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“We are drowning in information, but we are starved for knowledge.”

John Naisbitt

“Science may be described as the art of systematic over-simplification.”

Karl Popper





Abstract

One of the most important and challenging “knowledge extraction” tasks in bioinformatics
is the reverse engineering of gene regulatory networks (GRNs) from DNA microarray gene
expression data. Indeed, as a result of the development of high-throughput data-collection
techniques, biology is experiencing a data flood phenomenon that pushes biologists toward
a new view of biology–systems biology–that aims at system-level understanding of biolog-
ical systems.

Unfortunately, even for small model organisms such as the yeast Saccharomyces cere-
visiae, the number p of genes is much larger than the number n of expression data samples.
The dimensionality issue induced by this “small n, large p” data setting renders standard
statistical learning methods inadequate. Restricting the complexity of the models enables
to deal with this serious impediment. Indeed, by introducing (a priori undesirable) bias
in the model selection procedure, one reduces the variance of the selected model thereby
increasing its accuracy.

Gaussian graphical models (GGMs) have proven to be a very powerful formalism to
infer GRNs from expression data. Standard GGM selection techniques can unfortunately
not be used in the “small n, large p” data setting. One way to overcome this issue is
to resort to regularization. In particular, shrinkage estimators of the covariance matrix–
required to infer GGMs–have proven to be very effective. Our first contribution consists
in a new shrinkage estimator that improves upon existing ones through the use of a Monte
Carlo (parametric bootstrap) procedure.

Another approach to GGM selection in the “small n, large p” data setting consists in
reverse engineering limited-order partial correlation graphs (q-partial correlation graphs)
to approximate GGMs. Our second contribution consists in an inference algorithm, the
q-nested procedure, that builds a sequence of nested q-partial correlation graphs to take
advantage of the smaller order graphs’ topology to infer higher order graphs. This allows
us to significantly speed up the inference of such graphs and to avoid problems related
to multiple testing. Consequently, we are able to consider higher order graphs, thereby
increasing the accuracy of the inferred graphs.

Another important challenge in bioinformatics is the prediction of gene function. An
example of such a prediction task is the identification of genes that are targets of the
nitrogen catabolite repression (NCR) selection mechanism in the yeast Saccharomyces
cerevisiae. The study of model organisms such as Saccharomyces cerevisiae is indispens-
able for the understanding of more complex organisms. Our third contribution consists in
extending the standard two-class classification approach by enriching the set of variables
and comparing several feature selection techniques and classification algorithms.

Finally, our fourth contribution formulates the prediction of NCR target genes as a
network inference task. We use GGM selection to infer multivariate dependencies between
genes, and, starting from a set of genes known to be sensitive to NCR, we classify the
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remaining genes. We hence avoid problems related to the choice of a negative training set
and take advantage of the robustness of GGM selection techniques in the “small n, large
p” data setting.



Résumé

L’un des principaux problèmes d’extraction de connaissance en bioinformatique est l’infé-
rence de réseaux de régulation génique (GRNs ou gene regulatory networks) à partir de
données provenant de puces à ADN. En effet, suite à l’essor des techniques de criblage
à haut débit, la biologie est confrontée à un afflux massif de données qui incitent les
biologistes à intégrer différents niveaux d’informations pour comprendre le fonctionnement
global des systèmes biologiques.

Malheureusement, le nombre p de gènes est nettement supérieur au nombre n de
données d’expression, y compris pour les petits organismes modèles tels la levure Sac-
charomyces cerevisiae. Ce problème de dimensionnalité rend les techniques classiques
d’apprentissage statistique inappropriées. Une manière d’aborder ce problème consiste
à restreindre la complexité des modèles. En effet, en introduisant du biais (a priori
indésirable) dans la procédure de sélection de modèles, nous réduisons la variance du
modèle sélectionné, accroissant ainsi sa précision.

Les modèles graphiques gaussien (GGMs ou Gaussian graphical models) se sont révélés
être un puissant formalisme pour l’inférence des GRNs à partir de données d’expression.
Les techniques classiques de sélection de GGM ne peuvent malheureusement pas être
utilisées lorsque le nombre de données n est inférieur au nombre de gènes p. Afin de pal-
lier cet inconvénient, une possibilité consiste à utiliser des approches de régularisation. En
particulier, les estimateurs de type shrinkage de la matrice de covariance (qui détermine
le GGM) se sont avérés être très robustes. Notre première contribution concerne la propo-
sition d’un nouvel estimateur de type shrinkage utilisant une technique de Monte-Carlo
(bootstrap paramétrique) dont les performances sont supérieures aux estimateurs existants.

Alternativement, la sélection de GGM peut s’effectuer via l’inférence de graphes de
corrélation partielle d’ordre limité (ou q-partial correlation graphs) comme approximation
de GGMs. Notre seconde contribution consiste en un algorithme, dénommé q-nested pro-
cedure, qui infère successivement des q-partial correlation graphs d’ordres croissants afin de
tirer profit de la topologie des graphes d’ordres inférieurs. Cette approche nous permet de
diminuer considérablement le temps requis à l’inférence de tels graphes. Par conséquent,
il nous est possible de considérer des graphes d’ordres supérieurs, augmentant ainsi la
précision des graphes inférés.

Un autre défi fondamental en bioinformatique est la prédiction de la fonction des gènes
comme, par exemple, l’identification des gènes soumis à la répression catabolique azotée
(NCR ou nitrogen catabolite repression) dans la levure Saccharomyces cerevisiae. L’étude
d’organismes modèles tels Saccharomyces cerevisiae est un prérequis indispensable à la
compréhension d’organismes plus complexes. Notre troisième contribution consiste en
l’extension de l’approche classique de classification à deux classes pour l’identification de
gènes soumis à la NCR par l’ajout de variables et la comparaison de plusieurs techniques
de sélection de variables et de divers classificateurs.
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Notre quatrième et dernière contribution consiste à formuler le problème de la prédiction
de gènes soumis à la NCR comme un problème d’inférence de réseaux. Nous utilisons tout
d’abord la sélection de GGMs pour inférer des dépendances multivariées entre gènes. En-
suite, étant donné un ensemble de gènes dont nous savons qu’ils sont impliqués dans la
NCR, nous prédisons, parmi les gènes restants, ceux également soumis à la NCR. Nous
évitons ainsi les problèmes liés au choix d’un ensemble d’exemples négatifs et tirons profit
de la robustesse des techniques de sélection de GGMs.
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Introduction

We address the problem of reverse engineering GRNs from “small n, large p” DNA mi-
croarray data with multivariate probabilistic models, known as graphical models, in which
conditional independence constraints between genes are specified by graphs. In particu-
lar, we focus on an undirected graphical model, which assumes multivariate normality of
the data, known as the Gaussian graphical model (GGM). We then tackle the problem of
nitrogen catabolite repression (NCR) target genes prediction in Saccharomyces cerevisae
using two-class classification and the GGM.

One of the most important and challenging tasks in biology consists in the identifica-
tion of interactions between genetic components, like genes and proteins, within complex
living organisms. Indeed, the data flood that biology is experiencing [198] is pushing sci-
entists toward a new view of biology: systems biology, as it is called, aims at system-level
understanding of biological systems. This field investigates the functional behavior and
relationships of all of the components in a particular biological system [127, 252].

The availability of genome-wide gene expression technologies has enabled scientists to
make considerable progress towards achieving this goal through the identification of the
interactions between genes in living systems, or gene regulatory networks1 (GRNs). In
particular, DNA microarrays enable to monitor the whole transcriptome on a single chip
so that researchers can have a picture of the interactions among thousands of genes si-
multaneously. As such this technology has attracted tremendous interest among biologists
and has become one of the most widely used sources of genome-scale data [24].

The process of building GRNs from DNA microarray gene expression data, known as
network inference or reverse engineering, is the first main topic of this thesis (Section 1.2).

This process is far from being trivial because of the poor information content of DNA
microarray data, which are corrupted by substantial amounts of measurement noise [252],
and the combinatorial nature of the problem. Indeed, gene expression levels are regulated
by the combined action of multiple gene products [23, 122]. Moreover, the number n
of measurements is relatively small (on the order of tens or hundreds) compared to the
number p of measured objects (on the order of hundreds or thousands). This “small n,

1We use the terms “network” and “graph” interchangeably.
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(a) Common “cause”.
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(b) Sequential pathway.

Figure 1.1: (a) A simple gene regulatory network (GRN; Section 2.3) consisting of 3 genes
(left). Note that genes are denoted by g, while the random variables of interest (for
example the expression levels of the genes) are denoted by x. The arrow pointing from
gene g1 to gene g2 (resp. g3) means that g1 regulates g2 (resp. g3). The expression levels
x2 and x3 of, respectively, genes g2 and g3 are highly correlated with each other because
g2 and g3 are both regulated by gene g1. The spurious relation between the expression
levels x2 and x3 will therefore be inferred in the independence graph (middle), which is a
simple model that does not take into account the effect of the remaining variables (x1 in
this example). In the GGM (right), however, the spurious relation between x2 and x3 will
not be inferred because the effect of x1 is taken into account. Note that the directions of
the identified connections are not inferred in the independence graph and the GGM. (b)
This example, which is similar to (a), illustrates a sequential pathway.

large p” data setting renders learning tasks in molecular biology more challenging.
We tackle the problem of reverse engineering GRNs from DNA microarray data with

multivariate probabilistic models, known as graphical models, in which conditional inde-
pendence constraints between genes are specified by graphs. In particular, we focus on
undirected graphical models which assume multivariate normality of the data, known as
Gaussian graphical models (GGMs). GGMs have become very popular in bioinformatics
as they enable to distinguish between direct and indirect interactions by taken into account
the effect of all remaining observed genes (Figure 1.1).

Of course, for certain inference tasks, such as the reverse engineering of co-expression
networks, independence graphs, which are simpler models that do not take into account
the effect of the remaining variables, still play an important role [27].

Unfortunately, GGM selection is an ill-posed problem in the “small n, large p” data
setting that characterizes many bioinformatics problems in general, and expression data
in particular. Indeed, the usual sample concentration matrix—the maximum likelihood
estimate of the (population) concentration matrix—requires the sample covariance matrix
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to be positive definite and this holds, with probability one, if and only if n > p [69]. To
cope with this dimensionality issue, two approaches have been proposed in the literature.
The first one uses regularization and the second one uses limited-order partial correlation
graphs, or q-partial correlation graphs. However, issues arise in both cases (Section 1.1).
It is the aim of our two first contributions, which consist in a new shrinkage estimator
and an algorithm–the q-nested procedure–to efficiently infer q-partial correlation graphs
(Section 1.2) to tackle these problems.

Note that some authors try to mitigate the dimensionality issue by collecting as much
data as possible (in order to increase the number n of samples) and by building large
databases of experimental data. However, robust procedures, such as the ones developed in
this thesis, are still crucial for inference tasks because simply increasing n is not sufficient.
Indeed, even when n > p, standard techniques might still perform poorly, unless n is
much larger than p (quantitatively determining how much larger n must be depends on
the underlying inference task). Even if DNA microarray data can nowadays be more
easily and more cheaply collected than a decade ago, new technologies, such as microRNA
microarrays, are constantly being introduced. By the time these new technologies become
the mainstream, robust methods able to cope with the dimensionality issue incurred by
the “small n, large p” data setting are indispensable to take advantage of these new
technologies.

Another important and challenging task in biology is gene function prediction. Often,
biologists know the function of some (but not all) genes with respect to a specific process
and their goal is to infer other genes involved in this process. In particular, the second
main problem we will tackle in this thesis (Section 1.3) is the inference of nitrogen catabolite
repression (NCR) target genes in the yeast Saccharomyces cerevisae (S. cerevisae). Yeast
is a relatively simple unicellular organism for which the entire genomic sequence and the
functional roles of approximately 60% of the genes are known [36, 37, 77]. Therefore, it
has been widely used in genomics as a model organism. The study of such an organism is
indispensable for the understanding of more complex ones [84].

NCR is the process studied in the ARC project that supported the work presented
in this thesis (see the Preface). It is an important biological process in S. cerevisae
which involves an essential nutrient for all life forms: nitrogen. The emergence of cells
able to transport, catabolize and synthesize a wide variety of nitrogenous compounds
has thus been favored by evolutionary selective pressure [107]. As a consequence, S.
cerevisiae can use 27 distinct nitrogen-containing compounds, including amino acids, urea,
ammonium, nitrogen bases, and purine derivatives [107]. Like most unicellular organisms,
yeast transports and catabolizes good nitrogen sources in preference to poor ones. NCR is
this selection mechanism. All known nitrogen catabolite pathways are regulated by four
regulators (Gln3, Gat1, Dal80, and Deh1). Moreover, approximatively 40 genes have been
annotated as NCR-sensitive. The ultimate goal is to identify all genes involved in NCR.

We first tackle this problem of inferring NCR target genes by adopting a “standard”
two-class classification approach. We will then make a connection with the first part of
the thesis by proposing a new approach for predicting NCR genes based on a network
inference paradigm.
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The thesis consists of four main contributions which are split into two parts. The first
one concerns the reverse engineering of GRNs in the “small n, large p” data setting and
is introduced in Section 1.2. The second part is devoted to the prediction of NCR target
genes and is presented in Section 1.3. A summary of the four contributions and references
to the relevant publications are provided in Section 1.4.

1.1 Gaussian graphical model selection in the “small n, large p” data

setting

Graphical models are representations of multivariate probabilistic models in which con-
ditional independence (Section 4.1) constraints are specified by graphs (Sections 4.4 and
4.5). The vertices of the graph represent the variables, i.e., the genes (more specifically, a
variable represents a particular characteristic of a gene, such as its expression level).

These models have gained much attention as they encode full conditional relationships
between variables, i.e., genes. Hence, they enable to distinguish between direct and indirect
interactions. Although they have the disadvantage of leaving dynamical aspects of gene
regulation implicit, these models are becoming increasingly important as recent studies
indicate that “the topology of networks is a determining factor in both re-engineering the
network as well as understanding network and organism evolution” [85].

The particularity of GGMs is that they assume multivariate normality of the data.
The independence relationships between variables can hence be inferred through partial
correlations which are intimately linked to linear regression and to the corresponding
problem of estimating the covariance matrix.

Hence, GGMs only capture linear forms of dependencies. Although the normality of
DNA microarray data is a disputed question [103, 269], it seems that this limitation is not
very stringent given the poor information content of the data [103].

Unfortunately, GGM selection is an ill-posed problem in the “small n, large p” data
setting (Section 4.7.1) that characterizes many bioinformatics problems in general, and
DNA microarray data in particular (Section 2.1.2). Standard GGM selection approaches
can therefore not be used. To cope with this dimensionality issue, two alternatives have
been proposed in the literature.

The first one uses regularization which consists in constraining the parameters of an
estimator to prevent overfitting by imposing a “simpler” estimator, hence reducing its
variance (Section 3.5). Indeed, GGM selection reduces to estimating a covariance matrix.
This avenue of research has been explored by many authors. In particular, Ledoit and
Wolf [153] proposed a shrinkage estimator (see also Schäfer and Strimmer [212]). They
showed that the estimation of the covariance matrix could be improved by finding an
optimal convex combination of the sample covariance matrix and a constrained covariance
matrix, for which they provide an analytical solution (Section 5.2). Intuitively, their
approach reduces to balancing bias and variance to reduce the mean squared error (MSE).
Unfortunately, the parameter defining shrinkage depends on unknown quantities and needs
to be estimated consistently (Section 1.2).

The second approach to cope with the dimensionality issue is to use limited-order par-
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tial correlation graphs, or q-partial correlation graphs (Section 4.7.1). It has been shown
both theoretically and experimentally that such graphs provide accurate approximations
of the full conditional independence structure between the variables thanks to the sparsity
of genetic networks. Despite the promising results obtained in the literature, the compu-
tational burden of the existing reverse engineering algorithms limits the applicability of
this approach (Section 1.2).

We now present our contributions to tackle the problems arising with the existing
solutions to GGM selection in the “small n, large p” setting within the context of GRNs
inference from DNA microarray data (Section 1.2). Note that we will also use GGM
selection for the identification of NCR target genes (Section 1.3).

1.2 Reverse engineering gene regulatory networks from DNA microarray

data

One of the most important and challenging tasks in bioinformatics is thus the reverse engi-
neering of biological networks. In particular, we focus on the inference of gene regulatory
networks (GRNs, Section 2.3) from DNA microarray gene expression data (Section 2.1.2).
We consider observational data (so-called passive observations) and not active interven-
tions (such as gene knockouts). Moreover, we assume the observations to be independent
and identically distributed (i.i.d) and will therefore not consider time-series data.

The inference of GRNs from microarray data makes two simplifying assumptions: the
protein synthesis depends directly on the amount of mRNA (Section 2.1) and genes directly
affect each other. These networks therefore constitute a simplification of the complete
cellular system. However, they are a logical way of describing phenomena observed with
transcription profiling.

Among the many existing modeling formalisms to reverse engineer GRNs from DNA
microarray data (Section 2.4), we focus on graphical models (Section 2.4.4), and, more
specifically, on the Gaussian graphical model (GGM; Section 2.4.4.1) which has gained
much attention recently.

Concerning the regularization approach to GGM selection in the “small n, large p”
data setting, we show that the optimal shrinkage intensity estimator of the shrinkage
estimator proposed by Ledoit and Wolf [153] (see also Schäfer and Strimmer [212]) is
biased (Section 5.3). Consequently, we propose a parametric bootstrap approach [34,
116] to estimate this bias (Section 5.4) and derive a “bias-corrected” shrinkage estimator
(Section 5.5), which marks our first main contribution. The applicability and usefulness of
our estimator are demonstrated on both simulated and real expression data (Sections 5.6
and 5.7, respectively).

As a second main contribution, we propose an efficient algorithm to considerably speed
up the inference of q-partial correlation graphs (Chapter 6) within the context of the re-
cently proposed q-partial correlation graph theory [30] that takes advantage of GRNs’
sparseness (note that our procedure does not assume sparseness but exploits it when
present). By adopting a screening procedure, we iteratively build nested graphs by dis-
carding the less relevant edges. Moreover, by conditioning only on relevant variables, we
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diminish the problems related to multiple testing. This procedure allows us to faster in-
fer limited-order partial correlation graphs and therefore to consider higher order values,
which increases the accuracy of the inferred graph. The effectiveness of the proposed
procedure is shown on simulated data.

1.3 Predicting nitrogen catabolite repression target genes

Nitrogen is an essential nutrient for all life forms. The emergence of cells able to transport,
catabolize and synthesize a wide variety of nitrogenous compounds has thus been favored
by evolutionary selective pressure [107]. As a consequence, the yeast S. cerevisiae can use
27 distinct nitrogen-containing compounds (Section 2.2). Like most unicellular organisms,
yeast transports and catabolizes good nitrogen sources in preference to poor ones. Nitrogen
catabolite repression (NCR) refers to this selection mechanism.

The ultimate goal is to identify all genes involved in NCR. This challenge has mainly
been tackled by three genome-wide experimental studies [11, 107, 214], one of which [107]
stems from the ARC project. In this contribution [107], we also proposed a bioinformat-
ics approach, which we refer to as Godard et al. [107]’s approach, to complement the
experimental study. Indeed bioinformatics methods offer the possibility to identify puta-
tive NCR genes and to discard uninteresting genes, hence strengthening the results of the
experimental study.

A first approach to infer putative NCR genes is to adopt a classification approach
[121, 219]. In Godard et al. [107], we formulated the identification of putative NCR genes
in the yeast S. cerevisiae as a supervised two-class classification problem (Section 7.1).
The (trained) classifiers predict whether genes are NCR-sensitive or not based on the
number of occurrences of NCR-related motifs in their upstream noncoding sequences.

The third main contribution of the thesis consists in extending this two-class classifi-
cation approach (Section 7.2). Instead of focusing on NCR-related motifs in the upstream
noncoding sequences of the genes, we concentrate solely on the GATA motif. Indeed, the
promoter regions of NCR target genes typically contain several 5’-GATA-3’ core sequences,
which we will refer to as GATA boxes, recognized by the GATA family transcription fac-
tors (Godard et al. [107] and references therein). We specify a large number of variables
related to this motif (Section 7.2.2). These variables define characteristics that biologists
(who took part in the aforementioned ARC project) hypothesize to be relevant to NCR.
Our goal mainly consists in determining new properties that could be determinant in NCR.

We also define a negative training set of manually-selected genes known to be insensi-
tive to NCR (Section 7.2.1), thus avoiding the computational expensive undersampling ap-
proach (Section 3.7.3) adopted previously [107]. Besides, different classifiers (Section 7.2.3)
and variable selection methods (Section 7.2.4) are compared.

We then show the effectiveness of our approach (Section 7.3). In particular, we show
that all classifiers make significant and biologically valid predictions by comparing these
predictions to annotated and putative NCR genes (Section 7.3.1), and by performing
several negative controls. Moreover, the inferred NCR genes significantly overlap with
putative NCR genes identified in three aforementioned genome-wide experimental studies
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(Section 7.3.2). These results suggest that our approach can successfully identify potential
NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in
NCR is drastically reduced. Finally, we identify previously uncharacterized variables.
Further experimental analysis is however required to determine whether these variables
indeed play a role in NCR.

Despite delivering promising results, these two-class classification approaches suffer
from a major drawback: they require a negative training set. Indeed, four genes have
been identified as NCR regulators and a few tens of genes have been annotated as NCR
genes, but a priori there are no known “non-NCR” genes. Obviously, the faced problem
corresponds more to one-class classification [233] than to two-class classification. One-
class classification tries to discriminate one class of objects from all other possible objects
by learning from a training set containing only the objects of that class. This observation
leads us to the fourth main contribution of the thesis, which consists in a network inference
approach to one-class classification (Section 8.1). In a nutshell, our approach consists
in inferring a Gaussian graphical model (GGM) based on the number of occurrences of
NCR-related motifs in the upstream noncoding sequences of the genes. To circumvent
the dimensionality issue, we use Ledoit and Wolf [153]’s shrinkage estimator (Section 5.2).
Given a set of NCR related genes, we then exploit the topology of the inferred network
for functional information. More specifically, the neighbors of the genes of interest (the
NCR regulators or/and the annotated NCR genes) are identified as putative NCR genes.

This approach does not require a negative training set2 and thus avoids the problems
encountered with the methods introduced in Chapter 7.

Furthermore, the network structure can give further insight into the considered prob-
lem. Indeed, “in real world applications, graphical [...] models are not only a tool for
operations such as classification or prediction, but usually the network structures of the
models themselves are also of great interest” [160]. This approach provides a more subtle
and rich picture of the considered problem. Although we ultimately look at the neighbors
of the genes of interest, the network topology offers the possibility to biologists to conduct
a more detailed and refined analysis. While a standard classification approach only pre-
dicts NCR genes, a network approach also gives information on the interactions between
the inferred NCR genes as well as on their interactions with the remaining genes. We
deem that a network inference approach is more adequate to deal with such a problem.

Finally, this procedure is by far less computationally expensive that the two two-class
classification approaches introduced previously. The feature selection and training phases
are replaced by the inference of a regularized covariance matrix.

1.4 Contributions’ summary

We summarize the four contributions of the thesis and provide references to the relevant
publications.

1. In Chapter 5, we introduce an improved regularized estimator of the covariance matrix.
We show that the optimal shrinkage intensity estimator proposed by Ledoit and Wolf

2Nevertheless, we will use negative validation sets for comparison purposes.
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[153] (see also Schäfer and Strimmer [212]) is biased (Section 5.3). Consequently, we
propose a parametric bootstrap approach [34, 116] to estimate this bias (Section 5.4)
and derive a “bias-corrected” shrinkage estimator (Algorithm 5.1; Section 5.5). The
applicability and usefulness of our estimator are demonstrated on both simulated and
real expression data (Sections 5.6 and 5.7, respectively). This contribution appeared
in:
− Kontos, K. and Bontempi, G. (2009a). An improved shrinkage estimator to infer

regulatory networks with Gaussian graphical models. In Proceedings of the 24th
Annual ACM Symposium on Applied Computing (ACM SAC 2009).

2. In Chapter 6, we propose the q-nested procedure to infer limited-order partial corre-
lation graphs or q-partial correlation graphs (Sections 6.1 and 6.2). It has been shown
both theoretically and experimentally that such graphs provide accurate approxima-
tions of the full conditional independence structure between the variables thanks to
the sparsity of genetic networks (Section 6.3). Alas, computing limited-order partial
correlation coefficients for large networks, even for small order values, is computation-
ally expensive, and often even intractable (Section 6.4). Moreover, problems deriving
from multiple statistical testing arise, and one should expect that most of the edges
are removed. Our procedure tackles both problems by reducing the dimensionality
of the inference task (Algorithms 6.1 and 6.2; Section 6.5). By adopting a screening
procedure, we iteratively build nested graphs by discarding the less relevant edges.
Moreover, by conditioning only on relevant variables, we diminish the problems re-
lated to multiple testing. This procedure allows us to faster infer limited-order partial
correlation graphs and therefore to consider higher order values, which increases the
accuracy of the inferred graph. The effectiveness of the proposed procedure is shown
on simulated data (Section 6.7). This contribution appeared in:
− Kontos, K. and Bontempi, G. (2008b). Nested q-partial graphs for genetic net-

work inference from “small n, large p” microarray data. In Elloumi, M., Küng,
J., Linial, M., Murphy, R., Schneider, K., and Toma, C., editors, Proceedings of
the 2nd International Conference on Bioinformatics Research and Development
(BIRD 2008), number 13 in Communications in Computer and Information Sci-
ence (CCIS), pages 273–287, Heidelberg. Springer.

− Kontos, K. and Bontempi, G. (2008c). Nested q-partial graphs for genetic network
inference from “small n, large p” microarray data. In Proceedings of Journées
Ouvertes Biologie Informatique Mathématiques (JOBIM 2008).

3. In Chapter 7, we present a machine learning approach where the identification of
putative NCR genes in the yeast S. cerevisiae is formulated as a supervised two-
class classification problem. Classifiers predict whether genes are NCR-sensitive or
not from a large number of variables related to the GATA motif in the upstream non-
coding sequences of the genes (Section 7.2.2). The positive and negative training
sets are composed of annotated NCR genes and manually-selected genes known to be
insensitive to NCR, respectively (Section 7.2.1). Different classifiers (Section 7.2.3)
and variable selection methods (Section 7.2.4) are compared. We then show the ef-
fectiveness of our approach (Section 7.3). In particular, we show that all classifiers
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make significant and biologically valid predictions by comparing these predictions to
annotated and putative NCR genes (Section 7.3.1), and by performing several nega-
tive controls. Moreover, the inferred NCR genes significantly overlap with putative
NCR genes identified in three genome-wide experimental and bioinformatics studies
(Section 7.3.2). This contribution appeared in:
− Kontos, K., Godard, P., André, B., van Helden, J., and Bontempi, G. (2008). Ma-

chine learning techniques to identify putative genes involved in nitrogen catabolite
repression in the yeast Saccharomyces cerevisiae. BMC Proceedings, 2(Suppl 4):S5.

− Kontos, K., Godard, P., André, B., van Helden, J., and Bontempi, G. (2007). Ma-
chine learning techniques to identify putative genes involved in nitrogen catabolite
repression in the yeast Saccharomyces cerevisiae. In Proceedings of the First In-
ternational Workshop on Machine Learning in Systems Biology (MLSB 2007),
pages 21–26.

− Godard, P., Urrestarazu, A., Vissers, S., Kontos, K., Bontempi, G., van Helden,
J., and André, B. (2007). Effect of 21 different nitrogen sources on global gene
expression in the yeast Saccharomyces cerevisiae. Molecular and Cellular Biology,
27(8):3065–3086.

4. In Chapter 8, we propose an approach based on Gaussian graphical models (GGMs),
which enable to distinguish between direct and indirect interactions between genes,
to identify putative NCR genes from putative NCR regulatory motifs and over-
represented motifs in the upstream noncoding sequences of annotated NCR genes
(Algorithm 8.1). Because of the high-dimensionality of the data, we use a shrinkage
estimator of the covariance matrix to infer the GGMs. We show that our approach
makes significant and biologically valid predictions. We also show that GGMs are
more effective than models that rely on measures of direct interactions between genes.
This contribution appeared in:
− Kontos, K., André, B., van Helden, J., and Bontempi, G. (2009). Gaussian graph-

ical models to infer putative genes involved in nitrogen catabolite repression in S.
cerevisiae. In Pizzuti, C., Ritchie, M. D., and Giacobini, M., editors, Proceedings
of the 7th European Conference on Evolutionary Computation, Machine Learning
and Data Mining in Bioinformatics (EvoBIO 2009), volume 5483 of Lecture Notes
in Computer Science (LNCS), pages 13–24. Springer.

1.5 Outline

In the Background part we introduce the biological setting (Chapter 2), the basic machine
learning concepts (Chapter 3) and the Gaussian graphical model (GGM, Chapter 4) used
throughout the thesis.

Next, we move to the Contributions to Gene Regulatory Network Reverse Engineering
from Gene Expression Data part where we present our contributions to GGM selection in
the “small n, large p” setting for inferring GRNs. They consist in an improved shrinkage
estimator (Chapter 5) and a nested procedure for inferring q-partial (correlation) graphs
(Chapter 6).
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Subsequently, we proceed with the Contributions to Nitrogen Catabolite Repression
Target Gene Prediction part where we present our contributions to NCR target gene
prediction. We extend a “standard” two-class classification approach (Chapter 7) and
propose a GGM selection method (Chapter 8) for this prediction task.

Chapter 9 concludes the thesis.
Appendix A summarizes the notation used throughout the thesis. Appendix B lists the

commonly used abbreviations and acronyms. Appendix C provides a glossary of biological
terms. The remaining appendices give background information that has been kept out of
the main text for the sake of readability and are referenced in the relevant sections of the
thesis. A subject index is provided after the bibliography.
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Biological Setting

For the proper understanding of the remainder of the thesis, we first overview some basic
concepts of molecular biology (Section 2.1). In particular, we introduce DNA microarrays
(Section 2.1.2) which provide the expression data from which gene regulatory networks
(GRNs) are inferred. We also introduce an important biological process–nitrogen catabo-
lite repression (NCR; Section 2.2)–occurring in the yeast Saccharomyces cerevisae. The
study of such a model organism is indispensable for the understanding of more complex or-
ganisms. By addressing the problem of NCR target genes identification, we tackle another
important and challenging task in bioinformatics, namely gene function prediction.

2.1 Basics of molecular biology

This section presents the biological processes involved in gene regulation. By necessity, it
gives a simplified view of current biological knowledge. However, it provides a sufficient
level of detail to allow an appreciation of what is included and omitted by the different
formalisms presented in this thesis.

2.1.1 The DNA-protein relationship1

According to the current biological paradigm, information in a biological organism is stored
in its genome. The genome constitutes the complete set of genes in the chromosomes of
each cell of a particular organism. It consists of long molecules of DNA made up of chains
of nucleotides in a double-helix structure.

Proteins are the fundamental structural and functional units in cells, which are the
basic functional units of the genome.

The central dogma of molecular biology states that information stored in the DNA of
a given gene is transcribed into RNA, which is then translated into proteins as illustrated
in Figure 2.1.

The central dogma is represented by four major stages:

1. the DNA replicates its information in a process known as replication that involves
many enzymes;

2. the DNA codes for the production of messenger RNA (mRNA) during transcription;

1This section is mainly based on Lodish et al. [163]
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DNA mRNA protein
transcription translation

replication

Figure 2.1: The central dogma of biology: DNA-protein relationship.

3. in eukaryotic cells, the mRNA is processed (essentially by splicing) and migrates from
the nucleus to the cytoplasm (not shown in Figure 2.1) in a process called RNA
processing ;

4. messenger RNA carries coded information to ribosomes who “read” this information
and use it for protein synthesis in a process known as translation.

Each protein is specialized to carry on a variety of important roles, such as a structural
element, enzyme catalyst or antibody. A large subset of proteins known as transcription
factors (TFs) also play a regulatory role, determining when, where and how much a
particular gene is expressed into proteins. Because regulatory proteins are themselves the
products of expressed genes, they are themselves under regulatory control, giving rise to
complex networks of interacting genes (Section 2.3).

The following two sections describe the processes of transcription and translation that
mediate the path from DNA to protein in eukaryotic and prokaryotic cells. The gene
expression mechanism in both types of cells is essentially similar (there are some differ-
ences [230] which we will, however, not cover). All complex multicellular organisms are
eukaryotic (their DNA is stored in the nucleus) and their cells tend to have a considerably
higher level of regulatory complexity than single-celled prokaryotic organisms (that have
no nucleus) such as bacteria.

A gene consists of a regulatory region, which controls when the gene will be activated,
and a coding region, which specifies the protein that will be produced when the gene is
activated as illustrated in Figure 2.2.

In prokaryotes, the regulatory region is generally located directly upstream of the
coding region, whereas in eukaryotes elements of the regulatory region may be located
at a considerable distance both upstream and downstream from the coding region. A
regulatory region contains binding sites, i.e., specific sequences (or motifs), such as GATA

for example, where specific TFs can bind to (Figure 2.2). Individual TFs may exercise
either positive or negative control on the activation of a gene, increasing or decreasing its
rate of transcription. When the activation conditions for a given gene are fulfilled, a large
molecule called RNA polymerase binds to the TF complex and the DNA in the gene’s
coding region is unwound. The sequence of nucleotides on the coding strand of the DNA
is then used as a template to create a single-stranded messenger RNA (mRNA) molecule
[185].

While in prokaryotes, the coding region is contiguous, in eukaryotes, the coding region
is broken up into a series of coding exons and noncoding introns, which must be spliced out
of the initial RNA transcript. A number of other processing mechanisms are also possible
at this stage. In many cases, a single eukaryotic gene can be spliced and edited in multiple
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Gene 1

Protein 1

Protein 2

Gene 2

Figure 2.2: The regulatory regions (in light gray) are shown next to the coding regions
(in dark gray), which start at the bent arrows. Gene 1 produces Protein 1 which binds
to a specific binding site (in black) and induces the activation of Gene 2 which produces
Protein 2.

ways to produce a variety of different protein products [167, 209, 220]. As the next step
of gene expression, translation, occurs in the cytoplasm of the cell, mRNA molecules in
eukaryotes must also be transported outside of the cell nucleus.

Once in the cytoplasm, mRNA molecules bind to another large molecule called a
ribosome. A ribosome reads an mRNA molecule in triplet known as codons. Each codon
maps to one of twenty possible amino acids, that are chained together in the order specified
by the mRNA. The newly created amino acid chain then folds into a complex three-
dimensional protein structure. Whereas DNA is a stable molecule, mRNA and proteins
have only limited lifespan before they are broken down and their constituent nucleotides
and amino acids are reused. Both mRNA and proteins may be degraded at different rates
depending on their conformation and the presence or absence of other chemicals in the
cell.

While the most well understood form of regulation occurs at the transcriptional level,
the control of gene expression, which covers the entire process from transcription through
the protein synthesis, may be carried out at almost any stage of protein synthesis. Reg-
ulation is also known to occur at the level of RNA processing, mRNA transport and
translation, protein modification and mRNA and protein degradation.

The final measure of whether or not a gene is “expressed” is if the protein is produced,
because it is the protein that will ultimately carry out the function specified by the gene
(Figure 2.3).

Regulation can occur at any point in the pathway shown in Figure 2.4. Specifically,
it occurs at the levels of transcription, RNA processing (only for eukaryotes; not shown
in Figure 2.4), mRNA lifetime (longevity) and translation [163]. All these levels of gene
regulation are important in determining the levels of gene expression. When using DNA
microarrays (Section 2.1.2), it is the level of mRNA that is measured, thus only regulation
at the level of transcription and (for eukaryotes) of RNA processing is considered.
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Figure 2.3: Gene activity is partially reflected in mRNA concentration, measured by DNA
microarrays (Section 2.1.2).
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Figure 2.4: Regulation can occur at the levels of transcription, mRNA lifetime and trans-
lation.
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2.1.2 Gene expression and DNA microarrays

DNA microarrays, simply referred to as microarrays,2 use nucleic acid hybridization tech-
niques to evaluate the mRNA expression profile of thousands of genes within a single
experiment. This technology enables to monitor the whole transcriptome on a single
chip so that researchers can have a picture of the interactions among thousands of genes
simultaneously. As such it has attracted tremendous interest among biologists. After
genome sequencing, DNA microarray analysis has become the most widely used source of
genome-scale data [24].

More specifically, DNA microarrays are solid substrates hosting hundreds of single
stranded DNAs with a specific sequence, representing the genes of an organism, which
are found on localized features, the spots, arranged in grids [213]. These molecules, called
probes, will hybridize with single stranded DNA molecules, named targets, that have been
labeled during a reverse transcription procedure. The targets reflect the amount of mRNA
isolated from a sample obtained under a particular influence factor. Thus, the amount of
fluorescence emitted by each spot will be proportional with the amount of mRNA produced
from the gene having the corresponding DNA sequence. The microarray is scanned and
the resulting image (an example of which is given in Figure 2.5) is analyzed such that
the signal from each feature or probe can be quantified into some numerical value which
represents the expression level of a given gene in a given condition [65]. These values are
typically represented by an n× p matrix, where n and p represent the number of samples
and the number of genes, respectively.

Through the use of highly accurate robotic spotters, over 30, 000 spots can be placed
on one slide, allowing molecular biologists to analyze virtually every gene present in a
genome [213]. Microarray data sets hence typically describe a large number p of variables
(on the order of hundreds or thousands) but only contain comparatively few samples n
(on the order of tens or hundreds). This “small n, large p” data setting renders learning
tasks in molecular biology even more challenging.

The emergence of DNA microarrays is largely due to the necessity to understand the
networks of bio-molecular interactions at a global scale [65]. Indeed, it is widely believed
that genes and their products (proteins) are processed in complex networks (Section 2.3).
With the sequencing of the genomes of many organisms, the need for a quick snapshot of
all or a large set of genes was thus pressing. A traditional approach in molecular biology
was to use some method to render a gene inactive (knock out) and then study the effects
of this knock out in other genes and processes in a given organism. Unfortunately, this
approach enabled to study only few genes at a time, and was thus slow, expensive, and
inefficient for a large scale screening of many genes.3

The main drawback of DNA microarrays is that they tend to be very noisy (sometimes,

2There is no ambiguity in using this term: although other types of microarrays exist, such as protein

or tissue microarrays for example, we will only consider DNA microarrays.
3Although microarrays are invaluable as screening tools able to interrogate simultaneously thousands

of genes, gene knockouts are still crucial for a focused research once interesting genes have been located.

Indeed, knocking out a gene allows the study of the more complex effects of the gene, well beyond the

mRNA abundance level [65].
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Figure 2.5: Image (reproduced from Godard [105]) resulting from the scanning of a mi-
croarray.
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some values might even not be available) [65], despite the development of several tools such
as statistical experimental design and data normalization to obtain high quality results
[225, 269]. This noise is introduced at various steps of their production, such as sample
preparation, RNA amplification/purification, chip hybridization and scanning [217].

2.1.3 The control tasks of the genome

The genome is responsible for controlling cellular tasks such as response to environmental
conditions, the cell division cycle and cell differentiation. Each of these requires the
regulation of gene expression in both space and time.

Throughout its lifetime, a cell must respond to many different types of environmental
signals, an example of which is given by nitrogen catabolite repression (NCR) in the yeast
Saccharomyces cerevisiae (Section 2.2). Single-celled bacteria are able to detect and move
towards nutrient sources, they also react to changes in temperature and acidity. Multi-
cellular cells must also respond to chemical signals emitted by neighboring cells in the
organism. These external signals are transmitted to the genome via a series of chemical
reactions known as signal transduction pathways.

As well as responding to external signals, the genome is also subject to internal control.
The cell cycle plays the role of a cell’s internal clock. In order for an organism to develop,
each embryogenic cell goes through a process of growth, replication and division. After
its growth, its entire genome is replicated to produce two identical copies. When the cell
divides, each of its daughter cells contains one complete copy of the genome. The signals
that tell a cell when to switch from growth to replication and from replication to division
are controlled by a subset of genes that regulate timing.

Each cell of a multicellular organism contains identical genetic information (with some
rare exceptions). The feature that distinguishes cells of different types is the set of genes
that are active in a particular cell. This pattern activation determines which proteins are
produced, and hence the functional properties of the cell. When an egg cell is initially
fertilized, it is fully undifferentiated and has the potential to become any type of cell.
As an organisms developmental program unfolds, its cells divide and undergo physical
and chemical changes that result in their final state (for example, as blood or bone cells)
becoming more differentiated. The role of the gene regulatory network in this process is
to integrate the internal dynamics of the cell and external signals from the environment
and other cells to control the differentiation process.

2.2 Nitrogen catabolite repression in the yeast Saccharomyces cerevisiae

The yeast Saccharomyces cerevisae (S. cerevisae) is a relative simple unicellular organisms
for which the entire genomic sequence and the functional roles of approximately 60% of
the genes are known [36, 37, 77]. Many results have already been obtained, in particular
concerning its different cellular states [226] and its growth conditions [99, 183]. Therefore,
it has been widely used in genomics as a model organism (another example of model
organism is Escherichia coli ; Section 5.7). The study of such organisms is indispensable
for the understanding of more complex ones [84].
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In particular, we focus on an important biological process known as nitrogen catabolite
repression (NCR), which involves an essential nutrient for all life forms: nitrogen. The
emergence of cells able to transport, catabolize and synthesize a wide variety of nitroge-
nous compounds has thus been favored by evolutionary selective pressure [107]. As a
consequence, S. cerevisiae can use 27 distinct nitrogen-containing compounds, including
amino acids, urea, ammonium, nitrogen bases, and purine derivatives [107].

Like most unicellular organisms, yeast transports and catabolizes good nitrogen sources
(e.g., ammonium, glutamine, and asparagine) which support rapid growth, i.e., generation
time (defined as the time required for a cell to complete one full growth cycle) of approx-
imatively 2 hours, in preference to poor ones (e.g., isoleucine, methionine and threonine)
which support slow growth, i.e., generation time larger than 3 hours [106, 107]. NCR
refers to this selection mechanism [106, 107, 214]. It consists in the specific inhibition of
transcriptional activation of genes encoding the permeases and catabolic enzymes needed
to degrade poor nitrogen sources [214], as illustrated in Figure 2.6.

More specifically, “NCR acts through the inhibition of two transcription factors of the
GATA family (Gln3 and Gat1/Nil1) which typically bind to upstream 5’-GATA-3’ core
sequences and activate gene transcription [. . . ]. The Gln3 and Gat1 factors are thus most
active under limiting nitrogen supply conditions (e.g., when cells grow on poor nitrogen
sources like urea and proline) and [. . . ] upon the addition of rapamycin to nitrogen-rich
media” [107].

“Rapamycin inhibits the Tor proteins, which are proposed to govern the inhibition
of Gln3 and Gat1 under good nitrogen supply conditions. The Tor-dependent inhibition
of Gln3 involves the Ure2 protein, whereas the repression of Gat1-dependent expression
under good nitrogen supply conditions is also dependent on Gzf3/Deh1/Nil2, another
GATA family transcription factor” [107].

