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Chapter 1

Introduction

1.1 Motivation of the research

Masonry is a material which has been used extensively for building in history. Most of
historical masonry structures which still exist nowadays present the occurrence of cracks
which may significantly affect their load bearing capacity. In the context of restoration,
it is therefore crucial to be able to estimate the residual strength in order to assess the
safety of buildings. As a consequence of its complex structure, masonry presents prefer-
ential damage orientations which are complex to incorporate in structural computations.
Furthermore, masonry structures are generally subjected to complex loading processes
including both in-plane and out-of-plane loads which considerably influence the potential
failure mechanisms. As a consequence, both the membrane and the flexural behaviours
of masonry walls have to be taken into account for a proper estimation of the structural
stability.

Numerical models are widely used in the literature to model the quasi-brittle mate-
rial behaviour of the masonry material. Two methodologies may be considered based on
the scale of interest. For large-scale structures, masonry can be considered as an equiv-
alent homogeneous material. The macroscopic scale material behaviour is governed by
phenomenological laws including a set of parameters which characterises the average be-
haviour of the material. These parameters need to be identified through experimental
tests. For the case of masonry, this material law identification can become costly due to
the complexity of its behaviour particularly when cracks appear. The existing macroscopic
models are consequently restricted to particular assumptions. In addition, it is observed
experimentally that cracking of masonry most often results from localisation of damage
in narrow zones at the structural scale. Advanced numerical techniques are necessary to
properly model this localised behaviour which increases significantly the complexity of the
macroscopic models. Another methodology based on a detailed mesoscopic description
can be considered to estimate the strength of masonry and its behaviour with failure. This
approach uses separate descriptions for each constituent of the mesostructure, namely the
bricks and the mortar joints, considering masonry as a heterogeneous material. This is
motivated by the fact that the behaviour of each constituent is a priori easier to identify
than the global structural response. These mesoscopic models are therefore more accurate
since all the heterogeneities are represented, but they can rapidly become unaffordable in
terms of computational cost for the case of large-scale three-dimensional structures.

In order to keep the accuracy of the mesoscopic modelling with more affordable com-
putational effort for large-scale structures, a multi-scale approach using computational
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Introduction 2

homogenisation is developed to bridge the mesoscopic and macroscopic scales for the rep-
resentation of quasi-brittle structural failure. The main idea of this approach is to extract
a coarse-scale constitutive material response from computations performed on a sample
of the mesostructure. A fine-scale model is used to represent the sample. Computa-
tional homogenisation approaches have extensively been discussed in the last decades but
remain rather unexplored for the case of flexural behaviour with localised failure. The
development of a coupled two-scale computational framework for masonry shell failure
would therefore constitute a major step forward in the characterisation of masonry and
more generally in the multi-scale approaches.

1.2 Methodology

A multi-scale approach is developed here for the structural analysis of planar running
bond masonry walls subjected to in-plane and out-of-plane loadings with a specific treat-
ment including localisation of cracking. A closed-form constitutive law for such a shell
behaviour would be complex to postulate and identify. A multi-scale approach allows
to postulate the material laws at the scale of the constituents, which are a priori more
straightforward to identify. A periodic non-linear computational homogenisation method
is used to capture the local quasi-brittle material behaviour of masonry thin shells. Based
on the periodicity of the mesostructure, a representative volume element (RVE) can be
defined and modelled by using mesoscopic closed-form material laws. At the structural
scale, the localisation of damage is represented by means of fine-scale informed cohesive
zones incorporated in the macroscopic shell description. These cohesive zones are repre-
sented by a local enrichment of the kinematics based on embedded strong discontinuities
representing in an average sense the fine-scale crack openings. In the context of multi-scale
modelling, both the appearance and the material behaviour of these cohesive zones have
to be driven by the mesostructural response. A new methodology is proposed to upscale
the material information of the mesostructural samples towards the macroscopic cracking
representation. A generalised localisation criterion is used to detect the occurrence of
macroscopic localisation in thin shell descriptions and to determine its orientation. This
detection criterion is based on the macroscopic homogenised tangent stiffness extracted
from the response of the RVE. The material behaviour of the discontinuity which repre-
sents the structural localisation is extracted from a further damaging sample, denoted as
Localising Volume Element (LVE), by means of an enhanced upscaling procedure based
on an approximate energy consistency requirement. The enhanced scale transition rela-
tions are firstly developed for the in-plane case and are then extended to the out-of-plane
case. The complete multi-scale scheme is validated against full fine-scale computations
(direct fine-scale simulations) in order to assess the robustness of the proposed approach.

1.3 Outline

The dissertation is organised as follows. A brief review of methodologies for upscaling
the behaviour of heterogeneous materials is presented in Chapter 2. A characterisation
of the masonry behaviour is first given, based on experimental results available in the
literature, in order to highlight the complex non-linear quasi-brittle behaviour of masonry
structures in relation with the corresponding failure mechanisms. A brief state of the
art of existing phenomenological models for masonry is also presented. Coarse-graining
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methodologies for the non-localised and localised behaviour of heterogeneous materials
are then discussed. Both the in-plane and shell descriptions are considered. Different
numerical techniques developed in the past two decades to handle localisation at the
structural scale for in-plane and shell descriptions are also reviewed. The multi-scale
approach proposed in this dissertation is then motivated by this literature survey, showing
that the topic of coarse-graining failure started to emerge for in-plane descriptions recently,
but was not extensively explored for the out-of-plane behaviour up to now.

The engineering shell description used in this dissertation is recalled in Chapter 3.
An embedded strong discontinuity approach used to represent the shell failure and taken
from the literature is also outlined in order to give the mathematical tools and notations
used in the sequel. Chapter 4 is devoted to the definition of a homogenisation-based
detection criterion of failure in planar masonry thin shells. The non-linear computational
homogenisation scheme is developed for the non-localised behaviour of masonry thin shells
and the fine-scale modelling used at the RVE level is presented. A localisation analysis is
proposed to numerically determine the average orientation of the structural localisation
and is validated against RVE computations.

The nested multi-scale computational scheme for quasi-brittle structural failure is
developed in Chapter 5 for in-plane problems. The principles for upscaling the failure
behaviour of periodic materials are presented. This approach is based on an approximate
energy consistency argument in order to objectively upscale the total energy dissipation,
based on the assumption of a single period failure pattern. The results obtained from
this multi-scale framework for the confined shearing of a masonry wall are compared with
those of a complete fine-scale modelling of the wall for which all the heterogeneities are
discretised using the same fine-scale laws. The assumptions of the multi-scale approach,
namely the periodicity and the scale separation, are challenged in order to estimate their
impact on the results. The multi-scale scheme is extended to the case of thin shell failure
in Chapter 6. This framework is again validated against full fine-scale computations for
different failure mechanisms. Finally, Chapter 7 concludes this dissertation and identifies
different perspectives for future developments.

Note that this dissertation is based on the compilation of three papers. The two
first papers (Chapters 4 and 5) were published in international journals, while the third
paper (Chapter 6) has been submitted for publication. Since each paper needs to be
self-contained, this dissertation may contain repetitions, especially in Chapters 5 and 6.



Chapter 2

Multi-scale methods for the failure

of heterogeneous materials

2.1 Characterisation of masonry failure

Masonry is a textured heterogeneous material composed of an arrangement of bricks
and mortar joints. For the characterisation of its mechanical behaviour, two scales of
interest may be identified, namely the structural or macroscopic scale, on the order of
meters, and the mesoscopic scale, on the order of centimeters. The macroscopic scale is
the typical size of the masonry structure in which the external loads are defined and the
mesoscopic scale represents the characteristic size of the bricks and the mortar joints.

In the past, experimental tests were carried out on planar masonry walls in order
to characterise the non-linear mesoscopic and macroscopic behaviour of the composite
material both for in-plane and out-of-plane loadings. Since the mortar joints are weaker
than the bricks, cracking of masonry structure is mainly concentrated in the mortar
joints. For the mesoscopic failure behaviour, a series of deformation controlled tests
was performed on a single mortar joint linking two bricks in van der Pluijm (1999) to
characterise the tensile and shearing failure of mortar joints and mortar-brick interfaces.
Bending tests were also carried out on a single mortar joint specimen of masonry in order
to estimate the flexural fracture energy. The low values of fracture energy extracted from
these tests indicate a quasi-brittle fracture behaviour of the mortar joints.

In the context of structural characterisation, the periodic stacking of the bricks results
in an initial anisotropy of the material. In the case of running bond masonry for instance,
the material behaviour is orthotropic since the axes of symmetry in the material structure
are perpendicular. Due to the periodic arrangement, preferential cracking orientations can
be observed leading to another type of anisotropy induced by the cracking and strongly
dependent on the loading mode. For instance, a wall presenting a bed joint crack pattern
keeps (modified) orthotropic properties whereas a stair-case crack pattern leads to a more
complex form of anisotropy. These crack patterns were reproduced in experimental tests
carried out on small planar walls subjected to in-plane loadings in Page (1981, 1983),
Dhanasekar et al. (1985) and to out-of-plane loadings in van der Pluijm (1999). For the
in-plane case, macroscopic failure envelopes for proportional uniform biaxial loading of
running bond masonry were established in Page (1981, 1983), Dhanasekar et al. (1985) for
different orientations of the applied principal stresses with respect to the orthotropy axes.
It was shown that the shape of the failure envelopes changes with the loading direction.
Using such experimental results obtained for proportional loading directly for structural
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computations is a strong assumption due to stress redistributions caused by cracking and
related damage evolutions.

For the characterisation of the masonry bending behaviour, experimental tests were
carried out in van der Pluijm (1999) until the load bearing capacity was reached. Small
masonry walls were tested under four-point bending loading in such a way that the critical
cross-section is tested in pure bending in order to characterise the flexural behaviour.
Different bending directions with respect to the bed joint direction were considered. It was
shown that the misalignment between the bending direction and the bed joint direction
can lead to complex stiffness evolutions and stress redistributions since the preferential
cracking orientation is not necessarily parallel to the loading direction. Note that non-
linear stress redistributions already occur prior to the peak load due to evolving damage.

In these experimental results, localisation of damage was observed at the structural
scale in narrow zones on the order of joint thickness. The macroscopic failure behaviour
is however strongly related to the mesostructure since damage occurs and evolves mainly
in the mortar joints leading to stress redistributions at the structural scale. The size and
the orientation of this localisation phenomenon has to be captured properly to determine
the structural failure modes and the associated energy dissipation.

2.2 Closed-form models for the non-linear behaviour

of masonry

Inspired by the experimental work of Page (1981, 1983), Dhanasekar et al. (1985),
macroscopic phenomenological models were elaborated to represent the non-linear be-
haviour of in-plane loaded masonry structures. A plane stress model using non-associated
plasticity laws was proposed in Lourenço et al. (1997). In order to characterise the or-
thotropic behaviour of masonry, this model includes a tensile fracture energy and a com-
pressive fracture energy, which are different for each material axis. In the same spirit, an
orthotropic damage model accounting for stiffness degradation and including four inde-
pendent internal damage parameters, one in tension and one in compression for each of the
two material axes, was developed in Berto et al. (2002) to consider the damage-induced
anisotropy of masonry. A model including both plasticity effects and stiffness degradation
was proposed in Papa and Nappi (1997). Note that these models all assume that the fail-
ure envelopes obtained experimentally under proportional loadings remain valid for the
case of non proportional loadings and therefore take into account in an approximate way
the stress redistributions due to stiffness evolutions, which may lead to considerable path
dependency effects. For the out-of-plane loading case, the orthotropic two-dimensional
continuum model proposed in Lourenço et al. (1997) was used in layered shell structures
in Lourenço (2000). This model based on plasticity concept includes softening behaviour
and independent fracture energies along each material axis.

All these phenomenological models are based on the formulation of closed-form con-
stitutive laws, and incorporate parameters to be identified experimentally. In the context
of the non-linear behaviour of orthotropic composite such as masonry, the representation
of full damage-induced anisotropy by means of closed-form constitutive laws however re-
mains complex and leads to difficult parameter identification procedures. In addition, the
case of out-of-plane loaded masonry structures requires even more complex closed-form
laws since other aspects of the behaviour such as membrane-flexural couplings have to be
taken into consideration.
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This motivates the use of multi-scale approaches allowing to postulate closed-form
constitutive laws at the scale of the constituents, and for which the material parameters
are a priori more straightforward to identify. The macroscopic anisotropy evolution ef-
fects are naturally deduced from the mesostructure by using homogenisation techniques.
Furthermore, the representation of damage localisation requires the use of a regularisa-
tion technique which, in the context of multi-scale approaches, has to be mesoscopically
motivated since all the material information is postulated at the mesoscopic scale.

2.3 Coarse graining methodologies for the failure of

materials

2.3.1 Non-linear behaviour of heterogeneous materials

In the last decades, considerable progress has been achieved in the field of the modelling
of the non-linear mechanical behaviour of heterogeneous materials. In this context, multi-
scale methods based among other approaches on homogenisation techniques have been
the topic of many contributions and are still a subject of intensive research nowadays,
see Geers et al. (2009). The main goal of these methods is to bridge the different physical
phenomena taking place at different scales in order to more accurately take into account
the effect of heterogeneities on the global material response. This is important for the
non-linear modelling of heterogeneous materials for which phenomena occurring at very
different scales strongly influence the global behaviour. In parallel to this research domain,
the modelling of deformation localisation phenomena leading to failure has been widely
considered in order to resolve highly non-linear problems resulting from crack propagation
and softening material behaviour.

