steps before it is
possible to effectively analyze the data. First, a comprehensive survey has to be conducted
to find new datasets related to the biomedical question of interest. This survey may be
complicated by the fact that parts of the same dataset may be in different places, e.g. au-
thor/journal’s website for the clinical information and public repositories for microarray data.
Occasionally, some parts of a dataset may be unavailable, especially clinical information.
Therefore, one often has to request the help of the author(s) to retrieve all the necessary in-
formation. Once all the data are available, tedious manual clean-up and reformatting is often
required. The annotations of the microarray platforms need to be updated, since knowledge
about the transcriptome is still evolving. Finally, after all the data are collected, the microarray
data and the corresponding clinical information are stored using the same format to facilitate
large scale analysis.

For each dataset, several types of survival data are reported depending on the type of
event being recorded in the clinical study:

• The relapse free survival (RFS) refers to survival data for which the event is either the
appearance of a relapse or the death of a patient from any cause.

• The distant metastasis free survival (DMFS) refers to survival data for which the event
is either the appearance of a distant metastasis or the death of a patient from any
cause.

• The overall survival (OS) refers to survival data for which the event is the death of a
patient from any cause.

In this thesis, we focus on DMFS (or RFS in case of missing DMFS information), since these
survival data are the most adequate to study the relationship between the gene expression
profile of a primary tumor and its evolution or response to treatment.

All the datasets we collected are briefly described below and summarized in Table 5.1.
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NKI: This dataset was used for extracting the GENE70 signature in the first study conducted
for breast cancer prognostication using microarray technology [van’t Veer et al., 2002]
followed by its validation [van de Vijver et al., 2002]. The microarray technology used
in this study is Agilent with a chip of 24,481 probes representing 13,120 unique genes
for 345 heterogeneously treated patients. The tissue samples are from the Neder-
lands Kanker Instituut (Amsterdam, The Netherlands). RFS, DMFS and OS data are
available.

STNO2: This dataset recapitulates the microarray data used in the first studies of breast
cancer molecular profiling [Sorlie et al., 2003]. The microarray technology used in
this study is a cDNA microarray developed at Stanford with a chip of 7,787 probes
representing 5,427 unique genes for 122 heterogeneously treated patients. The tissue
samples are from the Stanford University (Stanford, USA) and the Norwegian Radium
Hospital (Oslo, Norway). RFS and OS data are available.

NCI: This dataset was used in another seminal work confirming the presence of molecu-
lar subtypes in breast cancer in a population-based study [Sotiriou et al., 2003]. The
microarray technology used in this study is a cDNA microarray developed at the Na-
tional Cancer Institute (Bethesda, USA) with a chip of 6,878 probes representing 4,112
unique genes for 99 heterogeneously treated patients. The tissue samples are from
the John Radcliffe Hospital (Oxford, United Kingdom). RFS data are available.

MGH: This dataset was used to extract a gene signature predictive of the resistance to ta-
moxifen [Ma et al., 2004]. The microarray technology used in this study is Arcturus with
a chip of 22,575 probes representing 11,421 unique genes for 60 ER-positive patients
homogeneously treated by tamoxifen. The tissue samples are from Massachusetts
General Hospital (Boston, USA). RFS and DMFS data are available.

MSK: This dataset was used to study the genes that mediate breast cancer metastasis to
the lung [Minn et al., 2005]. The microarray technology used in this study is Affymetrix
with a chip of 22,283 probes representing 11,837 unique genes for 99 heterogeneously
treated patients. The tissue samples are from the Memorial Sloan-Kettering Cancer
Center (New York, USA). DMFS data are available.

UPP: This dataset was used to extract the P53 signature for the P53 mutations status in
breast cancer [Miller et al., 2005] . The microarray technology used in this study is
Affymetrix with a chip of 22,283 probes representing 11,837 unique genes for 251
heterogeneously treated patients. The tissue samples are from the Karolinska Institute
(Uppsala, Sweden). RFS data are available.

STK: This dataset was used to extract a prognostic gene signature [Pawitan et al., 2005].
The microarray technology used in this study is Affymetrix with a chip of 22,283 probes
representing 11,837 unique genes for 159 heterogeneously treated patients. The tis-
sue samples are from the Karolinska Institute (Stockholm, Sweden). RFS data are
available.

VDX: This dataset was used to extract the GENE76 signature in the second large study for
prognostication of early breast cancer [Wang et al., 2005]. A small set of ER-negative
patients were added to this dataset to study the metastatic spread of breast tumors
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into lung [Minn et al., 2007]. The microarray technology used in this study is Affymetrix
with a chip of 22,283 probes representing 11,837 unique genes for 344 node-negative
untreated patients. The tissue samples are from Erasmus Medical Center (Rotterdam,
The Netherlands). RFS and DMFS data are available.

UNT: This dataset was used to understand the molecular basis of histological grade and
for extracting the gene expression grade index signature [Sotiriou et al., 2006]. The
microarray technology used in this study is Affymetrix with a chip of 22,283 probes
representing 11,837 unique genes for 137 node-negative untreated patients. The tis-
sue samples are from the John Radcliffe Hospital (Oxford, United Kingdom) and the
Karolinska Institute (Uppsala, Sweden). RFS and DMFS data are available.

UNC2: This dataset was used to study EGFR expression profile according to the breast
cancer molecular subtypes [Hoadley et al., 2007]. The microarray technology used in
this study is Agilent with a chip of 21,495 probes representing 10,157 unique genes for
248 heterogeneously treated patients. The tissue samples are from the University of
North Carolina at Chapel Hill (Chapel Hill, USA). RFS and OS data are available.

DUKE: This dataset was used to study the prognostic value of oncogenic pathway signa-
tures extracted from cell line experiments [Bild et al., 2006]. The microarray technol-
ogy used in this study is Agilent with a chip of 12,625 probes representing 8,149 unique
genes for 171 heterogeneously treated patients. The tissue samples are from the Duke
University (Durham, USA). OS data are available.

CAL: This dataset was used to study genomic and transcriptional aberrations linked to
breast cancer pathophysiologies [Chin et al., 2006]. The microarray technology used
in this study is Affymetrix with a chip of 22,283 probes representing 11,837 unique
genes for 118 heterogeneously treated patients. The samples are from the University
of California and from the California Pacific Medical Center (San Francisco, USA). RFS,
DMFS and OS data are available.

TBG: This dataset was used to validate the GENE76 and GENE70 signatures [Desmedt
et al., 2007]. The microarray technology used in this study is Affymetrix with a chip
of 22,283 probes representing 11,837 unique genes for 198 node-negative untreated
patients. The tissue samples are from the John Radcliffe Hospital (Oxford, United
Kingdom), Guy’s Hospital (London, United Kingdom), the Karolinska Institute (Uppsala,
Sweden), the René Huguenin Hospital (Saint-Cloud, France) and the Gustave Roussy
Institute (Villejuif, France). RFS, DMFS and OS data are available.

NCH: This dataset was used to extract a gene signature for breast cancer prognostication
[Naderi et al., 2007]. The microarray technology used in this study is Agilent with a chip
of 17,086 probes representing 13,784 unique genes for 135 heterogeneously treated
patients. The tissue samples are from Nottingham City Hospital (Nottingham, United
Kingdom). RFS, DMFS and OS data are available.

DUKE2: This dataset was used to validate gene signatures predictive of response to neoad-
juvant chemotherapy [Bonnefoi et al., 2007]. The microarray technology used in this
study is Affymetrix with a chip of 61,359 probes representing 16,559 unique genes for
160 patients homogeneously treated by chemotherapy. The tissue samples are from
Duke University (Durham, USA). No survival data are available.
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MAINZ: This dataset was used to study the prognostic value of the humoral immune sys-
tem in breast cancer [Schmidt et al., 2008]. The microarray technology used in this
study is Affymetrix with a chip of 22,283 probes representing 11,837 unique genes
for 200 node-negative untreated patients. The tissue samples are from the Johannes
Gutenberg University Mainz (Mainz, Germany). DMFS data are available.

TAM: This dataset was used to extract a gene signature predictive of the resistance to ta-
moxifen [Loi et al., 2007]. The microarray technology used in this study is Affymetrix
with a chip of 44,928 probes representing 15,684 unique genes for 354 ER-positive
patients homogeneously treated by tamoxifen. The tissue samples are from the John
Radcliffe Hospital (Oxford, United Kingdom), the Karolinska Institute (Uppsala, Swe-
den) and Guy’s Hospital (London, United Kingdom). RFS and DMFS data are avail-
able.

TAM2: This dataset was used to extract a gene signature predictive of resistance to tamox-
ifen [Chanrion et al., 2008]. The microarray technology used in this study is Aminolink
with a chip of 21,332 probes representing 14,031 unique genes for 155 ER-positive
patients homogeneously treated by tamoxifen. The tissue samples are from the Can-
cer Research Center of Val d’Aurelle (Montpellier, France), the Bergonie Institute (Bor-
deaux, France) and the Department of Obstetrics and Gynecology of Turin (Turin, Italy).
RFS, DMFS and OS data are available.

LUND2: This dataset was used to study the prognostic value of a gene signature for PTEN
tumor suppressor pathway activity [Saal et al., 2007]. The microarray technology used
in this study is Swegene with a chip of 27,648 probes representing 12,288 unique
genes for 105 patients homogeneously treated by tamoxifen. The tissue samples are
from the Lund University Hospital (Lund, Sweden). No survival data are available.

LUND: This dataset was used to extract a gene signature predictive of resistance to radio-
therapy in breast cancer [Nimeus-Malmstrom et al., 2008]. The microarray technology
used in this study is Swegene with a chip of 26,824 probes representing 14,676 unique
genes for 143 heterogeneously treated patients. The tissue samples are from the Lund
University Hospital (Lund, Sweden). No survival data are available.

MUG: This dataset was used to study the effects of infiltrating lymphocytes and estrogen
receptors on gene expression and prognosis in breast cancer [Calabrò et al., 2008].
The microarray technology used in this study is Operon with a chip of 35,788 probes
representing 16,783 unique genes for 152 heterogeneously treated patients. The tis-
sue samples are from the Medical University of Graz (Graz, Austria). No survival data
are available.

In summary, all the datasets are composed of gene expressions from primary breast
tumor tissues. Most of them are representative of a global population of breast cancer pa-
tients, except for MGH, TAM and TAM2, in which only ER-positive patients were selected.
Treatment information and survival data are not available for some datasets (e.g. DUKE2,
LUND2, LUND or MUG).

The performance assessment and comparison (Sections 3.4 and 4.4) of prognostic gene
signatures are key steps in microarray studies dealing with breast cancer prognostication.
It is worth to note that, in an ideal situation, the performance assessment and comparison
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should be performed on a large independent dataset. If the analyst has to develop the risk
prediction model and to validate it on the same dataset, a cross-validation framework could
be used [Stone, 1974]. If independent datasets are readily available, the analyst should use
as many datasets as possible in order to increase the sample size for validation.

Thanks to the large number of datasets collected in this thesis, we always used inde-
pendent datasets to assess and to compare the performance of our novel prognostic gene
signatures presented in the next sections.

5.2 Global Prognostic Gene Signatures

Using the methodology described in Section 4.1, we developed two global prognostic gene
signatures, namely, the gene expression grade index (GGI) and the tamoxifen resistance
signature (TAMR13).

5.2.1 Gene Expression Grade Index (GGI)

5.2.1.1 Motivations

The relationship between traditional histo-pathological parameters and gene expressions
was barely known in early 2000s. Since histo-pathological parameters were previously
shown to be highly prognostic, it would be interesting to study their molecular basis with
the hope to improve their measurement and so their prognostic value. In this section, we will
present the experimental findings of a study of the molecular basis of histological grade.

Histological grade, described in Section 1.2, is one the most prognostic clinical variables
in breast cancer, discriminating patients at low, intermediate and high-risk of recurrence as
histological grade 1, 2 and 3 respectively. Using gene expression data, we sought to identify
the genes that are differentially expressed between histological grade 1 and 3 tumors. The
aim of this study was:

• To better understand the molecular basis of histological grade.

• To reclassify intermediate histological grade tumors (histological grade 2) into histolog-
ical grade 1 or 3-like tumors.

• To improve the quantification of tumor differentiation in order to yield better breast can-
cer prognostication.

The experimental findings of this study, which we present below, were published in
[Sotiriou et al., 2006].

5.2.1.2 Methods

In order to extract a gene signature predictive of histological grade, we used the methodology
presented in Section 4.1:

1. Feature transformation: The original gene expressions were used for the following
steps of signature extraction, with no feature transformation being performed.
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2. Feature selection: The gene expressions were ranked with respect to their differential
expression between histological grade 1 and 3. Since the prediction outcome is a
binary class coding for histological grade 1 and 3, we used the significance of the
standardized mean difference [Hedges and Olkin, 1987] as the scoring function to rank
the genes. The p-values were corrected for multiple testing using the maxT algorithm
adapted for high dimensional data [Korn et al., 2004]. The number of genes in the
signature was selected by using a threshold p-value of 0.05 for a false discovery count
of 0.

3. Model building: Once the signature was identified, we built a predictive model (Sec-
tion 4.1.3.1), which was a signed average of the expressions of the genes included in
the signature. The resulting score was called the gene expression grade index (GGI).
We scaled the GGI values using histological grade such that the mean of the GGI
values for histological grade 1 and 3 tumors equaled to -1 and +1 respectively. This
ensured the GGI values having approximately the same scale for different populations
of breast cancer patients and for different microarray technologies. We referred to GG
as the dichotomized version of the GGI using a cutoff of 0, the middle point between
mean GGI values of histological grade 1 and 3 tumors.

5.2.1.3 Results

Gene signature As a training set, we used 64 ER-positive tumors from tamoxifen treated
patients (subset of TAM dataset, see Table 5.1). These tumors had either a histological
grade 1 or 3. We used only ER-positive tumors for selecting the genes because of the
dependence between ER status and histologic grade: almost all ER-negative tumors are
classified as either histologic grade 2 or 3. If we had used all histologic grade 1 and 3 tumors
regardless of the ER status in our training set, we would have selected ER-related genes
that were spuriously associated with grade. The fact that these tumors came from patients
being treated by tamoxifen is not an issue since we used only information on ER status and
histologic grade to extract the gene signature, without considering the clinical outcome. For
microarray profiling and grading, we used primary tumor tissues that were collected before
the beginning of tamoxifen treatment; consequently, the gene signature identified with the
training set is not affected by disease outcome or treatment.

The signature extracted from this training set is composed of 128 probes representing
97 unique genes (Appendix C.1). The expression pattern of this signature was fairly ho-
mogenous in the training set (see Figure 1.A in [Sotiriou et al., 2006]). Most genes are
over-expressed in histological grade 3 tumors and have biological functions that have been
previously associated with cell cycle progression and proliferation (among the top 20 over-
expressed genes are UBE2C, KPNA2, TPX2, FOXM1, STK6, CCNA2, BIRC5, and MYBL2,
well-known in the literature).

In order to test whether the histological grade 2 tumors have a gene expression pro-
file that is distinctive from histological grade 1 and 3 tumors, we attempted to extract a
signature as we did previously. Interestingly, we found that no gene passed the threshold
(p-value < 0.05 for a false discovery count of 0), suggesting that either the gene expression
profile of histological grade 2 tumors is intermediate between those from histological grade 1
and 3 tumors or is a heterogeneous mixture of profiles from histological grade 1 and 3 tu-
mors. In fact, we can see in the heatmaps of the signature in some independent datasets
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(see Figures 1.B-1.E in [Sotiriou et al., 2006]) that the vast majority of histological grade 2
tumors exhibits a gene expression profile very similar to either histological grade 1 or 3 tu-
mors, whereas only a small proportion with GGI close to zero, exhibit an intermediate gene
expression profile.

