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CHAPTER 1

Introduction

The brain has been the center of attention for centuries. It is believed to be the
center of awareness and consciousness, since the early days. Hippocrates [400BC]
supported that idea in his account of epilepsy (“On the Sacred Disease”) :

Men ought to know that from nothing else but the brain come
joys, delights, laughter and sports, and sorrows, griefs, despon-
dency, and lamentations. . . . And by the same organ we be-
come mad and delirious, and fears and terrors assail us, some
by night, and some by day, and dreams and untimely wander-
ings, and cares that are not suitable, and ignorance of present
circumstances, desuetude, and unskillfulness. All these things
we endure from the brain, when it is not healthy. . .

However, at first sight the brain seems inert, thus Aristotle advocated that it
was merely a cooling system for the blood, and that the heart was where the center
of consciousness should be [Mason, 1962]. Of course, with today’s progress this idea
seems asinine and the complexity of the brain never ceases to amaze.

In fact, the brain is the most complex biological machinery known to man;
even with all the progress that has been accomplished in its study, it’s inner work-
ings still remain a mystery. The 1990s were declared years of the brain because
of the general resolution to decipher exhaustively the cerebral code. This has led
to a expanding of neuroscience research centers. Today, the workings of individ-
ual neurons are well understood and analyzed in great details, but the way they
interact and collaborate to generate high-level behavior is still very difficult to de-
cipher. However, modern methods of observation highlighted the brain’s high-level
of organization. For instance, being able to observe larger groups of cell has led
to discoveries such as the place cells: a group of neurons activating simultaneously
depending on spatial localization of a subject O’Keefe and Dostrovsky [1971]. Fur-
thermore, the complexity and high dimensionality of this deciphering task has led
to the creation of a new field: the computational neuroscience.

One particular aspect of the brain has been the center of the studies in the
recent decades: the memory. The brain shows incredible properties when it comes
down to store, process and recall information. For one, its capacity seems limitless,
in time and space; moreover, the brain seems very good at working with partial
information and still manages outstanding performance (i.e: recognizing the face
of someone from a partial (or blurry) picture).

The study of the brain has touched many fields, such as philosophy, biology,
psychology, but it has also spread in the past decade to research domains such as
computer science, engineering and mathematics (with dynamical system theories).
But in these fields, the research was not only about understanding the brain, but
also trying to reproduce some of its wonders. As many other phenomena occurring
in nature, the brain became a source of inspiration.

1



2 1. INTRODUCTION

From the beginning of mankind, there has always been a desire to build a man
or an artificial intelligence (e.g: the golem or the pygmalion myths). This idea
has been modernized and the current holy grail of these researchers is to create
intelligent robots.

Pascal is credited with the first realization of an “intelligent” machine, the first
mechanical digital calculating machine, in 1642. Even if this is not what someone
would call intelligence today, it still was a huge leap since nobody thought that
cognitive human activity could be automatized. Which begs the question: how
does one properly define intelligence?

Unfortunately, this question has no correct answer: while modern computers
can outperform any man when it comes down to doing calculus, they fail to perform
some very easy tasks for any human such as learning to speak. Nevertheless, this
did not keep scientists from trying to reproduce these features. It is possible to
have computers play games, do advanced mathematics (such as analytic resolution
of equations, theorem proving, . . . ) or even mimic human conversation. The more
complex tasks machines were able to perform, the more defining “intelligence”
properly seemed impossible.

In the 1950s, Alan Turing came up with a test that was supposed to help
determine a machine’s sentience. The basic idea behind this “Turing Test”: a
human judge engages in a natural language conversation with one human and one
machine, all participants being placed in isolated locations. If the judge cannot
reliably tell the machine from the human, the machine is said to have passed the
test. Even if this may appear trivial or unhelpful, Turing underlined something
very important: instead of trying to define intelligence, it is probably best to see
if the system is able to output behavior that an arbitrary observer will qualify as
intelligent. This is a trend that pretty much defines modern artificial intelligence,
where researchers try to reproduce intelligent behavior observed in humans (and
particularly in the brain).

Humans operate by manipulating high-level symbols when doing “intelligent”
tasks. This observation has given birth to the traditional approach of artificial
intelligence (AI, also described today as symbolic artificial intelligence). This idea
is closely related to the computationalism theory, which argues that mental activity
is computational. In other words, the mind operates purely by performing formal
operations on symbols (much like a Turing machine). In this theory, the brain is
just a biological implementation of symbolic processing machines.

In 1980, the philosopher Searle [1984] described the “Chinese room argument”
experiment. This experiment requires a non-Chinese-speaking person to sit in a
room, where he/she receive messages written in Chinese; after this, the subject was
given a detailed response to provide, so the Chinese interrogator was convinced that
the person in the room understood Chinese. Searle described this as a symbolic
manipulation without having any real understanding of what those symbols mean,
and claimed that it was similar to what computers do.

Searle agrees that computers will eventually be able to perform every intel-
lectual feat humans are capable of, yet will still be lacking subjective conscious-
ness. Searle’s position has been called weak AI, and contrasts with strong AI,
which claims that intelligent machines will eventually possess consciousness, self-
awareness and emotions. Computationalism supports the same idea as strong AI
from another perspective: instead of claiming that machines can have consciousness,
it claims that the human (whom have consciousness) are (symbolic computational)
machines.
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Still according to Searle [1992], the computers lack the principle of causality,
while “the brains cause the minds”, this cannot be said about the output of a
computer and its constitutive silicon chips.

The eighties put heavy criticism on the top-down approach and symbolic AI,
resulting in the creation of the connectionist and bottom-up approach. Given the
context in which the connectionist models have come to be, they were always con-
sidered an orthogonal approach to the computationalist models.

Based on the architecture of neurons, synapses and dendrites in the brain,
the neural network models became the most famous and widely used connectionist
models. Neural networks are classified in two main groups, the feed forward neural
networks (where data is propagated linearly from input to output) and the recurrent
neural networks (RNNs). The feed forward networks are unlikely from a biological
point of view, but have produced successful practical applications. On the other
hand, recurrent neural networks are biologically plausible, but still need to find a
convincing application.

This thesis is in line with the current connectionist effort: gaining a better
understanding of the non-linear dynamical phenomena occurring in fully recurrent
neural networks, hoping to discover engineering and/or cognitivist applications. It
presents a neural network model for memory-like tasks, based on a set of assump-
tions that, for the last twenty years, have been expressed in the fields of information
processing, neurophysiology and cognitive sciences.

The first assumption states that the brain is a dynamical system and thus
possesses attractors, which are the natural way to encode information. Thus, the
proposed neural network model should support complex dynamics. Recurrent neu-
ral networks fit perfectly this role and can be studied as dynamical systems, which
in turn guarantees the presence of attractors. From there, the model must encode
information in the attractors present in this system and retrieve information by
stimulating the network so as to trap its dynamics in the desired item’s basin of
attraction. The reasons behind the use of dynamical attractors can be found in
their intrinsic stability and robustness. Since Grossberg [1992] and Hopfield [1982]
precursor works, the privileged regime to code information has been fixed-point
attractors.

Others have reported that the brain’s dynamics are much more complex than
fixed-point attractors and are more likely to be cyclic and weak chaotic regimes [Babloy-
antz and Lourenço, 1994; Nicolis and Tsuda, 1985; Rodriguez et al., 1999; Skarda
and Freeman, 1987]. In addition to those evidences from biology, many theoreti-
cal and experimental works have shown and discussed the poor storing capacity of
networks using only fixed-points attractors [see Amit et al., 1985; Domany et al.,
1995, for review]. Molter and Bersini [2003a,b] have shown how networks with a
randomly generated synaptic matrix allows the manipulation of a huge number of
static and above all cyclic attractors for information encoding. An information is
made of a pair of data: the stimulus and the corresponding limit cycle attractor.
Promising results were obtained showing both a high encoding potential and a re-
lationship between this potential and the chaotic dynamics present in the network:
high potential networks have a stronger presence of chaotic dynamics.

The second quasi-unanimous view shared amongst researchers is that the learn-
ing mechanism of a neural network is somehow based on a local Hebbian mechanism.
Such algorithms learn information through a supervised practice or by revealing
some statistical regularities in the data through an unsupervised process. This
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thesis proposes various learning algorithms and studies their properties and conse-
quences. It first covers the gradient-based learning algorithm and shows how this
class of learning process is inadequate for memory-like tasks. Later three different
Hebbian learning algorithms are proposed. Each algorithm tries to relax constraints
existing in the previously proposed one. For example, the first algorithm is super-
vised and learns a priori defined data sets. The second is still supervised, but this
time generates itself the output to learn and only the stimuli are a priori specified.
Finally, the last algorithm features an unsupervised online learning policy to avoid
the supervision in the learning phase, and also tries to be more biologically plausi-
ble, where as the other algorithms obviously are not. However, it is important to
note that, even if the system is supported by some biologically unlikely hypothe-
ses, it is possible to show that important properties of the system are invariant in
regards to those hypotheses.

Even if scientists agree on the presence of dynamics in the brain and most of
them admit that those dynamics are not simple fixed-point attractors, the presence
of chaos (and benefits it can provide to a system) stays a much more debated
hypothesis. Even though no practical application has yet seen the day, chaos plays
an important role in the ideas discussed in this thesis. Nevertheless, chaos is not
used as is when building memory models with recurrent neural networks. Here,
chaos is more an outcome of the learning rather than a fundamental actor whose
utility can be easily identified and exploited.

Since the seminal paper of Skarda and Freeman [1987], many authors share the
idea that chaos is the ideal regime to store and efficiently retrieve information in
neural networks [Freeman, 2002; Guillot and Dauce, 2002; Kaneko and Tsuda, 2003;
Pasemann, 2002]. Theoretically speaking chaos inherently possesses an infinite
amount of cyclic regimes that can be exploited for coding information. Moreover,
it randomly wanders around these unstable regimes in a spontaneous way, thus
rapidly proposing alternative responses to external stimuli and being able to easily
switch from one of these potential attractors to another in response to any incoming
stimulus. More recently, the increasing power of computers and the development
of new statistical mathematics demonstrated the necessity to rely on more complex
dynamics [e.g. Kenet et al., 2003].

The goal of this thesis is to take a closer look at neural networks with a brain-
like memory application in mind. It aims at providing a biologically plausible
model that can reproduce or mimic observations made by neuroscientists. Yet, it is
not built to predict or accurately model the brain of a particular living being. The
model is voluntarily kept as simple as possible in order to highlight the fundamental
requirements behind different complex features of the brain. Incidentally simple
models are much more computationally friendly and thus can help building larger
networks within a given technological limit.

In Chapter 2, various preliminary notions are reviewed for a better under-
standing of this work. This chapter covers three major subjects: in the first part, a
biological background is established, ranging from neurophysiology to the definition
of memories. The goal is to give the reader a comfortable understanding of what
is assumed about the brain and its inner working. The second part of this chapter
discusses connectionism and gives a short review of this very large field. It tries
to legitimate the choice of neural networks to model brain-like memory instead of
a more classical computational approach. Finally, as suggested earlier, complex
dynamics seem to be a very important part of the brain activity and thus naturally
need to be present in a memory model. The last part of this chapter provides an
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introduction to the dynamical system theory and to the numerical tools used all
along the thesis.

Chapter 3 starts by introducing the related approaches and comparing them
to what is done here and how they can be used or related to the problem at hand.
Next, it presents the model used through this thesis, in its most generic form.

Based on the results of Molter and Bersini [2003a,b] the next step was obviously
to propose a learning algorithm that can achieve similar results autonomously. This
thesis takes a look at classical approaches (i.e: gradient descent) even if they are not
very likely from a biological point of view [Molter, Salihoglu, and Bersini, 2004a].

After that, various algorithms are studied to match the results obtained with
random networks through learning. Two different learning tasks are proposed [Molter,
Salihoglu, and Bersini, 2007b] where the coding of information is done in robust
cyclic attractors. To follow neurophysiological observations, the learning of the
synaptic matrix was based on local asymmetric Hebbian mechanisms [Bi and Poo,
1999; Levy and Steward, 1983]. These algorithms are covered in Chapter 4.

The first task consists in mapping a set of external stimuli to a set of fully
specified cyclic attractors. The second task corresponds to a less supervised (and
biologically more plausible) mapping: the semantics of the attractors to be associ-
ated with the feeding stimulus is left unprescribed. In this view, what is analyzed is
the capacity of the network to create its own representations. Here these two types
of learning are called out-supervised and in-supervised. One of the most interesting
result shows that the more information is to be stored, the more chaos appears as
a regime in the back, erratically itinerating among brief appearances of the learned
attractors.

Chapter 5 analyzes these algorithms from different perspectives such as capac-
ity, noise tolerance and dynamics. These tests show that chaos does not appear
to be the cause, but the consequence of the learning. However, it appears as a
helpful consequence that widens the network’s encoding capacity. Also, chaos is
not a meaningless consequence of learning: by it very nature it is easy to identify
and thus can be put to good use to help the system during recall phases [Salihoglu
et al., 2007]. Basically, if the output of the system is chaotic, it is clear that the
system did not converge and needs help. This help can be provided with a simple
noise addition to perturb the system.

Noise in dynamical systems is usually considered a nuisance. However, con-
trary to intuition, it has been reported that noise can have beneficial effects [Uwate
and Nishio, 2005], especially in nonlinear systems driven by weak inputs. Such
a positive effect of noise was first investigated by physicists and globally termed
stochastic resonance [Moss et al., 2004; Wiesenfeld and Moss, 1995], in which the
signal-to-noise ratio is maximal for a nonzero level of noise. Since then, many neuro-
physiological evidences [Kitajo et al., 2003; Russel et al., 1999], and computational
models [Collins et al., 1995; Silberberg et al., 2004; van Vreeswijk and Sompolinsky,
1996] have demonstrated that noise can play a constructive functional role in brain
dynamics. Accordingly, it appears important to involve stochastic noise in brain
models to have a better understanding of the computational properties of internally
generated brain states [Destexhe and Contreras, 2006]. In line with these results, it
has been proposed that the presence of a low level of stochastic noise can result in
taming chaos by stabilizing the itinerant trajectories [Freeman et al., 1997; Kozma,
2003]. Here, after learning, depending on the initial state of the network, the dy-
namic iterates through a chaotic trajectory. It is shown how adding stochastic noise
helps in the retrieving task. It has a positive effect because it stabilizes the chaotic
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trajectories in the expected learned limit cycle attractor. Moreover, chaos also has
implicit side effects such as its ability to fill the space and avoid proliferation of
spurious data [Molter, Salihoglu, and Bersini, 2006a]. In this perspective, symbolic
investigations on the dynamical attractors obtained when the network is fed with
ambiguous stimuli are performed.

Even though those algorithms provide good results, they lack biological likeli-
hood. In this regard, the proposed model needs to be improved. Even if the nature
of information, and particularly memories, in the brain remains an open question,
some theories seem more likely than others. In that regard, one logical step is to
build a memory model based on those theories. More than fifty years ago, Hebb
proposed the cell assembly theory of cortical associative memory [Hebb, 1949]. In
this theory, each memory is defined by a cell assembly, i.e. a set of cells having
strong synaptic weights between each others due to the well-known Hebbian rule
of synaptic plasticity. The functional principles underlying that theory of mem-
ory have been formalized mathematically as attractor neural networks, and it is
still today a working concept in the neuroscience community for the understanding
of how the brain works. This thesis tries to conciliate these two views and pro-
poses the encoding of information in predefined cell assemblies, here noted CA(s),
characterized by complex dynamics based on a very simple rate firing model.

To validate this model as a memory, Chapter 6 tests it for two defining features:
first, the ability to recover the full information from partial stimulation (content
addressability), second, the ability to maintain a memory of the stimulus in the
network’s dynamics (working memory). The working memory appears as a fun-
damental component in the realization of higher cognitive functions, and defines
the ability to hold and manipulate limited amounts of information during short
time periods [Baddeley and Hitch, 1974]. The neural basis of the working memory
has been widely investigated in primates with single cell recordings [Fuster, 1973;
Fuster and Alexander, 1971; Rainer et al., 1998] and neuroimaging tools [Cohen
et al., 1997]. It was demonstrated that some of the cells which were responsive to
the stimulus maintained their activity during a short period after stimulus offset.
In response, several computational models have already shown that cell assemblies
could work as working memory by actively holding a limited amount of information
for a short time (e.g: [Compte et al., 2000; Durstewitz et al., 2000; Molter et al.,
2009; Mongillo et al., 2008]).

Next, as always, the model needs to be supported by a robust learning pro-
cedure. In Chapter 7, a hybrid procedure is proposed to create cell assemblies
in response to external stimuli. The procedure combines two biologically plausi-
ble mechanisms. First, the rapid Hebbian/anti-Hebbian learning of the network’s
recurrent connections to create the cell assemblies. Second, a slow feedback mech-
anism to organize the incoming connections for the stabilization (or destruction) of
the cell assemblies. This retroaxonal feedback has been observed on several levels
in the brain [Buss et al., 2006; Hamburger, 1992, 1993; Oppenheim, 1991] and has
recently been suggested as a plausible mechanism for stabilizing neuronal activ-
ity [Harris, 2008]. Results show that the obtained CAs exhibit similar behavior as
the pre-encoded ones.

This algorithm is reminiscent of a long tradition of models promoting the un-
supervised self-organization of information in neural networks, such as the adaptive
resonance theory (e.g. [Carpenter and Grossberg, 1988; Grossberg, 1993]) or the self
organizing maps (e.g: [Kohonen, 1982, 2001]). However, this model differs radically
regarding the nature of the expected dynamics. While in the former models the
successful encoding/retrieval of information was characterized by simple dynamics
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(usually in the form of fixed point attractors), here, following the idea that the
presence of chaotic dynamics can boost the network’s capacity [Molter and Bersini,
2003a,b], complex dynamics were enforced as much as possible.

Finally, this model is proposed as a working paradigm for the formation of a
cognitive map. In that view, a map results from the juxtaposition of several cell
assemblies associated with the environment’s set of stimuli. After learning multiple
maps, a context layer is used to help recover the map a stimulus belongs to. In
return, the context knowledge (from the previous stimuli or top-down control) can
help identify noisy stimuli and can precisely help to disambiguate external stimuli,
which could be associated with CAs from multiple maps. This model of cognitive
map formation based on the creation of cell assemblies is an alternative to the view
that a cognitive map is characterized by a continuous attractor [McNaughton et al.,
2006; Samsonovich and McNaughton, 1997].
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CHAPTER 2

Background

The work covered in this thesis is at the intersection of several fields. This chap-
ter introduces them and establishes a sufficient background for the reader, as well
as setting a common vocabulary. The first section covers the roots of this work: the
neuro-physiological and neuro-dynamical observations. The second section looks at
the cognitive theory of the brain. More interest is given to the memory forma-
tion, storage and processing in the third section. The fourth section introduces the
hippocampus, which is a region of the brain very closely involved in memory forma-
tion. The fifth section presents computational models of biological neural networks,
ranging from simple models (inspired by biological facts and evidences) to complex
models that try to be accurate and predictive of the real biological systems they
represent. Eventually, this overview legitimates the neural network model devel-
oped in this thesis. The last section introduces nonlinear dynamical systems, its
theory and various mathematical tools used to analyze their dynamical properties.
As shown in this work, complex dynamics are an important part of neural systems
and seem favorable to computational models in common memory related tasks (i.e:
improving the capacity of the system to: store information, correctly recall them,
. . . ). Finally, the last section also defines and describes the tools used to analyze
the dynamical properties of such neural networks.

1. Neurophysiology

1.1. The Brain. All vertebrate, and most invertebrate, animals are char-
acterized by the presence of a central nervous system, the brain. This part of
the anatomy is extremely complex, even in simple animals, yet alone the human.
The cerebral cortex of the human brain contains billions of neurons, depending
on gender and age [Pelvig et al., 2008], linked with up to 10,000 synaptic connec-
tions each. Each cubic millimeter of cerebral cortex contains roughly one billion
synapses [Alonso-Nanclares et al., 2008].

From a philosophical point of view, it seems that the most important function of
the brain is to serve as the physical structure underlying the mind. From a biological
point of view, though, the most important function is to generate behaviors that
promote the welfare of an animal. Brains control behavior either by activating
muscles, or by causing secretion of chemicals such as hormones. Even single-celled
organisms are capable of extracting information from the environment and acting in
response to it [Gehring, 2005]. For example, sponges, which lack a central nervous
system, are capable of coordinated body contractions and even locomotion [Nickel
et al., 2002]. In vertebrates, the spinal cord by itself contains the neural circuitry
capable of generating reflex responses as well as simple motor patterns (such as
swimming or walking [Grillner and Wallén, 2002]). However, sophisticated control
of behavior, based on complex sensory input, requires the information-integrating
capabilities of a centralized brain.

9
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Despite rapid scientific progress, much about how brains work remains a mys-
tery. The scientific community now understands the operations of individual neu-
rons and synapses in considerable details, but the way they cooperate in ensembles
of thousands or millions has been very difficult to decipher. Methods of observation
such as electroencephalogram (EEG) recording, and functional brain imaging shows
that brain operations are highly organized, but these methods do not have the res-
olution to reveal the activity of individual neurons [van Hemmen and Sejnowski,
2005].

The brain is composed of two cell classes, the glia and the neurons. Even if
there are roughly the same amount of each cell’s type in the brain, the reason
neurons get more attention comes from their ability to send signals to each other
over long distances [Kandel et al., 2000]. This occurs through a thin protoplasmic
fiber, called axon, extending from the cell body.

The axon projects itself, usually with numerous branches, to other areas, which
may be nearby or in distant parts of the brain (or body). The signals transmitted
by the axons are called “action potentials” and appear as electrochemical pulses.
It lasts less than a thousandth of a second and travels at speeds of 1 to 100 meters
per second along the axon. Some neurons emit action potentials constantly, usually
in irregular temporal patterns (at rates of 10-100Hz); while other neurons are quiet
most of the time, but occasionally emit a burst of action potentials.

These signals are transmitted to other neurons (or to non-neuronal cells) by
means of specialized junctions called “synapses” [Kandel et al., 2000]. A single axon
may make as many as several thousand synaptic connections. When the action
potential reaches the synapse, it causes the release of neurotransmitter from the
synaptic vesicles. The neurotransmitter binds to receptor molecules in the target
cell’s membrane. There are different neuronal receptor types: excitatory, meaning
they increase the rate of action potentials in the target cell; inhibitory, meaning
they decrease the rate of action potentials; or have complex modulatory effects on
the target cell.

It is important to note that the brain is not an all-electrical continuous network,
it needs biochemical changes to propagate signals. This is a key element of learning
that exists in the brain. It also explains how by modifying biochemical reactions,
different factors like drug or alcohol consumption can influence the perceptions.
Psychotropic drugs often act precisely in the same way as these neurotransmitters.

1.2. The Nerve Cell: The Neuron. The neuron is an excitable cell of the
nervous system, whose role is to receive, to process and to transmit information.
They are a core component of the brain, the vertebrate spinal cord, the invertebrate
ventral nerve cord, and the peripheral nerves. However, not all neurons serve the
same purpose; they are usually classified according to their function. There are
sensory neurons1, the motor neurons2, the interneurons3.

The sensory neurons respond to stimuli, affecting cells of the sensory organs
(i.e.: touch, sound, light, ...), and carry those nerve impulses from receptors (or
sense organs) towards the central nervous system. Motor neurons are usually lo-
cated in the central nervous system and project their axons outside the central
nervous system. They receive signals from the brain and spinal cord, and they
directly, or indirectly, control muscles contractions and affect glands. Interneurons

1The sensory neurons are also known as the afferent neurons (or afferent nerves).
2The motor neurons are also known as the efferent neurons or efferent nerves.
3The interneurons are also called “intrinsic neurons”, relay neurons, association neurons or

local circuit neurons
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are multi-polar neurons which connect afferent neurons and efferent neurons in neu-
ral pathways within the same region of the brain or spinal cord. The interneurons
can also have connections with other interneurons to form a complex network (e.g.
in the CA3 layer of the hippocampus). Like motor neurons, they are always located
in the central nervous system and form the largest group in the nervous system.

Sensory neurons respond to stimuli, and communicate the presence of stimuli to
the central nervous system. The central nervous system processes those information
and if necessary sends responses to other parts of the body for action. Neurons
do not go through mitosis, and usually the brain cannot replace them after their
destruction; however astrocytes4 have been observed to turn into neurons, as they
are sometimes pluripotent.

Dendrites

Direction

of impulse

Axon

Nerve impulse

Axon

Neurotransmitters Receptor molecules

Dendrite 

of receiving 

neuron

(a) (b)

Figure 2.1. (a) Basic description of a neuron, its action poten-
tial and the neurotransmitters involved in the transmission of the
nerve impulse to other nerves or muscles. (b) “Schematic” action
potential in a neuron. Below a certain threshold the neuron fails
to fire, above that threshold through a depolarization a spike oc-
curs. With repolarization of the membrane, the spike ends and is
followed by a refractory period where no other action potential can
occur.

Even though neurons can have a great diversity in their function in the nervous
system, they all are highly specialized for the processing and transmission of cellular
signals. They can have a wide variety in their shape, size, and electrochemical
properties but four morphologically defined subparts are always present (as shown
in Figure 2.1):

(1) The soma5 is the central part of the neuron. It contains the nucleus6 of
the cell, and is where most protein synthesis occurs.

(2) The dendrites of a neuron are short cellular extensions with many branches
(metaphorically this overall structure is referred to as a dendritic tree).
This is where the majority of input to the neuron occurs.

4Astrocytes are a sub-type of glial cells [Kolb and Whishaw, 2008]
5The soma is also known as the cell body.
6The neuron’s main genetic information is found in the nucleus.
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(3) The axon is a finer, cable-like projection, which can extend up to tens of
thousands of times the diameter of the soma in length. The axon carries
nerve signals away from the soma (and carries some types of information
back to it). Many neurons have only one axon, but this axon may - and
usually will - undergo extensive branching, enabling communication with
many target cells. The tips of the axon, called “presynaptic terminals”,
come into close contact with the dendrites of other neurons or with mus-
cles.

(4) The axon terminal contains synapses, specialized structures where neuro-
transmitter chemicals are released in order to communicate with target
neurons.

1.3. Development of the Brain. The brain does not simply grow; it devel-
ops in an intricately orchestrated sequence of steps. Many neurons are created in
special zones that contain stem cells, and then migrate through the tissue to reach
their ultimate location. Once a neuron is in place, it begins to extend dendrites and
an axon into the area around it. Axons, because they commonly extend a great
distance from the cell body and need to make contact with specific targets, grow
in a particularly complex way. The axon is attracted or repelled by various cellular
elements, and thus is oriented in a particular direction at each point along its path.
Considering the entire brain, many thousands genes give rise to proteins that influ-
ence axonal path finding. However, the genes only partly determine the synaptic
network that finally emerges. In many parts of the brain, axons initially ”over-
grow”, and are then “pruned” by mechanisms depending on neural activity [Purves
and Lichtman, 1985].

In humans and many other mammals, new neurons are created mainly before
birth, and the infant brain actually contains substantially more neurons than the
adult brain. There are, however, a few areas where new neurons continue to be
generated throughout life. The two areas where this is well established are the
olfactory bulb, involved in the sense of smell, and the dentate gyrus of the hip-
pocampus, where there is evidence that the new neurons play a role in storing
newly acquired memories. With these exceptions, however, the set of neurons that
is present in early childhood is invariant through life. (Glial cells are different: as
with most types of cells in the body, these are generated throughout the lifespan.)

Although the pool of neurons is largely in place by birth, their axonal connec-
tions continue to develop for a long time afterward. In humans, full myelination7

is not completed until adolescence [Paus et al., 2001].

There has long been debates about whether heredity or upbringing was re-
sponsible for the qualities of mind, personality, and intelligence. The nature versus
nurture debate [Ridley, 2004] is not just a philosophical question: it has great
practical relevance to parents and educators. Although many details remain to be
settled, neuroscience clearly shows that both factors are essential. Genes determine
the general form of the brain, and how the brain reacts to experience. Experi-
ence, however, is required to refine the matrix of synaptic connections. In some
respects, the development of the brain is mainly a matter of presence or absence of
experience during critical periods of development [Wiesel, 1982]. In other respects,
the quantity and quality of experience may be more relevant: for example, there
is substantial evidence that animals raised in enriched environments have thicker

7Myelination helps prevent the electrical current from leaving the axon by forming a myelin

layer around axons. It is essential for proper functioning of the nervous system.
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cortices (indicating a higher density of synaptic connections) than animals whose
levels of stimulation are restricted [van Praag et al., 2000].

At some point, authors thought that the genome provided the whole informa-
tion contained in the brain. For example, Gazzaniga [1992] said:

In the original Sperry view of the nervous system, brain and
body were developed under tight genetic control. The specificity
was accomplished by the genes’ setting up chemical gradients,
which allowed for the point-to-point connections of the nervous
system.

However, if each pair within the human genome could encode 1 bit of infor-
mation, this will still only represent 3.5 109bits, which is way below the complexity
of the neural system present in the brain. On this basis, some neural and molec-
ular scientists have concluded that genes could not possibly have enough storage
capacity to specify all of these connections, their location and the type of neuron
required (and information for the rest of the body). As Changeux [1985] noted:

It seems difficult to imagine a differential distribution of genetic
material from a single nucleus to each of these tens of thousands
of synapses unless we conjure up a mysterious “demon” who
selectively channels this material to each synapse according to a
pre established code! The differential expression of genes cannot
alone explain the extreme diversity and specificity of connections
between neurons.

Aside from the theoretical considerations, solid empirical evidence comes from
experiments showing considerable variations in synapse configurations among iden-
tical clones growing in the same environment.

Through experience, short and long term changes happen in the brain. Those
changes, in the function and structure of the nervous system, are the natural adap-
tation of the brain in response to its environment. To explain this learning process
different forms of neural adaptation have been proposed. These neuronal changes
are most likely the physical basis of learning and memory. A typical classification
of these changes is relative to their persistence.

As explained above, the most persistent and major changes occur in the early
ages (up till childhood). During this period, there is a proliferation of nerve cells
and high level of organization through neural pathways formation. Environmental
interactions play a major part in this process and hence enable each individual’s
nervous system to be optimized for its own body’s geometry (e.g. the distance apart
of the eyes clearly affects the way the brain shapes itself [Bland, 1998]). Once this
process is complete, the nervous system remains nearly identical for the rest of
its lifetime. Changeux [1985] states that waves of synaptic growth occur; with
subsequent experiences serving to retain the useful, while eliminating the useless
and redundant ones. This hypothesis has inspired many evolutionary algorithms in
connectionist models often relying on some sort of randomness.

Other changes in the brain take the form of long and short-term adaptations.
Long-term adaptations are long lasting changes, which can range from mere hours
to years. This occurs by the means of synaptic efficiency modification8. It is
commonly accepted that there is no structural neural modifications at this stage.
Next part discusses more in details the long-term potentiation mechanism which

8Synaptic efficiency is also known as synaptic plasticity
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has been identified as responsible for this neural adaptation and which has given
rise to a family of learning algorithms in the connectionist models, known as the
Hebbian algorithms [Hebb, 1949].

Short-term adaptations reflect context modifications through fast behavioral
changes. The underlying hypothesis is that complex dynamics reflect the changes
and not synaptic changes. This allows the system to have strong behavioral changes
that will not last nor leave any trace until a long-term adaptation kicks in. This
neural adaptation based on dynamical processes is also called “dynamical adapta-
tion” [Guillot and Dauce, 2002]. A given neural group possesses different dynamical
attractors and goes from one to another based on the context.

1.4. Synaptic Plasticity. The pioneering investigations on the microscopic
structure of the brain, due to the Spaniard Ramón y Cajal [1894], suggest that
learning is not exclusively the product of new cell growth. In the late 19th, he sug-
gested that memories may be formed because of connection strengthening between
existing neurons (to improve their communication effectiveness). Later, Donald
Hebb introduced, what is now called, the “Hebbian theory”. In 1949, reminis-
cent of Ramon y Cajal’s suggestion, he proposed that new connections could grow
between cells to further enhance their ability to communicate. Hebb [1949] said:

Let us assume then that the persistence or repetition of a re-
verberatory activity (or “trace”) tends to induce lasting cellular
changes that add to its stability. The assumption can be pre-
cisely stated as follows: When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

This kind of neuronal plasticity is generally seen as a long lasting change in
synaptic strength (i.e. the facility for a pre-synaptic neuron to influence the poten-
tial of a post-synaptic neuron). This was later confirmed experimentally by Bliss
and Lomo [1973] with the discovery of the long-term potentiation (LTP) effect in the
hippocampus of rats. During the experiment, the authors have done brief tetanic9

electrical stimulation of an afferent pathway and observed an increase in synaptic
efficiency (lasting from hours to days). This proved that synaptic plasticity could
play a role in learning.

LTP synaptic changes have been observed in many other brain areas [Cooke
and Bliss, 2006]; however the hippocampus is still a particularly favorable [Malenka
and Bear, 2004] site for studying LTP because of its densely packed and sharply
defined layers of neurons. The best-studied form of LTP occurs at synapses that
terminate on dendritic spines and use the glutamate transmitter.

The Hebbian rule explained how mutual excitation of two cells strengthens
their connections. Hebb [1949] said:

The general idea is an old one, that any two cells or systems
of cells that are repeatedly active at the same time will tend to
become ‘associated’, so that activity in one facilitates activity in
the other.

The next step for this Hebbian rule is to account for the fact that memories can
be forgotten. This is suggested to happen through weakening of synaptic strength

9High-frequency.
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between two neurons when they are not active at the same time. Hebb [1949] also
has formulated this10 :

If the inputs to a system cause the same pattern of activity to
occur repeatedly, the set of active elements constituting that
pattern will become increasingly strongly interassociated. That
is, each element will tend to turn on every other element and
(with negative weights) to turn off the elements that do not
form part of the pattern. To put it another way, the pattern as
a whole will become ‘auto-associated’. We may call a learned
(auto-associated) pattern an engram.

This mechanism is caused by a long-term depression (LTD, opposite of LTP) [Kirk-
wood and Bear, 1994]. When nerve impulses reach the synapses at very low fre-
quency, they cause an LTD. Instead of becoming more efficient, the synaptic con-
nections are weakened.

The occurrence of these two mechanisms, amongst most of the synapses, has
lead to the assumption that they play an important role in the formation and
disappearance of certain types of memories. They are the most widely studied
cellular models of synaptic plasticity. A better understanding of these mechanisms
can lead to a better understanding of learning processes and memory formation.
But this does not stop with neuroscience, since those mechanisms have made their
way in the connectionist models as well, with the well known Hebbian synaptic
plasticity11, which has been the source of many algorithms.

2. The Physiological Basis of Behavior

The brain is a complex machinery which works simultaneously at several hier-
archical levels. Neuroscientists try to understand which level is relevant to produce
a given intelligent behavior. They have been able to locate various levels of this
hierarchy as a physiological basis for behavior.

2.1. Neurons and the Connectionist approach. The first approach has its
root in the work of Hubel and Wiesel [1962]. They have observed that certain cells
in the visual cortex respond to particular features presented at specific locations
in the visual field: they have found that various cells responded to simple features
(i.e. local edge having a particular location and orientation) while others had more
complex responses. This view later became known as the neural doctrine [Barlow,
1972], since it places the physiological basis of behavior at the level of individual
neurons. However, there are also lower levels to look at. One such level is the
biochemical changes at the synapse as the biological basis of behavior. Hameroff
and Penrose [1996] locate it at the level of microtubules (nano-sized tubules running
through neurons) which act as part of a quantum computer.

Later, authors such as Amari [1983]; Elman [1991]; Hopfield [1982]; Rosenblatt
[1962]; Rumelhart et al. [1986a,b]; Sejnowski and Rosenberg [1987] have suggested
that even though changes involved in learning behavior produce cellular and molec-
ular modifications, to be fully understood, these processes need to be studied at a
higher level. They started looking at it through the neural network layer, which

10This quotation is important and will be used again on the part about memories and is a

building block of the main contribution of this thesis.
11Discussed in detail in the next section.
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led to the development of basic brain’s model composed of inter-connected arti-
ficial neurons, where a weight between two units represents the strength of the
connections. This was later called the “connectionist approach”.

The connectionist approach can be further specialized in two major categories:
the feed forward networks, lacking any kind of recurrent connection in the system,
act as combinatory machines, and the self-organizing dynamical systems based on
recurrent neural networks. However, the foundation and the explanations of these
neural networks remain at the level of the action potential of single neurons.

2.2. Neurodynamics. The knowledge and understanding of the brain has
been mostly anatomical. While studies have proven, through brain lesion observa-
tions, that specific regions of the brain are associated to certain particular functions,
these studies struggle to provide any conclusive information on the relation between
those regions.

The idea of studying the dynamics behind the brain is not new. Neurodynam-
ics12 is an area of research at the borderline between neuroscience and nonlinear
dynamics, complexity theory and statistical physics. It is part of the cognitive
sciences, which focuses on the spatio-temporal characteristics of neural activity. It
uses complex system theory to study those dynamics and describe brain function. It
contrasts with the computational and modular approach of cognitive neurosciences,
which puts its focus on the study of biological substrates underlying cognition, par-
ticularly the neural substrates of mental processes and their behavioral manifesta-
tions.

Perceptions have changed with the development of new tools to study the brain.
Tools, such as the multi-electrode electroencephalogram (EEG) and magneto en-
cephalogram (MEG), functional magnetic resonance imaging (fMRI) and scanning
by positron emission tomography (PET-scanners), have allowed dynamic observa-
tions of the brain activity. These observations gave a look at the basis of behavior
from a dynamical system point of view.

As Freeman [2002] said:

Now, in the 21st century, the EEG will lead us in a remarkably
different direction of growth for the computing industry com-
pared to the one provided by action potentials of single neurons.

And earlier Skarda and Freeman [1990a] said:

We agree with Searle that “[pains] and other mental phenomena
just are features of the brain and perhaps the rest of the central
nervous system”, and that the important requirement for un-
derstanding this relationship is the distinction between micro-
and macrolevels of neural functioning, Our research has led us
to break with a foundational concept of contemporary research
on the nervous system, the “neuron doctrine”, that we and the
majority of our colleagues once accepted, but which we now see
as mistaken and as a source of misunderstanding in attempts to
comprehend the brain as the organ of behavior.

From a dynamical point of view, the output of a single neuron is too noisy
and unpredictable to be of any use, while the system as a whole is consistent and
produces a coherent pattern that can be associated to the stimulus which is at the

12The term Neurodynamics date back to the 1940s [Burrow, 1943].
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source of it. Skarda and Freeman [1990a] made one major experiment using EEG
to support this dynamical paradigm. The experiment can be described as follows.
They analyzed the olfactory bulb of the rabbit by simultaneously recording data
from different cortical areas during cognitive tasks with the use of EEG. Their
observations showed the existence of spatially organized patterns distributed across
the entire bulb in response to reinforced odorant, as well as strong presence of
chaotic dynamics. This chaotic dynamics seems to be the regime the brain goes
to during attentive waiting states. However, when a known odor is presented, the
dynamics shifts (through a bifurcation) to an almost cyclic dynamics.

Even though these results are local to the olfactory bulb, they still highlight
the need to take a closer look on the brain’s output with the tools and results of dy-
namical system theory. It has been clear since those results, that understanding the
global dynamical behavior of the brain is mandatory to understand the brain itself.
This has been called the dynamical hypothesis, for which a detailed introduction
can be found in [Guillot and Dauce, 2002].

However, the functional significance of those results remains a matter of debate.
Again according to Freeman [2000]:

Most neuroscientists of the “neuron doctrine” reject EEG and
MEG evidences, in the beliefs that recording wave activity is
equivalent to observing an engine with a stethoscope or a com-
puter with a galvanometer while the real work of brains is done
by action potentials.

Two important dynamical observations are very important; the first one is the
phenomenon of synchronization occurring between neuronal groups and the second
one is the presence of chaotic dynamics.

2.2.1. Synchronization of neuronal groups. When dealing with signals, two sig-
nals are synchronous if there is a relation between their phases and frequencies.
Since neurophysiology can describe neural activity as such signals, this definition
can be used here as well. Phase synchrony, also just called “synchrony”, indicates
that a neural group oscillates at a given frequency band with precise phase-locking
over a limited period of time [Nunez, 1981]. The common frequency bands are
identified as delta ([1, 4]Hz), theta ([4, 8] Hz), alpha ([8, 12] Hz), beta ([12, 30] Hz),
and gamma ([30, 80] Hz).

Gray et al. [1989]; Neuenschwander et al. [1996]; Skarda and Freeman [1987]
have done experiments on animals showing strong correlation between behavioral
states and transient periods of synchronization of neuronal groups in the gamma
range. Later, Rodriguez et al. [1999] obtained similar results in human beings
during visual cognitive tasks, while facing ambiguous visual stimuli. It appears
from their research that synchrony seems responsible for the binding of different,
but related, visual features so that the visual pattern can be recognized as a whole.
Others have proposed these periods of synchronization as a central mechanism to
integrate widely distributed neurons together into a coherent ensemble that reflects
a given cognitive act. In the same vein, Skarda and Freeman [1990b]; Varela [1995]
suggested that desynchronization could reflect a process of active uncoupling so
that the brain can go from one cognitive state to another.

2.2.2. Chaos in the brain. EEG analyses of different regions of the brain allowed
looking at the different dynamics the brain goes through, depending on the state the
subject is in. For example, deep anesthesia, coma, or brain death show a dynamics
which is an equilibrium steady state attractor, while epilepsy reflects as an abnormal
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phase synchrony among the entire brain, indicated by the presence of a limit cycle
attractor [Cohen et al., 2002]. During awake activity with no external stimulus, the
brain goes typically through an aperiodic unpredictable signal. Many authors, such
as Babloyantz and Destexhe [1986]; Nicolis and Tsuda [1985]; Skarda and Freeman
[1987], conclude that locally the brain background activity is a deterministic chaotic
dynamics. Deeper chaotic dynamics can appear globally (at the brain scale) but
this is often a sign of a pathological state (i.e. depressive state [Thomasson et al.,
2000]). During cognitive tasks (or when recognized stimuli are presented to the
brain), the brain’s dynamics usually shift to a limit cycle dynamics.

Following these observations, Sompolinsky et al. [1988] suggested the integra-
tion of chaotic dynamics into connectionist models (see section 5 on page 33 for
more details on these models) which implies that chaos may provide the basis for
flexibility, adaptiveness, and trial–and–error coping that enables the nervous sys-
tem’s interaction with an unpredictable and ever–changing environment.

Even if EEG measures, coupled with tools from the theory of nonlinear dynam-
ical systems, show chaotic dynamics on dendritic synaptic potentials and axonal
action potentials, according to Rapp [1993], these results should be taken with cau-
tion since they can be misled by the presence of pure noise. However, considering
chaotic dynamics as the basal state of behavior, and limit cycle attractors as the
signature of cognitive processes sounds appealing. Still, as suggested by Skarda and
Freeman [1990a]:

It is likely that there will remain substantial uncertainty for
some years, possibly decades, about the differences between a
limit cycle trajectory that aborts prior to convergence to a pe-
riodic attractor, a limit cycle attractor under perturbation by
noise, and a narrow spectral band chaotic attractor in which the
unpredictability appears in variation of phase or in frequency
narrowly about a mean.

Others [Skarda and Freeman, 1990b; Tsuda, 2001] suggested the possibility that
the brain processes information exclusively through chaotic dynamics. According
to this hypothesis, a cognitive process would reflect the passing from one chaotic
attractor to another. One consequence of this would be on memories, since they
would no longer be static elements of the brain, which can be retrieved and perfectly
recovered (as with fixed point or limit cycle attractor). Here, memory recovery is
an active process in which the brain re-creates it instead of recalling it. This of
course implies that memory can be altered in this process.

3. Memory

Artificial neural networks are very versatile tools; they are suited for a wide
array of tasks, but this thesis will look mainly at them from the perspective of
information encoding. When it comes to information encoding, recalling and pro-
cessing, the best known working model is the brain. The brain holds huge amount
of information ranging from very volatile memories to long lasting ones. It is still
not clear how the brain manages all its amazing feats, but the inner working of
the brain’s storing capability is a big inspiration when it comes to modeling infor-
mation storing devices. It is therefore important to better understand it, in order
to provide more insightful neural network models that mimic some of its features.
This section tries to clarify what hides behind a generic term such as memory.
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From the psychological point of view, memory is the organism’s mental ability
to store, retain and recall information. Traditional studies of memory began in the
fields of philosophy, and later cognitive psychology. More recently, it has become
one of the main pillars of a branch of cognitive neuroscience.

Considering a memory as a piece of information, three main stages are required
for its formation and retrieval. There is the encoding13: receiving, processing and
combining the information; the storage: creation of a permanent record of the
encoded information; and the retrieval14: calling back the stored information in
response to some cue for use in a process or activity.

Memory can be roughly divided into three main categories:

∙ sensory memory is the ability to retain impressions of sensory informa-
tion after the original stimulus has ceased.

∙ short-term memory is the capacity for holding a small amount of in-
formation, in an active, readily available state, for a short time period.

∙ long-term memory is a memory that can last from a few days to several
decades.

3.1. Sensory Memory. The initial 200 - 500 milliseconds after an item is
perceived correspond to sensory memory. It refers to items detected by the sensory
receptors which are retained temporarily in the sensory registers. It has a large
capacity for unprocessed information but is only able to hold accurate images of
sensory information shortly. A simple example is the ability to look at an item for
a very short time and remember what it looked like. Two types of sensory memory
have been particularly well studied, the visual sensory memory15 and the auditory
sensory memory16.

Earliest studies go back to 1740, when the German physicist and mathematician
Johann Andreas Segner conducted an experiment in which he attached a glowing
coal to a cartwheel and rotated the wheel at increasing speeds. Segner observed
that when the glowing coal completed a full rotation in less than 100ms the subjects
perceived only an unbroken circle of light.

Sperling [1960] was the first one to systematically study this effect. In his
experiments, the subjects were presented a grid of 12 letters over three rows during
a very short (50ms) period of time (a review for this can also be found in [Baddeley,
1999]). For example:

P Y F G
V J S A
D H B U

The first set of experiments, called “whole recall”, asked the participants to recall
as many letters as they could. The second one, called “partial recall”, repeated the
same exercise but with one additional information, before the letters were shown
the participants were told which row’s letters they would have to recall. Results
show that while subjects could recall about four letters during a “whole recall”
process, they were also able to recall an average of three of the four letters of the
given row in the partial recall process, even though they were told which row to
focus on before the whole letter grid was presented. This indicated that for a brief
time period the whole grid was available as a sensory memory to the subjects.

13the encoding is also known as registration.
14the retrieval is also known as recall.
15The visual sensory memory is also known as iconic memory.
16The auditory sensory memory also known as echoic memory.
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Sperling was able to show the capacity of sensory memory to be approximately 12
items, but that it degraded very quickly (within a few hundred milliseconds). This
degradation explains the inability to recall all the letters during the whole report
procedure, even though the whole grid is present as a sensory memory.

Sensory memory is very short lived and operates within a time frame of a
second. It is also characterized by being outside of conscious control (i.e. it happens
automatically and unbidden). Another important note about sensory memory is
its inability to be prolonged via rehearsal.

3.2. Working Memory. Despite retaining information for a very short pe-
riod of time, sensory memory is not to be confused with working memory17. It
allows recall for a period of several seconds to a minute (without rehearsal) of in-
formation in an active, readily available state. However, working memory has a
finite (limited) capacity, also called “memory span”. To test this memory span,
the subjects are presented with lists of items (e.g. digits or words) of increasing
length. A participant’s span is determined as the longest list length that he or she
can recall correctly in the given order on at least half of all trials. Miller [1956]
conducted an experiments showing that the store of working memory was 7 ± 2
items18.

Recent studies have shown this number to be accurate for college students re-
calling lists of digits, but memory span varies widely with the populations tested
and with material used. One example is word recalling, this exercise depends on
several characteristics of the words. Fewer words can be recalled when the words
have longer spoken duration (known as the word-length effect) [Baddeley et al.,
1975]. This is also the case when words’ speech sounds are similar to each other
(known as the phonological similarity effect) [Conrad, 1964]. On the other hand,
more words can be recalled when the words are highly familiar or occur frequently
in the language [Poirier and Saint-Aubin, 1996]. When the words come from a
single semantic category (such as sports) this also increases the performance of the
recall [Poirier and Saint-Aubin, 1995]. According to the available evidence, the
best overall estimate of working memory is about four pieces or chunks of infor-
mation [Cowan, 2001]. Most works on working memory have used verbal material,
while recent researches also covered visual working memory [Luck and Vogel, 1997],
and spatial working memory [Parmentier et al., 2005].

Even though the working memory has a very limited capacity, it is known it can
be increased through a process called “chunking”. For example, given the string:

FBIPHDTWAIBM

people are only able to remember a few letters; when the same information is
presented in the following way:

FBI PHD TWA IBM

people can remember a great deal more letters. This is a consequence of the brain’s
ability to chunk the information in meaningful groups of letters. Even if those
groups are meaningful, Simon [1974] showed that the ideal size for chunking letters
and numbers was three19.

17The working memory is also known as primary memory or active memory.
18Which is also the title of his famous paper: “The Magical Number Seven, Plus or Minus

Two”.
19In some countries, this may be reflected by the tendency to write and remember tele-

phone numbers by dividing them into chunks of three number (with the final four-number groups
generally broken down into two groups of two).
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In the 1960s, it was assumed that all memories pass from working to long-
term store after a small period of time. This model of the memory is known as
the “modal model” and has been made famous by Atkinson and Shiffrin [1968].
This model led to lots of controversies, i.e. whether all or only some memories
are retained permanently or even a more fundamental questioning on the genuine
distinction between the two stores.

Anterograde amnesia20 is one evidence in favor of the existence of a separate
working memory store. Patients suffering from this kind of amnesia have shown no
degradation in their ability to retain and recall small amounts of information over
short period of time (up to 30 seconds). However, their ability to form longer-term
memories show a dramatic impairment21 The goal of those experiments is to show
that amnesia spares the working store while long-term memory store clearly shows
a degradation.

Other studies support the evidence of two separate stores by disturbing one
store while leaving the other one unaffected by the process. Davelaar et al. [2005]
have shown that some manipulations (e.g., a distractor task22) impair memory for
the 3 to 5 most recently learned words of a list (presumably still held in working
memory), while recall from words learned earlier (presumably stored in long-term
memory) were unaffected. Other manipulations (e.g., semantic similarity of the
words) seem only to affect recall from earlier list words, but recall of recent words in
a list seems unaffected. These results indicate the two stores can vary independently
of each other.

As said earlier, not all researchers agree with this distinction, and some theories
support the hypothesis that memory is unitary over all time scales, from millisec-
onds to years [Brown et al., 2007]. The main reason behind this support comes from
the difficulty to find a clear boundary between working and long-term memory. For
instance, Tarnow [2008b] shows that recall probability vs. latency curve is a straight
line from 6 to 600 seconds, with the probability of failure to recall only saturating
after 600 seconds. One would expect to see some kind of discontinuity if there were
two distinct stores operating in this time frame. Earlier, Nairne and Dutta [1992]
has shown that the detailed patterns of recall errors look extremely similar whether
recalled immediately after learning (presumably from working memory) or after 24
hours (necessarily from long-term memory).

One biological basis can be given to working memory as the prolonged firing
of neurons which depletes the readily releasable pool (RRP) of neurotransmitter
vesicles at pre-synaptic terminals [Tarnow, 2008a]. The pattern of depleted pre-
synaptic terminals represents the long-term memory trace and the depletion itself
is the working memory. Endocytosis causes working memory to decay, after the
firing has slowed down. If the endocytosis is allowed to finish (the memory is
not activated again), the patterns of exhausted post-synaptic terminals become
invisible and the working memory disappears. The long-term memory remains as
the meta-stable pattern of the neuronal excitations.

