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Abstract

Wireless sensor networks form an emerging class of computing devices capable of observ-
ing the world with an unprecedented resolution, and promise to provide a revolutionary
instrument for environmental monitoring. Such a network is composed of a collection of
battery-operated wireless sensors, or sensor nodes, each of which is equipped with sensing,
processing and wireless communication capabilities. Thanks to advances in microelectronics
and wireless technologies, wireless sensors are small in size, and can be deployed at low
cost over different kinds of environments in order to monitor both over space and time the
variations of physical quantities such as temperature, humidity, light, or sound.

In environmental monitoring studies, many applications are expected to run unattended
for months or years. Sensor nodes are however constrained by limited resources, particularly
in terms of energy. Since communication is one order of magnitude more energy-consuming
than processing, the design of data collection schemes that limit the amount of transmitted
data is therefore recognized as a central issue for wireless sensor networks.

An efficient way to address this challenge is to approximate, by means of mathematical
models, the evolution of the measurements taken by sensors over space and/or time. Indeed,
whenever a mathematical model may be used in place of the true measurements, significant
gains in communications may be obtained by only transmitting the parameters of the model
instead of the set of real measurements. Since in most cases there is little or no a priori
information about the variations taken by sensor measurements, the models must be identi-
fied in an automated manner. This calls for the use of machine learning techniques, which
allow to model the variations of future measurements on the basis of past measurements.

This thesis brings two main contributions to the use of learning techniques in a sensor
network. First, we propose an approach which combines time series prediction and model
selection for reducing the amount of communication. The rationale of this approach, called
adaptive model selection, is to let the sensors determine in an automated manner a prediction
model that does not only fits their measurements, but that also reduces the amount of
transmitted data.

The second main contribution is the design of a distributed approach for modeling sensed
data, based on the principal component analysis. We first show that the sensor measurements
can be transformed along a routing tree in such a way that (i) most of the variability in the
measurements is retained, and (ii) the network load sustained by sensor nodes is reduced and
more evenly distributed. We then show that approximations to the principal components
can be computed in a distributed way. These methods allow to truly distribute the principal
component analysis, and find applications not only for approximated data collection tasks,
but also for event detection or recognition tasks.
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Résumé

Les réseaux de capteurs sans fil forment une nouvelle famille de systèmes informatiques
permettant d’observer le monde avec une résolution sans précédent. En particulier, ces sys-
tèmes promettent de révolutionner le domaine de l’étude environnementale. Un tel réseau
est composé d’un ensemble de capteurs sans fil, ou unités sensorielles, capables de collecter,
traiter, et transmettre de l’information. Grâce aux avancées dans les domaines de la mi-
croélectronique et des technologies sans fil, ces systèmes sont à la fois peu volumineux et
peu coûteux. Ceci permet leurs deploiements dans différents types d’environnements, afin
d’observer l’évolution dans le temps et l’espace de quantités physiques telles que la tempéra-
ture, l’humidité, la lumière ou le son.

Dans le domaine de l’étude environnementale, les systèmes de prise de mesures doivent
souvent fonctionner de manière autonome pendant plusieurs mois ou plusieurs années. Les
capteurs sans fil ont cependant des ressources limitées, particulièrement en terme d’énergie.
Les communications radios étant d’un ordre de grandeur plus coûteuses en énergie que
l’utilisation du processeur, la conception de méthodes de collecte de données limitant la
transmission de données est devenue l’un des principaux défis soulevés par cette technologie.

Ce défi peut être abordé de manière efficace par l’utilisation de modèles mathématiques
modélisant l’évolution spatiotemporelle des mesures prises par les capteurs. En effet, si un
tel modèle peut être utilisé à la place des mesures, d’importants gains en communications
peuvent être obtenus en utilisant les paramètres du modèle comme substitut des mesures.
Cependant, dans la majorité des cas, peu ou aucune information sur la nature des mesures
prises par les capteurs ne sont disponibles, et donc aucun modèle ne peut être a priori
défini. Dans ces cas, les techniques issues du domaine de l’apprentissage machine sont
particulièrement appropriées. Ces techniques ont pour but de créer ces modèles de façon
autonome, en anticipant les mesures à venir sur la base des mesures passées.

Dans cette thèse, deux contributions sont principalement apportées permettant l’applica-
tion de techniques d’apprentissage machine dans le domaine des réseaux de capteurs sans fil.
Premièrement, nous proposons une approche qui combine la prédiction de série temporelle
avec la sélection de modèles afin de réduire la communication. La logique de cette approche,
appelée sélection de modèle adaptive, est de permettre aux unités sensorielles de determiner
de manière autonome un modèle de prédiction qui anticipe correctement leurs mesures, tout
en réduisant l’utilisation de leur radio.

Deuxièmement, nous avons conçu une approche permettant de modéliser de façon dis-
tribuée les mesures collectées, qui se base sur l’analyse en composantes principales (ACP).
Nous montrons d’abord que les mesures des capteurs peuvent être transformées le long d’un
arbre de routage, de façon à ce que (i) la majeure partie des variations dans les mesures des
capteurs soient conservées, et (ii) la charge réseau soit réduite et mieux distribuée. Nous
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montrons ensuite qu’une approximation des composantes principales peut être calculée de
manière distribuée. Ces méthodes permettent de véritablement distribuer l’ACP, et peuvent
être utilisées pour des applications impliquant la collecte de données, mais également pour
la détection ou la classification d’événements.
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Chapter 1

Introduction

In wireless sensor networks, communication is among the most energy-consuming task for
a wireless sensor. This thesis focuses on the design of learning techniques that trade data
accuracy with communication by means of prediction models. Since sensor network mea-
surements are very often correlated, we show that prediction models can often significantly
reduce the communication while causing little loss in the accuracy of the measurements.

Wireless sensor networks (WSN) form an emerging class of networks able to monitor
environments with high spatiotemporal accuracy. The network is composed of tiny devices
known as wireless sensors or motes, endowed with a microprocessor, a memory, a radio,
a battery, and one or more sensors such as temperature, humidity, light or sound sensors
[3]. Figure 1.1(a) gives an illustration of a typical wireless sensor platform used in research
(Tmote), and of an integrated silicon design (Deputy Dust) [90]. The transmission of data
from a WSN to an observer raises numerous issues: wireless sensors are constrained by
limited resources, in terms of energy, network data throughput, and computational power.
The communication module is a particularly constrained resource since the amount of data
that can be routed out of the network is inherently limited by the network capacity. Also,
wireless communication is an energy consuming task, identified in many situations as the
primary factor of lifetime reduction [3].

This thesis investigates how machine learning algorithms can be used to reduce the
amount of data transmitted over the network. The main motivation is that sensor network
data are very often correlated both over space and time. Machine learning algorithms can be
used to detect these redundancies, and to represent them by means of mathematical models.
The use of mathematical models instead of the raw data can allow to substantially reduce
the amount of data transmitted in the network, and thus to extend application lifetime.

A typical scenario for a sensor network consists in placing a set of wireless sensors in an
environment, such as a field, a forest or a town, and to use the collected measurements to
monitor, detect, or track the evolution of a phenomenon over space and time. The network
is usually connected to a base station by means of a routing tree, such as illustrated in
Figure 1.1(b). The base station allows to centralize the data collected from the network,
and acts as a gateway between the sensor network and observers. It may be connected to the
Internet, which allows the remote observation of the phenomenon monitored by the sensor
network.
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TMote Sky

Deputy dust

(a)

Internet

(b)

Figure 1.1: (a) Size of wireless sensor nodes in comparison to coin sizes. (b) Multi-hop
network architecture for an environmental monitoring application. A routing tree connects
the sensor nodes to a base station, which connects the network to the Internet.

1.1 Environmental monitoring

A promising application for WSNs is environmental monitoring, where their use is expected
to revolutionize the quality of scientific inquiries for field biologists or ecologists for example
[75, 24]. The reasonably low cost and low infrastructure requirements of a WSN enable dense
deployments over large areas, providing data at spatiotemporal scales that were previously
impossible to obtain. The wireless capabilities of the sensor nodes also allow the remote
monitoring, possibly in real-time, of the evolution of a phenomenon. The WSN may be
deployed in hostile or inaccessible regions, such as rain forests or volcanoes, and real-time
monitoring allows end-users to rapidly react to events. Finally, the small size of the sen-
sor nodes considerably reduces the disturbances caused by the monitoring systems on the
environment studied, allowing the monitoring of secretive animals for example.

Thanks to these advantages, sensor networks can be used for collecting data for a wide
variety of applications. Two representative projects in environmental monitoring are the
Redwood trees and Leach Storm Petrels projects [86, 59]. Redwood trees are among the
highest on Earth, and reach heights of around one hundred meters. In 2003, a network of 70
sensor nodes was deployed along one of them in the middle of the Redwood forest in Cali-
fornia [86]. By collecting temperature, humidity and light measurements every minute for a
forty-four day period, the network provided biologists with data that precisely characterized
the microclimate variations between the root and the tree canopy.

The Leach Storm Petrels project was a habitat monitoring project jointly carried out by
the University of California, Berkeley, Intel and the College of the Atlantic [59]. Between
2002 and 2003, three networks with sizes ranging from 32 nodes to 147 nodes were deployed
inside and outside the burrows of Leach’s Storm Petrel, an endangered bird species that
forms large colonies on the island during the breeding season. Data were retrieved every five
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minutes, and remotely made available on an Internet website thanks to the ad-hoc network
formed on the island, which connected to the Internet via a satellite communication link.
The deployment allowed to retrieve several hundred of thousands of measurements, enabling
ethologists to precisely observe the conditions required by these animals during their breeding
period.

Other examples of prototypical deployments for environmental monitoring include for
instance volcano monitoring [92], glacier displacement [66], or precision agriculture [60] to
name a few. In all these applications, the goal of a sensor network is to provide information
about the characteristics of a phenomenon in an environment. The interest of the observer
ranges from the collection of all measurements from the network at regular time intervals,
to the detection, recognition, or tracking of animals in real-time for example.

For many envisioned applications, sensor network deployments make sense only if they
can run unattended for many months or even years. The use of renewable energy resources
is however rarely viable, and battery replacement is a costly maintenance operation. The
energy resources of wireless nodes are therefore in most cases limited to the finite amount
of energy stored in their batteries at the moment of the network deployment. This makes
the design of energy-efficient data collection strategies a primary concern for extending the
lifetime of the wireless sensor network.

1.2 Machine learning for energy-efficient monitoring

Among the different tasks that must be performed by a sensor node, the radio use is by
far the most expensive in terms of energy consumption. On a typical sensor node such
as the Telos mote, the radio expends one order of magnitude more energy than the CPU
over an equivalent length of time [73, 15]. The lifetime of a sensor node therefore highly
depends on how frequently the radio is used. If continuously powered, the lifetime of a
Telos is typically five days. A central issue in sensor networks thus consists in reducing the
amount of communication in the network, while providing the observer with the requested
information.

The position advocated in this thesis is that machine learning techniques can efficiently
address this challenge. Machine learning techniques in computer science consist in inferring
a prediction model , on the basis of a set of observations. The model is in most cases a
parametric function, which allows to predict the value of a variable, called output, given a
set of other variables, called inputs.

In the domain of sensor networks, the use of learning techniques is attractive for a
number of reasons. First, sensor data are very often correlated both over space and time.
For example, outdoor temperatures typically follow consistent diurnal and seasonal patterns,
and at any moment in time, their variations are unlikely to vary greatly within a local region.
Learning techniques can be used to detect and model the relationships existing between
sensor data, both at the temporal and spatial scales. The use of the models in place of the
raw measurements can greatly reduce the amount of data transmitted in the network.

Second, approximations of the sensor measurements can usually be tolerated by the
observer. For example, in climatic studies on plant growth, it is often sufficient to collect
temperature and humidity measurements within ±0.5◦ and ±2% of the true quantities [19].
One feature of learning techniques is that they can adapt to different levels of accuracy,
by using models with varying degree of complexity. The complexity of a model typically
depends on its number of parameters. When approximations can be tolerated, simple models
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with fewer parameters may be used to further reduce the amount of communication.
Finally, the interest of the observer is not necessarily in the measurements, but in higher

level information such as the types or number of animals present in the monitored envi-
ronment for example. The extraction of such high-level information typically requires to
fuse and transform the measurements from different sensors. Learning techniques provide
an effective way to determine how the measurements can be combined in order to infer the
requested information. In some cases, it is possible to combine the measurements within the
network, thus avoiding the transmission of all the measurements to the base station. These
strategies, referred to as in-network data aggregation, are among the most promising ones
for efficiently extracting information from a sensor network [25, 56].

We briefly illustrate the potential of predictive models in Figure 1.2, using temperature
data collected in a WSN experiment carried by the Intel laboratory at Berkeley in 2003 [39].
The network is composed of 47 sensors, deployed throughout a large office. The temperature
variations can vary greatly across the office. However, they locally present linear trends,
which can be effectively captured by linear models. Each model is here a function of spatial
coordinates that are linearly mapped to temperature measurements. Five regions are first
delimited, in which the temperature variations are observed to be nearly linear over space,
cf. Figure 1.2(a) . The resulting modeling is illustrated in 1.2(b). Each model requires only
three parameters to represent the variations within a region, and provides the observer not
only with approximations of the measurements at the sensor’s locations, but also at any
location within a given region.

3.5Extensiontounreliablenetworks
Forsimplicityofexpositionwehavefocusedonnetworks
withreliablecommunication,butthisisoftenanunrealis-
ticassumption.Wirelesstransmissionislossyandnetwork
nodescanfail.Fortunately,thedistributedregressionalgo-
rithmcanbemaderobusttosuchfailures.Inthissection
wesketchoutthenecessaryextensions;forfurtherdetails
see(PG03).

Wecanviewthedistributedregressionalgorithmascon-
sistingofthreelayers:theroutinglayer,whichbuildsa
spanningtreesuchthatadjacentnodeshavehighquality
communicationlinks;thejunctiontreelayer,whichsends
variablemessagesbetweennodesadjacentintheroutingtree
toenforcetherunningintersectionproperty;andtheregres-
sionlayer,whichsendsmessagesaboutthebasisfunction
coefficientstooptimizetheregressionestimate.

Routingtreesarefundamentaltocommunicationinunre-
liableadhocnetworks,andthereareseveralalgorithmsto
choosefrom(HSW

+
00).Werequirearoutinglayerwhich

cannotifythejunctiontreeandregressionlayerswhenthe
topologyoftheroutingtreechanges.Whenthishappens,
thejunctiontreelayercanrecomputeandretransmitthe
variablesmessagestorestoretherunningintersectionprop-
ertyonthenewroutingtree.Afterthisisaccomplished,
theregressionlayercanretransmititsmessagestoreopti-
mizethemodel.Thejunctiontreeandregressionlayerscan
bemaderobusttolossycommunicationbyusingacknowl-
edgementsformessages.Inthissetting,wecanbeassured
thatiftheroutinglayercanfindagoodroutingtree,then
thealgorithmwilleventuallyconvergetothecorrectresult.

Analternativeapproachwouldbetofixajunctiontree,
viewedasanoverlayedcommunicationpatternonthenet-
work,andusemultihopcommunicationonaroutingtreeto
achievethiscommunicationpattern,removingtheneedfor
regeneratingthejunctiontreewhentheunderlyingrouting
treechanges.Unfortunately,suchpoint-to-pointmultihop
communicationisoftenveryhardtoimplementonareal
(unreliable)sensornetwork.Byaligningourjunctiontree
withtheunderlyingroutingtree,wecansimplyrelyonlo-
calcommunicationtooptimizethecoefficientsofourbasis
functions.

Interestingly,ouralgorithmisveryrobusttopacketlosses
andnetworkfailures.Forexample,ifthenetworkisseg-
mentedintotwoparts,eachpartwilloptimizeitscoeffi-
cientsfromthevaluesofthemeasurementsinthatpartof
thenetwork.Whentheconnectionreturns,theseestimates
arequicklyfusedintoagloballyoptimalsolution.

4.EVALUATIONANDAPPLICATIONS
Inthissection,welookattheperformanceofthedistributed
regressionalgorithmpresentedabove,showingthatitpro-
videsacompactway,low-errorwaytorepresentsensorfields.
Wealsolookatseveralapplicationsofourapproach,show-
ingthatitcanbeusedtoanswerawiderangeofqueries.

4.1Evaluationofbasicalgorithm
Toevaluateourdistributedregressionalgorithm,weimple-
menteditinTOSSIM(LLW

+
03),awholeprogramsimula-

torforTinyOS.Asidefromtheissuesassociatedwithnet-
worklossdiscussedabove,weexpectthatthisimplementa-
tionwillrundirectlyonmotes.Thissimulatorallowsusto
modelavarietyofnetworktopologiesandkernelfunctions,
andtomeasurethecommunicationcostsofouralgorithms
inarealisticsetting.Intheexperimentsbelow,weusedthis

Figure5:AmapoftheIntel-Berkeleylabdeployment,

withtheplacementof47sensorsshowindarkcircles.The5

rectanglesindicatethesupportregionsofthekernelsusedin
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Figure6:Quadraticregression(thickblackcurves)ondata

obtainedfromseveralsensorsoveratwodayperiod.Fitsare

shownforseveraldifferentslidingwindows,withasliding

windowsizeof200minutes.

simulatortocollectmeasurementsonthecommunication
requirementsofouralgorithm.

Inourinitialevaluation,weranouralgorithmonadataset
of2-minutesamplesoflight,temperature,andhumiditycol-
lectedfromourlabdeploymentof48sensors.Figure5shows
amapofthisdeployment,withtheplacementofsensorsin-
dicatedbysmalldarkcircles.Thedatameasuredinthelab
isquitecomplex:thesunaffectsdifferentareasofthelab
atdifferenttimesoftheday,andthemeasurementshave
highspatialcorrelation,butincludelocalvariationsdueto
theproximitytowindowsandairconditioningvents.Webe-
lievethatthetemporalandspatialpropertiesofthisdataset
willalsobepresentinmanyothersensornetsdeployments.

Byhand,wemapped5kernelsontothisspace,represent-
ingthe5blackregionsshowninFigure5.Inthismapping,
everysensorisinatleastonekernel,whilesomesensorslie
intwoorthreekernels.Intuitively,thisrepresentsthecor-
relationacrossspace–readingsfromthesameareaofspace
tendtobehighlycorrelated,whilereadingsfromadjacent
areasmixalongtheircommonedges.Togiveasenseofhow
regressionperforms,Figure6illustratesregressionwitha
quadraticmodeloverthedatafromseveralsensorsovera
twodayperiod.

Oneapplicationofregressionisgenerating3-dimensional
andcontourplotsofaspace,givingapictureofhowtem-
peraturevariesandchangesoverspaceandtime.Figure7
illustratestheresultsofourregressionalgorithmatdiffer-
entpointsintime,illustratingthelargevariationsofthe
temperatureinthelab.Figure8showsacontourplotof
thetemperatureacrossourlabat10AMonOctober28th–
noticethatthetemperaturevariesfromabout20◦Cinthe
lowerleftcornerto29◦Cintheupperright.

Wealsomeasuredtheerrorofthemodelconstructedby
runningourdistributedregressionalgorithm,varyingtwo
parameters:thenumberofbasisfunctions,kandthesizeof
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Figure 7: Kernel regression model obtained from temperature data collected at the Intel Research, Berkeley lab, using 5

kernel regions, with 3 basis function per region, at different times of the day (the circles represent the actual temperature at

the sensor locations): (a) at night, locations near windows are colder; (b) in the morning, the East side of the lab faces the sun,

significantly increasing the temperature; and (c) in the early evening, the temperature is uniformly warm.
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Figure 8: A contour plot generated by running kernel-based

quadratic regression on the data collected at 10 AM on Oc-

tober 28th in the Intel Research, Berkeley lab. The labels

represent the actual temperatures measured at the sensor

locations. Note that this rich contour was obtained from a

regression model with only 15 parameters.

the sliding window, T . We measured the root-mean-squared

(RMS) between the model, f̂(x, y, t), and the value at every
point in the data set, D(x, y, t).

To measure the ability of regression to predict the value at
locations in the sensor field where there are no readings, we
also experimented with subsampling of the data set D to a
dataset with 1/8th of the of the original data, and measured
the RMS of regression applied to this dataset versus D.

The results of these error measurements for different basis
sets with varying time windows and subsampling are shown
in Figure 9. We experimented with three different basis
function sets per kernel: either (1) linear-space, quadratic-

time (e.g., f̂(x, y, t) = c1(x)+ c2(y)+ c3(t
2)+ c4(t)+ c5), (2)

linear-space, linear-time, or (3) linear-space, constant-time.
We also measured the RMS of simply computing the average
value of the readings in each kernel over the time window
T . Note that regression performs quite well compared to
averaging, and that, as expected, increasing the number of
basis functions increases the quality of the fit. Surprisingly,
regression using the reduced data set (with 1/8 the points)
performs as well as regression with the entire data set; this
is likely due to low variations in temperature within an 8
reading (16 minute) window.

Since average error over an entire data set does not cap-
ture the worst case performance of these approaches, we also
plotted the error of these schemes at different times of day,
using a time window size of two hours. The results of this
experiment are shown in Figure 10. Notice that the linear
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Figure 9: The RMS error of regression with varying time

windows and numbers of basis functions per kernel for the

data set collected from the Intel - Berkeley Lab, compared
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Figure 10: The error of different regression models for the

lab data set at different times of day, using a time window

size of 2 hours.

and quadratic fit perform much better during times when
the temperature changes dramatically (e.g., when the sun
rises and sets – see Figure 6 for a plot of the temperature
reading from several sensors), but that all schemes perform
well at times of low variance (e.g., at night). This suggests
that an adaptive scheme, where different numbers of basis
functions are used depending on signal variability may be
beneficial; such an exploration is left for future work.

We also measured the communication costs for our lab
deployment (using 3 coefficients per kernel) and found that,
in TOSSIM, the total number of bytes sent by all sensors
was 5808 bytes versus 875 bytes to extract a single reading
from every sensor. After this 5800 bytes of communication,

(b)

Figure 1.2: Illustration of the ability of models to approximate the variations of temperature
measurement throughout a large office (Guestrin et al. [30]). Using the model parameters in
place of the raw measurements significantly reduces the amount of communication. (a) Map
of the placement of 47 sensors in the office. Five regions are delimited, in which a different
model is used to approximate the collected measurements. (b) Example of modeling obtained
in each of the five regions, using linear models.

Modeling of sensor data by means of spatial linear models was investigated in [30], and
will be presented in detail in Chapter 3. We briefly use it here as an introductory example
since, besides illustrating the potential of models for compactly representing the variations
of measurements in an environment, it also gives an overview of a set of challenges addressed
in this thesis. These can be summarized as follows:

4



• How to determine which model to choose?
The field of learning has a long history in computer science [68]. As a result a wide
range of techniques, such as linear models, neural network, regression trees or support
vector machines, have been developed to tackle the problem of modeling the relation-
ships existing in a set of data. The choice of a model that fits the data is however
often difficult in practice, particularly when there is no a priori information on the
relationships existing in the data. The limited processing resources of sensor nodes
can furthermore exclude the use of computationally intensive learning techniques.

• How to compute the parameters of a model in a distributed way?
When a model incorporates the spatial domain, this inevitably implies communication
between sensor nodes in order to assess the relationships between the sensor measure-
ments over space. The design of efficient distributed strategies to assess the spatial
relationships is very challenging, and considerably reduces the range of techniques that
can effectively be considered.

• How to assess the ability of a model to properly extract the information of interest?
In practice, the accuracy of model can be assessed using different criteria, which de-
pend on the application requirements. It can be for example the maximum deviation
between the true measurements and the approximated measurements provided by the
model, or the percentage of correct classification. An important issue in this respect
consists in providing the observer with good estimates of the ability of the model to
extract the requested information, and to ensure that this ability is maintained over
time.

In the light of these challenges, the first main contribution of this thesis is the design
of a model selection scheme suitable for low resource wireless sensor nodes. This scheme,
called Adaptive Model Selection (AMS), is based on temporal modeling. It extends previous
work by allowing sensor nodes to determine autonomously which model best fits their mea-
surements, while guaranteeing that approximations are within an error bound ±ε defined
by the observer.

The second main contribution is the design of a distributed implementation of the princi-
pal component analysis (DPCA), a modeling method which allows to remove the correlations
between sensor measurements. The method provides the following advantages. First, PCA
provides varying levels of compression accuracies, ranging from constant approximations to
full recovery of original data. It can therefore be used to trade application accuracy for
communication costs, thus making the principal component aggregation scheme scalable
with the network size. Second, the DPCA scheme demands all sensors to send exactly the
same number of packets during each transmission, thereby balancing the communication
costs among sensors. Given that communication costs is strongly related to the energy
consumption, we also show that the balanced loading increases the network lifetime as well.

1.3 Outline of the thesis

Chapter 2 provides the reader with an overview of the notions and tools that will be con-
sidered in the thesis. The chapter is divided in two parts. The first deals with the domain
of wireless sensor networks, and presents the technology, the applications, and the WSN
characteristics, followed by an overview of the main networking frameworks. The second
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introduces the reader with the domain of supervised learning, and covers the statistical
framework, the practical challenges, and the learning methodology.

Chapter 3 reviews the different modeling approaches which have been investigated in the
literature to address the issue of energy efficient environmental monitoring. After introducing
some notations and illustrative examples, the chapter is structured along three main parts,
each of which focuses on a specific strategy, namely, the model-driven data acquisition, the
replicated model approach, and the aggregative approaches.

The main contributions of this thesis, namely the AMS and the DPCA, are presented
in Chapters 4 and 5, respectively. A short overview of these contributions is given below in
Section 1.4. Chapters 4 is concluded by an experimental evaluation of the AMS on fourteen
sets of measurements. The evaluation of the DPCA is the subject of chapter 6. The tradeoffs
between accuracy and communication costs are analyzed using two data sets. The first data
set is based on an illustrative scenario which simulates the appearance and disappearance of
a set of patterns in an environment. The second data set consist of real-world temperature
measurements taken by 52 sensors over a five day-period.

Chapter 7 summarizes the main results of this thesis, and identifies a set of future
directions in the broader context of information processing and routing in wireless sensor
networks. The remainder of the present chapter provides a detailed description of the thesis’
contributions, and summarizes the notations that will be used throughout the following
chapters.

1.4 Contributions

1.4.1 Adaptive Model Selection

The first main contribution of this thesis is the design of a model selection scheme for
strategies based on replicated temporal models. Replicated temporal models have been
among the first approaches investigated to reduce the data traffic by means of predictive
models. Their rationale consists in using models able to predict the sensor measurements
over time. Each sensor node computes its own model on the basis of the past measurements
it has collected, and communicates it to the base station. The model is then used by the
base station to provide the observer with approximations of the sensor measurements. The
approximation error is bounded by an observer defined error threshold ε, which is known
by all sensor nodes. Every time a new measurement is collected by a sensor node, the error
between the model prediction and the measurement is computed. If the error is higher than
ε, the node either transmits the measurements, or computes and communicates a new model.
If the error is less than ε, then no message is sent, as the copy of the model running at the
base station is known to provide an approximation that is within ε of the true measurement.

The ability of this approach to reduce the data traffic depends on the ability of the pre-
dictive model used to accurately predict the sensor measurements. Different strategies have
been investigated in the literature, using different modeling techniques and methodologies
to compute and update the models. The first contribution in this thesis is to give a close
look at the employed methodologies, and to point out that simple models are in many cases
the most likely to provide the highest communication savings. The reasons are twofold.
First, complex models typically rely on more parameters, and therefore require more com-
munication when a model is updated. Second, the use of high number of parameters raises
estimation issues, which in practice decrease the accuracy of the predictive model.
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This leads us to investigate a scheme based on model selection, called Adaptive Model
Selection (AMS) [52], which aims at ensuring that the use of prediction models effectively
decreases the amount of communication. It extends previous work in the domain by (i) al-
lowing models of increasing complexity to be assessed in a competitive fashion, (ii) avoiding
the use of models that increase the amount of communication, and (iii) providing an exten-
sive empirical study which shows that in many cases, simple models have to be preferred
over more complex models.

1.4.2 Distributed Principal Component Analysis

The second main contribution is the design of a distributed implementation of the principal
component analysis (PCA). The PCA is a classic multivariate data processing technique
that allows to reduce the dimensionality of the data [67]. More precisely, it provides a way
to linearly transform a set of high dimensional data to a smaller space, in such a way that
the approximation error is minimized. It is particularly efficient for correlated data, which
is one of the main characteristics of sensor network data [9]. The purposes of using PCA
are numerous. In particular, it allows to compress data, to filter noise, to extract feature of
interest, or to detect unusual data patterns.

The principal component analysis consists of two steps. In a first stage, the basis vectors
that characterize the subspace are computed. In a second stage, data are transformed from
the original space to the subspace by projecting them on the basis vectors identified in the
first stage. This process normally requires to centralize the data on a single computing unit.

In this thesis, we show that for sensor networks, part of the computation required for
the PCA can be achieved in a distributed fashion [48]. More precisely, we first show that
the projections on the PCA subspace can be computed along a routing tree. This technique
called Principal Component Aggregation (PCAg), allows to carry out the computation of
the projections within the network. We show that the PCAg can considerably reduce the
amount of transmissions in the network as the whole set of measurements does not need to
be retrieved at the base station.

Second, we investigate an approach allowing to compute approximations of the basis
vectors of the PCA subspace in a distributed manner. In the PCA, the basis vectors are
obtained by computing the main, or principal, eigenvectors of the covariance matrix of the
measurements. We show that the power iteration method, a state-of-the-art technique for
computing the eigenvectors of a matrix, can be implemented using a routing tree [49]. The
use of the method requires the computation of the covariance matrix. We finally show
that this computation is possible in a distributed manner, provided that the measurements
of distant sensors are uncorrelated [51]. The resulting algorithm is called the Distributed
Computation of the Principal Components (DCPC).

Additional contributions

Besides these main contributions, the work carried out during this thesis has led to the
following other contributions.

Simulated data set with differential equations

When starting this thesis, very few real-world sensor deployments had been carried out, and
thus there was a lack of data for assessing learning algorithms in different types of scenarios.
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A first step in my work was therefore to produce simulated data sets, reflecting the types of
measurements that could be captured by sensor networks. Joint work with Mehdi Moussaid
led to investigate the use of partial differential equations, and in generating different data
sets simulating diffusion and wave processes [50]. These data sets and implementation were
made freely available to the research community by means of the website:

http://www.ulb.ac.be/di/labo/

Wireless sensor programming and real-world deployments

The acquisition of wireless sensor prototypes during the second year of my thesis allowed to
carry out different network deployments and to collect real-world measurements in a variety
of conditions. In each deployment, temperature, humidity and light measurements were
collected. The deployments were carried out in the following environments:

• Cluster room in ULB NO building: Deployment of 7 sensors for one week. Measure-
ments taken every 5 minutes.

• Library of the ULB Computer Science department: Deployment of 20 wireless sensors.
Measurements taken every minute for one day.

• Experimental room of the ULB Service of Social Ecology (Pr. Jean-Louis Deneubourg).
20 sensors deployed for one day. Measurement taken every minute.

• Greenhouse of the ULB Solbosch campus: 18 sensors deployed over a 5 day period.
Measurements taken every 5 minutes.

In order to provide the research community with the real-world data collected, these data
sets were made publicly available by means of the website dedicated to WSN activities.
Figure 1.3 gives some pictures and the sensor placement during the Solbosch greenhouse
deployment. The code for the Adaptive Model Selection was written in TinyOS by Silvia
Santini from the ETHZ, Zurich, Switzerland [78].

Localization and tracking

Localization and tracking techniques aim at estimating the position of a mobile object in
an environment. Wireless sensor networks can be used for this task, by means of the radio
module. Assuming that the mobile node can communicate with a set of fixed nodes whose
positions are known, it is possible to estimate the distance separating the mobile nodes from
the fixed nodes by means of the radio signal strength at the receiving nodes.

I took part in several experiments on that topic during my thesis. These experiments
involved the deployment of sensors in different types of environments, in which the received
signal strength of sensor nodes were logged over time. In particular, two deployments of
twenty nodes were carried out in the library of the department (publicly available on the
website), and a deployment of 52 sensors at the electricity plant of Drogenbos, Belgium, was
also carried out as part of a localization project in industrial settings.

The data sets allowed to calibrate models for predicting the distance on the basis of the
radio signal strength, and to assess the use of learning techniques such as model combination
for improving the localization accuracy. This work was achieved as part of the PIMAN
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Eighteen sensor nodes, located in three different rooms of the Solbosch 
greenhouses of the ULB. 

Figure 1.3: Pictures and placements of sensor nodes during the Solbosch deployment.

project 1. Our experiments led to the design of an architecture for tracking, which included
sensor calibration, Kalman filtering, and motion detection by means of an accelerometer.
These results were published in [21, 22].

1.5 Publications

The complete list of work published during this thesis is summarized below, by category
and chronological order.

Book chapter

• Y. Le Borgne, J.M. Dricot, G. Bontempi. Principal Component Aggregation for
Energy-efficient Information Extraction in Wireless Sensor Networks. Chapter 5, pages
55-80 in Knowledge Discovery from Sensor Data, Taylor and Francis/CRC Press, 2008.

Journals

• Y. Le Borgne, S. Raybaud, and G. Bontempi. Distributed Principal Component Anal-
ysis for Wireless Sensor Networks. Sensors Journal, 8(8):4821-4850, August 2008.
MDPI.

1PIMAN - Pôle de compétence en Inspection et Maintenance Assistée par langage Naturel. Funded by
the Région Bruxelles-Capitale (2007-2008).
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• A. A. Miranda, Y. Le Borgne, and G. Bontempi. New Routes from Minimal Approx-
imation Error to Principal Components. Neural Processing Letters, 27(3):197-207,
June 2008. Springer

• Y. Le Borgne, S. Santini and G. Bontempi. Adaptive Model Selection for Time Series
Prediction in Wireless Sensor Networks. Journal of Signal Processing, 87(12):3010-
3020, December 2007. Elsevier.

Conferences

• J.M. Dricot, M. Van Der Haegen, Y. Le Borgne and G. Bontempi. A Modular Frame-
work for User Localization and Tracking Using Machine Learning Techniques in Wire-
less Sensor Networks. Proceedings of the 8th IEEE Conference on Sensors, pages
1088-109. IEEE Press, Piscataway, NJ, 2008.

• J.M. Dricot, M. Van Der Haegen, Y. Le Borgne and G. Bontempi. Performance
Evaluation of Machine Learning Technique for the Localization of Users in Wireless
Sensor Networks. In L. Wehenkel and P. Geurts and R. Marée, Editors, Proceedings
of the BENELEARN Machine Learning Conference, pages 93-94. 2008.

• Y. Le Borgne and G. Bontempi. Unsupervised and Supervised Compression with Prin-
cipal Component Analysis in Wireless Sensor Networks. Proceedings of the Workshop
on Knowledge Discovery from Data, 13th ACM International Conference on Knowl-
edge Discovery and Data Mining, pages 94-103. ACM Press, NY, 2007.

• Y. Le Borgne, M. Moussaid, and G. Bontempi. Simulation architecture for data pro-
cessing algorithms in wireless sensor networks. Proceedings of the 20th Conference on
Advanced Information Networking and Applications (AINA), pages 383-387. IEEE
Press, Piscataway, NJ, 2006.

• Y. Le Borgne, G. Bontempi. Round Robin Cycle for Predictions in Wireless Sensor
Networks. Proceedings of the 2nd International Conference on Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), pages 253-258. IEEE Press,
Piscataway, NJ, 2005.

• G. Bontempi, Y. Le Borgne. An adaptive modular approach to the mining of sensor
network data. Proceedings of the workshop on Data Mining in Sensor Networks. SIAM
SDM, pages 3-9. SIAM Press, Philadelphia, PA, 2005.

Technical report

• Y. Le Borgne. Bias variance trade-off characterization in a classification. What dif-
ferences with regression? Technical Report N◦534, ULB, January 2005.
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1.6 Notations

Throughout this thesis, boldface denotes random variables and normal font refers to the
realizations of random variables. Lowercase letters denote scalars or vectors of scalar, and
uppercase letters denote matrices.

Generic Notations

ϑ Scalar or vector of scalars.
ϑj j-th element of ϑ when ϑ is a vector.
ϑ Random variable or random vector.
ϑj j-th element of ϑ when ϑ is a vector.
M[N×n] Matrix with N rows and n columns.
M(i,j) Element at the i-th row and j-th column of a matrix M .
M Random matrix.
MT Transpose of the Matrix M .
ϑ̂ Approximation of ϑ.

