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Introduction

Around 1870, when studying the problem of family names extinction in British peer-
ages, Galton and Watson showed for the first time how the computation of probabilities
could explain the effects of randomness in the development of families or populations.
They proposed a mathematical model that went unnoticed for many years, and that
reappeared in isolated papers in the 1920’s and 1930’s.

Galton and Watson’s model, and its many extensions, became widely studied in
the 1940’s, both from a strictly theoretical and from a more practical point of view.
Applications ranged from the evolution of genes populations to chain reaction of neu-
trons, and cosmic rays. This body of work was brought under the name of branching
processes, which nowadays still form a lively field of research.

Branching processes can be seen as stochastic processes describing the evolution
of a population of individuals which reproduce and die independently, according to
some specific probability distributions. These processes may be classified into several
categories. We briefly review some of them in the next paragraphs, so as to give an
idea of how wide the field has grown, and we provide some references for the interested
reader.

The individuals in a population may be all identical, or they may belong to several
types differing by their reproduction and mortality rates, and one then writes about
multitype branching processes. These individuals evolve in discrete or continuous time,
with exponential or general lifetime distributions, respectively corresponding to what
we call the Markovian branching process, and the age-dependent branching process.
Galton and Watson studied the discrete, one-type case, which is the simplest form
of branching process. Some general reference books are Harris [26] and Athreya and
Ney [6]; Mode [54] is specifically dedicated to the multitype case.

The reproduction rules of an individual may depend on the actual size of the pop-
ulation, and one then refers to population-size-dependent branching processes (Kle-
baner [42], Gonzalez, Martinez and Mota [23]). In bisexual branching processes, female
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and male individuals are considered separately, and a mating function has to be taken
into account in the reproduction rules (Bruss [12], Hull [34]).

Finally, external processes may influence in different manners the growth of a pop-
ulation. First, new individuals may immigrate in the initial system according to some
point process (Pakes [60]). So far, the individuals are supposed to behave indepen-
dently of each others, but things may be different; for instance, a branching process
may undergo catastrophic events, killing a random number of living individuals (Bar-
toszynski et al. [7], Thilaka, Kumar and Vijayakumar [68, 44]). The branching process
may also evolve in a random environment controlling the lifetime and the reproduction
laws of individuals over time (Athreya and Karlin [5], Tanny [67]). In the last two
cases, the assumption of independence between individuals does not hold anymore,
which notably complicates the analysis.

When immigration is not allowed, branching processes satisfy a dichotomy prop-
erty: either the population eventually explodes, or it becomes extinct; there is no
stationary behaviour. An important part of the literature on branching processes deals
with questions such as finding criteria for almost sure extinction of the population,
or determining the population size distribution at a given time, and the distribution
of the time until extinction. Some authors also examine asymptotic behaviours of a
branching process such as its asymptotic growth. If immigration is taken into account,
then one may study the stationary distribution of the population size.

When individuals behave independently, it is well-known that the conditional ex-
tinction probability of a multitype branching process, given the type of the initial
individual, is the minimal nonnegative solution of the fixed point equation

x = P (x), (1)

where x is a vector and P (·) is the probability generating function of the individuals’
reproduction law (see for instance Harris [26] or Athreya and Ney [6, Section V.3]).
Harris pointed out that the extinction probability could be computed by functional
iteration, using this fixed point equation [26, Theorem 7.2]. This seems to be the first
evocation of the practical question of the computation of the extinction probability.
Up to now, few authors investigated other numerical techniques to assess the extinc-
tion probability of a population. From this question stems our interest in developing
algorithms in the field of branching processes.

Algorithmic techniques have already proved themselves in a field of applied prob-
abilities called the matrix analytic methods. These methods have been developed first
in the context of queueing models and have given rise to the theory of quasi-bith-and-
death (QBD) processes and to that of skip-free Markov chains (Neuts [56, 57], Latouche
and Ramaswami [47], Bini, Latouche and Meini [10]), both belonging to the family of
structured Markov chains.

Matrix analytic methods focus on algorithmic approaches to compute, for instance,
stationary distributions and first passage times in structured Markov chains; they
give much importance to the probabilistic interpretation of the proposed numerical
procedures. Our idea is thus to draw our inspiration from these techniques and to
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develop new tools to answer questions related to branching processes.
Recently, Bean, Kontoleon and Taylor [8, 9, 43] worked on a special class of multi-

type branching processes, called general Markovian trees (GMT) (or simply Markovian
trees), in which the lifetime of an individual has a phase-type distribution (defined as
the distribution of the time until absorption of a Markovian process [47, Chapter 2]),
and a random number of offsprings are born at epochs which are determined by a
Markovian arrival process. With these assumptions, the GMTs form a very rich and
varied class of branching processes. The authors also consider the special case where
individuals can give birth to one child at a time only, and use the name Markovian
binary tree (MBT) for these processes.

For MBTs, the probability generating function P (·) is a second order polynomial
matrix function, and the fixed point equation (1) is quadratic in the unknown vector
x. Using matrix analytic methods, the authors analyze two algorithmic procedures to
solve the fixed point equation, they determine their probabilistic interpretations, and
use it to compare the efficiency of the numerical schemes. Their results are the starting
point of our work.

The main objective we have pursued all along is to further develop algorithmic
methods to compute the extinction probability of an MBT, emphasizing the proba-
bilistic interpretation of these methods in terms of the branching process itself. The
idea is to compute at successive iterations the probability that the MBT eventually
becomes extinct with some constraints. At each step, the constraints are relaxed, so
that the sequence of probabilities converges to the ultimate extinction probability of
the branching process. These constraints characterize each algorithm, and inform us
about its speed of convergence.

We investigate in depth the extinction probability in the case where individuals
behave independently of each others. This gives rise to efficient linear and quadratic
algorithms. In this work, we generally only consider the MBT case for the sake of
clarity. Usually, the results can be naturally generalized to the GMT case; we give more
details whenever the difference in the computation or in the probabilistic interpretation
is notable.

In order to prove some of our results, we need to make some irreducibility as-
sumptions on the multitype branching process, that is, it is common to assume that
any type of individual is able to generate any other type of individual. In that case,
the extinction probability is either equal to one for all initial types or strictly less
than one for all initial types. A natural question then arises: what happens if we
remove this assumption? How does a multitype branching process behave in case some
types of individuals are not able to produce other types of individuals? Such mul-
titype branching processes are called reducible. It turns out that in that case, some
groups of individuals may eventually become extinct without the whole process doing
so, and we investigate several extinction criteria. We elucidate the exact importance of
the irreducibility assumption, and we discuss algorithms to compute total and partial
extinction probabilities.
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Our second objective is to analyze the transient features of an MBT. We use the
forward and the backward Kolmogorov equations approach and obtain the population
size distribution of an MBT at any given time. Its probability generating function is
the solution of two differential systems of equations. These equations may not be solved
explicitely in the general case, but we derive recursive expressions for all the factorial
moments. We also investigate other transient measures such as the distribution of the
time until extinction, and the distribution of the total progeny size until some given
time, or until extinction, conditionally given that extinction occurs.

Markovian trees may be seen as particular level-dependent structured Markov
chains. Let us give a little more details here: structured Markov chains are two-
dimensional Markovian processes of which the two components are discrete and are
called the level and the phase. Suppose the process is in level k. In the particular case
of a QBD, the only possible transitions are to levels k − 1, k, or k + 1, while in the
case of a skip-free Markov chain, it is allowed to move either to levels k− 1, k and any
higher level (like in the M/G/1-type Markov chain), or to levels k+1, k, and any lower
level (like in the G/M/1-type Markov chain).

One can associate a level-dependent QBD process to the MBT, and a level-dependent
M/G/1-type Markov chain to the GMT. This correspondence allows one to use numer-
ical tools from matrix analytic methods to compute the extinction probability. This
is particularly useful when the fixed point equation (1) does not hold anymore. For
instance, the extinction probability of a population-size dependent MBT may be com-
puted by adapting to the level-dependent case some linear and quadratic algorithms
developed for level-independent QBDs [47].

Various transient characteristics of MBTs may also be computed thanks to their
parallelism with QBDs: the time until extinction and the time until the population
reaches k individuals may be obtained by adapting numerical procedures for first pas-
sage times to lower and to upper levels in structured Markov chains (Gaver, Jacobs
and Latouche [22]). The distribution of the maximum population size before extinc-
tion may be computed with a linear algorithm developped for QBDs in [47, Chapter
8]. The drawback of the structured Markov chain approach is that it must be confined
to Markovian trees with a small number of phases in order to be numerically efficient.

In the final part of the thesis, we study the MBT under two types of external influ-
ences: first, we introduce a Markovian random environment controlling the evolution
and reproduction parameters of individuals, and second, we define a catastrophe pro-
cess affecting the population. In both cases, independence between individuals is lost
and the fixed point equation (1) characterizing the extinction probability does not hold
anymore. The forward Kolmogorov approach, leading to a partial differential system,
is the only tool which may be exploited to characterize the population size distribution
at any given time. The analysis of the extinction probability is then tackled through
the numerical computation of this distribution.

We first adapt to our purpose numerical techniques for general partial differential
equations, like the finite difference methods or the semi-Lagrangian method. Such
techniques are efficient but do not have any physical interpretation in terms of the
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branching process.
We also analyze the probability generating function of the population size under

specific constraints related to the external process, leading to recursive integral equa-
tions.

Both approaches provide us with the distribution of the time until extinction of the
MBT under external influence and, in the limit, give us the extinction probability.

Finally, the extinction probability of an MBT under external influence may also
be analyzed with the structured Markov chain approach, since an MBT under Marko-
vian random environment may be associated to a level-dependent QBD, and an MBT
undergoing catastrophes to a level-dependent G/M/1-type Markov chain.

The theory of branching processes has applications in a large number of fields
such as molecular biology, evolution, ecology, medicine, epidemiology, and biology of
populations, one example being the propagation of human and animal species and
genes. We refer to the books of Jagers [35], Kimmel and Axelrod [40], and Haccou,
Jagers and Vatutin [25]. Kontoleon [43] shows that several of the current models
of the macroevolutionary process are subsumed by the MBT. Branching processes
also find applications in physics, for instance to model nuclear chain reaction, and in
telecommunication systems (Yang and de Veciana [75]).

Here, we extensively study one application of MBTs in human demography. This
example is used throughout the thesis as illustration of our results. Using real data, we
analyze and compare female populations in several countries. The reason is twofold:
the MBT is an asexual process and, in addition, the available fertility rates are those of
women. First, we structure the lifetime of a woman in five years age classes, allowing
us to make direct use of the available fertility and mortality rates data. In a second
step, we aim at making the model more accurate by interpolating these data to one
year age classes. We show that the same mathematical model not only enables us to
determine features about individual women, such as the distribution of her lifetime,
the time until her first and her last daughter, and the number of daughters, but also to
analyze properties of the whole population, such as the extinction probability a female
family, or the distributions of the time until its extinction, of the family size at any
given time, and of the total progeny.

Another application of MBTs is worth mentioning. It falls in the field of telecom-
munications, and is developed in collaboration with Kenji Leibnitz from the University
of Osaka. It is the object of two publications [30, 31], but it is not presented in details
in this thesis. In short, the MBT is used to model the spread of a single file in a
peer-to-peer network. We compute the probability that the sharing process of the file
eventually ends, which corresponds to the extinction probability of the MBT. We first
suppose that the parameters in the MBT are constant over time, which allows us to use
the numerical techniques stemming from the fixed point equation (1). Then, we inves-
tigate the non-homogeneous case where the parameters of the MBT are population-size
dependent, and we solve it using a structured Markov chain approach.

The thesis is organized as follows. In the first chapter we recall the definition of
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the multitype branching process and the main results about its extinction probability.
Then, we introduce the Markovian arrival process (MAP), which is a general model for
the lifetime and birth epochs of individuals. We illustrate the main features of the MAP
on the demography application. We use real data for a few selected countries and derive
the survival expectancy of a woman, the mean time until the first and the last daughter,
and the mean number of daughters. Finally, with these lifetime processes, we define the
Markovian tree and we show the correspondence with multitype branching processes.
We then specify the matrix extinction equation for MBTs and GMTs, which may not
be solved analytically in general. We give the explicit solutions in the particular cases
of exponential and phase-type MBTs.

The second chapter is devoted to linear algorithms based on functional iterations
for computing the extinction probability of Markovian trees. We begin with the MBT
case, and we first recall the Depth and the Order algorithms from Bean, Kontoleon
and Taylor [9]. Then, we construct another linear algorithm, called the Thicknesses
algorithm, and we prove its convergence through its physical interpretation. We analyze
the convergence rates of all linear algorithms, and we show that both the Order and the
Thicknesses algorithms surpass the Depth algorithm. However, no comparison may be
done in general between the Order and the Thicknesses algorithm, and we illustrate on
some numerical examples that their performances actually depend on the MBT under
consideration. Finally, we generalize to the GMT case the Thicknesses algorithm and
its probabilistic interpretation.

In the third chapter, we apply the Newton iteration method to the extinction equa-
tion and we show that the resulting algorithm has a global quadratic convergence. We
give it a probabilistic interpretation, which is more involved than for the linear algo-
rithms. We then compare the efficiency of the linear and the Newton algorithms on
the same examples as in Chapter 2, as well as on the demographic application; for each
country studied, we compute the extinction probability of a female family generated
by a single woman. We conclude the chapter by showing that other quadratic algo-
rithms may be constructed by applying the Newton method to other formulations of
the extinction equation, and we study the convergence properties of one of them.

In Chapter 4, we investigate the reducible multitype branching process. We give
necessary and sufficient conditions under which the total extinction of the process is
equal to one. We also analyze different questions; for instance, is it possible to observe
the partial extinction of some groups of individuals and not of others? Under which
conditions is it possible to infer the extinction of a group of individuals from the
extinction of another group? We show that the extinction equation (1) still plays a
major role in the characterization of total and partial extinction probabilities, and we
clarify the need of the irreducibility assumption made in the preceeding chapters. We
conclude with some numerical illustrations.

In the next chapter, we focus on transient measures for MBTs. We use the Kol-
mogorov approach to characterize the MBT size distribution at any given time, and
we obtain recursive matrix differential equations for the factorial moments. We next
turn our attention to the time until extinction of an MBT: we determine an ordinary
system of differential equations for its distribution function and we show how it may be
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used to compute the conditional mean time until extinction, given extinction occurs.
Next, we study the total progeny size in an MBT, and we conclude the chapter by
illustrating the various transient measures on the demographic application.

In Chapter 6, we discuss how numerical tools from the matrix analytic methods
may be used to solve questions about Markovian trees. We start by showing the
link between Markovian trees and structured Markov chains. Then, we show how to
numerically calculate the extinction probability with the Markov chain approach when
(1) does not hold anymore because the independence between individuals is lost. Next,
we adapt algorithms for structured Markov chains and compute the distribution of the
maximum population size in an MBT, the mean time until its extinction, and the mean
time until the population reaches a given size.

Finally, Chapters 7 and 8 are devoted to MBTs evolving under the influence of
two external processes, a Markovian random environment and a catastrophe process
respectively, which affect the lifetime of the individuals in the branching process. The
same approaches are used to analyze both types of influences. The structure of the
two chapters is thus exactly the same, but details are sufficiently different to justify
separate treatments. We provide criteria for the almost sure extinction of the MBT
under external infuence. Then, we investigate the extinction probability through the
analysis of transient features, and we describe three numerical methods to evaluate this
probability: the first one is a general method to numerically solve partial differential
equations, the second one is based on recursive integral equations obtained by imposing
constraints on the external process, and the last one follows the structured Markov
chain approach. In Chapter 7, we also compare limitations and complexities of the
various numerical methods.

The following standard notations are used throughout the text.

• Matrices are denoted by capital letters; I stands for the identity matrix, its
dimension being generally made clear by the context. When there is a risk of
ambiguity, we use In to indicate that the dimension is n.

• Vectors are denoted by boldface letters. They are generally columns, except
initial and stationary probability vectors. We write 0, and 1 for vectors of zeros
and ones, respectively, and ei for a vector whose only nonnul entry is the ith
one, equal to one. Again, unless specified, the vector dimensions are set by the
context.

• The superscript T indicates the transposition operation.

• We use sp(A) to denote the spectral radius of a square matrix A, and µ(A) to
denote its eigenvalue of maximal real part. In our case, µ(A) will be real. If A is
nonnegative, then sp(A) = µ(A).

• We use the natural partial order for matrices and vectors where A ≤ B if Aij ≤
Bij for all i, j, and x ≤ y if xi ≤ yi for all i.





Chapter 1

Markovian trees

How to study the evolution over time of a population of individuals, or more particularly
of a human family? Which mathematical model might suitably fit with the lifetime of
an individual and its reproduction epochs?

To answer these questions, we analyze a class of continuous-time branching pro-
cesses with general lifetime distributions and reproduction rules, called the Markovian
trees. The extinction probability of such processes is a major question addressed in
this work.

We start the chapter by defining the continuous-time multitype branching process.
Then, we recall the criterion for its almost-sure extinction and the equation which
characterizes the extinction probability.

Next, we introduce the transient Markovian arrival process, which is a tool to
represent general birth processes and lifetime distributions. We illustrate the main
features of this Markovian process with an example in human demography, that we
repeatedly use througout the thesis.

We then go on to define the Markovian tree, in which the liftetime and the repro-
duction times of the individuals are governed by a transient Markovian arrival process.
A particular case of these Markovian trees is the Markovian binary tree, which we
analyze in depth in the next chapters.

1.1 Multitype branching processes

A continuous-time multitype branching process describes the evolution of a finite num-
ber of individuals, classified in one of n possible types corresponding to different prob-
abilistic behaviours, which evolve independently of each others. In the Markovian case,
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the lifespan of an individual is exponentially distributed with a parameter depending
on its type, but the lifespan distribution may be more general, in which case we refer
to the multitype age-dependent branching process (see Harris [26]).

At the end of its life, an individual of type i reproduces by giving birth to a random
number of new individuals of various types, according to the progeny distribution
{pij : j ∈ Nn}. If j = [j1, . . . , jn], then pij denotes the probability that the parent of
type i gives birth to j1 children of type 1, j2 of type 2, . . . , jn of type n. One usually
assumes that this probability distribution does not change over time. The progeny
generating function of an individual of type i is

Pi(s) =
∑

j

pij sj =
∑

j1,...,jn

pij sj1
1 · · · sjn

n i = 1, . . . , n, (1.1)

where s = [s1, . . . , sn]T with |si| ≤ 1.
The mean progeny matrix M is defined by

Mij =
∂Pi(s)
∂sj

|s=1, i, j = 1, . . . , n. (1.2)

The entry Mij is interpreted as the mean number of direct offsprings of type j born
from a parent of type i.

A multitype branching process is said irreducible (we also say indecomposable) when
any type of individual may have individuals of all types among its (direct or indirect)
descendance. This is stated more formally as follows

Definition 1.1.1. A multitype branching process is irreducible if the mean progeny
matrix M is irreducible, that is if for each 1 ≤ i, j ≤ n, there exists an integer k ≥ 0
such that (Mk)ij %= 0.

If in addition there exists one positive integer N such that MN has all its compo-
nents strictly positive, then we say that the branching process is positive regular.

Suppose we start with one individual of a given type at time 0. Define the random
variable Zi(t) as the total number of individuals of type i alive at time t. The random
vector Z(t) = [Z1(t), . . . , Zn(t)]T is an n-dimensional Markovian process with states
space Nn, and one absorbing state 0 = [0, 0, . . . , 0]T .

We say that the branching process eventually becomes extinct if the process Z(t)
enters the absorbing state at some time; this corresponds to a situation where all the
individuals in the system have died.

We discuss the extinction probability of a multitype branching process in the next
section. For a detailed analysis of multitype branching processes, we refer to Mode
[54], Harris [26], and Athreya and Ney [6].
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1.2 Extinction probability

We denote by qi the extinction probability of the multitype branching process {Z(t) :
t ∈ R+}, given that it starts with one individual of type i, that is,

qi = P[∃T <∞ : Z(T ) = 0 |Z(0) = ei],

where ei is a vector with all components equal to zero, except for the ith one equal to
1. We bring these probabilities together in the vector q = [q1, q2, . . . , qn]T .

Denote by µ(M) the eigenvalue with maximal real part of the mean progeny matrix
M defined in (1.2). By the Perron-Frobenius Theorem for nonnegative matrices, this
eigenvalue is real positive, and is algebraic simple in the irreducible case (Gantmacher
[21, Chapter 13]); it corresponds to the spectral radius of M , that is, µ(M) = sp(M).
In this section, we use the notation ρ = sp(M).

The following theorem is a fundamental result in the theory of branching processes.
A nice proof may be found for instance in Mode [54, Chapter 1, Theorem 7.1].

Theorem 1.2.1. If ρ < 1, then q = 1, and we say that the branching process is
subcritical.

If ρ = 1, then q = 1, and we say that the branching process is critical.
If ρ > 1, then we say that the branching process is supercritical, and q < 1 in the

positive regular case, q ≤ 1, q %= 1 otherwise.
In all cases, q is the minimal nonnegative solution of the vector equation

P (s) = s, (1.3)

where P (s) = [P1(s), P2(s), . . . , Pn(s)]T is the progeny generating vector of which the
components are defined in (1.1). !

To better understand the extinction criterion in the multitype case, let us have a
look at the one-type case. The mean progeny is a scalar m = P ′(1) which represents
the mean size of the first generation, if we assume that there is one individual at time
0. The mean size of the second generation is easily shown to be m2, and in general,
the mean size of the nth generation is mn. We thus observe that if m < 1, then the
mean generation size tends to zero as n tends to infinity, if m = 1, then it is constantly
equal to one, and if m > 1, then the mean generation size explodes. These three cases
respectively correspond to the subcritical, critical, and supercritical cases.

The extinction probability q is the minimal nonnegative solution of the fixed point
equation s = P (s). We see on Figure 1.1 that when P ′(1) ≤ 1, the solution of the
equation is unique in the interval [0, 1] and is equal to 1, while when P ′(1) > 1, the
minimal nonnegative solution is strictly less than 1.

In the multitype case, it is natural that the spectral radius ρ of the mean progeny
matrix M should play the same role as the scalar m. Indeed, Mn tends to zero as n
tends to infinity if ρ < 1, it diverges to infinity if ρ > 1, and it remains nonzero and
finite if ρ = 1. As we shall see in Section 5.2, there is another matrix which plays a
similar role in the criticality of a branching process.
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Figure 1.1: The solutions of the fixed point equation s = P (s) in the cases m ≤ 1 and
m > 1.

A branching process is called singular if each individual generates exactly one and
only one direct descendant. We always assume that the branching process Z(t) is
nonsingular. In addition, we suppose that extinction is actually always possible, that
is, we assume that there is a path to extinction from each type of individual. We
express this as follows.

Assumption 1.2.2. For all 1 ≤ i ≤ n, qi > 0.

As a consequence, each state z %= 0 of the branching process is transient, that is,
the total number of visits of such states is finite, and we have the following important
dichotomy (Harris, [26, Chapter 2, Theorem 6.1]).

Theorem 1.2.3. Under Assumption 1.2.2, a nonsingular branching process Z(t) either
grows to infinity, or goes to 0, that is,

P
[

lim
t→∞

|Z(t)| = +∞
]

+ P
[

lim
t→∞

|Z(t)| = 0
]

= 1.

It does not remain positive and bounded. !

Remark 1.2.4. The dichotomy q = 1 or q < 1 in Theorem 1.2.1 does not require the
process to be positive regular; actually, it holds for any irreducible branching process.

Indeed, supose that the process is irreducible and that there is one type j such that
qj < 1. By Theorem 1.2.3, it means that 1 − qj = P[limt→∞ |Z(t)| = +∞ |Z(0) =
ej ] > 0. Let Tj denote the first instant such that Zj(t) ≥ 1. For any i %= j, we have

1− qi = P[ lim
t→∞

|Z(t)| = +∞ |Z(0) = ei]

≥ P[Tj <∞ and lim
t→∞

|Z(t)| = +∞ |Z(0) = ei]

= P[Tj <∞ |Z(0) = ei] P[ lim
t→∞

|Z(t)| = +∞ |Z(0) = ej ],
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by the strong Markov property. Since the process is irreducible, P[Tj < ∞ |Z(0) =
ei] > 0, thus 1− qi > 0 and qi < 1.

By contrast, in the supercritical reducible case, some (but not all) components of
the extinction probability vector may be equal to one. This is discussed in Chapter 4.

We end the section with the following result which asserts that the extinction prob-
ability vector q may be obtained by applying the functional iteration on the extinc-
tion equation (1.3) (Harris [26, Chapter 2, Theorem 7.2]). Let P (1)(s) = P (s), and
P (k)(s) = P (P (k−1)(s)), for k ≥ 2.

Theorem 1.2.5. If 0 ≤ a < 1, then limk→∞ P (k)(a) = q. This still holds if a ≤ 1,
a %= 1 in the irreducible case. !

This property is exploited in depth in Chapter 2 from a probabilistic point of view.

1.3 Transient Markovian arrival processes

A transient Markovian arrival process (MAP) is a two-dimensional continuous-time
Markovian process {(M(t),φ(t)) : t ∈ R+} on the states space N× {0, 1, . . . , n}, where
n ∈ N0 is finite. The process φ(t) is called the phase process; transitions between phases
may be hidden or observable, and M(t) counts the number of observable transitions
up to time t. The phase 0 is absorbing so that, if φ(t) = 0 for some t, then there are
no more transitions of any kind; the phases 1 to n are all transient, so that the MAP
eventually stops by getting absorbed after a finite number of transitions.

A MAP with n transient phases is characterized by two n × n transition rates
matrices D0 and D1, respectively for hidden and for observable phase transitions among
the transient phases, and an n× 1 vector d of transition rates to the absorbing phase
0. The matrix D1 and the vector d are nonnegative, D0 has strictly negative elements
on the diagonal and nonnegative off-diagonal elements, and they are such that D0 1 +
D1 1 + d = 0. One also needs an 1× n initial probability vector α = [α1, . . . ,αn], and
we assume that φ(0) %= 0, or equivalently that α1 = 1, which implies that the time
until absorption of a transient MAP is strictly positive. See Figure 1.2 for an example
of a MAP path.

Let us assume that the current state is (k, i), k ≥ 0, 1 ≤ i ≤ n. The process remains
in this state during an exponentially distributed time interval with parameter (−D0)ii.
At the next transition, independently of k,

• with probability (D0)ij /(−D0)ii, i %= j, there is a hidden transition and the new
state becomes (k, j),

• with probability (D1)ij /(−D0)ii, an observable transition takes place and the
new state of the system becomes (k + 1, j), and finally,

• with probability di /(−D0)ii, the process terminates by getting absorbed in the
final state (k, 0).
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Figure 1.2: An example of evolution of a transient MAP. There are seven hidden
transitions and two observable transitions (at T1 and T2) before the MAP enters its
absorbing phase.

We shall need later the probability that the MAP gets absorbed before the occur-
rence of a first observable event. Given the process starts in phase i, this probability
is given by

θi =
∑

j

(
−D−1

0

)
ij

dj .

We gather the probabilities θi in a vector θ = (−D0)−1 d. Note that
(
−D−1

0

)
ij

may
be interpreted as the mean sojourn time in phase j, starting in phase i, before the first
observable event or the absorption of the MAP.

Special cases

The simplest case of transient MAP is the transient Poisson process, in which there is
only one transient phase. Consequently, only observable transitions may occur, at rate
λ, and the process may eventually stop at rate µ. We thus have D0 = −λ−µ, D1 = λ,
and d = µ.

Before discussing another special case of transient MAP, let us introduce the phase-
type distribution (Latouche and Ramaswami [47, Chapter 2]).

Definition 1.3.1. Consider a Markovian process on n transient states and one ab-
sorbing state 0∗, with initial probability vector [τ0, τ ] and infinitesimal generator

Q =
[

0 0
t T

]
,

where τ is 1× n, T is n× n and t is n× 1.
The distribution of the time X until absorption into the absorbing state 0∗ is called

a phase-type distribution with representation (τ , T ). We write that X is PH(τ , T ).
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The class of phase-type distributions is dense in the class of positive-valued distri-
butions [47, Chapter 2].

A second special case of transient MAP is the transient phase-type renewal process.
In such a process, there is one additional absorbing phase 0∗, and the time intervals
between the observable events are phase-type PH(τ , T ) distributed.

The process starts at time 0 with the initial distribution α, and evolves among the
transient phases with transition rates given by the matrix T . At the time of a renewal,
which corresponds to an observable transition, the process attempts to enter the phase
0∗, with the rates given by the vector t = −T 1. Then, it instantaneously enters a new
phase given by the initial probability vector τ , and evolves until its next transition
to 0∗, which corresponds to the next renewal. The process ends when it enters the
absorbing phase 0, at the rates given by the vector d.

The phase-type renewal process is thus a particular MAP where D0 = T , D1 = t · τ ,
and where the time intervals between observable events are independent.

A MAP can be used to approximate any counting process, in the same way as a
phase-type distribution can be used to approximate any positive valued distribution
(Asmussen and Koole [4]). That makes the MAP a very versatile modeling tool. We
refer the reader to Latouche, Remiche and Taylor [48] for further details on the features
of a transient MAP.

In this thesis, the transient MAP is a tool to represent the lifetime of an individual.
In the next section, we illustrate the theory related to transient MAPs on an example
in human demography, and in Section 1.5, we define the Markovian tree with the help
of the transient MAP. Finally, in Chapter 8, an irreducible MAP also allows us to
describe an external process of catastrophes.

1.4 Application in demography

We use the transient MAP to model the lifetime of a woman and her reproduction
epochs. The transient phases of the MAP then correspond to the successive age classes
of the woman, and the observable events correspond to the times she gives birth to a
daughter.

We consider the births of daughters only, at the exclusion of boys. Indeed, our final
objective is to model female families with Markovian binary trees, which are asexual
processes. We chose women since available fertility rates are those of women.

We studied female populations of about twenty countries1, but we decide to present
here the nine countries which were the most representative of the features we observed.
The data have been obtained from two United Nations websites [71, 74]. They consist
in age-specific fertility and mortality rates, and the sex-ratio at bith, denoted by Sr, for
the nine countries in Table 1.1. We give later the exact definitions of these quantities,
taken from the United Nation Glossary [71].

1The twenty countries are Afghanistan, Australia, Belgium, Brazil, Canada, China, Democratic
Republic of Congo, Denmark, France, Germany, Greece, India, Italy, Japan, Morocco, New-Zealand,
Poland, South Africa, Sweden, Turkey, United Kingdom, and USA.
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Country Sr Country Sr Country Sr

Belgium 1.05 Congo 1.03 South Africa 1.03
Brazil 1.05 Japan 1.06 Turkey 1.05
China 1.15 Morocco 1.05 USA 1.05

Table 1.1: The 9 countries under study, and their sex-ratio Sr at birth

We need to adapt the data to the parameters of the MAP. The available tables from
[71, 74] concern fertility and mortality rates for five years age classes. The Belgian
National Institute of Statistics website [65] also provides data for one year age classes,
but the latest published fertility rates correspond to the year 1997, while the mortality
rates correspond to the year 2006. So in a first approach, we decided to use five years
age classes data for all countries. Later in the section, we shall see how to smooth the
data in order to work with one year age intervals.

The MAP has thus n = 22 transient phases, which correspond for the most part to
five years age classes: 5 − 9, 10 − 14, . . . , 95− 99. In addition, there is one phase for
the women aged 100 and above; and finally, the interval 0 − 4 is split in two in order
to use the available infant mortality rates, so that there is one phase for the newborn
(age 0), and one phase for the age class 1− 4.

The time unit is one year, and the matrix D0 of hidden transition rates is given by

D0 =





∗ 1
∗ 1/4
∗ 1/5

. . .
∗ 1/5
∗





where a ∗ on the diagonal indicates a number such that D01 + D11 + d = 0. It means
that, in the absence of death, a woman spends an expected amount of time of one year
at age 0, four years in the interval 1 − 4, and 5 years thereafter, until being over 100.
The duration is random and exponentially distributed, and, in that respect, our model
is a gross approximation of reality and we shall see later how it may be improved.

The matrix D1 of observable transition rates is diagonal, indicating that women
stay in the same age class after giving birth, and D1 = diag(γ), where γ is the vector
of fertility rates. Since the fertility data available to us does not distinguish between
the birth of girls and the birth of boys, we have used the sex ration Sr to adapt the
global fertility rates from [71] .

We assume that all rates remain constant over time, and that there is no outside
regulation of fertility rates; more precisely, for those populations for which there is a
strict control of births, such controls are incorporated in the fertility rates as if they
were a natural phenomenon.

The sex ratio Sr is defined as the ratio between the number of births of boys and
the number of births of girls; it significantly depends on the country. Here, we have
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Country V1 Country V1 Country V1

Congo 45.8 Brazil 71.6 USA 78.8
South Africa 51.5 Morocco 73.3 Belgium 80.5
China 71.5 Turkey 74.1 Japan 84.8

Table 1.2: Life expectancies at birth

used the values given in Table 1.1, coming from the United Nations website [71].
We used in the following way the data from [71, 74]:

• the age-specific fertility rates are defined as the number of living births during
the calendar year, per 1000 women in the same age-class at mid-year. We divide
these numbers by 1000, and by Sr + 1, to obtain the vector γ of fertility rate per
woman, as a function of her age class, taking daughters into account only.

• the age-specific mortality rates are given as the ratio of the number of deaths
during the year of persons in the ith age class to the population in the same age
class at mid-year. This ratio corresponds to the death rate di (1 ≤ i ≤ 22).

We now use the features of the MAP to answer some relevant questions about the
lifetime of a woman and her direct female progeny. Afterwards, we propose two ways
to improve the accuracy of the model by increasing the number of phases.

Life expectancy

The life expectancy V of a woman, given her age class, is the conditional mean time
until absorption of the associated transient MAP. It is equally the mean of a phase-type
distribution PH(α, D), where D = D0 + D1 [48], and is given by

V = (−D)−1 1.

The first component V1 is the life expectancy of a woman at birth, and is given in
Table 1.2 for the nine countries under study.

The whole vector V is plotted on Figure 1.3 for six countries (the other three
countries show a behaviour similar to one of the six countries, and are thus not repre-
sented). The curves must be read as follows: we perform a linear interpolation between
the points (xi, Vi), where xi is the middel of the interval corresponding to the ith age
class; for instance, V3 is the survival expectancy in the age class 5 − 9, its value is
plotted just above the abscissa 7.

We clearly see the infant mortality effect, especially for Congo for which the life
expectancy at birth is lower than in the age class 1 − 4 and is still growing five years
later. We also remark that most of the curves decrease quite linearly, while it is less
the case for Congo, due to the high mortality.
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Figure 1.3: Life expectancy of a woman as a function of her age class

Time until the first daughter

Let F denote the time until the birth of a first daughter, this time being almost surely
infinite if the mother does not have any daughter.

Let ϕ0 be the age class index of the woman at time 0. The conditional expectation
E[F |ϕ0 = i] is the mean time until the next daughter, since a woman in the ith age
class at time 0 might already have had daughters before time 0. As this conditional
expectation is infinite, we shall rather compute E[F ·1{F<∞}|ϕ0 = i]. This corresponds
to the mean time until the first observable event in the transient MAP, given it started
in phase i.

Recall that 1 − θ = (−D0)−1 D1 1 is the conditional probability that a first ob-
servable event occurs in the MAP before it gets absorbed, given its initial phase. We
have

E[F · 1{F<∞} |ϕ0 = i] =
∫ ∞

0
x [ eD0 x D1 1]i dx

=
∫ ∞

0
[ eD0 x (1 − θ)]i dx

= [(−D0)−1 (1 − θ)]i. (1.4)

To obtain the expectation of F , given there is at least one daughter, we have to
divide the right-hand side of (1.4) by the probability 1− θi that a woman taken in the
ith age class will have at least one daughter

Fi = E[F |F <∞, ϕ0 = i] =
[(−D0)−1 (1 − θ)]i

1− θi
.

We give in Table 1.3 the conditional mean time until the first daughter of a new-
born woman, that is F1, and the probability 1 − θ1 that this woman has at least one
daughter, for the nine countries.
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Country F1 1− θ1 Country F1 1− θ1 Country F1 1− θ1

Congo 20.7 0.69 Turkey 25.9 0.59 Morocco 28.2 0.62
Brazil 24.5 0.61 China 26.4 0.48 Belgium 28.6 0.51
South Africa 25 0.58 USA 26.4 0.59 Japan 30.2 0.43

Table 1.3: Conditional mean time until the first daughter of a new-born woman, and
the probability that there is a first daughter.
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Figure 1.4: Mean time until the first daughter of a woman as a function of her age
class, given there is one.

We depict on Figure 1.4 the Fi’s for 1 ≤ i ≤ 11, which shows the evolution of
the conditional mean time until the first daughter as a function of the age class of the
mother. Generally, we see that until the age class 15 − 19, the curves are decreasing
linearly, after what the behaviour of each country becomes more specific. We also
notice an atypical increase in the curve for China after the age class 25− 29.

We cannot compute Fi for i ≥ 12, since the corresponding fertility rate γi is zero,
that is, women do not have daughters beyond the age class 50− 54.

Remark 1.4.1. On Figure 1.4, Fi does not tend to zero as i increases, as we might have
expected, but seems to tend to five, which is the length of the age intervals. This is
due to the memorylessness property of the exponential distribution.

Indeed, assume that a woman is in the last fertile age class (45− 50), and consider
the time until her next daughter, given that there is one; this birth must happen in this
age class and before her death. We are thus led to compute the mean of the minimum
of three exponential random variables corresponding respectively to the time before
moving to the following age class, before giving birth, and before dying, given that
birth is the first event to occur. A property of the exponential distribution is that the
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mean of the minimum is independent of which of the events occurs first, and is thus
equal to the inverse of the sum of the three parameters of the exponential distributions.
Here, the three parameters are the fertility rate in the last fertile age class, the death
rate in this class, and the transition rate to the next age class which is 0.2. The two
first rates being almost negligible with respect to 0.2, the mean time until the first
event in the last fertile age class approximatively equals 5.

We will see later how we may improve the model with this respect.

Time until the last daughter

The lifetime L of a transient MAP is defined as the time until the last observable event
[48]. If the MAP gets absorbed before a first observable event, then L = 0.

In our demographic application, L then represents the time until the last daughter.
Assume the woman is in phase i at initial time. If she dies before giving birth, which
occurs with probability θi, then L = 0. For x > 0, the event [L > x] occurs if at time
x the woman is in one of the transient phases, with distribution given by eD x, and a
birth event occurs in the future with probability 1− θ. We thus get

P[L > x |ϕ0 = i] = [eD x (1− θ)]i,

and the mean E[L |ϕ0 = i] is given by

E[L |ϕ0 = i] = [(−D)−1 (1− θ)]i.

The vector (−D)−1 (1− θ) is thus the mean time until the last daughter of a woman,
as a function of her age class.

In order to make comparisons with the conditional mean time until the first daugh-
ter, given there is one, we compute

Li = E[L |L > 0, ϕ0 = i] =
E[L |ϕ0 = i]

P[L > 0, |ϕ0 = i]
=

[(−D)−1 (1− θ)]i
1− θi

,

for 1 ≤ i ≤ 11.
We provide in Table 1.4 the conditional mean time until the last daughter of a new-

born woman, that is L1. Note the large gap F1 − L1 between the conditional mean
time until the first and the last daughters in Congo, compared to other countries.

Country L1 Country L1 Country L1

China 29.8 Turkey 31.2 Japan 33.3
Brazil 30.7 USA 31.7 Congo 33.4
South Africa 31.2 Belgium 32.5 Morocco 34.5

Table 1.4: Conditional mean time until the last daughter of a new-born woman, given
there is one
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Let us now look at the distribution of the time T between the first and the last
births, given there is at least one birth. By conditioning on the time at which the first
daughter is born, we get

P[T ≤ x , L > 0 |ϕ0 = i] =
∫ ∞

0

∑

j

(exp(D0 u)D1)ij P[L ≤ x |ϕ0 = j] du

=
∑

j

[(−D0)−1 D1]ij [1− exp(D x) (1 − θ)]j ,

and

Gi(x) = P[T ≤ x |L > 0, ϕ0 = i] = 1− [(−D0)−1 D1 exp(D x) (1 − θ)]i
1− θi

,

for 1 ≤ i ≤ 11. This distribution is shown on Figure 1.5 for i = 1.
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Figure 1.5: Distribution of the time between the first and the last daughters of a
new-born woman, given she has at least one daughter

Remark 1.4.2. G1(0) is the probability for a woman to have only one daughter, given
that she has at least one; observe that this probability is lower than one might expect,
especially in countries where the parental control is high. One reason is that the fertility
rates we use are global rates, and do not take previous births into account. However,
for most of the countries, there is a dependence between the fertility rate of a woman
and the fact that she already had a daughter or not in the past.

The appropriate fertility rates data, taking previous births into account, are avail-
able for some countries like Belgium (Belgian National institute of Statistics [65]). We
would be able to adapt our model for these by adding some phases to keep track of the
number of previous births.

In like manner, if a parental control limits the number of children to one for instance,
then we might also adapt our model by adding new phases in which the mother would
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enter just after the birth of her first daughter, and for which the fertility rate would
be close to zero, and the death rate would be kept the same.

Number of daughters

The number of future daughters of a woman corresponds to the total number of ob-
servable events of a transient MAP, which has the discrete phase-type distribution
PH(αF, F ) with F = (−D0)−1 D1 [48]. Thus, the vector K of conditional mean,
given the initial phase, is given by

K = F (I − F )−1 1.

We give in Table 1.5 the mean number K1 of daughters to a new-born woman,
and we plot the other nonzero entries of K on Figure 1.6 for five countries. We see
that until age 15, the mean number of future daughters is almost constant, except in
Congo where we see the dramatic effect of the youth mortality again. The curves begin
to decrease at the ages at which women start having children. That age varies from
country to country, as we see when comparing the curves for Brazil and Japan.

Country K1 Country K1 Country K1

Japan 0.61 USA 0.98 Brazil 1.09
China 0.75 Turkey 1.00 Morocco 1.10
Belgium 0.79 South Africa 1.05 Congo 2.28

Table 1.5: Mean number of future daughters of a new-born woman
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Figure 1.6: Mean number of future daughters of a woman as a function of her age class
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Smoothing the data

We might improve the precision of the results by reducing the length of the age classes
from five to one year. This would lead to 101 age classes instead of 22. However, as said
previously, the United Nations websites [71, 74] do not provide sufficiently detailed age-
specific fertility and mortality rates. A solution would be to interpolate the available
data, and we have compared three different approaches.

The first idea consists in keeping the fertility and death rates constant over five
years age intervals. But this can sometimes lead to quite big gaps between the rates
of two consecutive ages. Anyway, it would be a quite gross interpolation of the data.

Our second idea is to make a continuous piecewise-linear interpolation which pre-
serves the average rate over five years intervals. But we quickly get confronted to
meaningless negative rates.

Finally, we decided to make a non-continuous piecewise-linear interpolation of the
rates which preserves the average rate over five years intervals, while minimizing the
discontinuities at the interval boundaries.

We denote by ai and bi, i = 1, 2, . . . , 21, the left and right fertility rates values at
the boundaries of an age class interval, as represented on Figure 1.7 for the age class
20− 25 (corresponding to the mean fertility rate γ6).

... 18 19 20 21 22 23 24 25 26 27 ...
0  

Age

!

 

a
6
 

b
5
 

b
6
 

a
7
 

Area = 5 !
6
 

O 
O

O 

O 

O

O 

O 

O 

O

Figure 1.7: Non-continuous piecewise-linear interpolation used to obtain the fertility
(and death) rates at each age

These parameters must satisfy the constraints

ai + bi

2
= γi ai, bi ≥ 0 i = 1, 2, . . . , 21.

In order to minimize the global discontinuity of the interpolation, we chose to look for
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values ai and bi which minimize the function
∑21

i=2(ai − bi−1)2. It is easy to numer-
ically solve this constrained linear problem, using for instance the solver fmincon in
MATLAB.

With the optimal values ai and bi, we linearly interpolate the fertility rates for each
one year age interval. We proceed similarly for the death rates. We will call this second
model the smooth model, in contrast with the previous model with n = 22 age classes
which can be qualified as the raw model.

We show on the two graphs on the top of Figure 1.8 the discontinuity points ai and
bi obtained for fertility (left) and death (right) rates in Belgium, and on the bottom,
the non-continuous piecewise-constant and piecewise-linear interpolations of the data.

As mentioned above, for Belgium, it is actually possible to find data for age-specific
fertility rates at one year intervals in 1997, and death rates in 2006 [65], so that
we have been able to validate our interpolation by comparing it to the real values;
the comparison is shown on Figure 1.9. The L∞-norm of the difference between the
interpolation curve and the real curve, divided by the L∞-norm of the real curve, is
equal to 0.1158 for the fertility rates and 0.0719 for the death rates.
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After-birth gap periods

We can further improve the accuracy of the model by adding some new phases corre-
sponding to a gap period of about one year after the birth of a child, during which a
mother does not have any new child. This gap period corresponds, for instance, to the
breast-feeding period.

We define new phases so that if a mother has a daughter when she is in phase i,
then she moves to an intermediate phase i′ in which the fertility rate is equal to zero
and the death rate is the same as in phase i. We may also take births of sons into
account: if a mother has a son when she is in phase i, which happens at the rate γi ·Sr,
then, we do not consider it as a real birth event, but rather as a phase change toward
the intermediate phase i′.