In certain classes of materials, the modelling of localisation physically calls for multi-
scale representations since the structural or coarse-scale localisation generally originates
from physical phenomena which appear at finer scales, and since closed-form macroscopic
laws are then difficult to formulate. The consideration of multi-scale methods in up-
scaling microstructural material behaviour toward structural localised material response
only started to emerge recently in the literature, see for instance Massart et al. (2007a),
Belytschko et al. (2008), Belytschko and Song (2009).

Both concepts of damage localisation and coarse graining have extensively but almost
separately been discussed in the literature in the case of quasi-brittle material behaviour,
and were mostly restricted to two-dimensional problems. Complex heterogeneous materi-
als are however more and more met in shell-like structures such as, for instance, laminated
composite, honeycomb-type sandwich in mechanical engineering or masonry structure in
civil engineering. As a consequence, some work has been done in the literature in order
to extend multi-scale approaches and localisation modelling to shell formulations.

2.3.2 Computational modelling of damage localisation

In the two last decades, different approaches have been considered to model localisa-
tion of damage either with non-local models Pijaudier-Cabot and Baz̆ant (1988), Peerlings
et al. (1996), or with cohesive zone models Xu and Needleman (1994), Lourenço (1996),
Sluys and Berends (1998), de Borst (2003). Motivated by the appearance of high strain
gradients in narrow zones and crack openings, the concept of discontinuity incorporation
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within classical continuum descriptions has been widely used. A brief overview of this
concept is given now for plane and shell descriptions. Initially, embedded discontinuities
were used by introducing jumps either into strain fields, leading to weak discontinuities
as in Ortiz et al. (1987), Belytschko et al. (1988); or into displacement fields leading to
a strong discontinuity approach, see Simo et al. (1993), Lofti and Shing (1995), Oliver
(1996a,b), Armero and Garikipati (1996), Armero (1999), Wells and Sluys (2000). Both
approaches were discussed in a unified framework in Jirásek (2000). Later, the so-called
extended finite element method (X-FEM) based on the partition unity concept was pre-
sented in Moës et al. (1999), Belytschko and Black (1999), Belytschko et al. (2001), Wells
and Sluys (2001); allowing for continuous crack path and crack kinematics, in contrast
with the embedded discontinuity approach, which uses mainly element-based enrichments.
The partition unity concept was used to introduce stress free cracks in the context of lin-
ear elastic fracture mechanics in Moës et al. (1999) as well as cohesive laws with arbitrary
crack paths without remeshing in Wells and Sluys (2001). A recent extensive review of
the X-FEM methodology is available in Belytschko et al. (2009).

The two aforementioned approaches (embedded discontinuity and X-FEM) have been
extended for through-thickness cracks and delamination of plates and shells in the last
decade. In the context of through-thickness cracks, the extended finite element method
was firstly adapted for the modelling of cracks in Reissner-Mindlin plates in Dolbow et al.
(2000), accounting for a proper representation of the stress intensity factors (i.e. without
crack growth). The X-FEM methodology was also adapted to the continuum-based shell
formulation, see Areias and Belytschko (2005). A difficulty encountered in this context
was the consideration of specific cohesive laws for the transverse shear stress, a problem
which is not met in thin shell considerations. A meshfree Kirchhoff-Love formulation was
proposed recently in Rabczuk et al. (2007) resulting in no discretisation of the director
field, and allowing a straightforward implementation. Similarly to an in-plane approach
presented in Hansbo and Hansbo (2004), Mergheim et al. (2005), the X-FEM methodol-
ogy was reinterpreted in Areias et al. (2006). The discontinuity is then represented by two
overlapping elements using a pair of distinct deformation mapping for the displacement
and director fields. This concept was also applied in Cirak et al. (2005) for the dynamic
fracture and fragmentation of viscoplastic aluminium shells. In the context of delami-
nation of multi-layered composite structures, some approaches were proposed such as an
extension of the X-FEM methodology developed in Remmers et al. (2003) for solid-like
shell formulations in which delamination crack can occur at an arbitrary position in the
thickness. In addition, the X-FEM methodology was used recently for quasi-static crack
propagation of thin shells taking into account softening, adhesion and contact behaviour
by means of closed-form macroscopic cohesive laws, see Areias and Rabczuk (2008); and
for dynamic quasi-brittle fracture of thin shells subjected to impulse loads, see Song and
Belytschko (2009). Although the X-FEM methodology seems to prevail in the mod-
elling of crack propagation, the embedded discontinuity method still has drawn interest
in the past years at least for two-dimensional applications. The two-dimensional strong
embedded discontinuity approach proposed in Armero (1999) was extended to the Euler-
Bernoulli beam kinematics in Armero and Ehrlich (2006b) and the Reissner-Mindlin plate
kinematics in Armero and Ehrlich (2006a). Another approach based on a strong embed-
ded discontinuity formulation was presented for a continuum-based shell formulation in
Larsson (2004) in order to analyse delamination of laminated composite structures with
damage-plastic coupling.
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2.3.3 Methods for upscaling the behaviour of heterogeneous ma-

terials

In the field of multi-scale frameworks for heterogeneous materials, different techniques
have been developed in the past decades. Three techniques have emerged due to the in-
crease of available computational power for two-dimensional and three-dimensional prob-
lems; namely the asymptotic homogenisation theory, the substructuring method, and the
computational homogenisation method. These techniques are briefly reviewed, the focus-
ing on last progress achieved for the case of heterogeneous shells on one hand and the
consideration of size effects to properly represent structural localisation on the other hand.
The asymptotic homogenisation theory, proposed in Bensoussan et al. (1978), Sanchez-
Palencia (1980) and presented for two-dimensional problems in Suquet (1987) is based
on the assumption of a periodic microstructure and is still widely used for composite
materials, see the recent extensive review in Kalamkarov et al. (2009). This theory is
based on the asymptotic expansion of the macroscopic variables in powers of a scale ratio
characterising the scale of the periodic heterogeneities. This ratio is assumed to be very
small according to the scale separation principle which allows the definition of a repre-
sentative volume element (RVE) of the microstructure. Using the asymptotic expansion,
a boundary value problem can be defined on the RVE for each order under considera-
tion, see Peerlings and Fleck (2004). Note that each of these corresponding boundary
value problems needs to be solved numerically. The first-order asymptotic homogenisa-
tion rigorously gives the same solution as the computational homogenisation approach
with periodic boundary conditions, even though the respective boundary value problems
defined at the microstructural level are different. For thin structures, an additional scale
ratio is considered to characterise the small thickness, with respect to the Kirchhoff-Love
assumption. Note that the properties of a homogenised shell structure depend on the
ratio between both the characteristic length scales, see Cartraud and Messager (2006) for
the similar case of beam-like structures.

One of the most common applications of this approach in the field of engineering
mechanics is the determination of the elastic coefficients, see for instance Challagulla
et al. (2008) for the case of composite shell structures with orthotropic reinforcements.
Asymptotic homogenisation techniques were also applied for the case of periodic running
bond masonry walls subjected to out-of-plane loading. Such Kirchhoff-Love and Reissner-
Mindlin shell descriptions were developed respectively in Cecchi and Sab (2002b) and
Cecchi and Sab (2004) to characterise the elastic masonry behaviour. In both models, rigid
bricks connected by elastic interfaces were considered. The influence of bricks elasticity
was later presented in Cecchi and Sab (2007). In addition to engineering mechanics, the
asymptotic homogenisation is still applied for shell structures in various disciplines as
for instance the identification of elastic-electrical couplings of composite shell structures
incorporating piezoelectric materials, see Ghergu et al. (2005), Kalamkarov et al. (2007),
and the computation of magnetic field mitigation produced by ferromagnetic grid shell
shields, see Bottauscio et al. (2007, 2008).

The extension of the asymptotic homogenisation approach to non-linear problem is not
straightforward. Asymptotic homogenisation techniques were combined with limit analy-
sis concepts and optimisation techniques in order to compute ultimate strength properties
of structures and determine their failure mechanism. For the case of out-of-plane loaded
masonry walls, a kinematic limit analysis method was combined with a homogenised de-
scription under both Khirchhof-Love and Reissner-Mindlin assumptions, see Milani et al.
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(2006c), Cecchi et al. (2007), to find an upper bound approximation of the masonry fail-
ure surface in the space of the generalised stresses, see also Cecchi and Milani (2008).
In spite of the quasi-brittle and frictional behaviour of mortar joints in masonry which
requires non-associated flow rule, perfect plasticity assumption and associated flow rule
are used in this context. A limit analysis approach based on a homogenisation procedure
accounting for the strength domain of any shell failure mechanism was developed recently
in Milani et al. (2008) for the structural analysis of curved masonry shells such as arches,
vaults and domes. In this approach, a curved unit cell is considered to represent the mi-
crostructure and generalised cylindrical hinges are incorporated at the interfaces of shell
elements to represent structurally the plastic dissipation occuring at the microstructural
scale. A kinematic and static limit analysis scheme was also combined with an asymptotic
expansion method to determine the overall homogenised Kirchhoff-Love strength domain
of a rigid perfectly plastic periodic multi-layered plate, see Dallot and Sab (2008a,b) for
an extension towards thick plates.

The limit analysis methods effectively predict the load bearing capacity and the as-
sociated failure modes. These methods however are not able to represent the evolution
of stable cracks, i.e. the service states far below the ultimate load capacity. In order
to track the complete non-linear force-displacement response of heterogeneous shells and
still overcome the costly and curbersome identification of closed-form models, comple-
mentary computational multi-scale techniques were set up based on substructuring and
computational homogenisation methods. These concepts were also motivated by the fact
that the extension of multi-scale methods based on asymptotic expansion to geometri-
cally non-linear problems remains difficult, see Fish and Fan (2008). In the case where
the characteristic length scale of the microstructure is not small enough to satisfy the
scale separation principle, substructuring models which bear similarities with domain de-
composition methods have been proposed for two-dimensional problems. In this approach
the structure is decomposed in non-overlapping subdomains which are related to finite-
sized parts of the microstructure, see Ibrahimbegovic and Markovic (2003), Markovic and
Ibrahimbegovic (2004) for instance. A localised Langrange multiplier method is used in
order to connect the finite element mesh of each considered subdomain to the macro-
scopic finite element mesh playing the role of frame. A similar approach was applied
more recently for the in-plane non-linear behaviour of large masonry structures in Brasile
et al. (2007a,b). The concept of structural decomposition was also exploited for dam-
age assessment in two-dimensional random particle reinforced porous composites. In this
field, an adaptative multi-level model was proposed in Ghosh et al. (2001) combining an
asymptotic homogenisation procedure with a microstructural representation based on a
network of single-inclusion multi-sided convex cells, called Voronoi cells, see Moorthy and
Ghosh (1998). This cell model, based on a hybrid stress-based finite element formulation,
allows one to account for the inclusion dispersion. As an application, this approach was
recently enhanced for the modelling of damage-induced anisotropy in ductile cast alloys
such as aluminium and metal matrix composites, see Ghosh et al. (2009). In this case, a
non-local constitutive law is used at the macroscopic level to incorporate a characteristic
length scale avoiding mesh dependency. In these multi-level methods, the macroscopic
constitutive law is assumed and calibrated by means of the homogenisation of evolving
microstructural variables. However, the concept of substructuring models seem to be not
widely extended to shell formulation.

Based on the scale separation assumption, the computational homogenisation ap-
proach allows to numerically compute the average non-linear behaviour of a heteroge-
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neous microstructure by means of averaging theorems and a boundary value problem on
a RVE, see Smit et al. (1998), Feyel and Chaboche (2000), Kouznetsova et al. (2001)
and also Geers et al. (2009) for a state of the art of recent trends and challenges of this
approach. In the field of engineering mechanics, the computational homogenisation ap-
proach was extended recently for structured thin sheets using the homogenisation of a
through-thickness RVE based on a second-order strategy, see Geers et al. (2007), Coenen
et al. (2008). However, the thick shell case still raises questions concerning the transverse
shear upscaling and is the topic of current research work. As a special case, a peri-
odic homogenisation procedure presented in Mistler et al. (2007) for the case of elastic
Kirchhoff-Love masonry shells may be adapted for non-linear material response, as will
be shown in the sequel. Computational homogenisation procedures generally consider the
same physical space at the different scales. A recent approach proposed in Grytz and
Meschke (2008) generalises computational homogenisation to the formulation of continua
in curvilinear coordinates by introducing a proper physical reference coordinates at each
scale. This requires the definition of transition operators which account for the transfor-
mations between the different physical coordinate systems. This approach is adapted to
the non-linear continuum-based shell formulation considering appropriate shell assump-
tions and applied to the biomechanical multi-scale modelling of shell-like soft tissues, see
Grytz and Meschke (2008).

In order to reduce the typical high computational cost of direct computational ho-
mogenisation procedures with a certain compromise on the solution accuracy, transfor-
mation field analysis initially proposed in Dvorak (1992) was presented for deriving the
non-linear behaviour of plastic and damaging composite. This approach is based on the
decomposition of each constituent of the microstructure into subdomains in which uniform
inelastic strain fields are assumed, leading to off-line homogenisation. This concept was
applied recently for the case of in-plane loaded masonry walls in Sacco (2009). In order
to evaluate the inelastic behaviour of heterogeneous shells, an asymptotic homogenisation
procedure was also recently coupled to an eigendeformation-based model reduction which
generalises transformation field analysis to account for interface debonding within the
microstructure, see Oskay and Fish (2007, 2008).