20Anterograde amnesia is a loss of the ability to create memories after the event that caused

the amnesia occurs.
21A famous example is Henry Gustav Molaison , better known as patient HM or H.M. He

was a memory-impaired patient who was widely studied from the late 1950s until his death. His
studies played a crucial role in the development of theories that explain the link between brain
function and memory, and in the development of cognitive neuropsychology [Squire, 2009].

22One common distractor task involves: repeatedly subtracting a single-digit number from a

larger number following learning.
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Other models have tried to explain the reason behind the limited duration of
working memory. One hypothesis is the spontaneous decay of working memory
contents over time. This hypothesis has been part of many theories of working
memory (most notably the working memory model of Baddeley and Hitch [1974]).
Most models working on this hypothesis also suggest that a mechanism should
exist to work around this decay. Usually, it is suggested that this is achieved by
rapid cover rehearsal. The idea here is that, in order to overcome the limitation of
working memory (and retain information longer), information must be periodically
repeated (or rehearsed). This can be done by many means, i.e. articulating it
aloud, mentally simulating such articulation, etc. This allows the information to
re-enter the working memory store and be retained for a bit longer, until decay or
rehearsal.

But again, all researchers do not agree with this hypothesis; some say that
spontaneous decay does not play any significant role in forgetting [Lewandowsky
et al., 2004; Nairne, 2002], and found the evidences to be not conclusive [Jonides
et al., 2008]. Following that train of thought, authors have offered an alternative
form of interference: the simultaneous presence of multiple elements (i.e. digits,
words, pictures, . . . ) in the working memory store creates a competition between
those elements. In other words, each element degrades another element present in
the store. This enforces the idea that new contents gradually push out older ones.
The only way to preserve a memory, in the store, and shield it against interference
is by rehearsal or directing attention to it [Oberauer and Kliegl, 2006].

Before the term working memory was coined, this memory was referred as the
short-term memory. Since then the term short-term memory is more used to de-
scribe memory formed in the hippocampus, since it describes them more accurately.
Long-term memories are formed in the hippocampus, but before they can be stored
permanently in a long-term memory store they persist in the hippocampus (during
a period up to two month). It has been shown that those memories are clearly not
permanent, yet persist much longer than the usual working memory. The capacity
of this store does not show the limitation of the working memory either. It has been
also proved that this memory store is genuine, since brain damage can cause long-
term memory loss without affecting memory recently learned (which are clearly still
in the hippocampus). The hippocampus and its role in memory is covered in much
greater details in section 4 on page 26.

3.3. Long-term Memory. In contrast to sensory and short-term memory,
long-term memory indefinitely stores a seemingly unlimited amount of informa-
tion. It also differs structurally and functionally from short-term memory [Peterson
and Peterson, 1959]. A simple example is phone numbers: it is only possible to
remember a seven-digit number (without rehearsal) for only a few second, before
forgetting. However, given a context and meaning to this number (i.e. a phone
number of seven digits) it can be remembered for years, if there is some repetition;
the information is said to be stored in long-term memory. Where working memory
mainly stores information acoustically, long-term memory encodes it semantically.
For instance, Baddeley [1966] found that, after a period of time (20 minutes), par-
ticipants had less difficulty recalling words that had a similar meaning (e.g. big,
large, great, huge, . . . ). There is however a debate, since not all evidences sup-
port semantical encoding. The main structural difference between the long-term
memory store and the other ones is that it is not unified, but spread across several
regions of the brain.
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As stated earlier, rehearsal and meaningful association is believed to be part
of the process which allows a memory to be moved from working memory store to
long-term store. The underlying biological mechanisms of long-term memory are
still unclear, but the process of long-term potentiation (which involves a physical
change in the structure of neurons) has been proposed as the mechanism by which
working memories become long-term memories. Long-term memory is also subject
to fading in the natural forgetting process, and it needs several recalls (retrievals) of
a memory in order for it to last for years in long-term memory store (also dependent
on the depth of processing).

Some theories consider sleep to be an important factor in learning and long-term
memories. It has been considered that sleep consolidates and optimizes the layout
of implicit procedural memories23 [Robertson et al., 2004]. Other studies [Wagner
et al., 2004] found that after sleep there is an increased insight, that is, a sudden gain
of explicit knowledge (e.g. finding a hidden abstract rule underlying all sequences
to be recalled). This implies that during sleep the representations of new memories
are restructured.

Long-term memory is too generic to properly describe the structures underlying
it in the brain. As stated, this store is not unified; and long-term memories are
stored across several regions. Current views believe the long-term memory to be
divided into two major groups: the explicit memory (also known as “declarative
memory”) and the implicit memory (also called nondeclarative memory).

Declarative memory refers to all memories that are consciously available. These
memories are encoded by the hippocampus, entorhinal cortex, and perirhinal cortex,
but consolidated and stored elsewhere in the brain. The temporal cortex has been
proposed as a likely candidate for storage place of those memories but this is still
unproven. Amongst declarative memories, two further distinctions exist. There is
the episodic memory, which refers to memories of specific events in time, and the
semantic memory, which refers to knowledge about the external world (e.g. the
function of a pencil).

Nondeclarative memory is different from explicit memory in that it does not
require conscious thought. This memory is behind the ability to do things by rote,
and is not always easy to verbalize, since it flows effortlessly in human actions.
Two further distinctions also exists in nondeclarative memory. First, there is the
procedural memory, which refers to the use of objects or movements of the body
(e.g. ride a bicycle). This type of memory is encoded and believed to be stored
by the cerebellum and the striatum. Second, there is priming, which comes from
human ability to recall more quickly information acquired recently (but outside
working memory memory span) or repeatedly. For instance, when asked to name
an American city that starts with the letters Ch, most people will think of Chicago,
unless they have a close personal connection to or recent experience with another
Ch city (Charlotte, Cheyenne, Charleston).

Craik and Lockhart [1972] proposed that it is the method and depth of pro-
cessing that affects how an experience is stored in memory, rather than rehearsal.
Several experiments by other authors support this idea:

∙ Mandler [1967] showed that organization play an important role in learn-
ing. In his experiments, the test subjects were given a pack of cards
with one word on each, and were told to sort them any way they liked.
Later during the recall process, the participants were asked to remember
as many words as possible. Results pointed out there was a correlation

23One particular type of long-term memory, see next paragraphs for more details.
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between the number of categories and the number of words the subjects
could recall. Which in turn indicates that the act of organizing informa-
tion facilitates its recall.

∙ Tyler et al. [1979] conducted an experiment where people memorized
words presented to them as a series of anagrams, which they have to
solve first. Experiments show participants recalled tougher anagrams (e.g.
HREFAT) with more success than easier one (e.g. FAHTER). This, in
turn, leads to the assumption that effort correlates with memorization.

∙ Eysenck and Eysenck [1980] tested how memory recall could be affected
with the distinctiveness with which they were learned. To this end, they
asked some subjects to spell aloud the words they had to learn, while
others were simply asked to read them off a list. The first group of par-
ticipants was much more successful than the second one.

∙ Palmere et al. [1983] gave participants descriptive paragraphs of a fic-
titious African nation. The paragraphs were either short or with extra
sentences elaborating the main idea. They recorded a higher recall for the
idea from the subject, which were given the elaborated paragraphs. This
indicates that elaboration also helps memorization.

3.4. Working Memory Model. Models of memory provide abstract repre-
sentations of how memory is believed to work. Several models have already been
mentioned, this part will take a closer look at working memory models. Working
memory is a theoretical framework that deals with structures and processes used
for temporarily storing and manipulating information.

Many theories exist, some deal with the theoretical structure of the working
memory [Miller et al., 1960], while other ones are focused on the role of specific parts
of the brain involved in working memory [Curtis and D’Esposito, 2003; Kane and
Engle, 2002]. There is a general agreement that the frontal cortex, parietal cortex,
anterior cingulate, and parts of the basal ganglia are crucial for its functioning. The
neural basis of working memory mostly comes from lesion experiments in animals
and functional imaging upon humans.

There exists a relationship between short-term memory and working memory;
while authors do not always agree and often describe it differently, they generally
concord that the two are distinct concepts. The main difference between the two
is that the short-term memory does not generally refer to the manipulation or
organization of material held in memory; it is only concerned by the storage of
information. Hence, the use of appellations such as: short-term memory store
or short-term store. Working memory models imply the presence of a short-term
memory while short-term memory is independent of this more hypothetical concept.

The term “working memory” was coined by Miller et al. [1960] in the context
of theories that compared the mind to a computer. This term was also used later
by Atkinson and Shiffrin [1968] to describe their “short-term store”, so that the
use that they make is no longer appropriate and it is best to refer to it as a short-
term memory. Most researchers today have replaced the older concept of short-term
memory by the concept of working memory, which includes the short-term memory.
This puts a stronger emphasis on the notion of information manipulation, instead
of a passive maintenance. The term short-term memory is now used to describe
the hippocampal memories.

Amongst working memory models, three of them have received the distinct
notice of a wide acceptance.
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The first model was proposed by Baddeley and Hitch [1974], and made popular
the multi-component model of working memory. Their model had two components
(the “slave systems”) which are responsible for the short-term maintenance of in-
formation and one component (the “central executive”) which is responsible for
the supervision of information integration and for coordinating the slave systems.
One of the slave systems is called “the phonological loop” and stores phonological
information24. It is called a loop, because it prevents the decay of its information
by continuously articulating it and thus refreshing it in a rehearsal loop. As long as
this loop is maintained, information can be retained there, indefinitely. The second
slave system is called “the visuo-spatial sketchpad” and it stores visual and spatial
information, as its name indicates. Manipulation and construction of visual images
or representations of mental map can be done with this sketchpad. It can further
be decomposed into two sub-parts, the visual subsystem deals with shape, color,
texture, hile the spatial subsystem deals with location. Finally, the central execu-
tive component directs attention to the relevant information, suppressing irrelevant
information and inappropriate actions. It also coordinates the cognitive process
when multiple simultaneous tasks are done.

Later Baddeley [2000] extended the model with the episodic25 buffer. This
fourth component holds representations that integrate information from the slave
systems (phonological, visual, and spatial information) but also possibly informa-
tion not covered by the slave systems (i.e. semantic information, musical informa-
tion). The component is episodic because it is assumed to bind information into
a unitary episodic representation. This component has some similarity with the
episodic memory introduced by Tulving but the main difference is that the buffer
is a temporary store [see Tulving, 2002, for review on the episodic memory]

Another model has been suggested by Cowan [1995], and is called “the theory of
Cowan”; it regards the working memory as a part of the long-term memory [Cowan,
2005, see also]. This also implies that representations in the working memory is
a subset of representations in the long-term memory. The working memory is
organized in two embedded levels. The first level consists in long-term memory
representations that are activated (with no limit on the number of such represen-
tations). The second level, called “the focus of attention”, is regarded as of limited
capacity and holds up to four activated representations.

This model was later extended by Oberauer [2002] with a third component,
which is a more narrow focus of attention that holds only one chunk at a time, and
is embedded in the original focus of attention. Its purpose is to select a single chunk
for processing. This allows manipulating and processing the chunk individually
since parallel processing of all chunks is not possible.

Ericsson and Kintsch [1995] argued that most everyday common tasks, such as
reading, require maintaining more than seven chunks of information in the memory.
If the working memory had the same capacitive constraints as the short-term mem-
ory, it would be full after a few sentences and it would be impossible to understand
complex relations expressed in a text. The hypothesis here is that humans accom-
plish such a feature by storing most of the information they read in the long-term
memory store, linking them through retrieval structures. This allows the working
memory to only retain a few key concepts, which are used as cues to retrieve every-
thing associated to them by the retrieval structures. The authors have called this
set of processes as “long-term working memory”.

24The sound of language.
25Episodic event refers to autobiographical events (times, places, associated emotions, and

other contextual knowledge) that can be explicitly stated.
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Retrieval structures vary according to the domain of expertise; yet, as Gobet
[2000] has suggested, they can be categorized in three distinctive typologies:

∙ Generic retrieval structure is developed deliberately and is arbitrary (e.g.
the method of loci)

∙ Domain knowledge retrieval structures is similar to patterns and schemas
and takes place exclusively during text comprehension.

∙ Episodic text structures is formed by every confirmed reader during text
comprehension, if the text is well written and if its content is famil-
iar [Kintsch et al., 1999]

Others have used this feature as a way to operationalize the long-term working
memory [Guida and Tardieu, 2005; Guida et al., 2008].

4. Hippocampus

The hippocampus is a major component of the brain of humans and other
mammals. It belongs to the limbic system and plays important roles in long-term
memory and spatial navigation. It is a paired structure, with mirror-image halves
in the left and right sides of the brain, very much like the closely related cerebral
cortex. In humans and other primates, the hippocampus is located inside the medial
temporal lobe, beneath the cortical surface (see Figure 2.2).

Figure 2.2. Lateral view of the hippocampus. The hippocampus
is located in the medial temporal lobe of the brain. In this lateral
view of the human brain, the frontal lobe is at left, the occipital
lobe at right, and the temporal and parietal lobes have largely been
removed to reveal the hippocampus underneath.
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When damaged through a disease such as Alzheimer26, hypoxia27, encephali-
tis28, or (medial temporal lobe) epilepsy29; the symptoms are memory problem and
disorientation. With extensive damages it can also include amnesia (the inability
to form or retain new memories). This corroborates the roles attributed to the
hippocampus. It is essential (for learning new information) to the consolidation of
information from working memory to long-term memory, although it does not seem
to store long-term memory.

The hippocampus has been the main attention of extensive studies on rodents,
as part of the system responsible for spatial memory and navigation. Many neurons
in the rat and mouse hippocampus respond as place cells. That is, they fire bursts of
action potentials when the animal passes through a specific part of its environment.
Those place cells interact heavily with head direction cells (which act as internal
compass) and with grid cells in the neighboring entorhinal cortex.

Given its densely packed layers of neurons, the hippocampus has frequently
been used as a model system for studying neurophysiology. The long-term poten-
tiation (LTP) was first discovered in the hippocampus and has often been studied
in this structure. This neural plasticity is widely believed to be one of the main
neural mechanisms by which memory is stored in the brain.

4.1. Hippocampal Function. One of the first widely accepted hypotheses
about the hippocampus was its role in olfaction. It was supported by the belief that
hippocampus received direct input from the olfactory bulb, which was later proven
false [Finger, 2001]. Even though authors continued to investigate hippocampal
olfactory response (in particular its role in olfactory memory) [Eichenbaum et al.,
1991; Vanderwolf, 2001], few still believe that olfaction is its primary function.

Since then three hippocampal functions are mainly studied in the literature:
inhibition, memory, and space. The inhibition theory was very popular until the
1960s, but since then it suffered criticism [Nadel et al., 1975] and has lost pop-
ularity [Best and White, 1999]. The two main evidences behind this theory are
that animals with hippocampal damage tend to be hyperactive and they show
difficulties learning to inhibit responses they were previously taught. Gray and
McNaughton [2000], from this line of though, made a full-fledged theory of the role
the hippocampus plays in anxiety .

Even if it had historical precursors, the idea relating the hippocampus to mem-
ory gained a lot of credit and took its origin in the work of Scoville and Milner
[1957]. They described the results of a surgical destruction of the hippocampus30

in a patient named Henry Gustav Molaison31. The unexpected result of this surgery
was a severe anterograde and partial retrograde amnesia32. The case study of pa-
tient H.M. drove so much interest that it rapidly became the most intensively
studied medical subject in history [Squire, 2009]. Following this stunning outcome,
the ensuing years saw lots of studies ranging from patients with similar levels of
hippocampal damage and amnesia (from accident or disease) to thousands of ex-
periments on the physiology of activity-driven changes of synaptic connections in

26The hippocampus is amongst the first region of the brain attacked in Alzheimer’s disease.
27Oxygen starvation.
28Acute inflammation of the brain.
29Epilepsy is a common chronic neurological disorder characterized by recurrent unprovoked

seizures.
30The destruction occurred in an attempt to relieve epileptic seizures.
31The famous patient H.M.
32Retrograde amnesia is a form of amnesia where someone will be unable to recall events

that occurred before the development of amnesia.
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the hippocampus. There is now a general consensus that the hippocampus plays
an important role in memory, even if the exact nature of this role is still widely
debated [Cohen and Eichenbaum, 1993; Squire, 1992].

The third major theory relates hippocampal function to space, influenced by the
work of Tolman [1948] on “cognitive maps” in humans and rats. The first work by
O’Keefe and Dostrovsky [1971] led to the discovery that rat’s hippocampal neurons
showed activity related to its position within the environment. Later, O’Keefe and
Nadel [1978] started the spatial theory of the hippocampus. Even if it was not well
received at first, this theory has, since then, gained a lot of credibility. It is now
regarded as one of the main theories of hippocampal function. As often, the exact
details of the inner working are still debated [Moser et al., 2008].

4.2. Role in memory. There is general agreement among psychologists and
neuroscientists on the importance of the hippocampus in new memory formation
about experienced events33 [Cohen and Eichenbaum, 1993; Squire and Schacter,
2002].

As explained above, damages to the hippocampus affect memory in two dis-
tinct ways. First it always causes anterograde amnesia, then it can also cause
retrograde amnesia. Generally, retrograde amnesia related to hippocampal damage
spares older memories, which in turn suggests that, with time, those memories are
consolidated elsewhere in the brain [Broadbent et al., 2002]. However, damages to
the hippocampus do not affect all types of memory, such as the ability to learn new
motor or cognitive skills (e.g. playing a musical instrument or solving certain types
of puzzle). This indicates that those abilities rely on other memory types (proce-
dural memory) and are obviously located in different brain regions. An example of
this arose when patients are asked to guess which of two faces they have seen most
recently: even with hippocampal damages patients are able to answer correctly,
even if most of the time they assert never having seen either of the faces before.
From those evidences, some scientists started to distinguish between conscious rec-
ollection, which depends on the hippocampus, and familiarity, which depends on
portions of the medial temporal cortex [Diana et al., 2007].

4.3. Role in spatial memory and navigation. Most successful studies
come from observing rats and mice: it has been shown that many hippocampal
neurons have place fields. When it comes to primates, evidence of place cells is
limited, but probably only because of difficulties recording brain activity from
freely moving monkeys. However, place-related hippocampal neural activity has
been reported in monkeys moving around inside a room while seated in a restraint
chair [Matsumura et al., 1999]. Other studies [Rolls and Xiang, 2006], focus on
describing hippocampal cells that fire in relation to the place a monkey is looking
at, rather than the place its body is located. Ekstrom et al. [2003] conducted an
experiment on humans. They reported the presence of place cells in patients with
drug-resistant epilepsy, who were undergoing an invasive procedure to localize the
source of their seizures. They were implanted with diagnostic electrodes in their
hippocampus and moved around a virtual reality town.

Over the past decades, hundreds of experiment have been conducted on the
place responses in rats and mice [Moser et al., 2008]. The majority of neurons in
the densely packed hippocampal layers are pyramidal cells, and granule cells in the
dentate gyrus; both neuron groups show place cell responses. Other neurons, which
are inhibitory interneurons, also show significant place-related variations in firing

33Episodic or autobiographical memory.
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rate, but much weaker and not always. There does not seem to exist any correlation
between spatial topography in the environment and in the hippocampus. Place cells
are known to be mostly silent when the animal is outside the place field they cover.
When the animal enters this place field, they tend to reach firing rate close to 40Hz
(near the center of the place field). A rat’s location can be reconstructed with high
confidence with the neural activity of 30-40 randomly sampled place cells. From
this it can be shown that the size of place fields varies in a gradient along the dorso-
ventral axis of the hippocampus, with cells at the dorsal end showing the smallest
fields, while cells at the ventral tip fields cover the entire environment [Moser et al.,
2008]. Smith and Mizumori [2006] showed that in some cases the firing rate of the
rat’s hippocampal cells also depended on the direction of movement, the destination
toward which it is traveling, or yet other task-related variables.

Another hypothesis that has been proposed since the discovery of the place
cells (in the 1970s) was that the hippocampus might in fact act as a cognitive map,
in other words, a neural representation of the layout of the environment [O’Keefe
and Nadel, 1978]. Several evidences support this hypothesis. The first evidence
comes from patients with damaged hippocampus: getting lost is one of the most
common symptoms of amnesia. Those patients seem to forget where they have
been and how to get where they are going [Chiu et al., 2004]. The second evidence
for this hypothesis comes from studies with animals, these studies have shown that
an intact hippocampus is required for some spatial memory tasks, particularly ones
that require finding the way to a hidden goal [Morris et al., 1982]. The “cognitive
map hypothesis” has been further advanced by recent discoveries of head direction
cells, grid cells, and border cells in several parts of the rodent brain that are strongly
connected to the hippocampus [Moser et al., 2008; Solstad et al., 2008].

Brain imaging, performed on subjects doing a computer-simulated “virtual”
navigation task [Maguire et al., 1998], showed that the activation of the hippocam-
pus is correlated with the efficiency of performing the navigation task. Hippocam-
pus also seems to play an important role in finding shortcuts and new routes be-
tween familiar places. Maguire et al. [2000] studied the taxi drivers of London and
concluded there was a positive correlation between the volume of their right hip-
pocampus and the length of time they had spent as taxi driver. However, the total
volume of the hippocampus remained constant. This indicates that this increase
is done at the expense of the anterior portion of the hippocampus, but there is no
known detrimental effects reported from this disparity in hippocampal proportions.

4.4. Anatomy. Anatomically, the hippocampus is an elaboration of the edge
of the cerebral cortex [Amaral and Lavenex, 2006]; it is a zone where the cortex
narrows into a single layer of very densely packed neurons, which curls into a
tight “S” shape. The structures that line the edge of the cortex make up the so-
called “limbic system”, which includes the hippocampus, cingulate cortex, olfactory
cortex, and amygdala. Even if, at first, the concept of a unified limbic system was
suggested, most neuroscientists have, since then, rejected this idea [Kötter and
Stephan, 1997].

The hippocampus (see Figure 2.3 on the following page) consists in two major
parts, the ventral and the dorsal, both of which share a similar composition, but
are parts of different neural circuits [Moser and Moser, 1998]. It is divided into
three regions: the dentate gyrus, the subiculum and the cornu ammonis. This last
one has four subregions called CA1 through CA434.

34This naming convention comes from its shape which has been analogized variously to a

seahorse, a banana, or a ram’s horn [Amaral and Lavenex, 2006]. The first one is at the origin
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Figure 2.3. Coronal section of the brain of a macaque monkey.
The hippocampus is shown with the circle. Source: brainmaps.org

The entorhinal cortex (EC) is the greatest source of hippocampal input and
target of hippocampal output, it is strongly and reciprocally connected with many
other parts of the cerebral cortex. The most prominent input to the hippocampus
comes from the superficial layers of the entorhinal cortex, while the most prominent
output of the hippocampus goes to the deep layers of the entorhinal cortex. Within
the hippocampus, the flow of information is largely unidirectional, with signals
propagating through a series of tightly packed cell layers. The signal starts on the
dentate gyrus (DG), and then goes to the CA3 hippocampal subfields, then the CA1
layer, then the subiculum, then finally out of the hippocampus to the entorhinal
cortex. It is important to remember that each of those layers contains complex
intrinsic circuitry and extensive longitudinal connections [Amaral and Lavenex,
2006].

CA2 and CA4 are often ignored in discussions of the hippocampus. For the
CA2 this is due to the fact that it is a small region located between CA3 and
CA1. On the other hand, the CA4 is excluded because neurons present there do
not have a pyramidal morphology like those of areas CA1 & CA3 [suggested by
Lorente De N, 1934], [verified by Amaral and Lavenex, 2006; Amaral, 1978], and
thus the CA4 is often grouped with the dentate gyrus35. The cells present in the
CA4 primarily receive inputs from granule cells located nearby in the dentate gyrus

of the name, which was taken by the sixteenth century anatomist Julius Caesar Aranzi from
the Greek word for seahorse (Greek: hippos = horse, kampos = sea monster). The last one is
responsible for the name of the subdivision since it’s an acronym for ram’s horn in Latin (Cornu

Ammonis).
35In this case it is called the hilus or hilar region
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and also receive a small number of connections from pyramidal cells located in CA3.
They, in turn, project back into the dentate gyrus at distant septotemporal levels.

They are not the only connections playing an important role in the hippocampal
functions, other less salient connections are also present [Amaral and Lavenex, 2006;
Kahana et al., 2001; Winson, 1978]

The cortical region adjacent to the hippocampus is collectively known as the
parahippocampus [Eichenbaum et al., 2007], this region includes the entorhinal cor-
tex and also the perirhinal cortex, which plays an important role in visual recog-
nition of complex objects. However, there is substantial evidence that it makes a
contribution to memory which can be distinguished from the contribution of the
hippocampus, and that complete amnesia only occurs when both hippocampus and
parahippocampus are damaged [Eichenbaum et al., 2007].

4.5. Physiology. The hippocampus generates some of the largest EEG sig-
nals of any brain structure because of its densely packed neural layers. It exhibits
two distinct patterns either of neuronal population activity or wave of electrical
activity, which can be measured by EEG. Those two major “modes” of activity
are named after their EEG patterns: theta and large irregular activity (LIA). The
characteristics described here are for the rat, the most extensively studied ani-
mal [Buzsáki, 2006]. Figure 2.4 on the next page shows those two modes in an
EEG recording of a rat.

The theta rhythm [Buzsáki, 2002] is observed during active states , alert be-
havior (especially locomotion), but also during REM 36 sleep [Buzsáki et al., 1990;
Vanderwolf, 1969]. During this mode of activity, the EEG is dominated by large
regular waves, with frequency range of [6, 9]Hz. The main groups of hippocampal
neurons (pyramidal cells and granule cells) show sparse population activity; this
indicates that at any given short time interval, the great majority of cells are silent,
while the small remaining fraction fires at relatively high rates37. This activity
usually lasts for half a second up to a few seconds. While the rat is active, the
average number of active cells is constant, even if the actual active cells change
through time. As exposed above the cell activity is largely determined by the spa-
tial location of the rat, even if other behavioral variables clearly influence this. The
theta rhythm reflects sub-threshold membrane potentials, strongly modulates the
spiking of hippocampal neurons and their synchronization across the hippocampus
in a traveling wave pattern [Lubenov and Siapas, 2009].

The exact function of the theta rhythm is still not convincingly explained,
although numerous theories have been proposed [Buzsáki, 2006]. The most popular
hypothesis relates it to learning and memory [Huerta and Lisman, 1993]. Lesions of
the medial septum38 cause severe disruptions of memory, which is also an indicator.
However, this must be taken with some care since the medium septum is more than
just the controller of theta, it is also the main source of cholinergic projections to
the hippocampus [Amaral and Lavenex, 2006].

The LIA mode is observed during slow-wave (non-dreaming) sleep, and during
states of waking immobility (e.g. resting, eating) [Buzsáki et al., 1990]. During this
mode, the EEG is dominated by sharp waves [Buzsáki, 1986], which are randomly
timed (usually at an average rate of 1 per second), large deflections of the EEG
signal lasting for 200 to 300ms. The population neural activity patterns also are

36Rapid Eye Movement sleep is a normal stage of sleep characterized by rapid movements of
the eyes.

37Up to 50 spikes per second for the most actives.
38The central node of the theta system.
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Figure 2.4. Hippocampal EEG and CA1 neural activity in the
rats. This example shows the activity in the theta (awake/behav-
ing) and LIA (slow-wave sleep) modes. Each plot represents 20
seconds of recording; the top part shows the hippocampal EEG
trace with the continuous bold line, the central part shows the
raster plot of the spikes from 40 neurons of the CA1 pyramidal
cells, the bottom part shows the rat’s running speed with the thin
continuous line. The top plots are taken while the rat was ac-
tively searching for scattered food pellets, while the bottom ones
are taken during its sleep.

determined by these waves. The pyramidal cells and granule cells are very quiet
(but not silent). During this mode, 5 to 10% of the neurons, in CA3 and CA1, can
emit a burst of several action potentials over a period of 50ms. These sharp waves
are associated with short-lasting, high-frequency EEG oscillations called “ripples”,
with frequencies in the range of 150-200Hz. Amongst other things, the sharp waves
appear to be associated with memory. Studies from Wilson and McNaughton [1994],
like many other following studies, reported that hippocampal place cells with over-
lapping spatial firing fields39 tend to show correlated activity during sleep following
the behavioral session. This enhancement of correlation occurs mainly during sharp
waves [Jackson et al., 2006], and is called reactivation. It has been suggested that

39Therefore they often fire in near-simultaneity.
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sharp waves are reactivations of neural activity patterns that were memorized dur-
ing behavior. This is driven by the strengthening of synaptic connections within
the hippocampus [Sutherland and McNaughton, 2000]. This has been a major in-
dication toward the idea of the “two-stage memory” theory [Buzsáki, 1989], which
proposed that memories are stored within the hippocampus during behavior, and
then later transferred to the neocortex during sleep. Sharp waves are suggested to
drive Hebbian synaptic changes in the neocortical targets of hippocampal output
pathways.

Even if all those results are observed in rats, they mostly apply to the primates.
There are qualitatively similar sharp waves, and similar state-dependent changes in
neural population activity, even if it does occur less frequently than in rats [Skaggs
et al., 2007], but it has been difficult to see robust theta rhythmicity in the primate’s
hippocampus [Cantero et al., 2003], even if it is present in rabbits, cats and dogs.

5. Connectionist Models

The connectionist approach appears in several fields such as artificial intelli-
gence, cognitive psychology, cognitive science, neuroscience and philosophy of mind.
The central connectionist principle is that mental or behavioral phenomena are the
emergent processes of interconnected networks of simple units. The meaning be-
hind those units and connections can of course vary from one model to another.
The most common models are neural networks were each unit represents a neuron
and each connection its synapses. But other models exist; one such example might
map each unit to a word and each connection to a semantic similarity between the
two units (or words).

In most connectionist models, including neural network models, the network
changes over time. This is often related to another very common aspect of connec-
tionist models: activation. This implies that at any time, a unit has an activation,
which is a numerical value, intended to represent some aspect of the unit. Neural
network models always have some activation related in some way to the neuronal
activation potential. Finally, a model is said to have a spreading activation model
when a unit’s activation spreads over time to other units connected to it. This is a
mandatory feature for neural networks as well.

Connectionist style models have been advocated as early as in the 1940s. Mc-
Culloch and Pitts [1943] showed how one could use neural networks to implement
first-order logic. They were themselves influenced by the work of Nicolas Rashevsky
in the 1930s. Later, Hebb [1949] made a great contribution with the Hebbian learn-
ing algorithm, based on speculation about neuronal functionning. The theory he
proposed gave the connectionism a neuropsychological base. He prones an au-
tonomous central process intervened between sensory input and motor output. To
this day, he is credited with two major contributions. First, memory is stored
in connections and is learned through synaptic plasticity. Secondly, neurons do
not work alone, they are organized into larger coherent configurations called “cell
assemblies”.

Lashley [1950] has also argued in favor of the distributed representations be-
cause of his failure to find anything like a localized engram in years of lesion exper-
iments.

The neural network connectionist models have stressed the importance of the
parallel nature of neural processing, and the distributed nature of neural repre-
sentations. This has given birth to the well-known parallel-distributed processing
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(PDP). This approach provided a general mathematical framework which involves
eight major aspects:

∙ a set of processing units, represented by a set of integers,
∙ an activation for each unit, represented by a vector of time-dependent

functions,
∙ an output function for each unit, represented by a vector of functions on

the activations,
∙ a pattern of connectivity among units, represented by a matrix of real

numbers indicating connection strengths,
∙ a propagation rule spreading the activations via the connections, repre-

sented by a function on the output of each unit,
∙ an activation rule for combining inputs to a unit to determine its new

activation, represented by a function on the current activation and prop-
agation,

∙ a learning rule for modifying connections based on experience, represented
by a change in the weights, based on some variables, and

∙ an environment which provides the system with experience, represented
by sets of activation vectors for some subset of the units.

Even though these aspects are now foundational for nearly all connectionist models,
they still need to be taken with caution since they are somewhat reductionist: they
assume that all cognitive processes can be explained in terms of neural firing and
communication.

During the 1970s, a large amount of research led to the development of PDP;
it takes its roots in the perceptron theories [Rosenblatt, 1962]. However, the re-
sults obtained with those models were not as high as expected. In addition to
that, many authors had extravagant and exuberant claims over the very ambitious
goals [Pollack, 1988]. Later, this field came to a brutal freeze when perceptrons
were made very unpopular by the book of Minsky and Papert [1969], which ele-
gantly demonstrated the limits of the perceptron in term of what sort of function it
could calculate. It shows the perceptron cannot properly handle even the simplest
functions, like the exclusive disjunction, because of its nonlinear nature.

Later in the 1980s, they gained a new recognition and popularity, with the
seminal books by Rumelhart et al. [1986a,b]. They showed how to overcome the
limitations exposed by Minsky and Papert [1969] with the use of multi-level per-
ceptrons. These multi-level perceptrons are also called “nonlinear neural networks”
and were reported to be far more robust and usable for a vast array of functions.
They also showed that, by modifying the activation function of the units from a
binary to a continuous40 analogue threshold, it was possible to adapt the error al-
gorithm from single layer networks to multi-layer feed forward networks by using
a mechanism of back-propagation of errors to adjust the connection weights. This
algorithm has been used in many practical applications for classification and data
analysis.

This new wave of connectionist models was not the sole work of the PDP
research group. Cybenko [1989] showed that any continuous function can be ap-
proximated using a sufficient number of hidden units. Before that, Hopfield [1982]
proposed a connectionist model that worked as an associative memory, based on an

40Continuous neurons are required since the error back-propagation is based on the derivative

of the transfer function.
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analogy to a well-studied physical system: the spin glasses41. With this, Hopfield
built a bridge with statistical physics. He was not the only one seeking inspira-
tion from physics: Kirkpatrick et al. [1983] have ported the simulated annealing to
connectionist models. They define a Boltzmann Machine42 for which a global mini-
mum can be found using a simple learning procedure, using only local information,
to interactively adjust the weights. Kohonen [1982] developed self-organizing maps
used for pattern recognition, using an unsupervised competitive learning algorithm.

Naturally, these models cannot match the brain in terms of scale; even in the
most complex neural model, the units are far simpler than the real neural circuitry.
Nevertheless, this is not as daunting as one might think. Connectionist models have
successfully replicated certain functions exclusive to the brain (i.e. learning), with
a much smaller scale. From an engineering perspective, those neural networks are
just technological systems for complex information processing; therefore, they are
evaluated according to the performance they can provide in dealing with complex
(usually highly nonlinear) problems in areas such as association, classification or
prediction [Haykin, 1998].

Even if most researchers use PDP and connectionism interchangeably43, other
theoretical works exist and are good candidates to be classified as connection-
ist. Early works in psychology show the first traces of connectionist theory: as
early as 1869, the neurologist John Hughlings Jackson argued for multi-level, dis-
tributed systems. Freud [1895] and Spencer [1872] followed his work with the first
connectionist or proto-connectionist theories, which ended as speculative theories
(unsupported by evidence). By the early 20th century, Edward Thorndike was
experimenting on learning and posited a connectionist type network.

Hayek [1952] proposed that spontaneous order in the brain arose out of decen-
tralized networks of simple units. His work has only become referenced in the PDP
literature recently. Sydney Lamb is known as the father of the relational network
theory of language44, which is also a form of connectionist model [see Lamb, 1998,
for review]. This model was never unified with the PDP approach and has only
been used by linguists; this in turn affected the number of researchers working on it.
Others such as [Sun and Alexandre, 1997], proposed hybrid connectionist models
mixing symbolic representations with neural network models.

Neural networks are by a large margin the most commonly used and most
studied connectionist model today. There is a lot of different neural network models
in the literature but they usually follow these two rules. First, any mental state
can be described as a N -dimensional vector, whose value represent each neurons
activation value45. Secondly, memory is generated by modifying the connection’s
strength46 between the neurons, generally represented in a N × N -dimensional
matrix. This does not mean all neural networks are alike; a lot of variety can come
from the interpretation of units, the definition of activation, the learning algorithm,
. . .

41Spin glasses are metal alloys with a small number of magnetic impurities arranged randomly

in the alloy.
42The Boltzmann machine uses a stochastic method: the probability of a unit’s next state is

a function of the global parameter T , which defines the “temperature”.
43However, the term “connectionism” is never used in the books of Rumelhart et al. [1986a,b].
44Which is also known as stratificational theory.
45As explained more in detail in Chapter 3 on page 63; this can range from a single real

number to very complex structures.
46Also referred to as weights.
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5.1. Structure of a neural network. A connectionist model has three defin-
ing parts. They are the signal processing elementary units (formal neurons), then
the parallel connections of those processing units (which defines the architecture),
and finally those connections are weighted and vary following some learning mech-
anisms.

The formal artificial neuron is a very simple abstraction of the real neuron
(shown in Figure 2.5). It is a functional unit, whose output varies depending on
several parameters. Of course, the chosen activation function47 plays a huge role in
the output of the unit, but its current state and the value of its inputs (the states
of other neurons feeding this one) also affect the output. This here simulates the
basic functions of a neuron, as it is fed by various inputs, each input is weighted
through its connection to the unit, these weighted inputs are put together (usually
through a simple sum), this gives the neuron’s potential. A threshold function
may be added to the end of the line; in this case, the potential feeds the (usually
nonlinear) transfer function giving the output of the neuron. This describes the
general process of the activation of a unit.

Figure 2.5. (top) The stylized nerve cell, (bottom) the formal
unit of a neural network.

The transfer function plays a big role in the type of dynamics a neuron can
describe, and therefore, the kind of information it can encode in the sequence
of action potentials it emits. Many kinds of threshold functions have been used
over the years. Historically, the first one was the threshold gate. Introduced by
McCulloch and Pitts [1943], this function has an all-or-nothing behavior, which in
turn makes the neuron’s activation discrete. In the model presented in their paper,
they used the neurons as binary devices, there was either an occurrence or absence of
spikes, which in turn was used to encode the information. Despite it simplicity, the
threshold gate has been used in some of the major connectionist models, such as the
perceptron and multi-layer perceptron, the famous Hopfield network, the Boltzman
machine, . . . This transfer function was really appealing due to its computational

47In this figure the activation function is f (ui).
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power but lacks biological plausibility; in addition to that, the dynamics that can
be generated with a discrete function are much more limited.

The next generation of threshold functions was the rate of discharge. It is a
continuous activation function, often sigmoid-like in shape. This closes the gap
with biological evidences since it can be mapped to the firing rate of a neuron.
These functions open the door to a world of possibilities. More powerful learning
procedures can be defined using continuous activating neurons, such as the back-
propagation of error [obtained by Widrow and Hoff, 1960] along with the multi-
ple layers of a feed forward network. It has also been proven that the nonlinear
transfers function could, in theory, allow a neural network to compute any analog
function [Cybenko, 1989]. These two definitions of formal neuron lack any explicit
use of time however. While in the first model, time is completely missing, in the
second one, it appears with the biological interpretation. In both cases, this allows
a discrete implementation

The final class of formal neurons that will be covered here is the spiking neu-
rons and the integrate-and-fire models. The need for these models came from the
observation that even though firing rate plays a crucial role in the nervous system,
some biological neurons rely on the exact timing of individual spikes. A simple yet
important example is the synchronization of the neurons; if they fire at the same
rate it indicates that they have the same frequency; but without a precise timing
of spikes, it is not possible to know if the two neurons are in phase or not. These
models have been introduced to take care of these kinds of problems by explicitly
integrating time in the activation process [Maass and Bishop, 1998]. In contrast
with the first models, time is a crucial component in the activation of a neuron in
those models.

Given a model of formal neuron, to have a connectionist model one needs
to define an architecture (or topology) which will describe how the neurons are
arranged and how they are connected to each others. In the literature, the number
of different architectures is beyond the scope of this work, and there is no absolute
and generally agreed way of categorizing them. However, from a topological point
of view, there are two major groups of neural networks (see Figure 2.6):

Figure 2.6. The two main classes of neural networks (connection
wise). On the left, a feed forward neural network is modeled as a
directed acyclic graph structure. On the right, a recurrent neural
network is modeled as a graph structure, which includes at least
one cycle (of any order).
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5.1.1. the feed forward neural networks. These networks are represented with
a directed acyclic graph. The activation is “piped” through the network from input
units to output units. A biological interpretation appears in the retina, where a
hierarchical feed forward cortical architecture is used for the preprocessing of visual
information.

It is easily possible to define layers for those graphs since they include no cycle.
The first layer, usually called input layer, is composed of all the neurons with no
incoming connections. The output layer is composed of all the neurons that have
no outgoing connections. The remaining neurons are divided into hidden layers. A
network can have up to N − 2 hidden layers, where N is the number of neurons
in the network. All layers can be labeled with a number from 0 to K, where K
is the number of hidden layers +1, and so the layer 0 is the input layer, the layer
K is the output layer, and the layer 0 < i < K is the hidden layer i. From this
definition, a neuron is in the hidden layer i, if and only if, it is not an input or
output layer neuron and all its incoming connections are from neurons present in
layers j < i. Figure 2.7 on the next page shows an example of layer decomposition
of a feed forward network.

Depending on the learning algorithm used, feed forward networks can be di-
vided into many groups. The most common ones include the multilayer perceptron
(MLP), the radial-basis function (RBF) network, the principal component analy-
sis (PCA) network and the self-organizing map (SOM). Feed forward networks by
themselves are nonlinear static networks. They can become nonlinear dynamical
systems by incorporating short-term memory in their input layer. Those networks
are sometimes called “the focused time-lagged feed forward network” (TLFN) (e.g.
the Tapped-Delay-Line (TDL) memory). An attractive characteristic of nonlinear
dynamical systems built in this way is their inherent stability, since they are built
on top feed forward network.

5.1.2. the recurrent neural networks. These networks include at least one cyclic
path (of any order). Due to the presence of cycles, it is no longer possible to divide
the network in layers. Connectionists often consider them a better model of the
brain than the feed forward neural networks (even if some parts of the brain are
acyclic, they often seem to be feedback processes in places). More and more models
are starting to incorporate dynamical systems theory in these networks, since they
can naturally be described as such. Many researchers argue that connectionist
models will evolve towards fully continuous, high-dimensional, nonlinear, dynamic
systems approaches.

Recurrent neural networks inherently implement short-term memory by allow-
ing the output of a neuron to influence its input, either directly or indirectly via
its effect on other neurons. This allows the network to reflect the input presented
to it but also its own internal activity at any given time. All biological neural net-
works are recurrent, which makes those networks a good choice. The pioneer work
with recurrent neural networks is attributed to Hopfield [1982], his network had no
special input or output layer, each neuron of the system was an input and output
neuron (which defines an auto-associative memory). The network had connections
from all neurons to all other neurons (with symmetrical weights). He showed that
this model defines a dissipative system for which it was possible to define an energy
function, always decreasing along dynamic evolutions; this function’s shape showed
some local minima. Those minima are attracting fixed points with varying basins
of attraction. Retrieving a memory from a partial input corresponds to starting
somewhere high on the landscape, and falling into the nearest minimum.
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Figure 2.7. Decomposition of a feed forward neural network into
layers. The neurons are color coded to match their layer. Input
layer is green, output layer is red and hidden layer are colored as
gray levels from light to dark. The top part of the figure shows
the network with nodes placed arbitrarily while the bottom part
shows the same network were nodes are organize to match their
layer.

It is obvious that cognitive processes and/or more practical applications will
require higher-level architectures. This is a solid reason to investigate recurrent
neural networks even if feed forward networks showed good results in many practical
applications in different areas, from classification to time-series prediction.

5.2. Learning. Learning is a crucial part of connectionist models: since the
introduction of those models, many learning algorithms have emerged, ranging
from extremely simplistic procedures to highly sophisticated ones. It is one of the
most challenging problems in neuroscience. A learning process defines a mecha-
nism by which the connection weights of the neural network are adapted, through
a continuing process of stimulation by the environment in which the network is
embedded [Haykin, 1998]. However, this modification process can take very differ-
ent forms. It can be a simple one time process based solely on the data set one
wishes to learn, or it can be a continuous dynamic process which alters the weights
of the system in a completely unsupervised way according to various parameters of
the system (i.e. feeding stimulus, current state, previous mental activity, environ-
ment,. . . ). One very common approach was the back-propagation algorithm which
used a gradient descent learning, involving changing each weight from the partial
derivative of the error surface with respect to the weight [Werbos, 1974, 1994].
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It is possible to classify learning algorithms regarding one important factor:
the supervision. Those algorithms are called therefore, “supervised” and “unsu-
pervised”. Supervised learning assumes the availability of a labeled set of training
data made up of N input-output examples. It requires the computation of the
neural network’s weights so that the output from the activation of the networks by
a given input is, in a statistical sense, close enough to the desired output for all
inputs in the learning data set. One example is to use the mean-square error as
the index of performance to be minimized. Unsupervised algorithms do not rely
on any teacher or specific input/output data set to operate. One way to make an
unsupervised learning is through the adjustment of the synaptic weights.

Another way to classify learning algorithms is: the locality. A learning process
is local if it can update the synaptic weights of a neuron with only the help of the
information available to that particular neuron. The most famous local algorithm
is still to this day the Hebbian rule [Hebb, 1949], which suggests to strengthen a
neural connection each time units at each side of this connection are active together,
or decrease it if only one is active at a given time. Locality is the key in developing
parallelizable learning procedures, one of the most fundamental features of the
brain. On the other hand, global rules take into account the global characteristics
of the network’s activity. Any update uses information from the whole system,
which may be inaccessible to that particular neuron. This can help to make very
smart algorithms but, unfortunately, from a biological point of view these rules are
very unlikely. The back-propagation algorithm is the most common example of
supervised, global learning process. Usually, it is used on multilayer perceptrons
or radial basis function networks. The main idea is to propagate back the error
between the current output and the desired output, from the last layer to the
input layer (backward). This error propagation is used to adjust the weights of
the connections. This algorithm has seen many practical uses but unfortunately it
is highly unlikely since it requires a global aspect (input and hidden layers need
to know the status of the output layer) but also because it is based on an instant
backward propagation of information amongst the neuron, which is not possible.
This algorithm has later been extended to work on recurrent neural networks by
unrolling the network through time. It is then called “back-propagation through
time” (BPTT) and is used in time-series prediction.

5.3. Connectionism vs. computationalism. With the rise in popularity of
the connectionist model in the late 1980s, some researchers (such as Jerry Fodor or
Steven Pinker) started to react. They were afraid that connectionism was dismissing
what they saw as the “progress being made” in the fields of cognitive science and
psychology by the classical approach of computationalism. Computationalism is a
specific form of cognitivism, which argues that mental activity is computational.
In other words, that the mind operates purely by performing formal operations
on symbols (much like a Turing machine). The reason behind those fears was the
trend behind connectionism, which was a reversion towards associationism and the
abandonment of the idea of a language of thought. While this seems wrong to those
researchers, others were attracted to connectionism for this very same reason.

Even if those two approaches could coexist without being at odds, the debates
that started in the 1980s put the two in complete opposition. Some researchers tried
to argue for the compatibility of the two approaches but never get a consensus. The
main differences usually pointed out are:

∙ Level of design: While connectionism models the brain at a low level
which mimics the neurological structure and evidences, computationalism
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posits symbolic models that do not care for the underlying structure they
model.

∙ Structures and rules: Computationalism relies on structures of explicit
symbols (mental models) and syntactical rules for the internal manip-
ulation, whereas connectionism focuses on learning from environmental
stimuli and storing this information in the connections between neurons.

∙ Symbolic manipulation: The two approaches disagree on the mental
activity explicit symbol manipulation; connectionists see this as a poor
model of the mental activity.

∙ Specialization of learning: In connectionist models, learning is based
on one (or a small set) of generic learning mechanisms, while computa-
tionalism posits domain specific symbolic sub-systems designed to support
learning in specific areas of cognition (e.g. language, intentionality, num-
ber).

Despite these differences, some theorists have suggested that maybe the organic
brain’s implementation of a symbol manipulation system simply fits the connec-
tionist approach. This seems plausible since connectionist models can implement
symbol manipulation systems of the kind used in computationalist models, oth-
erwise they would not be able to explain the human ability to perform symbol
manipulation tasks. However, this does not dismiss the debate on whatever the
symbolic manipulation forms the foundation of cognition in general.

The progress in neurophysiology and the general advances in the understanding
of neural networks, has led to the successful modeling of many great problems
suggested by the computationalist approach as a limitation of the connectionist
models. Some of them have not been solved completely in a brain-like way and
thus were considered biologically implausible. Nevertheless, today, the debate about
fundamental cognition has largely been decided amongst neuroscientists in favor of
connectionism. The appealing part of computational descriptions is its relative
ease of interpretation, which is a weak part of the connectionist approach whose
description is generally opaque and works as a black box.

6. Dynamical Systems

The dynamical systems are mathematical formalizations of any fixed “rules”
that describe a point’s position in its space (e.g. mathematical models that describe
the swinging of a clock pendulum). It is represented at any given time by a state (a
vector of real numbers), which in turn can be represented in an appropriate state
space and a fixed deterministic evolution rule, that describes the next state from
the current state, characterizes the dynamical system. Small changes in the state of
the system correspond to small changes in the numbers. The future of the system
can only be determined by iterating the system many times. The iteration process
is called “solving the system” or “integrating the system”. Once a system can be
solved (given an initial point), it is possible to determine all its future points; this
collection of points is known as a trajectory or orbit. A detailed explanation on the
dynamical systems can be found in [Devaney, 1989; Ott, 1993].

The computers help to solve large groups of dynamical systems. Before that
era, solutions required sophisticated mathematical techniques and could only be
accomplished for a small class of dynamical systems. The numerical methods have
simplified the task of determining the orbits of a dynamical system. For simple
dynamical systems, knowing the trajectory is often sufficient, but most dynamical
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systems are too complex to be understood in terms of individual trajectories. The
difficulties arise because:

∙ The studied systems may only be known approximately, this may be
caused by a partial knowledge of the system’s parameters, or terms may
be missing from the equations, or even the iterations may only be done
with same approximation. Of course, approximation raises the question of
the validity or relevance of the numerical solutions. To address this partic-
ular problem several notions of stability have been defined (i.e. Lyapunov
stability48 or structural stability49). This notion of stability implies that
there is a class of models (or initial conditions) for which the trajectories
would be equivalent. The operation comparing orbits, in order to establish
their equivalence, changes with the different notions of stability.

∙ The type of trajectory may be more important than one particular tra-
jectory. All kinds of trajectories can be obtained with dynamical system,
from fixed-point attractors to chaotic attractors. It is often important to
be able to identify and enumerate these classes of trajectories or maintain
the system within one particular class of trajectories. Mathematical stud-
ies have been done on linear systems and systems that have their state
described in two dimensions; however larger systems are highly impervious
to formal studies due to their complexity and high dimensionality.

∙ The behavior of trajectories as a function of a parameter may be what
is needed for an application. As a parameter is varied, the dynamical
systems may have bifurcation points where the qualitative behavior of the
dynamical system changes.

∙ The trajectories of the system may appear erratic (like white noise). This
requires using statistics over long trajectories or many different trajecto-
ries. Understanding the probabilistic aspects of dynamical systems has
helped establishing the foundations of statistical mechanics and of chaos
theory.

The dynamical systems theory started with the introduction of time in math-
ematical and physical models, originally done by Galileo (1564-1642). Until the
end of the 19th century, the deterministic view of the world was dominating. New-
ton (1642-1727) formalized Pascal’s idea of an “explicable universe”. During these
periods, the mathematical and physical systems were seen as reversible in time,
foreseeable and reproducible. Laplace (1749-1827) expressed this idea at its best
as:

We may regard the present state of the universe as the effect
of its past and the cause of its future. An intellect which at
any given moment knew all of the forces that animate nature
and the mutual positions of the beings that compose it, if this
intellect were vast enough to submit the data to analysis, could
condense into a single formula the movement of the greatest
bodies of the universe and that of the lightest atom; for such

48In simple terms, if all solutions of the dynamical system that start out near an equilibrium
point xe stay near xe forever, then xe is Lyapunov stable. More strongly, if all solutions that start
out near xe converge to xe, then xe is asymptotically stable.