Performance assessment We assessed performance from a classification (histological
grade) and a prognostic (survival) point of view. Given that several microarray datasets have
been made publicly available since the publication of this study, we decided to update the
results published in [Sotiriou et al., 2006] by using new independent datasets. In this section,
we used the set of untreated node-negative breast cancer patients included in the NKI, TBG,
UPP, UNT and MAINZ datasets. This avoided introducing the confounding factor of treatment
heterogeneity, which may lead to misleading results from a prognostic point of view.

Histological grade We validated the performance of the GGI to predict histological
grade (1 vs 3) by computing the ROC curve and its corresponding AUC in the independent
set of untreated node-negative breast cancer patients (Figure 5.1). The performance was
excellent, the ROC curve of the GGI having an AUC of 0.88. This AUC is significantly better
than the AUC of the null model represented by the diagonal (p-value < 1E-16).
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1−specificity
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Figure 5.1: ROC curve of the GGI predicting the histological grade (1 or 3) of patients in the
independent dataset of untreated node-negative patients (NKI, TBG, UPP, UNT and MAINZ).

Prognosis Using DMFS as survival endpoint, we reproduced the Figures 2.A-C pub-
lished in [Sotiriou et al., 2006] but using the independent dataset of untreated node-negative
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breast cancer patients. Remarkably, the updated results, sketched in Figure 5.2, were vir-
tually identical to those in the paper. The only notable difference lies in the fact that the
survival of the untreated node-negative patients was better than that reflected in the pub-
lished survival curves. This was due to the use, in the paper, of datasets that included a
large proportion of high-risk treated patients, for example, in STNO (subset of STNO2, see
table 5.1). Figure 5.2 (a) illustrates the good prognostic ability of histological grade, as ex-
pected from previous reports [Scarff and Torloni, 1968], as well as the large proportion of
histological grade 2 [Elston and Ellis, 1991]. Figure 5.2 (b) shows that GG, the dichotomized
version of the GGI, was able to discriminate patients with histological grade 2 tumors into
low-risk (GG1) and high-risk (GG3) groups that exhibited similar survival to that of patients
with histological grade 1 and 3 tumors respectively. This result suggests that the GGI is
able to re-classify histological grade 2 tumors into groups similar to histological grade 1 and
3. Lastly, Figure 5.2 (c) illustrates the prognostic ability of the GG in discriminating low-risk
and high-risk groups of patients while avoiding to classify patients into an intermediate-risk
group, the latter being particularly annoying in clinical practice.

5.2.1.4 Findings

The main findings of this study are twofold:

• Histological grade: We found that histologic grades 1 and 3 breast cancers have dis-
tinct gene expression profiles, but that histologic grade 2 tumors have heterogeneous
gene expression profiles that range from those for histologic grade 1 tumors to those
for histologic 3 grade tumors. Only a small proportion of histological grade 2 tumors
exhibits an intermediate profile with GGI values close to 0.

• Prognosis: We investigated the clinical implications of the previous findings and dis-
covered that, like the histological grade, the GGI is strongly associated with distant
metastasis free survival. Our most important observation was that the three-category
histologic grading system could be replaced with a two-category one that may be more
clinically relevant. Thus, this grading system has the potential to improve the accuracy
of grading for prognostic purposes [Sotiriou et al., 2006].

In the future, a minimal set of genes from the GGI signature should be defined that can
accurately divide histologic grade 2 tumors into prognostically distinct groups. Because the
genes expressed are highly correlated with one another, arbitrary subsets of the signature
that are chosen only by technical constraints (such as the abundance of the RNA transcripts
or the signal strength from specific probes) might be chosen to develop a practical diagnostic
system using a cheaper gene expression profiling technology, such as the reverse transcrip-
tion polymerase chain reaction (RT-PCR). Preliminary results in this direction have recently
been published [Durbecq et al., 2007; Toussaint et al., 2008].

5.2.2 Performance Comparison of the Gene Expression Grade Index (GGI)

5.2.2.1 Motivations

An important issue in the identification of prognostic gene signatures is the comparison with
state-of-the-art methods, existing gene signatures and traditional prognostic models (Sec-
tion 1.2.1). A comparative study involving the GGI is particularly interesting:
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• From a statistical point of view: Is the simple prognostic model used for the GGI com-
petitive with more complex prognostic models? Can we improve breast cancer prog-
nostication by fitting multivariate and/or non-linear prediction models?

• From a biological point of view: Since the GGI signature is primarily composed of genes
known to be related to cell proliferation, are genes related to other biological processes
needed to yield better breast cancer prognostication?

Such a comparative study has been the subject of two publications [Haibe-Kains et al.,
2008b,c]. In the study described below, we showed that (i) the simple risk prediction model
of GGI yields excellent performance compared to more complex methods for breast cancer
prognostication [Haibe-Kains et al., 2008c]; and (ii) the GGI signature is competitive with
state-of-the-art prognostic signatures (namely GENE70 and GENE76) [Haibe-Kains et al.,
2008b], highlighting the importance of proliferation in breast cancer prognostication.

5.2.2.2 Methods

First, we performed a large-scale comparative study of risk prediction models to compare
simple to complex models with a single proliferation gene (AURKA). We considered 13 risk
prediction models, including the GGI, as described in Table 1 of [Haibe-Kains et al., 2008c].
In order to elucidate the key characteristics of successful risk prediction models, we used
our novel performance assessment and comparison framework (Section 4.4) with VDX as
the training set and TBG, TAM and UPP as independent datasets (Table 5.1).

Second, we compared the performance of the GGI signature with state-of-the-art gene
signatures, namely GENE70 and GENE76. Since our laboratory was involved in a TRANS-
BIG study of which the aim was to validate the GENE70 and the GENE76 signatures using
the original microarray platforms and algorithms [Buyse et al., 2006; Desmedt et al., 2007],
we had a unique opportunity to objectively compare these two signatures and the GGI. In-
deed, the TBG dataset is the only dataset for which the original microarray platforms, i.e.
Agilent for GENE70 and Affymetrix for GENE76, and the original algorithms (the risk group
predictions were computed by the investigators of the signatures) were used to assess the
performance of the two signatures. Since the GGI was developed on the Affymetrix mi-
croarray platform, we used this dataset to compute the corresponding risk group predictions.
Note that, in order to lead to equivalent proportions of risk group predictions (≈ 30% of the
patients in the low-risk group), we identified a cutoff for the GGI in the VDX dataset.

5.2.2.3 Results

First, we observed from the large scale comparative study of risk prediction models that only
the GGI signature outperformed the single proliferation gene AURKA in at least two indepen-
dent datasets (Tables 3 and 5 in [Haibe-Kains et al., 2008c]). More complex risk prediction
models failed to do so, suggesting that the increase in variance due to their complexity is not
sufficiently counterbalanced by the decrease in bias to yield good performance in microarray
data analysis.

Second, we computed the risk group predictions for the GGI, GENE70 and GENE76 sig-
natures in the TBG dataset. We observed high concordance between risk group predictions
computed by the three signatures (Figure 5.3). Note that, while GENE70 and GGI yielded
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very similar classifications, GENE76 appeared to deviate more, with 20% of the patients
classified differently by this signature.

GENE70 GENE76

GGI

7

915

103

5 25

0

5

32

09

25

15

7

Figure 1

Figure 5.3: Concordance in risk group predictions between GENE70, GENE76 and GGI in
the TBG dataset. Red numbers are for the high-risk patients and blue numbers are for the
low-risk patients.

In order to assess whether these classification discrepancies have an impact on the
prognostic ability of the signatures, we estimated the survival curves of the concordant and
discordant cases (Figure 5.4) and we performed a statistical performance comparison using
the concordance index and the hazard ratio (Figure 5.5).

Again we observed in Figure 5.4 (b) that the survival curves of the GENE70 and GGI
risk groups are similar, the discordant cases revealing good survival globally. In contrast,
the low-risk group of GENE76, including patients classified as high-risk by GENE70 and
GGI (Figures 5.4 (a) and (c) for the comparison with GENE70 and GGI respectively), have a
good prognosis until six years, but their survival probability drops dramatically afterwards.

We assessed and compared quantitatively the performance of these gene signatures,
as well as a prognostic clinical model Adjuvant! Online (AOL), through the novel statistical
framework described in Section 4.4. Figures 5.5 (a) and (b) show the forestplot of the con-
cordance indices and the hazard ratio, respectively. Although all the concordance indices
of the signatures are highly significant, GENE70 and GGI displayed a higher concordance
index than GENE76 (0.90 compared to 0.80; Figure 5.5 (a)). However, this difference was
not statistically significant. In contrast, the clinical risk calculated using AOL displayed a
lower concordance index (0.69) when compared to either one generated by the gene signa-
tures. GENE70 and GGI yielded a significantly better concordance index than AOL, unlike
GENE76. We observed similar results for the hazard ratio in Figure 5.5 (b).

5.2.2.4 Findings

The comparative study of the GGI led to three main findings:

• Complex risk prediction models for breast cancer prognostication do not outperform
the simplest risk prediction models in independent datasets. Indeed, in our large scale
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concordance index
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log2 hazard ratio

Test difference
GENE70 vs GENE76 0.15

GENE70 vs GGI 0.53
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Test difference
GENE70 vs GENE76 0.11
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Test superiority
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GGI vs AOL 0.015

(a)

Test superiority
GENE70 vs AOL 0.015
GENE76 vs AOL 0.21

GGI vs AOL 0.026

(b)

Figure 5.5: Statistical performance comparison between GENE70, GENE76, GGI and AOL.
Forestplot of the performance of the risk group predictions and tables of p-values form the
statistical comparison to test the difference between the performance of the signatures (two-
sided test) and to test the superiority of the signatures over AOL (one-sided test): (a) con-
cordance index and (b) log2 hazard ratio.
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comparative study of AURKA, GGI and simple to complex risk prediction models, we
observed that complex methods performed very well in the training set. However, their
performances in the independent datasets were poorer, and they failed to outperform
consistently the simplest model, i.e. AURKA. These results highlight the fact that the
loss of interpretability deriving from the use of overly complex methods in survival anal-
ysis of breast cancer microarray data might be not sufficiently counterbalanced by an
improvement in the quality of prediction.

• Simple, yet robust, quantification of proliferation at the molecular level yields good per-
formance for breast cancer prognostication. Interestingly, AURKA, the simplest model,
defining the risk score as the expression of a single proliferation gene, performed well
in all the prognostic tasks. The GGI was the only model that outperformed AURKA in
at least two independent datasets, whatever the performance criterion for risk score
and risk group predictions. As the GGI is a signed average of expressions of pro-
liferation related genes, these results highlight that simple, yet robust, risk prediction
models yield similar or even better performance than complex ones. Moreover, these
results highlight the importance of proliferation measured by gene expression profiling
in breast cancer prognostication, and confirm the results of [Sotiriou et al., 2006].

• The GGI is competitive with state-of-the-art prognostic gene signatures that include
many genes related to other biological processes than cell proliferation. Indeed, we
compared the prognostic ability of the GGI and two state-of-the-art gene signatures,
namely GENE70 and GENE76, as well as the clinical model Adjuvant! Online (AOL).
Interestingly, we observed that the GGI is competitive with the more complex GENE70
and GENE76 signatures and is significantly better than AOL, the prognostic clinical
model. Since the GGI is driven by proliferation-related genes, these results suggest
that proliferation might be the driving force of the GENE70 and GENE76 signatures.
We will consider this question in greater detail in Section 5.4.1.

5.2.3 Tamoxifen Resistance Signature (TAMR13)

5.2.3.1 Motivations

We have seen in Section 3.3.1 that the prediction outcome of patients treated by tamoxifen,
a widely used anti-estrogen therapy, is the subject of intense research [Ma et al., 2004;
Paik et al., 2004]. However, there are only few biomarkers routinely used that can predict
response to commonly prescribed therapies. The presence of estrogen receptors (ER) is
the best indicator of response to anti-estrogen agents such as tamoxifen. However, 30-40%
of women with ER-positive breast cancer will develop distant metastases and die despite
tamoxifen treatment. The underlying biological mechanisms of resistance to tamoxifen are
incompletely understood.

We aimed to use microarray technology to build a predictive model for the resistance to
tamoxifen therapy. The purpose of the model is ultimately to facilitate our understanding of
the biological underpinnings of resistance mechanisms

The experimental findings of this study as presented below were published in [Loi et al.,
2008], and the methodology was the subject of a book chapter [Haibe-Kains et al., 2008a].
Note that the present work complies with the research reproducibility guidelines proposed
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in [Gentleman, 2005] regarding the availability of the code and the reproducibility of results
and figures1.

5.2.3.2 Methods

In order to extract a gene signature predictive of tamoxifen resistance, we used the method-
ology presented in Section 4.1.

1. Feature transformation: We used an independent dataset of primary breast tumors
from untreated patients (UNT dataset, see Table 5.1) to apply the procedure described
in Algorithm 2 with the hyperparameters h = 0.5 and s = 5. From this clustering model,
we applied the procedure described in Algorithm 3 to compute the features, called
pclust, on the dataset of early breast tumors from tamoxifen treated patients (TAM
dataset, see Table 5.1). Note that the gene expressions of tumors from the untreated
and tamoxifen treated patients are comparable, i.e. early breast tumors before any
treatment.

2. Feature selection: The features are ranked with respect to their prognostic value. The
scoring function in the feature ranking procedure described in Algorithm 4 is defined
as the significance of the hazard ratio (Section 3.4.1). The number of genes in the
signature is selected by maximizing the stability through the use of the Stab criterion
introduced in Section 4.1.2.1.

3. Model building: Once the signature was identified, we built a predictive model as de-
scribed in Section 4.1.3.1, except that the coefficients β in Equation (4.5) were esti-
mated through the univariate Cox models fitted during the feature ranking step.

5.2.3.3 Results

Gene signature As a training set, we used 255 tamoxifen treated patients from the TAM
dataset (see table 5.1). After the feature transformation, 110 features (pclust) remained to
perform the feature ranking. A signature of 13 pclusts was assessed to be highly stable
(Figure 5.6) and hence chosen to build the predictive model, denoted by TAMR13 hereafter.
Figure 5.7 shows the frequency of selection of each pclust in the sampling process.

All of the 13 clusters incorporated in the final model are the most frequently selected
during the training phase. The list of genes included in each of the 13 clusters includes 181
unique genes and is referred to as the TAMR13 signature (Appendix C.2).

The biological functions of each of the 13 clusters were analyzed by using Ingenuity
Pathway Analysis (IPA; [Ingenuity Systems]2). Table 4 in the paper lists the high level func-
tions and associated canonical pathways, with statistically significant enrichment for each
cluster. There are several gene clusters related to cell cycle function, supporting the fact
that the GGI was shown to be also associated with tamoxifen resistance [Loi et al., 2007].

1Raw gene expression and clinical data are publicly available in the GEO public database [Barrett et al., 2005]
and the Sweave version of the book chapter including the standalone R code [R Development Core Team, 2007]
is available at http://www.ulb.ac.be/di/map/bhaibeka/cichapter/.

2IPA is an all-in-one software application that enables researchers to model, analyze, and understand the
complex biological and chemical systems at the core of life science research. This tool is widely used to interpret
gene signatures.
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Pclust 110 contains genes that have previously been associated with chemotaxis and inva-
sion of breast cancer cell lines (SLIT2, RECK) [Liu et al., 2003; Prasad et al., 2004], as well
as genes related to the extracellular matrix (ECM2, COL4A1). Less well characterized is the
role of lipid metabolism (pclust 79) and immunological aspects in the differential response
to tamoxifen (pclust 784 and pclust 375), though TNF alpha and TGF beta have previously
been implicated in breast cancer development and progression [Turner et al., 2004]. A func-
tional analysis of pclust 375 suggests that these genes (TGFBR4, PTGER4, C3, GNG2) are
mainly involved in cellular inflammatory response and could be particularly important in de-
termining the host’s response to tamoxifen. The presence of gene clusters in TAMR13 that
allude to other biological pathways apart from cell cycle function may facilitate our further
understanding of the upstream mechanisms behind tamoxifen resistance.