In the previous model with 101 phases there are 35 phases with a nonzero fertility
rate (phases 16 to 50). Therefore, we need 35 intermediate phases, and the total
number of phases becomes 136. The whole set of phases is now

S = {1, 2, . . . , 15, 16, 16′, 17, 17′, . . . , 50, 50′, 51, 52, . . . , 101}.

The matrix D0 becomes such that

D0(i, i + 1) = 1 for i = 1, 2, . . . , 101,
D0(i, i′) = γi · Sr for i = 16, 17, . . . , 50,
D0(i′, i + 1) = 1 for i = 16, 17, . . . , 50,
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and the other non-diagonal entries remain zero. The matrix D1 is now such that
D1(i, i′) = γi, the other entries being zero. Finally, the vector d is such that di′ = di

for each intermediate phase i′. This model will be called the gap model.

In comparing the raw and the smooth models, we observe that the improvement is
sometimes not really noticeable. For instance, we compare on Figure 1.10 the survival
expectancy V of a Belgian woman, as a function of her age class, and we do not see
any significant difference.

We also compare the conditional mean time until the first daughter F . The curve
of the smooth model now converges to 1, instead of 5 for the raw model, which is an
improvement, as discussed in Remark 1.4.1. We plot the curve corresponding to real
data for one year age classes taken from [65]. We see that the curve of the smooth
model is close to the real one, except from the age 44; this is due to the fact that
some small inaccuracies in the computation of the piecewise-linear interpolation are
amplified when dividing by the very small probability of having a daughter after that
age.

Finally, we compare in Table 1.6 the mean total number of daughters of a Belgian
woman for the three models. We observe that with the smooth model, the total fertility
of a woman is a bit higher than with the raw model, while it remarkably decreases when
taking gap periods into account.
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Figure 1.10: Comparison of the survival expectancy V with the raw and the smooth
models (upper curves), and of the mean time until the first daughter, given there is
one F , with these two models and with the real data (lower curves), for Belgium.
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Model n K1

Raw 22 0.789
Smooth 101 0.79
Gap 136 0.721

Table 1.6: Mean total number of daughters of a new-born woman in Belgium

Concluding remarks

Remark 1.4.3. Our interpolation method is not satisfactory when the changes in birth
or death rates from one five years class to the next one are too big, as in the example
of Congo, which leads to jagged curves for the interpolated rates. This is a reason why,
in the rest of the thesis, we mostly use the raw model. We will however discuss the
differences between the various models when is it notable.

Remark 1.4.4. The values we obtained for the survival expectancy and the mean num-
ber of daughters of a woman are roughly the same as those provided by [71, 74], our
results being in general slightly smaller than the reality.

Despite the short comings of our model, the MAP representation allows us to em-
phasize general tendencies about the lifetime of a woman and her feminine progeny,
and to make interesting comparisons between different countries.

1.5 Markovian trees

A general Markovian tree (GMT) describes the evolution over time of a random collec-
tion of independent individuals with the same characteristics. We start at time 0 with
one individual whose lifetime is controlled by a transient MAP with characteritics α,
D0, D1, and d. To each observable transition corresponds the birth of a random num-
ber of children. After the birth of the children, the parent MAP continues to evolve,
possibly giving birth again, until it eventually dies when it makes a transition to its
absorbing phase. Upon a birth, each child’s lifetime is controlled by an independent
replica of the parental MAP. The hidden transitions correspond to state changes in the
lifetime of the individual, associated with birth and death rates changes.

In the particular case where birth events are restricted to exactly one child, we use
the name Markovian binary tree (MBT) to describe the process. In this thesis, most of
the results are developed in the particular case of the MBT only, for the sake of clarity.
Usually, these results may be naturally generalized to the GMT case, and we provide
details whenever the difference is notable enough.

When the MAP controlling the lifetime of the individuals is a Poisson process,
we talk about exponential GMT or MBT, and in the case it is a phase-type renewal
process, we talk about phase-type GMT or MBT.

Figure 1.11 depicts an example of an MBT path. The thick line represents the
lifetime of the first individual. Births are represented by the branching points of the
tree. Deaths are represented by the leaves of the tree. In addition, we use the following
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Figure 1.11: An example of evolution of a MBT

terminology: an arc of the tree is an edge connecting two branching points, or a
branching point and a leaf; by convention, after a branching point, the left arc is the
child arc and the right arc is the parental arc. Hidden transitions are not shown.

At the time of a birth of m ≥ 1 new individuals, the parental individual in phase i
may make a transition to phase k, and initial phases j1, j2, . . . , jm are chosen for the
children MAPs (1 ≤ i, j1, j2, . . . , jm, k ≤ n). This occurs at the rate

(Bm)i,j1 j2... jm k = (D1)ikPj1 j2... jm|ik,

where Pj1 j2... jm|ik is the conditional probability that the m children start their life in
phases j1, j2, . . . , jm respectively, given that their parent made a transition from phase
i to phase k at the birth time.

In the particular case of an MBT, we use the notation B instead of B1, and Bi,jk =
(D1)ikPj|ik is the rate at which an individual in phase i gives birth to a child in phase
j, and makes a transition to phase k after the birth.

The n×nm+1 matrices Bm (m ≥ 1) are called the birth rates matrices. We use the
lexicographic order to enumerate their column entries. So, for instance in the case of
an MBT with n = 3 phases, the birth rates matrix has the following structure

B =




B1,11 B1,12 B1,13 B1,21 B1,22 B1,23 B1,31 B1,32 B1,33

B2,11 B2,12 B2,13 B2,21 B2,22 B2,23 B2,31 B2,32 B2,33

B3,11 B3,12 B3,13 B3,21 B3,22 B3,23 B3,31 B3,32 B3,33



 .

Examples of birth rates matrices

At this stage, we need to define the Kronecker product between two matrices.

Definition 1.5.1. If A is an m×n matrix and B is a p×q matrix, then the Kronecker
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product A⊗B is the mp× nq block matrix defined by

A⊗B =




A11 B · · · A1n B

...
. . .

...
Am1 B · · · Amn B



 .

One property of the Kronecker product that we will routinely use is

(AC ⊗BD) = (A⊗B) (C ⊗D). (1.5)

If all the children independently start with the same initial distribution α, then

Pj1 j2... jm|ik = αj1 αj2 . . .αjm ,

independently of i and k, and the birth rates matrices take the special form Bm =
α(m) ⊗D1, where α(m) is the mth-fold Kronecker product of α with itself: α(0) = 1,
and α(m) = α(m−1) ⊗α, for m ≥ 1.

If in addition we deal with a phase-type GMT, then recall that D1 = t · τ , where
the vector t gives the rates of a renewal (birth), and τ is the initial probability vector
of the parent after a birth. We thus have Bm = t · (α(m) ⊗ τ ).
Example 1.5.2 (Women populations). This particular structure of birth rates matrix
appears in the demographic application described in Section 1.4. Recall that we rep-
resent the lifetime of a woman with a transient MAP of which the observable events
correspond to births of daughters.

We suppose that a woman gives birth to one daughter at a time, which is a fair
assumption since multiple human births represent three percent of the total births only
[13]. Each daughter starts her life in the first age class, that is, in phase 1. The initial
probability vector α is then given by α = [1,0].

Therefore, we model the whole female family generated by a woman by an MBT
with birth rates matrix B = α⊗ diag(γ), where γ is the fertility rates vector.

We assume that the fertility and mortality rates are constant and identical for all
the family members, that the population is not subject to migration phenomena, and
that there is no dependence between the individuals who form the families. Throughout
the thesis, we illustrate various results on this particular example of MBT.

Sometimes, the initial phase of the children depends on the phase of the parent at
the time of birth, so that

Pj1 j2... jm|ik = (P1)ij1 · · · (Pm)ijm

where the matrices P! (1 ≤ * ≤ m) are stochastic matrices giving the conditional
probabilities for each child phase. An example will be given in Section 2.4.

In a Markovian tree, recall from the previous section that the lifetime of an individ-
ual is phase-type distributed PH(α, D), where D = D0 + D1. We may thus approach
any age-dependent branching process by suitably choosing the controlling MAP. More-
over, the progeny distribution of an individual may depend on the age of the parent at
the birth time, through the birth rates matrices.



22 Markovian trees

One can interpret Markovian trees as multitype branching processes in several ways.
We present two interpretations herebelow.

In a first interpretation, we associate the phases 1 to n of the MAP to the n
types of the branching process. In this view, a GMT corresponds to a Markovian
multitype branching process in which an individual of type i lives for an exponentially
distributed interval of time, with parameter νi = (−D0)ii. At the end of this interval,
it may die without offspring with the probability di/νi (this corresponds to the MAP
entering its absorbing phase), or it may give birth to one individual of type j %= i,
with the probability (D0)ij/νi (this corresponds to a hidden phase change), or it may
give birth to m + 1 individuals of types j1, j2, . . . , jm, and k, with the probability
(Bm)i,j1 j2... jm k/νi (this corresponds to an observable event).

The progeny generating function then takes the matrix form

P ∗(s) = (−∆)−1 d + (−∆)−1 (D0 −∆) s + (−∆)−1
∑

m≥1

Bm s(m+1), (1.6)

where ∆ = diag(D0). The mean progeny matrix, defined by (1.2), is

M∗ = I + (−∆)−1



D0 +
∑

m≥1

Bm

m∑

i=0

(1(i) ⊗ I ⊗ 1(m−i))



 . (1.7)

In the MBT case, this simplifies to

P ∗(s) = (−∆)−1 d + (−∆)−1 (D0 −∆) s + (−∆)−1 B (s⊗ s), (1.8)

and
M∗ = I + (−∆)−1 [D0 + B (1⊕ 1)], (1.9)

where the symbol ⊕ must be understood as a⊕ b = a⊗ In + In ⊗ b if a and b are two
n × 1 vectors, and similarly as A ⊕ B = A ⊗ In + In ⊗ B if A and B are two n × n
matrices.

In a second interpretation, we consider the process embedded at the epochs where
an observable transition of the MAP gives rise to a branching point in the tree, or where
the MAP ends and leads to a leaf in the tree. An individual of type i may eventually
die without offspring, possibly after having undergone various hidden transitions, with
probability θi, where θ = (−D0)−1 d (see Section 1.3). It may eventually give birth
to m + 1 children of types j1, j2, . . . , jm, and k, with the probability (Ψm)i,j1 j2... jm k,
where Ψm = (−D0)−1 Bm.

In that view, a GMT corresponds to an age-dependent multitype branching process.
The progeny generating function is given by

P (s) = θ +
∑

m≥1

Ψm s(m+1), (1.10)

and the mean progeny matrix by

M =
∑

m≥1

Ψm

m∑

i=0

(1(i) ⊗ I ⊗ 1(m−i)). (1.11)
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In the MBT case, Ψ = Ψ1, and we get

P (s) = θ + Ψ (s⊗ s), (1.12)

and
M = Ψ (1⊕ 1). (1.13)

In terms of MBT, the (i, j)th entry of M gives the mean number of arcs starting in
phase j, following an observable event, if we start with a first arc in phase i.

We will say that a GMT (respectively an MBT) is irreducible if the mean matrix
(1.7) (respectively (1.9)) is irreducible. Notice that this does not necessarily imply that
the matrix (1.11) (respectively (1.13)) is irreducible; for instance, suppose that for an
MBT, (D0)ij > 0 for all i %= j, and the only nonzero entries of B are Bi,11. In that
case, the mean progeny matrix (1.9) is irreducible while (1.13) is not.

The material of Chapters 2 and 3 is based on the assumption of irreducibility. In
Chapter 4 we specifically investigate the reducible case.

1.6 Extinction probability of a Markovian tree
Recall from Section 1.2 that q denotes the extinction probability of a multitype branch-
ing process, given the type of the initial individual. We use the same notation to refer
to the extinction probability of a GMT, given the initial phase of the first individual.

Using the interpretations of a GMT as multitype branching processes given in the
previous section, together with Theorem 1.2.1, we can check the criticality of a GMT
by looking at the spectral radius of one of the mean progeny matrices (1.7) and (1.11).

As a result, in the subcritical and critical cases, the extinction probability of the
GMT is q = 1. In the supercritical case, q ≤ 1, q %= 1, and we need to find the minimal
nonnegative solution of the extinction equation (1.3) in order to know the exact value
of q.

Using (1.6), the extinction equation (1.3) becomes

s = (−∆)−1 d + (−∆)−1 (D0 −∆) s + (−∆)−1
∑

m≥1

Bm s(m+1)

⇔ 0 = d + D0 s +
∑

m≥1

Bm s(m+1)

⇔ s = θ +
∑

m≥1

Ψm s(m+1), (1.14)

with the notations θ = (−D0)−1 d and Ψm = (−D0)−1 Bm previously introduced. As
expected, Equation (1.14) is the same as s = P (s) using (1.10).

In the particular case of the MBT, (1.14) takes the simple quadratic form

s = θ + Ψ (s⊗ s). (1.15)

Its interpretation is as follows. For an MBT to eventually become extinct, the root
must
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• either die without branching, which occurs with probability θ,

• or split in a left and a right branches, which occurs with probabilities given
by the matrix Ψ, and the left and right subtrees, evolving independently, must
eventually become extinct.

Equation (1.15) is a matrix quadratic equation that can generally not be solved explic-
itly, except in special cases such as the exponential and the phase-type MBT.

Indeed, in an exponential MBT, n = 1, d = µ, B = λ and D0 = −µ − λ. The
extinction probability is then trivially computed as q = 1 if µ ≥ λ and q = µ/λ if
µ < λ.

In a phase-type MBT, the birth rates matrix takes the form B = t · (α ⊗ τ ). The
extinction equation (1.15) becomes

s = (−T )−1 d + (−T )−1t (αs) (τs). (1.16)

By pre-multiplying (1.16) once by α and once by τ , we obtain a system of two scalar
equations with two unknowns αs and τs. If we define k1 = α (−T )−1 d and k2 =
τ (−T )−1 d, then the extinction probability vector q is easily shown to be q = 1 if
k1 + k2 ≥ 1, and

q = (−T )−1 d + (−T )−1 t
k1 k2

k1 k2 − k1 − k2 + 1

if k1 + k2 < 1. Note that α (−T )−1 t = 1− k1, and τ (−T )−1 t = 1− k2.

Remark 1.6.1. It is not surprising that the criticality threshold is k1 + k2 here, since
the mean progeny matrix (1.13) takes the special form

M∗ = (−T )−1 t · (α + τ ),

of which the maximal eigenvalue is ρ = (α + τ ) (−T )−1 t = 2− (k1 + k2).

Generally, we need numerical tools in order to compute the minimal nonnegative
solution of the extinction equations (1.14) and (1.15). This is the subject of the next
two chapters.



Chapter 2

Linear functional algorithms

We propose a first approach to numerically compute the probability that a population
modelled by a Markovian tree eventually becomes extinct. This approach is based on
linear functional iterations applied to the matrix extinction equation.

We first focus on the MBT case. We start by recalling two algorithms developed by
Bean, Kontoleon and Taylor [9], named the Depth and the Order algorithms. Then,
we describe a third linear algorithm, called the Thicknesses algorithm. We emphasize
its probabilistic interpretation, which allows us to prove its convergence.

Then, we study the convergence rate of all linear algorithms and we compare their
performance on a few numerical examples. Finally, a section is devoted to the gener-
alization of the linear algorithms to the GMT case.

A major part of this chapter is presented in Hautphenne, Latouche and Remiche [28].

2.1 The Depth and the Order algorithms

The Depth algorithm is based on functional iterations applied to (1.15), and proceeds
as follows:

%(0) = θ, %(k) = θ + Ψ (%(k − 1)⊗ %(k − 1)), k ≥ 1. (2.1)

The depth of a tree may be defined as the number of branching points along the longest
branch of the tree (see Figure 2.1 for an example, where the label w identifies a leaf at
the end of a longest branch). With this, %(k) is the probability that the tree eventually
becomes extinct with a depth at most equal to k. This shows that the sequence %(k)
monotonically converges to q.
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Using (1.5), Equation (1.15) may be rewritten as [I −Ψ(s⊗ I)] s = θ or

s = [I −Ψ(s⊗ I)]−1θ, (2.2)

provided that the inverse matrix in the right-hand side of (2.2) exists. This suggests
another iterative algorithm based on functional iterations:

s(0) = θ, s(k) = [I −Ψ (s(k − 1)⊗ I)]−1 θ, k ≥ 1. (2.3)

The approximation s(k) can be interpreted as the probability that the tree eventually
becomes extinct with an order at most equal to k. We give a precise definition below
but at this point it suffices to write that the order of a tree is the maximal number
of children generations. Since a tree which becomes extinct has finite order, it is clear
that the sequence (2.3) monotonically converges to q.

Our definition of the order of a tree is slightly different from that in [9]; it will make
it easier to compare the Order algorithm to the Thicknesses algorithm.

In the sequel, we do not make any difference between the MBT process and its
representation as a binary tree. Let T be a given binary tree. We mark with a 1 each
child arc and with a 0 each parental arc. If T is made up of the root and one leaf
only, that is if the tree eventually becomes extinct without any branching point, then
that unique arc is marked with a 0. Finally, we associate to every node x ∈ T (that is,
every branching point or leaf) the string of 0’s and 1’s which mark the shortest path
from x to the root and we define L(x) as the number of 1’s in this sequence. The order
of T , denoted by O(T ), is defined as

O(T ) = max {L(x) : x ∈ T }.

For instance, take the leaf w on Figure 2.1. One observes by exhaustive examination
of all the nodes, that O(T ) = L(w) = 5.

## ## # # ## # # # # # # ## # # # ## # # ##

## ### # #
L R

w

Figure 2.1: A tree with depth 8 (a longest branch leads to w), order 5 (w is a fifth
generation child of the first parent), left thickness 5, and right thickness 6.

For later reference, we call the parental branch of the tree T , that branch from the
root made up of parental arcs only. It is the rightmost branch of T and will be denoted
by R. Similarly, we call the first child branch of the tree T , that branch from the root
made up of child arcs only. It is the leftmost branch of T and will be denoted by L.
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Remark 2.1.1. We can actually consider two Order algorithms: instead of (2.2), we
may transform (1.15) as

s = [I −Ψ(I ⊗ s)]−1θ. (2.4)

This leads to another algorithm which goes a follows

s(0) = θ, s(k) = [I −Ψ (I ⊗ s(k − 1))]−1 θ, k ≥ 1. (2.5)

It is completely symmetric to the Order algorithm, and the probabilistic interpretation
is easily adapted: one merely counts 0’s instead of 1’s in the path associated to a node.

For later use, the first Order algorithm will be called the Order-1 algorithm, and the
latter will be called the Order-0 algorithm. When not specified, the Order algorithm
refers to the Order-1 algorithm.

More details about the Depth and the Order algorithms are to be found in Kon-
toleon’s thesis [43], and in Bean, Kontoleon and Taylor [9].

2.2 The Thicknesses algorithm

The Thicknesses algorithm proceeds by functional iterations, alternatively using (2.2)
and (2.4). We define

q0(0) = θ, (2.6)
q1(2k − 1) = [I −Ψ(I ⊗ q0(2k − 2))]−1 θ, k ≥ 1, (2.7)

q0(2k) = [I −Ψ(q1(2k − 1)⊗ I)]−1 θ, k ≥ 1. (2.8)

The sequences {q1(2k− 1)} and {q0(2k)} are well-defined and monotonically converge
to the extinction probability q. Before showing this, we need to define the thicknesses
of a tree.

Like we did in the previous section, we give a label 0 or 1 to the arcs of the tree. To
each node x ∈ T , we now associate two sequences, path1(x) and path0(x): path1(x) is
the string of 0’s and 1’s which mark the shortest path to the first child branch L, and
path0(x) is the string of 0’s and 1’s to the parental branch R.

Next, we define N1(x) and N0(x) respectively as the number of blocks in the se-
quences path1(x) and path0(x), where a block is a sequence of consecutive 0’s or con-
secutive 1’s. Briefly stated, these count the number of direction changes on the paths
from a node to L and to R.

The left thickness S1(T ) and the right thickness S0(T ) of a tree T are defined as
follows:

S1(T ) = max {N1(x) : x ∈ T }, S0(T ) = max {N0(x) : x ∈ T };

if T consists of a root only, then S1(T ) = S0(T ) = 0.
We see on Figure 2.1 that N1(w) = 4 and N0(w) = 5 and, by exhaustive examina-

tion of all the nodes, that S1(T ) = 5 and S0(T ) = 6.

Lemma 2.2.1. If T is the representation of an MBT which becomes extinct, then
S1(T ) <∞ and S0(T ) <∞.
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Proof. Suppose that a tree T dies out. It necessarily contains a finite number of
branching points, say n. Then, S1(T ) ≤ n since, starting from any x ∈ T , the length
of the sequence path1(x) is at most n and thus N1(x) ≤ n. The same argument applies
to S0(T ). !

# # #
...

Figure 2.2: An infinite tree with finite thicknesses

However, it is possible for a tree with infinitely many nodes to have finite thick-
nesses, see Figure 2.2.

We denote by [T <∞] the event that the MBT eventually becomes extinct. Thus,
qi = P[T <∞|ϕ0 = i ], where ϕ0 denotes the initial phase of the MBT, and we write,
in short, that q = P[T <∞|ϕ0 ].

We further define, for k ≥ 0, the probability vectors

r1(2k + 1) = P[T <∞∩ S1(T ) ≤ 2k + 1|ϕ0 ], (2.9)
r0(2k) = P[T <∞∩ S0(T ) ≤ 2k|ϕ0 ]. (2.10)

Theorem 2.2.2. The sequences {r1(2k + 1), k ≥ 0} and {r0(2k), k ≥ 0} satisfy the
equations (2.6–2.8). They are monotonically increasing and converge to q. Further-
more, r0(2k) ≤ r1(2k + 1) ≤ r0(2k + 2), for all k ≥ 0.

Proof. Let us show that [S0(T ) ≤ 2k] ⊆ [S1(T ) ≤ 2k+1], so that r0(2k) ≤ r1(2k+1).
If a tree has a right thickness at most equal to 2k, its left thickness is at most equal to
2k +1 because one additional block of 0’s only is required to reach the leftmost branch
L, after having reached the rightmost branchR. The proof that r1(2k+1) ≤ r0(2k+2)
is similar.

We now prove that the sequence {r1(2k + 1), k ≥ 0} converges to q. Using (2.9),
we have

lim
k→∞

r1(2k + 1) = lim
k→∞

P[T <∞∩ S1(T ) ≤ 2k + 1|ϕ0 ]

= P[T <∞∩ S1(T ) <∞ |ϕ0 ]

= P[T <∞|ϕ0 ]

by Lemma 2.2.1. The proof for the second sequence is similar.
Finally, we need to show that the two sequences {r1(2k+1), k ≥ 0} and {r0(2k), k ≥

0} actually satisfy (2.6–2.8).
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By definition, S0(T ) = 0 if and only if the root dies before any birth, which happens
with probability θ, so that r0(0) = q0(0).

There exist two cases where a tree eventually gets extinct with a left thickness at
most equal to 2k + 1: either death occurs before the first birth or a birth occurs first.
In the latter case,

• the left subtree T l eventually becomes extinct with a left thickness at most equal
to 2k + 1, since the leftmost branch of T l is part of the leftmost branch of the
entire tree T ;

• the right subtree T r eventually becomes extinct with a right thickness at most
equal to 2k since, in order to reach the leftmost branch L of the whole tree T
with at most 2k + 1 changes of direction, we first have to reach the rightmost
branch of T r with at most 2k changes of direction, and then add one change of
direction to reach L.

The probability that there is a birth before a death is given by Ψ; the random trees T l

and T r are independent given their initial phases defined by Ψ, thus

r1(2k + 1) = θ + Ψ[r1(2k + 1)⊗ r0(2k)]

= θ + Ψ[I ⊗ r0(2k)]r1(2k + 1)

= θ + Ψ[I ⊗ r0(2k)]θ + (Ψ[I ⊗ r0(2k)])2r1(2k + 1)

= · · · =
∞∑

n=0

(Ψ[I ⊗ r0(2k)])nθ.

Since the series converges, it is equal to (I−Ψ[I⊗r0(2k)])−1, and thus (2.7) is proved.
A similar argument is used to prove (2.8). !

We thus see that the Thicknesses algorithm somewhat alternates between child and
parental branches.

In order to illustrate the differences between the Order and the Thicknesses algo-
rithms, we show on Figure 2.3 a portion of the biggest trees corresponding to the third
stage of the two algorithms.

The tree on top corresponds to the Order algorithm; it is the most complete binary
tree with order 3. It is made up of an unbounded rightmost branch to which are
attached identical copies of a tree, which actually is the tree from stage two. The
important point is that branches to the left are limited, their length are at most 3.

The tree at the bottom corresponds to the Thicknesses algorithm; it is the most
complete binary tree with a left thickness equal to 3. By contrast, it is more balanced
and has unbounded branches in both the left and the right directions.

These observations generalize to every stage of the two algorithms. Consequently,
the Order algorithm may be expected to converge fast in situations where trees grow
with long branches in one direction only. On the other hand, the Thicknesses algorithm
may be expected to converge faster in situations where the MBT has very long branches
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Figure 2.3: A portion of the biggest tree corresponding to the third stage of the Order
algorithm (top) and the Thicknesses algorithm (bottom).

both to the left and to the right. This is numerically illustrated with Example 2.4.1.
in Section 2.4.

2.3 Convergence rates
If the MBT is controlled by a MAP with n phases, then by making use of the structure
of the matrices considered in the expression of the algorithms, in particular Kronecker
products with an identity matrix, we obtain a complexity of 2 n3 + O(n2) flops per
iteration for the Depth algorithm, and a complexity of (8/3)n3 + O(n2) flops for the
Order and the Thicknesses algorithms. Therefore, the convergence rate of the three
sequences is the key factor in comparing the efficiency of the linear algorithms.

In the sequel, we need the theorem below. Recall that an MBT is irreducible if the
mean progeny matrix (1.9) is irreducible. In that case, either q = 1 or q < 1.

Theorem 2.3.1. Assume that the MBT is irreducible. In the subcritical and super-
critical cases,

sp[Ψ (q ⊕ q)] < 1,

so that [I −Ψ (q ⊕ q)]−1 exists and is nonnegative. In the critical case,

sp[Ψ (q ⊕ q)] = 1.
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Proof. Let P (1)(s) = P (s) and P (k)(s) = P (P (k−1)(s)), where P (s) is the progeny
generating function defined in (1.12). Define Mk(s) = (m(k)

ij (s)), 1 ≤ i, j ≤ n, where
m(k)

ij (s) = ∂(P (k)(s))i/∂sj. One shows by induction that

Mk(s) = M(P (k−1)(s))Mk−1(s), (2.11)

with M1(s) = M(s) = Ψ (s⊕ s). The mean progeny matrix of the branching process
is M = M(1) = Ψ (1⊕ 1), and the matrix of interest in the statement of the theorem
is

M(q) = Ψ (q ⊕ q). (2.12)

The vector q being the extinction probability, we have P (q) = q = P (k)(q) for all
k ≥ 1. Thus, by (2.11),

Mk(q) = M(q)Mk−1(q) = Mk(q). (2.13)

By Theorem 1.2.5, limk→∞ P (k)(s) = q for all s such that 0 ≤ si < 1, i = 1, . . . , n,
which implies that

lim
k→∞

Mk(s) = 0 for any given s < 1. (2.14)

Thus, we conclude from (2.13,2.14), that

• if the MBT (which is irreducible) is supercritical, then q < 1, limk→∞ Mk(q) =
limk→∞ Mk(q) = 0, and sp[M(q)] < 1;

• if the process is subcritical, then q = 1, M(q) = M(1) = M , and sp[M(q)] =
sp[M ] < 1, as stated in Theorem 1.2.1;

• if the process is critical, then q = 1, M(q) = M(1) = M , and sp[M(q)] =
sp[M ] = 1.

It follows from the Neumann Lemma [58, Proposition 2.3.1] that in the subcritical
and supercritical cases, [I −Ψ (q ⊕ q)]−1 exists and

[I −Ψ (q ⊕ q)]−1 =
∞∑

i=0

[Ψ (q ⊕ q)]i ≥ 0.

!

In the rest of the section, we assume that the MBT is irreducible.

Corollary 2.3.2. In the subcritical and supercritical cases, sp[Ψ (q ⊗ I)] < 1 and
sp[Ψ (I⊗q)] < 1, both [I−Ψ (q⊗I)]−1 and [I−Ψ (I⊗q)]−1 exist and are nonnegative.
In the critical case, sp[Ψ (q ⊗ I)] ≤ 1 and sp[Ψ (I ⊗ q)] ≤ 1.

Proof. This immediately follows from Ψ (q⊗I) ≤ Ψ (q⊕q) and Ψ (I⊗q) ≤ Ψ (q⊕q),
and from the monotonicity properties of the spectral radius for nonnegative matrices.
!

Let us denote by 〈0, q〉 the set of vectors x such that 0 ≤ x ≤ q.
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Corollary 2.3.3. In the subcritical and supercritical cases, the matrix [I−Ψ (x⊕x)]−1

exists and is nonnegative for all x ∈ 〈0, q〉. Furthermore, [I − Ψ (x ⊕ x)]−1 ≤ [I −
Ψ (y ⊕ y)]−1 for 0 ≤ x ≤ y ≤ q.

Proof. If 0 ≤ x ≤ q, then, 0 ≤ Ψ (x⊕x) ≤ Ψ (q⊕ q), so that, in the subcritical and
supercritical cases

0 ≤
∞∑

i=0

[Ψ (x⊕ x)]i ≤
∞∑

i=0

[Ψ (q ⊕ q)]i <∞

and thus [I −Ψ (x⊕ x)]−1 exists and is nonnegative. The second statement is proved
by a similar argument. !

We denote by q(d)
n , q(o)

n , and q(t)
n the nth approximation produced by the Depth,

the Order and the Thicknesses algorithm respectively, and we define the approximation
errors

E(d)
n = q − q(d)

n , E(o)
n = q − q(o)

n , E(t)
n = q − q(t)

n .

Theorem 2.3.4. If the MBT is not critical, then upper bounds of the approximation
errors for the three algorithms are as follows. For the Depth algorithm,

E(d)
n ≤ Ψ (q ⊕ q)E(d)

n−1, (2.15)

for the Order algorithm,

E(o)
n ≤ [I −Ψ (q ⊗ I)]−1 Ψ (I ⊗ q)E(o)

n−1, (2.16)

and for the Thicknesses algorithm,

E(t)
2n−1 ≤ [I −Ψ (I ⊗ q)]−1 Ψ (q ⊗ I)E(t)

2n−2 (2.17)

E(t)
2n ≤ [I −Ψ (q ⊗ I)]−1 Ψ (I ⊗ q)E(t)

2n−1. (2.18)

Proof. We prove (2.16) only, the other inequalities being proved in a similar manner.
We rewrite (2.3) as

q(o)
n = [I −Ψ (q(o)

n−1 ⊗ I)]−1 θ = θ + Ψ (q(o)
n−1 ⊗ q(o)

n ).

Then,

E(o)
n = Ψ (q ⊗ q)−Ψ (q(o)

n−1 ⊗ q(o)
n )

= Ψ ((q − q(o)
n−1)⊗ q) + Ψ (q(o)

n−1 ⊗ (q − q(o)
n ))

= Ψ (E(o)
n−1 ⊗ q) + Ψ (q(o)

n−1 ⊗E(o)
n )

≤ Ψ (I ⊗ q)E(o)
n−1 + Ψ (q ⊗ I)E(o)

n

since q(o)
n−1 ≤ q. Thus,

(I −Ψ (q ⊗ I))E(o)
n ≤ Ψ (I ⊗ q)E(o)

n−1.
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We premultiply both sides by [I − Ψ (q ⊗ I)]−1, which exists and is nonnegative, by
Corollary 2.3.2, and this concludes the proof of (2.16). !

As a result, in the noncritical case, all three algorithms converge linearly. Indeed,
if we denote by γ(d), γ(o) and γ(t) their convergence rates, we immediately see that

γ(d) ≤ sp[M(q)], (2.19)

where M(q) is defined in (2.12), and that

γ(o) ≤ sp[R1(q)], (2.20)
γ(t) ≤ {sp[R1(q)R2(q)]}1/2,

where
R1(q) = [I −Ψ (q ⊗ I)]−1 Ψ (I ⊗ q) (2.21)

and
R2(q) = [I −Ψ (I ⊗ q)]−1 Ψ (q ⊗ I) (2.22)

(Ortega and Rheinboldt [58, Section 9.2]). Notice that, for the Order-1 algorithm, by
symmetry we have γ(o-1) ≤ sp[R2(q)].

We need to recall the following definitions and theorem from Varga [72] that are
useful in the proof of the next result.

Definition 2.3.5. Let B ≥ 0 be an n × n matrix. The matrix A = α I − B is an
M-matrix if sp(B) ≤ α.

As consequences of Theorem 2.3.1 and Corollary 2.3.2, the matrices I −Ψ (q ⊕ q),
I −Ψ (I ⊗ q), and I −Ψ (q ⊗ I) are M-matrices.

Definition 2.3.6. Let A be an M-matrix. The splitting A = B − C of A is called a
regular splitting if the matrices B and C are such that B is an M-matrix and C ≥ 0.

Theorem 2.3.7. If A = B1 − C1 and A = B2 − C2 are two regular splittings of the
M-matrix A, and if C1 ≤ C2 and B1 and B2 are nonsingular, then sp(B−1

1 C1) ≤
sp(B−1

2 C2). If A is singular, then sp(B−1
1 C1) = sp(B−1

2 C2) = 1. !

The next theorem allows us to compare the spectral radius of the matrices M(q),
R1(q), and R2(q), and shows that the Depth and the Order algorithms are linearly
convergent in the noncritical case.

Theorem 2.3.8. If the process is noncritical, then

sp[R1(q)] ≤ sp[M(q)] < 1, (2.23)

and
sp[R2(q)] ≤ sp[M(q)] < 1. (2.24)

If the process is critical and if [I −Ψ (q ⊗ I)]−1 and [I −Ψ (I ⊗ q)]−1 both exist, then

sp[M(q)] = sp[R1(q)] = sp[R2(q)] = 1. (2.25)
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Proof. In order to compare the spectral radius of the matrices M(q), R1(q) and
R2(q), we use the following three regular splittings of the M-matrix A = I −M(q):

A = B1 − C1 with B1 = I, C1 = M(q),
A = B2 − C2 with B2 = I −Ψ (q ⊗ I), C2 = Ψ (I ⊗ q),
A = B3 − C3 with B3 = I −Ψ (I ⊗ q), C3 = Ψ (q ⊗ I).

In the noncritical case, B2 and B3 are invertible by Corollary 2.3.2. Since C1 ≥ C2

and C1 ≥ C3, it results from Theorem 2.3.7 that

sp[B−1
2 C2] ≤ sp[C1] and sp[B−1

3 C3] ≤ sp[C1].

This, together with Theorem 2.3.1 and (2.21,2.22), proves (2.23,2.24).
If the process is critical, then A is singular since sp[M(q)] = 1. Theorem 2.3.7 is

still applicable if B2 and B3 are nonsingular and (2.25) results. !

Since both sp[R1(q)] ≤ sp[M(q)] and sp[R2(q)] ≤ sp[M(q)], this theorem, together
with (2.19) and (2.20), explain in an analytical manner why the Order algorithms con-
verge faster than the Depth algorithm, a fact which is proved by probabilistic arguments
in [8, 43].

The same kind of probabilistic arguments show that the Thicknesses algorithm
converges faster than the Depth algorithm. Indeed, the set of trees considered at the
kth stage of the Depth algorithm is included in the set of trees considered at the kth
stage of the Thicknesses algorithm since, if a tree has a depth at most equal to k, then
its left and right thicknesses are at most equal to k (the depth of a tree may be defined
as the maximum number of labels in the paths from the nodes to the root).

We can show the linear convergence of the Thicknesses algorithm in the noncritical
case with the same arguments than those used in the proof of the previous theorem.

Corollary 2.3.9. If the process is noncritical, then

{sp[R1(q)R2(q)]}1/2 < 1 (2.26)

If the process is critical and if [I −Ψ (q ⊗ I)]−1 and [I −Ψ (I ⊗ q)]−1 both exist, then

{sp[R1(q)R2(q)]}1/2 = 1. (2.27)

Proof. We use the two regular splittings of the M-matrix A = I − M(q): A =
B1 − C1 with B1 = I − Ψ (q ⊗ I) and C1 = Ψ (I ⊗ q), and A = B2 − C2 with
B2 = [I −Ψ (I ⊗ q)] [I −Ψ (q ⊗ I)], and C2 = Ψ (I ⊗ q)Ψ (q ⊗ I).

We get
sp[R1(q)R2(q)] ≤ sp[R1(q)],

as, by probabilitic arguments, we can show that C2 ≤ C1. This, together with Theo-
rem 2.3.8, provide the statement of the corollary. !

However, to prove analytically that {sp[R1(q)R2(q)]}1/2 ≤ sp[M(q)] is much more
difficult. There is, in addition, no comparison to be made in all generality between the
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speed of convergence of the Order and of the Thicknesses algorithms, since we have no
general relation between the spectral radius of R1(q) and R2(q) on the one hand, and
that of the product R1(q)R2(q) on the other hand. We explained at the end of the
previous section under which circumstances one may expect the Thicknesses algorithm
to be faster; we illustrate it in the next section with Example 2.4.1.

Another consequence of Theorem 2.3.8 and Corollary 2.3.9 is that one should expect
slow convergence for all linear algorithms in the case where the process is nearly critical,
that is, when sp[M(q)] is very close to 1. This is demonstrated in the next section too.

2.4 Numerical examples

Let us now apply the linear algorithms on two examples of MBTs controlled by one
parameter, in order to compare their efficiency. In the first example, the parameter
influences the length of the branches of the tree in one direction, and in the second
example, it controls the criticality of the MBT.

Example 2.4.1 (Branches of varying lenght). We analyze here the effect of the shape
of the tree on the functional algorithms examined so far.

In this example, individuals have the opportunity to have many children, so that
the tree has long branches in the parental (right) direction. The number of genera-
tions, which translates into number of nodes in the left direction, is controlled by the
parameter δ.

The birth rates matrix has the form Bi,jk = (D1)ik (P1)ij (see Section 1.5). Here,
the entry (D1)ik may be decomposed in a product βi(P0)ik, where the vector β gives
the effective birth rate in each phase, and the stochastic matrix P0 gives the conditional
probabilities for the parental phase after a birth, given its phase before the birth.

There are nine phases. An individual may only die when it is in phase 5, and

d =
[

0 0 0 0 1 0 0 0 0
]T

;

we set d5 = 1, so that the unit of time is the expected time until death when in phase
5.

An individual which is in phase 1 cycles through the phases 1 to 4; whenever it is
in phase 4, it may also move to phase 5, where it is likely that it will die, or to phase
6 where its behaviour will be very different. Phases 6 to 9 also form a cycle, and from
phase 9, an individual may move to phase 5 or phase 1. The matrix D0 is as follows

D0 = 10−3 ·





∗ 6 · · · · · · ·
· ∗ 6 · · · · · ·
· · ∗ 6 · · · · ·
6 · · ∗ 1 1 · · ·
· · · · ∗ · · · ·
· · · · · ∗ 6 · ·
· · · · · · ∗ 6 ·
· · · · · · · ∗ 6
1 · · · 1 6 · · ∗





;

its diagonal is such that D01 + β + d = 0.
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In the phases 6 to 9, the birth rate is high, and upon birth, the parent stays in the
same phase, so that branches to the right are very long. The children start in phase
5, however, where they have a high probability of dying without giving birth, so that
children branches to the left are very short.

The opposite is true in phases 1 to 4: after giving birth, the parent moves to phase
5, so that right branches do not grow much, while the child inherits the phase of its
parent, so that left branches have the potential to grow. Birth rates are parameterized
by δ, so that if δ is large, left branches have the opportunity to grow, while if δ is small,
left branches will not become very long. In summary,

β = 10−2
[
δ δ δ δ 5 4 4 4 4

]T
.

The matrices P0 and P1 are given by

P0 =





· · · · 1 · · · ·
· · · · 1 · · · ·
· · · · 1 · · · ·
· · · · 1 · · · ·

0.1 · · · 0.9 · · · ·
· · · · · 1 · · ·
· · · · · · 1 · ·
· · · · · · · 1 ·
· · · · · · · · 1





, P1 =





1 · · · · · · · ·
· 1 · · · · · · ·
· · 1 · · · · · ·
· · · 1 · · · · ·

0.1 · · · 0.9 · · · ·
· · · · 1 · · · ·
· · · · 1 · · · ·
· · · · 1 · · · ·
· · · · 1 · · · ·





.

The expected time E spent in each set of four phases is given by

E =
3

6 · 10−3
+

1
6 · 10−3 + 2 · 10−3

+ E
6 · 10−3

6 · 10−3 + 2 · 10−3

leading to E = 2500 units of time. The expected number of children during a sojourn
in the first set of phases is a = 2500·10−2 δ = 25 δ, and the expected number of children
during a sojourn in the second set of phases is 2500× 4 · 10−2 = 100.

For δ = 0, the spectral radius of the mean matrix M = Ψ (1 ⊕ 1) is ρ = 0.998
and the process is subcritical. As δ increases, ρ increases as well, the process becomes
critical for δ = 0.83 approximately, and it becomes supercritical beyond that.

We show on Figure 2.4 the number of iterations needed to compute the vector q
with the four linear algorithms as a function of δ varying in [0, 7]. As predicted by the
convergence rates analysis given in the previous section, we observe that the number
of iterations sharply increases around δ = 0.83, where the process is nearly critical.

We see that the Thicknesses algorithm performs more efficiently than the other
linear algorithms, especially for large values of δ. Indeed, recall from the end of Sec-
tion 2.2 that we expect the Thicknesses algorithm to converge faster for MBTs with long
branches in both directions, which is the case in the present example. For small values
of δ, things are better for the Order-1 algorithm, although the Thicknesses algorithm
remains the fastest of the four.

On Figure 2.5, we show the solution q as a function of δ. In the supercritical
case, the probability q5 is never exactly 1, because there is a small probability, for an
individual in phase 5, of giving birth and moving to phase 1.



2.5 General Markovian Trees 37

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8x 10
4

"

N
u
m
b
e
r
 
o
f
 
i
t
e
r
a
t
i
o
n
s

 

 

Depth

Order 1

Order 0

Thicknesses

Figure 2.4: Comparison of the number of iterations for the Depth, the Order-1 and 0,
and for the Thicknesses algorithms, as a function of δ.

Example 2.4.2 (Nearly-critical MBT). For our second example, we take a model in-
spired from Kontoleon [43]. The characterizing matrices are

D0 =




−10 0 0
0 −10 0
0 1 −10



 , d =




1
1
9



 ,

B =




0 0 0 0 9 (1− p) 0 4.5 p 0 4.5 p
9 p 0 0 0 0 0 0 0 9 (1− p)
0 0 0 0 0 0 0 0 0



 ,

and the parameter p varies between 0 and 1.
On Figure 2.6, we plot the value of ρ = sp(M) and we see that the process changes

from being subcritical to critical, supercritical, critical and finally subcritical again. On
Figure 2.7, we plot the number of iterations required with the four linear algorithms.
Here, there is not much difference between the two Order algorithms and the Thick-
nesses algorithm. We very clearly see the slowdown of each algorithm, as predicted by
the convergence rate study, when the process gets close to being critical.

Finally, Figure 2.8 shows the solution q as a function of p.

2.5 General Markovian Trees
We now investigate the generalization of the linear algorithms to the GMT case, where
multiple births are allowed. Recall that in that case, the extinction equation is given
by (1.14).

The Depth algorithm in [9, Equations (23–24)] is a generalization of (2.1):

%(0) = θ, %(k) = θ +
∑

m≥1

Ψm %(m+1)(k − 1), k ≥ 1. (2.28)
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Figure 2.5: The vector q of extinction probability for δ = 0 to 15.

The Order algorithm in [9, Equations (40–42)] is a generalization of (2.3): after
splitting s(m+1) as s(m+1) = (s(m) ⊗ I)s, one rewrites (1.14) as

s = θ +
∑

m≥1

Ψm(s(m) ⊗ I)s =
[
I −

∑

m≥1

Ψm(s(m) ⊗ I)
]−1

θ, (2.29)

which leads to the functional iteration

s(0) = θ, s(k) =
[
I −

∑

m≥1

Ψm(s(m)(k − 1)⊗ I)
]−1

θ, k ≥ 1. (2.30)

The sequences (2.28) and (2.30) monotonically converge to q, and the interpretation
of the successive approximations is the same as their analogue in the MBT case.

To generalize the Thicknesses algorithm is more complex. Recall that in the MBT
case, we assumed that after any branching point, the left arc is the child arc, the right
arc is the parental arc, and the Thicknesses algorithm alternates between child and
parental branches.

Similarly, we assume here that after any branching point, the rightmost arc is the
parental arc, and is labeled 0, and the other arcs are all children arcs and are labeled
from 1 to the number of children, from left to right. The Thicknesses algorithm thus
now needs to cycle through the different children branches and the parental branch.