Probability and Stochastic Processes Theory Notations

Ξ Set of possible outcomes.
ξ Outcome (or elementary event).
Ω Set of possible events.
ω Event.
ω̄ Complementary of event ω.
P(ω) Probability of the event ω.
x Random variable.
x Realization of a random variable x.
p(x) Probability density for the random variable x. Also px(x = x) or px(x).
u(.) Scalar field.
x(.) Stochastic process.
x[t] Discrete-time stochastic process.
ν Random noise variable.
ν[t] Random noise discrete-time process.
µx Mean of a random variable x.
Σx Covariance matrix of a random vector x.
σx Variance of a random variable x.
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Learning Theory Notations

L Learning algorithm.
X ⊂ Rn Input space.
x ∈ X Input random variable.
Y ⊂ R Output space.
y ∈ Y Output random variable.
N Number of available observations.
x[i] ∈ X i-th observation in a set of observations.
y[i] ∈ Y i-th observation in a set of observations.
X[N×n] Matrix of input observations.
Y[N×1] Matrix of output observations.
DN = {X,Y } Training set.
Λ ⊂ Rp Model parameter space.
θ ∈ Λ Model parameter vector.
θj j-th element of a model parameter vector.
Λθ Class of models with parameters θ.
h(x, θ) ∈ Λθ Prediction model with inputs x and parameters θ. Also hθ(x), h(x), or h.
hk(x, θ) k-th model in a collection of K models. Also hk(x) or hk.
L(y, hθ(x)) Loss function.
Eemp(θ) Empirical risk.
θDN

arg minEemp(θ).
GN Generalization error.
wk ∈ Rn k-th principal component.
λk k-th eigenvalue.
q Number of retained principal components.
W[n×q] Matrix of retained principal components.
z ∈ Rq Principal component scores.
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Sensor Data Streams Notations

S Number of sensors.
t ∈ N Time index.
S Set of sensors, identified by index i, 1 ≤ i ≤ |S|.
ci ∈ Rd Coordinates of sensor i.
si ∈ R Random variable of measurements for sensor i.
s ∈ RS Random vector of measurements for sensors in S
ps(s) Joint probability density of the collected measurements.
si[t] Discrete-time stochastic process underlying sensor i measurements.
si[t] Measurement of sensor i at time t.
s[t] ∈ RS Vector of measurements of all the sensors at time t.
X[N ] Matrix of size ×S, containing N vectors of measurements

s[t] from time t = 1 up to time t = N .
Ni Neighborhood of sensor i, i.e., sensors that are within radio range of sensors i.
i∗N Node i whose number of neihgbors is the highest.
Ci Set of children of sensor i in a tree topology.
i∗C Node i whose number of children in the routing tree is the highest.
ε Error threshold.
〈X〉 Partial state record.
〈X〉 = i(x) Initialization function.
〈Z〉 = f(〈X〉, 〈Y 〉) Merging function.
z=e(〈X〉) Evaluator function.

Traffic load notations

All these quantities are in number of packets per epoch. HNL stands for highest network
load.

Txi Number of packets transmitted by sensor i.
Rxi Number of packets received by sensor i.
Li Network load of sensor i.
LMD

max HNL for the model-driven data acquisition approaches.
LRM

max HNL for the replicated models approaches.
LDR

max HNL for the distributed regression approaches.
LD

max HNL for a D action.
LA

max HNL for an A action.
LF

max HNL for an F action.
LCovcent

max HNL for the centralized estimation of the covariance matrix.
LCovdist

max HNL for the distributed estimation of the covariance matrix.
LEVcent

max HNL for the centralized eigendecomposition.
LEVdist

max HNL for the distributed eigendecomposition.
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Abbrevations and acronyms

AMS Adaptive Model Selection.
AR(p) Autoregressive model of order p.
AS Aggregation Service.
COTS Components-off-the-shelf.
DPCA Distributed Principal Component Analysis.
DCPC Distributed Computation of the Principal Components.
GPS Geopositioning System.
HNL Highest network load.
LMS Least Mean Square.
MAC Medium Access Control.
PCA Principal Component Analysis.
PIM Power Iteration Method.
RM Replicated model.
SNR Signal-to-Noise Ratio.
TAG Tiny Aggregation.
TDMA Time Division Multiple Access.
CSMA Carrier Sense Multiple Access.
WSN Wireless Sensor Networks.
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Chapter 2

Preliminaries

In this chapter, Section 2.1 gives a background on the challenges raised by WSN, together
with the strategies that can be used at the network level to improve the energy-efficiency of
environmental monitoring applications. Section 2.2 covers the basics of supervised learning,
which will be used in this thesis to model sensor network data in order to reduce the amount
of communication in a WSN.

2.1 Wireless sensor networks

Wireless sensor networks differ from other networks in a number of ways. This section pro-
vides a state-of-the-art on the use of WSN for environmental monitoring, and is structured
as follows. Section 2.1.1 provides an overview of the current technology, and illustrates the
constraints of wireless sensors in terms of computational, network throughput and energy
resources. Section 2.1.2 describes the main actors of environmental monitoring with WSN,
and introduces the issues related to networking and interfacing WSN. Section 2.1.3 empha-
sizes one of the main characteristics of WSN, called data-centric networking. Section 2.1.4
finally presents optimization strategies which can be used to reduce energy consumption in
environmental monitoring tasks, and in particular describes aggregation services.

2.1.1 Sensor technology

A wireless sensor, or sensor node, is a device typically composed of a microprocessor, a
memory, a radio transceiver, a power source and one or more sensors [3]. In many WSN
applications, it is important that the measurements are geolocalized. When sensors are ran-
domly deployed, sensor nodes may also feature a geopositioning system (GPS) to obtain the
location information. The schematic of a basic wireless sensor network devices is represented
in Figure 2.1.

The current generation of commercially available wireless sensor hardware have the size
of a small wallet, and are designed mainly for experimental research purposes. The next
generation of wireless sensors is well illustrated by the seminal smart dust project [90],
which took place at the University of Berkeley between 1998 and 2001, and which led to the
design of a laboratory prototype wireless sensor whose volume was about 5mm3. The design
of viable millimeter scale wireless sensors is however still the subject of research efforts.
The resources available on a sensor node inevitably depend on its size, and the smaller the
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Figure 2.1: Schematic of a basic wireless sensor network device [45].

volume, the lesser the computational, memory, bandwidth and energy resources available.
Table 2.1 compares the resources available on sensor nodes as their size decreases.

WINS NG 2.0 MicaDot Smart Dust
Cost $100s $10s <$1
Size (cm3) 5300 40 .005
Weight 5400 70 .002
Battery capacity 300 15 (Less)
Sensors Off-board Integrated on PCB MEMS
Memory 32MB RAM 4KB RAM (Less)
CPU 400 MIPS 4 MIPS (Less)
Radio range 100m 30m (Less)
Operating system Linux TinyOS (Smaller)

Table 2.1: Comparison of the resources available on sensor nodes as the size decreases [95].

The need for experimenting WSN protocols, algorithms and applications in real-world
conditions has led to the design of wireless sensor platforms for research. The University
of Berkeley initiated such designs in 1999 with the WesC, a platform that approximated
the functionalities envisioned by the Smart Dust project. This design was followed by the
MICA, MICAz, MICA2DOT, and TelosB platforms, which have been the most widely used
sensor nodes in academia for prototypical WSN deployments. The characteristics of these
sensor nodes, also known as motes, are summarized in Figure 2.2.

These nodes use components-off-the-shelf (COTS) hardware instead of integrated silicon
designs in order to allow easy customization of the boards, and to reduce the production
costs. Following the Smart Dust vision, these platforms run 8-bit microcontrollers and have
a few tens of kilobytes of memory. Low data rate radios, ranging from a few tens to a few
hundreds of kilobits per second, enable the communication. Sensors are either integrated
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Mote Type WeC René René2 Dot Mica Mica2Dot Mica 2 Telos

Year 1998 1999 2000 2000 2001 2002 2002 2004

Microcontroller

Type AT90LS8535 ATmega163 ATmega128 TI MSP430

Program memory (KB) 8 16 128 48

RAM (KB) 0.5 1 4 10

Active Power (mW) 15 15 8 33 3

Sleep Power (µW) 45 45 75 75 15

Wakeup Time (µs) 1000 36 180 180 6

Nonvolatile storage

Chip 24LC256 AT45DB041B ST M25P80

Connection type I2C SPI SPI

Size (KB) 32 512 1024

Communication

Radio TR1000 TR1000 CC1000 CC2420

Data rate (kbps) 10 40 38.4 250

Modulation type OOK ASK FSK O-QPSK

Receive Power (mW) 9 12 29 38

Transmit Power at 0dBm (mW) 36 36 42 35

Power Consumption

Minimum Operation (V) 2.7 2.7 2.7 1.8

Total Active Power (mW) 24 27 44 89 41

Programming and Sensor Interface

Expansion none 51-pin 51-pin none 51-pin 19-pin 51-pin 16-pin

Communication IEEE 1284 (programming) and RS232 (requires additional hardware) USB

Integrated Sensors no no no yes no no no yes

Fig. 2. The family of Berkeley motes preceeding Telos and their capabilities

symbol detection, bit serialization, and encryption. A simple FSK

radio uses a number of unusual structures (e.g. digital frequency-

lock-loops) to reduce startup times and active power, while still

providing the frequency agility and improved resistance to noise. The

CPU has been optimized to reduce the cost of context switching.

Spec’s performance is over 1000 times better than Mica in many

applications. Unlike the Mica family, Spec is fully integrated and

offers limited interface flexibility. Since it is a research project, it is

unlikely to become available in quantities to the research community.

Spec provides significant advantages in power consumption due

to its integrated design and hardware accelerators. The Telos design

parallels that of Spec– instead of integrating the design into silicon,

Telos uses COTS components with hardware accelerators to build a

power efficient system that does not sacrifice performance.

III. TELOS PLATFORM

We discuss the design and implementation of Telos, including the

intuition behind hardware selection. We offer an analysis of Telos

and existing devices and provide a discussion of research enabled by

the Telos platform.

The Telos platform is the result of over 12 months of research

and development by two full-time graduate students, and numerous

collaborator, at the University of California, Berkeley. Telos is a

completely new design based off experiences from using previous

mote generations designed by former graduate students at Berkeley

and researchers at other institutions (Intel, ETH Zurich, etc...). We

discuss how we achieve the three major goals for Telos: ultra-low

power operation, easy to use, and robust hardware and software

implementation.

A. Technological Trends

Since the Mica2 mote was released in 2002, a number of new mi-

crocontrollers have been introduced offering lower power consump-

tion, more on-chip peripherals, and various RAM and flash sizes.

Our low power principle focuses on reducing the sleep current and

wakeup time of our system. Figure 4 summarizes the microcontroller

improvements over time.

For Telos, we chose the MSP430 microcontroller after evaluating

existing products from Atmel, Motorola, and Microchip. Figure 4

shows that the MSP430 has the lowest power consumption in sleep

and active modes. The microcontroller operates down to 1.8V. Low

voltages are important for extracting all of the energy out of a

power source–e.g., AA batteries have a cut-off voltage of 0.9V. If

two batteries are used in series, the system cut-off voltage is 1.8V,

exactly the same as the minimum required voltage for the MSP430. In

contrast, the ATmega128 MCU (Mica family) will only run down to

2.7V, leaving almost 50% of the AA batteries unused. The MSP430

also has the fastest wakeup time of any microcontroller; transitioning

from standby (1µA) to active mode (8MHz) in no more than 6µs.
The MSP430 has a DMA controller to reduce load from the MCU

core, lower power consumption, and increase performance.

The trend is to keep RAM and Flash sizes constant (shown in

Figure 4) while adding additional hardware accelerator modules.

The MSP430 provides us with the largest on-chip RAM buffer

(10kB), useful for on-chip signal processing. Larger RAM buffers

enable more sophisticated applications–for example, Maté [9] can

use extended RAM to support more execution contexts and larger

program images; TinyDB [10] uses larger RAM storage for in-

network aggregation and data table storage. Larger flash storage,

although useful for large applications, has not been the limiting factor

in developing WSN applications to date.

There are two distinct types of low power, low data rate radios:

narrowband and wideband radios as shown in Figure 3. Many narrow-

band radios provide very fast startup times since they are clocked by

the MCU but have simple modulation schemes, no spreading codes,

and are not robust to noise. Wideband radios must wait for high

speed oscillators to start. Enhanced modulation schemes found in

wideband radios, such as spread spectrum (DSSS) and phase shift

keying (O-QPSK), provide signal robustness to noise and interfer-

ence. Narrowband radios typically operate at lower frequencies and

lower data rates; wideband radios typically operate in the 2.4GHz

band and provide higher data rates. To pick the most applicable

radio, we must evaluate the impact of noise, flexibility available to

the end application, ease of communication with other devices, power

Figure 2.2: The family of Berkeley motes and their capabilities [74].

(such as on the dot 2000 or the TelosB), or attached by means of a daughter board. Their
size essentially depend on the batteries, typically a pair of AA cells. The integration of these
COTS platforms in silicon would reduce their size to a few millimeter cube, as illustrated
by the Spec platform, the silicon integrated counterpart of the MICA platform in the Smart
Dust project. Such small scale wireless sensors are however still not viable, as a number
of issues in hardware robustness and communication protocols must be further investigated
[90].

Among current platforms, the MICA motes and the Telos are nowadays the most popular
ones for WSN prototyping. The Telos outperforms the MICA motes, particularly in terms
of radio throughput and power consumption. The Telos architecture features lower power
electronics for the flash memory and the microprocessor, and the radio rate increased from
about 40 kbps to 250 kbps. Despite these advantages, the earlier appearance of the MICA
motes family on the market, and the relatively small differences in functionalities between
the MICA motes and the TelosB led a large number of laboratories to adopt the MICA
motes for their experimental work.

2.1.2 Environmental monitoring

The focus of this thesis is data collection for environmental monitoring, where the task
consists in retrieving the measurements from the sensor network at regular time intervals.
In a typical environmental monitoring scenario, four main entities interact [84]:

1. The phenomenon: It is the entity of interest to monitor. The phenomenon may be the
vibration patterns on a bridge, the location and size of a fire in a forest, or the number
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and type of animals present in an environment. The data collected about the phe-
nomenon may be analyzed/filtered by the sensor network before being communicated
to the base station/ the observer.

2. The observer : It is the end user or the application interested in obtaining information
collected by the sensor network. The observer may formulate queries to the network
and receive responses to these queries by means of the base station.

3. The sensor nodes, or sensors: They are the wireless devices that implement the physi-
cal sensing of an environment and the reporting of the measurements to a base station.
The sensors may be placed one by one in the sensor field, according to predetermined
positions, or randomly deployed, from an airplane for example. Once deployed, sen-
sors are assumed to be static, and to run unattended with a non renewable amount of
energy.

4. The base station: It is assumed to possess higher resources than sensor nodes, and
provides a centralized data storage and processing unit for the data collected by the
sensor network. It may connect the WSN to the Internet.

The design of data collection systems for sensor networks has been addressed early in
the research literature [38, 2]. In particular, the three following aspects are of significant
practical importance. First, an observer must be able to communicate with the network in
order to retrieve data. In data collection tasks, it is in particular desirable that the user can
select what measurements to retrieve, change the sampling frequency, or address a query to
a specific region of the network. Second, once a query has been formulated by the observer,
it must be communicated to the network, and sent to the appropriate nodes. Finally, once
all the sensor nodes involved in the query have been reached, the query must be executed
in such a way that the observer retrieves the requested information.

The collection of data from the sensors to the base station requires in most cases the
establishment of a routing structure. The radio range of sensors is limited, and therefore
the data from sensors distant to the base station must be relayed by intermediate sensors.
The transmission of data using multiple relay nodes is called multi-hop routing. In data
collection tasks, a typical routing structure is a tree connecting all the nodes to the base
station [13, 56]. An example of such a tree, also known as data gathering tree, is given in
Figure 2.3. The dotted circle illustrates the radio range of the dark gray sensor. The light
gray sensors lying inside the circle form its neighborhood, i.e., the set of other sensors it can
communicate with.

2.1.3 Data-centric paradigm

At the conceptual level, one of the fundamental differences between wireless sensor networks
and other networks is that the routing and querying techniques can be made more efficient
if the communication is based directly on application specific data content instead of the
traditional IP-style addressing [45]. This focus on data content is referred to as the data-
centric paradigm in [33], whose main characteristic is the routing based on attributes.

In attribute-based routing, the sensor nodes may be identified not on the basis of a
network address, but on the basis of their attributes, i.e., the pieces of information they hold.
These attributes include for example the location or the measurements of a sensor node. A
reference approach that uses this feature is the Directed Diffusion technique [38]. In Directed
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Base 
station

Figure 2.3: Data gathering tree enabling communication between the sensor nodes to the
base station.

Diffusion, both the observer’s queries and sensor’s attributes are described through sets of
attribute-value pairs. Thus, an observer may request sensor nodes within a given region to
report their temperature measurements every thirty seconds for one hour by defining the
set following attribute-value pairs:

Type=temperature //Type of measurements required
Location=[0,0, 15, 35] //Coordinates of the region of interest
Duration=10:00:00 //Duration of the query
Frequency=30 //Sampling frequency

The query is sent throughout the network, and executed by all sensor nodes that are
located within the region and that have a temperature sensor. An example of response to
the query can be:

Id=324 // Node unique identifier
Type=temperature //named record type
Value=25.3◦C //value of this type
Location=[10,25] //location of the measurement
Time=04:23:30 //time of measurements

The nodes may have identifiers, but these do not require to be part of the observer’s request.
Directed diffusion is organized in three stages (Figure 2.4):

1. Query dissemination: When the observer is interested in collecting data, it sends
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through the base station a query that specifies the type of data required. Each node,
on receiving the query, rebroadcasts it to its neighbors. Figure 2.4(a) illustrates this
stage, with node 7 transmitting to nodes 6 and 5, which themselves reach nodes 4, 2
and 3, up to node 1, which matches the query.

2. In addition, as the query is disseminated, each node sets up an interest gradient to
the nodes from which the query was received. The gradient quantifies how efficient
the different nodes are at routing the query. The way the gradient is computed is
application specific, and aims at minimizing a certain cost, such as the number of
hops or the traffic load on a given path.

3. Data are then transmitted from node 1 to the base station using the path that has the
best gradients. Multipath delivery can be used in order to make the message delivery
more robust to transmission failure.

1

5 7

6

3

2 4

Base 
station

(a) Query dissemination.

1

5 7

6

3

2 4
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station

(b) Gradients setup.

1

5 7

6

3

2 4

Base 
station

(c) Data delivery along the rein-
forced path.

Figure 2.4: Main stages of Directed Diffusion [38]. The sensor node that matches the query
is node 1.

The use of attributes to match sensor nodes and observer’s interests make sensor networks
conceptually close to databases. In classical database management systems, data is accessed
by queries from users or applications which specify information to retrieve in a high level
language such as SQL. The SQL syntax has therefore been introduced in the WSN domain
very early, and has been extended to meet some of the specificities of WSN, in particular by
adding the clauses related to the frequency and duration of the data collection [56, 57, 27].
Using SQL, the query formulated above in terms of attribute-value pairs becomes

SELECT temperature FROM sensors
WHERE location=[0,0, 15, 35]
DURATION=00:00:00,10:00:00
EPOCH DURATION 30s

The fact that the SQL syntax is widely known thus makes the interfacing between observers
and sensor networks more natural and simple.
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2.1.4 Energy efficiency and aggregation services

Among the sensor nodes resources, energy is widely considered as the most precious resource
as it determines the lifetime of an application. In full active mode, the lifetime of a sensor
node such as a Tmote is only of a few days. Improvements in battery design and energy har-
vesting techniques only offer partial solutions to extend sensor nodes’ lifetime, and therefore
most of the WSN literature has focused on the design of protocols with energy efficiency as
the primary goal [45].

Energy consumption depends on the amount and type of activities performed by sensor
nodes. In order to more precisely control energy consumption, sensor nodes are usually
designed so that their different components can be powered on and off. The current con-
sumption is the lowest in the standby mode, in which all components are switched off except
the clock, and is on the order of a few microampers. The use of the microcontroller unit
(MCU) typically requires a few milliampers, and is therefore three orders of magnitude
higher than the standby mode. The additional use of the radio or the memory component
increases by an order of magnitude the overall current draw [73]. This is illustrated in Table
2.2, which details the current draws of the MICA2, MICAZ and Telos motes for different
modes of operations.

Operation mode MICA2 MicaZ Telos
Standby 19.0 µA 27.0 µA 5.1 µA
MCU Idle 3.2 mA 3.2 mA 54.5µA
MCU Active 8.0 mA 8.0mA 1.8 mA
MCU + Radio RX 15.1 mA 23.3 mA 21.8 mA
MCU + Radio TX (0dBm) 25.4 mA 21.0 mA 19.5 mA
MCU + Flash Read 9.6 mA 9.4 mA 4.1 mA
MCU + Flash write 21.6 mA 21.6 mA 15.1 mA

Table 2.2: Comparison of the current consumption of MICA2, MICAZ and Telos mote [73].

A simple solution to save energy and extend the lifetime of a sensor node is to operate
the node with periodic switching between standby and active modes. This approach, called
duty-cycling, is particularly suitable for periodic data collection tasks [3, 45, 83], where the
operation of the sensors is by definition periodic. Since the collection and the transmission
of one packet is typically less than one second, the energy savings can be significant if the
frequency of the data collection is low. The sampling of one measurement every minute can
for example extend the lifetime of a node by a factor of at least sixty using the duty-cycling.

In multi-hop networks, the nodes must be synchronized so that parents and children in
the routing tree are active at the same moment. Different systems, such as TAG [56, 58],
Cougar [93] or Dozer [13] for example, have been proposed to carry out the synchronization
in a time and energy-efficient way. TAG is the most well-known representative of such
systems.

TAG stands for Tiny AGgregation and is an aggregation service for sensor networks which
has been implemented in TinyOS [85], an operating system with a low memory footprint
specifically designed for wireless sensors. TAG allows to aggregate data within a WSN in a
time and energy-efficient manner. To that end, an epoch is divided into time slots, in such
a way that the activities of the sensors are synchronized as a function of their depth in the
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routing tree. Any algorithm can be used to design the routing tree, as long as (i) it allows
the data to flow in both directions of the tree, and (ii) it avoids sending duplicates [56].

The goal of TAG is to minimize the amount of time spent by sensors in powering their
different components and to maximize the time spent in the standby mode, in which all
electronical components are switched off. This synchronization allows to significantly extend
the lifetime of the sensors. An illustration of the activities of the sensors during an epoch is
given in Fig. 6.7, for a network of four nodes with a routing tree of depth three.
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(a) Routing tree of depth three.
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(b) Activities carried out by sensors depending on their
level in the routing tree (adapted from [56]).

Figure 2.5: Multi-hop routing along a routing tree, and node synchronization for an efficient
use of energy resources.

The establishment of the routing tree works in a similar manner as Directed Diffusion
described in Section 2.1.3. The observer’s query is flooded from the base station to the
sensor nodes, which identify at the same time a possible routing tree. Each node chooses
another node as its parent, using a metric such as the minimum number of hops. Nodes also
synchronize their clocks by adding timestamps in the messages, and define their own activity
schedule such that their radio transmission period is within the radio reception period of
their parents. In order to overcome limitations in the quality of the clock synchronization
between parents and children, the parents listen for longer than the transmission interval of
their children. The duration of the interval in which parents receive the values from their
children needs to be long enough so that all children can report, but not so long so that
nodes deep in the tree can report their value before the end of the epoch.

Aggregation services such as TAG allow to both reduce energy consumption by carefully
scheduling sensor node’s activity, and by allowing the measurements to be aggregated as
they are routed to the base station. This aggregation allows to reduce the number of packet
transmissions, and can further be used to compute parameters in a distributed manner as
will be discussed in more details in Section 3.
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2.1.5 Summary

Wireless sensor networks are strongly resource constrained, particularly in terms of energy.
In environmental monitoring applications, where the network is expected to run unattended
for months or even years, the need for energy-efficient data collection schemes has driven
the design of new routing and querying strategies. In particular, the optimization prob-
lems resulting from maximizing the sleeping time of sensor nodes has led to the design of
aggregation services.

The strategies presented in this section however did not take into account the fact that
sensor network data are often correlated over space and time. Given that the microprocessor
consumes one order of magnitude less energy than the radio module, in-network processing
strategies can de designed to detect these correlations, and to allow further energy savings
by removing the correlations within the network. Learning techniques are in this respect
among the most promising approaches.

2.2 Supervised learning

This section provides the reader with the main concepts and methods used in supervised
learning. It introduces the general problem of learning with computers, and provides the
general statistical framework that formalizes the actors of supervised learning tasks. The
reader is assumed to be acquainted with the basics of statistical theory. Appendix A other-
wise provides a review of the main statistical concepts.

Learning “by heart” is probably one of the easiest thing for a computer. However, in most
cases, the goal pursued is not to make the computer store all the examples provided, but
rather to make it “understand” the underlying relationship that exists between the training
examples provided. In particular, the goal of a learning procedure is most often to make good
predictions, i.e., to properly guess the relationships existing between data other than those
used as examples. This ability, called generalization, raises particularly tough challenges.

Section 2.2.1 provides insights into the nature of these challenges by means of the
bias/variance decomposition, and makes clear that in most cases, simple models are prefer-
able to complex models. Section 2.2.2 addresses how a learning procedure can be designed
to find a representation that suits the training examples, while allowing good generaliza-
tion. Section 2.2.3 then presents different classes of models, with an emphasis on the class
of linear models. Finally, the challenges raised by generalization may also be addressed by
preprocessing the data, with the use of techniques called dimensionality reduction. Section
2.2.4 provides an overview of these techniques.

2.2.1 Learning from data

Learning with computers

Conceptually, learning can be defined as acquiring knowledge through experience. A def-
inition that adapts the concept of learning to the field of computer science is proposed in
[68]:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.
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This definition is broad enough to encompass different sort of tasks, which would in the
common sense be considered as learning tasks. Such tasks include for example the learning
of a language, the forecasting of a situation based on previous observations, and the design
of strategies for winning a game.

The subfield of computer science that deals with the design of algorithms and techniques
that allow computers to learn is referred to as machine learning. Three types of learning
tasks can be distinguished [23]. First, unsupervised learning, which deals with the design of
strategies aimed at finding structures in data, but where no “supervisor” can say if the data
structures obtained are correct. An example of such a task is the design of taxonomies, such
as with species, where the performance can be assessed in terms of qualitative judgments
on the clarity of the taxonomy. This judgment may evolve with experience as new species
are discovered.

Second, reinforcement learning, which refers to learning tasks where the optimal solution
is not known, but where some notion of reward can be used to orient the search in the space
of solutions. The design of strategies in reinforcement learning problems often involves trials
and errors. The development of strategies for winning a game or for finding the shortest
path are examples of reinforcement learning tasks. Research as a whole also falls in that
category.

Finally, supervised learning, which deals with the more “classic” notion of learning, where
a supervisor, or teacher, can provide examples about some kind of relationships to a learner.
The task is for the learner to uncover the relationships that can be found in the examples.
In the terminology of machine learning, the examples are provided by a set of observations
called the training data or training set. It is composed of pairs of input variables, typically
vectors, and one or more output variables, which are assumed to be dependent on the inputs.
The nature of the output variable can be categorical or continuous. In the former case, the
supervised learning task is referred to as classification, and in the latter case, as regression.
Classification is typically used for recognition tasks, such as character, image, or sound
recognition. Applications of regression include for example interpolation, approximation,
and prediction tasks.

Statistical definition of a supervised learning task

Classification and regression have a lot in common, and in particular both can be viewed
as a task in function approximation [32]. Let x ∈ X denote the input variable, taking its
values in an input domain X , and y ∈ Y denote the output variable, taking its values in
an output domain Y. In the case of regression, the output space is usually the domain of
real numbers R. In the case of classification, it is usually of discrete set of elements, not
necessarily numeric nor ordered.

In this thesis, we will be mainly concerned with regression tasks, and input and output
domains will unless otherwise stated refer to the Rn and R. We will occasionally consider
classification tasks, in which case the nature of the output space Y will be specified.

Example 2.1: Let us consider a sensor network collecting temperature measurements in
an outdoor environment, two sensors close to each other are likely to collect similar mea-
surements. The problem of estimating the measurements of one sensor given the other is
a regression problem. The input is the measurement of one sensor, and the output the
measurement of the other sensor. Inputs and outputs both belong to the set of real numbers.
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Example 2.2: Let us consider a sensor network of n inclination sensors placed on the
body of an individual, and let us assume that the goal is to determine, on the basis of
inclination measurements, whether the individual is lying, sitting or standing. This is a
classification problem. The input is the set of n sensor measurements, taking their values
in n-dimensional space of real numbers, and the output the set of the three possible outcomes
{lying,sitting,standing}.

The main actors of a supervised learning task are the following:

• A target operator y(x), which represents the relationship that links inputs x to the
output y. In the most general case, the relationship is unknown and non deterministic.
The target operator is then a stochastic process, and the distribution followed by y(x)
for a given x can be represented by a conditional distribution py(y|x). A joint distri-
bution px,y(x, y) may equivalently be used to represent the stochastic relationship.

• A training set of N observations, or examples, of the relationship between the inputs
and the outputs. It is denoted DN = {(x[i], y[i])}, where the pair (x[i], y[i]) represents
the i-th example. Each example is a sample of the joint distribution px,y(x, y).

• A prediction model, whose role is to represent the unknown relationship y(x) by means
of a parametric function

hθ : X → Y
x 7→ ŷ = hθ(x)

which, given an input x and a set of parameters θ ∈ Λ, produces a prediction ŷ.
The prediction model is assumed to be entirely defined by the set of parameters. In
this thesis, the parameters space will in most cases be a p-dimensional domain of real
numbers. Depending on the context, the notation h(x, θ) will also be used to make
more explicit the dependence of h on θ. The prediction model is in this case seen as
a function

h : X × Λ → Y
x, θ 7→ ŷ = h(x, θ)

where the parameters are also considered as variables of the prediction model.

• A loss function, defined as

L : Y × Y → R
y, ŷ 7→ L(y, ŷ)

which quantifies the discrepancy between the actual output y and the predicted output
ŷ. Loss functions depend on the type of task, in particular regression or classification.
In the former case, the most widely used loss function is the quadratic loss function,
which is defined as

L2 : Y × Y → R
y, ŷ 7→ (y − ŷ)2. (2.1)
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The function quantifies the euclidean distance between the predicted and the desired
output. The popularity of this loss function in regression settings mainly stems from
the fact that it is differentiable, which considerably simplifies optimization procedures
related to the parametric identification of a prediction model (see Section 2.2.2 and
2.2.3).

In classification problems, the notion of euclidean distance is not appropriate for as-
sessing the loss. The output space is a finite set of classes, not necessarily ordered.
The most popular loss function, called the misclassification function, is defined as

L0/1 : Y × Y → {0, 1}

y, ŷ 7→
{

0 if y 6= ŷ
1 if y = ŷ

(2.2)

and quantifies the match between the predicted and the desired output by a binary
indicator.

• A learning procedure which consists, on the basis of a training set, in producing a
model hθ(x) = h(x, θ) with θ ∈ Λ. The goal is to minimize the loss between the
prediction model outputs ŷ and the actual outputs y. Assuming that the parameters
θ completely define the prediction model, the parameter space Λ is also referred to as
the model space. The learning procedure is an essential part of a learning task, and is
the subject of Section 2.2.2.

An overview of the supervised learning setting is given in Figure 2.6.

Target function

Prediction model

Training set

output ŷ

output yinput x

error L(y, ŷ)
Learning procedure

Figure 2.6: The supervised learning setting. A training set made of input and output
observations of the target operator is used by a learning procedure to identify a prediction
model of the target operator. The goal is to minimize the error between the true output y
and the prediction model ŷ, quantified by a loss function L(y, ŷ).

Example 2.3: Let us assume that the true relationship between x and y is defined by the
stochastic process y(x) = x2 +ν where ν ∼ N (0, σν) is a Gaussian random noise, and that a
training set of N = 100 examples has been collected. A linear model of the form ŷ = θ1 +θ2x,
although not optimal, could be used as a first try to represent the relationship. The parameter
space is R2, the vector of parameters is θ = (θ1, θ2). The least square technique, based on
the quadratic loss function, can be used as the learning algorithm to estimate the parameters
θ. This technique will be detailed in Section 2.2.3.
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In qualitative terms, the goal of the learning procedure is to provide the best representation
of the stochastic relationship y(x). The loss function allows to quantify the notion of best
approximation. It is defined as the representation that minimizes the loss over the X × Y
domain:

f∗ : X → Y
x 7→ y∗ = arg min

y′
Ey[L(y(x), y′)].

This function will be referred to as the target function. The loss over the X × Y domain is
the functional risk, defined for a function f(x) as

Rf = Ex,y[L(y, f(x))]

For f = f∗, the resulting loss is called the minimal functional risk, and is the expectation
value Ex,y[L(y, f∗(x)]. For a model hθ(x), the functional risk can be defined as a function
of the parameters R(θ) = Ex,y[L(y, hθ(x))]. Denoting by Λ∗ a parameter space such that
∃θ∗ ∈ Λ∗ s.t. ∀x, hθ∗(x) = f∗(x), the learning problem may then be stated as finding the
model with parameters θ∗ ∈ Λ∗ such that

θ∗ = arg min
θ

Ex,y[L(y, h(x, θ))]

Such a model will be referred to as an optimal model h∗, as it verifies

hθ∗ : X → Y
x 7→ y∗ = arg min

y′
Ey[L(y(x), y′)]

whose loss is also the minimal functional risk. In most cases, there is very few assumptions, if
any, that can be made about the analytical form of the target function. Models are defined
by parameters, and in general, the higher the number of parameters, the greater the set
of functions that can be represented. This calls for the use of complex models with high
number of parameters, so that chances to properly represent the unknown target function
are increased.

However, increasing the size of a parameter space leads to the two following practical
issues. First, the parameter space may become so large that it is computationally intractable
to find the right parameters, even if an unbounded number of examples is provided by the
training set. Second, the size of the training set is in most cases fixed, and the number of
examples at hand is too low to allow an effective exploration of the parameter space.

Thus, the choice of a model for a learning task is subject to the following tradeoff: on
one hand, if the model is too simple, it will not be able to properly represent the target
function. This outcome is referred to as as underfitting. On the other hand, if the model is
too complex, it will be able to fit exactly the examples available, without finding an effective
way of modeling the target operator. This outcome is referred to as overfitting.

A fruitful way to get insight into this tradeoff is provided by the noise, bias, and variance
decomposition.
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The noise, bias and variance decomposition

Given a training setDN and a model h(x, θ), a learning algorithm aims at finding the param-
eters θ so that the loss on the training set is minimized. In the following, the dependence of
the parameters θ on the training set is made explicit by the notation θDN

. The training set
is the result of a random sampling of the distribution px,y(x, y), and therefore the training
set is also a random variable.

In order to assess the average loss of a prediction model independently of a specific sam-
pling DN , much insight into learning algorithms is gained by raising the following question:

What is the influence of the training set on the overall loss of a prediction model?

This loss, called the generalization error, consists in quantifying the loss incurred by a
learning algorithm over the X ×Y domain, for all possible training sets of size N . Denoting
by GN this loss, we have

GN = Ex,y,DN
[L(y, h(x, θDN

))].

The training set is here considered as a random variable, which allows to assess the learning
algorithm independently of a particular training set. In the same manner, the generalization
error for a given input x is defined by

GN (x) = Ey,DN
[L(y, h(x, θDN

))].

In the case of the quadratic loss function, it can be shown that

GN (x) = Ey,DN
[L(y, h(x, θDN

))] = Ey,DN
[(y − ŷ)2]

= Ey[(y − y∗)2] + Noise
(y∗ − EDN

[ŷ])2 + Bias
EDN

[(ŷ − EDN
[ŷ])2] Variance (2.3)

The first term Ey[(y − y∗)2] only depends on the stochastic relationship y(x) between
inputs and outputs, and characterizes the error coming from the approximation of y(x) at
x. Ideally, one expects a deterministic relation between y and x. This ideal deterministic
relation is, however, often “noisy” because of noise when getting empirical measures, or
because of a lack of information that more precisely define the relation between x and y.
This error component is therefore commonly referred to as noise, and is an irreducible error
in a supervised learning process.

The second term (y∗−EDN
[ŷ])2 quantifies the adequacy of the chosen model with respect

to the optimal model. This term is called the “bias” of the model, sometimes referred to
as “squared bias” as it is raised to the power two. In Example 2.3, the linear model is for
instance biased as the true relationship is quadratic.

The third term EDN
[(ŷ − EDN

[ŷ])2] quantifies how much the predicted value of ŷ =
h(x, θDN

) will vary around the expected prediction value EDN
[ŷ] of the model for different

training set DN . It therefore quantifies the sensitivity of the model prediction for a given
training set. This term is referred to as the “variance” of the model.

Illustrative example

Precising Example 2.3, let us consider a stochastic process where the relation linking y to x
is of the quadratic form y(x) = x2 + ν, where ν ∼ N (0, 1) is a gaussian noise with mean 0
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and standard deviation 1, and x takes values on the interval [0; 5] (see figure 2.7(a)).
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3.3.2 Uncertainty related to the model

Suppose that the model chosen to approximate this relation is a linear model
of the form ŷ = α1∗x+α0, and that a set DN of N = 100 samples is available.
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3.3.2 Uncertainty related to the model

Suppose that the model chosen to approximate this relation is a linear model
of the form ŷ = α1∗x+α0, and that a set DN of N = 100 samples is available.
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(b) The probability density p(y|x=3).

Figure 2.7: Non-deterministic relation and uncertainty associated to a given x.

At one x, y follows a gaussian probability density with mean y∗ = Eν [(x2 + ν)|x] = x2 and
variance 1. This density is illustrated on figure 2.7(b), for x = 3.

Suppose that the model chosen to approximate this relation is a linear model of the form
ŷ = θ1 +θ2x, with parameters θ = (θ1, θ2), and that a training set DN of N = 100 samples is
available. A linear regression using the least square technique (see Section 2.2.3), allows to
find the coefficients θ that minimize the quadratic loss function on a given training set DN .
Figure 2.8 illustrates four different realizations of this procedure for four different training
sets DN .

Depending on the training set DN , the predicted value ŷ = h(x, θDN
) at one point x is

different. Figure 2.9 gives a graphical illustration of the noise, bias and variance quantities
at one point x, where densities p(y|x=3) and p(ŷ|x=3) have been grouped on the same
plot. The generalization error defined in Equation (2.3) equals the sum of the variance σy of
p(y|x) (the red curve), the variance σŷ of p(ŷ|x) (the blue curve), and the squared distance
dyŷ between the expected values of p(y|x) and p(ŷ|x) (the vertical dashed lines).