Performance assessment We assessed the performance of our model by estimating the
hazard ratio on several independent datasets, using DMFS as survival endpoint. The main
independent dataset was a set of 77 patients from the TAM dataset (same consecutive series
of patients as in the training set). This dataset is referred to as GUYT2. The survival curves
of the low and high-risk groups of patients are presented in Figure 5.8. The two survival
curves are significantly different (logrank test p-value < 0.03) and the hazard ratio of the risk
group predictions is large (HR = 4.02, 95%CI [1.13, 14.27]).

We further validated our model on two additional independent datasets of tamoxifen
treated patients, specifically MGH (see Table 5.1) and a private dataset from [Reid et al.,
2005]. We computed the hazard ratio in each dataset separately and combined the estima-
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tions using the inverse variance-weighted method with fixed effect model3 [Cochrane, 1954].
The overall hazard ratio is equal to 2.01 and is significant (Wald test p-value < 0.002). The
survival curves of the risk group predictions in the MGH and Reid datasets have been pub-
lished in the additional file 6 of [Loi et al., 2008].

5.2.3.4 Findings

In this study, we have developed a gene signature (TAMR13) predictive of the resistance
to tamoxifen for ER-positve breast cancer patients. The approach we used to identify the
gene signature facilitates both signature stability and biological interpretation. These are
critical issues in the challenging task of building prognostic gene signatures for breast cancer
patients as we endeavor to derive biologically meaningful and clinically useful information
from microarray data.

The main findings of this study are twofold:

• From a biological point of view, while our study emphasized the important role of pro-
liferation genes in prognosis, we showed that our signature includes other genes and
pathways that may elucidate further mechanisms that influence clinical outcome and
prediction of resistance to tamoxifen.

• From a prognostic point of view, we showed in several independent datasets that the
gene signature was able to distinguish patients at high risk of distant metastasis despite
adjuvant tamoxifen monotherapy. These poor prognosis patients could be selected
for prescription of other treatment modalities, such as chemotherapy and/or biological
agents.

While in the future we may have a microarray-based diagnostic test incorporating all
181 genes in the 13 clusters, at present the routine use of this technology is not logistically
feasible. However, the advantage of our approach is that, because each cluster consists of
a group of highly correlated genes, the clusters can effectively act as one covariate. Thus,
a diagnostic test of just 13 genes (one per cluster) could be developed for clinical use if
desired, even though for biological research one would be more interested in all the genes
per cluster.

5.3 Breast Cancer Molecular Subtypes

5.3.1 Motivations

In the previous section we showed that we were able to identify prognostic gene signatures
for the global population of breast cancer patients, and that these signatures yielded good
performance. We also mentioned in Section 3.2 that early microarray studies highlighted the
existence of different breast cancer molecular subtypes. The next natural step was then to
study the relationship between the prognostic gene signatures and the breast cancer molec-
ular subtypes, the hope being to combine them in order to improve the current prognostic

3The choice of the fixed effect model instead of the random effect model is driven by the test of heterogeneity
between the hazard ratios estimated in each dataset separately. Since the estimates were not significantly
heterogeneous, we used the fixed effect model [Cochrane, 1954].
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models. Therefore, we introduced a novel subtype clustering model to accurately classify
tumors according to their subtypes (Section 4.2), and we used this model to identify local
prognostic gene signatures (Section 4.3).

In this section, we will present the experimental findings related to identifying breast
cancer molecular subtypes. Specifically, we will demonstrate the robustness of our novel
subtype clustering model through its validation in numerous independent datasets and its
comparison with the state-of-the-art techniques. Some of these results have been published
in [Desmedt et al., 2008; Haibe-Kains et al., 2009].

5.3.2 Methods

In order to build our subtype clustering model, we followed the flowchart depicted in Fig-
ure 4.5:

1. Gene clustering: The ESR1 and ERBB2 module scores were computed for each tumor
using our prototype-based feature transformation method (Section 4.2.1).

2. Patient clustering: The subtype clustering model was fitted using these two gene mod-
ule scores (Section 4.2.2).

These two steps are described in the following paragraphs.

Prototype-based feature transformation At this step, we aimed to identify sets of genes,
called gene modules, to quantify the activity of the key biological processes in breast cancer
described in Section 3.1. Such biological processes include the ER and the HER2 signaling
pathways, relevant for the identification of breast cancer molecular subtypes as shown in
[Perou et al., 2000; Sorlie et al., 2001, 2003; Sotiriou et al., 2003; Hu et al., 2006; Kapp
et al., 2006]. Since we will present the experimental findings from a meta-analysis of the
prognostic value of the key biological processes according to the breast cancer molecular
subtypes in Section 5.4.1, we describe hereafter the identification of a gene module for each
biological process described in Section 3.1.

We selected a prototype gene for each biological process:

• The prototype gene ESR1 represents the ER signaling pathway.

• The prototype gene ERBB2 represents the HER2 signaling pathway.

• The prototype gene AURKA represents the proliferation.

• The prototype gene PLAU represents the tumor invasion.

• The prototype gene VEGF represents the angiogenesis.

• The prototype gene STAT1 represents the immune response.

• The prototype gene CASP3 represents the apoptosis.

These 7 prototypes, represented in Figure 5.10, were used to populate the corresponding
gene modules with genes that are specifically co-expressed with them (Section 4.2.1). Each
gene module was then summarized by computing the weighted average of the expression of
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the specific genes (Algorithm 3). As a feature transformation method, it reduced the original
matrix of expressions to a matrix of 7 dimensions defined by the gene module scores, includ-
ing the ESR1 and ERBB2 module scores used in the subtype clustering model presented
below.

VEGF

ER
signaling

HER2 
signaling

Proliferation

Tumor
invasionAngiogenesis

Immune 
response

Apoptosis

ESR1
ERBB2CASP3

PLAU

AURKAST
AT

1

Figure 5.10: Illustration of the key biological processes involved in breast cancer (boxes) with
their corresponding prototype genes (gene names in the ring).

Each gene module score was rescaled to get comparable scales between datasets. In-
deed, the use of different microarray platforms and different normalization methods may lead
to different scales for gene expressions and, consequently, for gene module scores. The
gene module scores were therefore scaled such that quantiles 2.5% and 97.5% are equaled
to −1 and +1 respectively. This scaling is robust to outliers and ensured that the scores lay
approximately in [−1, +1].

Subtype clustering We used the ESR1 and ERBB2 module scores to fit the subtype clus-
tering model described in Section 4.2.2 to a training dataset. We then assessed the perfor-
mance of the model in the independent datasets. To do so, we used the prediction strength
described in Section 2.2.4. The idea was to view the clustering analysis (unsupervised
learning, see Section 2.1.3.3) as a supervised classification problem (supervised learning,
see Section 2.1.3.3) in which the ”true” class labels have to be estimated. To assess the
performance of a clustering model in an independent dataset, we first fitted a new cluster-
ing model to this dataset, using the same method used for the original clustering model to
estimate the ”true” class labels. Second, we compared the ”true” class labels with the class
labels returned by the original clustering model, through prediction strength [Tibshirani and
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Walther, 2005]. If prediction strength was close to 1, it meant that our clustering model fitted
the independent data well, since the two clustering models returned the same class labels;
otherwise, prediction strength was close to 0.

5.3.3 Results

Gene modules We used the two largest datasets of global populations of breast cancer
patients, i.e. VDX and NKI, to perform the prototype-based feature transformation. VDX and
NKI were generated from two different microarray technologies (Table 5.1), Affymetrix and
Agilent respectively, with ≈ 10, 000 genes in common. We combined these two datasets
through a meta-analytical framework described in the Supplementary Information section of
the paper [Desmedt et al., 2008]. We did not attempt to optimize the hyperparameters of
the method and used the values c = 0.05 and e = 0.95 to identify modules of a size larger
than five genes each. The resulting number of specific genes in each module is reported in
Table 5.2.

Gene module Size
ESR1 469

ERBB2 28
AURKA 229

PLAU 68
VEGF 14
STAT1 95

CASP3 9

Table 5.2: Number of genes specifically co-expressed with the prototype in the correspond-
ing module. The size includes the prototype itself.

The large size of the ESR1 and AURKA modules highlights their broad effect on the gene
expression profile of the breast tumors. Interestingly, the ERBB2 module contained only a
reasonable number of specific genes, despite having been shown in previous publications
that these genes are of the highest importance for breast cancer subtyping [Perou et al.,
2000; Sorlie et al., 2001, 2003; Sotiriou et al., 2003; Hu et al., 2006; Kapp et al., 2006]. This
suggests that the expressions of the genes in this module have a strong impact on clustering
analysis used to identify the breast cancer molecular subtypes. The list of genes for each
module is given in Appendix C.3.

The 7 gene modules were analyzed by using ingenuity pathway analysis [Ingenuity Sys-
tems]. The ESR1 module was composed of 469 genes and, as expected, was characterized
by the co-expression of numerous luminal and basal genes already reported in previous mi-
croarray studies such as XBP1, TFF1, TFF3, MYB, GATA3, PGR and several keratins. The
ERBB2 module included 28 genes, with nearly half co-located on the 17q11-22 amplicon,
such as THRA, ITGA3 and PNMT. The proliferation module (AURKA) comprised 229 genes,
with 34 of them represented in the previously reported GGI [Sotiriou et al., 2006]. The ma-
jority of these genes, such as CCNB1, CCNB2, BIRC5, were involved in cellular growth and
proliferation, and cancer and cell cycle related functions. The tumor invasion/metastasis
module (PLAU) included 68 genes with several metalloproteinases among them. These
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genes were significantly associated with functions such as cellular movement, tissue devel-
opment, cellular development and cancer related functions. The immune response module
(STAT1) was made up of 95 genes, the majority being associated with immune response,
followed by cellular growth and proliferation, cell-signaling and cell death. The angiogenesis
module (VEGF) consisted of 10 genes related to cancer, gene expression, lipid metabolism
and small molecule biochemistry. Finally, the apoptosis module (CASP3) only included 9
genes mainly associated with protein synthesis and degradation, as well as cellular assem-
bly and movement.

Subtype clustering model We chose VDX as a training set since this dataset includes a
large number of experiments on the Affymetrix platform. The use of NKI as a training dataset
instead of VDX led to a virtually identical model (data not shown), but had the drawback of
using Agilent microarray technology, which is less widely used (Table 5.1).

In order to identify the most likely number of clusters (subtypes) present in the data,
we fitted the subtype clustering model with increasing number of clusters (one to ten) and
then computed the corresponding BIC values (Section 2.2.2.1). Since the BIC values are
dependent on sample size and data distribution, we scaled the BIC values such that the
value for a single cluster was equal to zero, and the dispersion between the maximum and
the minimum values was equal to unity. This scaling procedure made it possible to compare
BIC values between datasets.

It is apparent in Figure 5.11 that the BIC estimates increased dramatically until three
clusters and reached a plateau afterwards. Therefore, we considered a mixture of three
Gaussians, since this number of clusters is likely given the data. We referred to these clusters
as the ER-/HER2-, HER2+, and ER+/HER2- subtypes with respect to their typical values for
the ESR1 and ERBB2 module scores.

The parameters of the subtype clustering model using three Gaussians are given in Ta-
ble 5.3. As mentioned in Section 4.2.2, the covariance structure is constrained such that the
covariance matrices of the Gaussians are diagonal and equal, as in Equation (4.11).

ER-/HER2- HER2+ ER+/HER2-
µ

ESR1 -0.77 0.09 0.59
ERBB2 -0.71 0.68 -0.26

Σ
ESR1 0.062

ERBB2 0.063
π 0.29 0.16 0.55

Table 5.3: Subtype clustering model: parameters of the mixture of three Gaussians fitted on
the training dataset (VDX).

Figure 5.12 sketches the density distribution of such a mixture of three Gaussians.
The scatterplot in Figure 5.13 illustrates the classification of the tumors by the subtype

clustering model on the training dataset (VDX), each subtype being represented by a dif-
ferent color and symbol. The tumors are classified with respect to their maximum posterior
probability computed by the subtype clustering model as in Equation (2.7).
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Figure 5.11: Evolution of the scaled BIC estimates of the subtype clustering with respect
to the number of clusters in the training dataset (VDX). The vertical orange dashed line
represents the number of Gaussians selected for the subtype clustering model.

One of the advantages of model-based clustering is that it can easily predict the class of
new data (Section 4.2.2). This allows for performance assessment of the model in indepen-
dent datasets.

Performance assessment We used the subtype clustering model in all the datasets de-
scribed in Table 5.1, which represent a global population of breast cancer patients, excluding
MGH, TAM and TAM2. We first identified the breast tumor subtypes and then computed the
prediction strength of the model in each independent dataset.

One can see in Figures B.1-B.5 (Appendix B.1) that the pattern of the three subtypes
observed in the training dataset (VDX, see Figure 5.13) was well preserved over the inde-
pendent datasets, except for MUG, in which the subtypes were not easily discriminated.

The prediction strength of the subtype clustering model applied to each independent
dataset is reported in Table 5.4. The prediction strengths for the ER-/HER2-, HER2+, and
ER+/HER2- subtypes separately are shown in the first columns, and the overall prediction
strengths, denoted by ps, are given in the last column. The last two rows report the mean
and the standard deviation of the prediction strengths. Note that, in [Tibshirani and Walther,
2005], the authors stated that a prediction strength is considered to be ”good” if ps ≥ 0.8.

We observed good overall prediction strengths for most of the datasets, except for STNO2,
DUKE2 and MUG. However the mean ps is equal to 0.83± 0.12, highlighting the good per-
formance of the subtype clustering model applied to new data. Looking at the prediction
strengths for each subtype separately, we observed that the ER-/HER2- was particularly
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Figure 5.12: Density distribution of the mixture of three Gaussians fitted for the subtype
clustering model.

Dataset ER-/HER2- HER2+ ER+/HER2- ps
NKI 1.00 1.00 1.00 1.00

TBG 1.00 1.00 0.83 0.83
UPP 1.00 0.93 0.87 0.87
UNT 1.00 0.89 0.92 0.89

STNO2 1.00 0.69 0.97 0.69
NCI 0.85 0.83 0.93 0.83
STK 1.00 0.91 0.87 0.87
MSK 1.00 1.00 0.96 0.96

UNC2 1.00 0.87 0.96 0.87
NCH 1.00 0.82 0.98 0.82

DUKE 1.00 0.82 0.92 0.82
DUKE2 1.00 0.64 0.95 0.64
MAINZ 1.00 1.00 0.90 0.90

CAL 1.00 1.00 0.95 0.95
LUND2 1.00 0.89 0.87 0.87

LUND 1.00 1.00 0.81 0.81
MUG 0.66 0.61 0.49 0.49
mean 0.97 0.88 0.89 0.83

sd 0.09 0.13 0.12 0.12

Table 5.4: Prediction strength of the subtype clustering model in each independent dataset.
The mean and the standard deviation of the prediction strengths are reported in the last two
rows.
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Figure 5.13: Tumors in the training dataset (VDX) colored by their subtype as defined by their
maximum posterior probability computed by the subtype clustering model. Each subtype is
represented by a different color and symbol. The superimposed ellipses correspond to the
covariance of the components.

well identified (mean ps equal to 0.97 ± 0.09), while the HER2+ and ER+/HER2- yielded
similar prediction strengths (mean ps equal to ≈ 0.88).