49Structural stability is a fundamental property of a dynamical system which means that
the qualitative behavior of the trajectories is unaffected by C1-small perturbations (where C1

is the class of continuously differentiable functions). Unlike Lyapunov stability, which considers
perturbations of initial conditions for a fixed system, structural stability deals with perturbations

of the system itself.
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an intellect nothing could be uncertain and the future just like
the past would be present before its eyes. (Introduction to the
“Essai”)

In the late nineties and early twenties, uncertainty started making its way.
Clausius (1822-1888) showed the irreversibility of chemical processes and defined
the second law of thermodynamics: the irreversible increase in entropy. While
Boltzmann (1844-1906) explained irreversibility in physics with statistic mechan-
ics. Later, Quantum mechanics (1920-1930) introduced unpredictability as an in-
trinsic feature of matter. Moreover, Gödel (1930), produced fundamental results
with regard to axiomatic systems, which showed that in any rich enough axiomatic
mathematical system there are propositions that cannot be proven or disproven
within the axioms of the system, without the introduction of inconsistency to the
system. This further supports the idea that Pascal’s hypothesis of an “explicable
universe” is not very likely. It was introduced as the Incompleteness Theorem50,
which ended a hundred years of attempts to establish axioms that would put the
whole of mathematics on an axiomatic basis.

By studying the three bodies problem51, Henri Poincaré described what would
be known as the Hallmark of Chaos - sensitive dependence on initial conditions:

If we knew exactly the laws of nature and the situation of the
universe at the initial moment, we could predict exactly the situ-
ation of that same universe at a succeeding moment. But even if
it were the case that the natural laws had no longer any secret for
us, we could still only know the initial situation approximately.
If that enabled us to predict the succeeding situation with the
same approximation, that is all we require, and we should say
that the phenomenon had been predicted, that it is governed by
laws. But it is not always so; it may happen that small differ-
ences in the initial conditions produce very great ones in the final
phenomena. A small error in the former will produce an enor-
mous error in the latter. Prediction becomes impossible, and we
have the fortuitous phenomenon. (Science et Méthodes-1903)

It was in the work of Poincaré that these dynamical system themes were developed.

In his seminal paper, Lorenz [1963] described behaviors of nonlinear dynamical
systems inspired by the simple modeling of the earth’s atmosphere with three vari-
ables. He described the apparition of a new dynamical behavior (at some values
of the state). While the activity of each individual variable looked erratic and un-
predictable, their visualization in state space showed the presence of an attractor,
whose shape and regularity evoked the wings of a butterfly (see Figure 2.8 on the
following page). This attractor was later called a “strange attractor” by Ruelle and
Takens [1971], after observing similar attractors from turbulence analyses.

Later, Mandelbrot [1975] reported that the geometrical properties of those
attractors revealed a new structure that he called “fractal”. By that time, the
chaos theory had started to make its way as a science. One of the most interesting

50There are actually two incompleteness theorems of Gödel but the second one just strength-

ens the first incompleteness theorem, because the statement constructed in the first incompleteness
theorem does not directly express the consistency of the theory. The proof of the second incom-
pleteness theorem is obtained, essentially, by formalizing the proof of the first incompleteness
theorem within the theory itself.

51Nine simultaneous differential equations - considered as one of the most difficult problems

in mathematical physics.
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Figure 2.8. The Lorenz attractor, shaped like the wings of a butterfly.

findings is that order exists within chaos and determinism may lie in the apparently
most disordered system.

Artificial neural networks can be looked at from a dynamical system perspective
since they clearly satisfy the requirement described above. They are described, at
any given time, by a state: the vector with the value of each neuron. This state can
in turn can be represented in an appropriate state space: an N -dimensional space

(e.g. {0, 1}N for the threshold gate transfer function, or ℝN for the rate of discharge
transfer function). They also have a rule which defines the next state in time: the
activation function. This clearly shows that it is possible to look at a neural network
as a dynamical system and this idea is not exclusive to connectionist models since
neuroscientists also started to look at the brain as a dynamical system with the
arrival of several new tools that support such an approach (i.e. EEG, MEG, fMRI,
PET-scanners).

6.1. Definition and general properties. Dynamical systems are the study
of the iteration of functions from a space into itself. This can be done in discrete rep-
etitions or in a continuous flow of time. This choice is usually made by the studied
system. When dealing with physical reality it is easier to assume a continuous space
and time, which is why these systems are often described by differential equations,
and thus use continuous time. On the other hand, computer made simulations are,
by the nature of the support, intrinsically discrete and the use of continuous time
requires faking it, as it is not available on numerical computers. This is why often
discrete time systems prevail in this context. In this thesis, the choice has been
made to work with discrete time models since it makes sense with computational
models. Further justifications and validations of this choice are given in Chapter 3
on page 63.

There are different possible approaches to give qualitative and quantitative
descriptions of dynamics. One common way is to analyze the statistical properties
of the dynamical system. This field has been studied for several years [see Cessac,
2002, for review]. Another perspective is to look at the problem from a topological
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point of view. Here, dynamics are mainly characterized by their trajectory, hence
their attractors.

6.1.1. Dynamical system. A discrete time dynamical system can be described
as a mapping:

(1) F� : ℝN → ℝ
N : x (t) 7→ F� (x (t)) = x (t + 1)

This map F describes how the system evolves through time. It is a function of a
family of parameters: � = (�1, �2, . . . , �pN

). By iterating the map from an initial

condition x0, the system follows a trajectory � (x0) in the space state ℝ
N . This can

further be generalized by using a function F� : X → X, where X is a topological
space (often a metric space).

6.1.2. Non-chaotic attractors. Given this definition, it is possible to define an
attractor, but to this end it is first important to define the notion of neighborhood52.

Definition 1. In a topological space X, a neighborhood of x is a set N with an
open sub set O which contains x (x ∈ O ⊆ N ).

Definition 2. In a topological space X, a neighborhood of a set A is a set N which
is a neighborhood of all points of A. In other words, this means that there exists an
open set O such that : A ⊆ O ⊆ N .

Definition 3. F : X → X is said to be topologically transitive if for every pair of
non-empty open sets U, J ⊂ X, there exists an integer k > 0, such that F k (U)∩J ∕=
∅

Definition 4. For a given set U , x is a point of closure of U if every neighborhood
of x contains a point of U53. The set of all points of closure of U is noted U and
is called the closure of U

Definition 5. A subset U of V is dense in V if U = V

Then a non-chaotic attractor can be defined [Eckmann and Ruelle, 1985] as a
non-empty closed set A of points in the space ℝ

N , with two properties:

∙ A must be attracting for a given open neighborhood U54 of it:
∩t≥0F

t
� (U) = A

∙ the F�-periodic orbits must be dense in A and A must contain a dense
F�-periodic orbit (topological transitivity).

A basin of attraction ℬ ⊇ A can be associated with each attractor. It represents
the set of points in the state space55, which converge towards the attractor. Given
an attractor A, the basin of attraction of A is defined as :

(2) ℬ = ∪t<0F
t
� (U)

The different possible non-chaotic attractors are:

A fixed point attractor: is defined as a singleton attractor, A = {x∗},
with the following property, F� (x∗) = x∗. The dynamics of the system is
static in this region.

52The neighborhood is the generalization of the open ball in metric spaces to topological

space.
53This point may be x itself
54One can then choose U such that F�

(

Ū
)

⊂ U .
55It is also possible to extend the basin notion to neighborhoods of the parametric space.
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A periodic limit cycle attractor: is defined as an attractor of n > 1
points A = {x1, x2, . . . , xn} such that ∀i ∈ [1, n] : Fn

� (xi) = xi and n
is the smallest positive integer satisfying this equality (this is also called
the prime period, or least period, of the point xi). When the property
hold then the attractor is called periodic with period n. When the system
falls in a cyclic attractor, it oscillates periodically amongst the points of
that attractor.

A tore or quasi-periodic limit cycle attractor: is defined as an infinite
attractor, which is given by a tore resulting from the combination of pe-
riodical functions of periods linearly independent. The system is said to
iterate along a quasi-periodic limit cycle.

If the system possesses only one attractor, its basin of attraction is usually
the entire state space X. However, the basins of attraction are invariant sets,
in the sense that, it is clear by definition that the orbit resulting from an initial
condition inside a basin of attraction is entirely in the basin of attraction. This
means that when different attractors co-exist, there is a border between the two
basins of attraction, called “the separatrix”56.

6.1.3. Deterministic chaos. The word chaos is often misused and wrongly as-
sociated with disorder. Here, chaos can be observed in deterministic dynamical
systems, and has a structure that can be characterized57. This structure is very
interesting and possesses many intriguing properties. One such feature is the auto-
similarity: this property says that zooming on a part of the chaotic domain, the
same structure can be indefinitely obtained; it is also called “the fractal geometry”.
The trajectories on these structures are called “strange attractors”. Feigenbaum
[1983] says that the following characteristics are required in a dynamical system in
order to observe deterministic chaos:

∙ nonlinearity: only nonlinear phenomena exhibit chaotic behavior;
∙ recursivity: the complex behavior is mainly generated by the recursive

nature of the system.

Chaos has seen many different definitions over the time. Mathematicians usu-
ally use a topological approach [Devaney, 1989]. Intuitively a dynamical system is
said to be chaotic in a state space when :

(1) The neighborhoods of points don’t stick together in one localized clump.
(2) For any point in the state space there is a periodic orbit in its neighbor-

hood.
(3) It is sensitive to initial conditions: an arbitrarily small perturbation of

the current trajectory may lead to significantly different future behavior.

It is easy to see that the topological transitivity of F formalizes the first re-
quirement of a chaotic system, while the density concept can be used to formalize
the second requirement. To understand this, first it must be noted that a point of
closure of a set U has a neighborhood that contains this set. From there it is easy
to see that if the periodic orbits of the system are dense in the state space, then
each point of the state space has periodic orbit in its neighborhood. The last point
needs no other definition, since it can be proven that it is implied by the first two
points.

56For example, in a simple 1-dimensional system, this border can be delimited with a simple
curve (the border is the intersection of the x-axis with the curve).

57Even though it is possible to prove an equivalence between some deterministic chaos and

a pure random process.
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Theorem 6.1. 58 If F is topologically transitive in X and its periodic orbits are
dense in V ⊂ X, then F has sensitive dependence on initial conditions in V .

Given those definitions, a formal definition of a chaotic system can be formu-
lated.

Definition 6. Let V be a subset of the state space X. F : X → X is said to be
chaotic on V if:

(1) F is topologically transitive.
(2) periodic orbits are dense in V .
(3) F has sensitive dependence on initial conditions in V .

Under this definition lies the three important components a chaotic system
needs: unpredictability, non-decomposability and an element of regularity. The
first one is given by the sensitive dependence on initial conditions. The topological
transitivity prohibits the system from being broken into two subsystems59 which do
not interact under F . Finally, the density of the periodic orbits gives the element of
regularity. The problem lies in the difficulty to apply concepts such as transitivity
and denseness to physical systems. Generally, it is said that a physical system is
chaotic if it show sensitivity to initial conditions (SIC). This property alone makes
the system’s behavior extremely hard to predict, since an initial small error can
lead to a large divergence.

6.1.4. The Hausdorff dimension. It is often useful to know the dimension of
an object (such as an attractor); naively one could define this as the minimum
number of coordinates needed to specify each point within the space. E.g. the
line has a dimension of one because only one coordinate is needed to specify a
point on it. Unfortunately, this naive definition falls short when it came to analyze
the dimensions of more complex objects. For example, for the famous Sierpinski
triangle (see Figure 2.9), the naive approach will say that it is a 2-dimensional
structure. However, a plane in the euclidean space also is a 2-dimension structure.
This here clearly shows that the naive approach is too raw and the dimension of an
object needs to be more accurate.

Figure 2.9. The Sierpinski triangle, fractal named after the Pol-
ish mathematician Wacl̷aw Sierpiński who described it in 1915

In mathematics, the Hausdorff dimension60 is a non-negative real number as-
sociated to any metric space. It generalizes the notion of the dimension of a real

58See [Elaydi, 1999] for a proof (p.117)
59Two invariant open subsets.
60Also known as the Hausdorff-Besicovitch dimension.
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vector space. The Hausdorff dimension respects the natural definition of dimension
by respecting the dimension of a single point (as 0), of a line (as 1), of the plane (as
2), etc. There are however many irregular sets that have a non-integer Hausdorff
dimension. The mathematician Felix Hausdorff introduced the concept in 1918,
and Mandelbrot, who used the fractal dimension, made it popular.

Let A be a given attractor in a compact metric space. Then N (r,A) is the
minimum number of open balls of radius r needed to cover A. The dimension of
the attractor is then defined by:

(3) dimA = lim
r→0

sup
logN (r,A)

log (1/r)

6.1.5. Strange attractors. A strange attractor61 A is an attractor with two ad-
ditional properties. First, the distance between two nearby trajectories at time t
in the attractor increases exponentially. Secondly, the dimension of the attractor
is fractal62. This clearly defines a dynamical system which evolves in an “unpre-
dictable way” in a well-defined region of its state space. As a corollary, a chaotic
attractor has ∥A∥ = ∞, since otherwise the attractor will be cyclic.

6.2. Tools for dynamical analysis. The chaos theory is still very young,
and it has not yet convinced all mathematicians. As Holmes [1995] said:

I do not believe that chaos theory exists, at least not in the
manner of quantum theory, or the theory of self-adjoint linear
operators. Rather we have a loose collection of tools and tech-
niques.

This section presents the most common tools in this theory. There is a very large
set of tools and here are reported the ones that are used in the rest of the thesis [see
Eckmann and Ruelle, 1985, for more]. Again, even though there are tools to deal
with discrete valued systems, here all the presented tools work with continuous
valued systems.

6.2.1. State space. The easiest but also the least effective way to study a dy-
namical behavior is through the analysis of the state space diagram. Being a graph-
ical representation of a system’s evolution towards its attractors, each point of that
space unequivocally determines the state of the system at a given time. These
plots usually represent time and the position on the axis. The biggest problem
with this tool is that it does not scale at all with the parameter space and thus
always provides a limited view of the system. In addition to that, information is
hard to process; it can easily help distinguish a periodic output from a fix point
but it is impossible to know what kind of complex dynamics the system outputs
just with this plot. Finally, it only gives a qualitative view of the system.

6.2.2. Return map. A return map is the value of one variable as a function
of its previous value in time, x (t + 1) = f� (x (t)). The return map63 is a very
suggestive but hardly conclusive tool for the evidence of chaos. It is easier to spot
the periodicity of a variable’s output on this map as it is easier to see if the output is
close to white noise (or very strong chaos) or a weak chaos. Overall, this plot gives
some information, is useful but not enough by itself for pretty much the same reason
as the state space plot. It can only show one variable of a highly multi-variable
system and it does not give any quantitative value over the observation.

61Which is also called a “chaotic attractor”.
62Non integer.
63Also known as the Poincaré map.
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6.2.3. Bifurcation Diagram. A bifurcation diagram shows the possible long-
term values (equilibria/fixed points or periodic orbits) of a system as a function of a
bifurcation parameter (also called control parameter) in the system. The bifurcation
parameter describes some part of the system. For example, in the famous logistic
map, defined as xn+1 = r ∗ xn ∗ (1 − xn), r is the bifurcation parameter (and the
only parameter of the system).

For a 1-dimensional system with one parameter (i.e: the logistic map): the x-
axis represents the variation of the bifurcation parameter, and the y-axis represents
the output of the system. First a starting condition is set (e.g. x0 = x∗ for the
logistic map), then for each value � of the bifurcation parameter the trajectory of
the system is evaluated for N time steps (i.e: for the logistic map, the trajectory is
x1, x2, . . . ,xN ). Then the pairs (�, x1),(�, x2), . . . , (�, xN ) are plotted. However, it
may be useful to first iterate the system for a certain period in order to go outside
of the transient period and be sure to be in the actual attractor. Figure 2.10 shows
a bifurcation diagram for the logistic maps.

Figure 2.10. The bifurcation diagram of the logistic maps. The
initial condition x∗ = 0.25, r ∈ [2.4, 4.0]. For each value of r in
this range (with an increment of 0.001) the map is iterated 1000
times to skip the transient phase and then 100, 000 more iterations
are done and plotted this time.

When the system has more than one control parameter, the bifurcation diagram
can be done using any combination of those parameters. For each parameter the
range of variation is set. In this case the x-axis shows the linear evolution of all the
parameters (simultaneously) from their lower range to their upper range. When
the system has more than one output (i.e: higher than 1-dimensional system) the
observed output has to be specified, it can be any of the system’s variable (or the
average of all the variables).
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6.2.4. Lyapunov Exponent. These exponents are a tool, which is extremely con-
venient when it comes down to determine the sensitivity of a system to small orbit
perturbations (which is the easiest way to characterize chaotic attractors). To com-
pute these exponents, the system is analyzed over two trajectories that start at very
close initial conditions (which only differ by a very small offset). The Lyapunov
exponent � of a one dimensional map gives the average exponential rate of diver-
gence. Given a small initial perturbation �s (0), the evolution of this perturbation
after n iterations is usually given by:

(4) �s (n) ∼ �s (0) e�n

where � is the Lyapunov exponent. From equation 4, describing the evolution of
the perturbation in terms of the Lyapunov exponent, and equation 16 on page 53
describing it in terms of the eigenvalues of the Jacobian of the system, the following
can be deduced:

(5) �s (n) ∼ �s (0) Λn
s ∼ �s (0) e�n

which in turn can be simplified to obtain the relation between the Lyapunov expo-
nent and the largest eigenvalue of the Jacobian of the system:

(6) � = ln ∥Λs∥

This confirms that non-hyperbolic points (which are responsible for bifurcations)
have a zero value Lyapunov exponent. This also shows that a m-dimensional dy-
namical system has m Lyapunov exponents �i, each of them measuring the diver-
gence rate following one of the directions of the eigenvectors. The evolution of a
hyper-volume V0 is hence given by:

(7) V = V0e
(�1+�2+...+�m)t

The easiest way to compute a quick and accurate approximation of the largest
Lyapunov exponent has been described by Wolf et al. [1984]. To use this on a
neural network, first, the network is simulated for a sufficient amount of time steps
to ensure all transient effects are avoided; this helps the system get closer to any
activator that was close to the initial position. The computation of the Lyapunov
exponent is done through the simulation of two close initial states of the network.
Let’s call them x (0) (where x (t) is a vector of all the states of the network at time
t) and x′ (0), which is the state of the network x (0) plus a perturbation �. Next,
let’s define Δx (t) as the difference between the two previous vectors:

(8) Δx (t) = (x1 (t) − x′
1 (t) , . . . , xn (t) − x′

n (t))

which, by construction, gives ∥Δx (0)∥ = �. Each of the initial states are simulated
and produce x (1) and x′ (1) and the variation between the initial states and the
new states is given by:

(9)
∥Δx (1)∥

∥Δx (0)∥

The vector Δx (1) is rescaled64 as:

(10) Δy (1) =
�Δx (1)

∥Δx (1)∥

which means that ∥Δy (1)∥ = � and from this new value the state x′ (1) can be
recomputed as: x′ (1) = x (1) + Δy (1). This process is repeated T times, and the

64This rescaling is a computational trick which has proven to be more robust on numerical

computations [Wolf et al., 1984].
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largest Lyapunov exponent is estimated from the average of the logarithm of the
scalings:

(11) � =
1

T

T−1
∑

i=0

ln
∥Δx (i + 1)∥

∥Δx (i)∥

Here is the interpretation from the value obtained for the Lyapunov exponent
with this method:

fixed-point, � < 0: indicates a stable attractor. If a slight modification of
the state occurs, the system will converge again and the modification will
vanish.

quasi-periodic points, � = 0: indicates a limit cycle; after a perturbation,
the system will continue on a nearby road.

chaotic points, � > 0: indicates that the system is highly sensitive to ini-
tial conditions. Any perturbation will cause the network to diverge.

6.2.5. The Lyapunov Spectrum. In a dynamical system, the rate of separation
can be different for different orientations of the initial separation vector. Thus,
there is a whole spectrum of Lyapunov exponents – the number of them is equal
to the number of dimensions of the state space. For a dynamical system with
evolution equation f t in a n-dimensional state space, the spectrum of Lyapunov
exponents: {�1, �2, ⋅ ⋅ ⋅ , �n}, in general, depends on the starting point x0. The
Lyapunov exponents describe the behavior of vectors in the tangent space of the
state space. They are defined from the Jacobian matrix:

(12) J t(x0) =
df t(x)

dx

∣

∣

∣

∣

x0

The Jacobian matrix J t describes how a small change at the point x0 propagates
to the final point f t (x0).

The Oseledets theorem [Oseledets, 1968] shows that the limit lim
t→∞

(J t⋅(J t)T )1/2t

defines a matrix65 L (x0). If Λi (x0) are the eigenvalues of L (x0), then the Lyapunov
exponents �i are also given by:

(13) �i(x0) = log Λi(x0)

If the system is allowed to run for a long time, it can be studied with the ergodic
theory, which focuses on invariant measures of dynamical systems. The ergodic
theorems basically assert that a system that evolves for a long time “forgets” its
initial state. This also means that the set of Lyapunov exponents will be the same
for almost66 all starting points of an ergodic component67 of the dynamical system.

Its biggest Lyapunov exponent roughly characterizes the dynamics of the sys-
tem. As an example, the presence of a positive Lyapunov exponent characterizes
chaotic dynamics. However, the other Lyapunov exponents are also useful and
provide additional information (especially useful for differentiating chaos). For
example, hyper-chaos is characterized by the presence of more than one positive
Lyapunov exponent [Rössler, 1983].

65Here, (Jt)T is the transpose of the matrix (Jt).
66A property is said to hold almost everywhere, if it holds everywhere except in a set of

measure zero (called a null set), which can be enclosed in intervals whose total length is arbitrarily
small. Unfortunately some references in the literature also refer to the empty set as the null set,

which is subject to confusion.
67An ergodic component is a component of the system that satisfies the ergodic theory.
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The computation of the Lyapunov spectrum is performed using Gram-Schmidt
re-orthogonalization of the evolved system’s Jacobian matrix (which is estimated
at each time step from the system’s equations). This method is detailed in [Wolf
et al., 1984].

6.2.6. Spectral Density. When it comes to analyze a dynamical system peri-
odicity, the spectral density68 is a very well known tool for the job. The power
spectrum is defined as the square of its Fourier amplitude69 per unit of time [Eck-
mann and Ruelle, 1985]. It measures the amount of energy per time unit contained
in the signal as a function of the frequency. It is a positive real function of a fre-
quency variable associated with a stationary stochastic process, or a deterministic
function of time, which has a dimension of power per Hz, or energy per Hz. Intu-
itively, the spectral density captures the frequency contents of a stochastic process
and helps identifing periodicities.

This tool allows to distinguish periodic, quasi-periodic and chaotic series and
even distinguishes differences between chaos:

∙ fixed point attractor: yields a continuously zero spectrum;
∙ cyclic attractor: yields a peak at the frequency of the signal plus one

smaller peak for each of its harmonics;
∙ quasi-periodic signal: yields peaks at the important frequencies of the

periods, plus one smaller peak for each harmonic;
∙ chaotic signal: yields something in between quasi-periodic and white

noise spectrum70.

Again, this is a qualitative result with all of its drawbacks and calls for cautiousness.
In addition to that, since the power spectrum analyses the signal only on a given
frequency band, choosing the wrong size for this band can lead to take a band
smaller than the frequency of the signal, which in turn will look like a quasi-periodic
or chaotic signal. Another look at the figures 2.13 on page 56, 2.14 on page 57, 2.15
on page 58, in the light of spectrum analysis, clearly shows that the three chaos are
different and distinguishable through their spectral density.

6.3. Bifurcation theory.

6.3.1. Stability of fixed point attractors. To determine the stability of a given
fixed-point attractor x∗, it is useful to look how nearby points in space behave.
This is done by adding a small perturbation to x∗, say �, and then analyzing the
evolution of this perturbation:

(14) F (x∗ + �) = F (x∗) + DF (x∗) � + o
(

�2
)

where DF is the Jacobian matrix of partial derivatives of F (assuming F is of class
C1). The linearized stability problem is obtained by neglecting the terms of order
�2. This gives:

(15) F (x∗ + �) − F (x∗) = � (n + 1) ≈ DF (x∗) � (n)

where � (n) is the perturbation after n iterations of the system (see section 6.2.4
on page 50). This reduces the stability analysis of x∗ to the study of its Jacobian
DF , and therefore to the study of the eigenvalue of this matrix. The eigenvalues

68Which is also known as the power spectral density (PSD), energy spectral density (ESD),

or power spectrum.
69The amplitude obtained with a Fourier transform on a signal.
70White noise is shown as a broad band noise.
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�s gives the evolution of the perturbation in the direction of the sth eigenvector:

(16) �s (n + 1) = Λs�s (n)

where �s is the value of � along the direction of the eigenvector s. These eigenvalues
are in general complex numbers, their norm giving the dilatation. When ∣�s∣ < 1
the perturbation vanishes, while ∣�s∣ > 1 indicates that the perturbation increases
exponentially over time. The angle of the eigenvalue with the real axis specifies the
speed of the rotation.

This allows to properly define the notion of hyperbolicity. A fixed point x∗ for
F is said to be hyperbolic if DF (x∗) does not contain eigenvalues of norm equal to
1. This is extended to periodic attractors: if x∗ is periodic of period k, then it is
hyperbolic if DF k (x∗) does not contain eigenvalues on the unit circle. Furthermore,
depending on the eigenvalues of DF (x∗), three kinds of hyperbolic points can be
distinguished:

∙ x∗ is an attractive periodic point if all the eigenvalues respect ∣�∣ < 1.
∙ x∗ is a repulsive periodic point if all the eigenvalues respect ∣�∣ > 1.
∙ x∗ is a saddle node in other cases, which has both attractive and repulsive

behaviors.

Any point is non-hyperbolic as soon as it has one eigenvalue on the unit circle.
These points are at the origin of the bifurcation phenomenon, which is characterized
by a qualitative change in the dynamical structure of the system after a modification
of a control parameter. The position of the eigenvalue on the unit circle determines
one of the three possible ways a bifurcation can occur:

∙ � = −1: flip bifurcation, corresponding to a period-2 oscillation;
∙ � = 1: saddle-node bifurcation, corresponding to two branches of a

stable equilibrium;
∙ � = ∥a± bi∥ = 1, b ∕= 0: Hopf bifurcation. During this periodic or

quasi-periodic trajectory the angle of rotation � is given by the angle of
the eigenvalue with the real axis. The trajectory describes a limit cycle.
If the angle is a rational fraction of �, then it crosses a finite amount of
points before to cycle repeatedly, which is a periodic regime. If the angle
is not a rational fraction of � the trajectory never repeats and densely
covers the limit cycle. The regime is said to be quasi-periodic. This kind
of bifurcation is the most common in complex systems.

Figure 2.11, 2.12 on the following page show these bifurcations. These dia-
grams are called “bifurcation diagrams” and are obtained by modifying the control
parameters of the system (on the x-axis) and plotting for each parameter change
the different values by which the system goes through (on the y-axis). Those ex-
amples also show the Lyapunov exponent (described in section 6.2.4 on page 50).
This exponent is very important, and amongst other things it allows to detect the
occurrence of a bifurcation when it reaches 0. Incidentally this is the only way to
identify a saddle-node bifurcation, since it does not appear clearly on the diagram.
This is due to the fact that, from one initial condition, the system stabilizes in one
of the two attractors, the path-bifurcation diagram allows to visualize this as shown
on section 6.5 on page 60.

6.3.2. Road to chaos. A system starting on a steady state, which goes through
a path of bifurcation, through a variation of control parameters (see section 6.2.3
on page 49), until it reaches a chaotic state, is said to describe a road to chaos.
The change in the control parameter appears as a change in the eigenvalues of the
Jacobian matrix and a bifurcation occurs when one of these eigenvalues crosses the
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Figure 2.11. (left) A flip bifurcation, produced with a self-
inhibiting (! < 0) one-neuron system, with a positive input (� > 0)
that acts as the control parameter. (right) A saddle node bifur-
cation in a self-excitatory (! > 0) one-neuron network, with a
negative input (� < 0) that acts as the control parameter. The
Lyapunov exponent, which is equal to 0, indicates the bifurcation.
The corresponding Lyapunov exponents are plotted in green. The
evolution function is x (t + 1) = � + ! (tanh (x (t)) + 1) /2.

Figure 2.12. Hopf bifurcation for a 2-neurons recurrent neural
network. Inputs (�0 and �1) on the network act as the control
parameter. The corresponding Lyapunov exponents are plotted
in green. The evolution function is ∀i, j ∈ {0, 1} : xi (t + 1) =
�i + !ii (tanh (xi (t)) + 1) /2 + !ij (tanh (xj (t)) + 1) /2.
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unit circle, and as explained above the point of crossing determines the type of
bifurcation the system undergoes. The evolution of eigenvalues gives indication on
the nature of the road to chaos they describe [Albers et al., 1998]. Depending on
this evolution, different kinds of chaos can be reached. Three of the most common
scenarios are detailed below:

∙ Road to chaos by period doubling71: this is the most schematic road,
occuring through a series of flip bifurcations. Feigenbaum [1983] reported
that the period-doubling cascade of transitions on the road to chaos ex-
hibits quite remarkable universal features: there are identical numbers
characterizing the ratios of the control parameter for successive period
doublings. Independently of the system, there seems to be universality in
this kind of transition to chaos.

∙ Road to chaos by quasi-periodicity: First introduced by Ruelle and
Takens [1971], this road occurs through successive Hopf bifurcations. Each
bifurcation adds a new periodicity, starting with the tore T1 (one limit
cycle), the system move to a tore T2 (two superimposed limit cycles),
then to T3 (three superimposed limit cycles), etc. With each bifurcation,
the dynamics becomes more and more complex and the system becomes
more and more subject to resonances occurring between these frequencies.
Such resonances appear when a rational factor occurs between different
frequencies, hence when these frequencies tend to synchronize between
each others. In such cases, the signals are also frequency-locked or phase-
locked states.

∙ The intermittency chaos: To understand this road, it is important
to first define the saturation of a variable and a system. A variable is
saturated when its value reaches one of the extremum of its domain. For
example, a real number variable cannot be saturated but a variable in
the domain ]−1, 1[ can be when x → ±1. A system is saturated when
its parameters are saturated; in this case a system with N parameter is
limited to only 2N possible states. When such a saturation occurs, the
system stays on stable attractors. Chaos can appears if the evolution
function is not completely saturated, which will be the case for most of
the points in the trajectory: the function will be saturated but certain
points will make one of the variables to become unsaturated and this will
interrupt the periodic orbit before completion by an intermittent point,
which is not one of the attracting points. After this miss, the system
enters a chaotic phase until it falls back into the attractor at saturation
of the squashing function.

All three types of road to chaos can be observed in neural networks; however
the probability to see one vary with the way the network is built and with the
network’s architecture. Road to chaos by period doubling rapidly falls as the size
of the network grows. The road to chaos by quasi-periodicity appears to be the
most natural one for random recurrent networks of large size [see Dauce, 2000].
Both facts can be explained by the larger probability for the eigenvalues of the
Jacobian matrix DF to be complex values, and hence Hopf bifurcations are much
more frequent than flip bifurcations [Doyon et al., 1993]. As shown in Chapter 5
on page 101, iterative Hebbian procedures can be used as a road to intermittency
chaos.

71Which is also known as the sub-harmonic road.
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(a) Bifurcation Diagram

(b) Return Map and FFT for a chaotic region of the above diagram.

(c) State versus Time diagram.

Figure 2.13. Period doubling road to Chaos and qualitative
structure of this chaos for a 2-neurons RNN. The auto-connection
weights of the network have been set to negative values while the
weights between them are set positive. Inputs are used as control
parameters.
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(a) Bifurcation Diagram

(b) Return Map and FFT for a chaotic region of the above diagram.

(c) State versus Time diagram.

Figure 2.14. Quasi-periodic road to chaos and qualitative struc-
ture of this chaos for a 2-neurons RNN.

Figures 2.13 on the preceding page, 2.14, 2.15 on the next page show the three
roads to chaos, respectively by period doubling, quasi-periodicity and intermittency.
To further help to make explicit the differences between these roads to chaos a power
spectrum, a return map and a state diagram72 (for points located inside the chaotic
region) have been added alongside the bifurcation diagram. One can note that in

72See section 6.2 on page 48 for a detailed review of these tools.
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(a) Bifurcation Diagram

(b) Return Map and FFT for a chaotic region of the above diagram.

(c) State versus Time diagram.

Figure 2.15. Intermittency Chaos and qualitative structure of
this chaos for a 3-neuron RNN. Auto-connection weights are highly
inhibitive.

the chaotic region of the parameter domain, all chaotic points show more or less
the same structure (return maps and power spectra look very similar). However,
when integrating information provided from the different plots it is often possible
to determine the type of chaos the system is going through.
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However, with real size neural networks the parameter space becomes rapidly
beyond control73 which makes it difficult to obtain a bifurcation diagram that shows
a perfect road to chaos and that is in perfect correspondence with the theory ex-
posed above. To plot a bifurcation diagram an intersection has to be made in the
high-dimensional parameter space with a one-dimensional space (the other dimen-
sion of the parametric change). This makes finding the point of the first bifurcation
very difficult.

6.4. Dynamical System Theory & Recurrent Neural Networks. Neu-
ral networks are perfect candidates to be analytically studied with the bifurcation
theory: they are complex dynamical systems with the presence of nonlinear inter-
actions between the units. However, the parameter space grows rapidly with the
size of the network, making such an approach very unlikely.

6.4.1. The one neuron recurrent neural network. The self-interacting one neu-
ron network was solved by Pasemann [1993] more than a decade ago. Given the
following evolution equation:

(17) x (t + 1) = � + !f (x (t))

where � is the input on the neuron and f is the threshold function, here a
simple sigmoid function. Three different types of trajectories can be found in three
different domains in the (�, !)-parameter space (see Figure 2.16). The boundaries
between these domains represent the set of values in the parameter space leading to
non-hyperbolic points. At these points, the norm of the eigenvalue of the Jacobian
is equal to one.

ω

Figure 2.16. One neuron’s dynamics, shown within the (�, !)-
parameter domains. It shows global fixed point attractors (I),
bistability (hysteresis)(II), and global period-2 orbit attractors
(III). The evolution function is x (t + 1) = � + !f (x (t))

For a self-excitatory neuron (! > 0), a hysteresis domain (II) exists over which
the system has two coexisting fixed point attractors. This domain is bound by a
bifurcation set, which is determined by a cusp catastrophe at (�c, !c) = (−2, 4). For
a self-inhibitory neuron (! < 0), there is an oscillatory domain (III) corresponding
to global period-2 orbit attractors. It starts at the critical point (�c, !c) = (2,−4).
Parameter values outside these two domains have a global fixed-point attractor (I).

73The parameter space in O
(

n2
)

.
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Figure 2.11 on page 54 actually shows the domain (II) on the left plot and the
domain (III) on the right plot.

This system does not exhibit any kind of chaotic dynamics. Pasemann [1997]
successfully obtained chaotic dynamics from this model by adding a linear term or
persistence:

(18) x (t + 1) = x (t) + � + !f (x (t))

where  is a dissipative parameter.

6.4.2. The two neurons recurrent neural network. The two neuron system has
also been completely solved analytically by Pasemann [1999]. This is the simplest
neural network which exhibits all kinds of non trivial dynamics, ranging from sta-
tionary attractor to oscillation of various periodicity and even quasi-periodicity
and chaotic dynamics (without any addition, such as the persistence state in Equa-
tion 18).

The system can be formally written as the following map: F� : ℝ2 → ℝ
2, where

� = (�0, �1, !00, !01, !10, !11) ∈ ℝ
6 :

(19)
x0 (t + 1) = �0 + !00f (x0 (t)) + !01f (x1 (t))
x1 (t + 1) = �1 + !10f (x0 (t)) + !11f (x1 (t))

The equation giving the boundaries of the multiple domains are far from trivial
to solve and even harder to analyze. Even representing the parameter space requires
compromise since it is now six dimensional. However, for specific parameter config-
urations (approaching the Hopf bifurcation) the output signal of neurons is almost
sinusoidal, and its frequency can be controlled by a single parameter [Pasemann
et al., 2003]

6.4.3. Larger recurrent neural network. No complete theoretical analysis exists
for recurrent neural networks larger than two neurons. Even if such a study was
possible, it would be extremely complicated since equations become very difficult to
solve and the number of parameters rises quadratically with the number of neurons.
The reason why this study has lost any interest for many researchers is that the
complexity is such that even if an analytic solution was found it seems unlikely that
it would help get a better understanding of the system, yet alone provide practical
use for these networks.

Another perspective is to analyze large connectionist networks with the use of
statistical physics. Following the leads of Hopfield [1982] who proposed an analogy
between neural networks and glass spin networks, or as suggested by Amari [1983],
at the thermodynamic limit (when size tends to infinity), it is possible to identify a
limited set of global observables which characterize some properties of the system.
Here, the neural network is seen as an emergent system, where some global proper-
ties (which can be mathematically described) emerge from its individual neurons.
An intermediate solution is to work at the mesoscopic level, where the collective
behavior of a finite number of neurons is considered [Cessac, 2002].

6.5. Hysteresis. To understand hysteresis, it is important to understand the
notion of initial condition and basin of attraction; these two notions play a cru-
cial role in dynamical systems. Here follows, a non formal reminder of those two
concepts:

initial condition: is the starting N -dimensional point in space where the
trajectory starts it revolution. In a neural network, the initial inner state
vector gives this.
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basin of attraction: is a set of points in the state space which converge to
an attractor.

In the one-neuron study, it has been shown that (depending on the parametric
configuration) two basins of attraction coexist. Depending on its initial condition
the system will end in one or the other. In higher-level systems (larger neural
networks), multiple dynamics can coexist at the same time. Depending on the
initial conditions, the system evolves in a limit cycle, a quasi-periodic limit cycle
or a strange attractor. It has to be noted that the initial Hopfield model developed
to store memories is based on the coexistence of different attractors.

hysteresis phenomenon: appears when the system evolves through con-
trol parameters and crosses a region of multi-stability where different
basins of attraction coexist. This phenomenon is observed when a control
parameter is changed from one value to another and then brought back to
its original value. The difference between the two parametric changes is
the initial conditions and the direction of movement but they both cover
the same parametric space. The forward pass and the backward pass re-
sult in different bifurcation diagrams (called “path-bifurcation diagram”).

Figure 2.17. Path-bifurcation for the one-neuron recurrent neu-
ral network. A simple hysteresis appears and corresponds with
a bi-stable domain. The Lyapunov exponent is equal to 0 when
saddle-node bifurcations occur.

Figure 2.18. Path-bifurcation diagram for a 3-neurons recurrent
neural network. It shows a complex hysteresis phenomenon.
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Figure 2.17 on the preceding page shows the hysteresis phenomenon occurring in
a one-neuron recurrent neural network while the input � is changed. This hysteresis
results from the existence of a domain of bi-stability. Figure 2.18 on the previous
page shows a more complex hysteresis phenomenon appearing in a larger recurrent
neural network.

This phenomenon shows the importance of initial conditions. Furthermore, it
shows how they can lead to different bifurcation diagrams. A bifurcation is said
to be global if it occurs independently from the initial condition, the bifurcation is
called local in other cases. It has to be noted that the first point of bifurcation (the
first eigenvalue crossing the unit circle) is always a global bifurcation [Albers et al.,
1998]. Before this bifurcation, there is only one attractor (a fixed point), and after
it, dynamics are often not global.

Pasemann [1997] has suggested the use of this phenomenon in the one-neuron
recurrent neural network as building blocks of a short-term memory. He also demon-
strated that hysteresis effects can improve performance for robots trained to support
navigation tasks [Huelse and Pasemann, 2002].

7. Conclusion

This chapter introduced the fundamental notions, which will serve as a basis to
this thesis. Being in the cross section of several fields this chapter had to go through
lots of different concepts that one may not at first fit together, even if in the end
they all form a coherent ensemble in this work. The first important field to cover
was the neurophysiology whose goal was to familiarize the reader with the current
understanding, facts and hypotheses of the brain study. One particular construct
which has been looked at a bit more closely is the memory which is at the heart
of this work; this in turn required a more detailed definition of one region of the
brain: the hippocampus. This part of the chapter covered the biological basis of
the work, which will serve as guideline through the work.

Since this thesis is dedicated to computational models and works with artificial
neural network, the corresponding modeling was introduced as the connectionist
model and compared to the alternative computationalist model. The numerous
models of artificial recurrent neural networks and the lack of convincing applications
for these networks clearly depict the state of the art in this field. These recurrent
networks seem so powerful that they appear difficult to control and to learn. It has
been showed that they are extremely hard to study by analytic approaches and that
results are very rare when the network’s size goes over two neurons, while practical
cases require the use of hundreds, even thousands of neurons which in turn is still
far from the biological scale of billions of neurons.

The final piece in this puzzle is the complex system theory. From biological
evidences and studies to engineerist models, everywhere complex dynamics seems
to be part of the problem, and part of the solution. It was therefore important to
introduce properly the basic notions of the nonlinear dynamical systems, and more
specifically the theories of bifurcation and chaos. Connectionist models have also
proven to be connected deeply to the complex dynamics, especially when dealing
with neural networks used as memory. The correlation between the presence of
chaos and the capacitive limits of a neural network has been shown by Molter and
Bersini [2003a,b], this is covered in more detail in the Chapter 4 on page 81.



CHAPTER 3

Model

As explained in the previous chapter, neural networks can be modeled in lots
of different ways; they suggest that the study of mental activity is really the study
of neural systems. This links connectionism to neuroscience, and models involve
varying degrees of biological realism. They do not need, in general, to be biologically
realistic. Those models range from very simplistic definitions (i.e.: modeled as a
graph) to very complicated systems (i.e.: modeling the dendrites, the soma, the
synapses, . . . ), which mimic aspects of natural neural systems very closely1. A
neural network model definition is based upon several important building blocks:
it needs a proper definition of the neurons, the way those neurons are connected
together, how they evolve through time, how time is represented in the model, etc.

The complexity that comes with the design directly impacts on the performance
of the system as a whole. The goal of this chapter is to provide the simplest
possible definition that is biologically plausible and may be used to give a better
understanding of the real systems being modeled. This chapter presents such a
model, and validates the choices that come with this particular model. First, it
introduces existing related approaches and highlights the methodology behind the
construction of the model used in this work.

1. Methodology and State of the art

1.1. Related approaches.

Freeman and Kozma et al.: Freeman has done neurophysiological exper-
iments over 20 years, showing evidence of complex activities occurring in
the brain through observations of EEG signals obtained from different
brain locations [Skarda and Freeman, 1987].

Later, Kozma and Freeman [2001] proposed to build an artificial
model replicating at best brain dynamics. They use simple building blocks
that were put together into more complex architectures creating new super
building blocks, which in turn can be used to create even more complex
architectures. Muthu et al. [2004] describe this as:

“K sets” represent a family of models of increasing complexity.
Each level of complexity represents various aspects of operation
of vertebrate brains. These models are biologically inspired,
and they are built based on the salamander’s central nervous
system. They provide a biologically conceivable simulation of
chaotic spatio-temporal neural developments at the mesoscopic
and macroscopic scale

For example, the K-IV model (the last one in the chain) consists of four
components: the hippocampus (for the spatial orientation), the cortical

1The so-called “neuromorphic networks”.
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region (for sensory inputs), the midline forebrain (deals with the inter-
nal goals) and the amygdala (aids the system for decision-making while
navigating). All parts are modeled with a specific K-III set.

This methodology had two main goals: first learn about the neural
assemblies and second develop autonomous robots capable of performing
cognitive tasks.

Doyon and Samuelides et al.: This group of researchers, starting in the
1990s, have used mathematical approaches to extend the thermodynamic
limit (when the network’s size tends to infinity) on the studies of the
dynamical behaviors of these models [Doyon et al., 1993, 1994]. Their
work takes its root in the work of Amari [1983], who showed how a model
formed by a huge number of microscopic variables can be described using
some macroscopic observables. Interestingly, they have studied intensively
one particular two-neuron network, where one neuron is inhibitory and the
other is excitatory; and this is nothing more than the K-II model proposed
by Kozma and Freeman.

Later more work has been done to use this knowledge in autonomous
robots. While, Freeman et al. tried to obtain cognitive behaviors by
“creating an artificial brain”, Dauce et al. [1998] tried to obtain the same
cognitive behaviors by finding Hebbian-based learning procedures.

Pasemann et al.: During this period, Pasemann instigated another neuro-
dynamics approach. He obtained theoretical results on the one-neuron
network [Pasemann, 1993] and the two-neuron network [Pasemann, 1999]
and even applications were proposed based on these results. One such
application was the development of the one-neuron chaotic network [Pase-
mann, 1997], another was the creation of a generator of frequencies using
a two neurons network [Pasemann et al., 2003]. These results were also
compared (qualitatively) with brain dynamics [Pasemann, 2002].

Again, like the two previous groups, he tried to apply these results
into autonomous robotics. Nevertheless, even if the goal was the same,
the means were different. Each group gave a different response to the
following question: “what type of recurrent structure is to be used for the
generation of a successful behavior?”. Freeman et al. created a complex
architecture (the K-IV model), Doyon et al. used a simple model of huge
size, where Huelse and Pasemann [2002] developed an evolutionary algo-
rithm for the structural development of neural networks that use a fitness
function, called ENS2. One interesting result reported by these researchers
is that most often well skilled robot behaviors are partly due to hystere-
sis effects associated to specific recurrences [Huelse and Pasemann, 2002].
Later, Harter and Kozma [2005] conducted comparative studies with the
Huelse and Pasemann [2002] model concerning the robustness and mem-
ory capacity.

Carpenter, Grossberg and Kohonen: Carpenter and Grossberg [1988]
have proposed the “Adaptive Resonance Theory”, simply known as ART.
From their first proposed model many evolutions and improvements have
been suggested [Carpenter and Grossberg, 2003]. ART is a system ca-
pable of online-unsupervised learning of new memory. The basic idea of
the ART systems is a pattern matching process that compares an exter-
nal stimulus with the internal memory. This matching leads to a parallel
search or to a resonant state, which persists long enough to permit learn-
ing. The search may end at an established code, which allows the existing

2ENS means “evolution of neural systems by stochastic synthesis”.
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memory representation to be altered; or it ends at a new code, and the
memory representation learns the current input. This allows the system to
autonomously either learn a completely new pattern or adjust an existing
one.

In the same vein, the “Self-Organizing Map” (SOM) suggested by
Kohonen [1998] is another autonomous system that learns through un-
supervised learning. The goal of SOMs is to map a high-dimensional
distribution onto a regular low-dimensional grid. This allows seeing a
complex nonlinear statistical relationship between high-dimensional data
items as a simple geometric relationship on a low-dimensional display.
Even if it may not seem very close to a memory model, the learning in
SOMs works by causing different parts of the network to respond similarly
to certain input patterns. The SOMs have some biological basis related
to how separate parts of the cerebral cortex in the human brain handle
visual, auditory or other sensory information. Unfortunately, this model
lacks biological likelihood in its implementation.

1.2. Approach of this thesis. There is of course a lot in common amongst
what will be presented here and the work of the previously cited authors [Guillot and
Dauce, 2002; Skarda and Freeman, 1990b]. There is an agreement that dynamical
signals present in the brain play a big part in the information present in it. In
addition, neurophysiological observations show the importance of the environment
in the learning process: learning mechanisms involve ongoing adaptations of the
brain throughout its lifetime in response to the environment. These observations
raised the idea that it would not be possible to consider any cognitive process by
dissociating the connectionist model from its environment [Brooks, 1986]. However,
most of those groups have put their model in use in autonomous robotics, and
analyzed the impact of learning mechanisms in the network’s underlying dynamics
in conjunction with the observed behavior. Here, the models are studied following
the idea that information is stored in the brain in almost cyclic dynamics while
attentive waiting states correspond to chaotic dynamics, and thus the artificial
recurrent neural networks are used as memory. It is also clear that to be able to
produce a brain-like memory, the system needs to be able to learn autonomously
and unsupervisedly. This is where the works from Carpenter and Grossberg [1988]
and Kohonen [1998] are very close to the goal of this thesis even if their models
have a biologically unlikely implementation.

The following chapters will show what kind of results can be obtained and
what biological precision they carry with them. Even when the model’s working
hypotheses are not always biologically valid, they allow highlighting some important
properties that can go beyond those hypotheses. Since the main topics of this work
is about memory and information storing, it is important to give a proper meaning
to the term “information” in this work. The brain processes information in many
ways, and like the brain, neural networks can be seen as black boxes, which receive
information (or data) through their input neurons and, given some personal history
(the network internal state), process this information and then act, this “action”
being observed on their output neurons.

The feed forward neural networks can associate a given input to an output,
changing its syntactic and/or semantic meaning in the process. This is a hetero-
associative way of associating information. These networks have been widely stud-
ied for clustering and classification purposes [see Haykin, 1998, amongst others]. If
some internal recurrences are added, the output is no longer uniquely determined
by the input. The network internal dynamics also affects the generated output
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action. This family of feed forward recurrent networks [Kremer, 2001] can have lots
of different architectures. A typical application of these models is the simulation of
context sensitive dependencies required for language processing.

Fixed point attractor

Boundary

Trajectory

Basin of attraction

Figure 3.1. Basins of attraction in the state space with their
corresponding fixed-point attractors. Information is mapped into
a fixed-point attractor, which defines the system as an auto-
associative memory (or memory addressable by contents), since
partial information will be attracted to the closest attractor.

The models proposed by Hopfield [1982], changed things in the connectionist
models3 He developed a new kind of architecture, the fully recurrent neural net-
work, where inputs are no longer seen as external to the system: they directly
initialize the internal states of the neurons, which forces the network into an initial
location of its state space, which can be related to the vicinity of an attractor.
Furthermore, by constraining the weights of the connections to be symmetric, the
network is assured to converge to fixed points attractors. Furthermore, Hopfield
found a learning algorithm based on the Hebbian prescription satisfying this weight
constraint and enabling the association of information with fixed points attractors
of the dynamics. This model defines an auto-associative way to store information:
the information in the input is the same as the information in the output and the
existence of basins of attraction permits recovery from noisy inputs (see Figure 3.1).
The main difference between auto-associative and hetero-associative memory is the
way the information is addressed. Auto-associative memory allows addressing the
information by contents, while hetero-associative memory is closer to computer-like
memory addressed by address.

Following, this idea, coupled with the motivation to use complex dynamical
systems as part of the encoding scheme, the work presented here builds on top
of models like Hopfield’s but focuses on using richer dynamics to do the bidding.
It is possible to go even further and work locally on the network. In Hopfield’s
model the whole system gives the answer and the whole system converges to a
given dynamics. As it seems unlikely to have fixed-point attractors in the brain,
it is even more unlikely for these attractors to be global in the system. It is also
obvious that such systems will scale poorly with the size of the network.

One possible way to represent information is through cell assemblies as intro-
duced by Hebb [1949]. From what is explained in section 1.4 on page 14, a cell
assembly can be seen as a group of neurons that react in a synchronous way to a
given input. It is important to note that those groups can overlap (partially or even
totally). Here “synchronous way” has also a specific meaning: since this thesis does
not work with continuous time models the synchrony of two signals is less obvious

3At the same time, Cohen and Grossberg [1982] also developed a more general approach

which contributed to these changes.
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to define: there are different ways this can be extended to the discrete time systems
nonetheless. The simplest way is to see any two units that share similar activation
patterns during a period of time to be synchronous. Another way is to look at the
average activity of two units (neurons) over a period of time T and if both are above
a threshold they are considered synchronously active. As one may note, this is a
much more loose definition of synchrony, compared to two continuous oscillatory
signals having the same phase and frequency.