Observe that the power s(m+1) may also be decomposed as s(m+1) = (s(i−1) ⊗ I ⊗
s(m−i+1))s for any 1 ≤ i ≤ m. This allows us to write (1.14) as

s = θ +
∑

1≤m≤i−1

Ψms(m+1) +
∑

m≥i

Ψm(s(i−1) ⊗ I ⊗ s(m−i+1))s, (2.31)

for all i ≥ 1 (where an empty sum corresponds to zero), from which (1.14) may be
rewritten as

s = Vi(s) (2.32)
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Figure 2.6: The maximal eigenvalue ρ of the mean matrix M , as a function of p.

where

Vi(s) =
[
I −

∑

m≥i

Ψm(s(i−1) ⊗ I ⊗ s(m−i+1))
]−1[

θ +
∑

1≤m≤i−1

Ψms(m+1)
]
. (2.33)

Let WM (s) be the right-hand-side of (2.29), that is

WM (s) =
[
I −

∑

m≥1

Ψm(s(m) ⊗ I)
]−1

θ. (2.34)

Now, let us choose some finite M ≥ 2 which may not be greater than the maximum
number of branches which follow a birth. To generalize the sequence (2.6–2.8), we
cycle through the first M − 1 fixed-point equations (2.32) and Equation (2.29), and we
obtain a sequence which converges to the extinction probability; this is the object of
the next theorem.

Theorem 2.5.1. The sequence

q0 = θ, qMk+i = Vi(qMk+i−1), qM(k+1) = WM (qMk+M−1), (2.35)

for k ≥ 0, 1 ≤ i ≤ M − 1, monotonically converges to q, where Vi(·) and WM (·) are
defined in (2.33) and (2.34) respectively.

Proof. The proof that the sequence is monotone is not complicated but quite involved.
We define the functions

TM (x, y) = θ +
∑

m≥1

Ψm (x(m) ⊗ y)

Si(x, y) = θ +
∑

1≤m≤i−1

Ψmx(m+1) +
∑

m≥i

Ψm (x(i−1) ⊗ y ⊗ x(m−i+1)),
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Figure 2.7: Comparison of the number of iterations for the four linear algorithms, as a
function of p.

for 1 ≤ i ≤M − 1.
For x′ ≥ y ≥ x and y′ ≥ x, we have the inequalities

Sj(x′, y′) ≥ Si(x, y), (2.36)
TM (x′, y′) ≥ Si(x, y) and Si(x′, y′) ≥ TM (x, y), (2.37)

for 1 ≤ i %= j ≤M − 1. To prove (2.36) for j > i, we proceed as follows:

Sj(x′, y′) = θ +
∑

1≤m≤i−1

Ψmx′(m+1) +
∑

i≤m≤j−1

Ψmx′(m+1)

+
∑

m≥j

Ψm (x′(j−1) ⊗ y′ ⊗ x′(m−j+1))

≥ θ +
∑

1≤m≤i−1

Ψmx(m+1) +
∑

i≤m≤j−1

Ψmx′(m+1)

+
∑

m≥j

Ψm (x(i−1) ⊗ y ⊗ x(m−i+1))

≥ θ +
∑

1≤m≤i−1

Ψmx(m+1) +
∑

m≥i

Ψm (x(i−1) ⊗ y ⊗ x(m−i+1))

= Si(x, y).

The other inequalities are proved in a similar manner through a comparison term by
term and, for each term, a comparison factor by factor.

Next, we prove that the sequence {qk} is monotone up to qM−1. Assume that
q0 ≤ q1 ≤ · · · ≤ qi−1 for some i ≤ M − 1; we need to show that qi−1 ≤ qi. Now, it
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Figure 2.8: The vector q of extinction probability, as a function of p.

results from (2.35) that we may write

qi = θ +
∑

1≤m≤i−1

Ψmq(m+1)
i−1 +

∑

m≥i

Ψm (q(i−1)
i−1 ⊗ qi ⊗ q(m−i+1)

i−1 ),

= Si(qi−1, qi)

and it also results that qi ≥ θ.
From the inequalities qi−1 ≥ q1 ≥ θ and qi ≥ θ, it results from (2.36) that

qi = Si(qi−1, qi) ≥ S1(θ, q1) = q1. We use this inequality and iterate the argument,
finding that qi = Si(qi−1, qi) ≥ S2(q1, q2) = q2. In this fashion, we successively prove
that qi is greater than q3, . . . , qi−1. This procedure is similar to climbing a ladder
one rung at a time, we repeatedly use it in the remainder of the proof.

We make the first induction assumption that q0 ≤ q1 ≤ · · · ≤ qMk+i−1 for some
k ≥ 1, 1 ≤ i ≤M −1 and prove that qMk+i ≥ qMk+i−1. The equation (2.33) may also
be written as

Vi(s) =
∑

ν≥0

[∑

m≥i

Ψm(s(i−1) ⊗ I ⊗ s(m−i+1))
]ν[

θ +
∑

1≤m≤i−1

Ψms(m+1)
]

which show that Vi(s) is a nondecreasing function of s for s ≥ 0. This allows us
to conclude that qMk+i ≥ qM(k−1)+i, thereby giving us a first step on the ladder.
Next, we use (2.36) and eventually prove that qMk+i ≥ qMk−1. At this stage, we
use the second inequality in (2.37) and write that qMk+i = Si(qMk+i−1, qMk+i) ≥
TM (qMk−1, qMk) = qMk. From then on, we use (2.36) again.

We make the second induction assumption that q0 ≤ q1 ≤ · · · ≤ qMk+M−1 for
some k ≥ 0, and we prove in the same fashion that qM(k+1) ≥ qMk+M−1. The
function WM (s) may be written as

WM (s) =
∑

ν≥0

[ ∑

m≥1

Ψm(s(m) ⊗ I)
]ν
θ,
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so that it is clear that qM(k+1) ≥ qMk. Having established that first step, we repeatedly
use the first inequality in (2.37).

The last part of the proof is easy: the functions Vi(·) and W(·) are non-decreasing,
therefore the fact that q0 = θ ≤ q implies by induction that qj ≤ q for all j. The
sequence, being monotone and bounded, is convergent and since q is the minimal
nonnegative solution, the convergence is to q. !

Like in the MBT case, the *th approximation q! of the Thicknesses algorithm
(2.35) may be interpreted as the probability that the tree becomes extinct with some
“distance” to the leaves being bounded by a function of *. The precise expressions,
however, are more involved than in the MBT case.

Let us first assume that the number of branches after a birth is bounded by M .
We consider the case M = 4, from which the general case will be clear enough. This
means that a parent may have at most three children at a time.

In order to better show the parallelism with the Thicknesses algorithm for MBTs,
we rewrite the successive approximations of q by adding the indices of the branches we
successively cycle through: q0(0) = q0, and for k ≥ 1,

q1(4k − 3) = q4k−3 (= q4(k−1)+1)

q2(4k − 2) = q4k−2 (= q4(k−1)+2)

q3(4k − 1) = q4k−1 (= q4(k−1)+3)

q0(4k) = q4k.

We define four thicknesses measures for a tree T , that we note S1(T ), S2(T ), S3(T )
and S0(T ), such that the successive approximations of the Thicknesses algorithm have
the following interpretation

q1(4k − 3) = P[T <∞ ∩ S1(T ) ≤ 4k − 3 |ϕ0],

q2(4k − 2) = P[T <∞ ∩ S2(T ) ≤ 4k − 2 |ϕ0],

q3(4k − 1) = P[T <∞ ∩ S3(T ) ≤ 4k − 1 |ϕ0],

q0(4k) = P[T <∞ ∩ S0(T ) ≤ 4k |ϕ0].

As before, these distances are defined as Si(T ) = max{Ni(x) : x ∈ T }, for i = 1, 2, 3, 0,
where Ni(x) counts a number of blocks in a sequence associated to the node x.

We first need to label the arcs of the tree. As before, we mark with a 0 each parental
arc. Now, at a birth there may be up to 3 children. Going from left to right, we give
the mark 1 to the first child arc, 2 to the second child arc (if any), and 3 to the third
one (if any).

As before, the first child branch is made up of arcs with label 1 only, starting from
the root, and we denote it as L1. Similarly, recall that the parental branch R is made
up of arcs will label 0 only, starting from the root. Now, let us note by L2 the branch
starting from the root and formed of second child arcs only, and by L3 the branch
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starting from the root and formed of third child arcs only. If one of these principal
branches is empty, which happens if the first birth generates less than the maximum
number of children, then it will be assumed to be constituted of the root arc only, the
root thus belonging to L1, L2, L3, and R.

To each node x ∈ T , we associate now four sequences, pathi(x) for i = 1, 2, 3, 0.
The sequence pathi(x) is the string of labels which mark the shortest path from x to
the branch Li for i = 1, 2, 3, or to the branch R for i = 0. The counter Ni(x) is equal
to the number of blocks in the sequence pathi(x), but here the definition of a block is
a bit more involved than for the MBT case.

Let us introduce some notations in the form of regular expressions. We use *∗ to
represent a succession (which can be empty) of an unspecified number of copies of the
symbol *; the concatenation *m is read as “* followed by m”; and finally *+ m is read
as “* or m”.

In order to form the blocks in the sequences pathi(x), we need the following diagram
that we skim through following the direction of the arrows (that is, from right to left),
and in which we have four principal types of blocks: B0, B1, B2 and B3. The order in
which we consider the blocks reflects the order in which the successive equations of the
Thicknesses algorithm are applied.

1∗ (1 + 3 + 0)︸ ︷︷ ︸
B1

← 2∗ (1 + 2 + 0)︸ ︷︷ ︸
B2

← 3∗ (1 + 2 + 3)︸ ︷︷ ︸
B3

← 0∗(2 + 3 + 0)︸ ︷︷ ︸
B0

(2.38)

!

The block of B0-type is constituted of a single 2 or 3 or 0, possibly followed by
a string of 0’s. Similarly, the block of B3-type is constituted of a single 1 or 2 or 3,
possibly suceeded by a string of 3’s. In the same idea we define the blocks of B2- and
B1-types.

Now, let us show how to aggregate the labels into blocks in the sequences pathi(x),
i = 1, 2, 3, 0. We give the details for i = 1. Take for example the string

path1(x) = 2 1 0 0 3 3 2 0 3 2 1 2 0 0 3 (2.39)

associated with a node x. The identification of the blocks is made using the scheme
(2.38), by considering each label of the sequence, starting from the right and scanning
it from right to left. For i = 1, we start by identifying a first block of B0-type; indeed,
the rightmost label in path1(x) is always different from 1 since path1(x) represents the
sequence of labels from x to L1. Then, we cyclically identify blocks of types B3, B2,
B1, and B0.

The first block of B0-type in the sequence path1(x) is constituted of the first label
with all the possibly succeeding 0’s. We obtain for the sequence (2.39)

path1(x) = 2 1 0 0 3 3 2 0 3 2 1 2 0 0 3︸︷︷︸
First block of B0-type

.

Once the first block is identified, the following label (if there is any) taken in the
sequence, still traversing it from right to left, now belongs to a block of B3-type, which
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is also constituted of all the possibly succeeding 3’s. For our example, we get

path1(x) = 2 1 0 0 3 3 2 0 3 2 1 2︸︷︷︸
Second block of B3-type

0 0 3︸︷︷︸
First block of B0-type

.

The next label and all the possibly succeeding 2’s belong to a block of B2-type, and
so on. We finally obtain for the sequence (2.39)

path1(x) = 2︸︷︷︸
B0

1 0︸︷︷︸
B1

0︸︷︷︸
B2

3 3 2︸︷︷︸
B3

0︸︷︷︸
B0

3︸︷︷︸
B1

2 1︸︷︷︸
B2

2︸︷︷︸
B3

0 0 3︸︷︷︸
B0

.

For i = 2, 3, 0, the aggregation of pathi(x) into blocks works exactly the same as
for i = 1, the only difference being the first block considered when starting from the
right of the sequence: it must be

• a B1-type block for i = 2,

• a B2-type block for i = 3,

• a B3-type block for i = 0.

The order of consideration of the different blocks still follows the scheme (2.38).
The quantity Ni(x) is then defined as the number of blocks formed in the sequence

pathi(x) associated with the node x. In the example above, we see that N1(x) = 9.

With the probabilistic interpretation of each stage of the Thicknesses algorithm
and the definition of the four thicknesses, we can now justify, for instance, the step
q2(4k − 2) of the algorithm. It may be rewritten as

q2(4k − 2) = θ + Ψ1 [q1(4k − 3)⊗ q1(4k − 3)]

+Ψ2 [q1(4k − 3)⊗ q2(4k − 2)⊗ q1(4k − 3)]

+Ψ3 [q1(4k − 3)⊗ q2(4k − 2)⊗ q1(4k − 3)⊗ q1(4k − 3)].

Let us interpret the right-hand side. There exist two cases where a tree T eventually
gets extinct with a thickness S2(T ) at most equal to 4k− 2: either death occurs before
the first birth, or a birth occurs first. In the latter case,

• whatever the number of children, there is always a first child subtree T l1 and a
parental subtree T r, which eventually become extinct with a thickness S1(T l1)
and S1(T r) at most equal to 4k − 3; indeed, in order to reach the branch L2 of
the whole tree T with at most 4k−2 blocks, we first have to reach the branch L1

in T l1 , and in T r, with at most 4k−3 blocks, and then add one block of B1-type
to reach L2; this happens with probability q1(4k − 3);

• if there is a second child, then the associated subtree T l2 eventually becomes
extinct with a thickness S2(T l2) at most equal to 4k − 2, since the branch L2 in
T l2 is part of the branch L2 in the entire tree T ;
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• finally, if there is a third child, its associated subtree T l3 eventually becomes
extinct with a thickness S1(T l3) at most equal to 4k− 3, for the same reasons as
for the subtrees T l1 and T r.

As for the MBT case, one proves that the event [T < ∞] implies the four events
[S1(T ) <∞], [S2(T ) <∞], [S3(T ) <∞] and [S0(T ) <∞], so that

lim
k→∞

q1(4k − 3) = lim
k→∞

q2(4k − 2) = lim
k→∞

q3(4k − 1) = lim
k→∞

q0(4k) = q.

Now, we consider the case where 2 ≤M <∞ is smaller than the maximal number
of branches after a birth (for instance if that number is unbounded).

The parental arcs of the tree still take the label 0, and the M − 1 first children arcs
take the labels 1 to M − 1; now, we give the common label " to the other children
arcs.

As previously, we define M principal branches: the parental branch R, and the
children branches Li, for i = 1, 2, . . . , M − 1. They are associated with M thicknesses
measures Si(T ), i = 0, 1, . . . , M−1, and the interpretation of the Thicknesses algorithm
still goes as

qM k+i = P[T <∞ ∩ Si(T ) ≤M k + i |ϕ0], k ≥ 0, 0 ≤ i ≤M − 1.

The definition of the M thicknesses of a tree is exactly the same as before, the only
difference being that the sequences pathi(·) associated to the nodes of the tree may
include the label ". The rule of labels aggregation in blocks must then take the label
" into account, and becomes, in the case M = 4 for instance,

1∗ (1 + 3 + " + 0)
| {z }

B1

← 2∗ (1 + 2 + " + 0)
| {z }

B2

← 3∗ (1 + 2 + 3 + ")
| {z }

B3

← 0∗(2 + 3 + " + 0)
| {z }

B0

,

!

to compare with (2.38). This generalizes to any M ≥ 2.





Chapter 3

Quadratic algorithms

We apply Newton’s method to the quadratic matrix extinction equation for MBTs, and
we prove that the resulting sequence is globally and quadratically convergent. Each
iteration may be interpreted as the extinction probability of the branching process,
under a set of constraints which become weaker at each step.

We use the Newton algorithm on the two examples described in Section 2.4. We
also return to the demographic application and we compute, for each country, the
extinction probability of a female family. We compare the performances of the Newton
algorithm and of the linear algorithms studied in the preceding chapter on all these
examples.

Finally, we show that we can obtain at least three other quadratic sequences by
modifying the formulation of the extinction equation. We study in detail the conver-
gence properties of one of them, that is shown to be more efficient than the Newton
algorithm in terms of the number of iterations required to converge.

The material in this chapter is published with somewhat more details in Haut-
phenne, Latouche and Remiche [27] and in Hautphenne and van Houdt [32].

3.1 The Newton algorithm

Let us rewrite the extinction equation (1.15) as F(x) = 0, where

F(x) = x− θ −Ψ (x⊗ x). (3.1)

The function F is a mapping from Rn into itself. In order to apply Newton’s method
to solve F(x) = 0, we need the following definition from Ortega and Rheinboldt [58].
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Definition 3.1.1. The mapping F : D ⊂ Rn → Rm is Fréchet-differentiable at x ∈
int(D) if there exists a linear operator A from Rn to Rm such that

lim
h→0

||F (x + h)− F (x)−Ah||
||h|| = 0.

The linear operator A is denoted by F ′
x and is called the Fréchet derivative of F at x.

The Fréchet derivative of F at x is a linear map F ′
x given by

F ′
x : z 3→ [I −Ψ (x⊕ x)]z = z −Ψ (z ⊗ x + x⊗ z).

For a given x0, the Newton sequence for the solution of F(x) = 0 is

xk+1 = xk − (F ′
xk

)−1 F(xk) (3.2)
= xk − [I −Ψ (xk ⊕ xk)]−1 [xk − θ −Ψ (xk ⊗ xk)] (3.3)
= [I −Ψ (xk ⊕ xk)]−1 [θ −Ψ (xk ⊗ xk)], (3.4)

for k ≥ 0, provided that F ′
xk

is invertible for all k.

Theorem 3.1.2. For any x0 in 〈0,θ〉, the Newton iteration (3.4) is such that

(a) the sequence {xk} is well defined,

(b) x0 ≤ x1 ≤ x2 ≤ · · · , and

(c) limk→∞ xk = q.

Moreover, there exists a positive constant c such that

||xk+1 − q || ≤ c ||xk − q ||2, (3.5)

so that the Newton algorithm converges (at least) quadratically.

Before proving this theorem, we need a few preliminary results.

Lemma 3.1.3. Assume that the process is supercritical and irreducible. We have

F(x)−F(y) ≥ F ′
x (x− y), (3.6)

for all x ≤ y in 〈0, q〉.
The inverse P (x) = [I − Ψ (x ⊕ x)]−1 of F ′

x exists for all x in 〈0, q〉 and is non
negative. Furthermore, P (x) ≤ P (y) for all x ≤ y in 〈0, q〉.

Proof. Firstly,

F(x)−F(y) = (x− y)−Ψ (x⊗ x) + Ψ (y ⊗ y)
= (x− y)−Ψ (x⊗ (x− y))−Ψ ((x− y)⊗ y)
≥ F ′

x (x− y)

since x ≤ y.
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It follows from Corollary 2.3.3 that sp[Ψ (x⊕x)] < 1 for all x in 〈0, q〉, so that the
inverse P (x) does exist, and

P (y) =
∑

n≥0

[Ψ (y ⊕ y)]n ≥
∑

n≥0

[Ψ (x⊕ x)]n = P (x) ≥ 0

for all x ≤ y in 〈0, q〉. !

The proposition below is norm-independent, although it will sometimes be conve-
nient to use the L∞-norm for vectors and matrices.

Lemma 3.1.4. The operator F ′ is Lipschitz-continuous on 〈0, q〉, that is, there exists
a constant γ such that

||F ′
x −F ′

y|| ≤ γ ||x− y|| ∀x, y ∈ 〈0, q〉. (3.7)

Proof. Assume that h is a vector of norm 1, and that x, y are two vectors in 〈0, q〉.
We may write

[F ′
x −F ′

y] h = Ψ ((y − x)⊕ (y − x))h.

Thus, we have
||[F ′

x −F ′
y] h|| ≤ 2 c ||Ψ|| ||x− y||

where c is a finite constant, since ||h|| = 1 and since ||x⊗ I||∞ = ||I ⊗ x||∞ = ||x||∞.
This proves (3.7) with γ = 2 c ||Ψ|| <∞. !

We are now in a position to prove Theorem 3.1.2.

Proof of Theorem 3.1.2 It closely follows those of Propositions 13.2.3 and of the
Monotone Newton Theorem 13.3.4 in [58].

We start by showing that if 0 ≤ x0 ≤ θ, then 0 ≤ xk ≤ xk+1 ≤ q, and F(xk) ≤ 0,
for all k.

First, it results from (3.6) that F(0) − F(x0) ≥ F ′
0(0 − x0), which shows that

F(x0) ≤ 0, since F(0) = −θ and F0 is the identity operator.
Now, make the induction assumption that 0 ≤ xk ≤ q, and that F(xk) ≤ 0, for

some k ≥ 0. This implies that P (xk) ≥ 0, by Lemma 3.1.3. Furthermore, xk ≤ xk+1

by (3.2).
Using (3.2) and Lemma 3.1.3 again, we find that, for any z ∈ 〈xk, q〉,

z − P (xk)F(z) = xk+1 − (xk − z) + P (xk)(F(xk)−F(z))

≥ xk+1 − [I − P (xk)F ′
xk

](xk − z)

= xk+1

and, in particular, this implies that q = q − P (xk)F(q) ≥ xk+1. Thus 0 ≤ xk ≤
xk+1 ≤ q.

Finally, by Lemma 3.1.3 and (3.2),

F(xk+1) ≤ F(xk) + F ′
xk

(xk+1 − xk) = [I −F ′
xk

P (xk)]F(xk) = 0,
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which completes the induction.

As a bounded, nondecreasing sequence, {xk} has a limit x∗ ≤ q. We now show
that F(x∗) = 0.

Using Lemma 3.1.3, we observe that 0 ≤ P (x0) ≤ P (xk), since x0 ≤ xk for all
k ≥ 0; also, F(xk) ≤ 0, so that

xk − xk+1 = P (xk)F(xk) ≤ P (x0)F(xk) ≤ 0.

We know that limk→∞(xk − xk+1) = 0, so that limk→∞ P (x0)F(xk) = 0. As a
consequence of Lemma 3.1.4 above and Propositions 3.2.8 and 3.1.6 in [58], the operator
F is continuous at x∗, and P (x0)F(x∗) = 0. Since P (x0) is nonsingular, it follows
that F(x∗) = 0 and we have proved that x∗ ≤ q is a solution of F(x) = 0.

We also know that q is the smallest nonnegative solution of F(x) = 0. This implies
that x∗ = q and that limk→∞ xk = q.

It remains for us to prove (3.5). By Lemmas 3.1.3 and 3.1.4, the operator F ′ is
nonsingular and continuous on 〈0, q〉, therefore, there exists a β such that ||P (x)|| ≤ β,
for all x in 〈0, q〉, and

||xk+1 − q|| = ||xk − q − P (xk)(F(xk)−F(q))||
≤ β ||F ′

xk
(xk − q)− (F(xk)−F(q))||

≤ 1
2 β γ ||xk − q||2,

by the mean-value Theorem [58, Proposition 3.2.12], and we take c = 1
2 β γ. !

In principle, the starting point x0 might thus be chosen anywhere in 〈0,θ〉 but,
in practise, one would choose a point as close as possible to the solution q, and set
x0 = θ.

Convergence rate

Let us now investigate more accurately the convergence rate of the Newton algorithm.
Noting by qn the nth approximation of q, and by En = q−qn its approximation error,
we easily obtain an upper bound:

En ≤ [I −Ψ (q ⊕ q)]−1 Ψ (En−1 ⊗En−1). (3.8)

By Theorem 2.3.1, we know that in the critical case the matrix I −Ψ (q ⊕ q) in (3.8)
is singular, and the upper-bound of En is thus not well-defined. Like for the linear
algorithms, we should expect that the Newton algorithm converges slowly when the
process is nearly critical.

Otherwise, Theorem 3.1.2 shows that the convergence is at least quadratic. With
(3.8), we see that is is likely to be exactly quadratic since the error En−1 appears in
a quadratic form. In order to prove this precisely, we call upon the Newton attraction
Theorem [58, Theorem 10.2.2], three of its assumptions being readily seen to hold:

• F ′ is continuous at q by Lemma 3.1.4;
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• F ′
q = I −Ψ (q ⊕ q) is nonsingular by Theorem 2.3.1;

• there is a constant α <∞ such that ||F ′
x −F ′

q|| ≤ α ||x− q||, for all x in 〈0, q〉
by (3.7).

The fourth required assumption is that F ′′(q)hh = −2Ψ( h⊗ h) should be different
from 0 for h %= 0, which is not true in all generality. To give one example only, assume
that there is a phase (call it the phase “1”) such that Bi;1,1 = 0 for all i, meaning that
it is not possible at a time of birth that both the parent and the child should enter
into phase 1; if the vector h has only its first component different from zero, then
F ′′(q)hh = 0.

Nevertheless, if we assume that from each phase there is a path to extinction (As-
sumption (1.2.2)), then we are led to q > 0. In that case, it is likely that the sequence
{xk} will stay in the interior of 〈0, q〉, so that q − xk > 0 and

F ′′(q)(q − xk)(q − xk) %= 0,

which is the property really needed in [58, Theorem 10.2.2].

3.2 Probabilistic interpretation

We now give a probabilistic interpretation of the Newton algorithm when x0 = θ.
Each iteration may then be interpreted as the probability that the MBT eventually
becomes extinct under some constraint. More precisely, we show that at each stage,
the Newton algorithm computes the probability that the MBT becomes extinct and
that the associated binary tree belongs to an increasing sequence Xk of sets of trees.

The sequence is defined below, but first we need to introduce some notations. Let
∆k = xk − xk−1, with ∆0 = θ, be the increment between the (k − 1)th and the kth
approximations of the algorithm, for k ≥ 1. We know that ∆k ≥ 0 for all k. Using
(3.3), we can write

∆k = [I −Ψ (xk−1 ⊕ xk−1)]−1 εk, k ≥ 1, (3.9)

where

εk = θ + Ψ (xk−1 ⊗ xk−1)− xk−1

= θ + Ψ (xk−2 ⊕ xk−2)xk−1 −Ψ (xk−2 ⊗ xk−2)

+Ψ (∆k−1 ⊗∆k−1)− xk−1

= Ψ (∆k−1 ⊗∆k−1), (3.10)

by (3.4).
The sets of trees are recursively defined as follows: we start with X0 which is the

set of trees made up of one leaf only, and D0 = X0. Then, for k ≥ 1,

• a tree is in Ek if it is finite and has two subtrees, both belonging to Dk−1;
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• a tree is in Dk if it is finite and, in addition, either it is in Ek, or it has two
subtrees, one in Xk−1 and one in Dk itself;

• the set Xk is the union of D0, D1, . . . , Dk.

These relations may be summarized as follows, for k ≥ 1,

Xk = Xk−1 ∪ Dk

Dk =
"

Dk−1 Dk−1

∪
"

Xk−1 Dk

∪
"

Dk Xk−1

Theorem 3.2.1. If x0 = θ, then the vector xk in the Newton sequence (3.4) is, for all
k ≥ 0, the vector of probabilities P[T ∈ Xk|ϕ0], that is, the conditional probability that
the MBT T belongs to Xk and becomes extinct, given its initial phase. Furthermore,
∆k = P[T ∈ Dk|ϕ0].

Proof. The proof is by induction. For k = 0, the property holds by definition. Assume
that it holds up to k − 1.

We immediately find that

P[T ∈ Ek|ϕ0] = Ψ(∆k−1 ⊗∆k−1) = εk,

by (3.10). Indeed, the initial phases of the two subtrees are chosen with the matrix Ψ,
they both belong to Dk−1 and become extinct with probability ∆k−1, by the induction
assumption.

Now, if we denote by z the vector of probabilities P[T ∈ Dk|ϕ0], we find that

z = εk + Ψ(xk−1 ⊗ z) + Ψ(z ⊗ xk−1)

= εk + Ψ(xk−1 ⊕ xk−1)z

= [I −Ψ(xk−1 ⊕ xk−1)]−1εk

= ∆k

by (3.9).
Finally, if we can show that the sets Xk−1 and Dk are disjoint, then

P[T ∈ Xk|ϕ0] = xk−1 + ∆k = xk

by definition of ∆k.
By definition of Xk−1, it is disjoint from Dk for all k ≥ 1 if and only if Dk and Di

are disjoint for all k ≥ 1 and all i ≤ k − 1. This is equivalent to the claim that all the
sets Dk are disjoint, k ≥ 0. We show this by induction on k.

We proceed as follows: let us assume that for all i ≤ k − 1 and for all j ≥ i + 1,
Di ∩ Dj = ∅. This is true for k = 1 since the trees in D0 do not have any branching
point. We have to show that for all j ≥ k + 1, Dk ∩Dj = ∅.
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Assume that there exists some tree T with T ∈ Dk and T ∈ Dj , for some j ≥ k+1.
The tree T being in Dk, it has two subtrees and either both are in Dk−1, or one
of the left or right subtrees is in Dk with the other one being anywhere in Xk−1 =
D0∪D1∪ · · ·∪Dk−1. A similar conclusion is drawn from the fact that T is in Dj : both
subtrees are in Dj−1 or one is in Dj and the other is in Xj−1 = D0 ∪D1 ∪ · · · ∪Dj−1.

By exhaustive enumeration of all nine possible consequences, we are led to one of
two cases. In the first case, there exist some indices * and n such that * ≤ k−1 < k ≤ n
and D! ∩Dn %= ∅. But this contradicts the induction assumption.

In the second case, one of the subtrees, call it T ∗, belongs to both Dk and Dj ,
j ≥ k + 1. We thus repeat the same argument with T ∗. Since the initial tree is finite
and every subtree contains a number of nodes which is strictly finite, it is impossible
to indefinitely be left with the only conclusion that one of the subtrees belongs to both
Dk and Dj . Thus, we will eventually find a contradiction like in the first case. This
concludes our proof. !

3.3 Numerical examples

Let us take again the two examples discussed in Section 2.4. For the linear and
quadratic algorithms, we compare the approximation errors, two residuals and the
mean CPU execution time (over a set of 100 simulations, using Matlab with Intel 2.4
GHz).

For Example 2.4.1 (branches of varying length), we depict on Figure 3.1 the number
of iterations needed to compute q with the Newton algorithm, as a function of δ. As
expected, we see that it is greatest when the process is nearly critical.

On Figure 3.2, we plot log10 ||En||∞ and we compare the convergence rates of the
algorithms when δ = 2. Since we do not know a priori the exact value of q, we
do not have the exact value of En neither. Instead, we use the difference q∗ − qn

where q∗ is the value of q obtained numerically. Here, and in all examples, we have
used ||qn − qn−1||∞ < 10−10 as the stopping criterion. We see that after a very few
iterations, the Newton algorithm has converged, and that the Thicknesses algorithm is
really faster than the other linear algorithms, as already emphasized in Section 2.4.

One usually computes two types of residuals: the absolute residual

r1 = ||q∗ − θ −Ψ (q∗ ⊗ q∗)||∞,

and the relative residual

r2 =
||q∗ − θ −Ψ (q∗ ⊗ q∗)||1

||q∗||1 + ||θ||1 + ||Ψ (q∗ ⊗ q∗)||1
.

Table 3.1 shows the number of iterations and the residuals for each algorithm, as well
as the CPU time expressed in seconds.
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Algorithm Iterations r1 r2 CPU time

Newton 9 2.00 · 10−14 1.00 · 10−14 0.002
Thicknesses 181 2.03 · 10−12 4.50 · 10−13 0.026
Order-1 3002 9.87 · 10−11 2.76 · 10−11 0.8038
Order-0 3529 9.90 · 10−11 2.76 · 10−11 1.0263
Depth 5705 9.96 · 10−11 5.07 · 10−11 2.1077

Table 3.1: Comparison of the number of iterations, the residuals, and the CPU time
(in seconds) for the algorithms with δ = 2.
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Figure 3.1: Number of iterations for the Newton algorithm as a function of δ .

For Example 2.4.2 (nearly-critical MBT), Figure 3.3 depicts the number of iterations
required with the Newton algorithm, as a function of the parameter p. This number
is again very small compared to the linear algorithms. We see that when p gets close
to the critical case (that is, around the values p = 0.34 and p = 0.84), the algorithm
convergence is increasingly slow.

We note from Figure 2.6 that the process seems to be the most supercritical for
p about 0.6. For this value, we give in Table 3.2 the number of iterations and the
residuals for each algorithm. The CPU time here is much less meaningful than for the
first example as it is quite small; we give these numbers for completeness sake only.

3.4 Application in demography

In this section, we return to our demographic application, and we compute the prob-
ability that the female family generated by a first woman eventually becomes extinct.
This corresponds to the extinction probability of the MBT modelling a woman’s family,
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Figure 3.2: Logarithm of ||En||∞ for the five algorithms with δ = 2.

Algorithm Iterations r1 r2 CPU time

Newton 9 2.66 · 10−15 8.51 · 10−16 0.0013
Order-1 82 4.38 · 10−11 1.60 · 10−11 0.0048
Thicknesses 91 4.40 · 10−11 1.53 · 10−11 0.0061
Order-0 107 4.93 · 10−11 1.85 · 10−11 0.0063
Depth 170 8.89 · 10−11 3.69 · 10−11 0.0188

Table 3.2: Comparison of the number of iterations and of the residuals for the five
algorithms with p = 0.6.

as described in Example 1.5.2 of Section 1.5. Notice that this MBT is not irreducible,
since once a woman reaches the age class 50− 54, she is not able to produce any child
anymore. But as we will see later in Section 4.4, this does not affect our results.

The extinction probability vector q may be computed with any of the linear or
quadratic algorithms. Figure 3.4 shows each entry of q, that is the extinction probabil-
ity of the female family generated by a single woman, given her age class at initial time.
We only plot the results for the supercritical countries, as the extinction probability is
one in the other countries, regardless the age class of the initial woman.

We see here again the infant mortality effect which was already discussed in Sec-
tion 1.4: for instance, the family generated by a Congolese girl aged between 1 and
4 years has a higher probability of eventually becoming extinct than for a girl aged
between 15 and 19 years, because the first girl has a lower probability than the second
one of reaching adulthood.

Let us now compare the convergence speed and the accuracy of the linear algorithms
and the Newton algorithm on the case of Belgium, for which we know that q = 1.
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Figure 3.3: Number of iterations for the Newton algorithm as a function of p.

We give in Table 3.3 the number of iterations, the two residuals, and the CPU time
expressed in seconds, for the five algorithms. On Figure 3.5, we give the logarithm
of the error ||En||∞ = ||1 − qn||∞ for the five algorithms. The linear and quadratic
convergences are very clear and, as expected, the Depth algorithm is significantly slower
than the other three linear algorithms.

Algorithm Iterations r1 r2 CPU time

Newton 8 4.44 · 10−16 3.83 · 10−17 0.0040
Order-0 60 2.53 · 10−11 3.96 · 10−12 0.0115
Thicknesses 74 4.40 · 10−11 7.52 · 10−12 0.0149
Order-1 87 4.54 · 10−11 7.75 · 10−12 0.0168
Depth 131 8.59 · 10−11 1.42 · 10−11 0.0219

Table 3.3: Comparison of the number of iterations, the residuals and the CPU time
(in seconds) for the five algorithms.

When moving from the raw to the gap model with n = 136 phases, in which
after-birth gap periods are taken into account, some supercritical countries become
subcritical, so that the extinction probability of their female families becomes q = 1.
It is the case for Brazil, South Africa and Turkey, for instance. We gather in Table 3.4
the spectral radius of the mean progeny matrix with n = 22 and n = 136 phases for
these three countries. We thus see again how sensitive the results are to the data,
and that it may be of high interest to consider these gap periods when looking at the
extinction probability of a population.
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Figure 3.4: Extinction probability of the family generated by first woman as a function
of her age class

Country raw gap

Brazil 1.0539 0.9932
South Africa 1.0315 0.9793
Turkey 1.0045 0.9384

Table 3.4: Comparison of the spectral radius of the mean matrix M in the raw and in
the gap models

3.5 Alternate Newton sequences

We end the chapter by discussing other quadratic algorithms which may be obtained
from the Newton method applied to the extinction equation. We first introduce the
way these alternate algorithms came to our attention.

In a given binary tree representation of an MBT, we can visit all the nodes and the
arcs in a pre-order way, that is, in a depth-first traversal (Sedgewick [63]). If the MBT
eventually becomes extinct, then, starting from its root, we will cover all the nodes of
the corresponding tree in a finite time.

Such a traversal of the binary tree has led to a correspondence between MBTs and
tree-like QBD processes, that we describe in Hautphenne and Van Houdt [32]. Without
going into the details here, it is shown there that the linear algorithms to compute the
extinction probability of MBTs coincide with linear algorithms developed to compute
some particular first passage probability matrices in tree-like QBD processes.

However, a quadratic algorithm based on the Newton iteration method, developed
by Bini, Latouche and Meini [10] for tree-like QBD processes, did not seem to have



58 Quadratic algorithms

0 50 100 150
−10

−8

−6

−4

−2

0

n

L
o
g
1
0
 
|
|
 
E
n
 
|
|

 

 

Depth

Order 1

Order 0

Thicknesses

Newton

Figure 3.5: Logarithms of the errors of the five algorithms.

any correspondence in the MBT context. Indeed, this quadratic algorithm is different
from the algorithm in Section 3.1. In [32], we show that it actually corresponds to the
Newton method applied on a different formulation of (1.15) for MBTs.

Indeed, recall from (2.2) and (2.4) that (1.15) may be equivalently rewritten as
s = [I−Ψ(s⊗ I)]−1θ or s = [I−Ψ(I⊗s)]−1θ. We can thus apply the Newton method
on the equation F(x) = 0, where

F(x) = x− [I −Ψ (x⊗ I)]−1 θ, (3.11)

or
F(x) = x− [I −Ψ (I ⊗ x)]−1 θ. (3.12)

The two resulting algorithms may be termed as “Newton-Order” sequences, since
the structure of F(x) reminds us of the structure of the two Order algorithms discussed
in Section 2.1. The Newton algorithm from [10] for tree-like QBDs corresponds to the
Newton-Order-0 algorithm arising from (3.12).

Similarly, the Newton algorithm in Section 3.1 may be seen as a “Newton-Depth”
sequence, and we may also construct the “Newton-Thicknesses” sequence, by applying
the Newton iteration method alternatively on (3.11) and on (3.12).

In the rest of this section, we show that Theorem 3.1.2 still holds for the Newton-
Order-0 algorithm, and that this sequence requires fewer iterations than the Newton-
Depth sequence. However, the complexity of the new iteration is a little higher, which
is reflected by the CPU time comparison reported in [32].

The Fréchet derivative of F at x, where F(x) is given by (3.12), is a linear map
F ′

x : Rn → Rn given by

F ′
x : z 3→ [I − Sx Ψ (Sx θ ⊗ I)]z = [z − Sx Ψ (Sx θ ⊗ z)],
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with Sx = [I −Ψ (I ⊗ x)]−1.

For a given x0, the Newton-Order-0 sequence for the solution of F(x) = 0 is

xk+1 = xk − (F ′
xk

)−1 F(xk)

= xk − [I − Sxk Ψ (Sxk θ ⊗ I)]−1 [xk − Sxk θ] (3.13)

for k ≥ 0, provided that F ′
xk

is invertible for all k. The proof of Theorem 3.1.2 for
the sequence (3.13) follows the same steps as for (3.4) and is thus omitted. It requires
an equivalent series of lemmas, whose proofs are more involved here, as well as the
following lemma, which is the analogue of Theorem 2.3.1.

Lemma 3.5.1. If the MBT is noncritical and irreducible, then sp[Sq Ψ (Sq θ⊗I)] < 1,
and [I−Sq Ψ (Sq θ⊗I)]−1 exists and is nonnegative. In the critical case, sp[Sq Ψ (Sq θ⊗
I)] = 1.

Proof. Consider the following branching process embedded in the MBT: the leftmost
branch of the MBT represents the lifetime of the first individual of this branching
process, and each right branch coming from the leftmost branch represents a new child
from the initial individual, which may itself generate new individuals, and so on. For
this process, we see that the progeny generating function of an individual is given by

G(x) =
∑

n≥0

[Ψ (I ⊗ x)]n θ = [I −Ψ (I ⊗ x)]−1 θ.

We now repeat the proof of Theorem 2.3.1 with this new progeny generating function,
and with M(x) = Sx Ψ (Sx θ ⊗ I). In the subcritical and supercritical cases, we get
sp[Sq Ψ (Sq θ ⊗ I)] < 1, and in the critical case, sp[Sq Ψ (Sq θ ⊗ I)] = 1. !

In the sequel we shall often use the notation Ψx = Ψ (I ⊗x). In order to make the
similarities more apparent, we write in parenthesis the label of the analogous property
for the sequence (3.4).

Lemma 3.5.2 (3.1.3). Assume that the process is supercritical and irreducible. We
have

F(x)−F(y) ≥ F ′
x (x− y),

for all x ≤ y in 〈0, q〉.
The inverse P (x) = [I − Sx Ψ (Sx θ ⊗ I)]−1 of F ′

x exists for all x in 〈0, q〉 and is
nonnegative. Furthermore, P (x) ≤ P (y) for all x ≤ y in 〈0, q〉.

Proof. First, remark that Sx = I +Sx Ψx = I +Ψx Sx. Note also that if x ≤ y, then
Sx ≤ Sy.
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Thus, if x ≤ y, then

F ′
x (x− y) = x− y + Sx Ψ [I ⊗ (y − x)]Sx θ

= x− y + Sx (Ψy −Ψx)Sx θ

≤ x− y + Sy (Ψy −Ψx)Sx θ

= x− y + (Sy − I) Sx θ − Sy (Sx − I)θ

= x− y + (Sy − Sx)θ

= F(x)−F(y).

It follows from Lemma 3.5.1 that sp[Sx Ψ (Sx θ ⊗ I)] < 1 for all x in 〈0, q〉, since
Sx ≤ Sq and thus Sx Ψ (Sx θ ⊗ I) ≤ Sq Ψ (Sq θ ⊗ I). So, the inverse P (x) does exist.
Moreover,

P (y) =
∑

n≥0

[Sy Ψ (Sy θ ⊗ I)]n ≥
∑

n≥0

[Sx Ψ (Sx θ ⊗ I)]n = P (x) ≥ 0

for all x ≤ y in 〈0, q〉. !

Lemma 3.5.3 (3.1.4). Assume that the process is supercritical and irreducible. The
operator F ′ is Lipschitz-continuous on 〈0, q〉, that is, there exists a constant γ such
that

||F ′
x −F ′

y|| ≤ γ ||x− y|| ∀x, y ∈ 〈0, q〉.

Proof. Assume that h is a vector of norm 1, and that x, y are two vectors in 〈0, q〉.
We may write

[F ′
x −F ′

y] h = Sy Ψh Sy θ − Sx Ψh Sx θ.

By adding and subtracting the term Sy Ψh Sx θ, we obtain

[F ′
x −F ′

y] h = Sy Ψh(Sy − Sx)θ + (Sy − Sx)Ψh Sx θ.

Thus, we have

||[F ′
x −F ′

y] h|| ≤ ||Sy Ψh(Sy − Sx)θ|| + ||(Sy − Sx)Ψh Sx θ||
≤ ||Sy|| · ||Ψh|| · ||Sy − Sx|| · ||θ||

+ ||Sx|| · ||Ψh|| · ||Sy − Sx|| · ||θ||.

Now, ∀x, y ∈ 〈0, q〉, ||Sx|| ≤ ||Sq|| = C and ||Sy|| ≤ ||Sq|| = C. Since ||h|| = 1 and
since ||x ⊗ I||∞ = ||I ⊗ x||∞ = ||x||∞, then ||Ψh|| ≤ ||Ψ|| = C′. Finally, ||θ|| = C′′.
Thus,

||[F ′
x −F ′

y] h|| ≤ 2 C C′ C′′ ||Sy − Sx||.
But

||Sy − Sx|| = ||Ψy Sy −Ψx Sx||
= ||Ψy Sy −Ψx Sx + Ψx Sy −Ψx Sy||
= ||(Ψy −Ψx)Sy + Ψx (Sy − Sx)||
≤ ||Ψy −Ψx||C + ||Ψx|| · ||Sy − Sx||,
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so that
(1− ||Ψx||) ||Sy − Sx|| ≤ C ||Ψy −Ψx||.

Since (1− ||Ψq||) ≤ (1− ||Ψx||) for x ∈ 〈0, q〉 and ||Ψq|| ≤ ||Ψ|| · ||q|| < 1 as ||Ψ||∞ ≤ 1
and ||q||∞ < 1 by irreducibility of the MBT, we obtain

||Sy − Sx|| ≤ C (1− ||Ψq||)−1 ||Ψy −Ψx||
= C (1− ||Ψq||)−1 ||Ψ [I ⊗ (y − x)]||
≤ C (1− ||Ψq||)−1 C′ ||y − x||.

So,
||F ′

x −F ′
y|| ≤ γ ||x− y||

with γ = 2 C2 C′2 C′′ (1− ||Ψq||)−1 <∞. !

Let us now compare the Newton-Depth and the Newton-Order-0 sequences, both
starting with x0 = θ. Let us write x̃k for the kth approximation of the Newton-Depth
algorithm (3.3), to distinguish from that of the Newton-Order-0 algorithm (3.13).

Denote the difference between the kth iteration in the two Newton algorithms by
Υk = xk − x̃k. Let us show that at each iteration, the Newton-Order-0 algorithm
is closer to the solution q than the Newton-Depth algorithm, which implies that the
Newton-Order-0 algorithm converges faster towards the solution than the Newton-
Depth, in terms of the number of iterations.

Proposition 3.5.4. The difference Υk is nonnegative for all k ≥ 0.

Proof. The proof goes by induction. First, Υ0 = x0− x̃0 = θ−θ = 0. Now, suppose
that Υk ≥ 0. Let us show that we still have Υk+1 ≥ 0.