In order to assess whether the number of clusters selected in the training dataset (VDX)
was likely given the independent datasets, we computed the BIC values for the clustering
model using one to ten clusters in each independent dataset. The evolution of the mean
BIC estimates with respect to the number of clusters is given in Figure 5.14. We observed
that three is the most likely number of clusters, supporting our choice made for the training
dataset.

Subtypes and clinical outcome Initial studies [Perou et al., 2000; Sorlie et al., 2001,
2003; Sotiriou et al., 2003] showed that patients exhibit different clinical outcomes depend-
ing on the molecular subtypes of their breast tumors (Section 3.2). However, due to the small
sample sizes of these studies, the authors were only able to study heterogeneous popula-
tions of patients (e.g. different treatments or different stages of the disease). Therefore, the
conclusions about clinical outcome might be misleading due these potentially confounding
factors.

For this thesis, we collected numerous breast cancer microarray datasets (Table 5.1).
This allowed us to study a homogenous population of interest, i.e. untreated patients with
early (node-negative) primary breast tumors. In the independent datasets, we retrieved
these patients from the NKI, TBG, UPP, UNT and MAINZ datasets (745 patients). Their
survival curves using DMFS as survival endpoint (except for UPP for which only RFS is
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Figure 5.14: Evolution of the mean BIC values estimated from each independent dataset,
with respect to the number of clusters.

available) and stratified by molecular subtypes, are shown in Figure 5.15.
We observed a significant difference between the survival curves (logrank test p-value

of 4E-6), the patients who have a ER+/HER2- tumor exhibiting a better survival than the
patients who have a ER-/HER2- or HER2+ tumor. The ER-/HER2- and HER2+ subtypes
exhibit similar survival. The ER+/HER2- subtype, including 69% of the tumors, exhibits better
survival than the ER-/HER2- and HER2+ subtypes, including 16% and 15% of the tumors
respectively. These results reinforce the observations made in the initial publications.

Performance comparison: gene modules vs prototypes We assessed here whether
the subtype clustering model using the ESR1 and ERBB2 module scores yields better per-
formance than a clustering model using only their prototypes (the expressions of the sin-
gle genes ESR1 and ERBB2). To do so, we fitted the same clustering model (mixture of
three Gaussians) onto the training dataset (VDX), but used the gene expressions of the
ESR1 and ERBB2 prototypes instead of their gene module scores. We computed the pre-
diction strengths just as we did previously (Table 5.7). We observed globally lower prediction
strengths and larger deviations for each subtype separately and for the overall ps. In par-
ticular, ps is equal to 0.75 ± 0.25, which does not fulfill the condition for ”good” prediction
strength as defined in [Tibshirani and Walther, 2005]. Note the presence of extremely low
prediction strengths for some datasets: ps = 0 for NCH and ps = 0.40 for MAINZ. In contrast,
we obtained ps = 0.82 for NCH and ps = 0.90 for MAINZ using the subtype clustering model
with gene module scores.

Although using prototypes instead of the gene module scores globally decreased the
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Figure 5.15: Survival of untreated node-negative breast cancer patients with respect to their
tumor subtypes. The patients come from the NKI, TBG, UPP, UNT and MAINZ datasets.

Dataset ER-/HER2- HER2+ ER+/HER2- ps
NKI 1.00 0.96 0.95 0.95

TBG 1.00 1.00 0.95 0.95
UPP 1.00 0.94 0.99 0.94
UNT 1.00 1.00 0.98 0.98

STNO2 0.83 1.00 0.82 0.82
NCI 0.66 1.00 1.00 0.66
STK 1.00 0.81 0.95 0.81
MSK 1.00 1.00 0.96 0.96

UNC2 1.00 1.00 0.86 0.86
NCH 0.49 0.92 0.00 0.00

DUKE 0.70 0.76 1.00 0.70
DUKE2 0.86 0.81 1.00 0.81
MAINZ 0.60 0.40 0.93 0.40

CAL 1.00 1.00 1.00 1.00
LUND2 0.74 1.00 0.92 0.74

LUND 0.75 1.00 0.93 0.75
MUG 0.49 0.67 0.77 0.49
mean 0.83 0.90 0.88 0.75

sd 0.19 0.16 0.24 0.26

Table 5.5: Prediction strength of the subtype clustering model using the prototypes in each
independent dataset. The mean and the standard deviation of the prediction strengths are
reported in the last two rows.
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prediction strength of the subtype clustering model, the superiority of the model using the
gene module scores was not significant (Wilcoxon Rank Sum test p-value of 0.26).

Performance comparison with Perou’s method We also compared the performance of
our subtype clustering model with the method introduced in [Perou et al., 2000] and further
used in [Sorlie et al., 2001, 2003; Hu et al., 2006]. To do so, we used the procedure described
in Section 3.2.

Perou’s clustering model We applied Perou’s method to identify three subtypes in the
training dataset (VDX). This method revealed similar subtypes to those identified by our novel
subtype clustering model (Table 5.6). The association between the two classifications is
strong (Cramer’s V statistic of 0.84, [Cramer, 1999]) and significant (χ2 test p-value < 1E-16,
[Plackett, 1983]).

Novel method
Perou’s method

cluster 1 cluster 2 cluster 3
ER-/HER2- 97 2 0

HER2+ 0 46 8
ER+/HER2- 5 16 170

Table 5.6: Contingency table to assess the concordance between the subtype identification
of our novel method and Perou’s method.

Performance assessment We appled this model to the same independent datasets
as before in order to compare its performance with our model. To do so, we computed the
prediction strengths reported in Table 5.7. We observed globally lower prediction strengths
for each subtype separately and for the overall ps. Specifically, ps was equal to 0.47± 0.10
and therefore does not fulfill the condition for a ”good” prediction strength as defined in
[Tibshirani and Walther, 2005]. Note the presence of low prediction strengths for some
datasets, e.g. ps = 0.33 for MUG. The superiority of our subtype clustering model is highly
significant (Wilcoxon Rank Sum test p-value of 8E-6).

When we applied Perou’s method to identify four to five clusters, as was reported in the
original publications, the prediction strengths were even worse (Table B.1.1 in Appendix B.1.1).
In contrast, identifying the two main clusters yielded better prediction strengths but, even in
this case, the performance was significantly worse than that of our method (Wilcoxon Rank
Sum test p-value of 0.044).

5.3.4 Findings

Thanks to the novel methods we developed in this thesis (Section 4.2), we significantly im-
proved the identification of breast cancer molecular subtypes when compared to the state-
of-the-art:

• Our subtype clustering model yielded good performance in numerous datasets using
different microarray technologies and normalization techniques. We also showed that
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cluster 1 cluster 2 cluster 3 ps
NKI 0.84 0.42 0.60 0.42

TBG 0.92 0.39 0.87 0.39
UPP 0.51 0.61 0.54 0.51
UNT 0.55 0.59 0.55 0.55

STNO2 0.81 0.44 0.78 0.44
NCI 1.00 0.44 0.52 0.44
STK 0.46 0.38 0.50 0.38
MSK 0.89 0.66 0.71 0.66

UNC2 0.93 0.57 0.80 0.57
NCH 0.49 0.57 0.56 0.49

DUKE 0.61 0.42 0.89 0.42
DUKE2 0.97 0.63 1.00 0.63
MAINZ 0.49 0.39 0.60 0.39

CAL 1.00 0.41 0.80 0.41
NCH 0.49 0.57 0.56 0.49

LUND2 0.93 0.51 0.78 0.51
LUND 0.39 0.36 0.49 0.36
MUG 0.42 0.33 0.35 0.33
mean 0.72 0.48 0.67 0.47

sd 0.23 0.11 0.18 0.10

Table 5.7: Prediction strength of the clustering model as fitted by Perou’s method in each
independent dataset. The mean and the standard deviation of the prediction strengths are
reported in the last two rows.

the use of gene module scores instead of single prototype genes yields more stable
classifications.

• Our subtype clustering model yielded significantly better performance than Perou’s
method, the most widely used method in the literature.

• We confirmed in a homogeneous population of untreated node-negative breast can-
cer patients that the molecular subtypes have different natural histories, ER-/HER2-
and HER2+ subtypes having a worse clinical outcome than ER+/HER2- subtype. The
accurate classification of breast tumors according to their subtypes is therefore highly
important for breast cancer management [Pusztai et al., 2006]. Indeed, targeted ther-
apies are available that are only effective in some subtypes of tumors. For instance,
the sensitivity of different molecular subtypes to chemotherapy varies, with ER-/HER2-
and HER2+ tumors being more sensitive to chemotherapy [Rouzier et al., 2005] than
others.

We will see in Section 5.4.2 how to use the estimation of the posterior probability of be-
longing to a subtype as computed by our model, in order to identify efficient local prognostic
gene signatures.

5.4 Local Prognostic Gene Signatures

In this section, we will present the local prognostic gene signatures we developed and their
corresponding experimental findings. These local prognostic genes signatures are closely
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related to the breast cancer molecular subtypes (see Section 3.2) and the novel subtype
clustering we developed (Sections 4.2.2 and 5.3 for the description of the subtype clustering
model and the corresponding experimental findings, respectively).

The experimental results generated from the use of gene modules (Section 5.3) to study
the association between known biological processes and breast cancer molecular subtypes
from a prognostic point of view will be the subject of Section 5.4.1. The experimental re-
sults of the novel prognostic modular model (GENIUS, Section 4.3) will be presented in
Section 5.4.2.

5.4.1 Gene Modules and Breast Cancer Molecular Subtypes

5.4.1.1 Motivations

The prognostic relationship between the key biological processes in breast cancer (see
[Hanahan and Weinberg, 2000] for a review) and the molecular subtypes was barely known
at the time this thesis was begun (Section 3.3.1). Extending the results of the GGI signa-
ture, capturing mainly proliferation at the molecular level (Section 5.2.1), we sought to build
modules of genes (Section 5.3) in order to quantify the activity of key biological processes in
breast cancer and to link them to prognosis with respect to the molecular subtypes.

Beyond the study of the key biological processes, we focussed our research on the perfor-
mance of the existing prognostic gene signatures with respect to the breast cancer molecular
subtypes. Since these gene signatures contain a large number of genes for which the bio-
logical function is unknown, it is difficult to discern the driving force behind such signatures
from a prognostic point of view.

We collected numerous microarray datasets (Section 5.1) to address these two issues.
The experimental results presented below have been published in [Wirapati et al., 2008;
Desmedt et al., 2008].

5.4.1.2 Methods

To study the prognostic relationship between the key biological processes in breast cancer
and the molecular subtypes, we used the gene modules and the subtype clustering model
described in Section 5.3. Accordingly, the subtype clustering model was used for hard par-
titioning (Section 2.2), the tumors being classified by their maximum posterior probability to
belong to a subtype as computed by the model.

In this study, we also analyzed state-of-the-art prognostic gene signatures. Since we
were not able to use the original algorithms for all these gene signatures in order to compute
them in all the datasets, this being due to different microarray technologies or normaliza-
tion procedures involved, we introduced an alternative computation method described in the
Supplementary Information of [Desmedt et al., 2008]. This method consists in using the ro-
bust model presented in Section 4.1.3, i.e. a signed average of the expressions of the genes
included in the signature. This makes it possible to compute all the gene signatures in all the
datasets in order to perform a thorough performance assessment and comparison analysis.

Each gene module score and prognostic gene signature was rescaled to derive compara-
ble scales between datasets, as in Section 5.3. The scores were scaled such that quantiles
2.5% and 97.5% equaled to −1 and +1 respectively. This scaling was robust to outliers and
ensured the scores lay approximately in [−1, +1].
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5.4.1.3 Results

Gene signatures We used the same gene modules as those identified in Section 5.3. They
represent key biological processes in breast cancer such as proliferation, tumor invasion,
immune response, angiogenesis, apoptosis, and estrogen and HER2 signaling pathways
(Figure 5.10).

Additionally, we computed several existing prognostic gene signatures, namely GENE70
[van’t Veer et al., 2002], GENE76 [Wang et al., 2005], P53 [Miller et al., 2005], WOUND
[Chang et al., 2004], GGI [Sotiriou et al., 2006], ONCOTYPE [Paik et al., 2004] and IGS [Liu
et al., 2007]

Performance assessment Like for the experimental findings of the GGI study (Section 5.2.1),
we present here updated experimental findings using different datasets and a performance
criterion different from the one used in the original publication [Desmedt et al., 2008].

The updated results were generated using recent datasets of untreated early (node-
negative) breast cancer patients, as we did for the GGI study (Section 5.2.1) and the identi-
fication of breast cancer molecular subtypes (paragraph on clinical outcome in Section 5.3),
i.e. 745 patients selected from the NKI, TBG, UPP, UNT and MAINZ datasets (Table 5.1). In
the original article [Desmedt et al., 2008], untreated node-positive patients were considered
as well, but the population of patients under study at that time was affected by breast cancer
at different stages (heterogenous number of lymph nodes involved). This prevented us from
focussing on early breast cancer, which is more interesting from a clinical point of view. For
the new study, we considered DMFS as the survival endpoint.

The hazard ratio was used in the original article [Desmedt et al., 2008], but in this
thesis, we highlight the drawbacks of using hazard ratio as a performance criterion (Sec-
tion 4.4.1). Since the concordance index has desirable properties compared to hazard ratio
(Section 4.4.1), in the study described here below we used it to assess the performance of
the clinical variables, the gene modules and the state-of-the-art prognostic gene signatures.

Clinical variables and gene modules We assessed the performance of the clinical
variables and the gene modules. All the clinical variables were discrete (age at diagnosis
< 50 years, tumor size < 2 cm, ER-negative/positive and histological grade 1, 2 and 3). The
gene modules and the signatures (see next section) were analyzed as continuous values
(risk score predictions). Note that although the scales of the concordance indices were
similar for continuous and discrete variables, the discretization of a variable might lead to
higher concordance indices with wider confidence intervals [Harrell et al., 1996]. One has to
keep this in mind when comparing discrete variables (e.g. clinical variables) with continuous
variables (e.g. gene modules or gene signatures).

The forestplot represented by Figure 5.16 corresponds to Figure 3 in [Desmedt et al.,
2008]. This allows us to compare the prognostic values of the clinical variables and the
gene module scores with respect to the breast cancer molecular subtypes. The Table B.2 in
Appendix B.2.1 reports the concordance indices, their confidence intervals and their signifi-
cances. In the global population, as expected, we observed highly significant concordance
indices for all the clinical variables, especially for histological grade. For the gene mod-
ules, the proliferation module (AURKA) yielded a high concordance index with a small con-
fidence interval, confirming the importance of measuring proliferation at the molecular level,
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as emphasized in [Sotiriou et al., 2006]. In the ER+/HER2- subtype, including 69% of the
patients (Figure 5.15), this trend was even stronger. This result suggested that the search
for prognostic factors in the global population of patients is mainly driven by the tumors
of ER+/HER2- subtype, hiding potentially interesting prognostic factors in the ER-/HER2-
and HER2+ subtypes. Indeed, in these subtypes, the picture dramatically changes. In the
ER-/HER2- subtype, only the immune response gene module (STAT1) yielded a significant
concordance index. A recent study also showed the prognostic value of the immune re-
sponse quantified by gene expression profiling in ER-negative patients [Teschendorff et al.,
2007; Teschendorff and Caldas, 2008]. In fact, ER status was also significant, but its prog-
nostic value is questionable since very few patients are ER-positive in this molecular sub-
type. In the HER2+ subtype, only the immune response and the angiogenesis gene modules
(STAT1 and VEGF respectively) yielded significant concordance indices. We did not observe
a significant performance for the tumor invasion gene module (PLAU) in this subtype, in con-
trast to the original article [Desmedt et al., 2008], suggesting that this factor is not prognostic
in early (node-negative) breast cancer.