Finally, a “fourth GATA factor encoded by the DAL80/UGA43 gene also acts as an
inhibitor of Gat1 [. . . ] under poor nitrogen supply conditions. Transcription of the GAT1,
GZF3, and DAL80 genes is under the control of all four GATA factors.” [107].

These four key transcriptional regulators of NCR target genes are linked through a
network of auto- and cross-regulations [107].

The ultimate goal is to identify all genes involved in NCR. “Several studies have focused
on identifying in the complete yeast genome the genes subject to NCR or regulated by the
GATA factors” [107]. In particular, the challenge of inferring putative NCR genes has been
tackled by three experimental studies: Bar-Joseph et al. [11], Godard et al. [107], Scherens
et al. [214]. Among these, Godard et al. [107] also proposed a bioinformatics approach
(Section 7.1).

2.3 Gene regulatory networks

The data flood phenomenon biology is experiencing has propelled biologists toward the
view that biological systems are fundamentally composed of two types of information:
genes, encoding the molecular machines that execute the functions of life, and networks
of regulatory interactions, specifying how genes are expressed [126].
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Figure 2.6: Illustration of nitrogen catabolite repression (NCR) reproduced from Godard
[106]. Circles represent transcription factors and the hexagon represents the regulatory
protein Ure2. The elements that activate the transcription of NCR target genes are shown
in green and those that repress it are shown in red. See text for details.
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The development of high-throughput data-collection techniques, as epitomized by the
widespread use of DNA microarrays (Section 2.1.2), allows for the simultaneous interro-
gation of the status of a cell’s components at any given time. Various types of interaction
networks, including protein-protein interaction, metabolic, signaling and transcriptional
regulatory networks, emerge from the sum of these interactions. None of these networks
are independent, instead they form a “network of networks” that is responsible for the
behavior of the cell [12]. Consequently, biological information has the following two im-
portant features: it operates on multiple hierarchical levels and it is processed in complex
networks [126]. These information networks are typically sparse and robust, such that
many single perturbations will not greatly affect them. However, there are key nodes or
hubs in these networks where perturbation may have profound effects, which represent
powerful targets for the understanding and manipulation of the system.

Two of the most important challenges in systems biology are the extent to which it is
possible to model these genetic interactions as large networks of interacting elements and
the way that these interactions can be effectively learned from measured expression data
[252].

The inference or reverse engineering of genetic networks from expression data alone is
far from being trivial because of the combinatorial nature of the problem and the poor
information content of the data [252]. Indeed, gene expression levels are regulated by
the combined action of multiple gene products [23, 122] and the number n of measure-
ments (arrays) is relatively small compared to the number p of measured objects (genes).
This “small n, large p” data setting induces the so-called curse of dimensionality (Sec-
tion 3.3). Furthermore, the data is corrupted by a substantial amount of measurement
noise (Section 2.1.2).

To cope with the combinatorial nature of the problem, simplifying hypotheses are
made. Notably, we focus on gene regulatory networks (GRNs)–also referred to as tran-
scriptional regulatory networks in the literature. These networks constitute a simplification
of the complete cellular system, given that they are represented as if genes directly affect
each other.

Indeed, networks of interactions between molecules can be constructed at various lev-
els and can represent different types of interactions. Several biochemical networks have
traditionally been considered [23]:

− metabolic networks that represent the chemical transformations between metabolites;

− protein networks that represent protein-protein interactions, such as formation of
complexes and protein modification by signaling enzymes (also known as signaling
networks);

− gene regulatory networks that represent relationships that can be established between
genes, when observing how the expression level of each one affects the expression level
of the others.

Of course, each of these networks is a simplification of the complete cellular system, which
is referred to as the global biochemical network to emphasize that it explicitly includes all
three types of molecule, i.e., metabolites, proteins and mRNA.
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Hence, networks that are represented as if genes directly affect each other are phe-
nomenological because they do not explicitly represent the proteins and metabolites that
mediate cell interactions. However, they are a logical way of describing phenomena ob-
served with transcription profiling, such as those that occur with DNA microarrays [23].
When exclusively monitoring gene expression to study some phenomenon, one is limited
to constructing such a gene network to explain the data [23].

A model of a global biochemical network in which the three levels are shown explicitly
as planes is illustrated in Figure 2.7. In any global biochemical network, genes do not
interact directly with other genes (neither do the corresponding mRNAs); instead, gene
induction or repression occurs through the action of specific proteins, which are, in turn,
products of certain genes.

Gene expression can also be affected directly by metabolites, or through protein-
metabolite complexes. However, it is often useful to abstract these actions of proteins
and metabolites, and represent genes acting on other genes in a gene network (also called
genetic regulatory, transcription or expression networks). This simplification of going from
the global biochemical network to a gene network is akin to a projection of all interactions
to the “gene space” (Figures 2.7 and 2.8).

The idea that genes dictate all that goes on inside a cell, materialized in the central
dogma of molecular biology (Figure 2.1), which emphasizes that proteins, and consequently
metabolites, are only synthesized when genes are activated, fails to acknowledge that
gene expression is also influenced by the levels of protein and metabolite. It is now well
established that regulation is distributed over all levels, and accordingly such systems
are referred to as democratic, contrary to systems in which there is no feedback from
proteins or metabolites to genes that are called dictatorial [265], but are currently only
used conceptually. Although this indicates that future studies need to make more effort to
monitor all three levels of regulation [169], it is still useful to study gene networks alone.
The ability to create gene networks from experimental data and use them to reason about
their dynamics and design principles will increase our understanding of cellular function
[23].

The inference of GRNs from microarray data thus makes two simplifying assumptions:
the protein synthesis depends directly on the amount of mRNA (Section 2.1) and genes
directly affect each other.

2.4 Reverse engineering gene regulatory networks

Inferring GRNs from expression data is one of the most important and challenging tasks in
bioinformatics (Section 2.3). Not surprisingly, a plethora of reverse engineering approaches
have been proposed to model GRNs, as epitomized by the numerous literature reviews that
have been published [50, 68, 79, 85, 93, 98, 100, 117, 169, 171, 221, 252], the first ones of
which appeared in the 1960’s and 1970’s [104, 201, 237] (see also the extensive bibliography
by Markowetz [168]). Although the computational study of gene regulation is a subject
that already has a long history, the number of papers on the topic published in the last
few years seems to be growing exponentially.
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Figure 2.7: A hypothetical biochemical network (redrawn from Brazhnik et al. [23]).
Molecular constituents (nodes of the network) are organized in three levels (spaces): mR-
NAs, proteins, and metabolites. Solid arrows indicate interactions, the signs of which
(activation or repression) are not specified in this diagram. Three different mechanisms of
gene-gene interactions are shown: regulation of gene 2 by the protein product of the gene
1; regulation of the gene 2 by the complex 3-4 formed by the products of gene 3 and gene
4; and regulation of gene 4 by the metabolite 2, which in turn is produced by protein 2.
Projections of these interactions into the gene space, indicated by dashed lines, constitute
a corresponding gene network.
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Figure 2.8: The genetic regulatory network (redrawn from Brazhnik et al. [23]) resulting
from the biochemical network depicted in Figure 2.7.
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For obvious reasons, it is out of the thesis’s scope to review all existing methods (if at
all possible). Instead, we introduce the general properties of existing modeling formalisms
(Section 2.4.1) and we review the most important models: Boolean and generalized logical
networks (Section 2.4.2), ordinary differential equations (Section 2.4.3), and graphical
models (Section 2.4.4). This last family of models, and in particular the Gaussian graphical
model (GGM) that we use throughout the thesis, will be studied in greater details in
Chapter 4.

The other existing modeling formalisms, e.g., neural networks [54, 252] and additive
regulation models [33, 55, 56, 179, 260], have had a more limited impact.

2.4.1 General properties of modeling formalisms

Despite the large number of existing approaches to reverse engineer GRNs, it is not clear
what the advantages and disadvantages of each of the different approaches are and how
they can be compared. There exists no common “hierarchy” in the literature for the nu-
merous proposed formalisms (for example the reviews by de Jong [50], Dutilh and Hogeweg
[68], Geard [100], Smolen et al. [221], van Someren et al. [252]). The hierarchies proposed
in the literature usually depend on the modeling aspects their authors want to emphasize
(see Kontos [141] for further details).

This is not really surprising since many aspects, which we now review, characterize
the different existing formalisms [85, 252]:

− Physical vs. combinatorial models: Physical models, such as those based on differ-
ential equations, describe the quantitative relationships between the state variables
in the system. Such models can be used to run simulations and predict the future
behavior of the system. Unfortunately, they lack inference methods and any higher
level organization is very difficult to obtain from the equations. Furthermore, the
large number of parameters that need to be fitted requires many experiments to fit
them to the data. On the other hand, combinatorial models focus on higher level
of modeling and are most often qualitative. These models are typically represented
as a graph of nodes and edges between them from which many important high-level
questions can be readily answered (Section 2.4.4);

− Static vs. dynamic models: A principal difference between models is whether static
or dynamic relations are modeled. Dynamic models assume that the gene expression
levels at past time instants determine the current (changes in) gene expression levels.
Dynamic models generally define a parametric model of interactions and try to esti-
mate the parameters from time course gene expression data. Thus, dynamic models
depict dependencies between microarray measurements taken at different time in-
stances. Static models search for causal interactions within microarray measurements
that are consistent across multiple microarrays. A nice feature of static models is that
they can be applied to time course gene expression data as well as to static data;

− Discrete vs. continuous models: Gene expression measurements are continuous values
that represent the relative amount of mRNA copies in a biological sample. Gene
expression levels in the model can thus be represented by continuous values or by
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discrete values when the data are quantized into a suitable number of discrete levels;

− Deterministic vs. stochastic models: A deterministic model always predicts the same
outcome when the initial conditions are the same. A stochastic model models the
probability distribution of possible outcomes. Both methods can be used depending
on whether one wants to explicitly model the uncertainty or not;

− Complexity of dependency relationships: Especially for continuous models, the func-
tional form of the interaction between genes provides a natural way to restrict the
complexity of the model. A common choice is to restrict the model to allow only
linear relationships (as is the case with Gaussian graphical models; see Section 2.4.4).
Linear relationships may greatly simplify parameter estimations and in many cases
allow analytical (closed form) solutions. Furthermore, the parameters are relatively
easy to understand. However, the linear representation may limit the expressive power
of the model;

− Number of inputs: A distinction between pairwise models and combinatorial models
can be made. Pairwise models determine relationships between pairs of genes and
thus only consider single-gene influences. Combinatorial models allow the combined
effect of multiple genes to influence a target gene.

2.4.2 Boolean and generalized logical networks

One of the earliest approaches to modeling GRNs was to view them as networks of logical
elements, known as Boolean networks [1–3, 125, 127, 134–137, 162, 165, 182, 223, 232].
This approach makes three simplifying assumptions [223]. First, it assumes that the state
of a single gene can be represented by a Boolean variable expressing that it is either
expressed or not. Second, interactions between elements are represented by Boolean func-
tions which calculate the state of a gene from the activation of other genes. Transitions
between states are therefore deterministic with a single output state for a given input.
Third, timing is synchronous: at each time step the states of all genes are updated si-
multaneously (i.e., in parallel) by applying the Boolean function of each element to its
inputs.

The main strengths of Boolean networks are their analytical tractability and the ease
and efficiency with which they can be simulated. However, their validity to model GRNs
has been questioned due to their perceived lack of applicability to biological systems [79]
and the validity of the Boolean assumption (many examples exist where genes are regulated
in a continuous manner [21, 22, 46, 221]) and the synchronicity assumption.

Generalized logic networks [236–239, 241] try to cope with the shortcomings of Boolean
networks by allowing state variables to assume more than two levels [238, 249], by enabling
more sophisticated forms of logical updating (such as weighted gene interactions [222]) and
by allowing for asynchronous updating of elements [238].

The generalized logic formalism is a powerful method for analyzing limited-scale net-
works whose interactions are well known [176, 177, 207, 208, 234, 239, 240]. Unfortunately,
the method’s scalability is limited. It has been designed for the detailed analysis of rela-
tively small systems consisting of well characterized interactions. It is therefore less suited
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to the exploration of large and less well-known systems.

2.4.3 Ordinary differential equations

Ordinary differential equations (ODEs) [7] are arguably the most widespread formalism
to model dynamical systems in science and engineering. As such, they have been widely
used to analyze GRNs [50]. ODEs model gene regulation by rate equations expressing the
rate of production of a component of the system as a function of the concentrations of
other components [50]:

dxi
dt

= fi (x) , i ∈ {1, . . . , p} , (2.1)

where x = (x1, . . . ,xp)
T ≥ 0 is the vector of gene product concentrations and fi : Rp −→ R

are update functions.
ODEs provide an accurate representation of the physical system under investigation

thanks to the detailed representation of regulatory interactions. Unfortunately, analytical
solution of the rate equation (2.1) is normally not possible because the update functions
are usually nonlinear. Therefore, one has to simplify the model (e.g., by using piecewise-
linear differential equations [50]) or take recourse to numerical simulations [149, 175].
Nevertheless, this can be computationally very demanding for realistically sized systems.

2.4.4 Graphical models

Graphical models are representations of multivariate probabilistic models in which con-
ditional independence (Section 4.1) constraints are specified by graphs (Sections 4.4 and
4.5). The vertices of the graph represent the variables, i.e., the genes (more specifically, a
particular characteristic of the gene, e.g., its expression level). They are composed of undi-
rected graphical models (Section 2.4.4.1), also known as Markov random fields, in which
the links have no directional significance, and directed graphical models (Section 2.4.4.2),
also known as Bayesian networks, in which the links have a particular directionality (indi-
cated by arrows). Undirected and directed models mainly differ in how the independence
relationships between the variables implied by the edges are read off the graph.

These models have gained much attention as they encode full conditional relationships
between variables, i.e., genes. Hence, they enable to distinguish between direct and indirect
interactions. Moreover, the availability of effective methods for their inference in the “small
n, large p” setting contributes to their success as epitomized by the growing literature
devoted to them.

Although they have the disadvantage of leaving dynamical aspects of gene regulation
implicit, these models are becoming increasingly important as recent studies indicate that
“the topology of networks is a determining factor in both re-engineering the network as
well as understanding network and organism evolution” [85].

2.4.4.1 Gaussian graphical models

Gaussian graphical models (GGMs) are undirected graphical models that assume multi-
variate normality of the data. The (in)dependence relationships between variables can
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hence be inferred through partial correlations which are intimately linked to linear regres-
sion and to the corresponding problem of estimating the covariance matrix.

On observational data (so-called passive observations), GGMs’ performance is simi-
lar to Bayesian networks’, albeit at a significantly smaller computational cost [264]. The
higher computational costs of inference with Bayesian networks over GGMs is only justified
with active interventions (such as gene knockouts) when Bayesian networks typically out-
perform GGMs [264]. However, as we will only deal with observational data, we focus on
GGMs in the present thesis (Chapter 4). More specifically, we use GGMs for the inference
of GRNs (Chapters 5 and 6) and for the prediction of NCR target genes (Chapter 8).

2.4.4.2 Bayesian networks

Learning Bayesian networks from data is typically cast as an optimization problem, where
the computational task is to find a structure that maximizes a statistically motivated score
[118]. As this optimization problem is NP-hard [35], finding the optimal Bayesian network
is only possible for networks that contain only a few tens of genes [186]. Most existing
learning tools therefore address this problem using standard heuristic search techniques
which are, however, not guaranteed to lead to a globally optimal solution [95, 96, 128, 190,
218]. As mentioned above, these methods are much more computationally demanding than
GGMs.

As an additional problem, currently available expression data underdetermine the net-
work, since at best a few hundreds of experiments provide information on the transcription
level of thousands of genes. To tackle this dimensionality problem, several alternatives
have been proposed in the literature [95, 96, 128, 190, 218]. Among these, Friedman and
Pe’er [96] introduced an iterative algorithm that achieves faster learning by restricting the
search space (where dependence is measured by mutual information). Another successful
approach was proposed by Friedman et al. [95] (see also Pe’er et al. [190]) who presented
a heuristic algorithm that focuses on features that are common to high-scoring networks
instead of looking for a single network.

A Bayesian network approach toward modeling regulatory networks is attractive be-
cause of its solid basis in statistics, which enables it to deal with the stochastic aspects of
gene expression and noisy measurements in a natural way. Moreover, Bayesian networks
can be used when only incomplete knowledge about the system is available.
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Overview of Supervised Learning

Throughout the thesis, we use concepts related to supervised learning which we introduce
in Section 3.1. In particular, we will use the resampling method of cross-validation for
model validation (Section 3.1.2). Other resampling methods include the bootstrap and
the jackknife (Section 3.2) which will be used for parametric bias estimation (Chapter 5)
and for nonparametric variance estimation (Chapter 8), respectively. The “small n, large
p” data setting induces the so-called “curse of dimensionality” (Section 3.3) which will be
dealt with by resorting to variable selection (Section 3.4) and regularization (Section 3.5).
Subsequently, we introduce the linear regression model (Section 3.6) which is a particular
supervised learning machine intimately linked to the Gaussian graphical model (Chap-
ter 4) used throughout the thesis. Thereafter, we review some basic facts on classification
(Section 3.7) that will be useful when we introduce the two-class classification approach
to NCR target gene prediction (Chapter 7).

3.1 Supervised learning

Supervised learning [116, 178, 253] denotes the set of techniques for building a model
of dependency between a set of input variables and a set of output variables from a
training data set. This training set consists of pairs of inputs and outputs. The goal of the
supervised learner is to predict the value of the output for any valid input after having seen
only a finite number of training examples. To achieve this, the learner has to generalize
from the training data to unseen situations.

According to the type of output, one can distinguish between two types of prediction
tasks: regression where quantitative outputs (e.g., real or integer numbers) are predicted,
and classification (or pattern recognition) where qualitative (or categorical) outputs are
predicted. Qualitative outputs assume values in a finite set of classes where there is no
explicit ordering.

In statistical terms, a supervised learning problem (Figure 3.1) can be described by
the following elements [253, 254]:

− a data generator of input vectors x ∈X ⊆ Rp independent and identically distributed
(i.i.d.) according to some unknown (but fixed) probability distribution function1

Fx (x) (probabilistic mapping);

1Appendix D reviews some basic probability concepts.
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− a target operator which transforms the input x into the output value y ∈ Y according
to some unknown (but fixed) conditional distribution Fy|x (y | x). In regression we
typically have that Y ⊆ R, while in classification Y = {c1, . . . , cK}, where ck, k =
1, . . . ,K, are the class labels and K is the (finite) number of classes;

− a training set Dn = {(xi·, yi) , i = 1, . . . , n} ∈ (X × Y )n consisting of n pairs (xi·, yi) ∈
X ×Y i.i.d. according to the joint distribution function Fy|x (y | x)Fx (x) (note that
the observed training set is considered as the realization of the random variable Dn);

− a learning machine which, on the basis of the training set, returns a predictor of the
target, called hypothesis or model (Section 3.1.1).

TARGET

MODEL

INPUT OUTPUT

PREDICTION

TRAINING
DATASET

PREDICTION
ERROR

Figure 3.1: Supervised learning setting [19].

3.1.1 Learning machine

A learning machine has three components:

1. A class of hypothesis functions h (·, α) where α ∈ Λ is a vector of parameters and Λ is
the parameter space. We only consider single valued mappings for these functions.

2. A cost function C (·, ·) which, given a particular pair (h (x) , h′ (x)), measures the dis-
crepancy C (h (x) , h′ (x)) between the output of h(·) and h′(·) given x. In regression,
the cost function is usually quadratic:

C
(
h (x) , h′ (x)

)
=
(
h (x)− h′ (x)

)2
, (3.1)

while in classification one typically considers zero-one loss (3.12);
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3. An algorithm of parametric identification which takes as input the training set Dn and
returns as output a hypothesis function h (·, αn) with αn ∈ Λ. We only consider deter-
ministic and symmetric algorithms. This means that the algorithms always return the
same h (·, αn) for the same data set Dn and that they are insensitive to the ordering
of the examples in Dn, respectively. The parametric identification of the hypothesis
is typically performed according to the empirical risk minimization (ERM) principle
[253, 254] where

αn = α (Dn) = arg min
α∈Λ

Remp (α)

minimizes the empirical risk

Remp (α) =
1
n

n∑
i=1

C (yi, h (xi·, α)) (3.2)

constructed on the basis of the data set Dn. Note that some learning machines use
a constrained version of the ERM procedure for parametric identification, such as
support vector machines (Section 3.7.2.4) for example.

The goal of a learning machine is to return a hypothesis with low prediction error, i.e.,
a hypothesis which computes an accurate estimate of the output of the target when the
same value is an input to the target and the predictor. The prediction error is usually
called generalization error since it measures the capacity of the hypothesis to generalize,
that is to return a good prediction of the output for input values not contained in the
training set.

A typical way of representing the unknown input/output relation is the regression plus
noise form,

y = o (x) + εεε , (3.3)

where o (·) : X → Y is a deterministic function, also known as the regression function,
and the term εεε represents the noise or random error. It is typically assumed that εεε is
independent of x and E (εεε) = 0.

Hence, the learning machine aims at finding a model h (x, ·) which is able to give a
good approximation, i.e., having low generalization error, of the unknown function o (x).

Suppose that a learning algorithm is available, that given a data set Dn, returns the set
of parameters αn of the model h (x, αn). Recall that Dn is the realization of the random
vector Dn. For a given x, the mean squared error (MSE) is defined as the quadratic cost
(3.1) averaged over the ensemble of training sets with n samples for a given input value x:

MSE (x) = EDn,y (C (y, α (Dn)) | x)

= EDn,y

(
(y − h (x, α (Dn)))2 |x

)
=

∫
X n×Y n

∫
Y

(y − h (x, α (Dn)))2 dFy|x (y | x) dFDn (Dn) ,

where y and Dn denote the realizations of the random variables y and Dn, respectively.
Since we are interested in the accuracy on the whole domain X (and not only on a specific
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point x), we consider the mean integrated squared error (MISE):

MISE (x) = Ex (MSE (x))

=
∫

X
MSE (x) dFx(x) .

The MISE can be computed analytically only if the distribution generating the data is
known. Since this is not the case, an estimate of the MISE needs to be returned.

3.1.2 Validation techniques

The empirical risk (3.2) is arguably the most obvious estimate of the MISE. However, it
is well known that the empirical risk is a biased estimate of the MISE and that it tends to
be smaller than the MISE, because the same data have been used both to construct and
to evaluate h (·, αn) [116].

A way to obtain unbiased estimates of the MISE without making assumptions on the
distribution underlying the data is to use resampling methods. Here, we consider cross-
validation [116]. The basic idea of cross-validation is that ones builds a model from one
part of the data and then uses that model to predict the rest of the data.

The training setDn is divided into k mutually exclusive test partitions of approximately
equal size (referred to as k-fold cross-validation). The samples not found in each test
partition are independently used for selecting the hypothesis which will be tested on the
partition itself. The average error over the k partitions is called the cross-validated error
rate. In classification, the folds are sometimes stratified so that they contain approximately
the same proportions of labels as the original data set. This is referred to as stratified
cross-validation.

The k-fold cross-validation algorithm where k equals n is known as leave-one-out (loo)
cross validation. This means that for the i-th sample (xi, yi), i = 1, . . . , n, of the training
set Dn, the parametric identification is carried out leaving that observation out of the
training set, and the predicted value for the i-th observation, denoted by y−ii , is computed.

The corresponding estimate of the MISE prediction error is:

M̂ISEloo =
1
n

n∑
i=1

(
yi − y−ii

)2
=

1
n

n∑
i=1

(
yi − h

(
xi·, α

−i))2 ,

where α−i is the set of parameters returned by the parametric identification performed on
the training set with the i-th sample set aside.

3.1.3 Model selection and the bias-variance tradeoff

Models have different levels of complexity. For instance, a quadratic polynomial with two
parameters is less powerful than a 10, 000-dimensional linear classifier. Model selection
is a step of the statistical modeling procedure which consists in selecting the best model
given a data sample [116]. This is typically performed by minimizing the MSE [116].
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Since the MSE can be decomposed in bias and variance terms [101] (Appendix E),
model selection hence consists in selecting a model whose bias-variance tradeoff is optimal
in the sense that it minimizes the MSE. This optimal tradeoff is achieved by choosing the
optimal level of complexity of the model, as illustrated in Figure 3.2.

bias

variance

low high

MSE

Model complexity

Figure 3.2: Schematic illustration of the bias-variance tradeoff (details in text).

Of course, the appropriate level of complexity depends on the true underlying function’s
complexity but also on the sample size. The smaller the latter becomes relative to the
number of variables, the more important becomes the variance term. Simpler models can
then achieve better predictive performance (Section 3.5) than more complex ones.

Model selection algorithms thus have a crucial role and “in interplay with subject-
matter considerations [...] they may make a useful contribution to many analyses” [70].
However, “it is essential to regard model selection techniques as explorative tools rather
than as truth-algorithms” [70].

3.2 The bootstrap and the jackknife

Resampling methods, which can be used for model validation (Section 3.1.2), can also be
used to estimate the bias and variance of an estimator. In this thesis, we will use the
bootstrap (Section 3.2.1) to estimate the bias (Section 5) and the jackknife (Section 3.2.2)
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to estimate standard errors (Chapter 8).

3.2.1 Bootstrap and bootstrap aggregating

The bootstrap is a method to estimate the distribution of an estimator [34, 76, 259].
From this distribution, several quantities of interest can be derived such as the estimator’s
variance and bias.

In the nonparametric case, one first draws a sample from the empirical distribution
F̂n. Actually, since F̂n gives probability 1/n to each data point, drawing n points at
random from F̂n is equivalent to drawing a sample of size n with replacement from the
original data [259]. Second, the estimator of interest α̂̂α̂αb is computed on this sample. This
procedures is then repeated B times. Finally, the bias can be estimated as follows:

α̂̂α̂α− 1
B

B∑
b=1

α̂̂α̂αb ,

where α̂̂α̂α is the estimator computed on the original sample.
Of course, there is also a parametric bootstrap. If the (parametric) distribution Fθ

depends on a parameter θ, we can simply sample from the parametric distribution F
θ̂̂θ̂θ

where θ̂̂θ̂θ is an estimate of θ, instead of using the empirical distribution function F̂n.
Bootstrap aggregating or bagging [25] is a method to reduce the variance of an estimator.

It generates bootstrap replicates of the training data set and uses these as new training
data sets. The estimator of interested is then applied to each of these data sets and
the multiple versions of this estimator are finally used to get an aggregated estimator.
In regression, the aggregation consists in averaging the estimators. In classification, it
consists in a plurality vote. Bagging particularly improves the accuracy of an estimator
when perturbing the training data set causes significant changes in the estimator [25].

3.2.2 Jackknife

The jackknife [194, 195, 247] is a nonparametric method for estimating the bias and
variance of an estimator. Here we focus only on the estimate of the variance since we will
use it to estimate standard errors (Chapter 8).

Let α̂̂α̂α be an estimator of some quantity α. Let α̂̂α̂α(−i) denote the estimator with the
i-th observation removed. The jackknife estimate of the variance of α̂̂α̂α is [71, 259]:

V̂arjack (α̂̂α̂α) =
s̃jack

n
,

where

s̃jack =
∑n

i=1

(
α̃̃α̃αi − 1

n

∑n
i=1 α̃̃α̃αi

)2
n− 1

is the sample variance of the so-called pseudo-values:

α̃̃α̃αi = nα̂̂α̂α− (n− 1) α̂̂α̂α(−i) .

Under suitable conditions on α̂̂α̂α, the jackknife estimate V̂arjack (α̂̂α̂α) consistently estimates
(i.e., converges in probability to) Var (α) [259].
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3.3 Curse of dimensionality

The curse of dimensionality refers to the increasing difficulty of estimation as the dimen-
sion of the observations increases [13, 116, 259].

There are two versions of this “curse” [259]. The first is the computational curse
of dimensionality which refers to the fact that the computational requirements of some
methods can increase exponentially with dimension. The second is the statistical curse
of dimensionality: in a d-dimensional setting, some methods require a sample size n that
grows exponentially with d. This is the one we refer to by the curse of dimensionality.

For example [259], suppose we have n data points uniformly distributed on the interval
[−1, 1]. The expected number of points in the interval [−0.1, 0.1] is n/10. Now suppose
we have n data points on the 10-dimensional unit cube [−1, 1]10 = [−1, 1]× · · · × [−1, 1].
The expected number of points in the cube [−0.1, 0.1]10 is

n×
(

0.2
2

)10

=
n

10, 000, 000, 000
.

Hence, for small neighborhoods to have any data in them, n has to be extremely large.
This problem is particularly acute in bioinformatics where the number p of variables

is much larger than the number n of samples. In statistical problems, this particular data
setting is often summarized in the “small n, large p” catch phrase.

To circumvent this “curse,” two possible solutions are the application of variable se-
lection (Section 3.4) and regularization (Section 3.5).

3.4 Variable selection

Variable or feature2 selection [109, 110] consists in selecting variables for a given prediction
task. It has become the focus of much research [18, 109, 140], in particular in bioinformatics
[205].

Indeed, the analysis of biological data, in particular microarray data, generally involves
many irrelevant and redundant variables [109, 132] and often comparably few training ex-
amples. Microarray data also often contain noise. Moreover, the expression levels of many
probes may be highly correlated. Such a characteristic is explained by the co-regulation
of many genes: it is assumed that similar patterns in gene expression profiles usually
suggest relationships between the genes or, equivalently, the genes targeted by the same
transcription factors tend to show similar expression patterns [274]. Therefore, standard
methods of supervised learning cannot be applied directly to obtain the parameter esti-
mates. Including all the genes in the predictive model increases its variance and leads
to poor predictive performance. Additionally, from a biological point of view, one should
expect that only a small subset of the genes is relevant to predict the phenotypes.

Feature selection has therefore many potential benefits such as improving the pre-
diction performance of the predictors, providing faster and more cost-effective predictors

2We use the terms “feature” and “variable” interchangeably. Note that a distinction is sometimes

made in the literature [109].
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(i.e., reducing training and utilization times, and reducing the measurement and storage
requirements), and providing a better understanding of the underlying process that gen-
erated the data and thus facilitating data understanding (as well as data visualization)
[109].

3.4.1 Variable ranking

Many variable selection algorithms include variable ranking, i.e., ranking variables accord-
ing to their individual predictive power, as a principal or auxiliary selection mechanism
because of its simplicity, scalability, and good empirical success [109]. To use variable
ranking to build predictors, nested subsets incorporating progressively more and more
variables of decreasing relevance are defined.

Selecting the most relevant variables is usually suboptimal for building a predictor,
particularly if the variables are redundant [109]. However, even if variable ranking is not
optimal, it may be preferable to variable subset selection methods (Section 3.4.2) because
of its computational and statistical scalability. Computationally, it is efficient since it
requires only the computation and sorting of p scores (where p is the number of input
variables). Statistically, it is robust against overfitting because it introduces bias but it
may have considerably less variance [116].

A common way to tackle the limitations of variable ranking is to consider subsets
of variables that together have good predictive power, as opposed to ranking variables
according to their individual predictive power.

3.4.2 Subset selection

Feature subset selection methods are essentially divided into filters, wrappers and embed-
ded methods [109].

Filter methods select subsets of variables as a preprocessing step, independently of the
chosen predictor. They assess the merits of features from the data ignoring the effects of
the selected feature subset on the performance of the learning algorithm. Examples are
methods that select variables by ranking them, by compression techniques (e.g., princi-
pal components analysis (PCA) and singular value decomposition (SVD)) [4, 115] or by
computing univariate correlations with the output [112].

Wrapper methods assess subsets of variable according to their usefulness to a given
predictor [140]. The learning algorithm is part of the evaluation function. The problem
reduces to one of stochastic state space search. Examples are the forward and backward
methods proposed in classical regression analysis.

Embedded methods perform variable selection as part of the learning procedure and
are usually specific to given learning machines. Examples are classification trees and
regularization methods which will be discussed in the following section.
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3.5 Regularization and Stein’s phenomenon

Regularization (or shrinkage) consists in constraining the parameters of an estimator (e.g.,
by restricting their number or imposing bounds on their values). The method’s rationale
is to prevent overfitting by imposing a “simpler” estimator, hence reducing its variance.
By doing so, its bias will obviously increase (shrinkage is therefore sometimes referred to
as biased estimation). In high-dimensional settings, however, the (often drastic) variance
reduction generally compensates for the bias’s increase, hence reducing the squared error
(the bias-variance decomposition of the squared error introduced in Section 3.1.3).

Trading off bias for variance in order to reduce the squared error stems back to Stein
[228]. Stein showed that the maximum likelihood estimator (MLE) of the mean of the
multivariate normal distribution, i.e., the sample mean, is inadmissible under squared-
error loss for dimensions higher or equal to 3. An estimator α̂̂α̂α of α ∈ Λ is inadmissible
[231] if it is possible to construct another estimator α̂̂α̂α∗ with smaller MSE on the entire
parameter space,

MSEα (α̂̂α̂α∗) ≤ MSEα (α̂̂α̂α) , ∀α ∈ Λ ,

and with strictly smaller MSE for at least one value,

∃α′ ∈ Λ : MSEα′ (α̂̂α̂α∗) < MSEα′ (α̂̂α̂α) .

In other words, he proved that it is possible to construct an estimator with risk uniformly
(i.e., over the entire parameter space) smaller than that of the MLE. This result is known
as “Stein’s phenomenon.” Subsequently, James and Stein [130] proposed such an estimator
known as the James-Stein estimator (see also Lehmann and Casella [155]).

Shrinkage has since then played an important role in mathematical statistics. In partic-
ular, it represents the cornerstone of Ledoit and Wolf [153]’s covariance matrix estimator
which is the starting point of Chapter 5’s contribution. It has also been successfully applied
in regression (e.g., ridge regression, lasso, elastic net; Section 3.6.3) and in classification
(e.g., regularized discriminant analysis; Section 3.7.2.3). In other fields, it has been used
for solving integral equations (where it is referred to as Tikhonov regularization [244]) and
nonlinear optimization problems (e.g., the Levenberg-Marquardt algorithm [170]).

3.6 Linear regression

The Gaussian graphical model (Chapter 4) which is studied in the present thesis is inti-
mately related to linear regression (Section 4.3.3) which we now introduce.

3.6.1 The model

Let the input x = (x1, . . . ,xp) ∈ Rp be a p-variate random variable and the output y ∈ R
be a real-valued random variable. In the linear regression model [5, 61, 197, 231], the
relationship between x and y, which is given (3.3) by

y = o (x) + εεε , E (εεε) = 0 ,
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is modeled by a linear function:3

o (x) = β0 +
p∑
j=1

βjxj , (3.4)

where the βj ’s are the unknown parameters or coefficients (how they are determined is
explained below). This model hence assumes that the regression function,

E (y | x = x) = o (x) = β0 +
p∑
j=1

βjxj ,

is linear.
We now present different techniques to estimate the parameters β = (β0, . . . , βp)

T of
(3.4) from data. Without loss of generality, we assume the data to be centered. Hence,
there is no need for an intercept term (under squared loss) [61] and thus β0 = 0 in the
sequel.

Suppose we have n i.i.d. observations. Let xi· = (xi1, . . . , xip)
T and yi, i = 1, . . . , n,

denote the measurements for the i-th sample of variables x and y, respectively. Let
X = (x1·, . . . , xn·)

T denote the n × p data matrix with i-th row given by xi· and let
y = (y1, . . . , yn)T denote the n-dimensional response vector. Finally, let Dn denote the
data set of available observations:

Dn = {(xi·, yi) , i = 1, . . . , n} .
We start with the standard technique of least squares (Section 3.6.2) and we then

present some regularization techniques (Section 3.6.3) that are used when the least squares
approach is inappropriate.

3.6.2 Ordinary least squares

Ordinary least squares (OLS) consists in estimating the parameters by minimizing the
residual sum of squares,

RSS (β) = (y −Xβ)T (y −Xβ) . (3.5)

If the matrix X has full rank, it can easily be shown [231] that the (unique) solution
to this minimization problem,

β̂LS = arg min
β∈Rp

(
(y −Xβ)T (y −Xβ)

)
,

is given by:
β̂LS =

(
XTX

)−1
XT y , (3.6)

by differentiating (3.5) with respect to β and by setting the first derivative to zero. The
solution (3.6) corresponds to a minimum since the second derivative is a positive-definite
matrix.

Under additional constraints, the least squares estimator can be shown to be the “best
linear unbiased estimator” (BLUE) of β [231], where “best” means with minimum variance.

3The adjective “linear” refers solely to the parameters structure and not to the regression variables.
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3.6.3 Regularization

When the matrixX is rank deficient, OLS becomes unusable. Further, OLS estimates often
have low bias but large variance [116]. This implies that prediction accuracy (Section 3.1.3)
can be improved by means of variable subset selection (Section 3.4) or regularization
methods which trade off decreased variance for increased bias (Section 3.5). We now
review some state-of-the-art regularization techniques for linear models.

3.6.3.1 Ridge regression

Ridge regression [120] minimizes the residual sum of squares subject to a bound on the
L2-norm of the coefficients:

β̂ridge = arg min
β∈Rp

(
(y −Xβ)T (y −Xβ)

)
,

subject to ‖β‖2 ≤ s , (3.7)

where s > 0 and

‖β‖2 = βTβ =
p∑
i=1

β2
i .

The ridge regression estimator can be equivalently written as

β̂ridge = arg min
β∈Rp

(
(y −Xβ)T (y −Xβ) + λ ‖β‖2

)
, (3.8)

where λ > 0. There is a one-to-one correspondence between the parameters s in (3.7)
and λ in (3.8) [116].

The ridge regression solution [116] is easily seen to be

β̂ridge =
(
XTX + λI

)−1
XT y , (3.9)

where I is the identity matrix. It adds a positive constant to the diagonal of XTX before
inversion to make the problem nonsingular. This was the main motivation for ridge regres-
sion [120] and traditional descriptions of this method start with (3.9). However, starting
from (3.7) provides insight into how it works [116] and provides a general framework in
which the other regularization methods we subsequently introduce can be integrated.

Note that in the “small n, large p” setting, it is possible to reduce the number of
operations required to compute the ridge solution (3.9) from O

(
p3
)

(required to invert a
p× p matrix) to O

(
pn2
)

using singular value decomposition (SVD) [114].

3.6.3.2 Lasso

Subset selection (Section 3.4.2) provides interpretable models but its prediction accuracy
can sometimes be low because it is highly variable. This is due to its discrete nature:
variables are either retained or dropped from the model [26]. Ridge regression, which is a
continuous process, is reputed more stable. However, it does not provide any interpretable
model because it does not set any coefficients to zero. To circumvent these issues, Tibshi-
rani [242] introduced the least absolute shrinkage and selection operator, better known as
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the lasso, which minimizes the residual sum of squares subject to a bound on the L1-norm
of the coefficients. This can be equivalently written as:

β̂lasso = arg min
β∈Rp

(
(Y −Xβ)T (Y −Xβ) + λ ‖β‖1

)
, (3.10)

where λ > 0 and

‖β‖1 =
p∑
i=1

|βi| .

By shrinking some coefficients and setting others to zero, the lasso tries to retain both
the interpretability of subset selection and the stability of ridge regression.

Equation (3.10) can be efficiently solved using the least angle regression (LARS)
algorithm which requires O

(
n3
)

operations (when p > n) [74].

3.6.3.3 Bridge regression

Bridge regression [89, 97] constrains the coefficients with an Lq-norm for q ≥ 0:

β̂q = arg min
β∈Rp

(
(y −Xβ)T (y −Xβ) + λ ‖β‖q

)
,

where λ > 0 and

‖β‖q =
p∑
i=1

|βi|q .

It generalizes subset selection (q = 0), the lasso (q = 1) and ridge regression (q = 2). Note
that only subset selection (q = 0) and the lasso penalty (q = 1) produce sparse solutions.
Bridge regression with 1 < q < 2 always keeps all predictors in the model, as does ridge
regression [80].

3.6.3.4 Elastic net

Despite its success, the lasso has certain limitations. In particular, if there is a group
of highly correlated variables, then the lasso tends to select only one variable from the
group and does not care which one is selected [279]. To tackle this problem, Zou and Hastie
[279] proposed the elastic net which combines ridge regression and the lasso by minimizing
the residual sum of squares subject to bounds on the L1-norm and the L2-norm of the
coefficients. This can be equivalently written as:

β̂enet = arg min
β∈Rp

(
(y −Xβ)T (y −Xβ) + λ1 ‖β‖1 + λ2 ‖β‖2

)
, (3.11)

where λ1, λ2 > 0.
The elastic net simultaneously does automatic variable selection and continuous shrink-

age as the lasso, while it selects groups of correlated variables.
As for the lasso, (3.11) can be solved by the LARS algorithm [279].
Tibshirani [242] and Fu [97] compared the prediction performance of the lasso, ridge

and bridge regression and found that none of them uniformly dominates the other two.
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Experiments on simulation and real data suggest that the elastic net outperforms the lasso
in terms of prediction accuracy [279].

We have reviewed the most popular regularization methods for linear regression. Note,
however, that other regularization techniques exist, such as partial least squares [270] or
the adaptive lasso [278].

3.7 Classification

The problem of inferring putative nitrogen catabolite repression (NCR) genes which will
be discussed in Chapter 7 can be cast as a two-class classification problem. We therefore
need to clarify some aspects related to classification.

First, we start by introducing basic notions on classification (Section 3.7.1). Subse-
quently, we introduce four state-of-the-art two-class classifiers (Section 3.7.2) that we will
use in Chapter 7. Finally, we present some important issues arising from imbalanced
classes and detail how these can be dealt with (Section 3.7.3). In particular, we explain
how to correct the a posteriori probabilities returned by a classifier (Section 3.7.3.3) when
the classes’ a priori probabilities estimated from the training data do not reflect the “true”
a priori probabilities.

3.7.1 Bayes classifier

A classifier is a learning machine that predicts categorical outputs (Section 3.1). It is
defined as a function g (x) : X → Y predicting a class y ∈ Y = {c1, . . . , cK}, where
ck, k = 1, . . . ,K, are the class labels and K is the number of classes, for each observed
example x ∈X . The “goodness” of a classifier g is measured by the risk (or overall error)
which under zero-one loss (misclassification rate) is given [181] by:

R (g) = P (g (x) 6= y) =
∑
y∈Y

my (y)
∫

X
1{g(x)6=y}fx|y (x | y) dx , (3.12)

where my (y) is the probability mass function of y, fx|y (x | y) is the conditional density
function of x given y, and 1{·} is the set indicator function.

For a given distribution, the optimal classifier, i.e., the one that minimizes R (g), is
called the Bayes classifier. Its risk is referred to as the Bayes risk.

It can be shown that the classifier g∗ that maximizes the posterior probability,

g∗ (x) = arg max
y

P (y | x) , (3.13)

is optimal [53]. For strictly positive distributions, g∗ (x) is also unique, except on zero-
measure subsets of X . From the definition of conditional probability, i.e.,

P (y | x) =
P (y,x)
P (x)

,

we note that maximizing the posterior probability is equivalent to maximizing the joint
probability:

arg max
y

P (y | x) = arg max
y

P (y,x) . (3.14)
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3.7.2 Two-class classifiers

We describe four state-of-the-art classifiers, namely k-nearest neighbors, naive Bayes, lin-
ear discriminant analysis and support vector machines, that we will use in Chapter 7. We
assume we have available a data set Dn of n samples:

Dn = {(xi·, yi) , i = 1, . . . , n} .