2.2.2 Learning procedure

Overview

The ideal outcome of the learning procedure is to produce the model with the lowest gener-
alization error, i.e., the optimal model h∗ as defined in Section 2.2.1. A number of practical
issues usually prevent the procedure from finding this optimal model. In most cases, there
is little or no a priori information about the analytical expression of the target operator,
and the training set has a finite number of examples. The optimal model may have a high
(possibly infinite) number of parameters, which cannot be estimated properly with a finite
training set. At the same time, in the unlikely case where an infinite number of examples is
available, computational issues would most probably prevent the processing of the learning
algorithms. Simpler but biased models must therefore be considered in order to reduce the
generalization error.

Assuming that the optimal model belongs to a space Λ∗, the common practice to handle
the search for a model consists in decomposing the space of models Λ∗ into a sequence
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A linear regression using the least square technique allows the identification
of the coefficients α1 and α0 from the training set DN . O n figure 3.3.2 are
illustrated four different realization of this procedure for different training
sets DN .
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α0 = −3.86
α1 = 4.87

α0 = −5.71
α1 = 5.37
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α0 = −4.26
α1 = 5.06

F igure 3: Four slightly different models due to variations in the training set

A t one point x, dep ending on the training set DN , the predicted value
ŷ = h(x, αN ) will b e different . O n figure 3.3.2 is illustrated the probabili ty
densi ty of ŷ for x = 3 (ob tained after five thousand realizations of the above
procedure). T he densi ty has a gaussian shap e, with mean value Ey[y|x = 3] =
10.81.
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Figure 2.8: Four slightly different models due to variations in the training set.

of p nested spaces Λ1 ⊂ Λ2 . . . ⊂ Λp ⊂ Λ∗ [8]. The search is then made at two nested
levels, known as parametric identification and structural identification stages. The inner
level consists in searching one of the subspace Λl, 1 ≤ l ≤ p, and to produce the model
that best fits the training data within this space. The task is usually formulated as an
optimization problem whose objective function is to minimize the error made by the model
on the training set. Techniques of parametric identification include for example the least
square method for linear models, which we present in Section 2.2.3.

The outer level consists in assessing in terms of generalization error the performances
of the model produced by the parametric identification stage for each subspace Λl. The
assessment of the generalization is called the validation. Validation techniques include for
example the cross validation, which we present in Section 2.2.2. The learning procedure
eventually returns the model with the lowest estimated generalization error. Figure 2.10
illustrates the process.

Parametric identification

The parametric identification requires the definition of the following elements:
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another. T his will increase the variance term. A t one stage, the decrease
in bias will b e inferior to the increase in variance, warning that the model
should not b e too complex .
C onversely, to decrease the variance term, the designer has to simplify its
model so that it is less sensi t ive to a sp ecific training set . T his simplification
will lead to a higher bias.
T his decomposi t ion makes i t possible to unveil the actors of the general-
ization error in regression problems with quadratic loss funct ion.I t however
only applies to regression problems, and can not b e transposed in classifica-
tion problems, par tly b ecause the quadratic loss funct ion is not apropriate,
and par tly b ecause the notion of variance and bias has to b e redefined, as
will b e exposed in the following.

4 M ul t iclass classifica t ion p roblems

4.1 O u t line of t he di  erences wi t h t he regression case

In a K -class classification problem, the ou tpu t space Y is the set of classes
Y = { c0 , c1 , ..., ck−1 } . T he stochast ic process S is entirely defined by a
joint probabili ty distribu tion P (y , x ), and let Y and x b e the corresponding
random variables. T he ou tpu t ŷ of the model h( x , αN ) is an element of
Y . A s ŷ dep ends on a par ticular D N , let Ŷ and D N b e the corresponding
random variables.

11

Figure 2.9: The probability densities p(y|x=3) and p(ŷ|x=3).

Parametric identification

Validation

θ∗DN
∈ Λl

Ĝ∗
l

Λ1 ⊂ Λ2 . . . ⊂ Λp ⊂ Λ∗, 1 ≤ l ≤ p

Structural identification

Selection

θ∗DN
∈ Λl|Ĝ∗

l = Ĝ∗

Figure 2.10: Decomposition of the learning procedure into its main components.
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• A model space Λl

• A data set DN of N observations.

• A loss function L. The loss of a model on a training set is called the empirical error
Eemp, and is expressed as

Eemp =
1
N

N∑

i=1

L(y[i], hθ(x[i])).

• A learning algorithm L, whose goal is stated as finding the model hθ ∈ Λl that mini-
mizes the empirical error.

Given these elements, the learning algorithm aims at finding the set of parameters θ that
minimizes the empirical error. Denoting by θ∗DN

the optimal parameters to emphasize the
fact that they depend on the training set DN , we have

θ∗DN
= arg min

θ
Eemp = arg min

θ

1
N

N∑

i=1

L(y[i], h(x[i], θ)). (2.4)

Depending on the class of models considered, the resolution of this optimization problem
may be solved analytically, or by means of gradient descent techniques [68].

The use of the empirical error as the loss criterion in the objective function (Equation
(2.4)) leads to identify models that fit the data rather than the underlying structure. It is
therefore not a suitable estimate of the generalization error, as it does not account for the
loss of the model for inputs not in the training set.

Structural identification

The goal of structural identification consists in

• Performing the parametric identification of a set of models with increasing complexity,
by enlarging the model space.

• Assessing the generalization error by a validation procedure

• Selecting the model that has the lowest generalization error

The first stage consists in designing a nested sequence of model space Λ1 ⊂ Λ2 . . . ⊂
Λp ⊂ Λ∗. A priori information on the nature of the target operator may be used to design
this sequence. An example of such a sequence for a univariate model can be the set of
polynomial models with ŷ =

∑p
j=1 θjx

j where each model space is defined by the parameter
vector θ = (θ1, θ2, . . . , θp).

The validation procedure typically consists in partitioning the training set in two sets
Dtr
N and Dts

N . The first one is used for the parametric identification, and the second one,
called test set, is used for assessing the loss of the model on examples that were not used for
training the model. This way, it provides an estimate of the generalization error Ĝts called
test error.

A way to improve this estimate is to useK-cross validation, which consists in partitioning
the training set DN in K sets Dk

N of similar size. The validation procedure described above
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is repeated K times, using at each round one subset k as the test set Dts
N = Dk

N , and the
remaining K − 1 training examples Dtr

N = ∪k′ 6=kDk′
N as the training set. This provides a set

of 10 estimates Ĝk, whose average ĜCV is called the K-cross validation error.
Denoting by Ĝl the estimate of the generalization error for the model identified in the

model space Λl, the structural identification loop generates a sequence of p estimates that
typically have a parabolic form stemming from the bias-variance tradeoff.

Let Ĝ∗ denote the lowest estimate of the generalization error. The model finally produced
by the learning procedure is the model hθ ∈ Λj from the space Λj for which Ĝ∗l = Ĝ∗.

Data collection and preprocessing

We finish this discussion on the learning procedure by a few words on the data collection
stage. The data collection stage is an important step of a learning task, and the quality of
the data obtained at this stage strongly impacts on the ability of the learning process to
properly identify the hidden relationships. Indeed, no matter the efficiency of the search
procedure in the space of models, the learning process is bound to fail if the relationships
are overly complex between input and output variables.

The data considered in this thesis will mainly be related to sensor measurements, such as
temperature, humidity or pressure measurements. The quality of the data may be improved
at the sensing stage by a careful calibration of the sensing devices.

Different kind of data preprocessing techniques may be further applied to improve the
efficiency of the learning phase. First, techniques such as data filtering, detection and
removal of erroneous data (also referred to as outliers), and inference of missing data may
be used to improve the quality of the data. Second, feature extraction techniques may be
used to transform the original set of variables in a set of variables more relevant for the
learning task.

2.2.3 Classes of models

Linear models

Linear models have been widely used in statistics and remain today one of the most impor-
tant tool [32]. Given an input x ∈ Rp, the output of a linear model is predicted by:

ŷ = xT θ

where θ ∈ Rp is the vector of parameters of the linear models. The most popular method
to for the parametric identification of a linear model is the least square method, which is
based on the L2 quadratic loss function. Given a training set DN , the minimization of the
empirical gives the following objective function

θDN
= arg min

θ
Eemp(θ) = arg min

θ

1
N

N∑

i=1

L(y[i], h(x[i], θ)).

Let X be the N × p matrix whose rows are the observations x[i], and Y the N × 1 matrix
whose elements are the outputs y[i], 1 ≤ i ≤ N . Setting the derivative of Eemp(θ) to zero
gives

θDN
= (XTX)−1XTY
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which is the standard solution to a regression problem.

Basis functions

Basis functions allow to rely on linear models to represent nonlinear relationships between
inputs and outputs [32]. The core idea is to augment/replace the vector of inputs x with
additional variables, which are transformations x, and then to use linear models in the new
space formed with this transformed set of variables. Let us denote by

πm : X → R
x 7→ xm = π(x)

the m-th transformation of the vector of input variables x. The transformation πm is also
called basis function, and the resulting model is a linear basis expansion in x. Some simple
and widely used examples of πm are the following:

• πm(x) = xm. This recovers the original model.

• πm(x) = x2
m′ or πm(x) = xm′xm′′ where m′,m′′ ∈ {1, . . . , p} are variables of the

input vector x. This allows to augment the inputs with polynomial terms to achieve
second-order Taylor expansion. Higher order may also be considered.

• πm(x) = 1(Lm′ ≤ xm′ ≤ Um′), where 1(.) is the indicator function. This allows to
define regions over the variable xm′ , by breaking the range of xm′ into multiple non
overlapping areas.

• More generally, overlapping regions may also be designed. These are called kernel
functions. A region is defined by a kernel πm(x), which is a non-negative function that
maps inputs x to a non-negative number. A location can belong to several regions.
Let l be the number of regions. The degree to which a location belongs to region m
can be represented by the normalized kernel weight

κm(x) =
πm(x)

∑l
v=1 πv(x)

Basis expansions therefore provide a powerful way to extend the use of linear techniques to
the modeling of nonlinear relationships. They however often require to add variables, and
consequently parameters. Because of the bias variance tradeoff, the resulting performances
of the model may decrease. Dimensionality reduction techniques (see Section 2.2.4) may be
used concommitantly to address this issue.

Nonlinear models

Besides linear models with basis expansions, a number of other approaches have been de-
signed over the years in the field of machine learning to model nonlinear relationships be-
tween data [32]. We briefly present the main nonlinear modeling approaches in the following.

Two general categories of approaches can be distinguished: global and local approaches.
In global approaches, the learning procedure aims at fitting a single prediction model over
the whole input space X . Once the model is produced, it can be used to obtain predictions
for any input x ∈ X . Such approaches include neural networks [7] or support vector machines
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[17] for example. A nice property of these approaches is that they provide a global repre-
sentation of the relationship with one model, and have usually little storage requirements
once the model is produced.

The fitting of a complex relationship is however often difficult in practice due to the
bias/variance tradeoff. Local approaches address this issue by letting the learning procedure
produce different models for different regions of the input space X . The rationale of these
approaches is to “divide and conquer”, i.e., to partition the space in different regions in such
a way that the relationship in each region may be represented by simpler models. Linear
models are often used as the local models.

In local approaches, the partitioning of the space may be achieved by regression trees
[10] or kernels [32] for example. Such a partitioning produces a collection of prediction
models, one for each partition. The alternative to partitioning is the K-nearest neighbors
approaches, where the learning procedure is postponed until a prediction for an input x is
required. The region is then defined as the set of K closest neighbors of x in the training
set. A local model is then built on the basis of the reduced training set. The size K of the
neighborhood may be dynamically estimated on the basis of statistical properties, such as
in the Lazy learning approach [8].

Nonlinear modeling techniques usually imply computationally intenseive learning proce-
dures or large storage requirements. Their use in the context of sensor networks therefore
conflict with the tight resources available on current sensor platforms. Therefore, although
we mention the existence of these alternative modeling approaches for completing this sec-
tion, these models shall not be specifically addressed again in this thesis.

2.2.4 Dimensionality reduction

Dimensionality reduction aims at reducing the number of inputs in supervised learning
problems. As the number of parameters of a model is in most cases proportional to the
number of inputs, reducing the dimensionality of a supervised learning problem is a way to
trade variance for bias, with the aim of reducing the generalization error of a model.

Existing techniques for dimensionality selection include feature selection and feature
transformation techniques. Feature selection approaches consist in selecting, out of the set
of input variables, those that provide the greatest amount of information for predicting the
output. For an up-to-date state of the art on feature selection see [31].

Feature transformation consists in transforming the input variables into a more compact
set of variables, in such a way that important information for predicting the output is
preserved. The resulting transformation can be mathematically formalized by means of
basis functions.

We present in the following the most popular methods for feature selection and feature
transformation, namely the best subset selection, forward selection and principal compo-
nent analysis. Best subset selection and forward selection are instances of feature selection
methods [31]. The Principal Component Analysis (PCA) is a classic dimensionality reduc-
tion technique in statistical data analysis, data compression, and image processing [42, 67].
The technique is based on a basis change which reduces the number of coordinates used to
represent the data while maximizing the retained variance.
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Algorithm 1 Best subset selection.

Input: Set of input variables S = {x1, x2, . . . , xn} and a learning procedure.
Output: Subset S∗ that provides the lowest estimate of the generalization error.

1: for all S ′ ⊂ S do
2: Apply learning procedure with the subset of variables S ′
3: Store Ĝ∗S′ , the lowest estimated error obtained.
4: end for
5: Return the subset S∗ = S ′ for which Ĝ∗S′ is the lowest

Feature selection

Given a learning problem with a set S = {x1, x2, . . . , xn} of n input variables, the best
subset approach consists in applying the learning procedure for all possible subsets of S.
The learning procedure is seen as a black box able to return (e.g. via cross-validation) an
evaluation of the quality of a feature subset in terms of generalization error. The best subset
is the one for which the estimate of the generalization error is the lowest. The algorithm is
outlined in Algorithm 1.

When the number of variables is large, the best subset selection algorithm requires a high
number of evaluations as 2n subsets must be considered. For reducing the computational
effort, an incremental approach called forward selection [32] is often used in practice. The
algorithm, presented in Algorithm 2, has a maximum of n rounds, in which variables are
incrementally added to a set of retained variables Sikept. At each round, the added variable
is the one in S\Skept whose addition to the model provides the lowest estimate of the
generalization error. The algorithm stops when the generalization error decreases due to
overfitting. The maximum number of evaluations is reduced to n(n+1)

2 . In practice, the
method often performs as well as the best subset selection [32].

Principal component analysis

The PCA [42, 32] is a dimensionality reduction technique based on feature transformation.
More specifically, the transformation is based on the projection of a multidimensional vector
x ∈ Rn onto a subspace of dimension q < n. The subspace is defined by a set of orthonormal
basis vectors {wk}, 1 ≤ k ≤ q, called principal components (PCs), which form the PC basis.
The projections of x on the principal components are called the principal component scores
z ∈ Rq. Denoting byW the [n×q] matrix whose k-h column is wk, the transform is expressed
by

z = W Tx.

In PCA, the PCs are designed in order to minimize the approximation error entailed by the
projections in the reduced space.

Given a set of N centered multivariate observations x[i] ∈ Rn used as training samples1,

1samples are centered so that the origin of the coordinate system coincides with the centroid of the set
of samples. This translation is desirable to avoid a biased estimation of the basis {wk}1≤k≤q of Rn towards
the centroid of the set of samples.
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Algorithm 2 Forward selection.

Input: Set of input variables S = {x1, x2, . . . , xn} and a learning procedure.
Output: Subset S∗ that provides the lowest estimate of the generalization error with the
forward heuristic.

1: Sremain = S
2: S0

keep = ∅
3: Ĝ∗0 =∞
4: i = 0
5: repeat
6: for all xj ∈ Sremain do
7: Apply the learning procedure with the subset of variables Sikeep ∪ xj
8: Store Ĝ∗j , the resulting estimate of the generalization error
9: end for

10: Ĝ∗i+1 = minj Ĝ∗j
11: xselect ← variable xj that gave the lowest Ĝ∗j
12: Si+1

keep ← Sikeep ∪ xselect

13: Sremain ← Sremain\xselect

14: i = i+ 1
15: until G∗i > G∗i−1

16: Return the subset S∗ = Si−1
keep

1 ≤ i ≤ N , the PCA aims at minimizing the following optimization function

Jq(wk) = 1
N

∑N
i=1 ||x[i] −

∑q
k=1wkw

T
k x[i]||2

= 1
N

∑N
i=1 ||x[i] − x̂[i]||2

(2.5)

where the set of q ≤ n vectors {wk}1≤k≤q of Rn have unit norm. The linear combinations
x̂[i] =

∑q
k=1wkw

T
k x[i] represent the projections of x[i] on the PC basis, and Equation (2.5)

therefore quantifies the mean squared error the original observations x[i] and their projec-
tions.

Given that the transform is linear, the PCA is particularly useful when data are corre-
lated, as illustrated in Figure 2.11 where a set of N = 50 three-dimensional observations
x = (x1, x2, x3) ∈ R3 are plotted. Note that the correlation between the variables x1 and x2

is high, while the x3 variables is independent of x1 and x2. The set of principal component
(PC) basis vectors {w1, w2, w3}, the two-dimensional subspace spanned by {w1, w2} and
the projections (crosses) of the original observations on this subspace are illustrated in the
figure. We can observe that the original set of three-variate data can be well approximated
by the two-variate projections in the PC space, thanks to the strong correlations between
the variables x1 and x2.

The set of vectors {wk}1≤k≤q that minimizes (2.5) is obtained by setting to zero the
derivative of Jq(wk) with respect to wk. This gives [42]

Σwk = λkwk (2.6)
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Figure 2.11: Illustration of the transformation obtained by principal component analysis.
Circles denote the original observations while crosses denote their approximations obtained
by projecting the original data on the two-dimensional subspace {w1, w2} spanned by the
two first principal components.

where Σ = 1
N

∑N
i=1 x[i]x

T
[i] is the sample covariance matrix of the observations x[i]. These

vectors are therefore the first q eigenvectors {wk} of the sample covariance matrix Σ [42]. The
corresponding eigenvalues λk quantify the amount of variance conserved by the eigenvectors.
Indeed, left-multiplying Equation (2.6) by wTk gives

wTk Σwk = wTk λkwk. (2.7)

Since wTk wk = 1, wTk Σwk = wTk ( 1
N

∑N
i=1 x[i]x

T
[i])wk =

∑N
i=1 x̂

T
[i]x̂[i], and each eigenvalue λk

quantifies the variance of the projections of the observations x[i] on the corresponding k-th
eigenvector. The sum of the eigenvalues therefore equals the total variance of the original
set of observations X, i.e.,

n∑

k=1

λk =
1
N

N∑

i=1

||x[i]||2.

It is convenient to order the vectors wk by decreasing order of the eigenvalues, so that the
proportion P of retained variance by the first q principal components can be expressed by

P (q) =
∑q

k=1 λk∑n
k=1 λk

. (2.8)

Storing columnwise the set of vectors {wk}1≤k≤q in a Wn×q matrix, approximations x̂ to x
in Rn are obtained by

x̂ = WW Tx = Wz (2.9)
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where

z = W Tx =



∑n

j=1wj1xj
...∑n

j=1wjqxj


 =

n∑

j=1




wj1xj
...
wjqxj


 (2.10)

denotes the column vector of coordinates of x̂ in {wk}1≤k≤q, also referred to as the principal
component scores.

It is noteworthy that the set of vectors {wk}1≤k≤q which minimizes the mean squared
error in Equation (2.5) is also the set of vectors which maximizes the retained variance by
the approximations x̂[i] [42, 67]. This results from the fact hat setting to zero the derivative
of Equation (2.5) with respect to wk comes down to maximizing

J ′q(wk) = 1
N

∑N
i=1 ||

∑q
k=1wkw

T
k x[i]||2

= 1
N

∑N
i=1 ||x̂[i]||2

which is the variance of x̂[i]. Therefore, the PCA provides the linear transform which not
only minimizes the projection errors, but which also maximizes the retained variance.

2.2.5 Summary

This section covered the main supervised learning concepts and methods that will be used
throughout this thesis. An emphasis was put on the importance of the bias/variance tradeoff.
This tradeoff will be addressed at several occasions in the following chapters. In particular,
most of the discussions concerning the benefits of modeling data in WSN will be driven by
keeping this tradeoff in mind. This section also provided the reader with the basics of linear
modeling, which will be encountered fairly often in the rest of this thesis, thanks to their
low requirements in terms of computational and memory resources.
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Chapter 3

Learning in Wireless Sensor Networks
for Environmental Monitoring:
State of the Art

The primary interest of learning techniques in the field of sensor networks is to reduce the
amount of energy consumed by sensor nodes by reducing the amount of communication
in the network. The radio is indeed the most energy consuming component on a sensor
node, and sensor nodes are battery operated. Reducing the amount of communication is
therefore one of the main factors for extending the lifetime of the network, which is an
important requirement of environmental monitoring applications where sensor deployments
are expected to run for months or years.

Learning techniques in sensor networks are attractive for the two following reasons. First,
there usually exists a degree of redundancy in sensor network data. The redundancy stems
from the fact that geographically close sensors are likely to collect similar measurements,
and that measurements taken at two consecutive time instants are also likely to be simi-
lar. Learning allows to detect these redundancies, and to find mathematical models that
represent the variations in sensor data in a more compact way. Second, it is rarely nec-
essary to collect the exact measurements, and approximations can usually be tolerated by
the observer. The lower the accuracy, the more compact the learning model, and therefore
the higher the possible gains in communication. This makes possible the design of data
collection strategies which trade accuracy for energy.

This chapter presents a review of the approaches that have been investigated for reducing
the amount of communication in sensor networks by means of learning techniques. Section
3.1 gives the main definitions and notations, together with the metrics that will be used to
assess the efficiency of learning techniques in improving the performances of environmental
monitoring applications.

We classified the approaches based on learning in three groups, namely model-driven data
acquisition, replicated models, and aggregative approaches. In model-driven approaches, the
network is partitioned in two subsets, one of which is used to predict the measurements of
the other one. The subset selection process is carried out at the base station, together
with the computation of the models. Thanks to the centralization of the procedure, these
approaches provide opportunities to produce both spatial and temporal models. Model-
driven techniques can provide high energy savings as part of the network can remain in
an idle mode. Their efficiency in terms of accuracy is however tightly dependent on the
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adequacy of the model to the sensor data. We present these approaches in Section 3.2.
Replicated models encompass a set of approaches where identical prediction models are

run in the network and at the base station. The models are used at the base station to
get the measurements of sensor nodes, and in the network to check that the predictions of
the models are correct within some user defined ε. A key advantage of these techniques
is to guarantee that the approximations provided by the models are within a strict error
threshold ε of the true measurements. We review these techniques in Section 3.3.

Aggregation approaches allow to reduce the amount of communication by combining
data within the network, and provide to a certain extent a mixture of the characteristics
of model-driven and replicated models approaches. They rely on the ability of the network
routing structure to aggregate information of interest on the fly, as the data is routed to
the base station. As a result, the base station receives aggregated data that summarize in a
compact way information about sensor measurements. The way data is aggregated depends
on the model designed at the base station, and these approaches are therefore in this sense
model-driven. The resulting aggregates may however be communicated to all sensors in the
network, allowing them to check the approximations against their actual measurements, as
in replicated models approaches. We discuss aggregative approaches in Section 3.4.

3.1 Problem statement

The main application considered in this thesis is the periodic data collection, in which sensors
take measurements at regular time interval, and forward them to the base station [84]. Its
main purpose is to provide the end-user, or observer, with periodic measurements of the
whole sensor field. This task is particularly useful in environmental monitoring applications
where the aim is to follow both over space and time the evolution of physical phenomena
[84, 75].

Definitions and notations

The set of sensor nodes is denoted by S = {1, 2, ..., S}, where S is the number of nodes. The
location of sensor node i in space is represented by a vector of coordinates ci ∈ Rd, where d
is the dimension of the space, typically 2 or 3. Besides the sensors and the battery, a typical
sensor node is assumed to have a CPU of a few MHz, a memory of a few tens of kilobytes,
and a radio with a throughput of a few hundreds of kilobits per second (cf. Section 2.1.1).

The entity of interest that is being sensed is called the phenomenon. The vector of the
measurements taken in the sensor field at time t is denoted by s[t] = (s1[t], s2[t], . . . , sS [t]) ∈
RS . The variable s[t] may be univariate or multivariate. Whenever confusion is possible,
the notation si[t] is used to specify the sensor node concerned, with i ∈ S. The time domain
is the set of natural numbers T = N, and the unit of time is called an epoch, whose length
is the time interval between two measurements.

Most of the prediction models considered in this thesis will aim at approximating or
predicting sensor measurements. Denoting by ŝi[t] the approximation of si[t] at time t, the
prediction models will typically be of the form

hθ : X → R
x 7→ ŝi[t] = hθ(x)
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The input x will in most cases be composed of the sensor measurements, sensor coordinates
and/or time.

Example 3.1: In many cases, there exists spatiotemporal dependencies between sensor mea-
surements. A model may therefore be used to mathematically describe the relationship exist-
ing between one sensor and a set of other sensors. For example, a model

hθ : R2 → R
x = (sj [t], sk[t]) 7→ ŝi[t] = θ1sj [t] + θ2sk[t]

can be used to approximate the measurement of sensor i on the basis of a linear combination
of the measurements of sensors j and k, with i, j, k ∈ S, and the parameters θ = (θ1, θ2) ∈
R2. The use of such a model may allow to avoid collecting the measurement from sensor i
if the model is assumed to be sufficiently accurate.

Example 3.2: A model may aim at approximating the scalar field of the measurements.
The input domain is the space and time domains Rd × R, and the output domain is the set
of real numbers, representing an approximation of the physical quantity at one point of space
and time. For example, a linear combination of time and spatial coordinates ci ∈ R2 in a
2D space domain can be used to create the following model

hθ : (R2 × R) → R
x = (ci, t) 7→ ŝi[t] = xθT

where θ = (θ1, θ2, θ3) ∈ R3 are the weights of the linear combination which form the parame-
ter vector θ. If the weights are known or can be estimated on the basis of past data, the model
can be used to get approximated measurements of the sensors without actually collecting data
from the network. The model can moreover be used to predict the measurements at future
time instants, or at locations where sensors are not present.

We will assume that the data are retrieved from the network by means of a routing
tree such as in Figure 3.1. The observer specifies the sampling frequency at which the
measurements must be retrieved, using for example an aggregation service as described in
Section 2.1.4.

Network load and sensor lifetime

The purpose of prediction models is to trade data accuracy for communication costs. Predic-
tion models are estimated by learning techniques, which use past observations to represent
the relationships between measurements by means of parametric functions. The use of pre-
diction models allows to provide the observer with approximations ŝ[t] of the true set of
measurements s[t], and allows to reduce the amount of communication by either subsam-
pling or aggregating data.

Given that the radio activity is the main source of energy consumption, the reduction of
the use of the radio is the main way to extend the lifetime of a sensor network. In qualitative
terms, the lifetime is the time span from the deployment to the instant when the
network can no longer perform the task [82]. The lifetime is application specific. It
can be for example, the instant when a certain fraction of sensors die, loss of coverage occurs
(i.e., a certain portion of the desired area can no longer be monitored by any sensor) or loss
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of connectivity occurs (i.e., sensors can no longer communicate with the base station). For
periodic data collection, the lifetime can be more specifically defined as the number of data
collection rounds until α percent of sensors die, where α is specified by the system designer
[76]. This definition makes the lifetime independent of the sampling rate at which data are
collected from the network. Depending on α, the lifetime is therefore somewhere in between
the number of rounds until the first sensor runs out of energy and the number of rounds
until the last sensor runs out of energy.
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(a) First configuration.
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(b) Second configuration.

Figure 3.1: Network load sustained by each sensor node in a network of nine sensors, for
two different routing trees. The bar plot (left) gives the total number of packets processed
(receptions and transmissions) by each node in the network (right).

The communication costs related to the radio of a node i is quantified by the network
load Li, which is the sum of the number of received and transmitted packets
during an epoch. Denoting by Rxi and Txi the number of packet receptions and packet

44



transmissions for node i during the epoch of interest, we have

Li = Rxi + Txi.

A network packet is assumed to contain one piece of information. A sensor transmitting its
measurements and forwarding the measurement of another sensor therefore processes three
packets during an epoch, i.e., one reception and two transmissions.

Figure 3.1 illustrates how the network load is distributed among sensors during an epoch.
The network loads are reported for each sensor on the Left of Figure 3.1, for two different
routing trees built such that the number of hops between the sensor nodes and the base
station is minimized. Leaf nodes sustain the lowest load (only one transmission per epoch),
whereas the highest load is sustained in both cases by the root node (8 receptions and 9
transmissions, totalizing a network load of 17 packets per epoch).

In data collection, it is important to remark that the nodes that are likely to have the
lowest lifetime are the nodes close to the base station, as their radio activity is increased
by the forwarding of data. The lifetime of these nodes is therefore closely related to the
network lifetime, since once these nodes have run out of energy, the rest of network gets out
of communication range of the base station. A particular attention will therefore be given
in this thesis at the number of packets received and transmitted by the root node. More
generally, we will often aim at quantifying the upper bound

Lmax = max
i

Li (3.1)

of the distribution of the network loads in the network. Most of the methods and techniques
discussed in this thesis will aim at reducing this quantity, which will be referred to as
highest network load. In order to consider the effects of collisions, interference or radio
malfunctioning, we will use orders of magnitudes instead of precise counting of the packets.
Without the use of learning strategies, the order of magnitude of the highest network load
is in

Lmax ∼ O(S)

where S is the number of nodes.

Data accuracy

The quantification of the error implied by a prediction model is an important practical issue,
as in many cases the observer needs to know how far the predictions obtained at the base
station are from the true measurements. Three levels of accuracy will be encountered in the
thesis.

First, probabilistic bounded approximation errors will refer to approximations where

P (|si[t]− ŝi[t]| > ε) = 1− δ, ∀i ∈ S, t ∈ T (3.2)

which guarantees that, with probability 1− δ, approximations do not differ by more than ε
from the true measurements. The observer can set the error threshold ε and the probability
guarantee δ.

Second, bounded approximation errors will refer to approximations where

|si[t]− ŝi[t]| < ε, ∀i ∈ S, t ∈ T (3.3)
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which ensures the observer that all approximations ŝi obtained at the base station are
within ±ε of the true measurement si[t]. This level of accuracy is the highest, as it allows
the observer to precisely define the tolerated error threshold.

Finally, unbounded errors will refer to modeling schemes where there is no bound between
the approximations ŝi[t] obtained at the base station and the true measurement si[t] taken
by sensor i.

3.2 Model-driven acquisition

In model-driven data acquisition [19, 20], a model of the sensor measurements is estimated
at the base station, and used to optimize the acquisition of sensor readings. The rationale
of the approach is to acquire data from sensors only if the model is not sufficiently rich
to provide the observer with the requested information. An overview of the approach is
presented in Figure 3.2. In a first stage, measurements are collected over N epochs from
the whole network at the base station, and stored in a matrix X of dimension N ×S, where
column j contains the measurements from sensor j over the N epochs, and row i contains
the measurements from the whole network during the i-th epoch. The data set X is then
used to estimate a model able to answer the users’ queries without collecting data from the
whole network. More precisely, the model-driven system aims at finding a subset of sensors
Sq ⊆ S from which the measurements of the other sensors Sp = S \ Sq can be predicted.
The subscript p and q refer to the queried and predicted subsets. Once the subsets Sq and
Sp have been identified, measurements are only collected from the sensors in Sq.
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Figure 3.2: Model-driven approach: the learning process takes place at the base station. It
aims at finding a subset of sensors from which the measurements of the other sensors can
be predicted.

In practice: Model-driven approaches are particularly appropriate for scenarios where
groups of sensor nodes have correlated measurements. One node of the group sends its
measurements to the base station, which uses them to predict the measurements of other
nodes in the group. Thanks to the fact that the base station has a global view of the
measurements collected, model-driven approaches allow to detect correlation between sensor
nodes that may be far away in the network. A priori information on the periodicity or
stationarity of the measurements can be used to determine how many observations N should
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be collected before using the model. For example, a network collecting outdoor temperature
measurements is likely to exhibit diurnal patterns. If the patterns are consistent over days,
observations can be taken over a one day period and used to model the measurements of
the following days.

Optimization problem

The model used at the base station aims at predicting a vector of measurements ŝp[t] for
sensors in Sp with a prediction model

hθ : R|Sq | → R|Sp|

sq[t] 7→ ŝp[t] (3.4)

where the input ŝq[t] is the vector of measurements collected from sensors in Sq at time
t, and θ is a vector of parameters. The model-driven approach allows to trade energy for
accuracy by carefully choosing the subsets |Sq| and |Sp|.

Costs: The cost associated to the query of a subset of sensors Sq is denoted C(Sq), and
aims at quantifying the energy required to collect the measurements from C(Sq). The cost is
divided into acquisition and transmission costs in [19, 20]. Acquisition refers to the energy
required to collect a measurement, and transmission to the energy required for sending the
measurement to the base station. The transmission costs are in practice difficult to estimate,
because of multi-hop routing and packet loss issues. A simple and qualitative metric is to
define the cost as the number of sensors in Sq.

Accuracy: Let spi [t] and ŝpi [t] be the true measurement and the prediction for the i-th
sensor in Sp at time t. The accuracy associated to ŝpi is denoted R(Spi), and the accuracy
associated to the vector of prediction ŝp is denoted R(Sp). Different choices are possible to
define how accuracy is quantified. In [19, 20], authors suggest using

R(Spi) = P (spi [t] ∈ [ŝpi [t]− ε, ŝpi [t] + ε]) (3.5)

where i ∈ Sp and ε is a user-defined error threshold. This accuracy metric quantifies the
probability that the true measurement spi [t] is within ±ε of the prediction spi [t]. The overall
accuracy of the vector of prediction ŝp[t] is defined as the minimum of ŝpi [t], i.e.,

R(Sp) = min
i
R(Spi). (3.6)

Optimization loop: The goal of the optimization problem is to find the subset Sq that

1. minimizes C(Sq),

2. such that R(Sp) > 1− δ

where δ is a user-defined confidence level. An exhaustive search among the set of partitions
{Sq,Sp} can be computationally expensive. There exists 2S combinations for the set of
predicted sensors, and S can be large. In order to speed up this process, an incremental
search procedure similar to the forward selection algorithm (Section 2.2.4) can be used. The
search is initialized with an empty set of sensors Sq = ∅. At each iteration, for each i ∈ Sp,
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the costs C(Sq ∪ i) and accuracy R(Sp \ i) are computed. If one sensor i can be found such
that R(Sp \ i) > 1− δ, the procedure returns Sq ∪ i as the set of sensors to query and Sp \ i
as the set of sensors to predict. Otherwise, the sensor node that provided the best tradeoff
is added to the subset Sq and removed from Sp. The best sensor node is the node that
maximizes the ratio R(Sp\i)

C(Sq∪i) [19, 20].

Multivariate Gaussians

Different learning procedure can be used to compute the model hθ in (3.4). Authors in [19,
20] suggest the use of a multivariate Gaussian to represent the set of measurements, which
allows to compute predictions and confidence bounds using computationally efficient matrix
products. Denoting by s = (s1, s2, . . . , sS) ∈ RS the random vector of the measurements,
where the i-th value represents the measurement of the i-th sensor, the Gaussian probability
density function (pdf) of s is expressed as (cf. Appendix A)

p(s = s) =
1√

(2π)S |Σ|
exp(− 1

2
(s−µ)T Σ−1(s−µ))

where µ and Σ are the mean and covariance matrix of the random vector s (Figure 3.2).
Figure 3.3 illustrates a Gaussian over two correlated variables s1 and s2. For a Gaussian, the
mean is the point at the center of the distribution, and the covariance matrix Σ characterizes
the spread of the distribution. More precisely, the i-th element along the diagonal of Σ,
σ(i,i), is the variance of the i-th variable, and off-diagonal elements σ(i,j) characterize the
covariances between the pairs (i, j) of variables. A high covariance between two variables
means that their measurements are correlated, such as variables s1 and s2 in Figure 3.3.

s1

s2

s1[t]

ŝ2[t] = µs2|s1[t]

µ1

µ2

Figure 3.3: Gaussian model of two correlated variables. Knowledge of the outcome of s1

allows to better estimate the outcome of s2 thanks to conditioning.

When sensor measurements are correlated, information on some measurements constrains
the values of other measurements to narrow probability bands. Let sq[t] ∈ Sq and sp[t] ∈ Sp
be the vectors of measurements of sensors in Sq and Sp at time t, with Sp = S \ Sq. The
Gaussian pdf

p(sp|sq[t]) =
1√

(2π)|Sp||Σ|
exp

“
− 1

2
(sp−µp|q)T Σ−1

p|q(sp−µp|q)
”
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of the random variable sp can be computed using the mean µ and covariance matrix Σ of
the model p(s). This computation, called conditioning, gives [68]

µp|q = µp + ΣpqΣ−1
qq (sq[t]− µq)

Σp|q = Σpp − ΣpqΣqqΣqp.

where Σpq denotes the matrix formed by selecting the rows Sp and the columns Sq from the
matrix Σ. After conditioning, the best approximations ŝp[t] to sensors in Sp are given by
the mean vector

ŝp[t] = µp|q (3.7)

The probability
P (si[t] ∈ [ŝi[t]− ε, ŝi[t] + ε]) (3.8)

depends on the variance of the measurements of the sensors in Sp after the conditioning.
These variances are actually known as they are the diagonal elements of the covariance
matrix Σp|q, and allow to estimate the quantity (3.8) by referring to a student’s t table [53].