2. Unit Definition

A neural network can be seen, in its simplest form, as a weighted directed
graph. From the biological point of view, here each node represents a neuron and
each edge represents the synapse between the two neurons. The following section
properly defines the node and the edges of this graph.

2.1. Neurons. A neural network A is composed of N neurons, ∣A∣ = N indi-
cates the size of the network and i ∈ A denotes the itℎ neuron of A.

The simplest way to model a neuron is a numerical value that evolves thought
time, noted xi (t), where i is the neuron. This numerical value can either be the
current activity of the neuron (the intensity of the action potential itself) or this
value can just indicate the rate at which the neuron is firing (and not the spike’s
actual intensity). Usually, when modeling the neuron’s spiking activity, one needs
to have to compute the system using a continuous time scale (t ∈ ℝ

+). On the
other hand, when dealing with rate firing models, discrete time scales are also an
option (t ∈ ℕ). The value of the neuron is also called “inner state” or just “state”.

The neuron’s state can also be a discrete (xi (t) ∈ ℤ) or a continuous (xi (t) ∈ ℝ)
value, with any kind of domain. Common domains for discrete state neuron are he
binary domains {0, 1}, {−1, 1} and symbolic domains {a0, a1, . . . , an} (e.g.: music
notes). For the continuous state neurons the most common domains are [0, 1] and
[−1, 1]. To compare the network’s continuous internal states with bit-patterns,
a filter layer quantizing the internal states, based on the sgn function, can be
added [Omlin, 2001]. It defines the output vector o:

(20)

{

oi = −1 ⇐⇒ xi < 0
oi = 1 ⇐⇒ xi ≥ 0

where xi is the internal state of the neuron i and oi is its associated output (i.e. its
visible value). This filter layer enables to perform symbolic investigations on the
dynamical attractors.

Figure 3.2 represents a period 2 sequence unfolding in a network of four neurons.
The persistent external stimulus feeding the network appears in the upper part (A)
of the figure. Given that the internal state of neurons is continuous, the internal
states (B) are filtered (C) to enable the comparison with the stored data.

Of course, neuron’s state value can be in any arbitrary set but those models
tend to add a layer of complexity, which is not computationally efficient. Common
solutions include xi (t) ∈ ℂ or xi (t) ∈ ℝ

n (where n is a priori defined). Those
multi-valued neurons are a way to have a spiking model without using continuous
time. The easiest example is the complex number: when presented in polar form
the two values of a neuron are � and Θ where � represent the amplitude of the
spike, and ΔΘ represents the firing rate (frequency).
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C

Figure 3.2. Picture of a fully recurrent neural network (N=4)
fed by a persistent external stimulus (A). Three snapshots of the
network’s states are shown (B). Each one represents the internal
state of the network at a successive time step. After filtering, a
cycle of period 2 can be seen (C). The input layer is fully connected
to the associative layer.

2.2. Connections. Connections between neurons are represented as directed
weighted edges on the graph; when working with fully connected recurrent neural
networks, the best way to model the connections is through a dense weight matrix.
This matrix is usually denoted W, and an individual value of this matrix is denoted
wij , which denotes the weight of the edge going from the neuron j to the neuron i.
Each line i of this matrix represents all the incoming connections from all neurons
to the neuron i.

As with the inner states, usually the weights are real numbers. The most
common approaches are wij ∈ ℝ or wij ∈ ℝ

+. A positive weight value (wij >
0) indicate an excitatory neuron (j excites i) and in a similar way a negative
weight value (wij < 0) indicates an inhibitory neuron (j inhibits i). Biological
evidences suggest that a neuron can only have one role (excitatory or inhibitory).
The next section provides a proof, that a model where neurons can have multiple
roles (∃i1, i2 sgn (wi1j) ∕= sgn (wi2j)) is equivalent to a model with single roles
(∀i1, i2 sgn (wi1j) = sgn (wi2j)) .

More complex systems exist where wij ∈ ℝ
n for instance. One such system

can be, for example, a model where the weights are seen as twofold: first the
permanent weight (wp

ij) between two neurons and secondly, the facilitation weight

(wf
ij) which is a bias to the permanent weight and can help accentuate it or dampen

it. Commonly the final weight on the edge is wij = wp
ij +wf

ij or wij = wp
ijw

f
ij . But

again, this kind of definition can severely affect the performance of the system,
since the final value of the weight always requires some form of computation and
the system needs also to take care of the facilitation weight as a transient value
which requires some more computation each time the system evolves.
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2.3. Synchronous vs. Asynchronous. An important component, when
simulating neural networks, is synchrony. Either all neurons can be simulated
at once in a synchronous way or each neuron can be simulated in an arbitrary
order4 in an asynchronous way. There is a strong impact of this choice over the
dynamics that can be expected in the system. For example, Hopfield networks are
guaranteed to converge to a fixed-point dynamics for any starting point if simulated
in an asynchronous way. A contrario, it has been shown that those networks will
have cyclic (or more complex) dynamics if simulated synchronously.

The model presented here is in fact very close to Hopfield networks for many
aspects, and synchronous simulation is needed to get complex dynamics in the
system5. Fixed-point attractors are a good property for physical systems but,
when modeling the brain, the evidences suggest that they do not seem plausible in
a normal brain activity.

2.4. Simulation. The simulation is the most critical part of the neural net-
work model: it describes how the inner states of the neurons evolve through time.
The complexity of the simulation function is correlated with the choices made when
modeling the neuron and connections of the neural network. For example, simulat-
ing a system in discrete time scale is much easier than in a continuous time scale.
A simulation function (also called “activation function”) needs to specify how the
model reflects the inter-neuron activity. The most common way to do this is to
compute for each neuron a weighted sum of the incoming inputs. This can be
formalized as6

(21) xi (t) = f

⎛

⎝

N
∑

j=1

wijxj (t− 1)

⎞

⎠

where:

∙ xi represents unit i’s firing rate;
∙ wij , the synaptic weight connecting cell j to cell i;
∙ f , the threshold function, depends on the model and can even be different

for separate neuronal groups in a given model (f may be replaced by fi).

This formulation is known as McCulloch and Pitts neurons evolving in discrete
time step [McCulloch and Pitts, 1943]. It describes a synchronous simulation since
xi (t) depends only on xj (t− 1), which all come from the previous time step. Since

there isn’t any constraint on the weights:
∑N

j=1 wijxj (t− 1) ∈ ℝ. This is why
the threshold function was chosen to map the weighted sum to the desired domain
of the neurons’ inner state. The most common threshold function is f = tanh (x)
which maps ℝ → ]−1, 1[.

When modeling a rate firing model, extra care needs to be taken for the thresh-
old function. If the inner states of the neuron represent the firing rate of the neuron
then it must always be a positive value (e.g. f : ℝ → [0, 1]). The neuron’s firing

4This order does not need to be specified beforehand and can be implemented in different

ways. The goal here is to mimic the independent behavior of neurons where each one fires at
its own rate. Common approaches use a predefined simulation order, random order at each
simulation step or a probabilistic simulation where each neuron has a chance to be the next one
to be simulated.

5Hopfield showed that the system needed asynchronous simulation amongst some constraints

on the weights matrix in order to guarantee to always stabilize in fixed-point attractor.
6continuous time scale models are describe as a derivative of x over time : ẋ (t) = . . .
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rate needs to be null in absence of inputs. Here the following function7 is proposed
for the rate firing model8 (see Figure 3.3):

(22) f (x) =
tanh (3x− 2) + 1
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Figure 3.3. Threshold function of the rate firing model used in

this work, described by f (x) =
tanh (3x− 2) + 1

2

Historically, the step function was chosen [McCulloch and Pitts, 1943] as a
threshold function; here some kind of sigmoid function has been preferred. The
reason for this is pretty simple: when dealing with a sigmoid-like function it is
always possible to later look at the output of a neuron through a filter which will
quantize it ([0, 1] → {a0, a1, ⋅ ⋅ ⋅ , an}). On the other hand a continuous output
enables the computation of all kinds of properties over the dynamics of the system
(e.g. a Lyapunov exponent).

2.5. Matrix form definition. Since a synchronous discrete time simulation
is used and the activation function is a weighted sum, the natural way to represent
the system and the simulation is through vector, matrix, and matrix vector product.
A proper definition for the states of the network, the weights, and the activation
function is needed.

The inner state of the neurons is defined as the vector whose components rep-
resent each neuron’s inner state (defined as X (t) = [x0 (t) x1 (t) . . . xN (t)], where

7The given function does not exactly satisfy f (0) = 0, but is close enough and can be
taken arbitrarily close to zero by choosing a constant K > 2 and redefining the function as

f (x) =
tanh (3x−K) + 1

2
. This function also maps ℝ to ]0, 1[ but when dealing with finite

precision real numbers (as with computers) it is safe to assume the set to be closed.
8The model does not implement any form of short-term memory feature at the cell level.
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N is the size of the network). The weight matrix has already been defined as W
(in the section 2.2 on page 68). The activation function can be now redefined as:

(23) X (t) = F (WX (t− 1))

F (X) is the generalization of the threshold function working on vectors. It is
defined as:

(24) F : ℝN → J
N ⊆ ℝ

N : X 7→ F (X) = [f (x0) f (x1) . . . f (xN )]

Where f : ℝ → J is the threshold function (e.g.: for rate firing model J = [0, 1],
see eq. 22 on the preceding page)

This matrix representation allows fast network simulations by relying on li-
braries such as BLAS9 and LAPACK10.

3. Equivalence Theorem

As discussed in section 2.2 on page 68, the defined model does not satisfy the
biological evidence that neurons can only be excitatory or inhibitory. However, this
thesis shows that it is always equivalent to a model which does satisfy this criteria.
The idea behind this proof is to show that it is always possible to construct a
neural network which respects the biological connectivity constraint and which is
equivalent to the original network for all of its initial conditions. To this end, this
section will first formally define the equivalence between two networks.

Definition 7. A neural network B is equivalent to a network A if there is a relation
ℜ ⊂ A × B with ℜ (A) = B,ℜ−1 (B) = A and

(

∀ (i, j) ∈ ℜ : xA

i (0) = xB

j (0)
)

⇒
(

∀ (i, j) ∈ ℜ, ∀t ∈ ℕ : xA

i (t) = xB

j (t)
)

Given this definition, the equivalence theorem says that for any neural network
A where a neuron can have both excitatory and inhibitory connections, it is possible
to construct an equivalent neural network B which do not possess any neuron with
both inhibitory and excitatory connections, with the same orbits for the same initial
conditions.

Theorem 3.1. Given a neural network A of size N with arbitrary weights WA and
inner states XA, there is another neural network B equivalent to A that satisfies
∀j : ∀i, k : sgn

(

wB

ij

)

= sgn
(

wB

kj

)

.

Proof. The weight matrix of network B of size M = 2N can be defined from
WA as:

(25)
wB

(2i)(2j) = wB

(2i+1)(2j) =

{

wA

ij if sgn
(

wA

ij

)

> 0
0 otherwise

wB

(2i)(2j+1) = wB

(2i+1)(2j+1) =

{

wA

ij if sgn
(

wA

ij

)

< 0
0 otherwise

The mapping relation ℜ is defined as ℜ = F−1, where F is the following surjective
function:

9http://www.netlib.org/blas/
10http://www.netlib.org/lapack/
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(26) F : B → A : F (i) =

⌊

i

2

⌋

This defines the initial conditions of B from those of A as:

(27) xB

2i (0) = xB

2i+1 (0) = xA

i (0)

By construction, it is trivial that:

(28)
∀i, j : sgn

(

wB

i,2j

)

≥ 0

∀i, j : sgn
(

wB

i,2j+1

)

≤ 0

This satisfies the biological property of the system to not posses any neuron, which
can be simultaneously excitatory or inhibitory.

Given the initial states of the network B, the value of each neuron’s state can
be expressed as:

(29)

xB

i (t) = f

⎛

⎝

M
∑

j

wB

ij x
B

j (t− 1)

⎞

⎠

= f

⎛

⎝

N
∑

j

(

wB

i(2j)x
B

2j (t− 1) + wB

i(2j+1)x
B

2j+1 (t− 1)
)

⎞

⎠

By definition when t = 0:

(30) xB

2i (0) = xB

2i+1 (0) = xA

i (0)

If this holds for t− 1, then equation 29 can be simplified as:

(31) xB

i (t) = f

⎛

⎝

N
∑

j

(

wB

i(2j)x
A

j (t− 1) + wB

i(2j+1)x
A

j (t− 1)
)

⎞

⎠

For each pair
(

wB

i2j , w
B

i2j+1

)

, by definition, either wB

i2j = wA

ij and wB

i2j+1 = 0 (if

sgn
(

wA

ij

)

> 0) or wB

i2j = 0 and wB

i2j+1 = wA

ij (if sgn
(

wA

ij

)

< 0). On the other hand,

∀i, j : wB

2ij = wB

2i+1j . This further simplifies the equation to:

(32) xB

2i (t) = xB

2i+1 (t) = f

⎛

⎝

N
∑

j

wA

ijx
A

j (t− 1)

⎞

⎠

Which proves that:

(33)
(

∀ (i, j) ∈ ℜ : xA

i (0) = xB

j (0)
)

⇒
(

∀ (i, j) ∈ ℜ, ∀t ∈ ℕ : xA

i (t) = xB

j (t)
)

□

A simple example is provided to illustrated this theorem. Given a network A

of size 2, with:

(34) WA =

(

11 12
−21 22

)

The first neuron of this example has inhibitory and excitatory connections, the
second neuron does not induce any problem. The weight matrix of the new network
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B is constructed as:

(35) WA =

⎛

⎝

11 12

-21 22

⎞

⎠ WB =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

11 0 12 0

11 0 12 0

0 -21 22 0

0 -21 22 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

It is obvious, from the matrix WB, that the new network B does not possess
any neuron with both inhibitory and excitatory output. It can be observed that
odd rows of the new matrix represent the excitatory influence, and the even rows
represent the negative inhibitory influence of the corresponding original neuron. It
is also obvious that for any given initial state XA both systems go through the
same orbit for all corresponding neurons.

4. Performance Benchmark

This section compares the model presented in this chapter with a common im-
plementation of a more biologically accurate model. To be more accurate this model
needs to have a continuous time scale and a more complex activation function11.
Which in turn implies a higher load on the computation of a simulation step.

The simulations are made for networks of growing size; for each network size,
100 simulations of 100 time steps are performed and the total time needed in sec-
ond12 is computed. Figure 3.4 on the following page shows the execution time in
seconds for each model. The logarithmic scale of the plot (in Fig. 3.4 on the next
page) shows the relative difference between the two models in a constant order of
magnitude. This experiment clearly shows why simple neural network models are
still be a strong alternative to more complex and accurate ones.

The continuous time simulation was done using a Runge–Kutta [see Butcher,
2003, for a review]. To be able to compare those two approaches, this section do as
follows: Each use of the Runge–Kutta method generates the continuous evolution
of the system over a given period of time. To help the comparison, the discrete
time steps are considered to model the same period. In other words, each method
of simulation is called the same number of times over the experience and thus the
efficiency of each method is shown as a result of this test.

Being ten times faster is a good point for the model, but it needs to be powerful
enough to solve complex problems specific to the cognitive brain models. The next
chapters prove this, going from features of this model to a complete solution as a
working memory.

5. Architecture

This section presents the global architecture of the system, which is used for
the rest of this document. Figure 3.5 on page 75 shows the whole system. Each
layer serves a specific purpose, detailed below, and is modeled by a certain number
of neurons. When a specific region of the model is connected to another one, it is
represented in this figure by an arrow and this arrow is labeled with a name (i.e.
WR). Those labels are the names given to the corresponding sub-matrix of W

11This function has to do integration step in order to produce the value of x.
12The benchmarks have been done on a modern day laptop in the same development frame-

work with just a different activation function. See the annex for more details on the framework.
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Figure 3.4. Simulation performance of two models. The bench-
mark compares the time taken by two models to perform 100 sim-
ulations of 100 time steps (the result is in second). As seen in this
figure, the continuous time simulation (in red) is slower by one or-
der of magnitude when compared to a discrete time simulation (in
blue). However, the performance gap is independent of the size of
the network.

which represents the corresponding weights. Here is an overview of the matrix W
with all the sub-matrices:

(36) W =

⎛

⎜

⎜

⎝

WR WV WS WI

WC 0 0 0
0 0 I 0

WA 0 0 0

⎞

⎟

⎟

⎠

The corresponding weights of a sub-matrix are referred to as wR
ij , which is the

connection weight from the jth neuron of A to the ith neuron in B if R links
subsystem A to subsystem B. The state of each component can be seen in a
vectorial form:

(37) V =
(

X C S Υ
)

At some places during the rest of this document, experiences are conducted
using part of the model only, to highlight some specific features. This will be
properly indicated by saying which part is not needed. To disable any part, the
incoming and outgoing weights are set to zero (e.g: if a section does not work with
the context, then WC = WV = 0); this also amounts to consider the corresponding
subsystem as empty.

Those subsystems are referenced as:
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Figure 3.5. Architecture of the system, with all of its components
as well as the connections that exist between them. If two com-
ponents are connected, an arrow represents the direction and its
label the corresponding sub-matrix. If two components do not see
each other the arrow between them is just omitted, which means
that the corresponding sub-matrix will be null.

∙ A: the associative layer, and xi (t) is the state of neuron i ∈ A (noted
X (t) in its vectorial form.)

∙ C: the context layer, and ci (t) is the state of neuron i ∈ C (noted C (t)
in its vectorial form.)

∙ Υ: the global inhibitor, and Υ (t) is the state of the inhibitor neuron.
∙ S: the input layer (aka the stimulus), and �i (t) is the state of neuron

i ∈ S (noted S (t) in its vectorial form.)

Since each part represents a different biological region, its modeling will try to
reflect the properties of that region. To this end each group will present a different
evolution function. During the presentation of each part, the activation function
used on those neurons will be specified and explained.

5.1. Input layer: Behavioral Space. This layer represents the stimuli as
they arrive to the system. For simplification purposes it is said to represent the
external environment but this is not exactly accurate. Actually, the inputs, here,
are pre-processed versions of the true external stimuli13. The input layer’s neurons
change but at a time scale much slower than other neurons presented in this model
and not as a result of the dynamics of the system presented here, but due to external

13Hence, the usage of a mouse, ball, chair in its representation in Figure 3.5 (and in similar
ones further in this thesis) should be considered as a direct representation of its contents. The

dentate gyrus is a good candidate for this job in the brain.
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circumstances14. So they will be considered as static values in this model, defined
externally (usually by the user). Given this layer does not receive feedback from
any other part of the system except itself with the identity matrix as weights (see
equation 36 on page 74), if the activation function used for those neurons is set to
be the identity function, the value of the input layer will never change. So overall
an input is a fixed vector of size ∣S∣, unless a perturbation is applied.

5.2. Associative layer: Dorsal Ca3 Network. This is the main layer, also
referred to as the main module. It is the only recurrent part of the network, and
the only one which is connected with all the other layers. In fact, all the layers
are there to support and enhance the behavior of the associative layer. This layer
serves as the main memory, and it is where information is stored. The recurrent
connections also make it possible for this layer to exhibit very subtle outputs, which
are highlighted, justified and praised in the next chapters. The threshold function
used here is described in equation 22 on page 70.

5.3. Context layer: Ventral Ca3 Network. The context layer will be used
in the last part of this document when the model is used as a working memory. It
is used when the inputs are not simply considered as a vector of numbers but as
a sequence of correlated entries which are related to a specific context (this is also
called a “cognitive map”). In practice, a size for the cognitive maps is chosen 15

and then the inputs are generated by partitioning the input space into K sets of
equal size (where K is the size of the cognitive map). Each set of input neurons
represents an input of that cognitive map.

This introduces an extra level of information which is not present in the in-
put itself, but is given to the system by the fact that a series of inputs has been
encountered together in a short period of time.

Basically, the context layer acts as a classification network, which identifies for
each stimulus its corresponding group. In order to reflect that, a “multiple winner
takes all” activation function was chosen. Granted Ki, the total activity impinging
(through WC) a context cell ci, the activity of that cell at time t is given by the
function gi (t), defined as:

(38) gi(t) =

⎧

⎨

⎩

1 if (
Ki(t)

∑P
i Ki(t)

)10 > 0.1

0 otherwise

where P = ∣C∣ is the total number of cells in the context layer. The Ki are the
value of the vector K obtained as follow:

(39) K = WCX

The exponentiation enhances the distance between good candidates and av-
eraged ones. This transfer function can also be written in a vectorial form as a
function G:

(40) G : ℝN → {0, 1}N : X 7→ G (WCX) = [g0g1 . . . gN ]

For the context layer to make sense, each stimulus must be associated to a
given context. This information can be provided by a lot of ways to the system. In

14For instance because the experimenter wants to see the impact of some perturbation of the

inputs on the rest of the system.
15Here, for convenience, the cognitive maps have been chosen to have a size of 5.
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this model the information is an inherent part of the original stimulus. The goal of
the context layer is twofold; first it is there to identify the correct context to which
the current input belongs, secondly it gives the contextual information extracted
from the input as a feedback to the associative layer (through WV).

This feedback mechanism allows this layer to help remove ambiguity. For ex-
ample, if the system is faced with a partial input such as the word ‘**eel’. One can
try to replace the missing letters by ‘st’ to form the word ‘steel’ or by ‘wh’ to form
the word ‘wheel’. It is obvious that without further information it is not possible
to know which one is correct. However, if this noisy word is put in context in a
sentence, such as “this blade is made of **eel” it becomes easy to choose the correct
substitution. When the word ‘blade’ comes, it is recognized and enables a certain
context (in the context layer) which in turn helps the associative layer when later
the word ‘**eel’ comes along.

In this model, since inputs are vectors in [0, 1]
N

a possible modeling of this
example can be, if N = 40, and if the inputs are given only values in {0, 1} then
the input space can be seen as 40 bits of information where each 8 bits encode a
letter. In this particular configuration, using the ascii encoding, the words ’wheel’
and ’steel’ become:

(41)
wheel = 01110111 01101000 01100101 01100101 01101100
steel = 01110011 01110100 01100101 01100101 01101100

It is obvious from this example that if the two first blocs are missing in the input
layer, the system is faced with a completely ambiguous information and cannot
recover from it unless an external help is provided.

5.4. Global Inhibitor. The global inhibitor is there to prevent network satu-
ration and to avoid a difficult tuning of the weight matrix: a competitive mechanism
was implemented through global inhibition [see Rolls and Treves, 1998, for review].
To this aim, the global activity of the network was averaged by a single unit (called
node 0), which in turn inhibits proportionally the entire network. Additionally, to
avoid global stabilization of the network to the null fixed point, below a certain
threshold of activity this unit excites the network instead. To produce such an
effect, the activation function of this unit is redefined as :

(42) Υ (t) = �

N
∑

j=1

wA
0jxj (t− 1) − �N�

where � is the expected averaged activity of the network, � is the strength of the
global inhibition, and N the size of the associative layer A. The corresponding
weights of this layer are defined as wI

i0 = −1 and wA
0j = 1 (and wI

i0 = wA
0j = 0 if

the inhibitor is disabled). Accordingly, if the recurrent network’s total activity is
larger than �N�, the inhibiting will give a negative feedback (wI

i0 ∗ Υ (t) < 0) to
the associative layer a thus be inhibitory; however, when the activity is below that
threshold, the unit output is becomes positive (wI

i0 ∗Υ (t) < 0) and thus it becomes
excitatory. Figure 3.6 on the following page show this activation function.

This function is also written in a vectorial form as the function H:

(43) H : ℝN → ℝ : X 7→ H (WAX) = Υ (t)
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Figure 3.6. The inhibitor activation function. The x-axis shows
the summed activity of the network impinging the inhibitor, and
the y-axis shows the resulting inhibition. The higher the value,
the stronger the inhibition. As shown on this plot, below a certain
activity (�N�) this unit becomes excitatory.

5.5. Simulation Rule. This part summarizes the simulation rule defined in
equation 23 on page 71 with all the layers taken into account. The new definition
is:

(44)

X (t) = F (WRX(t− 1) + WSI(t− 1) + WVC(t− 1) + WIΥ(t− 1))
C (t) = G (WCX(t− 1))
S (t) = S (t− 1)
Υ (t) = H (WAX)

6. Development of a neural toolbox

This thesis working on models that are extensively tested, and simulated on a
computer, it needs a strong framework to support it. The work done here has never
been straightforward, and often the aimed target is moving very fast; the only way
to deal with this is to have a very flexible framework, which can help easily test
new learning algorithms, neuronal architectures, and connectionist models. It was
also useful from time to time to be able to reproduce results from the literature
since there is always some small differences amongst models used by those people,
and what is exposed here, and these small changes can lead to unexpected results.
Finally, the system needs to be efficient, easy to use and extensible. To cope with
all these requirements, a neural network framework was developed16.

This framework was named NSI, for neural scripting interface, and is com-
posed of two components: the neural development interface (NDI) and the neural
development kit (NDK). The NDK is the core of this framework; it defines all the
useful structures to help modeling all kinds of systems; it is a C++ library and it
requires the knowledge of C++ programming to be used. The NDI is nothing more
than an interface that supports custom scripts in the LUA language [Ierusalimschy
et al., 2006], extended with special classes and functions defined in the NDK, in a
friendlier user interface. The NDI makes it easy to test and see the results of all
kinds of experiments (supporting plotting, parameter tuning, states/weights visu-
alization,. . . ), and it was really important and helpful. Yet its inner construction
is not really relevant in the context of this work and is not detailed here17. On the
other hand, it is useful to detail the development of the NDK and explain how all
the concepts that are discussed through this thesis can be modeled in a modern
programming approach. The interested reader can find a fully detailed explanation
of this framework in the Appendix on page 187.

16To be more accurate, several versions of this framework have been produced during the

past years.
17It is mostly C++ developments with libraries like QT, luabind, boost, . . .
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7. Conclusion

This chapter has introduced the basis for the results presented in this the-
sis. The first part has covered existing related approaches and exposed the line
of work taken here. It is clear that complex dynamics, memory-like systems and
autonomous learning are central to lots of works and this thesis is no exception.
The approach taken during this work was detailed, highlighting the common parts,
but also the distinctions that exist with the state of the art.

An extensive description of the model used for all the experiments has been
detailed and all of its components were detailed. The model proposed here is a
very simple model based on the simplest possible definition of a unit. The sim-
plicity of the system makes it very easy to adapt on a modern computer and has
very good performances when manipulating the network. When compared to more
subtle approaches, such as continuous time network, a huge performance gap can
be observed. Yet, care must be taken with simplifications in order not to step away
from biological evidence. At several places, it has been explained (or proved) if a
described feature can be related to a biological fact and how it can be related to it.

The final step of this chapter was to propose a global architecture of the system
as parts of it will be used during the rest of the work. This architecture is modular
and each experiment explicitly mentions the set of modules that it requires. The
goal of this architecture is to provide a unified model for all the work presented
here in order to ease the transition from one set of experiments to another.





CHAPTER 4

Learning Algorithms

Synaptic plasticity is now widely accepted as a basic mechanism underlying
learning and memory. There is experimental evidence that neuronal activity can
affect synaptic strength, through both long-term potentiation and long-term de-
pression [Bliss and Lomo, 1973]. Inspired by (or forecasting) this biological fact,
a large number of learning “rules”, specifying how activity and training experi-
ence change synaptic efficacies, has been proposed [Hebb, 1949; Sejnowski, 1977];
such learning rules have been essential for the construction of most models of as-
sociative memory [among others: Amari, 1977; Amari and Maginu, 1988; Amit,
1995; Amit and Mongillo, 2003; Brunel et al., 1997; Fusi, 2002; Hopfield, 1982]. In
such models, the neural network maps the structure of information contained in
the external and/or internal environment into embedded attractors. Since Amari
[1972], Grossberg [1992] and Hopfield [1982] precursor works, the privileged regime
to code information has been fixed point attractors. Many theoretical and ex-
perimental works have shown and discussed the limited storing capacity of these
attractor networks1 [see Amit and Fusi, 1994; Amit et al., 1987; Domany et al.,
1995; Gardner, 1987; Gardner and Derrida, 1989, for review].

However, many neurophysiological reports tend to indicate that brain dynamics
is much more complex than fixed points and is more faithfully characterized by
cyclic and weak chaotic regimes [Babloyantz and Lourenço, 1994; Kenet et al.,
2003; Nicolis and Tsuda, 1985; Rodriguez et al., 1999; Skarda and Freeman, 1987].
In line with these results, this chapter takes a closer look at what can be done with
recurrent neural networks and complex dynamics. It is first showed why gradient
descent algorithms are a bad candidate for memory-like applications. Later, a new
algorithm to map stimuli to spatio-temporal limit cycle attractors of the network’s
dynamics is proposed. A learned stimulus is no more expected to stabilize the
network into a steady state (which could in some cases correspond to a minimum
of a Lyapunov function). Instead, the stimulus is expected to drive the network into
a specific spatio-temporal cyclic trajectory. This cyclic trajectory is still considered
as an attractor since content-addressability is expected. Before the presentation
of the stimulus, the network could follow another trajectory and/or the stimulus
could be corrupted with noise. As discussed in the earlier chapters, neural networks
are dynamical systems and thus can exhibit complex behaviors; this chapter first
shows when complex dynamics appear and why they are needed when recurrent
neural networks are used as a memory-like structure. Later, it shows how they are
a natural consequence of the Hebbian learning and to what extent the presence of
complex dynamics can be used to improve the system even further.

By relying on spatio-temporal cyclic attractors instead of fixed-point attractors,
no famous theoretical results, on the limited capacity of Hopfield networks, apply
anymore. Actually, the extension of encoding attractors to cycles potentially boosts

1Attractor network is used for any model where the network’s attractors are used as memory

store.
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this storing capacity. Suppose a network composed of two neurons that can only
have two values: -1 and +1. Without paying attention to noise and generalization,
only four fixed point attractors can be exploited whereas, by adding cycles, this
number increases. For instance, cycles of length two are:

(+1,+1)(+1,−1) (+1,+1)(−1,+1) (+1,+1)(−1,−1)
(+1,−1)(−1,+1) (+1,−1)(−1,−1) (−1,+1)(−1,−1)

This boost in the number of potential attractors justifies the use of cycles.
However, indexing the memorized attractors restricted to the initial conditions, like
classically done in Hopfield networks, would not allow a full exploitation of all these
potential cyclic attractors, as it appears in the example above with multiple cycles
sharing common patterns (e.g: depending on the cycle, the pattern (+1,+1) gives
(+1,−1), (−1,+1), or (−1,−1)). It makes their indexing based on parts of their
content impossible without using an external information. This is the reason why
in the experimental framework presented in this chapter, the indexing is rather
done by means of the added external input layer, which continuously feeds the
network with different external stimuli2. These external stimuli have another side
effect: they modify the parameterization of the network, thus widen the possible
dynamical regimes and the set of potential attractors.

The goal here is not to calculate the “maximum storage capacity” of these
“cyclic attractors networks”3, neither theoretically4 nor experimentally5. Rather
the goal is to show the potential behind the model described in Chapter 3 on
page 73 and to discuss the potential dynamical regimes (oscillations and chaos) that
allow this new form of information storing. Experimental results to be presented in
the following chapter show how the theoretical limitations of fixed-point attractor
networks can easily be overcome by the addition of the input layer together with
the exploitation of the cyclic attractors.

The chapter starts out by showing the importance of complex dynamics for
memories in the first section; these first results are done on simple random networks.
They however indicate the need for a learning mechanism that can construct such
a network. The second section describes different learning tasks and motivates
two learning procedures. The “out-supervised” learning procedure is described
in section three, where stimuli are encoded in predefined limit cycle attractors.
The fourth section introduces the second learning algorithm, the “in-supervised”
learning procedure, where stimuli are encoded in the limit cycle attractors which
are derived from the ones spontaneously proposed by the network.

It is important to note that all the algorithms presented in this thesis are para-
metric and that their performances can be severely affected by those parameters.
During the elaboration of those algorithms and their experimentation, different
configurations have been tested empirically and the final used values are reported
here. It is important to note that it is possible to go further and have a finer study
of those parameters and their impact, and this can be the topic of further studies.

Before continuing further with this work, it is important to give a definition
of ’the capacity’. Here, the capacity of the system is defined as the number of

2The external stimuli change by user input.
3To paraphrase Gardner [1987]’s paper: “The maximum storage capacity of neural networks”.
4The fact that the work is not done at the thermodynamic limit (with infinite sized networks),

as in population models, would render such an analyze very difficult.
5Some experimental limits do show up during the different tests but often it is difficult to

know for sure if the algorithm has hit a capacitive limit or is just taking a very long time to learn

the data set.
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stable patterns that can be encoded and retrieved6 in the network. This definition
needs some subtlety when it comes to networks which learns cyclic patterns. Two
measures are used: first the number of distinct stimuli which lead to a stable learned
cyclic attractors7, second the total number of patterns present in all the cyclic
attractor learned in the system. Both those definitions can be used to compute the
load of the system in terms of a ratio: the capacity of the system over the size of
the system.

1. Complex dynamics

Molter and Bersini [2003a,b] reported the importance of complex dynamics
for neural networks regarding their capacitive result, by showing the existence of
a strong relation between the presence of complex dynamics in a system and its
capacity. This section highlights the main points of this study. It is important to
note that complexity of a system is a highly debated topic and many (not always
compatible) visions exist. Here, the complexity of a system is always measured as
its Lyapunov exponent or in other words it sensibility to initial condition.

The original idea takes its roots in the work of Hopfield [1982]. Few modifi-
cations were proposed to this approach, yet with the same idea behind the work:
storing information in neural networks and studying their capacity. The first im-
portant modification is the absence of learning procedure. The reason for this was
that the first goal in Molter’s work was to show the general capacitive result in
recurrent neural networks and to show that complex dynamics are a huge boost in
this regards for those models. The second main difference between the two mod-
els is the presence of an external stimulus. Both models can be expressed in the
general architecture proposed in the previous chapter and, while Molter uses the
WS weights and the external stimulus, Hopfield’s model only works with WR.
The impact of the stimulus can be easily understood by equation 44 on page 78
as modifying the inner dynamics of the model and thus providing different outputs
for the same initial condition.

Molter noted, however, that the analysis of these systems was meaningless (in
terms of memory) since the output of neurons were continuous and in that regards
they theoretically provide an infinite storage capability with no noise tolerance.
To work around that problem he suggested the use of a filter and to quantize the
output of a neuron into r symbolic values as proposed by Omlin [2001]. This
provides stronger output signals from the system since slight modifications in the
output are lost after the filtering. The final step here was to guarantee the stability
of a given attractor, in his work, Molter translates this as:

Finally, in order to guarantee the robustness of the learning, in
a way reminiscent of the original use of Hopfield networks as
associative memory, the same dynamical output must be asso-
ciated with a variety of external stimuli, all selected in a small
hypersphere of diameter �rob around the original external stim-
ulus to learn. Such an external stimulus �̄ is said to be �-robust
iff ∀�̄′∣ ∣�̄′ − �̄∣ ≤ � we have the same quantized output. ∣�̄′ − �̄∣ is
the euclidean distance between �̄′ and �̄.

6A pattern is learned if given a non noisy input the recovered pattern is a match with the

one that was learned (e.g: Hamming distance of 0).
7A sequence of patterns.
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This allowed him to study the encoding potential of the recurrent neural net-
works as the quantity of information which could be stored in �-robust symbolic
strings obtained from the quantization of the network’s mean signal while being fed
by different stimuli. The main reported result (shown in Figure 4.1) shows that in
networks with huge potential, chaos prevails more and more as a natural and spon-
taneous dynamical regime, and stable systems show very poor capacitive results.
This is a very interesting result since it is reminiscent of biological observations
suggesting that chaos seems to be a crucial part of the brain [Skarda and Freeman,
1987].

Increasing number of attractors
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Figure 4.1. Capacitive vs. complexity. Each point represents one
random network, the complexity is measured as an mean maximum
Lyapunov exponent, and the capacity is computed as the number
of �-robust (stable) attractors. From this plot, it appears that (a)
huge capacity implies a network with strong complex dynamics and
(b) stable networks have a poor capacity.

Two roles are suggested for the chaos appearing in these neural networks. First,
chaotic activity enables the rapid state transitions, essential for information process-
ing. This is crucial since it allows the system to move through different region of the
system without external constraint and thus permits to the system to rapidly pro-
vide responses to a given stimulus. Secondly, from a cognitive point of view, chaos
is essential for the creation of information, as suggested by authors like Kentridge
[2000]; Skarda and Freeman [1990b]; Tsuda [2001]: chaotic behavior is necessitated
by the brain in order to perform efficient non-deterministic symbolic computations
during cognitive tasks.

2. The Learning Task

From the evidence that chaos is a necessary condition for high capacity memory
(see Figure 4.1), the next logical step was to work out a learning algorithm that
can achieve such network configurations. This algorithm must have two important
properties. First, it must promote complex behaviors for the system, to avoid it
from becoming stable, which has been shown to be of very limited use as a memory.
Secondly, the learning algorithm should not rely on the prediction of the trajectory,
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such as the gradient descent [Rumelhart et al., 1986a,b; Williams and Zipser, 1990],
since complex systems will have lots of bifurcations which in turn make it impossible
to rely on an information such as the slope of the trajectory [Molter, Salihoglu, and
Bersini, 2004a].

2.1. Back-Propagation Through Time Algorithm. This part takes a
look at the classical gradient descent algorithm called “back-propagation through
time”(BPTT) and shows how this type of supervised learning fails to provide any
convincing result when used for hetero-associative learning. This algorithm is based
on the idea of error propagation of the classical back-propagation algorithm [Wer-
bos, 1974]. However, this cannot be applied as is since the network is recurrent
and thus does not possess any specific input/output neuron to propagate the in-
formation to/from. The idea behind this algorithm was to create a new network
from the recurrent network, which will have two features: it will be a feed forward
network and each layer will represent the original network at successive time steps.
This is easily obtained by a process called “unfolding”, which consists in stacking
identical copies of the original network and redirecting connections from one copy
to the following one in a reminiscent way of the original connections8, the last copy
has no connection. The number of copies is the maximum number of time steps
after which the network is expected to converge. This process is represented in
Figure 4.2.
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Figure 4.2. Unfolding process of a 3-neuron recurrent network,
over 4 time steps.

The BPTT is defined over a data set composed of multiple pairs (an external
stimulus and a symbolic output string), and follows these steps:

(1) Forward pass: all networks are updated from the first copy to the last
one.

8For example, if a connection exists between neuron 1 and 2, the neuron 1 from copy one

will be redirected to the neuron 2 of the second copy.
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(2) Error propagation: the term �i (t) is computed for each time t and
neuron i. This error is propagated backward through time9, from t =
T, ⋅ ⋅ ⋅ , 1, with �i (T + 1) = 0 for convenience.

(45)

�i (t) = f ′
it

[

N
∑

k

�k (t + 1)wki + (oi (t) − xi (t))

]

if i = output unit

�i (t) = f ′
it

[

N
∑

k

�k (t + 1)wki

]

if i ∕= output unit

where oit is the expected output for neuron i at time t, and N the size of
the network.

(3) Weight adjustement: the weights of the recurrent connections from
each neuron j are adjusted according to:

(46) Δwij = "

T
∑

t=1

�i (t)xj (t− 1)

and the weights from each input � are adjusted according to:

(47) Δwi� = "
T
∑

t=1

�i (t) o� (t)

where " is the learning rate.

After each pass, the network is simulated a few steps in order to avoid transient
effects (around 10 time steps). After the training, the global error is computed. The
algorithm stops once this error is lower than some specified threshold. If this error
is bigger than or equal to the error computed at the previous time step, the weight
connections are randomly reinitialized from a uniform distribution.
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Figure 4.3. Comparison of learning time: BTTP vs random
brute force. The BPTT learning algorithm (blue crosses) time
to learn a given data set compared to the time it takes to find a
random network (red circles) with that much attractors in it. On
the left, are shown the results for encoding stimuli in fixed-point
attractors. On the right, are shown the results for encoding one
stimulus in a limit cycle of variable size. It is important to note
that random networks fail to find any results for more than 5 fixed
points attractor, while BPTT fails to learn a cyclic attractor with
a period greater than 3. The networks have 4 neurons.

9Hence the name of the algorithm.
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Here, the learning task consists in the hetero-association between external stim-
uli and quantized symbolic strings obtained from the mean signal of the network.
The learning process can be improved by adding noisy versions of the data present
in the data set. Following this training process, two important results are found.
The first finding is on the computational performance of the BPPT algorithm.
When comparing it to the raw potential of random networks [Molter and Bersini,
2003a,b], it seems that the BPTT is not a very good candidate for such applica-
tions. It struggles to learn data sets of several fixed point attractors and performs
even worse for learning a single cyclic data of any reasonable length (see Figure 4.3
on the facing page). The BPTT’s performances were compared with a brute force
algorithm, which generates random networks until one contains the correct output.
The Figure 4.3 on the preceding page clearly shows that the BPTT is, at best, in
the same order of magnitude as the random process, which is not a very good sign.

However, several important details should be noted. When the number of fixed
points to learn arises above 5, the execution time of the BPTT brutally increases,
but the random procedure is still worse, by far. On the contrary, when learning
cyclic attractors of increasing size, the random procedure performs well while the
BPTT rapidly becomes unfeasible. The BPTT’s performance can be drastically
increased by fine parameter tuning according to the problem, but this is a non-
trivial task.

Where the BPTT really shines and clearly outperforms a brute force search
is when the spatial configuration of attractors is specified. In the test performed
(and shown) in Figure 4.3 on the facing page, each individual neuron is free to have
any output as long as the average of the system describes the desired output. In
other words, when the system is expected to go through a specific output for each
of its neurons it becomes extremely hard to find a random configuration to fit the
requirements. The first conclusion that can be drawn for the BPTT is that it is
more suited for learning static data.

The learning algorithm only specifies how the network is supposed to behave
for learned stimuli; here the behavior of the system is tested when facing previously
unlearned stimuli. The goal of the next experiments is to see what kind of global
dynamics exists in the network because of the learning algorithm, and seeks the
state space to look how many other stable attractors can be found. Figure 4.4 on
the following page repeats the experiments performed in the previous section (see
Figure 4.1 on page 84) but this time the networks are not random but taken after
learning a three fix-point data set with both algorithms (BPTT and brute force). As
it can be seen from these results the BPTT needs very stable networks to converge,
which in turn gives a network with poor background dynamics, and this means
poor capacity. The reason BPTT needs a very stable network to converge can be
understood by looking at the Figure 4.5 on the following page, which shows how
bifurcation can get in the way of a gradient descent. As seen in this figure a small
modification in the weights to minimize the error will lead to a sudden jump due
to the bifurcation.

These results show why gradient descent algorithms are not very good candi-
dates for this line of work.

2.2. Iterative supervised Hebbian algorithm. The key difference between
the gradient-based algorithms defined in the previous section and Hebbian algo-
rithms comes down to locality. While the previous algorithm works at the scale
of the network, Hebbian learning relies only on information available locally and
thus adjusts each weight wij in function of the values of its direct neighbors (in
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Figure 4.4. Capacity vs. complexity after learning. The exper-
iments from the previous section (see Figure 4.1 on page 84) is
repeated. However, this time, the networks are not generated ran-
domly. The networks from the left figure are obtained after learn-
ing to associate 3 stimuli to distinct fixed points attractors with
BPTT. The figure on the right shows networks that did the same
learning task but with the random brute force approach. The num-
ber of potential attractors is very low for the BPTT, while some
random networks show very good performances (up to 250 stable
attractors). The networks have 4 neurons.

expected output

initial weights

}error
weights’ modification

expected behavior

bifurcation preventing convergence

Figure 4.5. Bifurcation prevents gradient descent. Example of
how a bifurcation can prevent a gradient descent algorithm to con-
verge.

other words, the two neurons i and j it connects). Another important distinction
of the Hebbian algorithm is the type of patterns it learns. The previous examples10

learned the mapping of a specific stimulus to a symbolic string observed on the
mean signal of the system (after quantization). Hebbian learning maps the stimuli
into an attractors’ spatio-temporal configuration. In other words, given a stimulus,
the system learns to converge to a specific attractor specified in space (with the
value of each neuron) and time (with the value of the neurons at different successive
time steps).

In the next two sections, two new supervised Hebbian learning algorithms are
proposed [Molter, Salihoglu, and Bersini, 2007b]. This section describes their com-
mon learning task. In fact the main philosophical difference between the two algo-
rithms is the way the output for a given stimulus is specified (a priori predefined

10Using the BPTT.
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vs. internally generated). Both consist in storing a set of q external stimuli in
spatio-temporal cycles of the network’s internal dynamics. The iterative Hebbian
algorithm is not new, but the inclusion of n input layers is, and the use of cyclic
patterns has never been studied to any depth. The first algorithm proposed in the
next sections is an iterative Hebbian learning algorithm with those two additions,
whereas the second algorithm is completely original and built on top of the first
one. The data set is written:

(48) D =
{

D1, ⋅ ⋅ ⋅ ,Dq
}

The number of data stored in the network is quantified by a load parameter � =
q/N , where N = ∣X∣ is the size of the associative layer. Each data D� (� ∈
{1, . . . , q}) is defined by a pair composed of:

∙ a pattern �� corresponding to the external stimulus feeding the network;
∙ a sequence of patterns &�,i, i = 1, ⋅ ⋅ ⋅ , l� to store in a dynamical attractor.

(49) D� =
(

�� , (&�,1, ⋅ ⋅ ⋅ , &�,l�)
)

� = 1, ⋅ ⋅ ⋅ , q

where l� is the period of the sequence &� and may vary from one data to another.
Each pattern � is defined by assigning digital values to all neurons:

(50)
�� = {��

i , i = 1, ⋅ ⋅ ⋅ ,M} with ��
i ∈ {−1, 1}

&�,k = {&�,ki , i = 1, ⋅ ⋅ ⋅ , N} with &�,ki ∈ {−1, 1}

Where N = ∣X∣ is the size of the associative layer and M = ∣S∣ is the size of the
input layer. The sequence of patterns or cycle size are specific to each experiment
and are specified properly before hand, in the next Chapter that presents those
experiments.

By suppressing the external stimulus and by defining all the sequences’ periods
l� to 1, this task is reduced to the classical learning task originally proposed by
Hopfield: the storing of patterns in fixed-point attractors of the underlying RNN’s
dynamics. The learning task described above turns out to generalize the one pro-
posed by Hopfield. To ease the reading, when patterns are stored in fixed-point
attractors, they are noted: ��.

Before testing the learning of sequences, the algorithm has first to be validated
by storing sets of static patterns in RNNs, without external stimuli, as in the
original Hopfield model (see next Chapter). Thus, the data set becomes:

(51) D� = �� � = 1, ⋅ ⋅ ⋅ , q

In the second test, a data becomes a pair composed of the external stimulus and
the stored pattern. To validate the recourse to the external stimuli, and to enable a
comparison with precedent results, the first tests use external stimuli as duplicated
information:

(52) D� = (��, ��) � = 1, ⋅ ⋅ ⋅ , q

then, the storing of hetero-associative data is tested:

(53) D� = (��, ��) � = 1, ⋅ ⋅ ⋅ , q

and finally the coding of external stimuli in limit cycle attractors are tested.
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3. The “Out-supervised” Learning Algorithm

This first learning task is very straightforward and consists in storing a well-
defined data set. It means that each data stored in the network is fully specified
a priori: each external stimulus must be associated to a pre-specified limit cycle
attractor of the network’s dynamics.

3.1. Introduction: Hopfield’s auto associative model. In the basic Hop-
field [1982] model, all connections need to be symmetric, no auto-connection can
exist and the update rule must be synchronous. Hopfield has proven that these
constraints are sufficient to define a Lyapunov function H for the system11:

(54) H = −
1

2

N
∑

i=1

N
∑

j=1

wijxi xj

Each state variation produced by the system’s equation entails a non-positive vari-
ation of H: ΔH ≤ 0. The existence of such a decreasing function ensures a con-
vergence to fixed-point attractors. Each local minimum of the Lyapunov function
represents one fixed point of the dynamics. These local minima can be used to
store patterns. This kind of network is akin to a content-addressable memory since
any stored item will be retrieved when the network dynamics is initiated with a
vector of activation values sufficiently overlapping the stored pattern12. In such a
case, the network dynamics is initiated in the desired item’s basin of attraction,
spontaneously driving the network dynamics to converge to this specific item.

The set of patterns can be stored in the network by using the following Heb-
bian learning rule, which obviously respects the constraints of the Hopfield model
(symmetric connections and no auto-connection), given a data set of p elements:

(55) wij =
1

N

p
∑

�=1

��i ��j wii = 0

Where ��i is the ith element of the �th pattern of the data set.

However, this kind of rule leads to drastic storage limitations. An in-depth
analysis of the Hopfield model’s storing capacity has been done by Amit et al. [1987]
by relying on a mean-field approach and on replica methods originally developed for
spin-glass models. Their theoretical results show that such a type of networks, when
coupled with this learning rule, is unlikely to store more than 0.14N uncorrelated
random patterns.

3.2. The iterative version of the Hebbian learning rule.

3.2.1. Learning fixed-points. A better way of storing patterns is given by an
iterative version of the Hebbian rule [Gardner, 1987], [see Forrest and Wallace,
1995; van Hemmen and Kuhn, 1995, for a detailed description of this algorithm].
The principle of this algorithm is as follows: at each learning iteration, the stability
of every nominal pattern ��, is tested. Whenever one pattern has not reached
stability yet, the responsible neuron i sees its connectivity reinforced by adding a
Hebbian term to all the synaptic connections impinging on it:

(56) wij 7→ wij + "s �
�
i ��j

11A Lyapunov function defines a positive lower bounded monotonically decreasing function.
12This remains valid only when learning a few number of uncorrelated patterns. In other

cases, the network may converge to any fixed-point attractor. Here, the correlation of two patterns

is measured as the number of elements they share.
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where "s defines the learning rate. All patterns to be learned are repeatedly tested
for stability and, once they are all stable, the learning is complete. To test the
stability of a fixed-point pattern, the algorithm has to check if the pattern is pre-
served after each time step. This is done by setting the states of the system so
that they reflect a given pattern, then simulate the system for one time step and if
the Hamming distance between the new obtained pattern and the original one is 0,
then the system is stable.

This learning algorithm is incremental since the learning of new information
can be done by preserving all information that has already been learned. It has been
proved [Gardner, 1987] that by using this procedure, the capacity can be increased
up to 2N uncorrelated random patterns.

In the model presented in this thesis, stored cycles are indexed by the use
of external stimuli. These external stimuli are responsible for a modification of
the underlying network’s internal dynamics and, consequently, for increasing the
number of potential attractors, as well as the size of their basins of attraction. The
connection weights between the external stimuli and the neurons are learned by
adopting the same approach as given in Equation 56 on the preceding page. When
one pattern is not stable yet, the responsible neuron i sees its connectivity reinforced
by adding a Hebbian term to all the synaptic connections impinging on it (Eq. 56
on the facing page), including connections coming from the external stimulus:

(57) wik 7→ wik + "b �
�
k ��i

where "b defines the learning rate applied on the external stimulus’ connections,
which may differ from "s.

In order to not only store the patterns, but also to ensure a sufficient content-
addressability, the learning procedure needs to try to “excavate” the basins of
attraction. Two approaches are commonly proposed in the literature. The first
approach aims at getting the alignment of the spin of the neuron (+1 or −1)
together with its local field to be not just positive (which is the requirement to
ensure stability), but greater than a given minimum bound. The second approach
attempts at explicitly enlarging the domains of attraction around each nominal
pattern. To do so, the network is trained to associate noisy versions of each nominal
pattern with the desired pattern, following a given number of iterations expected
to be sufficient for convergence. This last approach is the one adopted here. It
was first suggested by Forrest and Wallace [1995] that, when learning fixed-point
attractors, when �13 gets close to 0.5, the basins of attraction become negligibly
small without such a mechanism put into place.