Two multi-scale frameworks for the non-linear analysis of periodic heterogeneous plates
were presented using continuum damage mechanics. A two-fold multi-scale enrichment
methodology was proposed recently in Oskay (2009) for the inelastic analysis of heteroge-
neous plate structures. The enrichment strategy consists of a strain enrichment using the
asymptotic homogenisation theory and based on non-local developments, and a displace-
ment enrichment using a partition of unity method. The latter allows one to consider
cases in which the scale separation assumption does not hold, see also Fish and Yuan
(2005). This method is combined with an eigendeformation-based model reduction in
order to avoid high computational cost for non-linear analysis of large structure by com-
promising on the solution accuracy, see Oskay and Fish (2007, 2008). The applicability
of this model however remains restricted to the analysis of very thin structures where the
Kirchhoff-Love assumptions are valid at the structural scale. Another multi-scale frame-
work based on an asymptotic homogenisation procedure was developed for the analysis of
failure of thin heterogeneous plates, see Oskay and Ghanshyam (2009). In this approach,
macroscopic inelastic and damage fields are linked to microscopic inelastic and damage
fields by means of weighted averaging relations using the eigendeformation concept. A
viscous regularisation is used at the structural scale to avoid mesh sensitivity but does
not allow to represent damage localisation at the structural scale. Both these models,
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Oskay (2009), Oskay and Ghanshyam (2009) have been verified against a full fine-scale
model where all the heterogeneities are represented.

Some above-mentioned multi-scale models are based on non-local descriptions at the
structural scale such as Ghosh et al. (2009) for in-plane problems and Oskay and Ghan-
shyam (2009) for the case of thin structures. These models allow to consider structural
strain localisation bands to some extent by means of relatively fine mesh and leading to
remeshing in the case of propagating failure. Another damage model based on a descrip-
tion of the energy dissipation associated with failure was proposed recently in Dascalu
et al. (2008). This continuum model incorporating an internal length parameter deduced
from the microstructure is coupled with the asymptotic homogenisation method to de-
scribe size effects, material softening and damage-induced anisotropy in brittle heteroge-
neous material. In the context of computational homogenisation, a second-order approach
was proposed in Kouznetsova et al. (2004) incorporating in the macroscopic continuum a
length scale defined by the size of the RVE. In this enhanced homogenisation procedure
linear variations of the average strain field can be considered over the RVE allowing to
account for moderate size effects. An alternative computational homogenisation approach
based on a coupling between the structural finite element size and the RVE size similar
to substructuring approaches was proposed in Gitman et al. (2008) to account for the
softening response of quasi-brittle materials with no dependency on the discretisation
size.

It is now well known to be crucial in such multi-scale frameworks to properly treat the
localisation phenomenon at each scale under consideration in order to keep a well-posed
description for a complete softening analysis of problems involving damage and fracture.
In this spirit and inspired by progress made in the development of embedded localisation
models, continuous-discontinuous scale transitions started to emerge in the literature. A
first approach based on this concept was developed in Massart et al. (2007a) for damage
in in-plane loaded masonry wall, see also Massart et al. (2007b). A twofold first-order
computational homogenisation scheme is presented to account for the behaviour of dam-
aging and unloading material. This procedure relies on the definition of a localisation
band using strain discontinuities driven by an evolving damaging unit cell. The detection
of localisation bands is based on the macroscopic homogenised tangent stiffness leading to
a physically based description of preferential damage orientations. A methodology based
on a condition of increasing energy dissipation is also presented to treat microstructural
snap-backs. Another multi-scale approach was recently coupled to the extended finite
element method. This approach consists in feeding the behaviour of structural scale
equivalent displacement discontinuities with information extracted from the aggregation
of all microstructural material instabilities present in a unit cell, see Belytschko et al.
(2008), Belytschko and Song (2009).

2.4 Adopted strategy and originality of the work

The macroscopic behaviour of textured heterogeneous materials such as masonry is
not obvious to capture. Complex behaviours such as damage-induced anisotropy leading
to stress redistributions can be observed in experimental results for in-plane and out-of-
plane loading processes as discussed in Section 2.1. The modelling of such a macroscopic
behaviour through closed-form relations may be cumbersome to identify due to a large
number of material parameters, see Section 2.2; and even complex to formulate from a
mathematical point of view.
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A multi-scale approach can therefore offer an attractive and flexible solution in the
characterisation of heterogeneous materials. In the context of non-linear behaviour, the
computational homogenisation method is at present the most versatile approach. The
principle of this method is to extract the macroscopic quantities from mesoscopic compu-
tational analyses which are nested in the structural computations. This allows to avoid
the formulation of closed-form macroscopic constitutive laws and therefore allows one to
consider complex mesostructures, which may evolve during the loading process.

For the numerical treatment of damage localisation, different techniques were briefly
reviewed in Section 2.3.2. In the case of masonry, the structural localisation can be
treated by discontinuities since the size of the localisation zone is usually smaller than
the RVE size. The embedded strong discontinuity approach proposed in Armero (1999),
Armero and Ehrlich (2006a) will be used here to represent the collective behaviour of fine-
scale cracks using average cohesive zones including mixed cracking modes and presenting
evolving orientation related to fine-scale damage evolutions.

As shown in Section 2.3, coarse graining methodologies for the failure of quasi-brittle
heterogeneous materials have started to emerge for in-plane problems but remain largely
unexplored for shell descriptions. This dissertation proposes a new periodic homogenisa-
tion-based multi-scale approach for quasi-brittle thin shell failure. A first originality of this
research work is the definition and analysis of a criterion based on the homogenisation of
a fine-scale modelling to detect localisation in a shell description and determine its evolv-
ing orientation. Secondly, an enhanced continuous-discontinuous homogenisation method
incorporating strong embedded discontinuities driven by the damaging mesostructure is
proposed for the case of in-plane loaded structures. Finally, this continuous-discontinuous
homogenisation scheme is extended to a shell description in order to model the localised
behaviour of out-of-plane loaded structures. These multi-scale approaches for failure are
applied on masonry walls and verified against three-dimensional full fine-scale computa-
tions in which all the bricks and the joints are discretised.



Chapter 3

Embedded strong discontinuity in

shell formulation

3.1 Introduction

This chapter presents the mathematical tools and notations used in the sequel to
treat the damage localisation at the structural scale. These tools are taken from the
literature and recalled here for the readability of the dissertation. First, the Reissner-
Mindlin engineering shell formulation is presented for a non-linear material behaviour.
The equilibrium equations are given and an enhanced assumed strain method proposed
in Batoz and Lardeur (1989), Batoz and Dhatt (1990) to avoid transverse shear-locking for
linear problems is extended here to the material non-linearities. Secondly, the embedded
strong discontinuity approach proposed in Armero (1999), Armero and Ehrlich (2006a) is
presented for the modelling of localised shell failure. This method is based on an element
enhancement using displacement discontinuities to represent the cracks. Additional local
equilibrium equations are introduced to couple the crack behaviour to the global shell
equilibrium. Details are given about the numerical implementation.

3.2 Shell formulation

3.2.1 Reissner-Mindlin kinematics and equilibrium equations

The domain of the global problem of interest is a flat shell represented by its reference
plane Ω and its contour ∂Ω. The classical Reissner-Mindlin kinematics is considered in
the infinitesimal strains range using the engineering or generalised displacements, namely
the in-plane displacement vector ~v, the rotation vector ~ϑ and the transverse deflection w.
The Reissner-Mindlin kinematics is based on the assumptions that (i) the ‘normals to the
undeformed reference surface remain straight but not necessarily normal to the deformed
reference surface’, (ii) the thickness remains constant, and (iii) the normal stress in the
thickness direction vanishes. Using the first two assumptions, the in-plane and out-of-
plane displacements of any material point P in the thickness of the shell can be expressed
as {

~vP = ~v(x, y) + z~β(x, y)
wP = w(x, y)

(3.1)

where x, y are the in-plane Cartesian coordinates and z is the out-of-plane or thickness
coordinate. Note that the vector ~β is linked to the rotations around the in-plane axes by

13
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~β = ~ϑ×~ez with ~ez the unit vector in z-direction.
In this context, the generalised strain measures are the membrane strain tensor E, the

curvature tensor χ and the transverse shear vector ~γ defined as






E = (~∇~v)sym

χ = (~∇~β)sym with ~β = ~ϑ×~ez

~γ = ~∇w + ~β

(3.2)

where ~∇ is the gradient operator vector with respect to the in-plane coordinates. The
stress resultants significant to the shell formulation are work conjugate to the generalised
strain measures (3.2) and denoted by N for the membrane force tensor, M for the bending

moment tensor and ~T for the transverse shear force vector. These stress measures are
given by the integration of the tridimensional stresses along the thickness which reads in
subscript notation 





Nαβ =

∫

t

σαβ dz

Mαβ =

∫

t

σαβ z dz

Tα =

∫

t

σα3 dz

(3.3)

where Greek subscripts vary from 1 to 2 only and correspond to the in-plane components.
The subscript 3 corresponds to the out-of-plane component. The sign convention of all
the stress components is shown in Figure 3.1.

Figure 3.1: Sign convention of Reissner-Mindlin generalised stress components.

Using these generalised stress measures, the equilibrium equations at a point of the
reference surface can be written as follows







~∇·N + ~F = ~0
~∇· ~T + p = ~0
~∇·M − ~T + ~m = ~0

(3.4)

where ~F and ~m are the thickness integration of respectively the in-plane body forces and
the torques of these forces. The scalar p represents the external out-of-plane pressure
applied on the shell reference surface. The first two equations in (3.4) corresponds respec-
tively to the in-plane and out-of-plane translation equilibrium and the third equation in
(3.4) imposes rotation equilibrium.

In order to be resolved by a finite element scheme, this equilibrium problem can be
expressed in a weak form by the variational statement

∫

Ω

(

N :δE + M :δχ + ~T ·δ~γ
)

dΩ =

∫

Ω

δwext

s dΩ +

∫

∂Ω

δwext

c dΓ (3.5)
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for all admissible variations δ~u, δ~ϑ and δw, and where δwext

s and δwext

c represent the
variation of the external work density of applied forces and torques, respectively per unit
area and per unit length.

Accounting for material non-linearities, the constitutive law linking the generalised
stresses to the generalised strains has to be introduced in its linearised form to close the
shell formulation







δN = 4Lmm :δE + 4Lmf :δχ + 3Lms ·δ~γ
δM = 4Lfm :δE + 4Lff :δχ + 3Lfs ·δ~γ

δ ~T = 3Lsm :δE + 3Lsf :δχ + 2Lss ·δ~γ
(3.6)

where the nine tensors Lab (with a, b = [m, f, s]) are the material tangents governing
the membrane (m), flexural (f) and shearing (s) material behaviours and the couplings
between each other.

In the sequel, especially for the finite element discretisation, the developments will
be expressed in a compact matrix form in order to keep the generality and focus on the
physical meaning of the equations. For the Reissner-Mindlin shell formulation sketched
above, the following matrices are considered

{q} = {vx vy ϑx ϑy w}T (3.7)

{E} = {Exx Eyy Exy χxx χyy χxy γx γy}
T (3.8)

{Σ} = {Nxx Nyy Nxy Mxx Myy Mxy Tx Ty}
T (3.9)

(3.6) −→ {δΣ} = [L]{δE} (3.10)

3.2.2 Enhanced assumed strain for shear locking avoidance

It is now well known that the discretisation of the transverse shear strain directly
from the kinematics definition (3.1) leads to the shear locking problem. In this work,
the Discrete Shear Triangle (DST) finite element formulation proposed by Batoz and
Dhatt (1990) has been implemented to overcome the locking problem. Note that the
DST finite element was formulated in Batoz and Dhatt (1990) for the linear elastic case.
This formulation is here extended in order to take into account material non-linearities
in the infinitesimal range.

In the DST formulation, the independent representation ~̄γ of the transverse shear is
based on the rotation equilibrium equation (3.4) with the absence of surface torques and
the decoupling of the shear behaviour with the membrane and flexural behaviours, i.e.
3Lms = 3Lsm = 3Lfs = 3Lsf = 30.