3.7.2.1 k-Nearest neighbors classifiers

k-Nearest neighbors (KNN) [66] assigns to a given sample xj· = (x1j , . . . , xpj) (absent from
the training set Dn) the label most frequently represented (i.e., through a majority vote)
among the k ∈ N∗ nearest samples in Dn. The number k of neighbors is typically chosen
by cross-validation (Section 3.1.2) [66]. KNN classifiers require a metric between samples
which we assume is Euclidian distance (the usual distance with real-valued data). The
Euclidian distance between two samples xj· and xk· is given by:

‖xj· − xk·‖ =

(
p∑
l=1

(xlj − xlk)2

)1/2

.

KNN classifiers are local instance-based classifiers: the training samples are kept in
“memory” and the computation, which consists in fitting the data locally, is deferred until
classification.

Despite its simplicity, KNN classifiers have been often rather successful in a large
number of classification problems [116, 200]. Asymptotically, the error rate of the 1-NN
classifier is bounded by twice the Bayes rate (Section 3.7.1) [40].

In high-dimensional settings, however, the bias-variance trade-off (Section 3.1.3) asso-
ciated with estimation error is generally driven by the bias, which can be important even
for the largest variance [92].

3.7.2.2 Naive Bayes

Naive Bayes (NB) [66] is probably the simplest classifier. It assumes that the variables
are independent conditionally on the class y, i.e.,

xi ⊥⊥ xj | y , ∀i, j . (3.15)

From the chain rule of probability, we have:

P (x | y) = P (x1 | y)P (x2 | y,x1)P (x3 | y,x1,x2) . . .P (xp | y,x1,x2, . . . ,xp−1)

=
p∏
j=1

P (xj | y,x1,x2, . . . ,xj−1) (3.16)

Under the “naive” assumptions (3.15), (3.16) reduces to

P (x | y) =
p∏
j=1

P (xj | y) .
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By (3.14) and by application of the product rule, we see that NB classifies by selecting

arg max
y

P̂̂P̂P (y)
p∏
j=1

P̂̂P̂P (xj | y)


where P̂̂P̂P (y) and P̂̂P̂P (xj | y) are estimates of the respective probabilities derived from the
frequency of their respective arguments in the training sample (with possible corrections
such as the Laplace estimate) in the discrete case. In the continuous case, one has to make
an assumption concerning the underlying distribution of the data, typically multivariate
normality.

Under zero-one loss (misclassification rate), NB is optimal when attributes are inde-
pendent given the class, i.e., when the assumptions (3.15) hold true. Moreover, NB is
sometimes accurate even when these assumptions are violated [60]. Indeed, it appears that
some violations of these assumptions do not matter [60]. This (partially) explains why NB
has repeatedly performed better than expected in empirical trials in domains containing
clear attribute dependences [60, 248].

As some violations do matter, there is an increasing body of work developing so-called
semi-naive Bayes classifiers that attempt to alleviate the problems of the attribute indepen-
dence assumption [94, 262, 277]. It seems, however, that detecting attribute dependence
is not necessarily the best way to extend the Bayesian classifier and (at least the first)
attempts to build on NB’s success by relaxing the independence assumption have had
mixed results [60].

3.7.2.3 Discriminant analysis

In discriminant analysis, each class density is modeled as a multivariate Gaussian:

fx,k (x) = (2π)−p/2 (det Σk)
−1/2 exp

{
−1

2
(x− µk)T Σ−1

k (x− µk)
}
,

−∞ < x <∞ , k = 1, . . . ,K , (3.17)

where µk and Σk are the mean vector and covariance matrix of class ck, respectively.
Depending on how Σk is estimated, one distinguishes between linear discriminant analysis
and the alternative approaches of quadratic and regularized discriminant analyses.

Linear discriminant analysis

Linear discriminant analysis (LDA) [116] arises in the special case when all the classes
are constrained to have a common covariance matrix:

Σk = Σ , ∀k . (3.18)

To compare two classes ck and cl, it is sufficient to look at the log-ratio

log
P (y = ck | x)
P (y = cl | x)

.
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Given Bayes’s theorem, i.e.,

P (y = ck | x) =
fx,k (x)P (y = ck)∑K
l=1 fx,l (x)P (y = cl)

,

we have that:

log
P (y = ck | x)
P (y = cl | x)

= log
fx,k (x)
fx,l (x)

+ log
P (y = ck)
P (y = cl)

= log
P (y = ck)
P (y = cl)

− 1
2

(µk + µl)
T Σ−1 (µk − µl) + xTΣ−1 (µk − µl) ,

(3.19)

which is linear in x. The assumption (3.18) of equal covariance causes the normalization
factors and the quadratic part in the exponents to cancel each other out, respectively.

From (3.19), we see that the decision rule (3.13) can be equivalently expressed as

arg max
k

δk (x) ,

where the δk’s are the linear discriminant functions given by

δk (x) = xTΣ−1µk − 1
2
µTk Σ−1µk + logP (y = ck) .

If the classes are equally likely a priori then LDA classifies the sample x to the class k
for which the Mahalanobis distance from x to its center µk (appearing in the exponent of
the density function (3.17)),

M (x, k) = (x− µk)T Σ−1 (x− µk) , (3.20)

is smallest [200].
The a priori probabilities of the classes in the training set are estimated by their

frequencies:

P̂̂P̂P (y = ck) =
nk
n
,

where nk is the number of observations in class ck.
The parameters of the Gaussian distributions are estimated by their sample counter-

parts:

µ̂̂µ̂µk =
∑

i:yi=ck

xi·
nk

,

and

Ŝk =
1

nk − 1

∑
i:yi=ck

(xi· − µ̂̂µ̂µk) (xi· − µ̂̂µ̂µk)T . (3.21)
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Quadratic and regularized discriminant analyses

If the constraints (3.18) are dropped, i.e., if the Σk are not assumed to be equal, the
cancellations in (3.19) do not occur and the resulting decision boundary is quadratic
in x. The corresponding classifier is known as Quadratic discriminant analysis (QDA).
Although these constraints are rather strong, QDA exhibits higher variance and requires
generally larger samples than does LDA [257], which is problematic in the “small n, large
p” setting prevalent in bioinformatics. Furthermore, classification rules based on QDA
seem to be more sensitive to violations of the assumption underlying discriminant analysis
[91], i.e., when the class conditional densities are not approximately normal.

Whether using LDA or QDA, robust estimators of the covariance matrix (Chapter 5)
should however be preferred to the sample covariance matrix (3.21). Discriminant analysis
with regularized estimators of the covariance matrix/matrices is referred to as regularized
discriminant analysis (RDA). It was first introduced by Friedman [91] who used a shrink-
age estimator similar to the one presented in Section 5.2, albeit a more computationally
expensive one (the shrinkage parameter being chosen through cross-validation).

3.7.2.4 Support vector machines

Support vector machines (SVMs) [20, 116, 216, 261] try to separate the two classes of
points using a linear function of the form

h (x) = wTx+ b , (3.22)

with w ∈ Rp and b ∈ R. Such a function assigns the label +1 and −1 to the points x ∈X

with, respectively, h (x) ≥ 0, and h (x) < 0. Hence, an observation (xi·, yi) is correctly
classified (3.22) if yih (xi·) ≥ 0. The classification problem reduces to learning such a
function from the training data.

Learning (3.22) can be accomplished through empirical risk minimization (Section 3.1.1),
i.e., by minimizing the number of classification errors on the training data set. The re-
sulting classifiers are known as perceptrons [203]. Unfortunately, several problems arise
with these classifiers [200]. In particular, when the data are linearly separable there is no
unique solution (Figure 3.3), and when the data are not linearly separable the algorithm
does not converge.

Optimal separating hyperplane when the two classes are linearly separable

The peculiarity of SVMs is that they do not exclusively focus on the number of misclas-
sifications, but also on the confidence of the classifications. More specifically, they try
to find a hyperplane, known as the optimal separating hyperplane, that separates the two
classes and that maximizes the distance to the closest point from either class. Hence, they
provide a unique solution to the problem of finding a separating hyperplane. Further-
more, by maximizing the margin between the two classes on the training data, SVMs lead
to better classification performance on test data (as a consequence of results in learning
theory [253, 254]).
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x1

x2

Figure 3.3: The empirical risk minimization principal does not define a unique solution,
even when the training data are linearly separable (figure redrawn from Schölkopf et al.
[216]).

As shown in Figure 3.4, when the data are linearly separable the function (3.22) de-
fines two half-spaces of points classified positively and negatively “with large confidence,”
namely the sets

h+ = {x : h (x) ≥ 1} and h− = {x : h (x) ≤ −1} ,

respectively.

wT x + b = 0wT x + b = −1
wT x + b = +1

wT x + b ≥ +1

wT x + b ≤ −1

x1

x2

Figure 3.4: The affine function h (x) = wTx + b defines two half-spaces where points are
classified with large confidence (text) for the positive examples (black circles) and for the
negative examples (white circles) (figure redrawn from Schölkopf et al. [216]).
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The distance separating the two half-spaces, called the margin, is equal to 2/ ‖w‖.
SVMs try to correctly classify all points in the training set with strong confidence. Hence,
they maximize 2/ ‖w‖ under the constraints

yi
(
wTxi· + b

) ≥ 1 , i = 1, . . . , n . (3.23)

Extension to the nonseparable case

Since a training set is not necessarily separable by a linear hyperplane, SVMs modify the
constraints (3.23) using the continuous hinge loss function

Ch (x, y) = max (0, 1− yh (x)) . (3.24)

If a point (x, y) is correctly classified with large confidence, i.e., yh (x) ≥ 1, then Ch (x, y) =
0. When yh (x) < 1, x is either correctly classified with small confidence (0 ≤ yh (x) < 1)
or misclassified (yh (x) < 0). In these cases, the hinge loss is positive and increases with
the distance from x to the correct half-space of large confidence.

SVMs require both a large margin and few misclassifications or classifications with
little confidence on the training set, by solving the problem:

arg min
h(x)=wT x+b

1
2
‖w‖2 + c

n∑
i=1

Ch (xi·, yi) , (3.25)

where c ∈ R is the parameter that controls the tradeoff between the two requirements.
This parameter is typically determined by cross-validation [116].

Since the hinge loss function (3.24) is not differentiable, the direct minimization of
(3.25) is not straightforward. To tackle this problem, (3.25) is transformed (by introducing
so-called slack variables) into an equivalent convex optimization problem which can be
resolved using Lagrange multipliers [216].

Interestingly, the solution to (3.25) only involves the points in the training set through
their dot products, xkxTl , for k, l = 1, . . . , p. Hence, SVM classifiers can be readily adapted
to kernels.

Kernel

A kernel is defined as a real-valued function k : X ×X −→ R which can be thought of
as a “comparison function.” Instead of using a mapping φ : X −→ F to represent each
data point x ∈X by φ (x) ∈ F , the data are represented by the p× p matrix of pairwise
comparisons kk,l = k (xk, xl).

SVMs build linear separating hyperplanes in the feature space associated with the
kernel. Hence, if the kernel is nonlinear SVMs can produce nonlinear boundaries by
constructing a linear boundary in a transformed version of the original space (Figure 3.5).

The most commonly used kernels are given in Table 3.1. Kernels can also be defined
for specific problems, such as string kernels for protein sequence data classification [216]
or tree kernels for network inference [102] for example.
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X
F

Figure 3.5: A nonlinear boundary is obtained (left) by constructing a linear boundary in a
transformed version (right) of the original space (left; figure redrawn from Schölkopf et al.
[216]).

Table 3.1: Commonly used kernels.

Kernel Parameters Description

Linear None k (xk, xl) = xkx
T
l

Polynomial d k (xk, xl) =
(
xkx

T
l + 1

)d
Gaussian radial basis function (RBF) σ k (xk, xl) = exp

(
−|xk−xl|2

2σ2

)
Gaussian σ k (xk, xl) = 1

2πσ2 exp
(
−x2

k−x
2
l

2σ2

)
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3.7.3 Imbalanced classes

A (training) data set is imbalanced if the classes are not (approximately) equally repre-
sented [31]. In two-class classification, this means that one of the classes is (sometimes
heavily) underrepresented compared to the other one. In S. cerevisiae’s NCR, for example,
the “positive” class, i.e., the genes annotated as targets of NCR, is composed of only 41
genes out of almost 6, 000 genes (Chapters 7 and 8).

This is problematic mainly in terms of accuracy. Usually, algorithms minimize the risk
to which the minority class contributes only marginally. In the example given previously,
a classifier that always predicts the majority class, i.e., that predicts all genes as being
insensitive to NCR, has a low risk but is useless for predicting putative NCR genes.

3.7.3.1 Sampling methods

Classifiers can be adapted to imbalanced data sets by using undersampling or oversampling
(both techniques can also be combined). Undersampling consists in discarding instances
of the overrepresented class. In case of oversampling, instances from the minority class
are duplicated. The examples to be removed or duplicated are typically chosen randomly
but they can also be chosen according to some prior knowledge.

Several studies suggest that undersampling leads to better results, while oversampling
produces only small changes, if any, in performance (Hoste [123] and references therein).
However, none of the approaches consistently outperforms the other and some studies have
even presented conflicting viewpoints on the usefulness of oversampling versus undersam-
pling [31].

Despite their benefits, these approaches have obvious drawbacks. By discarding (po-
tentially) useful data, undersampling implies a loss of information, whereas oversampling
increases the training size without any gain in information which can lead to overfitting.
Furthermore, it is difficult to determine a specific undersampling or oversampling rate
which consistently leads to the best results.

Note, however, that this last issue is not restricted to classification tasks with imbal-
anced classes. Indeed, a balanced class distribution is not necessarily the best one for
learning [263]. Finding the best class distribution for training a classifier is still an open
question.

3.7.3.2 Other methods

Alternatively, one can modify the decision rule (3.13) by moving the decision threshold. In
two-class classification, this consists in taking a threshold on the (possibly corrected) pos-
terior probability above (below) 0.5 when classifying an example in the majority (minority)
class. Another possibility consists in varying the cost matrix so as to penalize errors on
the minority class more severly than those on the majority class. However, recent results
suggest that oversampling and undersampling produce nearly the same classifiers as does
moving the decision threshold and varying the cost matrix [166].
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3.7.3.3 Posterior probability correction

Given a random vector x, the decision of a classifier is typically based on the (estimated)
a posteriori probabilities P̂̂P̂P (y | x) of class membership, which rely on the a priori proba-
bilities P̂̂P̂P (y) of the classes estimated from the training set.

Unfortunately, the training data set does not always reflect the true a priori prob-
abilities P (y) of the target classes, which can hinder the classifier’s accuracy [204]. For
example, biologists do not expect more than 200 NCR target genes (i.e., positive examples)
out of almost 6, 000 genes in S. cerevisiae. As we will see in Chapter 7, the corresponding
“true” a priori probabilities are not reflected in the training data set available.

We can however compute corrected a posteriori probabilities P̂̂P̂Pc (y | x) in terms of the
outputs P̂̂P̂P (y | x) provided by the trained model using Bayes’s theorem:

P̂̂P̂Pc (y | x) =

P̂̂P̂Pc(y)

P̂̂P̂P(y)
P̂̂P̂P (y | x)∑K

k=1
P̂̂P̂Pc(y=ck)

P̂̂P̂P(y=ck)
P̂̂P̂P (y = ck | x)

,

where P̂̂P̂Pc (y) are the new a priori probabilities [204]. Note that the corrected posteri-
ori probabilities are simply the a posteriori probabilities obtained from the training set
weighted by the ratio of the new priors to the old priors [204]. The denominator ensures
that the corrected a posteriori probabilities sum to one.
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Gaussian Graphical Model

Graphical models are representations of multivariate probabilistic models in which condi-
tional (in)dependence (Section 4.1) constraints are specified by graphs (Sections 4.4 and
4.5) [150]. More specifically, nodes represent random variables, and the absence of links be-
tween them represent conditional independence assumptions. These models are therefore
regarded as a “marriage between probability theory and graph theory” [133].

Graphical models hence provide a framework to efficiently deal with the intrinsic un-
certainty and complexity of many scientific disciplines, including bioinformatics. Indeed,
probability theory provides a system of reasoning under uncertainty [187], while the graph-
ical “language” provides an intuitively appealing representation of the model [133].

In particular, the notion of modularity—a complex system is built by combining sim-
pler parts—underlying the graphical representation enables scientists to describe and han-
dle complex problems by combining simpler elements [133, 150].

Further, the visual representation of the structure of a probabilistic model facilitates
communication between scientists [150] and can be used to design new models [17]. In
addition, inspection of the graph readily provides insights into the properties of the model
[17].

Finally, graphs represent natural data structures for computers which enable complex
computations to be efficiently expressed in terms of graphical manipulations [17, 150].

In this chapter, we consider undirected graphical models, also known as Markov random
fields, in which the links have no directional significance. The other major class of graphical
models, the directed graphical models, also known as Bayesian networks, in which the links
have a particular directionality (indicated by arrows), will not be treated in this thesis.

More specifically, we focus on the Gaussian graphical model (GGM). We thus only
introduce the key concepts of undirected graphical models that are needed to introduce
GGMs (Section 4.6). For a more general treatment of graphical models, we refer to stan-
dard textbooks such as Cowell et al. [41], Cox and Wermuth [43], Edwards [70], Lauritzen
[150], Whittaker [266].

We first present the concepts of (conditional) independence (Section 4.1), covariance
(Section 4.2) and (partial) correlation (Section 4.3) which are central to graphical models.
We then introduce the notation and terminology of graphs (Section 4.4). Next, we intro-
duce the Markov properties and the concept of faithfulness (Section 4.5) which provide
the connection between the probabilistic notion of (conditional) independence and the
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graphical “language.”
We then define the GGM (Section 4.6) and present the different approaches to GGM

selection (Section 4.7). We put particular emphasis on GGM selection in the “small n,
large p” setting (Section 4.7.1) which is crucial in bioinformatics applications.

4.1 Independence and conditional independence

We start with the basic notion of independence before introducing the essential concept
of conditional independence. Henceforth, we consider continuous (real-valued) random
variables (since we are interested in gene expression data) and assume their probability
density functions to exist. We denote by fx the density function of the random variable
x.

4.1.1 Independence

Definition 4.1.1 (independence). The random vectors x and y are independent if and
only if the joint probability density function fxy satisfies

fxy (x, y) = fx (x) fy (y) , ∀x, y . (4.1)

This relationship is denoted by x ⊥⊥ y.

The symbol ‘⊥⊥’ is the usual notation for independence due to Dawid [48]. Hence, x and
y are independent if and only if the joint probability density function factorizes into the
product of the marginal density functions. From (4.1), it is clear that the independence
relation is symmetric in x and y.

Interestingly, to establish independence, it is sufficient to show that the joint density
function factorizes into the product of two factors, one not involving x and the other not
involving y, rather than it factorizes into the product of the marginals [48, 49]. This is
known as the factorization criterion for independence [266], which is formalized in the
proposition given below.

Proposition 4.1.1 (Whittaker [266]). The random vectors x and y are independent if
and only if there exist two functions g and h such that

fxy (x, y) = g (x)h (y) , ∀x, y . (4.2)

For example [258], let x and y have joint density

fxy (x, y) =

{
2e−(x+2y) if x > 0 and y > 0 ,

0 otherwise.
(4.3)

This density function can be decomposed as in (4.2) with

g (x) =

{
2e−x if x > 0 ,

0 otherwise,
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and

h (y) =

{
e−2y if y > 0 ,

0 otherwise.

Thus, x and y are independent.

4.1.2 Conditional independence

Definition 4.1.2 (conditional independence). The random vectors x and y are condi-
tionally independent given (conditioned on) the random vector z if and only if

fxy|z (x, y | z) = fx|z (x | z) fy|z (y | z) , ∀x, y , (4.4)

for all z for which fz (z) > 0. This is written as x ⊥⊥ y | z.

Equation (4.4) is equivalent [266] to

fx|yz (x | y, z) = fx|y (x | y) . (4.5)

This latter expression shows that the conditional independence of x from y means that z
can be removed from the conditioning set.

Equation (4.4) is also equivalent [266] to

fxyz (x, y, z) =
fxz (x, z) fyz (y, z)

fz (z)
. (4.6)

This second reformulation illustrates the fact that conditional independence can be rephrased
entirely in terms of joint and marginal densities. In fact, as with independence, the factor-
ization criterion for conditional independence [266] states that conditional independence
should not necessarily factorize in joint and marginal distributions, as formalized in the
following proposition.

Proposition 4.1.2 (Whittaker [266]). The random vectors x and y are conditionally
independent given z, if and only if there exists two functions g and h such that

fxyz (x, y, z) = g (x, z)h (y, z) , ∀x, y , (4.7)

for all z for which fz (z) > 0.

Note that Propositions 4.1.1 and 4.1.2 only require the existence of a factorization into
coordinate functions; there is no requirement for the factors to be unique [266].

The ternary relation x ⊥⊥ y | z has the following properties [48, 49, 150], where h

denotes an arbitrary measurable function on the sample space of x:

if x ⊥⊥ y | z then y ⊥⊥ x | z ; (4.8)

if x ⊥⊥ y | z and u = h (x) then u ⊥⊥ y | z ; (4.9)

if x ⊥⊥ y | z and u = h (x) then x ⊥⊥ y | (z,u) ; (4.10)

if x ⊥⊥ y | z and x ⊥⊥ w | (y, z) then x ⊥⊥ (w,y) | z . (4.11)
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Conditional independence can be regarded as expressing the notion of “irrelevance” in
a given context, in the sense that the relation x ⊥⊥ y | z can be interpreted as “if we know z,
information about y is irrelevant for knowledge of x” [70]. Although not being rigourous,
this reformulation is helpful to grasp the intuition behind conditional independence (see
also Lauritzen [150]).

Interestingly, the definition of independence (Definition 4.1.1) can also be rephrased
in terms of the conditional and marginal density functions of x (or, equivalently, y).
“Intuitively, x ⊥⊥ y if any information received about y does not alter uncertainty about
x” [48], formally

x ⊥⊥ y ⇐⇒ fx|y (x | y) = fx (x) , ∀x, y ; (4.12)

that is, x ⊥⊥ y if and only if the conditional density function of x given y is equal to the
marginal density function of x. The advantage of this characterization is that it does not
involve the density of y. Note that the conditional distribution should not necessarily be
the marginal distribution of x, but simply a function g not involving x [48, 49]:

x ⊥⊥ y ⇐⇒ fx|y (x | y) = g (x) , ∀x, y . (4.13)

4.2 Covariance (matrix)

Definition 4.2.1 (covariance). The covariance of two real valued random variables x and
y, each with finite variance, is defined as

Cov (x,y) = E ((x− E (x)) (y − E (y))) . (4.14)

A simple rearrangement of (4.14) leads to

Cov (x,y) = E (xy)− E (x)E (y) . (4.15)

Note that E (xy) exists because x and y have finite variances [129]. We remark that

Cov (x,x) = Var (x) .

Definition 4.2.2 (covariance matrix). The covariance matrix of a real valued p-dimensional
random vector x = (x1, . . . ,xp) is defined as

Σ = Var (x) = E
(

(x− E (x)) (x− E (x))T
)
. (4.16)

The (i, j)-th entry of the covariance matrix Σ is thus given by Cov (xi,xj).

Definition 4.2.3 (concentration matrix). The concentration matrix of a real valued p-
dimensional random vector x = (x1, . . . ,xp) is the inverse of its covariance matrix Σ:

Ω = Σ−1 . (4.17)
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4.3 Correlation and partial correlation

Let x and y be two real valued random variables, each with finite variance.

4.3.1 Correlation

Definition 4.3.1 (correlation). If x and y are nondegenerate (i.e., Var (x) 6= 0 and
Var (y) 6= 0) then the correlation of x and y is defined as

Cor (x,y) =
Cov (x,y)√

Var (x) Var (y)
. (4.18)

Note that correlation is undefined for degenerate random variables. From (4.18), we
see that correlation is invariant to changes in location and scale [5], and is symmetric in
the random variables.

Using the Cauchy-Schwartz inequality, it can be shown [231] that

−1 ≤ Cor (x,y) ≤ 1 .

To simplify the notation, we will sometimes write ρ(x,y) instead of Cor (x,y). Further-
more, when the random variables are indexed, as x1, . . . ,xi, . . . ,xj , . . . ,xp, for example,
we will often simply write ρ(i,j) instead of ρ(xi,xj).

4.3.1.1 Correlation and independence

Before establishing the relationship between correlation and independence, we give the
definition of uncorrelatedness.

Definition 4.3.2 (uncorrelatedness). The variables x and y are said to be uncorrelated
if

Cov (x,y) = 0 . (4.19)

Because of (4.15), (4.19) is equivalent to

E (xy) = E (x)E (y) . (4.20)

Note that nondegenerate random variables with finite variance are uncorrelated if and
only if their correlation is zero.

Importantly, correlation is a measure of linear dependence (equivalently, uncorrelated-
ness is a measure of linear independence) and it does not capture more complex forms of
dependence [78]. Three cases can arise [78]:

1. If x and y are “perfectly” linearly dependent, that is

∃ a ∈ R \ {0} , b ∈ R : P (y = ax + b) = 1 , (4.21)

then Cor (x,y) = sgn (a), where sgn (·) is the sign function defined as:

sgn (c) =


−1 if c < 0 ,

0 if c = 0 ,

1 if c > 0 .

(4.22)

Hence, |Cor (x,y)| = 1.
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2. If x and y are not “perfectly” linearly dependent, that is

∀ a ∈ R \ {0} , b ∈ R : P (y = ax + b) < 1 , (4.23)

then |Cor (x,y)| < 1.

3. If x and y are uncorrelated, then Cor (x,y) = 0.

The following lemmata and theorem clarify the connection between independence and
correlation, which are too often incorrectly assumed to be equivalent [78].

Lemma 4.3.1. If x and y are independent random variables then Cor (x,y) = 0.

Proof: If x ⊥⊥ y, it follows from the definitions of independence (Definition 4.1.1) and
expectation that (4.20) holds true. Hence, (4.19) holds true. By definition of correlation
(4.18), the proof is complete.

The converse to Lemma 4.3.1 is true only for elliptical distributions.

Lemma 4.3.2 (McNeil et al. [173]). If Cor (x,y) = 0 then x and y are independent if
and only if they have an elliptical joint probability distribution.

The best-known member of the family of elliptical distributions is the normal distri-
bution. Hence, it follows from the two preceding lemmata that independence is equivalent
to uncorrelatedness in the Gaussian case.

Theorem 4.3.1. If the joint probability distribution of x and y is normal, then x and y
are independent if and only if Cor (x,y) = 0.

4.3.2 Partial correlation

Definition 4.3.3 (partial correlation). In a variable set V, with cardinality Card (V) ≥ 2,
the partial correlation between two random variables x,y ∈ V, x 6= y, given a (possibly
empty) set of random variables Z ⊆ V \ {x,y}, denoted as ρ(x,y|Z), is the correlation of x
and y if Z is empty, and the correlation of the residuals r(x|Z) and r(y|Z) resulting from
the linear regression of x on Z and of y on Z, respectively, otherwise.

Written more compactly, we have that:

ρ(x,y|Z) ≡
ρ(x,y) if Z = ∅ ,
ρ(r(x| Z),r(y| Z)) otherwise.

The set Z is referred to as the conditioning set. Its cardinality, denoted as q, is the
order of the partial correlation. The corresponding correlation is referred to as a q-order
partial correlation [30]. When Z = V \{x,y}, the (p−2)-order partial correlation ρ(x,y|Z)

(where Card (Z) = p is the total number of variables) is often referred to as the full-order
partial correlation between x and y.
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4.3.2.1 Algebraic formulas

By definition, partial correlations of order q = 0 (i.e., conditioning on the empty set)
are given by (4.18). Partial correlations of order q > 0 can be computed by means of a
recursive formula or by matrix inversion.

For Z ⊆ V \ {x,y} ,Z 6= ∅, the recursive formula for the partial correlation coefficient
ρ(x,y|Z) is given [231] by:

ρ(x,y|Z) =
ρ(x,y|Z\{z0}) − ρ(x,z0|Z\{z0}) ρ(y,z0|Z\{z0})√(

1− ρ2
(x,z0|Z\{z0})

)(
1− ρ2

(y,z0|Z\{z0})

) , for any z0 ∈ Z . (4.24)

Hence, q-partial correlations can be computed from (q − 1)-partial correlations, for q =
1, . . . , Card (V)− 2.

Implementing (4.24) as a recursive algorithm yields an exponential time complexity.
By using dynamic programming, however, the time complexity of the algorithm (Ap-
pendix F) can be brought down to O

(
q3
)
.

Let Σ and Ω denote the covariance (4.16) and the concentration matrices (4.17) of
the variables Z ∪ {x,y}, respectively. The partial correlation coefficient ρ(x,y|Z) can also
be obtained by matrix inversion [150]:

ρ(x,y|Z) =
−ωxy√
ωxxωyy

, (4.25)

where ωxy is the element of the concentration matrix corresponding to the variables x
and y. From (4.25) we note that the partial correlation ρ(x,y|Z) is zero if and only if the
corresponding element of the concentration matrix is zero:

ρ(x,y|Z) = 0 ⇐⇒ ωxy = 0 . (4.26)

Computing partial correlations of order q with (4.25) requires the inversion of a (q +
2) × (q + 2) covariance matrix which has a time complexity of O

(
q3
)
, similarly to the

recursive formula.
However, there is an important difference between the recursive formula and the matrix

inversion approach. Indeed, (4.24) only gives the value of ρ(x,y|Z). On the other hand,
the concentration matrix enables to compute all the

(
q+2

2

)
possible partial correlations in

Z ∪ {x,y}. Indeed, suppose that Z = {z} and thus that q = 1. The entry corresponding
to the variables x and y gives (after normalizing as in (4.25)) the value of ρ(x,y|z) while
the entries corresponding to the variables x and z, and y and z, give (after normalization)
the values of ρ(x,z|y) and ρ(y,z|x), respectively.

Hence, the matrix inversion approach returns
(
q+2

2

)
partial correlations of order q

instead of one for the recursive formula with the same time complexity. This can be useful
when many partial correlations (and not just one) have to be computed. However, note
that when the value of q is small compared to p, the gain is often negligible (Section 6.6.2).
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4.3.2.2 Partial correlation and conditional independence

Let x = (x1, . . . ,xp)
T ∈ Rp denote a p-dimensional random variable, indexed by V =

{1, . . . , p}, of mean vector µ and positive definite covariance matrix Σ.

Proposition 4.3.1 (Lauritzen [150]). Assume that x ∼ Np (µ,Σ), where Σ is regular.1

Then it holds for i, j ∈ V, i 6= j, that

xi ⊥⊥ xj | xV\{i,j} ⇐⇒ ωij = 0 ,

where Ω = {ωij}i,j∈V = Σ−1 is the concentration matrix of the distribution.

In other words, two variables are conditionally independent (given the remaining vari-
ables) in the multivariate Gaussian case if and only if the corresponding entry in the
concentration matrix is zero. This is true for any elliptical distribution [8]. From (4.26),
we also have (in the elliptical case) that:

xi ⊥⊥ xj | xV\{i,j} ⇐⇒ ρ(i,j| V\{i,j}) = 0 . (4.27)

4.3.3 Partial correlation and linear regression

We have already mentioned that correlation is a measure of linear dependence (Sec-
tion 4.3.1.1). We now establish the connection between (partial) correlation and linear
regression (Section 3.6).

Let x = (x1, . . . ,xp)
T ∈ Rp denote a p-dimensional random vector with zero mean.

We regress each xi in turn on all remaining variables, i.e., on the set {xj}j 6=i. Hence, we

have to determine the vectors β(i) =
(
β

(i)
1 , . . . , β

(i)
i−1, β

(i)
i+1, . . . , β

(i)
p

)T
, i = 1, . . . , p, where

β
(i)
j is the coefficient of variable xj in the linear regression of xi. Note that there is no

need for an intercept term (under squared loss) since x has zero mean (Section 3.6.1).
The linear predictor of xi in terms of {xj}j 6=i that minimizes the squared error,

β(i) = arg min
β∈Rp

xi −
p∑
j=1
j 6=i

xjβ
(i)
j


2

, ∀ i ∈ {1, . . . , p} , (4.28)

i.e., the “best” linear predictor under square loss, is given [42, 43] by:

β
(i)
j = ρ(i,j|K)

√
Var (xi | K ∪ {xj})
Var (xj | K ∪ {xi}) , (4.29)

where K = {x1, . . . ,xp} \ {xi,xj}, and Var (xi | K ∪ {xj}) and Var (xj | K ∪ {xi}) are
conditional variances. The conditional variance of a random variable xi given a set K of
random variables is defined as:

Var (xi | K) = E
(

(xi − E (xi | K))2 | K
)
. (4.30)

1See Appendix G for definitions on matrices.
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Since
ρ(i,j|K) =

−ωij√
ωiiωjj

and Var (xi | K ∪ {xj}) =
1
ωii

,

we have that
β

(i)
j =

−ωij
ωii

and
√
β

(i)
j β

(j)
i =

∣∣ρ(i,j|K)

∣∣ .
Hence, the parameters β(i), i = 1, . . . , p, in (4.28), are determined by the covariance
matrix (or, equivalently, the concentration matrix) of x.

Linear regression and covariance matrices are thus intimately related. Therefore, Gaus-
sian graphical model (GGM) selection (Section 4.6) in the “small n, large p” data setting
(Section 4.7.1) can be performed by using robust estimators of the covariance matrix or
by resorting to regularization techniques for linear regression.

4.3.4 Multiple correlation

Let x = (x1, . . . ,xp)
T ∈ Rp denote a p-dimensional random vector. The multiple correla-

tion R2
(1|2,...,p) between x1 and x2, . . . ,xp, which generalizes correlation to more than one

regressor, is defined [231] as

R2
(1|2,...,p) = 1− Var (x1 | x2, . . . ,xp)

Var (x1)
,

where the conditional variance Var (x1 | x2, . . . ,xp) is defined in (4.30). The multiple
correlation represents the proportion of the variance of x1 explained by x2, . . . ,xp. Since

0 ≤ Var (x1 | x2, . . . ,xp) ≤ Var (x1) ,

we have that
0 ≤ R2

(1|2,...,p) ≤ 1 .

When x1 is a linear combination of x2, . . . ,xp, then the conditional variance is related
to the (partial) correlations of the corresponding variables [231] as follows:

Var (x1 | x2, . . . ,xp) = Var (x1)
(

1− ρ2
(1,2)

)(
1− ρ2

(1,3|2)

)
· · ·
(

1− ρ2
(1,p|2,3,...,p−1)

)
.

(4.31)
From (4.31), we see that the conditional variance decreases each time an additional vari-
able is included, unless x1 and the added variable (say xk) are conditionally uncorrelated
(i.e., ρ(1,k|2,3,...,k−1) = 0) in which case it is unchanged. Therefore:

R2
(1|2) ≤ R2

(1|2,3) ≤ · · · ≤ R2
(1|2,3...,p−1) ≤ R2

(1|2,3...,p) . (4.32)

Hence, adding a variable cannot decrease the multiple correlation.
If the regressor variables are uncorrelated [113] then

R2
(1|2,3...,p) =

p∑
i=2

ρ2
(1,i) .
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However, correlated variables are not always redundant [113]. The perhaps natural belief
that

R2
(1|2,3...,p) ≤

p∑
i=2

ρ2
(1,i)

is always verified is therefore erroneous [113]. Indeed, it sometimes happens [113] that

R2
(1|2,3...,p) >

p∑
i=2

ρ2
(1,i) .

Consequently, adding a variable to the regression may increase the relevance of another
variable. The added variable is referred to as a “suppressor” or a “masking variable” [231].

This means that although the overall contribution (in terms of variance reduction) of
a set of variables cannot decrease when a new variable is added (compare (4.32)), the
contribution of a variable (considered individually) can increase when a new variable is
added.

4.3.5 Geometric interpretation

Both an algebraic and a geometric viewpoint can be taken with respect to linear models
in general [119], and (partial) correlation in particular [235]. The advantages of present-
ing the linear model within the setting of Euclidian geometry have been emphasized by
several authors [28, 61, 113, 119, 231, 235]. Geometric concepts have proven particulary
helpful to gain an intuitive grasp of the relation between correlation and partial correla-
tion coefficients [113, 235]. For example, the recursive algebraic formula for the partial
correlation coefficient given by (4.24) can be easily derived from the following geometric
interpretation [231].

Without loss of generality, we assume all variables to be centered. Given n observations
x11, . . . , x1n of a variable x1, we can represent this variable as a n-dimensional vector
x1 = (x11, . . . , xn1).

This representation leads to the following interpretations. The (sample) correlation
between two variables x1 and x2 is the cosine of the angle α between their representative
vectors x1 and x2 (Figure 4.1).

The (sample) multiple correlation between the variable y and two (explanatory) vari-
ables x1 and x2 is the cosine of the angle β between the representative vector y of y and
its orthogonal projection y′ on the plane spanned by the representative vectors of x1 and
x2 (Figure 4.1).

The (sample) partial correlation between x1 and x2 given y is the cosine of the angle
γ between the components of x1 and x2 orthogonal to y (Figure 4.2).

4.4 Notation and terminology on graphs

We follow closely the presentation in Lauritzen [150]. Some definitions are due to Diestel
[57] or Castelo and Roverato [30].
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y

x1

x2

y′

α

β

Figure 4.1: Correlation and multiple correlation illustrated with n = 3. See text for
details.

y

x1

x2

x′2x′1

γ

Figure 4.2: Partial correlation illustrated with n = 3. See text for details.
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A graph is a pair G = (V, E), where V is a finite set of vertices (or nodes) and the set
of edges E is a subset of the set V × V of ordered pairs of distinct vertices. We thus only
consider simple graphs: there are no multiple edges and no loops.

Two graphs G = (V, E) and G′ = (V ′, E ′) are identical if V = V ′ and E = E ′. In this
case, we simply write G = G′.

The set E of missing edges of G is composed of the pairs {α, β} such that α 6= β and
{α, β} /∈ E .

An edge {α, β} ∈ E is called undirected if {β, α} ∈ E and is denoted by α ∼G β

(or, equivalently, β ∼G α). A graph having only undirected edges is an undirected graph
(Figure 4.3). In such a graph, the edges are more conveniently represented as unordered
pairs {α, β}. Henceforth, we will consider only undirected graphs and refer to them as
graphs.

4 5

1 2 3

Figure 4.3: A simple (undirected) graph with node set V = {1, . . . , 5} and edge set E =
{{1, 2} , {1, 4} , {1, 5} , {2, 3} , {4, 5}}.

Two vertices α and β are said to be adjacent or neighbours if α ∼G β, and non-adjacent
if α �G β. The boundary of a vertex α, denoted as bdG (α), is the set of vertices that are
neighbours to α. The closure of α is clG (α) = {α} ∪ bdG (α). In Figure 4.3, for example,
bdG (2) = {1, 3} and clG (2) = {1, 2, 3}.

The definitions of boundary and closure are readily extended to a subset A ⊆ V. The
expression bdG (A) denotes the collection of nodes in the boundaries of vertices in A that
are not themselves elements of A:

bdG (A) = ∪α∈A bdG (α) \ A ,

and clG (A) denotes the collection of nodes in the closures of vertices in A:

clG (A) = ∪α∈A clG (α) .

The edge proportion γG is defined as the ratio between the number of edges and the
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number of possible edges of the graph:

γG =
2× Card (E)

Card (V) (Card (V)− 1)
.

A sparse graph is (informally) defined as a graph G = (V, E) in which the number of
edges is much smaller than the possible number of edges:

Card (E)� Card (V) (Card (V)− 1)
2

.

If we let dG denote the average degree of the nodes of the graph (i.e., the average
number of neighbors of the graph’s nodes),

dG =
1

Card (V)

∑
i∈V

Card (bdG (i)) ,

we have that the number of edges is given by

Card (E) =
dG × Card (V)

2
,

and thus the edge proportion can be expressed in terms of average degree and number of
nodes as follows:

γG =
dG

Card (V)− 1
. (4.33)

A path of length n from α to β, denoted as α 7→G β, is a sequence α = α0, . . . , αn = β

of distinct vertices such that {αi−1, αi} ∈ E for all i = 1, . . . , n. Since α 7→G β implies
β 7→G α, we write α 
G β (or, equivalently, β 
G α). The relation 
 is an equivalence
relation and the corresponding equivalence classes [α]G, where

β ∈ [α]G ⇐⇒ α 
G β ,

are the connectivity components of G. If there is only one equivalence class, we say that
G is connected . The graph in Figure 4.3 is connected.

For a pair of vertices (α, β) with α 6= β, a set C ⊆ V is said to be an (α, β)-separator if
all paths from α to β intersect C, i.e., have at least one vertex in C. If either α ∈ C or β ∈ C
then we say that C is trivial. If no proper subset of C is a (α, β)-separator we say that C is
minimal. We denote by SG (α, β) the set of all nontrivial minimal (α, β)-separators in G.
Note that SG (α, β) = {∅} if and only if α and β are in different connected components.
In Figure 4.3, SG (3, 4) = {{1} , {2}}.

The subset C is said to separate A from B if it is an (α, β)-separator for every α ∈
A, β ∈ B. In Figure 4.3, the set {1} separates the set {2, 3} from the set {4, 5}.

The connectivity of α and β is the smallest cardinality of the sets in SG (α, β) and
is denoted as dG (α, β). In Figure 4.3, dG (3, 4) = 1. It represents both the maximum
number of independent paths between α and β in G and the minimum number of vertices
that need to be removed from G to make α and β disconnected [57].

If A ⊆ V is a subset of the vertex set, it induces a subgraph GA = (A, EA), where the
edge set EA = E ∩ (A×A) is obtained from G by keeping edges with both endpoints in
A.
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A graph is complete if all possible pairs of vertices form an (undirected or directed)
edge. A subset is complete if it induces a complete subgraph. A clique is a maximal
complete subset (with respect to ⊆). The subset {1, 4, 5} in Figure 4.3 is a clique.

To simplify the notation, we often drop the subscript whenever it is clear from the
context which graph is referred to. So, for example, we write bd (A) instead of bdG (A)
whenever the reference to G is obvious.

4.5 Markov properties and faithfulness on undirected graphs

Let G = (V, E) denote an undirected graph on the nonempty set of random variables

V = {xi}i=1,...,p , where xi ∈ R , i = 1, . . . , p .

Let FV denote the probability distribution of the random vector x = (x1, . . . ,xp). Hence-
forth we do not distinguish between the random variable xi and the corresponding node
of the graph.

We now define the pairwise, local and global (undirected) Markov properties [150].