Because of these two observations, two noise parameters are introduced to tune
noise during the learning phase: the noise imposed on the internal states lns and
the noise imposed on the external stimulus lnb

14. The noise parameter represent
the percentage of a pattern that should be affected by noise. To apply this noise a
uniform random sampling without re-pick is done until enough units are selected.
Then those unit are shifted by multiplying their value by −1.

A noisy pattern ��lns
is obtained from a pattern to learn �� by choosing a set

of ∣A∣ lns items, randomly chosen among all the initial pattern’s items, and by
switching their sign. Thus, dH(lns) defines the Hamming distance15 between the

13� is the load parameter of the network as defined in section 2.2 on page 87.
14There is no real way to determine a good value for these parameters and their value usually

depends on the problem.
15All Hamming distance are normalized to range in [0, 100] for sake of easier comparison
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two patterns:
(58)

dH(lns) =

N
∑

i=1

di where

{

di = 0 if ��i ��i,lns
= 1 (equal items)

di = 1 if ��i ��i,lns
= −1 (different items)

And dH(lnb) defines the Hamming distance16 between the two stimuli:
(59)

dH(lnb) =
N
∑

i=1

di where

{

di = 0 if ��
i �

�
i,lns

= 1 (equal items)

di = 1 if ��
i �

�
i,lns

= −1 (different items)

3.2.2. Learning cycles. The learning rule (defined in Equation 56 on page 90)
naturally leads to asymmetrical weights’ values. It is no longer possible to define
a Lyapunov function for this system, the main consequence being to include cycles
in the set of “memory bags”.

As for fixed-points, the network can be trained to converge to such limit cycle
attractors by modifying the equations (56 and 57 on the previous page). This time,
the weights wij and wis are modified according to the expected value of neuron i
at time t + 1 and the expected value of neuron j and of the external stimulus at
time t (see Equation 61 in Algorithm 1 on page 98):

(60)
wij 7→ wij + "s &

�,�+1
i &�,�j

wis 7→ wis + "b &
�,�+1
i ��

i

where "s and "b respectively define the learning rate and the stimulus learning
rate17. This time asymmetric Hebbian rules can be related with asymmetric time
windows of synaptic plasticity observed in pyramidal cells during tetanic stimulus
conditions [Bi and Poo, 1999; Levy and Steward, 1983].

Algorithm 1 on page 98 describes the pseudo-code used to store cycles (stor-
ing static patterns or hetero-associative memories appear as a limit case of this
algorithm). The two enhancements described above are included: noisy patterns
are added during the training period to increase robustness to noise and external
stimuli are used to enhance both the storing capacity and the robustness again.

Equations 62 in Algorithm 1 on page 98 are the central equations responsible
for the robustness to noise. It works as follows: after initializing the network with
noisy data and skipping the transient period of the orbit, the network stabilizes
to an attractor. A comparison is done with the desired attractor - if they are not
equal, weights are modified according to the Hebbian rule driving each step of the
cycle to give the following one in the next iteration. The robustness is guaranteed
provided the noisy version of any member of the cycle is associated with the non
noisy version of the following one.

3.2.3. Adaptation of the algorithm to continuous activation functions. When
working with continuous state neurons, the system is no more working with cyclic
attractors but with limit cycle attractors. Therefore, the algorithm needs to be
adapted in order to prevent the learned data from vanishing after a few iterations.
One-step iteration does not guarantee long-term stability of the internal states since
observations are performed using a filter layer. The adaptation consists in waiting

16One must note that the Hamming distance applied to patterns valued in {0, 1} is nothing

more than the 1-norm Euclidean distance:
n
∑

i=0

∣xi − yi∣.

17Those parameters are usually chosen small to avoid sudden changes. However, choosing

them too small reduces the performance of the learning algorithm. They are usually chosen around
0.05.
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a certain number of cycles before testing the correctness of the obtained attractor.
The halting test for discrete neurons is given by the following equation:

(63) ∀�, � if (x(0) = &�,�) 7→
(

x(1) = &�,�+1
)

while, for continuous neurons, it becomes:

(64) ∀�, � if (x(0) = &�,�) 7→
(

o(1) = o(l� + 1) = ⋅ ⋅ ⋅ = o(T ∗ l� + 1) = &�,�+1
)

where T is a further parameter of the algorithm (set to 10 in all the experiments)
and o is the filtered output vector defined in Equation 20 on page 67.

The easiest way to understand the need for the second halting test when dealing
with continuous state networks is to consider the simplest case of a one-neuron
network which has to learn one fixed point attractor D0 =

(

�0, �0 = 1
)

. When

dealing with a discrete state network, if
(

x (0) = �0
)

7→
(

x (1) = �0
)

then it is
clear the system has converged since it is deterministic. However, even this simple
example becomes tricky with continuous state networks. For example, given the
following orbit:
(65)

(x (0) = 0.5) 7→ (x (1) = 0.3) 7→ (x (2) = 0.1) 7→ (x (3) = −0.1) 7→ (x (4) = −0.2)

This orbit passes the first halting test since when looked through the filter layer it
gives:

(66) (x (0) = 1) 7→ (x (1) = 1) 7→ (x (2) = 1) 7→ (x (3) = −1) 7→ (x (4) = −1)

Which in turn satisfies o(0) = o(1). However, it its clear that this orbit is not valid
and does not seem to stabilize at 1. Using the second halting test with a carefully18

chosen value for T (here T ≥ 3), the test fails, since o(0) = o(1) = o(2) ∕= o(3) =
o(4). The Figure 4.6 on the following page shows how a learned data vanishes when
the first halting test is used on a continuous states network.

4. The “In-supervised” Learning Algorithm

As shown in Section 1 on page 101, the encoding capacities of networks learn-
ing in the “out-supervised” way described above are good. However, these re-
sults are disappointing compared to the potential capacity observed in random
networks [Molter and Bersini, 2003a,b]. Moreover, section 2 on page 110 shows
how learning too many cycle attractors in an “out-supervised” way leads to the
kind of blackout catastrophe similar to the ones observed in fixed point attrac-
tors networks [Amit, 1989]. Here, the network’s background regime becomes fully
chaotic and similar to white noise.

Learning pre-specified data appears to be too constraining for the network.
This section introduces an “in-supervised” learning algorithm, which removes ex-
ternal supervision: the network has to learn to react to an external stimulus by
cycling through a sequence which is not specified a priori but which is obtained
following an internal mechanism. In other words, the information is “generated”
through the learning procedure that assigns a “meaning” to each external stimulus.
There is an important tradition of “less supervised” learning in neural networks
since the seminal works of Kohonen [1998] and Carpenter and Grossberg [1988].
This tradition enters in resonance with writings in cognitive psychology and con-
structivist philosophy [Erdi, 1996; Piaget, 1963; Tsuda, 2001; Varela et al., 1991,

18Again, finding a good value for this parameter requires trial–and–error and depends on the

problem.
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Figure 4.6. Stability of cycles in continuous networks. Here a
network of 100 neurons is arranged in a grid of 10 × 10. Each col-
umn is one time step of simulation. The upper part is the inner
state of the neuron plotted in a gray scale where the bottom part
shows the filtered output. The cycle ”KO” has been learned by
the network with the parameter T set to 0. After the initializa-
tion to one letter of the sequence (the letter ”K”), the network
cycles through the entire learned sequence (”KO”). However, the
internal state diverges slightly, but this alteration is not visible on
the filtered layer, which may give the impression of convergence.
However, at the end of the second cycle, differences appear in the
output. The learned sequence vanishes progressively. This shows
the importance of the parameter T .

among others]. The algorithm to be presented now can be seen as a dynamical ex-
tension of the “out-supervised” algorithm, in the spirit of these preliminary works,
where the coding scheme relies on cycles instead of single neurons.

4.1. Description of the learning task. The main characteristic of this new
algorithm lies in the nature of the learned information: only the external stimuli
are known before learning. The limit cycle attractor associated with an external
stimulus is identified through the learning procedure: the learning procedure en-
forces a mapping between each stimulus of the data set and a limit cycle attractor
of the network’s inner dynamics, whatever it is. Hence, the aim of the learning
procedure is twofold: first, it proposes a dynamical way to code the information
(i.e. to associate a “meaning” to the external stimuli), then it learns it (through a
classical supervised procedure).

Before mapping, the data set is defined by: Dbm (bm standing for “before
mapping”):

(67) Dbm =
{

D1
bm, ⋅ ⋅ ⋅ ,Dq

bm

}

D�
bm = �� � = 1, ⋅ ⋅ ⋅ , q

After mapping, the data set becomes:

(68) Dam =
{

D1
am, ⋅ ⋅ ⋅ ,Dq

am

}

D�
am =

(

��, (&�,1, ⋅ ⋅ ⋅ , &�,l�)
)

� = 1, ⋅ ⋅ ⋅ , q

where l� is the period of the learned cycle.
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4.2. Description of the algorithm. The main difference between this al-
gorithm and the one introduced in the previous section lies in the nature of the
information learned. In the “out-supervised” version, each information to learn is
given a priori and is fully specified. In the “in-supervised” version, only the external
stimuli are given a priori: the information is a consequence of the learning. In other
words, the information is “generated” through the learning procedure assigning a
“meaning” to each external stimulus: the learning procedure enforces a mapping
between each stimulus of the data set and a limit cycle attractor of the network’s
inner dynamics, whatever it is.

Inputs of this algorithm are:

∙ a data set Dbm to store (Equation 67 on the preceding page);
∙ a range [mincs, maxcs] which defines the bounds19 of the accepted periods

of the limit cycle attractors coding the information;

This algorithm can be broken down in three phases, which are constantly iter-
ated until convergence:

re-mapping stimuli into cyclic attractors: During this phase, the net-
work is presented with an external stimulus which drives it into a temporal
attractor output� (which can be chaotic). Since the idea is to constrain
the network as little as possible, a meaning is assigned to the stimulus
by associating it with a close cyclic version of the attractor output�:
called cycle�, it is an original20 attractor respecting the periodic bounds
[mincs, maxcs]. This step is iterated for all the stimuli of the data set;

learning the information: Once a new attractor cycle� has been pro-
posed for each stimulus, they are tentatively learned by means of a super-
vised procedure. However, to avoid constraining the network too much,
only a limited number of iterations are performed, even if no convergence
has been reached. For details see Algorithm 2 on page 99;

end test: if all stimuli are successfully associated with different cyclic at-
tractors, the “in-supervised” learning stops, otherwise the whole process
is repeated.

See Algorithm 2 on page 99 for the pseudo-code of the “in-supervised” learning
algorithm.

It has to be noted that this complete learning mechanism implicitly supplies
the network with an important robustness to noise. First, the coding attractors are
the ones naturally proposed by the network. Attractors that are a priori specified
are (in most) case very far from the dynamics that the system outputs for that
stimulus, thus they require heavy weight modification to bring the system in a
configuration that satisfies this a priori specification. Given the fact the data set
will have several other elements requiring themselves strong changes in the system
as well, making them all coexist is much more likely with attractors whose basins

19These bounds depend on the problem and reflect what cyclic output is to be considered
valid. For instance, when comparing this algorithm with the learning of a data set of cycles of size
X with the “out-supervised” learning, then mincs = maxcs = X. On the other hand, if the only

restriction is for the output to be cyclic, then mincs = 2, maxcs = K; where K is taken arbitrarily
large. Usually, mincs = 2, maxcs = 8 since it is very rare to naturally find cycles longer than 8 and
they are often unstable.

20Original means that each pattern composing the limit cycle attractor must be sufficiently
different from all other patterns of all cycle�. The difference between two patterns is measured

as their Hamming distance, usually requiring dH > 3.
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are not too wide. This “in-supervised” process requires much smoother changes on
the system since the attractors are already there.

The second reason behind this intrinsic robustness to noise comes from the
attractors proposed by the system having large and stable basins of attraction.
This can be understood by looking at the major difference between the two learn-
ing process’ uses of the iterative Hebbian learning: while the “out-supervised”
algorithm takes a data set and applies the learning process until convergence, the
“in-supervised” algorithm only tries to learn the (self-generated) outputs for a small
period of time before trying to see how the response of the system has changed. In
other words, for an attractor to be present as a response to a stimulus at the end of
the learning process, it needs to be strong enough and have a large enough basin of
attraction in order to resist those weight modifications during the trial–and–error
process of this learning process. Of course this is not a guarantee but neither are
the learning noisy versions of the elements in the data set. Those reasons are just
indications in favor of the natural robustness of the attractors obtained by this
learning algorithm. For this reason, the parameters ln and lnb have been set to 0
during “in-supervised” learning22

The algorithm presented here learns to map external stimuli into the network’s
cyclic attractors in a very unconstrained way. Provided these attractors are derived
from the ones spontaneously proposed by the network, a form of supervision is still
needed (how to create an original cycle and how to know if the proposed cycle is
original). However, recent neurophysiological observations have shown that in some
cases synaptic plasticity is effectively guided by a supervised procedure [Franosch
et al., 2005; Gutfreund et al., 2002].

The supervised procedure proposed here to create and to test original cycles has
no real biological ground. Nevertheless, whatever supervised procedure is chosen,
the part of the study concerned with the capacity of the network and the background
chaos remains valid.

5. Conclusion

Observations made by Molter and Bersini [2003a,b] on small recurrent neu-
ral networks show that they can be very effective as memory. Experiments over
random networks show that, if the mean signal of the system is filtered into a dis-
crete alphabet, for some weight configurations the number of existing unique and
robust attractors is huge. More importantly, it clearly appears that there is some
correlation between capacity (in term of symbolic robust original attractors) and
the spontaneous dynamics of the system. To show that, for each weight configura-
tion, after the capacity has been computed, its global dynamics is quantified as the
mean Lyapunov exponent. When this experiment is repeated for a large number of
random networks, it appears that, when the system is overall stable, it has a very
poor capacity, and a system with large capacity always has a complex background
dynamics.

These results were inspiring, and motivated the introduction of a learning al-
gorithm that could store a given data set in a recurrent neural network’s dynamics.
This thesis first tested approach was the back-propagation through time algorithm,
but it performed very poorly for memory-like tasks. This fact has been explained

22As shown in the next chapter, this does not reflect badly on the “in-supervised” algorithm,
and even more it will be shown that the “in-supervised” learning algorithm seems to provide

stronger attractors than the “out-supervised” learning algorithm using learning noise.
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by the need of the gradient-based algorithm for a stable network in order to con-
verge and not be constantly perturbed by the bifurcations that can be found in a
system with complex dynamics [Bengio et al., 1994; Doya, 1992]. Unfortunately,
this also implies very poor capacity.

To work around the limitation of a gradient descent global algorithm, a more
biologically plausible approach was proposed. The first solution was the “out-
supervised” learning algorithm. This algorithm is an iterative supervised Hebbian
learning, and as such works locally without depending on the gradient, which makes
it avoid the problem previously mentioned. This algorithm is nothing new but the
classical solution has been extended to work with external stimuli.

Finally, a less rigid algorithm was developed, called “in-supervised” learning
was proposed. This time, the network learns to map given stimuli to dynamical
outputs naturally present in the system. This makes it some half-way solution
between the random network and the iterative Hebbian procedure. Even though
this algorithm relies on an iterative Hebbian process, it does not need to wait for
the Hebbian process to converge, since if the generated output cannot be rapidly
learned, the system can propose a new output. The generated output must however
respect some constraints. The output must be a periodic cycle with a certain
range and it must be a unique sequence for each stimulus. However, it can share
some pattern since the external stimuli are different and thus they can provide the
necessary information to alleviate the ambiguity.

In conclusion, this chapter introduced several original contributions. First, the
study on the BPTT algorithm for memory-like tasks [Molter, Salihoglu, and Bersini,
2004a]. Then, it proposed an improvement over the classical iterative Hebbian
associative learning process using an external stimulus layer and using cycles as
substrate for information over fixed-point patterns [Molter, Salihoglu, and Bersini,
2007b]. On top of this algorithm, a completely new, less supervised, version was
built [Molter, Salihoglu, and Bersini, 2007b].
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Algorithm 1 Pseudo code of the “out-supervised” algorithm

Require: A data set G to learn, and a network composed of an associative layer
and an input layer (WR and WS)

1. Fill the data set D with the data to learn (D=G);
2. A data D� is chosen randomly from the data set D;

{learning with no noise}
3. for idcyc going from 1 to l� do
4. The external stimulus is initialized with ��

Internal states are initialized with &
�,idcyc
i ;

5. One synchronous simulation is performed;
6. for all neuron i do
7. if sgn (xi) ∕= &

�,(idcyc+1) mod l�
i then

8. all the synaptic connections impinging on this neuron are modified ac-
cording to the Hebbian learning rule:

(61)
wR

ij 7→ wR
ij + "s&

�,(idcyc+1) mod l�
i &�,idcycj

wS
is 7→ wS

is + "b&
�,(idcyc+1) mod l�
i ��

i

9. Go back to step 1 and restart with the whole data set.
10. end if
11. end for
12. end for
Ensure: Data D� is stable. {The next steps aim at improving robustness to noise.}

{learning with noise}
13. The learning noise parameters ln and lnb are initialized with fixed values.
14. for ntest time do
15. for idcyc going from 1 to l� do
16. Using lnb, a noisy version ��

lnb
of �� is generated as an external stimulus;

17. Using ln, a noisy version &�,idcycln of &�,idcyc is generated as initial internal
states;

18. To skip the transient phase, kl� synchronous simulations are performed
(where k ∈ ℕ

+ is a parameter of the algorithm);
19. The internal state is stored: xcurrent

one more simulation is performed: xcurrent 7→ xnext.
20. for all neuron i do
21. if sgn (xnext,i) ∕= &

�,(idcyc+1) mod l�
i then

22. all the synaptic connections impinging on this neuron are modified
according to the Hebbian learning rule:

(62)
wij 7→ wij + "s&

�,(idcyc+1) mod l�
i xcurrent,j

wis 7→ wis + "b&
�,(idcyc+1) mod l�
i ��

lnb,i

23. Go back to step 1 and restart with the whole data set.
24. end if
25. end for
26. end for
27. end for
Ensure: Data D� is a stable and robust attractor of the network. D� is removed

from D (D = D∖D�). The whole process is continued from step 2 if D is not
empty.
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Algorithm 2 Pseudo code of the “in-supervised” algorithm

1. Simulation of the network

2. for all data D�
bm to learn do

3. the stimulus is initialized with ��;
4. the states are initialized with &�,1 which are obtained from the previous iter-

ation (or randomly the first time);
5. simulate the network for some steps in order to skip the transient part;
6. the states &�,1 crossed by the network’s dynamics are stored in output�.
7. end for

8. Proposal of an attractor code

9. for all data D�
bm to learn do

10. if output� is a cycle of period greater than maxcs then
11. compress the output: output� 7→ cycle� (see Algorithm 3)
12. end if
13. if output� is a cycle of period less than mincs then
14. expand the output: output� 7→ cycle� (see Algorithm 4)
15. end if
16. if a pattern contained in cycle� is too correlated (the normalized Hamming

distance is below 5) with any other pattern then
17. this pattern is slightly modified to make it “original” (by adding some

noise)
18. end if
19. end for
20. the data set Dam = (��, cycle�) is created.

21. Learning the information

22. using the “out-supervised” algorithm (see Algorithm 1 on the facing page), the
data set Dam is tentatively learned during a very limited number of time steps.
This step uses the algorithm as described before but does not wait for it to
converge.

23. if for any D�
bm, output� is not a valid limit cycle attractor then

24. Go back to step 2 {An output is valid if it is a cyclic pattern within the
required range ([mincs, maxcs]) }

25. end if

Algorithm 3 Pseudo code of the “in-supervised” algorithm: Compression process

Require: output� =
{

&�,1, ⋅ ⋅ ⋅ , &�,maxcs , ⋅ ⋅ ⋅
}

is a cycle of period greater than
maxcs (or even non-periodic)

1. cycle� is generated by truncating output�: cycle� =
{

&�,1, ⋅ ⋅ ⋅ , &�,ps
}

{ps ∈

[mincs, maxcs] is a parameter21 of the algorithm called the “compression period”}

Algorithm 4 Pseudo code of the “in-supervised” algorithm: Expansion process

Require: output� =
{

&�,1, ⋅ ⋅ ⋅ , &�,q
}

with q < mincs
1. cycle� is generated by duplicating output� until ∣cycle�∣ = pe: cycle� =

{

&�,1, ⋅ ⋅ ⋅ , &�,q, &�,q+1, ⋅ ⋅ ⋅ &�,pe
}

, where &�,q+i = &�,(i−1 mod q)+1 + �i

{pe ∈ [mincs, maxcs] is a parameter of the algorithm called the “expansion pe-
riod”, and �i is some randomization applied to the patter q + i}

2. In order to guarantee the originality of the newly generated cycle, each dupli-
cated pattern is slightly modified (with a random noise).





CHAPTER 5

Capacitive and dynamical results

This chapter shows some experimental results obtained with the two iterative
Hebbian learning algorithms presented in the previous chapter. Two main aspects
of these procedures are explored: their capacity, the dynamics the system produced
after such a learning, and the benefits one can make out of it. The first section
takes a closer look at the encoding capacity obtained with such learning procedures,
the second section covers dynamical properties of the system and finally the last
section explores added features of chaotic dynamics in a memory-like system. None
of the experiments aims to be biologically accurate but they all are designed to
highlight some important features of the model and the benefits of such complex
dynamics. This chapter works with very simple instances of the model defined in
Chapter 3 on page 73: all results in this section were obtained without context
layer and global inhibitor (WC = WV = WA = WI = 0). Hence, the matrix
weight W becomes :

(69) W =

⎛

⎜

⎜

⎝

WR 0 WS 0
0 0 0 0
0 0 I 0
0 0 0 0

⎞

⎟

⎟

⎠

The model is left with only the two main components: the associative layer
and the input layer that serves to model the incoming stimuli, as shown in the
Figure 5.1 on the next page.

1. Encoding Capacity

1.1. “Out-supervised” learning. The goal here is to establish what kind of
capacitive performance the “out-supervised” algorithm can achieve. But capacity
without robustness is meaningless; so in order to accurately measure this capacity
two noise parameters are introduced: nu, which is the noise injected1 in one of
the learned cycle’s patterns (&�,idcycnu ), and nub, which is the noise injected in the
external stimuli (��

nub
).

After injecting noise to the system, specified by the couple (nu, nub), robustness
is measured by evaluating how well the dynamics is able to retrieve the original
stored pattern (in case of a cycle, all the steps are evaluated). This measure can
be done using the Hamming distance between two patterns (see Equation 58 on
page 92) or using the overlap m� between two patterns, which is given by:

(70) m� =
1

N

N
∑

i=1

&�,idcyci &�,idcyci,noisy

1Noise injection is done as described in the previous Chapter.

101
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Behavioral
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Dorsal Ca3 network
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Associative

Input
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layer

space

Figure 5.1. Limited architecture of the model, as it is used in
this chapter, with only the active components.

Two patterns which match perfectly have an overlap equal to 1, while it is −1 in
the opposite case. The overlap m and the Hamming distance dH are related by:

(71) dH = N
m + 1

2
, where N is the number of neurons

The use of the overlaps allows the direct use of results from [Forrest and Wallace,
1995], where the fraction of properly recalled nominal states is plotted as a function
of increasing initial2 overlaps m�

0 .

1.1.1. Auto-associative memory. The first tests use the “out-supervised” algo-
rithm to learn patterns in an auto-associative way: results are shown in Figure 5.2
on the next page. Two networks are tested here. First the classical (Hopfield like)
network with no external stimulus (dotted curves in the figure). The data set for
this case is described in equation 51 on page 89, data are generated randomly, with
an uniform distribution, in {−1, 1}. The second network has an external stimu-
lus (plain curve on the figure) and a data set characterized by the equation 52 on
page 89 also generated randomly, with an uniform distribution, in {−1, 1}.

The comparison is done for content-addressability. For this, after learning, the
network is fed with patterns to recall (with increasing noise) and the result is the
percentage of successful recalls. When testing with external stimulus, the pattern
also continuously feeds the external stimulus.

Two results can be highlighted. First, as shown by Forrest and Wallace [1995],
learning noise clearly increases content-addressability. Secondly, the external stim-
uli clearly increase the content-addressability of the system. Since the same noisy
pattern feeds the external stimulus and initializes the internal state3, this curve
can be straightforwardly compared to the other curves obtained without external
stimuli, which for example indicates close to 20% more correct recalls for m0 = 0.4,
when using the external stimulus.

2The initial overlap is the one that can be measured before any simulation.
3This can be formalized as ��nub

= ��nu or as nub = nu.
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ln =ln =10%s b

ln =10%s

ln =5%s

ln =0%s

m0

Figure 5.2. Percentage of correct recalls with the “out-
supervised” algorithm. The recall success rate is ploted in function
of the noise injected on the initial pattern. The dotted curves show
results for different learning noises with no external stimulus. The
plain curve shows the same data set learned using external stim-
ulus, which seems to clearly increase content-addressability. Here
the network has 100 neurons and has learned 25 patterns (� =
0.25).

One drawback of the external stimulus is the increase in the number of param-
eters of the system. Learning noise (ln) and learning rate (") have been duplicated
with their counterpart for the stimulus (lnb and "b). The values those parameters
should have is not straightforwardly defined and need to be adjusted depending on
the problem (in other words depending on the expected noise after learning, nu
and nub).

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns ∗ The learning noise is shown on the plots.
lnb ∗ The learning noise is shown on the plots.
l� 1 These experiments deal with fixed-point attractors.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 1. This table recaps all the parameters used for the ex-
periments in Section 1.1.1 on the facing page with their value. A
value shown as ∗ indicates that this variable takes different val-
ues during the experiment, and those values are reported on the
corresponding figure.

1.1.2. Hetero-associative memory. Once the system has external stimuli, it also
has the possibility to work as a hetero-associative memory. This means that, this
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time, the information on the internal states of the network and the information on
the external stimuli will be different. The data set for the learning procedure is
formalized in equation 53 on page 89.

(a) without stimuli: ln =12 (b) with stimuli: ln =14,ln =6 (c) with stimuli: ln=15,ln =0b bss

Figure 5.3. Content-addressability of the hetero-associative sys-
tem (measured on the normalized Hamming distance) with varying
noise on the external stimulus (m0b) and the internal states (m0s).
The difference between the 3 plots arises from the learning noise
parameters. The size of the layers is set to ∣A∣ = ∣S∣ = 100, and
the load is set to � = 0.25.

Figure 5.3 shows the noise robustness, as a normalized Hamming distance be-
tween stored and recalled patterns. The recall quality has been tested for different
noise parameters on the stimulus and the internal states. On the plots, the overlap
between the given pattern and the correct one indicates the noise. And it ranges
from perfect pattern (m0s = 1) to the opposite pattern (m0s = −1). Each plot
shows the result for different learning noise parameters on a 100 neurons network
(∣A∣ = ∣S∣ = 100) which has to learn 25 patterns (� = 0.25).

The first plot (Fig. 5.3(a)) is used as a reference case and is learned without
external stimuli (all weight are set to zero: ∀i, s : wis = 0). This first test is nothing
more than the auto-associative example with no input, described above; and the
invariant response to noise on the stimulus (m0b < 1) reflects that. The other
two plots show the parameter tuning’s importance. If during learning no noise is
used on the external stimuli (lnb = 0, Fig. 5.3(c)), while noise is injected to the
internal states (ln = 15), the external stimuli are treated with great confidence by
the system. As a result, if the external stimulus is perfectly given (m0b = 1), the
stored pattern is almost always recovered: in the worst case (when initial states
are randomly chosen, i.e. m0s = 0), in average only 15% of error is obtained in
the recovered attractor. However, if external stimuli are noisy the performance
decreases fast.

On the other hand, if noise is applied to the external stimuli as well during
learning (Fig. 5.3(b)) then the network is more tolerant to noise on the stimulus
during test but is also much more cautious with the information present on the
external stimulus when compared to the case with no noise on the external stimulus
(Fig. 5.3(c)). This leads to a less successful recall quality than when there was no
noise on the input.

The first two plots (Fig. 5.3(a),(b)) look more related, but a closer look reveals
that, naturally, the first plot is impervious to noise on the external stimulus (since
it is disabled) but it also shows that the presence of external stimuli helps the
content-addressability unless the stimulus suffers heavy noise (m0b < 0.0).
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The hetero-associative task may seem dull and better achieved with a feed
forward network, since doing such hetero-associative tasks is the basic functionality
of these networks and they were built for it. However, a major difference justifies
the use of recurrent neural networks. In feed forward networks, one given input
is associated with a specific output; here the output is the result of the input but
also of the internal dynamics of the system. This allows the system to learn hetero-
associative data sets where two identical external stimuli lead to different outputs
because of their initial internal states’ values (see Figure 5.4). This can be seen as
a contextual hetero-associative process.

Figure 5.4. Context dependent data set. Here, the network has
learned a data set that requires contextual information in order to
be processed and that cannot be done with a simple feed forward
association. The data set (shown on the left side) is composed of
four elements: D = {(1, A) , (1, �) , (2, B) , (2, �)}. The right side
shows the evolution of the internal states after having initialized
the external stimulus with the corresponding input and the internal
state with a noisy version of the expected output. Thanks to the
internal state of the system these networks can describe a multi-
valued hetero-associative functions, while perceptrons are limited
to single-valued functions (where each stimulus gives a different
output).

1.1.3. Learning Sequences of patterns. The next logical step is to test this algo-
rithm for learning sequences of patterns (each one indexed by an external stimulus).
The network’s capacity for learning sequences of various lengths in absence of noise
can be seen in Figure 5.5 on the next page. The load parameter fails short when
dealing with a sequence of inputs since it clearly requires more storage capacity to
store a sequence of 10 elements than two fixed points. To take this into account, a
generalized load parameter �r is defined. If qr is the total number of patterns in all
the sequences, then the generalized load parameter can be defined as: �r = qr/N .
From the results in Figure 5.5 on the following page, it appears that this load is
constant (� ∼ 1.5), showing that the maximum capacity is independent of the size
of the sequence to learn. The addition of an external stimulus pushes the maximum
load to � ∼ 1.6.

The external stimuli are not just there because they increase the capacity of
the system; they also greatly help for the quality of the recalls. Figure 5.6 on
page 107 shows the same content-addressability tests that were performed with
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"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns ∗ The learning noise is shown on the plots.
lnb ∗ The learning noise is shown on the plots.
l� 1 These experiments deal with fixed-point attractors.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 2. This table recaps all the parameters used for the experi-
ments in Section 1.1.2 on page 103 with their value. A value shown
as ∗ indicates that this variable takes different values during the
experiment, and those values are reported on the corresponding
figure.
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Figure 5.5. Capacity of the “out-supervised” algorithm. Mea-
sured for learning sequences of various size. The numbers of it-
erations needed to store an increasing number of sequences have
been plotted. The plot shows from left to right the capacity for
sequences of length 10, 6, 4 and 2. The dotted line shows the same
result without external stimulus, and again the stimulus seems to
help. The size of the layers is set to ∣A∣ = ∣S∣ = 100.

hetero-associative learning (Figure 5.3 on page 104) and the conclusion is pretty
much the same. When learning without noise on the external stimuli (sub figure
(c)), the content-addressability is very good as long as the trusted external stimulus
is noise free. The sub figures (a) and (b) respectively show the results without and
with external stimuli and the addition clearly helps the recall quality.

As with the hetero-associative systems, the external stimuli’s enhancement goes
beyond numerical results and adds new possibilities to the memory. It is possible,
due to the disambiguation they provide, to learn different sequences that contain
the same pattern. Since the system is deterministic, this would be extremely hard
without external stimulus. Without external stimulus the system needs to find two
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(a) without stimuli: ln=11 (c) with stimuli: ln=16, ln =0b b(b) with stimuli: ln=14, ln =6

Figure 5.6. Noise tolerance of the “out-supervised” learning.
Hamming distance between the expected sequences of patterns and
the ones obtained is plotted in function of the noise injected both in
the initial states (m0s) and in the external stimulus (m0b). Each
plot has been obtained for different values of the noise param-
eters during learning and the left plot gives the results without
external stimulus for comparison. The size of the layers is set to
∣A∣ = ∣S∣ = 100, and the load parameters are set to �r = 0.25 and
� = 0.05 (for these tests, the data set was composed of 5 cycles of
size 5).

stable attractors which both at some point in their trajectory are very close to each
other4. Intuitively, it is easy to see the problem here: two very close points in space
must take very different trajectories; unfortunately the easiest way to do so is to
be in a chaotic region of the system, which in turn does not satisfy the criteria of
being a stable cyclic trajectory. Figure 5.7 on the next page shows an example of
such a data set.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns ∗ The learning noise is shown on the plots.
lnb ∗ The learning noise is shown on the plots.
l� ∗ These experiments deal with various size cyclic attractors.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 3. This table recaps all the parameters used for the experi-
ments in Section 1.1.3 on page 105 with their value. A value shown
as ∗ indicates that this variable takes different values during the
experiment, and those values are reported on the corresponding
figure.

1.2. “In-supervised” learning. The goal of this part is to perform the same
kinds of tests with the “in-supervised” learning. Again, the main interests are the
capacity and the content-addressability of the data the networks learn. The results
are compared with the ones obtained for “out-supervised” learning.

4Since the output of the system is filtered, they can be very close (yet different) but still have

the same filtered output.
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Figure 5.7. A data set with (cyclic) sequence sharing patterns.
The data set maps a randomly generated external stimulus to
{cℎaos, colin, tuk, ℎugo}. In this particular data set the pattern
“C” is expected to go to “H” or “O” depending on the external
stimulus, “O” is expected to go to “S”,“L” or “H”,“U” is expected
to go to “K” or “G”, and “H” is expected to go to “A” or “U”. The
four first rows correspond to the data to learn: the first image is the
external stimulus while the following ones compose the sequence.
The last row shows the network in action: noise is both added on
the external stimulus and the states of the last data. Nevertheless,
the sequence is perfectly recovered.

1.2.1. Performance of the algorithm. The first test (see Figure 5.8 on the next
page) to put the two algorithms in perspective is their efficiency. At the end of the
day, when the learning is said to have failed to learn a data set, it is often because
even if it was possible for the system to converge at some point it would have taken
too much time to wait for it. In Figure 5.5 on page 106, this phenomenon is clearly
observable. Here, both algorithms are asked to learn a data set of increasing size.
The performance is measured in term of the number of iterations the algorithm
needs in order to learn the given data set, where an iteration is defined as one
hundred weight modifications defined in Equation 60 on page 92. The data set
of the “out-supervised” algorithm is composed of stimuli associated with period-2
cycles, and to be fair the “in-supervised” algorithm is limited to work with only
period-2 cycles as well (mincs = maxcs = pe = ps = 2).

This plot also shows the capacitive limits of both algorithms; in order to
show the maximum encoding capacities, two parameters enforcing the content-
addressability (lns and lnb) have been set to 0. As expected, the “in-supervised”
version, by letting the network to decide how to map the stimuli, outperforms by
far its “out-supervised” counterpart, where all the mappings are specified before
the learning. This performance could be even better if the limitation on the cyclic
output of the “in-supervised” algorithm were to be removed. It is also important to
note that the parameters lns and lnb play a big role in the content-addressability
for the “out-supervised” algorithm, but the “in-supervised” algorithm produces
very good results even without having to explicitly guarantee noise resistance (see
section 4.2 on page 95). In fact all the results presented below are done without
specific noise during learning for the “in-supervised” algorithm.

1.2.2. Content-Addressability. The series of plots in Figure 5.9 on page 111
compare the robustness to noise of networks after learning different data sets with
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Figure 5.8. Performance of the two learning algorithms. The
“in-supervised” (blue curve) and “out-supervised” (red curve) al-
gorithms are compared. The x-axis shows the size of the data set
composed of period-2 cycles. The y-axis shows the number of iter-
ations (=100 weight modifications) needed to learn the given data
set. Incidentally, this plot also shows their respective capacitive
limit. The size of the layers is set to ∣A∣ = ∣S∣ = 25, and no learn-
ing noise (lns = lnb = 0). The oscillation observed is statistical
and can be reduced by averaging over multiple runs.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is null in order

to keep the test fair for the “out-supervised” learning algorithm
lnb 0 The learning noise is null in order

to keep the test fair for the “out-supervised” learning algorithm
l� 2 These experiments deal with size-2 cyclic attractors.
mincs 2 Minimum and maximum cycle size are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 2 Minimum and maximum cycle size are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 2 Preferred compression period must be in [mincs, maxcs].
pe 2 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 25 Size of the associative layer.
∣S∣ 25 Size of the input layer.

Table 4. This table recaps all the parameters used for the exper-
iments in Section 1.2.1 on the preceding page with their value.

both algorithms. The quality of the output is measured as always with the normal-
ized Hamming distance between the stored sequence and the recovered sequence
in function of the noise injected in the external stimulus (m0b) and in the initial
states (m0s). The “in-supervised” algorithm is again a considerable improvement
over its counterpart. The noise is represented as a Hamming distance. In order
to generate a noisy pattern with an Hamming distance d from the original one a
uniform random sampling without re-pick is performed and d units are selected and
their value is inversed (multiplied by -1).
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Comparing plots (c) and (d) in Figure 5.9 on the next page clearly shows the
difference between the two algorithms after learning 25 period-4 cycles. While the
sequences stored with “in-supervised” are very robust to noise, they no longer have
any content-addressability after learning with the “out-supervised” algorithm: any
amount of noise corrupts the output beyond repair (there is no correlation whatso-
ever between the output and the expected output). This figure also shows that, in
the “in-supervised” case, the external stimuli play a stronger role in indexing the
stored data.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is null in order

to highlight the base noise tolerance of the algorithms
lnb 0 The learning noise is null in order

to highlight the base noise tolerance of the algorithms
l� 4 These experiments deal with size-4 cyclic attractors.
mincs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 4 Preferred compression period must be in [mincs, maxcs].
pe 4 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 5. This table recaps all the parameters used for the exper-
iments in Section 1.2.2 on page 108 with their value.

2. Complex dynamics in Hebbian Memories

In the last section, numerical results have been computed assessing both the
encoding capacities and the tolerance to noise of these algorithms. Here, the goal
is to study the underlying dynamics of a network after learning took place with one
of the Hebbian algorithms proposed in Chapter 4 on page 81.

The learning task directly affects the dynamical response one can expect from
the network. While learning static patterns stabilizes the network, the coding of in-
formation in robust cyclic attractors increases chaos in the network as a background
regime, erratically itinerating among brief appearances of these attractors.

Qualitative analyzes are also performed in order to identify the nature of the
obtained chaotic dynamics. This is done with classical tools such as the return
maps, power spectra and Lyapunov spectra.

2.1. “Out-supervised” learning. Quantitative analyses of the dynamics en-
countered in learned networks have been performed using two kinds of measures:
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(a) “out-supervised : 12 period-4 cycles (b) “in-supervised : 12 period-4 cycles

(c) “out-supervised : 25 period-4 cycles (d) “in-supervised : 25 period-4 cycles

(e) “out-supervised : 37 period-4 cycles (f ) “in-supervised : 37 period-4 cycles

Figure 5.9. Noise tolerance of both algorithms. The content-
addressability of the network is checked after learning different
numbers of period-4 cycles. The plots on the left show the results
obtained with the “out-supervised” algorithm, and the ones on the
right shows the result obtained with the “in-supervised” algorithm.
As for the previous plots, the content-addressability is measured
as the normalized Hamming distance between the system’s output
and the expected output in function of both the initial overlap of
the initial states pattern (m0s) and of the external stimulus (m0b).
The size of the layers is set to ∣A∣ = ∣S∣ = 100.
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the mean Lyapunov exponent5 and the probability to have chaotic dynamics. Both
results are based on statistics over large numbers of learned networks (Here, 1000
networks were tested). For each network, dynamics (obtained by randomly varying
the external stimuli and the initial states) have been tested (1000 different config-
urations). These tests aimed to analyze the so-called background (or spontaneous)
dynamics of the network, which can be observed by simulating the system with
external stimuli and initial states different from the learned ones. For each simu-
lation the Lyapunov exponent is computed, and dynamics is said to be chaotic if
the Lyapunov exponent is greater than a given value slightly above zero, allowing
to distinguish chaotic dynamics from quasi-periodic regimes6.

In order to validate these tests, they are also done over random networks (also
called “surrogate networks”). These extra tests highlight the difference between
the features specific to the learning processes and those that are present in any
network with similar configurations. These random networks have some constraint
in order for them to be as close as possible to the kind of network obtained after
learning. To this end their weights distribution has to respect the same mean (�)
and same standard deviation (�):

(72)
�(wL

ij) = �(wS
ij) �(wL

bi) = �(wS
bi) �(wL

ii) = �(wS
ii)

�(wL
ij) = �(wS

ij) �(wL
bi) = �(wS

bi) �(wL
ii) = �(wS

ii)

Thanks to these surrogate networks, it is possible to study the impact of the
weights distribution and identify what is the contribution of the learning algorithm
and what is naturally present with certain weights configurations. The normal
distribution was used for these random networks since it is the one that fits the
best the natural weight distribution of the network after learning [Molter, 2005].

2.1.1. Spontaneous regime after fixed-point learning. The next experiments an-
alyze the dynamics of the system after a fixed point attractor data set is learned
(see Equation 53 on page 89). When dealing with fixed points, adding noise during
learning is mandatory, otherwise the best solution for the system is to converge
to the identity weight matrix that can recall all the patterns but with no content-
addressability.

Figure 5.10 on the next page shows the mean Lyapunov exponents and proba-
bilities to have chaos for networks after learning. From those results, the following
observations can be made:

∙ The mean Lyapunov exponent for the network after learning is always
negative. Even though the mean Lyapunov increases with the size of
the data set, it also clearly seems to have an upper limit, which is still
negative.

∙ Chaotic dynamics are very rare and the learning process does not help in
any way.

∙ Surrogate networks show very different results, the probability to find
chaos is near 1 and the mean Lyapunov exponent is positive. Those re-
sults indicate that complex dynamics are present and cover most of the
state space. This indicates that the learning task is responsible for this
stabilization of the network.

5The computation of the first Lyapunov exponent is done empirically by computing the
evolution of a tiny perturbation (re-normalized at each time step) performed on an attractor
state [see Albers et al., 1998; Wolf et al., 1984, for more details].

6In practice: the dynamics is considered as chaotic if the Lyapunov exponent is greater than

0.01, to avoid confussion with quasi-periodic orbits whose Lyapunov is near zero.
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(b) Probability to have chaos

Figure 5.10. Dynamics of the network after an “out-supervised”
learning. The mean Lyapunov exponent and the probability of
chaos are computed for networks after “out-supervised” learning
has trained them to learn fixed point attractors. This experiment
is repeated over 1000 networks and the results are plotted as the
mean and standard deviation (in blue). The results are compared
with surrogate networks with the same weight distribution (in red).
Hebbian learning of fixed point clearly stabilizes the network. The
size of the layers is set to ∣A∣ = ∣S∣ = 100, and the learning noises
are set to lns = lnb = 6%.

The “out-supervised” learning algorithm, when working with static patterns, is
likely to keep all connections approximately symmetric, so preserving the stability
of the learned networks, which is no longer the case for random networks.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0.06 An average learning noise is used
lnb 0.06 An average learning noise is used
l� 1 These experiments deal with fixed-point attractors.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 6. This table recaps all the parameters used for the exper-
iments in Section 2.1.1 on the facing page with their value.

2.1.2. Spontaneous regime after sequence learning. The second experiment does
the same analysis but this time after the system has learned sequences, which leads
to diametrically opposed results. Figure 5.11 on the next page shows this analysis
done with a increasing number of cycles for a given size, and Figure 5.12 on the
following page shows the results for one cycle of increasing size.

Both experiments here lead to the same observation:

∙ When the load of the system increases (�r ↗), the spontaneous dynamics
of learned networks become more and more chaotic, and chaos prevails as
the natural spontaneous regime for the network.

∙ The obtained dynamics are more structured than surrogate networks since
the network has at least stored the data set. This is detailed in the next
section with the analysis of the type of chaos observed on these networks.
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(b) Probability to have chaos(a) Mean Lyapunov exponent

Figure 5.11. Dynamical properties after “out-supervised” learn-
ing of multiple cycles. Shown as the mean and standard devi-
ation of the dynamical properties of 1000 networks after “out-
supervised” learning (in blue). The data sets from left to right
encode cycles of period 2, 4 and 10. The surrogate networks are in
red. Chaos arises with the increase in the size of the data set that
is learned. The size of the layers is set to ∣A∣ = ∣S∣ = 100, and
there is no learning noise (lns = lnb = 0).
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(b) Probability to have chaos

Figure 5.12. Dynamical properties after “out-supervised” learn-
ing of one big cycle. Shown as in the mean and standard de-
viation of the dynamical properties of 1000 networks after “out-
supervised” learning (in blue). Here the data set contains only one
cycle and complexity is brought by increasing its size. The same
type of results can be observed. The size of the layers are set to
∣A∣ = ∣S∣ = 100, and there is no learning noise (lns = lnb = 0).

∙ At first the surrogate network’s dynamics seems to be very different from
the one obtained with learning but, after the load has increased enough,
this difference fades away.

∙ The standard deviation on learned data set is larger than for the surrogate
networks. This is understandable, since the learning policy does not try
to have a complex dynamics but just learns the data set and it is possible
that this system converges to a very stable network. If looked closely,
the curve seems to follow a line and each time one sampling is below
the expected average on this virtual line the standard deviation becomes
large. This is most likely due to some of the learnings to fail and become
very stable, thus perturbing the plot. The surrogate networks reflect the
general dynamics available under certain weight configurations and thus
is less likely to find one of those drastically different networks.
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The dynamics observed in the system are very strong chaos (high mean Lya-
punov exponents) and seem to cover the whole state space (probability of chaos
∼ 1). This kind of dynamics is ergodic7 [Fusi, 2002]. This looks very similar to the
“blackout catastrophe” observed in fixed point attractors networks [Amit, 1989].
Here this blackout arises with a progressive increase of the chaotic dynamics.

When learning cycles, the network is prevented from stabilizing in fixed-point
attractors. The more cycles to learn, the more the network is externally constrained
and the more the regime turns out to be spontaneously chaotic. This learning
process can be seen as a road to chaos using Hebbian learning (see Figure 5.13
on the following page). Here, the graduation is not done on a control parameter
(as with the classical roads to chaos) but by an external mechanism simultaneously
modifying a set of parameters to fulfill an encoding task. This is why, in Figure 5.13
on the next page, the x-axis shows the learning step of the algorithm responsible
for this parameter modification.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is not needed for these experiments.
lnb 0 The learning noise is not needed for these experiments.
l� ∗ These experiments deal with various size cyclic attractors.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ ∗ Size of the associative layer.
∣S∣ ∗ Size of the input layer.

Table 7. This table recaps all the parameters used for the experi-
ments in Section 2.1.2 on page 113 with their value. A value shown
as ∗ indicates that this variable takes different values during the
experiment, and those values are reported on the corresponding
figure.

2.1.3. Nature of chaos. The final step before proceeding with results obtained
with the “in-supervised” algorithm concerns the characterization of the chaotic
dynamics. To this end, a qualitative approach is taken, with the use of tools such
as the return maps and power spectrum analyses. Three types of chaotic regimes
have been identified in these networks. Figure 5.14 on page 118 shows them with:
typical return maps of the system, return map of a neuron, and power spectrum.
These three types of chaos are identified as:

∙ white noise: Shown in Figure 5.14(a), this dynamics has a characteristic
power spectrum with no structure (very similar to white noise). The
return map is completely filled, with a bigger density for points at the
edges, indicating the presence of saturation. No useful information can be
obtained from such a chaos.

∙ deep chaos: Shown in Figure 5.14(b), this dynamics has more structure
in its power spectrum but it is still very close to white noise. Still, broad
peaks and their harmonics are clearly distinguishable. The return map
however shows no difference from the previous case.

∙ informative chaos: Shown in Figure 5.14(c), this dynamics shows a
structured power spectrum where nearby limit cycles show up as a peak.

7As defined in section 6.2.5 on page 51
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skrowtendenraelnosnoitavresbolacimanyD811

(a) Road to chaos when learning 3 cycles of size 5. N=25

(b) Road to chaos when learning 2 cycles of size 4. N=9

Figure 5.13. Roads to chaos through Hebbian learning in recur-
rent neural networks. These plots compute the bifurcation dia-
grams, with the learning time step playing the role of control pa-
rameter. One neuron is chosen randomly on the network, and at
each learning step, its orbit is plotted.
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The other periods indicate unpredictable chaotic itinerancy. The return
map is very structured and sets itself apart from the two previous cases.
In fact, by slightly modifying the external stimuli, the network falls in a
nearby limit cycle attractor.

Before giving a more formal definition, it is interesting to note that the white
noise and deep chaos are very similar and their distinction does not yield much
interest. It is easy to observe the difference in terms of power spectrum analyses
but when looking at their trajectory, it seems much harder to precisely define their
difference. This thesis take a particular interest in the third type of chaos, which
clearly shows a lot of differences and thus two definitions are provided. One defining
a general chaotic attractor, and one defining the frustrated chaotic attractor which
is a particular case of the chaotic attractor (defined in Section 2.2.3 on page 120).

It is not an easy task to predict which kind of dynamics will be present in
the system but some guidelines can be found. For instance, learning one cycle
of increasing length brings deep chaos at first and ends up with white noise after
some point. A small learning set composed of cycles generally brings informative
chaos, where there is a competition amongst nearby attractors (which is the source
of the chaotic behaviors). Again, when the data set becomes larger, the dynamics
looses its structure and tends to behave as a white noise. All information about
hypothetic nearby limit cycle attractors is lost. Chaotic dynamics observed in
surrogate networks is generally white noise. This is probably the reason behind the
large mean Lyapunov exponent.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is not needed for these experiments.
lnb 0 The learning noise is not needed for these experiments.
l� ∗ These experiments deal with various size cyclic attractors.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 8. This table recaps all the parameters used for the experi-
ments in Section 2.1.3 on page 115 with their value. A value shown
as ∗ indicates that this variable takes different values during the
experiment, and those values are reported on the corresponding
figure.

2.2. “In-supervised” learning.

2.2.1. Spontaneous regime. The experiments performed with the “out-supervised”
algorithm are repeated here for the “in-supervised” counterpart and the outcome
is very different from the results obtained with the first algorithm. Figure 5.15
on page 119 shows the mean Lyapunov exponent and the probability of chaotic
dynamics for networks learning an increasing size data set of period-2 cycles. The
“in-supervised” algorithm shows larger standard deviations for certain size. This
comes from the same reason as for the “out-supervised” algorithm, since this algo-
rithm can also leads sometimes to stable systems which may be the source of the
irregularities of the standard deviations.
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(a) C haotic regime obtained

in a constrained random net-
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make s it very s imila r to white

noise.

(b) C haotic regime obtained in

a network whic h has learned

1 cycle of size 35. Deep chaos

showin g less structure can be

observed .

(c) C haotic regime in after

learning 5 siz e 10 cycles. The

di erent peaks show the pres-

ence of nearby limit cycles

among which the network

hesitates.

(a) Chaotic regime obtained 

in a constrained random 

network. The lack of struc-

ture makes it very similar to 

white noise.

(b) Chaotic regime obtained 

in a network which has 

learned 1 cycle of size 35. 

Deep chaos showing less 

structure can be observed.

(c) Chaotic regime obtained 

in a network which has 

learned 5 cycles of size 10. 

The di�erent peaks show 

the presence of nearby limit 

cycles among which the 

network hesitates.

Figure 5.14. The three most characteristic chaos observed after
learning. These examples are observed as spontaneous regime in
the network after learning. Top row shows the return map of the
mean signal, middle row shows the return map of a single neuron
and bottom row exhibits the power spectrum. The size of the
layers is set to ∣A∣ = ∣S∣ = 100.