δ~̄γ = 2L−1
ss

·δ ~T (3.11)

~T = ~∇·M (3.12)

δM = 4Lfm :δE + 4Lff :δχ (3.13)

In the linear elastic case, the material laws (3.6) are expressed in terms of the total values
of stress and strain variables, and can therefore be directly substituted in the rotation
equilibrium equation so that

~̄γ = 2L−1
ss

·

=~T
︷ ︸︸ ︷

(~∇·(4Lfm :E + 4Lff :χ)
︸ ︷︷ ︸

=M

) (3.14)
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This relation allows to define the assumed transverse shear strain in particular as a func-
tion of the rotation field through the definition of the curvature tensor, see Batoz and
Lardeur (1989), Batoz and Dhatt (1990). In the case of material non-linearities, the total
stress values used in the rotation equilibrium are not explicitly given by the material laws
(3.6), as these laws are expressed in their linearised form. As a consequence, a first-order
approximation is assumed to estimate the total stress values needed to represent the as-
sumed transverse shear strain. In the context of an incremental iterative Newton-Raphson
resolution scheme, as the total stress values at the iteration (i) of a given incremental step
have to be evaluated from the last physical state, and not from the previous iteration, the
material tangents computed at the last converged state are considered in the first-order
development

M(i) ≈ M(0) + 4L
(0)
fm :∆E(i) + 4L

(0)
ff :∆χ

(i) (3.15)

~T (i) ≈ ~T (0) + 2L(0)
ss

·∆~γ(i) (3.16)

where the iteration (0) of the current incremental step corresponds to the last converged
step. In Equations (3.15) and (3.16), the symbol ∆ represents the incremental variation
of a variable from the last converged state to the current iteration. Substituting (3.15)
into (3.12) with the curvature definition (3.2), and neglecting the membrane effects and
spatial variations of the material tangents, the assumed transverse shear strain can be
extracted from (3.16) and given in the infinitesimal range by

∆~̄γ(i) =
(
2L(0)

ss

)−1
·

(

4L
(0)
ff

... ~∇
(

~∇∆~β(i)
)sym

)

(3.17)

Equation (3.17) shows that the interpolation of the assumed transverse shear strain needs
at least a quadratic interpolation of the rotation field due to the second derivative. As a
consequence, a set of incomplete quadratic shape functions can be introduced to interpo-
late the rotation field, see Batoz and Dhatt (1990). Considering a local axis system for
each side of the element, with s-axis and n-axis respectively tangent and normal to the
side, the component βs is interpolated quadratically along each side whereas the compo-
nent βn remains linear. This interpolation introduces one additional degree of freedom
αJ at the middle of each side of the considered element, which leads in a matrix form to

{β} =
nn∑

I=1

N I{βI} +

nside∑

J=1

{PJ}αJ (3.18)

where N I is a set of linear shape functions and {PJ} contains only quadratic terms.
Substituting the discretisation (3.18) into (3.17), the assumed transverse shear can be
interpolated only as a function of the additional parameters {α}

{∆γ̄} = [Bsα]{∆α} (3.19)

Note that the assumed shear strain operator [Bsα] is implicitly a function of the material
tangent matrices [Lss] and [Lff] as shown in (3.17).

In order to eliminate the additional parameters {α}, different conditions can be pre-
scribed by means of either a discrete collocation, see Batoz and Lardeur (1989) or an
integral form, see Batoz and Dhatt (1990). In the sequel, the following integral form will
be considered

∫

side

(γs − γ̄s) ds = 0 ⇒

∫

side

(∇sw + βs − γ̄s) ds = 0 (3.20)
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which allows to relate the additional parameters to the classical degrees of freedom, see
Batoz and Dhatt (1990) for detailed developments in the linear elastic case.

{∆α} = [An]{∆q} (3.21)

The discretisation of the membrane strain and curvature fields can be obtained by
the derivation of the interpolated displacement fields. Considering a 3-noded shell finite
element, a classical linear interpolation is used for the in-plane displacement field ~v. This
choice leads to a constant membrane strains tensor over each element. This motivates the
fact that the membrane effects have been neglected in the independent representation of
the transverse shear strain since (3.17) is based on the derivation of the Equation (3.15).
For the curvature field, the quadratic interpolation (3.18) is derived. Consequently, the
generalised strain incremental variation reads in the infinitesimal range







∆E
∆χ
∆γ̄






=





Bm 0 0 0
0 Bfθ 0 Bfα

0 0 0 Bsα











∆v
∆ϑ
∆w
∆α







⇒ {∆E} =
[

Bq Bα

]
{

∆q
∆α

}

(3.22)

Eliminating the additional parameters variations {∆α} in (3.22) by (3.21), the discre-
tised strain fields can be expressed as a function of the nodal degrees of freedom only

{∆E} = ([Bq] + [Bα][An]){∆q} ⇒ {∆E} = [B̄]{∆q} (3.23)

where the operator [B̄] depends on the material tangents because of the assumed trans-
verse shear strain (3.17). This dependence is required for a proper convergence of the
computation scheme.

3.3 Embedded discontinuities for the modelling of lo-

calised failure

3.3.1 Modelling of shell failure with strong discontinuities

The formulation of a continuum model capturing the localised dissipation observed in
failure of shells is presented in this Section.

The global mechanical problem of interest here has been presented in Section 3.2. A
flat shell of domain Ω is then considered with the Reissner-Mindlin kinematics assump-
tions. In order to characterise the localised dissipative mechanisms, singular displacement
fields are introduced in a local neighbourhood Ωd ⊂ Ω of a global material point ~x where
a localised failure mechanism has been detected along a curve Γd ⊂ Ωd. The main idea of
this kinematics enrichment is to incorporate the associated dissipative effects driven by a
local closed-form cohesive law into the global problem (3.5) as the size of this neighbour-
hood vanishes, see Armero (1999, 2001), Armero and Ehrlich (2006a). For this purpose,

the generalised displacement fields in Ωd (~vµ, ~ϑµ, wµ) are given by the enrichment of the

classical regular generalised displacement fields (~v, ~ϑ, w) by a discontinuous part according
to 





~vµ = ~v + J~vµKΨv

~ϑµ = ~ϑ + J~ϑµKΨϑ

wµ = w + JwµKΨw

(3.24)
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where the three local functions Ψv, Ψϑ and Ψw exhibit a unit jump (JΨ·K = 1) along the
curve Γd. The discontinuous fields added to the regular fields in (3.24) are expressed

in terms of the jumps J~vµK, J~ϑµK and JwµK of the in-plane displacement vector, rotation
vector and transverse deflection, respectively. Using the classical Reissner-Mindlin theory,
the enhanced generalised strain measures in the local neighbourhood are defined by







Eµ = E(~v) + Ẽ(J~vµK) + (J~vµK~n)sym δΓd

χµ = χ(~β) + χ̃(J~ϑµK) + (J~ϑµK~n)sym δΓd

~γµ = ~γ(~ϑ, w) + ~̃γ(J~ϑµK, JwµK) + JwµK~n δΓd

(3.25)

where ~n is the unit normal to the curve Γd and δΓd
is the Dirac function centred on Γd.

The first two terms of the right hand side of Equations (3.25) represent the regular part
of the generalised strain measures in the bulk part of the neighbourhood (Ωd\Γd).

The determination of the new fields ~vµ, ~ϑµ and wµ defined along Γd requires the con-
sideration of an additional equation to connect these local fields with the global problem
(3.5) in Ωd. The physical meaning of the additional fields as being the jumps of the local
generalised displacements points directly to the consideration of the weak form of the
local equilibrium equation along Γd

∫

Γd

[

δJ~vµK·
(

~Nd − N·~n
)

+ δJ~ϑµK·
(

~Md − ~ez×(M·~n)
)

+ δJwµK
(

Td − ~T ·~n
)]

dΓ = 0

(3.26)

for all variations δJ~vµK, δJ~ϑµK and δJwµK in Γd. Equation (3.26) rules, under a weak form,
the continuity of the generalised tractions along the discontinuity curve and allows to
define the membrane force vector ~Nd, the bending moment vector ~Md and the transverse
force scalar Td across the discontinuity in terms of the corresponding generalised stresses
N, M, and ~T in the bulk Ωd\Γd and their projection on the discontinuity curve Γd. Note

that the bending moment vector ~Md is work conjugate to the rotation jump vector J~ϑµK,

and not to J~βµK. As a consequence, the components of the vector ~Md correspond to the
couples along the reference axes. Following this convention, the bending moment tensor
M has to be properly projected on the discontinuity line by ~ez×(M·~n) as used in Equation

(3.26) in order to make the projection of M correspond to the vector ~Md.
As a material response is used to link the bulk strains to the bulk stresses in the global

problem, a constitutive law needs to be defined in the local neighbourhood to close the
formulation. This law characterises the cohesive behaviour of the discontinuity by relating
the generalised stresses across the discontinuity to the generalised displacement jumps







δ ~Nd = 2Cd
mm

·δJ~vµK + 2Cd
mf

·δJ~ϑµK + 1Cd
ms

δJwµK

δ ~Md = 2Cd
fm

·δJ~vµK + 2Cd
ff

·δJ~ϑµK + 1Cd
fs

δJwµK

δTd = 1Cd
sm

·δJ~vµK + 1Cd
sf

·δJ~ϑµK + 0Cd
ss

δJwµK

(3.27)

where the tensors Cd
ab

(with a, b = [m, f, s]) are the material tangents of the disconti-
nuity incorporating potential inelastic effects as needed for the particular material under
consideration.

Note again that the interest of the formulation presented here lies in the local char-
acter of Equation (3.26) in contrast with the global Equation (3.5), and the fact that its
solution defines the local enriched displacement fields as functions of the global displace-
ment fields allowing the elimination of these local fields in the global problem, see Armero
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(1999, 2001). Therefore, the existence of solutions of Equation (3.26) can be obtained by
considering the limit of a vanishing local neighbourhood in the sense that

hd =
measure(Ωd)

measure(Γd)
−→ 0 (3.28)

for a fixed global domain Ω. As discussed in Armero (2001), the resulting problem can be
shown to have a solution incorporating the dissipative effects of the local cohesive law in
the global problem whose solution represents the main purpose in all these considerations.

3.3.2 Shell finite elements with embedded strong discontinuities

The finite element setting corresponding to the above continuum framework of strong
discontinuities is discussed in this Section. For the sake of clarity and generality, the
following developments are presented in a compact matrix format.

Global finite element problem

In the continuum approach presented in the previous Section, the global boundary
value problem (3.5) can be approximated numerically by the standard finite element
discretisation. The domain Ω is discretised with a mesh of elements Ωh

e . The global
generalised displacements can be interpolated through a standard set of shape functions.
The generalised strain measures can be expressed in terms of the nodal displacements and
rotations

{εh} = [B̄]{q} (3.29)

where [B̄] is the generic strain operator. This operator defines the appropriate assumed
strain formulation for the bulk response in order, for instance, to avoid shear-locking
in Reissner-Mindlin formulation as shown in Section 3.2. The global problem (3.5) can
therefore be discretised as

{R} = {fext} −A

(∫

Ωh
e

[B̄]T{σ} dΩ

)

= {0} (3.30)

by introducing the standard assembly operator A of all the elements of the mesh Ωh.

Embedded strong discontinuities as element enhancements

In order to keep the continuum aspect of the classical finite element framework, the
discontinuities have been embedded in a local neighbourhood Ωd vanishing in the limit. In
the discrete approach, this neighbourhood can be identified as a finite element Ωh

e where
a discontinuity has been detected by an appropriate criterion. In this context, note that
the limit relation (3.28) corresponds to the fundamental notion of mesh refinement. In
order to discretise the discontinuity, a straight segment Γh

e , named the discontinuity line,
is considered through a given element Ωh

e for the shell problem of interest here.
A local interpolation of the displacement jump fields introduced in Equation (3.24) is

considered
{Jqh

e K} = [J ]{ξ} (3.31)

in terms of a set of local element parameter {ξ} and associated jump interpolation func-
tions [J ] along Γh

e . The degree of these jump interpolation functions can be a priori
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chosen. For the case of plane kinematics, this approach has been first developed with
constant jumps along the discontinuity line, see Armero (1999), and recently extended to
linear jump interpolations in order to avoid stress locking in more complex failure mode,
see Linder and Armero (2007). For the case of plate or shell kinematics, as the trans-
verse deflection is related to the rotation through the transverse shear strain definition,
the transverse deflection jump Jwh

e K has to be interpolated as a function of the rotation
jump parameters, see Armero and Ehrlich (2006a). This requires the introduction of an
articulation point located at position ~xΓh

e
which is the centre of the rotation jump. The

position of this point can be a priori chosen along the discontinuity line. For the sequel,
a constant interpolation will be considered for the membrane and rotation jumps and the
discontinuity line will be introduced at the geometrical centre of the element. The trans-
verse deflection jump will therefore be a linear function of the rotation jump, as shown in
Equation (3.32). The constant term ξw corresponds to the transverse deflection jump at
the articulation point, see Figure 3.2.







J~vh
e K = ~ξv

J~ϑh
e K = ~ξϑ

Jwh
e K = ξw − (~x − ~xΓh

e
) · ~ξβ

= ξw + ~ξϑ ·[(~x − ~xΓh
e
)×~ez]

= ξw + (y − yΓh
e
)ξϑx

− (x − xΓh
e
)ξϑy

(3.32)

⇒ [J ] =









1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 (y − yΓh

e
) −(x − xΓh

e
) 1









(3.33)

Figure 3.2: Embedded strong discontinuity for a shell element.