Definition 4.5.1 (pairwise, local and global Markov properties). The probability distri-
bution FV is said to obey
− the pairwise Markov property (P), relative to G, if for any pair (xi,xj) of distinct

non-adjacent vertices
xi ⊥⊥ xj | V \ {xi,xj} ;

− the local Markov property (L), relative to G, if for any vertex xi ∈ V
xi ⊥⊥ V \ clG (xi) | bdG (xi) ;

− the global Markov property (G), relative to G, if for any triple (A,B,S) of disjoint
subsets of V such that S separates A from B in G

A ⊥⊥ B | S .
It can easily be shown [150] that the global Markov property (G) implies the local

Markov property (L), which in turns implies the pairwise Markov property (P):

(G) =⇒ (L) =⇒ (P) . (4.34)

For this reason, the global Markov property (G) is often simply referred to as the Markov
property.

Further, it can be shown that the Markov properties are all equivalent under an addi-
tional constraint.

Theorem 4.5.1 (Pearl and Paz [189]). If the probability distribution FV is such that for
all disjoint subsets A, B, C, and D of V it holds that

if A ⊥⊥ B | (C ∪ D) and A ⊥⊥ C | (B ∪ D) then A ⊥⊥ (B ∪ C) | D , (4.35)

then
(G)⇐⇒ (L)⇐⇒ (P) . (4.36)
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Proposition 4.5.1 (Lauritzen [150]). Condition ( 4.35) holds if FV has a positive and
continuous density.

Given that the density function of a multivariate normal distribution is positive and
continuous [180], the Markov properties are all equivalent in the Gaussian case.

Corollary 4.5.1 (Lauritzen [150]). If FV is a multivariate normal distribution, then (4.36)
holds.

The probability distribution FV is faithful to G if all the conditional independence
relationships in FV can be read off the graph G through the pairwise Markov property as
formalized in the following definition [188].

Definition 4.5.2 (faithfulness). The probability distribution FV is faithful to G if for all
vertices xi and xj and sets of vertices K ⊆ V \ {xi,xj} with xi ⊥⊥ xj | K it holds that K
separates xi and xj in G.

When FV is both Markov and faithful to G, then there is a one-to-one mapping between
the graph and the conditional independences in the data, referred to as a perfect map
[17]. Indeed, all the conditional independence relationships read off the graph G through
the Markov property are present in FV (Markov) and all the conditional independence
relationships in FV can be read off the graph G through the Markov property (faithfulness).

In the literature, the Markov and faithfulness assumptions are preconditions to prove
correctness of algorithms [191]. A discussion on faithful distributions (and other types
of distributions) with respect to properties of conditional independence can be found in
Nilsson et al. [181].

4.6 Definition of Gaussian graphical model

The graphical interaction model for the multivariate normal distribution is called a Gaus-
sian graphical model (GGM) and was first introduced by Dempster [52]. Standard text-
books on GGMs include Lauritzen [150], Chap. 5, Edwards [70], Chap. 3, and Whittaker
[266], Chap. 6. The GGM has also been called a covariance selection model [52], a concen-
tration graph model [43], and a Gaussian graphical Markov model [62]. We will sometimes
refer to the GGM as the concentration graph.

Let G = (V, E) be an undirected graph on the p-dimensional random variable x =
(x1, . . . ,xp)

T ∈ Rp. The GGM is defined as follows [150].

Definition 4.6.1 (Gaussian graphical model or concentration graph). The Gaussian
graphical model (GGM) or concentration graph for x with undirected graph G = (V, E),
denoted as Np (G), is given by assuming that x is distributed according to the p-variate
normal distribution Np (µ,Σ), with mean µ = E (x) and covariance matrix Σ = Var (x),
which obeys the undirected pairwise Markov properties (Section 4.5) imposed by G:

α �G β =⇒ xα ⊥⊥ xβ | xV\{α,β} , ∀α, β ∈ V , (4.37)

where α �G β means that {α, β} does not form an edge in G (Section 4.4).
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The density function of a multivariate normal distribution is positive and continuous
[180]. Therefore, the restrictions imposed by the pairwise Markov properties (4.37) on
the distribution of x imply, by Corollary 4.5.1, that x also obeys the undirected global
and local Markov properties (Section 4.5) imposed by G.

Because of Proposition 4.3.1, the restrictions (4.37) can equivalently be expressed in
terms of constraints on the concentration matrix (Definition 4.2.3):

α �G β =⇒ ωαβ = 0 , ∀α, β ∈ V . (4.38)

The constraints (4.38) justify the names of covariance selection model and concentration
graph model given to Np (G) by Dempster [52] and Cox and Wermuth [43], respectively.
The Gaussian graphical model on Rp induced by G can thus alternatively be defined as
the family of multivariate normal distributions given by

Np (G) =
{Np (µ,Σ) | µ ∈ Rp, Σ−1 ∈ S+

p (G)
}
, (4.39)

where S+
p (G) denotes the set of p×p symmetric positive definite matrices satisfying (4.38).

From (4.39), we see that the graph G acts as a distribution filter [17]: it restricts the
family of p-variate normal distributions Np (µ,Σ), with Σ nonsingular, to the distributions
for which Σ−1 ∈ S+

p (G). In other words, it “filters out” the normal distributions that do
not fulfill the conditions imposed on the concentration matrix.

4.7 Gaussian graphical model selection

Suppose we have a training set consisting of n i.i.d. observations

x1·, . . . , xn· ∼ Np (µ,Σ) .

GGM selection (Section 3.1.3) consists in determining the graph G from the data. This
involves finding the pattern of zeros in the inverse covariance matrix, since these zeros
correspond to conditional independencies among the variables (4.38). From the previous
section, we know that this can be based on an estimate of the concentration matrix or,
equivalently, on the set of full-order partial correlations estimates

{
ρ̂̂ρ̂ρ(i,j|V\{i,j})

}
i,j∈V .

4.7.1 The “small n, large p” data setting

Unfortunately, this is problematic in the “small n, large p” setting: the usual sample
concentration matrix—the maximum likelihood estimate of the (population) concentration
matrix—requires the sample covariance matrix to be positive definite and this holds, with
probability one, if and only if n > p [69].

To cope with this dimensionality issue, three methods have been proposed in the
literature. The first one restricts the analysis to very small numbers of genes or gene
clusters as to satisfy n > p [138, 245, 246, 256, 273]. This approach avoids the issue at
hand by solving a different problem. It is clearly unsatisfactory and will hence not be
treated further.
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The second approach, which we present in Chapter 5, uses regularization to infer robust
estimators of the covariance matrix [45, 59, 145, 159, 174, 210, 212].

The third alternative, which is presented in Chapter 6, is to rely on limited-order
partial correlation graphs [30, 51, 143, 144, 164, 267, 268], or q-partial correlation graphs,
to approximate GGMs.

4.7.2 Model selection strategies

Once a robust estimate of the concentration matrix has been obtained, one has to find the
pattern of zeros in it. Two model selection strategies, the constraint-based approach and
the score-based search procedure, have been proposed in the literature [62]. A third one,
the Bayesian approach [272] has only been used marginally so far [62] and will hence not
be treated.

4.7.2.1 Constraint-based approach

The constraint-based approach consists in testing each of the p (p− 1) /2 edges separately
for inclusion by testing whether the corresponding full-order partial correlation is sig-
nificantly different from zero [30, 62–64, 143, 174, 210, 212, 267]. Some authors [267]
refer to it as the hypothesis testing-based approach. However, this is ambiguous since the
search-based approach (Section 4.7.2.2) also uses hypothesis tests.

In a frequentist setting, this approach requires the distribution function of the sample
full-order partial correlation ρ̂̂ρ̂ρ(i,j|V\{i,j}) under the null hypothesis ρ(i,j| V\{i,j}) = 0 to
address the statistical testing problem of non-zero full-order partial correlation:

H0 : ρ(i,j| V\{i,j}) = 0 versus H1 : ρ(i,j| V\{i,j}) 6= 0 . (4.40)

Similarly to testing for zero correlation (Appendix H.1), a possible solution is to resort
to Fisher’s Z-transform of the full-order partial correlation:

Z(i,j| V\{i,j}) = tanh−1 ρ̂̂ρ̂ρ(i,j|V\{i,j}) =
1
2

log
(

1 + ρ̂̂ρ̂ρ(i,j|V\{i,j})

1− ρ̂̂ρ̂ρ(i,j|V\{i,j})

)
,

which has an asymptotic normal distribution under the null hypothesis H0 when the data
follow a multivariate Gaussian distribution [6, 86, 87]. Using a significance level α, we
reject the null-hypothesis H0 against the two-sided alternative H1 if√

n− p− 1Z(i,j| V\{i,j}) > Φ−1 (1− α/2) , (4.41)

where Φ (·) denotes the cumulative distribution function of the standard normal distribu-
tion N (0, 1).

Note that Drton and Perlman [62] use a different test than (4.40). In their approach,
conservative simultaneous confidence intervals are computed for the entire set of full-order
partial correlations. An edge is then included in the model if the corresponding confidence
interval does not comprise 0.

Other tests include the generalized likelihood ratio test [150, 266–268] and the t-test for
zero regression coefficients [30] (recall from Section 4.3.3 the connection between partial
correlations and regression coefficients).
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Alternatively, Schäfer and Strimmer [210, 212] fit a mixture of distributions model
(where the null distribution is given by Hotelling [124] and the distribution of the true
edges is a uniform distribution) to the observed partial correlation coefficients to take
advantage of the networks’ sparsity. Their method is inspired by similar approaches to
detect differentially expressed genes (where it is assumed that the majority of investigated
genes is not differentially expressed) [72, 75].

Subsequently, a multiple testing correction (Appendix H.2) procedure needs to be ap-
plied because of the parallel testing situation [67, 154]. Traditional techniques, which rely
mostly on control of the family-wise error rate, are very conservative if the number of tests
is large [67]. To alleviate this problem, Benjamini and Hochberg [14] proposed to control
the false discovery rate (FDR; Appendix H.2) which measures the expected proportion
of false positives out of the total number of rejections (instead of controlling the chance
of any false positives). This approach and similar ones (such as local fdr [73]) have been
widely used for GRN inference [67, 160, 192, 210, 212, 267, 268].

4.7.2.2 Score-based search

Score-based search procedures consider model selection as a combinatorial optimization
problem. Models are selected by searching through the space of underlying graphs and
maximizing a goodness-of-fit score, such as the Bayesian information criterion (BIC) [258],
which evaluates the degree of fitness between a graph (in the search space) and the available
data.

Testing all 2p(p−1)/2 possible graphs is of course hardly feasible, except for toy examples.
Non-exhaustive search strategies have therefore been proposed. The search is usually
performed greedily by defining a neighborhood structure for graphs and is terminated
with a graph for which no neighboring graph achieves a higher score. Standard approaches
include greedy stepwise forward-selection or backward-deletion [70]. In each step the edge
selection or deletion (i.e., deciding whether a partial correlation is significantly different
from zero or not) is typically done through hypothesis testing.
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Regularized Estimator for Gaussian Graphical Model

Selection1

We propose an improved shrinkage estimator of the covariance matrix that corrects the
bias of the optimal shrinkage intensity estimator of Ledoit and Wolf [153]’s shrinkage
estimator through a parametric bootstrap approach. The applicability and usefulness of
our estimator are demonstrated on both simulated and real expression data.

From the previous chapter, we know that Gaussian graphical model (GGM) selec-
tion reduces to estimating a covariance matrix. However, obtaining robust estimators for
large empirical covariance matrices is a challenging and important issue, which has be-
come particularly acute with the data flood phenomenon bioinformatics is experiencing
for more than a decade now. Indeed, estimating large-scale covariance matrices is a com-
mon (though often implicit) task in functional genomics and transcriptome analysis [212].
Furthermore, in most cases, the available data describe a large number p of variables (on
the order of hundreds or thousands) but only contain comparatively a small number n
of samples (on the order of tens or hundreds), which renders this estimation an ill-posed
problem.

The widely adopted solution is to rely either on the maximum likelihood estimate or
on the related unbiased empirical covariance matrix (Section 5.2). Unfortunately, these
commonly used estimators present serious defects in the “small n, large p” setting [153,
212]. To circumvent this problem, several regularization methods have been proposed
since James and Stein [130] (Section 5.1).

In particular, Ledoit and Wolf [153] showed that they could improve the estimation of
the covariance matrix by finding an optimal linear combination of the sample covariance
matrix and a constrained covariance matrix, for which they provide an analytical solu-
tion (Section 5.2). Intuitively, their approach reduces to balancing bias and variance to
reduce the mean squared error (MSE; recall Section 3.1.3). Unfortunately, the parameter
defining shrinkage depends on unknown quantities and needs to be estimated consistently
(Section 5.2.2).

1Parts of this chapter appeared in Kontos and Bontempi [145].
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This chapter introduces the first main contribution of the thesis, which consists in an
improved shrinkage estimator of the covariance matrix. We show that the optimal shrink-
age intensity estimator of Ledoit and Wolf [153]’s shrinkage estimator (see also Schäfer and
Strimmer [212]) is biased (Section 5.3). Consequently, we propose a parametric bootstrap
approach (Section 3.2.1) to estimate this bias (Section 5.4) and derive a “bias-corrected”
shrinkage estimator (Section 5.5). The applicability and usefulness of our estimator are
demonstrated on both simulated and real expression data (Sections 5.6 and 5.7, respec-
tively). Finally, Section 5.9 concludes the chapter.

5.1 Overview

We overview the main regularization approaches to obtain robust estimators of the covari-
ance matrix, which includes the shrinkage estimator that we consider in the rest of the
chapter (from Section 5.2 onwards).

Haff [111] showed that one can improve the estimation of the covariance matrix by
using linear combinations of the sample covariance matrix and any positive semidefinite
matrix (see also Anderson [5], Bickel and Levina [15], Daniels and Kass [44], Friedman
[91]). This shrinkage approach was not new in statistical mathematics: it had already
served previously, e.g., as original motivation for ridge regression (Section 3.6.3).

Recently, Ledoit and Wolf [151, 152, 153] proposed a shrinkage estimator, for the
problem of portfolio selection in financial engineering, that is both statistically efficient and
computationally fast. This approach was subsequently introduced in the bioinformatics
literature to tackle the problem of large-scale genetic regulatory network inference from
microarray data [212] and will be presented in Section 5.2.

Alternatively, Meinshausen and Bühlmann [174] use the lasso (Section 3.6.3). Indeed,
partial correlation coefficients can be obtained from linearly regressing each variable in
turn against the remaining ones (Section 4.3.3). Other regression techniques suited to the
“small n, large p” setting have also been used [148, 157]. However, compared to Ledoit
and Wolf [153]’s estimator, these approaches seemingly fail to uncover the topology of
biological networks [212].

Another approach consists in using the resampling variance reduction technique [210,
271] of bootstrap aggregation or bagging (Section 3.2.1). The drawback of this method
is that the sparsity is not accounted for when estimating the covariance matrix [158].
Consequently, although it provides better results than the sample covariance matrix, it
has been shown to perform poorly compared to Ledoit and Wolf [153]’s shrinkage estimator
[212]. Moreover, it is computationally much more expensive than the latter [212]. Note
that the shrinkage estimator can be combined with bagging but empirical results suggest
that this combination offers no further improvement beyond shrinkage [271].

Finally, robust estimators of the covariance matrix can be obtained through penalized
likelihood maximization [9, 10, 45, 90, 156, 159, 275]. In particular, Banerjee et al. [9,
10] (see also d’Aspremont et al. [45], Friedman et al. [90]) proposed solving a maximum
likelihood problem with an L1-norm penalty term added to encourage sparsity in the
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inverse matrix:
max
X∈Sp

log det (X)− tr (SX)− θ ‖X‖1 , (5.1)

where Sp is the set of p × p symmetric positive definite covariance matrices, det (X) and
tr (X) denote, respectively, the determinant and the trace of X, S is the sample covariance
matrix, the term

‖X‖1 =
p∑

i,j=1

|xij | ,

penalizes nonzero elements of X, and the scalar parameter θ > 0 controls the trade-off
between log-likelihood and the L1-norm penalty (hence the sparsity of the solution).

The penalty term involving the sum of absolute values of the entries of X is used as a
proxy for the number of its non-zero elements [10]. This penalization approach is similar
to the regularization approaches for linear regression (Section 3.6.3).

Note that the classical maximum likelihood estimate of the covariance matrix Σ, i.e.,
the sample covariance matrix S, is recovered for θ = 0 [10].

Yuan and Lin [275] showed that there is a close connection between the penalized-
likelihood approach and Meinshausen and Bühlmann [174]’s method (see above)–the latter
being, however, computationally faster than the former [275]. Hence, similarly to the
techniques using regularization approaches to linear regression, the penalized-likelihood
approach seemingly fails to uncover the topology of biological networks [212] and will not
be treated further.

5.2 Shrinkage estimator

Let X denote a n×p matrix of n i.i.d. observations of p random variables with mean zero
and covariance matrix Σ.

Let ŜML denote the maximum likelihood estimator of the covariance matrix Σ defined
as

ŜML =
1
n
XTX ,

where XT is the transpose of X. Let Ŝ denote the related unbiased sample covariance
matrix defined as

Ŝ =
n

n− 1
ŜML =

1
n− 1

XTX . (5.2)

Despite being widely used, both estimators exhibit high variance [153]. To decrease
their variance, and thus also to reduce their mean squared error (MSE), Ledoit and Wolf
[153] proposed a (linear) shrinkage estimator, also known as a biased estimator. This
estimator “shrinks” the sample covariance matrix Ŝ towards a low-dimensional (biased)
estimator T̂ of the covariance matrix Σ whose (i, j)-th element is defined by

t̂ij =

{
ŝii if i = j ,

0 if i 6= j ,
(5.3)

where ŝij is the (i, j)-th element of Ŝ. The estimator T̂ is thus a diagonal matrix. We refer
to Schäfer and Strimmer [212] for a list of commonly used low-dimensional estimators.
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The linear shrinkage estimator Σ̂λ combines both estimators in a convex combination,2

instead of choosing between one of these two extremes. The shrinkage estimator is defined
as the linear combination of the estimators Ŝ and T̂:

Σ̂λ = λT̂ + (1− λ) Ŝ, (5.4)

where λ ∈ [0, 1] represents the shrinkage intensity.
The number of parameters to be fitted in the constrained estimate T̂ is small compared

to that of the unconstrained estimate Ŝ (p parameters instead of p (p+ 1) /2). Hence, the
constrained estimate T̂ will exhibit a lower variance than its unconstrained counterpart Ŝ.
On the other hand, the former will exhibit considerable bias as an estimator of Σ (recall
that the latter is unbiased).

The rationale behind the shrinkage estimator3 is to minimize the MSE by finding the
best trade-off between error due to bias and error due to variance (from (E.1) that the
MSE can be decomposed in bias and variance terms). This idea of a trade-off between
bias and variance can be traced back to the shrinkage technique of James and Stein [130].

5.2.1 Optimal shrinkage intensity

The optimal shrinkage intensity λ∗ minimizes the expected quadratic loss:

λ∗ = arg min
λ∈[0,1]

E
(∥∥∥Σ̂λ − Σ

∥∥∥2

F

)
, (5.5)

where ‖·‖F denotes the Frobenius norm, i.e.,

‖M‖F =
√

tr (MMT ) =

√√√√ p∑
i=1

p∑
j=1

m2
ij ,

and tr (·) denotes matrix trace.
The value of λ∗ is given by

λ∗ =

∑p
i=1

∑p
j=1

(
Var (̂sij)− Cov

(
t̂ij , ŝij

))
∑p

i=1

∑p
j=1 E

((
t̂ij − ŝij

)2) , (5.6)

where ŝij is the (i, j)-th element of Ŝ. A derivation of (5.6) [153, 212] is given in Ap-
pendix I. It can be shown that λ∗ always exists and is unique [153]. Note that this
analytical expression is valid for any low-dimensional estimator of the covariance matrix.
In the case where the constrained estimator is defined as in (5.3), then (5.6) reduces to

λ∗ =

∑
i

∑
j 6=i Var (̂sij)∑

i

∑
j 6=i E

(
ŝ2
ij

) . (5.7)

2In practice, shrinkage is applied to the correlations rather than the covariances [212].
3Additionally, Ledoit and Wolf [153] proposed three other interpretations of the shrinkage approach:

one involving eigenvalues of the covariance matrix, a Bayesian one, and one involving a projection in a

Hilbert space.
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The corresponding optimal shrinkage estimator of the covariance matrix

Σ̂∗ ≡ Σ̂λ∗ = λ∗T̂ + (1− λ∗) Ŝ , (5.8)

is referred to as the shrinkage estimator hereafter.
The optimal shrinkage estimator of the concentration matrix (Definition 4.2.3), simply

referred to as the shrinkage estimator of the concentration matrix, is obtained by inverting
Σ̂∗ as in (4.17):

Ω̂∗ =
(
Σ̂∗
)−1

. (5.9)

The optimal shrinkage estimator of the partial correlation ρ(i,j| V\{i,j}) of variables xi
and xj given the remaining variables V\{i, j}, simply referred to as the shrinkage estimator
of the partial correlation ρ(i,j| V\{i,j}), is obtained from (5.9) as in (4.25):

ρ̂̂ρ̂ρ∗(i,j|V\{i,j}) =
−ω̂̂ω̂ω∗ij√
ω̂̂ω̂ω∗iiω̂̂ω̂ω

∗
jj

, (5.10)

where ω̂̂ω̂ω∗ij is the (i, j)-th element of Ω̂∗.
Several insights into (5.6) can be given [212]. First, the shrinkage intensity diminishes

when the variance of Ŝ (the first term of the numerator of (5.6)) decreases. Hence, the
influence of the target diminishes with increasing sample sizes.

Second, the shrinkage intensity decreases with increasing covariance between the two
estimators (the second term of the numerator of (5.6)). This term adjusts for the fact that
both estimators are inferred from the same data and that the prior information associated
with T̂ is not independent of the data.

Finally, the shrinkage intensity diminishes with increasing mean squared difference
between Ŝ and T̂ (in the denominator of (5.6)). This protects the shrinkage estimate
against an inappropriate target.

5.2.2 Estimating the optimal shrinkage intensity

In practice, one needs to obtain an estimate λ̂̂λ̂λ∗ of the optimal shrinkage intensity given
by (5.7). This is achieved by replacing all expectations and variances in (5.7) by their
unbiased sample counterparts [153, 212]:

λ̂̂λ̂λ∗ =

∑
i

∑
j 6=i V̂ar (̂sij)∑

i

∑
j 6=i Ê

(
ŝ2
ij

) , (5.11)

where
Ê
(
ŝ2
ij

)
= ŝ2

ij ,

and

V̂ar (̂sij) =
n

(n− 1)3

n∑
k=1

(
xkixkj − 1

n

n∑
k=1

xkixkj

)2

, (5.12)

with xki denoting the (k, i)-th element of X (i.e., the value of variable xi’s k-th sample).
We refer to Appendix I for the derivation of (5.12).
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Note that, in some finite samples, λ̂̂λ̂λ∗ may become negative or exceed one [212]. To
avoid negative shrinkage or overshrinkage, λ̂̂λ̂λ∗ is truncated accordingly:

λ̂̂λ̂λ∗[0,1] = max
(

0,min
(

1, λ̂̂λ̂λ∗
))

.

5.2.3 Benefits

Ledoit and Wolf [153] showed that the shrinkage estimator Σ̂∗ (5.8) is both well-conditioned
and more accurate than the sample covariance matrix Ŝ asymptotically, and that the
asymptotic results tend to hold well in finite samples. Further, they showed that Σ̂∗ out-
performs several alternative state-of-the-art estimators to the sample covariance matrix Ŝ,
including Haff’s empirical Bayesian estimator, the so-called Stein-Haff estimator and the
minimax (Ledoit and Wolf [153] and references therein).

Most importantly, by deriving the analytical solution (5.6), Ledoit and Wolf [153]’s
method avoids computationally intensive procedures such as cross-validation [91, 243],
bootstrap or Markov chain Monte Carlo (MCMC) methods.

As pointed out by Schäfer and Strimmer [212], the estimator proposed by Ledoit and
Wolf [153] avoids all (main) drawbacks of most available estimators (see, e.g., Daniels and
Kass [44] for an extensive review): it is not restricted to data with p < n, it does not
assume specific underlying distributions and it is not computationally expensive.

5.3 Bias of the optimal shrinkage intensity estimator

Because of the linearity property of expectation, linear transformations of unbiased es-
timators are unbiased. Hence, the numerator and denominator of (5.11) are unbiased
estimates of the numerator and denominator of (5.7), respectively. Unfortunately, the
nonlinear transformation of unbiased estimators is not guaranteed to be unbiased. Hence,
λ̂̂λ̂λ∗ is not necessarily an unbiased estimator of λ∗ because of the quotient in (5.11). In
fact, we will experimentally demonstrate in Sections 5.6 and 5.8 that it is biased.

5.4 Monte Carlo bias estimation

We present a Monte Carlo procedure to estimate the bias of the optimal shrinkage intensity
estimator λ̂̂λ̂λ∗ (5.11) which is defined as

Bias
(
λ̂̂λ̂λ∗
)

= E
(
λ̂̂λ̂λ∗
)
− λ∗ . (5.13)

Note that this estimation procedure will also be exploited by the estimator we propose
(Section 5.5) and which attempts to correct this bias.

Suppose we have a p× p covariance matrix Σ. We generate B data matrices X(b), b =
1, . . . , B, of dimension p×n, where the n samples are drawn from the multivariate normal
distribution with mean zero and covariance matrix Σ. Next, for all X(b), b = 1, . . . , B, we
compute the sample covariance matrices Ŝ(b), b = 1, . . . , B, respectively, as in (5.2).
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We then estimate the expected value of the optimal shrinkage intensity estimator (i.e.,
the first term of the right-hand side of (5.13)) by

Ê
(
λ̂̂λ̂λ∗
)

=
1
B

B∑
b=1

λ̂̂λ̂λ∗(b) , (5.14)

where λ̂̂λ̂λ∗(b) is the optimal shrinkage intensity estimator computed from the sample co-
variance matrix Ŝ(b) by (5.11).

Next, we determine the optimal shrinkage intensity λ∗ (i.e., the second term of the
right-hand side of (5.13)) by (5.7), where Var (̂sij) and E (̂sij) are given, respectively, by

Var (̂sij) =
1

B − 1

B∑
b=1

(
ŝ(b)
ij −

1
B

B∑
b=1

ŝ(b)
ij

)2

, i, j = 1, . . . , p, (5.15)

and

E
(
ŝ2
ij

)
=

1
B

B∑
b=1

(
ŝ(b)
ij

)2
, i, j = 1, . . . , p. (5.16)

Of course, (5.15) and (5.16) are estimators. However, since the number B of bootstrap
replicates can be arbitrarily large, we can reasonably consider them as the true Var (̂sij)
and E (̂sij), respectively.

Finally, plugging (5.15) and (5.16) into (5.7) gives:

λ∗ =
B
∑

i

∑
j 6=i
∑B

b=1

(
ŝ(b)
ij − 1

B

∑B
b=1 ŝ(b)

ij

)2

(B − 1)
∑

i

∑
j 6=i
∑B

b=1 ŝ(b)
ij

, (5.17)

which, despite being an estimator (above), can be regarded as the “true” optimal shrinkage
intensity [139].

Finally, we estimate the bias of the optimal shrinkage intensity estimator λ̂̂λ̂λ∗ by plugging
(5.14) and (5.17) into (5.13):

B̂ias
(
λ̂̂λ̂λ∗
)

= Ê
(
λ̂̂λ̂λ∗
)
− λ∗ . (5.18)

5.5 Parametric bootstrap approach for bias correction

The bias estimation procedure we have presented in the previous section will be used to
show the bias of the optimal shrinkage intensity estimator (5.11) in Section 5.6. It will
also be used by the shrinkage estimator we now introduce and which attempts to correct
for this bias.

The rationale behind this estimator is to estimate the bias of the standard shrinkage
estimator. Indeed, if we knew its bias, Bias

(
λ̂̂λ̂λ∗
)

, then

λ̂̂λ̂λ∗un = λ̂̂λ̂λ∗ − Bias
(
λ̂̂λ̂λ∗
)

(5.19)
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Algorithm 5.1: “Bias-corrected” shrinkage estimator.
Input: p× n data matrix X, number of bootstrap replications B.
Output: “Bias-corrected” shrinkage estimator Σ̂∗bc.

Estimate Ŝ and T̂ as in (5.2) and (5.3), respectively ;1

Estimate λ̂̂λ̂λ∗ as in (5.11) ;2

Compute Σ̂∗ as in (5.4) with λ = λ̂̂λ̂λ∗ ;3

Use Σ̂∗ to determine B̂iasΣ̂∗

(
λ̂̂λ̂λ∗
)

(5.18) ;4

λ̂̂λ̂λ∗bc ←− λ̂̂λ̂λ∗ − B̂iasΣ̂∗

(
λ̂̂λ̂λ∗
)

;5

Σ̂∗bc ←− λ̂̂λ̂λ∗bcT̂ +
(

1− λ̂̂λ̂λ∗bc

)
Ŝ ;6

return Σ̂∗bc ;7

would be an unbiased estimator of λ∗, since (5.13)

E
(
λ̂̂λ̂λ∗un

)
= E

(
λ̂̂λ̂λ∗
)
−
(
E
(
λ̂̂λ̂λ∗
)
− λ∗

)
= λ∗ .

Of course, this bias is unknown and has to be estimated. Unfortunately, the bias
estimation procedure described previously requires the “true” covariance matrix Σ (which
we are trying to estimate) to be known. Thus, we face a circularity problem, namely
that for an accurate estimate of the covariance matrix, a reliable estimate of the shrinkage
intensity is needed, and vice versa.

However, although the shrinkage intensity estimator (and consequently the correspond-
ing covariance matrix estimator) is biased, we can apply the bias estimation procedure
described in Section 5.4 but with the covariance shrinkage estimator Σ̂∗ replacing the true
covariance matrix Σ. Indeed, although Σ̂∗ is a biased estimator of Σ (because λ̂̂λ̂λ∗ is a bi-
ased estimator of λ∗, as will be shown in Section 5.8), it can be used as an approximation
of Σ. Hence, we can reasonably assume that the bias estimated from Σ̂∗ instead of Σ as
in Section 5.4,

B̂iasΣ̂∗

(
λ̂̂λ̂λ∗
)

= ÊΣ̂∗

(
λ̂̂λ̂λ∗
)
− λ∗

Σ̂∗
,

is close to the one we would obtain if we knew the true covariance matrix Σ.
The proposed “bias-corrected” optimal shrinkage intensity estimator is therefore ob-

tained as in (5.19):
λ̂̂λ̂λ∗bc = λ̂̂λ̂λ∗ − B̂iasΣ̂∗

(
λ̂̂λ̂λ∗
)
.

The detailed procedure to obtain the “bias-corrected” shrinkage estimator of the covariance
matrix is given by Algorithm 5.1.

5.6 Experiments on synthetic gene regulatory networks

5.6.1 Data generation

We used the package GeneNet [184] for the statistical software R [196] to generate data sets
with p = 100 variables as follows. First, we generated R = 100 covariance matrices Σ(r)

p,γG ,
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r = 1, . . . , R, of dimension p×p with edge proportion γG ∈ {0.01, 0.02, . . . , 0.15} (Table 5.1
gives the average node degree dG (4.33) for each edge proportion γG) by an algorithm
which guarantees that the resulting matrices are always positive definite [184, 210].

Table 5.1: Average node degree for each edge proportion γG ∈ {0.01, 0.02, . . . , 0.15}.

Edge proportion (γG) Average degree (dG)

0.01 0.99
0.02 1.98
0.03 2.97
0.04 3.96
0.05 4.95
0.06 5.94
0.07 6.93
0.08 7.92
0.09 8.91
0.10 9.90
0.11 10.89
0.12 11.88
0.13 12.87
0.14 13.86
0.15 14.85

The algorithm generates a partial correlation matrix where the number of nonzero
entries (outside the diagonal) is determined according to γG. Gaussian graphical model
(GGM) theory (Section 4.6) shows that a nonzero entry in the partial correlation matrix
implies that the two corresponding variables are dependent given the remaining variables
(assuming a joint normal distribution) and form an edge in the corresponding GGM.
Given that the partial correlation matrix is a “normalized” concentration matrix (4.25),
the covariance matrix is derived from the inverse of the partial correlation matrix (4.17).

Although the model used for data generation is a simplification of real molecular pro-
cesses, it is important to faithfully evaluate the prediction results. This is possible only if
the true structure of the regulatory network is known.

Next, for each covariance matrix Σ(r)
p,γG and for each n ∈ {20, 40, 60, 80, 100, 1000},

B = 1 000 data sets X(r,b)
p,γG,n, b = 1, . . . , B, of the desired sample size n were drawn from
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the multivariate normal distribution with mean zero and covariance matrix Σ(r)
p,γG . All in

all, we generated 15× 100× 6× 1 000 = 9 000 000 data sets.

5.6.2 Bias computation

For each covariance matrix Σ(r)
p,γG and for each n, we estimate the bias of λ̂̂λ̂λ∗(r)p,γG,n as described

in Section 5.4:

B̂ias
(
λ̂̂λ̂λ∗(r)p,γG,n

)
= Ê

(
λ̂̂λ̂λ∗(r)p,γG,n

)
− λ∗(r)p,γG,n

, ∀r, p, γG, n , (5.20)

where

Ê
(
λ̂̂λ̂λ∗(r)p,γG,n

)
=

1
B

B∑
b=1

λ̂̂λ̂λ∗(r,b)p,γG,n
, ∀r, p, γG, n , (5.21)

with λ̂̂λ̂λ
∗(r,b)
p,γG,n estimated from X

(r,b)
p,γG,n as in (5.14), and where λ∗(r)p,γG,n is computed as in

(5.17).

5.6.3 Bias correction

For each covariance matrix Σ(r)
p,γG and for each n, we apply Algorithm 1 to obtain an

estimate Σ̂∗bc of the covariance matrix.
We compare the expected square loss of our “bias-corrected” shrinkage estimator Σ̂∗bc

(Section 5.5) and of the “standard” shrinkage estimator Σ̂∗ (Section 5.2) across a wide
range of parameters (Section 5.6.1). For each Σ(r)

p,γG , we also infer the “optimal” covariance
matrix Σ̂∗opt, which is the covariance matrix obtained by using the “true” optimal lambda

λ
∗(r)
p,γG,n (5.7) instead of λ̂̂λ̂λ∗(r,b)p,γG,n.

As in Ledoit and Wolf [153], the benchmark is the expected square loss of the sample
covariance matrix Ŝ. The expectations are computed (approximated) by averaging the
losses over R = 100 Monte Carlo replications, and standard errors are also computed.

We also compute the percentage relative improvement (on the sample covariance ma-
trix Ŝ) in average loss (PRIAL) of the three estimators Σ̂∗, Σ̂∗bc and Σ̂∗opt. The PRIAL
of an estimator Θ̂, which was introduced by [153], is defined as:

PRIAL
[
Θ̂
]

= 100×

(
E
(∥∥∥Ŝ− Σ

∥∥∥2

F

)
− E

(∥∥∥Θ̂− Σ
∥∥∥2

F

))
E
(∥∥∥Ŝ− Σ

∥∥∥2

F

) . (5.22)

If the PRIAL is positive (negative), then Θ̂ performs better (worse) than Ŝ. The PRIAL
of the sample covariance matrix Ŝ is zero by definition. The PRIAL cannot exceed 100%
[153].

Finally, we also report the percentage of “wins,” that is the proportion of Monte Carlo
replications for which our “bias-corrected” shrinkage estimator produces a smaller square
loss than the “standard” shrinkage estimator. Hence, when this value is greater (resp.
smaller) than 50%, our estimator performs better (resp. worse) than the “standard”
shrinkage estimator in the majority of cases.
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5.7 Inferring the gene regulatory network of Escherichia coli from ex-

pression data

To illustrate the applicability of the proposed estimator, we apply it to the problem chosen
by Schäfer and Strimmer [212] to illustrate the effectiveness of the shrinkage estimator in
bioinformatics, namely the inference of (a part of) the genetic regulatory network (GRN)
of Escherichia coli (E. coli) from a microarray data set.

The experiment (Schäfer and Strimmer [212] and references therein) measures the
stress response of E. coli during expression of the recombinant protein SOD (human
superoxide dismutase). The resulting data monitors all 4 289 protein coding genes of E.
coli 8, 15, 22, 45, 68, 90, 150, and 180 minutes after induction of SOD. Among these genes,
p = 102 were identified as differentially expressed in one or more of the n = 8 samples
[212].

The objective is to infer the GRN among these 102 preselected genes [212] from the
partial correlation matrix (Section 5.6.1). To identify the edges in the regulatory network
from the partial correlation matrix (obtained by inverting the “bias-corrected” covariance
matrix), we adopt a search heuristic which is based on large-scale multiple testing of edges
using local fdr (Section 4.7.2.1), which returns a threshold to be applied on the partial
correlation coefficients (i.e., pairs of genes whose partial correlation coefficients in absolute
value are higher than the threshold are inferred as edges). Expected square losses can of
course not be computed since we do not know the true covariance matrix.

5.8 Results and discussion

5.8.1 Synthetic gene regulatory networks

Table 5.2 shows the mean and standard deviation of the bias values
{

B̂ias
(
λ̂
∗(r)
p,γG,n

)
, r = 1,

. . . , R}, for each possible combination of γG and n (recall that p = 100). Figure 5.1 plots
the mean of the bias values versus γG for each n (the standard deviations have been
omitted for clarity).

The results suggest that the optimal shrinkage intensity estimator is biased in the
“small n, large p” setting, particularly for small sample values. Further, we note that
while the bias is positive for the smallest edge proportions, it becomes negative (i.e., the
shrinkage intensity estimator underestimates the optimal intensity) for higher values.

Tables 5.3 and 5.4 present the results obtained with the four estimators Ŝ, Σ̂∗, Σ̂∗bc
and Σ̂∗opt in terms of estimated square loss, PRIAL and “wins” (Section 5.6.3). For
reasons of space and clarity, we only report the results for n ∈ {20, 40, 60} (that we
are interested by the behavior of the estimators in the “small n, large p” setting) and
γG ∈ {0.01, 0.02, . . . , 0.10}.

The results suggest that for small edge proportions (0.01 and 0.02), the “bias-corrected”
shrinkage estimator Σ̂∗bc performs better than the “standard” shrinkage estimator Σ̂∗

except for the smallest sample size (n = 20). For edge proportions ranging from 0.04
to 0.06, Σ̂∗bc performs better for the smallest size (n = 20), while it outperforms Σ̂∗ for
most sample sizes as the edge proportion increases (0.08, 0.09 and 0.10). Of course, the
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Table 5.2: Mean (standard deviation) of bias values.

γG Number of samples n
20 40 60

0.01 0.016 (0.0153) 0.022 (0.0071) 0.019 (0.0042)
0.02 0.015 (0.016) 0.026 (0.0085) 0.023 (0.0051)
0.03 -0.017 (0.004) 0.007 (0.0028) 0.011 (0.0024)
0.04 -0.029 (0.0021) -0.003 (0.0016) 0.004 (0.0015)
0.05 -0.036 (0.0013) -0.009 (0.0011) -0.001 (0.001)
0.06 -0.040 (0.0011) -0.012 (0.001) -0.004 (0.001)
0.07 -0.042 (8e-04) -0.015 (8e-04) -0.006 (8e-04)
0.08 -0.044 (8e-04) -0.016 (9e-04) -0.008 (7e-04)
0.09 -0.045 (8e-04) -0.018 (7e-04) -0.009 (7e-04)
0.10 -0.046 (6e-04) -0.019 (7e-04) -0.010 (7e-04)
0.11 -0.047 (7e-04) -0.019 (7e-04) -0.011 (6e-04)
0.12 -0.047 (7e-04) -0.020 (6e-04) -0.011 (7e-04)
0.13 -0.048 (6e-04) -0.020 (7e-04) -0.012 (7e-04)
0.14 -0.048 (6e-04) -0.021 (6e-04) -0.012 (6e-04)
0.15 -0.048 (6e-04) -0.021 (7e-04) -0.012 (7e-04)

80 100 1000

0.01 0.016 (0.0028) 0.014 (0.002) 0.002 (1e-04)
0.02 0.021 (0.0035) 0.018 (0.0025) 0.003 (1e-04)
0.03 0.012 (0.0018) 0.012 (0.0014) 0.003 (1e-04)
0.04 0.006 (0.0013) 0.007 (0.0011) 0.003 (1e-04)
0.05 0.002 (9e-04) 0.004 (9e-04) 0.002 (1e-04)
0.06 -4e-04 (8e-04) 0.002 (8e-04) 0.002 (2e-04)
0.07 -0.002 (8e-04) -1e-04 (6e-04) 0.002 (2e-04)
0.08 -0.004 (7e-04) -0.002 (6e-04) 0.002 (2e-04)
0.09 -0.005 (6e-04) -0.003 (7e-04) 0.002 (2e-04)
0.10 -0.006 (7e-04) -0.003 (6e-04) 0.002 (3e-04)
0.11 -0.006 (7e-04) -0.004 (6e-04) 0.002 (3e-04)
0.12 -0.007 (7e-04) -0.005 (6e-04) 0.002 (3e-04)
0.13 -0.007 (6e-04) -0.005 (6e-04) 0.002 (3e-04)
0.14 -0.008 (7e-04) -0.005 (6e-04) 0.001 (3e-04)
0.15 -0.008 (5e-04) -0.006 (5e-04) 0.001 (3e-04)



5.8 Results and discussion 83

0.02 0.04 0.06 0.08 0.10 0.12 0.14

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

Edge proportion

Bi
as

20
40
60
80
100
1000

Figure 5.1: Plot of mean bias values (standard deviations are given in Table 5.2) versus
edge proportion for different sample sizes.
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Table 5.3: Mean (and standard error) of expected square loss and PRIAL (%) of the
sample covariance matrix Ŝ, the “standard” shrinkage estimator Σ̂∗, the “bias-corrected”
shrinkage estimator Σ̂∗bc and the “optimal” shrinkage estimator Σ̂∗opt for edge proportion
γG ∈ {0.01, 0.02, . . . , 0.05}. The percentage of “wins” (Section 5.6.3) is reported in the
last column.