Prognostic gene signatures We assessed here the performance of existing prognos-
tic gene signatures. The concordance indices are represented in Figure 5.17. The Table B.3
in Appendix B.2.1 reports the concordance indices, their confidence intervals and their signif-
icances. This table corresponds to Table 2 in [Desmedt et al., 2008]. In the global population
and in the ER+/HER2- subtype, all the gene signatures yield significant concordance indices.
However, none is significant in the ER-/HER2- and HER2+ subtypes, suggesting the prog-
nostic value of these gene signatures are limited to the ER+/HER2- subtype. Actually, we
have shown in [Wirapati et al., 2008] that many proliferation-related genes are included in
these signatures and that these genes recapitulate their prognostic value (see Figure 3 in
[Wirapati et al., 2008]).

5.4.1.4 Findings

In order to reveal the thread connecting molecular subtypes, prognostic gene signatures,
and traditional clinico-pathological prognostic factors, we introduced the concept of gene
modules associated with key biological processes in breast cancer tumorigenesis. Wishing
to extend our previous results on the GGI signature [Sotiriou et al., 2006], capturing mainly
proliferation, we built several other gene modules representing key biological processes in
breast cancer such as proliferation, tumor invasion, immune response, angiogenesis, apop-
tosis, and ER and HER2 signaling pathways.

We recapitulate below the main findings of this study:

• We showed that the gene modules we developed contain distinct prognostic informa-
tion according to different breast cancer molecular subtypes, and we highlighted the
importance of proliferation-related genes in predicting clinical outcome. Here we detail
the findings related to the gene modules with respect to the subtypes:

– In the ER+/HER2- subtype, the proliferation gene module and histological grade
were the two most significant prognostic factors. This is consistent with our finding
that two clinically distinct ER-positive molecular subtypes can be defined by the
GGI, which captures mainly proliferation [Loi et al., 2007].
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– In the ER-/HER2- subtype, only immune response appeared to be prognostic. It
has been reported that tumors that do not express the ESR1 and ERBB2 genes,
also called ”basal-like” tumors, are more aggressive [Perou et al., 2000; Sorlie
et al., 2001, 2003; Sotiriou et al., 2003]. It is worth mentioning that patients with
basal-like tumors cannot be treated with the conventional targeted therapies cur-
rently available for breast cancer, such as endocrine or ERBB2 therapies, leav-
ing chemotherapy as the only option. In this study, we showed that in this sub-
type, impaired immune response might be linked with the development of distant
metastases. Indeed, high expression levels of the immune response module were
associated with a significantly better outcome. Interestingly, Teschendorff et al.
recently published similar findings [Teschendorff et al., 2007; Teschendorff and
Caldas, 2008].

– In the HER2+ subtype, immune response and angiogenesis appeared to be the
main processes associated with breast cancer prognosis.

• Our study also highlighted that proliferation-related genes are the main and common
denominator of several previously published gene signatures for predicting clinical out-
come. Since defects in cell cycle deregulation are a fundamental characteristic of
breast cancer, it is not surprising that these genes are involved in breast cancer prog-
nosis. Several studies have indeed showed that increased expression of cell-cycle and
proliferation-associated genes was correlated with poor outcome (reviewed in [Colozza
et al., 2005]). There are of course differences in the exact proliferation-associated
genes, due to the difference in population analyzed or platform used. Although the
use of proliferation-associated cell markers is not new – the protein expression levels
of Ki67 and PCNA have already been used as prognostic markers for decades – gene
expression profiling studies suggest that measuring proliferation with a more objective,
automated and quantitative assay may be more robust than less quantitative assays
such as immunohistochemistry.

• We have also showed that the prognostic ability of several prognostic gene signatures
differ according to the breast cancer subtypes. Indeed, we showed that their prognostic
discriminative power was limited essentially to the ER+/HER2- subtype. The fact that
the prognostic factors depend on the molecular subtypes highlights the importance of
integrating such a knowledge into the search for new prognostic factors. Until recently,
most of the prognostic gene signatures were identified using the global population of
breast cancer patients.

Regarding these findings, we think that it is time now to look for gene signatures that are
prognostic in specific breast cancer subtypes, especially for the ER-/HER2- subgroup, which
is associated with poor prognosis and limited therapeutic options. Therefore, we strongly be-
lieve that studying the immune response mechanisms in this particular subgroup of patients
might help us to better understand these tumors and to develop efficient novel targeted ther-
apies.
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5.4.2 Gene Expression Prognostic Index Using Subtypes (GENIUS)

5.4.2.1 Motivations

We know from the early gene expression studies that breast cancer can be classified into
three molecular subtypes, depending mainly on the ER and HER2 phenotypes. Using the
novel subtype clustering model we developed, we are now able to accurately classify breast
tumors and to estimate the probability of their belonging to each of these subtypes.

From a prognostic point of view, several global prognostic gene signatures have been
identified [van’t Veer et al., 2002; Sotiriou et al., 2006; Naderi et al., 2007]. Since we showed
through the study of gene modules (see Section 5.4.1) that these signatures are only prog-
nostic in the ER+/HER2- subtype and are driven by proliferation-related genes, there is still
room for improvement. Additionally, few gene signatures, including our own gene modules,
were shown to be prognostic in specific subtypes only [Wang et al., 2005; Teschendorff et al.,
2007; Desmedt et al., 2008; Finak et al., 2008].

In 2005, Wang et al. were the first to propose the development of a prognostic model
by dividing the global population of patients into subgroups based on their ER status [Wang
et al., 2005]. Although the approach seemed appealing and their GENE76 signature yielded
a good performance, there was still room for improvement. First, the authors considered
only two subgroups of patients (ER- and ER+) without taking into account the heterogeneity
of HER2+ tumors. Second, the prognostic model specifically developed for ER- tumors was
trained on few samples (35) and yielded poor performance in validation studies [Foekens
et al., 2006; Desmedt et al., 2007].

Given these limitations, we sought to develop a novel prognostic model that would take
into account the molecular heterogeneity of breast. This model, called GENIUS (Gene Ex-
pression progNostic Index Using Subtypes), should exhibit significant improvement in the
prognostication of the global population of breast cancer patients and yield good perfor-
mance in each molecular subtype.

The experimental findings we present below have been submitted for publication in [Haibe-
Kains et al., 2009].

5.4.2.2 Methods

In order to build the new prognostic model taking into account the molecular heterogeneity
of breast cancer, we followed the modular modeling approach described in Section 4.3.1.
Therefore, we had to define the modules and the local models.

The modules were defined as the breast cancer molecular subtypes. The local basis
functions ρj of Equation (4.13) were then defined as the functions returning the posterior
probability of a patient to have a tumor of subtype j given the genetic profile of the tumor
as in Equation (4.14). To estimate this posterior probability, we used the subtype clustering
model developed in Section 5.3.

We built the local models by adapting the method developed for the global prognostic
gene signatures (Section 4.1):

1. Feature transformation: The original gene expressions were used for the following
steps of signature extraction, no feature transformation being performed.
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2. Feature selection: The feature ranking procedure described in Algorithm 4 was used
with a scoring function based on the weighted concordance index (Section 4.3.3.1).
The weights were defined as the probabilities to belong to the subtype under study.
Once the feature ranking was performed, the signature size was selected based on the
stability criterion Stabadj (Section 4.1.2.1). We refer hereafter to these signatures as
the subtype signatures.

3. Model building: The local models were built from the signatures as the combination
of univariate models described in Section 4.1.3.1. We refer hereafter to the risk score
predictions of the local models as the subtype risk scores.

We focussed our survival analysis on the DMFS of untreated node-negative patients in
order to build a prognostic model for early stage breast cancer and to avoid any confounding
factors due to the treatment effects on survival.

5.4.2.3 Results

We used VDX (Table 5.1) as the training set, since this population contains the largest sets
of ER-/HER2- (99), HER2+ (54) and ER+/HER2- (191) tumors from untreated node-negative
patients.

Many prognostic gene signatures have already been published on the basis of the global
breast cancer population, and we have shown in Section 5.4.1 that these signatures have
only added information in the ER+/HER2- subtype, and that proliferation-related genes are
their common denominator. Given the considerable level of prognostic evidence in this sub-
type, we do not generate a new prognostic gene signature for these ER+/HER2- tumors, but
consider instead the proliferation gene module (AURKA) as subtype signature.

On the contrary, very few prognostic signatures have been reported thus far in the ER-/HER2-
and HER2+ subtypes [Wang et al., 2005; Teschendorff et al., 2007; Desmedt et al., 2008;
Finak et al., 2008]. Therefore, we developed subtype signatures for ER-/HER2- and HER2+
tumors.

Figure 5.18 shows the design of GENIUS, inspired from the design of modular modeling
in Figure 4.9. We can see a representation of the three breast cancer molecular subtypes
identified by our subtype clustering model and the use of the proliferation gene module (AU-
RKA) as prognostic signature for the ER+/HER2- subtype.

We identified the prognostic genes for the ER-/HER2- and HER2+ subtypes separately,
the most stable signatures including 63 and 22 genes respectively (Figure 5.19). The genes
selected for each subtype signature are given in Appendix C.4.

In order to gain biological insight into the subtype signatures used in GENIUS, we an-
alyzed the three lists of genes using the ingenuity pathway analysis [Ingenuity Systems].
Genes from the ER-/HER2+ signature were significantly associated with functions such as
cell proliferation and death, cellular movement, molecular transport, immune response and
cell-to-cell interactions. Genes included in the HER2+ subtype signature were significantly
associated with cellular growth and proliferation, immune response and cell signaling. The
AURKA module, which was used as ER+/HER2- subtype signature, represents mainly cell
cycle and proliferation genes, as reported previously [Desmedt et al., 2008].
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Figure 5.19: Evolution of the stability criterion Stabadj with respect to size in (a) the
ER-/HER2+ subtype and (b) the HER2+ subtype. The vertical orange dashed lines rep-
resent the signature size maximizing the stability.

Performance assessment and comparison We assessed the performance of GENIUS in
our validation set, which includes 745 node-negative untreated patients from the NKI, TBG,
UPP, UNT and MAINZ datasets (Table 5.1).

Furthermore, in order to assess whether GENIUS would add prognostic information to
the one provided by already published gene signatures, we compared its performance with
several signatures shown to be associated with prognosis in the global breast cancer pop-
ulation or in a specific molecular subtype: (i) the GGI representing the initially published
prognostic signatures for the global population of breast cancer patients (e.g. GENE70
or GENE76) since we showed that they all yield similar performances [Haibe-Kains et al.,
2008b]; (ii) IRMODULE identified by Teschendorff et al. in the ER-negative breast can-
cers [Teschendorff et al., 2007; Teschendorff and Caldas, 2008]; (iii) SDPP representing the
stroma-derived prognostic predictor identified by Finak et al. and shown to perform well in
ER+ and HER2+ tumors [Finak et al., 2008]; (iv) the in-silico derived AURKA, PLAU and
STAT1 gene modules, since our group showed that the proliferation gene module AURKA
was prognostic in the ER+/HER2- subtype only and that the immune response gene module
(STAT1) was prognostic in the ER-/HER2- and HER2+ subtypes, while the tumor invasion
gene module (PLAU) was prognostic in the HER2+ subtype only4 [Desmedt et al., 2008].

We compared the performance of these signatures with GENIUS in the global population
and in the three molecular subtypes in our validation set. To avoid the risk of overfitting, we
did not consider NKI in our validation set for IRMODULE, since this signature was identified
using the NKI dataset

4The updated results presented in Section 5.4.1 suggested that in a population of patients with early (node-
negative) breast cancers, the tumor invasion gene module (PLAU) is not prognostic. Since this result was not
reported in previous publications, we included this gene module in the current study.
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In the following sections, we will assess the performance for the risk score predictions
only, leaving aside the risk group predictions. However, the performance assessment and
comparison for the risk group predictions are available in [Haibe-Kains et al., 2009].

GENIUS vs state-of-the-art prognostic gene signatures In order to compare our
risk prediction model with other gene signatures shown to be prognostic in specific breast
cancer molecular subtypes, we computed the risk predictions of these signatures using the
alternative computational method introduced in [Desmedt et al., 2008]. Although this method
may differ from the algorithms used in the original publications, it is able to compute risk score
and risk group predictions in datasets using different microarray platforms and normalizations
while yielding similar performance [Desmedt et al., 2008].

In this section, we consider the risk score predictions of GENIUS and the published
prognostic gene signatures. Figure 5.20 demonstrates the performance of GENIUS and the
gene signatures. The concordance indices, their confidence intervals and their significances
are reported in Table B.4 (Appendix B.2.2.1).

First, we observed that GENIUS is significantly associated with prognosis in the global
breast cancer population, as well as in each molecular subtype. In the global population,
GENIUS yielded a concordance index of 0.71. In the ER+/HER2-, ER-/HER2- and HER2+
subtypes, GENIUS yielded a concordance index of 0.70, 0.66 and 0.66 respectively (all
p-values < 0.001).

Next, we compared the prognostic performance of GENIUS to the current gene signa-
tures (Figure 5.20). GENIUS exhibited significantly better performance in the global popula-
tion of patients compared to all the evaluated gene signatures. However, depending on the
signature, the superiority of GENIUS was not always significant in the subtypes in which the
individual signatures were originally shown to be prognostic. For example, STAT1 and IR-
MODULE were highly prognostic in the ER-/HER2- and HER2+ subtypes, while SDPP was
associated with prognosis in the ER+/HER2- and HER2+ subtypes.

In order to explain these findings, we investigated the correlations between GENIUS
and the other signatures. In the global population of patients, we observed a substantial
correlation between GENIUS and AURKA (0.65), GGI (0.6) and SDPP (0.5). As expected,
we observed for some signatures higher correlations in the subtypes in which the signatures
had been shown to be prognostic: 0.53 and 0.75 for STAT1 in the ER-/HER2- and HER2+
subtypes respectively; 0.4 for PLAU in the HER2+ subtype; 0.51 and 0.72 for IRMODULE in
the ER-/HER2- and HER2+ subtypes respectively; 0.89 in the ER+/HER2- subtype for GGI;
and 0.46 in the HER2+ subtype for SDPP, not to mention the almost perfect correlation (0.99)
between GENIUS and AURKA in the ER+/HER2- subtype, which can be explained by the
fact that AURKA was used as a subtype signature for the ER+/HER2- tumors.

GENIUS vs prognostic clinical models In order to compare GENIUS with the best
current prognostic clinical models, we computed the risk predictions using the Nottingham
Prognostic Index (NPI; [Todd et al., 1987]) and Adjuvant! Online (AOL) version 8.0 [Ravdin
et al., 2001].

GENIUS risk scores are poorly correlated to AOL and NPI risk scores, with a respective
correlation of 0.27 and 0.39 in the global population. The correlations are even lower within
the ER-/HER2- and HER2+ subtypes. We computed the concordance indices of AOL and
NPI risk score predictions (Table B.5 in Appendix B.2.2.2) and compared them to GENIUS
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Figure 5.20: Forestplot of the concordance indices of GENIUS and the existing prognostic
gene signatures with respect to the breast cancer molecular subtypes. AURKA: [Desmedt
et al., 2008]; GGI: [Sotiriou et al., 2006]; STAT1: [Desmedt et al., 2008]; PLAU: [Desmedt
et al., 2008]; IRMODULE: [Teschendorff et al., 2007]; SDPP: [Finak et al., 2008].
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as shown in Figure 5.21. Although we observed better performance for GENIUS in the global
population, its superiority did not reach significance in all molecular subtypes. NPI yielded a
performance similar to GENIUS in the ER+/HER2- subtype. GENIUS was significantly better
than both AOL and NPI in the ER-/HER2- subtype, while we observed only a trend for the
superiority of GENIUS in the HER2+ subtype (p-value < 0.10).
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Figure 5.21: Forestplot of the concordance indices of GENIUS and the prognostic clinical
models with respect to the breast cancer molecular subtypes. AOL: [Ravdin et al., 2001];
NPI: [Todd et al., 1987].