Due to the new five element parameters {ξ} = {ξvx
ξvy

ξϑx
ξϑy

ξw}
T , the discretisation of

the regular part of the generalised strain measures introduced in Equation (3.25) takes
the form

{εh} = [B̄]{q} + [G(c)]{ξ} (3.34)

where [G(c)] is a linear strain operator, named compatibility operator, incorporating the
jump effects into the bulk strains, see Armero (1999), Jirásek (2000).
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Before defining a general procedure to determine the compatibility operator [G(c)], the
simple case of a unidimensional bar element is considered to interpret the influence of this
operator and the effect of the jump on the bulk deformation, see Figure 3.3. Without
localisation, the infinitesimal elongation of the bar is simply given by the ratio between the
relative displacement and the bar length, see Figure 3.3 (b). Upon localisation, Figure
3.3 (c) shows that the elongation of the bulk is smaller by considering the same total
relative displacement. Indeed, this bulk elongation is given by the ratio between the
effective relative displacement (u − ξ) and the bar length. In this simple example, it
clearly appears that the enhanced compatibility operator is equal to the opposite of the
classical strain operator. The new enhanced operator therefore allows to reduce the bulk
strain during the deformation localisation process. Once the deformation is completely
localised, which corresponds to a fully softened state, the strain bulk vanishes and the
total relative displacement is entirely given by the jump, see Figure 3.3 (d).

Figure 3.3: Interpretation of the compatibility operator [G(c)] in the case of a bar ele-
ment: (a) undeformed configuration, (b) deformed configuration without localisation, (c)
deformed configuration with localisation, (d) fully softened state.

In a general way, the determination of the compatibility operator [G(c)] relies on the
design of stress locking-free finite elements. In other words, the kinematics of a fully
softened discontinuity has to be correctly resolved without any spurious transfer of stresses
across the discontinuity. This state is referred to as the discontinuity mode, see Armero
and Ehrlich (2006a). This corresponds to no traction along the discontinuity line with no
stress resultants, and consequently vanishing strain measures, in the bulk of the element

{ε̂h} = [B̄]{q̂} + [G(c)]{ξ} = {0} ∀{ξ} (3.35)

The displacements of a node I of an element presenting a discontinuity mode can easily
be expressed in terms of the jump parameters and a rigid displacement for the sake of
generality

{q̂I} = {qrigid} + HΓh
e
[J I ]{ξ} (3.36)

where HΓh
e

is the Heaviside function centred on the discontinuity line Γh
e . This line

subdivides the element into both domains Ωh−
e and Ωh+

e , see Figure 3.2, in which the
Heaviside function takes the values 0 and 1, respectively. Substituting (3.36) in (3.35), it
can be shown that the compatibility operator is given by

[G(c)] = −
∑

I∈Ωh+
e

[B̄I ][J I ] (3.37)

where only the contribution of the nodes belonging to the domain Ωh+
e is taken into

account.
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Local discrete equilibrium equations along the discontinuity

As presented in Section 3.3.1 for the continuum framework, the enrichment of the
displacement fields by additional jump fields leads to the definition of an additional set of
Equations (3.26) which corresponds to the stress continuity condition across the disconti-
nuity line. In their discrete version, these local equations can be expressed in a compact
matrix form as follows

∫

Γh
e

{δJqh
e K}T ({σd} − {σn}) dΓ = 0 ∀{δJqh

e K} (3.38)

where the column vector {σd} collects the stress resultants of the discontinuity and {σn}
is the column vector collecting the projections of the stress resultants on the discontinuity
line of normal ~n with {σn} = [n]{σ} where [n] is a projection matrix based on the
components of the unit normal vector ~n, see Equation (3.39).







Nnx

Nny

Mnx

Mny

Tn







=









nx 0 ny 0 0 0 0 0
0 ny nx 0 0 0 0 0
0 0 0 0 −ny −nx 0 0
0 0 0 nx 0 ny 0 0
0 0 0 0 0 0 nx ny















Nxx

Nyy

Nxy

Mxx

Myy

Mxy

Tx

Ty







(3.39)

Substituting the jump discretisation (3.31) into (3.38), the stress continuity condition
reads ∫

Γh
e

[J ]T{σd} dΓ −

∫

Γh
e

[J ]T [n]{σ} dΓ = {0} (3.40)

As the generalised bulk stresses {σ} are defined naturally in the bulk and, in particular,
are known at the quadrature points used in the evaluation of the integral in (3.30), a
projection scheme has to be defined in order to integrate the bulk stresses along the
discontinuity line. For this reason, a new operator [G(e)], named equilibrium operator,
is introduced to approximate the local discrete equilibrium, see Armero (1999), Jirásek
(2000), Armero and Ehrlich (2006a), which then reads

∫

Ωh
e

[G(e)]
T{σ} dΩ +

∫

Γh
e

[J ]T{σd} dΓ = {0} (3.41)

Based on this consideration, the equilibrium operator, a priori different from the compat-
ibility operator [G(c)], has to satisfy the following conditions

∫

Ωh
e

[G(e)]
T{σ} dΩ = −

∫

Γh
e

[J ]T [n]{σ} dΓ + lΓh
e
o(hp+1

e ) (3.42)

where he is the ratio between the element area and the discontinuity length. It is recalled
that the dissipative effects driven by the local closed-form cohesive law are incorporated
into the global problem by considering the limit of a vanishing local neighbourhood (3.28),
which corresponds to the limit of refining meshes (he −→ 0), see Armero (1999, 2001),
Armero and Ehrlich (2006a). As the purpose of the equilibrium operator is to project
the bulk stresses on the discontinuity line, this is assumed to be expressed by the form
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[G(e)]
T = −1/he[F (x, y)]T [n]. The matrix function [F (x, y)] can be determined in such a

way that the condition (3.42) is exactly satisfied, with no higher order terms, for complete
polynomials of order up to p

1

he

∫

Ωh
e

[F (x, y)]T xkyl dΩ =

∫

Γh
e

[J ]T xkyl dΓ (3.43)

for all k, l = {0, 1, ..., p} with k + l ≤ p, see Armero and Ehrlich (2006a) for detailed
developments.

Considering linear spatial variations of the stress fields on the elements, the approxi-
mation order can be restricted to p = 1. As a consequence, the matrix function [F ] is a
set of complete linear polynomials such that Fij = aij + bijx+ cijy with i, j = {1, 2, ..., 5}.
After straightforward manipulations, it can be show that the coefficients of the functions
Fij are given by







aij

bij

cij






= he




∫

Ωh
e





1 x y
x x2 xy
x xy y2



 dΩ





−1 


∫

Γh
e

Jij







1
x
y






dΓ





with i, j = {1, 2, ..., 5}

(3.44)

Note that in the case of constant stress fields on the elements (p = 0) and an articula-
tion point at the middle of the discontinuity line, the functions Fij are strongly simplified
leading to

Fij =

{
Jij for constant Jij

0 for linear Jij
with i, j = {1, 2, ..., 5} (3.45)

In this particular case, the coupling between the rotation jumps and the deflection jumps,
due to the non-diagonal terms of jump interpolation matrix [J ] (see Equation (3.33))
vanishes in the stress continuity condition.

Note also that the equilibrium operator is completely determined by knowing the
geometry of the element and the position of the discontinuity line. Moreover, these
local equations identify weakly the driving stress of the discontinuity which are linked to
the jump parameters through the considered cohesive law governing the response of the
discontinuity.

Numerical implementation

In this Section, the numerical implementation of the finite element method described
above is outlined. This leads to the resolution of the discrete global equilibrium (3.30)
together with the discrete enhanced local equilibrium (3.41). For the sake of clarity, the
following development is considered at the element level. The global problem may be
constructed by using a classical assembly scheme. The element equilibrium equations can
therefore be rewritten by introducing the internal forces {f int

e,q} and {f int

e,ξ} corresponding
to the displacement and jump degrees of freedom, respectively.

{f int

e,q} =

∫

Ωh
e

[B̄]T{σ} dΩ (3.46a)

{f int

e,ξ} =

∫

Ωh
e

[G(e)]
T{σ} dΩ +

∫

Γh
e

[J ]T{σd} dΓ (3.46b)
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Note that {f int

e,ξ} does not represent internal forces in the physical sense, but has to be
considered as a residual associated to the equilibrium along the discontinuity. A classical
incremental iterative Newton-Raphson procedure can be used to solve this system of
equations. For this purpose, the equilibrium equations are linearised as followed

[Ke,qq]
(i−1){δq}(i) + [Ke,qξ]

(i−1){δξ}(i) = {f ext} − {f int

e,q}
(i−1) (3.47a)

[Ke,ξq]
(i−1){δq}(i) + [Ke,ξξ]

(i−1){δξ}(i) = {0} − {f int

e,ξ}
(i−1) (3.47b)

for the iterative increments of the displacement and jump degrees of freedom at iteration
(i). The stiffness matrices are given by

[Ke,qq] =

∫

Ωh
e

[B̄]T [L][B̄] dΩ (3.48a)

[Ke,qξ] =

∫

Ωh
e

[B̄]T [L][G(c)] dΩ (3.48b)

[Ke,ξq] =

∫

Ωh
e

[G(e)]
T [L][B̄] dΩ (3.48c)

[Ke,ξξ] =

∫

Ωh
e

[G(e)]
T [L][G(c)] dΩ +

∫

Γh
e

[J ]T [Cd][J ] dΓ (3.48d)

where [L] and [Cd] are the material tangent matrices of, respectively, the bulk response in
Ωh

e\Γ
h
e and the cohesive law introduced along Γh

e defined by the consistent linearisations

{δσ} = [L]{δε} (3.49a)

{δσd} = [Cd]{δJqeK} (3.49b)

As the compatibility and equilibrium operators [G(c)] and [G(e)] are a priori different, the
complete stiffness matrix introduced in Equations (3.47) is not symmetric. Note that
the stiffness matrices and the internal forces in (3.47) are evaluated at the last iteration
(i − 1). One Gauss quadrature point over the element and along the discontinuity line
will be used to evaluate the integrals in (3.48).

Note also that the second set of equations in (3.47) holds independently for each
element Ωh

e where a discontinuity has been introduced, consequently no assembling is
required for the secondary degrees of freedom associated with the jumps along the discon-
tinuity and the iterative increments of the local degrees of freedom {δξ} can be statically
condensed and only the global solution of a system of equations on the iterative incre-
ments of the displacement degrees of freedom is required. The final condensed system of
equation reads then

[K∗
e,qq]

(i−1){δq}(i) = {f ext} − {f int∗
e,q }(i−1)

with

{

[K∗
e,qq]

(i−1) = [Ke,qq]
(i−1) − [Ke,qξ]

(i−1)
(
[Ke,ξξ]

(i−1)
)−1

[Ke,ξq]
(i−1)

{f int∗
e,q }(i−1) = {f int

e,q}
(i−1) − [Ke,qξ]

(i−1)
(
[Ke,ξξ]

(i−1)
)−1

{f int

e,ξ}
(i−1)

(3.50)

and the iterative increments of the jump parameters can be recovered at the element level
by

{δξ}(i) = −
(
[Ke,ξξ]

(i−1)
)−1 (

{f int

e,ξ}
(i−1) + [Ke,ξq]

(i−1){δq}(i)
)

(3.51)



Chapter 4

Multi-scale detection of failure in

planar masonry thin shells using

computational homogenisation

This Chapter presents a computational homogenisation-based technique for

localisation detection in planar masonry shells. A computational homogeni-

sation procedure is used for the in-plane and the out-of-plane behaviour

of masonry walls taking the periodicity of the material into account. The

quasi-brittle nature of the masonry constituents results in initial and damage-

induced (evolving) anisotropy properties with localisation of damage at both

the structural and fine scales. Using a closed-form damage model at the

mesoscopic scale, it is shown that a structural scale localisation criterion

based on the acoustic tensor adapted to shell kinematics allows to detect the

structural scale localisation. This detection identifies average preferential

cracking orientations consistent with the stacking mode of masonry for both

in-plane and out-of-plane failure. This approach is illustrated by examples of

bed joint and stair-case failure, and its subsequent integration in multi-scale

nested computational schemes is discussed.

4.1 Introduction

The formulation of macroscopic constitutive laws for the behaviour of masonry is a
complex task, due to its strongly heterogeneous microstructure which considerably in-
fluences its overall mechanical behaviour. Because of the quasi-brittle nature of its con-
stituents, this results in initial and damage-induced (evolving) anisotropic properties,
accompanied with localisation of damage at both the structural and constituents scales.

Closed-form laws have therefore been developed for equivalent two-dimensional or
three-dimensional media for elastic and cracking behaviour. Some of these formulations
only take into account the low or vanishing tensile strength of the material without ex-
plicitly accounting for its specific material symmetries, see Cuomo and Ventura (2000),
Pietruszczak and Ushaksaraei (2003). Other models were therefore developed to account
for the initial and/or induced anisotropy for damaging laws, see Papa and Nappi (1997),

This Chapter is based on: B.C.N. Mercatoris, P. Bouillard and T.J. Massart, Multi-scale detec-
tion of failure in planar masonry thin shells using computational homogenisation, Engineering Fracture
Mechanics, 76(4), 479–499, 2009.
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Berto et al. (2002), plastic behaviour, see Lourenço et al. (1997), or time-dependent be-
haviour, see van Zijl et al. (2001). Some of these models were later used in the modelling
of plate failure, as performed in Lourenço (2000), where plane stress constitutive models
were integrated across the thickness of plates.

The use of such models in the cracking regime is however impeded by their costly and
cumbersome identification. As a complementary approach to closed-form constitutive
relations, multi-scale computational strategies started to emerge as alternative options,
transferring most of the cost to the computational effort rather than to experimental
identification. Their aim is to deduce a homogenised response at the structural scale from
a representative volume element (RVE), based on constituents properties and averaging
theorems.