Edge prop. Sample size
Ŝ Σ̂∗ Σ̂∗

bc
Σ̂∗opt WINS

γ n

0.01 20 494.96 (0.043) 234.74 (0.049) 235.15 (0.049) 232.77 (0.049) 34.2 %

0.0 % 52.574 % 52.491 % 52.972 %

40 240.34 (0.023) 154.21 (0.023) 153.79 (0.023) 153.27 (0.023) 64 %

0.0 % 35.836 % 36.009 % 36.229 %

60 158.74 (0.014) 115.46 (0.014) 115.17 (0.014) 114.97 (0.014) 68.7 %

0.0 % 27.266 % 27.449 % 27.57 %

0.02 20 490.17 (0.042) 219.75 (0.049) 221.21 (0.05) 216.04 (0.046) 26.2 %

0.0 % 55.169 % 54.871 % 55.925 %

40 237.78 (0.022) 148.26 (0.026) 148.07 (0.025) 145.89 (0.024) 66.3 %

0.0 % 37.648 % 37.729 % 38.643 %

60 157.14 (0.014) 112.66 (0.018) 112.24 (0.017) 111 (0.016) 68.4 %

0.0 % 28.306 % 28.569 % 29.36 %

0.03 20 510.57 (0.02) 100.14 (0.011) 100.57 (0.011) 99.428 (0.011) 40.7 %

0.0 % 80.386 % 80.302 % 80.526 %

40 248.27 (0.01) 82.914 (0.0085) 83.119 (0.0085) 82.565 (0.0084) 28.9 %

0.0 % 66.603 % 66.52 % 66.744 %

60 164.33 (0.0068) 70.355 (0.0063) 70.404 (0.0063) 70.083 (0.0062) 28.1 %

0.0 % 57.188 % 57.158 % 57.353 %

0.04 20 514.14 (0.016) 68.474 (0.006) 68.329 (0.006) 67.674 (0.0059) 52 %

0.0 % 86.682 % 86.71 % 86.837 %

40 250.41 (0.0083) 59.627 (0.0047) 59.755 (0.0047) 59.416 (0.0046) 35.8 %

0.0 % 76.188 % 76.137 % 76.272 %

60 165.33 (0.0057) 53.092 (0.004) 53.151 (0.0041) 52.935 (0.004) 35.2 %

0.0 % 67.888 % 67.852 % 67.983 %

0.05 20 515.77 (0.014) 49.693 (0.0033) 49.24 (0.0033) 48.74 (0.0032) 62.4 %

0.0 % 90.365 % 90.453 % 90.55 %

40 251.51 (0.0072) 44.556 (0.0027) 44.615 (0.0028) 44.369 (0.0027) 43.3 %

0.0 % 82.284 % 82.261 % 82.359 %

60 166.41 (0.0051) 40.728 (0.0023) 40.763 (0.0024) 40.6 (0.0024) 41.8 %

0.0 % 75.526 % 75.505 % 75.603 %
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Table 5.4: Mean (and standard error) of expected square loss and PRIAL (%) of the
sample covariance matrix Ŝ, the “standard” shrinkage estimator Σ̂∗, the “bias-corrected”
shrinkage estimator Σ̂∗bc and the “optimal” shrinkage estimator Σ̂∗opt for edge proportion
γG ∈ {0.06, 0.07, . . . , 0.10}. The percentage of “wins” (Section 5.6.3) is reported in the
last column.

Edge prop. Sample size
Ŝ Σ̂∗ Σ̂∗

bc
Σ̂∗opt WINS

γ n

0.06 20 516.95 (0.013) 39.275 (0.0024) 38.586 (0.0022) 38.21 (0.0022) 69.2 %

0.0 % 92.403 % 92.536 % 92.608 %

40 251.83 (0.0068) 35.609 (0.0019) 35.628 (0.002) 35.424 (0.0019) 48.2 %

0.0 % 85.86 % 85.852 % 85.933 %

60 166.21 (0.0044) 33.116 (0.0018) 33.151 (0.0018) 33.016 (0.0017) 39.8 %

0.0 % 80.076 % 80.054 % 80.135 %

0.07 20 517.03 (0.012) 31.441 (0.0014) 30.697 (0.0011) 30.359 (0.001) 71.4 %

0.0 % 93.919 % 94.063 % 94.128 %

40 252.3 (0.0064) 28.776 (0.00097) 28.759 (0.00098) 28.585 (0.00094) 51.8 %

0.0 % 88.595 % 88.601 % 88.67 %

60 166.71 (0.0045) 27.124 (0.0009) 27.144 (0.00091) 27.019 (0.00088) 45.6 %

0.0 % 83.73 % 83.718 % 83.793 %

0.08 20 517.95 (0.012) 26.246 (0.0014) 25.347 (0.00099) 25.071 (0.00089) 77.6 %

0.0 % 94.933 % 95.106 % 95.16 %

40 252.47 (0.0061) 24.045 (0.00089) 24.01 (0.00088) 23.851 (0.00086) 52.9 %

0.0 % 90.476 % 90.49 % 90.553 %

60 167.18 (0.0041) 22.854 (0.00079) 22.855 (0.00079) 22.754 (0.00078) 51.2 %

0.0 % 86.33 % 86.329 % 86.39 %

0.09 20 518.89 (0.012) 22.547 (0.0014) 21.517 (0.00096) 21.236 (0.00087) 81.3 %

0.0 % 95.655 % 95.853 % 95.907 %

40 252.47 (0.006) 20.548 (0.00085) 20.503 (0.00085) 20.348 (0.00082) 57.3 %

0.0 % 91.861 % 91.879 % 91.94 %

60 166.93 (0.0039) 19.63 (0.00076) 19.635 (0.00077) 19.539 (0.00076) 49.2 %

0.0 % 88.241 % 88.238 % 88.295 %

0.10 20 518.82 (0.011) 20.358 (0.0012) 19.321 (0.00062) 19.067 (0.00051) 82.5 %

0.0 % 96.076 % 96.276 % 96.325 %

40 252.76 (0.0058) 18.553 (0.00057) 18.49 (0.00054) 18.348 (0.0005) 58.1 %

0.0 % 92.66 % 92.685 % 92.741 %

60 167.15 (0.0038) 17.804 (0.0005) 17.807 (0.00051) 17.714 (0.00049) 49.6 %

0.0 % 89.348 % 89.347 % 89.402 %
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“optimal” shrinkage estimator Σ̂∗opt always performs best. Since we are mainly interested
in small sample sizes and edge proportions around 0.05, we can conclude that, in terms of
mean squared error, the proposed estimator performs better than the standard one.

5.8.2 Gene regulatory network of Escherichia coli

The “standard” shrinkage approach yields an optimal shrinkage intensity of λ̂̂λ̂λ∗ = 0.180,
while our “bias-corrected” shrinkage estimator (with B = 100 bootstrap replications) gives
λ̂̂λ̂λ∗bc = 0.015. Hence B̂iasΣ̂∗

(
λ̂̂λ̂λ∗
)

= 0.165. With a cut-off of 0.2 on the local fdr [212], the
resulting networks, denoted by Ns and Nbc, contain 136 edges (2.64% of possible edges)
and 160 edges (3.11% of possible edges), respectively. They are shown in Figures 5.2 and
5.3, respectively.

The covariance matrices Σ̂∗ and Σ̂∗bc (used to inferNs andNbc, respectively) both have
full rank (102) and are well-conditioned (condition numbers of 2.68 and 2.80, respectively).
In contrast, the standard covariance matrix Ŝ has only rank 8 and is ill-conditioned (infinite
condition number). We already see the benefits of the shrinkage estimator for inferring
the covariance matrix irrespective of the shrinkage approach (i.e., “standard” or “bias-
corrected”).

The gene sucA, which is involved in the citric acid cycle, has 25 neighbors in Nbc while
it only has 18 neighbors in Ns. The “hub” connectivity structure (pointed out by Schäfer
and Strimmer [212]) of this gene is thus more pronounced with the network Nbc inferred
with our method.

The edges connecting the genes lacA, lacZ and lacY in Ns and Nbc are the strongest
(i.e., with the largest absolute values of partial correlation, and correspondingly also with
the smallest local fdr values) in each network, respectively. This is interesting [212] since
the experiment was based on these genes: lacA, lacY and lacZ are induced by IPTG
(isopropyl-beta-D-thiogalactopyranoside) dosage and initiate recombinant protein synthe-
sis [215]. Further, we note that lacZ and lacY have, respectively, 10 and 7 neighbors in
Nbc, while they only have, respectively, 8 and 6 neighbors in Ns. In particular, lacZ,
which is related to the genes cchB, nuoA and ibpA [215], is only 4 edges distant from the
gene cchB in Nbc while it is 5 edges distant in Ns (there is no difference for nuoA and
ibpA).

These results suggest that from a biological point of view, the benefits of the shrinkage
estimator are more pronounced with the “bias-corrected” approach.

Note that the different shrinkage intensity values obtained with the “standard” and
“bias-corrected” approaches, respectively, imply different rankings of the edges (based on
the absolute values of partial correlation) because the covariance matrix is inverted to
obtain the partial correlation matrix. So, for example, decreasing the cut-off on the local
fdr to retain the top 125 edges with the “bias-corrected” approach will not yield the same
network as Ns.

Finally, in terms of performance, executing the “bias-corrected” method on the E. coli
data set using the statistical software R required less than 10 seconds of CPU time on a 2.2
GHz Intel Core 2 Duo laptop with 2 GB RAM running Mac OS X. Although the “standard”
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approach required less than 1 second, this example shows that the computational overhead
of our approach is negligible when applied to real data.

5.9 Conclusion

Gaussian graphical models are widely used to infer large-scale GRNs from expression data.
Unfortunately, in the “small n, large p” setting characteristic of microarray data, the usual
estimator—the sample covariance matrix—is ill-suited.

First, we showed that the “standard” shrinkage estimator, despite successfully coping
with the important challenge of inferring a well-conditioned covariance matrix in this
setting, is biased.

Next, we proposed a “bias-corrected” shrinkage estimator based on a parametric boot-
strap bias estimation procedure that improves upon the “standard” shrinkage estimator
with negligible computational overhead.

We first illustrated the effectiveness of our covariance matrix estimator on synthetic
data by showing that it improved upon the standard shrinkage estimator in terms of mean
squared error.

We then assessed the ability of our estimator on a GRN inference task. For comparison
purposes, we used the same inference task as in Schäfer and Strimmer [212], namely the
reverse engineering of a subnetwork of E. coli ’s GRN. The network inferred with our
estimator has a more pronounced “hub topology,” as expected by biologists.

Since estimating large-scale covariance matrices is a common (though often implicit)
task in functional genomics and transcriptome analysis, the proposed approach should be
of interest to users and practitioners even outside the field of GRN reverse engineering.
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Algorithm to Efficiently Infer q-Partial Correlation Graphs

for Gaussian Graphical Model Selection1

We propose the q-nested procedure, an algorithm to efficiently infer q-partial correla-
tion graphs for GGM selection. By adopting a screening procedure, we iteratively build
nested graphs by discarding the less relevant edges. Moreover, by conditioning only on
relevant variables, we diminish the problems related to multiple testing. We show that
our algorithm outperforms state-of-the-art methods on simulated data.

Inferring Gaussian graphical models (GGMs), which are full-order partial correlation
graphs, in the “small n, large p” setting prevalent in bioinformatics is an ill-posed problem
(Section 4.7.1). In the previous chapter, we studied a first alternative to cope with this
dimensionality issue, which consisted in the use of regularization to estimate the covariance
matrix and we proposed a new shrinkage estimator.

A second alternative consists in approximating GGMs by limited-order partial corre-
lation graphs, or q-partial correlation graphs. This approach was shown to be satisfactory
for inferring biological networks [51, 255, 267].

This chapter introduces the second main contribution of the thesis, which consists in
an algorithm to efficiently infer such graphs for GGM selection. We start with the pre-
sentation of independence graphs and 0-partial correlation graphs (Section 6.1). After
highlighting their limitations to approximate GGMs, we introduce independence graphs
of higher order and q-partial correlation graphs (Section 6.2). With the help of Castelo
and Roverato [30]’s q-partial correlation graph theory (Section 6.3), we illustrate the ef-
fectiveness of q-partial correlation graphs to approximate GGMs. After emphasizing some
serious problems encountered when inferring high-order partial correlation graphs (Sec-
tion 6.4), we present our algorithm, the q-nested procedure, for coping with these issues
(Sections 6.5). Instances of its application to simulated data are given in Section 6.7.
The applicability and usefulness of our method are demonstrated on simulated data. In
particular, we show that our algorithm outperforms state-of-the-art methods on simulated
data.

1Parts of this chapter appeared in Kontos and Bontempi [143, 144].
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6.1 Independence and correlation graphs

The first and simplest model to approximate GGMs to infer gene regulatory networks
(GRNs) from “small n, large p” microarray data is that of independence graph where two
nodes (genes) xi and xj are not connected if and only if they are (marginally) independent:

xi � xj ⇐⇒ xi ⊥⊥ xj , ∀i, j ∈ {1, . . . , p} ,
where p is the number of genes.

In the bioinformatics literature, these graphs are known as gene relevance networks
and were first introduced by Butte et al. [29] who used mutual information as a measure
of (in)dependence.

In the multivariate normal case, the dependence relations are completely determined
by the correlations between the variables (Section 4.3):

xi ⊥⊥ xj ⇐⇒ ρ(i,j) = 0 , ∀i, j ∈ {1, . . . , p} .
In this case, the independence graph is a correlation graph (also known as a covariance
graph) where two nodes (genes) xi and xj are not connected if and only if their correlation
is zero:

xi � xj ⇐⇒ ρ(i,j) = 0 , ∀i, j ∈ {1, . . . , p} .
Inferring such a graph thus consists in determining the correlation matrix from data. Next,
pairs of genes are connected if their respective correlation is significantly different from
zero (in the sample case one has to resort to statistical testing).

Despite their relative ease of construction, these graphs suffer from a major drawback:
they represent the marginal independence structure of the genes which is a strong indicator
for independence, but a weak criterion for measuring dependence, since more or less all
genes will be marginally (i.e., directly or indirectly) dependent [211] (Figure 6.1).

Furthermore, current biological knowledge suggests that genes do not interact in pairs
independently of all the remaining genes [163]. Indeed, interactions between pairs of genes
are influenced by other genes–hence the need for inferring large-scale GRNs (Chapter 1).

6.2 q-Partial (correlation) graphs

Due to the obvious limitations of independence graphs, some authors have inferred in-
dependence graphs of higher order, referred to as q-partial graphs. For an order q ∈
{0, . . . , p− 2}, two nodes (genes) xi and xj are not connected in such a graph if and only
if there exists a conditioning subset S of the remaining genes of size at most q,

S ⊆ {1, . . . , p} \ {i, j} and Card (S) ≤ q ,
such that xi and xj are conditionally independent with respect to S:

xi � xj ⇐⇒ xi ⊥⊥ xj | xS , ∀i, j ∈ {1, . . . , p} . (6.1)

More formally, let xV be a random vector indexed by V = {1, . . . , p} with probability
distribution FV and let G = (V, E) be the associated undirected graph.
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g1

g2 g3

x1

x2 x3

Figure 6.1: A simple gene regulatory network (GRN; Section 2.3) consisting of 3 genes
(left). Note that genes are denote by g and not by x to emphasize that the variables are not
the genes but their expression levels (which are denoted by x in the graph on the right).
The arrow pointing from gene g1 to gene g2 (resp. g3) means that g1 regulates g2 (resp.
g3). The expression levels x2 and x3 of, respectively, genes g2 and g3 are highly correlated
with each other because g2 and g3 are both regulated by gene g1. The spurious relation
between the expression levels x2 and x3 will therefore be inferred in the independence
graph (right). Note that the directions of the identified connections are not inferred in the
independence graph (right).

Hypothesis 6.1. We assume that FV is both Markov and faithful (Section 4.5) with
respect to G.

For a subset S ⊆ V, we denote by xS the subvector of x indexed by S, and by FS the
associated marginal distribution.

q-Partial graphs2 are defined as follows [30].

Definition 6.2.1 (q-partial graph). For a random vector xV and an integer 0 ≤ q ≤ p−2,
the q-partial graph of xV , denoted by G(q) =

(V, E(q)

)
, is the undirected graph where the

edge {i, j} /∈ E(q) if and only if there exists a (possibly empty) set S ⊆ V \ {i, j} with
cardinality Card (S) ≤ q such that xi ⊥⊥ xj | xS holds in FV .

We note that the q-partial graph generalizes the independence graph which is recovered
by taking q = 0 (i.e., conditioning on the empty set).

In the sequel of the chapter, we make the following assumption.

Hypothesis 6.2. We assume the vector xV to have a multivariate normal distribution
with mean vector µ and positive definite covariance matrix Σ.

In this case, the measure of partial (in)dependence is the partial correlation (4.27):

xi ⊥⊥ xj | xS ⇐⇒ ρ(i,j| S) = 0 . (6.2)

The conditions (6.1) are thus equivalent to:

xi � xj ⇐⇒ ρ(i,j| S) = 0 , ∀i, j ∈ {1, . . . , p} .

Under Hypothesis 6.2, the q-partial graph becomes a q-partial correlation graph.
2Recall that we only consider undirected graphs and do not distinguish between the edges {i, j} and

{j, i}.
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Definition 6.2.2 (q-partial correlation graph). For a random vector xV ∼ Np (µ,Σ) and
an integer 0 ≤ q ≤ p−2, the q-partial correlation graph of xV , denoted by G(q) =

(V, E(q)

)
,

is the undirected graph where the edge {i, j} /∈ E(q) if and only if there exists a (possibly
empty) set S ⊆ V \ {i, j} with cardinality Card (S) ≤ q such that ρ(i,j| S) = 0.

We note that the q-partial correlation graph generalizes the GGM (Definition 4.6.1)
which is recovered by taking q = p− 2 (i.e., conditioning on all remaining variables).

The use of q-partial (correlation) graphs with q > 0 has been limited to q = 1 [164,
267, 268] and q = 2 [51]. Due to computational issues (Section 6.4), larger values of q
have only been used by Castelo and Roverato [30] who apply a randomization procedure
(Section 6.3), and Kontos and Bontempi [143, 144] who apply a nested procedure that we
present in this chapter (Section 6.5).

Authors relying on information-theoretic measures of (in)dependence have resorted to
conditional mutual information [161, 276]. Note that it is also possible to combine partial
correlation and information-theoretic (in)dependence measures [199].

6.3 The q-partial correlation graph theory

The use of q-partial correlation graphs has lead to the q-partial graph theory that we now
present. This theory, introduced by Castelo and Roverato [30], provides a common frame-
work for graphs inferred from q-partial correlation graphs and GGMs. In particular, it
“clarifies the connection between the sparseness of the concentration graph [i.e., the GGM]
and the usefulness of marginal distributions [...] under the assumption of faithfulness” [30]
(Section 6.3.1).

6.3.1 Connection between GGMs and q-partial correlation graphs

We now clarify the connection between GGMs and q-partial correlation graphs. Under
the assumption of faithfulness (Hypothesis 6.1), it can easily be shown [30, 267] that each
edge of G is also an edge of G(q).

Proposition 6.3.1 (Castelo and Roverato [30]). Let G = (V, E) and G(q) =
(V, E(q)

)
be

the GGM and the q-partial correlation graph of xV , respectively. Then

E ⊆ E(q) , q = 0, . . . , p− 2 .

However, for G(q) to be useful as a proxy of G, we need to quantify the closeness of
the two graphs by characterizing the missing edges of G that are also missing in G(q). To
do so we first require two definitions due to Castelo and Roverato [30] which are related
to the notion of connectivity (Section 4.4).

Definition 6.3.1 (outer connectivity). Let i 6= j be two vertices of an undirected graph
G = (V, E). The outer connectivity of i and j is defined as

doutG (i, j) = dGij (i, j) = min
S∈SGij

(i,j)
Card (S) ,

where SGij (i, j) is the set of all nontrivial minimal (i, j)-separators (Section 4.4) in Gij =
(V, E \ {i, j}) and Card (S) is the cardinality of S.
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Hence, doutG (i, j) is the connectivity of i and j in the graph obtained by removing edge
{i, j}, if present, from G (Figure 6.2 for an illustration).

4 5

1 2 3

4 5

1 2 3

G G′

Figure 6.2: In graph G on the left, the outer connectivity of nodes 2 and 5 is equal to
their connectivity, doutG (2, 5) = dG (2, 5) = 1, because they do not form an edge. However,
the outer connectivity of nodes 1 and 5 in G is equal to their connectivity in the graph G′

on the right where the edge {1, 5} has been removed, doutG (1, 5) = dG′ (1, 5) = 1, which is
different from their connectivity in G, dG (1, 5) = 2.

This definition of outer connectivity is extended to the set E of missing edges of G as
follows.

Definition 6.3.2 (outer connectivity of the missing edges). The outer connectivity of the
missing edges of G = (V, E) is defined as

doutG

(E) = max
{i,j}∈E

doutG (i, j) .

With these definitions in hand, we can introduce the following proposition which states
that a missing edge in G is missing also in G(q) if and only if the outer connectivity of the
corresponding vertices is smaller than or equal to q.

Proposition 6.3.2 (Castelo and Roverato [30]). Let G = (V, E) and G(q) =
(V, E(q)

)
be

the concentration and the q-partial correlation graph of xV , respectively. If {i, j} ∈ E then
{i, j} ∈ E(q) if and only if

doutG (i, j) ≤ q . (6.3)

In other words, a missing edge in G is missing also in G(q) if and only if there exists a
marginal distribution of xV of dimension (q + 2) in which the variables are conditionally
independent.
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Intuitively, larger values of q should be preferred. This is confirmed by the following
(edge) inclusion relation which derives from Proposition 6.3.2 and generalizes Proposi-
tion 6.3.1.

Corollary 6.3.1 (Castelo and Roverato [30]). Let G(q) =
(V, E(q)

)
and G(r) =

(V, E(r)

)
be the q-partial and the r-partial graph of xV , respectively. If r ≤ q then

E ⊆ E(q) ⊆ E(r) . (6.4)

The inclusion relation (6.4) can be extended to the nodes’ neighborhoods.

Corollary 6.3.2. Let G(q) =
(V, E(q)

)
and G(r) =

(V, E(r)

)
be the q-partial and the r-

partial graph of xV , respectively. If r ≤ q then

bdG (i) ⊆ bdG(q)
(i) ⊆ bdG(r)

(i) . (6.5)

If (6.3) is satisfied for all the missing edges of G then the q-partial correlation graph
is identical to G (Figure 6.3).

Proposition 6.3.3 (Castelo and Roverato [30]). Let G = (V, E) and G(q) =
(V, E(q)

)
be

the concentration and the q-partial correlation graph of xV , respectively. Then G = G(q)

if and only if
doutG

(E) ≤ q .
Unfortunately, there is no direct connection between the degree of sparseness of G and

the outer degree of its missing edges. Sparseness is only useful as long as it implies small
separators (Section 4.4) for non-adjacent vertices [30]. However, one can easily find sparse
graphs in which two non-adjacent vertices have a high value of outer connectivity. It is
even possible to find examples for which the missing edges’ outer connectivity for a graph
G is less than that of a sparser graph, as illustrated in Figure 6.4.

6.3.2 Determining the usefulness of q-partial correlation graphs on G(q)

The results presented so far provide necessary and sufficient conditions to determine the
usefulness of q-partial correlation graphs. However, these conditions require G to be
known. We now determine how information on the structure of G can be extracted from
G(q) with a theorem and a corollary.

Theorem 6.3.1 (Castelo and Roverato [30]). Let G = (V, E) and G(q) =
(V, E(q)

)
be the

concentration and the q-partial correlation graph of xV , respectively. If {i, j} ∈ E(q) then
a sufficient condition for the relation {i, j} ∈ E to hold true is

doutG(q)
(i, j) ≤ q . (6.6)

Corollary 6.3.3 (Castelo and Roverato [30]). Let G = (V, E) and G(q) =
(V, E(q)

)
be the

concentration and the q-partial correlation graph of xV , respectively. A sufficient condition
for the relation G = G(q) to hold true is

doutG(q)

(E(q)

) ≤ q . (6.7)
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g1

g2 g3

g4 g5

g6

x1

x2 x3

x4 x5

x6

x2 x3

x4 x5

x6x2 x3

x4 x5

x6

x1x1

G G(0)

G(1) G(2)

Figure 6.3: Outer connectivity illustrated. A simple GRN G consisting of 6 genes is
depicted (upper left). Note that we have ignored the directionality of the edges. No pair
of non-connected genes in G can be separated by the empty set (because G is connected),
hence G(0) is the complete graph and is different from G. Some pairs of non-connected
genes in G cannot be separated by any subset of at most 1 gene (for example x3 and x4)
hence G(1) 6= G. However all pairs of non-connected genes in G can be separated by at
least one subset of at most 2 genes. Therefore we have G(2) = G(3) = G(4) = G.

G G′

1

2 3 4 5

6

1

2 3 4 5

6

Figure 6.4: On the left, a graph G = (V, E) with doutG

(E) = 2. On the right, a sparser
graph G′ = (V, E ′), i.e., E ′ ⊂ E , with doutG′

(E) = 4. The missing edge sets of G and
G′ are given by E = {{2, 3} , {2, 4} , {2, 5} , {3, 4} , {3, 5} , {4, 5}} and E ′ = E ∪ {{1, 6}},
respectively.
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Theorem 6.3.1 and Corollary 6.3.3 give weaker results than Propositions 6.3.2 and
6.3.3, respectively, since they only give sufficient conditions. However, they are of more
practical use because conditions (6.6) and (6.7) can be checked on G(q).

Note however that the computation of the outer connectivity of two vertices is a NP-
hard problem [30]. In practice, one has to derive upper and lower bounds to this number
[202].

6.4 Issues arising when inferring q-partial correlation graphs

In principle, q-partial correlation graphs can be inferred for any q ∈ {0, . . . , p− 2}. How-
ever, two serious issues drastically hinder their applicability. First, the computation of(
p−2
q

)
q-partial correlations for each of the p (p− 1) /2 possible pairs of genes is computa-

tionally intensive even for small networks, and often intractable for large networks, except
if q takes on (very) small or (very) large values.

Second, an edge is added to the q-partial correlation graph if all of
(
p−2
q

)
null hypotheses

are rejected. But if the value of
(
p−2
q

)
is large then most, or even all, of the edges are

removed as the number of false negatives increases. Indeed, despite correcting for multiple
testing (Appendix H.2), the probability that at least one hypothesis of zero q-order partial
correlation is wrongly non-rejected increases dramatically with the number of performed
tests [30].

Therefore, unless full-order partial correlations are considered (i.e., through regular-
ization approaches; Chapter 5), the existing algorithms to reverse engineer limited-order
partial correlation graphs [51, 164, 267, 268] are restricted to q ≤ 2.

The single approach that allows for higher values of q (up to q = 20 for p = 150 genes)
was proposed by Castelo and Roverato [30]. In a nutshell, their approach3 consists, for
each pair of genes, to compute only a small number (typically a few hundreds) of randomly
chosen q-partial correlations instead of considering all

(
p−2
q

)
q-partial correlations.

Unfortunately, their method suffers a considerable drawback. If two genes interact
with each other “through” other genes, the probability of randomly selecting the subset
that, conditioned upon, renders the two genes independent is extremely low. For example,
suppose that two genes (g1 and g2) interact with each other “through” two other genes (g3

and g4) in a GRN of p = 5000 genes (Figure 6.5). Among 100 randomly selected subsets of
size two, the probability that one of these subsets is composed of the two genes g3 and g4

is given by the probability mass function of the hypergeometric distribution (Appendix J):(
2
2

)(
(5000−2)−2

100−2

)(
5000−2

100

) = 3.96× 10−4 .

If the genes g1 and g2 interact “through” three (resp. four) other genes and if we randomly
select subsets of size three (resp. four), the corresponding probability is given by 7.78×10−6

(resp. 1.51× 10−7).
3Castelo and Roverato [30] also define a new quantity, the non-rejection rate, that they use to address

the statistical problem of zero q-partial correlation. However, when referring to Castelo and Roverato [30]’s

approach, we only refer to the random selection of q-partial correlations.
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g1 g2

g3

g4

Figure 6.5: A simple GRN consisting of 4 genes. Note that we have ignored the direction-
ality of the edges. Genes g1 and g2 interact with each other “through” genes g3 and g4.
The remaining 4996 genes are not shown, neither the edges connecting genes g1, g2, g3, g4

with the remaining genes.

Hence, these problems need to be addressed for q-partial correlation graphs to be
applicable in practice. It is the aim of our q-nested procedure (Section 6.5) to tackle both
problems.

Note that two additional (albeit less serious) issues can arise. First, the assumption of
faithfulness (Hypothesis 6.1) is sometimes violated. This implies that a missing edge in
G(q) may be present in G(r), with r > q (Figure 6.6). This undesirable effect is well-known
in the literature on causal inference where it is referred to as the “explaining away effect”
[187, 188, 227]. However, this problem has a weak impact on the estimates of partial
correlation [30, 191]. In other words, if an edge is present in G(r) it is very unlikely, in
practice, to be absent in G(q), with r > q. The assumption of faithfulness (Hypothesis
6.1) is thus reasonable [191]. Moreover, our q-nested procedure will tackle this issue as
well.

g1 g2

g3

x1 x2

x3

x1 x2

x3

Figure 6.6: A simple GRN consisting of 3 genes (left). Gene g3 is regulated by both genes
g1 and g2, which are not correlated. Variables x1 and x2 are therefore not connected in the
independence graph (center), i.e., the 0-partial graph. Because of the lack of faithfulness,
a spurious connection between x1 and x2 will be inferred when conditioning on gene x3

in the 1-partial graph (right).
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Finally, computing partial correlations of order q requires the inversion of an estimate of
the covariance matrix estimated from an n×(q + 2) data matrix, where n is the number of
samples. Unfortunately, the sample covariance matrix is positive definite with probability
one [69] if and only if

q < n− 2 . (6.8)

This is, however, not problematic. Indeed, we will use the shrinkage estimator (Sec-
tion 5.2), which can cope with dimensionality issues, to compute partial correlations.
Moreover, condition (6.8) is not stringent since microarray data typically consist of sev-
eral tens or hundreds of samples.

6.5 The q-nested procedure

Given the serious issues hindering the applicability of q-partial correlation graphs and the
lack of methods to tackle these problems (Section 6.4), we present a new approach, the
q-nested procedure, to infer q-partial (correlation) graphs.

We first assume that partial correlations are known (Section 6.5.1) before moving to
the case where they have to be estimated from data (Section 6.5.2).

6.5.1 Population version

The two main characteristics of our procedure are as follows. First, we take advantage of
the information provided by the (q − 1)-partial correlation graph when inferring a q-partial
correlation graph through the inclusion relation (6.4) to reduce the number of pairs of
genes for which q-partial correlations have to be computed (Section 6.5.1.1). This reduces
the computational issue (Section 6.4). Moreover, this procedure avoids the problems that
may arise if the assumption of faithfulness (Hypothesis 6.1) is violated (Section 6.4).

Second, we prove that for any given pair of genes only a small number (out of
(
p−2
q

)
) of

q-partial correlations have to be computed (Sections 6.5.1.2 and 6.5.1.3). More specifically,
we show that for any given pair of genes (i, j), the conditioning sets of size q used to
computed the q-partial correlations can be chosen in the smallest of i and j’s neighborhoods
(Section 6.5.1.2) or in the intersection of both neighborhoods (Section 6.5.1.3). This
further reduces the computational issue and it also diminishes the problem related to
multiple testing (hence decreasing the number of false negatives).

6.5.1.1 Edge screening

Recall from Corollary 6.3.1 that, under the assumption of faithfulness (Hypothesis 6.1),
if 0 ≤ r ≤ q ≤ p− 2 then

E ⊆ E(q) ⊆ E(r) .

This inclusion relation implies that every missing edge in G(r) is also missing in G(q).
Hence, if we have inferred G(r), we only need to compute q-partial correlations for genes
that form an edge in G(r) to infer G(q), and not for all p (p− 1) /2 possible edges.
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More specifically, let

E(−1) = V × V = {{i, j} | i, j ∈ V, i 6= j}

be the set of all possible edges (i.e., of all unordered pairs of genes). We can do a screening
according to (marginal) correlations by building the set:

E(0) =
{
{i, j} ∈ E(−1) | ρ(i,j) = ρ(i,j| ∅) 6= 0

}
. (6.9)

We then continue the screening using higher-order partial correlations and building the
sets

E(q+1) =
{{i, j} ∈ E | ρ(i,j| S) 6= 0, for all S ⊆ V \ {i, j} with Card (S) ≤ q + 1

}
,

=
{
{i, j} ∈ E(q) | ρ(i,j| S) 6= 0, for all S ⊆ V \ {i, j} with Card (S) = q + 1

}
,

(6.10)

for q ∈ {0, . . . , p− 3}, ending up with a nested sequence of sets:

E(0) ⊇ E(1) ⊇ · · · ⊇ E(k) ⊇ · · · ⊇ E(p−2) .

Assuming the underlying graph is sparse, this screening may substantially reduce the
dimensionality of the problem.

6.5.1.2 Smallest neighborhood search

Recall from Section 4.4 that the boundary of vertex i in G is the set of vertices adjacent
to i and is denoted by bdG (i).

Proposition 6.5.1. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If there exists a
set S, with Card (S) = q + 1, such that ρ(i,j| S) = 0 (and thus {i, j} /∈ E(q+1)), then
ρ“
i,j|bdG(q)

(i)\{j}
” = 0 and ρ“

i,j|bdG(q)
(j)\{i}

” = 0.

Proof: Since {i, j} /∈ E(q+1) there exists a subset S ⊆ V \ {i, j}, with Card (S) = q + 1
(recall that {i, j} ∈ E(q)), such that xi ⊥⊥ xj | xS . By Theorem 4.5.1 and Corollary 4.5.1,
the Markov properties are all equivalent under the assumption of normality (Hypoth-
esis 6.2). Hence, we have that xi ⊥⊥ xj | xbdG(i) and xi ⊥⊥ xj | xbdG(j). By Corol-
lary 6.3.2, we have that bdG (i) ⊆ bdG(q)

(i) and bdG (j) ⊆ bdG(q)
(j). Since {i, j} /∈ E

(recall that {i, j} /∈ E(q+1)), it follows that j /∈ bdG (i) and i /∈ bdG (j), and thus
that bdG (i) ⊆ bdG(q)

(i) \ {j} and bdG (j) ⊆ bdG(q)
(j) \ {i}. We hence have that

xi ⊥⊥ xj | xbdG(q)
(i)\{j} and xi ⊥⊥ xj | xbdG(q)

(j)\{i}, which under Hypothesis 6.2 is equiv-

alent to ρ“
i,j|bdG(q)

(i)\{j}
” = 0 and ρ“

i,j|bdG(q)
(j)\{i}

” = 0.

Proposition 6.5.2. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))
≤ q + 1 ,

then {i, j} ∈ E(q+1).
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Proof: Without loss of generality, assume that Card
(

bdG(q)
(i)
)
≤ q + 1. By contra-

position. Assume {i, j} /∈ E(q+1). Hence, there exists a subset S ⊆ V \ {i, j}, with
Card (S) = q + 1 (recall that {i, j} ∈ E(q)), such that xi ⊥⊥ xj | xS , which implies that
xi ⊥⊥ xj | xbdG(i) by Corollary 4.5.1. By Corollary 6.3.2, we have that bdG (i) ⊆ bdG(q)

(i).

Since {i, j} /∈ E (recall that {i, j} /∈ E(q+1)), it follows that j /∈ bdG (i), and thus that
bdG (i) ⊆ bdG(q)

(i) \ {j}. We hence have that xi ⊥⊥ xj | xbdG(q)
(i)\{j}, which contradicts

the assumption that {i, j} ∈ E(q) since Card
(

bdG(q)
(i) \ {j}

)
≤ q.

The following corollary follows by recursive application of Proposition 6.5.2 and by
noting that

Card
(

bdG(q+1)
(i)
)
≤ Card

(
bdG(q)

(i)
)
,

and
Card

(
bdG(q+1)

(j)
)
≤ Card

(
bdG(q)

(j)
)
,

since E(q+1) ⊆ E(q).

Corollary 6.5.1. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))
≤ q + 1 ,

then {i, j} ∈ E.

To simplify the notation, we let bdG(q)
(i, j) denote the smallest of i and j’s neighbor-

hoods:

bdG(q)
(i, j) =

bdG(q)
(i) if Card

(
bdG(q)

(i)
)
≤ Card

(
bdG(q)

(j)
)
,

bdG(q)
(j) otherwise ,

and we let bd∗G(q)
(i, j) denote the smallest of i and j’s neighborhoods excluding i or j:

bd∗G(q)
(i, j) =

bdG(q)
(i) \ {j} if Card

(
bdG(q)

(i)
)
≤ Card

(
bdG(q)

(j)
)
,

bdG(q)
(j) \ {i} otherwise ,

Proposition 6.5.3. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If

Card
(

bdG(q)
(i, j)

)
= q + 2 ,

then {i, j} ∈ E(q+1) if and only of ρ“
i,j|bd∗G(q)

(i,j)
” 6= 0.

Proof: Without loss of generality, assume that Card
(

bdG(q)
(i)
)

= q + 2.
Sufficiency (=⇒). By contraposition. If ρ“

i,j|bdG(q)
(i)\{j}

” = 0 then

xi ⊥⊥ xj | xbdG(q)
(i)\{j}
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under Hypothesis 6.2. This contradicts the assumption that {i, j} ∈ E(q+1) since

Card
(

bdG(q)
(i) \ {j}

)
= q + 1 .

Necessity (⇐=). By contraposition. If {i, j} /∈ E(q+1), then there exists a subset S,
with Card (S) = q + 1 (that {i, j} ∈ E(q)), such that xi ⊥⊥ xj | xS , which implies that
xi ⊥⊥ xj | xbdG(i) by Corollary 4.5.1. An immediate consequence of Corollary 6.3.1 is
that bdG (i) ⊆ bdG(q)

(i). Since {i, j} /∈ E , it follows that j /∈ bdG (i), and thus that
bdG (i) ⊆ bdG(q)

(i) \ {j}. We hence have that xi ⊥⊥ xj | xbdG(q)
(i)\{j}, which contradicts

the assumption that ρ“
i,j|bdG(q)

(i)\{j}
” 6= 0.

Corollary 6.5.2. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If

Card
(

bdG(q)
(i, j)

)
= q + 2 ,

then {i, j} ∈ E if and only of ρ“
i,j|bd∗G(q)

(i,j)
” 6= 0.

Proof: Without loss of generality, assume that Card
(

bdG(q)
(i)
)

= q + 2.

Sufficiency (=⇒). By Corollary 6.3.1, {i, j} ∈ E implies that {i, j} ∈ E(q+1). By
Proposition 6.5.3, we then have that ρ“

i,j|bdG(q)
(i)\{j}

” 6= 0.

Necessity (⇐=). By Proposition 6.5.3, we have that {i, j} ∈ E(q+1). We then have
that {i, j} ∈ E by Corollaries 6.3.2 and 6.5.1.

To summarize, three cases can arise at step q + 1 for each {i, j} ∈ E(q).

Case 1.

If

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))
≤ q + 1 ,

we apply Corollary 6.5.1. Note that no partial correlation needs to be computed. Fur-
thermore, the edge does not even need to be considered in the subsequent steps of the
algorithm as we know that {i, j} ∈ E (Figure 6.7).

Case 2.

If

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))

= q + 2 ,

we apply Corollary 6.5.2. Note that we simply need to compute a single partial correlation
to know whether {i, j} ∈ E or not (Figure 6.8).
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i j

k

l

Figure 6.7: A 2-partial correlation graph. The node i has only two neighbors besides j (k
and l). Hence, if {i, j} /∈ E , then we should have {i, j} /∈ E(2). Since this is not case, we
can conclude that {i, j} ∈ E by Corollary 6.5.1.

i j

k

m

l

Figure 6.8: A 2-partial correlation graph. The node i has three neighbors besides j (k, l
and m). By Corollary 6.5.2, {i, j} ∈ E if and only if ρ(i,j|k,l,m) 6= 0.
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Algorithm 6.1: q-Nested procedure (version 1).

Input: x = (x1, . . . ,xp)
T

Output: q-partial correlation graph

1 q ← 0
2 E(0) ← {{i, j} ∈ E(−1) | ρ(i,j) = ρ(i,j| ∅) 6= 0

}
3 while q < p− 2 do

4 E(q+1) ←
{
{i, j} ∈ E(q) | min

(
Card

(
bdG(q)

(i)
)
,Card

(
bdG(q)

(j)
))
≤ q + 1

}
5 E(q+1) ← E(q+1) ∪{

{i, j} ∈ E(q) | ρ(i,j| S) 6= 0, for all S ⊆ bd∗G(q)
(i, j) with Card (S) = q + 1

}
6 q ← q + 1

end

Case 3.

Otherwise, i.e., if

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))

> q + 2 ,

we take advantage of Proposition 6.5.1. At step q+1, we consider only subsets of bdG(q)
(i)

or bdG(q)
(j) (in practice, we choose the smallest neighborhood) of size q + 1, instead of

examining all possible subsets (of size q + 1). However, Proposition 6.5.1 suggests that
we condition on the whole neighborhood of i or j, not simply on subsets thereof. If we
consider only subsets of size q+1, we might incorrectly keep edges that should be removed.
Indeed, assume that after step q+ 1 there exists (at least) one subset S ⊆ V \{i, j} of size
q+ 1 such that xi ⊥⊥ xj | xS , but there is no subset S ′ ⊆ bdG(q)

(i) \ {j} of size q+ 1 such
that xi ⊥⊥ xj | xS′ . In this case, the edge {i, j} is not removed at step q + 1 as it should
be.

However, this is not problematic. Indeed, as the order increases and as the neighbor-
hoods of i and j can only decrease in size (Corollary 6.3.2), the edge will be ultimately
removed, albeit at a later step. Thus, the advantage of looking at a smaller number of
subsets is offset by the fact that some edges that could have been removed at step q + 1
will only be removed at a later step q′ > q + 1. Therefore, before the q-nested proce-
dure terminates, the intermediary graphs are not necessarily q-partial correlation graphs
(Definition 6.2.2).

The detailed description of the q-nested procedure is given in Algorithm 6.1. In Lines 1
and 2, we respectively initialize q and E(0) (6.9). Then, as long as q has not reached its
maximum value of p − 2 (Line 3), we loop through Lines 4 to 6 where we update E(q+1)

(Lines 4 and 5) and q (Lines 6). Note the difference between Lines 4 and 5, and (6.10).
Indeed, thanks to Corollary 6.5.1 (i.e., Case 1), we know that for {i, j} ∈ E(q), if

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))
≤ q + 1 ,

then {i, j} ∈ E . Thus, {i, j} can be automatically added to E(q+1) without having to
compute any partial correlation (Line 4). Then (Line 5), we add to E(q+1) the edges
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{i, j} ∈ E(q) for which there exists no subset of cardinality q + 2 in the smallest of i and
j’s neighborhoods such that the corresponding partial correlation vanishes. Indeed, either

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))

= q + 2 ,

and by Corollary 6.5.2 (i.e., Case 2) we have that {i, j} ∈ E . Thus, {i, j} must be added
to E(q+1). Note that in the next iteration, this edge will “fall” into Case 1 (Line 4). Either

min
(

Card
(

bdG(q)
(i)
)
,Card

(
bdG(q)

(j)
))

> q + 2 ,

and Case 3 applies.

6.5.1.3 Intersection of neighborhoods search

We improve the results obtained in the previous section by proving that, when testing for
the presence of an edge {i, j} at step q+ 1, any separating subset is composed exclusively
of nodes that belong to both the neighborhoods of i and j in G(q).

Proposition 6.5.4. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If {i, j} /∈ E(q+1),
then all sets S ⊆ {1, . . . , p} \ {i, j} such that Card (S) = q + 1 and ρ(i,j| S) = 0 satisfy
S ⊆ bdG(q)

(i) ∩ bdG(q)
(j).

Proof: First note that there exists at least one set S ⊆ {1, . . . , p} \ {i, j} such that
Card (S) = q + 1 and ρ(i,j| S) = 0 since i �G(q+1)

j and i ∼G(q)
j.