The main difference between this result and the one shown in Figure 5.11 on
page 114 is that the presence of chaos is bounded for the “in-supervised” algorithm.
Even after extensive training, the probability to have chaos does not increase beyond
a certain point, while with the “out-supervised” algorithm this probability tends
to one very quickly. This is explained by the fact that this algorithm is based on a
process of trials, errors and adaptations that provides robustness and prevents full
chaos. By increasing the data set to learn, learning takes more and more time, but
at the same time, the number of readjustments increases and forces large basins
of stable dynamics. Through learning, the network is constrained, and complexity
increases, but does not become fully chaotic.
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Figure 5.15. Dynamics of the network after an “in-supervised”
learning. Shown as the mean and standard deviation of the dynam-
ical properties of 1000 networks after “in-supervised” learning. The
data set is composed of period-2 cycles. Chaos arises with learn-
ing but, unlike “out-supervised” learning, this time it is bounded
(mean Lyapunov seems to have a threshold around 0) and does not
pollute the whole state space (the probability of chaos never rises
above 15%). The size of the layers is set to ∣A∣ = ∣S∣ = 25.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is not needed for the “in-supervised” learning
lnb 0 The learning noise is not needed for the “in-supervised” learning
l� 2 These experiments deal with size-2 cyclic attractors.
mincs 2 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 2 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 2 Preferred compression period must be in [mincs, maxcs].
pe 2 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 25 Size of the associative layer.
∣S∣ 25 Size of the input layer.

Table 9. This table recaps all the parameters used for the exper-
iments in Section 2.2.1 on page 117 with their value.

2.2.2. Nature of chaos. The next step is to give a qualitative description of the
chaotic regime encountered in these networks; this is done again with the return
maps and power spectrum analyses.

The previous section showed three types of chaotic regimes appearing in net-
works learned through the “out-supervised” algorithm. Unfortunately, when the
size of the data set increases only two of those original three types of chaos were to
be found. The informative chaos seems to vanish in favor of deep chaos or white
noise, which clearly indicates that the networks become unstructured and this is
also reflected in the content-addressability of the system which vanishes after some
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point. The result in Figure 5.9 on page 111 is easier to understand in that re-
gard: even a slight modification of the input leads the system from the limit cycle
attractor’s weak basin into a very strong chaotic one.

On the other hand, as suggested by the Figure 5.16 on the facing page, the
chaos present in a network after “in-supervised” learning is more informative. This
figure shows the network in an initial stable condition then through four successive
modifications of the external stimulus: the network is slowly shifted to another
stable original output. The chaotic dynamics observed in these plots shows the
influence of the nearby limit cycles8 (including the one the network has started in
and the one it ends up in).

When learning by means of the “in-supervised” procedure, chaotic dynamics
are nearly all the time of the third type: very informative chaos shows up. By
not predefining the internal representations of the network, this type of learning
preserves more structure in the chaotic dynamics.

Figure 5.17 on page 122 compares Lyapunov spectra obtained from “deep
chaos” in “out-supervised” learned networks and from “informative chaos” in “in-
supervised” learned networks. From this figure, “deep chaos” can be related to
“hyper-chaos” [Rössler, 1983]. In hyper-chaos, the presence of more than one
positive Lyapunov exponent is expected and these exponents are expected to be
high. By contrast, Lyapunov spectra obtained in “informative chaos” after “in-
supervised” learning are characteristic of chaotic itinerancies [Kaneko and Tsuda,
2003]. In this type of chaos, the dynamics is attracted to learned memories –which
is indicated by negative Lyapunov exponents– while in the same time it escapes
from them –which is indicated by the presence of at least one positive Lyapunov
exponent. However, this positive Lyapunov exponent must be slightly positive in
order not to erase completely the system’s past history and thus to keep traces
of the learned memories. This regime of frustration is increased by some modes
of neutral stability indicated by the presence of many exponents whose values are
close to zero.

2.2.3. The frustrated chaos. About two decades ago, chaotic itinerancy was
proposed as a universal dynamical concept in high-dimensional systems [Ikeda et al.,
1989; Kaneko, 1992; Kaneko and Tsuda, 2003; Tsuda, 1992]:

Chaotic itinerancy can be described by an itinerant motion among
varieties of ordered states through high-dimensional chaotic mo-
tion.

This type of chaos has been observed in neural networks on many occasions; Bersini
has shown that, for some specific weight configurations, it was possible to drive
small recurrent neural networks in similar very informative and structured chaotic
dynamics [Bersini, 1998; Bersini and Calenbuhr, 1997; Bersini and Sener, 2002]. He
has identified this as originating from a physical frustration phenomenon. There-
fore, it has been named “frustrated chaos”:

Frustrated chaos is a dynamical regime which appears in a net-
work when the global structure is such that local connectivity
patterns responsible for stable oscillatory behaviors are inter-
twined, leading to mutually competing attractors and unpre-
dictable itinerancy among brief appearance of these attractors.

8This chaos has been described by Bersini [1998] as a frustrated chaos. The frustrated chaos

is covered in more depth in the next section.
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Figure 5.16. Variation of the network’s dynamics. Through re-
turn maps of one neuron (left), return maps of the mean signal
(middle) and power spectra of the mean signal (right). The exter-
nal stimulus is slowly modified from one learned stimuli to another
one (five steps are shown here, including the first and last ones).
The 25 neurons network has learned 15 stimuli in period-4 cycles
with the “in-supervised” learning algorithm.
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Figure 5.17. Lyapunov spectrum of the two learning algorithms.
The first ten Lyapunov exponents are computed: (A) after
“out-supervised” learning of 10 period-4 cycles, (B) after “in-
supervised” learning of 20 period-4 cycles. Each time, 10 different
learning sets have been tested. For each obtained network, 100
chaotic dynamics have been studied. All obtained Lyapunov spec-
tra are plotted to show the variations.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is not needed for the “in-supervised” learning
lnb 0 The learning noise is not needed for the “in-supervised” learning
l� 4 These experiments deal with size-4 cyclic attractors.
mincs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 4 Preferred compression period must be in [mincs, maxcs].
pe 4 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 25 Size of the associative layer.
∣S∣ 25 Size of the input layer.

Table 10. This table recaps all the parameters used for the ex-
periments in Section 2.2.2 on page 118 with their value.

Both descriptions of chaos fit under the more general intermittency chaos [Pomeau
and Manneville, 1980] type. They are both characterized by strong cyclic compo-
nents among which the dynamics randomly itinerates; it is in the transparency and
the exploitation of those cycles that lies the key difference. In the frustrated chaos
however, those cycles are the basic stages of the road to chaos. It is by forcing those
cycles in the network (by tuning the connection parameters) that the chaos finally
shows up, while the chaotic itinerancy is merely observed on random networks.
One way of forcing these cycles is indeed by the time asymmetric Hebbian learning
proposed in the previous chapter.

Formally defining a frustrated chaos is beyond the scope of this work; yet, to
be able to work with this concept an operational definition is provided.

Definition 8. A symbolic attractor is an attractor obtained by quantizing the out-
put of the system into symbols and looking at those sequences of symbols.
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For example, if the output is quantized into 8 letters from ’a’ to ’h’, then one
possible symbolic attractor would be ’agce’.

Definition 9. A chaotic attractor of a system is said to be frustrated if its sym-
bolic output contains recurring patterns of some of the learned non-chaotic symbolic
attractors.
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Figure 5.18. Presence of the nearby limit cycle attractors. Com-
puted as the probability to find nearby limit cycle attractors in a
chaotic dynamics (y-axis). By slowly shifting the external stim-
ulus from a stimulus previously learned (region (a)) to another
learned stimulus (region (b)), the network’s dynamics goes from
the limit cycle attractor associated to the former stimulus to the
limit cycle attractor associated to the latter stimulus. The prob-
abilities of presence of cycle (a) and of cycle (b) are plotted (in
blue and red respectively). The left plot shows that, after “out-
supervised” learning, once the external stimulus is outside the noise
tolerance of the system, any trace of the attractor is lost. The right
plot shows that, after “in-supervised” learning, when an external
stimulus is too ambiguous, there are still nearby attractors. The
green curves show the respective Lyapunov exponent; as expected,
when outside the basins of attraction, the network learned with the
“out-supervised” algorithm shows signs of a hyper-chaos, while the
network learned with “in-supervised” shows a frustrated chaos. In-
cidentally, this plot also confirms the stronger basin of attraction
with the “in-supervised” learning.

To have a better understanding of this type of chaos, Figure 5.18 compares an
hyper-chaos and the frustrated one through the probability of presence of the nearby
limit cycle attractors in chaotic dynamics. In the figure on the left, the network has
learned two data in limit cycles attractors of period 10 by using the “out-supervised”
Hebbian algorithm. This algorithm hardly constrains the network and, therefore,
chaotic dynamics appear very uninformative: by shifting the external stimulus from
one attractor to another one, in between, a strong chaos shows up (indicated by
the Lyapunov exponent) where any information concerning these two limit cycle
attractors is lost. In contrast, when mapping 4 stimuli to period 4 cycles, using
the “in-supervised” algorithm (Figure on the right), shifting the external stimulus
from one attractor to another one, the chaos encountered on the road appears much
more structured. A small Lyapunov exponent and strong presence of the nearby
limit cycles is easy to observe, shifting progressively from one attractor to the other
one.
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"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is not used in order to have smaller basin

for the attractor and thus ease the study of the in between dynamics
lnb 0 The learning noise is not used in order to have smaller basin

for the attractor and thus ease the study of the in between dynamics
l� 4 These experiments deal with size-4 cyclic attractors.
mincs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 4 Preferred compression period must be in [mincs, maxcs].
pe 4 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 25 Size of the associative layer.
∣S∣ 25 Size of the input layer.

Table 11. This table recaps all the parameters used for the ex-
periments in Section 2.2.3 on page 120 with their value.

3. Using Complex dynamics

3.1. Symbolic analyzes. After learning, when the network is presented with
a learned stimulus while its initial state is correctly chosen, the expected spatio-
temporal attractor is observed [see Molter, Salihoglu, and Bersini, 2006a]. Further-
more, section 1 on page 101 has shown that noise tolerance is expected: the external
stimulus or the network’s internal state can be slightly modified without affecting
the result. However, in some cases, the network fails to “understand” the stimulus
and an unexpected symbolic attractor appears in the output. The question is to
know whether this attractor should be considered as a spurious data or not.

The very intuitive idea is that, if the attractor is chaotic or if its period is
different from the learned data, it is easy to recognize it at a glance, and thus
to discard it. In contrast, this becomes more difficult if the observed attractor’s
period is the same as the ones of the attractors learned. In such a case, it is in fact
impossible to know whether this information is relevant without comparing it with
all the learned data. Consequently, a spurious data is defined as an attractor that
has the same period as the learned data but is different from all of them.

As a result, two classification schemes are used to differentiate the symbolic at-
tractors obtained. The first classification scheme is based on their periods. This cri-
terion enables to distinguish between chaotic attractors, periodic attractors whose
periods differ from the learned ones (named “out of range” attractors) and peri-
odic attractors having the same period as the learned ones. The aim of the second
classification scheme is to differentiate these attractors, based on the normalized
Hamming distance between them and the closest learned data (i.e. the attractors
at a distance less than 10%, less than 20%, etc.).

Figures 5.19 on page 126 shows the proportion of the different types of attrac-
tors found as the size of the learned data set is increased. Results obtained with
the “in-supervised” and the “out-supervised” algorithm while mapping stimuli in
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spatio-temporal attractors of various periods are compared. For each data set size,
statistics are obtained from 100 different learned networks, and each time, 1000
symbolic attractors obtained from random stimuli and internal states have been
classified (the variations observed over the multiple networks were marginal). In
this plot five lines show the cumulative probability to obtain different kinds of at-
tractors. There are four labeled lines (0%,10%,20%,100%) and an unlabeled line
which divides the probability space of the output as:

∙ The 0% line shows the probability to obtain a perfect recall (noted l0),
∙ The 10% line shows the probability to obtain an attractor of correct

periodicity with dH ≤ 109 (noted l10),
∙ The 20% line shows the probability to obtain an attractor of correct

periodicity with dH ≤ 20 (noted l20),
∙ The 100% line shows the probability to obtain an attractor of correct

periodicity with dH ≤ 100, i.e. any attractor of correct periodicity (noted
l100),

∙ The unlabeled line shows the probability to obtain any non-chaotic
attractor (noted l),

∙ The line y = 1 shows any attractor (noted 1).

From this division, several interesting categories can be extracted:

∙ l0 shows the probability to obtain a perfect recall,
∙ 1 − l shows the probability to obtain a chaotic attractor,
∙ l − l100 shows the probability to obtain an ill-periodic attractor,
∙ l100 − lX shows the probability to obtain a spurious attractor when an

attractor of correct periodicity with a dH ≥ X is considered spurious. For
example if only perfect recalls are not considered spurious then X = 0.
Usually above 20% of the output start to lose any resemblance with the
expected attractor.

When stimuli are mapped into fixed-point attractors, the proportion of chaotic
attractors, and of “out of range” attractors, falls rapidly to zero. In the “out-
supervised” learning algorithm this is shown by l100 = l = 1, while in the “in-
supervised” learning algorithm with the increasing size of the data set this is shown
by 1 − l → 0,l − l100 → 0 and l100 → 1. In contrast, the number of spurious data
increases drastically. In the “out-supervised” learning algorithm this is shown by
l100 = 1 and l20, l10, l0 ↘, while in the “in-supervised” learning algorithm l20 is
steady,l10, l0 ↘ and l100 ↗. In fact, both learning procedures tend to stabilize the
network by enforcing symmetric weights and positive auto-connections10.

When stimuli are mapped to cyclic attractors, both learning procedures lead
to an increasing number of chaotic attractors (l ↘). The more you learn, the more
the spontaneous regime of the network tends to be chaotic. Still, the two learning
procedures have to be differentiated. “Out-supervised” learning -due to its very
constraining nature- drives the network into a fully chaotic state which prevents
the network to learn more than 13 period-4 cycles (l < 0.2,l100 < 0.1). The less
constraining and more natural “in-supervised” learning task leads to a different
behavior (l > 0.4). This time, the network does not become fully chaotic and the
storing capacity is enhanced. Unfortunately, the number of spurious data is also
increasing and a noticeable proportion of spurious data is visible when the network
is fed with random stimuli (l100 ↗).

9Where dH is the normalized Hamming distance
10If no noise is injected during the learning procedure, the network converges to the identity

matrix.
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Figure 5.19. Proportion of the different symbolic attractors. Ob-
tained during the spontaneous activity of artificial neural net-
works learned using respectively the “out-supervised” algorithm
(A) and the “in-supervised” algorithm (B). Two types of mappings
are analyzed: stimuli mapped to fixed-point attractors and stim-
uli mapped to spatio-temporal attractors of period 4. The plots
shows the cumulative probability to have a perfect recall (below
0%), less than a normalized Hamming distance dH ≤ 10 (below
10%), dH ≤ 20 (below 20%), dH ≤ 100 (below 100%), any ill-
periodic output (between 100% and the unlabeled line), chaotic
output (above the unlabeled line). The spurious data are the one
with a correct period but a large Hamming distance (depending
on the problem, any range between 100% and 0% (or above) can
be representative of this group).

The aim of Figures 5.20 on the next page is to analyze the proportion of the
different types of attractors observed when the external stimulus is progressively
shifted from a learned stimulus to a random one. Again, the network’s initial state
is set completely random. Two types of “in-supervised” mappings are compared:
stimuli mapped to fixed-point attractors and stimuli mapped to attractors of period
4.

When un-noised learned stimuli are presented to the network, stunning results
appear. For fixed points learned networks, in more than 80% of the observations,
the data is spurious! Indeed, the distance between the observed attractors and
the expected one is bigger than 10% and they have the same period (period one).
By contrast, for period-4 learned networks, the probability to recover the perfect
cycle increases to 56%. Moreover, 62% of the obtained cycles are at a distance
less than 10% of the expected ones, and the amount of chaotic and “out of range”
attractors are respectively equal to 23% and 8%. Space left for spurious data
becomes less than 5%! Thus, the recall procedure can be improved by slightly
modifying the network’s states in case a chaotic trajectory is encountered, instead of
just discarding the erroneous output. The process, repeated until a cyclic attractor
is found, can usually guarantee the correct mapping. However, it is still possible
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Figure 5.20. Proportion of the different types of attractors, ob-
served in “in-supervised” learned networks while the noise injected
in a previously learned stimulus is increased. Networks’ initial
states were randomly initiated. (A) 30 stimuli are mapped to fixed-
point attractors. (B) 30 stimuli are mapped to period-4 cycles. 100
learned networks, with each time 1000 configurations have been
tested (and the variability is negligible).

to fall into a spurious attractor or to have a chaotic attractor with a large basin
which will be tolerent to those perturbations.

Because of the pervading number of spurious data in fixed-point attractors
learned networks, it makes difficult to imagine these networks as working memories.
By contrast, the presence of chaotic attractors helps to prevent the proliferation of
spurious data in cyclic attractors learned networks while good storage capacity is
possible by relying on “in-supervised” mappings.

"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is null in order

to keep the test fair for the “out-supervised” learning algorithm
lnb 0 The learning noise is null in order

to keep the test fair for the “out-supervised” learning algorithm
l� 4 These experiments deal with size-4 cyclic attractors.
mincs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 4 Preferred compression period must be in [mincs, maxcs].
pe 4 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
∣A∣ 25 Size of the associative layer.
k 10 Used to compute the size of the transient phase to skip.
∣S∣ 25 Size of the input layer.

Table 12. This table recaps all the parameters used for the ex-
periments in Section 3.1 on page 124 with their value.

3.2. The retrieval phase. As suggested in the previous section, the dynam-
ics obtained outside the basins of attraction of the learned attractor is usable
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to further enhance content-addressability. This is even more appealing with the
“in-supervised” algorithm where it clearly appears that the dynamics outside the
boundaries of the known attractors shows trace of those attractors (see Figure 5.16
on page 121 and 5.18 on page 123 for more details). The idea here is to use dynam-
ical properties of the signal as a way to identify the convergence when an external
stimulus feeds the system. Given an output, any ill-periodic or chaotic attractor
can be easily identified without a priori knowledge of the data set the network has
learned. This allows the system to perturb those orbits in order to stabilize them
in a correct attractor. This clearly helps solving one of the most common issues of
associative memories, that “other” states besides the memory states may also be
attractors of the dynamics. As shown in the previous section, the spurious outputs
are very limited once the ill-periodic and chaotic attractor have been identified as
wrong [see Salihoglu et al., 2007].

If the attractor is chaotic (or if its period is different from the learned data),
it is easily recognized at a glance, and thus discarded. In contrast, things become
more difficult if the observed attractor has the same period as the learned ones. In
that case, it is in fact impossible to know if this information is relevant without
comparing it with all the learned data. This is why only this last group is called
“spurious attractor”.

Stimulus

Learnable
synapses

Noise generator

Neural cells

Figure 5.21. Noise injection mechanism. Showed here coupled
with the neural network.

Here, it is showed how noise can further enhance the retrieval phase by sta-
bilizing the chaotic trajectories to the expected ones. The following procedure is
followed. First a previously learned stimulus �� feeds the network and the net-
work’s internal state is randomly initialized. Then, after skipping the transient
phase (here, arbitrarily, 24 iterations are skipped), the trajectory of the network’s
dynamics is observed. If a chaotic trajectory is encountered, noise is slightly applied
to the network’s states (by perturbing some neuron’s internal state value) and the
new obtained trajectory is analyzed. This new trajectory can be the desired at-
tractor, or a spurious attractor, or again a chaotic attractor. In the latter case, the
process is iterated (see Figure 5.21) again. However, there is no guarantee that this
process will converge so the system must stop after a certain number of trials. Next
section shows the result of this process and try to determine the optimal maximal
number of iterations.

3.3. Stochastic noise and chaotic trajectories. The main result here ap-
pears on Figure 5.22 on the facing page, which shows the impact of noise during the
retrieval phase. After learning, when a chaotic or ill-periodic trajectory is observed,
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Figure 5.22. How noise affects memory retrieval. Left figure: af-
ter learning using the “out-supervised” algorithm, strong presence
of chaos shows up. Noise does not improve the retrieval perfor-
mance. Right figure: after learning using the“ in-supervised” al-
gorithm, noise stabilizes most of the time the chaotic trajectories,
and almost always into the desired attractor.

a small noise is added. This noise is uniform random noise in [0, 0.05] over all the
units of the associative layer. Very different results appear depending on the type of
chaotic dynamics encountered. Noise cannot help that much to recover from unin-
formative chaotic dynamics observed after “out-supervised” learning. By contrast,
noise improves consequently the retrieval performance when applied to frustrated
dynamics obtained after “in-supervised” learning: performance increases from 65%
to 85%, with most of the chaotic dynamics stabilized to the expected attractor.

The same figure shows that the number of iterations of the procedure of “noise
stabilization” affects the result: the process has to be reiterated several times to
be sure that all frustrated chaotic trajectories are stabilized. From this figure it
seems that after 5 trials most of the trajectories are stabilized and from there
the gain is minimal11. There is no real incentive to do more than 20 iterations.
This is explained by the itinerating nature of chaotic trajectories. To stabilize the
trajectory, this trajectory needs to be near enough the expected trajectory.

This is illustrated in Figure 5.23 on the next page, which shows the return maps
of the chaotic dynamics obtained after the two kinds of learning and how noise
modifies the trajectories. After “out-supervised” learning, uninformative chaos
similar to white noise appears. The trajectory is not modified by noise. After
“in supervised” learning, frustrated chaos appears. Noise can stabilize the chaotic
trajectory to the expected attractor if it is added when the trajectory is nearby this
attractor. Otherwise it may have no meaningful impact.

Figures 5.24 on the following page shows frustrated dynamics that appears
when noisy stimuli are feeding the network. When such ambiguous stimuli feed the
network, noise perturbation leads to jump from one chaotic attractor to another
chaotic attractor. If the chaos is not too stable and nearby a stable cyclic attractor,
the noise stabilizes the trajectory (like Figure 5.23 on the next page), otherwise no
stabilization occurs. This figure shows this phenomenon for two different stimuli,
after the initial input (red) and for each noise iteration, the return map is plotted
(in order: green, blue, magenta, cyan).

11In terms of the number of chaotic orbits successfully stabilized into correct learned

attractors
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Figure 5.23. Return maps of the chaotic dynamics and the im-
pact of noise observed for a learned stimulus. Left figure: uninfor-
mative chaos similar to white noise appears after “out-supervised”
learning. Noise does not modify the dynamics. Right figure: very
structured dynamics after “in-supervised” learning. Noise stabi-
lizes the dynamics to a nearby cyclic attractor (highlighted with
squares). Initial input’s return map is shown in red, the return
maps obtained by successive noise injections are shown in green,
blue, magenta, cyan.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.7  0.75  0.8  0.85  0.9  0.95

x(
t)

x(t-1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

x(
t)

x(t-1)

Figure 5.24. Return maps of the chaotic dynamics and the im-
pact of noise when an unlearned stimulus is fed. In both examples,
perturbation moves the trajectory from one chaotic attractor to an-
other nearby chaotic attractor. Initial input’s return map is shown
in red, the return maps obtained by successive noise injections are
shown in green, blue, magenta, cyan.
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"s 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

"b 0.05 It is kept similar to the inner state’s learning rate.
lns 0 The learning noise is null in order

to keep the test fair for the “out-supervised” learning algorithm
lnb 0 The learning noise is null in order

to keep the test fair for the “out-supervised” learning algorithm
l� 4 These experiments deal with size-4 cyclic attractors.
mincs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
maxcs 4 Minimum and maximum cycle sizes are set equals to be fair

to the “out-supervised” learning in the comparison.
ps 4 Preferred compression period must be in [mincs, maxcs].
pe 4 Preferred expansion period must be in [mincs, maxcs].
�i 3 Size of the input layer.
k 10 Used to compute the size of the transient phase to skip.
∣A∣ 25 Size of the associative layer.
∣S∣ 25 Size of the input layer.

Table 13. This table recaps all the parameters used for the ex-
periments in Section 3.3 on page 128 with their value.

4. Conclusion

This chapter has taken the two learning procedures from the previous chapter
and explored their potential. Results are in line with those from Molter and Bersini
[2003a,b] regarding the usefulness of the external stimulus. Modifying the stimuli
mainly results in a change of the entire internal dynamics, leading to an enlargement
of the set of attractors and potential “memory bags”. In particular, here this
addition also increases the storing capacity and leads to an improvement of the
robustness to noise.

When the system possesses external stimuli, it becomes a sort of input/output
machine, where the external stimuli plays the role of input and the inner states
of the recurrent neural network are the output. Even if in surface this system
seems similar to the classical feed forward neural network, two major differences
make the comparison not very useful. First, in the feed forward neural network
output is solely dependent on the input, where here the inner states of the network
also influence the outcome and thus the same input can lead to different attractors
depending on the initial condition. The second difference lies in the ability of
recurrent neural networks to store cyclic attractors while feed forward networks are
always stable by definition. As an added consequence of these two major differences,
recurrent networks can also learn different sequences sharing common patterns.

In addition to this, quantitative results have been shown describing the per-
formance of the “out-supervised” algorithm in different memory tasks (i.e. auto-
associative, hetero-associative, learning sequence), and also highlight the impor-
tance of correctly setting a learning noise that will explicitly “excavate” the basins
of attraction of the stored data in order to increase the robustness. Furthermore,
this learning noise has been shown mandatory during fixed-point learnings in order
to exclude the trivial solution of the identity matrix, which can learn any data set
but has no noise tolerance whatsoever.
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The “in-supervised” algorithm has gone through similar tests and has been
compared with its counterpart. Several observations were made. First the “in-
supervised” algorithm is much faster than the “out-supervised” algorithm (in terms
of the number of weight modifications needed to learn a given data set). It was also
obvious how this algorithm can learn much larger data sets. For these tests to be
fair, both algorithms were set to work with the same constraints. First, no learning
noise was used (ln = lnb = 0) and secondly, the “in-supervised” algorithm can
only propose cycles of the same size as the one in the data set the “out-supervised”
algorithm has to learn (pe = ps = maxcs = mincs = K, with K a constant).
However, it has been shown that the “in-supervised “ algorithm does not need
learning noise in order to learn strong robust attractors. Furthermore, even when
comparing “out-supervised” learning results with learning noise to “in-supervised”
learning without noise, the latter had better content-addressability (provided by
the trial–errors–adaptations process).

From these experiments it appears that the encoding capacity (with content-
addressability) of “in-supervised” learned networks is greater than the maximum
encoding capacities (without content-addressability) obtained from theoretical re-
sults [Gardner, 1987]. The explanation lies in the presence of the input layer, which
modifies the network’s internal dynamics and enables other attractors to appear and
in the same time puts this model outside the scope of those theoretical results.

The second part of this chapter takes a closer look at the different spontaneous
regimes present in the system after learning different data sets. These results were
compared with results obtained from random surrogate networks obtained (with-
out learning) by replicating the weight distribution of the learned network to which
it compares. It appears that global dynamics are highly related to the data set:
learning static data in fixed-point attractors leads to stable networks, while learning
one cycle of huge size in a limit cycle attractor entails a highly chaotic network.
These networks exhibit a large set of dynamical results in which a variety of chaotic
dynamics can be found. These chaotic dynamics have been identified using qualita-
tive measures (with return maps and power spectrum) and quantitative measures
(Lyapunov spectrum).

Various observations arise depending on the data set and most importantly
the chosen learning algorithm. Chaotic dynamics observed in surrogate networks
is most of the time similar to white noise. Networks learned using the “out-
supervised” algorithm show different results. When the data set’ size comes close
to the capacitive limit of the network, the observed chaos is close to white noise
as well. But, with smaller data sets, chaotic dynamics show more structure, going
up to a very weak and informative chaos when only a handful of short limit cycles
are learned. The other important consequence of the “out-supervised” learning is
observed in the probability to find chaos when looking at the spontaneous dynam-
ics of the system. This probability tends to one, indicating that, except for the
data set’s external stimuli, everything else leads to a strong uninformative chaos.
This can be related to the blackout catastrophe observed in fixed point attractors
networks [Amit, 1989].

Tests with the “in-supervised” algorithm show very different results. First
the chaos observed in these networks is weak and very informative, also called
“frustrated chaos”, since it goes from one nearby attractor to another one through
short bursts. Moreover, the probability to find chaos in the network is bounded,
which leaves room for more attractors to be learned and is a direct consequence
of the learning process which naturally creates very robust attractors (hence with
a large basin of attraction). This chaos can be very clearly observed when slowly
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shifting the input of the system from one known external stimulus to another one.
Finally, these results are corroborated with the use of the Lyapunov spectrum which
clearly shows the presence of a hyper-chaos when extensively learning with the “out-
supervised” algorithm, where only a weak chaos appears after the “in-supervised”
one. Coupled with the trajectory observed when shifting from one known input to
another, this last chaos is clearly identified as the “frustrated chaos”.

The last part of this chapter focused on symbolic analysis and how, based on
the dynamical properties of these networks, the recall process can be improved.
The main problem anybody faces when implementing memory-like structures is
the spurious data. A spurious data is defined as an output of the system, which
is not expected (based on the learning data set), yet is indistinguishable from a
learned output without the explicit comparison to the whole learning data set.
It has been observed that spurious data fill out the system when learning fixed
point data sets, up to a point where, given an ambiguous output, it is more likely
to have a spurious output than a noise recovery. Learning sequences lead to a
complete different outcome: chaos fills the space and thus avoids spurious data
proliferation. The “out-supervised” algorithm leads to a system where chaos takes
the whole space, removing almost all spurious data. The “in-supervised” learning
shows a more mitigated result since the space chaos can cover seems to have a
maximum threshold (as shown with the dynamical result on the probability of
chaos). However, the more interesting result is observed when the same experiment
is repeated, this time giving a correct stimulus and a random inner state. It appears
that in that particular setup the probability to have a spurious data is less than
5%.

This analysis is very useful; it helps improve the recall process. The main
advantage of chaos taking over spurious data comes from the fact that it can be
identified as a non-expected output without the need of any external information
(i.e. the learned data set). The recall process has been altered to inject some
small noise when facing with a chaotic output. The results were not very good for
the “out-supervised” learning, the only noticeable effect being that some chaotic
outputs were stabilized in some spurious data’s attractor. This is due to the very
uninformative nature of the chaos and thus a perturbation never guarantees to
stop the system anywhere near one of the very few learned attractors, especially
considering their small basins of attraction. The “in-supervised” learning algorithm,
on the other hand, showed very good results and was able to increase its recovery
rate from 60% to 80%.

In conclusion, this chapter discussed original results obtained [Molter, Sal-
ihoglu, and Bersini, 2007b] with the two learning algorithms introduced in the
previous chapter. These results are new and provide evidence that the learning al-
gorithms proposed here are robust and built on strong hypotheses. The capacitive
limits of these algorithms is way beyond classical Hopfield networks and additionally
they have been shown to be a route to chaos. Moreover, these dynamical proper-
ties have been analyzed and shown not to be just some minor side effect, since
they clearly reduce the spurious data present in the system [Molter, Salihoglu, and
Bersini, 2007a]. This allowed the introduction of a improved recall process which,
by injecting noise on the system, allows to exploit those dynamics and improve the
recalls [Salihoglu et al., 2007].





CHAPTER 6

Working Memory Model

The algorithms presented and analyzed in the two previous chapters show some
promising results; yet they fail to be convincing by their lack of biological plausi-
bility. Moreover, they are, by nature, hard to scale to larger networks since each
iteration requires the modification of all the weights of the system, which rises
quadratically with the size of the network. Even if those algorithms rely on a local
learning rule (the iterative Hebbian algorithm), they learn the patterns globally.
The iterative Hebbian algorithm does not provide any mechanism to indicate that
some neuron can have any output. The sequence always specifies the global behav-
ior of the whole system. In this chapter, a different memory system is proposed
where patterns result from local connections.

The basis of this work came from the research done on the working memory
models [Durstewitz et al., 2000]. These models are used for temporarily storing
and manipulating information in short-term memory [Durstewitz et al., 2000]. As
with any memory model, the information that is stored needs to be specified. To
this end, most of the time, these models rely on cell assemblies (as described sixty
years ago by Hebb [1949]).

Cell assemblies are good candidates since they use only a subset of the neurons
to represent the information, which provides locality. Moreover, they can have
overlaps between them, which helps improving the capacity of the system and,
more importantly, a cell assembly being characterized by the synchronous activity
of a group of neurons, they leave the exact behavior of these neurons unspecified
and not directly related to the nature of the information. As shown with the “in-
supervised” learning algorithm, letting the exact output of the system unspecified
a priori helps the system in terms of capacity and content-addressability.

Working memory models having already been covered from a psychological
point of view, the next section will look at those models from a computational
neuroscience point of view. The second section covers the cell assembly and gives
a proper definition for the concept. The last section shows how these concepts
translate into the model introduced earlier (Chapter 3 on page 73).

1. Definitions

The brain is not only defined by its ability to passively store memories but
also by the way it manipulates this information. This is why the memory is ad-
dressed as working memory and not just short-term memory. The working memory
models deal with those short-term memories but also with the way information is
manipulated during short time periods [Baddeley, 1986].

Several studies showed, using single cell recording, that during matching tasks
with delay1, primates had increased firing rates in specific areas of the brain [Fuster,

1In these tasks, the primate has to retain a specific information during a short period of time

to guide a forthcoming response.
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1973; Fuster and Alexander, 1971; Rainer et al., 1998]. Neuroimaging tools allowed
Cohen et al. [1997] to observe increased activity in some region of the brain. Ac-
cording to this, the prefrontal cortex, the posterior parietal cortex and parts of
the basal ganglia and of the thalamus are believed to be involved in the working
memory [Goldman-Rakic, 1994].

In this chapter, a particular focus is given to the first defining feature of the
working memory: the ability to actively hold a limited amount of information in
memory for a short time, which is also called the short-term memory2. Many
biological evidences suggest that the short-term memory is an intrinsic feature of
the prefrontal cortex [Miller et al., 1996], which means that the manipulation of the
sustained information (the second defining feature of the working memory) would
result from the interplay between different brain areas.

All the observations about the neural basis of the working memory have inspired
many neurobiologically-based computational models [Ashby et al., 2005; Durstewitz
et al., 2000]. Yet, most of them do not use the cell assemblies as the substrate for
information. Here, those cell assemblies are defined first according to their synap-
tic weights and later autonomously by the system with an unsupervised learning
algorithm. The dynamics of these cell assemblies is investigated and they are used
to reproduce the classical paradigm of associative memory, i.e. that the partial
stimulation of a cell assembly entails its entire activation.

In recent years, different groups have reported that, in absence of any tasks or
stimuli, the resting brain is not silent, but spontaneously active, and that this spon-
taneous activity exhibits exquisite spatiotemporal patterns of activity [Kenet et al.,
2003; MacLean et al., 2005; Vincent and Buckner, 2007]. According to their find-
ings, during spontaneous activity, the brain activity itinerates through previously
learned ‘memories’ or ‘thoughts’, in a way similar to chaotic itinerancy [Tsuda,
2001].

2. Cell Assemblies

The “cell assembly theory”, also called the “Hebbian theory”, has already been
mentioned at several occasions in this thesis. This section takes a closer look at
this theory and properly defines the concepts behind it. The main idea behind this
theory has already been explained and is the so called “Hebbian rule”. This rule
directly dictates a definition for the cell assembly concept. Hebb [1949] describes
this with the following words:

Let us assume that the persistence or repetition of a reverbera-
tory activity (or “trace”) tends to induce lasting cellular changes
that add to its stability. When an axon of cell A is near enough
to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place
in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

This is often simplified as “cells that fire together, wire together”. Even if this is an
oversimplification, it still shows an important consequence of such plasticity: the
neurons group themselves into meaningful clusters.

From this, cell assemblies can be defined as a group of cells having strong synap-
tic connections. This definition is based on the structural nature of the network.

2Not to confuse with the short-term memory as described earlier, which is present in the

hippocampus and can last several months.
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It gives a static view of the cell assemblies in the system. The problem with this
definition is that it is a non-trivial task to identify such a cluster when working
with nonlinear systems. The large number of neurons does not help either, since it
becomes less likely that all neurons of a same cluster will have strong connections
between each other. Finally, the input also affects the outcome of the cluster: for
instance, if three neurons are strongly connected to each other and that a given
input excites two of them but strongly inhibits the last one, there is a good chance
that only two of the neurons will be activated. This still forms a cluster of densely
connected neurons but yet all densely connected neurons do not belong to it.

To summarize these observations, even if a synchronous activity leads to strong
connections, it is not safe to assume that strong connections leads to synchrony nor
that all parts of a cluster will have strong connections with all the other parts.
This makes it hard to define a cell assembly purely based on the static weight
distribution. However, it is still possible to define them based on a dynamical
specification: a group of neurons that have a synchronous activity as a response
to a given input form a cell assembly. Of course, this definition is straightforward
and works very well to identify the cell assembly, but it has its own drawbacks. For
instance, it is impossible to know for sure if all the cell assemblies of the system
have been identified since it is always possible that another unknown cluster will
form when facing a previously unseen external stimulus.

Hopfield [1982] is amongst the precursors to have put this Hebbian rule to
good use (see Section 5.1 on page 35 for more details). However, his model had its
problems, including from a cell assembly point of view. The two major criticisms
that can be made on this model is that cell assemblies are static (due to fixed-
point attractors) and they cannot overlap without severely crippling the memory;
Hopfield has clearly showed that the capacity of such a system was very limited
and can even go to catastrophic forgetting when patterns were too correlated [Amit
et al., 1985; Gardner, 1987]. Finally, the cell assemblies in Hopfield’s system have
the same structure than the external world, which seems very unlikely.

The learning algorithms suggested in the previous chapter have managed to
erase most of those problems. They learn sequences, they can deal with overlappings
pretty well, and because of the external stimuli, there is a clear distinction between
internal and external representation of the information3 (the “in-supervised” version
is built on this very same concept). However, these algorithms specify the dynamics
of the whole system, which is in contradiction with the locality of the cell assembly:
if some cells are not needed in the cell assembly, the ideal learning mechanism
should not even consider them, while these algorithms force them to have a specific
value (even if this value is 0).

With the rise of popularity of working memory, cell assemblies have seen a lot
of interest from large groups of researchers. In their perspective, the presence of
sustained internal representations after the presentation of external stimuli results
from local reverberations of activity in the recurrent connections of cell assemblies.
Many researchers used cell assemblies but without putting any meaning for them:
the cell assemblies are a priori defined from bi-modal weights distributions [Amit,
1995; Brunel and Wang, 2001; Molter et al., 2009; Mongillo et al., 2008]

3This is of course not true when learning auto-associative fixed-point data sets.
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Recent improvements of recording techniques enabled the simultaneous record-
ing of a large number of cells, which has led to numerous new analyses over popula-
tion codings and spatio-temporal patterns. This has in turn increased the popular-
ity of the cell assembly theory. For example, Harris [2005] argued that many obser-
vations that have been interpreted as evidence for temporal coding might instead
reflect an underlying assembly structure. Pastalkova et al. [2008] reported that reli-
ably and continually changing cell assemblies in the rat hippocampus appeared not
only during spatial navigation but also in the absence of changing environmental
or body-derived inputs. All these new works strongly support the cell assembly
theory.

3. Implementation

This section’s goal is to measure the potential of the model described in Chap-
ter 3 on page 73 to exhibit working memory features. The first step in this
direction is to study the system without any learning algorithm and to find out if
it can exhibit coherent behaviors when put in a configuration reminiscent of bio-
logical evidences. A priori encoding cell assemblies in the synaptic weights of the
recurrent neural network is tested first. This procedure follows a long history of
working memory models in cell assemblies [e.g. Compte et al., 2000; Molter et al.,
2008; Mongillo et al., 2008].

3.1. A priori encoding of cell assemblies. Following its first definition [Hebb,
1949], a cell assembly (CA for short) is defined by subset of cells connected between
each others with high synaptic weights, compared to other synaptic weights. Ac-
cordingly, to account for the presence of cell assemblies, synaptic weights were
chosen from the following uniform random distributions.

First, units (or cells) in a same cell assembly were strongly connected using
a uniform random distribution (wR

ij ∈ [−0.95, 0.95]). This distribution has been
chosen to take into account that cell assemblies have strong synaptic connectivity
amongst their cells but also that each cell in the CA does not need to be strongly
connected to each others (as explained in the previous section). The reason for
this distribution to include also negative weights lies in the activation function of
neurons. Since this is a rate firing model, neuron outputs are always positive. So if
a positive distribution was considered (wR

ij ∈ [0, 0.95]) then the system is basically
limited to two outputs. First, if the inhibition (from the global inhibitor) is not
strong enough, then the system will end up saturating at 1; and if the inhibition is
strong enough, the system will oscillate between near maximum value and near zero
value. This happens because if the system gets too active, the inhibitor dampens
it; then since the system has become quiet the inhibition stops, which allows the
system to become saturated again. Basically, this configuration leads the system’s
output to be dictated by the inhibitor, which is not its the intended use.

Secondly, units which were outside cell assemblies were weakly connected to-
gether using a uniform random distribution (wR

ij ∈ [−0.05, 0.05]). This distribution
is chosen to give background neurons a very light activity. Finally, to prevent the
simultaneous reactivation of multiple CAs, synaptic weights between units of dif-
ferent cell assemblies were chosen to be slightly inhibitory using a uniform random
distribution (wR

ij ∈ [−0.35,−0.05]). Accordingly, the activation of a cell assembly
tends to inhibit the co-activation of other cell assemblies.

The other weights of the system are initialized as follows : WA = 1, so all the
units of the associative layer have a positive and uniform impact on the inhibitor;
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WI = −1, so that the inhibitor has an overall negative value if the incoming input
is high, and thus inhibits; and finally WS is initialized with a value allowing the
neuron of the stimulus to have a positive connection with the corresponding cell
assembly and 0 with the rest of the units.

To define cell assemblies in a straightforward and reproducible way, the follow-
ing parameters were introduced [see also Molter et al., 2008]:

∙ r, the number of cells composing a cell assembly.
∙ p, the proportion of cells in a cell assembly overlapping with other cell

assemblies. r − p ⋅ r gives the number of cells of a CA that are unique to
this CA, the other p ⋅ r cells are shared with some other CAs.

∙ q, the proportion of cells lying in two cell assemblies. q ⋅r give the number
of cells that two CAs can share, but these cell assemblies can still share
units with other cell assemblies and the other cells may be shared with
other CAs, too.

Naturally, given this definition, q must always be less or equal to p.

For this part, the context was disabled (WC = WV = 0) to keep the example
as simple as possible. Hence, the matrix weight W becomes:

(73) W =

⎛

⎜

⎜

⎝

WR 0 WS WI

0 0 0 0
0 0 I 0

WA 0 0 0

⎞

⎟

⎟

⎠

The model is composed of the associative layer, the input layer (modeling the
incoming stimuli) and the global inhibitor, as shown in the Figure 6.1.

Behavioral

WS

Dorsal Ca3 network

WR
Associative

Input

layer

layer

space

Global

Inhibitor

WI

WA

Figure 6.1. Limited architecture of the model, as it is used in
this chapter, with only the active components.
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3.2. Results. As a first experiment, the model was tested with only 2 cell
assemblies pre-encoded in the network [as in Compte et al., 2000; Mongillo et al.,
2008]. Each CA was composed of 30 cells (r = 30), with 10 overlapping cells
(p = q = 0.33 . . .). To test this configuration, two measures are plotted. One is the
average activity of all the cells in a given cell assembly, the other is a raster plot
of all the neurons of the system. The raster plot shows a grid that has one row
per neuron and one column per time step. The activity of a neuron i at time t is
shown as the color of the corresponding cell of this grid. An inactive neuron will be
represented in blue and the more active it will be, the closer to red the color will
be (0 xi (t) 1).
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Figure 6.2. Content-addressable and working memory features.
(a) Raster plot showing the activity through time of all units.
(b) For each predefined CA, the activity through time averaged on
all its units is plotted (CA 1 is red and CA 2 is green). Sequences
of spontaneous activity following sequences of external stimulation
impinging subsets of specific CAs were tested.

Here, the first CA is composed of the neurons 50 to 80, the second one is
composed of the neurons 30 to 60, and obviously the neurons 50 to 60 are shared.
Figure 6.2 shows the rasterplot activity of the cells and the averaged activity of the
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cell assemblies during and after an external stimulation4 of 10% of its units (i.e. 3
cells). As expected, partial reactivation led to the reactivation of the entire CA.
More importantly, the CA maintains high-level activity after the stimulation stops,
which is a requirement for a working memory. In summary, this model satisfies
the two requirements needed for a working memory model: CAs are correctly re-
activated when fed by a partial stimulus and their activation is maintained after
stimulus offset.

This work handles CA activity as an activator, and it is easy to see why. One
way to see this, is to remark that a cell assembly is in fact the minimum number
of cells that have a strong activity given a stimulus. This is reminiscent of the
definition of an activator which has a minimality constraint. In addition, it has
also a certain tolerance to noise (as shown in this section) which is reminiscent of
the basin of attraction of the attractor.

The cell assembly can also be observed, as done here, purely through its activity
which is a dynamical signal to which the system converges. Since the exact nature
of the trajectory is not really important when looking at information through cell
assembly’s perspective it is acceptable that a given cell assembly can go through
different dynamics. Those signals are each a different attractor of the system since
the activity of the CA persists but can have any nature (cyclic, chaotic, . . . ). So
another way to build the bridge between the CAs and the attractors of the system
is to consider the set of all attractors the CA can go through as one family of
attractors with a basin of attraction which is the union of all the basins of these
attractors. Then again, the cell assembly fits the definition of the attractor, it is
minimal since it only takes the attractor that results with the cell assembly being
active. Secondly, since each basin of attraction leads to one attractor and since the
CA is defined by the union of all those basins then it also has a basin of attraction
that would lead to an attractor.

Differently from other working memory models where the activity of the net-
work is sustained thanks to additional mechanisms (e.g. by a dynamical modifica-
tion of the synapses [Molter et al., 2008; Mongillo et al., 2008]), in this model, the
working memory feature is purely neurodynamic and results from the reverberation
of the cell assembly’s activity across its recurrent connections [as in Compte et al.,
2000]. This figure also shows the average activity of the cell assembly itself. The
dynamics of those attractors is studied later in this chapter. However, it appears
clearly that they are able to generate complex behaviors.

Figure 6.3 on the following page shows the average activity of a CA when a
noisy stimulus feeds the system. The system is composed of two CAs of 30 units
(p = q = 0.33 . . .). This figure shows the activity of both CAs when the stimulus
related to the first CA feeds the system. The noise in this figure is represented as
a Hamming distance between the correct input and the noisy input.

In these plots, the average activity of the CA corresponding to the stimulus is
always higher than the other CA until noise is high enough for the input to be close
to random (dH = 50). Since there is an overlap between the two CAs, it is normal
for the second CA to have noticeable activity but this does not get in the way of
the system to make a good recall.

Figure 6.4 on page 143 shows the same results with five cell assemblies of 10
units with weak one-to-one overlap (q = 0.2) and strong global overlap (p = 0.6). It
clearly appears that, because of the overlap, all the cell assemblies show activity for

4The absence of external stimulus is reflected by setting the input layer to 0 (S = 0).
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Figure 6.3. Noise tolerance (2 CAs). Measured as the average
activity (and standard deviation) when the stimulus related to the
first cell assembly feeds the system with various levels of noise.
Noise is measured as a Hamming distance between the correct in-
put and the noisy one. This test is done over 100 different random
networks with two cell assemblies of 30 neurons where 10 are shared
(p = q = 0.33 . . .).

a given stimulus. But again the correct recall is made until the stimulus becomes
near random (under the effect of the injected noise).

The noise injection is performed by selecting, with a uniform random sampling
without re-pick, n units in the input layer and if the unit was active as part of the
stimulus its value is set to 0.0 otherwise its value is set to an active value (here,
0.3).

Those results show that a simple bi-modal weight configuration allows this
model to propose a robust working memory model, since the essential features
required from any such model are present: there is a substrate for information
(the cell assemblies), the model is tolerant to noise (content-addressability), and
the system’s dynamics are strong enough to carry the information obtained by
stimulating the system even after the stimulus leaves.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 1. This table recaps all the parameters used for the exper-
iments in Section 3.2 on page 140 with their value.

3.3. Dynamics analysis. The next step is to test the dynamics that can
be found in these randomly generated networks and see if any specific behavior
can be observed because of the particular architectural configuration required for
implementing cell assemblies.
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Figure 6.4. Noise tolerance (5 CAs). Measured as the average
activity (and standard deviation) when the stimulus related to the
first cell assembly feeds the system with various levels of noise.
Noise is measured as a Hamming distance between the correct in-
put and the noisy one. This test is done over 100 different random
networks with five cell assemblies of 10 neurons, with weak one-to-
one overlap (q = 0.2) and strong global overlap (p = 0.6).

The first tests are done on a system with two cell assemblies of different sizes
and different overlappings. Figure 6.6 on page 145 shows the dynamics of a cell
assembly when its corresponding stimulus feeds the system. For this experiment,
two overlappings have been tested: p = q = 0 and p = q = 0.5. The size of the
cell assemblies affect the dynamics they go through during simulation. But it is
important to note that, depending on the overlapping factor, the influence of the
size is completely different. Where non-overlapped cell assemblies configuration
lead to stable output when stimulus feeds the system, the dynamics of overlapped
cell assemblies are more and more chaotic when bigger cell assemblies are used.

The same experiment is repeated but this time the global dynamics of the
system is observed when the stimuli feeds the system. Figure 6.6 on page 145
shows clearly that the size of the cell assembly also has an effect on the type of
dynamics observed in the system as a whole. And of course, when no overlapping
is present the system becomes very stable, while with overlapping it becomes more
and more chaotic.

This trend is not specific to the presence of a known stimulus on the system,
as shown in Figure 6.7 on page 146. The spontaneous activity of the system also
shows the same correlation between size, overlapping and stability. In this figure a
random stimulus feeds the system and the resulting dynamics is monitored.

A particular case can be observed when an ambiguous stimulus feeds the sys-
tem. For example, when an external stimulus impinges subsets of cells belonging
to two different cell assemblies (Fig. 6.8 on page 147 (top)), it is possible to find a
dynamics hesitating between the two different attractors without settling down in
one of them. This mechanism is likely to be derived from the chaotic nature of the
attractor characterizing the cell assemblies. As observed in the previous chapter, if
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Figure 6.5. Dynamics of a CA during stimulus, shown as the
mean Lyapunov activity of a cell assembly during stimulus. The
test is done for 100 random networks with two cell assemblies.
Different sizes of cell assemblies are tested with two overlapping
configurations. In the first configuration (in green) the cell assem-
blies share no unit, while in the second configuration (in red) they
share half of them. Overlapped cell assemblies show a correlation
between their size and the mean Lyapunov exponent which ends
up positive. Non-overlapped cell assemblies never achieve configu-
rations with complex dynamics.

the orbit of the CA is a frustrated chaos, it will go from one attractor to another
without settling. Figure 6.8 on page 147 (bottom) shows such an itinerance too:
in the left part the system seems stable enough but after a certain time it brutally
changes of attractor, while the figure on the right shows a competition between the
two attractors with one CA activating for a short time until the other one takes
over. In these examples, the input feeds the system all the time.

Other sets of experiments have been conducted to investigate the possible corre-
lation between the number of cell assemblies and the system’s dynamics. Figure 6.9
on page 148 shows how the dynamics of a stimulated cell assembly evolves with the
number of cell assemblies in the system. As with the size, the number of cell assem-
blies reinforces the trend that was already present. In other words, when dealing
with large cell assemblies the system tends to be chaotic; increasing the number of
such cell assemblies make the system even more chaotic. This can be confirmed by
the fact that when dealing with systems with low overlapping the number of cell
assemblies stabilizes the system more and more.