By multiplying both sides of (3.13) on the left by [I − Sxk Ψ (Sxk θ ⊗ I)], the
Newton-Order-0 sequence may be rewritten as

xk+1 = Sxk Ψxk+1 Sxk θ − Sxk Ψxk Sxk θ + Sxk θ. (3.14)

Let us now multiply both sides of (3.14) on the left by (I −Ψ (I ⊗ xk)). We obtain

xk+1 = Ψ (xk+1 ⊗ xk) + Ψ (Sxk θ ⊗ xk+1)− Ψ (Sxk θ ⊗ xk) + θ. (3.15)

Similarly, for the Newton-Depth sequence we have

x̃k+1 = Ψ (x̃k ⊗ x̃k+1) + Ψ (x̃k+1 ⊗ x̃k)−Ψ (x̃k ⊗ x̃k) + θ. (3.16)

Now, by subtracting (3.16) from (3.15) we get

Υk+1 = Ψ (xk+1 ⊗ xk) + Ψ (Sxk θ ⊗ (xk+1 − xk))−Ψ (x̃k+1 ⊗ x̃k)

−Ψ (x̃k ⊗ (x̃k+1 − x̃k)).
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By adding and subtracting the quantities Ψ (xk+1⊗ x̃k) and Ψ (Sxk θ⊗ (x̃k+1− x̃k)),
and regrouping the terms, we obtain

Υk+1 = Ψ(Sxk θ ⊕ x̃k)Υk+1 + Ψ [(xk+1 − Sxk θ)⊗ I]Υk

+Ψ [(Sxk θ − x̃k)⊗ (x̃k+1 − x̃k)]

= [I −Ψ(Sxk θ ⊕ x̃k)]−1

︸ ︷︷ ︸
(I)

{
Ψ [(xk+1 − Sxk θ)
︸ ︷︷ ︸

(II)

⊗I] Υk︸︷︷︸
(III)

+Ψ [(Sxk θ − x̃k)︸ ︷︷ ︸
(IV )

⊗ (x̃k+1 − x̃k)
︸ ︷︷ ︸

(V )

]
}

≥ 0.

Indeed, (I) is a positive matrix, since it is equal to a infinite sum of positive terms;
(II) is positive by Equation (3.14) and the increase of the Newton-Order-0 sequence;
(III) is positive by induction assumption; (IV ) is positive since x̃k ≤ xk by induction
assumption, and because xk ≤ Sxk θ ∀k ≥ 0. Indeed, in the proof of Theorem 3.1.2,
it appears that if 0 ≤ x0 ≤ θ, then F(xk) ≤ 0, for all k; finally, (V ) is positive by the
increasing nature of the Newton-Depth sequence. !

In terms of number of iterations, we thus know that the Newton-Order-0 algorithm
always surpasses the Newton-Depth algorithm. Other comparisons do not lead to
general conclusions and the fastest of the Newton algorithms depends on the example
under consideration.

Using the particular structure of the matrices involved at each iteration, we obtain
a complexity of (20/3)n3 +O(n2) flops per iteration for the Newton-Depth algorithm,
against 8 n3 +O(n2) flops for the three other Newton algorithms. We thus expect the
Newton-Depth algorithm to be somewhat faster than the other algorithms, even if it
requires one or two iterations more; numerical examples are provided in [32].

Concluding remarks

Remark 3.5.5. We observe that the Newton algorithms have a greater complexity than
the linear algorithms. But as the number of iterations required with the Newton
algorithms is far less than with the linear algorithms, the total computational cost of
the Newton algorithms is less than that of the linear ones, which was already shown
in Tables 3.1 and 3.2.

Remark 3.5.6. As a final remark, we have verified that each Newton algorithm may be
naturally generalized to the GMT case, but we have not yet implemented the algorithms
so obtained.



Chapter 4

Reducible branching processes

We generally assumed in the previous chapters that the MBT was irreducible. What
happens if we remove this assumption? How does a reducible multitype branching
process behave?

Reducible (or decomposable) multitype branching processes differ in several ways
from irreducible processes. In the literature, authors generally focus on the asymp-
totic behaviour of such branching processes without discussing extinction criteria or
algorithmic questions.

For instance, let {Zn, n ∈ N} denote a supercritical discrete-time multitype irre-
ducible branching process; let ρ > 1 be the eigenvalue of maximal real part of the
mean progeny matrix M , and v its corresponding positive left eigenvector. Kesten
and Stigum [38] show that there exists a one-dimensional random variable w such that
limn→∞(Zn/ρn) = w · v with probability 1. In this limit, the eigenvalue ρ plays thus
the role of a normalizing constant, and we see that all types grow at the same rate ρ.

The same authors prove in [39] that in the reducible case, the asymptotic behaviour
of the branching process Zn depends on the type of the initial individual. In addition,
different subsets of the components of the vector Zn have, in general, different normal-
izing constants; different types may thus grow at different rates. The corresponding
limit vector shows a greater variety of qualitative properties than in the irreducible
case.

In this chapter, we focus on supercritical processes. The types are partioned into
equivalence classes. In this context, extinction of some classes of individuals is possible
without the whole process becoming extinct. We derive criteria for the extinction of
the whole process (total extinction) and of specific classes (partial extinction). We give
sufficient conditions for the extinction of a class to imply the extinction of another class
or even the whole process.
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Then, we prove that the extinction probability of a specific class is solution of the
usual extinction equation with some constraints, and that it may be seen as the total
extinction probability of a modified branching process.

Finally, we discuss algorithmic methods to compute the total and the partial ex-
tinction probabilities of a reducible MBT, and we conclude with numerical examples.

4.1 Definitions and notations

Recall from Section 1.1 that a multitype branching process Z(t) = [Z1(t), . . . , Zn(t)]T

is reducible if its mean progeny matrix M is reducible, that is, if there exist indices
1 ≤ i, j ≤ n such that for all k ≥ 0, (Mk)ij = 0; this means that individuals of type i
will never have any individual of type j among their descendants.

The matrix M may be written in a normal form, possibly after a permutation of
indices (Gantmacher [21, Chapter 13]):

M =





M11 0 0 . . . 0
M21 M22 0 . . . 0
M31 M32 M33 . . . 0

...
...

...
. . .

...
Mm1 Mm2 Mm3 . . . Mmm




, (4.1)

where the diagonal blocks Mii are irreducible or equal to zero, and the sub-diagonal
blocks Mij for i > j are nonnegative. We write Mk! (1 ≤ k, * ≤ m) for the (k, *)th
submatrix of M , in order to distinguish it from Mk!, which is the component (k, *) of
M .

This decomposition reflects the fact that the n types of the branching process Z(t)
are partitioned into m classes Ck, 1 ≤ k ≤ m (Mode [54, Section 2.3]). In this view,
Mk! = (Mij)i∈Ck,j∈C! . If i and j belong to the same class, they communicate, meaning
that there exist nonnegative integers n1 and n2 such that (Mn1)ij > 0 and (Mn2)ji > 0.
This is an equivalence relation, and the Ck’s are equivalent classes.

We define the following sets of class indices for 1 ≤ k ≤ m

Dk = {* ≤ k : ∃n ≥ 0, (Mn)ij %= 0 for some i ∈ Ck, j ∈ C!}
Ak = {* ≥ k : ∃n ≥ 0, (Mn)ji %= 0 for some i ∈ Ck, j ∈ C!},
Ek = {* < k : Mk! %= 0}.

In other words, * ∈ Dk means that an individual in class Ck may give birth, possi-
bly after several generations, to an individual in class C! (“D” is for “Descendant”);
conversely, * ∈ Ak means that an individual in class C! may generate, directly or indi-
rectly, an individual in class Ck (“A” is for “Ancestor”). Clearly * ∈ Ak if and only if
k ∈ D!. Finally, * ∈ Ek means that an individual in class Ck may directly give birth to
an individual in class C!, k %= *.
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If Z(0) = ei where i ∈ Ck for some k, and if Mkk %= 0, then the subprocess
Zk(t) = (Zi(t))i∈Ck , restricted to the individuals whose type is in Ck, is an irreducible
branching process with mean progeny matrix Mkk [39].

It is well known [21] that when a matrix M has the form given by (4.1), its spectrum
is precisely the union of the spectra of the Mkk, 1 ≤ k ≤ m, so that the spectral radius
of M is sp(M) = max1≤k≤m sp(Mkk). Therefore, one supercritical subprocess Zk(t)
is enough for the whole process Z(t) to be supercritical as well.

However, the behaviour of the reducible branching process is not determined by the
spectral radius of M only; we shall demonstrate in the next sections how the criticality
of the different subprocesses Zk(t) influences the behaviour of the whole process Z(t).
Let us first introduce some notations.

We denote by qk the vector of extinction probability of the whole process, given
that the initial individual belongs to class Ck, that is

(qk)i = P[∃T > 0 : Z(T ) = 0 |Z(0) = ei, i ∈ Ck].

This is a total extinction: there will be no individual alive after time T . We shall
note the total extinction event by E, that is, E = [∃T > 0 : Z(T ) = 0]. With this,
q = [q1, q2, . . . , qm]T denotes the extinction probability of the whole process, given the
class of the initial individual. Later, for short, we also write “ϕ0 ∈ Ck” for “Z(0) = ei

for some i ∈ Ck”.
Now observe that if we restrict our attention to the class C! only, the event [∃T >

0 : Z!(T ) = 0] does not necessarily imply the extinction of class C! since at time T ,
some individual in another class might be alive and able to produce new individuals of
class C! in the future.

Thus, extinction of class C!, which we term a partial extinction, corresponds to the
event E! = [∃T > 0 : ∀t ≥ T, Z!(t) = 0]. We denote by q!k the vector of extinction
probability of class C! given that the initial individual belongs to class Ck, that is

q!k = P[E! |ϕ0 ∈ Ck] = P[∃T > 0 : ∀t ≥ T, Z!(t) = 0 |ϕ0 ∈ Ck],

and q! = [q!1, q!2, . . . , q!m]T denotes the partial extinction probability vector of class C!,
given the class of the initial individual.

The lemma below directly results from the fact that if the whole process Z(t)
becomes extinct, then all the classes C! become extinct too.

Lemma 4.1.1. q ≤ q! for all 1 ≤ * ≤ m. !

4.2 Extinction criteria

Recall from Section 1.2 that in an irreducible branching process, the extinction proba-
bility vector q has either all its components equal to one or all its components strictly
less than one.
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In a reducible branching process, this dichotomy does not hold anymore: all the
components of q are equal to one in the subcritical and critical cases, but there might
be some components equal to one in the supercritical case as well;

Actually, by irreducibility of the equivalence classes, for each 1 ≤ k ≤ m, either
qk = 1 or qk < 1, with at least one k such that qk < 1 if the whole process is
supercritical, and for each 1 ≤ * ≤ m, either q!k = 1 or q!k < 1. Here, it may thus
happen that, starting from one class Ck, the whole process eventually becomes extinct,
so that qk = 1, while starting from another class Cj , the explosion of the process is
possible, so that qj < 1.

The first result below provides a necessary and sufficient condition for the total
extinction, given the class of the first individual.

Proposition 4.2.1. For 1 ≤ k ≤ m,

qk < 1 ⇔ ∃* ∈ Dk : sp(M!!) > 1.

Proof. We shall show the following equivalent statement

qk < 1 ⇔
(
sp(Mkk) > 1

)
or
(
∃* ∈ Ek : q! < 1

)
. (4.2)

It actually suffices to prove that

∃* ∈ Ek : q! < 1 ⇒ qk < 1, (4.3)
∀* ∈ Ek : q! = 1 ⇒

(
qk < 1⇔ sp(Mkk) > 1

)
. (4.4)

Then, after some formal manipulations, we get (4.2).
Recall that P (s) denotes the progeny generating function associated to the branch-

ing process Z(t); we decompose it as P (s) = [P 1(s), P 2(s), . . . ,P m(s)]T , where the
index in the subvector P i(s) indicates the class of the initial individual.

By Theorem 1.2.1, the extinction probability vector q = [q1, q2, . . . , qm]T is the
minimal nonnegative solution of the fixed point equation s = P (s) and thus, in partic-
ular, for each 1 ≤ k ≤ m, qk = P k(q). Actually, P k(q) only depends on q! for * = k
and for all * ∈ Ek. Let k1 < k2 < · · · < kp denote the elements in Ek; we may thus
write

qk = P k(qk1
, qk2

, . . . , qkp
, qk).

First, assume that Ek %= ∅ and that there exists at least one * ∈ Ek such that q! < 1.
Then, P k(·) being nondecreasing in each of its variables and strictly increasing in at
least one variable of each subvector, we have

qk < P k(1,1, . . . ,1, qk) ≤ 1,

and we get qk < 1, which proves (4.3).
Now, if q! = 1 ∀* ∈ Ek, then

qk = P k(1, qk)

= P̃
k
(qk),
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where P̃
k
(·) is the progeny generating function associated to the subprocess Zk(t)

resticted to class Ck. So, qk is solution of the fixed point equation P̃
k
(s) = s of which

the minimal nonnegative solution is the extinction probability of class Ck, given the
type of the initial individual belonging to this class, that is qk

k. On the one hand, if
sp(Mkk) ≤ 1, then qk

k = 1 and thus qk = 1. On the other hand, if sp(Mkk) > 1, then
qk

k < 1 and by Lemma 4.1.1 we know that qk ≤ qk
k, which implies that qk < 1.

If Ek = ∅, then the same conclusion holds by analogue reasoning. Thus, we get
(4.4). !

The second result is about partial extinction. Starting from an individual in class
Ck, the survival of class Ci is possible if and only if the initial individual is able to
generate (in one or several generations) an individual in class Ci through the birth of
individuals in some class Cj associated to a supercritical subprocess Zj(t).

Proposition 4.2.2. For 1 ≤ i ≤ m, for all k ∈ Ai,

qi
k < 1 ⇔ ∃j ∈ Ai ∩Dk : sp(Mjj) > 1.

If k /∈ Ai, then qi
k = 1.

Proof. If k /∈ Ai, then it is obvious that qi
k = 1 since an individual from class Ck will

never generate any individual in class Ci. In particular, qi
k = 1 for all k < i.

Now, let us fix i. We show by induction that for all k ∈ Ai, if for all j ∈ Ai ∩ Dk

we have sp(Mjj) ≤ 1, then qi
k = 1. We assume without loss of generality that the

ancestors of i are numbered consecutively: Ai = {i, i + 1, i + 2, . . . , K} up to some
K ≤ m.

We already know that qi
i = 1 if and only if sp(Mii) ≤ 1. Assume that for some

k − 1 between i and K, we have that for all * between i and k − 1

∀j ∈ Ai ∩D! : sp(Mjj) ≤ 1⇒ qi
! = 1.

We shall verify that it also holds for k:

∀j ∈ Ai ∩Dk : sp(Mjj) ≤ 1⇒ qi
k = 1.

We denote by Ph the vector of direct progeny in each class of a individual of type
h. For h ∈ Ck

(qi
k)h =

∑

d≥0

P[Ph = (d1, d2, . . . ,dm)]
∏

1≤!≤m

(qi
!)

d! .

Now, if * %= k, * /∈ Ek, then d! = 0 with probability one. If * ∈ Ek, then D! ⊂ Dk, and
by the induction assumption, qi

! = 1. So, we find that

(qi
k)h =

∑

dk≥0

P[Ph
k = dk] (qi

k)dk

= (P̃
k
)h(qi

k),
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where recall that P̃
k
(·) is the progeny generating function of the subprocess Zk(t)

resticted to class Ck. So, qi
k is solution of the equation P̃

k
(s) = s of which the

minimal nonnegative solution is qk
k. As by assumption sp(Mkk) ≤ 1, we get qk

k = 1,
and thus qi

k = 1.

It remains for us to show that if k ∈ Ai and if there exists j ∈ Ai ∩ Dk such that
sp(Mjj) > 1, then qi

k < 1, that is

P[∀t, ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Ck] > 0. (4.5)

First, we directly conclude from the irreducibility of the subprocess Zj(t) that for
such a j,

P[∀t, Zj(t) %= 0 |ϕ0 ∈ Cj ] > 0, (4.6)

and from j ∈ Ai, that

P[∃T ≥ 0 : Zi(T ) %= 0 |Zj(0) %= 0] > 0 (4.7)

as well.
Thus,

P[∀t, ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Cj ]

= lim
t→∞

P[∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Cj ]

≥ lim
t→∞

P[Zj(t) %= 0, and ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Cj ]

= lim
t→∞

P[Zj(t) %= 0 |ϕ0 ∈ Cj ] · P[∃T ≥ t : Zi(T ) %= 0 |Zj(t) %= 0]

by the Markov property. Then, on the one hand

lim
t→∞

P[Zj(t) %= 0 |ϕ0 ∈ Cj ] = P[∀t, Zj(t) %= 0 |ϕ0 ∈ Cj ] > 0

by (4.6), and on the other hand,

P[∃T ≥ t : Zi(T ) %= 0 |Zj(t) %= 0] = P[∃T ≥ 0 : Zi(T ) %= 0 |Zj(0) %= 0] > 0

by the Markov property, and by (4.7). We thus have shown that

P[∀t, ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Cj ] > 0,

that is, qi
j < 1.

Next, we prove (4.5). By assumption, j ∈ Dk, that is

P[∃θ ≥ 0 : Zj(θ) %= 0 |ϕ0 ∈ Ck] > 0. (4.8)

We have

P[∀t, ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Ck]

≥ P[∃θ ≥ 0 : Zj(θ) %= 0 and ∀t ≥ θ, ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Ck]

= P[∃θ ≥ 0 : Zj(θ) %= 0|ϕ0 ∈ Ck]

·P[∀t ≥ θ, ∃T ≥ t : Zi(T ) %= 0 |ϕ0 ∈ Ck, ∃θ ≥ 0 : Zj(θ) %= 0],

(4.9)
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and the second factor in the right-hand side is equal to

P[∀t, ∃T ≥ t : Zi(T ) %= 0 |Zj(0) %= 0]

by the strong Markov property, and is strictly positive since qi
j < 1. This, together

with (4.8) shows that the left-hand side of (4.9) is strictly positive, which concludes
the proof of (4.5) . !

A direct consequence of this proposition is the following

Corollary 4.2.3. For 1 ≤ i ≤ m

qi = 1⇔ ∀j ∈ Ai : sp(Mjj) ≤ 1.

Now, suppose that we “observe” the extinction of some class Ci. What can we
conclude about the extinction of other classes, on the basis of the structure of M?

We examine how, by virtue of the relations between classes, knowing the extinction
of class Ci may inform us of the eventual extinction of class Cj , and even of the whole
process.

We shall write that A
a.e.
⊆ B, where A and B are two events, if P[A ∩Bc] = 0, and

that A
a.e.≡ B if A

a.e.
⊆ B and B

a.e.
⊆ A. With these notations, the inclusions Ei

a.e.
⊆ Ej

and Ei

a.e.
⊆ E respectively imply that qi ≤ qj and qi ≤ q, and the equivalences

Ei
a.e.≡ Ej and Ei

a.e.≡ E respectively imply that qi = qj and qi = q.
We first do not condition on the class of the initial individual, we merely assume

that P[ϕ0 ∈ Ck] > 0 for any k, and we give general criteria about the inclusion and
equivalence of extinction events.

We show below that if an individual from class Cj may generate (in one or several
generations) an individual in class Ci, then the extinction of class Ci implies almost
surely that class Cj becomes extinct as well. On the other hand, the extinction of class
Cj implies almost surely the extinction of class Ci if and only if each subprocess Zk(t),
such that an individual from class Ck may generate an individual in class Ci but not
in class Cj , is subcritical.

Notice in the formulation of the second statement below that j must not necessarily
belong to Ai for Ej to imply Ei (see Remark 4.2.6).

Proposition 4.2.4. For 1 ≤ i, j ≤ m,

(i) j ∈ Ai ⇒ Ei

a.e.
⊆ Ej ,

(ii) ∀k ∈ Ai\Aj : sp(Mkk) ≤ 1⇔ Ej

a.e.
⊆ Ei.

Statements (i) and (ii) actually provide the following sufficient condition for the equiv-
alence of extinction events

j ∈ Ai and ∀k ∈ Ai\Aj : sp(Mkk) ≤ 1⇒ Ej
a.e.≡ Ei. (4.10)
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Proof. (i) Suppose that j ∈ Ai. We have to show that Ei

a.e.
⊆ Ej , or equivalently

that Ec
j

a.e.
⊆ Ec

i . Let Vi be the total number of individuals born in class Ci. Then,

Ec
i

a.e.≡ [Vi =∞]. Let us show that Ec
j

a.e.
⊆ [Vi =∞].

Let t1 ≤ t2 ≤ t3 ≤ · · · be the successive times of birth of an individual in Cj . As
we assume the survival of class Cj , this sequence is almost surely infinite. Now, let Xn

denote the indicator of the event [∃t > tn : Zi(t) %= 0]. The assumption j ∈ Ai implies
that

P[Xn = 1|Zj(tn) %= 0] > 0, (4.11)

for all n ≥ 1. Therefore, Vi ≥
∑

1≤n≤∞ Xn =∞ almost surely, which proves Ec
j

a.e.
⊆ Ec

i .

(ii) Now, assume that ∀k ∈ Ai\Aj : sp(Mkk) ≤ 1. We have to show that Ej

a.e.
⊆ Ei,

that is Ec
i ∩Ej

a.e.≡ ∅. Let us assume that both events Ec
i and Ej occur simultaneously.

We have to show that we obtain a contradiction.
On the first hand, Ec

i
a.e.≡ [Vi = ∞] together with sp(Mii) ≤ 1 (by assumption)

imply that there is at least one k ∈ Āi such that Vk = ∞ almost surely, where
Āi = Ai\{i}. On the other hand, for all k ∈ Aj , Ej implies Ek, that is Vk <∞ almost
surely, by (i). If Āi\Aj = ∅, this already leads to a contradiction

If Āi\Aj %= ∅, then there exists at least one k ∈ Āi\Aj such that Vk =∞. Let k∗ be
the greatest k with these properties. Then, Vk∗ =∞ and V! <∞ almost surely for all
* ∈ Āk∗ ⊆ Ai. This implies that sp(Mk∗k∗) > 1, which contradicts the assumptions.
We thus have Ec

i ∩ Ej
a.e.≡ ∅.

Finally, let us show that if ∃k ∈ Ai\Aj : sp(Mkk) > 1, then P[Ej ∩ Ec
i ] > 0. Let

us fix k in Ai\Aj such that sp(Mkk) > 1. We have

P[Ej ∩Ec
i ] ≥ P[ϕ0 ∈ Ck] · P[Ej ∩ Ec

i |ϕ0 ∈ Ck]. (4.12)

The second factor in the right-hand side of (4.12) is such that

P[Ej ∩ Ec
i |ϕ0 ∈ Ck] ≥ P[Ec

k |ϕ0 ∈ Ck] · P[Ej ∩ Ec
i |ϕ0 ∈ Ck, Ec

k]. (4.13)

But, by assumption, sp(Mkk) > 1, thus P[Ec
k |ϕ0 ∈ Ck] > 0, and, as k /∈ Aj ,

P[Ej |ϕ0 ∈ Ck, Ec
k] = 1, so that

P[Ej ∩Ec
i |ϕ0 ∈ Ck, Ec

k] = P[Ec
i |ϕ0 ∈ Ck, Ec

k].

Now, since k ∈ Ai, by (i) we know that P[Ec
i |Ec

k] = 1, so P[Ec
i |ϕ0 ∈ Ck, Ec

k] > 0,
and the right-hand side of (4.13) is strictly positive, which implies that the right-hand
side of (4.12) is strictly positive as well, and thus P[Ej ∩ Ec

i ] > 0.
!

The extinction of class Ci is almost surely equivalent to the extinction of the whole
process if all the classes unable to generate any individual in class Ci eventually become
extinct with probability one, or if all the classes are able to generate an individual in
class Ci (and thus i = 1).



4.2 Extinction criteria 71

Proposition 4.2.5. The following sufficient conditions hold for the extinction of a
class to be almost surely equivalent to the total extinction.

(i) For 1 ≤ i ≤ m, if ∀k /∈ Ai : qk = 1, then Ei
a.e.≡ E.

(ii) If A1 = {1, 2, . . . , m}, then E1
a.e.≡ E.

Proof. We already know from Lemma 4.1.1 that E
a.e.
⊆ Ei for all 1 ≤ i ≤ m.

(i) If k ∈ Ai, then by Proposition 4.2.4 (i), Ei

a.e.
⊆ Ek. If k /∈ Ai, then by assumption,

qk = 1, which implies that P[Ec
k] = 0, so that P[Ei ∩Ec

k] = 0, and Ei

a.e.
⊆ Ek.

We thus have that Ei

a.e.
⊆ Ek for all 1 ≤ k ≤ m, and therefore Ei

a.e.
⊆ E, which

implies Ei
a.e.≡ E.

(ii) If A1 = {1, 2, . . . , m}, we know by Proposition 4.2.4 (i) that E1

a.e.
⊆ Ek for all

1 ≤ k ≤ m, so that E1

a.e.
⊆ E, and thus E1

a.e.≡ E. !

Remark 4.2.6. Propositions 4.2.4 (i), and 4.2.5 only give sufficient conditions. Let us
show with an example that they are not necessary conditions. Take the mean progeny
matrix

M =




M11 0 0

0 M22 0
M31 M32 M33



 ;

Assume that sp(M22) ≤ 1 and sp(M33) > 1. By definition, A1 = {1, 3},A2 = {2, 3},
and A3 = {3}. We have 2 /∈ A1 but E1

a.e.
⊆ E2 since E1

a.e.
⊆ E3 by Proposition 4.2.4 (i),

and E3

a.e.
⊆ E2 by Proposition 4.2.4 (ii). Thus, we may have Ei

a.e.
⊆ Ej with i < j, even

if j is not in Ai.
Furthermore, E1

a.e.≡ E, but 2 /∈ A1 and q2 %= 1, since q2
3 < 1 by Proposition 4.2.2.

Thus Proposition 4.2.5 does not provide necessary conditions either.
Notice that if in addition sp(M11) ≤ 1, then by Proposition 4.2.4 (ii), E2

a.e.
⊆ E1,

even if 2 /∈ A1 and E3

a.e.
⊆ E by Proposition 4.2.5. Thus E1

a.e.≡ E2
a.e.≡ E3

a.e.≡ E in that
case.

Sometimes, the effect of the extinction of a class on another class depends on the
initial individual; if we know that it belongs to some class C!, then the assumptions of
Propositions 4.2.4 and 4.2.5 must be verified for the classes in D! only.

Corollary 4.2.7. For all 1 ≤ i, j, * ≤ m,

(i) If Ci, Cj, and C! are three classes such that

– j ∈ Ai,

– (Ai\Aj) ∩D! %= ∅, and

– ∀k ∈ (Ai\Aj) ∩D! : sp(Mkk) ≤ 1,

then Ej ∩ [ϕ0 ∈ C!]
a.e.≡ Ei ∩ [ϕ0 ∈ C!].
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(ii) If D! ⊆ Ai or ∀k ∈ D! \ Ai : qk
! = 1, then Ei ∩ [ϕ0 ∈ C!]

a.e.≡ E ∩ [ϕ0 ∈ C!].

!

The proof is very similar to those of Propositions 4.2.4 and 4.2.5, and is thus
omitted.

4.3 Partial extinction
Now that we have established necessary and sufficient criteria for the almost sure
extinction of classes, we characterize the vector qk of extinction probability of class Ck

as one particular solution of a fixed point equation.
As usual, P (s) denotes the progeny generating vector associated to the branching

process. Recall the notations P (1)(s) = P (s), and P (n)(s) = P (P (n−1)(s)), for n ≥ 2.
Recall from Theorem 1.2.5 that in the irreducible case, for any 0 ≤ a ≤ 1, a %= 1,

we have
lim

n→∞
P (n)(a) = q, (4.14)

and, as a consequence, the only solutions of the extinction equation s = P (s) in the
unit cube are 1 and q (Harris [26, Chapter 2, Corollary 1]). In the reducible case,
this is no longer the case, each qk is also a solution of the extinction equation, which
may thus have up to m + 1 distinct solutions. Depending on the vector a, the limit of
P (n)(a) when n tends to infinity is one solution or another.

Theorem 4.3.1. For each 1 ≤ k ≤ m, the extinction probability qk of class Ck, given
the type of the initial individual, is the smallest nonnegative solution of the extinction
equation s = P (s) such that qk

! = 1 for each * /∈ Ak.

Proof. We follow the same argumentation as in Mode [54, Theorem 7.1] and consider
successive generations (which does not change anything to the extinction probability).

Let qk(n) denote the probability that all classes in Ak become extinct no later
than the nth generation. We have qk(n) ≤ qk(n + 1) and qk = limn→∞ qk(n). The
probabilities qk(n) may be computed recursively:

qk(1) = P (fk)

where fk is the indicator vector of the classes which do not lead to class Ck, that is,
fk
! = 1 for * /∈ Ak, and fk

! = 0 for * ∈ Ak. Indeed, for all classes in Ak to become
extinct at the first generation, the initial individual must not produce any individual
in a class belonging to Ak. For n ≥ 2,

qk(n) = P (qk(n− 1)).

Since the sequence {qk(n)}n≥1 is non decreasing in n and the generating functions
are continuous in each variable, we obtain

qk = P (qk), (4.15)
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which shows that qk is a solution of s = P (s) with the property that qk
! = 1 for each

* /∈ Ak.
It remains to be shown that qk is the minimal nonnegative solution of s = P (s)

under the specific constraint qk
! = 1 for each * /∈ Ak. Let q∗ be any other such vector.

We have q∗ ≥ fk, and thus

q∗ = P (q∗) ≥ P (fk) = qk(1),

by the monotonicity of P (·), and we finally get that q∗ ≥ P (qk(n)) for all n ≥ 1.
Then, letting n tend to infinity, we obtain q∗ ≥ qk and the proof is completed. !

This shows again that q ≤ qk for all 1 ≤ k ≤ m, since q is the minimal nonnegative
solution of s = P (s) without any constraint.

Assuming that there is a path to extinction from each type of individual (Assump-
tion 1.2.2), the counterpart of Theorem 1.2.5 in the present case is then provided by
the following theorem.

Theorem 4.3.2. For all 1 ≤ k ≤ m, for every vector a(k) such that

a(k)
!

{
= 1 ∀* /∈ Ak

< 1 ∀* ∈ Ak
, (4.16)

we have
lim

n→∞
P (n)(a(k)) = qk. (4.17)

Proof. Let us fix k. For the sake of clarity of the proof, we reorder the n types of
the branching process in two classes, K• and K◦, such that i ∈ K• if some individual
of type i may have an individual belonging to class Ck among its direct or indirect
descendants, and i ∈ K◦ otherwise. In that view, we may rewrite a(k) = [a•, a◦]T with
a• < 1 and a◦ = 1.

Like in the proof of Theorem 4.3.1, we consider successive generations and we define
Zn to be the population size at the nth generation. We have for any finite N ∈ N0

P (n)(a(k)) =
∑

y≥0

P[Zn = (0, y) |ϕ0]

+
∑

y≥0
x≥0, x*=0
||x||≤N

P[Zn = (x, y) |ϕ0] ax
•

+
∑

y≥0
x≥0, x*=0
||x||>N

P[Zn = (x, y) |ϕ0] ax
• .

The first term approaches qk as n tends to infinity. The second term tends to zero
as n tends to infinity: indeed, firstly

∑

y≥0
x≥0, x *=0
||x||≤N

P[Zn = (x, y) |ϕ0 ∈ K◦] = 0
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since if the initial individual belongs to K◦, then it is unable to generate an individual
in Ck, which implies that it is not able to generate an individual in K• either. Secondly,

lim
n→∞

∑

y≥0
x≥0, x *=0
||x||≤N

P[Zn = (x, y) |ϕ0 ∈ K•] = 0

since if the first individual belongs to K•, then (Zn)• is the restriction of the branching
process limited to the types in K•, which is another branching process, itself exploding
or becoming extinct by the dichotomy stated in Theorem 1.2.3. In the limit, ||x||
cannot be both nonzero and less than or equal to N .

Finally, the third term tends to zero since it is dominated by P[||Zn|| > N |ϕ0]
times the Nth power of a quantity strictly less than 1, and N is arbitrary. !

As a final remark, we observe that the extinction probability qk of class Ck also
corresponds to the total extinction probability q̂ of a modified branching process Ẑ(t),
in which we fix at 0 the birth rate of an individual which is not able to generate
individuals in class Ck, as stated below.

Proposition 4.3.3. The extinction probability vector qk is the minimal nonnegative
solution of the extinction equation s = P̂ (s), where P̂ (s) is the progeny generating
function of the modified branching process Ẑ(t) in which we set P̂ i(s) := 1 for all
i /∈ Ak.

Proof. We have

qk = P[∃T1 > 0 : Zi(T1) = 0 ∀i ∈ Ak |ϕ0]

= P[∃T1 > 0 : Ẑi(T1) = 0 ∀i ∈ Ak |ϕ0]

and, as the individuals unable to generate individuals in class Ck eventually die without
any progeny in the modified branching process,

P[∃T1 > 0 : Ẑi(T1) = 0 ∀i ∈ Ak |ϕ0]

= P[∃T2 ≥ T1 : Ẑi(T2) = 0∀i ∈ Ak, and Ẑi(T2) = 0 ∀i /∈ Ak|ϕ0]

= P[∃T2 > 0 : Ẑ(T2) = 0 |ϕ0]

= q̂.

This shows that qk = q̂. !

The extinction criteria of a class Ck are thus equivalent to the total extinction
criteria of the modified branching process (still reducible).

4.4 Algorithms
We now investigate the numerical techniques to compute the total and partial extinc-
tion probabilities of a reducible MBT.
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Total extinction

In the reducible case, the criticality of the branching process is still determined by the
spectral radius of the mean progeny matrix M , and Theorem 1.2.1 still holds, provided
there is no final class: a final class C is such that each individual whose type is in C
almost surely generates at the next generation exactly one individual whose type is in
C, and possibly other individuals with types not in C (Harris, [26, Chapter 2, Theorem
10.1]).

In practice, in the supercritical case, the total extinction probability is thus still
computed as the minimal nonnegative solution of the extinction equation.

For our demographic application in Section 3.4, we compute the total extinction
probability of a reducible MBT, using the linear algorithms and the Newton-Depth
algorithm. There is no need for the MBT to be irreducible in order to use the linear
algorithms. This assumption is required in Theorem 2.3.1, used to compare the conver-
gence rates of the linear algorithms, as well as to prove that the Newton-Depth sequence
is well-defined. Actually, we can extend Theorem 2.3.1 to the case of a reducible MBT.

Corollary 4.4.1. Assume that the MBT is reducible, with mean progeny matrix M =
Ψ (1⊕ 1) structured like in (4.1).

If none of the subprocesses Zk(t) is critical, that is if sp(Mkk) > 1 or sp(Mkk) < 1
for all k, then sp[Ψ (q ⊕ q)] < 1, so that [I −Ψ (q ⊕ q)]−1 exists and is nonnegative.

If at least one subprocess Zk(t) is critical, that is there exist k such that sp(Mkk) =
1, then sp[Ψ (q ⊕ q)] ≤ 1.

Proof. Define M(s) = Ψ (s⊕ s). Like the mean matrix M , M(s) is lower-triangular,
and for 1 ≤ k ≤ m, Mkk(s) is actually a function Mkk(si1 , si2 , . . . , sip , sk) of the
variables si1 , si2 , . . . , sip and sk only, for i1 < i2 < · · · < ip ∈ Ek. Since M(s) is
increasing in s,

Mkk(s) ≤Mkk(1,1, . . . ,1, sk) = M̃kk(sk),

where M̃kk(sk) is nothing else than the matrix M(s) associated to the irreducible
subprocess Zk(t).

For the process Z(t), we thus have

sp[M(q)] = max
k

sp[Mkk(q)] ≤ max
k

sp[M̃kk(qk)]

and there are three possibilities for each 1 ≤ k ≤ m.
In the first case, the subprocess Zk(t) is supercritical, then qk

k < 1, and by the
same arguments as in the proof of Theorem 2.3.1, sp[M̃kk(qk

k)] < 1. Moreover, by
Lemma 4.1.1, qk ≤ qk

k, which implies that sp[M̃kk(qk)] < 1.
In the second case, the subprocess Zk(t) is subcritical, and then qk

k = 1, and as
above, sp[M̃kk(qk

k)] < 1, and sp[M̃kk(qk)] < 1.
In the final case, the subprocess Zk(t) is critical, and then qk

k = 1, and again by
the same argument, sp[M̃kk(qk

k)] = 1, and sp[M̃kk(qk)] ≤ 1.
By taking the maximum over k of the spectral radii, we thus obtain the statement

of the corollary. !
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In the irreducible case, we always assumed that we were in the noncritical case. In
the present case, we have to assume that none of the irreducible subprocesses Zk(t)
is critical in order to be sure that everything works perfectly. Then, any of the linear
algorithms or the Newton algorithm may be used to solve for the total extinction of
the MBT.

To further improve the efficiency of the numerical methods in the reducible case,
we can take the special structure of the birth probability matrix Ψ into account, and
decompose the quadratic system s = θ+Ψ (s⊗s) of size n in smaller parts. To clarify
this idea, let us illustrate it on an example with three classes, where the mean progeny
matrix may be decomposed in the following way:

M =




M11 0 0
M21 M22 0
M31 M32 M33



 ,

with Mij %= 0 for all i, j = 1, 2, 3.
In what follows, we introduce some notations to specify which part of a vector x

we take into account:

xi =
(
xj : j ∈ Ci

)
,

xi =
(
xj : j ∈ C1 ∪ C2 ∪ · · · ∪ Ci

)
,

and we extend these notations to matrices, for instance

Ψ3,3 2 = (Ψi,jk : i, j ∈ C3, k ∈ C1 ∪ C2).

With these notations, we have in particular qi = qi and qi = [q1, q2, . . . , qi−1, qi]T .
In the example with three classes, the extinction equation may be decomposed in

three smaller equations. The first one is

s1 = θ1 + Ψ1;1 1 (s1 ⊗ s1).

Solving this equation provides us with the subvector q1. The second equation is

s2 = [θ2 + Ψ2;1 1 (q1 ⊗ q1)]

+ [Ψ2;1 2 (q1 ⊗ I) + Ψ2;2 1 (I ⊗ q1)] s2

+Ψ2;2 2 (s2 ⊗ s2)

which may be rewritten as
s2 = θ̃2 + Ψ̃2 (s2 ⊗ s2)

with

θ̃2 = [I −W2]−1 [θ2 + Ψ2;1 1 (q1 ⊗ q1)],

Ψ̃2 = [I −W2]−1 Ψ2;2 2,

W2 = [Ψ2;1 2 (q1 ⊗ I) + Ψ2;2 1 (I ⊗ q1)].
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Solving this second equation provides us with the subvector q2, and thus also with
q2 = [q1, q2]T . Finally, the third equation has the form

s3 = θ̃3 + Ψ̃3 (s3 ⊗ s3)

with

θ̃3 = [I −W3]−1 [θ3 + Ψ3;2 2 (q2 ⊗ q2)],

Ψ̃3 = [I −W3]−1 Ψ3;3 3,

W3 = [Ψ3;2 3 (q2 ⊗ I) + Ψ3;3 2 (I ⊗ q2)].

Solving this last equation provides us with q3, and thus also with the whole vector
q3 = q.

When using for instance the Newton algorithm, the numerical complexity may be
very different if we apply it once on the whole extinction equation (1.15), or several
times on its decomposition; this depends on the size of the equivalence classes Ck, and
on their number. Actually, the decomposition may be really worthwile when there are
enough equivalence classes. Let us clarify this as follows.

Suppose that we have m classes, all being of cardinality r, that is n = m r. We can
show that the total complexity of the method without decomposition is (20/3)m3 r3 +
O(m2 r2) flops per iteration, while decomposing the system as described above yields a
polynomial complexity with 2 m r4+2 m3 r3 +5 m2 r3 +(1/3)m3 r2 as dominant terms.

Figure 4.1 illustrates the difference in the complexities for n = 500, when m varies
from 1 to 50. We see that for m > 5, it becomes numerically advantageous to take the
structure into account and to use the decompostion.
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Figure 4.1: Logarithm of the numerical complexity when using the Newton algorithm
with or without decomposition to solve for the extinction probability q, as a function
of m, when n = m r = 500.
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Partial extinction

Recall that by partial extinction, we mean the extinction of one class, as opposed to
the extinction of the whole process. We would like here to numerically evaluate the
extinction probability of the class Ck, denoted by qk.

Theorems 4.3.1 and 4.3.2 suggest a method to numerically compute qk for each
1 ≤ k ≤ m in an MBT. So, starting with the initial vector xk(0) = a(k) such that

a(k)
! =

{
1 ∀* /∈ Ak

θ! < 1 ∀* ∈ Ak,
(4.18)

the functional iteration xk(n) = P (xk(n− 1)), n ≥ 1, converges to the vector qk. We
may use one of the linear algorithms discussed in Chapter 2, starting the numerical
scheme with this particular initial vector a(k).

We might also use Proposition 4.3.3 and compute qk as the total extinction prob-
ability of the modified MBT for which the birth rates matrix B̂ is such that B̂i,jk = 0
for all i /∈ Ak and 1 ≤ j, k ≤ n, and this with the help of one of the linear algorithms
or with the Newton algorithm.

4.5 Numerical examples
We now illustrate the use of the criteria discussed in Section 4.2, as well as the com-
putation of the total and partial extinction probabilities.

Example 4.5.1. Consider a supercritical reducible MBT with n = 10 phases and mean
progeny matrix

M =





M11 0 0 0 0
M21 M22 0 0 0
M31 0 M33 0 0

0 0 M43 M44 0
0 M52 0 0 M55




.

There are five equivalence classes, each of them of cardinality two. The submatrices
are given by

M11 =
[

0.5 0.611
0.018 0.164

]
,

M21 =
[

0.097 0.193
0.09 0.181

]
, M22 =

[
1.545 0.97
0.818 0.727

]
,

M31 =
[

0.188 0.188
0.177 0.177

]
, M33 =

[
1.031 0.469
0.441 0.97

]
,

M43 =
[

0.88 0.34
0.1 0.35

]
, M44 =

[
0.16 0.32
0.25 0.3

]
,

M52 =
[

0.481 0.481
0.667 0.667

]
, M55 =

[
0.481 0.481
0.476 0.476

]
.

The spectral radius of the diagonal irreducible blocks are
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i 1 2 3 4 5

sp(Mii) 0.53 1.632 1.457 0.521 0.957,

so that the subprocesses Z2(t) and Z3(t) are supercritical, the others being subritical.
The sets Ak and Dk for k = 1, 2, . . . , 5, are given by

A1 = {1, 2, 3, 4, 5}, A2 = {2, 5}, A3 = {3, 4}, A4 = {4}, A5 = {5},

D1 = {1}, D2 = {1, 2}, D3 = {1, 3}, D4 = {1, 3, 4}, D5 = {1, 2, 5}.

According to Propositions 4.2.1 and 4.2.2, we know that

q =





1
< 1
< 1
< 1
< 1




, q1 =





1
< 1
< 1
< 1
< 1




, q2 =





1
< 1

1
1

< 1




, q3 =





1
1

< 1
< 1

1




,

q4 = q5 = 1

According to Proposition 4.2.4,

E2

a.e.
⊆ E5, E3

a.e.
⊆ E4.

Following Proposition 4.2.5 , E1
a.e.≡ E. Moreover, by Corollary 4.2.7, we also have

E2 ∩ [ϕ0 ∈ C2]
a.e.≡ E1 ∩ [ϕ0 ∈ C2], E2 ∩ [ϕ0 ∈ C5]

a.e.≡ E1 ∩ [ϕ0 ∈ C5],

and

E3 ∩ [ϕ0 ∈ C3]
a.e.≡ E1 ∩ [ϕ0 ∈ C3], E3 ∩ [ϕ0 ∈ C4]

a.e.≡ E1 ∩ [ϕ0 ∈ C4].

In that case, the equivalence Ej ∩ [ϕ0 ∈ C!]
a.e.≡ Ei ∩ [ϕ0 ∈ C!] implies qj

! = qi
!.

We numerically compute the extinction probabilities with the Newton algorithm,
leading to

q = q1 =





1
1
0.079
0.14
0.187
0.247
0.26
0.556
0.044
0.053





, q2 =





1
1
0.079
0.14
1
1
1
1
0.044
0.053





, q3 =





1
1
1
1
0.187
0.247
0.26
0.556
1
1





,

q4 = q5 = 1.
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Example 4.5.2. Consider another supercritical reducible MBT with n = 6 phases and
mean progeny matrix

M =




M11 0 0

0 M22 0
M31 M32 M33



 .

There are three equivalence classes, each of them of cardinality two. The submatrices
are given by

M11 =
[

0.453 1.124
0.495 0.798

]
, M22 =

[
1.288 0.698
0.89 1.081

]
,

M31 =
[

0.363 0.421
0.504 0.389

]
, M32 =

[
0.192 0.333
0.349 0.192

]
,

and

M33 =
[

0.153 0.303
0.156 0.161

]
,

The spectral radius of the diagonal irreducible blocks are

i 1 2 3

sp(Mii) 1.391 1.98 0.374,

so that the subprocesses Z1(t) and Z2(t) are supercritical, while Z3(t) is subritical.
The sets Ak and Dk for k = 1, 2, 3 are given by

A1 = {1, 3}, A2 = {2, 3}, A3 = {3},

D1 = {1}, D2 = {2}, D3 = {1, 2, 3}.
According to Propositions 4.2.1, and 4.2.2, we know that

q =




< 1
< 1
< 1



 , q1 =




< 1

1
< 1



 , q2 =




1

< 1
< 1



 , q3 = 1.