Now, recall from (4.24) that a partial correlation of order q + 1, q ∈ {0, . . . , p− 3},
between i and j can be computed from partial correlations of order q as follows:

ρ(i,j|K) =
ρ(i,j|K\{k}) − ρ(i,k|K\{k}) ρ(j,k|K\{k})√(

1− ρ2
(i,k|K\{k})

)(
1− ρ2

(j,k|K\{k})

) , for any k ∈ K , (6.11)

where K ⊆ {1, . . . , p} \ {i, j} with Card (K) = q + 1. For any set S ⊆ {1, . . . , p} \ {i, j}
with Card (S) = q + 1 and ρ(i,j| S) = 0, we hence have by (6.11) that

ρ(i,j| S\{s}) = ρ(i,s| S\{s}) ρ(j,s| S\{s}) , for any s ∈ S . (6.12)

Because i ∼G(q)
j, we have that

ρ(i,j|Z) 6= 0 , for all subsets Z ⊂ {1, . . . , p} \ {i, j} with Card (Z) ≤ q . (6.13)

Consequently, any set S must be such that the two terms in the right-hand side of (6.12)
are different from zero, i.e.,

ρ(i,s| S\{s}) 6= 0 and ρ(j,s| S\{s}) 6= 0 , for any s ∈ S , (6.14)

otherwise the left-hand side of (6.12) would be equal to zero and (6.13) would not hold.
Since Card (S \ {s}) = q, it follows from (6.14) that i ∼G(q)

s and j ∼G(q)
s, for any s ∈ S.

Hence, all nodes in S are neighbors of i and j in G(q): S ⊆ bdG(q)
(i) ∩ bdG(q)

(j).
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Proposition 6.5.4 constitutes an improvement with respect to Algorithm 6.1 in that it
(potentially) further reduces the size of the successive conditioning sets since

Card
(

bdG(q)
(i) ∩ bdG(q)

(j)
)
≤ min

(
Card

(
bdG(q)

(i)
)
,Card

(
bdG(q)

(j)
))

.

The two following corollaries analyze the case where

Card
(

bdG(q)
(i) ∩ bdG(q)

(j)
)
≤ q .

Corollary 6.5.3. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If

Card
(

bdG(q)
(i) ∩ bdG(q)

(j)
)
≤ q ,

then {i, j} ∈ E(q+1).

Proof: By contraposition. Assume {i, j} /∈ E(q+1). Hence, there exists a subset S ⊆
V \ {i, j}, with Card (S) = q + 1 (recall that {i, j} ∈ E(q)), such that ρ(i,j| S) = 0. By
Proposition 6.5.4, we have that S ⊆ bdG(q)

(i)∩bdG(q)
(j), which contradicts the fact that

Card
(

bdG(q)
(i) ∩ bdG(q)

(j)
)
≤ q.

The following corollary follows by a recursive application of Corollary 6.5.3, by noting
that

Card
(

bdG(q+1)
(i) ∩ bdG(q+1)

(j)
)
≤ Card

(
bdG(q)

(i) ∩ bdG(q)
(j)
)
,

since E(q+1) ⊆ E(q), ∀q ∈ {0, . . . , p− 3}.

Corollary 6.5.4. Let {i, j} ∈ E(q) for a given q ∈ {0, . . . , p− 3}. If

Card
(

bdG(q)
(i) ∩ bdG(q)

(j)
)
≤ q ,

then {i, j} ∈ E.

Algorithm 6.2 gives the second version of our q-nested procedure. It differs from the
first version (Algorithm 6.2) in Lines 4 and 5 where we use the results from Proposi-
tion 6.5.4 and Corollary 6.5.4, respectively.

6.5.2 Sample version

Partial correlation coefficients are obtained from the shrinkage estimator of the covari-
ance/concentration matrix as in (5.10). Although the sample covariance matrix could be
used as well, the former is a more accurate estimator than the latter (Section 5.2).

In a frequentist approach to inference, we require the distribution function of the
sample partial correlation coefficient ρ̂̂ρ̂ρ(i,j|S) under the null hypothesis ρ(i,j| S) = 0 for all
S ⊆ V \ {i, j} to address the statistical testing problem of non-zero partial correlation

H0 : ρ(i,j| S) = 0 versus H1 : ρ(i,j| S) 6= 0 . (6.15)
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Algorithm 6.2: q-Nested procedure (version 2).

Input: x = (x1, . . . ,xp)
T

Output: q-partial correlation graph

1 q ← 0
2 E(0) ← {{i, j} ∈ E(−1) | ρ(i,j) = ρ(i,j| ∅) 6= 0

}
3 while q < p− 2 do

4 E(q+1) ←
{
{i, j} ∈ E(q) | Card

(
bdG(q)

(i) ∩ bdG(q)
(j)
)
≤ q
}

5 E(q+1) ← E(q+1) ∪{
{i, j} ∈ E(q) | ρ(i,j| S) 6= 0, for all S ⊆ bdG(q)

(i) ∩ bdG(q)
(j) with Card (S) = q + 1

}
6 q ← q + 1

end

Consider an edge {i, j} ∈ E(q) for which we need to determine whether {i, j} ∈ E(q+1)

or not. We hence require the distribution function of the sample partial correlation ρ̂̂ρ̂ρ(i,j|S)

under the null hypothesis ρ(i,j| S) = 0 to address the statistical testing problem of non-
zero partial correlation (6.15) for all S ⊆ bd∗G(q)

(i, j) (Algorithm 6.1) or S ⊆ bdG(q)
(i) ∩

bdG(q)
(j) (Algorithm 6.2) with Card (S) = q + 1.

Without loss of generality, let us consider Algorithm 6.2. An edge {i, j} is removed
({i, j} /∈ E(q+1)) if there exists a subset S ⊆ bdG(q)

(i) ∩ bdG(q)
(j) with Card (S) = q + 1

such that H0 is not reject. Hence, if the smallest partial correlation (in absolute value) is
different from zero, then all partial correlations are different from zero and the edge is not
removed. Otherwise, the edge is discarded. The edge {i, j} is thus removed if H0 is not
reject in the following test:

H0 : min
S⊆bdG(q)

(i)∩bdG(q)
(j),

Card(S)=q+1

∣∣ρ(i,j| S)

∣∣ = 0 vs. H1 : min
S⊆bdG(q)

(i)∩bdG(q)
(j),

Card(S)=q+1

∣∣ρ(i,j| S)

∣∣ 6= 0 .

Similarly to testing for zero correlation (Appendix H.1), a possible solution is to resort
to Fisher’s Z-transform of the q-partial correlation:

Z(i,j| S) = tanh−1 ρ̂̂ρ̂ρ(i,j|S) =
1
2

log
(

1 + ρ̂̂ρ̂ρ(i,j|S)

1− ρ̂̂ρ̂ρ(i,j|S)

)
,

which has an asymptotic normal distribution under the null hypothesis H0 when the data
follow a multivariate Gaussian distribution [6, 86, 87]. Using a significance level α, we
reject the null-hypothesis H0 against the two-sided alternative H1 if√

n− (q + 1)− 3Z(i,j| S) > Φ−1 (1− α/2) , (6.16)

where Φ (·) denotes the cumulative distribution function of the standard normal distribu-
tion N (0, 1). Note that (6.16) implies

q + 1 < n− 3 . (6.17)
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The sample version of the q-nested algorithm is obtained by modifying Algorithms 6.1
and 6.2 as follows. First, replace in Line 3 the condition q < p− 2 by

q < min (n− 3, p− 2) (6.18)

because of (6.17) (note that we have q < n−3 and not q+ 1 < n−3 as in (6.17) because
of Line 6). Of course, in the “small n, large p” data setting,

min (n− 3, p− 2) = n− 3 .

Second, replace in Lines 2 and 5 the statements about, respectively, ρ(i,j) = ρ(i,j| ∅) 6= 0
and ρ(i,j| S) 6= 0 by the statistical hypothesis test described above. Note that we correct
the p-values over the multiple tests for all edges using the Benjamini-Hochberg correction
for controlling the false discovery rate (Section 4.7.2.1).

Of course, other stopping criteria than (6.18) can be used. The user might for example
choose a maximum value for q. Another example is given in Kontos and Bontempi [143]
where we stopped the inference procedure at step q′ as soon as:

E(q′) = E(q′−1) . (6.19)

One can easily verify that (6.19) is only a “heuristic” stopping criterion as it does not
ensure that the algorithm will return the graph G(p−2) (see Figure 6.9 for an example).

G G(0) G(1) G(2)

Figure 6.9: An illustration of the possible failure of the “heuristic” stopping criterion
adopted in Kontos and Bontempi [143]. The algorithm will return G(1) which is different
from G(2).

6.6 Additional remarks

We briefly discuss the Gaussian assumption (Hypothesis 6.2) and highlight an important
difference between the two versions of our q-nested procedure (Algorithms 6.1 and 6.2).
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6.6.1 The Gaussian assumption

In GGMs (Definition 4.6.1) it is assumed that the data follow a multivariate normal distri-
bution (Hypothesis 6.2). Although the normality of microarray data is a disputed question
[103, 269], we remark that the results obtained in Section 6.5 are valid for any distribution
(as long as Hypothesis 6.1 is satisfied). Indeed, although we formulated statements of
independence in terms of zero partial correlations in Section 6.5.1.2, this was not necessary
to prove the results obtained in this section. Any test for conditional independence can
thus be used. Therefore the first version of the q-nested procedure (Algorithm 6.1) consti-
tutes a general procedure that can be used also outside the multivariate normal case. The
second version of the q-nested procedure (Algorithm 6.2), however, requires Hypothesis
6.2.

6.6.2 Computational aspects

We compare the number of partial correlations to be computed in the worst case for infer-
ring a q-partial (correlation) graph with the “standard” approach, Castelo and Roverato
[30]’s method and our q-nested procedure (Algorithm 6.2). Table 6.2 summarizes the
results.

As mentioned previously (Section 6.4), unless full-order partial correlations are con-
sidered (i.e., through regularization approaches; Chapter 5), the standard algorithms to
reverse engineer limited-order partial correlation graphs are restricted to q ≤ 2 given the
very large number of partial correlation that need to be computed. Indeed, for each of the
p (p− 1) /2 possible edges,

(
p−2
q

)
partial correlations have to be considered in the worst

case, yielding a total of
p (p− 1)

2

(
p− 2
q

)
partial correlations.

Castelo and Roverato [30] cope with this problem by considering only a fixed number
r of randomly chosen subsets for the computation of partial correlations. Hence, the total
number of partial correlations that are computed in the worst case is given by:

p (p− 1)
2

min
(
r,

(
p− 2
q

))
.

Despite reducing the computational burden of inferring q-partial (correlation) graphs, the
number of edges to be considered (p (p− 1) /2) remains high and the random selection of
subsets raises some concerns (Section 6.4).

Our approach (Algorithms 6.1 and 6.2) both reduces the number of edges to be con-
sidered and the number of partial correlations per edge to be computed. For a q-partial
correlation graph, Algorithms 6.1 and 6.2 require the computation of4

q∑
k=0

∑
i,j∈E(k−1)

(
Card

(
bd∗G(q)

(i, j)
)

k

)
4Recall that the binomial coefficient

`
m
k

´
= 0 if k > m.
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and
q∑

k=0

∑
i,j∈E(k−1)

(
Card

(
bdG(k−1)

(i) ∩ bdG(k−1)
(j)
)

k

)

partial correlations in the worst case, respectively. We note that, although our approach
does not require the underlying graph to be sparse, its efficiency relies on this assumption.
Indeed, only in this case are Card

(
bd∗G(q)

(i, j)
)

and Card
(

bdG(k−1)
(i) ∩ bdG(k−1)

(j)
)

relatively small.

Table 6.1: Number of partial correlations to be computed in the worst case for inferring
a q-partial correlation graph with the “standard” approach, Castelo and Roverato [30]’s
method and our q-nested procedure.

Method Number of partial correlations

Standard p(p−1)
2

`
p−2

q

´
Castelo and Roverato [30] p(p−1)

2
min

“
r,
`

p−2
q

´”
Algorithm 6.1

Pq
k=0

P
i,j∈E(k−1)

 
Card

“
bd∗G(q)

(i, j)
”

k

!

Algorithm 6.2
Pq

k=0

P
i,j∈E(k−1)

 
Card

“
bdG(k−1) (i) ∩ bdG(k−1) (j)

”
k

!

The time complexity for the computation of a partial correlation is O
(
q3
)

(Sec-
tion 4.3.2.1). However, by using the matrix inversion approach, we obtain the values
of
(
q+2

2

)
for the price of one (Section 4.3.2.1).

In the standard case, the time complexity is thus given by

O

(
q3

(
p
2

)(
p−2
q

)(
q+2

2

) )
= O

(
q3

(
p

q + 2

))
(6.20)

To determine the time complexity in the remaining cases (Castelo and Roverato [30]’s
method and Algorithms 6.1 and 6.2), we cannot simply divide by

(
q+2

2

)
as in (6.20)

since all the
(
q+2

2

)
partial correlations computed by the matrix inversion formula will not

necessarily be used. Indeed, depending on the random selection of subsets in Castelo
and Roverato [30]’s method and on the evolution of the screening process in our q-nested
procedure, some partial correlations returned by the matrix inversion formula might not
be required.
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Table 6.2: Worst case time complexity for inferring a q-partial correlation graph with the
“standard” approach, Castelo and Roverato [30]’s method and our q-nested procedure.

Method Number of partial correlations

Standard O
“
q3
`

p
q+2

´”
Castelo and Roverato [30] O

“
q3 p(p−1)

2
min

“
r,
`

p−2
q

´””
Algorithm 6.1 O

 
q3Pq

k=0

P
i,j∈E(k−1)

 
Card

“
bd∗G(q)

(i, j)
”

k

!!

Algorithm 6.2 O

 
q3Pq

k=0

P
i,j∈E(k−1)

 
Card

“
bdG(k−1) (i) ∩ bdG(k−1) (j)

”
k

!!

We adopt a conservative stance and assume that we use the matrix inversion formula
each time a partial correlation is computed, hence discarding the remaining partial correla-
tions obtained as a “by-product” of the formula’s application (recall that the O-notation
gives an asymptotic upper bound; Appendix F). We hence obtain the following time
complexities for Castelo and Roverato [30]’s approach:

O

(
q3 p (p− 1)

2
min

(
r,

(
p− 2
q

)))
,

for Algorithm 6.1:

O

q3
q∑

k=0

∑
i,j∈E(k−1)

(
Card

(
bd∗G(q)

(i, j)
)

k

) ,

and for Algorithm 6.2:

O

q3
q∑

k=0

∑
i,j∈E(k−1)

(
Card

(
bdG(k−1)

(i) ∩ bdG(k−1)
(j)
)

k

) .

In any case, we note that for small values of q, the value of
(
q+2

2

)
= (q+ 2)(q+ 1)/2 is

small. Hence, the relative advantage of the standard approach with respect to the matrix
inversion formula compared to the remaining approaches is negligible.

Note that using the matrix inversion formula does not increases memory requirements
since for each edge we are only interested in the smallest q-partial correlation. Hence, at
each moment, we only need to store one partial correlation per edge.

6.7 Experimental setup

6.7.1 Datasets

We use the package GeneNet [184] for the statistical software R [196] to generate 10
networks with p = 60 genes with average node degree dG ∈ {2.5, 5} and sample size
n = 30.



6.7 Experimental setup 113

More specifically, 10 random “true” full-order partial correlation p × p matrices are
generated by an algorithm which guarantees that the resulting matrices are always positive
definite [184, 210]. The non-zero entries of these matrices correspond to the edges of the
“true” networks. The edge proportion is determined according to (4.33) for dG ∈ {2.5, 5}.
Next, for each network, simulated data of the desired sample size n = 30 are drawn from
the multivariate normal distribution with mean zero and the “true” correlation structure.

Although the model used for data generation is a simplification of real molecular pro-
cesses, it is important to faithfully evaluate the prediction results. This is possible only if
the true structure of the regulatory network is known.

6.7.2 Methods

We compare our q-nested procedure (Algorithm 6.2) to the q-partial correlation graph
(Section 6.2) with q ∈ {0, 1, 2} (recall that q = 0 corresponds to the correlation graph;
Section 6.1), Castelo and Roverato [30]’s method with q ∈ {1, 2} and 30 randomly selected
q-partial correlations (we do not consider larger values because of the relative small number
of genes considered), and Ledoit and Wolf [153]’s shrinkage estimator (Section 5.2). We
implemented all these methods in R [196]. We did not consider q-partial correlation graphs
with larger values of q because they are computationally too demanding to infer. We also
perform a negative control by drawing partial correlations from the (continuous) uniform
distribution on the interval [0, 1].

6.7.3 Validation

A network inference problem can be seen as a binary decision problem where the inference
algorithm plays the role of a classifier: for each pair of genes, the algorithm either adds an
edge or not (Appendix K). Each pair of genes is thus assigned a positive label (an edge)
or a negative label (no edge). A positive label (an edge) predicted by the algorithm is
considered as a true positive (TP) or as a false positive (FP) depending on the presence
or not of the corresponding edge in the underlying true network, respectively. The true
and false negatives (TN and FN, respectively) are defined analogously (Appendix K).

We compute the area under the precision-recall curve (AUC-PR; Appendix K.2). The
varying thresholds are applied to the partial correlations returned by the different methods.
Note that for each edge, the smallest partial correlation (i.e., the one providing the more
“evidence” against the presence of the edge) is considered.

Concerning the q-nested procedure, the values considered for the removed edges are
the last computed partial correlations. Suppose for example that the procedure stops
after q′ steps. If an edge has been removed at step q′′ < q′, it is the value of the q′′-partial
correlation (which is thus not significantly different from zero since the edge has been
removed) that is taken into account for that edge.
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6.8 Results and discussion

Table 6.3 compares the different methods’ AUC-PR values. Box plots of the AUC-PR
values are shown in Figures 6.10.

First, we remark that the q-partial correlation graphs (1-pcor and 2-pcor) do not
achieve better results than the 0-correlation graph (cor). This can be explained by the large
number of 1-partial and 2-partial correlations (p− 2 = 58 and

(
p−2

2

)
= 1653, respectively)

that have to be computed for each edge. The chance that any of these is arbitrarily small
is thus high (Section 6.4). Furthermore, their computational cost is much higher than that
of the 0-correlation graph (cor).

Second, we note that the results obtained with Castelo and Roverato [30]’s approach
with q = 1 (castelo-1) are identical to those obtained with pcor-1. Indeed, despite being
relatively small, the number of random q-partial correlations considered (30) is close to
the total number of 1-partial correlations (p−2 = 58). The same conclusion can be drawn
when comparing Castelo and Roverato [30]’s approach with q = 2 (castelo-2) with pcor-
2. Although this might be surprising at first sight, it seems that by picking a relatively
large number of random q-partial correlations (30) compared to the total number of nodes
(60), Castelo and Roverato [30]’s approach is robust to the problem of selecting q-partial
correlations randomly (Section 6.4). However, for larger networks, this will most probably
not be the case.

Third, we observe that the shrinkage approach (shrink) does not achieve better results
than the 0-correlation graph (cor) either.

Finally, we note that our approach (qnested) is the only one to outperform all the
other approaches.

We also remark that all results are significant compared to the negative control (ran-
dom).

If we take into account the computational time required to infer the graphs (box
plots of the CPU times on a 2.4 GHz AMD Opteron quad-core computer with 32 GB
RAM running a Linux distribution are given in Figures 6.11 and 6.12), we notice that
our approach remains the more attractive. Indeed, its computational time is only slightly
higher than those of the cor and shrink methods.

For 8 graphs (out of 10) the q-nested procedure stops after 2 steps (and thus returns
1-partial correlation graphs). For the 2 remaining graphs, it returns 2-partial correlation
graphs.

The average number of edges in the final graphs returned by the q-nested procedure
is 63.9 while the number of edges in the graphs to be inferred is 150. On the other hand,
the 0-partial correlation graphs (which are also the graphs inferred in the first step of
the q-nested procedure) contain on average 422.2 edges. Here we see that it might be
interesting to look at the whole sequence of graphs returned by the q-nested procedure
(which is another of its advantage compared to the other methods), and not just at the
final graph. Indeed, the first graphs in the sequence (such as the 0-partial correlation
graph) contain too many edges (mainly false positives). As the procedure progresses,
additional edges are removed and only a few remain. In some cases, too few remain and
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there are thus several false negatives. It might thus be interesting to combine information
of the 0-partial correlation graphs and the 1-partial correlation graphs for example.

Nonetheless, our q-nested procedure clearly outperforms the state-of-the-art methods
to reverse engineer q-partial correlation graphs. It enables to accurately infer these graphs
while maintaining a reasonable computation time compared to the “simplest” methods
(such as cor and shrink). A potential drawback of the q-nested procedure is that a false
negative (i.e., incorrectly removing an edge) “propagates” to the next steps of the proce-
dure.

Table 6.3: Comparison of AUC-PR values. The values in row i and column j report the
number of method i’s AUC-PR values which are larger than, equal to and smaller than
method j’s, respectively.

cor pcor-1 pcor-2 castelo-1 castelo-2 qnested shrink random

cor 9 / 0 / 1 10 / 0 / 0 9 / 0 / 1 10 / 0 / 0 0 / 0 / 10 4 / 0 / 6 10 / 0 / 0

pcor-1 1 / 0 / 9 9 / 0 / 1 0 / 10 / 0 9 / 0 / 1 0 / 0 / 10 2 / 0 / 8 10 / 0 / 0

pcor-2 0 / 0 / 10 1 / 0 / 9 1 / 0 / 9 0 / 10 / 0 0 / 0 / 10 0 / 0 / 10 10 / 0 / 0

castelo-1 1 / 0 / 9 0 / 10 / 0 9 / 0 / 1 9 / 0 / 1 0 / 0 / 10 2 / 0 / 8 10 / 0 / 0

castelo-2 0 / 0 / 10 1 / 0 / 9 0 / 10 / 0 1 / 0 / 9 0 / 0 / 10 0 / 0 / 10 10 / 0 / 0

qnested 10 / 0 / 0 10 / 0 / 0 10 / 0 / 0 10 / 0 / 0 10 / 0 / 0 10 / 0 / 0 10 / 0 / 0

shrink 6 / 0 / 4 8 / 0 / 2 10 / 0 / 0 8 / 0 / 2 10 / 0 / 0 0 / 0 / 10 10 / 0 / 0

random 0 / 0 / 10 0 / 0 / 10 0 / 0 / 10 0 / 0 / 10 0 / 0 / 10 0 / 0 / 10 0 / 0 / 10
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Figure 6.10: Box plots of AUCPR values.
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Figure 6.11: CPU time (in seconds) for all methods except random.
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Figure 6.12: CPU time (in seconds) for selected methods.
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Two-Class Classification for NCR Target Gene Prediction1

We formulate the identification of putative NCR genes in the yeast S. cerevisiae as a
supervised two-class classification problem and extend the method by Godard et al. [107].
We show that our approach makes significant and biologically valid predictions, and we
identify previously uncharacterized variables.

In the first part of the thesis, we used Gaussian graphical models (GGMs; Chapter 4)
for inferring gene regulatory networks (GRNs; Section 2.3) from gene expression data
(Chapters 5 and 6). We now tackle the important and challenging problem of gene function
prediction. More specifically, we are interested in identifying genes involved in the yeast S.
cerevisiae’s nitrogen catabolite repression (NCR; Section 2.2). In this chapter, we adopt a
“standard” classification (Section 3.7) approach to tackle this problem. We will then make
a connection with the first part of the thesis by proposing a new approach for predicting
NCR genes based on a network inference paradigm (Chapter 8).

Recall from Section 2.2 that NCR is a selection mechanism that consists in the specific
inhibition of transcriptional activation of genes encoding the permeases and catabolic en-
zymes needed to degrade poor nitrogen sources. All known nitrogen catabolite pathways
are regulated by four regulators (Gln3, Gat1, Dal80, and Deh1). Moreover, approxima-
tively 40 genes have been annotated as NCR-sensitive.

The ultimate goal is to identify all genes involved in NCR. This challenge has mainly
been tackled by three genome-wide experimental studies [11, 107, 214], one of which [107]
stems from the ARC project that supported the work presented in this thesis (see the
Preface). In Godard et al. [107], we also proposed a bioinformatics approach, which
we refer to as Godard et al. [107]’s approach, to complement the experimental study.
Indeed bioinformatics methods offer the possibility to identify putative NCR genes and
to discard uninteresting genes, hence strengthening the results of the experimental study.
We adopted a “standard” classification approach to this function prediction task [121,
219]. More specifically, we formulated the identification of putative NCR genes in the
yeast S. cerevisiae as a supervised two-class classification problem (Section 7.1). The

1Parts of this chapter appeared in Kontos et al. [146, 147] and in (the supplemental material of) Godard

et al. [107].
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(trained) classifiers predict whether genes are NCR-sensitive or not based on the number
of occurrences of NCR-related motifs in their upstream noncoding sequences.

The third main contribution of the thesis consists in extending this two-class classifi-
cation approach (Section 7.2). Instead of focusing on NCR-related motifs in the upstream
noncoding sequences of the genes, we concentrate solely on the GATA motif. Indeed, the
promoter regions of NCR target genes typically contain several 5’-GATA-3’ core sequences,
which we will refer to as GATA boxes, recognized by the GATA family transcription fac-
tors (Godard et al. [107] and references therein). We specify a large number of variables
related to this motif (Section 7.2.2). These variables define characteristics that biologists
(who took part in the aforementioned ARC project) hypothesize to be relevant to NCR.
Our goal mainly consists in determining new properties that could be determinant in NCR.

We also define a negative training set of manually-selected genes known to be insensi-
tive to NCR (Section 7.2.1), thus avoiding the computational expensive undersampling ap-
proach (Section 3.7.3) adopted previously [107]. Besides, different classifiers (Section 7.2.3)
and variable selection methods (Section 7.2.4) are compared.

We then show the effectiveness of our approach (Section 7.3). In particular, we show
that all classifiers make significant and biologically valid predictions by comparing these
predictions to annotated and putative NCR genes (Section 7.3.1), and by performing
several negative controls. Moreover, the inferred NCR genes significantly overlap with
putative NCR genes identified in three aforementioned genome-wide experimental studies
(Section 7.3.2). These results suggest that our approach can successfully identify potential
NCR genes. Hence, the dimensionality of the problem of identifying all genes involved in
NCR is drastically reduced. Finally, we identify previously uncharacterized variables.
Further experimental analysis is however required to determine whether these variables
indeed play a role in NCR.

7.1 Two-class classification approach

In Godard et al. [107] we formulate the identification of putative NCR genes as a supervised
two-class classification problem (Section 3.7) based on the number of occurrences of NCR-
related motifs in their upstream noncoding sequences. Our approach is directly inspired
by the one introduced in Simonis et al. [219] to discriminate co-regulated from non-co-
regulated genes.

Based on prior biological knowledge, we defined a set of 9 motifs as potentially relevant
for the NCR regulation:

− the canonical GATA box (GATAAG);

− the non-complete GATA box (GATAAH, where H means “not G”);

− the degenerate GATA box (GATTA);

− GATA pairs formed of the canonical motif (GATAAG) in the three possible relative ori-
entations, i.e., tandem (GATAAGn{0,60}GATAAG), convergent (GATAAGn{0,60}CTTATC)
and divergent (CTTATCn{0,60}GATAAG);

− GATA pairs formed of the shortened motif (GATAA) in the three possible relative ori-
entations, i.e., tandem (GATAAn{0,60}GATAA), convergent (GATAAn{0,60}TTATC) and
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divergent (TTATCn{0,60}GATAA).

Next, we used the oligo-analysis tool from the Regulatory Sequence Analysis Tools
(RSAT; available from http://rsat.ulb.ac.be/rsat/) [250] to detect over-represented
oligonucleotides (for all sizes between 5 and 8) in the promoter sequences of the 41 ANCR
genes, leading to a total of 56 significantly over-represented motifs (Appendix L.2). Quite
consistently, most of these motifs were variants of the GATA box, and the most significant
among them was the canonical GATA box GATAAG. Since some annotated motifs were
also detected by oligo-analysis, we generated a non-redundant list of 62 motifs of interest
(Appendix L.2).

Subsequently, we retrieved the upstream sequences of all 5869 yeast genes over 800 base
pairs (bp) upstream from the start codon using the retrieve sequence tool from RSAT.
When the upstream open reading frame (ORF) is closer than 800 bp, we retrieved a shorter
sequence to discard coding sequences.

Finally, we used the program dna-pattern from RSAT to count the occurrences of the
62 motifs in each of the 5869 yeast gene promoters.

We applied linear discriminant analysis (Section 3.7.2.3) to classify genes into two
classes (NCR versus not NCR) based on the number of occurrences of NCR-related motifs
in their upstream noncoding sequences. Note that the genes play the role of samples and
the motifs are the variables. As a positive training set, i.e., genes regulated by NCR, we
used a set of 41 genes annotated as NCR sensitive (ANCR; see Table L.2).

Since we did not dispose of any reliable negative set for the training, i.e., genes not
regulated by NCR, we applied the same undersampling strategy (Section 3.7.3) as the
one described in Simonis et al. [219] by randomly selecting a (first) set of 123 (= 3× 41)
genes in the yeast genome (the process is then repeated 10 times as explained hereafter).
The multiplicative factor 3 determining the size of the negative group was chosen through
leave-one-out cross-validation.

Since the number of variables (p = 62) is larger than the number of genes in the
positive training set (n = 41), we applied forward stepwise selection (Section 3.4) to
select the subset of variables giving the most accurate classification. The efficiency of
a classification was estimated using leave-one-out cross-validation. After this phase of
training and variable selection, the discriminant function was then applied to each yeast
gene to estimate its posterior probability to be NCR sensitive and to assign it to a class
(NCR or not NCR).

The whole process was repeated 10 times with different negative groups in order to
reduce the number of fluctuations due to random selection. A list of 100 genes predicted
to be subject to NCR was finally obtained (Table S3 in the supplemental material of
Godard et al. [107]) by selecting the genes for which the median posterior probability was
greater than 0.5 and for which the posterior probability was greater than 0.5 in at least 6
iterations among 10.
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7.2 Method: Extending Godard et al.’s approach

Our method consists in extending the two-class classification approach of Godard et al.
[107] as follows:

− we use a negative training set composed of “non-NCR” genes instead of relying on
the computationally expensive strategy of undersampling (Section 7.2.1);

− we define variables that reflect properties of the occurrences of the GATA motif in the
upstream noncoding sequences of the yeast genes (Section 7.2.2); and

− we compare various classifiers (Section 7.2.3) and variable selection techniques (Sec-
tion 7.2.4).

The classifier takes as input a data matrix X containing n rows (one per gene) and p

columns (one per variable). The n genes constitute the samples. The p variables reflect
properties of the occurrences of the GATA motif in the upstream noncoding sequences of the
yeast genes (Section 7.2.2). Hence, each variable is a n-dimensional vector. The classifier
is trained on a number nt � n of positive and negative training samples, i.e., genes that
are known to be NCR-sensitive and insensitive, respectively. The trained classifier is then
used to make predictions for genes not used in the training phase.

7.2.1 Training sets

As a positive training set, denoted by ANCR, we use 37 of the 41 genes previously an-
notated as NCR-responding [107] (Appendix L). Four genes are discarded because none
of them were identified as NCR-responding in any of the three genome-wide experimental
and bioinformatics studies described in Bar-Joseph et al. [11], Godard et al. [107], Scherens
et al. [214]. The negative training set, denoted by NNCR, is composed of 90 manually-
selected genes, known to be insensitive to NCR, most of which being involved in house-
keeping cellular functions unrelated to nitrogen metabolism (Appendix L).

7.2.2 Variables

The promoter regions of NCR target genes typically contain several 5’-GATA-3’ core
sequences, which we will refer to as GATA boxes, recognized by the GATA family tran-
scription factors (Godard et al. [107] and references therein). Hence, we define 585 vari-
ables related to the GATA boxes in the upstream noncoding sequences of the yeast genes.
These variables define characteristics that biologists (who took part in the ARC project
mentioned previously) hypothesize to be relevant to NCR.

Since the variables rely on the availability of the upstream noncoding sequences, we
retrieved them for all yeast genes over 800 base pairs (bp) upstream from the start codon
using the collection of software tools provided by RSAT. When the upstream open reading
frame (ORF) is closer than 800 bp, a shorter sequence is retrieved to discard coding
sequences.

We now describe the 585 variables (see Table 7.1 for a summary)

− Number of GATA boxes: The annotated NCR genes (ANCR) are characterized by
a relatively large number of GATA boxes (Figure 7.1) compared to the genes known
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Table 7.1: Abbreviations and short descriptions of variables.

Abbreviation Description

NUM Number of GATA boxes

1-GAP, 2-GAP, 3-GAP, B-GAP First, second and third smallest, and biggest GATA gaps

M-GAP, MI-GAP, SD-GAP Mean, median and standard deviation (sd) of all GATA gaps

i-MINDIST (i = 2, . . . , 5) Minimum number of bp spanning over i GATA boxes

UP-i-MER (i = 1, 2, 3) N{1,i}GATA
DOWN-i-MER (i = 1, 2, 3) GATAN{1,i}
GAP-i-MER (i = 1, 2) N{1,i}GATAN{1,i}
F-POS, L-POS Positions of the first and of the last GATA boxes, resp.

M-POS, MI-POS, SD-POS Mean, median and sd of the positions of all GATA boxes

to be insensitive to NCR (NNCR; see Figures 7.2 and 7.3). We therefore define a
variable NUM which counts the number of GATA boxes in the upstream noncoding
sequences.

− GATA gap: Further, we note that GATA boxes often come in pairs separated by only
few bp. We therefore define 11 variables related to the number of bp separating two
consecutive GATA boxes in the upstream noncoding sequences. The “gap” between
two consecutive GATA boxes is referred to as a GATA gap (Figure 7.4). The vari-
ables 1-GAP, 2-GAP, 3-GAP and B-GAP measure (in bp) the first, second and third
smallest, and biggest GATA gaps, respectively. The variables M-GAP, MI-GAP and
SD-GAP measure (in bp) the mean, median and standard deviation of all GATA gaps,
respectively. Finally, the variables i-MINDIST, i = 2, . . . , 5, measure the minimum
number of bp spanning over i GATA boxes (Figure 7.4).

− k-Mers: When searching for over-represented motifs in the upstream noncoding se-
quences of ANCR genes, it appears that variants of GATA boxes are relatively fre-
quent, as for example the following motifs: GATAAG and GATAAH. Hence, we define
the variables UP-i-MER (i = 1, 2, 3), DOWN-i-MER (i = 1, 2, 3) and GAP-i-MER
(i = 1, 2) that count the following k-mers, respectively: N{1,i}GATA, GATAN{1,i}
and N{1,i}GATAN{1,i}, where N{1,i} is a motif of length comprised between 1 and
i, and where N represents any nucleotide (A, C, G or T). There are respectively 84(
= 4 + 42 + 43

)
, 84 and 400

(
= 42 + 2× 43 + 44

)
variables N{1,i}GATA, GATAN{1,i}

and N{1,i}GATAN{1,i}.
− Positions of GATA boxes: Finally, we define 5 variables relative to the positions of

the GATA boxes in the upstream noncoding sequences. The position of a GATA box
is defined as the number of bp separating its first bp from the start codon of the gene.
The variables F-POS and L-POS measure the positions of the first (i.e., the closest to
the start codon) and of the last (i.e., the farthest from the start codon) GATA boxes,
respectively. The variables M-POS, MI-POS and SD-POS measure the mean, median
and standard deviation of the positions of all GATA boxes, respectively.
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Figure 7.1: Graphical map of the GATA boxes in the upstream noncoding sequences of
ANCR genes generated with RSAT [250]. Each horizontal line represents the noncoding
sequence of a gene over 800 bp upstream from the start codon. When the upstream ORF
is closer than 800 bp, the sequence is shortened to discard coding sequences. In each
noncoding sequence, the blue vertical bars localize the GATA boxes.
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Figure 7.2: Graphical map of the GATA boxes in the upstream noncoding sequences of
NNCR genes generated with RSAT [250] (part 1 of 2). See Figure 7.1’s caption for more
details.
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Figure 7.3: Graphical map of the GATA boxes in the upstream noncoding sequences of
NNCR genes generated with RSAT [250] (part 2 of 2). See Figure 7.1’s caption for more
details.
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Figure 7.4: The figure shows the upstream noncoding sequence of a gene containing three
GATA boxes. Note that the sequence “starts” on the right (at the start codon) “ends” on
the left. The “gaps” between these boxes are referred to as GATA gaps (thick lines) and
are measured in bp. The dashed line represents the minimum number of bp spanning over
two GATA boxes. The dotted line also spans over two GATA boxes but the number of bp
is larger than for the dashed line. Finally, the solid line represents the minimum number
of bp spanning over three GATA boxes.

7.2.3 Classifiers

We compare three classifiers (Section 3.7.2): naive Bayes (NB), k-nearest-neighbors (KNN),
where leave-one-out error is used to choose the number of neighbors, and, as a linear clas-
sifier, linear kernel support vector machine (SVM).

The classifiers provide estimates of the posterior probabilities that rely on the prior
probabilities estimated from the training set. Unfortunately, these prior probabilities do
not reflect the expected prior probabilities of the target classes. Therefore, we adjust the
posterior probabilities returned by the classifiers with respect to new prior probabilities
using Bayes’s theorem (Section 3.7.3.3). These new priori probabilities are chosen accord-
ing to prior biological knowledge: more or less 200 genes are expected to be targets of
NCR [107]. Hence, we set the prior probability of a gene to be target of NCR to 200/n,
where n = 5869 is the total number of yeast genes considered.

7.2.4 Variable selection

Because of the high-dimensionality of the classification task (the number of variables is
greater than the number of samples), we compare two variable selection methods to im-
prove prediction performance and enhance interpretability (Section 3.4).

First, we use a filter method (Section 3.4.2) based on the Gram-Schmidt orthogo-
nalization procedure where the number of selected variables is determined according to
leave-one-out cross-validation (Appendix M). The ranking of variables through orthogo-
nalization has many interesting features: it is computationally fast, it takes into account
the collinearity between variables (i.e., if two variables are almost collinear in observation
space, the fact that one of them is selected will tend to drive the other to a much lower
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rank in the list) and it allows an incremental construction of the model, so that training
can be terminated without using all variables [229]. Although this method assumes lin-
earity and is based on the minimization of a squared error loss (which is not always the
most appropriate for classification), it gives relatively good results for classification tasks
[229].

Second, we use a wrapper method (Section 3.4.2) consisting of a forward stepwise
procedure where the prediction performance is assessed by means of stratified 10-fold
cross-validation (Section 3.1.2). The performance measure used is the balanced error rate
(BER) defined as the average of the errors on each class:

BER = 0.5
(

FP
FP + TN

+
FN

FN + TP

)
, (7.1)

where TP and FP are the true and false positives, respectively, and TN and FN are the
true and false negatives, respectively. The threshold on the corrected posterior probability
(Section 3.7.3.3) is 0.5. By using the prediction performance of a given learning machine to
assess the relative usefulness of subsets of variables, wrappers offer a simple and powerful
way to address the problem of variable selection [109, 140]. A greedy search strategy, such
as forward selection, is both computationally advantageous and robust against overfitting
[109].

7.3 Results and discussion

7.3.1 Validation

We assess the quality of the variable selection methods and classifiers through cross-
validation: leave-one-out (l-o-o) cross validation for the filter variable selection method
and 10-fold cross validation in the wrapper case. We use two performance measures. The
first one is the BER (7.1). The threshold on the corrected posterior probability is 0.5.
Results are shown in the “BER” column of Table 7.2. The best combinations of variable
selection method and classifier, i.e., those having a BER not significantly higher than the
lowest BER according to McNemar’s test [58] with p-value < .05, are marked with an
asterisk (*).

The second performance measure is the area under the receiver operator characteristic
(ROC) curve (AUC) (Appendix K.1). Results are given in the “AUC” column of Table 7.2.
The ROC curves are shown in Figure 7.5.

Given the scarcity of the data and the risk of the variable selection procedure to over-
fit the selected variables to the training set, we perform a negative control to determine
whether the results are significant or not. We empirically estimate the random rate of cor-
rect classification by running the same procedure but with randomized data sets obtained
by randomly sampling the labels of the training set. Results are shown in the “negative
control” columns of Table 7.2. The values reported are the mean and standard deviation
over 10 repetitions. McNemar’s test suggests that the linear classifier (the linear kernel
SVM) performs best independently of the variable selection method.
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Table 7.2: Performance assessment. VS and CLASS stand for
variable selection method and classifier, respectively.

Negative control

VS CLASS BER AUC BER AUC

Filter

NB 0.31 0.93 0.49 ± 0.022 0.50 ± 0.072

KNN 0.18 0.90 0.51 ± 0.021 0.51 ± 0.077

SVM 0.13* 0.93 0.48 ± 0.060 0.50 ± 0.097

Wrapper

NB 0.24 0.95 0.49 ± 0.054 0.50 ± 0.130

KNN 0.20 0.97 0.48 ± 0.045 0.52 ± 0.100

SVM 0.13* 0.95 0.47 ± 0.066 0.58 ± 0.130
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Figure 7.5: ROC curves.
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7.3.2 Gene set comparisons

For each combination of variable selection method and classifier, we compare the set of pre-
dicted NCR genes, obtained with a threshold of 0.5 on the corrected posterior probability,
with each of the three sets identified in the three aforementioned studies [11, 107, 214], re-
spectively. More specifically, we compute for each combination of variable selection method
and classifier, and for each set, the F -measure (K.1). Results are given in Table 7.3.

We also compute overlapping p-values on the basis of the cumulative distribution
function of the hypergeometric distribution (Appendix J), to assess the significance of
the overlap between two sets and to account for the artificial increase in the overlap that
occurs when the number of predicted NCR genes increases (i.e., with decreasing threshold
on the corrected posterior probability). Results are shown in Table 7.3.

Table 7.3: Gene set comparisons. VS and CLASS stand for variable selec-
tion method and classifier, respectively.

F -measure (p-value)

VS CLASS Bar-Joseph et al. [11] Godard et al. [107] Scherens et al. [214]

Filter

NB 0.05
`
2.9× 10−16

´
0.09 (3.5× 10−7) 0.06 (2.4× 10−13)

KNN 0.06 (9.4× 10−9) 0.09 (4.8× 10−5 ) 0.07 (1.1× 10−7)

SVM 0.11 (1.5× 10−13) 0.15 (9.0× 10−10) 0.14 (8.2× 10−14)

Wrapper

NB 0.07 (9.1 ×10−11) 0.11 (7.7×10−18) 0.08 (4.3 ×10−16)

KNN 0.12 (7.7×10−14) 0.20 (7.0×10−28) 0.16 (5.2×10−26)

SVM 0.13 (8.9×10−11) 0.16 (7.2×10−14) 0.13 (2.6×10−11)

7.3.3 Variable selection

The improvement of prediction performance with variable selection is confirmed by the
number of variables returned by the wrapper approach. Indeed, for all classifiers, the
number of selected variables is small (in the order of tens) compared to the total number
of variables (585).