These approaches were first proposed for the elastic behaviour of masonry, starting
with Pande et al. (1989). The periodic nature of the material has been further exploited
in Anthoine (1995), and has led to parametric studies, see Cecchi and Sab (2002a), and to
the study of particular assumptions related to the deformability of units, see Cecchi and
Di Marco (2000), Cecchi and Rizzi (2001). New averaging schemes have been developed
recently, based on polynomial stress expansions combined with homogenisation concepts
in Zucchini and Lourenço (2002). The homogenisation principles were also extended to-
wards elastic plate models for out-of-plane loading. Several homogenisation techniques
based on different assumptions were therefore proposed. A Kirchhoff-Love shell model was
developed to characterise the elastic masonry behaviour by means of an asymptotic ho-
mogenisation method, see Cecchi and Sab (2002b). In order to enhance this model, shear
effects were added leading to the identification of a Reissner-Mindlin homogenised model,
compared with a discrete three-dimensional model and the aforementioned Kirchhoff-Love
model, see Cecchi and Sab (2004). In both models, the case of rigid bricks connected by
elastic interfaces which represent the mortar joints is considered. Another elastic Reissner-
Mindlin shell model was proposed in Cecchi and Sab (2007) where both elastic bricks and
elastic mortar joints are considered. A periodic homogenisation scheme has also been
developed recently in Mistler et al. (2007) to derive elastic Kirchhoff-Love shell stiffness
properties of running bond masonry. Note that this scheme may be adapted for non-linear
material response as will be illustrated below, and may be considered as a special case of
a more general computational homogenisation scheme based on a second-order solution
strategy proposed in Geers et al. (2007) for structured thin sheets.

Homogenisation techniques were also defined to investigate the average material be-
haviour of masonry in the non-linear range. An analytical approach to the ultimate
strength of masonry was proposed in De Buhan and De Felice (1997). Specific loading
paths were considered in Pegon and Anthoine (1997), Anthoine (1997); later comple-
mented by investigations with an emphasis on damage-induced anisotropy in Massart
et al. (2004), or on failure locus identification in Massart et al. (2005b).

Their incorporation into structural computations have subsequently been proposed.
For in-plane loaded structures, homogenised descriptions were combined with limit anal-
ysis concepts and optimisation techniques, to compute ultimate strength properties both
for material characterisation, see Milani et al. (2006a), and for structural computations,
see Milani et al. (2006b). As extensions to the non-linear behaviour, two limit analysis
approaches were developed in order to derive the failure surfaces of out-of-plane loaded
running bond masonry walls using optimisation procedures. First, a limit analysis was
combined with a homogenisation technique under the assumptions of perfect plasticity
and associated flow rule for both the bricks and the mortar joints, see Milani et al. (2006c).
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The case of rigid bricks connected by mortar joints reduced to interfaces with rigid-plastic
behaviour was considered in a limit analysis approach for the Reissner-Mindlin shell kine-
matics in order to estimate the influence of joint shear strength on the collapse load, see
Cecchi et al. (2007).

Another complementary approach consists in using multi-scale computational ap-
proaches of the FE2 type as proposed in Feyel and Chaboche (2000), Smit et al. (1998).
A first step in this respect has been proposed in Luciano and Sacco (1997, 1998) where
off-line periodic homogenisation was used in combination with a binary damage model,
assuming perfectly brittle joints, but without any structural scale localisation treatment.
It is now well known to be crucial in such a multi-scale computational framework to de-
tect and treat the localisation of damage at both the structural and fine scales in order
to keep a well-posed problem. In order to build a consistent multi-scale framework, the
detection of localisation at the structural scale has then to be based on the homogenised
response of the microstructure. Such an extension has been proposed recently in Massart
et al. (2007a) for in-plane loaded structures. The extension of the required structural scale
localisation detection procedure based on masonry shell homogenisation is the objective
of this contribution. It will be shown how the out-of-plane computational homogenisation
approach proposed in Mistler et al. (2007), but used here with masonry constituents non-
linear properties, coupled to a localisation criterion adapted to shell kinematics, allows to
identify localisation orientations strongly related to the preferential damage patterns of
masonry.

The Chapter is structured as follows. The computational homogenisation for in-plane
and out-of-plane behaviours proposed in Mistler et al. (2007) is first briefly recalled in
Section 4.2. A simple scalar damage model with interface elements used for the joints at
the fine scale is formulated in Section 4.3. Based on a procedure defined in Section 4.4
to detect localisation and to identify average localisation orientations in shells at the
structural scale, it is shown in Section 4.5 that the combination of these tools allows
to detect structural localisation orientations consistent with fine-scale damage patterns
when both in-plane and out-of-plane loading patterns are considered. Finally, a discussion
of the proposed localisation analysis is given in Section 4.6, before the conclusions and
prospects, given in Section 4.7.

4.2 Masonry homogenisation

4.2.1 Scales of interest for masonry mechanical behaviour

As in any heterogeneous material, several scales of interest can be identified in ma-
sonry structures. First, the structural or macroscopic scale is used to define complete
masonry structures and their external loads and boundary conditions. When postulated
at this scale, the constitutive law links the average strain and stress fields. At the lower
or mesoscopic scale based on the size of the basic constituents of masonry, namely bricks
and mortar joints, the heterogeneous nature of the material appears. Some of the effects
observed at the macroscopic scale, such as damage-induced anisotropy, are mainly gov-
erned by damage growth taking place at the mesoscopic scale, together with the stacking
mode characterising the mesostructure. Postulating and identifying macroscopic laws ac-
counting for such effects may be difficult, especially when flexural behaviour of shells is
considered. Using plane stress closed-form laws integrated across the thickness of shells
may be considered as a viable option in certain cases, see Lourenço (2000), but raises
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Figure 4.1: Through-thickness RVE for shells.

questions in terms of accuracy of the thickness integration when damage localisation is
appearing. Therefore, the use of through-thickness homogenisation of three-dimensional
RVEs may be helpful in characterising and identifying constitutive laws linking shell kine-
matical quantities to membrane forces and bending moments.

4.2.2 Computational homogenisation of thin masonry shell prop-

erties

The purpose of a computational homogenisation procedure is to obtain numerically the
average macroscopic response of a heterogeneous material from the underlying mesostruc-
ture of the material and the behaviour of its constituents. It is based on the solution of a
mesostructural problem on the RVE relying on averaging theorems. This approach uses
the fundamental assumption that the material configuration is macroscopically homoge-
neous, but microscopically heterogeneous, see Kouznetsova et al. (2001). This principle is
known as the separation of scales. For the case of masonry walls, the characteristic length
of the structure is considered to be much larger than the RVE one.

Shell kinematics and averaging relations

A through-thickness RVE for shells is depicted in Figure 4.1 where VRVE is the volume
of the RVE, SRVE is the reference surface, ΓRVE is the contour of the reference surface,
∂Ve consists of the two external faces, ∂Vi consists of the four lateral internal faces,
and w is the shell thickness. The averaging theorems linking the coarse (macro) scale
and the fine (meso) scale quantities have to be verified for the strain, the stress and
the work variations. If the macroscopic description is based on the Kirchhoff-Love shell
kinematics, it is postulated that the macroscopic membrane strain tensor E is the average
of the local membrane strain tensor over the reference surface SRVE, see Equation 4.1a.
The macroscopic curvature tensor χ is assumed to be the surface average of the local
curvature tensor over SRVE, see Equation 4.1b. Note that the Reissner-Mindlin shell
kinematics is not used in this first study. The introduction of the transverse shear effects
in a shell computational homogenisation procedure based on a 3D through-thickness RVE
still raises questions as shown in Geers et al. (2007). In the following developments, Greek
subscripts vary from 1 to 2 only and correspond to the in-plane components. The subscript
3 corresponds to the out-of-plane component, see Figure 4.1.
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Eαβ =
1

SRVE

∫

SRVE

(uα,β)sym dSRVE (4.1a)

χαβ =
−1

SRVE

∫

SRVE

u3,αβ dSRVE (4.1b)

Using the divergence theorem to express these strain measures in terms of RVE bound-
ary quantities, relations (4.1) lead respectively to

Eαβ =
1

SRVE

∮

ΓRVE

(uαnβ)sym dΓRVE (4.2a)

χαβ =
−1

SRVE

∮

ΓRVE

(u3,αnβ)sym dΓRVE (4.2b)

where ~n is the outer normal to ΓRVE.
In a computational homogenisation technique, the energy consistency is classically

assumed, and expressed by

Nαβ δEαβ + Mαβ δχαβ =
1

SRVE

∫

VRVE

σij δεij dVRVE (4.3)

where ε, or εij = (ui,j)
sym is the (local) mesostructural infinitesimal strain tensor work

conjugate to the mesoscopic stress field σ, and N and M are respectively the macro-
scopic membrane force and bending moment tensors. Equation (4.3) enforces that the
macroscopic work density variation is equal to the volume integral of the mesoscopic work
density variation performed on the RVE divided by the reference surface.

The right hand side of Equation (4.3) can be integrated by parts after introducing the
definition of the mesostructural infinitesimal strain tensor. Applying then the divergence
theorem with the fact that the mesoscopic stress field σ is divergence-free (absence of body
forces) and that no surface forces are applied on ∂Ve, it can be shown that the macroscopic
work density variation depends on the work variation of the traction ti = σij nj on ∂Vi.
Therefore, the energy consistency (4.3) leads to

Nαβ δEαβ + Mαβ δχαβ =
1

SRVE

∫

∂Vi

ti δui d∂Vi (4.4)

The satisfaction of both averaging relations (4.1) and (4.3) for given boundary condi-
tions on the RVE leads to the satisfaction of the averaging theorem for the stress measures
and allows to relate the macroscopic membrane force tensor N and the macroscopic bend-
ing moment tensor M to the mesoscopic statically admissible stress field σ on the surface
of the RVE.

Homogenisation with periodic boundary conditions

In this Chapter, the failure detection will be achieved assuming perfect periodicity of
the masonry mesostructure. A natural strategy is then to prescribe periodic boundary
conditions on the RVE, see Mistler et al. (2007), Kouznetsova et al. (2001). Assuming
that the rigid body translations and rotations of the RVE vanish, it can be shown that
the kinematically admissible displacement field is strain-periodic and given by

uα = Eαβxβ + χαβxβx3 + up
α (4.5a)

u3 = −
1

2
χαβxαxβ + up

3 (4.5b)
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where ~u p(~x) is a periodic displacement fluctuation field, i.e. taking equal values on any two
boundary points on the internal faces related by the periodicity relation, which accounts
for the heterogeneity inside the RVE, see Anthoine (1995). This condition reads

up
i (xj + V α

j ) = up
i (xj) (4.6)

where ~V 1 and ~V 2 are the two vectors which allow to recompose an entire wall based on
the RVE using the periodicity assumption, see Figure 4.2. Furthermore, it can be shown
that the displacement field defined by relations (4.5) satisfies averaging theorem (4.2) for
the strain measures.

Figure 4.2: In-plane periodicity of running bond masonry, see Anthoine (1995).

Considering the internal boundaries of the RVE, and eliminating the periodic fluctua-
tion ~u p based on the periodicity argument, Equations (4.5) and (4.6) lead to the following
expressions

u+
α − u−

α = (Eαβ + x3χαβ)(x+
β − x−

β ) (4.7a)

u+
3 − u−

3 = −
1

2
χαβ(x+

αx+
β − x−

αx−

β ) (4.7b)

which involve only the relative displacements and positions between any pair of boundary
points related by periodicity. The superscripts + and − refer to the opposite parts of
the internal surface of the RVE which are defined such that ~n + = −~n − at corresponding
points, see Figure 4.2 for the case of running bond masonry.

Control system for running bond masonry unit cell

Running bond masonry exhibits a two-dimensional orthotropic heterogeneous struc-
ture with a periodic stacking of constituents along two directions in its own plane. Due
to this periodicity, its mesostructure can be defined by a representative volume element
(RVE). Different RVE choices can be made depending on the type of behaviour to repre-
sent. For non-linear behaviour of such a material, a unit cell, i.e. a single period RVE, can
be used as in Pegon and Anthoine (1997), Massart et al. (2004, 2005b). For the sake of
simplicity, a parallelepipedic through-thickness portion of masonry sketched in Figure 4.3
is used as in Mistler et al. (2007).