5.4.2.4 Findings

In this study, we introduced a new methodology for improving breast cancer prognostication
using microarray data, by taking into account the molecular heterogeneity of breast cancer.
This new risk prediction model was developed to answer the major criticism raised regard-
ing the great majority of gene signatures reported so far, i.e. that these are only prognostic
for ER-positive disease [Desmedt et al., 2008; Wirapati et al., 2008]. While it is clear that
the HER2+ and ER-/HER2- breast cancer molecular subtypes of tumors have an overall
worse prognosis than the ER+/HER2- ones, some of these patients do have a better clin-
ical outcome. However, only few studies have so far attempted to consider the molecular
heterogeneity of the HER2+ and ER-/HER2- breast cancer and to derive a prognostic gene
signature for these breast cancer subtypes [Wang et al., 2005; Teschendorff et al., 2007;
Desmedt et al., 2008].

In particular, we showed that:

• GENIUS was highly prognostic in the global population and in all breast cancer sub-
types. GENIUS yielded a significantly better performance than all the state-of-the-art
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prognostic gene signatures in the global population. Although GENIUS was not signif-
icantly better in all the specific subtypes – the immune response signatures, namely
STAT1 [Desmedt et al., 2008] and IRMODULE [Teschendorff et al., 2007], being par-
ticularly good performers in the HER2+ subtype – it was the only prognostic gene
signature to yield good performance whatever the molecular subtype.

• GENIUS yielded better performance than traditional prognostic models. Indeed, a
criticism raised in recent years regarding the existing prognostic gene signatures is
that they may add only little information beyond that provided by the traditional clinical
guidelines. To that end, we considered the Nottingham Prognostic Index (NPI) and Ad-
juvant Online (AOL) as the reference for assessing the risk of recurrence using the tra-
ditional clinico-pathologic parameters. We compared these clinical guidelines and the
gene expression index. The prognostic information provided by AOL and NPI seemed
to be limited to the ER+/HER2- subtype. We showed that GENIUS yielded significantly
better performance in the global population of breast cancer patients, improving upon
the traditional clinical models.

Although we showed that GENIUS outperformed prognostic clinical models, namely AOL
and NPI, we lacked clinical information in the training set (VDX) to study the complemen-
tarity of the clinical and microarray data. Indeed, several authors showed recently that the
performance of prognostic gene signatures could be improved by combining them with clini-
cal variables [Gevaert et al., 2006; Boulesteix et al., 2008; Wirapati et al., 2008; Sotiriou and
Pusztai, 2009]. However, building a risk prediction model that combines clinical and microar-
ray data is a difficult task. This is mainly due to the high dimensionality of the microarray data,
which often leads to an underestimation of the relevance of the clinical variables. Gevaert
et al. used an ingenious approach based on Bayesian networks to treat clinical and mi-
croarray data on an equal footing [Gevaert et al., 2006]. Were the clinical information for the
VDX dataset available, such an approach could be used to combine GENIUS with clinical
variables to further improve the performance of the model.
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Chapter 6

Conclusions

In the early 1990s the era of high throughput technologies started, changing our way of
studying biology. Using these technologies, scientists are now able to draw a global picture
of the state of cells at the molecular level. In this thesis, gene expression profiling, through
microarray technology, was used to study cancer cells in order to bring new insights into
breast tumorigenesis and to build new predictive tools for breast cancer management.

This concluding chapter will summarize the major methodological guidelines and experi-
mental findings made in this thesis, while emphasizing the main motivations that have driven
our research.

6.1 Methodological Guidelines

The intrinsic complexity of microarray data, especially their huge dimensionality, have raised
new challenges in data analysis. The development and the application of novel machine
learning methods to extract knowledge from microarray data is an active research field.

In this thesis, the approach we proposed to address microarray data analysis for breast
cancer prognostication was inspired by 5 main principles: (i) accuracy; (ii) biological inter-
pretability; (iii) robustness; (iv) thorough performance assessment and comparison; and (v)
research reproducibility.

Accuracy Predictive models should yield good performance in independent data. In early
publications in microarray data analysis, simple to complex machine learning techniques
were used. As the field became increasingly mature, large scale comparative studies showed
that simple methods outperformed complex ones due to the intrinsic complexity of microar-
ray data. However, these comparative studies focused on class discovery and classification,
leaving aside methods for survival analysis, particularly suited to breast cancer prognostica-
tion. To fill this important gap, we performed a large-scale comparison study of risk prediction
models and, similar to what was found for class discovery and classification from microar-
ray data, we observed that simple methods outperformed complex ones, suggesting that
variance is the most important term to reduce in the bias-variance trade-off (Section 5.2.2).
Therefore we developed simple yet robust risk prediction models, taking care to reduce the
variance of the models (Section 4.1.3). The rationale is that the gain in stability largely com-
pensates for the lack of complexity.
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Biological interpretability Predictive models should be interpretable from a biological
point of view in order to potentially gain new biological insights into tumorigenesis. Since
the aim of developing new predictive tools for breast cancer prognostication from microarray
data is twofold, i.e. to yield good prediction performance and to gain new biological insights
into cancer biology, we developed machine learning techniques in order to keep the final
predictive model interpretable. This was made possible by properly designing the different
steps of our microarray data analysis methodology. At the feature transformation step, we
designed two methods to reduce the dimensionality of the data while keeping the features
interpretable (Sections 4.1.1 and 4.2.1). At the feature selection step, we assessed the sta-
bility of the selection in order to reinforce the confidence of doctors in the signature identified
(Section 4.1.2). At the model building step, both for global and local risk prediction models,
we avoided the use of ”black box” models (complex models whose interpretation is difficult)
to focus on simple, yet robust predictive models (Section 4.1.3). Lastly, our local risk predic-
tion model GENIUS, beyond providing accurate risk prediction information for doctors, also
provides information about the probability that a patient belongs to a particular breast can-
cer molecular subtype (Sections 4.3 and 5.4.2). This information is crucial for doctors since
patients with different subtypes of breast cancer will respond differently to various therapies.

Robustness The methods and the resulting predictive models should be usable in datasets
involving different microarray technologies and normalization techniques. Emphasis was
placed on predictive models useable in the numerous datasets we collected during the the-
sis (Section 5.1). Indeed, the use of the predictive models should not be limited to a specific
microarray technology nor to data normalization. Instead, the model should be useable
and yield good prediction performance whatever the datasets. This facilitates validation of
the model since it can be developed on one dataset and validated on one or several other
datasets, irrespective of the microarray platform. In this thesis, we facilitate such a validation
by using feature transformation and/or model building methods. In the feature transforma-
tion step, the computation of features, which is an average of highly correlated gene ex-
pressions, facilitates the computation of such features in other microarray platforms in which
some genes are not represented (Sections 4.1.1 and 4.2.1). In the model building step, the
robust signed average used to predict patient risk makes possible the computation of such
risk predictions in datasets using different microarray platforms (Section 4.1.3).

Thorough performance assessment and comparison In order to assess the perfor-
mance of our new risk prediction models and compare them with the state-of-the-art, we
developed in this thesis a statistical framework for performance assessment and compari-
son (Section 4.4). We implemented in a tool all the functions required to assess and compare
the performance risk prediction models, such as the prognostic clinical models and the prog-
nostic gene signatures (Section 4.4). A thorough performance assessment and comparison
of risk prediction models is particularly important in the field of breast cancer prognostication
using microarray data, in which the improvement brought by a gene signature has to be large
enough to compensate for the cost of microarray experiments and the complexity related to
their use in day-to-day clinical practice.

Research reproducibility We also emphasized throughout the thesis the importance of
the research reproducibility guidelines proposed in [Gentleman, 2005]. Indeed, microarray
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data analysis involves many steps and even a careful analyst may make mistakes that can
have a large impact on the final results of a study. Currently, most studies are hardly repro-
ducible, even with the help of the authors [Ioannidis, 2005; Dupuy and Simon, 2007]. In this
thesis, we provided for [Haibe-Kains et al., 2008a,c] the SWEAVE code in order to ensure the
reproducibility of the results at each step of the analysis.

The application of the novel methods we developed led to important findings related to
breast cancer biology and prognostication, as presented in the section below.

6.2 Experimental Findings

In this thesis, we identified both global and local prognostic gene signatures. These signa-
tures will be briefly summarized here, while their application in clinic will be emphasized in
the section dedicated to translational research.

6.2.1 Global Prognostic Gene Signatures

Global prognostic gene signatures are signatures that do not take into account the presence
of breast cancer molecular subtypes.

GGI The GGI signature, presented in Section 5.2.1, is predictive of the histological grade
of breast tumors [Sotiriou et al., 2006]. We showed its strong prognostic value in several
independent microarray datasets. Moreover, we extensively compared its performance to
numerous risk prediction models [Haibe-Kains et al., 2008c] and to two state-of-the-art prog-
nostic gene signatures, namely GENE70 and GENE76, in a dedicated validation dataset
[Haibe-Kains et al., 2008b].

From a biological point of view, the vast majority of the genes included in the GGI signa-
ture are related to proliferation.

TAMR13 The TAMR13 signature, presented in Section 5.2.3, is predictive of the resistance
to tamoxifen [Loi et al., 2008]. We showed the predictive ability of this signature in three
independent datasets of tamoxifen treated breast cancer patients.

From a biological point of view, the (clusters of) genes included in the TAMR13 signa-
ture are related to proliferation, tumor invasion, immune response and cellular inflammatory
response.

6.2.2 Local Prognostic Gene Signatures

The local prognostic gene signatures are signatures extracted or evaluated by taking into
account the presence of breast cancer molecular subtypes.

Gene modules Using a priori biological knowledge in the form of the selection of seven
key biological processes in breast tumorigenesis, a gene signature (gene module, see Sec-
tion 5.4.1) was identified for each of these processes in order to elucidate the prognostic
factors with respect to the breast cancer molecular subtypes [Wirapati et al., 2008; Desmedt
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et al., 2008]. We found that each molecular subtype exhibited different prognostic factors.
Additionally, we showed that most state-of-the-art prognostic gene signatures (e.g. GENE70
or GENE76) yield good performance in the ER+/HER2- subtype only and that their prognos-
tic ability is driven by the proliferation-related genes.

From a biological point of view, each gene module was well defined since their identifica-
tion was driven by the selection of seven key biological processes in breast tumorigenesis,
i.e. ER (ESR1) and HER2 (ERBB2) signaling, proliferation (AURKA), tumor invasion (PLAU),
angiogenesis (VEGF), immune response (STAT1) and apoptosis (CASP3).

GENIUS The GENIUS signature, presented in Section 5.4.2, was identified using a modu-
lar modeling approach adapted to breast cancer prognostication [Haibe-Kains et al., 2009].
GENIUS is composed of three subtype signatures extracted from each breast cancer molec-
ular subtype. We showed that GENIUS significantly outperforms state-of-the-art prognostic
gene signatures as well as the prognostic clinical models in the global population of patients.

From a biological point of view, each subtype signature reflects different processes. The
subtype signature associated with ER+/HER2- was chosen to be the proliferation gene mod-
ule. The subtype signature associated with ER-/HER2- contains genes related mainly to
proliferation, immune response and cell-to-cell interactions. The subtype signature associ-
ated with HER2+ contains genes related mainly to immune response and cell signaling.

6.2.3 Biological Insights

The application of the methods developed in this thesis led to efficient predictive models,
while bringing new insights into breast cancer biology.

From the identification of global gene signatures, we learned the importance of prolifer-
ation genes for prognostication. Proliferation had already been known for years to be highly
prognostic. However, we showed that the robust quantification of proliferation genes through
microarray technology yields better performance than traditional histo-pathological measure-
ments (e.g. histological grade). In addition, we showed that proliferation is also relevant for
the prediction of tamoxifen resistance.

From the identification of local gene signatures, we learned that the prognostic factors
depend on the breast cancer molecular subtypes. Proliferation is strongly prognostic in the
ER+/HER2- subtype only, immune response is prognostic in the ER-/HER2- and HER2+
subtypes, and angiogenesis is prognostic in the HER2+ subtype. We also observed that,
due to the large proportion of ER+/HER2- patients and the strong prognostic value of prolif-
eration related genes, the prognostic value of most state-of-the-art gene signatures is driven
by these genes only. The local gene signatures allowed us to highlight other biological pro-
cesses involved in breast cancer prognosis, depending on the molecular subtypes.

In addition to improving our understanding of breast tumorigenesis, efforts have been
made to bring some of the gene signatures identified in this thesis into the clinic in order to
provide real benefit to breast cancer patients. This transfer of knowledge from the laboratory
to day-to-day clinical practice is called translational research and is presented below.
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6.2.4 Translational Research

One of the objectives of the Functional Genomics Unit at Institut Jules Bordet in Brussels,
headed by Prof. Christos Sotiriou is to bring the prognostic gene signatures we identified
into routine clinical practice. To do so, patents for the GGI signature and the tumor invasion
(PLAU) and immune response (STAT1) modules were deposited. The two patents related to
the gene modules are under validation review. The patent for GGI has recently been filled
(full description of the patent can be accessed from http://www.wipo.int/pctdb/en/wo.
jsp?wo=2006119593). The bibliographic data for the GGI patent are provided below.

Biblio. Data Description Claims National Phase Notices Documents

(WO/2006/119593) GENE-BASED ALGORITHMIC CANCER PROGNOSIS

Latest bibliographic data on file with the International Bureau

Pub. No.:   WO/2006/119593  International Application No.:  PCT/BE2006/000051
Publication Date: 16.11.2006 International Filing Date: 15.05.2006
Chapter 2 Demand Filed: 13.03.2007

IPC: G06F 19/00 (2006.01)

Applicants: UNIVERSITE LIBRE DE BRUXELLES [BE/BE]; Avenue Franklin Roosevelt 50, CP 161, 1050 Brussels
(BE) (All Except US).
SOTIRIOU, Christos [GR/BE]; (BE) (US Only).
DELORENZI, Mauro [CH/CH]; (CH) (US Only).
PICCART, Martine [BE/BE]; (BE) (US Only).

Inventors: SOTIRIOU, Christos; (BE).
DELORENZI, Mauro; (CH).
PICCART, Martine; (BE).

Agent: VAN MALDEREN, Joëlle; pronovem-OFFICE VAN MALDEREN, Avenue Josse Goffin 158, B-1082
Brussels (BE).

Priority Data: 60/680,543  13.05.2005 US
05447274.1 07.12.2005 EP

Title: GENE-BASED ALGORITHMIC CANCER PROGNOSIS

Abstract: The present invention is related to The methods and systems for prognosis
determination in tumor samples, by measuring gene expression in a tumor
sample and applying a gene-expression grade index (GGI) or a relapse score
(RS) to yield a numerical risk score.

The GGI patent was sold through the ”ULB-Interface” and is currently commercialized by
a French biotechnology company, namely IPSOGEN1, to aid in treatment decision-making for
early breast cancer patients with histological grade 2 tumors (Figure 6.1).

1http://www.ipsogen.com/breast-cancer-products/healthcare-professionnals/

mapquant-dxgenomicgrade/
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6.3 Future Works

This section aims to outline the future work to be done in order to improve and extend the
methods and experimental findings presented in this thesis.