Discussion

With model driven data acquisition, the communication savings are obtained by reducing
the number of sensors involved in the data collection task. These approaches can provide
important communication and energy savings, by leaving the set of sensors in Sp in an
idle mode. For continuous queries however, the constant solicitation of the same subset of
sensors leads to an unequal energy consumption among nodes. This issue can be addressed
by recomputing from time to time the subset of sensors Sp in such a way that sensors whose
remaining energy is high are favored.

In terms of communication savings, the network load is reduced by a factor that depends
on the ratio of the total number of sensors over the number of queried sensors. The highest
load is in

Lmax ∼ O(|Sq|)
and is sustained by the root node of the tree connecting the sensors in Sq. The main issue
of the model-driven approach probably lies in the assumption that the model is correct,
which is a necessary condition for the scheme to be of interest in practice. The model
parameters µ and Σ must be estimated from data, and any changes in the data distribution
will lead to unbounded errors. Also, the presence of outliers in the queried measurements
may potentially strongly affect the quality of the predictions. Model-driven data acquisition
therefore allows potentially high communication savings, but is little robust to unexpected
measurement variations and non-stationary signals.

3.3 Replicated models

Replicated models (RM) form a large class of approaches allowing sensor nodes to remove
temporal or spatial redundancies between sensor measurements in order to decrease the
network load. They were introduced in the field of sensor networks by Olston in 2001
[72]. Their rationale consists in having identical prediction models running both within the
network and at the base station. Other names have been given to this approach in the
literature, such as approximate caching [72], dual Kalman filters [40], replicated dynamic
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probabilistic models [15], dual prediction scheme [79] or model-aided approach [94]. We will
adopt here the replicated models denomination since it is the one which better expresses in
our sense the common rationale of these approaches.
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Figure 3.4: Replicated models: Only the models are communicated to the base station. As
long as the model is correct, no communication is necessary.

Figure 3.4 gives an illustration of the replicated model approach. Four models hi are used
to predict the sensor measurements, one for each sensor i. The base station and the sensors
use the same models. At the base station, the model is used to predict the measurements.
On the sensor nodes, the model is used to compute the same prediction as the base station,
and to compare it with the true measurement. If the prediction is more than a user-defined ε
away from the true measurement, a new model is communicated. RM approaches therefore
guarantee the observer with bounded approximation errors. Replicated models may be used
to predict measurement both over the temporal and spatial domains. We first cover the
approaches where models only take into account temporal variations, and then present the
strategies that have been investigated to extend RM to the modeling of spatial variations.

In practice: In many environmental monitoring applications, the observer can tolerate
approximations for the collected measurements. For example, in plant growth studies, ecol-
ogists reported that it is sufficient to have accuracy of ±0.5◦C and 2% for temperature
and humidity measurements, respectively [20]. Replicated models provide an appropriate
mechanism to deal with these scenarios.

Temporal modeling

Temporal modeling with RM is the simplest approach, as sensors independently produce
prediction models for their own measurements [72, 40, 79]. Models are of the kind

ŝi[t] = hi(x, θ)

where x is a vector of inputs that consists, for example, in the past measurements of sensor
i, and θ is a vector of parameters. There is one model for each sensor node i, whose task
is to produce predictions for the upcoming measurements of the sensor node. Once such a
model is produced, it is communicated to the base station, which uses it to infer the actual
measurements taken by sensor i.

Sensor nodes use their own copy of the model to compare the model predictions with
the sensor measurements. The model is assumed to be correct as long as the predicted and
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the true measurements do not differ by more than a user defined error threshold ε, i.e.,

|si[t]− ŝi[t]| < ε.

Once the prediction is more than ε away from the true measurement, an update is sent to
the base station to notify that the error threshold is not satisfied. The update may consist of
the measurement, or of the parameters of a new model built on the basis of the more recent
measurements. This way, replicated models guarantee the observer that all measurements
provided at the base station within ±ε of the true measurements.

Replicated models allow to reduce communication since, as long as the model predictions
are within ±ε of the true measurement, no updates occur between the sensor nodes and the
base station. The inputs of the model, if they depend on the sensor measurements, are
inferred by the base station using the measurements predicted by the model. The sensor
nodes also use past predicted measurements as inputs to their models. This way, the sensor
nodes and the base station apply exactly the same procedure. Sensor measurements are sent
only when a model update is needed.

Algorithm 3 RM - Replicated model algorithm.

Input:
ε: Error threshold.
h: Model.

Output:
Packets containing model updates sent to the base station (BS).

1: t← 1
2: θ[t]← init(h)
3: θlast ← θ[t]
4: sendNewModel(h, θlast) to BS
5: while True do
6: t← t+ 1
7: s[t]← getNewReading()
8: ŝ[t]← getPrediction(h, θlast)
9: θ[t]← update(h, θ[t− 1], s[t])

10: if |ŝ[t]− s[t]| > ε then
11: θlast ← θ[t]
12: sendNewModel(h, θlast) to BS
13: end if
14: end while

The pseudocode for running replicated models on a sensor node is given by Algorithm
3. The subscript i is dropped for the sake of clarity. On the base station, the scheme simply
consists in using the most recently received model to infer the sensor’s measurements. Four
types of techniques have been proposed to run temporal RM [72, 47, 41, 87, 79], that are
presented in detail in the following. The following summary gives an overview of their
differences:

• Constant model [72, 47]: The most simple model, nonetheless often efficient. It does
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not rely on any learning procedure, and as result cannot represent complex variations.

• Kalman filter [41]: The technique provides a way to filter the noise in the measure-
ments.

• Autoregressive model [87]: It allows to predict more complex variations than the
constant model, but requires a learning stage.

• Least mean square filter [79]: The filter is based on an autoregressive model which
adapts its coefficients over time.

Constant model: In [72, 47], RM are implemented with constant prediction models

ŝi[t] = si[t− 1].

Although simple, the constant model is well suited for slowly varying time series. Also, it
has the advantage of not depending on any parameters. This keeps the size of an update
to a minimum, which consists only in the new measurement si[t]. This makes the constant
model bound to reduce the communication between the sensor and the base station. Figure
3.5 illustrates how a constant model represents a temperature time series. The time series
was obtained from the Solbosch Greenhouse on the 16th of August, 2006. Data were taken
every 5 minutes, for a one day period, giving a set of 288 measurements. The measurements
are reported with the red dashed lines, and the approximations obtained by a constant
model with an error threshold of ε = 1◦C are reported with the black solid line. Updates
are marked with black dots at the bottom of the figure. Using RM the constant model
allows to reduce to 43 the number of measurements transmitted, resulting in about 85% of
communication savings.

Kalman filter: In [41], authors suggested to use Kalman filters as a generic approach
to modeling sensor measurements for replicated models. A Kalman filter is a stochastic,
recursive data filtering algorithm introduced in 1960 by R.E. Kalman [43]. It can be used
to estimate the dynamic state of a system at a given time t by using noisy measurements
issued at time t0 : t− 1.

The main goal of a Kalman filter is to provide good estimations of the internal state
of a system by using a priori information on the dynamic of the system and on the noise
affecting the measurements. The system model is represented in the form of the following
equations

x[t] = Fx[t− 1] + νp[t] (3.9)

s[t] = Hx[t− 1] + νm[t] (3.10)

where x[t] is the internal state of the process monitored, which is unknown, and s[t] is the
measurement obtained by a sensor at time instant t. The matrix F is the state transition
matrix, which relates the system states between two consecutive time instants. The matrix
H relates the system state to the observed measurement. Finally, νp[t] and νm[t] are the
process noise and measurement noise, respectively.

The state of the system is estimated in two stages. First, a prediction/estimation stage
is used to propagate the internal state of the system by means of Equation (3.10). Second, a
correction stage fine-tunes the prediction step by incorporating the actual measurement, in
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Figure 3.5: A constant model acting on a temperature time series from the Solbosch green-
house (16th of August 2006), with a constant model and an error threshold set to ε = 1◦C

such a way that the error covariance matrix between the measurements and the predictions
is minimized. Eventually, a prediction ŝ[t] is obtained, expected to be closer to the true
state of the system than the actual measurement s[t]. We do not go in the details of the
mathematical steps (which can be found in [41]), as the approach raises the main following
issue.

The purpose of Kalman Filters is to filter the noise in a signal, in order to get the
best possible estimate, in a mean square sense, of the state of the underlying process of
the measurements. The goal of replicated models is however not stated in terms of noise
reduction, but in terms of ε approximation to the measurements. Therefore, KFs do not
quite fit the problem considered.

Autoregressive models: In [87], authors suggest the use of autoregressive models, a well
known family of models in time series prediction [14, 11]. An autoregressive model is a
function of the form

ŝ[t] = θ1s[t− 1] + θ2s[t− 2] + . . .+ θps[t− p] (3.11)
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that aims at predicting the measurement at time t by means of a linear combination of the
measurements collected at the previous p time instants. The vector of parameters has p
elements θ = (θ1, θ2, . . . , θp)T , and p is called the order of the model. Using the notations
x[t] = (s[t − 1], s[t − 2], . . . , s[t − p])T to denote the vector of inputs of the model at time
instant k, the relationship can be written as

ŝ[t] = x[t]T θ. (3.12)

The estimation of the vector of parameters θ is obtained by first collecting N measurements,
and by applying the standard procedure of regression θ (cf. Section 2.2.3) on the sensor node.
The set of parameters is then communicated to the sink, and used until the prediction error
becomes higher than the user predefined threshold ε. A new model is then sent to the base
station. Authors in [87] also considered the fact that a measurement not correctly predicted
by the model may be an outlier, and suggested to use statistical tests to determine wether
or not to send an update.

Least Mean Square filter: In [79], authors argue that the adaptive filter theory [4]
offers an alternative solution for performing predictions, without requiring a priori informa-
tion about the statistical properties of the phenomenon of interest. Among the variety of
techniques, they chose the Least Mean Square (LMS) algorithm, arguing that it is known
to provide good performances in a wide spectrum of applications. As in Equation (3.12),
the LMS is an autoregressive filter, where the output is a linear combination of previous
measurements ŝ[t] = x[t]T θ[t]. In contrast to the proposed approach by [87], the vector of
parameters θ[t] is updated over time as new measurements are taken. The LMS theory gives
the following set of three equations for updating the parameters:

ŝ[t] = x[t]T θ[t]
e[t] = s[t]− ŝ[t]

θ[t+ 1] = θ[t] + µx[t]T e[t].

where e[t] is the error made by the filter at epoch t, and µ is a parameter called the step
size, which regulates the speed of convergence of the filter. The choice of the order p of the
filter and of the step size µ are the only parameters that must be defined a priori. Authors
of [79] suggested on the basis of their experiments that orders from 4 to 10 provided good
results. Concerning the choice for the parameter µ, they suggest to estimate it by setting
µ = 10−2 1

E where E = 1
T

∑T
t=1 |s[t]|2 is the mean input power of the signal.

Spatial modeling

Two different approaches were investigated to model spatial dependencies with replicated
models. In [80], replicated models are used on each edge of a routing tree that connects the
nodes to the base station (edge monitoring). In [15], the network is partitioned in groups of
nodes, with one model for each group (clique models).

Edge monitoring: In this approach [80], it is assumed that nodes are connected to the
base station by means of a routing tree. As with temporal modeling, there is one model hi
for each sensor i. Additionally, there is also one model for each edge connecting neighboring
nodes in the routing tree. More specifically, assuming that there is an edge connecting node
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i to j, a model hj−i is also produced by node j to represent the difference in value between
the measurement sj [t] and the approximation ŝi[t]. Denoting by ∆j−i[t] = sj [t] − ŝi[t] this
difference, the model has the form

∆̂j−i[t] = hj−i(x, θ)

where x is a vector of inputs that consists for example in the past difference between mea-
surements of sensor i and j, and θ is a vector of parameters. The most simple model is the
constant model, which was the only one considered in [80], and which is defined by

∆̂j−i[t] = ∆j−i[t− 1].

Note that more complex models such as autoregressive models could also be used.
As in temporal modeling, each sensor node i has its own model hi, which is updated

when the prediction is above the user-defined error threshold ε. The copy of the model is
however not maintained by the base station, but by the parent node in the routing tree.
Each node j that has children maintains a model hj−i for each of its children i. A copy
of these models is maintained by the base station. A second user defined error threshold
ε∆ is used to determine when to update these models. The way models are distributed in
a network is illustrated in Figure 3.6, for a network of four nodes and a routing tree of
depth three. Models produced by nodes are listed above each node, and models used to get
predictions are listed below each nodes.
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Figure 3.6: Replicated models with edge monitoring: the models hi are used to infer sensor
measurements, while models hj−i are used to monitor the differences between the measure-
ments of two adjacent nodes.

The measurement of a node i is obtained by the base station by summing the prediction
for the root node measurement, and the predictions for the differences between all pairs of
nodes that separate node i from the base station. For example, in the network illustrated
in Figure 3.6, a prediction for sensor 4 is obtained by summing

ŝ4[t] = ŝ1[t] + ∆̂1−2[t] + ∆̂2−4[t]

Since ∆j−i[t] = sj [t]− ŝi[t], and that the RM scheme ensures |ŝi[t]−si[t]| < ε, that |∆̂j−i[t]−
∆j−i[t]| < ε∆, it follows that

• a prediction for the root node can be obtained with an accuracy ±ε
• a prediction for a node l hops away from the root node can be obtained with an

accuracy of ±(ε+ l(ε+ ε∆)).
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The accuracy therefore depends on the depth of a node in the routing tree, and lower ε
values must therefore be used to achieve the same accuracy as in temporal modeling.

Clique models: The rationale of clique models, investigated in [15], is to partition the
network into groups of sensors, called cliques, with one replicated model for each clique. Note
that the term clique here refers to group of nodes, and is not related to the notion of clique
in graph theory. The measurements of sensors in a clique are gathered at a common sensor
node, called clique root. The clique root may not be part of the clique. Let {Sk}1≤k≤K
be a partitioning of S in K cliques, i.e., a set of K cliques such that S = ∪1≤k≤KSk. Let
irootk ∈ Sk be the sensor node that takes the role of the root of clique k.

The measurements of the set of sensors i ∈ Sk are gathered at the clique root irootk , where
data is modeled by a model hk(x, θ). Inputs x may take values in the set of measurements
of the sensors in the clique. The clique root then transmits to the sink the minimal subset
of parameters/data such that the measurements si[t] and model counterpart ŝi[t] do not
differ more by than ε. An illustration of a clique partition is given in Figure 3.7. Note that
updating the model may require a clique root to rely on multi-hop routing. For example,
sensor node 3 may not be in communication range of the base station, and may require some
nodes of S2 to relay its data.
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h1
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Figure 3.7: Clique models: the network is here partitioned in two cliques S1 = {4, 5, 6} and
S2 = {1, 2, 3}, with replicated models h1 and h2 for each clique. The clique root of S1 is
sensor node 3 and the clique root of S2 is sensor node 1.

The choice of the model and the partitioning of cliques are clearly central pieces of the
system. Inspired by the work of [19] concerning model-driven data acquisition, authors in
[15] suggest to use gaussian models. The clique root collects data from all the sensors in
the clique for N epochs, compute the mean vector and covariance matrix, and communicate
these data to the base station. Then, at every epoch, the clique root determines what
measurements must be sent so that the base station can infer the missing measurements
with a user defined ε error threshold.

The goal of the approach is to reduce the communication costs. These are divided into
intra-source and source-base station costs. The former is the cost incurred in the process
of collecting data by the clique root to check if the predictions are correct. The latter is
the cost incurred while sending the set of measurements to the sink. Authors show that the
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problem of finding optimal cliques is NP-hard, and propose the use of a centralized greedy
algorithm to solve the problem. The heuristic starts by considering a set of S cliques, i.e.,
one for each sensor, and then assesses the reduction of communication obtained by fusing
all combinations of cliques. The algorithm stops once fusion leads to higher communication
costs.

Discussion

Replicated models have a high potential in reducing communications, and their main advan-
tage is to guarantee bounded approximation errors. Temporal modeling is easy to implement,
and the different proposed approaches do not require much computation, which makes them
suitable for the limited computational resources of sensor nodes. In terms of communica-
tions savings, the network load of sensors is reduced by a factor proportional to the number
of updates required to maintain synchronized the models between the sensors and the base
station. The highest network load is sustained by the base station, and depends on the
number of updates sent during an epoch. If all the sensor measurements can be predicted,
then no update is sent and the load is therefore null for all sensors. At the other extreme, if
all sensor nodes send an update, the load distribution is similar to that of collecting all the
measurements. Therefore, replicated models give

Lmax ∼ O(S).

The modeling of spatial dependencies is attractive as spatial correlations are very often
observed in sensor network data. Also, it is likely that temporal models all have to update
their parameters at about the same time, i.e., when an unexpected event occurs in the
environment for example. The modeling of spatial dependencies however raises a number
of concerns. In the edge monitoring approach, the error tolerance ε must be reduced in
order to provide the same accuracy guarantee as in temporal modeling approaches [80]. In
clique models, the partitioning of the network is a computationally intensive task that, even
if undertaken by the base station, raises scalability issues [15]. In terms of communication
savings, the network load of sensors is reduced, as for temporal modeling, by a factor that
depends on the average number of updates. The savings can however be much higher,
particularly, in situations where all measurements increase by the same amount for example.

An issue common to all the approaches based on replicated models is packet losses.
In absence of notification from a sensor node, the base station deems the prediction given
by the shared model to fall within the ε error tolerance. Additional checking procedures
must therefore be considered for this scheme to be completely reliable. To that end, a
"watchdog" regularly checking the sensor activity and the number of sent packets can be
set up, as discussed in [79] for example. By keeping the recent history of sent updates in
the sensor node memory, these can be communicated to the sink at checking intervals if the
number of sent packets differ from the number of received packets. Node failure is detected
by absence of acknowledgment from the sensor node to the watchdog request. Finally, the
choice of the model is also an important factor in the efficiency of RM. This issue will be
the subject of Chapter 4.
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3.4 Aggregative approaches

Aggregative approaches are based on aggregation services such as TAG, presented in Section
2.1.4. Data aggregation services allow to aggregate sensor data in a time- and energy-efficient
manner, by synchronizing the activities of the sensor nodes as a function of their depth in the
routing tree. Besides reducing the sensor nodes’ energy consumption, aggregation services
also allow to combine data as they flow to the base station.

Using the terminology of [56, 58], an aggregate of data is called a partial state record and
is denoted by 〈.〉. It can be any data structure, such as a scalar, a vector or a matrix for
example. Partial state records are initialized locally on all nodes, and then communicated
and merged in the network. When the partial state record is eventually delivered by the
root node to the base station, its elements may be recombined in order to provide the
observer with the final output. Methods based on aggregation require the definition of three
primitives [56, 58]:

• an initializer init which creates a partial state record,

• an aggregation operator f which merges partial state records, and

• an evaluator e which returns, on the basis of the partial state record finally delivered
to the base station, the result required by the application.

The partial state records are merged from the leaf nodes to the root, along a synchronized
routing tree such as presented in Section 2.1.4.

In practice: Aggregation services were first shown [56, 58] to be able to compute simple
operations like the minimum, the maximum, the sum or the average of a set of measurements.
For example, for computing the sum, the following primitives can be used:





init(si[t]) = 〈si[t]〉
f(〈S1〉, 〈S2〉) = 〈S1 + S2〉

e(〈S〉) = S.

Measurements are simply added as they are forwarded along the routing tree. The resulting
aggregate obtained at the base station is the overall sum of the measurements. The main
advantage of aggregation is that the result of an operator is computed without collecting
all the measurements at the base station. This can considerably reduce the amount of
communication.

In data modeling, aggregation services can be used to compute the parameters of models.
For example, let us consider a sensor network monitoring the temperature in a room where
an air conditioning system is set at 20◦C. Most of the time, the temperature measurements
of sensor nodes are similar, and can be approximated by their average measurements. The
average model [38, 56, 15] was one of the first proposed, as its implementation is fairly
straightforward. The interest of such a model can be to detect, for example, when a window
or a door is opened. To do so, the average of the measurements is first computed by means of
an aggregation service and retrieved at the base station. The result is then transmitted back
to the sensor nodes, which can compare their measurements with average measurement. If
the difference is higher than some user-defined threshold, a sensor node can notify the base
station that its local measurement is not in agreement with the average measurement.
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In [30], authors showed that the coefficient of a linear model can be computed using
aggregation services. Their approach, called distributed regression, allows to use more com-
plex models for representing sensor measurements as a function of spatial coordinates. The
average model is first presented in the following, and is followed by the presentation of the
distributed regression algorithm.

Average model

The average model is a simple model that well illustrates the rationale of aggregation. It
consists in modeling all the sensor measurements by their average value, i.e.

ŝi[t] = µ[t]

where µ[t] =
PS

i=1 si[t]
S is the average of all the sensor measurements at epoch t [38, 56, 15].

The average is obtained by the following primitives:




init(si[t]) = 〈1, si[t]〉
f(〈C1, S1〉, 〈C2, S2〉) = 〈C1 + C2, S1 + S2〉

e(〈C, S〉) = S
C .

The partial states record 〈C, S〉 is a vector of two elements, consisting of the count and
the sum of sensor measurements. The aggregation process is illustrated in Figure 3.8. This
way, only two pieces of data are transmitted by all sensor nodes. The main advantage of
aggregation is that all nodes send exactly the same amount of data, which is independent
of the number of sensors. It therefore provides a scalable way to extract information from a
network. Also, it may dramatically decrease the highest network load, typically sustained by
the root node. In the network of nine sensors represented in Figure 3.8, the transmission of
all measurements to the base station would cause the root node to send nine measurements
at every epoch. This number is reduced to two thanks to the aggregation process.

Once obtained at the base station, aggregates can be transmitted from the base station
to sensor nodes [30]. This allows sensor nodes to compare their measurement to the average
measurement, and to provide the base station with their measurement if

|si[t]− µ| > ε

where ε is a user defined error threshold.
This is illustrated in Figure 3.9, where nodes 1 and 8 actually send their true measure-

ment after receving the feedback µ[t] from the base station. Such a strategy allows to bound
the approximation errors of the average model. It however implies additional communica-
tion rounds between the base station and the sensor nodes, which is intuitively expensive in
terms of communication.

Distributed regression

Similarly to the average model, an aggregative approach can be used to compute the regres-
sion coefficients of a linear model. The approach was investigated by Guestrin et al. in [30],
who relied on basis functions to approximate sensor network measurements (cf. 2.2.3). The
basis functions may be defined over space and time, allowing in some cases to compactly
represent the overall spatiotemporal variations by a small set of coefficients.
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of the
measurements taken by sensors at epoch t.

More precisely, let H = {π1, . . . , πp} be a set of p basis functions which are used to
represent the sensor measurements. This set must be defined by the observer, prior to
running the algorithm. The inputs of these basis functions can be functions of the time t or
of the sensor coordinates c = (c1, c2, c3) (assuming 3D coordinates) for example. Let p be
the overall number of basis functions and let θj be the coefficient of the j-th basis function.
The approximation to a sensor measurement at time t and location c is given by:

ŝ(c, t) =
p∑

j=1

θjπj(c, t)

Example: A quadratic regression model over time ŝ(c, t) = θ1t+ θ2t
2 is defined by two basis

functions π1(c, t) = t and π2(c, t) = t2. The addition of π3(c, t) = c1 and π4(c, t) = c2 gives
a model that captures correlations over space. An intercept can be added with π5(c, t) = 1.

Using the notations defined before, we have a model h which represents the overall variations
in the sensor field by

hθ : Rp → R

x 7→ ŝ(c, t) =
p∑

j=1

θjπj(c, t)

where the inputs x = (π1(c, t), . . . , πp(c, t)) are functions of time and coordinates, and
the parameters θ = (θ1, . . . , θp) are the coefficients of the linear model. Approximations
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locally |si[t]− µ[t]|, and to send their true measurement si[t] is the difference |si[t]− µ[t]| is
higher than a user defined error threshold ε. In this example, sensors 1 and 8 update their
measurements.

ŝi[t] for sensor i are given by specifying the coordinates ci of sensor in the model, i.e.,
ŝi[t] =

∑p
j=1 θjπj(ci, t). An interesting feature of this model is that it not only provides ap-

proximations to sensor measurements, but also allows to provide predictions for all locations
in the field.

Assuming that Ni measurements si[t] have been taken at locations ci for Ni epochs t,
and let N =

∑S
i=1Ni be the overall number of measurements taken by sensor nodes. The

coefficients θj can be identified by minimizing the mean squared error between the actual
and approximated measurements (standard linear regression procedure, cf. Section 2.2.3).
Let Y be the N × 1 matrix that contains these measurements, and let θ be the column
vector of length p which contains the coefficients θj . Finally, let X be the N × p matrix
whose columns contain the values of the basis functions for each observation in Y . Using
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this notation, the optimization problem can be stated as

θ∗ = arg min
θ
||Xθ − Y ||2

which is the standard optimization problem in regression (cf. Section 2.2.3). The optimal
coefficients are found by setting the gradient of this quadratic objective function to zero,
which implies

(XTX)θ∗ = XTY. (3.13)

Let A = XTX and b = XTY . A is referred to as the scalar product matrix, and b as
the projected measurement vector. In distributed regression, the measurements si[t] do not
need to be transmitted to the base station. Instead, the matrix A and vector b are computed
by the aggregation service. Once aggregated, the coefficients θ can be computed at the base
station by solving Equation 3.13.

Let Xi be the Ni×p matrix containing the values of the basis functions for sensor i, and
let Yi be the Ni× 1 matrix that contains the measurements taken by sensor i. Both Xi and
Yi are available at sensor i, which can therefore compute locally Ai = XT

i Xi and bi = XT
i Yi.

The matrix A and the vector b are actually sums of Ai = XT
i Xi and bi = XT

i Yi. Using
this fact, A and b can be computed by an aggregation service by merging along the routing
tree the contributions Ai and bi of each sensor.

Indeed, assuming S sensors, each of which collects a measurement si[t], we have

aj,j′ =
S∑

i=1

πj(ci, t)πj′(ci, t) (3.14)

where aj,j′ if the entry at the j-th row, j′-th column of the scalar product matrix A. Similarly,
we have

bj =
S∑

i=1

πj(ci, t)si[t] (3.15)

where bj if the j-th element of the projected measurement vector. All the elements aj,j′ and
bj can be computed by means of an aggregation service, using the following primitives:

• For elements aj,j′ :




init(i) = 〈πj(ci, t)πj′(ci, t)〉
f(〈S1〉, 〈S2〉) = 〈S1 + S2〉

e(〈S〉) = S

• For elements bj : 



init(i) = 〈π′j(ci, t)si[t]〉
f(〈S1〉, 〈S2〉) = 〈S1 + S2〉

e(〈S〉) = S

The computation of the matrix A requires the aggregation of p2 elements, while the
aggregation of the vector b requires the aggregation of p elements. Once all the elements are
retrieved at the base station, the set of coefficients θ can be computed by solving the system

Aθ = b.
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The resulting model allows to get approximations to sensor measurements. Depending on
the model, approximations may also be obtained for other spatial coordinates or at future
time instants (cf. example above). As with the average model, the parameters θ may
be communicated to all nodes, allowing each sensor to locally compute the approximation
obtained at the base station. This makes it possible to check that approximations are within
an error threshold ε defined by the observer. All sensors whose approximations differ by more
than ±ε may notify their true measurements to the base station.

Discussion

The main advantage of aggregative approaches is that they allow to represent the variations
of sensor measurements by means of models whose number of coefficients is independent of
the number of sensor nodes in the network. This makes these approaches scalable to large
networks. Furthermore, they allow to evenly distribute the number of radio transmissions
among sensor nodes. Compared to model-driven and replicated models approaches, the
network load of leaf nodes is increased, whereas the load of nodes close to the base station
is reduced. Considering that the highest network load primarily determines the network
lifetime, aggregative approaches are particularly attractive for reducing the load of sensor
nodes close to the base station.

The highest network load depends on whether bounded approximation errors are re-
quired. Retrieving the model coefficients causes a highest network load of

Lmax ∼ O(p2)

where p is the number of parameters of the model. If bounded approximation errors are
required, the p coefficients must be communicated to all nodes, causing p transmissions.
Depending on the number of sensors for which approximations are more than ε away from
their true measurements, an additional number of updates of up to S may be sent. Denot-
ing by Lcheck

max the highest network load when approximations are checked against the true
measurements, we have

Lcheck
max ∼ O(p2 + S).

The upper bound is higher than for data collection where all measurements are collected,
and for which we had Lmax = O(S) (cf. Section 3.1). The distributed regression with
bounded errors therefore may lead to higher communication costs if the model does not
properly reflect the variations of sensor measurements.

The choice of the model is thus an important issue, particularly when there is no a priori
information on the type of variations. In practice, a solution may be to collect data from
the whole network in order to get an overview of the types of measurement patterns. On
the basis of this initial stage, different models may be tried and assessed at the base station,
in order to select a model that properly fits the data.

It is worth noting that different optimizations can be brought to these approaches. In
particular, the elements of the matrix A do not depend on sensor measurements. In the
case of spatial models, they only depend on the spatial coordinates of the sensors. If these
coordinates are known by the base station, the matrix A may be computed straightaway at
the base station, thus saving 0(p2) transmissions. In the same way, the base station may
also infer the entries of A when time is involved. The load can therefore be reduced to O(p)
if no error threshold is set.
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3.5 Summary

This chapter provided a state of the art on the use of learning techniques for reducing the
amount of communication in sensor networks. Classifying these approaches in three main
types, namely model driven, replicated models, and aggregative approaches, we outlined for
each of them their strengths and their limits. Table 3.1 gives a summary of the different
learning schemes in terms of error type and highest network load.

Learning scheme Error type Highest network load
Model-driven acquisition Probabilistic bounded LMD

max ∼ O(|Sq|)
or unbounded

Replicated models ε-bounded LRMmax ∼ O(S)
Aggregative approaches Unbounded LDRmax ∼ O(p2)

or ε-bounded LDRcheck
max ∼ O(p2 + S)

Table 3.1: Comparison of the performances of the different modeling approaches presented
in this chapter.

• Approaches based on model-driven acquisition reduce the highest network load to
|Sq|, i.e., the number of sensors whose measurements are effectively collected. The
main characteristic of these approaches is that part of the network can remain in
the idle mode. Model-driven data-acquisition therefore not only reduces the highest
network load, but also allows to reduce to a negligible level the energy consumption
of the sensor nodes not queried. In the idle mode, the energy consumption is about
four orders of magnitude lower than in the active mode (see Table 2.2 - for example
5µA in the idle mode against 19.5mA with MCU active for the Telos node).

The subset of sensor nodes whose measurements are collected could be changed over
time to distribute the energy consumption. Indeed, there exists in most cases dif-
ferent pairs of set of queried and predicted sensors for which the observer’s accuracy
requirements can be satisfied. Further work should be done in this direction.

The error type entailed in the obtained predictions depends on whether the model
can be trusted. If the model is correct, predictions can be bounded with an error
threshold ε and a confidence level 1− δ. The drawback of model-driven approaches is
however that unexpected events in the monitored phenomenon may not be detected if
they concern locations where measurements are predicted. The use of multiple pairs
of sets of queried and predicted sensors can be used to address this issue. Indeed,
assuming that all sensor nodes will at some point be part of the set of queried sensors,
an unexpected event will be detected when the sensor nodes monitoring the location
of the event are queried. The time elapsed before the event is detected depends on
the frequency at which subsets of sensors are changed. This time may be long, and
therefore model-driven approaches are not well-suited to event detection tasks.

• The main characteristic of replicated models is to guarantee ε-bounded prediction
errors, even in the case of unexpected events. These approaches however require the
sensor nodes to take their measurements at every epoch, so that they can be compared
with the predicted measurements. The energy savings depend on the frequency of
updates of the model. In the optimal case, the predictions obtained by the model
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are always within ±ε of the true measurements, and therefore no communication is
needed. The energy savings are in this case around one order of magnitude (see Table
2.2 - 1.8mA in the idle mode against 19.5mA with MCU active for the Telos node).

In the worst case, updates are needed at every epoch. The HNL is in O(S) for this
worst scenario, and has therefore the same order of magnitude than the default data
collection scheme. Depending on the number of parameters sent in each model update,
the exact amount of communication can even be higher with replicated models than
for the default data collection scheme.

The efficiency of replicated models to reduce communication therefore depends on the
prediction model used. This issue will be discussed extensively in Chapter 4, which
will present our first contribution in this thesis.

• Finally, aggregative approaches lead to either unbounded or ε-bounded error. The
type of error depends on whether aggregates obtained at the base station are commu-
nicated to sensor nodes. If no check is made against the true measurement, the highest
network load is reduced to the number of aggregates collected, i.e., O(p2), where p is
the number of parameters in a model. It is worth noting that optimization techniques
can be used to reduce the HNL in O(p). The main characteristic of aggregative ap-
proaches with unbounded errors is that the HNL does not depend on the number of
sensors. This makes these approaches scalable to large network.

The model coefficients computed at the base station can be communicated to sensor
nodes. This allows sensor nodes to compute locally the predictions obtained at the
base station, enabling aggregative approaches to deal with event detection. The use
of this feature can however be expensive in terms of communications, as an additional
network load in O(p+ S) can be reached in the worst case.

In summary, modeling techniques can greatly reduce energy consumption, up to several
orders of magnitude with model-driven approaches. The use of models however implies some
approximations of the sensor measurements. For an observer, it is often important that the
approximation errors are bounded, i.e., within ±ε of the true measurements. This guarantee
is only possible with replicated models and aggregative approaches, which allow to compare
the model predictions with the true measurements.

The efficiency of modeling techniques in reducing communication mainly depends on
the model chosen. If the prediction models used are adapted to the type of measurements
collected by sensors, high communication savings can be obtained. In the case where the
models are not adapted, modeling approaches can however lead to worst case scenario where
the energy consumption is higher than in the default data collection scheme.

The selection of an efficient model is therefore a primary issue. The following chapter
presents our first contribution, aimed at dealing with this issue for temporal replicated
models.
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Chapter 4

Adaptive Model Selection

This chapter presents our first contribution in this thesis, called Adaptive Model Selection
(AMS), which extends previous work on replicated model approaches [72, 47, 41, 87, 79]. The
design of the AMS algorithm is motivated by the fact that the identification of prediction
models that effectively reduce communication is in practice a difficult task. In particular,
the use of models that are not adapted to the sensor measurements can lead to an increase
of communication. One of the main reasons is that in most cases, very little or no a priori
information is available on the dynamic of the sensor measurements.

Section 4.1 discusses the conditions allowing a model to reduce the communication costs.
Section 4.2 presents the AMS algorithm. Its rationale is to let a wireless node run different
prediction models, and to select over time the one that provides the most savings in terms of
network load. Section 4.3 reviews different strategies for time series prediction. Section 4.4
provides an experimental analysis of the different approaches on a set of fourteen different
time series.

4.1 Which model to choose?

Let us consider the following example in order to introduce the topic. Figure 4.1 illustrates
the use of a constant model for approximating a set of temperature measurement collected
over a one-day period in the greenhouse of the Solbosch, during one of the data collec-
tion experiments we made. The accuracy is set to 2◦C. Using a constant model [72], the
percentage of updates of the sensor is of 8% compared to a periodic data collection where
measurements are sent at every epoch. We note that the amount of communication savings
is already considerable.

Looking more closely at the figure, we see that the number of updates is more important
during the day time, particularly because the constant model is not appropriate for modeling
the increase or the decrease of the temperature measurements. These temporal variations
are better captured by a model that takes into account the time, such as an autoregressive
model [87, 79]. We illustrate this in Figure 4.1, right, by reporting the approximations
provided by an autoregressive model of order two. The models were computed using the last
sixty measurements, as suggested in [87]. An AR(2) allows to better capture the temporal
variations, and reduces the percentage of updates to 6%.

More complex models, such as autoregressive models, can therefore better model the
variations of the measurements taken by sensors. The ability of these models to better
approximate sensor measurements however depends on a number of parameters, such as
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Figure 4.1: Approximations obtained using replicated constant (left plot) and AR(2) (right
plot) models on a one-day temperature data collection in the Solbosch greenhouse. Updates
are reported with black dots on the bottom of the plots. The use of an autoregressive model,
which takes the temporal variations into account, allows to reduce the number of updates
by two percent.

the order of the model for autoregressive models. The number of training examples for
learning the model parameters is also an important factor. Failure to choose the right
model parameters can lead to poor prediction accuracies. Last, but not least, the nature of
the time series and the error tolerance ε required by the observer play an important role.

This is illustrated in Figure 4.2 where we report the percentage of updates obtained by
using constant model (CM), and autoregressive models of order p (AR(p)), with p ranging
from 1 to 5. The number of training examples is varied from 10 to 100 by steps of 10. The
results are reported for error tolerance of ε = 1◦C (left), and ε = 5◦C (right). Previous
work on replicated models was mainly driven by the fact that more complex models could
provide higher communication savings [41, 87, 79]. Few guidelines were however provided
regarding the choice of the parameters. As seen in Figure 4.2, the choice of the parameters is
of primary importance. For example, although autoregressive models provide in most cases
less updates than the constant model when the error tolerance is of 1◦C (Figure 4.2, left),
the converse is observed when the error tolerance is of 5◦C (Figure 4.2, right). The number
of past measurements used to train the model is also an important parameter. Less than 20
measurements for instance lead autoregressive models with order higher than three to imply
a number of updates higher than the constant model. We note that this is a result of the
bias/variance tradeoff discussed in Section 2.2.2.