In the case of infinitesimal deformation, the strains defined in the Kirchhoff-Love
kinematics are given by six independent scalar quantities. The deformation state of a
material point can therefore be fully prescribed using six controlling degrees of freedom
if the periodic conditions are enforced. The macroscopic membrane deformations are
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(a) (b)

Figure 4.3: Through-thickness RVE for running bond masonry, see Mistler et al. (2007):
controlling degrees of freedom of the deformations (a) and in-plane dimensions (b).

prescribed using three reference plane displacement components, while the macroscopic
curvatures are fixed by three out-of-plane displacement components. These controlling
degrees of freedom are chosen among the ones of three corner points on the reference
surface of the RVE as proposed in Mistler et al. (2007). The degrees of freedom of the
fourth corner point (0 in Figure 4.3) are set to zero to prevent any RVE rigid body
translation. Based on this choice and using Equations (4.7) for these points, the relations
linking the controlling displacements to the average strains read

u1
1 = lE11 (4.8a)

u1
2 = lE12 (4.8b)

u2
2 = dE12 + hE22 (4.8c)

u1
3 = −

l2

2
χ11 (4.8d)

u2
3 = −

d2

2
χ11 − hdχ12 −

h2

2
χ22 (4.8e)

u3
3 = −

(l + d)2

2
χ11 − h(l + d)χ12 −

h2

2
χ22 (4.8f)

where l, d and h are defined in Figure 4.3, and xi
j is the jth component of the vector ~x

associated to the controlling point i, see Mistler et al. (2007).
These relations can be recast in a matrix form given by

{uctl} = [Du]
−1{EKL} (4.9)

where {uctl} is a column vector of the six controlling degrees of freedom, {EKL} is a column
vector of the Kirchhoff-Love generalised (membrane and curvature) strains, and [Du] is
a matrix which depends on the in-plane dimensions of the RVE. Relations (4.7) for all
the other points of the internal boundary are used to enforce the periodicity condition
as a boundary condition for the mesostructural problem. These relations can be rear-
ranged by eliminating the average generalised strain components with Equations (4.8).
Consequently, the relative displacements between points of homologous boundaries are
related to the controlling degrees of freedom, see Mistler et al. (2007). Each of these
tying relations is associated with tying forces at the pair of considered boundary points
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related by periodicity and at the involved controlling points. Since the tying forces of any
homogeneous constraint relation should not bring any contribution to the work variation
performed on the RVE, it is possible to show that the tying forces between boundary
points are anti-periodic and that both the tying forces at the controlling points and at
the boundary points are linked to each other. Similar developments have been performed
for the case of plane computational homogenisation in Geers (2005).

Substituting the strain-periodic displacement field (4.5) into (4.4), considering that
the contribution of the periodic fluctuations ~u p to the work variation vanishes due to
the anti-periodicity of the tying forces between related boundary points, and using the
fact that the periodic fluctuations vanish at the controlling points, the energy consistency
leads to

Nαβ =
1

SRVE

∫

∂Vi

(tαxβ)sym d∂Vi (4.10a)

Mαβ =
1

SRVE

∫

∂Vi

[

(tαxβ)sym x3 −
1

2
t3xαxβ

]

d∂Vi (4.10b)

The traction vector ~t considered in relations (4.10) represents all the forces acting in

a point of the boundary ∂Vi, i.e. (i) the controlling forces ~f which are conjugated to the
controlling degrees of freedom and represent the action of the neighbouring cells, (ii) the
tying forces at the pair of considered boundary points related by periodicity, and (iii) the
tying forces at the controlling points. For the case of the membrane force tensor (4.10a),
it can be shown that the contribution of the tying forces at the boundary points cancels
a part of the contribution of the tying forces at the controlling points considering the
anti-periodicity of the former and the link between both. The remaining contribution
of the tying forces is eliminated by taking the symmetric part of the tensor tαxβ. Con-
sequently, only the contribution of the in-plane controlling forces does not vanish, see
developments in Geers (2005) for the case of planar computational homogenisation. All
these considerations lead to

N11 =
1

h
f 1

1 (4.11a)

N22 =
1

l
f 2

2 (4.11b)

N12 =
1

2h
f 1

2 +
d

2lh
f 2

2 (4.11c)

For the bending moment tensor (4.10b), the first term containing the in-plane projection
of the traction vector tα only depends on the anti-periodic tying forces at boundary
points since the thickness coordinate of all the controlling points is zero. In the second
term which depends on the out-of-plane traction t3, the contribution of the tying forces
at boundary points cancels the out-of-plane part of the contribution of the tying forces at
the controlling points considering the anti-periodicity of the former and the link between
both. The remaining in-plane contribution of the tying forces cancels the first term.
Consequently, only the contribution of the out-of-plane controlling forces does not vanish,
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which leads to

M11 = −
l

2h
f 1

3 −
d2

2lh
f 2

3 −
(l + d)2

2lh
f 3

3 (4.12a)

M22 = −
h

2l
f 2

3 −
h

2l
f 3

3 (4.12b)

M12 = −
d

2l
f 2

3 −
l + d

2l
f 3

3 (4.12c)

Relations (4.11) and (4.12) can be recast in a matrix form given by

{ΣKL} = [Df ]{fctl} (4.13)

where {fctl} is a column vector of the six controlling forces, {ΣKL} is a column vector
of the Kirchhoff-Love generalised stresses, and [Df ] is a matrix which depends on the
in-plane dimensions of the RVE.

Based on Equations (4.8), any average deformation path can be prescribed. The
related mesostructural boundary value problem is completely defined from the controlling
degrees of freedom and the periodicity tyings, and can be solved using a classical finite
element method scheme, provided mesostructural constitutive laws are postulated. This
type of control is classically used in multi-scale nested scheme using displacement-based
finite element schemes, see Massart et al. (2007a), Kouznetsova et al. (2001).

Note that a mesostructural boundary value problem can be formulated using either
an average strain control, relations (4.7) and (4.8), or an average stress control, relations
(4.7), (4.11) and (4.12). In Section 4.5, the macroscopic localisation detection for masonry
shells will be illustrated for proportionnally loaded RVEs based on an average (generalised)
stress control.

Note also that this Kirchhoff-Love shell computation homogenisation scheme can be
connected to the general second-order solid-solid computational homogenisation frame-
work developed in Kouznetsova et al. (2002), since shell model can be interpreted as a
second-gradient continuum. Such a link was established for the Reissner-Mindlin case by
introducing the shell kinematical assumptions in the macroscopic second-gradient contin-
uum, see Geers et al. (2007) for detailed developments.

4.3 Simplified mesoscopic constitutive setting

To close the formulation of the homogenisation mesostructural boundary value prob-
lem, three-dimensional constitutive laws have to be postulated for the constituents. In
the case of masonry walls, the material responses of both the brick and the mortar joint,
and brick-joint interface are formulated using closed-form laws. Since the mortar joints
are much weaker than the brick material, the failure behaviour of the latter is not consid-
ered in this first study and the brick is assumed elastic. The combined behaviour of the
brick-joint interface and of the mortar is modelled by an initially elastic planar interface
element, for which both the normal and tangential stiffnesses (kn, kt) can be related to
the elastic behaviour of mortar, see Lourenço and Rots (1997). In order to model the
failure of the joint, a classical Mohr-Coulomb type strength criterion is used with a linear
compression cap for the sake of simplicity, as depicted in Figure 4.4, see van Zijl (2000).
The parameters ft and fc are respectively the tensile and compressive Mode-I strength of
the mortar or mortar-brick interfaces, c is the cohesion, ϕ is the friction angle, and ϑ is
the angle which defines the linear compression cap.
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Figure 4.4: Mohr-Coulomb criterion for the mortar joint/mortar-brick interface.

A scalar damage model with an exponential evolution law is considered. The traction-
separation law which links the traction vector ~t across the interface to the relative dis-
placement vector ~δ is given by

ti = (1 − D) Hij δj (4.14)

where D is the scalar damage variable growing from zero (virgin material) to one (complete
failure) and H is an elastic stiffness second order tensor which depends on the elastic
stiffnesses kn and kt. Note that (4.14) implies that no stiffness recovery is taken into
account upon crack closure.

The damage evolution law of the mortar joint is given by

D(κ) = 1 −
ft

knκ
e
−

ft

Gf

(κ −
ft

kn

)
for κ ≥

ft

kn

(4.15)

where Gf is the Mode-I fracture energy, see van der Pluijm (1999). Since the considered
interface is three-dimensional and since the damage criterion has to take into account the
different behaviours in tension and compression, the damage-driving parameter κ is taken
as the most critical value of an equivalent relative displacement defined by

δeq = max







ft

c
tanϕ δn +

ft

c

kt

kn

√

δ2
s + δ2

t

δn

−
ft

fc

δn +
ft

fc

kt

kn

1

tanϑ

√

δ2
s + δ2

t







(4.16)

where δn and
√

δ2
s + δ2

t are the normal and tangential relative displacements, respectively.
Note that relations (4.14) to (4.16) were postulated for the sake of simplicity and to illus-
trate the multi-scale detection of localisation and its correspondence with mesostructural
geometrical features. The sequel of the procedure remains independent from the laws pos-
tulated for the constituents. In particular, more complex mortar formulations including
anisotropic damage effects between mode I and mode II in terms of energy dissipation, see
Lourenço and Rots (1997), or incorporating plastic dilatancy, see van Zijl (2004), could
be used as well. A brick damage model could also be used for instance in order to extend
the detection procedure to additional failure modes involving brick failure, see Massart
et al. (2005b), Lourenço and Rots (1997) for the case of in-plane problems.
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4.4 Failure detection in thin shell formulations

Failure in masonry shells is accompanied by the localisation of deformation and of
degradation. Any localisation enhancement by means of discrete failure zones at the
structural scale to represent failure as performed in Massart et al. (2007a) for planar
cases would require a criterion to detect localisation and to determine its orientation. In
the same spirit, the definition of computational homogenisation-based failure should also
take into account structural scale localisation detection.

However, in a computational homogenisation procedure, the macroscopic material
response is not postulated a priori but rather computed from the material laws introduced
at the level of the mesostructural RVE. The detection and orientation of macroscopic
localisation should then be based on the computationally homogenised quantities, the
only available information related to the average material behaviour.

For the Kirchhoff-Love description assumed at the structural scale, a closed-form struc-
tural material law is not readily available. Nevertheless, the link between generalised
stresses and strains variations can be obtained from the homogenised tangent stiffness
defined as {

δNαβ = 4Lmm

αβδγ δEδγ + 4Lmb

αβδγ δχδγ

δMαβ = 4Lbm

αβδγ δEδγ + 4Lbb

αβδγ δχδγ
(4.17)

where the superscripts m and b stand for ‘membrane’ and ‘bending’. Note that the
both tensors 4Lmb and 4Lbm do not vanish in a general context, which allows to take
into account potential membrane-flexural couplings. As will be shown in Section 4.5.1,
masonry flexural behaviour presents this type of couplings due to the different tensile and
compressive strengths of the damaging joints. Relation (4.17) can be expressed in a more
compact matrix form which reads

{δΣKL} = [L]{δEKL} (4.18)

where {ΣKL} and {EKL} are column vectors of the Kirchhoff-Love generalised stresses and
strains, respectively. In the case of the computational homogenisation method presented
in Section 4.2.2, the total RVE stiffness relation of the mesostructural boundary value
problem can be partitioned into dependent, independent and control degrees of freedom.
After eliminating the dependent degrees of freedom, due to the periodic boundary condi-
tions, the residual forces corresponding to the independent degrees of freedom vanish as
the mesostructural equilibrium is reached. As a result, the RVE mesostructural stiffness
relation can be condensed in the 6x6 stiffness relation {δfctl} = [K∗]{δuctl}. Numerical
details of this condensation can be found in Kouznetsova et al. (2001). The macroscopic
tangent material stiffness [L] can therefore be computed by substituting the variation of
Equations (4.9) and (4.13) in the RVE mesostructural stiffness relation condensed at the
controlling degrees of freedom, which leads to

[L] = [Df ][K
∗][Du]

−1 (4.19)

The procedure proposed in Massart et al. (2007a) for in-plane loading to detect local-
isation and its orientation in the context of multi-scale computations can be extended to
shell kinematics based on Makowski and Stumpf (1998). Similarly to the works of Rice
(1976), Rice and Rudnicki (1980), the conditions of appearance of a uniform localisation
zone in which damage is growing and localising can be treated as a material bifurcation
or loss of uniqueness problem. Such an analysis identifies the conditions under which
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more than one solution to the equilibrium problem exist. Equilibrium requires the stress
quantities at the interface between the localising zone (l) and its surrounding material (s)
to be continuous and can be extended to shell kinematics. At the structural scale, for the
shell continuum, this reads







nβ

(

δN
(l)
αβ − δN

(s)
αβ

)

= 0

nβ

(

δM
(l)
αβ − δM

(s)
αβ

)

= 0
(4.20)

where ~n is the normal to the localising zone. Assuming the continuity of the displacement
field across the localising zone, the generalised strain jumps have the form







δE
(l)
αβ − δE

(s)
αβ =

1

2

(
δmE

α nβ + nα δmE

β

)

δχ
(l)
αβ − δχ

(s)
αβ =

1

2

(
δmχ

α nβ + nα δmχ

β

)
(4.21)

where ~mE and ~mχ are the strain jump modes, which vanish in the initial, homogeneous
situation, and must become nonzero for a bifurcated state to exist.

Equations (4.17) and (4.21) can now be introduced in Equations (4.20). Using the
classical linear comparison solid which consists in assuming that the same tangent material
stiffnesses 4Lij is valid on both sides of the surface separating the localising zone and its
surrounding material, and taking into account the right minor symmetry of the tensors
4Lij, the traction continuity requirement becomes

[ (
nα

4Lmm

αβδγ nγ

) (
nα

4Lmb

αβδγ nγ

)

(
nα

4Lbm

αβδγ nγ

) (
nα

4Lbb

αβδγ nγ

)

] {
mE

δ

mχ

δ

}

= 0 (4.22)

This system of equations admits a non trivial solution only if

det (Aβδ(~n)) = det

([ (
nα

4Lmm

αβδγ nγ

) (
nα

4Lmb

αβδγ nγ

)

(
nα

4Lbm

αβδγ nγ

) (
nα

4Lbb

αβδγ nγ

)

])

= 0 (4.23)

for some direction ~n, where A(~n) is the acoustic tensor generalised to the Kirchhoff-Love
shell theory.