• R package: In addition to the survcomp package, another R package is in prepara-
tion. This package, called bcclassifier, will implement the computation procedure
of numerous state-of-the-art prognostic gene signatures, as well as those developed
in this thesis. It is of utmost importance for an analyst to be able to compare a new
prediction model with the state-of-the-art. However, this procedure can be tedious,
since the signature and the structure of the predictive model are not always detailed
in the initial publications. This package aims to implement numerous state-of-the-art
prognostic gene signatures such as GENE70, GENE76, ONCOTYPE, P53, WOUND,
and the gene signatures identified in this thesis, i.e. GGI, TAMR13, Gene Modules,
and GENIUS. Moreover, the alternative computation procedure introduced in the Sup-
plementary Information of [Desmedt et al., 2008] will be implemented as well in order
to allow the analyst to compute risk prediction, irrespective of the microarray platforms
or normalization techniques used. Lastly, this package will also implement Perou’s
method and our subtype clustering model for the identification of breast cancer molec-
ular subtypes.

• Interface for R packages: Although the implementation of methods in R packages en-
ables scientists familiar with this programming language to use them for their own re-
search, R may be not ”‘ergonomic”’ enough for some doctors or biologists. The inte-
gration of the R packages into existing stand-alone or web-based software suites will
increase the accessibility of these tools. TM42 is a good candidate for such an inte-
gration since this open-source microarray software suite, implemented in JAVA, makes
it possible for the analyst (doctors, biologists or bioinformaticians) to easily perform
basic microarray analyses, from data normalization to unsupervised and supervised
analyses.

• Other cancers: Although we focus our research on breast cancer, our methods could
be applied to prognostication and prediction for other types of cancer. In particular, we
plan to extend the GENIUS approach to lymphoma, the molecular subtypes of which
have recently been described [Wright et al., 2003].

• Prediction in the neoadjuvant setting: We developed our method to deal with survival
data. This choice was motivated by the fact that this type of data is used for prog-
nostication and prediction in the adjuvant setting. Since increasing quantities of data
for prediction in the neoadjuvant setting are publicly available (high throughput data as
input variables and resistance/response to treatment as output variable), it would be
interesting to test whether our methods apply successfully to classification.

• Genome-wide feature transformation: A more sophisticated integration of the biologi-
cal annotations in the genome-wide feature transformation method could improve the
performance and the biological interpretation of the method. Indeed, the current im-
plementation discards clusters containing too few genes annotated in databases. Im-
provements could derive from the development of a method reordering the dendrogram

2http://www.tm4.org/mev.html
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computed from gene expression data, based on biological annotations (e.g. gene on-
tology; [Ashburner et al., 2000]) or even a novel clustering algorithm taking into account
the gene expression data and the biological annotations simultaneously.

• Stability-based feature selection: Feature selection methods dealing efficiently with
the complementarity and redundancy of features could improve the way we currently
implement stability-based feature selection. The methods based on information theory
for feature selection [Meyer, 2008] could be adapted for survival analysis to address
this issue.

• Robust model building: The risk prediction models we designed in this thesis facilitate
the computation of risk predictions in other microarray platforms where some features
are missing. This is important in microarray data analysis, where risk prediction mod-
els are often validated in datasets generated by different microarray platforms in which
some genes are not represented. It would be interesting to assess the actual impact
of missing features (Which and how many features are missing?) on final risk predic-
tion performance. Moreover the use of robust statistics (e.g. trimmed average) might
improve the performance of the risk prediction model in the presence of outliers in
microarray data.

• Robust regression: In robust statistics [Hampel et al., 2005], robust regression is a
form of regression analysis designed to deal with the presence of outliers [Andersen,
2007]. Although several robust regression methods have been introduced for traditional
regression (e.g. least median squares [Rousseuw, 1984] or least trimmed squares
[Rousseeuw and Leroy, 2003]), only a few have been proposed in survival analysis,
especially for the Cox model [Lin and Weil, 1989; Leon et al., 2005]. The use of such
a method for risk prediction as well as the comparison of its performance for breast
cancer prognostication using microarray data, are of high interest.

• Prototype-based feature transformation: A limitation of the prototype-based feature
transformation method is the fact that only one prototype can be selected to represent
each biological process of interest. An adaptation of the gene recommender algorithm
[Owen et al., 2003] would circumvent this difficulty. Moreover, it would be interesting
to compare the performance of prototype-based clustering with other clustering algo-
rithms, like quality-based clusterings [De Smet et al., 2002; Tseng and Wong, 2005].

• Subtype clustering model: Our method to identify breast cancer molecular subtypes
uses model-based clustering in a two-dimensional space defined by the ESR1 and
ERBB2 module scores. Although this model is robust, it has not allowed us to discern
new breast cancer molecular subtypes. The use of a larger number of dimensions
would lead to the discovery of new and robust molecular subtypes. Moreover, our
subtype clustering model could be adapted to other cancers, such as lymphoma, the
different molecular subtypes of which have recently been discovered [Wright et al.,
2003].

• Local Model Network: The modular modeling approach we adopted for the identifica-
tion of the local prognostic gene signatures might be especially interesting for the risk
prediction of patients having a tumor whose subtype is not clearly identified (e.g. sev-
eral posterior probabilities of subtype belonging greater than 20%). Indeed, the com-
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bination of the local risk prediction models might be more informative than the model
specific for the most likely subtype alone. A study could be conducted to highlight such
an advantage of our approach compared with a crisp partition of the input space with
respect to the maximum posterior probability of subtype belonging.

• Combination with clinical variables: Several authors showed recently that the perfor-
mance of prognostic gene signatures could be improved by combining them with clini-
cal variables [Gevaert et al., 2006; Boulesteix et al., 2008; Wirapati et al., 2008]. How-
ever, building a risk prediction model that combines clinical and microarray data is a
difficult task. This is mainly due to the high dimensionality of the microarray data, which
often leads to an underestimation of the relevance of the clinical variables. Gevaert
et al. used an ingenious approach based on Bayesian networks to treat clinical and
microarray data on an equal footing [Gevaert et al., 2006]. The use of this framework
in combination with the GENIUS method could improve the current model for breast
cancer prognostication. As a preliminary study, it would be interesting to build a risk
prediction model by adopting a simple majority voting scheme [Hastie et al., 2001; Du-
doit et al., 2002] combining GENIUS and tumor size in order to highlight the potential
performance improvement of such a combination.

• Causal inference: To improve the interpretability of prediction models using gene ex-
pression data, statistical techniques for causal inference [Sprites et al., 2000] could be
used to identify the direct and indirect causes of the phenomenon under study (e.g. risk
of recurrence). This could lead to clear graphical representations of the relationships
between the variables included in the prediction model (e.g. genes), and therefore fa-
cilitate the understanding of the model. The Bayesian approach used in [Gevaert et al.,
2006] could be adapted to the risk prediction models developed in this thesis.

6.4 Integrative Bioinformatics

The near future of bioinformatics and biomedicine will be characterized by the need to inte-
grate increasing numbers of sources of high dimensional data. High dimensional data will be
generated by new high throughput technologies, e.g. single nucleotide polymorphism (SNP)
or comparative genomic hybridization (CGH), at a continuously growing rate. Confronted
with this overwhelming quantity of data, doctors will demand increasingly more effective,
interpretable and robust computational techniques capable of producing exploitable informa-
tion from genomic data. In order to make full use of these genomic data, novel methods
to integrate the different data sources have to be developed. These methods could follow
two axes, as illustrated in Figure 6.2. The horizontal axis refers to the integration of different
datasets generated from the same class of technology (e.g. gene expression profiling, SNP,
or CGH). Although the data are similar from a biological point of view (e.g. all the microarray
platforms for gene expression profiling measure gene expressions), different platforms and
normalization techniques are often used to generate the datasets. Therefore, their integra-
tion is a complex task that requires a meta-analytical approach. The vertical axis refers to the
integration of data generated from different technologies. This type of integration requires
extensive knowledge of each technology from both a technical and a biological point of view
in order to be able to efficiently combine these different sources of information. This will be
a great new challenge to face in Bioinformatics!
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Figure 6.2: Integrative bioinformatics. The integration follows two axes: (i) Datasets: the
horizontal axis refers to the integration of different datasets generated from the same class
of technology (meta-analysis); (ii) Technologies: the vertical axis refers to the integration of
data generated from different technologies (integrative analysis).

188



Bibliography

M. Adams, J. Kelley, J. Gocayne, M. Dubnick, M. Polymeropoulos, H. Xiao, C. Merril, A. Wu,
B. Olde, R. Moreno, and a. et. Complementary DNA sequencing: expressed sequence
tags and human genome project. Science, 252(5013):1651–1656, 1991. doi: 10.1126/
science.2047873. URL http://www.sciencemag.org/cgi/content/abstract/252/5013/
1651.

Affymetrix. Affymetrix, inc. URL http://affymetrix.com.

Affymetrix. GeneChip Expression Analysis, 2002.

Affymetrix. GeneChip Expression Analysis: Data Analysis Fundamentals, 2004. URL
http://www.affymetrix.com/support/downloads/manuals/data_analysis_funda%
mentals_manual.pdf.

M. G. Akritas. Bootstrapping the kaplan-meier estimator. Journal of the American Statistical
Association, 81:1032–1038, 1986.

M. G. Akritas. Nearest neighbor estimation of a bivariate distribution under random censor-
ing. Annals of Statistics, 22:1299–1327, 1994.

A. A. Alizadeh, M. B. Eisen, R. E. Davis, C. Ma, I. S. Lossos, A. Rosenwald, J. C. Boldrick,
H. Sabet, T. Tran, X. Yu, J. I. Powell, L. Yang, G. E. Marti, T. Moore, J. Hudson, L. Lu,
D. B. Lewis, R. Tibshirani, G. Sherlock, W. C. Chan, T. C. Greiner, D. D. Weisenburger,
J. O. Armitage, R. Warnke, R. Levy, W. Wilson, M. R. Grever, J. C. Byrd, D. Botstein,
P. O. Brown, and L. M. Staudt. Distinct types of diffuse large b-cell lymphoma identified
by gene expression profiling. Nature, 403(6769):503–511, 2000. doi: 10.1038/35000501.
URL http://dx.doi.org/10.1038/35000501.

D. M. Allen. The relationship between variable and data augmentation and a method of
prediction. Technometrics, 16:125–127, 1974.

P. D. Allison. Survival Analysis Using SAS: A Practical Guide. SAS Institute Inc., 1995.

C. Ambroise and G. J. McLachlan. Selection bias in gene extraction on the basis of mi-
croarray gene-expression data. Proceedings of the National Academy of Sciences of the
United States of America, 99(10):6562–6566, 2002. doi: 10.1073/pnas.102102699. URL
http://www.pnas.org/content/99/10/6562.abstract.

R. Andersen. Modern Methods for Robust Regression. Quantitative Applications in the
Social Sciences. Sage Publications, Inc, 2007. ISBN 978-1412940726.

189



M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolin-
ski, S. S. Dwoght, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis,
J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock. Gene ontol-
ogy: tool for the unfication of biology. the gene ontology consortium. Nature Genetics, 25:
25–29, 2000.

M. Ayers, W. Symmans, J. Stec, A. Damokosh, E. Clark, K. Hess, M. Lecocke, J. Metivier,
D. Booser, N. Ibrahim, V. Valero, M. Royce, B. Arun, G. Whitman, J. Ross, N. Sneige,
G. Hortobagyi, and L. Pusztai. Gene Expression Profiles Predict Complete Pathologic Re-
sponse to Neoadjuvant Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide
Chemotherapy in Breast Cancer. J Clin Oncol, 22(12):2284–2293, 2004. doi: 10.1200/
JCO.2004.05.166. URL http://jco.ascopubs.org/cgi/content/abstract/22/12/2284.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. J. Mach. Learn. Res.,
3:1–48, 2003. ISSN 1533-7928.

T. Bammler, R. P. Beyer, S. Bhattacharya, G. A. Boorman, A. Boyles, B. U. Bradford, R. E.
Bumgarner, P. R. Bushel, K. Chaturvedi, D. Choi, M. L. Cunningham, S. Deng, H. K.
Dressman, R. D. Fannin, F. M. Farin, J. H. Freedman, R. C. Fry, A. Harper, M. C. Humble,
P. Hurban, T. J. Kavanagh, W. K. Kaufmann, K. F. Kerr, L. Jing, J. A. Lapidus, M. R.
Lasarev, J. Li, Y.-J. Li, E. K. Lobenhofer, X. Lu, R. L. Malek, S. Milton, S. R. Nagalla,
J. P. O’malley, V. S. Palmer, P. Pattee, R. S. Paules, C. M. Perou, K. Phillips, L.-X. Qin,
Y. Qiu, S. D. Quigley, M. Rodland, I. Rusyn, L. D. Samson, D. A. Schwartz, Y. Shi, J.-L.
Shin, S. O. Sieber, S. Slifer, M. C. Speer, P. S. Spencer, D. I. Sproles, J. A. Swenberg,
W. A. Suk, R. C. Sullivan, R. Tian, R. W. Tennant, S. A. Todd, C. J. Tucker, B. Van Houten,
B. K. Weis, S. Xuan, and H. Zarbl. Standardizing global gene expression analysis between
laboratories and across platforms. Nat Methods, 2(5):351–356, May 2005. ISSN 1548-
7091 (Print). doi: 10.1038/nmeth754.

T. Barrett, T. O. Suzek, D. B. Troup, S. E. Wilhite, W.-C. Ngau, P., D. Rudnev, A. E. Lash,
W. Fujibuchi, and R. Edgar. NCBI GEO: mining millions of expression profiles - database
and tool. Nucleic Acids Research, 33:D562, 2005.

A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, and Z. Yakhini. Tissue
classification with gene expression profiles. Journal of Computational Biology, 7(3-4):
559–583, 2000. doi: 10.1089/106652700750050943. URL http://www.liebertonline.
com/doi/abs/10.1089/106652700750050943.

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in
clustered data a stability based method for discovering structure in clustered data. Proc.
Symp. Biocomput., 7:6–17, 2002.

A. H. Bild, G. Yao, J. T. Chang, Q. Wang, A. Potti, D. Chasse, M.-B. Joshi, D. Harpole, J. M.
Lancaster, A. Berschuk, J. A. Olson Jr, J. R. Marks, H. K. Dressman, M. West, and J. R.
Nevins. Oncogenic pathway signatures in human cancers as a guide to targeted therapies.
Nature, 439:353–356, 2006.

M. Birattari, T. Stutzle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In W. B. Langdon, editor, GECCO 2002, pages 11–18. Morgan Kaufmann,
2002.

190



C. M. Bishop. Mixture density networks. Technical report, Astom Univeristy, February 1994.

G. Blom. Statistical Estimates and Transformed Beta Variables. John Wiley and Sons, 1958.

B. M. Bolstad, R. A. Irizarry, M. Astrand, and T. P. Speed. A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias. Bioinfor-
matics, 19(2):185–193, 2003.

H. Bonnefoi, A. Potti, M. Delorenzi, L. Mauriac, M. Campone, M. Tubiana-Hulin, T. Petit,
P. Rouanet, J. Jassem, E. Blot, V. Becette, P. Farmer, S. André, C. R. Acharya, S. Mukher-
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IRIDIA- Université Libre de Bruxelles, 1999.

A.-L. Boulesteix, C. Porzelius, and M. Daumer. Microarray-based classification and clinical
predictors: on combined classifiers and additional predictive value. Bioinformatics, 24(15):
1698–1706, 2008. doi: 10.1093/bioinformatics/btn262. URL http://bioinformatics.
oxfordjournals.org/cgi/content/abstract/24/15/169%8.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression
Trees. Chapman and Hall, New-York, 1984.

M. P. S. Brown, W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares,
and D. Haussler. Knowledge-based analysis of microarray gene expression data by using
support vector machines. Proceedings of the National Academy of Sciences of the United
States of America, 97(1):262–267, 2000. URL http://www.pnas.org/content/97/1/
262.abstract.