In qualitative terms, these results show that constant model outperforms autoregressive
models when the error tolerance is high, or when the number of measurements used for the
learning is not large enough. These experimental observations are generally valid, as will be
seen in Section 4.4 where the performances of replicated models on different types of time
series are analyzed. It is however difficult, a priori, to provide guidelines for the choices of
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Figure 4.2: Percentage of updates caused by models of increasing complexity, for ε = 1◦C
(left) and ε = 5◦C (right) error thresholds. The benefits of complex models diminishes when
the error threshold is relaxed.

the parameters related to the model and the learning procedure.
A second issue that was overlooked in the previous work is that the size of an update

must also be taken into account. In previous work [72, 40, 87, 79], the considered metric was
the update rate, which is the percentage of updates between a wireless node and the base
station over time. Denoting by I[t] the indicator function characterizing instants of update,
i.e.,

I : T → {0, 1}

t 7→
{

0 if |̂s[t]− s[t]| ≤ ε
1 if |̂s[t]− s[t]| > ε

(4.1)

the update rate can be expressed as

U [t] = 100
∑t

τ=1 I[τ ]
t

.

The update rate for the periodic data collection, also referred to as default monitoring
scheme in the following, is 100% since the base station is updated with a measurement at
each epoch t. Any lower value indicates a gain in the number of transmitted packets.

A deficiency of the metric is that it does not take into account the size of model updates,
which typically increases as the number of parameters of a model gets higher. We therefore
introduce an alternative metric, the weighted update rate, that takes into account the size of
a model update. We define it as

W [t] = U [t]C (4.2)

where C, henceforth referred to as model weight, quantifies the relative communication costs
of transmitting a model update in comparison to the default scheme. We will consider that
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in the default scheme, the communication of one measurement implies the transmission of
a packet which contains the measurements, and that the communication of a model update
implies the transmission of a packet which contains the parameters necessary for the base
station to run the model.

In order to fix an idea of this ratio, the following quantities can be for example considered.
In the packets sent in TinyOS [85], a reference operating system for sensor networks, the
packet overhead (additional bytes of information such as synchronization data and sensor
ID) typically ranges between 12 and 36 bytes. Assuming that the update of an AR(p) model
requires 2p bytes (p bytes for the last p measurements and p bytes for the parameters), and
that the packet overhead is on average of 24 bytes, the model weight of an AR(p) model is
therefore of

CAR(p) =
24 + 2p
24 + 1

. (4.3)

For the constant model (CM), as an update only consists of one measurement, the model
weight is CCM = 1. The integration of the model weight in the metric used to assess the
communication savings achievable by replicated models allows to make the two following
observations. First, models that rely on parameters all have a model weight higher than
one. Therefore, these models may lead to communication costs higher than the default
scheme. Second, the constant model, by having a model weight of 1, always ensures that
the communication costs related to its use are not greater than the default scheme.

4.2 Adaptive Model Selection

This section presents the adaptive model selection (AMS), which aims at allowing a sen-
sor node to determine autonomously what prediction model to use. The rationale of our
approach is to let the sensor node compare the ability of different models to predict its
measurements, and to select over time the model that provides the lowest weighted update
rate. A model selection strategy called racing is used to discard over time the models that
perform poorly.

Overview

As emphasized in the previous section, the constant model is the a priori best option in
replicated models for situations where no information is available about the type of mea-
surements that a sensor node will collect. The constant model is however basic, and the use
of more complex models should be considered given that they can lead to higher communi-
cation savings. In AMS, we suggest to initially provide the sensor nodes with a collection
of K models

{hk(x, θk)}, 1 ≤ k ≤ K.
Their performances in terms of weighted update rate, denoted by Wk[t], 1 ≤ k ≤ K, are
compared over time by the sensor node.

A first issue consists in choosing the type and number of prediction models to include
in the collection {hk}. An extreme situation consists in considering only one model. In this
case, in the absence of a priori information on the signal, it is clear that the constant model
should be used. The addition of more complex models to the collection should be considered
by keeping in mind that the computational resources of a wireless sensor are limited. Among
existing techniques in time series forecasting, autoregressive models are suitable candidates,
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as was motivated in previous work [87, 79]. The collection of K autoregressive models can
be built by considering models with orders from 1 to K for example. The performances
Wk[t] at time t for each model are assessed by a sensor node by using the following recursive
formulation

Wk[t] =
(t− 1)Wk[t− 1] + I[t]

t
(4.4)

where I[t] is the indicator function defined in Equation (4.1).
In the collection of models, only one is shared with the base station, called the current

model. This model is the one assumed to have the best performances, and is denoted hbest.
When starting the AMS, the constant model is assumed to be the best. Whenever an update
is required because the current model fails to predict within ε the current measurement, the
new model sent to the sink is the one that provides the best performances, i.e., the model
hk such that

k = arg min
k

Wk[t].

Over time, the weighted update rateWk[t] of a model converges to a value that gives the
average performance of the model. After a sufficient amount of time, one of the models in
the collection of models will prove to have the best performance in terms of communication
savings for modeling the sensor measurements. In order to reduce the computational effort of
the sensor nodes, the models that have lower performances can be discarded. The decision
of when to stop maintaining a model which has lower performances that another can be
addressed by means of the racing algorithm.

Racing algorithm

The racing algorithm is a model selection technique originally proposed in [64]. Given a
collection of K models and N observations, the rationale of the racing is to assess the
generalization of the models in a competitive fashion, with at most N steps. The k-th step
consists in estimating the parameters of each model using all but the k-th observation, and
in computing the prediction error on the k-th observation.

After N steps, the procedure comes down to a leave-one-out validation (Section 2.2.2).
After only a small number of tests, it is however usually possible to distinguish the best
models from the worst models. This is done using statistical bounds, which allow to de-
termine how close the estimated performance of a model is to its true performance. The
models which are significantly worse than the best ones are thrown out of the race and not
tested again [64, 65].

The racing algorithm is well adapted to our scenario, as the prediction error on unseen
samples is possible every time a new measurement is collected. The performance metric is
the weighted update rate, and the problem therefore consists in determining, for a model k,
a confidence interval of the estimate of Wk[t] at time t. Figure 4.3 illustrates the strategy,
where six models are assessed in parallel. The estimated performances are given by the
black dots, and the confidence intervals by the vertical lines surrounding the estimated
performances. The models which have performances whose lower confidence bound is higher
than the upper confidence bound of the best model can be discarded.

Different statistical tests exist to estimate the confidence bounds of an estimate, which
depend on the assumptions that can be made on the probabilistic distribution of the es-
timated performances. For example, if the distribution is known to be Gaussian, then a
student t-test could be used. In general, it is difficult to formulate assumptions on the na-
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Figure 4.3: Confidence intervals associated to the model performances estimates. Models
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ture of this distribution, and the Hoeffding bound can be used [65, 35]. This bound states
that, with probability 1− δ, hbest truly outperforms hk if

∆hk,hbest
[t] > R

√
ln(1/δ)

2t
, (4.5)

where R is the range taken by the difference ∆hk,hbest
[t] = |Wk[t] −Wbest[t]|. Thanks to

the lack of parametric assumptions, the Hoeffding bound requires no other information than
the range of values taken by quantities considered, which is known in advance. Indeed, as
0 ≤Wk[t] ≤ Ck and 0 ≤Wbest[t] ≤ Cbest, it follows that R = Ck +Cbest, and the bound for
discarding model hk is therefore given by:

∆hk,hbest
[t] > (Ck + Cbest)

√
ln(1/δ)

2t
. (4.6)

Using this scheme, poorly performing models are discarded from the set of candidates. Since
the bound gets tighter as t increases, only one model is eventually maintained on the sensor
node.

AMS algorithm

Algorithm 4 shows the pseudocode of the AMS algorithm. It takes as inputs the error
tolerance ε, the number of candidate models K, the collection of models {hk}, and their
corresponding model weights {Ck}1. The first model sent to the sink is the one with the
lowest model weight.

When the sensor collects a new reading s[t], the AMS runs the function simulateModel,
1In the particular case where the update rate is used as performance metric, the model weights are all

set to 1
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Algorithm 4 AMS - Adaptive model selection algorithm.

Input:
ε: Error threshold.
K: Number of models.
{hk}: Collection of models.
{Ck}: Model weigths.

Output:
Packets containing model updates sent to the base station (BS).

1: t← 1
2: for (k in 1 : K) do
3: θk[t]← init(hk)
4: θlast

k ← θk[t]
5: Uk[t]← 1
6: end for
7: k = arg mink Ck
8: hbest ← hk
9: θbest ← θk[t]

10: sendNewModel(hbest, θbest)
11: while True do
12: t← t+ 1
13: s[t]← getNewReading()
14: ŝ[t]← getPrediction(h, θbest)
15: for (k in 1 : K) do
16: simulateModel(k, s[t])
17: end for
18: if (|ŝ[t]− s[t]| > ε) then
19: k ← arg mink Uk[t] ∗ Ck
20: hbest ← hk
21: θbest ← θk[t]
22: sendNewModel(hbest, θbest)
23: {hk} ← racing({hk}) see Equation (4.5)
24: end if
25: end while
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which estimates the weighted update rates Wk[t] for all models hk. The function is outlined
in Algorithm 5. This function first determines whether an update is necessary or not by
checking if the current reading estimation ŝ[t] = hk(x, θ), computed by model hk at time
t, is more than ±ε off the actual sensor value s[t]. The weighted update rate Wk[t] is
then updated by the recursive formulation of Equation (4.4). When the parameters of a
candidate model can be updated recursively as new sensor readings become available (see
Section 4.3), the function simulateModel maintains two sets of parameters for each model
hk, namely θk[t] and θk[tlast]. Parameters θk[t] are continuously updated with incoming data
so that the model is constantly refined (e.g., using the recursive least square procedure for
autoregressive models, as detailed in section 4.3). On the contrary, as long as no update
is necessary for model hk, parameters θk[tlast] remain unchanged since they represent the
parameters that would be shared by the sensor node with the base station if hk was the
current model.

Algorithm 5 simulateModel - Algorithm for virtual model updates.

Input:
k: Index of the prediction model to simulate.
s[t]: Current measurement.

Output:
hk is updated.

1: ŝ[t]← getPrediction(h, θlast
k )

2: θk[t]← update(θk[t− 1], s[t])
3: if (|ŝ[t]− s[t]| > ε) then
4: Uk[t]← (t−1)∗Uk[t−1]+1

t
5: θlast

k ← θk[t]
6: else
7: Uk[t]← (t−1)∗Uk[t−1]

t
8: end if

After running to completion, the function simulateModel returns control to AMS, which
then behaves as the standard replicated model approach. It therefore checks whether the
absolute value of the difference between the true sensor value s[t] and the prediction ŝ[t] =
hbest(x, θbest) does not exceed the tolerated error threshold ε. If this threshold is exceeded,
the current model hbest is assigned the model in {hk} whose Wk[t] is the lowest, and an
update of size Cbest is sent to the sink.

4.3 Model parameter update

The adaptive model selection scheme described in the previous section could be implemented
using any collection of prediction models, whether linear or nonlinear. In practice, the two
following requirements must however be met. First, the models should comply with the
limited computational and memory resources of sensor nodes. Second, it should be generic
enough to adapt to different physical realities of the acquired signals.

The class of autoregressive models appears at first glance as a suitable choice for imple-
menting replicated models, as was motivated in previous work on replicated models [87, 79]
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(cf. Section 3.3). Besides the choice of a class of models, another important design issue
consists in defining a procedure to compute the coefficients of the model. For autoregressive
models or oder p, the set of coefficients is the vector θ = (θ1, θ2, . . . , θp) used to weight the
past measurements in order to get a prediction for the current measurement.

Standard regression

In [87], it was suggested to use a standard regression procedure (cf. Section 2.2.3) based
on the last N collected measurements to compute these parameters. More specifically, the
coefficients are obtained by computing

θ[t] = (XTX)−1XTY

where X is a (N − p) × p matrix whose i-th row consists in the vector xi = (s[t − i], s[t −
i − 1], . . . , s[t − i − p]), 1 ≤ i ≤ N − p and Y is a (N − p) × 1 matrix consisting of the
measurements (s[t], s[t − 1], . . . , s[t − N + p + 1]). In terms of memory, the requirements
are in O(N + p). The computational costs are dominated by the computation of the inverse
of the XTX matrix, which is in O(N2 + p3). The main issue of the standard regression
approach is to define a suitable value for N . In particular, too low values of N can lead
to poor prediction accuracies, because of the bias/variance tradeoff. This was illustrated in
Section 4.1, see Figure 4.2. A high value of N is however costly both in terms of memory
and computation.

Adaptive filter

In order to deal with this issue, it was proposed in [79] to compute the autoregression
parameters by using the least mean square filter(LMS). The LMS formulation allows to
update the parameters every time a new measurement is available, by the following set of
equations

ŝ[t] = x[t]T θ[t]
e[t] = s[t]− ŝ[t]
θ[t+ 1] = θ[t] + µx[t]T e[t]

With LMS, it is no longer necessary to keep a history of the measurements. Besides, the
storage and computational requirements are both reduced in O(p). The procedure is there-
fore much lighter in terms of memory and computational resoures. In terms of prediction
accuracy, the efficiency of the procedure however largely depends on a suitable choice for
the step size µ, which characterizes the speed of convergence of the filter. In practice, it
proves to be difficult to properly define this value.

Recursive least square

We propose to address this issue by using a slightly more computationally demanding pro-
cedure called the recursive least square, which provides a recursive way to compute the
regression coefficient. The procedure can also be seen as a way to determine the step size
adaptively in such a way that the overall mean squared error of the model over time is
minimized. The updates of the parameter θ[t] is achieved by means of the following set of
equations
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ŝ[t] = x[t]T θ[t]
e[t] = s[t]− ŝ[t]

L[t] =
P [t]x[t]T

1 + x[t]P [t]x[t]T

P [t] = P [t]− L[t]x[t]TP [t]
θ[t+ 1] = θ[t] + L[t]e[t]

The matrix P [t] (of size p×p) is an estimate of the inverse correlation matrix XTX over
all time instants up to t. Its initial value P [0] is set to the identity matrix. Compared to the
standard regression approach, the RLS therefore allows to use all the past measurements,
without storing them on the sensor node. The memory requirements are therefore reduced
to an order O(p2). In terms of computation, the RLS procedure avoids the computation of
the inverse of XTX, and therefore reduces the computational requirements to an order in
O(p2).

4.4 Experimental evaluation

Datasets

The experimental evaluation is based on a set of 14 publicly available data sets, collected in
real sensor network deployments. The data sets vary in terms of the nature of the observed
phenomenon, signal dynamic, sampling frequency and length. They are described in Table
4.1.

The S Heater data measures the temperature of a heater as cold water flows, as reported
in [81]. The Intel Lab Data from which the set I Light is derived, is, to the best of our
knowledge, the first large publicly available collection of data derived from a real wireless
sensor network deployment and has therefore been used for performing evaluation studies in
several works [12, 87, 79]. The data sets M Temp and M Hum were collected between March
23rd and April 23rd, 2006, by the temperature and humidity sensors of the sensor node 9
in the Montepaldi Farm deployment [29]. All the data sets retrieved from the historical
database of the National Data Buoy Center [71] refer to data collected by buoy 41012
during the whole year 2005.

To be able to compare the results obtained from different data sets regardless of the
specific physical quantities being examined, the influence of the threshold parameter ε is
analyzed by considering it as proportional, through a given factor k, to the range r of
the signal. The range r was computed by taking the difference between the maximal and
minimal values in the time series. The factor k was set to 0.01, 0.05 and 0.2, which implied
high, medium, and low bound on the tolerated error. This qualitative notion of high and
low tolerance can be illustrated by considering the Montepaldi farm temperature time series
for example. For this series, the range of values was r = 29.8◦C, and therefore the three
thresholds considered were ε = 0.3◦C, ε = 1.5◦C, and ε = 6◦C. Figure 4.4 finally illustrates
the diversity of the measurement dynamics by reporting as examples the Montepladi farm
temperature, the NDBC wind speed, and the Stenman heater temperature time series.
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Data set sensed quantity sampling period period number of samples source
S Heater temperature 3 seconds 6h15 3000 [81]

I Light light 5 minutes 8 days 1584 [18]
M Hum humidity 10 minutes 30 days 4320 [29]

M Temp temperature 10 minutes 30 days 4320 [29]
NDBC WD wind direction 1 hour 1 year 7564 [71]

NDBC WSPD wind speed 1 hour 1 year 7564 [71]
NDBC DPD dominant wave period 1 hour 1 year 7562 [71]
NDBC AVP average wave period 1 hour 1 year 8639 [71]
NDBC BAR air pressure 1 hour 1 year 8639 [71]

NDBC ATMP air temperature 1 hour 1 year 8639 [71]
NDBC WTMP water temperature 1 hour 1 year 8734 [71]
NDBC DEWP dewpoint temperature 1 hour 1 year 8734 [71]

NDBC GST gust speed 1 hour 1 year 8710 [71]
NDBC WVHT wave height 1 hour 1 year 8723 [71]

Table 4.1: Data sets
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Figure 4.4: Examples of the diversity of the measurement dynamics.

AMS with autoregressive models

We first assess for the fourteen time series the update rates and weighted update rates
resulting from the use of a constant model, and of autoregressive models with order ranging
from one to five. The accuracy was set at ε = 0.01r, where r is the range of the measurements.
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According to Equation (4.3), the model weight was set to CAR(p) = 24+2p
24+1 for AR(p) models,

and to CCM = 1 for the constant model. The update rates and the weighted update rates
are reported in the top half and bottom half of Table 4.2, respectively. Bold-faced numbers
indicates the model that provided the best performances (Hoeffding test, δ = 0.05). The
last column reports the model that was selected by the AMS.

Update rate.
CM AR1 AR2 AR3 AR4 AR5 AMS

S Heater 74 75 61 59 59 59 AR3
I Light 38 40 39 40 40 39 CM
M Hum 53 53 49 50 49 49 AR4
M Temp 48 48 45 45 44 44 AR4
NDBC DPD 65 85 80 80 80 80 CM
NDBC AWP 72 73 73 73 73 73 CM
NDBC BAR 51 50 39 39 39 37 AR5
NDBC ATMP 39 39 36 36 36 36 AR3
NDBC WTMP 27 27 21 21 21 20 AR5
NDBC DEWP 57 52 52 52 52 52 AR3
NDBC WSPD 74 84 82 83 83 83 CM
NDBC WD 85 81 81 81 81 81 AR1
NDBC GST 80 81 80 80 80 81 CM
NDBC WVHT 58 56 56 56 56 56 AR3
Weighted update rate.

CM AR1 AR2 AR3 AR4 AR5 AMS
S Heater 74 78 68 70 76 81 AR2
I Light 38 42 44 48 51 53 CM
M Hum 53 55 55 60 62 66 CM
M Temp 48 50 50 54 56 60 CM
NDBC DPD 65 89 89 95 102 109 CM
NDBC AWP 72 75 81 88 93 99 CM
NDBC BAR 51 52 44 47 49 50 AR2
NDBC ATMP 39 41 40 43 46 49 CM
NDBC WTMP 27 28 23 25 27 28 AR2
NDBC DEWP 57 54 58 62 67 71 AR1
NDBC WSPD 74 87 92 99 106 113 CM
NDBC WD 85 84 91 98 104 111 AR1
NDBC GST 80 84 90 96 103 110 CM
NDBC WVHT 58 58 63 67 71 76 CM

Table 4.2: Update rates (top) and weighted update rates (bottom) obtained using the con-
stant model, and autoregressive models with order up to five. Bold-faced numbers indicate
the statistically best performing models.

In all cases, the AMS picked up the model which provided the lowest percentage of
updates. When the model weight is not considered, autoregressive models perform better
than the constant model for most time series. They however significantly failed to properly
model the measurements for the I Light(light), the NDBC DPD (dominant wave period)
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and the NDBC WSPD (wind speed) time series. These time series are characterized by
frequent sudden and sharp changes over time. For this reason, the constant model is better
adapted. We note that up to 15% of update savings are gained by using the constant model
instead of an autoregressive model on NDBC DPD.

In most cases, orders higher than three does not significantly improve the performances
in terms of update rates. The only exception is the NDBC BAR (barometric pressure) time
series. In terms of weighted update rate however, the performances of these models can be
strongly impacted by their weight. Using the model weights defined above, autoregressive
models of orders higher than three are in all cases significantly worse than other models,
and can even lead to percentage of updates higher than 100%, meaning that they caused
more communication than the default data collection scheme.

It is also important to note that if the packet overhead was lower than the average size
of 24 assumed here, autoregressive models would be even more penalized. With an overhead
of 12 bytes for example, the constant model outperforms autoregressive models for all time
series. Model weights can therefore strongly change the ability of a complex model to reduce
the amount of communication.

The error threshold ε is also an important factor in the communication savings which can
be obtained. We illustrate this in Figure 4.5, where the weighted update rates are reported
for error thresholds ε = kr of the measurement range, with k ∈ {0.01, 0.02, 0.05, 0.1, 0.2}.
The value r is the range of the measurements for a given time series. The results are reported
as boxplots, in which black dots give the distribution of the weighted update rates for each
of the fourteen time series.
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Figure 4.5: Weighted update rate as the error threshold is relaxed.

For a 0.05r error threshold, which corresponds to approximations within 5% of the overall
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measurement range, less than 20% of data are on average sent to the base station. This
reduction decreases down to only 5% of updates for an error tolerance of 0.2r. We should
also notice that as the error tolerance increases, the predictive ability of any model usually
tends to equal that of the constant model. Therefore, for high error threshold, the AMS
selected the constant model.

We finally illustrate in Figure 4.6 the delay taken by the racing algorithm to select the
model. The accuracy is set in this example at 0.01, and the packet size at CAR(p) = 12+2p

12+1
(minimum packet overhead). The numbers indicate the number of models maintained over
time at a sensor node, for each of the fourteen time series. At time t = 0, the number
of models is six, i.e., the constant model and the five autoregressive models. The racing
algorithm was applied from t = 130, in order to get a reasonable estimate of the update rate
of each model. This explains why subsets of models are discarded at this time instant for
most time series.
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Figure 4.6: Results of the racing algorithm for each of the fourteen time series, with an error
tolerance of 0.01r.

The convergence is reached for all time series in less than 1000 time instants. The
convergence may be much quicker. For example, for the I Light (Intel light) temperature
measurements, the constant model is deemed as the best one straight after the racing algo-
rithm is called (time instant t = 130). The reason is that this time series exhibits rapid and
high variations, which cannot be captured by autoregressive models. In most cases however,
a few hundred of time instants are required for the racing algorithms to identify the best
model in the collection. Finally, it is worth noting that the racing algorithm led in all our
experiments to identify the model that provided the best weighted update rate. This reflects
the ability of the Hoeffding bound, which is particularly conservative as it does not make
any assumption on the error distribution, to properly decide when models can be discarded
from the collection of initial models.
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4.5 Implementation in TinyOS

This section bridges the gap between the algorithms presented and the real-world. To
illustrate how the AMS can be implemented on wireless sensors, we use TinyOS as the
programming framework. TinyOS is a free and open source operating system specifically
developed for limited resources embedded systems like wireless sensors [54]. It was created in
1999 by the University of Berkeley and Intel, for the WeC wireless sensor platform (Section
2.1.1). It has now been ported to dozen of platforms and numerous sensor boards [85].

Components for scheduling, sensing and transmitting

A TinyOS program is a graph of components. Each component encapsulates a specific set
of services, similarly to classes in Oriented Object programming, and interfaces are used
to abstract the type of service a component can offer. TinyOS features a large number of
interfaces and components, which provide abstractions to sensing, single-hop or multi-hop
networking, power management, timers or non-volatile storage for example. The components
are written in NesC [26], an extension of the C language designed to define and wire the
components together. The components are wired by means of interfaces.

The AMS algorithm requires to take measurements periodically, and to transmit data
when an update is required. These tasks can be achieved by components that provide
the interfaces Timer, ADC and SendMsg (Appendix E), which abstract the functionalities
provided by the clock, the sensor hardware and the radio. More precisely,

• The Timer interface allows to schedule tasks. It specifies three types of functions,
namely start(char type, uint32_t interval), stop() and fired(), which start,
stop or trigger a timer, respectively. The timer interface is used to periodically trigger
the AMS algorithm.

• The ADC interface is provided by sensor components, and allows to get sensor mea-
surements by means of the functions getData() and dataReady(uint16_t data),
respectively.

• The SendMsg interface is provided by components that implement the transmission
of data, such as components which can be used for single or multi-hop routing. The
interface specifies two functions, namely send(uint16_t address, uint8_t length
,TOS_MsgPtr msg) and sendDone(TOS_MsgPtr msg, result_t success), which al-
low to send a packet and to ensure that the packet was properly sent.

The AMS components

The NesC specifications distinguishes two types of components, namely the modules and the
configurations. The module provide the implementation (written mostly in C), and may use
or provide interfaces. The configurations components create applications by defining how
other components are wired.

Let AMSM be the module for an implementation of the AMS algorithm. The structure
of the file of the AMSM module in NesC is

module AMSM {
uses {

interface Timer;
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interface ADC;
interface SendMsg;

}
}
implementation {

// Implementation in NesC

}

The implementation part is written mostly in C, and mainly requires to implement the
prediction model algorithms. Let AMSC be the configuration component. The role of AMSC
is to specify the components that implement the interfaces Timer, ADC and SendMsg are
implemented, and to form the resulting application. The following configuration

configuration AMSC { }
implementation
{

components AMSM
, TimerC
, Temp
, GenericComm
;

AMSM.Timer -> TimerC.Timer[unique("Timer")];
AMSM.ADC -> Temp.ADC;
AMSM.SendMsg -> GenericComm.SendMsg[AM_AMSMSG];

}

allows for example to wire the interfaces of the AMSM module to the TimerC, Temp and
GenericComm components. These components allow the use of the clock, of the temperature
sensor, and of single-hop routing [85]. Depending on the application requirements and the
sensor hardware, other wiring can be easily defined. The Adaptive Model Selection was
implemented in TinyOS by Silvia Santini [78].

4.6 Summary

The AMS algorithm allows to compare different prediction models in a competitive fashion,
and aims at selecting the one that minimizes the amount of communication. The selection
is carried out thanks to statistical model selection technique called racing. For all series
tested in our experimental section, the AMS algorithm correctly identified the prediction
model that provided the best performances. The percentage of communication which can
be saved depend on the user-defined error-threshold. The higher the threshold, the higher
the communication savings. For a reasonably tight error threshold (one hundredth of the
sensor signal range), the AMS approach could reduce by 50% on average the amount of data
transmitted.
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Chapter 5

Distributed Principal Component
Analysis

In this chapter, we present a set of contributions aimed at distributing the computation of
the principal component analysis (PCA) among the sensor nodes. The PCA is a versatile
data processing technique, which finds applications in almost all domains that involve the
analysis of multivariate data. In particular, the PCA is widely used for compression, noise
filtering, and feature extraction. The technique, presented in Section 2.2.4, is based on linear
projections allowing to represent the data in a lower dimensional subspace. The subspace is
computed in such a way that most of the variations of the original data are retained. The
PCA is a particularly useful technique for sensor networks, where needs for compression,
noise filtering, and feature extraction are regularly encountered.

Section 5.1 reviews the potential applications of the technique in the field of sensor
networks. Next, we show in 5.2 that linear projections on a lower dimensional subspace
can be computed in a distributed manner, by relying on an aggregation service (Section
2.1.4 and 3.4). The proposed approach, called PCAg for Principal Component Aggregation,
provides a way to model the measurements with varying levels of accuracies, ranging from
the average of the measurements over space to the full recovery of the original measurements.
The tradeoffs related between the network load and the modeling accuracy are analyzed and
quantified in Section 5.3. Then, we investigate in Section 5.4 an approach for identifying
the projection subspace in a distributed manner. The proposed algorithm is based on the
Power Iteration Method, an iterative technique for computing the eigenvectors of a matrix.
In particular we show that this algorithm can compute approximations of the principal
component basis under the hypothesis that the sensor measurements collected by distant
sensors are uncorrelated. The proposed algorithm is referred to as DCPC, for Distributed
Computation of the Principal Components. We finally discuss in Section 5.5 the tradeoffs
between accuracy and network load caused by this distributed approach.

5.1 Motivations

Our interest in the following will be on the use of the PCA for sensor network measurements.
In particular, we will consider the space of dimension n = S of the measurements s[t] =
(s1[t], s2[t], . . . , sS [t]) ∈ RS taken by the sensor nodes at time t.

Thanks to its ability to identify the subspace where information of interest is contained,
the use of the PCA for processing the measurements collected by a sensor network has
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Figure 5.1: Basic scheme for using the PCA in a sensor network context. Measurements are
first collecting from the network at the base station. The PCA is then applied to identify
the subspace, and projections z[t] = W T s[t] can subsequently be computed. Applications
include compression, classification, or outlier detection.

been addressed at several occasions [89, 88, 55, 36, 46]. The common approach consists
in first collecting at the base station a set of N vectors of measurements s[t], 1 ≤ t ≤ N .
These vectors are used to compute the covariance matrix from which the eigenvectors and
eigenvalues are computed (cf. Section 2.2.4). The projections on the subspace spanned
by the eigenvectors are finally used for applications such as compression, classification, or
outlier detection. The PCA is usually applied in a centralized manner at the base station,
as illustrated in Figure 5.1.

Compression

The use of the PCA for compression purposes is a classic application of the technique [37, 42].
The PC scores (Section 2.2.4)

z[t] = W T s[t]

form the compressed version of s[t], and reduce by a factor S
q the number of elements used

for representing the set of measurements. The transform

ŝ[t] = Wz[t]
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is used to recover an approximation ŝ[t] of the original measurements s[t]. The compression
is lossy, as the projections on the PC basis usually entail some loss that cannot be recovered.
This loss is usually quantified in terms of mean squared error (MSE), which is the mean
square of the residual error between the original data s[t] and their approximation ŝ[t] =
WW T s[t] on the PC basis. Assuming that data are centered for ease of notations, we have

MSE(q) =
1
N

N∑

t=1

||s[t]−WW T s[t]||2

where the projection matrix W has size S × q. In order to cancel out the effect of the
dispersion of the data, the normalized mean squared error defined as

NMSE(q) =
∑N

t=1 ||s[t]−WW T s[t]||2
∑N

t=1 ||s[t]||2
(5.1)

allows to quantify in terms of mean squared error the proportion of loss with respect to the
original observations s[t]. The MSE and NMSE may be expressed directly by means of the
eigenvalues, with

MSE(q) =
S∑

k=q+1

λk

and

NMSE(q) =

∑S
k=q+1 λk∑S
k=1 λk

=
∑S

k=1 λk −
∑q

k=1 λk∑S
k=1 λk

= 1− P (q) (5.2)

where λk is the eigenvalue associated to the k-th PC, and P (q) =
Pq

k=1 λkPS
k=1 λk

is the proportion
of retained variance (see Section 2.2.4). In practice, a common threshold is to set the NMSE
so that the 95% of the variations are retained, i.e., P (q) = 0.05.

Feature extraction for supervised learning

The PCA is a widely used technique for extracting useful features in order to reduce the
number of inputs of a learning problem. It is particularly well-suited for patterns recognition
tasks involving a large number of correlated inputs, such as in image recognition tasks [42].
Given the similarity between sensor network data and images, it is easy to come up with a
wide range of scenarios where the PCA can improve the accuracy of the learning task.

In the sensor network literature, the use of the PCA as a preprocessing technique for
supervised learning problems has for example been motivated for ground vehicle classification
with sound sensors [89], posture classification with accelerometer data [62], or inference of
parameters of partial differential equations [9].

Outlier detection

Outliers are observations that are far from the rest of the data. For multivariate data,
these include observations that are a long way from the rest of the observations in the
multidimensional space. A major problem in detecting multivariate outliers is that an
observation that is not extreme on any of the original variables can still be an outlier,
because it does not conform with the correlation structure of the remainder of the data [42].

85



Let us assume the presence of an observation x = (x1, x2, x3) = (2,−2, 0) in Figure 2.11.
This observation would be very distant from the subspace that approximates the rest of the
data. This is because it violates the general pattern of positive correlation between x1 and
x2. This kind of outliers can be detected by computing the squared error

d = ||s[t]− ŝ[t]||2

between the observation s[t] and its projection ŝ[t] on the PCs. This error is assumed to
be low, as the number of PCs is chosen so that this squared error is minimized. The use
of a threshold on this error can be used to determine if the observation is an outlier. The
approach has been applied for example to the detection of network traffic anomalies in [36],
and to vibration sensor fault detection in [44].

5.2 Principal component aggregation

This section shows that an aggregation service (Sections 2.1.4 and 3.4), can be used to
compute the principal component scores within the network. The approach, called principal
component aggregation (PCAg), relies on the ability of an aggregation service to compute
scalar products in a distributed manner. We then show that the approach can be used to
provide either unbounded or bounded approximation errors.

Implementation in an aggregation service

Let z[t] = W T s[t] be the projection of s[t] on the PC basis at time t, and let us assume that
the basis has size q, i.e., z[t] ∈ Rq. The main result here is that the computation of the k-th
coordinate zk[t] can be performed within the network by means of an aggregation service if
each node i has available the i-th entry w(i,k) of W . Indeed, the scalar product is a sum of
multiplications

zk[t] =
S∑

i=1

w(i,k)si[t]

which can be implemented in an aggregation service by means of the following set of primi-
tives 




init(si[t]) = 〈w(i,k)si[t]〉 = 〈X〉
f(〈X〉, 〈Y 〉) = 〈X + Y 〉

e(〈X〉) = X
(5.3)

The partial state record is a scalar that represents a part of the scalar product wTk s[t]. Once
all sensors have brought their contribution w(i,k)si[t], the evaluator returns the complete
scalar product

∑S
i=1w(i,k)si[t] which gives the coordinate zk[t] of the set of measurements

s[t] on the k-th principal component. The aggregation process is illustrated in Figure 5.2.
The aggregation can be extended to several, or all coordinates. The partial state record

then takes the form of a vector, whose size is the number q of coordinates computed by
means of aggregation.

Initialization

For the computation of q PC scores, the q elements w(i,k), 1 ≤ k ≤ q, of the matrixW (form-
ing its i-th row) are assumed to be available at each sensor i. A distributed approach (the
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Figure 5.2: Aggregation service at work for computing the projections of the set of mea-
surements on the first basis vector.

DCPC) will be developed lated in Section 5.4 For now, we assume the following centralized
scenario:

• A set of N vectors of measurements s[t], 1 ≤ t ≤ N , is first collected at the base
station.

• The sample covariance matrix Σ̂ of these vectors, and the eigenvectors of Σ̂ are com-
puted at the base station using the N vectors of measurements.

• The elements w(i,k) of these eigenvectors are communicated to each sensor i.

Spatio-temporal transformation

The extension of the principal component aggregation scheme to the temporal domain can be
achieved by means of Multichannel Single Spectrum Analysis (MSSA) [42]. The technique
consists in integrating lagged measurements s[t − δ], 0 ≤ δ ≤ τ − 1, with τ ≥ 1, in the
computation of the covariance matrix. Let

s̃i[t] = (si[t], si[t− 1], . . . , si[t− τ + 1])

be a vector that contains the past measurements up to time t− τ + 1 for sensor i, and let

x[t] = (s̃1[t], s̃2[t], . . . , s̃S [t])

be the vector composed of the set of last τ measurements for the S sensors. The size of this
measurement vector is τS, and the sample covariance matrix Σ̂ of these measurements over
time has size τS × τS. The computation of the q first principal components leads to a W
matrix of size τS×q which can be used to aggregate the measurements in the spatiotemporal
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domain

z[t] = W Tx[t] =



∑τS

i=1w(i,1)xi[t]
. . .∑τS

i=1w(i,q)xi[t]


 .

Note now that 1 ≤ q ≤ τS. In-network aggregation can be performed exactly as with spatial
compression, except each projection requires a sensor node to perform τ aggregations. More
specifically, each sensor i is initialized with the set of elements {w(i′,k), w(i′+1,k), . . . , w(i′+τ−1,k)}
for each of the k PC, where i′ = (i − 1) ∗ τ + 1 points to the first element in a PC that is
related to sensor i. The primitives are as follows :





init(si[t], si[t− 1], . . . , si[t− τ + 1]) = 〈∑τ−1
δ=0 w(i′+δ,k)si[t− δ]〉 = 〈X〉

f(〈X〉, 〈Y 〉) = 〈X + Y 〉
e(〈X〉) = X

(5.4)

The initializer is the only primitive which changes, and its inputs are now the set of elements
{si[t], si[t− 1], . . . si[t− τ + 1]}. The use of lagged measurements requires the nodes to keep
in memory the set of the last τ measurements. In the rest of this thesis, we will for the sake
of simplicity assume that τ = 1, although all computations can be easily extended to the
temporal domain.

Unbounded and bounded approximations

The PCAg provides a way to perform a lossy compression of the data generated by the
sensors. The loss may be estimated by the amount of variance not captured by the PCs.
The coordinates obtained at the base station may be used to get unbounded or bounded
approximations, where the bound is a user-defined error threshold ε.

Unbounded approximations: Given a set of q coordinates z[t] = (z1[t], . . . , zq[t]) com-
puted by the aggregation service, the approximation ŝ[t] of the original s[t] is obtained at
the base station by transforming the vector of coordinates z[t] back to the original basis by
the evaluator function

e(z1[t], . . . , zq[t]) = (ŝ1[t], . . . , ŝS [t])
= Wz[t]

which returns an approximation ŝ[t] of s[t] by using the q principal components. Note that
if q = S, the evaluation step returns the exact vector of measurement s[t]. Otherwise, if the
number of coordinates q is less than S, the evaluation returns an optimal approximation to
the observation s[t] in the mean square sense.