Figure 6.10 on page 149 (and Figure 6.11 on page 150) leads to the same conclu-
sions when observing the global dynamics (and spontaneous activity respectively).
The plots do not have any data below 5 and above 10, for the cell assemblies of size
30 and 50: given the size of the network (N = 100) it was not possible to generate
such a configuration.
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Figure 6.6. Dynamics of the system during stimulus. Shown as
the mean Lyapunov activity of the system during stimulus. The
test is done for 100 random networks with two cell assemblies.
Different sizes of cell assemblies are tested with two overlapping
configurations. In the first configuration (in green) the cell assem-
blies share no unit, while in the second configuration (in red) they
share half of them. Overlapped cell assemblies show a correlation
between their size and the mean Lyapunov exponent of the sys-
tem, which ends up positive. Non-overlapped cell assemblies never
achieve configurations with complex dynamics.

The final step was to see what part of the systems dynamics is chaotic. This
is done by computing the probability to observe chaotic dynamics in the system5.
Figure 6.12 on page 151 shows the probability of chaos for a system with two
cell assemblies of various sizes and the same two overlapping configurations. Fig-
ure 6.13 on page 152 shows the same for a system with an increasing number of cell
assemblies, of various sizes and overlapping configurations.

The results obtained from these tests are not very suprising. The configuration
with two cell assemblies with no overlap shows no presence of chaos. However, when
the same system is configured with 50% overlap chaos starts to appear in the system
around cell assemblies of size 15 and nearly reaches omnipresence when using cell
assemblies of size 50. From the second plot it is easy to observe that the number
of cell assemblies enforces the presence of chaos and even when dealing with cell
assemblies of size 30 (which show around 70% chance to have chaotic regime) this
probability tends to nearly 100% when the number of such cell assemblies increases.
As with the mean Lyapunov, the number of cell assemblies does not bring chaos
where there was none to begin with.

5Which is the percentage of random inputs for which the Lyapunov exponent is greater than

0.01
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Figure 6.7. Spontaneous dynamics of the system. Shown as the
mean Lyapunov activity of the spontaneous activity of the system.
The test is done for 100 random networks with two cell assemblies.
Different sizes of cell assemblies are tested with two overlapping
configurations. In the first configuration (in green) the cell as-
semblies share no unit, while in the second configuration (in red)
they share half of them. Overlapped cell assemblies show a cor-
relation between their size and the mean Lyapunov exponent of
the spontaneous activity in the system, which ends up positive.
Non-overlapped cell assemblies never achieve configurations with
complex dynamics.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 2. This table recaps all the parameters used for the exper-
iments in Section 3.3 on page 142 with their value.

4. Conclusion

This chapter has introduced the most known working memory models and
explicits their connection with the different memory stores. All those models ex-
plicitly manipulate information chunks present in the memory , which is why it is
important to define a substrate for these information.

Since 1949, the “cell assembly theory”, proposed by Hebb [1949], has gained
a lot of popularity. Cell assemblies have been heavily studied over the past sixty
years. Amongst other things their popularity comes from the simplicity behind their
definition and the biological evidence that supports the theory. The “cell assembly
theory” is closely related to the Hebbian learning rule, which is also why this theory
is sometimes simply called the “Hebbian theory”. The Hebbian rule reinforces cells
that activate simultaneously and weakens those that are not in sync. This leads to
groups of cells to activate in concordance or in other words to form cell assemblies.
Those cell assemblies have been chosen by many researchers as the substrate for
encoding information.
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Figure 6.8. Network dynamics for ambiguous external stimuli.
(a) An ambiguous stimulus is a stimulus which either feeds parts
of two cell assemblies (Stimulus A) or part of the overlapping units
(Stimulus B). (b and c) The average dynamics of each cell assem-
bly is plotted through time. In both cases, the system exhibits
complex dynamics, hesitating between the two previously stored
cell assemblies’ attractors. This kind of dynamics can be obtained
using stimulus of type A and B.

The third part of this chapter takes the model proposed in this work and applies
a priori a simple bi-modal weight configuration reminiscent of the “cell assembly
theory”. Once the associative layer has been defined, the model has been tested in
order to determine if it was able to exhibit basic behaviors of a working memory.
The first test was simply to look at the activity obtained in the network (and in
particular in the predefined cell assemblies) to see if partial reactivation of a cell
assembly leads to the full activation of the said cell assembly. The model shows
successful result in this first test. It was also able to maintain the activity of the
cell assemblies after the stimulus left the system, only using the dynamics present
on the system. This is also an important feature required for working memory
models. More tests have been done regarding the tolerance to noise, and even
with overlapping cell assemblies, the system is very robust to noise and manages to
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Figure 6.9. Dynamics of a CA during stimulus for large data
sets. Shown as the mean Lyapunov activity of a cell assembly
during stimulus. The test is done for 100 random networks. Dif-
ferent configurations of cell assemblies are tested; the number of
cell assemblies present in the system is plotted on the x-axis. In
the first configuration (in green) the cell assemblies have 10 units
(q = 0.2, p = 0.6); in the second configuration (in red) they have 30
units (q = 0.4, p = 0.8); and finally in the third configuration (in
purple) they have 50 units (q = 0.4, p = 0.8). The number of cell
assemblies in the system enforces the type of dynamics observed
when having only two cell assemblies. Smaller cell assemblies be-
come more and more stable, while the opposite trend is observed
for larger cell assemblies.

have a reactivation of the correct cell assemblies. The system has been tested with
different numbers of cell assemblies with great success.

The final tests had for objective to analyze the dynamics the system present
during reactivation and spontaneous activity. Different sizes and numbers of cell
assemblies have been tested with various overlapping parameters. It appeared that
the size of the cell assemblies and the overlapping factor affect the dynamics that
can be observed in the system. The size of the cell assembly reinforces the type
of dynamics the overlapping suggests, when cell assemblies have no overlapping
they exhibit stable dynamics and those are more and more stable as the size of
the cell assemblies increases. On the other hand, strongly overlapped cell assem-
blies exhibit complex dynamics which become heavily chaotic with the size of the
cell assemblies. An interesting case of complex dynamics can be observed when
an ambiguous stimulus feeds the system. Some ambiguous stimulus pushes the
system into an unstable configuration where the system’s output goes back and
forth between the different cell assemblies. Interestingly, this oscillation between
cell assemblies can take different forms: it can be very fast, switching every few
time steps from one CA to another, but it can also need hundreds of time steps
before any shift occurs. The number of cell assemblies seems to have an effect on
the dynamics as well; all observed dynamics (in the cell assembly, the whole system
or spontaneous activity) were reinforced by the number of cell assemblies present in
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Figure 6.10. Dynamics of the system during stimulus for large
data sets. Shown as the mean Lyapunov activity the system dur-
ing stimulus. The test is done for 100 random networks. Dif-
ferent configurations of cell assemblies are tested; the number of
cell assemblies present in the system is plotted on the x-axis. In
the first configuration (in green) the cell assemblies have 10 units
(q = 0.2, p = 0.6); in the second configuration (in red) they have 30
units (q = 0.4, p = 0.8); and finally in the third configuration (in
purple) they have 50 units (q = 0.4, p = 0.8). The number of cell
assemblies in the system enforces the type of dynamics observed
when having only two cell assemblies. Smaller cell assemblies be-
come more and more stable, while the opposite trend is observed
for larger cell assemblies.

the system. Again, large overlapped cell assemblies become more and more chaotic
where small weakly overlapped cell assemblies become extremely stable when their
number increases in the system. As a direct effect of this, the probability of observ-
ing such complex dynamics is correlated in a similar manner to the size, number
and overlapping of cell assemblies.

In conclusion, this chapter proposed a simple model to implement a working
memory, which successfully exhibits the required features for such a memory, based
on a priori definition of the system. This model is built on very well known com-
ponent but the architecture is new, as is its use as a working memory [Salihoglu
et al., 2009b].
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Figure 6.11. Spontaneous dynamics of the system for large data
sets. Shown as the mean Lyapunov activity of the spontaneous
activity of the system. The test is done for 100 random networks.
Different configurations of cell assemblies are tested; the number of
cell assemblies present in the system is plotted on the x-axis. In the
first configuration (in green) the cell assemblies have 10 units (q =
0.2, p = 0.6); in the second configuration (in red) they have 30 units
(q = 0.4, p = 0.8); and finally in the third configuration (in purple)
they have 50 units (q = 0.4, p = 0.8). The number of cell assembly
in the system enforces the type of dynamics observed when having
only two cell assemblies. Smaller cell assemblies become more and
more stable, while the opposite trend is observed for larger cell
assemblies.
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Figure 6.12. Probability of chaos in the system. The tests are
done for 100 random networks, and 100 random inputs are tested
for each. The system has two cell assemblies of various size and
with two overlapping configurations. When there is no overlapping
(p = q = 0) the system never exhibits chaotic regime (shown in
green). However, when the overlapping is high (p = q = 0.5)
the probability to find chaotic dynamics tends to one with the
increasing size of the cell assemblies (shown in red).
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Figure 6.13. Probability of chaos in the system for large data
sets. The tests are done for 100 random networks, and 100 ran-
dom inputs are tested for each. Different configurations of cell
assemblies are tested, the number of cell assemblies present in the
system is plotted on the x-axis. In the first configuration (in green)
the cell assemblies have 10 units (q = 0.2, p = 0.6); in the second
configuration (in red) they have 30 units (q = 0.4, p = 0.8); and
finally in the third configuration (in purple) they have 50 units
(q = 0.4, p = 0.8). The small cell assemblies stabilize the net-
works, while large cell assemblies reinforce the presence of chaos,
which becomes nearly omnipresent in the system.



CHAPTER 7

Online Adaptation Process

The previous chapter introduces the working memory models and the cell as-
semblies as a substrate for information encoding in those memory models. It has
been shown how the model proposed in this thesis can effectively support the es-
sential features of a working memory. The intuitive, a priori, definition of cell as-
semblies led to good results on this model. The goal of this section is to provide a
learning mechanism that can bring such configurations in the system autonomously,
in reaction to the stimulus needed to be learned.

Based on biological facts and the experience gathered from the development
of various iterative Hebbian learnings, several features can be expected from this
learning process. First, it must support asymmetric weights, since they promote
complex dynamics and those dynamics are backed up by biological evidences as well
as empirical tests done with this model in previous chapters. Secondly, the process
needs to be autonomous, online and unsupervised. This second set of constraints
came from several observations.

Indeed, the less specific the learning1 is, the less the network gets constrained
and thus better are the results; in addition, when talking about storing memories
in the brain, it is hard to see an external supervisor validating the learning. This
justifies the choice of unsupervised algorithms. The autonomous and online fea-
tures come from the fact that the memory system can be enhanced by rehearsal or
attention; but even without them, it is still very much active and most of the time
processes information and learns the information without explicit consent (this is
especially true for shorter memory).

Finally, an improvement of this model is suggested through a context layer
which will helps the system resolve ambiguous information by providing contextual
information for the stimuli.

It is important to note that unlike the previously described learning algorithms
in Chapter 4 on page 81, here the learning is an online unsupervised process and
thus does not have a data set to learn. The algorithms presented here are always
active and react to the activity of the network without an a priori given definition
of a learning task.

1. Network Plasticity: Creation of cell assemblies

The goal here is to provide an algorithm for the associative layer’s synaptic
weights (WR) plasticity (see Figure 6.1 on page 139). When an external stimulus
is presented to the network, either the network’s dynamics settles down to a specific
attractor confined in a subset of cells, either the network will try to create a new
cell assembly. Hebbian learning is a natural choice for cell assemblies formation
and thus it has been chosen here as well: a simple, Hebbian-based, unsupervised
rule is proposed for the creation of that cell assembly. This rule will apply to the

1In terms of the internal representation of the data that must be learned.

153



154 7. ONLINE ADAPTATION PROCESS

recurrent connections (the matrix WR in Eq. 44 on page 78) and corresponds to a
fast learning process (applied at each time step).

An input feeds the network

during learning stage
Reinforce active fed

neuron’s connection

Weaken active neuron’s

connection if one is not fed

Figure 7.1. Basic steps of the Hebian/anti-Hebbian learning al-
gorithm’s implementation.

The basic idea behind this algorithm (illustrated in Figure 7.1) is that when
an external stimulus is presented to the network, at each time step, some of the
cells are picked up and their connecting synaptic weights are updated according to a
Hebbian or an anti-Hebbian rule. If both units receive sufficient input stimulations,
a Hebbian rule is applied to reinforce their connecting weights. On the contrary,
if only one of the two units receives sufficient input stimulation, an anti-Hebbian
rule is applied to promote inhibition between them. Algorithm 5 on the next page
describes the learning in details.

Initially, the weight matrix WR is initialized with a random uniform distribu-
tion in [−0.05, 0.05], to create a random initial condition; yet the weights are small
enough to avoid a major impact. In a random weight matrix, complex dynamics
can be found but, since the weights are weak, the output will be weak too. The
inhibition weights are kept as before (WA = 1, WI = −1)

Basically, this algorithm can be divided into three parts. First, cells that will be
affected by the Hebbian learning mechanism are identified. This puts this algorithm
aside from the two iterative Hebbian learnings proposed earlier (in Chapter 4 on
page 81) since here the learning does not need to modify all the connections at each
time step. The set of selected cells at time step t is noted A(t). Depending on the
activity of the cells and on their connections with the input, this set can be further
subdivided into four subsets depending on whether they are fed by the stimulus2

or not, and they are active3 or not. These four subsets are noted: Afa(t), Afi(t),
Aua(t), Aui(t) (see the Algorithm 5 on the next page for more details on those
subsets).

The second part of the algorithm consists in the critical part of weight modi-
fication. The weight modification is performed between all the units in A(t). The
exact modification value (ΔwR

ij) for a connection between two cells depends on
which subset each cell belongs to (see Algorithm 5 step 2)

2A cell is fed by the stimulus if the incoming signal to that unit from the input layer divided
by the size of the stimulus is positive. The size of the stimulus is given by the number of units

that are active in the input layer when that stimulus feeds the system.
3A neuron is said to be active if xi (t) is greater than some threshold (here 0.6).
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Algorithm 5 Cell assembly creation. Hebbian plasticity of the recurrent connec-
tions (matrix WR in Eq. 44 on page 78)).

Require:
At each time step, a set of k units are randomly picked up(here k = 15%N).
Among this set, named A(t), four types of cells can be identified depending on
their activity and on their connection with the external stimulus:

∙ Afa(t): active units which are fed by the input
∙ Afi(t): inactive units which are fed by the input
∙ Aua(t): active units which are not fed by the input
∙ Aui(t): inactive units which are not fed by the input

1. for all i, j ∈ A do
2. ΔwR

ij is modified according to the following table:

i/j f.a. f.i. u.a. u.i.

f.a. Δ (i, j) Δ (i, j) −Γ (i, j) Ω (i, j)
f.i. Δ (i, j) Γ (i, j) 0 Ω (i, j)
u.a. 0 −Γ (i, j) −Γ (i, j) Ω (i, j)
u.i. Ω (i, j) Ω (i, j) Ω (i, j) Ω (i, j)

Where:

∙ Δ (i, j) = � (wij) sgn (wij)

∙ Ω (i, j) =

{

−� (wij) sgn (wij) if ∣wij ∣ > !
0 otherwise

∙ Γ (i, j) = � (wij)
∙ � (wij) is uniformly sampled in the range [0, " (1 − 0.9 ∣wij ∣)]
∙ Here the learning parameters are " = 0.05,  = 0.02 and ! =

0.2

3. end for
4. for all neuron i do
5. compute its incoming and outgoing connections:

IN i =
∑

j

∣

∣wR
ij

∣

∣ and OUT i =
∑

j

∣

∣wR
ji

∣

∣

6. If IN i > �N , rescale all wR
ij such as IN i = �N

7. If OUT i > �N , rescale all wR
ji such as OUT i = �N (here � = 0.95)

8. end for

The first obvious observation in this table of modification is that the table is not
symmetric, which suggests that the network will end up with asymmetric weights.
Another indication comes from the random part of the � (wij) function which will
give different results even for symmetrical weight modifications. In addition to the
randomness, this function is also dependent on the weight of the connection, thus
the less symmetric the weights are, the less likely � (wij) and � (wji) will be close
to each other.

The table contains three main weight modification functions: Δ (i, j), Ω (i, j)
and Γ (i, j).

The first function Δ (i, j) enforces a connection, which means that
∣

∣wR
ij + ΔwR

ij

∣

∣ ≥
∣

∣wR
ij

∣

∣. The idea behind this function is to improve whatever influence one cell had on
the other, independently of the nature of the connection (inhibitory or excitatory).
This function has two components: � (wij) and sgn (wij). The first component is
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Figure 7.2. Upper bound of � (wij). The y-axis shows the weight
applied on (wij).

a random function that fixes the actual amplitude of the modification. The ran-
domness is used to produce asymmetric weights as explained before. The value
is bounded in [0, � (1 − 0.9 ∣wij ∣)]. The upper bound of this range reflects several
important features. First, the stronger the weight, the smallest the maximum
modification (this is given by 1 − 0.9 ∣wij ∣). Secondly, this bound scales the weight
modification in a smaller range, which avoids brutal weight modifications. This is
done by the learning parameter " = 0.05. The function � (wij) can be seen in the

Figure 7.2. The second component is obvious and guarantees that the sign of ΔwR
ij

will be the same as the sign of wR
ij .

The second function Ω (i, j) is closely related to the Δ (i, j) function, but weak-
ens the existing connection between two cells. It also uses the � (wij) function and
the sign of wij but this time there is a -1 factor. In other words, a positive con-
nection becomes less positive and a negative connection becomes less negative. An
important component of this Ω (i, j) function is that it has no effect if the weight
of the connection is not strong enough (∣wij ∣ > ! = 0.2). This function is used
in order to weaken a connection between two unrelated cells without completely
dampening the existing connection too much. The third function Γ (i, j) is just an
other notation for the � (wij) function.

The function Δ (i, j) is used to reinforce the connections between active fed
neurons and other fed neurons. The logic behind this is that all the neurons that
are fed by the stimulus are probably concerned by the stimulus and thus must be
active. Hence, the connection between all the fed neurons with an active fed neuron
is reinforced in order to promote a stronger activity of all those neurons.

The function Ω (i, j) is used to weaken the connection between inactive unfed
neurons and any other neurons in A(t). The reason why this weakening is bounded
by ! = 0.2 is to take into account the fact that two unfed inactive neurons may
have a strong connection because they are fed by another stimulus under which
they are active and thus strongly connected.
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The use of the function Γ (i, j) is a bit more subtle. It is used to decrease the
connection between two unfed active neurons (by using −Γ (i, j)). The difference
between this function and the function Ω (i, j) is that this function does preserve a
minimal weight (!) and the function Ω (i, j) is dependent on the sign of the weight.
Thus when the weight is negative it will make it stronger, where −Γ (i, j) will make
it even more negative. Basically, −Γ (i, j) tends to make two neurons inhibit each
other while Ω (i, j) tends to make them ignore each other. Naturally, when two
neurons are active but unfed, it seams natural to try to shut them down.

On the other hand, if two neurons are fed but inactive it is a good idea to try to
reinforce their connection, thus, the function Γ (i, j) is used. This function differs
from Δ (i, j) since Δ (i, j) would make a negative connection even more negative,
where this function always tries to make it positive. Additionally, the learning
factor  = 0.02 is applied in order to keep a difference in the order of magnitude
between the kind of reinforcement that is produced when adjusting the weights
between two active fed neurons and two inactive fed neurons. This is important
because if the neurons are inactive, maybe they do not belong to the response to
that stimulus and thus should not be made active by reinforcing too much the
connection between them. The idea here is to give those neurons a little push: if
it helps and one of them becomes active then, the next time they are considered,
they will receive a strong reinforcement.

The function −Γ (i, j) is also used for the connection going from an unfed active
neuron to a fed active neuron and from a fed inactive neuron to an unfed active
neuron. The first case comes from the fact that if a neuron is unfed it does not
belong to the current cell assembly, and moreover it is probably part of another
cell assembly. As with the case of two unfed active neurons, the safest approach for
this unfed neuron is to inhibit the active and fed neuron (as cells from a different
assembly do). Incidentally, this will increase the connection amongst neurons of the
active cell assembly, since the impact of the unfed but active neuron is diminished
and thus, in the next step, the fed neuron will need to be increased in order to be
kept active. However, the active and fed neuron does not change anything to its
connection towards an active but unfed neuron: since there is no guarantee that
this neuron really belongs to a cell assembly, the learning cannot be sure that it
needs to weaken this connection (as it did in the other direction). If this neuron
was part of another cell assembly then, when this cell assembly is activated the
connection can and will be weakened, because this time the neuron that was fed in
the first case will now be an unfed neuron.

Finally, the function −Γ (i, j) is used to weaken the connection from a fed
inactive neuron to an unfed active neuron. Since the neuron is inactive this means
it does not affect much the unfed active neuron. The connection is weakened in order
to slightly reduce the impinging strength to the unfed active neuron. It is useful to
shut down unfed neurons that were barely active and thus should probably not have
been active to begin with. On the other hand, the connection from an unfed active
neuron to a fed inactive neuron is left untouched. This can be understood as a way
to help the fed inactive neuron to become active. Since the neuron is not active
and needs to be (since it is fed), it means that it does not receive a strong enough
signal from other neurons. So weakening a connection from an active neuron (even
unfed) will certainly not help. Yet, this connection cannot be reinforced since the
neuron is unfed and, as shown with a connection going from unfed active neuron
to fed active neuron, a connection from an unfed active neuron to an neuron that
belongs to the response of the current stimulus must be kept weak.
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The final and last part of the algorithm consists in re-normalizing the weight
matrix. Given the upper bound of the � (i, j) functions, the weights of a single unit

cannot go above
10

9
and thus there is no need to take care of individual weights.

Yet, it is important that all the connections from (or to) a single unit are not
all strong. This re-normalization modifies the weights such that the total synaptic
weights is bounded in order that the sum of the outgoing (or incoming) connections
of any unit is below a given threshold (here 0.95N). This promotes individuality
of neurons since they cannot be strongly related to all the other ones.

2. Cell assembly formation

This Hebbian learning (described in Algorithm 5 on page 155) is tested here as a
working memory. The feed forward connections from the stimulus to the associative
layer (WS) are randomly initialized in [0.01, 0.3] and do not evolve.

Figure 7.3 shows the weight matrix WR after learning 10 different stimuli.
Each stimulus is presented two times to the system for 200 time steps. For all the
learned stimuli the same cell assembly is detected as active. In this figure units
of the associative layer have been reordered so that the ones that belong to the
CA appear first (on the figure they are highlighted with the blue boxes). This
shows that the Hebbian learning alone failed to create the CAs. The reason is the
following. No constraint is put on the units’ choice during the learning procedure
(Section 1 on page 153): the algorithm tries only to maintain the activity of a subset
of cells. As a result, the easiest solution for the Hebbian procedure is to converge
to a unique response to all stimuli. Said differently, the only way to stabilize the
newly formed CA without destroying the previously created ones is to integrate it
with them, ending in one big CA, which reacts similarly for all the stimuli. As a
result, the weight matrix obtained after the encoding process and after reordering
the recurrent units according to their activity, is composed by only one big CA.
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Figure 7.3. Impact on the weights of the Hebbian learning. A
posteriori observation of the cell assemblies in the synaptic weights
of the recurrent and feed forward connections when no retroaxonal
procedure is involved. Each row corresponds to the connections
impinging one unit (from left to right, the recurrent then the feed
forward connections). The recurrent matrix was reordered accord-
ing to the identified cell assemblies, here one big CA covering half
the network.

This result helps to set up the next step for this algorithm to be functional.
The way the weights of the associative layer evolve is deeply related to neurons
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being fed or not by a stimulus during the learning process. Yet here the connection
between the input layer and the associative layer is static. The other important
consideration concerning those connections is that they are the ones dictating the
learning algorithm which neurons should be clustered together, and thus the random
initialization of those weights is unlikely to lead to any significant result. This is
why, in the next section, a more subtle process is introduced in order to help the
Hebbian process.

The next section will introduce a recent popular hypothesis called the “retroax-
onal hypothesis” which is used in this thesis as a complementary process to the
Hebbian learning in order to help it create the cell assemblies.

" 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

 0.02 Chosen very small in order to
keep the total secondary learning ( ⋅ ") much smaller than "

! 0.2 Avoid weakening process to dampen too much the existing weights
� 0.95 Allow 95% of the units fed (or feeding) a given cell

to be strongly connected (wij = 1)
∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 1. This table recaps all the parameters used for the exper-
iments in Section 2 on the facing page with their value.

3. The Retroaxonal Hypothesis

The most popular learning algorithm in neural networks is probably the back-
propagation algorithm [Werbos, 1974]. This algorithm has seen a lot of successful
real-world applications but never managed to convince the neuroscience commu-
nity because of its requirement for information to go backward along axons (called
retroaxonal signals). Yet, recent experiments from Du and Poo [2004] have shown
that retroaxonal signals can indeed exert control over a cell’s input synapses [see
also Fitzsimonds et al., 1997; Tao et al., 2000]. This fact is very important for
theories of neural information processing, because it suggests that retroaxonal sig-
nals are meaningful in the brain and might be able to organize the construction
of the internal representations required for complex behaviors. Unfortunately, this
does not validate the back-propagation algorithm: while in the algorithms where
the retroraxonal signals are instantaneous, in the brain they are slow (an order of
magnitude slower than synaptic timescales).

The first evidence that neurons are capable of carrying retroaxonal signals came
from experiments showing that the survival of developing spinal neurons depends
on signals received from their target muscles [Hamburger, 1992, 1993]. Later, it has
been shown that the survival of many other cell types is influenced by retroaxonal
signals [Buss et al., 2006; Oppenheim, 1991]. Retroaxonal signals control many
developmental processes other than cell survival [Hippenmeyer et al., 2004; Kali-
novsky and Scheiffele, 2004]. Moreover, several recent studies show that retroaxonal
signals can indeed control the plasticity of input synapses [Du and Poo, 2004; Lom
et al., 2002].

Harris [2008] proposed a framework in which retroaxonal communications oc-
curring on realistic timescales could guide the formation of behaviorally adapted



160 7. ONLINE ADAPTATION PROCESS

representations. His framework is based on the hypothesis that the strengthening
of the output synapses of a neuron stabilizes recent changes in the same neuron’s in-
puts. Here the retrograde signals are not instructive but selective: during learning,
changes in neuron’s input synapses lead to changes in its spiking pattern, which,
in turn, may or may not lead to changes in output synapses. If the new spiking
pattern promotes the formation or strengthening of outputs, the recent changes to
the neuron’s input synapses are retained; if not, the changes decay (see Figure 7.4).

Figure 7.4. The retroaxonal hypothesis: strengthening of a neu-
ron’s output synapses stabilizes recent changes in the same neu-
ron’s inputs. (a) Changes in a neuron’s input synapses lead to
an alteration in its spiking pattern. This, in turn, may or may
not lead to plasticity of output synapses. (b) If the neuron’s out-
put synapses are strengthened, this initiates a retroaxonal signal
that causes consolidation of the recent changes in inputs; changes
in the neuron’s spike pattern therefore become permanent. (c) If
output synapses are not strengthened, the retroaxonal signal is not
received, the recently changed input synapses decay to their prior
state and the neuron reverts to its original spiking pattern.

To further understand the intuition behind this hypothesis, it is important to
look at the stability of hippocampal place fields. Frank et al. [2004] have conducted
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an experiment in which they recorded CA1 pyramidal neurons while rats explored
an environment which was largely familiar, except for one novel region that was
previously inaccessible. The goal of this experiment was to study the formation of
place fields. Interesting results have been reported when the rats were allowed to
explore the novel region, place fields formed within minutes, and on the first day
of recording there were approximately twice as many place fields coding for the
novel region as the familiar part of the apparatus. However, after three days of
exploration, the density of place fields became uniform amongst all regions.

This raises the question on what mechanisms are responsible for the stabiliza-
tion of a place field? Some studies with mice [Agnihotri et al., 2004; Hollup et al.,
2001; Kentros et al., 1998, 2004] suggest that the stability of a place field might
correlate with the utility of the information it carries for performance of behaviors.
Based on these evidences, Harris [2008] posits that retroaxonal signals may be the
mechanisms behind this feature.

This thesis took a particular interest in this hypothesis for two reasons. First,
as suggested by Harris [2008], this hypothesis can be suitable for stabilizing the
formation of cell assemblies. Secondly, if applied successfully, this work can give a
little more incentive and credibility to the hypothesis which deserves more interest
from researchers.

3.1. ‘Retroaxonal’ signals stabilizing the cell assemblies. To help the
Hebbian Algorithm 5 on page 155, the retroaxonal hypothesis is used to continu-
ously stabilize the cell assemblies by the input system. To this aim, the feed forward
input connections (matrix WS in Eq. 44 on page 78) have to be learned to acknowl-
edge the creation of the new cell assemblies. To get rid of the fluctuations of the
network’s complex dynamics, this learning occurs at a slower timescale. Here, the
retroaxonal procedure is arbitrarily chosen to work twenty times slower than the
Hebbian process.

Algorithm 6 Cell assembly stabilization. Retroaxonal signals for learning the feed
forward connections (matrix WS in Eq. 44 on page 78)).

1. Every T time step (here T = 20)
2. for all unit i do
3. Compute the average activity of unit i over the last T time steps (from

time ts to time te):

(74) x̄i =

∑te
k=ts

xi (k)

T
4. end for
5. for the k most active units in average, (here k = 5) do
6. if x̄i > some threshold (here 0.2) then

7. ΔwS
is =

{

� if �s is active
−� otherwise

Where � is the retroaxonal learning rate (here 0.05). wS
is is always

kept in [−0.075, 0.3].
8. end if
9. end for

Algorithm 6 describes the retroaxonal learning in details. Since the goal of
this learning is to enhance selectivity in the feed forward connections, the intuition
is that the newly formed cell assembly has to instruct the feeding network (here
WS) through a feedback mechanism. Initially, the weight matrix WS is randomly
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initialized in [0.01, 0.1]. The distribution is chosen to be weak (< 0.1) in order to let
the learning process do most of the work and not to influence too much the system
with the initial distribution. The connections are of course positive; otherwise
they would be disabled and this is not desirable since, if too many connections get
disabled, the system will get disconnected from the input layer.

We take some of the neurons, with a mean activation

over a given threshold

And reinforce their

connection with the input,

while weakening the other

one

Figure 7.5. Basic steps of the retroaxonal learning algorithm’s implementation.

This algorithm can be divided into two parts: first, it computes the average
activity of each unit since the last time it was applied (here every T = 20 time steps);
secondly, it uses this information to mimic the retroaxonal signals for the k most
active units (Figure 7.5 shows the basic idea behind this implementation.). The
first part is pretty obvious and simply consists in computing the average activity
of a unit over the last T time steps (see equation 74 on the previous page). The
second part first involves selecting the k most active units. Here k has been set to 5,
to avoid too many units from the input layer to be associated to any unit from the
associative layer in a single retroaxonal pass. After the units have been selected, if
they show some noticeable activity (above 0.2), they receive a retroaxonal feedback.
In the model proposed for this thesis, the retroaxonal feedback from a unit i (in
the associative layer) to unit s in the input layer is the modification of the weight
wS

is. The way this weight is modified depends on the nature of the input unit
s. If the unit was active (xS

i (t) > 0), then it is considered partly responsible
for the activation of the associative layer unit i and thus is a valid candidate for
the retroaxonal feedback. Therefore, the weight wS

is is reinforced by the learning
factor � = 0.05. If the unit s was not active, it receives a negative feedback. This
negative feedback somehow plays the role of the decay on the weight and is mainly
used to create a competition amongst input layer’s units. With this competition,
it is unlikely to have to many different inputs being strongly connected to the same
unit.

3.2. The Two Learning Algorithms Put Together. These two learning
processes (Algorithms 5 on page 155 and 6 on the previous page) will occur only
when external stimulation is applied, which could reflect some attention mechanism.
No learning occurs in the absence of external stimuli, but since this would prevent
offline consolidation, this feature could be added in future works.
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For an external stimulus S1,...,M and a unit i in the associative layer, depending
on the unit’s past averaged activity and on the level of inputs it received from
individual synapses (ws

ikIk), three different scenarios can occur.

(1) The unit was active and received consequent inputs. The unit
is said to be part of the current cell assembly and that trend will be
reinforced by the two learning mechanisms.

(2) The unit was not active and did not receive consequent inputs.
The unit is not part of the current cell assembly and will be shut down
by both learning procedures.

(3) The unit was active but did not receive consequent inputs. In
that particular case, two competitive processes occur. First, due to the
anti-Hebbian learning rule applied (Algorithm 5 on page 155, Line 2 on
page 155), its recurrent connections decrease, tending to exclude it from
the current CA. Secondly, the retroaxonal signals reinforce the synaptic
weights from its input connections, tending to include it in the current
CA.

The main problem observed with the Hebbian algorithm when it was used
alone was its inability to cluster the input space in order to avoid the formed cell
assembly for each different input to overlap too strongly. As shown earlier, when the
cell assemblies are too overlapped the Hebbian algorithm cannot manage to form
new distinct cell assemblies for different inputs and the system ends up having a
single cell assembly as a response to all inputs.

On the other hand, the retroaxonal feedback role is basically to cluster the
feed forward connections coming from the input layer. This is exactly the missing
component of the Hebbian learning. Additionally, as shown in the earlier sections,
the Hebbian learning’s ability to determine if two neurons should belong in the
same cell assembly depends strongly on whether they are fed or not by the input
layer. It is obvious that the retroaxonal feedbacks will change this information and
thus the clustering appearing from this feedback signals will end up reflecting on
the cell assemblies the Hebbian learning will be able to form.

To conclude, those two learning processes will be active during all the activities
of the system and they will provide the evolution rules for the weights of the network
in a similar way that the simulation rules provide the evolution for the network’s
states.

4. Results for Online Formation of CAs

4.1. The Simple Case.

4.1.1. Encoding the cognitive maps. Two cognitive maps (as defined in Sec-
tion 5.3 on page 76), each one composed of 5 external stimuli, were presented and
encoded in the network: each stimulus corresponds to a subset of 20 cells of the
input layer set to 1, while the other 80 cells were set to 0.

External stimuli were set as follows. If the input vector is divided into 5 parts
of 20 cells, stimuli of the first map consisted in the activation of four cells from
each subset. For example, for the first stimulus, the first four cells from each subset
were set to 1. For the second map, each subset was successively set to 1. Since the
input patterns are strongly reflected in the feed forward connections by the learning
process, the structure of the two maps appears in Fig. 7.7 on page 166.

During the encoding/learning phase, each stimulus from the first cognitive map
was sequentially activated during 50 time steps. This process was repeated 10
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times. A similar encoding was then applied to the second cognitive map. The
whole procedure was carried out twice in order for the system to see both inputs
more than once. This is not very relevant when dealing with only two inputs but
when the number of inputs increases it becomes useful for the system to see an
information more than once in order for it to encode it and manage to not forget
it afterwards under the heavy learning pressure of a large array of stimuli. This is
reminiscent of the rehearsal mechanism in working memories in order to maintain
informations in the short-term memory store.

4.1.2. Cell assembly identification. When cell assemblies were a priori encoded
in the network’s recurrent connections as in Chapter 6, the cell assembly activity
could easily be monitored by averaging the activity of all its constitutive units.
In this section, the network is expected to dynamically create cell assemblies, and
accordingly there is no a priori knowledge of its constitutive units. To identify
a posteriori the cell assembly’s constitutive units, two methods could be applied.
First, cell assemblies could be detected from the passive observation of clusters in
the recurrent weight matrix WR: strongly connected units will have a high chance
to belong in the same cell assembly. Secondly, cell assemblies could be detected
from their response to the previously applied external stimuli.

The latter procedure was applied here: for each external stimulus, the network’s
activity is monitored during p = 100 time steps. The cell assembly associated with
the stimulus is defined by the set of all units having an average activity greater
than a threshold value (here, 0.4). The reason behind this choice is that it is more
accurate for the practical case, even though the first one is more likely to find
good solutions in theoretical analyses: as shown earlier in this work, all strongly
connected units do not always belong to the same cell assembly while sometimes
weakly connected units can be part of a same cell assembly; this makes it very
tricky to find a good algorithm which will lead to good results in practice. The
problem with the second approach is that, since it only looks at the activity of
the cells, it can miss some of the neurons that should belong to the cell assembly
but are inactive for that particular input. However, if some units do not reactivate
when the input hits the system, there is no practical use to consider it, even if it
should theoretically belong to the cell assembly for some reason.

4.1.3. Recall. After the encoding phase, the created cell assemblies were de-
tected by the method defined Section 4.1.2. Figure 7.6 on the next page shows
the rasterplot of the network activity and of the average activity during and after
periods of reactivation where each time 20% of an original stimulus fed the network.

To obtain a clear rasterplot activity in Fig. 7.6 on the facing page, units of the
recurrent network were first reordered according to the detected cell assemblies.
The activity of the newly created cell assemblies (Fig. 7.6 on the next page) ap-
pears very similar to the activity of the pre-encoded cell assemblies (Fig. 6.2 on
page 140). In both cases, cell assemblies were successfully reactivated with noisy
inputs stimulation (prerequisite for a content-addressable memory) and maintained
their activity after stimulus offset (prerequisite for a working memory). This in-
dicates that this algorithm seems a good candidate for encoding cell assemblies in
the recurrent connections of the network.

Figure 7.7 on page 166 shows the synaptic weight matrices WR and WS (Eq. 44
on page 78). The cell assemblies identified from the network activity are highlighted
in the figure; e.g. ‘CA 1-CM 1’ are the cells which were only activated when the
stimulus one from the first cognitive map was applied. Shared units are the units
which can be activated by different stimuli.
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Figure 7.6. Content-addressable and working memory features
after learning. The dynamically created cell assemblies for the
first cognitive maps (top) and the second cognitive maps (bottom).
Sequences of spontaneous activity following sequences of external
stimulation were tested. (a) Raster plot showing the activity of
the 100 cells of the network. The units of cell assemblies have
been rearranged to appear contiguously on this raster plot and this
makes it easy to detect the corresponding clusters of activity. (b)
After identification of the cells constituting each CA, the activity
through time of the 5 newly created cell assemblies is plotted.

The feedforward synaptic weights appear highly clustered by the learning pro-
cedure and reflect the external pattern applied to the network. As an example, the
cluster ‘CA 1-CM 1’ receives strong inputs only from a well-defined subset of input
units which are the units corresponding to the first pattern. On the contrary, shared
or unused cells receive less clustered inputs. Clusters in the recurrent connections,
while present, are still much more difficult to identify and to analyze.

4.2. Capacity. After these promising results, to have a better understanding
of the features and limitations of these algorithms, capacity measures are performed
here. Two important questions must be answered in order to understand the ca-
pacitive limits of this model: first, finding the maximum amount of information the
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Figure 7.7. Weight matrix after learning. A posteriori observa-
tion of the cell assemblies in the synaptic weights of the recurrent
and feed forward connections. Each row corresponds to the con-
nections impinging one unit (from left to right, the recurrent then
the feed forward connections). The recurrent matrix was reordered
according to the identified cell assemblies. Cells belonging to more
than one CA are put after all the other ones.

" 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

 0.02 Chosen very small in order to
keep the total secondary learning ( ⋅ ") much smaller than "

! 0.2 Avoid weakening process to dampen too much the existing weights
� 0.95 Allow 95% of the units fed (or feeding) a given cell

to be strongly connected (wij = 1)
� 0.05 It is chosen quite small in order to avoid brutal changes.

From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 2. This table recaps all the parameters used for the exper-
iments in Section 4.1.3 on page 164 with their value.

system can learn; second, understanding the consequences of crossing this critical
limit. To do this, an increasing number of inputs are presented to the system. After
the system has seen all of them, they are recalled. When the number of successful
recalls cannot be raised by learning more inputs, the system is said to have hit its
capacitive limit.

For this experiment an increasing number of inputs is proposed to the system
and its performance was monitored. Both the associative and the input layers have
100 units. The inputs presented to the system are grouped into cognitive maps.
A cognitive map represents a group of related inputs. Here, each cognitive map
has five inputs of equal size and can be seen as a partition of the input layer into
five equal sets of 20 units. Each input corresponds to one set of this partition, and
the units of this set represent which unit of the input layer are active when this
particular input feeds the system. For each input, the system is expected to map it
to an original cell assembly. The inputs are generated randomly and presented in
a random order. Once each input has been presented, they are proposed again but
in a different order (each input is presented a total of three times). Figure 7.8 on
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the facing page shows the number of correctly learned inputs for a given number
of cognitive maps. It appears that the system is not able to learn all the inputs
when the number of cognitive maps increases, yet a large amount of information
is learned. As with any memory-like structure, the system has a limit but, as
shown by the figure, this is not a hard limit which causes catastrophic forgetting;
instead, with the increasing size of information the system slowly forgets some of
the inputs. Of course, rehearsal of an information will most likely make it active
again but probably at the cost of some other information.

Figure 7.8. Capacity of the working memory. It clearly appears,
on this box plot, that the system is able to learn an increasing
number of cognitive maps composed of five inputs. The y-axis show
the number of successfully learned inputs (the maximum being the
cognitive map size times 5, since each cognitive map is composed of
5 inputs). However, when the data set increases, signs of capacitive
limit are observed. This is a classic box plot representation: the
line in the box is the median, the boxes represent the first (green)
and third (blue) quartile and the dashes are the minimum and the
maximum of the distribution.

Figure 7.9 on the next page shows the ratio between the number of inputs that
are presented to the system and the number it is able to successfully recall. This
plot makes it easier to see the forgetting that occurs in the system, as anything
below 1 indicates that at least some inputs where not learned successfully or more
exactly forgotten.

Even though the system learns a large number of information, it is important
to note that at some point the system will interpret a supposedly different input
as an already seen input. Given the number of partitions of 100 units into 5 sets
of 20 units is finite and that each units is highly dependent on others units of the
same partition, when the number of such partitions rises, the probability to find
two similar inputs rises rapidly, too. In fact, when taking the noise tolerance of the
system into account, two inputs do not need to be an exact match for the system
to consider them equal. Figure 7.10 on page 169 shows the number of pairs of
highly4 correlated inputs found in random data sets depending on the size of the

4Here, two inputs having more than half of their units in common are considered highly
correlated.
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Figure 7.9. Capacity of the working memory (ratio). This box
plot shows the ratio between the number of inputs presented to
the system and the number of inputs actually learned by it. Even
though the ratio is high, some information gets lost in the process
and are forgotten by the system.

data set. As shown in this figure, this number rises rapidly with the data set’s size.
For instance there are 19 such pairs for 50 cognitive maps. To obtain 19 correlated
pairs, the data set needs to have at least 6 highly correlated inputs. If there was
only 5 highly correlated input, even if each one was highly correlated with all the
other ones, the total number of correlated pairs will be 15. If the system has 38
highly correlated inputs, where for each input there is only one other input that is
highly correlated with it, then there will be 19 highly correlated pairs in the system.
This illustrates the bounds for the number of highly correlated inputs in the system
for 50 cognitive maps and, as observed, this number is not negligible.

This observation also answers the second question about the capacity of the
system: the system assimilates similar inputs as one, and thus uses already allocated
memory places in its store for similar memories and avoids getting saturated with
redundant data. Since the system does not seem5 to show any testable limit it is
hard to know what happens when this limit is crossed.

4.3. Noise tolerance. The capacity of a memory-like system is important,
yet without noise tolerance it is not very useful. Most brain-like activities imply
noisy information and thus require the system to be able to reconstruct the missing
parts. For auto-associative memory, noise tolerance is even more important since
it directly relates to the ability of the memory to have content-addressability. This
section takes a closer look at the noise tolerance of the working memory model
introduced in the previous chapter.

The tests are performed for different data set sizes (1,2,5,10,15,20,30,40,50) on
a 100-neurons associative layer with a 100-neurons input layer. First the system
is presented with the data set (three times), then the cognitive maps are learned
(as shown in the previous section). After learning, inputs are present with varying

5The learning process, being online, takes a lot of time for large data sets and thus makes it

hard to test this limit.
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Figure 7.10. Highly correlated pairs of inputs present in a ran-
dom data set. The number is computed for a data set of increasing
size. The data set is composed of cognitive maps composed of 5
inputs. With the increasing data set size, more and more highly
correlated inputs appear. Since the system is tolerant on noise,
highly correlated patterns end up mapped to the same cell assem-
bly.

" 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

 0.02 Chosen very small in order to
keep the total secondary learning ( ⋅ ") much smaller than "

! 0.2 Avoid weakening process to dampen too much the existing weights
� 0.95 Allow 95% of the units fed (or feeding) a given cell

to be strongly connected (wij = 1)
� 0.05 It is chosen quite small in order to avoid brutal changes.

From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 3. This table recaps all the parameters used for the exper-
iments in Section 4.2 on page 165 with their value.

noise applied to them and the system is monitored for its output. The system is
said to have a successful recall when the expected cell assembly is the most active
amongst all the cell assemblies present in the system6.

The results can be seen in Figure 7.11 on the following page. The x-axis shows
the amount of noise applied to the input in term of Hamming distance between the

6This implies that it must be active and more active than any other one.
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Figure 7.11. Noise tolerance. Shows the impact of noise on cell
assemblies activation. It shows the percentage of successful recalls
relative to increasing amounts of noise applied on the stimulus.
The data set is composed of cognitive maps of 5 inputs. The input
and associative layers have 100 units. Top Left: 1 CM, Top Middle:
2 CMs, Top Right: 5 CMs. Middle Left: 10 CMs, Center: 15 CMs,
Middle Right: 20 CMs. Bottom Left: 30 CMs, Bottom Middle: 40
CMs, Bottom Right: 50 CMs.

correct input and the noisy version. The y-axis shows the percentage of successful
recalls over a hundred trials.

From these results, it seems obvious that, even without noise when the data
set increases in size, the correct cell assembly does not always have a successful
recall. However, it is important to keep in mind that the learning procedures
are unsupervised and were only asked to learn to have an active cell assembly in
response to a set of inputs. Yet, for all these tests the cell assemblies have been
detected using a method (see Section 4.1.2 on page 164) which does not guarantee
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a perfect detection. Therefore it is hard to know for sure if the system had really
failed or if the detection process has failed and thus the wrong group of cells is
observed. For example, a cell assembly may have some inactive neurons when fed
with non-noisy stimulus, but those neurons gain strength when noise appears. In
this instance, it is hard to decide how to exactly detect the cells belonging to the cell
assembly. Another explanation of this behavior can be seen in the way the system
handles ambiguity. Since the inputs are often correlated and even sometimes highly
correlated (see Figure 7.10 on page 169), they naturally lead to overlapped cell
assemblies. Therefore, even when only cells from one cell assembly activate, all the
overlapped cell assemblies also show some activity. This can get even worse when
the input suffers from noise which can lead to another overlapped cell assembly
to become more active. This means that noise can easily transform an input into
another one and thus what really happens is that the system gives the correct
answer but not the one that would be expected from the un-noisy input.

" 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

 0.02 Chosen very small in order to
keep the total secondary learning ( ⋅ ") much smaller than "

! 0.2 Avoid weakening process to dampen too much the existing weights
� 0.95 Allow 95% of the units fed (or feeding) a given cell

to be strongly connected (wij = 1)
� 0.05 It is chosen quite small in order to avoid brutal changes.

From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 4. This table recaps all the parameters used for the exper-
iments in Section 4.3 on page 168 with their value.

4.4. Dynamics. As in the previous chapter, the final step in the analysis of
this memory is to take a closer look at the dynamics which appear in the system
after the learning. During this experiment, the system learns a number of cognitive
maps and then its dynamics are analyzed when different inputs feed the system.
Figure 7.12 on the following page shows that these dynamics range from relatively
stable dynamics to fairly complex ones and in average the Lyapunov exponents are
near 0.0. First, it is important to note that the size of the data set does not seem
to have any noticeable effect on the dynamics of the system. Even though not
all dynamics are complex, there is no super stable attractor either (the dynamics
have a Lyapunov > −0.5). This reflects in the system by the lack of fixed-point
response. This can be understood by the presence of the inhibitor, whose role is to
avoid those dynamics.

The second experiment tries to find out what percentage of the input space is
chaotic. It shows that, as with the “in-supervised” learning, chaos is limited in the
system and never fills out the whole state space. Figure 7.13 on page 173 shows
this probability after the network learned data sets of varying size. Yet, it appears
that unlike the “in-supervised” and “out-supervided” algorithms, this learning does
not guarantee chaotic behavior (for lots of data sets the minimum is 0% of chaotic
dynamics).
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Figure 7.12. Dynamics of the system after learning. The mean
Lyapunov exponent observed in the system after learning of data
sets of increasing size. The result shows that the dynamics of the
system averages around 0.0, which indicates weak complex dynam-
ics. However, the variation observed in the measurement indicates
that the dynamics can take different forms. The system can be-
come extremely chaotic in some instances, but it is never too stable
(the Lyapunov is always greater than -0.5). The main difference
observed with this algorithm and the one proposed earlier (Chap-
ter 4 on page 81) is that the increasing data set size does not seem
to affect the dynamics of the system, and even a very small data
set allows the system to produce complex dynamics.

" 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

 0.02 Chosen very small in order to
keep the total secondary learning ( ⋅ ") much smaller than "

! 0.2 Avoid weakening process to dampen too much the existing weights
� 0.95 Allow 95% of the units fed (or feeding) a given cell

to be strongly connected (wij = 1)
� 0.05 It is chosen quite small in order to avoid brutal changes.

From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 5. This table recaps all the parameters used for the exper-
iments in Section 4.4 on the previous page with their value.
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Figure 7.13. Probability of chaos after learning. The probability
is observed in a system after learning a data set of increasing size.
As with the “in-supervised” learning algorithm, the maximum ra-
tio that the chaotic dynamics can cover on the state space seems
limited. However, here, the size of the data set does not play a
capital role for the system to reach that threshold.

5. The Context Layer

This section will cover the use of contextual information to help the system
make successful recalls for ambiguous inputs [Salihoglu et al., 2009b]. Each cog-
nitive map is assumed to have a context. This higher level information is used
to distinguish inputs from this cognitive map from other inputs to other cognitive
maps. As shown in the previous section, inputs amongst cognitive maps can be
strongly correlated, and thus such a process can hopefully help removing some of
the ambiguities. The model is composed of the same parts as in the previous sec-
tions, but this time the contextual layer is active: this is the full model as reminded
in the Figure 7.14 on the following page.

In order to focus on the uses and benefits of this layer the implementation
proposed here is kept as simple as possible. The idea is to produce an a priori
definition of the context layer (likewise the a priori result obtained for the working
memory behavior seen earlier). The size of the context layer is equal to the number
of external stimuli stored in the network.

The next step is to define how the connections of the context layer will be
determined. In order to fix these connections, it is important to clearly define
what is expected from this layer. As the context layer possess one cell for each
input of each cognitive map, when the weights are set, each cell should become
associated with one of the inputs. Ideally the neurons activated (in the associative
layer) with a given input of a cognitive map should activate the corresponding unit
in the context layer and reciprocally this unit, when active, should activate the
neurons (from the associative layer). To provide a priori contextual information to
the system, in these experiments, the five units in the context layer corresponding
to the cognitive map can be activated
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Figure 7.14. Architecture of the system. The architecture with
all the components.

Connections WC and WV are set during cell assemblies formation. When a
stimulus feeds the network, the back and forth connections between the context
cell corresponding to the stimulus and the formed cell assembly are set to 1. This
is the easiest way to associate the units, even if this is not very likely from a
biological point of view. Nevertheless, this procedure could result from a Hebbian
process somehow similar to the associative layer, only working with higher level
information.

The basic idea behind a Hebbian solution for the context layer is to manage
the contextual layer similarly to the associative layer. This layer will be presented
with its own information to learn. This information represents the context (and
thus is the same for all inputs in a cognitive map). As with the inputs, it can be
assumed that those inputs are pre-formated in a previous layer (such as the dentate
gyrus). They can be original information or extracted from the actual stimulus.
The inputs can be learned with a Hebbian process and consolidated with the retro-
axonal process. The only missing component would be a slower scale Hebbian
learning (which can run at similar time scale with the retro-axonal learning). The
goal of this last learning would be to learn the weights from and to the context
layer from the associative layer (WC and WV).