M. Buyse, S. Loi, L. van’t Veer, G. Viale, M. Delorenzi, A. M. Glas,
M. Saghatchian d’Assignies, J. Bergh, R. Lidereau, P. Ellis, A. Harris, J. Bo-
gaerts, P. Therasse, A. Floore, M. Amakrane, F. Piette, E. Rutgers, C. Sotiriou,
F. Cardoso, and M. J. Piccart. Validation and Clinical Utility of a 70-Gene
Prognostic Signature for Women With Node-Negative Breast Cancer. J.
Natl. Cancer Inst., 98(17):1183–1192, 2006. doi: 10.1093/jnci/djj329. URL
http://jnci.oxfordjournals.org/cgi/content/abstract/jnci;98/17/1183.
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Appendix A

PRESS

Cross-validation provides a reliable estimate of the generalization error of a predictive model
[Stone, 1974]. The disadvantage of such an approach is that it requires the training process
to be repeated multiple times, which may be computational intensive (Figure A.1 (a)). How-
ever, in the case of linear models, there exists a powerful statistical procedure to compute
the leave-one-out cross-validation (LOOCV) errors (or residuals) at a reduced computational
cost (Figure A.1 (b)). It is the PRESS (prediction sum of squares) statistic [Allen, 1974], a
simple formula which returns the LOOCV residuals as a byproduct of the parametric identifi-
cation of β in a linear model.

Dataset

Put observation j 
aside

Test on the 
observation j

Parametric 
identification on 
n-1 observations

n observations

n-1 observations

coefficients

n times

LOOCV errors
(a)

Dataset

PRESS statistic

Parametric 
identification on 
n observations

n observations

coefficients

LOOCV errors
(b)

Figure A.1: (a) LOOCV procedure; (b) PRESS statistic.

Let D = 〈X , y〉 be a training dataset where X is the matrix of p + 1 independent variables
and y is the vector of the dependent variable for n individuals. In this section, we consider
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the linear regression model

y = xTβ

where x stands or the vector of p + 1 values

x =


1
x1
x2
...

xp


Consider D in which for n times

1. We set aside the j th observation from the training set D.

2. We use the remaining n− 1 observations to estimate the linear regression coefficients
β̂−j .

3. We use β̂−j to predict the dependent variable ŷ−j
j for xj .

The LOOCV residual for the j th observation is

eloocv
j = yj − ŷ−j

j = yj − xT
j β̂
−j

The PRESS statistic is an efficient way to compute the LOOCV residuals on the basis of
a simple regression performed on the whole training set. This enables a fast cross-validation
without repeating n times the training procedure. The PRESS procedure is the following:

1. We use the whole training set to estimate the linear regression coefficients β̂. This
procedure is performed only once on the n observations and returns as byproduct the
Hat matrix [Myers, 1994]

H = X (X T X )−1X T (A.1)

2. We compute the vector of residuals e whose j th term is ej = yj − xT
j β̂

3. We use the PRESS statistic to compute the eloocv
j as

eloocv
j =

ej

1− Hjj

So the vector eloocv is the vector of LOOCV errors of the linear model y = xTβ, as
computed by the PRESS statistic.
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Appendix B

Experimental Findings

B.1 Breast Cancer Molecular Subtypes
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Figure B.1: Classification of the tumors using the subtype clustering model in the NKI, TBG,
UPP and UNT datasets. Each subtype is represented by a different color and symbol. The
superimposed ellipses correspond to the covariance of the components.
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Figure B.2: Classification of the tumors using the subtype clustering model in the STNO2,
NCI, STK and MSK datasets.
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Figure B.3: Classification of the tumors using the subtype clustering model in the UNC2,
NCH, DUKE and DUKE2 datasets.
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Figure B.4: Classification of the tumors using the subtype clustering model in the MAINZ,
CAL, LUND2 and LUND datasets.
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Figure B.5: Classification of the tumors using the subtype clustering model in the MUG
dataset.

B.1.1 Perou’s Method

Dataset ps
2 clusters 3 clusters 4 clusters 5 clusters

NKI 0.89 0.42 0.25 0.20
TBG 0.92 0.39 0.24 0.22
UPP 0.71 0.51 0.33 0.22
UNT 0.78 0.55 0.36 0.00

STNO2 0.86 0.44 0.28 0.25
NCI 0.93 0.44 0.33 0.13
STK 0.61 0.38 0.28 0.25
MSK 0.77 0.66 0.20 0.00

UNC2 0.81 0.57 0.31 0.00
NCH 0.66 0.49 0.36 0.29

DUKE 0.57 0.42 0.37 0.42
DUKE2 0.92 0.63 0.47 0.00
MAINZ 0.68 0.39 0.24 0.18

CAL 0.84 0.41 0.31 0.00
LUND2 0.92 0.51 0.17 0.17

LUND 0.55 0.36 0.24 0.20
MUG 0.50 0.33 0.27 0.23
mean 0.76 0.47 0.30 0.16

sd 0.14 0.10 0.07 0.12

Table B.1: Prediction strength ps for Perou’s method with respect to the number of clusters
(two to five) in the clustering model.

217



B.2 Local Prognostic Gene Signatures

B.2.1 Gene Modules and Breast Cancer Molecular Subtypes

B.2.1.1 Concordance Indices for Clinical Variables and Gene Modules

Subtype Variable Concordance index 95%CI P-value n
ALL age 0.39 [0.32,0.47] 3.8E-03 724

size 0.64 [0.57,0.71] 5.4E-05 724
er 0.33 [0.26,0.41] 8.8E-06 718
grade 0.72 [0.67,0.77] 2.2E-16 708

ESR1 0.43 [0.39,0.48] 3.5E-03 724
ERBB2 0.54 [0.49,0.59] 9.5E-02 724
AURKA 0.67 [0.63,0.71] 6.7E-19 724
PLAU 0.47 [0.42,0.51] 1.3E-01 724
VEGF 0.59 [0.54,0.63] 6.7E-05 724
STAT1 0.49 [0.45,0.53] 6.0E-01 724
CASP3 0.53 [0.49,0.58] 1.4E-01 724

ER+/HER2- age 0.39 [0.3,0.49] 2.7E-02 505
size 0.67 [0.58,0.76] 1.6E-04 505
er 0.46 [0.22,0.7] 7.2E-01 502
grade 0.75 [0.68,0.81] 6.1E-13 492

ESR1 0.51 [0.45,0.57] 6.7E-01 505
ERBB2 0.58 [0.52,0.64] 8.2E-03 505
AURKA 0.7 [0.65,0.75] 4.6E-16 505
PLAU 0.45 [0.39,0.5] 6.3E-02 505
VEGF 0.57 [0.51,0.63] 1.5E-02 505
STAT1 0.5 [0.45,0.55] 9.9E-01 505
CASP3 0.5 [0.44,0.56] 9.3E-01 505

ER-/HER2- age 0.36 [0.19,0.53] 9.6E-02 115
size 0.55 [0.39,0.71] 5.6E-01 115
er 0.24 [0,0.49] 4.1E-02 113
grade 0.53 [0.35,0.7] 7.7E-01 113

ESR1 0.49 [0.41,0.58] 8.8E-01 115
ERBB2 0.54 [0.46,0.63] 3.3E-01 115
AURKA 0.47 [0.38,0.57] 5.5E-01 115
PLAU 0.5 [0.41,0.59] 9.9E-01 115
VEGF 0.54 [0.45,0.62] 4.2E-01 115
STAT1 0.4 [0.32,0.48] 1.1E-02 115
CASP3 0.58 [0.5,0.66] 5.6E-02 115

HER2+ age 0.55 [0.38,0.72] 5.6E-01 104
size 0.56 [0.4,0.73] 4.6E-01 104
er 0.51 [0.34,0.68] 9.1E-01 103
grade 0.54 [0.39,0.69] 5.7E-01 103

ESR1 0.53 [0.44,0.63] 5.0E-01 104
ERBB2 0.53 [0.44,0.61] 5.2E-01 104
AURKA 0.57 [0.47,0.66] 1.7E-01 104
PLAU 0.55 [0.45,0.65] 3.1E-01 104
VEGF 0.6 [0.51,0.69] 2.3E-02 104
STAT1 0.36 [0.27,0.45] 3.1E-03 104
CASP3 0.46 [0.38,0.55] 4.4E-01 104

Table B.2: Concordance indices of the clinical variables and the gene module scores with
respect to the breast cancer molecular subtypes.
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B.2.1.2 Concordance Indices for Gene Signatures

Subtype Variable Concordance index 95%CI P-value n
ALL GENE70 0.68 [0.65,0.72] 3.8E-22 724

GENE76 0.62 [0.58,0.66] 7.0E-09 724
P53 0.62 [0.58,0.66] 2.4E-08 724
WOUND 0.65 [0.61,0.69] 6.4E-14 724
GGI 0.67 [0.63,0.7] 7.3E-18 724
ONCOTYPE 0.66 [0.62,0.7] 2.5E-15 724
IGS 0.62 [0.58,0.66] 2.9E-09 724

ER+/HER2- GENE70 0.71 [0.65,0.76] 6.7E-15 505
GENE76 0.63 [0.58,0.69] 3.5E-06 505
P53 0.59 [0.54,0.65] 1.6E-03 505
WOUND 0.66 [0.61,0.71] 3.5E-10 505
GGI 0.7 [0.65,0.75] 1.5E-14 505
ONCOTYPE 0.68 [0.62,0.73] 1.1E-09 505
IGS 0.63 [0.57,0.69] 1.8E-05 505

ER-/HER2- GENE70 0.53 [0.44,0.62] 4.9E-01 115
GENE76 0.51 [0.42,0.59] 8.3E-01 115
P53 0.42 [0.33,0.51] 7.6E-02 115
WOUND 0.51 [0.42,0.6] 8.1E-01 115
GGI 0.5 [0.41,0.6] 9.3E-01 115
ONCOTYPE 0.49 [0.39,0.59] 8.3E-01 115
IGS 0.44 [0.35,0.53] 1.9E-01 115

HER2+ GENE70 0.56 [0.48,0.65] 1.5E-01 104
GENE76 0.54 [0.45,0.64] 3.8E-01 104
P53 0.52 [0.43,0.62] 6.3E-01 104
WOUND 0.58 [0.49,0.67] 8.1E-02 104
GGI 0.52 [0.43,0.61] 6.3E-01 104
ONCOTYPE 0.55 [0.46,0.64] 2.9E-01 104
IGS 0.53 [0.44,0.61] 5.6E-01 104

Table B.3: Concordance indices of the gene signatures with respect to the breast cancer
molecular subtypes. GENE70: [van’t Veer et al., 2002]; GENE76: [Wang et al., 2005]; P53:
[Miller et al., 2005]; WOUND: [Chang et al., 2004]; GGI: [Sotiriou et al., 2006]; ONCOTYPE:
[Paik et al., 2004]; IGS: [Liu et al., 2007].
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B.2.2 Gene Expression Prognostic Index Using Subtypes (GENIUS)

B.2.2.1 Performance Assessment and Comparison for Gene Prognostic signatures

Subtype Variable Concordance index 95%CI P-value n
ALL GENIUS 0.7 [0.67,0.74] 1.0E-27 724

AURKA 0.67 [0.63,0.71] 4.5E-19 724
GGI 0.67 [0.63,0.71] 9.1E-19 724
STAT1 0.51 [0.47,0.55] 3.0E-01 724
PLAU 0.47 [0.42,0.51] 7.8E-02 724
IRMODULE 0.58 [0.53,0.63] 4.7E-04 553
SDPP 0.66 [0.62,0.7] 2.6E-16 724

ER+/HER2- GENIUS 0.7 [0.65,0.75] 6.9E-16 503
AURKA 0.7 [0.65,0.75] 1.8E-15 503
GGI 0.7 [0.64,0.75] 4.3E-14 503
STAT1 0.51 [0.46,0.57] 3.5E-01 503
PLAU 0.44 [0.38,0.5] 2.0E-02 503
IRMODULE 0.6 [0.54,0.67] 1.4E-03 388
SDPP 0.67 [0.62,0.72] 1.4E-10 503

ER-/HER2- GENIUS 0.65 [0.57,0.73] 7.1E-05 116
AURKA 0.47 [0.38,0.57] 3.0E-01 116
GGI 0.51 [0.41,0.6] 4.3E-01 116
STAT1 0.6 [0.52,0.68] 5.1E-03 116
PLAU 0.49 [0.4,0.58] 4.3E-01 116
IRMODULE 0.63 [0.54,0.71] 2.3E-03 87
SDPP 0.55 [0.46,0.64] 1.4E-01 116

HER2+ GENIUS 0.65 [0.55,0.74] 9.3E-04 105
AURKA 0.56 [0.46,0.65] 1.2E-01 105
GGI 0.52 [0.43,0.61] 2.9E-01 105
STAT1 0.61 [0.53,0.7] 4.9E-03 105
PLAU 0.58 [0.49,0.68] 4.9E-02 105
IRMODULE 0.68 [0.59,0.77] 5.3E-05 78
SDPP 0.63 [0.55,0.72] 1.4E-03 105

Table B.4: Concordance indices of GENIUS and the prognostic gene signatures with respect
to the breast cancer molecular subtypes. AURKA: [Desmedt et al., 2008]; GGI: [Sotiriou
et al., 2006]; STAT1: [Desmedt et al., 2008]; PLAU: [Desmedt et al., 2008]; IRMODULE:
[Teschendorff et al., 2007]; SDPP: [Finak et al., 2008].
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B.2.2.2 Performance Assessment and Comparison for Gene Prognostic signatures

Subtype Variable Concordance index 95%CI P-value n
ALL GENIUS 0.7 [0.67,0.74] 1.0E-27 724

AOL 0.63 [0.59,0.67] 2.5E-11 724
NPI 0.67 [0.63,0.7] 3.2E-18 708

ER+/HER2- GENIUS 0.7 [0.65,0.75] 6.9E-16 503
AOL 0.65 [0.59,0.7] 3.7E-08 503
NPI 0.69 [0.64,0.74] 4.9E-14 490

ER-/HER2- GENIUS 0.65 [0.57,0.73] 7.1E-05 116
AOL 0.54 [0.44,0.63] 2.2E-01 116
NPI 0.52 [0.43,0.62] 3.1E-01 114

HER2+ GENIUS 0.65 [0.55,0.74] 9.3E-04 105
AOL 0.56 [0.48,0.64] 6.3E-02 105
NPI 0.56 [0.48,0.65] 7.7E-02 104

Table B.5: Concordance indices of GENIUS and the prognostic clinical models with respect
to the breast cancer molecular subtypes. AOL: [Ravdin et al., 2001]; NPI: [Todd et al., 1987].
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Appendix C

Contributive Prognostic Gene
Signatures

C.1 GGI

The GGI signature is available from the Supplemental Table 1 in [Sotiriou et al., 2006]. The
table is also available from http://www.ulb.ac.be/di/map/bhaibeka/gene_signatures/
sotiriou2006_ggi_signature_128.csv.

C.2 TAMR13

The TAMR13 signature is available from the Additional File 2 in [Loi et al., 2008]. The table is
also available from http://www.ulb.ac.be/di/map/bhaibeka/gene_signatures/tamr13_
genes.csv.

C.3 Gene Modules

The gene modules are available from the Supplemental Table S1 in [Desmedt et al., 2008].
The table is also available from http://www.ulb.ac.be/di/map/bhaibeka/gene_signatures/
desmedt2008_modules.csv.

C.4 GENIUS

The GENIUS signature is available from the Supplementary Table 3 in [Haibe-Kains et al.,
2009]. The table is also available from http://www.ulb.ac.be/di/map/bhaibeka/gene_
signatures/genius_subtype_model.csv.
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