Bounded approximations: In the PCAg scheme, the approximations obtained at the
base station cannot be compared to the true observations obtained by the sensors. Indeed,
the approximation ŝi[t] of the i-th (1 ≤ i ≤ S) sensor observation at time t is given by:

ŝi[t] =
q∑

k=1

zk[t]w(i,k)
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Figure 5.3: Feedback of the coordinates z[t] in the network. Each sensor i can compute
locally the approximation ŝi[t], and compare it with its true measurement si[t].

The terms {w(i,k)} are available at each node. It is therefore enough to send the vector z[t]
in the network for each sensor to be able to compute locally the approximation retrieved at
the base station. The strategy is illustrated in Figure 5.3.

Sensors can then send a notification to the base station when the approximation error
is greater than some user defined threshold ε. This scheme, called BPCAg for bounded ap-
proximation principal component aggregation, guarantees that all data eventually obtained
at the base station are within ±ε of their actual measurements.

5.3 PCAg accuracy and network load

In this section, we analyze the tradeoffs of the PCAg between data accuracy and network
load. The most important parameter is q, the number of principal components to retain,
since it governs the relationships between the different tradeoffs.

Accuracy

In terms of accuracy, the parameter q is directly related to the amount of information that
is retrieved from the network. This amount is quantified in terms of proportion of retained
variance, by the relation

P (q) =
∑q

k=1 λk∑S
k=1 λk

(5.5)

as detailed in Section 2.2.4. The function P (q) increases monotonically with q, since in-
creasing the number of principal components necessarily increases the amount of retained
variance. The rate of increase of P (q) depends on the variances of the measurements taken
by each sensor, and of the correlations existing between these measurements. Let us denote
by σi the variance of the measurements collected by sensor i, and consider the three following
cases.
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Figure 5.4: Qualitative representation of the proportion of retained variance as a function
of the number of PCs. The higher the correlations in the data, the higher the proportion of
retained variance for a fixed number of PCs.

First, when the measurements are uncorrelated and have the same variance σ = σ1 =
σ2 = . . . = σS (white noise), eigenvalues all equal σ. The PCA is in this case of no use,
since no vector of RS can be used to better represent the data. The function P increases
linearly with q, with

P (q) =
q

S
.

Second, if the measurements are uncorrelated but have different variances, the set of
eigenvalues equals {λk} = {σi}, with k, i ∈ {1, . . . , S}. The PCA leads in this case to select
the sensor nodes whose measurements have the highest variance, and

P (q) =

∑
k∈Sq

σk
∑S

k=1 σk

where Sq is the subset of size q that contains the sensor nodes i whose variances σi are the
highest.

Finally, when there exists correlation between sensor measurements, the PCA allows
to find a new basis that combines the measurements in such a way that the proportion of
retained variance on this basis is higher that the proportion retained by selecting a subset
of sensors. The proportion is quantified by Equation (5.5) and satisfy

P (q) =
∑q

k=1 λk∑S
k=1 λk

≥
∑

k∈Sq
σk

∑S
k=1 σk

.

The number of PCs to compute depends on the approximation accuracy required by the
observer, and is application dependent. In practice, determining the value q can be achieved
by first collecting a set of N measurements at the base station. The PCA is then applied,
and a validation procedure is carried out to assess the performances of the applications as
a function of the number of PCs. The validation procedure may be, for example, a K-fold
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cross validation. This techniques will be used in the experimental evaluation in Chapter 6.

Network load

The PCAg falls in the set of learning approaches based on aggregation, such as the dis-
tributed regression presented in Section 3.4. As a result of aggregation, the computation of
q PCs imply q transmissions for all sensors, no matter their depth in the routing tree. We
push further the analysis made in Section 3.4 by explicitly considering the network loads Li
(Section 3.1) related to both transmissions and receptions

Li = Rxi + Txi.

For the sake of our analysis, we more particularly focus on the network loads resulting from
three types of actions, referred to as D, A and F actions.

• D action: A D action, where D stands for default, consists in retrieving the measure-
ments from the whole set of S sensors at the base station. D actions are the basis of
the default data collection strategy, where all measurements are collected at the base
station without in-network processing.

• A action: An A action consists in retrieving an aggregate of size one, by means of an
aggregation service.

• F action: An F action consists in feeding back to all sensors an aggregated value
obtained by means of an A action.

The following analysis compares the network load related to the D, A and F actions, respec-
tively. We consider the number of packets processed by each node (i.e., number of receptions
and transmissions) in an ideal case where overhearing, collisions or retransmissions are ig-
nored. A routing tree is assumed to connect all sensor nodes to the base station. The set of
children of a node i in the tree is denoted Ci, and their number is denoted |Ci|. Si denotes
the set of sensors in the subtree whose root is the i-th sensor, and |Si| denotes the size of
this subtree. In the tree topology represented in Figure 5.5, we have for example C6 = {3, 5}
with |C6| = 2, and S6 = {1, 2, 3, 4, 5} with |S6| = 5.

During a D action, all the measurements are routed to the base station by means of the
routing tree. The load is the lowest at leaf nodes, which only send one packet per epoch,
while the load is the highest at the root node which processes 2S−1 packets (S−1 receptions
and S transmissions) per epoch. The network load at the i-th sensor node depends on the
routing tree, and amounts to

LD
i = 2|Si| − 1 (5.6)

packets per epoch.
During an A action, each node only sends one packet and receives a number of packets

which depends on its number of children. The total number of packets processed is therefore

LA
i = |Ci|+ 1 (5.7)

per epoch. The load is the lowest at leaf nodes, which only have 1 packets to send, while
the load is the highest at the node whose number of children is the highest.

Finally, an F action generates a network load of two packets for all non-leaf nodes (one
reception and one transmission for forwarding the packet to the children) and of one packet

91



for the leaves (one reception only), i.e.,

LF
i = 1 + 1(|Ci| 6= 0) (5.8)

where 1(.) is the indicator function.
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Figure 5.5: Per-node load for the D, A and F actions in a grid routing topology.

Figure 5.5 gives an example of the network load in terms of number of receptions and
transmissions for each of the three actions, in a grid network of nine sensors. The load is
better balanced in A and F actions than in D actions. For example, an A action causes a
load of three packets for nodes 6 and 9 (two receptions and one transmission), whereas the
load is only of 1 for leaf nodes 1, 4, and 7 (one transmission only).

The highest network load is much higher for a D action than for A and F actions.
Table 5.1 summarizes the highest network load caused by each of the three actions, where
i∗C = arg maxiCi is the node whose number of children is the highest.

Action type Highest network load
D action LD

max = 2S − 1
A action LA

max = |Ci∗C |+ 1
F action LF

max = 2

Table 5.1: Summary of the highest network loads entailed by D, A and F actions.

The definition of D and A actions allows us to study under which conditions the PCAg
reduce the load in comparison to the default data collection scheme. In particular, concerning
the highest network load (HNL), it is easy to equate LD

max and LA
max to get

LPCAg
max < LD

max ⇔ qLA
max < LD

max

⇔ q(|Ci∗C |+ 1) < 2S − 1

⇔ q <
2S − 1
|Ci∗C |+ 1

(5.9)
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where LPCAg
max is HNL of the principal component aggregation for computing q ≤ S PC

scores. The load related to the number of packet receptions in the network load metric
implies that the ability of the PCAg to reduce the HNL is actually topology dependent.
Different topologies will therefore be considered in our experimental results for studying the
efficiency of the PCAg.

In the BPCAg, the q PC scores must be communicated back to all sensor nodes so that
they can locally compute the approximation ŝi[t] obtained at the base station. Depending on
the number of sensors whose true measurement is more than ε away from the approximation,
S additional transmissions may be required. More precisely, for a node i, the network load
is the sum of

• qLA
i packets as q A actions are performed for aggregating the PC scores,

• qLF
i packets as q F actions are performed for communicating back the PC scores to

the sensor nodes, and

• up to 2|Si| − 1 packets if all sensor nodes in Si send an update.

Therefore, denoting by LBPCAg
i the network load sustained by sensor i in the BPCAg

qLA
i + qLF

i ≤ LBPCAg
i ≤ qLA

i + qLF
i + 2|Si| − 1

Given that LA
i = |Ci|+ 1 and LF

i = 1 + 1(|Ci| 6= 0), this more precisely gives

q(|Ci|+ 2) ≤ LBPCAg
i ≤ q(|Ci|+ 3) + 2|Si| − 1 (5.10)

The highest network load caused by the bounded approximation PCAg is sustained by the
node that maximizes the upper bound in (5.10), and we have

LBPCAg
max = max

i
q(|Ci|+ 3) + 2|Si| − 1. (5.11)

This upper bound is the worst case, in which all approximations obtained by the PC scores
are more than ε away from the true measurements. In fact, the error tolerance ε plays an
important role in the ability of the BPCAg to reduce the network load, and determines
whether LBPCAg

i is closer to q(|Ci|+ 2) or q(|Ci|+ 3) + 2|Si| − 1 in Equation (5.10).
Two extreme are ε = 0 and ε = r, where r is the range of the measurements. In the

former case, the exact measurements are required, and therefore the HNL is indeed given
by Equation (5.11). The best strategy in this case is to use the default data collection.
This load is represented in Figure 5.6 as the top horizontal dashed line. In the case of
ε = r, all measurements are bound to be within ±ε of the true measurements as the mean
is considered as the exact approximation. The highest network load therefore is in O(q), as
in the unbounded error PCAg, and is represented by the diagonal solid line in Figure 5.6.

In between, the loads implied depend on both the number of PCs collected and the error
tolerance ε. Given an error tolerance, a too low number of PCs is likely to entail many
approximation errors, and therefore many updates from the sensor nodes. Increasing the
number of PCs allows to improve the approximations and thus to reduce the number of
updates. At the same time however, the load is increased as more PC scores are aggregated.
The minimum load is attained for a number of PCs that depends on the error tolerance.
For tight error tolerance, a higher number of PCs is likely to be required, whereas for large
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Figure 5.6: Qualitative relationship between the highest network load and the number of
PCs in bounded approximations. The minimum load depends both on the accuracy required
and the number of PC scores computed.

error tolerance, a lower number of PCs is likely to lead to the minimum load. Figure 5.6
qualitatively illustrates this tradeoff.

Summary

The ability of the PCAg to reduce the network load mainly depends on the correlations
existing in the measurements. The higher the correlations, the higher the savings in terms
of highest network load. An important characteristic of the PCAg is to imply an equal
number of transmissions for all nodes, and therefore the better balance the network load
among sensor nodes. In particular, it provides a way to significantly reduce the load of the
root node in comparison to exact data collection. The network loads caused by the bounded
error PCAg are more difficult to assess, given that an additional number of transmissions,
up to S, may be needed to ensure the approximation accuracy required by the observer.
Exact data collection is hence likely to perform better when the error tolerance is low.

5.4 Distributed computation of the principal components

The PCAg requires an initialization procedure whereby each node i is initialized with the
elements w(i,1), . . . , w(i,q) of the principal components w1, . . . , wq. We first describe in more
details the centralized procedure which was outlined in Section 5.2. Next, we investigate an
alternative approach, where this initialization process is to a certain extent distributed by
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means of an aggregation service. The approach proposed relies on the power iteration method
(PIM), a classic iterative technique for computing the eigenvectors of a matrix [5], and on a
simplifying assumption on the covariance structure which allows to estimate the covariance
matrix in a distributed way. Finally, we compare the communication, computational, and
memory costs of the different approaches.

Centralized approach

The centralized approach works by first collecting a set of N vectors of sensor measurements
s[t] ∈ RS , t ∈ {1, . . . , N} at the base station. These measurements are stored in a N × S
matrix X[N ], whose t-th row-vector is the vector s[t] ∈ RS .

Once the measurements have been collected, the sample covariance matrix Σ̂[N ] of the
measurements s[t], 1 ≤ t ≤ N , is obtained by computing

Σ̂[N ] =
1

N − 1

N∑

t=1

(s[t]− µ̂[N ])(s[t]− µ̂[N ])T

=
1

N − 1
X[N ]TX[N ]− N

N − 1
µ̂[N ]µ̂[N ]T (5.12)

where µ̂[N ] = 1
N

∑N
t=1 s[t] is an estimate of the average vector of observations s[t], 1 ≤

t ≤ N ,. The covariance matrix may alternatively be computed in a recursive manner as
new vectors of observations are made available at the base station. Denoting by σ̂(i,j)[N ],
1 ≤ i, j ≤ S, the elements of Σ̂[N ] at time t = N , it follows from Equation (5.12) that

σ̂(i,j)[N ] =
1

N − 1
r(i,j)[N ]− 1

N(N − 1)
ri[N ]rj [N ] (5.13)

where

ri[N ] =
N∑

t=1

si[t] = ri[N − 1] + si[N ]

r(i,j)[N ] =
N∑

t=1

si[t]sj [t] = r(i,j)[N − 1] + si[N ]sj [N ].

The details of these derivations are given in Appendix B. Once the covariance matrix is
estimated, the principal components can be computed using a standard eigendecomposition
method [5] and its elements communicated to the sensor nodes.

Highest network load: The centralized estimation of the covariance matrix from a set of
N vectors of observations first requires the collection of the measurements from all sensors
during N epochs. This is done using the default data collection, and requires N D actions
as defined in Section 5.3. Given that LD

max = 2S − 1, the highest network load for the
centralized estimation of the covariance matrix is

LCovcent
max = N(2S − 1). (5.14)

Once the eigenvector decomposition is performed at the base station, the base station trans-
mits the estimates principal components to the sensor nodes. This requires to send q vectors
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of size S, and therefore requires qS F actions. Given that LF
max = 2, the highest load is

LEVcent
max = 2qS. (5.15)

Computational and memory costs: From Equation (5.13), the computational cost
related to the covariance matrix at the base station is O(NS2). The memory cost for
storing the matrix of observations and the covariances is O(NS + S2) or O(S2) if recursive
updates are relied on. As far as the estimation of the principal components is concerned,
the cost of standard eigendecomposition algorithm is O(S3) in terms of computation and
O(S2) in terms of memory [5].

Distributed approach

The computation of the eigenvectors and eigenvalues of a symmetric matrix is a numerical
algebra problem for which a range of different techniques, mainly based on iterative algebraic
transforms, have been designed [28]. Among them, we identified that the power iteration
method (PIM), a well-known approach to the eigendecomposition problem, could be ap-
plied in a distributed manner under the assumption that the covariance matrix is sparse.
More precisely, the sparsity must be such that the covariances between the sensor nodes
that cannot directly communicate is zero. This assumption, which we call local covariance
hypothesis, tough strong is supported by the fact that for a number of realistic scenarios,
the spatial correlations between sensor measurements decrease with the distance separating
the sensors.

In the following, we first describe the PIM, and then detail how it can be implemented
in an aggregation service. Next, we investigate the behavior of the method when the local
covariance hypothesis is not satisfied. Finally, we provide an analysis of communication,
memory, and computational costs of the method.

Power Iteration Method

Let Σ̂ be an estimate of the covariance matrix. The power iteration method is initialized
with a random vector v[0], which serves as a (random) initial guess for the estimate of the
principal eigenvector of Σ̂. At the t-th iteration, the vector v[t+1] is obtained by multiplying
Σ̂ by v[t], and by normalizing it. It can be shown (see Appendix C) that v[t] converges to
the principal eigenvector ŵ1 of Σ̂, under the condition that v[0] is not strictly orthogonal
to the principal eigenvector, and that principal eigenvectors are unique (no multiplicity
in the eigenvalues). The convergence rate is exponential in the ratio of the two principal
eigenvalues. The convergence criteria can be defined either as a minimum variation δ for
v[t], or as the highest number of iterations tmax [5, 28]. Algorithm 6 outlines the different
steps.

Note that, as the method converges to the principal eigenvector ŵ1, the normalizing
factor ‖v[t]‖ converges to the associated eigenvalue λ̂1, as by definition:

Σ̂ŵ1 = λ̂1ŵ1. (5.16)

In practical settings, the power method quickly converges to a linear combination of
eigenvectors whose eigenvalues are close, or to the eigenvector whose eigenvalue is the highest
if eigenvalues are well separated (Appendix C). As our purpose here is to find the subspace
that minimizes the approximation error, eigenvectors with close eigenvalues can be thought
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Algorithm 6 PIMmain - Power iteration method for computing the main eigenvector and
eigenvalue

Input:
Σ̂: Estimate of the sample covariance matrix.
tmax: Maximum number of iterations.
δ: Minimum increment for v[t].

Output:
Estimated eigenvector ŵ1 and eigenvalue λ̂1.

1: v[0]← random initialization such that ||v[0]|| = 1
2: t← 0
3: repeat
4: v′[t]← Σ̂v[t]
5: v[t+ 1]← v′[t]

‖v′[t]‖
6: t← t+ 1
7: until t > tmax and/or ‖v[t+ 1]− v[t]‖ ≤ δ
8: return v[t] as ŵ1 and ||v[t+1]||

||v′[t]|| as λ̂1

of as generating a subspace where similar amount of information are retained along any
vector of the subspace. The convergence to a linear combination of eigenvectors with close
eigenvalues is therefore deemed acceptable as far as principal component aggregation is
concerned. The outcome of Algorithm 6 provides estimates ŵ1 and λ̂1 of the principal
eigenvector and its eigenvalue, respectively.

Computation of subsequent eigenvectors

The standard way to employ the power iteration method in order to find the other eigen-
vectors (up to the number q) is the deflation method which consists in applying the PIM
to the covariance matrix from which we have removed the contributions of the k principal
eigenvectors already computed [5]. The vector v[t] is first orthogonalized with respect to the
previously estimated eigenvectors:

v′′[t] = (Σ̂−
k∑

l=1

ŵlλ̂lŵ
T
l )v[t]

= Σ̂v[t]−
k∑

l=1

ŵlλ̂lŵ
T
l v[t] (5.17)

for all eigenvectors ŵl and eigenvalues λ̂l, 1 ≤ l ≤ k. The resulting vector v′[t] is then
normalized to obtain a unit vector

v[t+ 1] =
v′′[t]
||v′′[t]|| . (5.18)

The resulting process is given by Algorithm 7.
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Algorithm 7 PIMdeflation - Power iteration algorithm with deflation

Input:
Σ̂: Estimate of the sample covariance matrix.
tmax: Maximum number of iterations.
δ: Minimum increment for v[t].
q: Number of pairs of eigenvectors and eigenvalues to estimate.

Output:
q pairs of estimated eigenvector ŵk and eigenvalue λ̂k, 1 ≤ k ≤ q.

1: k ← 0
2: repeat
3: k ← k + 1
4: t← 0
5: v[0]← random initialization such that ||v[0]|| = 1
6: repeat
7: v′[t]← Σ̂v[t]
8: v′′[t]← v′[t]−∑k−1

l=1 λ̂l(v
′[t]T ŵl)ŵl

9: v[t+ 1]← v′′[t]
‖v′′[t]‖

10: t← t+ 1
11: until t > tmax or ‖v[t+ 1]− v[t]‖ ≤ δ
12: λ̂k ← ‖v′[t]‖

‖v[t]‖
13: ŵk ← v[t+ 1]
14: until k = q
15: return {ŵk, λ̂k}, 1 ≤ k ≤ q

Distributed implementation

We detail in the following how the different steps of Algorithm 7 can be achieved in a dis-
tributed manner. An important parameter of the procedure is the radio communication
range of the sensor nodes, which causes a tradeoff between the accuracy of the eigendecom-
position and the communication costs incurred. More specifically, the proposed procedure
requires to assume that entries σ(i,j) of the covariance matrix Σ are zero if sensor nodes
i and j cannot directly communicate with one another. This assumption, called the local
covariance hypothesis, entails an approximation of the covariance matrix. A special case
arises when all sensors can communicate with one another, in which case the accuracy of
the eigendecomposition is as good as the centralized version. As the number of sensor nodes
not in communication range increases, this accuracy is likely to decrease. The set of sensor
nodes with which a node i can directly communicate is denoted Ni, and is called the neigh-
borhood of sensor node i. In the case where all sensor nodes can communicate directly with
one another, we have Ni = S \ i. We also assume that in a neighborhood, radio links are
symmetric, i.e., that if sensor node i receives data from node j, then sensor node j receives
data from node i:

j ∈ Ni ⇒ i ∈ Nj .
The summary of the different steps of the procedure are given in Algorithm 8, whose
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structure is the same as Algorithm 7 for clarity. The details of the main steps are given
below.

• Inputs: Before running the power iteration method, each sensor has locally computed
estimates of the covariances between its measurements and the measurements of sensor
nodes in its neighborhood Ni. These estimates can be obtained by an initialization
stage where each sensor node i broadcasts its measurement at each epoch, and receives
the measurements collected by the set of sensors j ∈ Ni. Using the recursive formu-
lation of Equation (5.13), each sensor i can update over time the quantities rj and
r(i,j) for j ∈ Ni, and get after N epochs estimates of the covariances σ̂(i,j) between
its measurements and the measurements of the sensor nodes of its neighborhood. The
σ̂(i,j) of j /∈ Ni are assumed to be null (local covariance hypothesis). The parameters
tmax, δ and q are provided by the observer.

Algorithm 8 PIM_DPCA - Distributed implementation of the power iteration method

Input:
σ̂(i,j), ∀j ∈ Ni: Each sensor i locally has estimates of the covariances between its measure-
ments and those of its neighbors j ∈ Ni.
tmax: Maximum number of iterations.
δ: Minimum increment for v[t].
q: Number of pairs of eigenvectors and eigenvalues to estimate.

Output:
{ŵk, λ̂k}, 1 ≤ k ≤ q are distributed in the network.

1: k ← 0
2: repeat
3: k ← k + 1
4: t← 0
5: ∀i node i is initialized with a vi[0] = 1√

S
6: repeat
7: Nodes exchange locally their vi[t], and compute v′[t] = Σ̂v[t] in parallel
8: {(v′[t]T ŵl)}1≤l≤k−1 are computed by the aggregation service, v′′[t] is updated
9: ‖v′′[t]‖ is computed by the aggregation service, v[t+ 1] is updated

10: t← t+ 1
11: until t > tmax or ‖v[t+ 1]− v[t]‖ ≤ δ
12: λ̂k ← ‖v′[t]‖

‖v[t]‖
13: ŵk ← v[t+ 1]
14: until k = q

• Step 5: Initialization of v[0]: A convenient initialization is to set vi[0] = 1√
S
, so

that ||v[0]|| = 1.

• Step 7: Computation of v′[t] = Σ̂v[t]: This computation, which corresponds to the
distributed version of step 7 in Algorithm 7, is performed in parallel. This means that
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each sensor i only computes the i-th element v′i[t]

v′i[t] =
S∑

j=1

σ̂(i,j)vj [t]

of the vector Σ̂v[t]. As we made the assumption that

∀i ∈ {1, . . . , S} , ∀j 6∈ Ni , σ̂(i,j) = 0

the sum can be simplified
v′i[t] =

∑

j∈Ni

σ̂(i,j)vj [t].

In order to compute this sum, each node i broadcasts at each epoch its own vi[t], and
receives the vj [t] of the sensor nodes in its neighborhood Ni.

• Step 8: Orthogonalization v′′[t]← v′[t]−∑k−1
l=1 (v′[t]T ŵl)ŵl : Let us first consider

the scalar products {v′[t]T ŵl}1≤l≤k−1

S∑

i=1

v′i[t]ŵ(i,l)

with 1 ≤ l ≤ k − 1. These products can be computed by the aggregation service, by
means of the following primitives





init(v′i[t]) = 〈(v′i[t]ŵ(i,1), v
′
i[t]ŵ(i,2), . . . , v

′
i[t]ŵ(i,k−1))〉

f(〈X〉, 〈Y 〉) = 〈X + Y 〉
e(〈X〉) = X.

The resulting k − 1 scalar products {v′[t]T ŵl}1≤l≤k−1 are communicated back from
the base station to all the sensors. Each sensor node i can then locally update the i-th
element

v′′i [t]← v′i[t]−
k−1∑

l=1

λ̂l(v′[t]T ŵl)ŵ(i,l)

of v′′[t] (cf. Equation (5.17)) as it locally has the elements v′i[t], λ̂l and ŵ(i,l).

• Step 9: Orthonormalization v[t + 1] = v′′[t]
||v′′[t]|| : The computation of the norm

||v′′[t]|| can be done by an aggregation service using the following primitives:




init(v′′i [t]) = 〈(v′′i [t]2)〉
f(〈X〉, 〈Y 〉) = 〈X + Y 〉

e(〈X〉) =
√
X.

The norm is then communicated back from the base station to all sensor nodes, which
can locally compute the i-th element vi[t+ 1] = v′′i [t]

||v′′[t]|| .

These different steps are synthesized graphically in Figure 5.7.
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Figure 5.7: Summary of the different steps of the DPCA procedure.

Communication and computational costs

We analyze here the costs related to the computation of the covariance matrix and its
distributed eigendecomposition.

Highest network load:

• For the covariance matrix, each update of the covariances σ̂(i,j), j ∈ Ni, requires a
node i to send one packet (its measurement) and to receive |Ni| packets (its neighbors’
measurements). Assuming that N updates are applied to get an estimate of the
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covariance matrix, the network load sustained by a node i amounts to

LCovdist
i = N |Ni|. (5.19)

Let i∗N be the node that has the largest number of neighbors, i.e., i∗N = arg maxi |Ni|.
The highest network load is therefore

LCovdist
max = N |Ni∗N |. (5.20)

• For the power iteration method, the number of packets processed by a node i during
an iteration is the sum of the packets processed during the following stages

– Measurement broadcast : One transmission and |Ni| receptions.
– Normalization stage: It implies one action of type A and one action of type F.

– Orthogonalization stage: It implies k − 1 actions of type A and F respectively,
where k is the index of the principal component computed.

Let tconv(k) be the number of iteration for the convergence of the computation of the
k-th eigenvector. The network load sustained by node during for the computation of
q components is therefore

LEVdist
i =

q∑

k=1

tconv(k)( Sum for all PCs from 1 to q

1 + |Ni| Measurement broadcast
+LAi + LFi Normalization
+(k − 1)(LAi + LFi )) Orthogonalization

=
q∑

k=1

tconv(k)(1 + |Ni|+ k(LAi + LFi )).

Given that LAi = |Ci|+ 1 and LFi = 1 + 1(|Ci| 6= 0), the network load can be expressed
as

LEVdist
i =

q∑

k=1

tconv(k)(1 + |Ni|+ k(|Ci|+ 2 + 1(|Ci| 6= 0)). (5.21)

The highest network load for the computation of the q first principal components
amounts to

LEVdist
max = max

i

q∑

k=1

tconv(k)(1 + |Ni|+ k(|Ci|+ 2 + 1(|Ci| 6= 0)). (5.22)

Computational and memory costs: For the computation of covariances, the updates
of rj and r(i,j) demand a number of operations proportional to the neighborhood size |Ni|
(cf. Equation (5.13)). Let i∗Ni

= arg maxi |Ni|. The highest computational cost therefore
is in O(N |Ni∗N |). In terms of memory requirement, it is in O(|Ni∗N |), i.e., the number of
covariance values that the node locally computes.

Regarding the power iteration method, the cost of the computation of Σ̂v[t] is in O(|Ni|)
for the sensor node i. The cost of the orthogonalization step is in O(k|Ci|) and the cost of the
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normalization step is in O(1). The overall highest computational cost therefore amounts to
O(tmax(q2|Ci∗C |+q|Ni∗N |)). Regarding memory costs, each node i needs to maintain variables
for storing its local w(i,k) and its neighbors parameters vj , j ∈ Ni. The complexity of the
highest memory cost is therefore O(q + |Ni∗N |).

5.5 DCPC accuracy and network load

The distributed computation of the principal components (DCPC) aims at reducing the
communication and computational costs of the centralized eigendecomposition approach.
In most cases, the approach however entails a loss of accuracy in the computation of the
eigenvectors and eigenvalues. The following provides an analysis of the tradeoffs implied by
the distributed approach.

Accuracy

A loss of accuracy is likely to occur for the following reasons. First, the local covariance
hypothesis entails in most cases an approximation of the covariance matrix. Second, the
power iteration method is less exact than more exact eigendecomposition method such as
QR method [42, 28], particularly when the number of eigenvectors to compute becomes
large.

Let Σ̂ be the centralized estimate of the sample covariance matrix, and Σ̂′ be the estimate
obtained using the local covariance hypothesis. The centralized estimate is computed on the
basis of N vectors of measurements s[t], 1 ≤ t ≤ N . It is assumed that the number
of collected measurements is sufficient to provide a good approximation of the covariance
matrix. The covariance structure of the measurements is furthermore assumed to be stable
over time. The PCAg is not adapted to scenarios where these conditions cannot be met.

If the local covariance hypothesis is satisfied, the estimate Σ̂′ obtained by the distributed
procedure equals the centralized estimate Σ̂. In the general case however, the hypothesis
is not satisfied. Σ̂′ hence becomes an approximation of Σ̂, where all entries σ̂(i,j) for which
j /∈ Ni are set to zero.

Pseudo covariance matrix: Failure to satisfy the local covariance hypothesis can lead
to an approximation Σ̂′ that does not have the geometric structure of a covariance matrix.
Such matrices are called pseudo covariance matrix [77]. Consider for example the case of
three sensor nodes i, j and k whose measurements have unit variance and are perfectly
correlated. Let us further assume that i can communicate with j and k, but that j and k
cannot communicate with one another, as illustrated in Figure 5.8. Perfect correlation of i,
j and i and k implies that j and k are also perfectly correlated. By setting the entry σ̂′(j,k)

to zero, the matrices Σ̂ does not represent a valid covariance structure anymore.
It can be shown that a sufficient and necessary condition for a matrix to be a covariance

matrix is that all its eigenvalues are positive or null. Such matrices are called positive semi
definite (PSD). The issue of a non PSD estimate of a covariance matrix commonly arises
when the covariance matrix is estimated from data with missing measurements for example.
The problem is extensively discussed in [77], where different approaches are reviewed to
transform the estimated matrix in such a way that it becomes PSD. These approaches
however work in a centralized manner.
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Figure 5.8: The local covariance hypothesis can lead a group sensor nodes with strongly
correlated measurements to give a pseudo covariance matrix if some of the nodes are not in
radio range.

We identify that one of these approaches, called the eigenvalue approach, could however
be adapted to the DCPC. The rationale of the eigenvalue approach consists in computing
the eigendecomposition of Σ̂′. Denoting by w′ and λ′ the eigenvectors and eigenvalues of Σ̂′,
we have

Σ̂′ =
S∑

k=1

λ′kw
′
kw
′T
k . (5.23)

The transform consists in removing the contributions with negative eigenvalues from the
sum in (5.23), which gives by definition a PSD matrix.

A property of an eigenvector wk with a negative eigenvalue λk is that the sign of all the
elements Σwk is the opposite of the sign of the elements of wk, as by definition Σwk = λkwk.
In the power iteration method, a test can be added after the convergence at step 12 in
Algorithm 8 to check whether the eigenvalue is negative. The test could consist in simply
comparing the sign of the value of the first element of v[t] to that of v[t+1]. In order to make
the test more robust, we suggest averaging this comparison over all elements by computing

sign(
S∑

i=1

sign(vi[t]vi[t + 1])) (5.24)

where sign(x) is a function

sign : R → {−1, 0, 1}

x 7→




−1 if x < 0
0 if x = 0
1 if x > 0.

The DCPC procedure is therefore stopped if Equation (5.24) returns −1, as all the remaining
eigenvalues are assumed to be null. This way, the transform of a non PSD estimate Σ̂′ in a
PSD matrix is done via the power iteration method itself.
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Impact on the principal components accuracy: The use of the power iteration
method inevitably leads to approximation errors in the computation of the eigenvectors
and eigenvalues. The accuracy depends on the criterion δ and tmax chosen to stop the iter-
ative sequence in Algorithm 6. The speed of convergence of the algorithm depends on the
ratio of the two main eigenvalues, and is quick when these are well separated (see Appendix
C). In practice, from our experiments, a maximum of 10 iterations were observed to provide
good approximations.

In cases where eigenvalues are close, the convergence speed can be much slower. This
issue is however not critical, as the purpose of the DCPC is not to find the exact eigen-
vectors, but to find a basis of vector able to represent the collected measurements. Close
eigenvalues indicate that the corresponding eigenvectors have a similar ability to represent
the measurements. In such cases, the convergence time is slow to reach the eigenvector
whose eigenvalue is truly the highest, but the PIM however quickly converges to a linear
combination of the eigenvectors whose eigenvalues are among the highest. This means that,
even if the vector obtained by the PIM before convergence is not close to the true main
eigenvector, the vector obtained is effective for approximating the measurements.

The approximation of the covariance matrix resulting from the local covariance hypoth-
esis leads to more serious discrepancies between the true and estimated eigenvalues and
eigenvectors. In particular, using an approximated covariance matrix that does not reflect
the true covariance structure of the sensor measurements inevitably leads to the identifica-
tion of a vector basis that does not optimally capture the correlations. As of now, we can
only provide some intuition about the fact that the vectors obtained by the DCPC are a
best guess, given the lack of information entailed by the local covariance hypothesis. This
intuition is supported by the following arguments.

Information on some of the covariances is still better than no information at all. The
basis computed by the PIM is suboptimal, but consistent with the information available
about the covariance structure. In particular, it may lead to use several vectors to represent
a subspace that could have been representing by only one vector. This is for example the case
if a group of sensor nodes have highly correlated measurements, but that the communication
links prevent one subset to communicate with another subset of sensors in this group. Two
basis vectors are therefore required to represent the measurements, whereas just one would
have been enough if all the sensors in the group were all able to directly communicate.

Such a neat separation is however unlikely in practice. A more realistic situation is that
some correlated sensors cannot communicate with one another, but that the correlation
existing between their measurements appear indirectly in the incomplete covariance matrix.
More precisely, as in the example of Figure 5.8, the assumption that σ(j,k) is zero makes the
incomplete covariance matrix not PSD. An interesting point is that the transform, using
the early stopping of the PIM as described above by ignoring eigenvectors with negative
eigenvalues, actually makes it PSD, in such a way that an amount of covariance is assumed
between these two sensors. Further theoretical work is needed to support these arguments.
We could only test the validity of the approach by means of simulations, and the results
obtained are encouraging. This will be the subject of Chapter 6.

Network load

Table 5.2 summarizes the highest network loads entailed by the centralized and distributed
approach for the computation of the covariance matrix and its eigendecomposition (Equa-
tions (5.14), (5.15), (5.20) and (5.22)). In order to better put into evidence the tradeoffs
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between the different approaches, the orders of magnitude of these HNLs are also reported.

Details of the highest Network load Order of magnitude
Centralized
Covariance LCovcent

max = N(2S − 1) ∼ O(NS)
Eigenvectors LEVcent

max = 2qS ∼ O(qS)
Distributed
Covariance LCovdist

max = N |Ni∗N | ∼ O(N |Ni∗N |)
Eigenvectors LEVdist

max = maxi
∑q

k=1 tconv(k)(1 + |Ni| ∼ O(tmax(q2|Ci∗C |+ q|Ni∗N |))
+k(|Ci|+ 2 + 1(|Ci| 6= 0))

Table 5.2: Summary of the highest network loads entailed by the centralized and distributed
approach for the computation of the covariance matrix and its eigendecomposition.

The main advantage of the distributed approach is that the HNLs do not depend on
the number of sensor nodes S. The distributed computation of the covariance matrix can
lead to significant communication savings, particularly if the network size is large. If the
local covariance hypothesis is satisfied, the distributed approach reduces the HNL by a factor
S
|Ni∗N

| with no loss in accuracy. However, as discussed above, the hypothesis is rarely satisfied

in practice, and therefore the gains in HNL come at the cost of an approximation of the
sample covariance matrix.

The distributed computation of the eigenvectors causes a network load that increases
quadratically with the number of PCs to compute. This quadratic increase is due to the
orthogonalization stage, which implies that the computation of the k-th PC requires the
transmission of k−1 aggregates containing the scalar products of the k-th PC with the k−1
PCs previously computed. As a result, the distributed approach can reduce the network load
for the computation of a low number of PCs, but is not appropriate for computing a large
number of PCs. The maximum number of iteration tmax emphasizes the relationship between
the accuracy of the distributed approach and the network load incurred. More precisely, the
power iteration method provides a way to get approximations of the eigenvectors, and the
accuracy of these approximations depends mainly on the number of iterations that are
carried out. Each iteration however involves some communication, and there is therefore
a tradeoff between accuracy and network load. In all our experiments, 10 iterations were
enough for providing good approximations, as will be detailed in Chapter 6.

Finally, the HNLs entailed by the distributed approaches depend on two network de-
pendent quantities, namely the largest neighborhood size |Ni∗N | and the largest number of
children |Ci∗C | in the routing tree. It is worth mentioning that some networking techniques
can be used to modify these quantities. These will be addressed in our future work in
Chapter 7.

5.6 Summary

The PCA provides a powerful way to compress data, and to extract information from sen-
sor network data. This chapter first described a distributed approach called PCAg which
computes the principal component scores along a routing tree. The procedure provides vary-
ing compression accuracies, and balances in a more even manner the network loads among
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sensors. The use of this approach requires an initialization stage, for which a distributed
procedure was investigated. This procedure is based on the hypothesis that distant sensors
have uncorrelated measurements. It can lead to communication savings when the number
of PCs required is low, but can lead to accuracy loss if the local covariance hypothesis is not
satisfied.
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Chapter 6

Experimental Evaluation of the
Distributed Principal Component
Analysis

In this chapter, we present a set of experimental results which illustrate the tradeoffs between
accuracy and network load with the DPCA. We rely on two data sets for our experiments.
The first one consists of artificial measurements which simulate the appearance and disap-
pearance of three different spatial patterns in a monitored environment. Its use is motivated
by the fact that (i) it illustrates the possible use of DPCA for approximation and classifi-
cation applications, and (ii) it makes the interpretation of the results easier as the dynamic
of the measurements is known. The second data set consists in real world temperature
measurements, obtained from a network of 52 sensors which was deployed at the Intel Lab-
oratory of Berkeley in 2004 [39]. This data set is used to validate, on real-world data, the
results obtained on the artificial data set.