5.1. Results for Contextual and ambiguous inputs. This section first
shows how contextual information is correctly retrieved by the context layer cells.
For this first set, two cognitive maps composed of 5 stimuli were encoded, which
means that the context layer had to be composed of 10 cells (see section 4.1 on
page 163). Figure 7.15 on the facing page shows the normalized activity of the cells
associated with the first map (the first five cells) and with the second map (the last
five cells), when external stimuli from both maps are successively presented to the
network. As expected, when an input from a cognitive map feeds the system the
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cells of the context layer corresponding to that cognitive map are the most active
ones. This shows that the context layer correctly identifies the incoming inputs’
context.
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Figure 7.15. Normalized activity for units belonging to a same
cognitive map. All external stimuli were sequentially presented
during 50 time steps, following a 50 time steps period of sponta-
neous activity. This activity reflects correctly to which cognitive
map belongs the cell assembly activity stimulated by the external
stimulus.

Figure 7.16 on the next page shows how this contextual information can play
an important role to remove the ambiguity in the input layer. To achieve this, the
network is fed with external information, which belong equally to a stimulus from
the first and the second cognitive maps. Here, the first 4 units of the input layer,
belonging to the first stimulus of both maps, were activated (Fig. 7.7 on page 166
shows that these units are equally connected to ‘CA 1-CM 1’ and ‘CA 1-CM 2’).
The average activity of these two cell assemblies is monitored as shown by Fig. 7.16
on the next page.

When the context is not predefined, depending on prior spontaneous activity,
the network’s dynamics settle randomly in one of the CAs and define a context,
which then reinforces the working memory feature when the external stimulus is
stopped. At time step 200, context cells associated with the first cognitive map were
transiently activated. As a result, the network’s dynamics settle to the CA ‘CA 1-
CM 1’. At time step 400, during spontaneous activity, context cells associated with
the second cognitive map are activated instead (which could simulate a ‘change of
mind’). As a result, the network’s dynamics settle to the CA associated with the
second cognitive map, ‘CA 1-CM 2’; and this remains when the stimulus appears
again at time 500. As it appears, contextual information can be an useful addition
to this model to help remove ambiguity and improve the memory’s recall capability.

The next test shows the improvement that can be observed on the recall process
when the contextual information is provided to the system alongside the noisy input.
Figure 7.17 on the following page shows the benefit from the contextual layer. To
do this, the system has to learn 2 cognitive maps. For each learning, the system
is fed with increasingly noisy inputs (100 inputs per noise level) and the number
of successful recalls is computed. The percentage of successful recalls is computed
with or without contextual information. The figure shows the difference observed
between the two processes. It is clear that the contextual information provides a
boost, but only when the noise level becomes strong enough. This seems natural
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Figure 7.16. Reactivation of CA using contextual information.
The average activity for two CAs belonging to two different cog-
nitive maps but associated with external stimuli sharing common
features (here 4 cells). Here, the first 4 cells of the input layer, be-
longing both to the first pattern of the cognitive map one and two,
are activated at three successive periods: [0 100], [200 300] and [500
600]. Context cells are first set to null. At time 200, context cells
associated with the first cognitive map are transiently forced. At
time 400, context cells associated with the second cognitive map
are transiently forced instead.
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Figure 7.17. Benefits of the context layer. Analyzed when the
system receives a stimulus with increasing noise. To compute this
difference, for each noise level, 100 random stimulus are provided.
The output of the system is tested, then it is tested again but
this time the contextual information is also provided alongside a
noisy input. Then the number of successful recalls for each case
is computed and this plots show the increase observed through
the contextual information. It appears that the contextual layer
becomes useful when noise is very strong. In this experiment, the
system had to learn 2 cognitive maps.
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since the system already shows a very good recall capability without contextual
information (see Figure 7.11 on page 170) when the noise is not too high.
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Figure 7.18. Benefits of the context layer for ambiguous recall.
Shows the percentage of recalls with and without contextual in-
formation when the system receive ambiguous stimulus. Here the
ambiguous stimulus is obtained by only feeding the neurons that
are shared between two stimuli. Such a case is impossible to solve
without any further information, since by definition the noisy stim-
ulus is ambiguous and cannot be associated in one way or the other.
The benefit from the contextual information is obvious since it
completely removes the ambiguity.

The last experiment shows where the contextual information can become manda-
tory. Indeed, if the system is fed with an ambiguous stimulus, it will need additional
information in order to deduce anything. For example, if noise makes it so that the
stimulus is only composed of the shared units between two learned stimuli, there is
no possible way to know which of these stimuli was the original one. Figure 7.18
shows the percentage of successful recalls when such an ambiguous stimulus feeds
the system. In this particular setup the recall boost is naturally impressive.

The main problem with the contextual layer is the proposed implementation.
This solution unfortunately does not scale well; it can provide some small boost to
the system but fails to provide any convincing results (not shown here). It is easy
to understand why. The cell assemblies become smaller as the data sets increase
because of the limited possibilities. They also become strongly correlated. Those
reasons matter because the contextual layer helps when the system is subject to
strong noise. Yet, when learning a large data set, strong noise can distort the
input to look like another learned input. The problem with this comes from the
transient nature of the contextual information. At each time step the current
behavior of the system overrides the contextual information and uses whatever was
provided as contextual information for its next step. On the other hand, the input
never changes. This means that, at first, the contextual information and the input
both send strong opposing informations, but the context layer will change through
time and thus, unless the system had quickly converged to a good attractor, the
contextual information will get distorted. This means that the input takes the
lead and directs the system to the corresponding attractor, which will feedback the
context layer with its own contextual information, and after that the context layer
will help maintain this attractor.

This suggests that the contextual layer cannot be simply deduced with the
simple relation suggested here. To this end, it needs to become a recurrent layer
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(similar to the associative layer) and needs to learn the contextual information in a
similar way to the associative layer. Finally, a slow scale learning algorithm needs to
associate the cell assemblies from the associative and context layers. Nevertheless,
this does not invalidate any result provided here and these results clearly suggest
that the contextual information is important and sometimes even mandatory for a
memory-like model.

" 0.05 It is chosen quite small in order to avoid brutal changes.
From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

 0.02 Chosen very small in order to
keep the total secondary learning ( ⋅ ") much smaller than "

! 0.2 Avoid weakening process to dampen too much the existing weights
� 0.95 Allow 95% of the units fed (or feeding) a given cell

to be strongly connected (wij = 1)
� 0.05 It is chosen quite small in order to avoid brutal changes.

From experimentation, a smaller value slows the learning
process too much, and a larger value induces too strong changes.

∣A∣ 100 Size of the associative layer.
∣S∣ 100 Size of the input layer.

Table 6. This table recaps all the parameters used for the exper-
iments in Section 5.1 on page 174 with their value.

6. Conclusion

Based on the observations in the previous chapters, recurrent neural networks
can provide significant result as memory models. Furthermore, the last chapter has
shown that even without a proper learning mechanism, careful a priori weight ma-
nipulation can already lead those networks to perform like a valid working memory
model. Since it appears that cell assemblies are good candidates as a substrate
for information and provide convincing results in the model presented here, the
next step obviously was to introduce a learning algorithm that can create those cell
assemblies in order to learn the information presented to the system.

In order to mimic a brain-like memory, the model needs to learn the information
in a particular way. First, there can be no supervision since it seems not very likely
to have an external supervision dictating the brain exactly how it should encode
an information. Secondly, the process needs to be autonomous and online. In
other words, the system is always learning inputs that it sees. Again this is very
reminiscent of the brain, for which the learning can be improved by mechanisms
such as rehearsal or attention but is never shut down.

To accommodate those constraints, a simple Hebbian learning has been pro-
posed. This learning tries to create a cell assembly in response to a given stimulus.
Depending on the input, some cells will have a Hebbian or anti-Hebbian learning
applied to them. Only a subset of the cells are treated on each time step, in order
to keep the algorithm less affected by the total size of the system. This algorithm
has shown its ability to create cell assemblies, yet proved to have a strong limitation
in its capacity to cluster the system in response to the stimuli.

To compensate this an auxiliary algorithm has been proposed. This algorithm
would run in a slower time scale and help the Hebbian learning by clustering the
stimuli, and by changing the connection the input layer has with the associative
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layer. This process is based on the retroaxonal hypothesis, which states that the
retroaxonal signals present in the brain may be responsible for the stabilization of
the newly formed cell assemblies. This hypothesis is gaining a lot of popularity and
seems to fit exactly the holes left by the Hebbian learning proposed here.

Once both algorithms have been put together, the performance of the model
has been analyzed. First, the simple case proposed in the previous chapter with a
priori weight is reproduced here, but this time with learning. The model is able
to reproduce the same results. Next the capacity of the system is tested. The
system shows that when the number of inputs increases (from 10 inputs) it forgets
some of them. However, the system is always able to associate a cell assembly for
most of the inputs. Additionally, the system does not seem to show any sign of
catastrophic forgetting and old information are naturally erased by new ones. In
any case, rehearsal seems to be a simple way to keep information stored, very much
like it happens in the human brain’s working memory.

Of course, as with any memory, learning large data set is very good but it is
useless without noise tolerance. Experiments that have been conducted show that
the system performs very well even for very noisy inputs. Those results need to be
taken with care however because they are affected by two important facts. First,
with the increasing number of randomly generated inputs the probability to have
highly correlated inputs rises, and thus at some point a very noisy input can be also
obtained with a slight noise applied to another input. This will be interpreted by
the system as an occurrence of the second input and thus recorded as a miss in the
experiment while the reaction from the system is normal: it reacts with the closest
answer. Secondly, the cell assemblies are detected with an heuristic and there is no
way to be sure of the result. There is no theoretical help there either, so some tests
may seem to fail, where in fact the reason behind it is not the system’s performance
but the performance of the cell assembly detection algorithm.

As with the previous algorithms, the system’s dynamics have also been ana-
lyzed, and again the results concord with the hypotheses that have been proposed.
Complex dynamics are a part of this model and are brought by the learning mech-
anism. Like the “in-supervised” algorithm, the dynamics observed here are weak
chaos and the probability to find such chaos seems to be limited only to some
portion of the states space and does not pollute the whole space. But, unlike the
“in-supervised” learning algorithm, here the system produces complex dynamics
independently of the data set’s size.

Finally, the context layer of the model has been implemented and tested. Here
the goal was to show the possibilities of such a layer and how it can help the current
model. The goal of this layer is to provide additional information to the system
concerning the input, in order to help it distinguish two inputs from two different
cognitive maps. Even with a simple a priori definition of the context layer and a
simple weight definition between this layer and the associative layer, the system is
able to make good use of this layer and sees its performance improved. The results
indicate that the contextual information helps removing some of the ambiguity for
very noisy inputs. Furthermore, when tested with completely ambiguous stimuli7

the system without contextual information is unable to make a successful recall
while contextual information brings the successful recall rate over 85%.

In conclusion, this chapter introduced a new online unsupervised learning algo-
rithm as a process to create cell assemblies in a working memory in an autonomous

7Those stimuli are noisy enough to be good candidates for two inputs and there is no way to

know which input is the correct one without additional information.
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way. This algorithm is unique since usual working memory model always work from
a priori definition of the cell assemblies [Salihoglu et al., 2009b]. In addition, this
chapter has taken into consideration the ’retroaxonal’ hypothesis and proposed its
successful implementation as a process for the stabilization of the cell assemblies
formation [Salihoglu et al., 2009b]. Finally, a contextual layer has been proposed
to improve this model and has shown some preliminary but conclusive results [Sal-
ihoglu et al., 2009b].



CHAPTER 8

Discussion

The goal of this thesis was to produce a brain-like memory model that can
boost the memory capacity of Hopfield-like neural networks, based on two biological
facts: first, brains are much more than single point attractors. Accordingly, here
chaotic background (or spontaneous) dynamics were promoted as much as possible.
Second, the memories should reflect internal brain representations and therefore
should emerge during a learning process.

During this thesis, a brain-like memory model based on recurrent neural net-
works and biologically plausible learning algorithms were built. First, a general
rate firing model has been introduced. It has been validated from a biological
point of view and shown to be computationally efficient (see Chapter 3). To en-
code memories, a very simple architecture was proposed. The system is composed
of an input layer where the external stimuli are presented. This layer has a feed
forward connection with the main layer (called the associative layer) and is a re-
current neural network. This main layer can also send feedbacks and is regulated
through a global inhibition unit whose role is to keep the system active, within
specific bounds. Finally, a context layer feeds and is fed by the associative layer
in order to give the system additional information; this allows to remove ambigui-
ties using contextual information. This model is used through all the thesis, even
though for some experiments, certain parts of the system are shut down to work
with the simplest system which can achieve a given objective. First, a simple input
layer was connected to the associative recurrent layer (Chapter 4, 5). Secondly, a
global inhibitor was introduced to bound the activities of the system (Chapter 6)
and finally, a contextual information layer was exploited (Chapter 7).

The first part of the thesis (Chapter 4, 5) uses the simplest version of this model
(an input layer and an associative layer only). Based on observations of Molter and
Bersini [2003a,b], it is clear that complex dynamics play an important role for those
networks. Following that, learning procedures were proposed to map information
into the internal dynamics of the associative layer. This idea has been inspired by
two major works: first, Hopfield [1982] showed that a Hebbian prescription rule
can be used to encode information into fixed-point attractors of a recurrent neural
network. Yet, this model had poor results and severe limitations [Amit et al., 1985].
Secondly, Skarda and Freeman [1987] observed that the brain shows a strong pres-
ence of chaos. More specifically, they have shown that natural attentive waiting
states correspond to chaotic dynamics, and that the presentation of a known stim-
ulus leads, through bifurcations, to almost cyclic dynamics. The model proposed
here takes both those results into consideration: it has been improved to go beyond
the limitations of the classical Hopfield [1982] network by the use of external stimuli
and to be more in line with the observations of Skarda and Freeman [1987] by the
use of cyclic attractors instead of fixed-point attractors. These two modifications
have been proven to boost the network’s encoding capacity in comparison to the
classical Hopfield model (see Chapter 4 and 5).

181
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The next evolution was obviously to use iterative learning algorithms. They
are slower to learn a given data set, but they can be configured to learn cyclic
information. The first supervised algorithm investigated was the gradient-based
backpropagation through time learning algorithm (Chapter 4.2.1 on page 84). It
had a poor capability and ended up being very time consuming (roughly on par with
a random search). The biggest problem with this algorithm came from the fact that
the gradient descent-based approach is often stopped by the numerous bifurcations
encountered during the descent. As a consequence, learned networks need to be
entirely stable, which in turn leads to a weak number of potential attractors. This
can be explained by the fact that high encoding capacity networks have complex
internal dynamics incompatible with smooth weight variations. This was not the
only flaw of this algorithm: it is also very biologically unlikely as it relies on global
information.

Based on those results, the second supervised algorithm (the “out-supervised”)
tested here followed a quasi-unanimous view shared by neural network researchers:
to base the learning of the synaptic matrix on a local Hebbian mechanism. For
this purpose, an iterative supervised Hebbian algorithm was created and imple-
mented (Chapter 4, 5) fulfilling the following needs: to encode cyclic information
by relying not only on the internal state but also on the external stimuli. Relying
on an iterative algorithm has proven to boost the storing capacity compared to
the classical Hebbian rule used by Hopfield. However, these results are not new.
Though Hebbian learning is an unsupervised local learning rule, the algorithm was
still supervised in the sense that Hebbian learning was used to map external stim-
uli to a priori specified cyclic attractors. On the other hand, the addition of the
external stimuli enhances the performance of such an iterative Hebbian learning.
This comes from the fact that modifying the stimuli mainly results in a change of
the entire internal dynamics, leading to an enlargement of the set of attractors, and
potential “memory bags”. Those enhancements lead to an increase of the storing
capacity and an improvement of the robustness to noise.

While restraining this algorithm to learn fixed-point attractors did not bring
any impressive result when the information was encoded into externally specified
cyclic attractors, a great improvement of the system’s capacity and noise tolerance
has been observed. In addition, the background dynamics seemed related to the
size of the learned data set. The more information stored, the more chaos becomes
unavoidable as the background dynamical regime of the net. In fact, the background
chaos spreads widely and adopts a very unstructured shape similar to white noise.
In the end, the network is no longer able to manage anything and turns out to
be fully and strongly chaotic. By diminishing the amount of learned data, chaotic
dynamics show more structure, revealing the presence of nearby stable attractors.
Ambiguous inputs lead to ambiguous dynamics [Kelso et al., 1995].

Even though the results obtained using the iterative “out-supervised” Hebbian
learning algorithm were not bad, they remained far below the potential expected
from these powerful connectionists networks, especially in the light of what can
be observed with random small recurrent neural networks [Molter and Bersini,
2003a,b]. Enforcing the cyclic attractors seemed to be too constraining; so the
second iterative Hebbian learning that has been proposed (Chapter 4, 5) tries to
lighten those constraints. Here, the network has to learn to react to an external
stimulus by cycling through a sequence which is not specified a priori, leaving the
semantics of the information unprescribed until the learning occurs. This new al-
gorithm (the “in-supervised”) already seems to be an improvement, as it is more
likely that the exact nature of an encoded information is specific to the brain and
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not specified a priori from the environment. The attractor associated with the
external stimulus is first self-selected by the network, then slightly adapted (by a
supervised procedure) in order to make it original and easily identifiable. In this
view, the network generates its own relevant information through a self-organized
dynamical process. This perspective remains in line with a very old philosophical
conviction called constructivism and was modernized in neural network terms by
several authors [amongst others Erdi, 1996; Tsuda, 2001; Varela et al., 1991]. In
addition, this perspective stays in line with the dynamical hypothesis. The cod-
ing scheme is no longer located at the neuron level (i.e. each neuron having its
predefined meaning); but instead the interpretation is cast at the dynamical level.

When compared with the first version, huge improvements were seen. The
network can learn more, is more tolerant to noise and the learning is faster. In
addition, since the algorithm is based on a mechanism of trials–errors–adaptations,
larger basins of attractions are naturally obtained for the learned data and thus it
does not require extra precaution to ensure noise resistance. The dynamics observed
in the system after learning with the “in-supervised” algorithm are very different as
well. While the “out-supervised” learning is a road to chaos where the background
chaos spreads widely and adopts a very unstructured shape similar to white noise,
with the “in-supervised” algorithm the system is much more structured in the
obtained chaos. It is still possible to observe the traces of the learned attractors in
the chaotic regime. This complex, but still very informative regime, is referred to
as the “frustrated chaos”. This chaos is characterized by unpredictable itinerancy
among nearby learned limit cycle attractors [Bersini, 1998]. Tests showed that
when shifting the external stimulus from one learned external stimulus to another
one, the traces of the learned attractors are frequently observed in the frustrated
regime, giving this chaos a strong and informative structure. This kind of structure
and “informative” chaos led several authors to conclude that it could be used to
process meaningful information [Sinha and Ditto, 1999; Tsuda, 2001]. This would
be in-line with experimental neurophysiological data suggesting that information is
carried in the brain through low-dimensional chaos [Rodriguez et al., 1999; Skarda
and Freeman, 1990b].

Finally, symbolic investigations have been performed on the spatio-temporal
attractors obtained when the network is in a random state and when it is fed
by random or noisy stimuli. Different types of attractors can be observed in the
output. Spurious data have been defined as attractors having the same period as
the learned data but which are still different from all of them. This follows the
intuitive idea that the other kinds of attractors (like chaotic attractors) are easily
recognizable at a glance and thus are less likely to mislead an observer. In the
case of spurious data, it is impossible to know if the observed attractors hold an
useful information without comparing it with all the learned data. Networks where
the information is coded in fixed point attractors are easily subject to spurious
data, which makes them difficult to use. Here, the presence of chaos seems to play
an important positive role by preventing the proliferation of spurious data. The
effect of this presence can also be actively exploited. Chaotic outputs being easily
identifiable, the system can try to deal with them in order to force the convergence
of the system to a stable attractor and avoids wandering.

Many researchers from various fields have demonstrated that in well defined
circumstances noise plays a positive role. This phenomenon is well exemplified by
the stochastic resonance phenomenon, where noise, added to a sub threshold stimu-
lus, can enhance sensory information. Here, noise appears to play a rather different
role, since its role is to perturb the ongoing trajectory of the dynamics to make
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it pass from one attractor to another. The expected result being to change the
trajectory from an undesired attractor to the expected learned attractor associated
with the feeding stimulus. In line with biological data [Usher and Feingold, 2000],
the results reported here indicate that noise can improve memory retrieval. After
mapping stimuli to limit cycle attractors of the network’s dynamics, noise greatly
enhances the retrieval phase by stabilizing the chaotic trajectories to the expected
learned cycle. Results also suggest the importance of finding appropriate internal
representations of external stimuli. When stimuli are mapped to fixed-point at-
tractors, no chaotic dynamics appear and accordingly noise does not improve the
retrieval phase; only spurious information shows up. When mapping stimuli to
a priori specified limit cycle attractors, uninformative chaotic dynamics show up.
This chaos does not reflect the presence of the nearby competing attractors. Noise
does not improve the retrieval phase. When the network chooses by itself how to
represent the external stimuli, frustrated chaotic dynamics show up. This chaos
shows the presence of nearby attractors, and noise can lead to stabilization of the
trajectory to a nearby previously learned attractor.

The last part of the thesis focuses on bringing the learning algorithm ever
closer to biological evidences. First, even though the weight-adjusting policy is
local (the Hebbian rule) in the two previous algorithms, this rule is applied to
all the units at each time step. This somehow negates the advantage that locality
provides. Even if the system can still be parallelized, because of the local operations
of each weight adjustment, it is still very sensitive to scaling, as each unit must be
treated. Also, the learning algorithm still uses supervised components, which is not
very likely. Finally, both of the proposed algorithms are offline, which also does
not seem adequate for a brain-like memory. The last learning algorithm proposed
in this thesis tries to encode information into population networks by relying on
complex dynamics to possibly surpass limitations of fixed-point attractors. This
cell assembly theory has been suggested by Hebb [1949] and is widely accepted.

The first step (Chapter 6) was to test the model using structured cell assem-
blies (CA) a priori defined by bi-modal synaptic weights. The model showed very
good results and seemed fit to use cell assemblies as a substrate for information.
The system was able to learn different cell assemblies with a relatively good noise
tolerance. Furthermore, it was also able to exhibit working memory features (i.e.
the information carried by the external stimulus could be maintained in the neu-
ral dynamics). Dynamical results indicate that large overlapped cell assemblies
lead to chaotic regime, whereas smaller and/or uncorrelated cell assemblies tend
to give a stable system. While the results look similar to the ones obtained with
other, but similar, working memory models [e.g: Compte et al., 2000; Molter et al.,
2009; Mongillo et al., 2008], two differences have to be mentioned. First, while
other models use complex units (oscillatory units [Molter et al., 2009] or spiking
neurons [Compte et al., 2000; Mongillo et al., 2008], here, to allow fast computa-
tions and large scale networks, a rate firing model with simple McCulloch and Pitts
neurons and with synchronous discrete time step simulation was used. A second
difference of the model presented here is that, instead of relying on fixed-point
attractors, it enforces complex attractors in CAs by using random weights. As a
consequence, chaotic itinerancies amongst previously stored CAs occur.

The second step was to provide a learning algorithm that could achieve the same
results autonomously. This algorithm needed to be online and unsupervised which
is why a fast Hebbian/anti-Hebbian rule was chosen. However, this learning didn’t
produce good results, because without supervision nor constraint the learning picks
the simplest solution that fits the problem, which in this case is to create one big
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cell assembly as a response to any stimulus. This isn’t very surprising as it is the
only thing that was required from the system.

To solve this problem, a second algorithm is proposed to work with the Heb-
bian process. Basically, without help, the Hebbian learning cannot create a new
cell assembly without hurting the old one. The goal of this second learning is to
consolidate the cell assemblies that are needed. To this end, this learning is applied
to the feed forward connection between the input layer and the associative layer
and clusters those connections. This algorithm is inspired by another biologically
plausible process: the “retroaxonal hypothesis”. The idea is that strong activity
in cells will go backward up to the input cell and consolidate the connection (like
a reward). However, observations seem to indicate that this retroaxonal signal-
ing is an order of magnitude slower than classic plasticity. In that regard, here the
retroaxonal learning is applied much more sparsely than the Hebbian process which
is applied at each time step. The slow time scale of the second procedure enables
to grasp statistical features of the network’s complex dynamics. As a result, input
neurons do not get instantaneous supervision from their output as in the classi-
cal back propagation algorithm [Rumelhart et al., 1986a,b; Werbos, 1974], neither
do they get an instantaneous unsupervised output control, as in the adaptive res-
onance theory [Grossberg, 1993], but rather a slower and unsupervised ‘control’
signal. Finally, those algorithms work by only adjusting the weights for a subset of
the associative layer and thus scale more easily with the network’s size.

Results indicate that when the two learnings are put together the system is
able to learn large amounts of information and still stays tolerant to noise. The
working memory feature is also preserved. This algorithm also provides complex
dynamics as an outcome, but this time it seems to be indifferent of the data set’s
size. As soon as the algorithm kicks in, the system become slightly chaotic.

Finally, a contextual layer is implemented. Again, a very simple procedure is
tested in order to validate the concept and with this a priori definition of the con-
textual layer some results are obtained. With a low amount of noise, the context
layer’s help is not very noticeable. This was expected, because in low noise condi-
tions, the system is usually already able to recover from noise without the help of a
context layer. But when noise becomes very strong or even a completely ambiguous
input is given, contextual information can really help. Unfortunately, this a priori
implementation is not strong enough to scale with the data set size, but it suggests
that the contextual layer has a purpose and can be improved with an appropriate
learning process.

In order to produce all the results in this thesis, a huge effort has been put into
the development of a platform that allows easy manipulation of neural networks
and learning algorithms. This platform is relatively large and has gone through
several major revisions over the years. It is, unfortunately, out of the scope of this
thesis to go into its details and inner workings. The interested reader can find more
information in the Appendix A on page 189 and Appendix B on page 199.

In conclusion, this thesis proposed a model based on recurrent neural networks,
and provided different learning algorithms which allow it to perform memory-
related tasks. It showed that, even without relying on biologically plausible learning
policies, it is possible to extract useful information from those systems, such as the
importance of chaos or how complex dynamics can be used to improve a recall
system in a memory. The final step was to propose a biologically likely implemen-
tation of a working memory with cell assemblies as a substrate for information.
Here, again, the importance of complex dynamics was obvious. Additionally, it
showed that a single learning algorithm cannot solve the problem: for good results,
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it is mandatory to have different layers such as an input layer and a context layer,
as well as various learning algorithms working at different time scales. Finally, this
work showed that it is possible to use a very simple and computationally friendly
model, which can still tackle interesting problems.

Moreover, this thesis concretized a possible use of the retroaxonal hypotheses
as suggested by Harris [2008]. This may seem anecdotic, but it is crucial since it
is one more evidence that simple models can be used to help understand complex
biological problems. The next step in this direction would be to provide a solid
contextual layer supported by a plausible implementation and learning algorithm.
This could help provide some insight on how correlated information are stored in
the brain. This work is based on the hypothesis that there is no single global
attractor in the system, which seems to be valid. This idea has been worked upon
as this thesis was written and, regarding current results, should probably be the
source for some publication following this work.

This model is not only useful from a biological perspective: it can be a robust
model for solving various engineering problems. In its current state, it is hard
to exploit this model for practical purposes, since the outputs are cell assemblies
activities. In contrast, auto-associative memories by definition output something
meaningful for the user. A first obvious implementation as an engineering tool for
this model would therefore be to provide some form of auto-associative memory
feature. This work had also been started during this thesis, but was not mature
enough to be discussed in details in this document. The idea is to provide the
system with an additional layer (the output layer) whose goal is to reconstruct the
input in an auto-associative fashion.

This layer would provide two useful features. First obviously, it provides a
user-understandable output from the system. Secondly, since it reconstructs the
input, this information is also useful to the system itself. When a noisy input feeds
the system, even if the system is able to recover from this noise and has a valid
output, the input itself stays noisy and cannot be corrected. On the other hand,
the output layer, if successful, will have reconstructed the input as it should be
without noise. So, if this layer feedbacks the system with this information, it is
very helpful. In such a case, the system has two external information: first, the
potentially noisy but genuine information through the input layer; secondly, the
normally un-noisy but potentially wrong information from the output layer. A
careful usage of both information can obviously lead to improved performances.
Early test results suggested that it is possible to implement such a layer.

Nevertheless, this is not the only possible positive outcome for this layer. Cur-
rent work seems to suggest that the connections from the input layer to the asso-
ciative layer do not need to be all present. This clustering can be observed in the
weight matrix (see Figure 7.7 on page 166). This implies that it may be possible to
use a very large input/output layer, sparsely connected to the associative layer. Us-
ing such a configuration, one could provide an auto-associative memory where the
spatial complexity is converted into spatio-temporal complexity, and thus stored
into a reasonable size network, allowing the implementation of an auto-associative
memory that will work with real size images and not only toy problems.

The second possible engineering implementation of this model is for clustering
problems. The system shows natural inclination for such a problematic and seems
to be a perfect fit for stream clustering. In this particular case of clustering, the
data is either not accessible all at once or too big to be accessed at once, and
thus the clustering must be done on the fly, as data are presented. This is exactly
what the model does when different stimuli are presented and similar ones end up
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activating the same cell assembly, which can be seen as a cluster. However, to
be usable the model needs some sort of filtering tool to transform the data and
provide the system with an easily understandable input. This is not specific to the
clustering and was one of the working hypotheses of the model: the input is not the
real one and has been transformed by some mechanism. For the clustering problem,
this can probably be achieved with some sort of feed forward neural network whose
output layer will be the input layer of this model.

All in all, the model proposed here showed very good results but also opened
a lot of doors to expand it both in the biological and engineering realms.





APPENDIX A

Neural Development Kit

The neural development kit (NDK) is a C++ library developed during this
thesis. This library has gone through some major changes over the years and its
last version is briefly presented here. The goal of this library is to provide an easy
access to all the tools needed to work with neural networks.

The library was built with several requirements in mind:

∙ Efficiency: running simulations and tests smoothly, and ability to work
with any reasonable network size.

∙ Usability: providing all the basic tools to work with neural networks and
being easy to use.

∙ Extendability: being easy to upgrade and to add new features on top
of existing ones.

∙ Genericity: being able to work with all kinds of units, networks, algo-
rithms, . . .

These are general requirements which need to be respected while proposing an
implementation of this library. The NDK is dependent on the Boost1 library for
random numbers generation, fast matrices manipulations and abstract program-
ming (such as functors, auto pointers, . . . ). Together with the choice of the C++
programming language, this provides a sound base to build an efficient library.

1. Requirements

The main features that this library should provide are summed up here:

∙ Design networks: allow the user to easily create, modify and destroy
neural networks with any kind of unit, activation function, architecture,
. . .

∙ Apply learning algorithms: provide some classic learning algorithms
alongside the ability to easily extend them or create new ones from scratch.

∙ Manipulate parameters: allows easy access to all the parameters which
can affect any part of the system, with the possibility to save them in a
file.

∙ Ease simulation: provide an easy and flexible solution for simulating
the network. This implementation must, of course, support synchronous
and asynchronous simulation. Moreover, it must provide the possibility
to simulate the network in a sandbox in order to be able to unroll any
change this simulation might have. This is very important, for example,
to compute sensibility to initial conditions, since it requires to simulate a
network starting in two almost identical initial conditions.

1http://www.boost.org/
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∙ Provide dynamical and statistical analysis tools: provide the ele-
mentary tools to perform dynamical signal analysis and statistics on any
part of the system.

2. Implementation

There are lots of tools on the market designed to manipulate neural networks.
Unfortunately, none of them satisfies all those criteria. They are often very static,
inflexible, and/or inefficient. Additionally, most of them do not provide their source
code, which makes it harder to use for scientific purposes, as there is no way to
verify what exactly happens below the hood. Others were discarded due to their
lack of quality.

Most of those softwares are lacking in the design department (i.e: high level
functional programming, object-oriented design, design patterns, . . . ). Moreover,
they are often programmed in an inappropriate language (i.e: Java, Python, C,
. . . ). All these languages have their uses but do not fit the requirements listed
earlier in this annex. For instance, Java and Python are inefficient, where C does
not bring anything more than C++, yet lacks very strong tools to provide high-level
reusable code.

3. Design

This section gives a general view of the library, then gives more details on the
important components. Figure A.1 on the next page shows a general view of the
class diagram of the NDK’s main actors.

There is of course more to it than just these classes but, before continuing it
is important to go over those main actors and explain their use, how they fit the
requirements listed earlier, and how they interact.

3.1. BrainData.

3.1.1. Role. Contains the raw data which describes the networks. This includes
the connections’ weight matrix and the internal states vector.

3.1.2. Implementation. The BrainData does not interact with any class itself,
but other classes have to interact with it in order to manipulate the representation
of the system. To this end, the BrainData sets some friendship2 with the Unit and
Module classes.

This class does not provide any method of any kind. This is done on purpose:
the idea here is that the friendship granted by BrainData gives access to the raw
data, but nothing more. So it is possible to build a Brain class based on this, which
can have any internal variable or method, and without any of them being accessible3.
Both BrainData’s attributes have protected accessibility, because BrainData is built
with the idea to be completed with a Brain class.

3.2. Brain.

2In a C++ sense: a friend class (or function) has access to private members of the class

bestowing the friendship.
3Friendship in C++ is not transitive through inheritance or aggregation.
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Figure A.1. Class diagram of the NDK. This UML class diagram
shows the main actors of the neural development kit.

3.2.1. Role. Provides an interface for accessing the brain and creating the neu-
ral network in it. The Brain class represents the system, all the data defining the
neural networks, as well as the list of all the existing neural networks. This class is
a Singleton4.

3.2.2. Implementation. This class inherits from BrainData and defines some
additional information of its own. It possesses a collection of Modules5, and also
implements all the necessary functions to manipulate the system. The most impor-
tant ones are:

∙ create: This method creates a new neural network6. This is a factory
method [Gamma et al., 1994]: it allows to create a Module and thus acts
as a constructor for this class. There are three main reasons to provide a
factory method: first, it allows the system to have a control on the exact
nature of the object that is created. Since this method returns an object,
it is possible to provide an extended or more specialized version of Module
that inherits from Module. The best part is that it will still work flawlessly
with any legacy code. Secondly, it allows to perform all the necessary
tests before creating the object. If those tests were performed in the class’
constructor, it could lead to a disaster: if a condition fails, even if the

4A singleton is a design pattern introduced by Gamma et al. [1994]. It guarantees that a

singleton class can have one and only one instance and that this instance can be accessed globally.
5A Module is the implementation of a Neural Network, explained in more detail later.
6An instance of the class Module.
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constructor notifies this with an exception, the object will have already
been allocated in memory but will be inconsistent. With the factory
method, if the call fails the method never calls the constructor. Finally,
it allows the implementation of the class Module to hide its constructor.
Therefore this method will be the only way to create a neural network.
This allows the Brain class to track all the created Modules, provide some
cleanup option and avoid memory leaks. That responsibility has been
taken away from the caller, handled by an automated process, yet without
taking any performance hit, like with an automated garbage collection.

∙ module: This method gives access to the existing Modules in the Brain.
∙ weights/states: Two methods give access to the raw data, yet with a

subtle protection. The returned object is a new matrix (or vector) which
has an access “by reference” to the original matrix (or vector). This means
that it is possible to change the value of any weight (or state), but it is
not possible to change the matrix (or vector) itself (hence changing its
dimension, which is normally dictated by the size of the neural network
present in the system, and can only change if some new neural networks
get added/removed or new units are inserted/deleted in a neural network.

∙ swap/reorder: Those two methods allow the low-level manipulation of
the units’ order of appearance in the weight matrix and states vector.

3.3. Unit.

3.3.1. Role. The unit describes a group of neurons. It is the base class that
will allow to create more specialized groups such as the cell assemblies or the neural
network.

3.3.2. Implementation. A Unit contains a vector of indexes of the neurons that
belongs to this group. Using those indexes, it is possible to create a sub-matrix
from the original one, which will contain only the weights of the neurons of this
group. This attribute has a protected accessibility since the way the indexes are
determined depends on the nature of the group of neurons. It is possible from a
Unit to modify a single value of its weights or states and to have access to the weight
matrix (or state vector) defining the Unit. Again, like the Brain, this matrix (or
vector) is a reference to the value of the real matrix (or vector) found in BrainData.
Here, the returned matrix (or vector) only includes the weight (or states) of the
neurons indexed by the Unit.

3.4. Module.

3.4.1. Role. Defines a neural network composed of a certain number of neurons.
It can contain as many cell assemblies as needed and provides all the useful methods
to deal with them, in addition to the methods to deal with any group of neurons.

3.4.2. Implementation. This class inherits from Unit and defines a collection
of Cell Assemblies (defined in the next section). It receives a vector of indexes to
be constructed but, as specified earlier, the constructor is private and this class
is friend with the Brain class. When the create method of the Brain is called, it
receives only a size in order to create a neural network of the corresponding size. It
resizes the weight matrix and states vector to accommodate the new neurons, and
passes the indexes of the newly created neurons to the constructor of Module.

In a similar way, Module provides the same functionalities to create Cell Assem-
bly. Module has a create method and a collection of Cell Assemblies, this method
receives a list of indexes since a cell assembly is not defined with new neurons;
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instead it is just a cluster in an existing Module. This is also why the construction
is the Module class’ responsibility and not the Brain one.

3.5. Cell Assembly.

3.5.1. Role. A Cell Assembly is a group of neurons in a given Module.

3.5.2. Implementation. The Cell Assembly inherits from Unit as well and de-
fines an attribute of type Module, which is a pointer to its parent. This excepted,
the cell assembly does not need to provide any feature not common to all groups
of neurons, and is thus defined in Unit.

3.6. Unit Bundle.

3.6.1. Role. This is a composite pattern [Gamma et al., 1994]. Basically, this
means that this is a particular Unit which contains other Units. This allows the user
to build any combination of Module, Cell Assembly and even other Unit Bundle
into a bundle of units, which can be treated as a single unit composed of different
neurons. This allows to look at any group of Module/Cell Assembly as a single
Unit and is very useful.

3.6.2. Implementation. This class inherits from Unit and possesses a container
of Units. This allows any kind of combination of Units. This class defines just two
methods that allow to bundle in or out any Unit.

3.7. Logger.

3.7.1. Role. Maintains the activity of a given list of neurons. This class is used
for any measurement of the system’s output, without having to manually save the
value of the neurons after each simulation.

3.7.2. Implementation. This class possesses a reference to the state vector. By
default, it has a reference to all the neurons, as it receives the states through the
brain, and thus backups for all the neurons. To limit its activity to a single Unit, it
must, when created, receive as a parameter of its constructor the states it needs to
backup at each time step. Theses states are obtained by calling the states method
provided in the Unit class.

3.8. Function.

3.8.1. Role. Provides a set of useful activation functions as well as a prototype
to create new ones.

3.8.2. Implementation. This is provided as a series of functions defined in a
specific namespace: there is no class here as there is no need for one. The system’s
prototyping is based on a functor7 from the boost library, which allows the user
to define its own function as long as the function receives the correct parameters
and returns the correct type. If the function receives more parameters than the
prototype, those extra parameters can be binded before creating the functor. In
a similar way, if the user wants to create a class because his activation function
is very complex and cannot be modeled by a single function, it is also possible.
Boost’s functors allow the user to create an object of a class, create a functor from

7A functor is an object of a class which encapsulates a function. It is a more generic approach
to what C/C++ proposes as pointer to function. Basically, it allows to bind a function into it,
then manipulate this functor like any other variable, the only difference being that its value is a
function. Where a normal variable can be ‘read’, here the variable can be executed (which triggers

the encapsulated function).
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a member of that class, and bind the first parameter with the object on which the
method should be called8.

3.9. Activator.

3.9.1. Role. This class creates a simulation batch. It allows to simulate a given
unit with a given activation function. This class is built either with a reference
vector or a copy vector. If it is built with a reference vector, each simulation step
will modify the original states from BrainData, otherwise this class works locally
on a copy. These two cases are respectively called: “in-place activator” and “out-
of-place activator”.

3.9.2. Implementation. This class has a template parameter for the representa-
tion of the states vector it will manipulate. Two specialized versions of the template
are defined and provide the required functionality (‘in-place activator” and “out of
place activator”). Yet, as this is a template parameter, it is possible for the user to
further specialize this. In addition to that, there is a common interface from which
the activator inherits (ActivatorInterface), which also allows the user to specialize
and create his own activators. This class is constructed using a Unit and an acti-
vator function9 or can also receive a third parameter which is a Logger. Basically,
if this class is created given a Logger, it will use it to log each simulation step.
This class defines one main function which simulates the given unit with the given
activation function and for a certain time.

3.10. Parameter.

3.10.1. Role. This class encapsulates the idea of a generic parameter. It is
based on a Manager Item which defines everything related to parameter configu-
ration, organization and management. Each Parameter reflects one configuration
parameter of the system and thus allows everyone to access the same value and the
modification of this value is reflected to all users.

3.10.2. Implementation. Each parameter possesses a name and a description
(like all Manager Item), in addition to a variant10 attribute which contains its
data.

3.11. Package.

3.11.1. Role. A package is a particular Manager Item which does not have a
data like the Parameter but can contains a collection of Manager Unit. This is
again a composite pattern [Gamma et al., 1994].

3.11.2. Implementation. Package has a list of parameters and other packages,
and provides operators to access them easily. In addition, this class also allows the
creation, destruction and manipulation of any package or parameter.

3.12. Manager.

3.12.1. Role. The Manager corresponds to a given configuration file: it con-
tains the root package and allows the manipulation of this configuration file, by
loading or saving the actual value of the Packages and Parameters.

8A method of a class is nothing more than a function which receives as a first parameter the
object itself. For example, object.func(2) is interpreted by the compiler as func(object,2).

9This is where the functors defined earlier are used
10A variant is a class which encapsulates the concept of a variable whose type can be of any

kind and change through time. Very much like all the variables in non strongly typed languages.
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3.12.2. Implementation. This class is created using a factory method present
as a static method of the class. This method receives a file name and creates
the corresponding manager. If the file already exists, its content is loaded and
parsed11, and the packages and parameters are created accordingly. Any number
of configuration files can be manipulated simultaneously.

3.13. Extending the system. Given this structure, it is pretty much pos-
sible to do anything. A dynamical analysis tool such as the Lyapunov function
is provided as a simple function which works with units and activation functions.
A learning algorithm is just a class which, again, works with units and activa-
tion functions. The platform already contains various extensions which have been
used during this thesis, and also act as proofs of concept of the library. Here is a
small example of how to create a network and randomly modify its weight until the
Lyapunov exponent observed from a random starting point is greater than 0.0.

11The file is saved as an XML file.
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1 // d e f i n e a s imu la t i on pa i r
2 // composed o f a Unit and a Act ivat ion func t i on
3 typedef std : : pa ir<ndk : : u n i t t , ndk : : sim : : f unc t i on t> s im pa i r t ;
4

5 // Get the c on f i g u r a t i o n manager
6 // loaded from con f i g . xml
7 ndk : : conf : : manager t& mngr=ndk : : conf : : manager t : : get ( ‘ ‘ c on f i g .

xml’’ ) ;
8 // Set the va r i a b l e ‘ ‘ out o f t r a n s i e n t ’ ’ in the package ‘ ‘

dynamical a n a l y s i s ’ ’ to 20
9 mngr [ "dynamical analysis.out of transient" ]=20;

10

11 // Get the unique in s t anc e o f the bra in
12 ndk : : b r a i n t& brain=ndk : : un i que b ra i n t ( ) ;
13 // Create a modul ‘mod ’ o f s i z e 3
14 ndk : : module t& mod=brain . c r e a t e (3 ) ;
15 // Create a modul ‘ input ’ o f s i z e 3
16 ndk : : module t& input=brain . c r e a t e (3 ) ;
17

18 // ‘w ’ : the weights matrix from ‘mod ’ to ‘mod ’ ( by r e f e r e n c e )
19 ndk : : sub matr ix t w=mod. we ights ( ) ;
20 // ‘ i ’ : the weights matrix from ‘ input ’ to ‘mod ’ ( by r e f e r e n c e )
21 ndk : : sub matr ix t i=mod. we ights ( input ) ;
22 // ‘ms ’ i s the s t a t e s vec to r o f ‘mod ’ ( by r e f e r e n c e )
23 ndk : : s ub v e c t o r t ms=mod. s t a t e s ( ) ;
24 // ‘ i s ’ i s the s t a t e s vec to r o f ‘ input ’ ( by r e f e r e n c e )
25 ndk : : s ub v e c t o r t i s=input . s t a t e s ( ) ;
26

27 // Create a Lyapunov r e s u l t s t r u c t
28 ndk : : a n a l y s i s : : l y apunov r e s u l t t res ;
29 // Create a vec to r o f p a i r s conta in ing each un i t and i t s

a c t i v a t i o n func t i on .
30 std : : vector<s im pa i r t> simu ;
31 // Add ‘mod ’ in t h i s vec to r with a c l a s s i c
32 // synchronous weighted sum , bounded in [0, 1]
33 simu . push back ( std : : make pair(&mod, ndk : : sim : :

synchronous weighted sum tanh01 ) ) ;
34 do

35 {
36 // ‘w ’ r e c e i v e s a random uniform d i s t r i b u t i o n in [−1, 1]
37 w<<=ndk : : u t i l : : rnd ( ) ;
38 // ‘ i ’ r e c e i v e s a random uniform d i s t r i b u t i o n in [−1, 1]
39 i<<=ndk : : u t i l : : rnd ( ) ;
40 // ‘ms ’ r e c e i v e s a random uniform d i s t r i b u t i o n in [0, 1]
41 ms<<=ndk : : u t i l : : rnd01 ( ) ;
42 // ‘ i s ’ r e c e i v e s a random uniform d i s t r i b u t i o n in [0, 1]
43 is<<=ndk : : u t i l : : rnd01 ( ) ;
44

45 // Compute the Lyapunov o f ‘mod ’
46 // us ing ‘ simu ’ as s imu la t i on r u l e s .
47 res=ndk : : an : : lyapunov (mod, simu) ;
48 // Continue un t i l the mean Lyapunov o f ‘mod ’ i s g r e a t e r than 0 .0
49 }while ( res . mean lyapunov <0.0) ;
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4. Neural Scripting Interface

The NDK has been extended to provide a scripting language. Based on the
scripting language “Lua”, and using the library Lua and Luabind, the library also
provides an exportation of all its core concepts into Lua. This allows the user to use
scripts coded in Lua, where the Lua language is extended with concepts introduced
in the library using C++. The advantage of such a scripting language is that it is
simpler and thus easier to communicate with than the C++ code with whom not
lots of people are really familiar. Lua has a syntax which is also simpler and less
misleading.

Here is an example of a really simple code in lua :

1 −− Get the bra in .
2 b=ndk . Brain . get ( )
3

4 −− Create Modules
5 main=b : c r e a t e (3 )
6

7 −− Create Logger
8 logger=ndk . u t i l . Logger ( )
9

10 −− c r e a t e Simulator
11 simu=ndk . sim . InP laceAct ivato r (main , ndk . sim .

synchronous weighted sum tanh01 ( ) )
12

13 −− Simulate the network f o r 10 i t e r a t i o n s
14 simu : s imu late (10)





APPENDIX B

Neural Development Interface

The neural development interface (NDI) will not be covered in much detail be-
cause it mainly consists in the usage of external libraries such as QT. Nevertheless,
the idea behind this interface is to go one step further than the scripting interface
and provide a Graphical User Interface (GUI). This GUI allows the execution of a
script (or script command) through a file browser (or a console respectively). It also
exports in Lua different elements specific to the GUI in order to complement the
functionality provided by the NDK with Graphic oriented solutions. For instance,
it is possible to plot curves, it is also possible to draw the states and weights of
any units. This interface also provides a convenient way to modify the configu-
ration parameters, through a configuration manager widget that exposes the tree
of packages and parameters. The NDI provides a model/view/control mechanism
that easily allows the user to define new widgets that can be used to visualize and
control any kind of data.

Several screenshots of this interface in action can be found here. Figure B.1 on
the following page shows the configuration manager widget, Figure B.2 on page 201
shows the GUI during a learning process and Figure B.3 on page 202 shows some
plots that can be obtain with this interface.
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Figure B.1. The NDI with the configuration manager widget.
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Figure B.2. The NDI during learning.
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Figure B.3. The NDI with some plots.
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Buzsáki, G. A two-stage model of memory trace formation: A role for ”noisy” brain
states. Neuroscience, 31:551–570, 1989. [p. 33]
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Changeux, J. P. L’homme neuronal. Fayard, 1985. [p. 13]
Chiu, Y.-C, Algase, D, Whall, A, Liang, J, Liu, H.-C, Lin, K.-N, and Wang, P.-

N. Getting lost: directed attention and executive functions in early alzheimer’s
disease patients. Dement Geriatr Cogn Disord, 17(3):174–180, 2004. doi: 10.
1159/000076353. URL http://dx.doi.org/10.1159/000076353. [p. 29]

Cohen, I, Navarro, V, Clemenceau, S, Baulac, M, and Miles, R. On the origin of
interictal activity in human temporal lobe epilepsy in vitro. Science, 298(5597):
1418–1421, 2002. [p. 18]

Cohen, J. D, Perlstein, W. M, Braver, T. S, Nystrom, L. E, Noll, D. C, Jonides,
J, and Smith, E. E. Temporal dynamics of brain activation during a working
memory task. Nature, 386(6625):604–608, Apr 1997. doi: 10.1038/386604a0.
URL http://dx.doi.org/10.1038/386604a0. [p. 6, 136]

Cohen, M and Grossberg, S. Neural networks and physical systems with emergent
computational abilities. Proc. Natl. Acad. Sci. USA, 1982. [p. 66]

Cohen, N. J and Eichenbaum, H. Memory, Amnesia, and the Hippocampal System.
MIT Press, 1993. [p. 28]

Collins, J. J, Chow, C. C, and Imhoff, T. T. Stochastic resonance without tuning.
Nature, 376:236–238, 1995. [p. 5]

Compte, A, Brunel, N, Goldman-Rakic, P. S, and Wang, X. J. Synaptic mechanisms
and network dynamics underlying spatial working memory in a cortical network
model. Cereb Cortex, 10(9):910–923, Sep 2000. [p. 6, 138, 140, 141, 184]

http://dx.doi.org/10.1146/annurev.neuro.29.051605.112800
http://dx.doi.org/10.1159/000076353
http://dx.doi.org/10.1038/386604a0


206 Bibliography

Conrad, R. Acoustic confusions in immediate memory. British Journal of Psychol-
ogy, 55:75–84, 1964. [p. 20]

Cooke, S. F and Bliss, T. V. P. Plasticity in the human central nervous system.
Brain, 129(7):1659–1673, 2006. [p. 14]

Cowan, N. Attention and memory: An integrated framework. New York: Oxford
University, 1995. [p. 25]

Cowan, N. The magical number 4 in short-term memory: a reconsideration of
mental storage capacity. Behav Brain Sci, 24(1):87–114; discussion 114–85, Feb
2001. [p. 20]

Cowan, N. Working memory capacity. New York, NY: Psychology Press, 2005.
[p. 25]

Craik, F. I and Lockhart, R. S. Levels of processing: A framework for memory
research. Journal of Verbal Learning & Verbal Behavior, 11(6):671–684, 1972.
[p. 23]

Curtis, C and D’Esposito, M. Persistent activity in the prefrontal cortex during
working memory. Trends Cogn Sci, 7(9):415–423, Sep 2003. [p. 24]

Cybenko, G. Approximation by superpositions of a sigmoidal function. Math.
Control Signals Systems, 2:303–314, 1989. [p. 34, 37]

D

Dauce, E. Adaptation dynamique et apprentissage dans les réseaux de neurones
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