According to Proposition 4.2.4,

E1

a.e.
⊆ E3, E2

a.e.
⊆ E3.

Moreover, by Corollary 4.2.7,

E1 ∩ [ϕ0 ∈ C1]
a.e.≡ E ∩ [ϕ0 ∈ C1], E2 ∩ [ϕ0 ∈ C2]

a.e.≡ E ∩ [ϕ0 ∈ C2];

here, the equivalence Ei ∩ [ϕ0 ∈ C!]
a.e.≡ E ∩ [ϕ0 ∈ C!] implies qi

! = q!.
The extinction probabilities are given by

q =





0.366
0.473
0.007
0.015
0.173
0.181





, q1 =





0.366
0.473
1
1
0.443
0.447





, q2 =





1
1
0.007
0.015
0.424
0.455





, q3 = 1.



Chapter 5

Transient measures

Besides the question of the extinction probability of a population, we may also be
interested in the distribution of its size at some finite time, or in the distribution of
the time until its extinction. Finally, we may wonder how many individuals have been
generated until some given time, or until extinction if it occurs. All these questions
correspond to transient features of a Markovian tree, and are addressed in the present
chapter.

Most of the results may directly be inferred from published results on multitype
branching processes. Nevertheless, using probabilistic arguments as much as possible,
we derive them anew within the context of MBTs, in order to present a coherent picture.

We begin by recalling some matrix derivation rules necessary to determine facto-
rial moments from matrix probability generating functions. Then, we characterize the
distribution the population size at any given time in an MBT. Its probability gener-
ating function satisfies a set of Kolmogorov backward and forward differential systems
of equations. We also obtain the factorial moments as solutions of recursive matrix
differential equations.

Next, we identify the distribution of the time until extinction of an MBT as the
solution of a matrix differential equation, and we construct an approximation for the
tail of the distribution, which we then use to evaluate the conditional mean time until
extinction, given that the process does become extinct.

Finally, we consider the total progeny size up to some finite time t, and its limit as
t goes to infinity. We completely characterize the asymptotic distribution, and in both
cases we recursively determine all the factorial moments.

We end the chapter by a numerical illustration of the different transient measures
on the MBT model in demography.

The material in this chapter is also presented in Hautphenne, Latouche and Remiche [29].
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5.1 Matrix derivatives
In this first section, we recall the rules of matrix differentiations and some of their
properties. They are inspired from the matrix derivatives rules described by MacRae
[52]; we particularize them to the derivative with respect to a row vector sT .

Let s be a vector of size n, and let d/dsT be a row vector of derivative operators
[d/ds1, . . . , d/dsn].

Definition 5.1.1 (Matrix differentiation). If Y is a p × q matrix whose entries are
function of the n×1 vector s, then, the derivative of Y with respect to sT is the p×nq
matrix of partial derivatives, dY/dsT , given by

dY

dsT
= Y ⊗ d/dsT ,

with the understanding that Yij · d/dsk = ∂Yij/∂sk.

Observe that ds/dsT = In, where In denotes the identity matrix of size n.
We now give three general derivative theorems that will be used in the next sections

to obtain the factorial moments from matrix equations for generating functions.

Theorem 5.1.2 (Sum Rule). Let Y and Z be matrix functions of s, such that their
sum is defined. Then,

d(Y + Z)/dsT = dY/dsT + dZ/dsT .

!

Theorem 5.1.3 (Product Rule). Let Y and Z be matrix functions of s, such that
their product is defined. Then,

d(Y Z)/dsT = (dY/dsT ) (Z ⊗ In) + Y (dZ/dsT ).

!

To give the rule for derivatives of Kronecker products, we need to introduce the
permuted identity matrix I(m,n).

Definition 5.1.4. The permuted identity matrix I(m,n) is a square matrix of size mn
partitioned into m × n sub-matrices such that the (i, j)th sub-matrix has a 1 in its
(j, i)th position and zeros elsewhere.

For example,

I(2,2) =





1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




.
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The following identities can be verified by direct examination: I(m,1) = I(1,m) = Im,
I(m,n) = IT

(n,m), and I(m,n) · I(n,m) = Imn.
The permuted identity matrix may be used to reverse the order of a Kronecker

product: if A is m× n, and B is p× q, then

B ⊗A = I(m,p) (A⊗B) I(q,n).

Theorem 5.1.5 (Kronecker Product Rule). If Y is an s× t matrix and Z is a p× q
matrix, then

d(Y ⊗ Z)/dsT = (Y ⊗ dZ/dsT ) + I(p,s) (Z ⊗ dY/dsT )(I(t,q) ⊗ In)

= (Y ⊗ dZ/dsT ) + (dY/dsT ⊗ Z) I(q,tn) (I(t,q) ⊗ In).

!

5.2 Population size

Let Z(t) = [Z1(t), Z2(t), . . . , Zn(t)]T be the vector of population size at time t in an
MBT, where Zi(t) is the number of branches in phase i at time t, and recall that ϕ0

denotes the initial phase of the MBT.
Define the conditional vectorial generating function F (s, t), given the phase of the

first individual, as
Fi(s, t) =

∑

k≥0

P[Z(t) = k |ϕ0 = i] sk,

where recall that sk = sk1
1 sk2

2 · · · skn
n , and |si| < 1 for all i. In the sequel, we sometimes

write F (s, t) =
∑

k≥0 Pϕ0 [Z(t) = k] sk. Note that F (1, t) = 1, since at any finite time
t, the total population is always finite.

It is well known from the theory of multitype branching processes that the gener-
ating function F (s, t) satisfies the backward and the forward Kolmogorov systems of
equations, see for instance Harris [26, V.4.], and Athreya and Ney [6, V.7.]. We give
the expressions of these differential systems in the special case of the MBT, and we
show how to obtain them by probabilistic arguments in terms of the evolution of the
MBT.

Theorem 5.2.1. The forward and backward Kolmogorov equations for the generating
function F (s, t) of an MBT are respectively

∂

∂t
F (s, t)− ∂

∂sT
F (s, t) · a(s) = 0, (5.1)

where ∂/∂sT F (s, t) = F (s, t)⊗ ∂/∂sT , and

∂

∂t
F (s, t) = a(F (s, t)), (5.2)

with F (s, 0) = s and a(x) = d + D0 x + B (x⊗ x).



84 Transient measures

Proof. As mentioned in [6, V.7], the equations follow from the Kolmogorov equations
for the Markov process Z(t), but (5.2) may also be justified by an argument based
on the dynamics of the MBT. In order to illustrate the difference in approaches, we
give the justification for (5.1) on the basis of the Kolmogorov equations, assuming that
n = 2 in order to simplify the presentation.

The forward Kolmogorov equations for Z(t) are

d

dt
Pϕ0 [Z(t) = (0, 0)] (5.3)

= d1 Pϕ0 [Z(t) = (1, 0)] + d2 Pϕ0 [Z(t) = (0, 1)],

and

d

dt
Pϕ0 [Z(t) = (k1, k2)] = (5.4)

[k1 (B1,12 + B1,21) + (k2 − 1)B2,22]

·Pϕ0 [Z(t) = (k1, k2 − 1)]

+ [k2 (B2,12 + B2,21) + (k1 − 1)B1,11]

·Pϕ0 [Z(t) = (k1 − 1, k2)]

+ (k1 + 1)B1,22 Pϕ0 [Z(t) = (k1 + 1, k2 − 2)]

+ (k2 + 1)B2,11 Pϕ0 [Z(t) = (k1 − 2, k2 + 1)]

+ (k1 + 1) d1 Pϕ0 [Z(t) = (k1 + 1, k2)]

+ (k2 + 1) d2 Pϕ0 [Z(t) = (k1, k2 + 1)]

+ (k1 + 1) (D0)12 Pϕ0 [Z(t) = (k1 + 1, k2 − 1)]

+ (k2 + 1) (D0)21 Pϕ0 [Z(t) = (k1 − 1, k2 + 1)]

+ [k1 (D0)11 + k2 (D0)22] Pϕ0 [Z(t) = (k1, k2)]

for k1, k2 ≥ 1, where the probability that Z1(t) or Z2(t) takes a strictly negative
value is equal to zero, by convention. Finally, P[Z(0) = (1, 0)|ϕ0 = 1] = 1 and
P[Z(0) = (0, 1)|ϕ0 = 2] = 1.

We multiply (5.4) by sk1
1 sk2

2 , and sum over all values of k1, k2, and obtain (5.1)
after some algebraic manipulations.

The equation (5.2) may also be obtained from the Kolmogorov equations but a less
cumbersome argument follows from conditioning on the time of the first observable
event in the MBT: either the initial individual has not undergone any observable event
yet at time t, which occurs with probability given by eD0 t, or it dies at some time
u ≤ t, which occurs with probability given by eD0 u d du, or it has a child at some time
u ≤ t, which occurs with probability given by eD0 u B du, and the two sub-processes
evolve independently of each others afterwards. In matrix notation, this gives

F (s, t) = eD0 t s +
∫ t

0
eD0 u d du

+
∫ t

0
eD0 u B (F (s, t− u)⊗ F (s, t− u)) du.
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Now, taking the derivative with respect to t on both sides, we have

∂

∂t
F (s, t) = d + D0 F (s, t) + B (F (s, t)⊗ F (s, t)),

which is (5.2). !

In the case n ≥ 2, none of the matrix (partial) differential equations (5.1) and
(5.2) may be solved explicitly. Nevertheless, there exist powerful numerical tools to
implement (5.2). We used the solver ode45 in MATLAB, which is based on an explicit
Runge-Kutta (4,5)-formula. This is a one-step solver, and its complexity is linear in
the number n of phases. Further details are to be found in Dormand and Prince [17].
We are thus able to numerically evaluate F (s, t) for any given pair (s, t).

Similarly, we can also compute the generating function

F (s, t) =
∑

k≥0

P[Z(t) · 1 = k |ϕ0] sk (5.5)

of the total population size at time t by numerically solving (5.2) with F (s, 0) = s · 1
as initial condition (notice that here, s is scalar).

In order to get the total population size distribution at some given time, we may use
numerical techniques for the inversion of probability generating functions, for example
the algorithm proposed by Abate and Whitt [1], which is based on the trapezoid rule
and a Fourier-series method for the error bound, and which we briefly present now.

Let t be fixed. Let i be the complex root of −1, and Re(z) denote the real part of z.
The following theorem provides a simple algorithm, with an error bound, to approach
the probabilities qt(k) = Pϕ0 [Z(t) ·1 = k], for k ≥ 1, qt(0) being computed as F (0, t).

Theorem 5.2.2. For 0 < r < 1 and k ≥ 1,

|qt(k)− q̃t(k)| ≤ r2 k

1− r2 k
,

where

q̃t(k) =
1

2k rk

2k∑

j=1

(−1)j Re[F (r eπji/k, t)]

=
1

2k rk




F (r, t) + (−1)k F (−r, t) + 2
k−1∑

j=1

(−1)j Re[F (r eπji/k, t)]




 .

!

In the theorem, the bound r2 k/(1− r2 k) is approximately equal to r2k when r2k is
small. Thus, to obtain a precision of 10−γ, we take r = 10−γ/2k.

Remark 5.2.3. Theorem 5.2.2 is based on the assumption that the generating function
F (s, t) is known exactly. Since it is numerically computed with some estimation errors,
there is a risk of the error increasing when F (·, t) is inverted. As a matter of fact, we
have often obtained poor results.
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Factorial moments

We can extract all the factorial moments of the population size at some given time
from (5.1) and (5.2). The kth factorial moment M (k)(t) is an n× nk matrix given by

M (k)(t) =
∂k

(∂sT )k
F (s, t) |s=1

= F (s, t)⊗ ∂

∂sT
⊗ . . .⊗ ∂

∂sT
︸ ︷︷ ︸

k times

|s=1 .

We define the matrix
Ω = D0 + B (1⊕ 1), (5.6)

which plays an important role in this chapter.
The factorial moments are recursively given by the following proposition.

Proposition 5.2.4. The matrices M (k)(t), k ≥ 1, are solutions of two recursive matrix
differential equations, with initial conditions M (1)(0) = In and M (k)(0) = 0 for k ≥ 2.
The first system is

d

dt
M (k)(t) = M (k)(t) (Ω⊗ Ink−1)A(k) (5.7)

+ M (k−1)(t) [B (In2 + I(n,n))⊗ Ink−2 ] C(k),

where Ω is defined in (5.6) and the nk × nk coefficients matrices A(k) and C(k) are
recursively defined as

A(1) = In

C(1) = 0n

A(k) = I(nk−1,n) + (A(k − 1)⊗ In), (5.8)
C(k) = I(nk−2,n2) (I(n,nk−2) ⊗ In) (A(k − 1)⊗ In)

+(C(k − 1)⊗ In), (5.9)

for k ≥ 2.
One also has

d

dt
M (k)(t) = ΩM (k)(t) (5.10)

+
k−1∑

i=1

B (M (i)(t)⊗M (k−i)(t))C(i, k − i),

where an empty sum is zero, and where the matrix coefficients C(i, k−i) are recursively
defined as

C(0, k − i) = Ink−i

C(i, 0) = Ini

C(i, k − i) = I(nk−i,ni) [I(ni−1,nk−i) C(i− 1, k − i)⊗ In]

+[C(i, k − i− 1)⊗ In]. (5.11)
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Proof. The first recurrence is proved by taking successive derivatives of (5.1) and the
second recurrence is based on (5.2). We only give details for (5.1).

First, note that

a(1) = d + D0s + B(s⊗ s)|s=1 = 0
d

dsT
a(s)|s=1 = D0 + B (In ⊗ s + s⊗ In)|s=1 = Ω

d2

(dsT )2
a(s)|s=1 = B(In ⊗ In) + B(In ⊗ In)I(n,n)

= B(In2 + I(n,n)),

by the derivative rule of Kronecker products.
Taking derivatives of both sides of (5.1), we obtain

∂

∂sT

∂

∂t
F (s, t) =

∂2

(∂sT )2
F (s, t) · (a(s)⊗ In)

+
∂

∂sT
F (s, t) · d

dsT
a(s)

and by setting s = 1 we obtain (5.7) for k = 1.
Now, we make the induction assumption that

∂k

(∂sT )k

∂

∂t
F (s, t) = (5.12)

∂k+1

(∂sT )k+1
F (s, t) · (a(s)⊗ Ink)

+
∂k

(∂sT )k
F (s, t) · ( d

dsT
a(s)⊗ Ink−1)A(k)

+
∂k−1

(∂sT )k−1
F (s, t) · ( d2

(dsT )2
a(s)⊗ Ink−2)C(k)

for some k ≥ 1. Differentiating again with respect to sT , we obtain

∂k+1

(∂sT )k+1

∂

∂t
F (s, t) =

∂k+2

(∂sT )k+2
F (s, t) · (a(s)⊗ Ink ⊗ In)

+
∂k+1

(∂sT )k+1
F (s, t) · ( d

dsT
a(s)⊗ Ink) I(nk,n)

+
∂k+1

(∂sT )k+1
F (s, t) · ( d

dsT
a(s)⊗ Ink−1 ⊗ In) (A(k)⊗ In)

+
∂k

(∂sT )k
F (s, t) · ( d2

(dsT )2
a(s)⊗ Ink−1) I(nk−1,n2)

·(I(n,nk−1) ⊗ In) (A(k)⊗ In)

+
∂k

(∂sT )k
F (s, t) · ( d2

(dsT )2
a(s)⊗ Ink−1) (C(k) ⊗ In).



88 Transient measures

Using (5.8, 5.9), we obtain

∂k+1

(∂sT )k+1

∂

∂t
F (s, t) =

∂k+2

(∂sT )k+2
F (s, t) · (a(s)⊗ Ink+1)

+
∂k+1

(∂sT )k+1
F (s, t) · ( d

dsT
a(s)⊗ Ink)A(k + 1)

+
∂k

(∂sT )k
F (s, t) · ( d2

(dsT )2
a(s)⊗ Ink−1)C(k + 1),

which shows that (5.12) holds for all k. The recursion formula for the factorial moments
follows when we set s = 1 in (5.12). !

Remark 5.2.5. The matrix coefficients C(i, k − i) in (5.11) are actually matrix gener-
alizations of the binomial coefficients

(k
i

)
.

The size of the matrices M (k)(t) very rapidly increases with k, which somewhat
limits the usefulness of Theorem 5.2.4 beyond the first few moments, but the mean
and standard deviation are easily obtained, as we show now.

Corollary 5.2.6. The first two moments are given by

M (1)(t) = eΩ t (5.13)
M (2)(t) = X(t) (In2 + I(n,n)) (5.14)

where X(t) is the solution of the Lyapunov equation

X(t) (Ω⊕ Ω)− ΩX(t) + eΩ t B −B (eΩ t ⊗ eΩ t) = 0. (5.15)

Proof. Taking k = 1 in (5.10), we see that M (1)(t) is the solution of (d/dt)M (1)(t) =
ΩM (1)(t), with M (1)(0) = I. This proves (5.13).

For the second moment, (5.10, 5.13) yield

M (2)(t) = eΩ t Y (t) (In2 + I(n,n)),

where

Y (t) =
∫ t

0
e−Ω u B (eΩ u ⊗ eΩ u) du.

We premultiply the integral by Ω and integrate by parts, to find that Y (t) satisfies the
Lyapunov equation

Y (t) (Ω⊕ Ω)− ΩY (t) + B − e−Ω t B (eΩ t ⊗ eΩ t) = 0.

Writing X(t) = eΩ t Y (t), we obtain (5.14). !
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The Lyapunov equation (5.15) is solved using the lyap solver in MATLAB. This
uses a triangular decomposition approach and the complexity is O(n3).

The standard deviation of the total population size at time t, given the initial phase,
is thus obtained as

σM (t) =
[
M (2)(t)1 + diag(M (1)(t)1) (1−M (1)(t)1)

]1/2
. (5.16)

Remark 5.2.7. The matrix Ω plays a role similar to the mean progeny matrix M .
Indeed, since the first moment of the population size at time t is given by exp(Ω t),
we see that the eigenvalue of maximal real part µ(Ω) determines the nature of the
MBT: if µ(Ω) < 0, then on the average, the population size tends to zero when time
increases, and the MBT is subcritical; if µ(Ω) = 0, then the population size is bounded
and nonzero on the average, and the MBT is critical; and finally, if µ(Ω) > 0, then the
population size grows without bounds on the average, and the MBT is supercritical.

We can give a physical interpretation to the inverse (−Ω)−1 when it is well defined,
that is in the subcritical case, since we have then

[(−Ω)−1]ij =
∫ ∞

0

[
eΩ t
]
ij

dt

=
∫ ∞

0
E[Zj(t) |ϕ0 = i] dt

=
∫ ∞

0
E




∑

n≥0

n1{Zj(t)=n}
∣∣ϕ0 = i



 dt

= E




∑

n≥0

∫ ∞

0
n1{Zj(t)=n} dt

∣∣ϕ0 = i



 .

If we define the total cumulated amount of time the process is in phase j as the sum of
the lengths of intervals where Zj(·) > 0, weighted by Zj , then the entry (i, j) of (−Ω)−1

may be interpreted as the expectation of that sum, given that the process starts with
a first individual in phase i.

Conditional population size given extinction

We end the section by looking at the conditional distribution of the population size,
given that extinction occurs. Recall that E denotes the total extinction event. The
probability generating function of the conditional population size is defined as

F e(s, t) =
∑

k≥0

P[Z(t) = k |E, ϕ0] sk.

Define
Φ = diag(q). (5.17)

The inverse of Φ exists, provided qi %= 0 for all i (which follows from Assumption
(1.2.2)). The following result was already stated by Athreya and Ney in the Galton-
Watson case, see [6, Chapter I.12, Theorem 3].
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Proposition 5.2.8. The conditional distribution of the population size given extinction
is given by

F e(s, t) = Φ−1 F (Φ s, t). (5.18)

Proof. The ith entry of F e(s, t) is given by

(F e)i(s, t) =
∑

k≥0

P[Z(t) = k |E, ϕ0 = i] sk

=
∑

k≥0

P[Z(t) = k ∩ E |ϕ0 = i]
P[E |ϕ0 = i]

sk

=
∑

k≥0

P[Z(t) = k |ϕ0 = i] P[E |Z(t) = k]
qi

sk,

by the Markov property. Since P[E |Z(t) = k] = qk by independence between individ-
uals, we get

(F e)i(s, t) =
∑

k≥0

P[Z(t) = k |ϕ0 = i]
qi

qk sk,

which, in matrix form, is F e(s, t) = Φ−1 F (Φ s, t). !

It results from (5.18) with s = 1 that q = F (q, t) for all t ≥ 0, so that q is a fixed
point of the generating function F (s, t).

Let us define the matrix
Θ = D0 + B (q ⊕ q), (5.19)

which is equal to the matrix Ω defined in (5.6) when q = 1, that is in the subcritical
and critical cases. It will actually play a role similar to Ω when we condition on the
extinction event.

Corollary 5.2.9. The matrix of conditional mean population size at time t, given that
extinction occurs, is given by

M (1)
e (t) = Φ−1 eΘ t Φ.

Proof. The conditional mean is M (1)
e (t) = ∂

∂sT F e(s, t)|s=1
and by (5.18),

∂

∂sT
F e(s, t)|s=1

= Φ−1 ∂

∂sT
F (Φ s, t)|s=1

= Φ−1 ∂

∂zT
F (z, t)|z=q

Φ.

Let U(t) = (∂/∂zT )F (z, t)|z=q
. From (5.2), we see that it is solution of

U ′(t) = D0 U(t) + B [U(t)⊗ q + q ⊗ U(t)],

with U(0) = I. Thus U(t) = exp(Θ t), and the statement of the corollary follows. !

The next result shows that, in the noncritical irreducible case, the inverse of Θ
always exists.
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Proposition 5.2.10. If the MBT is noncritical and irreducible, the eigenvalues of Θ
all have a strictly negative real part. In the critical case, Θ is singular.

Proof. As we have seen in Section 1.5, there are several ways to interpret an MBT as
a multitype branching process. Here, we apply the standard uniformization procedure
to the MAP controlling the MBT.

Let c ≥ maxj(−D0)jj . After an exponential time with parameter c, a particle of
type i may either die, or may remain in the same phase, or may change its phase, or,
finally, may split and give birth to two new branches, with probabilities respectively
given by the following matrices

d∗ =
1
c

d D∗
0 = I +

1
c

D0 B∗ =
1
c

B.

The generating function of the progeny of a particle of type i, after an exponential
time with parameter c, is given by the ith entry of

G∗(s) = d∗ + D∗
0 s + B∗(s⊗ s).

Recall that in the proof of Theorem 2.3.1, we used the progeny generating function
G(s) = θ+Ψ (s⊗s) of another representation of the MBT to show that the eigenvalue
of maximal real part of the matrix (d/dsT )G(s)|s=q = Ψ(q⊕ q) is strictly less than 1
in the subcritical and supercritical cases, and is equal to 1 in the critical case.

By the same argument, in the noncritical case, the eigenvalue of maximal real part
of the matrix

d

dsT
G∗(s)|s=q = D∗

0 + B∗(q ⊕ q)

is strictly less than 1. Consequently, the eigenvalue of maximal real part of 1
c (D0 +

B (q⊕q)) is strictly less than 0, and since 1/c is a strictly positive constant, this implies
that all the eigenvalues of the matrix D0 + B (q⊕ q) have a strictly negative real part.

In the critical case, the matrix D∗
0 +B∗(q⊕q) has an eigenvalue equal to 1, resulting

in one eigenvalue equal to 0 for Θ, which is thus singular. !

Remark 5.2.11. Following the same argument than in Remark 5.2.7, in the noncritical
case, we can give a probabilistic interpretation to the inverse (−ΘΦ)−1Φ: its (i, j)th
entry represents the conditional mean total cumulated amount of time the process is in
phase j, given that it starts with a first individual in phase i and that it will eventually
become extinct.

5.3 Time until extinction

Our next measure of interest is the distribution of the time Te until the MBT becomes
extinct. We assume here that we are not in the critical case.

Time to extinction has been much investigated for the Galton-Watson branching
process. To give a few references, Agresti [3] derives bounds for the distribution and for
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the first moment of the time until extinction, and Lange, Boehnke and Carson [45] do
the same for all factorial moments. In the simplest one-type Markovian case, the distri-
bution of the time to extinction is the solution of an integral equation, or of a backward
differential equation, and Wang [73] shows it is still possible to bound factorial mo-
ments. In the multitype Markovian subcritical case, Heinzmann [33] approximates the
distribution exponentially with a controlled approximation error.

We denote by F (t) = P[Te ≤ t |ϕ0] the distribution function of Te, given the
initial phase, and we observe that the extinction probability q is actually the limit of
F (t) as t tends to infinity. It is clear that Te ≤ t if and only if Z(t) = 0, so that
F (t) = F (s, t)|s=0.

Thus, taking s = 0 in (5.2), we find that the distribution function F (t) satisfies
the differential system

d

dt
F (t) = d + D0 F (t) + B (F (t)⊗ F (t)), (5.20)

with F (0) = 0.
This is a quadratic matrix differential equation which can not be solved explicitely

when n ≥ 2, but the same numerical tools as for the generating function F (s, t) allow
us to approximate the function at some discrete points.

If q < 1, then Te is infinite with a positive probability and its expectation is
infinite. In order to investigate a meaningful quantity, we define M e as the conditional
expectation of Te, given the initial phase and given that extinction occurs:

M e = Φ−1

∫ ∞

0
[q − F (u)] du =

∫ ∞

0
[1− Φ−1 F (u)] du

where Φ is given by (5.17).
To compute M e, we proceed as follows: we fix some time T ∗ such that

||1− Φ−1 F (T ∗)|| < ε (5.21)

where ε is arbitrarily small, and we write that

Me =
∫ T∗

0
[1− Φ−1F (u)] du +

∫ ∞

T∗
[1− Φ−1F (u)] du. (5.22)

The first integral may be approximated using the trapezoid rule: we choose a number
k∗ of intervals and write

∫ T∗

0
[1− Φ−1F (u)] du = h

{
1− Φ−1[F (0) + F (T ∗)]/2

+
k∗−1∑

i=1

[1− Φ−1F (ih)]
}

+ E,

where h = T ∗/k∗ and E = T ∗h2Φ−1F ′′(c)/12 for some c in (0, T ∗) is the approximation
error. In practice, we choose ε and h and compute F (ih) for successive values of i until
F (k∗h) satisfies the inequality (5.21).
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The second integral may be computed using a function F̃ (t) which approximates
F (t) for large values of t, that is, for values of t such that F (t) ≈ q. This approximation
is given by

F̃ (t) =
[
I − eΘ t

]
q, (5.23)

where Θ is defined in (5.19). It is obtained as follows. Define ε(t) = q − F (t). The
vector q satisfies

0 = d + D0 q + B (q ⊗ q),

which is obtained by pre-multiplying both sides of (1.15) by D0. Subtracting this last
equation from (5.20), we obtain

ε′(t) = D0ε(t) + B[(q ⊗ q)− (F (t)⊗ F (t))]

= D0ε(t) + B[(q − F (t)⊗ q) + (F (t)⊗ q − F (t))]

= D0ε(t) + B[(I ⊗ q) + (F (t)⊗ I)]ε(t).

Now, if t is large enough, then F (t) may be replaced by q in the equation above and
we obtain the approximate system ε̃ ′(t) = Θ ε̃(t), which leads to

ε̃(t) = eΘ t q,

since ε(0) = q by definition. This yields (5.23).
Thus, the second integral in (5.22) may be approximated by

∫ ∞

T∗
[1− Φ−1F̃ (u)] du =

∫ ∞

k∗h
Φ−1eΘuq du (5.24)

= Φ−1[−Θ]−1eΘk∗hq

which is well defined in the noncritical case by Proposition 5.2.10.
Notice that the expression Φ−1 eΘ u q in (5.24) is nothing else than the conditional

mean total population size at time u, given that extinction occurs, that is M (1)
e (u)1,

as stated by Corollary 5.2.9. By the argument in Remark 5.2.11, the integral may thus
be interpreted as the conditional expected total cumulative time the process still lives
from time k∗ h, given it eventually becomes extinct. This seems to be a reasonable
estimation of the remaining mean time until extinction, since we expect that, close to
extinction, the number of individuals still living in parallel must not be much bigger
than one.

In summary, the mean time until extinction, given that extinction occurs, may be
approximated by

M̃ e = h
{
1− Φ−1[F (0) + F (T ∗)]/2 (5.25)

+
k∗−1∑

i=1

[1− Φ−1F (ih)]
}

+ Φ−1[−Θ]−1 eΘT∗
q.
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5.4 Total progeny size

Recall that in an MBT, the lifetime of an individual is governed by a transient MAP
which controls when children are born and when death occurs. We analyze here the
distribution of the total number N(t) of individuals born until time t, irrespective of
their status, and its limit as t goes to infinity.

The distribution of the total progeny of a Galton-Watson branching process has
been studied by several authors, among whom we cite Dwass [18] who examines the
total progeny until extinction, and Pakes [59] who investigates the total progeny until
the nth generation, and asymptotic results when n tends to infinity.

The probability generating function g(s) of the total progeny until extinction is
easily shown to satisfy the functional equation g(s) = s P (g(s)), where recall that
P (·) is the progeny generating function. In principle, one may invert g(s) with the
Lagrange inversion formula [16]. But the results provided for instance by Good [24]
in the multitype case are hardly implementable, and we follow a different approach,
making use of the specific features of MBTs.

Let g(k, t) = P[N(t) = k|ϕ0] denote the probability that a total of k individuals
are born before time t, given the initial phase of the first individual.

Proposition 5.4.1. The probabilities g(k, t) are recursively given by

g(0, t) = 0 (5.26)

g(1, t) = eD0t1 +
∫ t

0
eD0ud du, (5.27)

g(k, t) =
∫ t

0
eD0uB

·
k−1∑

i=1

[g(i, t− u)⊗ g(k − i, t− u)] du. (5.28)

for k ≥ 2, t ≥ 0.

Proof. The first equation is justified by the fact that there is always at least one
individual, the one at the origin of the process, in the total progeny. In order to justify
(5.27), we note that at time t there is only one individual in total if either the one at
the origin has not yet given birth or has died at some time u ≤ t.

Finally, if at time t the total progeny is k ≥ 2, it means that the first individual
gives birth to a child at some time u ≤ t and that the sum of the total progenies in
the independent families generated by the two individuals after the birth event equals
k; this proves (5.28). !

We may express the probability generating function of N(t), G(z, t) =
∑

k≥0 g(k, t)zk,
as the solution of a differential equation, by using the recursive expressions in Propo-
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sition 5.4.1 and taking derivatives with respect to t:

∂

∂t
G(z, t) = dz + D0G(z, t) + B(G(z, t)⊗G(z, t)), (5.29)

with G(z, 0) = z. Note that G(1, t) = 1 for all finite t.
We might numerically solve (5.29) and take the inverse transform, as suggested for

the generating function F (s, t) of the total population size at time t; here, however,
the distribution of the total progeny size is directly computable by (5.26)–(5.28).

Let D(k)(t) = ∂kG(z, t)/(∂z)k|z=1 denote the n × 1 kth factorial moment vector
of N(t). These moments are recursively characterized as follows, the proof being by
induction using standard scalar differentiation rules.

Proposition 5.4.2. The vectors D(k)(t) satisfy the following recurrence

d

dt
D(1)(t) = ΩD(1)(t) + d, (5.30)

d

dt
D(k)(t) = ΩD(k)(t) +

k−1∑

i=1

(
k

i

)
B [D(i)(t)⊗D(k−i)(t)],

for k ≥ 2, with D(1)(0) = 1 and D(k)(0) = 0 for k ≥ 2. !

One easily obtains an explicit expression for the first moment: the solution of (5.30),
is given by

D(1)(t) = eΩ t

(∫ t

0
e−Ω u du d + 1

)
.

If the inverse of Ω exists, then this is equivalent to

D(1)(t) = [I − eΩt] (−Ω)−1d + eΩt1.

Higher moments may not be written explicitly, but they may easily be computed
numerically. The second factorial moment is, for instance, given by

D(2)(t) = eΩ t

(∫ t

0
e−Ω u 2 B (D(1)(u)⊗D(1)(u)) du

)
.

We now turn our attention to the asymptotic distribution of N(t) when t tends to
infinity. Define g(k) = limt→∞ g(k, t). We easily obtain from (5.26–5.28) that

g(0) = 0

g(1) = θ

g(k) = Ψ
k−1∑

i=1

[g(i)⊗ g(k − i)],
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for k ≥ 2. The generating function G(z) =
∑

k≥0 g(k) zk is such that G(1) = q and,
for every z, it satisfies the functional fixed point equation

G(z) = θz + Ψ(G(z)⊗G(z)), (5.31)

which has the same structure as the extinction equation (1.15).
Equation (5.31) has the following interpretation. We condition on the first ob-

servable event: either the first individual dies before giving birth, which occurs with
probability θ, and N(∞) = 1, or it gives birth with probability Ψ, and the total
progeny is the sum of the total progenies in the subtrees generated by the child and
by the parent after the birth, both evolving independently.

The derivatives D(k) = dkG(z)/(dz)k|z=1 for k ≥ 1 are here equal to the factorial
moment vectors of the total progeny N(∞) on the paths where extinction occurs. By
differentiating (5.31), it is easy to show that, provided that the MBT is noncritical,

D(1) = (−Θ)−1d, (5.32)

D(k) = (−Θ)−1
k−1∑

i=1

(
k

i

)
B(D(i) ⊗D(k−i))

for k ≥ 2, where Θ is defined in (5.19).
Here, the moments may be expressed explicitly. For instance, the second factorial

moment is given by

D(2) = 2(−Θ)−1B[(−Θ)−1d⊗ (−Θ)−1d]

but such expressions rapidly become very cumbersome.
It is more natural to consider the conditional distribution of N(∞) given that ex-

tinction occurs. It suffices to multiply by Φ−1 the expressions obtained so far, where Φ
is defined in (5.17). We obtain, for instance, that the conditional mean total progeny
size, given that extinction occurs, is

D(1)
e = Φ−1 (−Θ)−1 d = −(ΘΦ)−1 d, (5.33)

and the conditional standard deviation as

σDe =
[
Φ−1D(2) + diag(De

(1)) (1−De
(1))
]1/2

. (5.34)

5.5 Application in demography
We now apply the results presented in the previous sections to our demographic appli-
cation.

Family size

We first look at the mean total size at time t of the family generated by a woman born
at time 0. From (5.13), it is given by m(t) = α eΩ t 1, where recall that α = [1,0] is
the initial probability vector.
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We plot m(t) as a function of t on Figure 5.1 for seven countries. We see how fast
the female Congolese family grows compared to the other countries. Some families
reach a maximum size after about sixty years, and then eventually tend to extinction.
Notice that after 250 years, the curves of Turkey and of South Africa intersect, and
that before 70 years, the mean family sizes in Turkey and in Morocco are quite the
same, after what they completely diverge. Observe also how the Turkish family size,
which is nearly critical, grows slowly.

On Figure 5.2 we show the standard deviation of the family size for three countries:
Congo (supercritical), Turkey (supercritical - nearly critical) and Japan (subcritical).
We can compare it with the mean family size.

0 50 100 150 200 250 300
0

5

10

15

t

m
(
t
)
 

 

 

Brazil

Congo

Japan

Morocco

South Africa 

Turkey

USA

Figure 5.1: Mean family size generated by a new-born woman as a function of time

Remark 5.5.1. The standard deviation of the family size involves the computation of
the second factorial moment M (2)(t) = X(t) (In2 + I(n,n)) where X(t) satisfies the
Lyapunov equation (5.15). The numerical solution of this equation requires the matrix
[(Ω⊕Ω)T ⊗ In]− (In2 ⊗Ω) to be well-conditioned, which was not the case for Turkey
and Japan. Another way to compute X(t) is to return to its definition

X(t) =
∫ t

0
eΩ(t−u) B (eΩ u ⊗ eΩ u) du,

and to numerically evaluate it using for instance the trapezoid rule.

Time until extinction

We plot on Figure 5.3 the distribution of the time until extinction of the family gen-
erated by a new-born woman, that is the first component of F (t). We observe that
when time goes to infinity, the curves do tend to the extinction probability presented
in Section 3.4. We remark a big difference in the shape of the curves for Congo and for
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Figure 5.2: Mean (plain line) and standard deviation (dashed line) of the family size
generated by a new-born woman as a function of time, for three countries

South Africa compared to other countries, especially in the way they increase in the
first years. We interpret it again by an infant mortality effect; it reflects also the fact
that if a Congolese family eventually becomes extinct, it happens quite quickly, before
it has the time to grow. So it seems that if the first mother and her young daughters
survive, then the family has a high probability to be maintained, which explains why
the curve of Congo is already almost constant after 100 years only.

Recall that the conditional mean time until extinction is approximated by (5.25).
We present the first entry of M̃ e in Table 5.1 for h = 10−2 and ε = 5 ·10−2. A priori we
are surprised by the high values for the USA and for Turkey. The reason is that these
countries are just at the limit between almost sure extinction and possible explosion
(the USA being subcritical and Turkey being supercritical). Exactly critical popula-
tions eventually become extinct with probability one, while their mean population size
is always one, and Θ is singular. Here, Θ has a maximal eigenvalue very close to zero:
µ(Θ) = −7.37 ·10−4 for the USA, and µ(Θ) = −2.48 ·10−4 for Turkey. Since the inverse
of Θ appears in the approximation M̃e, this explains the large values obtained.

We see again that for Congo, if a family does not explode, then it becomes extinct
very quickly.

Country M̃e1 Country M̃e1 Country M̃e1

Congo 28.9 Belgium 170.1 South Africa 499.1
Japan 123.9 Morocco 317.7 USA 2280.6
China 133.2 Brazil 349.2 Turkey 8428.8

Table 5.1: Conditional mean time until extinction of the female family generated by a
new-born woman, given that extinction occurs.
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Figure 5.3: Distribution function of the time until extinction of the family generated
by a first new-born woman

Total progeny size

The conditional mean total family size vector D(1)
e given extinction is given by (5.33),

and the standard deviation σDe by (5.34).

We give in Table 5.2 the first entry of D(1)
e and σDe , that is, the conditional mean

total family size generated by a new-born woman and its standard deviation, given
that extinction occurs.

We observe that the standard deviation is quite large for some countries (Brazil,
South Africa, USA and Turkey), which reflects a large variability in the distribution.
The USA and Turkey, again, show a different behavior from the other countries, the
inverse of Θ appearing in D(1)

e and σDe . The whole vector D(1)
e is shown on Figure 5.4

for six countries.

Country D(1)
e1 (σDe)1 Country D(1)

e1 (σDe)1

Congo 1.58 1.56 Brazil 11.74 42.93
Japan 2.57 3.5 South Africa 19.1 95.28
China 3.95 7.8 USA 45.47 336.14
Belgium 4.75 10.2 Turkey 136.88 1806.4
Morocco 10.33 35.14

Table 5.2: Conditional mean total size of the family generated by a new-born woman
and its standard deviation, given that extinction occurs.
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Figure 5.4: Conditional mean total size of the family generated by a first woman as a
function of her age class, given that extinction occurs

Comparing the three models

Recall from Section 1.4 that we can actually consider three models in our demographic
application, called the raw, the smooth, and the gap models, which respectively corre-
spond to an MBT with n = 22, n = 101 and n = 136 phases. The previous results are
those obtained with the raw model.

We compare on Figure 5.5 the mean Belgian family size in finite time for the three
models. With the smooth and the gap models, we see more clearly the beginning of
the life of the first daughter after about twenty years, followed by a second hump at
the beginning of the life of the first grand-daughter after about 60 years.

Adding the intermediate phases to take care of the after-birth gap periods makes
the total number of daughters of a woman decrease; it is reflected by the size of the
family she generates, and is a natural effect since it induces a reduction in the total
fertility time. This result also appears in Table 5.3, where we compare the mean total
progeny size of a new-born Belgian woman for the three models.

Model n D(1)
1

Raw 22 4.7
Smooth 101 4.1
Gap 136 3.6

Table 5.3: Mean total size of the family generated by a new-born woman in Belgium.

Let us now look at countries whose criticality changes when passing from the raw
model to the gap model (see Section 3.4). In particular, recall that South Africa
goes from supercritical to subcritical, Turkey from supercritical - nearly critical, to
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Figure 5.5: Comparison of the mean Belgian family size at a given time with n = 22,
n = 101, and n = 136.

subcritical, and the USA from subcritical - nearly critical, to subcritical. We plot on
Figure 5.6 the mean South African family size as a function of the time, for the raw
and for the gap models. Here, we see that the difference between the two models is
important. For the three countries, we finally report in Table 5.4 the conditional mean
time until extinction and the conditional mean total progeny size, given extinction, for
the two models. Again, the differences are significant, which shows that the results are
highly sensitive to the data.

Country M̃e1 D(1)
e1

Raw Gap Raw Gap

South Africa 499.08 914.73 19.1 31.52
USA 2280.6 301 45.47 9.73
Turkey 8428.8 332.6 136.88 11.25

Table 5.4: Conditional expected time until extinction and mean total size of the family
generated by a new-born woman, given that extinction occurs
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Figure 5.6: Comparison of the mean South African family size at a given time with
the raw and the gap models.



Chapter 6

Structured Markov chain approach

In this chapter, we show the correspondence between MBTs and quasi-birth-and-death
processes, and between GMTs and M/G/1-type Markov chains. We then adapt nu-
merical techniques of level-dependent structured Markov chains to Markovian trees.

When the usual fixed point extinction equation does not hold anymore, the struc-
tured Markov chain approach allows to compute the extinction probability of a Marko-
vian tree. This is illustrated in Hautphenne, Leibnitz and Remiche [31], as well as in
Chapters 7 and 8. We introduce a linear algorithm, which has a physical interpretation
in terms of Markov chains, and which is used on several occasions in the chapter.

Then, we use the structured Markov chain approach to compute transient measures
in a Markovian tree. The distribution of the maximal population size before extinction
may be obtained with the linear algorithm used to compute the extinction probability.
The mean time until extinction or until the population reaches k individuals may be
calculated by adapting numerical tools for first passage times to lower and to upper
levels in structured Markov chains.

We do emphasize that the techniques presented in this chapter must be confined to
Markovian trees with a small number of phases in order to be numerically efficient.

6.1 Structured Markov chains

A structured Markov chain is a two-dimensional Markov chain whose generator has a
particular block-structure which may be exploited from a numerical point of view; see
for instance Bini, Latouche and Meini [10]. Structured Markov chains have many appli-
cations in queueing theory and in stochastic modelling, and they include M/G/1- and
G/M/1-type Markov chains, quasi-birth-and-death (QBD) processes, skip-free queues
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and tree-like stochastic processes.

The MBT as a level-dependent QBD process

A QBD process is a two-dimensional Markovian process {(X(t),ϕ(t)) : t ∈ R+}, where
X(t) is called the level at time t, and ϕ(t) is called the phase at time t. Here, the level
space will always be N, and the phase space at level k is finite and will be denoted by
L(k).

The specificity of this process is that the only permitted transitions from the state
(k, i), k ∈ N, i ∈ L(k), are within the same level k, or towards the previous level k− 1,
or the next level k + 1. When the transition rates between the phases depend on the
level, we say that the QBD is level-dependent.

The infinitesimal generator of a level-dependent QBD is as follows

Q =





A(0)
0 A(0)

1 0 0 . . .

A(1)
−1 A(1)

0 A(1)
1 0 . . .

0 A(2)
−1 A(2)

0 A(2)
1 . . .

0 0 A(3)
−1 A(3)

0

. . .
...

...
...

. . . . . .





, (6.1)

where the (i, j)th entry of the block matrix A(k)
! is the transition rate from phase i in

level k to phase j in level k+*. Level-independent QBD processes have been extensively
studied, see for instance Latouche and Ramaswami [47], and references therein.

A first representation of an MBT as a level-dependent QBD goes as follows: the level
X(t) is defined as the total population size in the MBT at time t, that is X(t) = Z(t)1.
If X(t) = k ≥ 1, then the phase is the k-tuple ϕ(t) = (φ1(t),φ2(t), . . . ,φk(t)) describing
the phase of each individual MAP, enumerated from left to right in the tree. The phase
space at level k is thus

L(k) = {(S1, S2, . . . , Sk) : 1 ≤ Sj ≤ n for 1 ≤ j ≤ k},

and is of cardinality |L(k)| = nk.
In many situations, it is of numerical importance to reduce the phase space cardi-

nality when it is possible. Here the cardinality increases exponentially with the level.
There exists another representation of the MBT as a level-dependent QBD where

the phase space cardinality growth is polynomial of order n − 1 (linear when n = 2):
the level is defined as above, as the total population size at time t, but the phase is
the n-uple ϕ(t) = (Z1(t), Z2(t) . . . , Zn(t)) describing the number of individuals in each
phase at time t.

The phase space at level k is now

L(k) = {(S1, S2, . . . , Sn) : S1 + S2 + · · · + Sn = k with Sj ≥ 0 for 1 ≤ j ≤ n}, (6.2)

and is of cardinality |L(k)| =
(k+n−1

n−1

)
. We order the phases in the lexicographic

manner. For example, if n = 2, then the phase space of level 3 is given by

L(3) = {(0, 3), (1, 2), (2, 1), (3, 0)}.
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Notice that with both representations, we have A(0)
0 = A(0)

1 = 0, since the level 0 is
absorbing.