The first section of this chapter details how the network is simulated in order to assess
the network loads entailed by the DPCA. The next two sections report the results for the
artificial and the real-world data sets, respectively. The same structure is used in both
sections, and consists of 5 parts:

• First, we assess the ability of the PCA to properly represent the measurements with a
small number of components. This part only focuses on the data, and is independent
of network considerations. The full covariance matrix is considered.

• Second, we assess the tradeoff between accuracy and network load for the PCAg. This
part involves the simulation of different network topologies in order to estimate the
network loads caused by the PCAg when the routing tree changes. The results are
compared with the default data collection scheme.

• Third, we assess the ability of the power iteration method (PIM) to compute the
eigenvectors of a covariance matrix. This part focuses on accuracy criteria, and mainly
aims at determining experimentally the convergence speed of the method. The full
covariance matrix is used.

• Fourth, we assess the ability of the PCA to represent the sensor measurements when the
local covariance hypothesis is applied. This part again only focuses on data accuracy,
and aims at studying the loss of accuracy entailed by the local covariance hypothesis.
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• Finally, we provide an experimental evaluation of the network loads caused by the
computation of the eigenvectors, for both the centralized and the distributed approach.

6.1 Network simulation

Our aim in this chapter is to provide a preliminary analysis of the ability of the DPCA to
capture information from sensor network data. We rely for these experiments on a simple
network model, which allows us to focus on data related performance criteria. In terms of
sensor networking, we assume that the sensor nodes can communicate if they are within a
distance r of one another, and that they are connected to the base station by means of a
routing tree. The root node is defined as the closest node to the base station. The tree is
then built by iterating the two following steps. First, the set of all nodes within a distance r
of the nodes already connected is selected. Second, these nodes are connected to the routing
tree in such a way that the number of hops between them and the base station is minimized.
The procedure stops when all nodes are connected.

Figure 6.1 gives an illustration of a network of 9 nodes arranged in a grid, where the
communication range is such that all nodes connected by dashed lines can communicate.
The sensor node 9 takes the role of the root node. Then, sensor nodes 8 and 6 connect to
sensor 9. The terms parent and children will be used to refer to the relative places of the
sensor nodes in the tree. In this example, sensor 9 is the parent of sensors 8 and 6, and
sensors 8 and 6 are the children of sensor 9. If multiple parents are possible for a node, one
of them is chosen arbitrarily. This is the case at step three for example, where sensor 5 can
choose sensor 6 or 8 as its parent. Finally, at the fifth step, all nodes are connected. For the
sake of the analysis, we will assume that transmissions and receptions are error-free, and
that the tree topology remains the same over time.
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(b) Step 2: Nodes 8
and 6 join.
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and 7 join.
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(d) Step 5: All nodes
are connected.

Figure 6.1: Steps of the construction of the routing for a network of 9 sensor nodes arranged
in a grid. The radio range is such that all nodes connected by dashed lines can communicate.

In our experimental results, we rely on the analyses carried out in Sections 5.3 and 5.5
to estimate the accuracy and network loads of the different approaches. In particular, the
accuracy of the PCAg is assessed using the NMSE criterion (Equation (5.2)), and the highest
network loads are quantified using formulas summarized in Tables 5.1 and 5.2. The analysis
of the role of the neighborhood size |Ni| and of the number of children |Ci| of the node in
the network loads will be studied by varying the radio range r of the sensors.
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6.2 Illustrative scenario - Image data set

The data used for this first set of experiments is motivated by the following scenario. Let
us assume a grid of sensors that monitors an environment in which different types of phe-
nomena may occur. This could be for example vibration sensors embedded in a bridge,
recording the vibration patterns provoked by passing vehicles, or temperature sensors on an
engine, recording its heat patterns over time. In both cases, it can be assumed that similar
measurement patterns are expected to occur over time. In the former case, these would
correspond to the set of vehicles that may cross the bridge, e.g. cars, trucks or coaches. In
the latter case, the engine is likely to work in a finite set of regimes.

By relying on the analogy between a camera and a grid of sensors monitoring a phe-
nomenon in an environment, the set of measurements collected by the sensor field at a given
time instant can be seen as an image. We therefore create the following data set, where the
spatiotemporal phenomenon monitored consists in the cyclic appearance and disappearance
of three images. They visually corrrespond to the letters “W”, “S” and “N”, see Figure 6.2.
The size of the images is of 100 ∗ 100 pixels.

An appearance/disapperance cycle is 20 epochs long, starting from a monochrome image,
increasing in contrast until the 10th epoch, and then decreasing in contrast until total
disappearance. The letters as seen in Figure 6.2 are maximum contrast images, presented
at the 10-th epoch of a cycle. 30 cycles were generated, in which the three letters appear
cyclically in the same order, thus yielding a data set of 600 observations for 100 sensor nodes.

Figure 6.2: Three different phenomena, that appear and disappear in the sensed environ-
ment.

Four different levels of Gaussian noise with variance σn are added to this sequence of
600 observations. Denoting by σs the variance of the sensor measurements in the data set,
the noise variance is computed with σn = σs

SNR , where SNR stands for signal-to-noise ratio.
The SNR values are set to infinity (no noise), 5, 1 and 0.5, which finally yields a set of four
data sets which are referred to as SNRinf, SNR5, SNR1 and SNR05, respectively.

The simulation involves a grid of 10 ∗ 10 sensors, uniformely distributed over the envi-
ronment, capturing the average intensity of the pattern at their location (i.e. the average
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of the 10 ∗ 10 pixels square surrounding each sensor). An illustration of the corresponding
discretization ouput is given in Figure 6.3, where the appearance and disappearance of each
pattern is illlutrated for the data sets SNRInf and SNR1, for epochs 4, 7, 10, 13, 16 and 19.
The distance between adjacent sensors is arbitrarily set to 10 meters.

t=4 t=19t=7 t=10 t=13 t=16

W

S

N

t=24

t=44

t=27 t=30 t=33 t=36 t=39

t=47 t=50 t=53 t=56 t=59

(a)

t=4 t=19t=7 t=10 t=13 t=16

W

S

N

t=24

t=44

t=27 t=30 t=33 t=36 t=39

t=47 t=50 t=53 t=56 t=59

(b)

Figure 6.3: The patterns “W”, “S” and “N” appear in turn, a during a cycle. An appear-
ance/disapperance cycle is 20 epochs long, starting from a monochrome image, increasing
in contrast until the 10th epoch, and then decreasing in contrast until total disappearance.
(a) No noise (SNRInf). (b) Signal to noise ratio is one (SNR1).

Principal component aggregation

The first results we present aim at illustrating the ability of the principal component aggre-
gation to retain the signal of interest. More precisely, the questions addressed are

• How much information can the principal components retain?

• How can this amount of information be assessed?
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Figure 6.4: Estimation of the proportion of retained variance for different numbers of prin-
cipal components and different SNRs. Solid and dashed lines represent the empirical and
10-CV estimates, respectively.

The amount of information that can be retained depends on the number of components
used, and on the signal to noise ratio. The higher the number of components, the higher the
amount of information retained. Similarly, the higher the signal to noise ratio, the higher
the amount of information retained. This is illustrated in Figure 6.4. All the curves mono-
tonically increase, as increasing the number of principal components necessarily increases
the amount of information retained. We also observe that when the SNR increases, the
amount of information retained increases as well.

The amount of information retained is assessed in terms of proportion of retained variance
(cf. Section 5.3). In this data set, each vector of observations is a linear combination of
one of the three patterns “W”, “S” or “N” and some white noise. Therefore, three variables
completely capture the pattern of interest, and the remaining information is noise. This
explains the change in the shapes of the curves from the fourth principal components. The
linear trend observed from this point indicates that there is no preferential subspace for
representing the variations, as they are white noise.

The solid and dashed lines differentiate the estimated proportions of retained variance,
using all the data (solid, the whole 600 images are used to compute the PCs) and using
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Figure 6.5: Approximation with 1, 2, 3, 5, 10 and 100 principal components for a pattern
as sensed at the 10-th epoch of a cycle. The SNR is 1. 100 PCs gives the original set of
measurements. Note that the PCA allows to filter noise (optimally for 3 PCs).

10-CV (dashed, only 60 images used, estimation averaged over 10 sets of 60 images). The
10-CV estimates simulate the fact that in the PCAg, the set of data used for finding the
principal components is different from the data on which the PCAg is then applied. As a
result, they give more realistic estimations of the expected proportions of retained variance
in the application of the PCAg in real settings. We note that the differences between the
empirical and the 10-CV estimations increase as the SNR decreases. This results from the
poorer estimation of the eigenvectors as the amount of noise in the data increases.

Examples of the reconstruction obtained for the three patterns “W”, “S” and “N” for
one, two, three, five, ten and all PCs are given in Figure 6.5. Relying on the three first
PCs provides the best reconstruction of the patterns of interest. Using less components
gives an approximated, compressed reconstruction of the original patterns, whereas using
more components is undesirable as they recover the noise. This first example illustrates the
use of the PCA for (i) compression: the PCA successfully represents the signal of interest
with three variables instead of one hundred, and (ii) noise filtering: as a by-product of
compression, part of the noise is removed from the raw data collected by sensors.

As mentioned in Section 2.2.4, the PCA is also useful for transforming inputs in predic-
tion tasks in order to improve the accuracy of a learning task. We illustrate this by means
of a pattern recognition task which consists in determining the type of pattern recorded by
the sensor field at a given time instant.

Using the terminology of Section 2.2.1, the classification task is formulated as follows.
The inputs are vectors of size k, which correspond to the projections of the set of measure-
ments on the first k PCs. The output domain is the set {W,S,N}. The method used for
learning the relation between inputs and outputs is the lazy learning [1, 6], which is a local
learning technique that automatically selects the number of neighbors to use (cf. Section
2.2.3). The classification accuracies obtained for different numbers of PCs for the data set
SNR5, SNR1 and SNR05 are reported in Figure 6.6. The accuracies are given in terms of
percentage of correct classifications, and are assessed with a 10-fold cross validation.
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Figure 6.6: Classification accuracies in a pattern recognition task aimed at recognizing, using
the PC scores, which pattern “W”, “S” or “N” is sensed by the network. 2 PC scores suffice
to get almost perfect classification. The data set is SNR1.

Two PCs provide similar classification accuracies as three PCs (t-test, p < 0.05). This is
an interesting result, as it shows that even if the subspace that contains the signal is of size
3, the classification accuracy is actually as good with only two components. The difference
in accuracy between the use of one and two principal components is however important (less
than 75% with one PC for about 95% of correct classifications with two PCs with SNR1 for
example).

True class W S N
Prediction W 112 11 30

S 82 189 33
N 6 0 137

(a) Confusion matrix for SNR1, with 1 PC.

True class W S N
Prediction W 185 6 0

S 15 192 14
N 0 2 186

(b) Confusion matrix for SNR1, with 2 PCs.

Figure 6.7: Confusion matrices of the classification for SNR1 using 1 and 2 PCs.

The confusion matrices of the classifications using 1 and 2 PCs for the datset SNR1 are
detailed in Tables 6.7(a) and 6.7(b). With only one PC, most of the classification errors are
related to the confusion between the patterns “W” and “S”. It can be seen in Figure 6.5 that
these two patterns are indeed very similar when projected on the first PC. However, given
the difficulty of the task, these results are impressive. Figure 6.5 gives the reconstructions
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obtained at the 10-th epoch, when the contrast is the highest. Figure 6.3(b) gives an idea of
the amount of noise present when the SNR is 1. For example at the fourth epoch, it is very
difficult to distinguish the different patterns, and the PCA allows it. Finally, it is interesting
to note that using more than 3 PCs actually decreases the classification accuracy (Figure
6.6). Therefore, collecting more data is not necessarily a way to improve a classification
task. This is a result of the bias/variance tradeoff presented in Section 2.2.1.

Communication costs of the PCAg

In the following, we investigate how the PCAg can reduce the communication costs. Follow-
ing the analysis of Section 5.3, the main metric used is the highest network load, defined in
Table 5.1 for the D (default) and A (aggregation) actions. The PCAg reduces the highest
network load if (cf. Equation (5.9))

q(|CiC∗ |+ 1) < 2S − 1

where q is the number of PCs used, |CiC∗ | is the largest number of children that a node has
in the routing tree, and S is the network size.
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Figure 6.8: Highest network load for D, A and F actions, as a function of the largest number
of children existing in the routing tree.

In the case of a D action, the highest network load is 2S − 1 = 199, and is reported by
the black solid line in Figure 6.8. For A actions, the highest network load is reported by the
red dashed lines, which show the linear dependency of the load on the number of children.
The circle, square and diamonds symbols are used to quantify the network loads for the
aggregation of 1, 3 and 5 principal components, respectively.

Finally, the green dotted lines quantify the highest network loads for F actions, which
consist in providing all the sensors with an information issued by the base station. We
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included them in the same figure to give a sense of their costs compared to D and A actions.
Feedback actions do not depend on aggregation, and are therefore independent of the strat-
egy used for aggregating data. As detailed in Section 5.3, we assume that their costs was 1
for leaf nodes in the routing tree, and 2 for other nodes (as leaf node do not need to transmit
data since that they do not have children). In terms of highest network load, the cost of
feedback actions is low compared to A and D actions. Indeed, the maximum is 2 for one F
action, or 6 for 3 F actions. Similarly to A actions, circle, square and diamonds symbols are
used to quantify the load for the feedback of 1, 3 and 5 piece of data, respectively.

The main interest of this figure is to compare the communication costs of D and A
actions. In the present scenario, only 3 PCs suffice to represent the signal of interest. The
computation of 3 PCs requires 3 A actions, and therefore the aggregation scheme is much
more efficient than the default data gathering scheme. Indeed, a D action implies to retrieve
the measurements from one hundred nodes at the base station. The figure illustrates that
aggregation is truly efficient.

Given the linear dependency of the network loads with respect to the number of PC
scores and the number of children (cf. Equation (6.2)), it is easy to extrapolate this figure
to other scenarios. For example, with an upper bound of 18 children in the routing tree,
the aggregation of up to ten PC scores would still be more efficient than the default scheme
(10 ∗ (18 + 1) < 199).
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Figure 6.9: Routing trees obtained using a shortest path metric. Increasing the radio rage
typically increases the number of children in the routing tree. (a) The radio range is of 15
meters, and the maximum number of children is 3. (b) The radio range is of 45 meters.
A slight jitter is added to the sensor positions to help visualize the connections between
aligned nodes. The maximum number of children is 18 (root node).

We illustrate in Figure 6.9(a) and 6.9(b), using the shortest path metric (cf. Section
6.1), examples of routing trees obtained with a radio range of 15 meter and 45 meters,
respectively. With a radio range of 15 meters for example, the maximum number of children
is 3. Increasing the radio range typically increases the number of children in the routing
tree. For a radio range of 45 meters, the largest number of children is 18 (root node).

117



Distributed computation of the PCs

This section investigates the accuracy of the distributed power method for computing the
principal components. Two main criteria are considered: speed of convergence and normal-
ized mean squared error (NMSE). The speed of convergence is an important factor as each
iteration of the power method is expensive in terms of communication. The NMSE is defined
as the average squared error on the reconstructed samples normalized with the variance of
the associated samples, cf. Equation (5.1), and is used to quantify the accuracy of the esti-
mated eigenvectors. The computation of eigenvectors is a difficult algebra problem, and the
result obtained with the PIM are compared to the QR algorithm, considered as one of the
most accurate technique to compute the eigendecomposition of a matrix [91]. The NMSE
of the QR and PIM methods are denoted QR NMSE and PIM NMSE, respectively.

For the PIM method, we define the speed of convergence (Time conv) as the number
of iterations needed by the PIM to estimate an eigenvector. The convergence criteria used
by the PIM are the maximum number of iterations tmax or a bound δ on the difference
‖v[t+ 1]− v[t]‖ (cf. Algorithm 5.4). In the following experiments, the bound on the norm
is set at 10−3, and two maximum numbers of iterations of 50 and then 10 are assessed,
respectively. All results are assessed by means of a 10-CV.

Convergence speed and accuracy are computed for the four data sets SNRInf, SNR5,
SNR1 and SNR05. The results for SNRInf and SNR1 are reported in Figure 6.10 and 6.11,
respectively, and the results for SNR5 and SNR05 are in Appendix D. The conclusions that
can be drawn are summarized by the following observations.

tmax = 50
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE 0.618 0.271 0.000 0.000 0.000
PIM NMSE 0.618 0.271 0.000 0.000 0.000
Time conv 38.000 34.600 2.000 49.900 49.700
tmax = 10

1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE 0.618 0.271 0.000 0.000 0.000

PIM NMSE 0.620 0.312 0.000 0.000 0.000
Time conv 10.000 10.000 2.000 10.000 10.000
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Figure 6.10: Comparison of the QR and PIM methods in terms of NMSE. The table (left)
gives the NMSE for one up to five PCs, and the convergence times for the PIM method. The
right figure gives a visual plot of the NMSE for the QR method. The data set is SNRInf,
therefore 3 PCs allow to represent all the variations.

• A maximum number of iterations of 50 is enough for the power iteration method to
converge (Estimated NMSEs are almost equal between QR and PIM). Reducing this
bound to 10 implies that the convergence may not be reached. This is the case for
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tmax = 50
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE 0.859 0.722 0.615 0.608 0.602
PIM NMSE 0.859 0.722 0.615 0.608 0.602
Time conv 41.300 36.700 4.800 47.900 46.700
tmax = 10

1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE 0.859 0.722 0.615 0.608 0.602

PIM NMSE 0.862 0.744 0.615 0.608 0.602
Time conv 10.000 10.000 5.200 10.000 10.000
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Figure 6.11: Comparison of the QR and PIM methods in terms of NMSE. The table (left)
gives the NMSE for one up to five PCs, and the convergence times for the PIM method.
The right figure gives a visual plot of the NMSE for the QR method. The data set is SNR1,
and therefore the variations remaining from the fourth PC are noise.

the computation of the first and second PC for example. In such case, the NMSE is
greater for the PIM than for the QR method. The computation of additional PCs can
however allow to obtain a basis as good as the set of eigenvectors computed by the
QR method. This is observed here as the computation of the third PC gives a basis
whose NMSE equals the QR NMSE.

• The speed of convergence depends on the ratio of the eigenvalues. The three first PCs
carry similar a amount of information, and therefore have similar eigenvalues. From
the fourth PCs, eigenvalues quantify the noise, and there is therefore a high difference
between the third and fourth eigenvalues. This explains why the convergence time of
the third PC is much lower.

• As discussed in Section 5.4, the PIM method may be slow at converging to the best
eigenvector when eigenvalues are not well separated. It however quickly converges to
a subspace formed by the eigenvectors whose eigenvalues are close. This is what really
matters in the PCA, as the goal is to find vectors that characterize the subspace where
eigenvalues are the highest. Therefore, the PIM NMSE is close to the QR NMSE even
with an early stopping of the procedure with tmax = 10, and can “catch up” with the
QR method when more PCs are computed. For all data sets (Figures 6.10 and 6.11,
as well in in Appendix D), the PIM NMSE is the same as the QR NMSE for 3 PCs.

Local covariance hypothesis

This section discusses the loss of accuracy caused by the local covariance hypothesis. We
simulated the use of this hypothesis by setting the radio range r at 15, 40 and 70 meters,
and by setting to zero the covariance of all sensors that were more than r meters away. With
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r = 15, each node can only communicate with its eight immediate neighbors in the sensor
grid.

Figure 6.12(a) gives a graphical representation of the full covariance matrix for SNRInf.
The sensor nodes are identified by their location in the sensor grid, cf. Figure 6.9. The
covariances are normalized between 0 and 1 and represented by gray levels. The blocks
appearing in this representation are explained by the two following reasons. First, sensors
close geographically are not necessary next to each other in this graphical representation.
Given the ordering of sensors in Figure 6.9, sensors 1 and 11 are close, but separated by
ten units in the figure. Second, the monitored phenomenon is not perceived by some of the
sensor nodes on the sides of the network, which makes their covariances with other sensors
null.

Sensor 1

Sensor 1 Sensor 50 Sensor 100

Sensor 50

Sensor 100

(a)

Sensor 1

Sensor 1 Sensor 50 Sensor 100

Sensor 50

Sensor 100

(b)

Sensor 1

Sensor 1 Sensor 50 Sensor 100

Sensor 50

Sensor 100

(c)

Sensor 1

Sensor 1 Sensor 50 Sensor 100

Sensor 50

Sensor 100

(d)

Figure 6.12: Covariances matrices resulting from the local covariance hypothesis, with the
data set SNRInf. (a) Full covariance matrix. (b) Radio range 70 meters. (c) Radio range
40 meters. (d) Radio range 15 meters.

The graphical representations of the incomplete covariance matrices with r = 70 , r = 40
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and r = 15 meters are reported in Figure 6.12(b), Figure 6.12(c), Figure 6.12(d), respectively.
As can be seen by comparing Figures 6.12(a) and 6.12(b), the local covariance hypothesis is
not satisfied here, as distant sensor nodes (for example sensor nodes 1 to 10 and sensor nodes
90 to 100) have correlated measurements. The range r = 15 meters leads to a very incomplete
covariance matrix. Figure D.3 in Appendix D gives similar graphical representations for the
data set SNR1.

We compare in Figure 6.13 the NMSEs of the PIM and QR methods, for r in {15, 40, 70},
using the data set SNRInf. Results for SNR1 are presented in Figure 6.14, and are reported
in the same form as Figure 6.10. The lower curve in the left plot serves as a reference. It
gives the QR NMSEs with the full covariance matrix, and is the same as in Figure 6.10.
Other curves give the QR NMSEs for different radio ranges, and the obtained NMSE with
a random basis.

Radio range 40 meters
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE all 0.618 0.271 0.000 0.000 0.000
QR NMSE 0.720 0.414 0.170 0.113 0.106

PIM NMSE 0.706 0.438 0.153 0.091 0.074
Radio range 15 meters

1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE all 0.618 0.271 0.000 0.000 0.000

QR NMSE 0.848 0.763 0.613 0.510 0.457
PIM NMSE 0.829 0.753 0.527 0.342 0.276
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Figure 6.13: Comparison of the QR and PIM methods in terms of NMSE, when the local
covariance hypothesis is applied. The table (left) gives the NMSE for one up to five PCs.
Note that PIM NMSE is typically lower than NMSE as radio range decreases. The right
figure gives a visual plot of the NMSE for the QR method (local covariance hypothesis
applied). The data set is SNRInf.

The left table details the NMSEs for the QR and PIM approaches, for which the convergence
criteria are set to δ = 0.001 and tmax = 10. We summarize the results by the following points:

• In the present scenario, the local covariance hypothesis is not valid since the patterns
“W”, “S” and “N” imply that some pairs of distant sensors are correlated. As a result,
the NMSE of the reconstruction increases as the radio range decreases.

• In the extreme case of r = 15, where sensor nodes can only communicate with their
eight closest neighbors, the NMSE is noticeably higher. The subspace spanned by
the estimated eigenvectors however still preserve a substantial amount of variance
compared to a random basis.

• Is it worth noting that the accuracy of the PIM method is in most cases better that
the QR method. This is due to the fact that with an incomplete covariance matrix, the
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Radio range 40 meters
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE all 0.859 0.722 0.615 0.608 0.602
QR NMSE 0.888 0.766 0.668 0.646 0.637

PIM NMSE 0.886 0.775 0.664 0.636 0.626
Radio range 15 meters

1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE all 0.859 0.722 0.615 0.608 0.602

QR NMSE 0.932 0.891 0.836 0.802 0.766
PIM NMSE 0.915 0.837 0.793 0.757 0.727
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Figure 6.14: Comparison of the QR and PIM methods in terms of NMSE, when the local
covariance hypothesis is applied. The table (left) gives the NMSE for one up to five PCs.
Note that PIM NMSE is typically lower than NMSE as radio range decreases. The right
figure gives a visual plot of the NMSE for the QR method (local covariance hypothesis
applied). The data set is SNR1.

vectors that best represent the data are not the eigenvectors of the incomplete matrix,
but some nearby vectors. Although further theoretical analysis is required to better
explain these observations, the PIM method seems to perform well with incomplete
covariance matrices.

The results presented so far have illustrated that the power iteration method typically
converges rather fast, and that after 10 iterations a good estimate of a PC can be obtained.
Also, the results obtained concerning the local covariance hypothesis are encouraging. De-
spite an inevitable loss due to the approximation of the covariance matrix, the PCs computed
are observed to retain much more variance than a random basis.

Communication costs related to the computation of the PCs

This section investigates the highest network loads (HNL) implied by the computation of
the PCs, and more particularly compare the centralized approach to the distributed one.
We rely on the formulas derived in Table 5.2, namely,

• HNL of the centralized approach for computing the sample covariance matrix:

LCovcent
max = N(2S − 1)

• HNL of the centralized approach for computing the eigenvectors:

LEVcent
max = 2qS

• HNL of the distributed approach for computing the sample covariance matrix (with
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the local covariance hypothesis

LCovdist
max = N |Ni∗N |

• HNL of the distributed approach for computing the eigenvectors:

LEVdist
max = max

i

q∑

k=1

tconv(k)(1 + |Ni|+ k(|Ci|+ 2 + 1(|Ci| 6= 0))

to estimate the nHNL implied by the two approaches. A fair comparison between the
two approach is difficult as they do not rely on the same parameters. For the centralized
approach, the parameters influencing the HNL are

• the number S of sensors in the network, and

• the number N of epochs used to estimate the covariance matrix, and

• the number q of principal components to compute.

In the distributed approach, the HNL depends on N , q, and additionally on

• the largest number of children |Ci∗C | in the routing tree,

• the largest neighborhood size |Ni∗N | in the network, and

• the convergence times tconv(k) of the power iteration method for each PC computed,
1 ≤ k ≤ q.

As a baseline for the comparison, we analyze the HNL using the parameter values that
were used in all the previous experiments. First, the number of samples used to estimate
the sample covariance matrix was set to 60 (implicitly, with the 10-fold cross validation).
The number of sensors was 100, and the number of components computed was ranged from
1 to 5. Finally, the maximum number of iterations was set to 10, and we therefore set
tconv(k) = 10,∀k, which is a worst case estimate for the HNL caused by the distributed
approach.

Using these parameters, we report in Figure 6.15 the highest network loads caused by
the computation of 1 (circles), 3 (square) and 5 (diamonds) PCs, as a function of the largest
neighborhood size |Ni∗N |. The influence of the parameter |Ci∗C | is illustrated by reporting
the highest network loads for |Ci∗C | = 5 (Figure 6.15(a)) and |Ci∗C | = 10 (Figure 6.15(b)). A
breakdown of the loads into the matrix computation stage and the eigenvector computation
stage is given in Table 6.1.
We summarize these results by the following points:

• In the centralized approach, most of the network load is caused by the collection of
N vectors of measurements at the base station (cf. Table 6.1). The tradeoff caused
by this parameter can easily be seen by in Figure 6.15. The HNL for the centralized
approach is independent of |Ni∗N |, and depends linearly on N . Therefore, increasing
or decreasingN (here N = 60) makes the horizontal lines go down or up.

• In the distributed approach, the parameter |Ni∗N | plays an important role, as it trades
network load for accuracy. The lower its value, the lower the network load entailed
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| = 10.

Figure 6.15: Highest network loads entailed by the computation of different numbers of
PCs, for the centralized (solid lines) and distributed (dashed lines) approaches. The sizes of
the largest neighborhood size |Ni∗N | and largest number of children |Ci∗C | play a role in the
network loads caused by the distributed approach.

5 children 10 children
5 10 20 40 60 100 5 10 20 40 60 100

LCovcent
max 11940 11940 11940 11940 11940 11940 11940 11940 11940 11940 11940 11940

L
Covdist
max 300 600 1200 2400 3600 6000 300 600 1200 2400 3600 6000

LEVcent
max (1) 200 200 200 200 200 200 200 200 200 200 200 200

LEVcent
max (3) 600 600 600 600 600 600 600 600 600 600 600 600

LEVcent
max (5) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

L
EVdist
max (1) 140 190 290 490 690 1090 190 240 340 540 740 1140

L
EVdist
max (3) 630 780 1080 1680 2280 3480 930 1080 1380 1980 2580 3780

L
EVdist
max (5) 1400 1650 2150 3150 4150 6150 2150 2400 2900 3900 4900 6900

Table 6.1: Breakdown of the loads into the matrix computation stage and the eigenvector
computation stage, for the centralized and distributed approaches.

by the computation of the PCs. However, low values imply that most covariances
are assumed to be null (local covariance hypothesis) during the covariance matrix
computation stage. As a result, the PCs computed may lead to higher loss than the
PCs obtained by the centralized approach. A low radio range of 15 meters provides
strong reduction of the highest network load (Figure 6.15), but NMSE much higher
than the centralized scheme (NMSE of 0.527 with 3 PCs - cf. Figure 6.13). On the
opposite, a radio range allowing all sensor nodes to communicate provides NMSEs as
low as the centralized approach, but at HNL that can be higher than the centralized
approach (and this depends on N).

• The HNL of the distributed approach increases quadratically with the number of PCs
computed, which can be seen as the slope of the green dashed lines in Figure 6.15
increases with the number of PCs. The distributed approach is therefore likely to be

124



more efficient when the number of PCs to compute is low.

• Finally, the quadratic increase of the slope is proportional to the quantity |Ci∗C |. It
is worth mentioning that this quantity depends on the structure of the routing tree,
and that a possible optimization for the DPPC is to combine it with a routing tree
algorithm that minimizes the largest number of children in the tree.

These different tradeoffs show that the distributed approach can reduce the highest network
load in certain cases. In particular, the approach can provide important communication
savings when the number of PCs to compute is low, or when the number of observations
required to compute the sample covariance matrix is large.

6.3 Data from Intel Berkeley laboratory

The data set used in this second set of experiments consists in temperature measurements,
which come from a deployment of 54 sensors in the Intel research laboratory at Berkeley.
The deployment took place between February 28th and April 5th, 2004. A picture of the
deployment is provided in Figure 6.16, where sensor nodes are identified by numbers ranging
from 1 to 54.

Due to the prototypical nature of this deployment, many sensor readings were missing.
We selected from this data set a subset of five days of measurements, during which almost all
data are present, except for the ones collected by sensors 5 and 15. The readings were origi-
nally sampled every thirty-one seconds. A preprocessing stage where data was discretized in
thirty second intervals was applied to the data set. The preprocessing was carried out using
linear interpolation. After preprocessing, the data set contained a trace of 14400 readings
from 52 different sensors (all but sensors 5 and 15).
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Figure 6.16: Location of the 54 sensors in the Intel Research Laboratory. The area of the
laboratory is close to 1200m2.
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To give a sense of the nature of the measurements, we reported in Figure 6.17 the varia-
tions of temperature for sensors 21 and 49. Among all the pairs of sensors, the measurements
of sensors 21 and 49 had the lowest correlation over the five day period considered. One
can see on the deployment map Figure 6.16 they they were located on opposite sides of the
laboratory.
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Figure 6.17: Temperature measurements collected by sensors 21 and 49 over a five day
period.

As examples of the dependencies existing between sensor measurements, we reported in
Figure 6.18 the dependencies existing between the measurements of sensors 21 and 49, and
those between sensors 21 and 22. In terms of range, the temperature over the whole set of
data ranged from about 15◦C to 35◦C.
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Figure 6.18: Examples of the dependencies between the measurements of sensor 21 and
sensor 49.
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Principal component aggregation

We first study the amount of variance that the PCA can retain in the measurements for
different training periods and number of components. Figure 6.19 provides the average
retained variance for the first 25 principal components. As in Section 6.2, we relied on
10-fold cross validation for assessing the percentages of retained variance. The data set is
split in ten consecutive blocks of 1440 observations each, i.e., half a day of measurements.
Each of the ten blocks is used in turn as a training set to compute the covariance matrix
and its eigenvectors, while the remaining observations are used to estimate the percentage
of retained variance. The ten estimates are then averaged. This simulates the fact that in
practice, the use of the PCAg involves first a training stage to compute the eigenvectors,
followed by an operational stage where the method is applied on new measurements.

In Figure 6.19, the upper line gives the average amount of retained variance when the
principal components are computed with the test sets, and provides an upper bound on the
compression efficiency that the PCA can achieve on this data set. The lower curve gives
the average amount of retained variance on the test set when the components are computed
with the training set. This figure shows that the first principal component accounts on
average for almost 80% of the variance, while 90% and 95% of variance are retained with 4
and 10 components, respectively. The confidence level of these estimates was about ±5%.
Additional experiments were run using K-fold cross validation with K ranging from 2 to
30. The percentages of retained variance on the test data blocks tended to decrease with K.
Losses of a few percents were observed for K higher than 15 (less than nine hours of data).

The amount of retained variance increases very fast with the first principal component,
and becomes almost linear after about ten components. A linear increase of retained variance
with the number of principal components reflects the fact that the components obtained by
the PCA are actually no better than random components (cf. Section 5.3).

Figure 6.20 illustrates the obtained approximations during the first round of the cross
validation (i.e., principal components are computed from the first 12 hours of measurements)
for the sensors 21 and 49, using one, five and ten principal components. The first principal
component allows to represent the daily increases and decreases of temperature. Increasing
the number of principal components allows to better approximate the local variations. This
is illustrated by sensor 49, where the temperature seems artificially maintained at 20◦C
around noon during the second, third and fourth day (probably due to the activation of
an air conditioning system at a location close to sensor 49). Five components allow to
reasonably well model this phenomenon.

The data used for training are important. This is illustrated by sensor 21, where the
temperature measurements during the first day have a different evolution than the other
days (sharp decrease from 34◦C to 27◦C at bout 10h). As a result, more components are
required to properly represent the measurements during that part of the day.

Communication costs of the PCAg

We now compare the communication costs entailed by D, A, and F actions (cf. Table 5.1,
Section 5.3), as a function of the largest number of children and the number of aggregated PC
scores. The methodology is the same as in Section 6.2, and we rely on the highest network
load to compare the costs of the different actions. The results are reported in Figure 6.21.
The differences with Figure 6.8 are that
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Figure 6.19: Capacity of principal components to retain the measurement variance.
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Figure 6.20: Approximations on the test set for the sensor 21 (left) and 49 (right), using
one, five and ten principal components. The covariance matrix was computed from the first
twelve hours of measurements (before the vertical dashed line).

• the highest network load sustained by the root node for the D action is now of 2S−1 =
103 packets per epoch,

• the number of PC scores aggregated is of 1, 5 and 10. Note that 5 and 10 PCs retain
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Figure 6.21: Highest network load for D, A and F actions, as a function of the largest number
of children existing in the routing tree.

90% and 95% of the variance, respectively (cf. Figure 6.19).

The comments on these results are similar to those concerning the Image data set in
Section 6.2. They illustrate that as long as the routing tree does not have nodes with
exceedingly high number of children, the PCAg allows to reduce the highest network load.

Distributed computation of the PCs

The accuracy of the distributed power method is reported in Figure 6.22. The results are
compared with the QR method, assumed to provide accurate eigenvectors. The QR NMSE is
reported as a function of the number of PCs (up to 15) on the left plot. The NMSE obtained
by the QR method (QR NMSE), NMSE of the power iteration method (PIM NMSE), and
convergence times (Time conv), are reported in the table on the left. The bound δ on the
difference ‖v[t+ 1]− v[t]‖ is set to 0.001, and the maximum number of iteration is set to
10, as motivated by the experimental results obtained with the Image data set.

As for the results obtained with the Image data set, we observe that the PIM method
allows to converge to eigenvectors that provide NMSEs very close to QR NMSEs. It is
interesting to note that for the 8-th PC, the NMSE is even lower for the PIM than for the
centralized QR method. This stems for the use of a 10-CV, where performances are assessed
on data different from those used for the training. As a result, the 8-th approximated
eigenvector turns out to be better at retaining variance in the test set than the exact one.
The converse effect can also happen, as illustrated by the lower NMSE obtained by the
power method after the computation of the 9-th eigenvector.

The other difference with the results obtained with the Image data set concerns the
convergence times of the power method. The convergence times are in this data set much
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1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE 0.215 0.140 0.114 0.098 0.088

PIM NMSE 0.215 0.140 0.114 0.099 0.088
Time conv 2.700 4.900 7.400 8.700 9.800

6 PCs 8 PCs 10 PCs 12 PCs 15 PCs
QR NMSE 0.083 0.066 0.052 0.045 0.036

PIM NMSE 0.082 0.063 0.053 0.045 0.036
Time conv 9.800 10.000 9.900 10.000 10.000
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Figure 6.22: Comparison of the QR and PIM methods in terms of NMSE. The table (left)
gives the NMSE for one up to fifteen PCs, and the convergence times for the PIM method.
The right figure gives a visual plot of the NMSE for the QR method (optimal).

faster, especially for the first PCs (on average 2.7 and 4.9 iterations for the first and second
eigenvector, respectively). This is due to the fact that the eigenvalues are more separated
in this data set than in the Image data set (cf. Figures 6.19 and 6.4).

As a conclusion, these results illustrate again the ability of the power method to converge
quickly and to estimate eigenvectors that efficiently span the signal subspace.