The 6 variables selected by the filter variable selection method are shown in Table 7.4.
The first variable is a DOWN-2-MER while the remaining ones are GAP-i-MERs. Two
of these variables (GATAAG and CAGATAAG) appear in the set of motifs used in Godard
et al. [107] (Table L.5). The variables selected by the filter method in the l-o-o validation
procedure along with their respective frequencies are given in Table 7.6. We remark that
the selected variables (Table 7.4) are almost always selected during the l-o-o procedure.
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Table 7.4: Variables selected by the filter variable selection method. The variable marked
with one asterisk (∗) appears in the set of motifs used in Godard et al. [107].

Rank Variable

1. GATAAG∗

2. TAGATAA

3. CGATAGG

4. AAGATATT

5. CAGATAAG∗

6. GGATAAG

Interestingly, the first variable, GATAAG, which is always selected in the l-o-o validation
procedure, is known to be potentially relevant for the NCR regulation [38, 224]. There is
currently no known relationship between the five other motifs and NCR.

The 17 variables selected by the linear SVM wrapper variable selection method are
given in Table 7.5. The top selected variables are k-mers (UP-i-MER, DOWN-i-MER and
GAP-i-MER. Two of these variables (GATAAG and CGATAA) appear in the set of motifs used
in Godard et al. [107] (Table L.5). Interestingly, the first selected variable (GATAAG) is also
the first one selected by the filter method. Another motif (TAGATAA) also appears in both
rankings. Unfortunately, except for GATAAG, no other variable is frequently selected in
the 10-fold cross-validation procedure. Some variables from Table 7.5 (rank 5 and ranks
7 to 17) are even never selected during the cross-validation procedure. This might be
due to the larger “perturbations” that 10-fold cross-validation imposes on the data set
compared to l-o-o. However, the filter selection method appeared as robust with 10-fold
cross-validation as with l-o-o.

It is noteworthy that no variable related to GATA gaps has been identified in our
approach as potential relevant for NCR, as was expected by the biologists involved in the
ARC project mentioned previously. Nonetheless, the five variables identified by the filter
method for which there exists no known relationship with NCR are interesting candidates
for further analysis.

7.3.4 Final predictions and comparison with Godard et al.’s approach

Genes for which the corrected posterior probability is larger than 0.5 for both linear kernel
SVMs with filter and wrapper variable selection methods, respectively, are predicted as
NCR (Tables 7.8 and 7.9). This set is composed of 264 putative NCR genes. Indeed,
McNemar’s test suggests that the linear kernel SVM performs best independently of the
variable selection method (Section 7.3.1). The final corrected posterior probability of these
genes is the average of the corrected posterior probabilities as returned by the SVMs. The
description of the top 25 genes is given in Table 7.10.

We compute the intersections of the sets of putative NCR genes identified in this chap-
ter and the one inferred in the bioinformatics study of Godard et al. [107] (Section 7.1)
with the sets of known and annotated NCR genes (RNCR and ANCR) and all possible
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Table 7.5: Variables selected by the linear kernel SVM wrapper variable selection method.
The variable marked with an asterisk (∗) appears in the set of motifs used in Godard et al.
[107].

Rank Variable

1. GATAAG∗

2. GGGATATA

3. CTGGATA

4. GATAGT

5. GGGATAA

6. TAGATAA

7. ATGGATA

8. GATAAGT

9. TGATATT

10. AGGATACT

11. TTGATAAT

12. CGATAA∗

13. TCGATAAA

14. GATAT

15. GTAGATA

16. GATATAA

17. ATGATAGT

combinations of intersections and unions of the sets Pg, Ps and Pb arising from the afore-
mentioned experimental studies [11, 107, 214]. We also assess the significancy of these
intersections by computing p-values from the hypergeometric distribution (Appendix J).
Results are presented in Table 7.11. We note that the intersections are (highly) significant
for both sets.

7.4 Conclusion

We showed that all classifiers make significant (Section 7.3.1) and biologically valid (Sec-
tion 7.3.2) predictions by comparing the predictions to annotated and putative NCR genes,
and by performing several negative controls. However, McNemar’s test suggests that the
linear classifier (the linear kernel SVM) performs best independently of the variable selec-
tion method.

In particular, the inferred NCR genes significantly overlap with putative NCR genes
identified in the three aforementioned genome-wide experimental studies [11, 107, 214],
comparably to Godard et al. [107]’s bioinformatics approach. However, the latter approach
yields more significant results. A possible explanation of this difference is the use of a single
(small) set of 90 non-NCR genes. Although this is less computationally expensive than the
undersampling strategy adopted in Godard et al. [107], it is probable that the 90 negative
examples do not faithfully represent the whole set of non-NCR genes (which comprises
almost all ∼ 6 000 yeast genes). Therefore, training classifiers on a single small set might
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Table 7.6: Frequency of variables selected by the filter variable selection method in the
l-o-o validation procedure.

Variable Frequency

GATAAG∗ 1.000
CGATAGG∗ 0.953
TAGATAA∗ 0.942
AAGATATT∗ 0.779
CAGATAAG∗ 0.709
GGATAAG∗ 0.686
TAGATACC 0.174
CCGATATT 0.174
CGGATATT 0.105
CAGATAAT 0.070
AGATAAC 0.047
TTAGATA 0.047
AGGATATT 0.035
GCGATAAC 0.035
CTGATATT 0.035
GATAGGC 0.035
GTGATAAG 0.023
CAGATAAA 0.023
GTGATAAA 0.023
CCCGATA 0.012
TAGATAAG 0.012
CTGATACC 0.012
CCGATAAC 0.012
TTGATAGG 0.012
GAGATATG 0.012
TAGATATC 0.012
ACGATACT 0.012
AAGATACC 0.012
TCGATAA 0.012
2.gap 0.012
ACGATAAG 0.012
CTGATAAT 0.012
CTGATAT 0.012
TTGATAAG 0.012
ATAGATA 0.012
TAGATACA 0.012
CGCGATA 0.012
GAGATACC 0.012
GTAGATA 0.012
TCGATAAT 0.012
TTGATAG 0.012
TGGATACA 0.012
GATAAC∗ 0.012
GATATCT 0.012
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Table 7.7: Frequency of variables selected by the linear kernel SVM wrapper variable
selection method in the 10-fold cross-validation procedure.

Variable Frequency

GATAAG∗ 1.00
ATGATAGC 0.20
ACCGATA 0.20
GGATAAG 0.20
GATAGTC 0.10
CCGGATA 0.10
GGGATATA∗ 0.10
AAGATATG 0.10
TGATAAA 0.10
GAGATACG 0.10
GCCGATA 0.10
CCCGATA 0.10
TCGATAGT 0.10
GATATGC 0.10
TCGATA 0.10
GATAAGG 0.10
GATACTC 0.10
GGGATATG 0.10
CAGATACT 0.10
TGATAGT 0.10
TAGATA 0.10
GATAGA 0.10
TGATACT 0.10
sd.pos 0.10
GTGATAAG 0.10
GATATT 0.10
AGGATACG 0.10
TCGATAAG 0.10
GAGATAC 0.10
ATGATAAT 0.10
GGGATAC 0.10

Variable Frequency

CTGGATA∗ 0.10
GGATACA 0.10
CTGATATT 0.10
TAGATAA∗ 0.10
TTGATAG 0.10
TAGGATA 0.10
CAGATATC 0.10
AGGATACA 0.10
GCGATATT 0.10
ACGATAAC 0.10
GGATATC 0.10
AGGATAGG 0.10
GATACCA 0.10
GAGGATA 0.10
ACAGATA 0.10
ATGATATG 0.10
GATAGT∗ 0.10
TGTGATA 0.10
TGATATG 0.10
AGGATAG 0.10
CGATA 0.10
CGGATAGG 0.10
CAGATACG 0.10
TTAGATA 0.10
GATACAA 0.10
GATAGCC 0.10
GATAACG 0.10
GATAGTA 0.10
CTGATAGA 0.10
ACGATAAA 0.10
AAGGATA 0.10



7.4 Conclusion 137

Table 7.8: Final prediction of NCR genes. Part 1 of 2.

Rank Gene Cor. post. prob.

1. FCY21 1

2. MGA2 1

3. FRS2 1

4. NPR2 1

5. YER060W 1

6. UBI4 1

7. YIR033W 1

8. MOH1 1

9. APL1 1

10. RHO3 1

11. ECM37 1

12. SAG1 1

13. OPT2 1

14. SPO14 1

15. RSM10 1

16. DAL1 1

17. YFL022C 1

18. PRP46 1

19. RPL25 1

20. YGK3 1

21. SET5 1

22. AMD2 1

23. MEP3 1

24. BAT1 1

25. DAL4 1

26. HTD2 0.966

27. RSF2 0.964

28. YEL062W 0.959

29. GUD1 0.959

30. MEP2 0.956

31. DUR1,2 0.953

32. HNM1 0.942

33. YGR038C-A 0.937

34. GDH1 0.93

35. VPS21 0.923

36. AVT1 0.907

37. FCY2 0.884

38. YGL196W 0.882

39. MIG1 0.879

40. IST1 0.876

41. CIN5 0.876

42. SAM35 0.875

43. ARF2 0.874

44. HXT17 0.869

45. PRP2 0.863

46. URK1 0.863

47. KSP1 0.862

48. AVT7 0.856

49. IST3 0.856

50. MCH4 0.856

Rank Gene Cor. post. prob.

51. SSA4 0.855

52. SLX9 0.854

53. TOM20 0.854

54. HRB1 0.844

55. SDS23 0.842

56. GLE2 0.838

57. ARG1 0.834

58. VAC17 0.828

59. CHA1 0.828

60. VTC2 0.825

61. LEA1 0.818

62. THI6 0.818

63. HIM1 0.818

64. GAP1 0.817

65. ADE16 0.816

66. YLL039C 0.814

67. LYS20 0.813

68. PHO13 0.808

69. YGR125W 0.806

70. ARA2 0.806

71. ARG80 0.806

72. SMP3 0.804

73. MRPL23 0.804

74. GTO1 0.802

75. CYS4 0.802

76. PCM1 0.802

77. SOM1 0.802

78. CUP9 0.798

79. YEF3 0.796

80. ALO1 0.793

81. YHC1 0.791

82. LEE1 0.789

83. LGE1 0.789

84. MRP7 0.781

85. YBL049W 0.771

86. COX19 0.771

87. ORC1 0.77

88. SMA2 0.77

89. OLE1 0.762

90. LSM4 0.761

91. YJR005W 0.76

92. YIL118W 0.76

93. YIL146C 0.76

94. SAP190 0.758

95. YJR004C 0.756

96. GAT1 0.751

97. HMS1 0.75

98. GYP1 0.749

99. PRE7 0.748

100. YPR194C 0.747
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Table 7.9: Final prediction of NCR genes. Part 2 of 2.

Rank Gene Cor. post. prob.

101. ERR3 0.745

102. ERR1 0.745

103. ERR2 0.745

104. DAL3 0.744

105. RAT1 0.742

106. ATG1 0.741

107. BSP1 0.731

108. SNO4 0.731

109. PEX2 0.725

110. OPT1 0.725

111. YKR031C 0.725

112. YDR041W 0.724

113. YIR027C 0.724

114. YPL150W 0.723

115. YPL151C 0.723

116. YOL127W 0.723

117. FUI1 0.723

118. LAP3 0.723

119. NAR1 0.723

120. YOL128C 0.723

121. AQY1 0.723

122. VPH1 0.722

123. HSP33 0.717

124. HSP32 0.717

125. PAU12 0.711

126. PTP3 0.71

127. DMA2 0.71

128. YHR207C 0.704

129. YDR242W 0.704

130. CIS1 0.702

131. SES1 0.702

132. YPR138C 0.701

133. YSP3 0.699

134. RPS0B 0.699

135. EHD3 0.691

136. KRS1 0.691

137. CPT1 0.69

138. AVT4 0.688

139. TIM44 0.688

140. YKE4 0.688

141. YHR208W 0.681

142. ALD2 0.678

143. NRG1 0.677

144. FBP26 0.677

145. SKO1 0.677

146. MRC1 0.676

147. ASI1 0.67

148. YIR028W 0.669

149. ARG4 0.666

150. CSN9 0.665

Rank Gene Cor. post. prob.

151. YHR067W 0.665

152. RGT2 0.665

153. ILV2 0.665

154. FLC3 0.664

155. YJR127C 0.664

156. YDL237W 0.663

157. YDL238C 0.659

158. ORT1 0.654

159. SRY1 0.653

160. YNL142W 0.652

161. YBR208C 0.652

162. YGL077C 0.65

163. UGA3 0.65

164. GLT1 0.65

165. RTS3 0.649

166. YGR038C-A 0.649

167. RVB2 0.648

168. YOR375C 0.648

169. PHO5 0.645

170. OAZ1 0.64

171. KTR6 0.64

172. OSH7 0.64

173. ISF1 0.638

174. RTA1 0.636

175. YOR089C 0.635

176. YJR001W 0.606

177. REG1 0.603

178. SEC1 0.602

179. TRM82 0.602

180. ICL1 0.598

181. YPK1 0.598

182. YER056C 0.595

183. FUN12 0.593

184. RBG1 0.593

185. TRP4 0.591

186. GAL83 0.59

187. CLU1 0.59

188. YIL089W 0.588

189. ENT2 0.579

190. FZO1 0.577

191. DTR1 0.577

192. IZH3 0.574

193. YGL035C 0.565

194. HEM4 0.555

195. SPL2 0.553

196. ARO9 0.553

197. GNA1 0.547

198. QDR2 0.547

199. SEO1 0.545

200. ZPS1 0.535
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Table 7.11: Hypergeometric p-values: comparisons of Godard et al. [107]’s approach to
the one proposed in this chapter. Note that Godard et al. [107] refers to the 100 genes
identified by the bioinformatics procedure described in Section 7.1, while Pg refers to the
140 genes identified experimentally (i.e., with DNA microarrays) in Godard et al. [107].

Set (number of genes) Godard et al. [107] Chapter 7

RNCR (4) 3 (1.78×10−5) 1 (1.27×10−1)
RCNR+ANCR (38) 30 (1.69×10−48) 9 (2.99×10−6)

Pg (140) 32 (5.92×10−29) 25 (2.82×10−12)
Ps (87) 26 (8.62×10−27) 17 (2.49×10−9)
Pb (83) 23 (7.37×10−23) 18 (1.34×10−10)

Pg ∪ Ps (188) 40 (2.82×10−35) 30 (3.35×10−13)
Pg ∪ Pb (197) 39 (4.97×10−33) 32 (2.95×10−14)
Ps ∪ Pb (149) 36 (1.10×10−33) 27 (2.41×10−13)

Pg ∪ Ps ∪ Pb (240) 46 (7.39×10−39) 36 (7.77×10−15)
Pg ∩ Ps (39) 18 (9.39×10−23) 12 (2.40×10−9)
Pg ∩ Pb (26) 16 (4.74×10−23) 11 (2.14×10−10)
Ps ∩ Pb (21) 13 (6.27×10−19) 8 (1.86×10−7)

Pg ∩ Ps ∩ Pb (16) 12 (4.03×10−19) 7 (3.65×10−7)

not be optimal to discriminate all NCR from non-NCR genes.
No variable related to GATA gaps has been identified in our approach as potential

relevant for NCR, as was expected by biologists. Nonetheless, several of the identified
variables are known or hypothesized to be relevant to NCR. Therefore, the previously
uncharacterized variables that were selected (Section 7.3.3) are promising candidates for
further experimental analysis.

Given the problems related to the selection of a negative training set, we will not con-
sider further the two-class classification approaches presented in this chapter, but rather
adopt (in the next chapter) a new inference paradigm based on network inference which
does not require a negative training set.
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Network Inference Approach to NCR Target Gene

Prediction1

We propose a network inference approach to predict NCR target genes. We reverse
engineer a Gaussian graphical model (GGM) and exploit the topology of the inferred
network for functional information. The network structure can give further insight into
the considered problem.

In the previous chapter, we presented and extended a “standard” two-class classifi-
cation approach for inferring nitrogen catabolite repression (NCR) target genes. Despite
delivering promising results, these two-class classification approaches suffer from a major
drawback: they require a negative training set. Indeed, we have available four regulators
and a few tens of annotated NCR genes, but a priori there are no known “non-NCR”
genes.

We first adopted an undersampling strategy (Section 3.7.3) to determine the choice
of a negative training set (Section 7.1). This approach is based on the assumption that,
since biologists expect at most a few hundreds genes to be involved in NCR, almost all2 S.
cerevisiae’s genes are not related with this process. Despite being a reasonable assumption,
the ensuing strategy is computationally expensive: the whole inference procedure as to be
performed several times (we performed 10 iterations in Godard et al. [107]) with different
negative groups to reduce the variability of the predictions.

As an alternative, we then used a set of 90 manually-selected genes known to be
insensitive to NCR (Section 7.2). Unfortunately, given the large number of “non-NCR”
genes, selecting only 90 genes to represent the whole class of negative examples might
no be ideal. Indeed, we cannot ascertain that these examples capture all of the features
that characterize non-NCR genes. Moreover, these 90 genes might even be the “easiest”
to discriminate from NCR genes. Hence, building a classifier that discriminates these 90
genes from NCR genes does not necessarily lead to a classifier that accurately classifies
NCR from all non-NCR genes.

1Parts of this chapter appeared in Kontos et al. [142].
2Biologists are of course expecting some additional genes to be involved in NCR, otherwise we would

not be trying to tackle the problem of inferring NCR target genes in the first place.
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Obviously, the problem at hand corresponds more to one-class classification [233] than
to two-class classification. One-class classification tries to discriminate one class of objects
from all other possible objects by learning from a training set containing only the objects
of that class. This observation leads us to the fourth main contribution of the thesis,
which consists in a network inference approach to one-class classification (Section 8.1). In
a nutshell, our approach consists in inferring a Gaussian graphical model (GGM) based
on the number of occurrences of NCR-related motifs in the upstream noncoding sequences
of the genes. To circumvent the dimensionality issue, we use Ledoit and Wolf [153]’s
shrinkage estimator (Section 5.2). Given a set of NCR related genes, we then exploit
the topology of the inferred network for functional information. More specifically, the
neighbors of the genes of interest (the NCR regulators or/and the annotated NCR genes)
are identified as putative NCR genes.

This approach does not require a negative training set3 and thus avoids the problems
encountered with the methods introduced in Chapter 7.

Furthermore, the network structure can give further insight into the considered prob-
lem. Indeed, “in real world applications, graphical [...] models are not only a tool for
operations such as classification or prediction, but usually the network structures of the
models themselves are also of great interest” [160]. This approach provides a more subtle
and rich picture of the considered problem. Although we ultimately look at the neigh-
bors of the genes of interest, the network topology offers the possibility for biologists to
conduct a more detailed and refined analysis. While a standard classification approach
only predicts NCR genes, a network approach also gives information on the interactions
between the inferred NCR genes as well as on their interactions with the remaining genes.
We deem that a network inference approach is more adequate to deal with such a problem.

Finally, this procedure is by far less computationally expensive that the two two-class
classification approaches introduced previously. The feature selection and training phases
are replaced by the inference of a regularized covariance matrix.

Interestingly, a similar network inference approach to function prediction has recently
been proposed by Fitch and Jones [88].

8.1 Method: Inferring putative NCR genes with GGMs

Suppose we have a set C of genes known (or hypothesised) to be involved in NCR. We
will refer to it as the “core set”. It is either composed of the known NCR regulators,
C = RNCR, or the set of annotated NCR genes, C = ANCR (Section 8.2).

Further suppose we have a p × n data matrix X, where p is the number of genes
(variables) and n is the number of samples. Note an important difference with the methods
presented in Chapter 7 where genes were samples (to be classified). In this network
approach, however, genes play the role of variables among which multivariate dependencies
are to be inferred. Hence, each sample is a p-dimensional vector. The samples correspond
to motifs relevant to the NCR regulation. We use the same n = 62 motifs as Godard

3Nevertheless, we will use negative validation sets for comparison purposes.
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et al. [107] (Section 7.1). Hence, the (i, j)-th entry of matrix X, denoted xij , represents
the number of occurrences of motif j in the upstream noncoding sequence of gene i.

The proposed approach consists in inferring (linear) dependencies between yeast genes
by computing full-order partial correlations from the data matrix X using the shrinkage
estimator presented in Section 5.2. These multivariate dependencies are then exploited by
selecting the genes that are correlated (in terms of partial correlation) with at least one
gene of the core set C.

More specifically, for a given threshold t, the set It of inferred NCR genes is given by:

It =
{
j ∈ A \ C : max

i∈C

∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ ≥ t} , (8.1)

where A denotes the set of all yeast genes, and
∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ is the absolute value of the

shrinkage estimator of the full-order partial correlation between genes i and j (5.10).
Hence, It is composed of the genes (not in C) for which the full-order partial correlation

with at least one gene of C is greater (in absolute value) than the threshold t. In other
words, genes which are dependent (i.e., not independent) of at least one gene in C (given
the remaining genes in the genome) are inferred as NCR-sensitive. Inversely, genes which
are independent of all genes in C are not included in It.

The detailed description of our algorithm is given by Algorithm 8.1. In Line 1, we infer
the covariance matrix (which entirely determines the GGM; recall Section 4.6) using Ledoit
and Wolf [153]’s shrinkage estimator (Section 5.2). Next, we estimate the concentration
matrix Ω̂∗ (Line 2) as in (5.9). Finally, we build the set It of inferred genes (Line 3) as
in (8.1).

Algorithm 8.1: Inference of putative NCR genes.
Input: Data set X, core set C and threshold t.
Output: Set It of inferred genes.

Compute the shrinkage covariance matrix Σ̂∗ as in (5.8)1

Ω̂∗ ←
(
Σ̂∗
)−1

2

Compute the shrinkage full-order partial correlations ρ̂̂ρ̂ρ∗(i,j|A\{i,j}) for all i, j ∈ A3

from Ω̂∗ as in (5.10)
It =

{
j ∈ A \ C : maxi∈C

∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ ≥ t}4

return It5

Graphically, our method consists in drawing an edge between pairs of genes whose
full-order partial correlation exceeds the threshold t. Such a graph would be defined as
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G = (V, E) where V represents the set of genes and

E =
{

(i, j) ∈ V × V :
∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ ≥ t}

defines the set of edges. The inferred NCR genes It are then simply the neighbors (i.e.,
the boundary; recall Section 4.4) of the genes in the core set C:

It = bdG (C) ,

as illustrated in Figure 8.1.

Figure 8.1: The graph where edges correspond to partial correlations (in absolute value)
higher than the threshold t. The dots correspond to the genes in the core set C, the circles
represent the genes in It, while the remaining genes are symbolized by squares.

Concerning the threshold t, we vary its value and use measures of performance related
to receiver operator characteristic (ROC) curves (Section 8.2.1). Of course, the number
of inferred genes diminishes with increasing threshold values.

The proposed method can be seen as a network version of a (supervised) two-class
classifier. For a given threshold t, the genes in It are classified as “positive”, i.e., inferred
as NCR-sensitive, and the genes not in It (i.e., genes in A \ (C ∪ It)) are classified as
“negative.”
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Note that the full-order partial correlations only depend on the input data matrix X.
Hence, they only need to be computed once when considering different core sets and/or
different threshold values as long as the same data set is used.

In terms of performance, executing the proposed method (i.e., inferring the partial
correlation matrix and building the set It) using the statistical software R requires less
than 1 minute of CPU time on a 2.2 GHz Intel Core 2 Duo laptop with 2 GB RAM running
Mac OS X.

8.2 Experimental setup

Our approach requires a set C of core genes to be defined (Section 8.1). Given the available
data (Section 2.2), we use the set of known regulatory genes, C = RNCR, in Section 8.2.2,
and the set of annotated NCR genes, C = ANCR, in Section 8.2.3. In both cases, posi-
tive and negative validation sets, denoted by P and N , respectively, are defined to assess
the predictive power of our approach using the performance measure presented in Sec-
tion 8.2.1. Note that we perform negative controls to evaluate the significancy of our
results in Section 8.2.4. Eventually, we present the procedure for the “final” predictions
in Section 8.2.5.

8.2.1 Performance measure

As explained in Section 8.1, our method can be assessed as a two-class classifier. Hence,
we use the area under the receiver operator characteristic (ROC) curve (AUC) as the
performance measure.

However, our interest does not lie in the entire range of FPRs, but rather on very
low false positive rates such as FPR < 0.05. We therefore also compute the partial area
under the ROC curve (pAUC). Here, we focus on FPR ∈ (0, u] with u = 0.05 and denote
the corresponding area by pAUCu. Because the magnitude of pAUCu depends on u, it is
normalized by dividing it by u.

We also report jackknife estimates of standard deviations to be able to compare the
(p)AUC values.

8.2.2 Known regulators and negative validation set

We assess the ability of our approach to recover the annotated NCR genes (ANCR) from
the set RNCR of known regulators. We thus take C = RNCR and P = ANCR. Concerning
the negative validation set N , we consider two alternatives. As already mentioned, we can
reasonably assume most of the ∼ 6 000 yeast genes not to be targets of NCR. Hence, we
first take N = A \ {C ∪ P} (that A denotes the set of all yeast genes). Next, we consider
the aforementioned set of 90 manually-selected genes known to be insensitive to NCR, i.e.,
N = NNCR.
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8.2.3 Annotated NCR genes

We now run our method with C = ANCR. The inferred genes are first validated with
P = ANCR through a leave-one-out procedure. Next, we use the gene sets Pg, Ps and Pb
identified in the aforementioned experimental studies [11, 107, 214].

8.2.3.1 Leave-one-out

The ANCR genes form a biologically meaningful set since they are all targets of NCR.
Hence, we can expect that any given gene i ∈ ANCR is strongly correlated (in terms of
partial correlation) to at least one other gene in ANCR. If not, this would imply that gene
i interacts indirectly (i.e., through other genes) with the other ANCR genes (by definition
of partial correlation) and would be in contradiction with the hypothesis that the ANCR
genes form a biologically coherent set.

If our approach to inferring NCR genes is sound, then for each gene i ∈ ANCR the
maximal full-order partial correlation (in absolute value) of gene i with a gene in ANCR \
{i},

ρ̂̂ρ̂ρmax
i (ANCR) = max

j∈ANCR\{i}

∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ ,
should be high, relative to the same quantity computed for all genes k not in ANCR
(k ∈ A \ANCR):

ρ̂̂ρ̂ρmax
k (ANCR) = max

j∈ANCR

∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ .
To assess the usefulness of our approach, we thus estimate the p-value pi, which rep-

resents the probability of randomly obtaining a score at least as high as ωmaxi , for all
i ∈ ANCR, by the empirical p-value:

p̂i =
Card ({k ∈ A \ANCR : ωmaxk (ANCR) ≥ ωmaxi (ANCR)})

Card (A \ANCR)
, (8.2)

where Card (Z) denotes the cardinality of set Z.

8.2.3.2 Experimental studies

We also use the genes identified in the aforementioned experimental studies [11, 107, 214]
to validate our approach. Of course, these genes are only putative NCR genes and the
three sets identified only partially overlap. Still, in absence of any other validation data, we
use these sets to complement the leave-one-out validation procedure described previously.
More specifically, we consider all possible combinations of intersections and unions of these
three sets (Section 8.3).

8.2.4 Negative control

We perform negative controls to determine whether the results are significant or not. More
specifically, for the experiments described in Sections 8.2.2 and 8.2.3.2, respectively, we
run our method with 1 000 randomly chosen core sets Cir ⊂ A of cardinality

∣∣Cir∣∣ = |C|,
i = 1, . . . , 1 000. We then perform the validation procedure as described in Sections 8.2.2
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and 8.2.3, respectively, and report the mean and standard deviation of the AUC values
obtained.

8.2.5 Final predictions

Finally, we consider as core set C the known NCR regulators (RNCR) and the annotated
NCR genes (ANCR), i.e., C = RNCR ∪ ANCR, to predict the genes’ “NCR-sensitivity”.
Specifically, we compute for each gene j ∈ A its maximal partial correlation (in absolute
value), denoted by ωmaxj , with a gene in the core set (except with itself if j ∈ C), C \ {j};
formally:

ρ̂̂ρ̂ρmax
j = ρ̂̂ρ̂ρmax

j (RNCR ∪ ANCR) = max
i∈C\{j}

∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣ , ∀j ∈ A. (8.3)

This ωmaxj quantity is the “inferred NCR-sensitivity” of gene j.
We can thus rank all genes according to ωmaxj . In order to identify the set of putative

NCR genes, we determine a threshold on ωmaxj . Since the RNCR and ANCR genes form
a biologically meaningful set, we set the threshold equal to the median of the core genes’
ωmaxj (i.e., the genes in C = RNCR ∪ANCR):

median
j∈C

ρ̂̂ρ̂ρmax
j = median

j∈C

{
max
i∈C\{j}

∣∣∣ρ̂̂ρ̂ρ∗(i,j|A\{i,j})∣∣∣} . (8.4)

8.3 Results and discussion

8.3.1 Known regulators

Tables 8.1 and 8.2 present, respectively, the AUC and pAUC values for C = RNCR, both
for the GGM and the independence graph (Section 8.2.2). First, we note that all results
are significant given the (p)AUC values obtained in the negative control cases. Next, we
note the relatively high values for the GGM compared to the independence graph, which
demonstrate the ability of the proposed method to successfully recover the annotated NCR
genes from the four known NCR regulators. This suggests that our method (Section 8.1) is
able to identify genes relevant to NCR more efficiently than with the independence graph.

8.3.2 Annotated NCR genes

AUC and pAUC values for C = ANCR and N = A\ {C ∪ P} are shown in Tables 8.3 and
8.4, respectively (Section 8.2.3.2). Results for C = ANCR and N = NNCR are given in
Tables 8.5 and 8.6, respectively. Like previously, we note that all results are significant
given the AUC values obtained in the negative control cases. However, this is not always
the case with the pAUC values. We also note that the best AUC values are obtained for
sets P that contain genes found in at least two of the aforementioned studies [11, 107, 214]
(i.e., for intersections of at least two of the sets Pg, Ps and Pb). In other words, the
stronger is the “consensus” on the NCR-sensitivity of a gene, the higher is the probability
of this gene to be identified as such by our approach. In the case of pAUC values, however,
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Table 8.1: AUC values (and jackknife estimates of standard deviations) for C = RNCR and
P = ANCR are given in the “AUC” columns. The first row corresponds toN = A\{C ∪ P}
and the second one to N = NNCR. The “negative control” column shows the mean and
standard deviation of the AUC over 1 000 repetitions.

GGM Independence graph

Negative set N AUC Neg. control AUC Neg. control

A \ {C ∪ P} 0.910 (0.034) 0.501 (0.049) 0.678 (0.11) 0.499 (0.049)
NNCR 0.909 (0.039) 0.501 (0.059) 0.668 (0.14) 0.501 (0.059)

Table 8.2: pAUC values (and jackknife estimates of standard deviations) for C = RNCR
and P = ANCR are given in the “pAUC” columns. The first row corresponds to N =
A\{C ∪ P} and the second one to N = NNCR. The “negative control” column shows the
mean and standard deviation of the pAUC over 1 000 repetitions.

GGM Independence graph

Negative set N pAUC Neg. control pAUC Neg. control

A \ {C ∪ P} 0.023 (0.01) 0.001 (0.001) 0.005 (0.005) 0.001 (0.001)
NNCR 0.03 (0.018) 0.002 (0.002) 0.006 (0.006) 0.002 (0.002)

there is no notable difference between the sets. We remark that the GGM only slightly
outperforms the independence graph.

Concerning the leave-one-out procedure (Section 8.2.3.1), 22, 24 and 31 out of 37
ANCR genes are significantly identified as such (Table 8.7), with P -val. ≤ 0.05, P -val. ≤
0.10 and P -val. ≤ 0.15, respectively. This is to be compared with the 26, 28, 17 and 16
ANCR genes identified as such in the aforementioned experimental studies Bar-Joseph
et al. [11], Godard et al. [107], Scherens et al. [214] and by the independence graph
(P -val. ≤ 0.10), respectively.

8.3.3 Final predictions

Table 8.8 ranks by decreasing “inferred NCR-sensitivity” the genes whose “inferred NCR-
sensitivity” (8.3) is higher than the threshold (8.4). The threshold’s value is 0.0179
yielding a set of 95 putative NCR genes. The description of the top 25 genes is given in
Table 8.9.

Figure 8.2 depicts a graph composed of the core set’s genes (i.e., RNCR and ANCR
genes) and the putative NCR genes (i.e., the non-bold genes of Table 8.8), and the edges
between them whose corresponding full-order partial correlations are above the threshold
(8.4).

Interestingly, out of the 38 genes which are NCR regulators (RNCR) and/or targets of
NCR (ANCR), 21 appear in this set of 95 putative NCR genes and 24 appear in the top 600
genes (∼ 10% of all genes) ranked by decreasing “inferred NCR-sensitivity,” respectively
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Table 8.3: AUC values (and jackknife estimates of standard deviations) for C = ANCR
and N = A \ {C ∪ P} are given in the “AUC” columns. For P, we consider all possible
combinations (in terms of unions and intersections) of the sets Pg, Ps and Pb (from which
we remove genes in C). The “negative control” column shows the mean and standard
deviation of the AUC over 1 000 repetitions.

GGM Independence graph

P AUC Neg. control AUC Neg. control

Pg \ C 0.696 (0.021) 0.499 (0.028) 0.638 (0.028) 0.499 (0.027)

Ps \ C 0.709 (0.030) 0.499 (0.039) 0.650 (0.052) 0.500 (0.040)

Pb \ C 0.656 (0.034) 0.498 (0.038) 0.637 (0.049) 0.501 (0.036)

{Pg ∪ Ps} \ C 0.690 (0.018) 0.501 (0.024) 0.635 (0.026) 0.501 (0.025)

{Pg ∪ Pb} \ C 0.671 (0.017) 0.500 (0.023) 0.628 (0.026) 0.502 (0.023)

{Ps ∪ Pb} \ C 0.671 (0.026) 0.501 (0.028) 0.634 (0.036) 0.500 (0.027)

{Pg ∪ Ps ∪ Pb} \ C 0.669 (0.017) 0.500 (0.021) 0.624 (0.024) 0.500 (0.021)

{Pg ∩ Ps} \ C 0.792 (0.053) 0.500 (0.064) 0.703 (0.071) 0.499 (0.069)

{Pg ∩ Pb} \ C 0.836 (0.034) 0.501 (0.085) 0.779 (0.078) 0.498 (0.084)

{Ps ∩ Pb} \ C 0.867 (0.032) 0.499 (0.107) 0.805 (0.073) 0.499 (0.109)

{Pg ∩ Ps ∩ Pb} \ C 0.855 (0.047) 0.493 (0.144) 0.736 (0.103) 0.503 (0.145)

Table 8.4: pAUC values (and jackknife estimates of standard deviations) for C = ANCR
and N = A \ {C ∪ P} are given in the “pAUC” columns. For P, we consider all possible
combinations (in terms of unions and intersections) of the sets Pg, Ps and Pb (from which
we remove genes in C). The “negative control” column shows the mean and standard
deviation of the pAUC over 1 000 repetitions.

GGM Independence graph

P pAUC Neg. control pAUC Neg. control

Pg \ C 0.005 (0.002) 0.001 (0.001) 0.002 (0.002) 0.001 (0.001)

Ps \ C 0.005 (0.002) 0.001 (0.001) 0.003 (0.002) 0.001 (0.001)

Pb \ C 0.004 (0.002) 0.001 (0.001) 0.002 (0.002) 0.001 (0.001)

{Pg ∪ Ps} \ C 0.005 (0.002) 0.001 (0.001) 0.003 (0.002) 0.001 (0.001)

{Pg ∪ Pb} \ C 0.005 (0.001) 0.001 (0.001) 0.002 (0.002) 0.001 (0.001)

{Ps ∪ Pb} \ C 0.005 (0.002) 0.001 (0.001) 0.003 (0.002) 0.001 (0.001)

{Pg ∪ Ps ∪ Pb} \ C 0.005 (0.002) 0.001 (0) 0.003 (0.002) 0.001 (0)

{Pg ∩ Ps} \ C 0.006 (0.003) 0.001 (0.001) 0 (0.003) 0.001 (0.002)

{Pg ∩ Pb} \ C 0.005 (0.003) 0.001 (0.002) 0.001 (0.005) 0.001 (0.002)

{Ps ∩ Pb} \ C 0 (0.001) 0.001 (0.002) 0.002 (0.004) 0.001 (0.002)

{Pg ∩ Ps ∩ Pb} \ C 0 (0.001) 0.001 (0.003) 0 (0) 0.001 (0.003)
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Table 8.5: AUC values (and jackknife estimates of standard deviations) for C = ANCR and
N = NNCR are given in the “AUC” columns. For P, we consider all possible combinations
(in terms of unions and intersections) of the sets Pg, Ps and Pb (from which we remove
genes in C). The “negative control” column shows the mean and standard deviation of
the AUC over 1 000 repetitions.

GGM Independence graph

P AUC Neg. control AUC Neg. control

Pg \ C 0.656 0.500 (0.042) 0.689 0.500 (0.042)

Ps \ C 0.686 0.500 (0.049) 0.647 0.500 (0.049)

Pb \ C 0.629 0.500 (0.048) 0.732 0.500 (0.048)

{Pg ∪ Ps} \ C 0.653 0.500 (0.039) 0.670 0.501 (0.039)

{Pg ∪ Pb} \ C 0.637 0.500 (0.038) 0.694 0.500 (0.039)

{Ps ∪ Pb} \ C 0.646 0.500 (0.041) 0.682 0.500 (0.041)

{Pg ∪ Ps ∪ Pb} \ C 0.634 0.499 (0.038) 0.676 0.500 (0.037)

{Pg ∩ Ps} \ C 0.778 0.500 (0.075) 0.716 0.500 (0.076)

{Pg ∩ Pb} \ C 0.777 0.501 (0.090) 0.853 0.500 (0.090)

{Ps ∩ Pb} \ C 0.820 0.500 (0.116) 0.857 0.500 (0.114)

{Pg ∩ Ps ∩ Pb} \ C 0.784 0.498 (0.150) 0.895 0.500 (0.147)

Table 8.6: pAUC values (and jackknife estimates of standard deviations) for C = ANCR
and N = NNCR are given in the “pAUC” columns. For P, we consider all possible
combinations (in terms of unions and intersections) of the sets Pg, Ps and Pb (from which
we remove genes in C). The “negative control” column shows the mean and standard
deviation of the pAUC over 1 000 repetitions.

GGM Independence graph

P AUC Neg. control AUC Neg. control

Pg \ C 0.006 (0.002) 0.002 (0.001) 0.004 (0.003) 0.002 (0.001)

Ps \ C 0.007 (0.004) 0.002 (0.001) 0.004 (0.003) 0.001 (0.001)

Pb \ C 0.005 (0.003) 0.002 (0.001) 0.003 (0.004) 0.002 (0.001)

{Pg ∪ Ps} \ C 0.006 (0.002) 0.002 (0.001) 0.004 (0.003) 0.002 (0.001)

{Pg ∪ Pb} \ C 0.006 (0.002) 0.002 (0.001) 0.003 (0.003) 0.001 (0.001)

{Ps ∪ Pb} \ C 0.007 (0.003) 0.002 (0.001) 0.004 (0.003) 0.002 (0.001)

{Pg ∪ Ps ∪ Pb} \ C 0.006 (0.002) 0.001 (0.001) 0.004 (0.003) 0.001 (0.001)

{Pg ∩ Ps} \ C 0.009 (0.005) 0.002 (0.002) 0 (0.004) 0.002 (0.002)

{Pg ∩ Pb} \ C 0.006 (0.003) 0.002 (0.002) 0.004 (0.01) 0.002 (0.002)

{Ps ∩ Pb} \ C 0.001 (0.009) 0.001 (0.003) 0.004 (0.004) 0.002 (0.003)

{Pg ∩ Ps ∩ Pb} \ C 0 (0.008) 0.002 (0.004) 0 (0) 0.001 (0.004)
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Table 8.7: p-values of the leave-one-out procedure (Section 8.2.3). Genes with p-value
≤ 0.10 are shown in boldface.

Gene p-value Gene p-value Gene p-value Gene p-value

AGP1 1.06e-01 DAL3 5.32e-03 GAT1 1.03e-02 PRB1 3.34e-01

ASP3-1 1.71e-04 DAL4 1.01e-02 GDH2 5.35e-01 PUT1 1.20e-01

ASP3-2 1.71e-04 DAL5 1.10e-02 GDH3 1.20e-03 PUT2 8.32e-02

ASP3-3 1.71e-04 DAL7 8.57e-04 GLN1 8.81e-02 PUT4 1.85e-01

ASP3-4 1.71e-04 DAL80 3.43e-03 GZF3 6.86e-03 UGA4 7.20e-03

BAT2 1.69e-01 DCG1 1.18e-02 LAP4 3.47e-01 YGR125W 1.22e-01

CAN1 3.26e-03 DUR1,2 1.05e-02 MEP1 2.74e-03 YHI9 1.11e-01

CPS1 1.09e-01 DUR3 1.39e-01 MEP2 1.03e-02

DAL1 1.01e-02 ECM38 1.18e-01 MEP3 3.09e-03

DAL2 3.09e-03 GAP1 2.91e-03 PEP4 2.44e-01

Table 8.8: Ranking by decreasing “inferred NCR-sensitivity” of the genes whose “in-
ferred NCR-sensitivity” (8.3) is higher than the threshold (8.4). Known NCR regulators
(RNCR) and annotated NCR genes (ANCR) are shown in boldface and marked with two
(**) and one asterisks (*), respectively. Genes in one of the three sets of putative NCR
genes Pg, Ps and Pb (but not in RNCR nor in ANCR) are shown in boldface (without
asterisk).