The GMT as a level-dependent M/G/1-type Markov chain

A level-dependent M/G/1-type Markov chain is defined exactly like a level-dependent
QBD process, except that here, transitions are permitted from level k to any higher
level k + m, m ≥ 1, as well as to level k and to level k − 1. The generator takes the
form

Q =





A(0)
0 A(0)

1 A(0)
2 A(0)

3 A(0)
4 A(0)

5 . . .

A(1)
−1 A(1)

0 A(1)
1 A(1)

2 A(1)
3 A(1)

4 . . .

0 A(2)
−1 A(2)

0 A(2)
1 A(2)

2 A(2)
3 . . .

0 0 A(3)
−1 A(3)

0 A(3)
1 A(3)

2

. . .
...

...
...

...
...

. . . . . .





. (6.3)

The two representations of a GMT as a level-dependent M/G/1-type Markov chain
are exactly the same as the ones of an MBT as a level-dependent QBD. Again, as level
0 is absorbing, we have A(0)

! = 0 for all * ≥ 0.

From now on, we shall use the second representation for MBTs and GMTs, since
the phase space is smaller.

6.2 Extinction probability

Let Gk, k ≥ 1 be an infinite sequence of matrices which are defined as follows: (Gk)ij

is the probability that a structured Markov chain reaches level k − 1 for the first time
in phase j, given that it starts in phase i of level k, that is

(Gk)ij = P [γ(k − 1) <∞, ϕ(γ(k − 1)) = j|X(0) = k, ϕ(0) = i] ,

where γ(k) = inf{t ≥ 0 : X(t) = k} is the first passage time to level k, k ≥ 0.
If a Markovian tree starts with one individual in phase i at time 0, then it means that

the corresponding Markov chain starts in state (1, ei), and the extinction probability qi

of the Markovian tree is equal to the probability (G1)i that the Markov chain eventually
reaches level 0, starting from the state (1, ei). Notice that here G1 is a vector since
the level 0 contains one phase only.

In a level-dependent QBD process, the matrices Gk satisfy the infinite system of
matrix equations

Gk =
(
A(k)

0

)−1
A(k)

−1 +
(
A(k)

0

)−1
A(k)

1 Gk+1 Gk, k ≥ 1. (6.4)

Indeed, starting from level k, the QBD may directly move to level k − 1 at the next
level change, with probability

(
A(k)

0

)−1
A(k)

−1 , or it may move up to level k + 1 with
probability

(
A(k)

0

)−1
A(k)

1 . Upon arrival in level k + 1, it eventually returns to level k
with probability Gk+1 and then to level k − 1 with probability Gk.
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A way to obtain the vector G1 is to compute the vectors G1(M) of probability that
the QBD eventually reaches level 0, starting from level 1, without going over level M , for
M ≥ 1. Letting M tend to infinity removes the restriction, and limM→∞ G1(M) = G1.

More generally, we define for M ≥ 1, 1 ≤ k ≤M , the matrices

Gk(M) = P [γ(k − 1) < γ(M + 1), ϕ(γ(k − 1))|X(0) = k, ϕ(0)] .

We can then write
GM (M) =

(
−A(M)

0

)−1
A(M)

−1 , (6.5)

since, starting from level M , the probability to reach level M − 1 before going over
level M , is the probability to directly move to level M − 1 when leaving level M ; and
for M − 1 ≥ k ≥ 1,

Gk(M) =
(
−A(k)

0

)−1
A(k)

−1 +
(
−A(k)

0

)−1
A(k)

1 Gk+1(M)Gk(M),

since, starting from level k, the process may directly move to level k − 1, or go up to
level k+1, and finally move back to level k, and then to level k−1, both without going
over level M . This last equation may be rewritten as

Gk(M) =
[
I −
(
−A(k)

0

)−1
A(k)

1 Gk+1(M)
]−1 (

−A(k)
0

)−1
A(k)

−1 . (6.6)

Therefore, starting from (6.5), we obtain G1(M) after M steps.
Equation (6.6) is similar to the Mth step of the linear algorithm U , which computes

the matrix G for level-independent QBDs (Latouche and Ramaswami [47, Chapter 8]).
The drawback of this method is that for each M , we need to iterate through the M

steps (6.5–6.6) to finally get G1(M), without being able to make use of any previous
computation from the stage M − 1. To remedy to this point, we can instead compute
the matrices

FM = P [γ(M + 1) < γ(0) ,ϕ(γ(M + 1)) |X(0) = 1,ϕ(0)], M ≥ 1, (6.7)

giving the probability to reach level M + 1 before level 0, starting from level 1, so that
G1(M) = 1−FM 1, and G1 = 1− limM→∞ FM 1. The advantage is that we can write
FM as the product

FM = L1 L2 · · · LM ,

where (Li)j! is the probability that the process reaches level i + 1 for the first time in
phase *, before reaching level 0, given that it starts in phase j of level i, that is

Li = P[γ(i + 1) < γ(0) ,ϕ(γ(i + 1)) |X(0) = i,ϕ(0)], i ≥ 1.

The matrices Li may be recursively computed as

L1 =
(
−A(1)

0

)−1
A(1)

1 , (6.8)

and for i ≥ 2, Li =
(
−A(i)

0

)−1
A(i)

1 +
(
−A(i)

0

)−1
A(i)

−1 Li−1 Li, which can be rewritten
as

Li =
[
I −
(
−A(i)

0

)−1
A(i)

−1 Li−1

]−1 (
−A(i)

0

)−1
A(i)

1 . (6.9)
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The justification of equations (6.8–6.9) is very similar to that of equations (6.5–6.6).
Therefore, for each M , we have FM = FM−1 LM , so that we just need to compute

a new matrix LM using the matrix LM−1 from the previous stage, via Equation (6.9).
Therefore, we can write G1(1) =

(
−A(1)

0

)−1
A(1)

−1, and for M ≥ 2,

G1(M) = G1(M − 1) + FM−1 (1− LM 1), (6.10)

which highlights the probability mass added at each stage.
This method is not found as such in the literature, although the idea is close to that

of Lemma 11.2.2 in [47, Chapter 11] related to first passage times in a level-independent
QBD. For further reference, we shall call this linear procedure the algorithm L.

We have examined other algorithms for which we do not provide the details here, as
they are less efficient than the algorithm L. Quadratic algorithms developed for level-
independent QBDs may be adapted to the level-dependent case, and used to compute
G1. For instance, Ramaswami and Taylor [62] adapted the Logarithmic-Reduction
algorithm of Latouche and Ramaswami [47, Chapter 8]; in a similar manner, we have
investigated the generalization of the Cyclic-Reduction algorithm developed by Bini,
Latouche and Meini [10] to the level-dependent case.

Finally, the linear algorithm U [47] may be adapted to M/G/1-type Markov chains,
and thus used to compute the extinction probability of a GMT. Bini, Latouche and
Meini [10] also propose a version of the cyclic-reduction algorithm adapted to M/G/1-
type processes in the level-independent case; again, we investigated this algorithm in
the level-dependent case.

Recall from the previous section that the size of the block matrices in the generator
of a level-dependent Markov chain increases polynomially with the level and the number
of phases. It may thus be costly to use one of the algorithms discussed above to compute
the extinction probability of a Markovian tree. However, if the number of phases in
the Markovian tree is not too large, it is fully feasible to use those techniques.

Indeed, there are some situations where the extinction probability of a Markovian
tree may not be expressed as the minimal nonnegative solution of the fixed point
extinction equation. For example in Hautphenne, Leibnitz and Remiche [31], we model
the spread of a file in a peer-to-peer network with a population-size-dependent MBT.
In that case, the structured Markov chain approach is the only one we could use to
compute the extinction probability of the MBT.

Other examples are given in the next two chapters, where MBTs evolve under
external influences, which removes the independence assumption between individuals.
The extinction equation (1.15) does not hold anymore, and one technique to compute
the extinction probability is to use the structured Markov chain approach.

6.3 Maximum population size
Let M be the maximum population size of an MBT. We investigate its distribution,
given the initial phase of the MBT, and its conditional distribution, given extinction



108 Structured Markov chain approach

of the MBT.
The cumulative distribution of M is studied for the discrete one-type Galton-

Watson process by Bishir [11], and Adke [2]. Lindvall [51], and Nagaev and Vakhtel
[55] analyze the tail behaviour of the distribution of M , for the same process. Pakes
[61] determines bounds for E[Mm] in the critical case, where Mm is the maximum gen-
eration size among the first m generations. Topchii and Vatutin [70] study asymptotics
for E[Mm].

Let us look at the cumulative distribution v(m) = P[M ≤ m |ϕ0] of the maximal
MBT size, given its initial phase. We know that v(1) = θ and v(∞) = q. The usual
approach of conditioning on the first observable event in the tree fails in this case, and
we only obtain lower and upper bounds for the distribution:

θ + Ψ
m−1∑

i=1

v(i)⊗ v(m− i) ≤ v(m) ≤ q, m ≥ 2.

The first inequality results from the fact that it is possible that the maximum size of
the MBT is at most m, with a left and a right subtree of maximum sizes m at different
times.

It is actually essential to keep track of the population composition in each phase,
each time a birth or a death event occurs. This leads us to the structured Markov
chain approach.

The probability that the MBT eventually becomes extinct without growing up to
more than m individuals is given by the vector v(m) = G1(m) defined in the previous
section, and may thus be computed with the algorithm L.

The conditional cumulative distribution of the maximum population size in the
MBT, given its initial phase and that extinction occurs, is thus

ve(m) = P[M ≤ m |ϕ0, E] = Φ−1 G1(m), (6.11)

where Φ is defined in (5.17).
As mentioned in the previous section, the same numerical technique may be applied

in the GMT case, provided we generalize the algorithm L to M/G/1-type Markov
chains.

This method is costly when the number n of phases in the Markovian tree is large,
but is still more effective than the one proposed by Bishir [11], which requires the
inversion of matrices of size

∑m
k=1

(k+n−1
n−1

)
when computing v(m).

Example 6.3.1. Let us apply the algorithm L to an MBT with n = 3 phases. The birth
rates matrix B is such that Bi,jk = (D1)ik (P1)ij with

D1 =




15 0 0
0 4 0
0 0 1



 , P1 =




0.95 0.05 0
0.01 0.94 0.05
0 0.02 0.98





and

D0 =




−23.2 0.1 0.1
0.1 −8.6 0.5
0 2 −15



 , d =




8
4
12



 .
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In this MBT, the first phase is very fertile, while the second phase has equal birth
and death rates, and the third phase has a very high death rate compared to its birth
rate. Both the second and third phases may eventually change into the first phase via
the matrix D0 or produce a child in the first phase via the matrix P1, which makes the
whole MBT supercritical, with extinction probability vector

q =




0.57
0.94
0.99



 .

The conditional cumulative distribution ve(m) is plotted on Figure 6.1, for 0 ≤
m ≤ 10. We see that, given extinction, the maximum population size is very low if
we start in the third phase. Starting in the first phase, which leads to a quite hight
survival probability (1 − q1 = 0.43), extinction must happen before the process grows
very much.
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Figure 6.1: Conditional cumulative distribution of the maximum population size in an
MBT, given its extinction

6.4 Time until extinction

The time until extinction of an MBT may be seen as the first passage time from level
1 to level 0 in the corresponding level-dependent QBD. We adapt here an algorithmic
procedure described in Gaver, Jacobs and Latouche [22], which computes the distri-
bution of the first passage time to lower levels in a level-dependent QBD with a finite
number of levels.

As the QBD associated to an MBT has an infinite number of levels, we need to
truncate it at some level M . In this manner, we are computing the mean time until the
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extinction of the MBT, given its initial phase, on the paths where extinction occurs
before the process reaches M + 1 individuals, that is

d(1)
M+1 = E[γ(0)1{γ(0)<γ(M+1)} |X(0) = 1, ϕ(0)].

Letting M grow to infinity provides us with the mean time until extinction, on the
paths where extinction occurs in a finite time.

The truncated QBD may be seen as a Markovian process with two absorbing states,
corresponding to levels 0 and M + 1. More generally, we define

d(k)
M+1 = E[γ(k − 1)1{γ(0)<γ(M+1)} |X(0) = k, ϕ(0)],

for 1 ≤ k ≤M ; d(k)
M+1 is thus the expected passage time from level k to level k − 1, on

the paths where absorption occurs in level 0 rather than in level M + 1.
Define Ck for 1 ≤ k ≤M , as the generator of the restriction Sk of the QBD observed

only during those intervals of time spent at level k, before the QBD moves down for
the first time to level k − 1 or to level M + 1. We clearly have

CM = A(M)
0

since both level M − 1 and level M + 1 are taboo. Then, for M − 1 ≥ k ≥ 1,

Ck = A(k)
0 + A(k)

1 (−Ck+1)−1 A(k+1)
−1 .

Indeed, a transition of the subprocess Sk occurs from level k to itself either in one step,
with the rate recorded by A(k)

0 , or by first going up to level k + 1 and spending some
time in levels k + 1, k + 2, . . . , M , before going back to level k, with the rate recorded
by A(k)

1 (−Ck+1)−1 A(k+1)
−1 . The inverse (−Ck+1)−1 gives the expected amount of time

spent at level k + 1 before the first visit to level k or to level M + 1.
Finally, we define the probabilities that, starting from level k, the QBD eventually

gets absorbed in level 0 rather than in level M + 1, for 1 ≤ k ≤M , as

xk =
∏

k≥j≥1

(−Cj)−1 A(j)
−1.

Now, we can write
d(M)

M+1 = (−CM )−1 xM , (6.12)

since the the expected passage time from level M to level M − 1, on the paths where
absorption occurs in level 0 rather than in level M +1, is given by the expected amount
of time spent at level M before the first visit to level M − 1 or to level M + 1, times
the probability that starting from level M , the process gets absorbed in level 0 rather
than in level M + 1. And for M − 1 ≥ k ≥ 1,

d(k)
M+1 = (−Ck)−1 (xk + A(k)

1 d(k+1)
M+1 ). (6.13)

Indeed, keep in mind that we consider paths where absorption occurs in level 0 rather
than in level M + 1. Then, the first term (−Ck)−1 xk is the expected time in level
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k before reaching level k − 1. The second term (−Ck)−1 A(k)
1 d(k+1)

M+1 is the expected
number of times the process moves from level k to level k + 1 before its first visit to
level k − 1, times the expected passage time from level k + 1 to level k.

Equations (6.12) and (6.13) provide us with a numerical procedure to compute
d(1)

M+1 for one fixed M . The drawback, when using that scheme as it is, lies in the fact
that the first step (6.12) already requires the computation of all the matrices Ck for
1 ≤ k ≤ M , since we need xM . It would be more efficient to compute one matrix Ck

at a time, at each step of the algorithm. In order to do that, let us display the whole
expression for d(1)

M+1:

d(1)
M+1 = (−C1)−1

M∑

k=1

( ∏

1≤j≤k−1

A(j)
1 (−Cj+1)−1

)( ∏

k≥j≥1

(−Cj)−1 A(j)
−1

)
, (6.14)

where an empty product is equal to the identity matrix.
In practice, we work at fixed M , and we exploit the structure of (6.14): indeed,

we see that the M terms have common factors that should be computed only once.
In order to do so, we go from k = M down to k = 1 in the sum, and we construct
the terms little by little, from the interior, with the idea that a part of the sum from
k = M to k = * is easily expressed when we know the partial sum from k = M to
k = *+ 1.

This is described by Algorithm 6.4.1, in which the approximation Y at the end of
the loop for a given i is actually

Y (i) =
M∑

k=i

( ∏

i−1≤j≤k−1

A(j)
1 (−Cj+1)−1

)( ∏

k≥j≥i

(−Cj)−1 A(j)
−1

)
,

with the convention that A(0)
1 = I; when i = 1, we do obtain (6.14).

We thus run Algorithm 6.4.1 for successive values of M until it converges to d(1)
∞ ,

that is, the mean time until extinction on the paths where extinction occurs in finite
time. The conditional mean time until extinction, given that extinction occurs, is then
given by

d(1)
e = Φ−1 d(1)

∞ .

In contrast to the method described in Section 5.3 where we evaluate the condi-
tional mean time until extinction by numerically computing an integral, the technique
presented here does not require to numerically solve any differential equation, which
can produce some errors, and furthermore, we do not need to fix any error ε and
step size h, the solution being somewhat sensitive to the choice of these parameters.
The structured Markov chain approach is actually very efficient for small values of the
number n of phases in the MBT.

This method may be generalized to the GMT case, by adapting the ideas of La-
touche, Jacob and Gaver [46], who develop algorithms to compute the distribution of
the first passage time to lower levels, in a finite level-dependent G/M/1-type Markov
chain.
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Algorithm 6.4.1 Algorithm to compute the vector d(1)
M+1

i := M
C := A(i)

0

L := A(i−1)
1 (−C)−1

R := (−C)−1 A(i)
−1

Y := L R
for i = M − 1 to 2 do

C := A(i)
0 + A(i)

1 (−C)−1 A(i+1)
−1

L := A(i−1)
1 (−C)−1

R := (−C)−1 A(i)
−1

Y := L R + L Y R
end for
i := 1
C := A(i)

0 + A(i)
1 (−C)−1 A(i+1)

−1

L := (−C)−1

R := (−C)−1 A(i)
−1

d(1)
M+1 := L R + L Y R

Example 6.4.1. We consider an MBT with n = 2 phases. The birth rates matrix B is
such that Bi;jk = (D1)ik (P1)ij with

D1 =
[

15 0
0 10

]
, P1 = I

and

D0 =
[
−15.5− p 0.5

0.5 −25.5

]
, d =

[
p
15

]
.

The parameter p controls the criticality of the MBT; we take the two values p = 35
(subcritical) and p = 5 (supercritical), in which case the extinction probability is given
by

q =
[

0.36
0.95

]
.

We plot on Figure 6.2 the expected passage time d(1)
M+1 from level 1 to level 0, on

the paths where absorption occurs in level 0 rather than in level M + 1, as a function
of M , for 1 ≤M ≤ 20.

We compare in Table 6.1 the conditional mean time until extinction obtained via
(5.25) by the method described in Section 5.3 with some step h = 5 · 10−3 and error
ε = 10−3, and with the structured Markov chain approach.

6.5 Time to reach k individuals
To the best of our knowledge, there does not seem to be much literature on the question
of the time needed for a branching process to reach a given population size.
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Criticality ϕ0 M̃e d(1)
e

Subcritical (p = 35) 1 0.0388 0.0388
2 0.1054 0.1044

Supercritical (p = 5) 1 0.0931 0.0932
2 0.0961 0.0958

Table 6.1: Conditional mean time until extinction, given that extinction occurs.
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Figure 6.2: Mean time until extinction on the paths where the MBT does not go over
M individuals, for the subcritical case (plain line) and the supercritical case (dashed
line).

The time until the population reaches k individuals for the first time in the MBT
corresponds to the first passage time to level k in the associated level-dependent QBD.

We shall compute the mean time until the MBT reaches k ≥ 2 individuals, given
its initial phase, on the paths where it does not become extinct before reaching that
population size. Expressed in terms of QBD, this expected time is given by

s1→k
0 = E[γ(k)1{γ(k)<γ(0)}|X(0) = 1, ϕ(0)].

Observe that

E[γ(k)1{γ(k)<γ(0)}|X(0) = 1, ϕ(0)]

= E[min[γ(0), γ(k)] |X(0) = 1, ϕ(0)]

−E[γ(0)1{γ(0)<γ(k)}|X(0) = 1, ϕ(0)].

If we define %(1)
0,k = E[min[γ(0), γ(k)] |X(0) = 1, ϕ(0)] as the expected time until the

process reaches for the first time either level 0 or level k, starting from level 1, then we
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have
s1→k
0 = %(1)

0,k − d(1)
k , (6.15)

where d(1)
k is calculated in the previous section. It thus remains for us to compute %(1)

0,k

for k ≥ 2. More generally, we define for 1 ≤ i ≤ k − 1,

%(i)
i−1,k = E[min[γ(i− 1), γ(k)] |X(0) = i, ϕ(0)],

which is the expected time until the process reaches for the first time either level i−1 or
level k, starting from level i. With the definition of the matrices Ci, for 1 ≤ i ≤ k− 1,
given in Section 6.4 taking M = k − 1, we have

%(k−1)
k−2,k =

(
− A(k−1)

0

)−1 1

and for k − 2 ≥ i ≥ 1,

%(i)
i−1,k = (−Ci)−1 [1 + A(i)

1 %(i+1)
i,k ].

Indeed, the first term (−Ci)−1 1 is the expected time spent in level i before the first
visit to level i−1 or to level k, and the second term (−Ci)−1 A(i)

1 %(i+1)
i,k is the expected

number of times the process moves from level i to level i + 1 before its first visit to
level i− 1 or to level k, times the expected passage time from level i + 1 to level i or
level k.

It thus suffices to combine the iterative computation of the vectors %(i)
i−1,k for k−1 ≥

i ≥ 1 and the numerical sheme for d(1)
k described by Algorithm 6.4.1 with M + 1 = k,

to obtain Algorithm 6.5.1, which computes s1→k
0 via (6.15).

Recall from Section 6.2 that the probability that the MBT reaches k individuals in
a finite time, before a possible extinction, is equal to Fk−1 1 = 1 −G1(k − 1), where
G1(k − 1) is the probability for an MBT to eventually become extinct without going
up to k individuals. Let Υk = diag(Fk−1 1). The conditional expected time for the
MBT to reach for the first time k individuals, given it occurs before extinction is thus
given by

s1→k = Υ−1
k s1→k

0 .

We can again generalize the method to the GMT case, for instance by adapting
the ideas of Latouche, Jacob and Gaver [46], who develop algorithms to compute the
distribution of the first passage time to upper levels, in a finite level-dependent G/M/1-
type Markov chain.

Example 6.5.1. Let us take again the MBT of Example 6.4.1 with the same parameter
values.

We first compute the vector s1→k
0 for 2 ≤ k ≤ 35, and we depict the graphs on Fig-

ure 6.3. In the subcritical case, we see that limk→∞ s1→k
0 = 0, since limk→∞ 1{γ(k)<γ(0)} =

0; in the supercritical case, limk→∞ s1→k
0 =∞.

Then, for the supercritical case, we plot the vector s1→k on Figure 6.4. Again, the
curves grow to infinity since their limit records the mean time for a population to reach
an infinite size, given its survival.



Algorithm 6.5.1 Algorithm to compute the vectors d(1)
k , %(1)

0,k and s1→k
0

i = k − 1
C := A(i)

0

L := A(i−1)
1 (−C)−1

R := (−C)−1 A(i)
−1

Y := L R
Z := L 1
for i = k − 2 to 2 do

C := A(i)
0 + A(i)

1 (−C)−1 A(i+1)
−1

L := A(i−1)
1 (−C)−1

R := (−C)−1 A(i)
−1

Y := L R + L Y R
Z := L 1 + L Z

end for
i = 1
C := A(i)

0 + A(i)
1 (−C)−1 A(i+1)

−1

L := (−C)−1

R := (−C)−1 A(i)
−1

d(1)
k := L R + L Y R

%(1)
0,k =:= L 1 + L Z

s1→k
0 = %(1)

0,k − d(1)
k−1
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Figure 6.3: Mean time for the MBT to reach for the first time k individuals, on the
paths where it happens before extinction, in the subcritical case p = 35 (plain line)
and in the supercritical case p = 5 (dashed line).
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Figure 6.4: Conditional mean time until the MBT reaches for the first time k individ-
uals, given that extinction does not happen before, in the supercritical case.



Chapter 7

Random environments

In the preceeding chapters, we assumed that the parameters d, D0 and B controlling
the lifetime of individuals in a population stay constant over time. In reality, this
assumption does not always hold, as many external phenomena may influence the
behaviour of individuals.

For instance, weather conditions may have an impact on the reproduction of some
plants or animals; or an economic crisis may create a decrease in the fertility rates of
humans. We may then wonder how such external causes influence the probability that
the population eventually becomes extinct.

In this chapter, we study the MBT evolving under the influence of an external
Markovian random environment which controls the individuals’ parameters over time.
The major difference with the preceeding chapters is that in this context, individuals
do not behave independently of each others anymore, and some approaches previously
used are not applicable anymore.

For instance, the extinction probability may no longer be computed as the mini-
mal nonnegative solution of a fixed point equation, and the distribution of the time
until extinction is no longer solution of an ordinary differential equation. The simple
extinction criteria do not hold anymore either.

We carry out the analysis of the extinction probability in two ways: first, through
the computation of transient measures for the MBT under random environment, and
second by the structured Markov chain approach.

Using the forward Kolmogorov approach, we start by characterizing the population
size distribution as the solution of a system of partial differential equations, from which
we extract formulas for the factorial moments, as in Chapter 5. We do the same for
the distribution of the total progeny until any given time.

The distribution of the time until extinction is obtained from the one of the pop-



118 Random environments

ulation size, and the extinction probability is defined as its asymptotic limit. A first
natural way to evaluate these quantities is to numerically solve the system of partial
differential equations of the population size distribution, using tools from numerical
analysis. We present two methods, called the finite difference and the semi-Lagrangian
methods, that we apply to an exponential MBT. The corresponding algorithms do not
have any physical interpretation.

Then, we use a probabilistic approach in which we compute the population size
distribution by imposing constraints on the random environment. This provides us
with a superlinear iterative integral scheme to compute the distribution of the time
until extinction of an MBT and its extinction probability. A second integral equation
also allows us to obtain the distribution of the number of environmental changes before
extinction.

Finally, we use the structured Markov chain approach to compute the extinction
probability. We end the chapter by a comparison between the various numerical ap-
proaches.

The lack of real data on external random environments in human demography, as
well as the limitation of our methods to MBTs with a small number of phases, oblige
us to provide only artificial illustrations of our results.

We will use the terminology standard MBT in the next two chapters, to refer to
the MBT previously studied which does not undergo any external influence.

7.1 Definition

Consider an irreducible positive recurrent Markovian process {ξ(t) : t ∈ R+} on m
(finite) states, and with infinitesimal generator Q. Let π be its stationary distribution,
that is the unique solution of πQ = 0, π 1 = 1.

Suppose that at time 0, the Markovian process ξ(t) is in a state determined by the
vector π, and that it evolves independently of an MBT, started in a given phase. The
choice of the particular initial distribution π is justified by its physical interpretation:
it corresponds to the distribution of the process ξ(t) if we assume that it started a very
long time before the birth of the first individual in the MBT. In addition, it simplifies
some expressions.

Let P = {(d(i), D(i)
0 , B(i)) , i = 1, . . . , m} be a set of 3-uples of MBT parameters.

The states of the Markovian process control the parameters of the MBT over time. We
associate to each state i of ξ(t) the 3-uple (d(i), D(i)

0 , B(i)) of parameters such that,
when ξ(t) = i, the MBT evolves with the death rates vector d(i), the birth rates matrix
B(i), and the transition rates matrix D(i)

0 . We say that the MBT evolves under the
Markovian random environment (MRE in short) (ξ(t),P).

An example of evolution path of an MBT under MRE is depicted on Figure 7.1.
The different types of lines on the MBT picture indicates that the parameters of the
MBT change as a function of the current state of the Markovian process.

Between two epochs of state changes in the Markovian environmental process, the
individuals in the MBT behave independently of each others; and conditionally given
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Figure 7.1: Example of path of an MBT under a Markovian random environment

the whole sequences of environmental states and sojourn time in each state, the indi-
viduals evolve independently too.

However, unconditionally, the individuals of the MBT do not evolve independently
of each other anymore. Indeed, the histories of the trees generated by two individuals
are linked by the fact that their parameters of evolution will change exactly at the
same epochs. This loss of independence makes for instance the extinction equation
(1.15) and the backward equation (5.2) not valid anymore.

In the literature on branching processes in random environment, most of the results
are conditional, given the whole environmental sequence. We have chosen to work
unconditionally, following another approach which requires to start the analysis with
the transient measures of an MBT under MRE.

7.2 Transient features

Population size

Suppose there are n phases in the MBT, and m states in the MRE. Let Z̃(t) =
[Z̃1(t), Z̃2(t), . . . , Z̃n(t)]T denote the population size at time t, in each phase of the
MBT under MRE. We define the n×m probability generating function F̃ (s, t) of Z̃(t),
given the initial phase of the MBT, jointly with the state of the MRE at time t, as

F̃ij(s, t) =
∑

k≥0

P[Z̃(t) = k , ξ(t) = j|ϕ0 = i] sk 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Consequently, F̃ (1, t) = (1⊗ π), since P[ξ(t) = j] = (π eQ t)j = πj , for all t ≥ 0.
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Throughout the chapter, we use the following notation

D
[
v(1) · · · v(m)

]
=





v(1)

v(2)

. . .
v(m)




,

where the v(i)’s are either all scalars, all vectors, or all matrices of the same dimension.
We now give the forward Kolmogorov partial differential system of equations for

the distribution F̃ (s, t). The proof is omitted as it follows the same lines as the first
part of the proof of Theorem 5.2.1; the only difference is that here, we establish the
forward Kolmogorov equations for the joint process (Z̃(t), ξ(t)), and the generating
function is defined on the first dimension Z̃(t) only.

Theorem 7.2.1. The forward Kolmogorov system of equations for the generating func-
tion F̃ (s, t) of an MBT under MRE is

∂

∂t
F̃ (s, t)− ∂

∂sT
F̃ (s, t) · A(s) = F̃ (s, t) · Q, (7.1)

F̃ (s, 0) = s · π,

where the mn×m matrix A(s) = D
[
a(1)(s) · · ·a(m)(s)

]
, and a(i)(s) = d(i) + D(i)

0 s +
B(i) (s⊗ s), i = 1, . . . , m. !

The difference with the forward Kolmogorov equation (5.1) for the standard MBT
lies in the right-hand side of the matrix equation, which makes (7.1) non homogeneous
anymore.
Remark 7.2.2. The backward Kolmogorov equation here involves different generating
functions, conditioned on starting with more than one individual at time 0. Because
of the loss of independence between the individuals, these generating functions cannot
be decomposed as a product of factors reduced to F̃ (s, t). The backward equation will
thus not be of any help to us in this chapter.

We derive the factorial moments of the population size from (7.1). Recall the matrix
derivative rules from Section 5.1, and define the n×mnk matrix

M̃ (k)(t) =
∂k

(∂sT )k
F̃ (s, t) |s=1, (7.2)

as the kth factorial moment of Z̃(t) jointly with ξ(t). The kth factorial moment m̃(k)(t)
of Z̃(t) is an n× nk matrix given by

m̃(k)(t) = M̃ (k)(t) (1m ⊗ Ink). (7.3)

The following matrices, respectively of sizes mn ×mn and mn ×mn2, appear in
the formulas for the factorial moments

Ω∗ = D
[
Ω(1) · · ·Ω(m)

]
,
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where Ω(i) = D(i)
0 + B(i) (1⊕ 1), and

Γ = D
[
B(1) (In2 + I(n,n)) · · ·B(m) (In2 + I(n,n))

]
.

The following proposition is to be compared to Proposition 5.2.4 in the standard
MBT case. Next, we specify the two first moments. Again, the proofs are not given
here since they are very similar to the standard case.

Proposition 7.2.3. The matrices M̃ (k)(t), for k ≥ 1, are solutions of the following
recursive system of differential equations, with initial conditions M̃ (1)(0) = (π ⊗ In)
and M̃ (k)(0) = 0 for k ≥ 2:

d

dt
M̃ (k)(t) = M̃ (k)(t) [(Ω∗ ⊗ Ink−1)A(k) + (Q⊗ Ink)]

+ M̃ (k−1)(t) (Γ⊗ Ink−2)C(k), (7.4)

where the mnk ×mnk coefficient matrices A(k) and C(k) are defined as

A(1) = Imn

C(1) = 0mn

A(k) = I(nk−1,mn) (I(m,nk−1) ⊗ In) + (A(k − 1)⊗ In), k ≥ 2

C(k) = I(nk−2,mn2) (I(mn,nk−2) ⊗ In) (A(k − 1)⊗ In)

+ (C(k − 1)⊗ In), k ≥ 2.

!

Corollary 7.2.4. The first two moments of the population size in an MBT under
MRE are given by

m̃(1)(t) = (π ⊗ In) eÃ t (1m ⊗ In) (7.5)
m̃(2)(t) = (π ⊗ In)X(t) (1m ⊗ In2),

where X(t) is the solution of the Lyapunov equation

X(t) B̃ − ÃX(t) + eÃ t Γ− Γ eB̃ t = 0,

with
Ã = [Ω∗ + (Q⊗ In)], (7.6)

and
B̃ = (Ω∗ ⊗ In) [I(n,mn) (I(m,n) ⊗ In) + Imn2 ] + (Q⊗ In2).

!
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Extinction probability and time until extinction

Let q̃ denote the extinction probability vector of the MBT under MRE, given the phase
of the initial individual. It is defined by

q̃ = lim
t→∞

F̃ (t), (7.7)

where F̃ (t) = F̃ (0, t)1 is the distribution function of the time until extinction of the
MBT under MRE.

Recall that in the standard case, the extinction equation s = θ + Ψ(s ⊗ s) relies
on the assumption of independence between individuals, which does not hold any-
more here. We can thus not characterize the extinction probability q̃ as the minimal
nonnegative solution of a simple fixed point equation.

Moreover, in a standard MBT, recall that the mean population size is given by
M (1)(t) = eΩ t, and the eigenvalue of maximal real part of Ω determines the criticality
of the MBT (see Remark 5.2.7). Here, the usual almost sure extinction criteria do not
hold anymore either.

Let us have a look at the mean population size given by (7.5). Recall that µ(Ã)
denotes the eigenvalue of maximal real part of the matrix Ã. When t→∞, we are led
to three cases

m̃(1)(∞) =






∞ if µ(Ã) > 0
C if µ(Ã) = 0
0 if µ(Ã) < 0

,

such that 0 < C <∞. It is still true that µ(Ã) ≤ 0 implies the almost sure extinction
of the process, but µ(Ã) > 0 does not necessarily imply that q̃ < 1; an MBT under
MRE may eventually become extinct with probability one at the same time as its
population explodes on the average, as we shall show on one example in Remark 7.3.3.
The condition µ(Ã) ≤ 0 is thus a sufficient but not necessary condition for almost
sure extinction. Extinction criteria for an MBT under MRE are discussed in the next
section.

The tools developed in Chapters 2 and 3 to evaluate the extinction probability may
not be used in the present context. We thus propose other methods to numerically
compute q̃. The most direct method is to numerically solve the partial differential
equation (7.1) for large values of t, at s = 0, as suggested by (7.7). This is the object
of Section 7.4.

However, we like to emphasize numerical methods which have a probabilistic inter-
pretation in terms of the branching processes. We thus develop two other approaches
to compute q̃, using the MBT dynamic itself, and we give their physical interpretation
in terms of the tree: we investigate iterative integral equations in Section 7.5, and we
use the structured Markov chain approach in Section 7.6.

The numerical methods of Sections 7.4 and 7.5 may also be used to evaluate the
distribution function F̃ (t) of the time until extinction at any given time t ≥ 0.
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Total progeny size

The total progeny size in an MBT under MRE until time t is denoted by Ñ(t). In
order to characterize the distribution of Ñ(t), given the initial phase of the MBT, we
need to keep track of the current population size Z̃(t) alongside the total progeny Ñ(t),
because the rate of change of Ñ(t) depends on Z̃(t).

The approach we use here differs from the one used in the standard case in Sec-
tion 5.4, which was based on the independence assumption. We determine the forward
Kolmogorov equations for the joint distribution of (Z̃(t), Ñ (t)).

The joint probability generating function G̃(s, z, t) is an n×m matrix defined as

G̃ij(s, z, t) =
∑

k≥0

∑

!≥k·1
P[(Z̃(t), Ñ(t)) = (k, *) , ξ(t) = j|ϕ0 = i] sk z!.

Proposition 7.2.5. The forward Kolmogorov system of equations for the generating
function G̃(s, z, t) of an MBT under MRE is

∂

∂t
G̃(s, z, t)− ∂

∂sT
G̃(s, z, t) · A(s, z) = G̃(s, z, t) · Q, (7.8)

G̃(s, z, 0) = z s · π,

where the mn×m matrix A(s, z) = D[a(1)(s, z) · · ·a(m)(s, z)], and a(i)(s, z) = d(i) +
D(i)

0 s + z B(i) (s⊗ s), i = 1, . . . , m. !

The proof is omitted since it is essentially the same as that for the population size
generating function F̃ (s, t).

We use the following notations for the n× 1 factorial moments of Ñ(t)

m̃k(t) =
∂k

(∂z)k
G̃(s, z, t) |s=1,z=1 ·1m, k ≥ 1; (7.9)

we shall also need the following factorial moments of size n× n

M̃ (1)
0 (t) = M̃ (1)(t), M̃ (1)

k (t) =
∂k

(∂z)k

∂

∂sT
G̃(s, z, t) |s=1,z=1, (7.10)

for k ≥ 1.
We easily derive a formula for the factorial moments m̃k(t) from the partial differ-

ential equation (7.8).

Proposition 7.2.6. The vectors m̃k(t) (k ≥ 1) are solutions of the following matrix
differential equations, with initial conditions m̃1(0) = 1n and m̃k(0) = 0n for k ≥ 2:

d

dt
m̃k(t) = k M̃ (1)

k−1(t)D
[
B(1) 1n2 · · ·B(m) 1n2

]
1m.

!
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We might as well obtain a recursive expression for the matrices M̃ (1)
k−1(t) by suc-

cessive derivatives of (7.8), but it would be quite involved and not very enlightening.
Instead, we focus on the first moment m̃1(t) of the total progeny until time t.

Recall from (7.3) and Corollary 7.2.4 that M̃ (1)(u) = (π⊗In) eÃu, where Ã is given
by (7.6). We have

m̃1(t) = 1 +
∫ t

0
M̃ (1)(u) du D

[
B(1) 1n2 · · ·B(m) 1n2

]
1m

= 1 + (π ⊗ In)
∫ t

0
eÃu du D

[
B(1) 1n2 · · ·B(m) 1n2

]
1m.

If Ã is nonsingular, then we obtain

m̃1(t) = 1 + (π ⊗ In) (−Ã)−1
(
I − eÃ t

)
D
[
B(1) 1n2 · · ·B(m) 1n2

]
1m.

When t→∞, we are led to two cases for the mean total progeny size

m̃1(∞) =
{

∞ if µ(Ã) > 0
1 + (π ⊗ In) (−Ã)−1 D

[
B(1) 1n2 · · ·B(m) 1n2

]
1m if µ(Ã) < 0

.

Recall that the first case does not exclude an almost sure extinction of the process.
In the case µ(Ã) < 0, by some algebraic manipulations using the fact that B(i) 1 =
−D(i)

0 1− d(i), we can rewrite the mean total progeny vector as

m̃1(∞) = (π ⊗ In) (−Ã)−1 D
[
d(1) · · · d(m)

]
1m. (7.11)

Mean behaviour

Despite their differences, we can construct a standard MBT which on the average
behaves like an MBT under MRE, in the sense that the mean population sizes at any
given time and the mean total progeny sizes coincide.

Suppose that the MBT under MRE has n phases and that the environment is
defined on m states. Then, the corresponding standard MBT has mn phases, which
are the pairs (i, j), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. It is exactly as if each individual
had its own random environment, and thus all individuals behave independently of
each others. Then, an individual is in the state (i, j) if the random environment which
controls its life is in state i, and the individual itself is in the “physical” phase j.

We shall introduce a notation to decompose the birth rates matrix B of an MBT
with entries Bi,jk, i, j, k = 1, 2, . . . , n: let the n × n block matrix B(j) be defined as
[B(j)]ik = Bi,jk. Consequently, we can write B = [B(1), . . . , B(n)].

The parameters of the “equivalent” standard MBT are

d′ = D
[
d(1) · · ·d(m)]1m,

D′
0 = D

[
D(1)

0 · · ·D(m)
0

]
+ (Q⊗ In),

and, since the environmental state does not change at the time of a birth, the only
nonzero entries in B′ are the entries

B′
(!,i),(!,j)(!,k) = B(!)

i,jk.
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We can thus write B′ = D
[
B(1) · · · B(m)

]
where B(i) is an n× n2m matrix defined by

B(i) = [0n×n(i−1) B(i)(1) 0n×n(m−1) B(i)(2) 0n×n(m−1) · · · B(i)(n) 0n×n(m−i)],
(7.12)

where the 0 blocks have the size indicated by their subscript.
As a result, the matrix Ω′ = D′

0 + B′ (1⊕ 1) of the standard MBT coincides with
the matrix Ã defined in (7.6). The matrix of mean population size at time t in the
standard MBT is M ′(1)(t) = eÃ t by (5.13), and the mean total progeny size vector in
the subcritical case is D′(1) = (−Ã)−1 D

[
d(1) · · · d(m)

]
1mn by (5.32). If we only care

about the physical phase of the individuals, we do obtain (7.5) and (7.11) respectively.
It would be interesting to investigate if the mean of other transient measures, such

as the mean time until extinction, or the mean time to reach k individuals, are the
same in the MBT under MRE and in the standard MBT with parameters d′, D′

0 and
B′.

Illustrations

Example 7.2.7. Let us illustrate this section with an example of MBT with n = 3
phases. This is a highly simplified version of the demographic application, and we
assume that it evolves under a MRE with m = 2 states.

In order to simplify the discussion, we suppose here that the lifetime of an individual
is made up of three phases: the first one represents childhood and has a mean length
of 15 years, the second one represents the only fertile period and has a mean length of
35 years, and the last one lasts 33 years on average.

In the first state of the MRE, the rates are those of a subcritical country comparable
to Belgium

d(1) =




4 · 10−4

8 · 10−4

3 · 10−2



 , D(1)
0 =




∗ 1/15
∗ 1/35

∗



 , B(1)
2,12 = 2.5 · 10−2,

the other entries of B(1) being zero.
The second state of the environment positively influences the growth of the popu-

lation; there, the MBT evolves with parameters d(2), D(2)
0 , and B(2), where the infant

mortality is reduced by a factor 0.75, that is d(2)
1 = 4 · 10−4(1− 0.75), and the fertility

rate is parameterized by a factor p ≥ 0: B(2)
2,12 = 2.5 · 10−2(1 + p).

The generator of the MRE is given by

Q =
[
−κ/2 κ/2
κ −κ

]
,

so that the stationary distribution of the MRE is π = [2/3, 1/3], independently of the
value of κ.

We represent on Figure 7.2 the mean total family size as a function of time, if the
process starts with one individual in phase 1 in the stationary state of the MRE. We
choose κ = 1/5, and three different values for the parameter p, leading to sensibly
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Figure 7.2: Mean family size of an MBT under MRE with κ = 1/5, and three different
values of the parameter p.

different behaviours. Indeed, we observe that for p = 1, the expected population size
explodes, for p = 0.5, it decreases slowly, and for p = 0, it decreases rapidly.

Next, we fix p = 1 and we let κ vary between 10−6 and 102; our objective is to
measure how the speed of environmental changes affects the system dynamics, keeping
constant the proportion of time spent in each environmental state.

We show on Figure 7.3 the mean total progeny size after 100 years as a function
of the logarithm of κ, if the process starts with one child at time 0. Six curves are
represented: lines 1 and 2 represent the total progeny size if the MBT always evolves
with parameters d(i), D(i)

0 , and B(i), for i = 1 and 2 respectively; the curves 3 and
4 show the evolution of the total progeny size if the MRE starts in state 1 and 2 of
the environment respectively; the curve 5 represents the situation where the initial
state of the environment is chosen with its stationary distribution π, and finally, the
curve 6 represents the total progeny size in a standard MBT evolving with the average
parameters d = π1d

(1) + π2d
(2), D0 = π1D

(1)
0 + π2D

(1)
0 , and B = π1B(1) + π2B(2).

We observe that if κ is large, then the environment changes rapidly, and the system
behaves like a standard MBT with the average parameters. On the other hand, if κ is
small, then the environment stays for long periods in the same state, which influences
the behaviour of the system: for κ < 10−2, we can expect that the first environmental
change occurs on the average after 100 years, so that the system is almost completely
decomposed into two different processes corresponding to each environmental state.

7.3 Extinction criteria

Extinction criteria have been widely investigated in the literature on branching pro-
cesses in random environments. These criteria depend both on the type of branching
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Figure 7.3: Mean total progeny size after t = 100 years in an MBT under MRE with
p = 1, as a function of the parameter κ.

process and of random environment which are considered. Indeed, we distinguish be-
tween discrete-time or continuous-time, one-type or multitype branching processes, and
independent identically distributed (i.i.d.) or stationary ergodic random environments.
In our case, we deal with the continuous-time stationary ergodic case.

Recall from Section 1.5 that an MBT may be seen as a multitype branching process,
where the types correspond to the phases of the MBT. In this section we do not make
any difference between the two terminologies. We successively consider the one-type
and the multitype cases.

When n = 1, the MBT is exponential with parameters d(i) = µ(i), B(i) = λ(i), and
D(i)

0 = −µ(i) − λ(i), i = 1, 2, . . . , m. Then, Ω(i) = ω(i) = λ(i) − µ(i).
If the initial distribution of the Markovian environmental process is its stationary

distribution π, this immediately implies that the Markovian environmental process is
stationary and ergodic (Karlin and Taylor [37, Chapter 9]). We can then follow for
instance Cogburn and Torrez [15] to conclude with the following criterion

Corollary 7.3.1. The extinction probability of an exponential MBT under MRE with
stationary distribution π is equal to one if and only if

m∑

i=1

πi ω
(i) ≤ 0.