Local covariance hypothesis

This section investigates the accuracy of the eigendecomposition when the local covariance
hypothesis is used. The local covariance hypothesis is tested, as in Section 6.2, by changing
the radio range r. Since the network size is smaller than in Section 6.2, the tested values
for the radio range are r = 6, r = 10 and r = 20 meters. Figure 6.23 gives graphical
representations of the covariance matrices resulting from the local covariance hypothesis.

The group of sensors around sensor node 28 have higher variances and covariances than
the others. This means that their range of measurements are higher, which can be for
example explained by the presence of a window allowing sunlight to increase locally the
temperature measurements. Figure 6.23(a) shows that the local covariance hypothesis does
not hold, as there exists covariances between distant sensor measurements. A radio range
of r = 6 meters makes the sample covariance matrix very incomplete.

Figure 6.24 presents the NMSEs of the QR and PIM methods using the full and in-
complete sample covariance matrices. The results are qualitatively very similar to those
obtained for the Image data set (Figures 6.13 and 6.14). For few PCs, the loss caused by
the local covariance hypothesis may be sensible. For example, the NMSE is of 0.2 with one
PC, full covariance matrix, and increases to 0.7 if the covariance matrix entries of sensors
more than six meters apart are set to zero. As the number of PCs computed increases, the
losses in NMSEs however become comparable.

In terms of accuracy of the power method, we observe the same effect as in Section 6.2,
where the NMSEs entailed by the power method may be lower than those of the QR method.
For example, for the second PC, the NMSE of the power method is of 0.384, and 0.51 for
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Figure 6.23: Covariances matrices resulting from the local covariance hypothesis. The co-
variances are normalized between 0 and 1 and represented by gray levels. The highest value
is the variance of sensor 21 (σ2 = 30.8 before normalization). (a) Full covariance matrix.
(b) Radio range 20 meters. (c) Radio range 10 meters. (d) Radio range 6 meters.

the QR method (second and third line in the right Table). This is again due to the fact that
the convergence is not attained for the computation of the second PC, as the upper bound
of tmax = 10 iterations is reached. As a consequence, the basis found by the PIM method
differs from that obtained by the QR method. We finally observe that as the number of PCs
computed increases, the NMSE of the QR method gets lower than that of the PIM method.
For 10 PCs for example, the QR NMSE is of 0.079 against 0.101 for the PIM method (while
the NMSE would be of 0.052 if the PC were computed from the full covariance matrix).
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Radio range 10 meters
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE all 0.215 0.140 0.114 0.098 0.088
QR NMSE 0.547 0.510 0.380 0.299 0.213

PIM NMSE 0.547 0.384 0.289 0.193 0.146
Time conv 7.800 10.000 10.000 10.000 10.000

6 PCs 8 PCs 10 PCs 12 PCs 15 PCs
QR NMSE all 0.083 0.066 0.052 0.045 0.036

QR NMSE 0.192 0.111 0.079 0.067 0.055
PIM NMSE 0.127 0.116 0.101 0.088 0.077
Time conv 10.000 10.000 10.000 10.000 10.000
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Figure 6.24: Comparison of the QR and PIM methods in terms of NMSE, when the local
covariance hypothesis is applied. The table (left) gives the NMSE for one up to five PCs.
Note that PIM NMSE is typically lower than NMSE when few PCs are computed. The
right figure gives a visual plot of the NMSE for the QR method (local covariance hypothesis
applied).

Communication costs related to the computation of the PCs

We finally compare, in a similar fashion as in Section 6.2, the communication costs en-
tailed by the centralized and distributed approaches for computing the principal compo-
nents. Given the differences between the Image and Intel data set, we adapt the following
parameters:

• the number of samples used for estimating the covariance is set to N = 144, which
corresponds to half a day of measurements sampled every 5 minutes.

• the highest network loads are detailed for the computation of 1, 5 and 10 principal
components, which are observed to retain around 80%, 90%, 95% of the variance,
respectively.

• the neighborhood size |Ni∗N | takes values in the interval [1, 50].

• given the smaller size of the network, we provide the details of the highest network
load for |Ci∗C | = 3 and |Ci∗C | = 6.

As for the Image data set in Section 6.2, we report in Figure 6.25 the highest network
load caused by the computation of 1 (circles), 3 (square) and 5 (diamonds) PCs as a function
of the |Ni∗N |. Solid lines represent the loads for the centralized approach, and dotted lines the
loads for the distributed approach. A breakdown of these costs into the matrix computation
stage, and the eigenvector computation stage is given in Table 6.2.

We make the following observations. In quantitative terms, the communication costs are
more important than for the Image data set. This is due to the fact that more samples are
required for computing the covariance matrix, and that more eigenvectors are computed. In
qualitative terms however, the trends are very similar to those obtained for the Image data
set, and the conclusion we can drawn are the same. In particular, the distributed approach
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Figure 6.25: Highest network loads entailed by the computation of different number of PCs,
for the centralized (solid lines) and distributed (dashed lines) approaches. The sizes of
the largest neighborhood size |Ni∗N | and largest number of children |Ci∗C | play a role in the
network loads caused by the distributed approach.

3 children 6 children
5 10 20 30 40 50 5 10 20 30 40 50

LCovcent
max 14832 14832 14832 14832 14832 14832 14832 14832 14832 14832 14832 14832

L
Covdist
max 720 1440 2880 4320 5760 7200 720 1440 2880 4320 5760 7200

LEVcent
max (1) 104 104 104 104 104 104 104 104 104 104 104 104

LEVcent
max (5) 520 520 520 520 520 520 520 520 520 520 520 520

LEVcent
max (10) 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040 1040

L
EVdist
max (1) 120 170 270 370 470 570 150 200 300 400 500 600

L
EVdist
max (5) 1100 1350 1850 2350 2850 3350 1550 1800 2300 2800 3300 3800

L
EVdist
max (10) 3450 3950 4950 5950 6950 7950 5100 5600 6600 7600 8600 9600

Table 6.2: Breakdown of the loads into the matrix computation stage and the eigenvector
computation stage, for the centralized and distributed approaches.

outperforms the centralized approach if the number of observations required to compute the
sample covariance matrix is large, or if the number of PCs required is low.

6.4 Summary

The experimental results presented in this chapter illustrated the ability of the PCAg to ef-
fectively represent the sensed phenomenon while dramatically decreasing the network load.
The efficiency of the distributed computation of the eigenvectors in comparison to the cen-
tralized approach is however subject to caution. In particular, the quadratic cost of the
distributed approach in terms of number of computed PCs makes the method rapidly ineffi-
cient if the number of computed PCs is not low enough. However, the distributed approach
has the advantage of decreasing in all cases the communication costs related to the estima-
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tion of the covariance matrix. As a result, the distributed approach appears suitable if the
number of observations required for the estimation of the covariance matrix is high, and if
the number of PCs to compute is low.
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Chapter 7

Conclusions

Environmental monitoring is a particularly exciting and promising application for sensor
networks. Tiny inexpensive wireless sensors can now be densely deployed throughout an
environment, enabling to observe the physical world at scales that were previously not
possible. Sensor networks bring a new instrument for observing our world, which may
well be in the future called a macroscope [86], providing a way to see the evolution of
spatiotemporal physical phenomena over numerous types of environments.

Observing the world with a wireless sensor network however raises difficult issues, since
application requirements such as accuracy, lifetime, or latency, very often conflict with the
limited computational, radio throughput and energy resources of the network. This thesis in-
vestigated how techniques based on machine learning could be used to address some of these
issues, and focused in particular on the tradeoff between data accuracy, energy-efficiency
and network load in data collection tasks. This chapter summarizes the main results of the
thesis, and opens the topic to further research tracks.

7.1 Summary of the main results

The data collected by a sensor network represents the spatiotemporal evolution of phe-
nomena taking place in the monitored environment. Most of the time, this evolution is
governed by some physical, chemical or biological laws, and is therefore to a certain extent
predictable. When a prediction model can represent with sufficient accuracy the evolution
of the phenomenon, then significant savings of the network resources, particularly in terms
of communication and energy, can be achieved.

Adaptive Model Selection

Our first contribution in this thesis was to show that the use of prediction models can be
made more efficient by combining prediction techniques with model selection techniques.
The main reason stems from the fact that in most cases, no or little information is available
on the characteristics of sensor measurement. We moreover showed that the efficiency of a
prediction model also depends on the additional costs incurred by transmitting the model
parameters to a base station.

Our algorithm, the adaptive model selection (AMS), deals with all these issues by consid-
ering several candidates for predicting sensor measurements. Each candidate is a prediction
model, whose accuracy at predicting the measurements is at first unknown. The AMS then
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locally runs a competition, in which the performances of the models are estimated by the
sensor node. We introduced the use of a statistical procedure called racing, which allows to
determine, with a high confidence, the model that performs best over time. Our method
was validated by simulating the algorithm on 14 time series representing various types of
phenomena. In all 14 series, the AMS was able to select the model that provided the best
prediction accuracy. We finally showed that the implementation of the AMS on real-world
wireless sensor platforms could easily be done using TinyOS, the reference programming
framework for wireless sensors.

Distributed Principal Component Analysis

The second contribution in this thesis was to show that the Principal Component Analysis,
a versatile data modeling technique, can be efficiently implemented in a distributed manner
in a sensor network. The main mathematical trick of our approach relies on the ability of a
routing tree to compute scalar products as data flows from the leaf nodes to the base station.
The computation can be readily implemented in systems such as TAG [56, 58], implemented
in TinyOS, in which the routing tree is already designed to minimize energy consumption.
The computation of scalar products within the network makes possible the implementation
of basis changes in a distributed manner.

The PCA provides a basis change that brings several benefits. First, it removes correla-
tions between data. Therefore the technique can be used to remove in a fully distributed way
the spatial correlations in sensor measurements. Second, the PCA orders the basis vectors in
such a way that most of the measurements can be represented by the first principal compo-
nents. The PCA therefore allows to trade network load for accuracy, by simply changing the
number of PC scores retrieved from the network. Third, thanks to this ability to order the
basis vectors, the approach can be used to filter measurement noise, by discarding the PC
scores of the minor principal components. Finally, the PCA is also a dimensionality reduc-
tion technique in the field of machine learning, which can be used to improve the accuracy
of event detection or pattern recognition tasks for example.

Whenever data are correlated, which is often the case in sensor networks, the PCA allows
to efficiently extract useful information. The combined use of the PCA with aggregation
services such as TAG makes our approach particularly well adapted to sensor networks.
We illustrated the ability the PCA to efficiently process sensor network data, by relying
on two data sets. The first data set simulated a scenario where three different phenomena
appeared in an environment monitored by 100 sensor nodes. We showed that the PCA
was able to properly identify the three different phenomena and to recognize them with
a high accuracy. The second data set consisted of real-world temperature measurements
taken by 52 sensors in a large office. We showed that the PCA could represent most of the
temperature variations with few principal components. For both data sets, the use of the
DPCA could lead to significant savings in terms of network load.

7.2 Discussion and future research

Efficient data extraction from sensor networks is both a key issue and a challenging task.
This section outlines future work that aims at making the methods presented in this thesis
more robust, and at extending their uses to other applications.
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Robustness to message loss : Wireless communication links are often prone to error,
which can cause the loss of messages between sensor nodes. We assumed in this thesis that
packet acknowledgments were used to ensure message delivery, which allowed us to make
the convenient assumption that all messages sent were received by their intended recipient.
The use of packet acknowledgements however causes network overhead, and they moreover
do not guarantee the delivery of the message in case of permanent link failure for example.

It is in most cases important to detect when a message is lost, as it can have serious
consequences on the reliability of the monitoring system [56, 61]. This is particularly true
for approaches based on learning, which aim at reducing to a minimum the data collected.
Each piece of data therefore usually has an important role in the overall system’s reliability.
For example, in aggregation approaches, the loss of one partial state record at node i makes
the data from all sensor nodes in the subtree of sensor i lost.

The use of multi-path routing [70, 61] is a possibility to improve the robustness of message
delivery. The increase in robustness is however obtained at the cost of an increased amount
of radio communication. Moreover, multi-path routing makes the use of aggregation more
difficult, as data sent over multiple paths may be aggregated more than once. Schemes like
synopses [70] or Karumoto models are research tracks worth investigating for robust data
aggregation. Finally, it is worth mentioning that if a loss is detected, learning techniques
may for instance be used to estimate the value of the missing piece of information [80].

Erroneous measurements : Sensors are prone to failure of malfunctioning. Erroneous
measurements can therefore appear in the flow of collected readings. For reasons similar to
message loss, the detection of erroneous readings is an important issue. The detection of
such data, also known as outliers, is however a non trivial task. We mention as solutions
to this issue the possibility of adding statistical tests on the collected readings, as discussed
in [63], or a priori bounds (e.g., all temperature readings outside the range [-20◦ C,60◦ C]
should be flagged as erroneous).
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Figure 7.1: Shaded areas represent regions with high correlations. The ability of edge
monitoring to provide good predictions is tightly coupled to the routing tree.

137



Cross-layering optimization: The problem of energy-efficient design in sensor networks
has been addressed by various techniques at different layers of the system, ranging from the
sensor hardware to the network routing to the application. The optimization within each
individual layer however often leads to inefficient solutions [45]. To illustrate this point, let
us consider the edge monitoring approach (Section 3.3), and the routing trees represented
in Figure 7.1. Each shaded region corresponds to a region with high correlation. In the
left configuration, it is preferable to monitor the edge 1 − 2, while in the second case, it is
preferable that edge 1− 4 is monitored. The edge monitoring can therefore be optimized by
integrating in the routing choices information related to the monitoring application.

Joint optimization across layers is referred to as cross-layering optimization [25, 45]. In
the DCPC, an interesting cross-layer optimization problem is brought by the local covariance
hypothesis. On most sensor nodes, the radio power can be set at different levels in order to
change the communication range of the sensor node. This feature could be used to set the
radio power so that most of the covariances between neighboring nodes are captured.

A second cross-layer optimization is to reduce the largest number of children in the
routing tree. The network load of the PCAg mainly depends on this parameter, and therefore
its minimization can allow to further reduce the network load of the PCAg approach.

Non-stationarity: The techniques presented in this thesis mainly relied on the hypothesis
that the joint probability distribution of the data was stationary over time. In the AMS,
this hypothesis is actually used to motivate the use of the racing algorithm. In case of
non-stationary data, different strategies must be considered. In particular, the racing is not
appropriate, and the whole collection of models should remain in competition. A possible
approach to deal with non-stationarity is to use recursive learning approaches with forgetting
factors [37, 68]. Recursive learning allows to update the parameters of the prediction model
as new observations become available, while the forgetting factor discards the contributions
of older observations. For linear models such as autoregressive models or the principal
component analysis, there exists such recursive formulations which could be used.

Multisensor fusion with the DPCA: Most sensor nodes have several sensors, allowing
a sensor node to sense different physical quantities. These quantities are sometimes highly
correlated (e.g. humidity and temperature [19, 15]), and the computation of the projection
basis could be extended to include different physical quantities.

Multichannel Single Spectrum Analysis: Sensor data are very often correlated over
time. The PCA can be extended to the time domain by integrating lagged measurements
in the set of variables. The technique, called Multichannel Single Spectrum Analysis [42],
allows to compress data both over space and time, but causes an increased latency in the
delivery of the aggregates. It was briefly mentioned in Section 5.2, and deserves additional
theoretical and experimental analysis.

Independent Component Analysis: The aggregation principle underlying the PCAg
is also readily extensible to any basis transformation. Among the basis transformations of
interest, we stress that the independant component analysis (ICA), also known as blind
source separation [37, 16], is particularly appealing. ICA aims at determining a basis which
not only decorrelates signals, but that also gets them independent. ICA has for example
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proven particularly efficient in speech processing in separating the set of independent sources
composing an audio signal.

Bounded approximation with the PCAg: This approach, outlined in Section 5.2,
is particularly interesting as it allows to ensure the observer that approximations are ε-
bounded. The preliminary analysis (Section 5.3) of the tradeoffs between the error tolerance
ε, the number of PCs q, and the highest network load could be further investigated. In
particular, an interesting issue would be to determine, for a given ε, what is the parameter
q which provides the lowest HNL. Also, for a given q, there probably exists a relationship
between the proportion of retained variance and the error threshold ε. The identification a
such a relationship would allow to estimate the HNL directly as a function of q. Further
analytical and experimental work is needed in this direction.

Combining aggregation and adaptive model selection: The AMS can be run be-
tween children and parent nodes in the routing tree, with an error threshold εAMS, and the
PCAg can rely on the AMS to aggregate data. Combining aggregation and adaptive model
selection however increases the approximation errors entailed by the AMS. The resulting
aggregate, for a network of S sensors, would be within ±SεAMS of the true projections. The
approximation error therefore grows linearly with the network size. It is therefore not clear
whether this combination can be of practical interest. Further experimental work should be
carried out to investigate this question.

Implementation of the DPCA on wireless sensors : The TinyOS [54] operating sys-
tem has become a reference for the programming of sensor nodes. Though many projects
have already developed their own codes for allowing aggregation [56, 27, 13], these imple-
mentations were either developed for ad-hoc tests, or made proprietary (such as TAG). We
believe that an open source library of functions would be of interest in the dissemination of
these ideas.

7.3 Learning with invisible media

Wireless sensor networks are the latest trend of technological advances which were well
predicted by Gordon Moore, the co-founder of Intel, some 45 years ago [69]. Known as the
Moore’s law in the field of computer science, the law states that the number of transistors
that can be placed inexpensively on an integrated circuit doubles every two years. This law
has been remarkably verified since it was stated, and computing devices have become more
and more part of our daily lives. Figure 7.2 illustrates the evolution of computing devices,
starting from the Eniac.

The Eniac was created in 1946, at the time referred to as the “giant brain”, and had a
volume of 63m2 and consumed 150kW of power [34]. Advances in electronics have allowed
to reduce the price and volume of computational devices, which made their use possible
to a wider audience. The 90s definitely made a corner in the history of computer science,
by allowing many people to have their own Personal Computer, which could be used as
a new communication device thanks to Internet. Cell phones have since then allowed to
make communication possible anywhere and anytime, both using cellular networks and the
Internet.
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Figure 7.2: Moore’s law: computing devices become smaller and cheaper over time.

Wireless sensor networks nowadays represent what will probably be tomorrow’s part of
our daily lives. WSNs allow to extend Internet to the physical world, providing real-time
information about physical phenomena occurring in an environment. This thesis brought
additional results to the feasibility of such real-time monitoring scenarios. In particular,
we showed that learning techniques could be efficiently used to reduce the communication
among sensor nodes.

The challenges brought by these new technologies are still numerous, and we believe that
intelligent data processing techniques can address some of the most important. Data is at the
heart of these sensing systems, and is what actually matters to the observer. The exponential
amounts of data that such systems will generate in the coming years cannot however be made
readily visible to the observer. Rather, data fusion and learning techniques must be further
developed to allow collaborative and intelligent processing of the data within the network.
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Appendix A

Statistical Framework

This appendix presents a brief review of the statistical principles and terminology encoun-
tered in this thesis. In particular, we define the notions of random variables, random vectors,
probability density functions and stochastic processes.

Random experiments

A sensor is an electronic device whose accuracy depend on a number of factors that are rarely
fully controlled. As such, a measurement collected by a sensor does not reflect exactly the
physical quantity monitored, but rather an approximated value. Depending on the quality of
the sensing device and on the care taken in controlling the conditions of the environment, the
accuracy of the measurements may be improved. In any case, a number of factors influence
the eventual measurement in such a way that, if it was possible to take two measurements at
the same time and location, these would inevitably differ. A measure obtained by a sensor
at one point of space and time is, in statistical terms, the result of a random experiment.

Definition A.1: A random experiment is characterized by three elements:

1. A set Ξ of possible outcomes ξ of the experiment.

2. A set Ω of subsets ω ⊂ Ξ. Each subset is called an event. Ω must be a Borel field,
i.e., a nonempty class of sets such that

if ω ∈ Ω then ω̄ ∈ Ω (A.1)

if ωi ∈ Ω, i = 1, . . . , l, then ∪li=1 ωi ∈ Ω (A.2)

where ω̄ is the complementary of ω and the number l of events can be finite of infinite.
It follows that

{∅} ∈ Ω and Ξ ∈ Ω (A.3)

where ∅ is the empty set, describing the event that never occurs.

3. A probability measure P : Ω→ [0, 1] defined on the elements ω. The function P must
satisfy the following three conditions:

P(ω) ≥ 0 (A.4)
P(Ξ) = 1 (A.5)

if ω1 ∩ ω2 = {∅} then P(ω1 ∩ ω2) = P(ω1) + P(ω2) (A.6)
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The triple (Ξ,Ω,P) is also called the probabilistic model of an experiment.

Probabilistic model

This definition of a random experiment introduces the important notion of a probabilistic
model, which allows to represent the uncertainty associated with a random experiment. The
random experiments encountered in this thesis always deal with outcomes that are naturally
associated with real numbers, such as the measurement of a physical quantity by a sensor.
This mapping between the space of outcomes and the set of real numbers is formalized by
the notion of real random variable.

Definition A.2: A real random variable x is a real function whose domain is the space
Ξ. It assigns a real number x(ξ) to every outcome ξ of the random experiment. The set
{x ≤ x} denotes the set of outcomes ξ such that s(ξ) is an event. A random variable verifies
the two following conditions:

1. The set {x ≤ x} is an event for any real number s.

2. The probability of the events {x = +∞} and {x = −∞} equals 0.

Unless otherwise stated, it will be assumed that all random variables (r.v.) are continuous
and real. Random variables allow to quantify the probabilities of events by means of the
cumulative distribution function and the probability density function.

Definition A.3: The cumulative distribution function (cdf) Fx(x) is the function

Fx(x) = P({x ≤ x})

defined for any number x ∈ R.

Thus, for a given x, Fx(x) equals the probability of the event {x ≤ x} such that x(ξ) < x.
For brevity, we shall also say that Fx(x) equals the probability that x ≤ x. For continuous
random variables, the cdf is a nonnegative, nondecreasing continuous function whose values
lie in the interval 0 ≤ Fx(x) ≤ 1. From the above definition, it follows that Fx(−∞) = 0
and Fx(+∞) = 1.

Definition A.4: The probability density function (pdf) px(x) of a continuous random
variable x is the derivative of the cumulative distribution function:

px(x) =
Fx(x)
dx

∣∣∣∣
x=x

For the sake of simplicity, Fx(x) and px(x) shall be denoted by F (x) and p(x), respectively.
The subscript referring to the random variable shall be used only if confusion is possible.

Example A.1: The Gaussian (or normal) probability distribution is used in numerous mod-
els and applications, and is encountered at several occasions throughout this thesis. Its pdf
is given by

p(x) =
1√

2πσx
exp

(
−(x− µx)2

2σx

)

where µx and σx are known as the mean and variance of the random variable x.
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Definition A.5: A real random vector x is a n−dimensional vector

x = (x1,x2, . . . ,xn)T

where the elements x1, x2, . . ., xn are random variables. The superscript T denotes the
transpose, as all vectors in this thesis shall be by convention column vectors. The index (j)
shall refer to elements of a vector.

The concepts of probability distribution generalizes easily to random vectors, and the defi-
nitions above applies exactly in the manner, replacing variables x and random variables x
with their vector counterparts. No font distinction is made between vectors and scalars.

Example A.2: The pdf of a multivariate Gaussian probability distribution is given by

p(x = x) =
1√

(2π)n|Σ|
exp(− 1

2
(x−µx)T Σ−1(x−µx))

where µx and Σ are the mean and covariance matrix of the random vector x.

Stochastic processes

Sensing devices are however subject to some measurement noise, and therefore the set of
measurements collected by sensors over space and/or time is the result of random exper-
iments. In the case of spatiotemporal data, the randomness associated to a scalar field
is represented in statistics by stochastic processes, which are families or collections of ran-
dom variables located and/or indexed by spatial and/or time metric. In the most general
definition,

Definition A.6: Given a probabilistic model (Ξ,Ω,P), a spatiotemporal stochastic pro-
cess is a family of real random variables x(c, t, ξ)

{x(c, t, ξ) : c ∈ Rd, t ∈ R∗, ξ ∈ Ξ}

where the inputs c ∈ Rd refers to coordinates in space, t ∈ R∗ refers to the time domain,
and ξ ∈ Ξ refers to the space of possible outcomes.

When a stochastic process is restricted to the time domain, it is referred to as a time series.

Definition A.7: Given a probabilistic model (Ξ,Ω,P), a time stochastic process, or
time series, is a collection of real random variables x(t, ξ) indexed by a time domain T

{x(t, ξ) : t ∈ T }

A particular case, which serve in this thesis the purpose of modeling streams of sensor data,
is when the time domain is defined as T = N∗. Such a process is called discrete-time
stochastic process, or discrete time series, and will be denoted x[t]. The random nature of
x[t] shall be implicitly assumed by the use of the bold font. The notation x[t] will be used
to represent a particular realization of a discrete-time stochastic process x[t].

Definition A.8: A process is called a random process if it consists of a sequence of random
variables x[t] which are mutually independent and identically distributed

The notation ν[t] will be used to refer to a discrete-time random process.
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Appendix B

Recursive computation of the
covariances

This Appendix gives the details of the derivations underlying Equations (5.12) and (5.13).
Equation (5.12) states that

Σ̂[N ] =
1

N − 1

N∑

t=1

(s[t]− µ̂[N ])(s[t]− µ̂[N ])T

=
1

N − 1
X[N ]TX[N ]− N

N − 1
µ̂[N ]µ̂[N ]T

where µ̂[N ] = 1
N

∑N
t=1 s[t] is an estimate of the average vector of observations s[t]. The

result is obtained by developing the product

Σ̂[N ] =
1

N − 1

N∑

t=1

(s[t]− µ̂[N ])(s[t]− µ̂[N ])T

=
1

N − 1

(
N∑

t=1

(s[t]s[t]T )− 2
N∑

t=1

µ̂[N ]s[t]T +
N∑

t=1

µ̂[N ]µ̂[N ]T
)

=
1

N − 1

(
N∑

t=1

(s[t]s[t]T )− 2µ̂[N ]
N∑

t=1

s[t]T +Nµ̂[N ]µ̂[N ]T
)

=
1

N − 1

(
N∑

t=1

(s[t]s[t]T )− 2Nµ̂[N ]µ̂[N ]T +Nµ̂[N ]µ̂[N ]T
)

=
1

N − 1

N∑

t=1

X[N ]TX[N ]− N

N − 1
µ̂[N ]µ̂[N ]T .

which gives the simplified formulation. Therefore, each element σ̂(i,j)[N ] of Σ̂[N ] can be
expressed as

σ̂(i,j)[N ] =
1

N − 1

N∑

t=1

si[t]sj [t]−
N

N − 1
µ̂i[N ]µ̂j [N ].
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Since µ̂i[N ] = 1
N

∑N
t=1 si[t], we have

σ̂(i,j)[N ] =
1

N − 1

N∑

t=1

si[t]sj [t]−
N

N2(N − 1)

N∑

t=1

si[t]
N∑

t=1

sj [t]

=
1

N − 1

N∑

t=1

si[t]sj [t]−
1

N(N − 1)

N∑

t=1

si[t]
N∑

t=1

sj [t].

Denoting by

ri[N ] =
N∑

t=1

si[t]

and

r(i,j)[N ] =
N∑

t=1

si[t]sj [t]

we have
σ̂(i,j)[N ] =

1
N − 1

r(i,j)[N ]− 1
N(N − 1)

ri[N ]rj [N ]

with

ri[N ] = ri[N − 1] + si[N ]
r(i,j)[N ] = r(i,j)[N − 1] + si[N ]sj [N ]

from which Equation (5.13) is derived.
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Appendix C

Convergence of the power iteration
method

This Appendix presents the convergence properties [28] of the Power Iteration Method (the
PIM). Denoting by Σ a covariance matrix n× n, the idea of the PIM is to choose an initial
n-element vector v0, and to form the sequence

v1 = Σv0

v2 = Σv1 = Σ2v0
...

...
vt = Σvt−1 = Σtv0

...
...

Let wk, 1 ≤ k ≤ n be the eigenvectors of Σ. The eigenvectors form a basis for the n-
dimensional space, and therefore we can write, for arbitrary v0,

v0 =
n∑

k=1

θkwk

where θk are some set of coefficients. Then,

v1 = Σv0 =
n∑

k=1

θkΣwk =
n∑

k=1

θkλkwk

where λk, 1 ≤ k ≤ n are the eigenvalues of Σ. Continuing, we get for t = 2, 3, . . .

vt =
n∑

k=1

θkλ
t
kwk

and it follows
vt
θ1λt1

=

(
w1 +

θ2

θ1

(
λ2

λ1

)t
w2 + . . .+

θn
θ1

(
λn
λ1

)t
wn

)
.

Assuming that the first eigenvalue of Σ is distinct from the remaining eigenvalues, i.e.,
λ1 > λ2 ≥ . . . ≥ λn, it follows that
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1. a normalized version of vt → w1 as t→∞, and

2. the ratios of the corresponding elements of vt and vt−1 → λ1 ad t→∞.

The speed of convergence of the PIM depends mainly on ratio λ2
λ1
. The higher the ratio, the

faster the convergence. The speed of convergence also depends on the choice of the initial
vector v0, and the convergence is more rapid if v0 is close to w1.

The PIM is therefore slow for computing the main eigenvector of a matrix when λ2 is
close to λ1. In the case of equality, such that λ1 = λ2 > λ3, a similar development as
above shows that a normalized version of vt → w1 + θ2

θ1
w2 as t→∞, and therefore does not

convergence to w1 anymore.
Although this is a limit of the PIM in problems where exact eigenvectors are sought, it

is for the problem considered in this thesis not such an issue. The eigenvectors are required
for the PCA, and used as they are the vectors that best represent the data. The amount
of data retained by the k-th eigenvector, in terms of variance, is the k-th eigenvalue. In
case of equality between two eigenvalues, then it means for the PCA that the corresponding
eigenvectors have the same efficiency at representing the data. This motivates that the
maximum number of iterations tmax in Algorithm 6 can be set low.
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Appendix D

Additional Results for the DCPC
Image data set - QR and PIM NMSE for SNR5 and SNR05.

tmax = 50
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE 0.713 0.448 0.240 0.238 0.235
PM NMSE 0.713 0.448 0.240 0.238 0.235
Time conv 43.200 34.300 3.000 49.900 46.800
tmax = 10

1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE 0.713 0.448 0.240 0.238 0.235
PM NMSE 0.716 0.482 0.240 0.238 0.235
Time conv 10.000 10.000 3.000 10.000 10.000
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Figure D.1: Comparison of the QR and PIM methods in terms of NMSE. The table (left) gives the NMSE
for one up to five PCs, and the convergence times for the PIM method. The right figure gives a visual plot
of the NMSE for the QR method. The data set is SNR5.

tmax = 50
1 PC 2 PCs 3 PCs 4 PCs 5 PCs

QR NMSE 0.913 0.827 0.758 0.750 0.742
PM NMSE 0.914 0.829 0.758 0.750 0.742
Time conv 37.500 36.000 6.800 48.800 46.800
tmax = 10

1 PC 2 PCs 3 PCs 4 PCs 5 PCs
QR NMSE 0.913 0.827 0.758 0.750 0.742
PM NMSE 0.916 0.840 0.758 0.750 0.742
Time conv 10.000 10.000 4.700 10.000 10.000
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Figure D.2: Comparison of the QR and PIM methods in terms of NMSE. The table (left) gives the NMSE
for one up to five PCs, and the convergence times for the PIM method. The right figure gives a visual plot
of the NMSE for the QR method. The data set is SNR05.
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Image data set - SNR1 - Visual representation of the local covariance
hypothesis.

Sensor 1

Sensor 1 Sensor 50 Sensor 100

Sensor 50

Sensor 100

(a)
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Sensor 50

Sensor 100

(b)

Sensor 1
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Sensor 50
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Figure D.3: Covariances matrices resulting from the local covariance hypothesis. The co-
variances are normalized between 0 and 1 and represented by gray levels. (a) Full covariance
matrix. (b) Radio range 70 meters. (c) Radio range 40 meters. (d) Radio range 15 meters.
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Intel data set - Convergence time for incomplete covariance matrices.

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 8 PCs 10 PCs 12 PCs 15 PCs
QR NMSE all 0.215 0.140 0.114 0.098 0.088 0.083 0.066 0.052 0.045 0.036

QR NMSE 0.215 0.140 0.114 0.098 0.088 0.083 0.066 0.052 0.045 0.036
PM NMSE 0.215 0.140 0.114 0.099 0.088 0.082 0.063 0.053 0.045 0.036
Time conv 2.700 4.900 7.400 8.700 9.800 9.800 10.000 9.900 10.000 10.000

Table D.1: Radio range 50 meters.

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 8 PCs 10 PCs 12 PCs 15 PCs
QR NMSE all 0.215 0.140 0.114 0.098 0.088 0.083 0.066 0.052 0.045 0.036

QR NMSE 0.379 0.241 0.138 0.127 0.103 0.090 0.082 0.075 0.070 0.063
PM NMSE 0.379 0.212 0.126 0.121 0.106 0.102 0.093 0.084 0.079 0.072
Time conv 6.800 9.800 9.400 10.000 10.000 10.000 10.000 10.000 10.000 10.000

Table D.2: Radio range 20 meters.

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 8 PCs 10 PCs 12 PCs 15 PCs
QR NMSE all 0.215 0.140 0.114 0.098 0.088 0.083 0.066 0.052 0.045 0.036

QR NMSE 0.547 0.510 0.380 0.299 0.213 0.192 0.111 0.079 0.067 0.055
PM NMSE 0.547 0.384 0.289 0.193 0.146 0.127 0.116 0.101 0.088 0.077
Time conv 7.800 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000

Table D.3: Radio range 10 meters.

1 PC 2 PCs 3 PCs 4 PCs 5 PCs 6 PCs 8 PCs 10 PCs 12 PCs 15 PCs
QR NMSE all 0.215 0.140 0.114 0.098 0.088 0.083 0.066 0.052 0.045 0.036

QR NMSE 0.687 0.624 0.579 0.494 0.458 0.366 0.292 0.232 0.174 0.108
PM NMSE 0.671 0.579 0.491 0.352 0.285 0.245 0.191 0.161 0.132 0.110
Time conv 9.900 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000

Table D.4: Radio range 6 meters.

151



152



Appendix E

TinyOS - Interfaces Timer, ADC and
SendMsg

This Appendix provides examples of the Timer, ADC and SendMsg TinyOS interfaces,
taken from the distribution TinyOS-1.x [85].

Licensing
Below are the licensing conditions for the TinyOS files included in this Appendix.

/*
* "Copyright (c) 2000-2003 The Regents of the University of California.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice, the following
* two paragraphs and the author appear in all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS."
*
* Copyright (c) 2002-2003 Intel Corporation
* All rights reserved.
*
* This file is distributed under the terms in the attached INTEL-LICENSE
* file. If you do not find these files, copies can be found by writing to
* Intel Research Berkeley, 2150 Shattuck Avenue, Suite 1300, Berkeley, CA,
* 94704. Attention: Intel License Inquiry.
*/

Interface Timer.nc
/**
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* This interface provides a generic timer that can be used to generate
* events at regular intervals.
*
* @author Su Ping
* @author Sam Madden
* @author David Gay
* @modified 7/16/02
*/

includes Timer; // make TIMER_x constants available
interface Timer {

/**
* Start the timer.
* @param type The type of timer to start. Valid values include
* ’TIMER_REPEAT’ for a timer that fires repeatedly, or
* ’TIMER_ONE_SHOT’ for a timer that fires once.
* @param interval The timer interval in <b>binary milliseconds</b> (1/1024
* second). Note that the
* timer cannot support an arbitrary range of intervals.
* (Unfortunately this interface does not specify the valid range
* of timer intervals, which are specific to a platform.)
* @return Returns SUCCESS if the timer could be started with the
* given type and interval. Returns FAIL if the type is not
* one of TIMER_REPEAT or TIMER_ONE_SHOT, if the timer rate is
* too high, or if there are too many timers currently active.
*/

command result_t start(char type, uint32_t interval);

/**
* Stop the timer, preventing it from firing again.
* If this is a TIMER_ONE_SHOT timer and it has not fired yet,
* prevents it from firing.
* @return SUCCESS if the timer could be stopped, or FAIL if the timer
* is not running or the timer ID is out of range.
*/

command result_t stop();

/**
* The signal generated by the timer when it fires.
*/

event result_t fired();
}

Interface ADC.nc
includes ADC;
//includes sensorboard; // this defines the user names for the ports

/**
* Analog to Digital Converter Interface. <p>
* Defines the functions provided by any ADC
*
* @modified 6/25/02
*
* @author Jason Hill
* @author David Gay
* @author Philip Levis
*/
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interface ADC {
/**
* Initiates an ADC conversion on a given port.
*
* @return SUCCESS if the ADC is free and available to accept the request
*/

async command result_t getData();
/**
* Initiates a series of ADC conversions. Each return from
* <code>dataReady()</code> initiates the next conversion.
*
* @return SUCCESS if the ADC is free and available to accept the request
*/

async command result_t getContinuousData();

/**
* Indicates a sample has been recorded by the ADC as the result
* of a <code>getData()</code> command.
*
* @param data a 2 byte unsigned data value sampled by the ADC.
*
* @return SUCCESS if ready for the next conversion in continuous mode.
* if not in continuous mode, the return code is ignored.
*/

async event result_t dataReady(uint16_t data);
}

Interface SendMsg.nc
includes AM;

/**
* Basic interface for sending AM messages. Interface to the basic
* TinyOS communication primitive.
*
* @author Jason Hill
* @author David Gay
* @author Philip Levis
* @modified 6/25/02
*
*
*/

interface SendMsg
{

command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg);
event result_t sendDone(TOS_MsgPtr msg, result_t success);

}
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