Rank Gene P-cor Rank Gene P-cor Rank Gene P-cor

1. YSP3 0.076 34. ARA2 0.0327 67. RTG2 0.0213

2. ASP3-1* 0.073 35. ARG80 0.0327 68. MOH1 0.021

3. ASP3-2* 0.073 36. FBP26 0.0314 69. PXR1 0.0208

4. ASP3-3* 0.073 37. RBG1 0.028 70. YOR1 0.0205

5. ASP3-4* 0.073 38. FUN12 0.028 71. ALD2 0.0204

6. CUP9 0.072 39. YNR071C 0.028 72. IST1 0.0201

7. SSA4 0.0684 40. DMA2 0.0278 73. CWH41 0.02

8. PPM1 0.0643 41. LYS20 0.0277 74. FMP41 0.0198

9. PPZ2 0.0642 42. MGA2 0.0267 75. DAL1* 0.0198

10. SRY1 0.0592 43. SLX9 0.0267 76. DAL4* 0.0198

11. AVT7 0.059 44. TOM20 0.0267 77. LSC2 0.0196

12. GDH3* 0.0587 45. DAL3* 0.0263 78. GAT1** 0.0195

13. DAL7* 0.0587 46. FRS2 0.0257 79. MEP2* 0.0195

14. ECM37 0.0578 47. RAT1 0.0249 80. RPL25 0.019

15. YOL019W 0.0573 48. VPS21 0.0247 81. DUR1,2* 0.0189

16. IRR1 0.0567 49. IST3 0.0243 82. YMR010W 0.0189

17. RTA1 0.0556 50. PRP46 0.0241 83. PTI1 0.0188

18. YHR202W 0.0549 51. YPL150W 0.0241 84. YAL061W 0.0188

19. YIL089W 0.0546 52. NAR1 0.0239 85. DAL5* 0.0186

20. UBI4 0.048 53. LAP3 0.0239 86. PEX3 0.0184

21. YAL037W 0.0472 54. YHC1 0.0236 87. UBX5 0.0184

22. YAL037C-A 0.0449 55. HTD2 0.0236 88. DED81 0.0184

23. MEP1* 0.0436 56. UGA4* 0.0233 89. YHR020W 0.0184

24. YGR121W-A 0.0423 57. GZF3** 0.0233 90. THI80 0.0182

25. GAP1* 0.0423 58. MPD1 0.0231 91. YHL015W-A 0.0181

26. SPO14 0.0386 59. YOR289W 0.0231 92. YPR091C 0.0181

27. DAL2* 0.0383 60. GUD1 0.0226 93. YLR446W 0.0181

28. MEP3* 0.0376 61. YDL237W 0.0226 94. IME1 0.018

29. NPR2 0.0375 62. SNU13 0.0219 95. PTR3 0.018

30. AVT4 0.0363 63. ILV2 0.0219

31. HXT5 0.0331 64. YGK3 0.0218

32. CAN1* 0.033 65. YHR112C 0.0214

33. DAL80** 0.033 66. YHR113W 0.0214
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Figure 8.2: Graph composed of the core set’s genes (i.e., RNCR and ANCR genes; depicted
as rectangles) and the putative NCR genes (i.e., the non-bold genes of Table 8.8; depicted
as ovals), and the edges between them whose corresponding full-order partial correlations
are above the threshold (8.4).
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(see also Figure 8.3). Among the 14 genes not appearing in the top 600 genes, one (PUT4)
is known to be a “difficult case” because its two GATA-boxes are non-canonical [107].
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Figure 8.3: Histogram of NCR genes’ rank in the final predictions’ ranking.

Moreover, out of the 16 genes identified in each of the three aforementioned studies
[11, 107, 214] (i.e., the intersection of the sets Pg, Ps and Pb), 9 appear in the set of 95
putative NCR genes and 12 appear in the top 600 genes (∼ 10% of all genes) ranked by
decreasing “inferred NCR-sensitivity,” respectively. In other words, putative genes having
the largest “consensus” are relatively well ranked by our approach.
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8.3.4 Comparisons

We compute the intersections of the sets of putative NCR genes identified in Godard
et al. [107], in Chapter 7 and in Chapter 8 with the sets of known and annotated NCR
genes (RNCR and ANCR) and all possible combinations of intersections and unions of the
sets Pg, Ps and Pb arising from the aforementioned experimental studies [11, 107, 214].
We also assess the significancy of these intersections by computing p-values from the
hypergeometric distribution (Appendix J). Results are presented in Table 8.10. Except
for the RNCR genes with Chapter 7’s approach, all the p-values are smaller than 0.0001
and are thus highly significant for all three sets. However, differences exist between the
three methods. The most significant results are obtained by Godard et al. [107]’s approach,
followed by the methods proposed in this chapter and Chapter 7, respectively.

Interestingly, there are large intersections between the sets of genes identified by the
three methods (Figure 8.4), and at the same time, each method still identifies genes not
inferred as NCR-sensitive by the other two. This suggests a certain complementarity
between the different approaches.

Table 8.10: Number of genes in common and hypergeometric p-values. Note that Godard
et al. [107] refers to the 100 genes identified by the bioinformatics procedure described
in Section 7.1, while Pg refers to the 140 genes identified experimentally (i.e., with DNA
microarrays) in Godard et al. [107].

Set (number of genes) Godard et al. [107] Chapter 7 Chapter 8

RNCR (4) 3 (1.78×10−5) 1 (1.27×10−1) 3 (4.48×10−5)

RCNR+ANCR (38) 30 (1.69×10−48) 9 (2.99×10−6) 19 (3.85×10−22)

Pg (140) 32 (5.92×10−29) 25 (2.82×10−12) 20 (2.65×10−11)

Ps (87) 26 (8.62×10−27) 17 (2.49×10−9) 19 (3.02×10−14)

Pb (83) 23 (7.37×10−23) 18 (1.34×10−10) 13 (3.20×10−8)

Pg ∪ Ps (188) 40 (2.82×10−35) 30 (3.35×10−13) 29 (5.40×10−17)

Pg ∪ Pb (197) 39 (4.97×10−33) 32 (2.95×10−14) 24 (7.47×10−12)

Ps ∪ Pb (149) 36 (1.10×10−33) 27 (2.41×10−13) 25 (1.31×10−15)

Pg ∪ Ps ∪ Pb (240) 46 (7.39×10−39) 36 (7.77×10−15) 33 (9.79×10−18)

Pg ∩ Ps (39) 18 (9.39×10−23) 12 (2.40×10−9) 10 (9.34×10−9)

Pg ∩ Pb (26) 16 (4.74×10−23) 11 (2.14×10−10) 9 (2.73×10−9)

Ps ∩ Pb (21) 13 (6.27×10−19) 8 (1.86×10−7) 7 (2.35×10−7)

Pg ∩ Ps ∩ Pb (16) 12 (4.03×10−19) 7 (3.65×10−7) 7 (2.54×10−8)
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Figure 8.4: Intersections between the sets of genes identified in Godard et al. [107], in
Chapter 7 and in Chapter 8.

8.4 Conclusion

We proposed an approach based on Gaussian graphical models (GGMs) to identify pu-
tative NCR genes from putative NCR regulatory motifs and over-represented motifs in the
upstream noncoding sequences of annotated NCR genes. Because of the high-dimensionality
of the data, we used a shrinkage estimator of the covariance matrix to infer the GGMs,
which is statistically efficient and fast to compute.

We showed that our approach makes significant and biologically valid predictions by
comparing these predictions to annotated and putative NCR genes, and by performing
negative controls (Section 8.3). We also showed that the GGM is more effective (overall)
than the independence graph. This result underlines the importance of being able to
distinguish direct from indirect interactions. Moreover, this also shows that increasing the
threshold to remove the spurious interactions inferred by the independence graph does
not solve the problem. These results suggest that our approach can successfully identify
potential NCR genes in S. cerevisiae. Nonetheless, we note that the independence graph
also produces significant results (compared to the negative control) and that the GGM
does not always outperform it.

However, the results obtained with Godard et al. [107]’s approach are more significant
than those obtained with the proposed procedure. Nonetheless, the proposed method
performs better than the extended classification approach of Chapter 7. Moreover, the
visualization of the graph inferred with the proposed method offers the possibility to
biologists to conducted a more refined analysis.

Note that the proposed approach can readily be adapted to any type of data (e.g.,
expression data), and to any biological process of interest in any sequenced organism. It
only requires a (possibly small) set of genes known (or hypothesised) to be involved in the
biological process of interest and a data matrix whose samples are related to this process,
e.g. over-represented motifs in the upstream noncoding sequences. Of course, other type
of data, or even combination of different data (e.g., over-represented motifs and expression
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data) can also be used. Finally, note that we do not endorse the GGM as the “true model”
of multivariate dependencies between genes. Rather, we see it as a useful exploratory tool.





9

Conclusion

9.1 Summary of main results

With the advent of high-throughput technologies, biology is experiencing an unprecedented
data surge. The main challenge–for which computers have become indispensable–is to
extract useful information from this wealth of data. We have tackled two such tasks
in this thesis: the reverse engineering of gene regulatory networks (GRNs) from DNA
microarray data and the inference of nitrogen catabolite repression (NCR) target genes in
the yeast Saccharomyces cerevisae.

9.1.1 Reverse engineering gene regulatory networks from DNA microarray
data

The process of reverse engineering GRNs from DNA microarray data is far from being
trivial because of the poor information content of expression data, which are corrupted by
substantial amounts of measurement noise, and the combinatorial nature of the problem.
Indeed, gene expression levels are regulated by the combined action of multiple gene
products. Moreover, the “small n, large p” data setting renders learning tasks in molecular
biology more challenging.

We tackled this problem of reverse engineering GRNs from DNA microarray data with
Gaussian graphical models (GGMs). These models have become very popular in bioin-
formatics as they enable to distinguish between direct and indirect interactions. Unfortu-
nately, GGM selection is an ill-posed problem in the “small n, large p” setting. Indeed, the
usual sample concentration matrix—the maximum likelihood estimate of the (population)
concentration matrix—requires the sample covariance matrix to be positive definite and
this holds, with probability one, if and only if n > p.

To cope with this dimensionality issue, two approaches have been proposed in the liter-
ature. The first one uses regularization and the second one uses limited-order partial cor-
relation graphs, or q-partial correlation graphs. The underlying idea of these approaches is
to restrict the complexity of the models. Indeed, by introducing (a priori undesirable) bias
in the model selection procedure, one reduces the variance of the selected model thereby
increasing its accuracy. However, issues arise in both cases. Our two first contributions,
which consist in a new shrinkage estimator and an algorithm–the q-nested procedure–to
efficiently infer q-partial correlation graphs tackle these problems.
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First, we showed that the optimal shrinkage intensity estimator of Ledoit and Wolf
[153]’s shrinkage estimator is biased. Subsequently, we proposed an improved shrinkage
estimator of the covariance matrix that corrects this bias through a parametric bootstrap
approach. The applicability and usefulness of our estimator were demonstrated on both
simulated and real expression data.

Our second contribution consists in the q-nested procedure, an algorithm to efficiently
infer q-partial correlation graphs for GGM selection. Indeed, serious issues arise when in-
ferring q-partial correlation graphs with the existing methods and hinder the applicability
of these graphs for GGM selection. We showed that our algorithm efficiently copes with
these problems and outperforms state-of-the-art methods on simulated data.

9.1.2 Predicting nitrogen catabolite repression target genes

The second important and challenging task that we addressed in the thesis is gene function
prediction. Often, biologists know the function of some (but not all) genes with respect
to a specific process and their goal is to infer other genes involved in this process.

In particular, we tackled the inference of NCR target genes in the yeast Saccharomyces
cerevisae. The study of such a model organism is indispensable for the understanding of
more complex ones. NCR is the process studied in the ARC project that supported the
work presented in this thesis. It is an important biological process in S. cerevisae which
involves an essential nutrient for all life forms: nitrogen. The ultimate goal is to identify
all genes involved in NCR.

We first tackled this problem of inferring NCR target genes by adopting a “standard”
two-class classification approach. We then used GGMs to propose a new approach for
predicting NCR genes based on a network inference paradigm. The network structure
gives further insight into the considered problem by providing a more subtle and rich
picture. We deem that a network inference approach is more adequate to deal with such
a problem.

9.2 Future work

Extensions of the proposed methods include the combination of multiple sources of in-
formation (for example expression data and occurrences of motifs of interest in upstream
noncoding sequences) and the use of prior knowledge to further increase their accuracy.

Although GGM selection methods seem robust to the assumption of independent and
identically distributed (i.i.d.) data, it would be interesting to adapt the proposed GGM
selection methods (the improved shrinkage estimator and the q-nested procedure) to cases
where this assumption does not hold, such as with time-series data [206].

Concerning the q-nested procedure, it would also be interesting to study the effect of
the topology of the graph to be inferred (e.g., a graph whose degree distribution follows a
power law) on the performance of the algorithm. Additionally, the relative influence of the
screening procedure and the selection of partial correlations in the neighborhoods could be
assessed independently of each other. Furthermore, nonlinear measures of independence,
such as (conditional) mutual information, could be integrated to our algorithm. Another
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important issue is the control of Type II error (false negative) in multiple testing. Indeed,
the Type II error is only controlled indirectly through the Type I error (false positive).
However, in large sparse graphs such as GRNs, it might be useful to focus on controlling
the Type II error in order for all edges not to be removed [30].

Concerning the inference of putative NCR genes, future work is mainly concerned by
further experimental validation of the obtained results. Indeed, it would be interesting
to assess the quality of the inferred set of genes by means of automated tools that query
biological databases (e.g., FatiGO). Ideally, the putative NCR genes could be tested in
vitro for NCR-sensitivity.

Given the availability of ever-growing volumes of data and the constant need to extract
useful knowledge from them, we venture that the use of robust methods such as the ones
developed in this thesis are–and will remain–of uttermost importance for scientists–who
are “drowning in information”–not to “be starved for knowledge.” Hopefully, we will be
able one day to build a holistic view of biological systems.
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A

Notation

Unless otherwise stated, we adopt the following notational conventions:

− random variables are denoted in boldface and their realizations are denoted in normal
font;

− matrices are denoted in uppercase while vectors and scalars are denoted in lowercase;

− sets are denoted by the calligraphic symbols X , Y, G, V, E . . . , except for domains of
variables which are denoted by the calligraphic symbols X , Y , . . . ;

− estimators are denoted in boldface (since they are random variables) and surmounted
by a hat (e.g., Θ̂ is an estimator of the unknown quantity Θ);

− the input and output of a learning machine are denoted by the p-dimensional random
vector x = (x1, . . . ,xp) and the random variable y, respectively;

− the i-th sample of variables x and y are denoted by xi· = (xi1, . . . , xip)
T and yi,

i = 1, . . . , n, respectively;

− we let X = (x1·, . . . , xn·)
T denote the n × p data matrix with i-th row given by xi·

and we let y = (y1, . . . , yn)T denote the n-dimensional response vector ;

− we let Dn = {(xi·, yi) , i = 1, . . . , n} denote the data set available observations.

Equations are numbered only if they are referenced in the text.

A.1 Probability

P (A) Probability of event A.
X Sample space.
Fx (x) Cumulative distribution function of random variable x.
fx (x) Probability density function of continuous random variable x.
my (y) Probability mass function of discrete random variable y.
E (x) Expectation of random variable x.
Ê (x) Estimate of E (x).
Var (x) Variance of random variable x.
V̂ar (x) Estimate of Var (x).
Cov (x,y) Covariance between random variables x and y.
Cor (x,y) or ρ(x,y) Correlation between random variables x and y.
Bias (x) Bias of random variable x.
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A.2 Matrices

‖·‖F Frobenius norm.
tr (·) Trace.
Σ Covariance matrix.
ŜML Maximum likelihood estimator of Σ.
Ŝ Unbiased sample covariance matrix.
T̂ Low-dimensional (biased) estimator of Σ.
Σ̂λ Linear shrinkage estimator.
λ Shrinkage intensity.
λ∗ Optimal shrinkage intensity.
λ̂̂λ̂λ∗ Estimate of the optimal shrinkage intensity.
Ω̂∗ Optimal shrinkage estimator of the concentration matrix.
ω̂̂ω̂ω∗ij The (i, j)-th element of Ω̂∗.
λ̂̂λ̂λ∗bc “Bias-corrected” optimal shrinkage intensity estimator.
Σ̂∗bc “Bias-corrected” optimal shrinkage estimator of Σ.
ρ̂̂ρ̂ρ∗(i,j|S) Optimal shrinkage estimator of the partial correlation ρ(i,j| S).

A.3 Graph

V Vertex set.
E Edge set.
G = (V, E) Graph G with vertex set V and edge set E .
E Missing edge set.
{α, β}, α ∼G β Edge from node α to node β.
bdG (α) Boundary of node α.
clG (α) Closure of node α.
γG Edge proportion in G.
dG Average degree of nodes in G.
α 7→G β Path from α to β.
SG (α, β) Set of all nontrivial minimal (α, β)-separators in G.
dG (α, β) Connectivity of α and β.
G(q) =

(V, E(q)

)
q-Partial (correlation) graph with vertex set V and edge set E(q).

doutG (i, j) Outer connectivity of nodes i and j.
doutG

(E) Outer connectivity of the missing edges.
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Abbreviations and Acronyms

ANCR Annotated NCR genes.

AUC Area under the ROC curve.

AUC-PR Area under the PR curve.

BER Balanced error rate.

BLUE Best linear unbiased estimator.

bp Base pairs.

DNA Deoxyribonucleic acid.

ERM Empirical risk minimization.

FDR False discovery rate.

FP False positive.

FPR False positive rate.

GGM Gaussian graphical model.

GRN Gene regulatory network.

GSO Gram-Schmidt orthogonalization.

i.i.d. Independent and identically distributed.

KNN k-Nearest neighbors.

LARS Least angle regression.

LDA Linear discriminant analysis.

loo Leave-one-out.

MCMC Markov chain Monte Carlo.

MISE Mean integrated squared error.

MLE Maximum likelihood estimator.

mRNA Messenger RNA.

MSE Mean squared error.

NB Naive Bayes.

NCR Nitrogen catabolite repression.

NNCR Genes known to be insensitive to NCR.

ODE Ordinary differential equation.

OLS Ordinary least squares.
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ORF Open reading frame.

pAUC Partial area under the ROC curve.

PCA Principal components analysis.

PR Precision-recall.

PRIAL Percentage relative improvement in average loss.

QDA Quadratic discriminant analysis.

RDA Regularized discriminant analysis.

RNCR NCR regulators.

ROC Receiver operator characteristic.

RSAT Regulatory Sequence Analysis Tools.

SVD Singular value decomposition.

SVM Support vector machine.

TF Transcription factor.

TP True positive.

TPR True positive rate.
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Biology Glossary1

DNA microarray: Miniaturized array of a large number (into the thousands) of unique
DNA sequences spotted robotically onto glass slides or other solid substrates. Microar-
rays are used to simultaneously study large numbers of genes and their regulation, by
probing with labeled nucleic acids taken from biological samples.

Eukaryote: Any of the single-celled or multicellular organisms whose cell contains a
distinct, membrane-bound nucleus (e.g., Saccharomyces cerevisae).

Gene expression: The conversion of the information from the gene into mRNA via tran-
scription and then to protein via translation resulting in the phenotypic manifestation
of the gene.

Gene (expression) regulation: The modulation of any of the stages of gene expression,
hence, it encompasses the various systems that control and determine which genes are
switched on and off, and when, how long, and to what extent the genes are expressed.

Hybridisation: The process of forming a double-stranded nucleic acid from two comple-
mentary strands of DNA (or RNA).

Messenger RNA (mRNA): Single stranded rNA molecule that specifies the amino
acid sequence of one or more polypeptide chains. This information is translated
during protein synthesis when ribosomes bind to the mRNA. In prokaryotes, mRNA
is normally formed by splicing a large primary transcript from a dNA sequence and
protein synthesis starts while the mRNA is still being synthesised. Prokaryote mR-
NAs are usually very short lived. In contrast, in eukaryotes the primary transcripts
(hnRNA) are synthesised in the nucleus and they are extensively processed to give
the mRNA that is exported to the cytoplasm where protein synthesis takes place.

Open reading frame: A reading frame in a sequence of nucleotides in dNA that contains
no termination codons and so can potentially translate as a polypeptide chain.

Prokaryote: Any of the group of organisms primarily characterized by the lack of true
nucleus and other membrane-bound cell compartments: such as mitochondria and
chloroplasts, and by the possession of a single loop of stable chromosomal DNA in
the nucleiod region and cytoplasmic structures, such as plasma membrane, vacuoles,
primitive cytoskeleton, and ribosomes.

1Source: http://www.biology-online.org/
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Regulatory gene: A gene that is involved in the production of a substance that controls
or regulates the expression of one or more genes.

Reverse transcription: The process of making a double stranded DNA molecule from a
single stranded RNA template through the enzyme, reverse transcriptase. It is called
reverse transcription because it is a process in opposite or reverse of transcription.

Ribosome: A molecule consisting of two subunits that fit together and work as one
to build proteins according to the genetic sequence held within the messenger RNA
(mRNA). Using the mRNA as a template, the ribosome traverses each codon, pairing
it with the appropriate amino acid. This is done through interacting with transfer
RNA (tRNA) containing a complementary anticodon on one end and the appropriate
amino acid on the other.

DNA sequencing: Any lab technique used to find out the sequence of nucleotide bases
in a DNA molecule or fragment.

Transcriptome: The set of all mRNA molecules (or transcripts) in one or a population
of biological cells for a given set of environmental circumstances. Therefore, unlike
the genome, which is fixed for a given organism (apart from genetic polymorphism),
the transcriptome varies depending upon the context of the experiment.



D

Probability Essentials

A probability space (Ω,F ,P) consists of a set Ω (called the sample space), a σ-algebra F
of subsets of Ω (called the events), and a probability measure P on the measurable space
(Ω,F) [16, 82, 83, 129].

Definition D.0.1 (cumulative distribution function). The cumulative distribution func-
tion (CDF) of the random variable x is the function Fx : R→ [0, 1] defined by

Fx = P (x ≤ x) .

Definition D.0.2 (discrete random variable and probability mass function). A random
variable y is discrete if it takes countably many values. The probability mass function of
y is defined by

mx (x) = P (x = x) .

Definition D.0.3 (continuous random variable and probability density function). A ran-
dom variable x is continuous if there exists a function fx such that fx ≥ 0 for all x,∫ ∞

−∞
fx(x)dx = 1 ,

and for every a ≤ b,
P (a < x < b) =

∫ b

a
fx(x)dx .

The function fx is called the probability density function (PDF). We have that

Fx(x) =
∫ x

−∞
fx(t)dt ,

and fx(x) = d
dxFx(x) at all points x at which Fx is differentiable.

Definition D.0.4 (marginal density function). If (x,y) have joint distribution with den-
sity function fx,y, then the marginal density functions are

fx(x) =
∫
fx,y(x, y)dy , fy(y) =

∫
fx,y(x, y)dx .
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Definition D.0.5 (empirical distribution function). The empirical distribution function
F̂n is the CDF that puts mass 1/n at each of the n data points xi, i = 1, . . . , n:

F̂n(x) =
∑n

i=1 I (xi ≤ x)
n

.

where I is the indicator function

I (xi ≤ x) =

{
1 if xi ≤ x ,
0 if xi > x .



E

Bias-Variance Decomposition

Let α̂̂α̂α be the estimate returned by a given model for an (unknown) parameter α. As
the complexity of the model increases, it is able to better “extract information” from the
available sample. It will therefore return a more accurate estimate on average than would
a simpler model. Its bias, defined as

Bias (α̂̂α̂α) = α− E (α̂̂α̂α) ,

will hence be smaller than for a simpler model.
On the other hand, as the complexity increases, the model is also more sensitive to the

sample than a simpler model would be. Its variance, defined as

Var (α̂̂α̂α) = E
(

(α− E (α̂̂α̂α))2
)
,

will hence be higher.
Importantly, both bias and variance contribute to the mean squared error (MSE) as

characterized by the bias-variance decomposition [116] of the MSE of the estimator Θ̂ of
Θ:

MSE (α̂̂α̂α) = (Bias (α̂̂α̂α))2 + Var (α̂̂α̂α) . (E.1)

This decomposition is easily derived from the well-known relation for the variance of a
random variable θθθ,

Var (θθθ) = E
(
θθθ2
)− (E (θθθ))2 , (E.2)

by taking θθθ = α− α̂̂α̂α, and by recalling that

MSE (α̂̂α̂α) = E
(

(α− α̂̂α̂α)2
)
.





F

O-notation

The O-notation is used to measure an algorithm’s asymptotic efficiency and allows us
to compare the relative performance of alternative algorithms [39]. More specifically, it
is used in computational complexity theory to analyze the time (typically worst case or
average case running time) or space (i.e., memory usage) complexity of an algorithm as a
function of the size of the input [39].

For a given function g(n), we denote by O (g(n)) the set of functions [39]

O (g(n)) = {f(n) : ∃ c, n0 > 0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0} .

The O-notation thus gives an asymptotic upper bound on a function.





G

Matrices

We give a few basic definitions and results on matrices [108] used throughout the thesis.
We consider square real matrices,1 i.e., p× p matrices whose elements consist entirely

of real numbers. The set of p× p real matrices is denoted by Rp×p.
A matrix A ∈ Rp×p whose elements outside the diagonal are zero, i.e., aij = 0, i, j =

1, . . . , p, i 6= j, is called a diagonal matrix.
A matrix A ∈ Rp×p is symmetric if aij = aji, i, j = 1, . . . , p.
The inverse of a matrix A ∈ Rp×p is a matrix denoted by A−1 such that

AA−1 = A−1A = Ip ,

where Ip denotes the p× p identity matrix. Note that A−1 ∈ Rp×p. A square real matrix
has an inverse if and only if its determinant is nonzero. A matrix possessing an inverse
is called nonsingular, regular, or invertible. A square real matrix that is not invertible is
called singular.

A matrix A ∈ Rp×p is positive definite if

xTAx > 0 , for all x ∈ Rp \ {0} ,
where 0 denotes the zero vector of dimension p. It is positive semidefinite if

xTAx ≥ 0 , for all x ∈ Rp \ {0} .
The determinant of a positive definite matrix is always positive, so a positive definite
matrix is always nonsingular.

The condition number for matrix inversion with respect to a matrix norm ‖·‖ of a
matrix A ∈ Rp×p is defined by:

κ (A) =

{
‖A‖ ∥∥A−1

∥∥ if A is nonsingular;

+∞ otherwise.

The condition number is a measure of stability or sensitivity of a matrix (or the linear
system it represents) to numerical operations. Matrices with condition numbers near 1
are said to be well-conditioned. Matrices with condition numbers much greater than one
are said to be ill-conditioned.

1Most definitions and results given here apply to or can be generalized to nonsquare and/or nonreal

matrices.
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Hypothesis Testing

H.1 Correlation

In a frequentist setting, testing whether the correlation is significantly different from zero
requires the distribution function of the sample correlation ρ̂̂ρ̂ρ(i,j) under the null hypothesis
ρ(i,j) = 0 to address the statistical testing problem of non-zero correlation:

H0 : ρ(i,j) = 0 versus H1 : ρ(i,j) 6= 0 . (H.1)

A possible solution is to resort to Fisher’s Z-transform of the correlation:

Z(i,j) = tanh−1 ρ̂̂ρ̂ρ(i,j) =
1
2

log
(

1 + ρ̂̂ρ̂ρ(i,j)

1− ρ̂̂ρ̂ρ(i,j)

)
,

which has an asymptotic normal distribution under the null hypothesis H0 [6, 86, 87]. Us-
ing a significance level α, we reject the null-hypothesis H0 against the two-sided alternative
H1 if √

n− 3Z(i,j) > Φ−1 (1− α/2) , (H.2)

where Φ (·) denotes the cumulative distribution function of the standard normal distribu-
tion N (0, 1).

H.2 Multiple testing correction

A Type I error, or false positive, is committed by rejecting a true null hypothesis when it
is actually true. A Type II error, or false negative, is committed by failing to reject a false
null hypothesis [67].

Ideally, one would like to simultaneously minimize both the number of Type I errors
and Type II errors. Unfortunately, this is impossible and one seeks a trade-off between
the two types of errors. A classical approach is to specify an acceptable level α of the
Type I error rate and derive testing procedures that aim to minimize the Type II error
rate among the tests with Type I error level at most α [67].

Standard approaches to multiple testing control the family-wise error rate (FWER),
that is, the chance of committing at least one Type I error.

These techniques are often criticized because they are very conservative, especially
for large-scale testing problems such as those encountered when reverse engineering gene
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regulatory networks, leading to large numbers of Type II errors (i.e., these methods lack
power) [67]. When many tests are performed simultaneously and a large proportion of
null hypotheses are expected to be false, one may be prepared to tolerate some Type I
errors, provided their number is small in comparison to the number of rejected hypotheses
[67]. Therefore, multiple testing procedures for controlling the proportion of Type I errors
among the rejected hypotheses, such as the false discovery rate (FDR) [14], have become
popular for large-scale testing problems.



I

Shrinkage Estimator

I.1 Variances of individual entries

The empirical unbiased variances of the individual entries of Ŝ (5.2) are computed as
follows (recall that the observations are i.i.d.):

V̂ar (ŝij) =
(

n

n− 1

)2

V̂ar

(
1
n

n∑
k=1

xkixkj

)
,

=
1

(n− 1)2

n∑
k=1

V̂ar (xkixkj) ,

=
n

(n− 1)2 V̂ar (xkixkj) ,

=
n

(n− 1)3

n∑
k=1

(
xkixkj − 1

n

n∑
k=1

xkixkj

)2

.

I.2 Optimal shrinkage intensity

The expected quadratic loss is given by:

E
(∥∥∥Σ̂λ − Σ

∥∥∥2

F

)
= E

 p∑
i=1

p∑
j=1

(
Σ̂λ,ij − Σij

)2

 ,

=
p∑
i=1

p∑
j=1

E
((

Σ̂λ,ij − Σij

)2
)
,

=
p∑
i=1

p∑
j=1

{
Var

(
Σ̂λ,ij

)
+
(
E
(
Σ̂λ,ij

)
− Σij

)2
}
, (I.1)

where we used (E.2) to derive (I.1). From the definition of Σ̂λ,ij (5.4), we have that

Var
(
Σ̂λ,ij

)
= λ2 Var

(
T̂ij

)
+ (1− λ)2 Var

(
Ŝij
)

+ 2λ (1− λ) Cov
(
T̂ij , Ŝij

)
, (I.2)
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and

E
(
Σ̂λ,ij

)
= λE

(
T̂ij

)
+ (1− λ) E

(
Ŝij
)
,

= λE
(
T̂ij − Ŝij

)
+ E

(
Ŝij
)
. (I.3)

Plugging (I.2) and (I.3) in (I.1), and taking the derivative of (I.1) with respect to λ,
we obtain:

δ

δλ
E
(∥∥∥Σ̂λ − Σ

∥∥∥2

F

)
=

p∑
i=1

p∑
j=1

{
2λVar

(
T̂ij

)
− 2 (1− λ) Var

(
Ŝij
)

+ 2 (1− 2λ) Cov
(
T̂ij , Ŝij

)
+2E

(
T̂ij − Ŝij

)(
λE

(
T̂ij − Ŝij

)
+ E

(
Ŝij
)
− Σij

)}
.

We rearrange the terms to get:

δ

δλ
E
(∥∥∥Σ̂λ − Σ

∥∥∥2

F

)
=

λ


p∑
i=1

p∑
j=1

{
2 Var

(
T̂ij

)
+ 2 Var

(
Ŝij
)
− 4 Cov

(
T̂ij , Ŝij

)
+ 2E

(
T̂ij − Ŝij

)2
}

−


p∑
i=1

p∑
j=1

{
2 Var

(
Ŝij
)
− 2 Cov

(
T̂ij , Ŝij

)
− 2E

(
T̂ij − Ŝij

)(
E
(
Ŝij
)
− Σij

)} .

(I.4)

By noting that

Var
(
T̂ij

)
+ Var

(
Ŝij
)
− 2 Cov

(
T̂ij , Ŝij

)
= Var

(
T̂ij − Ŝij

)
,

and
E
(
Ŝij
)
− Σij = Bias

(
Ŝij
)
,

and by setting (I.4) to zero, we obtain:

λ∗ =

∑p
i=1

∑p
j=1

(
Var

(
Ŝij
)
− Cov

(
T̂ij , Ŝij

)
− Bias

(
Ŝij
))

∑p
i=1

∑p
j=1 E

((
T̂ij − Ŝij

)2
) . (I.5)

Since Ŝ is unbiased, i.e., Bias
(
Ŝij
)

= 0, (I.5) reduces to

λ∗ =

∑p
i=1

∑p
j=1

(
Var

(
Ŝij
)
− Cov

(
T̂ij , Ŝij

))
∑p

i=1

∑p
j=1 E

((
T̂ij − Ŝij

)2
) .
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Hypergeometric Distribution

The hypergeometric distribution is a discrete probability distribution that describes the
number of successes in a sequence of draws from a finite population without replacement
[82].

Let there be g ways for a “good” selection and b ways for a “bad” selection out of a
total of g + b possibilities. The probability that the total number of successful selections
x is equal to k in a sequence of n draws is given by:

P (x = k) =

(
g
k

)(
b

n−k
)(

g+b
n

) ,

where
(
a
b

)
is the usual binomial coefficient, i.e., the number of b-element subsets of an

a-element set. The random variable x is said to follow a hypergeometric distribution with
parameters g, b, n ∈ N.
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Evaluating the Performance of Classifiers

We present measures based on receiver operator characteristic curves (Appendix K.1) and
on precision-recall curves (Appendix K.2) to assess the performance of two-class classifiers
(Section 3.7).

A label predicted as positive by a classifier is a true positive (TP) if the label is positive
and a false positive (FP) otherwise. True and false negatives (TN and FN, respectively)
are defined analogously.

K.1 Receiver operator characteristic curve

A receiver operator characteristic (ROC) curve is a graphical plot of the true positive rate

TPR =
TP

TP + FN
,

versus the false positive rate

FPR =
FP

FP + TN
,

for different values of the threshold.
The use of ROC curves is recommended when evaluating binary decision problems in

order to avoid effects related to the chosen threshold [81, 193].
The area under the ROC curve (AUC) reduces ROC performance to a single scalar

value representing the expected performance [81]. Being a portion of the area of the unit
square, its value is comprised between 0 and 1. It corresponds to the “probability that
the classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative instance” [81]. Note that a random classifier produces the diagonal line between
(0, 0) and (1, 1), hence achieving an AUC of 0.5.

Sometimes we are not interested in the entire range of FPRs, but rather on very low
false positive rates such as FPR < 0.05. We then compute the partial area under the ROC
curve (pAUC) [131, 172], which is a summary measure of the ROC curve used to make
statistical inference when only a region of the ROC space is of interest. It is defined as
the area below the ROC curve on (0, u], with u ∈ (0, 1], divided by u (for normalization
purposes [131]).

Since (p)AUC measures are sample-based estimates, one typically reports estimates of
standard deviations (for example jackknife estimates; Section 3.2.2) to be able to compare
the (p)AUC values [81].
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K.2 Precision-recall curve

If there is a large skew in the class distribution, as is typically the case when inferring
gene regulatory networks (because of their sparseness), precision-recall (PR) curves give
a more accurate picture of an algorithm’s performance than ROC curves [47]. The PR
curve is a diagram which plots precision, defined as the fraction of true positives among
those inferred as positive:

prec =

 TP
TP+FP if TP + FP > 0 ,

0 otherwise ,

versus recall, defined as the fraction of true positives among all true labels:

rec =

 TP
TP+FN if TP + FN > 0 ,

0 otherwise ,

for different values of the threshold on a two-dimensional coordinate system [251].
These quantities depend on the threshold chosen to return a binary decision. The

quality of an algorithm is measured by the area under the PR curve (AUPRC) [47].
Alternatively, one can compute the F -measure, which is defined as the harmonic mean of
the precision and recall quantities:

F (prec, rec) =

{
2·prec·rec
prec+rec if prec + rec > 0 ,

0 otherwise .
(K.1)



L

Nitrogen Catabolite Repression

L.1 Sets of genes

The set of 4 NCR regulators (RNCR) [107, 146, 147] is given in Table L.1.

Table L.1: NCR regulators (RNCR).

Standard name(s) Systematic name

DAL80/UGA43 YKR034W
GAT1/NIL1/MEP80 YFL021W

GLN3 YER040W
GZF3/DEH1/NIL2 YJL110C

The set of 41 annotated NCR genes (ANCR) [107, 146, 147] are given in Table L.2.
The four genes that were not identified as NCR-responding in any of the three genome-
wide experimental and bioinformatics studies described in Bar-Joseph et al. [11], Godard
et al. [107], Scherens et al. [214] are marked with an asterisk (*).

The set of 90 manually-selected genes known to be insensitive to NCR (NNCR) [146,
147] is given in Tables L.3 and L.4.

L.2 NCR related motifs

The 65 NCR related motifs used in Godard et al. [107] are given in Table L.5.
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Table L.2: Annotated NCR genes (ANCR).

Standard name Systematic name

AGP1 YCL025C
ASP3-1 YLR155C
ASP3-2 YLR157C
ASP3-3 YLR158C
ASP3-4 YLR160C
ATG14 YBR128C
BAT2 YJR148W
CAN1 YEL063C
CAR1 YPL111W
CPS1 YJL172W
DAL1 YIR027C
DAL2 YIR029W
DAL3 YIR032C
DAL4 YIR028W
DAL5 YJR152W
DAL7 YIR031C
DAL80 YKR034W
DCG1 YIR030C

DUR1,2 YBR208C
DUR3 YHL016C

ECM38 YLR299W
GAP1 YKR039W
GAT1 YFL021W
GDH2 YDL215C
GDH3 YAL062W
GLN1 YPR035W
GZF3 YJL110C
LAP4 YKL103C
MEP1 YGR121C
MEP2 YNL142W
MEP3 YPR138C
PEP4 YEL060C
PRB1 YLR142W
PUT1 YHR037W
PUT2 YOR348C
PUT4 YGR019W
UGA1 YDL210W
UGA4 YGL227W
VID30 YHR029C
YHI9 YGR125W

YPL154C
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Table L.3: Genes known to be insensitive to NCR (NNCR). Part 1 of 2.

Standard name Systematic name

ABC1 YOR237W
ACT1 YML102W
AGP2 YPR016C
ALG6 YML099C
ALK1 YJR126C
APM1 YKL068W
ARG81 YGR253C
ATR1 YNL261W
AVT3 YNL268W
CAC2 YLR362W
CCT2 YGL030W
CDC23 YML116W
CIT3 YDR310C
CKI1 YLR188W

CMK1 YMR058W
COQ2 YIR006C
CRP1 YGR020C
DAN2 YLR055C
DOT5 YPL131W
ECM10 YEL030W
ERP5 YGR074W
FET3 YKR055W
GCD6 YLR133W
GEA1 YDR409W
GUT1 YFL039C

HEM13 YHR073W
HES1 YLL040C
HLJ1 YIL142W
HOS3 YDR005C
HRT1 YER115C
INP54 YPR051W
ISY1 YHR110W
LAC1 YOR368W
LAT1 YOR221C
LEU3 YKR106W
LOT6 YOL133W
LYP1 YOR002W
MAF1 YPR001W
MAK3 YOR187W
MCT1 YIL010W
MDL1 YGR270W
MET6 YNL071W
MKK2 YGL021W
MLH1 YBR132C
MNN4 YJR031C
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Table L.4: Genes known to be insensitive to NCR (NNCR). Part 2 of 2.

Standard name Systematic name

MSS51 YLR426W
NBP1 YGR229C
NGG1 YHR146W
NIC96 YLR457C

NUP100 YDR211W
ORC5 YGL112C
OSH3 YPL259C
PAN1 YDR176W
PBN1 YLR011W
PEP8 YLR090W
PET8 YMR284W
PUP2 YKL201C

RAD17 YFR014C
RHO4 YLR037C

RPA190 YMR167W
RPL30 YDR044W
RPL5 YHR106W
RSE1 YFR002W
SIZ1 YLR203C

SMD1 YJL053W
SMI1 YCL052C
SPR6 YGL119W
SPT10 YPL140C
SPT8 YER091C
STE11 YMR161W
SUM1 YPL128C
TAF6 YKL008C
TBF1 YHR166C
TIF6 YML049C
TOK1 YNL003C
TPS1 YER005W
TRR2 YPL116W
TUF1 YOR341W
VMA7 YKL146W
VPS13 YOR229W
VPS70 YJR050W
WTM2 YBR126C
XDJ1 YNR041C

YFL063W YLR451W
YKU70 YHL032C
YND1 YJL093C
YTA7 YPR004C

YJL127C
YFL063W
YOL065C



L.2 NCR related motifs 191

Table L.5: NCR related motifs used in Godard et al. [107] and Kontos et al. [142].

AAGATA CGATAAGA

AAGATAA CGCCG

AAGATAAG CGCTTATC

AAGCG CTGATA

ACCTTATC CTGATAA

AGATA CTGATAAG

AGATAA CTTATC

AGATAAG CTTATCA

AGATAAGA CTTATCAA

AGATAAGC CTTATCGC

AGCCG CTTATCNn{0,60}GATAAG
AGCCTA GATAA

ATAAG GATAAC

ATAAGA GATAACA

ATAAGAT GATAACAA

ATAAGATA GATAAGA

ATAAGC GATAAGC

ATAAGCG GATAAGNn{0,60}CTTATC
ATAAGG GATAAGNn{0,60}GATAAG
ATAAGGG GATAANn{0,60}GATAA
ATCAG GATAANn{0,60}TTATC
ATCTTA GCACC

ATCTTATC GCCGC

CAGATAAG GCGATAA

CCCGG GGCAC

CCCTTA TAAGA

CCTTA TAAGATA

CCTTATC TAAGATAA

CCTTATCA TATCA

CGATAA TGATAA

CGATAAG TTATCNn{0,60}GATAA
GATAAG GATAAH

GATTA
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Gram-Schmidt Orthogonalization

The Gram-Schmidt orthogonalization (GSO) procedure can be used to rank p input vari-
ables x1, . . . ,xp given an output variable y [32]. If we let V = {x1, . . . ,xp} denote the set
of input variables, it first selects the variable which exhibits the highest correlation with
y:

xs1 = max
xi∈V

ρ(xi,y) .

Next, the method selects the variable whose partial correlation with the output given the
already selected variables is the highest. Let Sk denote the set of k selected variables after
step k, k = 1, . . . , p − 2. At step k + 1, the GSO procedure will thus select the following
variable:

xsk+1
= max

xi∈V\Sk

ρ(xi,y| Sk) .

Once p − 1 variables have been ranked, the procedure stop (since the remaining variable
is of course the last in the ranking).

To use GSO as a variable selection procedure, we assess at each step the predictive
power of the selected variables with a linear model through leave-one-out cross-validation.
The subset having the lowest prediction error is the selected subset.
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K. (2004). Reverse engineering of the stress response during expression of a recombi-
nant protein. In European Symposium on Intelligent Technologies, Hybrid Systems and
their Implementation on Smart Adaptive Systems (EUNITE), pages 407–412, Aachen,
Germany.

[216] Schölkopf, B., Tsuda, K., and Vert, J.-P., editors (2004). Kernel Methods in Com-
putational Biology. The MIT Press.

[217] Schuchhardt, J., Beule, D., Malik, A., Wolski, E., Eickhoff, H., Lehrach, H., and
Herzel, H. (2000). Normalization strategies for cDNA microarrays. Nucleic Acids Re-
search, 28(10):e47i–e47v.

[218] Shmulevich, I., Dougherty, E., Kim, S., and Zhang, W. (2002). Probabilistic Boolean
networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics,
18(2):261–274.

[219] Simonis, N., Wodak, S. J., Cohen, G. N., and van Helden, J. (2004). Combining pat-
tern discovery and discriminant analysis to predict gene co-regulation. Bioinformatics,
20(15):2370–2379.

[220] Smith, C. W. and Valcarel, J. (2000). Alternative pre-mrna splicing: the logic of
combinatorial control. Trends in Biochemical Science, 25:381–388.



Bibliography 219

[221] Smolen, P., Baxter, D. A., and Byrne, J. H. (2000). Modeling transcriptional control
in gene networks – methods, recent results, and future directions. Bulletin of Mathe-
matical Biology, 62:247–292.

[222] Snoussi, E. H. (1989). Qualitative dynamics of piecewise-linear differential equations:
A discrete mapping approach. Dynamics and Stability of Systems, 4(3/4):189–207.

[223] Somogyi, R. and Sniegoski, C. A. (1996). Modeling the complexity of genetic net-
works: understanding multigenic and pleiotropic regulation. Complexity, 1:45–63.

[224] Soussi-Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J. C., and André, B.
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