!

This result may also be derived from the extinction criteria for a discrete-time
branching process in random environment. Recall that in the standard case, the average
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number m(k) of offsprings per individual in the kth generation is actually independent
of k (m = m(k)), and determines the criticality of the process: it eventually becomes
extinct with probability one if and only if m ≤ 1.

For a branching process in random environment, the mean progenies {m(k)}k≥0

constitute a random sequence, and if the random environment is i.i.d. or stationary
ergodic, so is that sequence. The value E[log m(0)] now decides the criticality of a
population. Indeed, the asymptotic growth rate of a population is given by

lim
k→∞

[m(0)m(1) · · ·m(k − 1)]
1
k .

We have

[m(0)m(1) · · ·m(k − 1)]
1
k = e

1
k (log m(0)+log m(1)+···+log m(k−1)),

and by the Law of Large Numbers for the stationary ergodic sequence {logm(k)},

lim
k→∞

1
k
(log m(0) + log m(1) + · · · + log m(k − 1)) = E[log m(0)].

The asymptotic growth rate is thus exp(E[log m(0)]), and the branching process is
subcritical if E[log m(0)] < 0, critical if E[log m(0)] = 0, or supercritical if E[log m(0)] >
0.

In the i.i.d case, Smith and Wilkinson [64] show that E[log m(0)] ≤ 0 is a necessary
and sufficient condition for the almost sure extinction of the discrete-time branch-
ing process in random environment. Athreya and Karlin [5] show that this crite-
rion still holds in the stationary and ergodic case, provided E[log m(0)]+ < ∞ and
E[log m(0)]− <∞.

In order to use this criterion, we need to discretize the continuous-time exponential
MBT under MRE. One way to proceed is to uniformize the Markovian environmental
process ξ(t) (see for instance [47, Page 57]).

Let c = max1≤i≤m |Qii|; take a Poisson process of rate c and denote by 0 =
t0, t1, t2, . . . the epochs of events in that process, and by τi = ti − ti−1 (i ≥ 1) the
intervals of time between events. The τi’s are i.i.d. and follow an exponential law with
parameter c.

Define the discrete-time Markov chain {ξ̄k : k ∈ N} with transition matrix K =
(1/c)Q + I, and the discrete-time branching process Z̄k = Z̃(tk). The stationary
distribution π of K is the same as that of the continuous-time Markovian process ξ(t).
The Markov chain ξ̄k with initial distribution π is thus stationary and ergodic.

Conditionally given ξ̄k and τk+1, the mean progeny of an individual from generation
k in the discrete-time branching process is m(k) = exp(ω(ξ̄k) τk+1). Therefore, m(k) is
random through two components, namely the state of the Markov chain at time k, and
the time interval τk+1. The random environment is thus twofold and characterized by
(ξ̄k, τk+1), k ≥ 0, which is still a stationary ergodic sequence.

If we apply the result mentioned above, we find that the extinction of an exponential
MBT under MRE is certain if and only if

0 ≥ E[log m(0)] =
m∑

j=1

πj E[log exp(ω(j) τ1)] =
m∑

j=1

πj ω
(j) E[τ1],
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which is equivalent to 0 ≥
∑m

j=1 πj ω(j), and we prove in this way the statement of
Corollary 7.3.1.

Let us now investigate the almost sure extinction criteria in the multitype case,
that is for an MBT with n ≥ 2 phases. We return again to extinction criteria for
discrete-time branching processes in random environment.

We now denote by A(k) the mean progeny matrix of an individual from generation
k. The asymptotic growth rate of a population is then determined by

lim
k→∞

||A(0)A(1) · · ·A(k − 1)|| 1
k = lim

k→∞
e

1
k log ||A(0)A(1)···A(k−1)||.

If the sequence {A(k)}k≥0 is stationary ergodic, then

lim
k→∞

k−1 log ||A(0)A(1) · · ·A(k − 1)||

exists with probability one, and

lim
k→∞

k−1 log ||A(0)A(1) · · ·A(k − 1)||

= lim
k→∞

E
(
k−1 log ||A(0)A(1) · · ·A(k − 1)||) = η

with probability one for any matrix norm, where η is a constant (Kingman, [41]).
We use again the uniformization technique to discretize the MBT, and we define

the discrete-time multitype branching process Z̄k = Z̃(tk). Conditionally given ξ̄k and
τk+1, the mean progeny matrix of an individual from generation k in this process is
A(k) = exp(Ω(ξ̄k) τk+1).

We now refer to Tanny [67], who proves that the extinction of a discrete-time
multitype branching process in a stationary ergodic random environment is certain if
and only if η ≤ 0, under the following regularity assumptions

(i) E(log+ ||A(0)||) <∞;

(ii) there exist integers K > 0, 1 ≤ * ≤ n such that

P
[

min
1≤i,j≤n

(A(0)A(1) . . . A(K − 1))ij > 0
]

= 1

and
E[| log(1− P[(Z̄K)! = 0 | Z̄0 = e!, ξ̄])|] <∞,

where ξ̄ = {(ξ̄k, τk+1)}k≥0 is an environmental sequence;

(iii) the multitype branching process in random environment is strongly regular, that
is there exists a positive integer K such that

P
[
min

i
P(Z̄K 1 > 1 | Z̄0 = ei, ξ̄) > 0

]
> 0.
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We can assume that conditions (i)–(iii) are satisfied for the discrete-time process Z̄k.
Indeed, (i) roughly supposes a finite mean progeny, (ii) corresponds to an irreducibility
assumption for the process Z̄k, and (iii) asks that, given the environmental sequence,
the process Z̄k must be able to grow from each initial type. We then have the following
result

Corollary 7.3.2. Under conditions (i)–(iii), the extinction of an MBT under MRE
is almost sure if and only if

lim
k→∞

1
k

E log ||eΩ(ξ̄0) τ1 eΩ(ξ̄1) τ2 · · · eΩ(ξ̄k−1) τk || ≤ 0, (7.13)

where τk is exponentially distributed with parameter c for k ≥ 1. !

In this case, the difficulty lies in computing the limit in (7.13). Notice that the
random matrices eΩ(ξ̄k) τk+1 do not necessarily commute. So far, we have not been
able to simplify the expression of the limit. One way to determine its value is to run
simulations.

Remark 7.3.3. Recall from Section 7.1 that the condition µ(Ã) ≤ 0 is a sufficient but
not necessary condition for the almost sure extinction of the process. In the case n = 1,
Ã = diag[ω(i)] + Q, and we can find examples where

m∑

i=1

πi ω
(i) ≤ 0 < µ(Ã)

so that extinction is almost sure, and the mean size of the exponential MBT grows to
infinity at the same time. Take for instance

Q =
[
−5 5
3 −3

]

so that π = [0.375, 0.625], and λ(1) = 8, µ(1) = 4, λ(2) = 2, µ(2) = 12, so that ω(1) = 4
and ω(2) = −10. We have then

∑m
i=1 πi ω(i) = −4.75 and µ(Ã) = 0.1414.

We now turn to numerical methods to compute the extinction probability vector q̃.
This is the object of the next three sections.

7.4 Numerical partial differential equations
In this section, we investigate numerical methods inspired from well-known techniques
in numerical analysis to solve the partial differential system (7.1) for the population
size generating function F̃ (s, t). This is the fruit of a collaboration with Pauline Lafitte
from the University of Lille 1.

The aim here is to give the reader an insight of methods other than probabilistic ones
to efficiently compute the distribution of the time until extinction and the extinction
probability of an MBT under MRE.
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We focus on the one-phase case, the multiphase case being still a work in progress.
In the one-phase case, the generating function F̃ (s, t) is a 1×m vector, where recall

that m is the number of states of the Markovian environmental process. The partial
differential system becomes

∂

∂t
F̃ (s, t)− ∂

∂s
F̃ (s, t) · A(s) = F̃ (s, t) · Q, (7.14)

F̃ (s, 0) = sπ, (7.15)

where the m × m matrix A(s) = D
[
a(1)(s) · · · a(m)(s)], and a(i)(s) = µ(i) − (λ(i) +

µ(i)) s + λ(i) s2, for i = 1, . . . , m. This is a hyperbolic system of partial differential
equations with variable coefficients A(s) and source terms F̃ (s, t) · Q (see Leveque
[50]).

We define a grid of points in the two-dimensional plane (s, t), for −1 ≤ s ≤ 1
and t ≥ 0, that approximates our domain and at which we shall evaluate F̃ (s, t). Let
∆s = 2/J , where J is an even positive integer representing the total number of space
steps, and let ∆t be another positive number which denotes the time step.

The grid is defined by the points (sk, tn) = (−1 + k∆s, n∆t), where k and n are
integers such that 0 ≤ k ≤ J and n ≥ 0. The particular value s = 0 corresponds to
the point sk with k = J/2. We use the notation F̃

n

k for a numerical approximation of
F̃ (sk, tn).

We would like to compute the successive approximations of the distribution of the
time until extinction F̃ (0, tn)1 for n ≥ 0, that is, q̃n = F̃

n

J/2 1, and its limit q̃ = q̃∞,
giving the extinction probability. In practice, we iterate q̃n for n ≥ 0 with one of the
methods proposed below, until some time step tn

∗
such that |q̃n∗ − q̃n∗−1| < ε for a

fixed error ε.

Numerical methods are usually developed for homogeneous partial differential equa-
tions. In order to numerically solve a non-homogeneous system such as (7.14), a stan-
dard approach is to use a fractional step method, in which we alternate between solving
the associated homogeneous partial differential system

∂

∂t
F̃ (s, t)− ∂

∂s
F̃ (s, t) · A(s) = 0, (7.16)

and solving the ordinary differential system involving the source term

∂

∂t
F̃ (s, t) = F̃ (s, t) · Q, (7.17)

see [50, Chapter 17].
The time step is then split into tn → tn+ 1

2 and tn+ 1
2 → tn+1, respectively corre-

sponding to the treatment of parts (7.16) and (7.17). We thus start by computing
F̃ (s, t 1

2 ) from (7.16) with the initial condition (7.15); then, we compute F̃ (s, t1) from
(7.17) with the initial condition F̃ (s, t 1

2 ) obtained at the previous stage. Next, we
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calculate F̃ (s, t1+ 1
2 ) from (7.16) with the initial condition F̃ (s, t1), and then F̃ (s, t2)

from (7.17) with the initial condition F̃ (s, t1+ 1
2 ), and so on.

The first system (7.16) is solved using a numerical scheme for homogeneous partial
differential equations; in this section, we present two techniques, the finite difference
methods, and the semi-Lagrangian method.

The second system (7.17) is usually solved using a numerical scheme for ordinary
differential equations, such as the forward Euler method. Here, the differential system
can be solved explicitely, so that no numerical scheme is actually required.

Notice that splitting the equation in this manner introduces some error of order
∆t, no matter how well we approximate the subproblems at each step.

The resulting method is summarized in Algorithm 7.4.1, where the intermediate
stage F̃

n+ 1
2

k depends on the numerical technique used to solve the homogeneous part
(7.16), and is specified through the discussion.

The finite difference methods

The basic idea of finite difference methods is to replace derivatives by finite differences,
which can be done in many ways. The homogeneous system (7.16) may be solved using
any of the following schemes of order O(∆t) + O(∆s), see for instance Thomas [69]:

• the forward-time forward-space scheme if A(sk) > 0:

F̃
n+1
k = F̃

n
k +

∆t

∆s
(F̃

n
k+1 − F̃

n
k )A(sk) (7.18)

• the forward-time backward-space scheme if A(sk) < 0:

F̃
n+1
k = F̃

n
k +

∆t

∆s
(F̃

n
k − F̃

n
k−1)A(sk). (7.19)

In order for a finite difference scheme to converge when ∆s and ∆t tend to 0, the
space and time steps must be related by a condition needed to have the stability of
the method [50, Chapter 4]. This necessary condition is called the Courant-Friedrichs-
Lewy (CFL) condition, and is as follows: for a scheme to be stable, ν must be smaller
than 1, where

ν =
∆t

∆s
max

−1≤s≤1
max

1≤i≤m
|λi(s)|,

and the λi(s) (1 ≤ i ≤ m) are the eigenvalues of A(s). In other words, by the diagonal
structure of A(s), one must have

max
1≤i≤m

|a(i)(sk)|∆t ≤ ∆s

for all values of sk in the domain of computation.
In practice, we thus choose ∆s as small as possible (taking a large number J of

space steps), and we take
∆t = ∆s/ max

i,k
|a(i)(sk)|. (7.20)
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Algorithm 7.4.1 Algorithm to compute the extinction probability q̃ of an exponential
MBT under MRE.

F̃
0

k := sk π, 0 ≤ k ≤ J

q̃0 := F̃
0
J/2 1

for n = 0 to n∗ − 1 do
F̃

n+ 1
2

k := (7.21), or (7.25)
F̃

n+1

k := F̃
n+ 1

2
k eQ∆t, 1 ≤ k ≤ J − 1

F̃
n+1
0 := F̃

n+1
1

F̃
n+1

J := π

q̃n+1 := F̃
n+1
J/2 1.

end for
q̃ := q̃n∗

We can combine (7.18) and (7.19) in one unique scheme including a discussion on
the sign of A(sk). For that purpose, define the function sign(x) which is equal to −1 if
x < 0, to 0 if x = 0, and to +1 if x > 0. Then, for any matrix A, sign(A) =

(
sign(Aij)

)
.

We obtain the numerical scheme described by Algorithm 7.4.1 with

F̃
n+ 1

2
k := F̃

n

k +
1
2
∆t

∆s

[
(F̃

n

k+1 − F̃
n

k ) · |sign[−A(sk)]− I| · A(sk)

+ (F̃
n

k − F̃
n

k−1) · |sign[−A(sk)] + I| · A(sk)
]
. (7.21)

From now on, we call this scheme the upwind scheme.

Remark 7.4.1. In the multiphase case n ≥ 2, we need to define a grid in a space
of dimension n + 1 (n dimensions for the space variable, and one dimension for the
time variable). The generalization of the finite difference methods is more difficult to
carry out, the notions of forward- and backward-space being more complex than in the
one-phase case.

The semi-Lagrangian method

First, notice that, thanks to the diagonal structure of the matrix A(s), the homogeneous
system (7.16) is decomposed into m independent scalar partial differential equations,
one for each entry of the vector function F̃ (s, t):

∂

∂t
F̃i(s, t)−

∂

∂s
F̃i(s, t) · a(i)(s) = 0, 1 ≤ i ≤ m. (7.22)

Each unknown function F̃i(s, t) is actually constant along a particular curve in-
cluding the point (s, t), parameterized by (Xi(τ ; s, t), τ) and satisfying the ordinary
differential equation

∂

∂τ
Xi(τ ; s, t) = −a(i)(Xi(τ ; s, t)), (7.23)
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with Xi(t; s, t) = s. Indeed, if F̃i(s, t) satisfies (7.22), then for all (s0, t0),

∂

∂τ
F̃i(Xi(τ ; s0, t0), τ) =

∂

∂s
F̃i(Xi(τ ; s0, t0), τ)

∂

∂τ
Xi(τ ; s0, t0)

+
∂

∂t
F̃i(Xi(τ ; s0, t0), τ)

= − ∂

∂s
F̃i(Xi(τ ; s0, t0), τ) a(i)(Xi(τ ; s0, t0))

+
∂

∂t
F̃i(Xi(τ ; s0, t0), τ)

= 0.

Such a curve is called a characteristic curve, see [53].
We may thus write F̃i(s, t) = F̃i(Xi(τ ; s, t), τ) for all τ ≥ 0. In particular, if we

know the characteristic curves Xi(τ ; s, t), then the solution of (7.22) with the initial
condition F̃i(s, 0) = sπi is given by

F̃i(s, t) = F̃i(Xi(τ ; s, t), τ) = F̃i(Xi(0; s, t), 0) = Xi(0; s, t)πi.

It turns out that in the exponential MBT case, (7.23) is a Riccati differential equa-
tion that may be solved explicitly, and we obtain

Xi(τ ; s, t) = 1 +
(µ(i) − λ(i)) (s− 1)

λ(i) (s− 1) + (µ(i) − λ(i) s) exp[(µ(i) − λ(i)) (t− τ)]

if λ(i) %= µ(i), and

Xi(τ ; s, t) = 1 +
(s− 1)

1− λ(i) (t− τ) (s− 1)

if λ(i) = µ(i). Notice that, since the functions a(i)(·) do not depend on the time
variable, the functions Xi(τ ; s, t) actually only depend on the difference t− τ , so that,
in particular, Xi(τ ; s, t) = Xi(0; s, t− τ).

We use the idea described above to construct a scheme which computes F̃i(s, t)
along the characteristic curves. Suppose that we know some approximations (F̃i)n

k of
F̃i(s, t) at a fixed time tn, for each space value s, that is for all 0 ≤ k ≤ J . We can
then write for the next time step, for 0 ≤ k ≤ J ,

(F̃i)n+1
k = F̃i(sk, tn+1)

= F̃i(Xi(τ ; sk, tn+1), τ) for all τ ≥ 0

= F̃i(Xi(tn; sk, tn+1), tn)

= F̃i(Xi(0; sk,∆t), tn)

= (F̃i)n
[Xi(0;sk,∆t)],

where the function
[v] := argmin

j
|v − sj | (7.24)
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returns the index of the closest space grid point to the value v. A piecewise constant
interpolation is thus implicitly assumed, since we set

F̃i(Xi(0; sk,∆t), tn) = F̃i(s[Xi(0;sk,∆t)], t
n).

The resulting scheme

(F̃i)n+1
k = (F̃i)n

[Xi(0;sk,∆t)], 1 ≤ i ≤ m, 0 ≤ k ≤ J

is called the semi-Lagrangian method, see for instance Falcone and Ferretti [19, 20] and
Strain [66]. Using this method to solve the homogeneous part (7.16), we thus obtain
Algorithm 7.4.1 with

F̃
n+ 1

2
k =

[
(F̃1)n

[X1(0;sk,∆t)], (F̃2)n
[X2(0;sk,∆t)], . . . , (F̃m)n

[Xm(0;sk,∆t)]

]
. (7.25)

Unlike with the finite difference methods, the CFL condition is not required for
the convergence of the semi-Lagrangian scheme applied to the homogeneous equation
(7.16).

However, there are difficulties: on the one hand, Falcone and Ferretti [19] show
that the upper bound of the L∞-norm of the error between the approximation and the
exact value grows proportionally with the number of timesteps used and the impact of
the interpolation error. Therefore, the time step ∆t must actually not be chosen too
small, as we are interested in the solution for large values of time.

On the other hand, recall that the splitting in the fractional step method introduces
some errors that depend on the time step ∆t, so that ∆t must not be taken too large
either.

The difficulty encountered when using this method thus lies in the optimal choice
of the time step ∆t; so far, no theoritical rule exists.

Numerical examples

Let us apply the two methods on two examples of exponential MBT under MRE. In
the first example, the system is subcritical, in the second one it is supercritical.

Example 7.4.2. Take the subcritical MBT under MRE discussed in Remark 7.3.3 whose
mean population size explodes as the time goes to infinity; recall that the parameters
are λ(1) = 8, µ(1) = 4, λ(2) = 2, µ(2) = 12, and

Q =
[
−5 5
3 −3

]
,

so that π = [0.375, 0.625].
The curve denoted A on Figure 7.4 represents the approximations q̃n obtained with

the upwind scheme for J = 5 · 102 and ∆t = 1.43 · 10−4 given by (7.20). The results
obtained with the semi-Lagrangian method for J = 7 · 105 and ∆t = 0.1 perfectly
coincide and are not depicted.

As discussed above, the optimal choice of the time step ∆t in the semi-Lagrangian
method is not well-defined yet. We show on Figure 7.5 the approximations of the
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Figure 7.4: Distribution of the time until extinction of two exponential MBTs. The
curve A corresponds to a subcritical MBT, and the curve B to a supercritical MBT

extinction probability computed with this method, as a function of the time step. This
clearly illustrates that the time step must not be too small, and, as expected, not too
large either. We heuristically see that the optimal time step is ∆t ≈ 0.1.

Example 7.4.3. Take now a supercritical MBT under MRE with parameters λ(1) = 8,
µ(1) = 4, λ(2) = 2, µ(2) = 8, and

Q =
[
−1 1
10 −10

]
,

so that π = [0.9091, 0.0909]. The curve B plotted on Figure 7.4 represents the approx-
imations q̃n obtained with the upwind scheme for J = 3 · 103 and ∆t = 2.78 · 10−5

provided by (7.20). The semi-Lagrangian method for J = 7 · 105 and ∆t = 0.05 again
produces the same curve. The extinction probability obtained with the upwind method
is q̃ = 0.5968, and with the semi-Lagrangian method, we get q̃ = 0.5965.

7.5 Integral equations approach

We propose now two recursive integral equations for the generating function of the
population size, which have a probabilistic interpretation. They may be used to develop
other numerical methods to compute the extinction probability of an MBT under MRE.

We compute the extinction probability in a context where we impose constraints
on the number of environmental changes, in the same manner as, in Chapter 2, we
computed the extinction probability by setting constraints on the shape of the tree.

Both integral equations are interesting because the first one also provides us with
the distribution of the time until extinction, while the second one allows us to compute
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Figure 7.5: Approximations of q̃ using the semi-Lagrangian method as a function of
the time step ∆t.

the distribution of the total number of environmental changes before extinction, given
extinction occurs.

First, let N(t) denote the number of transitions occurring in the Markov environ-
mental process during the time interval [0, t[. The probability generating function of
the population size at time t in the MBT under MRE on the paths with at most n
environmental transitions is defined as

(F̃n)ij(s, t) =
∑

k≥0

P[Z̃(t) = k , ξ(t) = j , N(t) ≤ n |ϕ0 = i] sk.

Recall that π is the initial probability vector of the environmental process. For
1 ≤ j ≤ m, let F (j)(s, t) denote the n × 1 probability generating function of the
population size at time t in the standard MBT evolving with parameters d(j), D(j)

0 ,
and B(j), which is supposed to be known (see Section 5.2). We then have

(F̃0)ij(s, t) = F (j)
i (s, t)πj eQjj t;

indeed, with probability πj eQjj t, ξ(0) = j and no environmental transition occurred
before time t; in that case, the population size at time t is that of a standard MBT
evolving with parameters d(j), D(j)

0 , and B(j).
For n ≥ 1, the generating function F̃n(s, t) satisfies the integral recursive equation

(F̃n)ij(s, t) = (F̃0)ij(s, t) (7.26)

+
∫ t

0

∑

k *=j

(F̃n−1)ik

(
F (j)(s, t− u), u

)
Qkj eQjj(t−u) du.

This is obtained by decomposing on the time of the last environmental transition before
time t. Indeed, either at time t, no environmental transition has occurred yet, which is
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recorded by the first term (F̃0)ij(s, t). Or at some time u in (0, t), the environmental
process makes a transition from k to j, which happens with probability Qkj du, and
then it makes no further transition in (u, t) with probability eQjj(t−u). At time u,
there was at most n−1 environmental changes, which is recorded by F̃n−1(·, u), and in
(u, t), the individuals evolve independently with parameters d(j), D(j)

0 , and B(j), which
is recorded by F (j)(s, t− u).

Taking the limit for n→∞ in (7.26), we obtain the implicit solution

F̃ij(s, t) = F (j)
i (s, t)πj eQjj t +

∫ t

0

∑

k *=j

F̃ik

(
F (j)(s, t− u), u

)
Qkj eQjj (t−u) du

of the partial differential equation (7.1) with initial condition F̃ij(s, 0) = si πj .
Let q̃n(t) = F̃n(0, t)1 be the probability that, at time t, the MBT under MRE is

extinct, and that at most n environmental transitions have occurred. The distribution
F̃ (t) = P[Te ≤ t |ϕ0] of the time until extinction is obtained as F̃ (t) = limn→∞ q̃n(t),
and the extinction probability is then given by q̃ = limt→∞ F̃ (t).

In order to study the convergence properties of F̃n(s, t) to F̃ (s, t), we define the
norm of the approximation error at time t as

ẽn(t) = sup
0≤s≤1

∣∣∣∣F̃n(s, t)− F̃ (s, t)
∣∣∣∣, n ≥ 0, (7.27)

where || · || denotes any matrix norm.
We have

sup
0≤s≤1

∣∣∣
∣∣∣F̃n

(
F (j)(s, t− u), u

)
− F̃

(
F (j)(s, t− u), u

) ∣∣∣
∣∣∣ ≤ ẽn(t), (7.28)

independently of j. Using for instance the L∞-norm and setting Λ = diag(Q), we can
thus write ẽ0(t) ≤ 2 for all t ≥ 0, and using (7.26) and (7.28) for n ≥ 1,

ẽn(t) ≤
∫ t

0
ẽn−1(u) ||Q− Λ|| ||eΛ(t−u)|| du.

Define −q0 = maxj Qjj . We have ||eΛ(t−u)||∞ = e−q0(t−u), and we get

ẽn(t) ≤ ||Q− Λ||
∫ t

0
ẽn−1(u) e−q0(t−u) du.

We then show by induction on n that

ẽn(t) ≤ 2
(
||Q− Λ||

q0

)n

e−q0t

[
eq0t −

n−1∑

i=0

(q0t)i

i!

]
, n ≥ 1.

The factor in square brackets is the remainder of the Taylor expansion of eq0t, and thus
by the Taylor-Lagrange formula, we have for n ≥ 1

ẽn(t) ≤ 2
(||Q− Λ||t)n

n!
e−q0(t−ζ),
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where 0 < ζ < t.
The root-convergence factor, or R-factor, is defined as

R̃(t) = lim sup
n→∞

ẽn(t)
1
n . (7.29)

Using the Stirling formula n! ∼
√

2πn (n/e)n, we get R̃(t) = 0 for all t ≥ 0, which
indicates that the convergence of the sequence F̃n(s, t) is R-superlinear (Ortega and
Rheinboldt [58]).

In practice, we choose some errors ε1 and ε2, we compute the time T such that the
probability of extinction after time T of any of the standard MBTs with parameters
(d(j), D(j)

0 , B(j)) (j = 1, . . . , m) is smaller than ε1, that is

T = max
1≤j≤m

Tj with Tj = inf
{
t ≥ 0 : ||q(j) − F (j)(0, t)|| < ε1

}
,

and we compute q̃n(t) for 0 ≤ t ≤ T , for successive values of n, until some n∗ such
that ||q̃n∗(T )− q̃n∗−1(T )||∞ < ε2. We then have the following approximations

F̃ (t) ≈ q̃n∗(t) 0 ≤ t ≤ T,

q̃ ≈ q̃n∗(T ).

Another approach is based on examining the process at the times {θn}n≥1 of the
successive environmental transitions. The probability generating function of the pop-
ulation size at the time of the nth environmental transition is defined as

(ϕ̃n)ij(s) =
∑

k≥0

P[Z̃(θn) = k , ξ(θ+n ) = j |ϕ0 = i] sk.

We have (ϕ̃0)ij(s) = F̃ij(s, 0) = si πj , and for n ≥ 1, the generating function ϕ̃n(s)
satisfies the integral recursive equation

(ϕ̃n)ij(s) =
∫ ∞

0

∑

k *=j

(ϕ̃n−1)ik

(
F (k)(s, u)

)
eQkk u Qkj du. (7.30)

This integral equation is obtained by conditioning on the time interval u = θn − θn−1

between the (n − 1)th and the nth environmental transition. Indeed, the population
at the nth environmental transition is made up of the descendants of individuals living
at the (n−1)th environmental transition, which evolve independently with parameters
d(k), D(k)

0 , and B(k) during a time interval u exponentially distributed with parameter
−Qkk, if the state of the environmental process at time θ+n−1 is k.

The probability that the process eventually becomes extinct with at most n en-
vironmental transitions is equivalent to the probability that the process gets extinct
before the (n + 1)th transition, and is given by q̃n = ϕ̃n+1(0)1, n ≥ 0. The extinction
probability is then given by q̃ = limn→∞ q̃n.

By its probabilistic interpretation, the convergence of the sequence is ensured, but
the convergence rate is not easily obtained. Define the approximation error by ẽn =
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sup0≤s≤1 ||ϕ̃n(s) − ϕ̃∞(s)||, where ϕ̃∞(s) = q̃ · π for s < 1 (and ϕ̃n(1) = 1 · π for all
n ≥ 0). One shows that

ẽn ≤
||Q− Λ||

q0
ẽn−1,

for n ≥ 1, which is unfortunately not useful here since ||Q− Λ||∞/q0 ≥ 1, and we can
generally not tell much about other norms.

In practice, we fix some errors ε1 and ε2. The upper bound in the integral (7.30) is
replaced by T ∗ such that

T ∗ = inf




u ≥ 0 : max
j




∑

k *=j

eQkk u Qkj



 < ε1




 .

We then compute q̃n until some n∗ such that ||q̃n∗ − q̃n∗−1||∞ < ε2, and we obtain

q̃ ≈ q̃n∗ .

Once we know the sequence q̃n and its limit q̃, we can compute the conditional cu-
mulated distribution of the total number of environmental transitions before extinction,
given that extinction occurs. Recall that E denotes the extinction event. Then,

P[N(Te) ≤ n |E, ϕ0 = i] =
(q̃n)i

q̃i
.

Numerical examples

In order to evaluate the functions F̃n(s, t) for 0 ≤ t ≤ T and ϕ̃n(s) at s = 0, we divide
the space hypercube [0, 1]n and the time interval [0, T ] in cells, which form a grid in the
(n + 1)-dimensional space, and we numerically compute these functions at each grid
point, in the same spirit as for the numerical resolution of partial differential equations
in the previous section. We use the trapezoid rule to evaluate the integrals in (7.26)
and (7.30).
Example 7.5.1. Take the supercritical MBT with n = 1 phase evolving under a MRE
with m = 2 states from Example 7.4.3. On Figure 7.6, we show the successive approxi-
mations of the extinction probability when the initial state of the environment is chosen
with its stationary distribution π = [0.9091, 0.0909]. The plain curve is obtained with
the first integral equation approach, that is q̃n(T ) = F̃n(0, T )1. The waves in the curve
clearly show the changes of dynamics when passing from one state of the environment
to the other one. The dashed curve is computed with the second integral equation
approach, that is q̃n = ϕ̃n+1(0)1. The conditional mean number of environmental
changes before extinction, given that extinction occurs, is E[N(Te)|E] = 0.69.

7.6 Structured Markov chain approach
Recall from Section 6.1 that a standard MBT may be seen as a level-dependent QBD
{(X(t),ϕ(t)) : t ∈ R+}, where the level X(t) is the total number of individuals living
at time t, and the phase ϕ(t) = Z(t) is the population in each phase at time t.
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Figure 7.6: Approximations of the extinction probability using the two integral equa-
tion approaches.

An MBT under MRE may likewise be represented by a level-dependent QBD
{(X̃(t), ϕ̃(t)) : t ∈ R+}, where the level X̃(t) is still the total number of individu-
als living at time t, and ϕ̃(t) = (ξ(t), Z̃(t)), the first entry being the state of the
Markovian environmental process at time t, and Z̃(t) being the population in each
phase at time t.

The phase space at level k is thus

L̃(k) = {(i, S1, S2, . . . , Sn) : S1 + S2 + · · · + Sn = k, Sj ≥ 0, 1 ≤ j ≤ n, 1 ≤ i ≤ m},
(7.31)

and it is of cardinality |L̃(k)| = m
(
k+n−1

n−1

)
.

The generator of this level-dependent QBD is

Q̃ =





Q 0 0 0 0 · · ·
Ã(1)

−1 Ã(1)
0 Ã(1)

1 0 0 · · ·
0 Ã(2)

−1 Ã(2)
0 Ã(2)

1 0 · · ·
0 0 Ã(3)

−1 Ã(3)
0 Ã(3)

1 · · ·
...

. . .




.

The block matrices Ã(k)
−1 , Ã(k)

0 and Ã(k)
1 (k ≥ 1) are constructed as follows. Let A(k)(i)

−1 ,
A(k)(i)

0 , and A(k)(i)
1 be the block matrices of the level-dependent QBD associated with

the standard MBT with parameters d(i), D(i)
0 and B(i), for i = 1, 2, . . . , m. Then, for

k ≥ 1,

Ã(k)
−1 = D

[
A(k)(1)

−1 · · ·A(k)(m)
−1

]

Ã(k)
0 = D

[
A(k)(1)

0 · · ·A(k)(m)
0

]
+ (Q⊗ I) (7.32)

Ã(k)
1 = D

[
A(k)(1)

1 · · ·A(k)(m)
1

]
,
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where the identity matrix appearing in (7.32) is of size
(k+n−1

n−1

)
×
(k+n−1

n−1

)
.

If the random environment starts with the initial distribution π, then the extinction
probability of the MBT under MRE is given by

q̃ = (π ⊗ In)G1 1m,

where G1 is the mn × m matrix of first passage probabilities from level 1 to level 0
defined in Section 6.2, that we compute for instance with the algorithm L presented in
that section.

Remark 7.6.1. The structured Markov chain approach also allows to compute some
additional measures about MBTs under MRE, such as the maximum number of indi-
viduals, the mean time until extinction, and the mean time to reach k individuals; we
refer to Sections 6.3 to 6.5.

Numerical examples

We illustrate the use of the structured Markov chain approach to compute the extinc-
tion probability of an MBT under MRE on three examples.

Example 7.6.2. Take the supercritical exponential MBT under MRE with m = 2 from
Example 7.4.3. We use the algorithm L to compute q̃ = π G1 1. As stopping criterion,
we ask that the difference between two successive approximations is less than 10−7. The
algorithm converges with M = 579 iterations and q̃ = 0.5965, which is in accord with
the results obtained by the upwind and the semi-Lagrangian methods in Section 7.4.

Example 7.6.3. Consider a second example with n = m = 2, and the following param-
eters

d(1) =
[

6
8

]
, D(1)

0 =
[
−18 5
3 −16

]
, B(1) =

[
0 0 2.1 4.9
0 0 2.5 2.5

]
,

d(2) =
[

20
1

]
, D(2)

0 =
[
−120.5 0.5

0.5 −2.5

]
, B(2) =

[
100 0 0 0
0 0 0 1

]
.

The change of parameters from one state of the environment to the other one are rather
significant. In the first state of the environment, the MBT is subcritical. In the second
state, the MBT is supercritical, the first phase has now a very high birth rate, and
the second phase has low birth and death rates. The transition rates between the two
phases is also lower. The corresponding extinction probability is q(2) = [0.2023, 0.571]T .

The generator of the Markovian random environment is

Q =
[
−10 10
κ −κ

]
,

and depends on one parameter κ. The objective here is to measure how the mean
sojourn time in the second state influences the global extinction probability of the
MBT.
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We show on Figure 7.7 the extinction probability q̃ obtained using the algorithm L,
as a function of κ which varies between 0 and 250. We stopped after M = 60 iterations,
because the picture has become obvious enough; the L∞-norm between two successive
approximations is then of order 10−4. We see that when κ = 0, the environmental
process stays indefinitely in state 2, and thus q̃ = q(2); when κ increases, the length of
the visit to state 2 decreases, and the extinction probability q̃ converges to q(1) = 1.
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Figure 7.7: Extinction probability of the MBT under MRE as a function of the param-
eter κ.

Example 7.6.4. Let us return to the MBT from Example 7.2.7 which models the evo-
lution of a feminine family under the influence of a MRE with two states.

Our interest here is in the extinction probability of this family. The third phase
which has a fertility rate equal to zero is thus not useful anymore, and we can bring the
last two phases together, thereby obtaining the following parameters corresponding to
the first environmental state

d(1) =
[

4 · 10−4

1.5 · 10−2

]
, D(1)

0 =
[
∗ 1/15
∗

]
, B(1)

2,12 = 0.012,

the other entries of the matrix B(1) being zero.
For the second environmental state, D(2)

0 = D(1)
0 , B(2)

2,12 = 0.012(1 + p), for p ≥ 0,
and

d(2) =
[

4 · 10−4 (1− 0.75)
1.5 · 10−2

]
.

The MRE is characterized by the following generator

Q =
[
−1/10 1/10
κ −κ

]
.

Thus the mean time spent in the first state of the environment is set at ten years, and
the mean time spent in the second state of the environment is given by 1/κ.
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We first take κ = 1/5, and we compute the probability that the family generated
by a first child eventually becomes extinct with a maximal size M , as a function of M ,
for four values of p; this is shown on Figure 7.8.

Then, we plot on Figure 7.9 the evolution of the extinction probability of the family
generated by a first child as a function of the parameter 0 ≤ p ≤ 3, for three values of
the parameter κ. We stopped the iterations at M = 60 again. As expected, the greater
the value of p, and the longer the time interval spent in the state 2 of the environmental
process, the lower the extinction probability of the system.
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Figure 7.8: Probability that the process eventually becomes extinct with a maximal
population size M , as a function of M , for four values of p.

7.7 Comparison of the methods

The three types of numerical methods proposed in the previous sections to evaluate
the extinction probability of an MBT under MRE are rather difficult to compare since
they are based on completely different approaches. We summarize below their principal
characteristics.

Upwind method

• It is developed for n = 1, and seems rather involved to generalize to n ≥ 2.

• The input is the number J of space steps. The time step is given by the CFL
condition.

• The kth step provides an approximation of F̃ (s, tk) for s ∈ [−1, 1].

• No probabilistic interpretation can be given to the algorithm.
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Figure 7.9: Extinction probability of the MBT under MRE as a function of the param-
eter p, for three values of κ.

• The numerical complexity of each iteration is (m2 + 10m)J .

Semi-Lagrangian method

• It is developed for n = 1 and might be generalized to n ≥ 2 rather easily.

• The input is the number J of space steps. However, the time step is not well-
defined. Finally, one needs to know the characteristic curves.

• The kth step provides an approximation of F̃ (s, tk) for s ∈ [−1, 1].

• No probabilistic interpretation can be given to the algorithm.

• The numerical complexity of each iteration is (m2 + m)J .

First integral equation approach

• It is developed for n ≥ 1.

• The input is the number J of space steps per dimension, and the number N of
time steps. It assumes the knowledge of the functions F (i)(s, t) for i = 1, . . . , m.

• The kth step gives an approximation of F̃k(s, t) for s ∈ [0, 1]n and 0 ≤ t ≤ T ,
where T is estimated with some fixed error ε.

• There is a probabilistic interpretation to the algorithm.

• The dominant term of the numerical complexity of each iteration is m(m −
1)n (N − 2)(N − 1)Jn.



146 Random environments

Second integral equation approach

• It is developed for n ≥ 1.

• The input is the number J of space steps per dimension, and the number N
of time steps for the numerical computation of the integral, of which the upper
bound is evaluated with some error ε. It assumes the knowledge of the functions
F (i)(s, t) for i = 1, . . . , m.

• The kth step gives an approximation of ϕ̃k(s) for s ∈ [0, 1]n.

• There is a probabilistic interpretation to the algorithm.

• The dominant term of the numerical complexity of each iteration is m(m −
1)n (3N + 1)Jn.

Structured Markov chain approach

• It is developed for n ≥ 1.

• It assumes the knowledge of the generator Q̃.

• The kth step computes G1(k).

• There is a probabilistic interpretation to the algorithm.

• The numerical complexity increases with the iterations. The dominant terms of
the numerical complexity at the kth iteration are 2fn,m(k)3 +2fn,m(k)2 fn,m(k+
1), with fn,m(k) = m

(
k+n−1

n−1

)
.

We end by comparing in Table 7.1 the CPU time needed to evaluate the extinction
probability q̃ of the supercritical MBT from Example 7.4.3 with the five methods; we
stopped the iterations as soon as the difference between two successive approximations
became less than 10−7 (in L∞-norm). For the two integral equation methods, the
CPU time is decomposed in two parts: the first term corresponds to the time needed
to evaluate the functions F (i)(s, t) at each space and time points for i = 1, . . . , m, and
the second term corresponds to the iteration itself.

Method Input CPU time

Upwind J = 3 · 103 272.16
Semi-Lagrangian J = 7 · 105, ∆t = 5 · 10−2 14.87
First integral J = 189, N = 700, ε = 10−5 18.45 + 3941.14
Second integral J = 750, N = 7 · 105, ε = 10−15 3904.39 + 404.47
Structured Markov chain — 0.71

Table 7.1: Comparison of the CPU time (in seconds) for the five methods.



Chapter 8

Catastrophes

A population may undergo external catastrophes killing a random number of individu-
als; some examples are earthquakes, floods, wars, or epidemics. We may thus ask how
these disasters increase the extinction probability of the population.

This last chapter is devoted to the analysis of MBTs with constant parameters which
undergo catastrophes occurring at the event epochs of a Markovian arrival process. We
assume that the impact of a catastrophe on an individual depends on the phase of the
individual.

As for an MBT under random environment, the individuals do not behave inde-
pendently of each others anymore. The analysis of both types of external influences is
very similar, and we thus keep exactly the same structure as in the previous chapter,
as well as the same notations with a change of accents, replacing tildes by hats.

The different approaches to compute transient features and the extinction probabil-
ity of an MBT undergoing catastrophes are the same as those described in the previous
chapter, and are thus generally neither justified, nor detailed anymore.

We emphasize the main differences with the random environments. These lie for
example in the form of the source term in the partial differential system satisfied by
the population size distribution, in the extinction criteria that we derive from those in
the random environment case, and in the structured Markov chain approach.

8.1 Definition

Consider an irreducible MAP {(M(t),φc(t)), t ∈ R+} with m phases and transition
rates matrices A0 and A1 (see Section 1.3).

Suppose that the MAP evolves independently of an MBT with n phases and pa-
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rameters d, D0, and B. It is reasonable to assume that the external MAP started far
in the past; we thus take for initial distribution vector α its stationary distribution,
that is, the unique solution of αA = 0, α1 = 1, where A = A0 + A1; this simplify
matters in a few places.

We associate with each observable event in the external MAP a phenomenon called a
catastrophe which kills a random number of living individuals in the MBT: an individual
in phase i at the catastrophe epoch survives with probability δi, or is killed with the
complementary probability εi = 1 − δi. We gather these probabilities in the vectors δ
and ε and we set ∆ = diag(δ).

An illustration of a catastrophe process affecting an MBT is shown in Figure 8.1.

Figure 8.1: Example of path of an MBT undergoing a catastrophe process

A particular case is when m = 1: catastrophes then occur following a Poisson
process with parameter β, that is α = 1, A0 = −β and A1 = β. We refer to that case
as the Poisson(β) catastrophe case; it will sometimes be more convenient to work with
this simpler case.

Like in an MBT under MRE, unless we condition on the sequence of catastrophe
instants, the individuals in an MBT with catastrophes do not behave independently
of each other, because different lines of descendants experience catastrophes exactly
at the same epochs. However, between two catastrophes events, individuals evolve
independently.

8.2 Transient features

Population size

Suppose there are n phases in the MBT, and m states in the MAP controlling the
catastrophes arrivals. Let Ẑ(t) = [Ẑ1(t), Ẑ2(t), . . . , Ẑn(t)]T denote the population size
vector at time t of the MBT with catastrophes. We define the n × m generating



8.2 Transient features 149

function F̂ (s, t) of Ẑ(t), given the initial phase of the MBT, jointly with the state of
the catastrophic MAP at time t, as

F̂ij(s, t) =
∑

k≥0

P[Ẑ(t) = k ,φc(t) = j|ϕ0 = i] sk, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Consequently, F̂ (1, t) = (1⊗α), as P[φc(t) = j] = (α eA t)j = αj .
The following theorem is equivalent to Theorem 7.2.1. We indicate the major

dissimilarity after its statement.

Theorem 8.2.1. The forward Kolmogorov system of equations for the generating func-
tion F̂ (s, t) of an MBT with catastrophes is

∂

∂t
F̂ (s, t)− ∂

∂sT
F̂ (s, t) (Im ⊗ a(s))

= F̂ (s, t)A0 + F̂ (∆ s + ε, t)A1, (8.1)
F̂ (s, 0) = s ·α,

where a(s) = d + D0 s + B (s⊗ s). !

Notice the right-hand side of (8.1), wich makes the main difference with (7.1) in the
MRE case, and with (5.1) in the standard case. This time, the external influence affects
the variable s of the generating function, becoming ∆ s + ε, which is the generating
function of the indicator that an individual survives a catastrophe.

We now extract the factorial moments of the population size from (8.1). The kth
factorial moments of Ẑ(t) are defined as in (7.2) and (7.3), and the following properties
are the analogues of Proposition 7.2.3 and Corollary 7.2.4.

Proposition 8.2.2. The matrices M̂ (k)(t), for k ≥ 1, are solutions of

d

dt
M̂ (k)(t) = M̂ (k)(t) [(Im ⊗ Ω⊗ Ink−1)A(k) + (A0 ⊗ Ink) + (A1 ⊗∆(k))]

+M̂ (k−1)(t) [Im ⊗B (In2 + I(n,n))⊗ Ink−2 ] C(k), (8.2)

with initial conditions M̂ (1)(0) = (α⊗ In), M̂ (k)(0) = 0 for k ≥ 2; ∆(k) is the kth-fold
Kronecker product of ∆ with itself, and the mnk ×mnk coefficients matrices A(k) and
C(k) are the same as in Proposition 7.2.3. !

Corollary 8.2.3. The first two moments of the population size in an MBT with catas-
trophes are given by

m̂(1)(t) = (α⊗ In) eÂ t (1m ⊗ In) (8.3)
m̂(2)(t) = (α⊗ In)X(t) (1m ⊗ In2),

where X(t) is the solution of the Lyapunov equation

ÂX(t)−X(t) B̂ + [I ⊗B (In2 + I(n,n))] eB̂ t − eÂ t [I ⊗B (In2 + I(n,n))] = 0,
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with

Â = (Im ⊗ Ω) + (A0 ⊗ In) + (A1 ⊗∆), (8.4)
B̂ = (Im ⊗ Ω⊗ In) I(n,mn) [I(m,n) ⊗ In]

+(A0 ⊗ In2) + (A1 ⊗∆(2)).

!

Extinction probability and time until extinction

Let q̂ denote the extinction probability of an MBT undergoing catastrophes, and let
F̂ (t) = F̂ (0, t)1 be the distribution of the time until extinction, both given the phase
of the initial individual. We have

q̂ = lim
t→∞

F̂ (t).

Again, the loss of independence between the individuals prevents us to write a
simple fixed point equation for q̂, and the usual almost sure extinction criteria do not
hold anymore.

The condition µ(Â) ≤ 0, where Â is defined in (8.4), is sufficient but not necessary
to ensure the almost sure extinction of the process. From (8.3), we see that when
µ(Â) > 0, the population grows to infinity with the time on the average, but almost
sure extinction is still possible, as will be discussed in Remark 8.3.8 in the next section.

Total progeny size

We denote by N̂(t) the total progeny size until time t in an MBT undergoing catastro-
phes. The probability generating function of the joint process (Ẑ(t), N̂ (t)), given the
initial phase of the MBT, is

Ĝ(s, z, t) =
∑

k≥0

∑

!≥k·1
P[(Ẑ(t), N̂(t)) = (k, *) ,φc(t)|ϕ0] sk z!.

It satisfies the following partial differential system.

Proposition 8.2.4. The forward Kolmogorov system of equations for the generating
function Ĝ(s, z, t) of an MBT undergoing catastrophes is

∂

∂t
Ĝ(s, z, t)− ∂

∂sT
Ĝ(s, z, t) · (Im ⊗ a(s, z))

= Ĝ(s, z, t)A0 + Ĝ(∆ s + ε, z, t)A1 (8.5)
Ĝ(s, z, 0) = z s ·α,

with a(s, z) = d + D0 s + z B (s⊗ s). !
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The difference with Proposition 7.2.5 again lies in the right-hand side of the Kol-
mogorov equation.

We characterize below the kth factorial moment of the total progeny until time t,

m̂k(t) =
∂k

(∂z)k
Ĝ(s, z, t) |s=1,z=1 ·1m k ≥ 1,

obtained from successive derivatives of (8.5) with respect to z. This is to put in parallel
with Proposition 7.2.6.

Proposition 8.2.5. The vectors m̂k(t), for k ≥ 1, are solutions of the following
differential matrix equations

d

dt
m̂k(t) = k M̂ (1)

k−1(t) (1m ⊗B 1),

with initial conditions m̂1(0) = 1n and m̂k(0) = 0 for k ≥ 2, and where M̂ (1)
0 (t) =

M̂ (1)(t) = (α ⊗ In) exp(Â t), and M̂ (1)
k (t) = ∂k/(∂z)k ∂/∂sT Ĝ(s, z, t) |s=1,z=1 for

k ≥ 1. !

Let us focus on the first moment m̂1(t) of the total progeny until time t:

m̂1(t) = 1 +
∫ t

0
M̂ (1)(u) du (1m ⊗B 1)

= 1 + (α⊗ In)
∫ t

0
eÂu du (1m ⊗B 1),

where Â is given by (8.4). If Â is nonsingular, then we obtain

m̂1(t) = 1 + (α⊗ In) (−Â)−1
(
I − eÂ t

)
(1m ⊗B 1).

When t→∞, we are led to two cases for the mean total progeny size

m̂1(∞) =

{
∞ if µ(Â) > 0

1 + (α⊗ In) (−Â)−1 (1m ⊗B 1) if µ(Â) < 0
.

In the case µ(Â) < 0, by some algebraic manipulations using the fact that B 1 =
−D0 1− d, we can rewrite m̂1(∞) as

m̂1(∞) = (α⊗ In) (−Â)−1 [(1m ⊗ d) + (A1 1⊗ ε)]. (8.6)

Mean behaviour

As in the MRE case, we can associate a standard MBT to the MBT with catastrophes
so that both processes have the same behaviour on the average.

The standard MBT has mn phases, which are the pairs (i, j), for 1 ≤ i ≤ m,
1 ≤ j ≤ n. It is exactly as if each individual had its own catastrophe process and all
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individuals thus behaved independently of each others. Here, an individual is in the
state (i, j) if its associated catastrophe process is in state i, and the individual itself is
in the “physical” phase j.

The parameters of the standard MBT are

d′ = (1m ⊗ d) + (A1 1⊗ ε),

D′
0 = (Im ⊗D0) + (A1 ⊗∆) + (A0 ⊗ In),

and the only nonzero entries in the birth rates matrix B′ are the entries

B′
(!,i),(!,j)(!,k) = Bi,jk,

so that we can write B′ = D
[
B(1) · · · B(m)

]
, where B(i) is an n × n2m matrix defined

like in (7.12) with B(i)(j) = B(j) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.
It is easily seen that the matrix Ω′ = D′

0+B′ (1⊕1) of the standard MBT coincides
with the matrix Â defined in (8.4), so that the matrix of mean population size at time
t in the standard MBT is given by M ′(1)(t) = eÂ t, and the mean total progeny size
vector in the subcritical case is given by D′(1) = (−Â)−1 [(1m⊗d)+ (A1 1⊗ ε)]. If we
only care about the physical phase of individuals, we respectively get (8.3) and (8.6).

Illustrations

Example 8.2.6. Let us illustrate the transient measures on an example of MBT with
n = 3 phases.

Like in Example 7.2.7, we consider individuals whose lifetime is made up of three
age classes. The rates are those of a supercritical country comparable to Congo:

d =




0.018
0.013
0.05



 , D0 =




∗ 1/15
∗ 1/35

∗



 , B2,12 = 0.12,

the other entries of the matrix B being zero. The probability of dying from a catas-
trophe for each phase is given by the vector ε = [0.4, 0.2, 0.3]T .

We consider three catastrophe processes:

• a Poisson process with parameter β;

• a phase-type renewal process (see Section 1.3) in which the inter-arrival times
follow an Erlang distribution with m = 3 phases. This is a special case of MAP
with

A0 =




−3β 3β

−3β 3β
−3β



 , A1 =




0 0 0
0 0 0
3β 0 0



 .

We expect the time intervals between catastrophes to be relatively regular.



8.2 Transient features 153

• a phase-type renewal process in which the inter-arrival times follow a hyperex-
ponential distribution with m = 3 phases. This is a special case of MAP with

A0 =




−20β/39

−β
−20β



 , A1 =




20β/39
β

20β



 · [1/3, 1/3, 1/3].

We expect here much variability in the time intervals between catastrophes.

We have chosen the parameters of the catastrophe processes so that the expected time
between catastrophes is the same in all three cases, and is equal to 1/β. This will allow
us to measure how the regularity between catastrophe times affects the population
dynamics.

We show on Figure 8.2 the mean total family size for β = 1/10, if we start with one
individual in phase 1 at time 0. We see that when the time between two catastrophes
is highly variable, the population is more likely to grow than when the catastrophes
occur at regular epochs.
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Figure 8.2: Comparison of the mean total family size as a function of time for three
catastrophe processes with the same mean interval of time between catastrophes 1/β =
10 years.

Then, we show on Figure 8.3 the mean total progeny size after a fixed t = 200 years,
that is m̂1(200), as a function of the average time between catastrophes 0 ≤ 1/β ≤
500, if we start with one individual in phase 1 at time 0. We compare the results
obtained for the exponential and the hyperexponential inter-arrival distributions. For
the latter, we distinguish between the three possible initial states of the MAP modeling
the catastrophe process. We know that when we start the hyperexponential catastrophe
process in its second phase, the mean time until the first catastrophe is 1/β, like for
the Poisson catastrophe process; both curves are quite close for all values of β. On the
contrary, if the hyperexponential catastrophe process starts in its third phase, then the
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mean time until the first catastrophe is 1/(20β), which gives much less opportunity to
the population of growing; in that case, the mean total progeny size until 200 years is
the smallest.
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Figure 8.3: Evolution of the mean total progeny size until t = 200 years with the
exponential and the hyperexponential inter-arrival distributions.

8.3 Extinction criteria

As for an MBT under MRE, we can classify an MBT with catastrophes into several
categories and study the almost sure extinction criteria in each case. We shall sepa-
rately consider the one-type and the multitype cases, as well as the Poisson(β) and the
general MAP catastrophe cases.

When n = 1, the parameters of the exponential MBT are d = µ, B = λ and
D0 = −λ − µ, and thus ω = λ− µ. We shall use the extinction criteria developed for
discrete-time branching processes.

In a first discretization of the continuous-time MBT with catastrophes, we consider
the embedded process at the times of catastrophe. This idea was already used by
Bartoszynski et al. [7], Bühler and Puri [14], and Lee [49].

Let t1, t2, . . . be the successive epochs of catastrophes, and τi = ti− ti−1 (i ≥ 1) the
intervals of time between catastrophes, with t0 = 0. We define the embedded discrete-
time branching process {Z̄k : k ∈ N} as Z̄k = Ẑ(t+k ). That is, the kth generation of
the discrete-time branching process is made up of the survivors to the kth catastrophe
in the initial continuous-time MBT.

Consequently, given τk+1, the progeny generating function of one individual from
generation k in Z̄k is F (δs + ε, τk+1), where F (s, t) is the generating function of the
population size at time t in a standard exponential MBT; the associated conditional
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mean progeny is m(k) = exp(ω τk+1)δ, which is random through the value of τk+1.
The process Z̄k is thus a branching process in random environment, and the extinction
criteria for an MBT with catastrophes follow from those for a branching process in
random environment discussed in Section 7.3.

Let us first consider the case where catastrophes occur following a Poisson process
with parameter β. The successive inter-arrival times between catastrophes {τk} are
i.i.d. and exponentially distributed with parameter β.

Following the extinction criteria of a discrete-time branching process in i.i.d. ran-
dom environment (Smith and Wilkinson [64]), we obtain that, provided E| log(1 −
F (ε, τ1))| <∞, extinction of the process Z̄n is certain if and only if

0 ≥ E[log m(0)] = E[log eω τ1 δ] = ωE[τ1] + log δ,

which finally gives the following criterion, previously obtained through another argu-
ment by Kaplan [36].

Corollary 8.3.1. An exponential MBT with Poisson(β) catastrophes eventually be-
comes extinct with probability one if and only if

ω + β log δ ≤ 0.

!

Now, suppose that the catastrophes occur following a MAP with characteristics A0

and A1. Using the same discretization technique, we observe that the random envi-
ronment is twofold and given by both the sequence of states of the MAP immediately
after each catastrophe, that is φc(t+n ), and the successive inter-arrival times between
catastrophes {τn}, which themselves depend on the states φc(t+n ).

Let γ be the stationary distribution of the discrete process giving the phase of the
MAP after each catastrophe, of which the transition probability matrix is given by
P = (−A0)−1 A1; thus γ is such that γ P = γ, γ 1 = 1.

Assume that at time 0, the catastrophic MAP starts with the initial distribution
γ. In that case, the inter-arrival times between catastrophes {τn} are identically dis-
tributed following a phase-type distribution PH(γ, A0). The random environment is
stationary and ergodic; we refer to Athreya and Karlin [5] for the almost sure extinc-
tion criterion, which is the same as in the Poisson catastrophe case, but this time the
mean inter-arrival time is given by E[τ1] = γ (−A0)−1 1. This leads to the following
criterion.

Corollary 8.3.2. An exponential MBT with catastrophes following a MAP eventually
becomes extinct with probability one if and only if

ω γ (−A0)−1 1 + log δ ≤ 0.

!



156 Catastrophes

Another way to discretize the MBT with catastrophes is to apply the uniformization
technique decribed in Section 7.3 to the MAP of catastrophes.

Let c = max1≤i≤m(−A0)ii. Take a Poisson process of rate c and denote by 0 =
t0, t1, t2, . . . the epochs of events in that process, and by τi = ti − ti−1 (i ≥ 1) the
intervals of times between events.

Define the discrete MAP with K0 = (1/c)A0 + I, K1 = (1/c)A1, and denote the
phase at time k by φ̄k; the discrete-time branching process is defined as Z̄k = Ẑ(tk).
The stationary distribution of φ̄k is the same as that of the original continuous-time
Markovian process φc(t), that is, α. The Markov chain φ̄k with initial distribution α
is thus stationary and ergodic.

Let the indicator Xk be equal to 1 if the kth transition in φ̄k is associated with
an event in the MAP, and to 0 otherwise. Conditionally given Xk+1 and τk+1, the
progeny generating function of one individual from generation k in the discrete-time
branching process is F (δs + ε, τk+1) if Xk+1 = 1 or F (s, τk+1) if Xk+1 = 0, and is
thus random through the time interval τk+1 and the occurrence of event in the MAP
at time k + 1. The random environment is thus again twofold and stationary ergodic,
and the criterion becomes

Corollary 8.3.3. An exponential MBT with catastrophes following a MAP eventually
becomes extinct with probability one if and only if

ω + αA1 1 log δ ≤ 0.

Proof. According to Athreya and Karlin [5], extinction is almost sure if and only if
E[log m(0)] ≤ 0. Here,

E[log m(0)]

=
m∑

i=1

αi E[log m(0) |φc(0) = i]

=
m∑

i=1

αi E[log m(0) |φc(0) = i, X1 = 0] P[X1 = 0 |φc(0) = i]

+
m∑

i=1

αi E[log m(0) |φc(0) = i, X1 = 1] P[X1 = 1 |φc(0) = i]

=
m∑

i=1

αi

{
ω E[τ1] [(1/c)A0 1 + 1 + (1/c)A1 1]i + log δ [(1/c)A1 1]i

}

= (1/c) (ω + αA1 1 log δ),

which proves the statement of the corollary. !

Remark 8.3.4. The criteria in Corollaries 8.3.2 and 8.3.3 are actually based on the
same expression. Indeed, we can write the vector α as

α =
γ (−A0)−1

γ (−A0)−1 1
,
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since the jth component of the numerator is the mean time spent in phase j between
two catastrophes, and the denominator is the mean time between two catastrophes.

So, we have αA1 1 = 1/[γ (−A0)−1 1]. This is quite intuitive since αA1 1 may be
interpreted as the average catastrophe rate.

Consider now the multitype case n ≥ 2. Again, we look first at Poisson(β) catas-
trophes. As stated above, the successive inter-arrival times between catastrophes {τk}
are i.i.d. The conditional progeny generating function of an individual from genera-
tion k in the discrete-time process Z̄k embedded at the times of catastrophes is given
by F (∆s + ε, τk+1) and the associated conditional mean progeny matrix is given by
A(k) = exp(Ω τk+1)∆.

We follow Athreya and Karlin [5]: provided that all entries of A(0) and of the
second factorial moment matrix are positive and finite with probability one, and that
E| log(n− F (ε, τ1)1)| <∞, we get

Corollary 8.3.5. The extinction of an MBT undergoing Poisson catastrophes is almost
sure if and only if

lim
k→∞

1
k

E log ||eΩ τ1 ∆ eΩ τ2 ∆ · · · eΩ τk ∆|| ≤ 0, (8.7)

for any matrix norm, where the τi’s are exponentially distributed with parameter β, for
i ≥ 1. !

Now, consider the MAP catastrophe case. We can proceed as in the exponential
MBT case by looking at the embedded branching process at the times of catastrophes,
or at the events epochs of a Poisson process by using the uniformization technique.
We then investigate the almost sure extinction criteria of a discrete-time multitype
branching process Z̄k in a stationary and ergodic random environment, and we refer
to Tanny [67] as in Section 7.3.

Using the first discretization, we conclude, under assumptions (i)–(iii) of Page 129,
with the following criterion

Corollary 8.3.6. The extinction of an MBT undergoing MAP catastrophes is almost
sure if and only if

lim
k→∞

1
k

E log ||eΩ τ1 ∆ eΩ τ2 ∆ · · · eΩ τk ∆|| ≤ 0, (8.8)

where the τi’s are the intervals between observable events of the MAP; they are marginally
PH(γ, A0) distributed, for i ≥ 1. !

Using the uniformization technique, the criterion becomes

lim
k→∞

1
k

E log ||A(0)A(1) · · ·A(k − 1)|| ≤ 0,

where A(i) = eΩ τi+1 ∆ if Xi+1 = 1, or A(i) = eΩ τi+1 if Xi+1 = 0, and τi+1 is the
(i + 1)th uniformization interval, exponentially distributed with parameter c, i ≥ 0.
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Remark 8.3.7. In the particular case of “uniform killing”, that is when δi = δ for all i,
the limits in (8.7) and in (8.8) may be computed explicitly. Indeed, in that case,

||eΩ τ1 ∆ eΩ τ2 ∆ · · · eΩ τk ∆|| = δk ||eΩ (τ1+τ2+···+τk)|| ≈ c δk eµ(Ω) (τ1+τ2+···+τk),

asymptotically as k →∞, using the Jordan decomposition of the matrix Ω, where c is
a positive constant (Gantmacher [21]), so that

lim
k→∞

1
k

E log ||eΩ τ1 ∆ eΩ τ2 ∆ · · · eΩ τk ∆||

= log δ + lim
k→∞

1
k

µ(Ω) (τ1 + τ2 + · · · + τk)

= log δ + µ(Ω)E[τ ]

= log sp
[
eΩE[τ ] δ

]
,

by the Law of Large Numbers, with E[τ ] = 1/β in the Poisson case, and E[τ ] =
γ (−A0)−1 1 in the MAP catastrophe case.

Simplifying the limits in (8.7) and in (8.8) in the general case is more complicated,
and is still a work in progress.

Remark 8.3.8. Recall that the condition µ(Â) ≤ 0 is a sufficient but not necessary
condition for the almost sure extinction of an MBT undergoing catastrophes. In the
one-phase Poisson(β) catastrophe case, this condition becomes ω + β (δ − 1) ≤ 0, and
obviously

ω + β log δ ≤ ω + β (δ − 1),

since log x ≤ x− 1 for 0 < x ≤ 1. Thus, we can easily find an example where

ω + β log δ ≤ 0 < ω + β (δ − 1),

so that extinction is almost sure, and the mean size of the exponential MBT grows to
infinity at the same time. Take for instance λ = 4, µ = 2, so that ω = 2, β = 8, and
δ = 0.5.

We now turn to numerical methods to compute the extinction probability vector q̂.
This is the object of the next three sections.

8.4 Numerical partial differential equations
We briefly discuss the numerical techniques proposed in Section 7.4 in the context of
an exponential MBT with Poisson(β) catastrophes.

The one-dimensional population size generating function F̂ (s, t) satisfies the partial
differential equation

∂

∂t
F̂ (s, t)− a(s)

∂

∂s
F̂ (s, t) = β [F̂ (δs + ε, t)− F̂ (s, t)], (8.9)

F̂ (s, 0) = s ,
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Algorithm 8.4.1 Algorithm to compute the extinction probability q̂ of an exponential
MBT with Poisson(β) catastrophes (recall that the function [v] is defined by (7.24)).

F̂ 0
k := sk, 0 ≤ k ≤ J

q̂0 := F̂ 0
J/2

for n = 0 to n∗ − 1 do
F̂

n+ 1
2

k := (8.13), or (8.14)
F̂n+1

k := F̂
n+ 1

2
k + β∆t

(
F̂

n+ 1
2

[δsk+ε] − F̂
n+ 1

2
k

)
, 1 ≤ k ≤ J − 1

F̂n+1
0 := F̂n+1

1

F̂n+1
J := 1

q̂n+1 := F̂n+1
J/2 .

end for
q̂ := q̂n∗

.

where a(s) = µ− (λ+ µ) s + λ s2.
To solve this non-homogeneous hyperbolic partial differential equation, we follow

the same approaches as in the MRE case: we use the fractional-step method to split
the equation into a homogeneous partial differential equation

∂

∂t
F̂ (s, t)− a(s)

∂

∂s
F̂ (s, t) = 0, (8.10)

that we solve with a finite difference scheme or with the semi-Lagrangian method, and
an ordinary differential equation

∂

∂t
F̂ (s, t) = β [F̂ (δs + ε, t)− F̂ (s, t)] (8.11)

that we solve using the forward Euler method.
Recall the definition of the two-dimensional grid (sk, tn) from Section 7.4. Let F̂n

k

be a numerical approximation of F̂ (sk, tn) for 0 ≤ k ≤ J , where J is even, and n ≥ 0.
The index k = J/2 of s corresponds to the particular value s = 0, and we successively
compute q̂n = F̂n

J/2 for n ≥ 0, which are approximations of F̂ (0, tn); the limit q̂∞ is
thus an approximation of the extinction probability. In practice, we stop at n∗ such
that |q̂n∗ − q̂n∗−1| < ε for a fixed error ε.

In the context of finite difference methods, recall that the space and time steps
must satisfy the CFL condition for the scheme to be stable. Here, it asks that for all
values of sk in the domain of computation,

|a(sk)|∆t ≤ ∆s.

In practice, we thus take
∆t = ∆s/ max

k
|a(sk)|. (8.12)

The upwind scheme obtained using (7.18) and (7.19) is summarized by Algo-
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rithm 8.4.1 with

F̂
n+ 1

2
k := F̂n

k +
1
2
∆t

∆s

[
(F̂n

k+1 − F̂n
k ) · |sign[−a(sk)]− 1| · a(sk)

+ (F̂n
k − F̂n

k−1) · |sign[−a(sk)] + 1| · a(sk)
]
. (8.13)

The semi-Lagrangian scheme is given by Algorithm 8.4.1 with

F̂
n+ 1

2
k := F̂n

[X(0;sk,∆t)], (8.14)

where

X(0; s, t) =






1 +
(µ− λ) (s− 1)

λ (s− 1) + (µ− λ s) exp[(µ− λ) t]
, if λ %= µ,

1 +
(s− 1)

1− λ t (s− 1)
, if λ = µ.

Recall that no CFL condition is required for that scheme, but so far, no rule exists for
the optimal choice of the time step ∆t.

Numerical examples

Let us apply the methods discussed above on two examples of exponential MBT with
catastrophes; in the first example, the system is subcritical, in the second one it is
supercritical.

Example 8.4.1. Take the subcritical MBT undergoing Poisson(β) catastrophes whose
mean population size explodes as discussed in Remark 8.3.8, where λ = 4, µ = 2,
β = 8, and δ = 0.5. We plot on the curve A of Figure 8.4 the approximations q̂n

obtained with the upwind scheme for J = 15 · 102 and ∆t given by (8.12). The results
obtained with the semi-Lagrangian method for J = 7 · 105 and ∆t = 0.1 are the same
and are not represented.

Example 8.4.2. Take now a supercritical MBT undergoing Poisson(β) catastrophes
with λ = 20, µ = 12, β = 5 and δ = 0.5. We show on the curve B of Figure 8.4 the
approximations q̂n obtained with the upwind scheme for J = 15 · 102 and ∆t given by
(8.12). Again, those obtained with the semi-Lagrangian method for J = 7 · 105 and
∆t = 0.001 are roughly the same and are thus not represented. The approximations of
the extinction probability are respectively q̂ = 0.7692 and q̂ = 0.7721.

8.5 Integral equations approach

Bartoszynski et al. [7] show by analytical arguments that the probability generating
function F̂ (s, t) of the population size at time t in a multitype branching process
undergoing Poisson(β) catastrophes satisfies the integral equation

F̂ (s, t) = F (s, t) + β

∫ t

0
F̂ (∆F (s, t− u) + ε, u)− F̂ (F (s, t− u), u) du,
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Figure 8.4: Distribution of the time until extinction of two exponential MBTs.

where F (s, t) is the generating function of the population size at time t in the corre-
sponding branching process without catastophes. This integral equation is shown to
be an implicit solution of the partial differential equation (8.1) for m = 1, and it yields
the iterative scheme

F̂ n(s, t) = F (s, t) + β

∫ t

0
F̂ n−1(∆F (s, t− u) + ε, u)− F̂ n−1(F (s, t− u), u) du,

with F̂ 0(s, t) = F (s, t).
Recall the definitions of the norm of the approximation error ên(t) and of the R-

factor R̂(t) respectively given by (7.27) and (7.29) in Section 7.5. Using the Stirling
formula n! ∼

√
2πn (n/e)n, we get R̂(t) = 0 for all t ≥ 0, which ensures a R-superlinear

convergence of the sequence F̂ n(s, t) for all t (Ortega and Rheinboldt [58]).
However, this iterative method does not seem to have any probabilistic interpreta-

tion. For that reason, we go further and we analyze for catastrophes the analogue of
the two sequences defined in Section 7.5 for MRE.

Thus, we propose two recursive integral equations with physical interpretation, in
order to obtain numerical approximations for the extinction probability of an MBT
with catastrophes. The first integral equation also provides us with the distribution of
the time until extinction, while the second one allows us to compute the distribution
of the total number of catastrophes occurring before extinction, given that the process
eventually becomes extinct.

Let M(t) denote the number of observable transitions occurring in the MAP of
catastrophes during the time interval [0, t[. The probability generating function of the
population size at time t in the MBT on the paths with at most n catastrophes until
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that time, is given by

(F̂n)ij(s, t) =
∑

k≥0

P[Ẑ(t) = k ,φc(t) = j , M(t) ≤ n |ϕ0 = i] sk.

Recall that α is the initial probability vector of the catastrophe process. We have

F̂0(s, t) = F (s, t) ·α eA0 t,

since with probability α eA0 t, no catastrophe occurs before time t, and in that case,
the population size at time t is that of a standard MBT.

For n ≥ 1, the generating function F̂n(s, t) satisfies the integral recursive equation

F̂n(s, t) = F̂0(s, t) +
∫ t

0
F̂n−1

(
∆F (s, t− u) + ε, u−) A1 eA0 (t−u) du. (8.15)

This is obtained by decomposing on the time of the last catastrophe before time t.
Indeed, either no catastrophe occurred yet at time t which is recorded by F̂0(s, t),
or the last catastrophe occurs at time u in (0, t), which happens with probability
A1 eA0 (t−u) du. In that case, the population at time t is made up of the descendants
of the survivors to the last catastrophe among the living individuals at time u−, under
the restriction of at most n− 1 catastrophes until time u−, these descendants evolving
independently during a time interval of length t− u.

The limit when n→∞ of (8.15),

F̂ (s, t) = F (s, t) ·α eA0 t +
∫ t

0
F̂
(
∆F (s, t− u) + ε, u−) A1 eA0 (t−u) du,

is also an implicit solution of the partial differential equation (8.1) with initial condition
F̂ (s, 0) = s ·α.

The distribution of the time until extinction F̂ (t) = P[Te ≤ t |ϕ0] and the extinction
probability q̂ are computed exactly in the same way as in the MRE case in Section 7.5;
the only difference lies in the practical choice of the maximal time Tc at which we
evaluate the functions: here we choose it such that the probability of extinction after
time Tc of the standard MBT without catastrophes is smaller than ε1, that is

Tc = inf {t ≥ 0 : ||q − F (0, t)|| < ε1} .

Proceeding as in Section 7.5, we investigate the convergence rate of the sequence
F̂n(s, t) to F̂ (s, t). We have êo(t) ≤ 2 for all t ≥ 0, and for n ≥ 1,

ên(t) ≤
∫ t

0
ên−1(u) ||A1|| ||eA0(t−u)|| du.

Let 0 < β0 = −µ(A0). We have

||eA0(t−u)|| = e−β0(t−u)||e(β0I+A0)(t−u)||,

and since limt→∞ eA0t = 0, the matrix e(β0I+A0)(t−u) is bounded, so there exists a
constant c <∞ which should not be very large, such that

c = sup
t≥0

||e(β0I+A0)t||, (8.16)
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and we get

ên(t) ≤ c ||A1||
∫ t

0
ên−1(u) e−β0(t−u) du.

We can show by induction on n that

ên(t) ≤ 2
(

c ||A1||
β0

)n

e−β0t

[
eβ0t −

n−1∑

i=0

(β0t)i

i!

]
, n ≥ 1.

The factor in square brackets is the remainder of the Taylor expansion of eβ0t, and
thus by the Taylor-Lagrange formula, we have

ên(t) ≤ 2
(c ||A1||t)n

n!
e−β0(t−ζ),

for n ≥ 1, where 0 < ζ < t. We can show that the convergence of the sequence F̂n(s, t)
is thus also R-superlinear. In the Poisson(β) catastrophe case, β0 = ||A1|| = β, and
c = 1.

Let tn be the time of the nth catastrophe, for n ≥ 1. The probability generating
function of the population size just after the nth catastrophe is given by ϕ̂n(s) =
F̂ (s, t+n ), that is,

(ϕ̂n)ij(s) =
∑

k≥0

P[Ẑ(t+n ) = k ,φc(t+n ) = j |ϕ0 = i] sk.

The generating function ϕ̂n(s) satisfies the integral recursive equation

ϕ̂n(s) =
∫ ∞

0
ϕ̂n−1 (F (∆ s + ε, u)) eA0 u A1 du, (8.17)

for n ≥ 1, with ϕ̂0(s) = s ·α. This integral equation is obtained by conditioning on the
time u between the (n − 1)th and the nth catastrophe. Indeed, the population after
the nth catastrophe is made up of the survivors among the descendants of individuals
still living after the (n − 1)th catastrophe, which evolve independently during a time
interval of length u.

The convergence of the sequence ϕ̂n(s) to its limit ϕ̂∞(s) = q̂ ·α when s < 1 (or
ϕ̂∞(1) = 1 ·α) is ensured by its probabilistic interpretation. A convergence rate study
leads to

ên ≤
c ||A1||
β0

ên−1

for n ≥ 1, where ên = sups ||ϕ̂n(s)− ϕ̂∞(s)||, β0 = −µ(A0), and where c is defined in
(8.16). This inequality may not be exploited here since we cannot tell much about the
constant c ||A1||, which depends on the system. In the general catastrophe case, the
convergence rate is thus not clearly defined.

In the Poisson(β) catastrophe case, we get ên ≤ ên−1, which shows that the sequence
is (sub-)linear.
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Again, the extinction probability and the cumulated total number of catastrophes
before extinction, given extinction occurs, are computed like in the MRE case in Sec-
tion 7.5, except that here, in practice, the upper bound T ∗

c in the integral in (8.17) is
taken such that

T ∗
c = inf

{
u ≥ 0 : ||eA0u A1|| < ε1

}
,

for some fixed error ε1.

Example 8.5.1. Let us consider a supercritical exponential MBT with parameters λ =
100, µ = 75, undergoing catastrophes following a MAP characterized by

A0 =
[
−52 10
40 −95

]
A1 =

[
30 12
50 5

]
,

and such that ε = 0.3.

We compare on Figure 8.5 the distributions of the time until extinction of this MBT
with catastrophes, obtained with the first integral method, and of the standard MBT
with the same mean behaviour (see on page 151), obtained by numerically solving
(5.20). The extinction probabilities are respectively q̂ = 0.9125, q = 0.8835.
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Figure 8.5: Distribution of the time until extinction of two MBTs.

8.6 Structured Markov chain approach

An MBT undergoing catastrophes governed by a MAP may be represented by a struc-
tured Markov chain {(X̂(t), ϕ̂(t)) : t ∈ R+}, where the level X̂(t) is the total number
of individuals living at time t, and the phase is an (n + 1)-uple ϕ̂(t) = (φc(t), Ẑ(t)),
the first entry being the state of the catastrophic MAP at time t, and Ẑ(t) giving the
number of individuals in phases 1 to n at time t.
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The phase space L̂(k) at level k is defined like in (7.31) and is of cardinality |L̂(k)| =
m
(k+n−1

n−1

)
.

Since catastrophes may kill several individuals at the same time, here transitions
from level k to any lower level k−m, 1 ≤ m ≤ k, are permitted, so that the generator
has the following structure

Q =





A 0 0 0 0 · · ·
Q10 Q11 Q12 0 0 · · ·
Q20 Q21 Q22 Q23 0 · · ·
Q30 Q31 Q32 Q33 Q34 · · ·

...
. . .




.

We call this kind of process a level-dependent G/M/1-type Markov chain. For the sake
of clarity, here we shall use the notation Qij instead of the usual notation A(i)

j−i.
If the catastrophe process starts with the initial distribution α, the extinction prob-

ability of the MBT undergoing catastrophes, given the phase of the initial individual,
is given by

q̂ = (α⊗ In)G1 1m,

where G1 is the mn × m matrix of first passage probabilities from level 1 to level 0
defined in Section 6.2.

We now explain how to compute G1 in a level-dependent G/M/1-type process.
Recall from Section 6.2 that G1 1 = limM→∞ G1(M)1, where

G1(M)1 = P
[
γ(0) < γ(M + 1) | X̂(0) = 1, ϕ̂(0)

]
,

and corresponds to the probability that the MBT with catastrophes eventually becomes
extinct with a number of individuals at most equal to M at any time.

We first adapt the algorithm L described in Section 6.2 to the present context.
Later, we propose two improvements of this method.

Recall from Section 6.2 that G1(M)1 = 1−FM 1, with FM = L1 L2 · · · LM , where
the matrix Li holds the probability to reach level i + 1 before level 0, starting from
level i, that is,

Li = P[γ(i + 1) < γ(0) , ϕ̂(γ(i + 1)) |X̂(0) = i, ϕ̂(0)].

These matrices may still be computed recursively, but now, since the process can
reach from level i any lower level in one transition, we have L1 = (−Q11)−1 Q12, and
for i ≥ 2,

Li = (−Qii)−1 [Qi (i+1) + Qi (i−1) Li−1 Li + Qi (i−2) Li−2 Li−1 Li + · · ·
+ Qi 1 L1 L2 · · ·Li−1 Li],

which can be rewritten as

Li =



I − (−Qii)−1
i−1∑

j=1

Qi (i−j)

∏

i−j≤k≤i−1

Lk




−1

(−Qii)−1 Qi (i+1). (8.18)
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Recall that we can then write G1(1)1 = (−Q11)−1 Q10 1, and

G1(M)1 = G1(M − 1)1 + FM−1 (1− LM 1)

for M ≥ 2. We see that, at the Mth iteration, the probability G1(M)1 that the process
started in level 1 eventually reaches level 0 before level M + 1, is decomposed in two
terms: the probability G1(M − 1)1 that the process eventually reaches level 0 before
level M , and the probability FM−1 (1−LM 1) that the process eventually reaches level
M before level 0, and then eventually reaches level 0 under the taboo of level M + 1.

We can improve this algorithm by allowing the process to go over level M in a
controlled manner, and thus considering more paths at each iteration.

For that purpose, we need to define the matrix C̄k, for 1 ≤ k ≤M , as the generator
of the restriction S̄k of the G/M/1-type process observed only during those intervals
of time spent at level k, before it moves for the first time to level k + 1 or to level
0. We also define the matrices Γnm, 1 ≤ n < m ≤ M + 1, as follows: (Γnm)ij is the
probability that, starting from level n in phase i, the process reaches level m before
level 0, and the first phase visited at level m is the phase j. They are recursively given
by

C̄1 = Q11

Γ12 = (−C̄1)−1 Q12,

and for 2 ≤ k ≤M ,

C̄k = Qkk +
k−1∑

i=1

Qki Γik

Γk(k+1) = (−C̄k)−1 Qk(k+1)

Γi(k+1) = Γik Γk(k+1) for 1 ≤ i ≤ k − 1.

(see Latouche, Jacobs and Gaver [46]).
We define a first improved sequence {x(1)

M }M≥1 as follows

x(1)
M = G1(M)1 + T (1)

M ,

where the additional term T (1)
M gives the probability that the process eventually reaches

level M + 1, and that the M + 1 individuals then act independently of each others,
and generate a tree which becomes extinct with the probability given by the last
approximation x(1)

M−1, so that the process eventually gets extinct by reaching level 0.
To do this, we define a vector X(1)

M+1 whose entries are the probability that each of
the M + 1 individuals at level M + 1 independently generates a tree which eventually
becomes instinct under the constraints of the last approximation. That is, the entry of
X(1)

M+1 corresponding to the state (i, S1, . . . , Sn) with S1 + · · · + Sn = M + 1 is given
by (x(1)

M−1)
S1
1 · · · (x(1)

M−1)
Sn
n , independently of i.

The additional term T (1)
M is then given by

T (1)
M = FM−1 (−C̄M )−1 QM(M+1) X(1)

M+1.
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We define a second improved sequence {x(2)
M }M≥1 as follows

x(2)
M = G1(M)1 + T (2)

M ,

where the additional term T (2)
M now gives the probability that the process reaches level

M , and then teeters in the following way between levels M and M + 1, before finally
reaching level 0: when the process moves from level M to level M + 1, the new child
generates a subtree which eventually becomes extinct with the probability given by the
last approximation x(2)

M−1, while the other M individuals are frozen until the extinction
of that subtree, so that the process eventually returns to level M .

We then define a square matrix X(2)
M of which the entries are the rate at which a

new child is produced at level M which generates a tree eventually becoming extinct
under the constraints of the last approximation. For instance, in a two-phases MBT,
the nonzero elements of X(2)

M are

Transitions Rates

(i, S1, S2)→ (i, S1 + 1, S2 − 1) S2

(
B2,11 (x(2)

M−1)1 + B2,21 (x(2)
M−1)2

)

(i, S1, S2)→ (i, S1 − 1, S2 + 1) S1

(
B1,22 (x(2)

M−1)2 + B1,12 (x(2)
M−1)1

)

(i, S1, S2)→ (i, S1, S2) S1

(
B1,11 (x(2)

M−1)1 + B1,21 (x(2)
M−1)2

)

+ S2

(
B2,12 (x(2)

M−1)1 + B2,22 (x(2)
M−1)2

)
,

with S1 + S2 = M .
The additional term T (2)

M is then given by

T (2)
M = FM−1

∑

n≥1

[
(−C̄M )−1 X(2)

M

]n
(1− LM 1).

These two improved sequences are heuristically shown to converge to the extinction
probability q̂, and we observe that T (2)

M ≥ T (1)
M , as illustrated in the first example

below, so that the second sequence x(2)
M is actually faster than the first one.

Example 8.6.1. Take the supercritical exponential MBT with Poisson(β) catastrophes
with parameters λ = 20, µ = 12, β = 5, and δ = 0.5 from Example 8.4.2. We represent
on Figure 8.6 the approximations G1(M), x(1)

M and x(2)
M , as a function of the level M .

For M = 112, we obtain q̂ = 0.7728 with a precision of 10−5, which is in accord with
the results obtained using the numerical methods for partial differential equations.

We see that the two improved sequences converge to q̂. However, it is more compli-
cated to show that they are monotone increasing, since the additional terms themselves
are not monotone increasing, as we see on Figure 8.7.

It is not easy to show that T (2)
M ≥ T (1)

M either: we would have to show that the set
of paths measured by T (1)

M , where an independence assumption is used, is included in
the set of paths measured by T (2)

M ; this is still a work in progress.
We plot on Figure 8.8 the logarithm (in basis 10) of the approximation errors

EM = q̂ − G1(M), E(1)
M = q̂ − x(1)

M and E(2)
M = q̂ − x(2)

M as functions of the level M .
This shows that convergences are linear.
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Figure 8.6: Approximations of the extinction probability q̂ as a function of M , using
the algorthm L and the two improved sequences.

We now fix β ε = 2.5. This means that the rate at which deaths occur by catas-
trophic events remains constant. We let the probability ε of dying due to a catastrophe
vary in the interval ]0, 0.5], and we plot on Figure 8.9 the extinction probability ob-
tained as a function of ε. We see that when ε tends to 0, the extinction probability of
the MBT undergoing catastrophes decreases to the extinction probability q = 0.725 of
the standard MBT (without catastrophes) which has the same mean behaviour, that
is with death rate µ′ = µ + β ε = 14.5 (see on page 151).

Indeed, Batoszynski et al. [7] already observed that frequent small catastrophes
affecting a branching process are in some sense equivalent to modifying the death rate
in the standard branching process.

Together with Example 8.5.1, it seems that the extinction probability of the stan-
dard MBT with the same behaviour as the MBT undergoing catastrophes is a lower
bound of the extinction probability of the latter. Also observe that µ(Â) ≤ 0 implies
q̂ = q = 1, but that µ(Â) > 0 implies q < 1 but not necessarily q̂ < 1.

Example 8.6.2. Let us return to the MBT from Example 8.2.6 which models the evolu-
tion of a female population undergoing catastrophes. From now on, our interest lies in
the extinction probability of this family, therefore the third phase in which the fertility
rate is zero is not useful anymore and we gather the two last phases together, which
leads to the following parameters

d =
[

0.018
0.026

]
, D0 =

[
∗ 1/15
∗

]
, B2,12 = 0.077,

the other entries of B being zero. We consider Poisson catastrophes with parameter β.
In the first numerical experimentation, we fix at ε = [0.6, 0.4]T the probabilities

of dying at a catastrophe epoch in each phase, and we represent on Figure 8.10 the
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Figure 8.7: Additional terms T (1)
M and T (2)

M corresponding to the two improved se-
quences x(1)

M and x(2)
M , as a function of the level M .

successive approximations of the extinction probability for three values of β: the plain
line corresponds to β = 1/10, the dashed line corresponds to β = 1/50, and the dotted
line corresponds to β = 1/120. In each pair of curves, the upper curve shows the
extinction probability given the process starts with one child (phase 1), and the lower
curve is given that it starts with one adult (phase 2).

As expected, the higher the catastrophe rate, the higher the extinction probability.
We also observe that the probability for a family to get extinct with a maximal size M
is higher if we start with one child and the catastrophes occur at rate β = 1/120 than
if we start with one adult and the catastrophes occur at rate β = 1/50, for M ≤ 7.

In our second experimentation, we fix the catastrophe rate at β = 1/50, and we let
the two components of ε vary between 0 and 1. The resulting extinction probability
given the process starts with one child is plotted on Figure 8.11. We see that the
extinction probability is more affected by the variation from 0 to 1 of the component
ε2 than by that of ε1. It turns out that it is more important that the catastrophes keep
adults alive than children, the adults being able to procreate directly, and the children
having a high mortality rate.
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Figure 8.8: Logarithm of the approximation errors as a function of M , using the
algorthm L and the two improved sequences.
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Figure 8.9: Extinction probability as a function of ε with β ε = 2.5.
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Figure 8.10: Probability that the process eventually becomes extinct with a maximum
population size M , as a function of M , for three values of the parameter β: β = 1/10
(plain line), β = 1/50 (dashed line), and β = 1/120 (dotted line).
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Figure 8.11: Extinction probability as a function of the entries of the vector ε.





Conclusion and perspectives

Branching processes form a very rich field of applied probabilities, for which a large
amount of literature exists. Questions on branching processes are numerous, and the
sphere of applications is wide-ranging.

It is now apparent that algorithmic approaches based on matrix analytic methods,
as well as on numerical analysis, are suitable to investigate various questions about
branching processes. Here, we mainly focused on the extinction probability of a special
class of multitype branching processes; we also showed how to compute some of their
transient measures.

When individuals behave independently, the study of the extinction probability
actually boils down to finding the minimal nonnegative solution of a fixed point ma-
trix equation. We applied well-known methods, such as linear functional and Newton
iterations, but we did not settle for that: we went further by giving a probabilistic inter-
pretation to each algorithm. The physical interpretation and the convergence analysis
of the algorithms allowed us to better understand the properties of the branching pro-
cesses themselves.

When independence is lost due to external influences, the methods used previously
are no longer appropriate, and we have experienced much more difficulties to numeri-
cally evaluate the extinction probability.

We first turned to purely numerical methods to solve partial differential systems.
Plunging into that field was an interesting experience, as well as interacting with nu-
merical analysts in order to solve a problem in probability. As already mentioned, we
are currently still working on those techniques; we would like to generalize them to the
multiphase case, and to find a rule for the optimal choice of the time step to ensure
the convergence of the semi-Lagrangian method.
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Then, we returned to probabilistic methods; we analyzed in depth the behaviour of
the branching process when imposing constraints on the external process. We also used
the structured Markov chain approach, which is actually shown to be a very efficient
method to compute the extinction probability, as well as transient measures, when the
number of phases in the lifetime of individuals is small.

Again, going far in the numerical and probabilistic analysis of branching processes
under external influences allowed us to well understand how these processes really
work.

As pointed out in the text, other interesting questions arise from our developments,
especially in the last two chapters. For instance, in Sections 7.2 and 8.2, we defined a
standard MBT which behaves on the average like an MBT under external influence;
other transient measures of the two processes and their extinction probability should
be compared; we also refer to Sections 7.3 and 8.3 where we exposed the extinction
criteria of an MBT under external influence as a limit that we would like to simplify, and
to Section 8.6 where we presented two improved sequences to evaluate the extinction
probability, of which the convergence and the comparison still need to be theoretically
studied.

We applied the model of the Markovian binary tree to telecommunications [30, 31]
and to demography, which are two fields for which real data were easy to obtain.
After discussing with several biologists, we realized that real data about animal or cell
populations are much more difficult to find. Nevertheless, we still hope to be able to
use the MBT, as well as the theory related to reducible branching processes, to model
real biological phenomena.
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