4.5 Macroscopic localisation analysis

The shell localisation detection discussed above is now illustrated by means of com-
putations performed on a unit cell. Using the presented homogenisation method with
such a RVE, only single period crack patterns can be taken into account. The cell is sub-
jected to stress-controlled proportional loading paths including flexural effects, for which
the average failure detection and orientation are analysed. The case of bed joint out-of-
plane failure mode and two cases of stair-case out-of-plane failure modes with different
mesostructures (geometrical aspect ratios of the unit) are considered. The symmetric
mode of one of the stair-case out-of-plane cracks is also considered. An average (macro-
scopic) out-of-plane failure direction can be identified for each of the typical mesostruc-
tural damage patterns, purely based on geometrical arguments. The loading of the unit
cell is controlled by applying a bending moment leading to the considered out-of-plane
failure mode. The path-following techniques proposed in Geers (1999a,b) are used in
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computations to enable the tracing of snap-through and snap-back responses which may
appear when localisation of damage occurs in thin zones with respect to the problem size.
Relations (4.8), (4.11) and (4.12) are used to link respectively the average generalised
strains and stresses to the control displacements and forces at the controlling points of
the unit cell. The brick and mortar joint material parameters used in computations are
respectively presented in the Table 4.1, see van Zijl (2000).

The dimensions of the considered unit cell are l = 200 mm, d = l/2 = 100 mm,
h = 100 mm and w = 100 mm. The brick is meshed by using 20-noded quadratic volume
finite elements with 3 × 3 × 3 Gauss integration points. The interfaces corresponding
to mortar joints are meshed using 16-noded quadratic planar interface finite elements
with 3 × 3 Lobatto quadrature points. Six finite elements are used across the thickness
and the in-plane discretisation is shown in Figure 4.5. Note that a rather coarse in-plane
discretisation is chosen to challenge the results obtained with respect to the computational
efficiency. The chosen three-dimensional mesh results in 3342 degrees of freedom for the
mesostructural problem.

Figure 4.5: In-plane finite element mesh of the unit cell with the joints in bold line.

4.5.1 Bed joint failure

For the first loading case, the loading of the cell is controlled by applying a bending
moment M22 where the x2-axis is perpendicular to the bed joint. A mode-I flexural failure
in the bed joint is observed, which leads to an average out-of-plane failure orientation
defined by its normal oriented at −90◦ from the bed joint, see Figure 4.6. The load-
curvature response depicted in Figure 4.7 represents the variation of the load factor as
a function of the curvature χ22. The state corresponding to each point denoted by a
capital letter on this curve is analysed below together with the localisation criterion
(4.23). The joint damage distribution for each state is depicted in Figure 4.8 together
with the corresponding acoustic tensor determinant spectrum as a function of the normal
orientation Θ, and with the deformed shape of the unit cell. During the first phase of the
loading (Figure 4.8, state A), damage is initiating in the tension part of the bed joint and
the acoustic tensor determinant already presents a minimum at Θ = 90◦. Note that the

Table 4.1: Brick (a) and mortar/mortar-brick interface (b) material parameters, see van
Zijl (2000).

E ν kn kt ft Gf c ϕ fc ϑ
(MPa)

(
MPa

mm

) (
MPa

mm

)
(MPa)

(
mJ

mm2

)
(MPa) (◦) (MPa) (◦)

(a) 16700 0.15 - - - - - - - -
(b) - - 438 182 0.2 0.005 0.28 36 3.0 45
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Figure 4.6: Average out-of-plane failure orientation defined by the normal ~n for the bed
joint failure pattern (left) and the loading mode of the unit cell (right).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
−5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ad

 fa
ct

or

Curvature χ
22

 [mm−1]

A

B C

D

Figure 4.7: Load-curvature response under the bending moment M22 (see Figure 4.6).
The unit load factor corresponds to M22 = 0.8 kN.

presence of minima and maxima in the initial stages of loading can be understood from the
initial anisotropy of the medium. The minimum at Θ = 90◦ indeed matches the orientation
perpendicular to the bed joint, for which the elastic (undamaged) flexural stiffness is
minimum. As illustrated for state B (peak of the response), damage further spreads over
half of the bed joint. At the next step (point C), the acoustic tensor determinant becomes
negative for a certain orientation range. However, it presents a negative local maximum
at Θ = 90◦ which exactly matches the average orientation of the out-of-plane bed joint
failure. Further in the softening range (Figure 4.8, state D), the bed joint is nearly
completely damaged and the negative local maximum of the acoustic tensor determinant
remains at the same orientation. Note that for planar cases all the orientations for which
a negative acoustic tensor determinant is found could be considered for localisation when
a discontinuous bifurcation is assumed, see Rice and Rudnicki (1980). It is however
noted that the real average orientation observed in the unit cell exactly matches the local
maximum present in the negative range.

As already pointed out in Section 4.4, note also that even for such a simple case with
pure flexural loading, the different tensile and compressive strengths of the damaging
joints inside the cell imply the appearance of membrane-flexural couplings which have



Multi-scale detection of failure in thin shells using computational homogenisation 39

(A)

−80−60−40−20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

3x 10
29

de
t(

A
)

(B)

65 70 75 80 85 90
0

1

2

3

4

5

6x 10
27

de
t(

A
)

(C)

65 70 75 80 85 90
−14

−12

−10

−8

−6

−4

−2

0x 10
26

de
t(

A
)

(D)

65 70 75 80 85 90
−3

−2.5

−2

−1.5

−1

−0.5

0x 10
26

de
t(

A
)

D

0 0.2 0.4 0.6 0.8 1

Figure 4.8: Out-of-plane bed joint failure under the bending moment M22 (see Figure 4.7,
states A to D): deformed shape of the unit cell (the displacements are magnified by a factor
of 500) (left), joint damage distribution (centre) and related acoustic tensor determinant
spectrum as a function of the normal orientation Θ(◦) (right).

to be incorporated in the homogenisation procedure and in the localisation analysis. An
analysis of the acoustic tensor based on the pure flexural part of the tangent stiffness does
not allow a proper detection of the structural scale loss of uniqueness. This is illustrated by
Figure 4.9 showing the presence of a non null average opening (in-plane E22 component),
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and by the fact that the acoustic tensor associated to 4Lbb does not exhibit a negative
character for the correct orientation. The localisation and failure orientation analysis has
to be based on the tangent stiffness of the material point, and cannot take into account
the stress state only.

Figure 4.9: Membrane-flexural coupling for the case of the out-of-plane bed joint failure
mode: deformed shape of the unit cell (the displacements are magnified by a factor of
500) in the softening regime, see state D in Figure 4.6.

4.5.2 Stair-case failure

As a second illustrative case, the analysis of a stair-case flexural failure mode, with two
different geometrical shape factors of the unit cell corresponding to different brick aspect
ratios, is considered. The shape factor is given by the ratio between the length and the
height of the cell. First, the out-of-plane stair-case failure mode is studied for a brick shape
factor equal to 0.5 which leads to an average stair-case crack normal orientation of −45◦,
see Figure 4.10. The loading of the cell is controlled by a bending moment Mvv where v
is an axis at 60◦ from the x2-axis, see Figure 4.10. The numerical results for this case

Figure 4.10: Average out-of-plane failure orientation defined by the normal ~n for the stair-
case failure pattern with a brick shape factor of 0.5 (left) and the loading mode applied
on the unit cell (centre and right).

are shown in Figure 4.11 and 4.12. The evolution of the damage distribution, Figure 4.12
(left), for states A to D, matches the appearance of the out-of-plane stair-case failure. In
state B, a stair-case cracking pattern can clearly be identified. No localisation orientation
is identified yet from the acoustic tensor which is still positive-definite, but one can clearly
see that the decrease of its determinant is more pronounced for orientations between −90◦

and 0◦. In state C, the stair-case crack pattern is even more pronounced. The potential
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Figure 4.11: Load-curvature responses under the bending moment Mvv where v is an axis
at 60◦ from the x2-axis (solid line) (see Figure 4.10), and the symmetric bending moment
where the axis v is an axis at −60◦ from the x2-axis (dashed-line). The unit load factor
corresponds to Mvv = 1.7 kN.

bifurcation has appeared for orientations between −55.8◦ and −21.8◦ (negative values
of the acoustic tensor determinant). A minimum is found for the orientation of −38.5◦

and the negative range of the determinant is approximately centered on this orientation.
Finally, further in the softening regime (state D), the stair-case crack is fully developed,
and a local maximum is found in the negative range at an orientation of −44.9◦. Note
that the fact that the extremum is not at −45◦ in state C and the slight imprecision in
state D can be attributed to the quite coarse in-plane discretisation adopted here. This
can be also understood from pattern C, where a slightly non-symmetric damage pattern
can be seen in the bed joint due to the rather coarse discretisation used.

Furthermore, the symmetric stair-case failure mode with an average normal orientation
of 45◦ can also be studied despite the use of a skew parallelepipedic cell. In this case, the
loading of the cell is controlled by a bending moment Mvv where v is now an axis at −60◦

from the x2-axis. The numerical results are shown in Figure 4.11 and 4.13. In state E
(Figure 4.13), the potential bifurcation has appeared for orientations between 24.9◦ and
64.7◦ and a negative local maximum is found at a normal orientation of 44.6◦. The slight
difference in the softening regime between both the stair-case failure mode responses
depicted in Figure 4.11 and the slight imprecision in state E can be also understood from
the non-symmetric coarse in-plane discretisation used in the bed joint.

For the sake of completeness, the out-of-plane stair-case failure is investigated for a
second brick shape factor equal to 0.25 which leads to an a priori geometrical stair-case
crack normal at an orientation of −63.44◦, see Figure 4.14. The loading of the unit cell is
again controlled by a bending moment Mvv where v is an axis at 60◦ from the x2-axis. The
final situation in the softening regime is depicted in Figure 4.15. Similarly to the previous
case, the determinant of the acoustic tensor has a local maximum in the negative range
near the orientation corresponding to the stair-case for −64.2◦, a value which differs by less
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Figure 4.12: Out-of-plane stair-case failure with a brick shape factor of 0.5 under the
bending moment Mvv where v is an axis at 60◦ from the x2-axis (see Figure 4.11, states
A to D): deformed shape of the unit cell (the displacements are magnified by a factor
of 200) (left), joint damage distribution (centre) and related acoustic tensor determinant
spectrum as a function of the normal orientation Θ(◦) (right).

than 1◦ from the a priori determined geometrical average orientation of the out-of-plane
failure. Again, this slight difference is attributed to non uniform damage distribution in
the stair-case crack, partially due to the coarse in-plane discretisation.

As a result, the proposed approach coupling shell computational homogenisation with
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Figure 4.13: Out-of-plane symmetric stair-case failure with a brick shape factor of 0.5
under a bending moment Mvv where v is an axis at −60◦ from the x2-axis (see Figure 4.11,
state E): deformed shape of the unit cell (the displacements are magnified by a factor of
200) (left), joint damage distribution (centre) and related acoustic tensor determinant
spectrum as a function of the normal orientation Θ(◦) (right).

Figure 4.14: Average out-of-plane failure orientation defined by the normal ~n for the
stair-case failure pattern with a brick shape factor of 0.25.

macroscopic localisation detection allows the proper structural scale localisation tracking,
even with rather coarse in-plane discretisation. It is emphasized that this methodology
remains independent from the postulated material laws; i.e. the incorporation of any
improved mesoscopic law for joint failure, see Lourenço and Rots (1997), would not affect
the way macroscopic localisation is detected. Any change in the mesostructural features
would be naturally accounted for, in the limit of the homogenisation procedure accuracy.

4.6 Discussion

In this Section, results of computations are shown in order to discuss the robustness
of the proposed structural scale localisation detection procedure. First, the influence of
the mesoscopic material properties on the obtained failure modes is discussed, motivated
by the large scattering observed in masonry experimental programs, see van der Pluijm
(1999). The influence of the loading modes and of the RVE size is also emphasized. Finally,
the incorporation of the proposed localisation detection procedure in nested multi-level
structural computations is briefly discussed.

4.6.1 Influence of mesoscopic material properties

In Section 4.5, both bed joint and stair-case out-of-plane failure modes are investigated
by applying a bending moment Mvv where v is an axis at respectively 0◦ and 60◦ from the
x2-axis. In both cases, damaged joints correspond to preferential patterns associated to
the masonry stacking mode. In order to analyse the influence of the constituent properties
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Figure 4.15: Out-of-plane stair-case failure with a brick shape factor of 0.25 under a
bending moment Mvv where v is an axis at 60◦ from the x2-axis: deformed shape of
the unit cell (the displacements are magnified by a factor of 50) (left), joint damage
distribution (centre) and related acoustic tensor determinant spectrum as a function of
the normal orientation Θ(◦) (right) at the end of the softening tail.
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Figure 4.16: Out-of-plane stair-case failure with a brick shape factor of 0.5 under a bending
moment Mvv where v is an axis at 45◦ from the x2-axis: deformed shape of the unit cell
(the displacements are magnified by a factor of 100) (left), joint damage distribution
(centre) and related acoustic tensor determinant spectrum as a function of the normal
orientation Θ(◦) (right) at the end of the softening tail.

on the failure mode, a bending moment Mvv where v is now an axis at 45◦ from the x2-
axis is applied on the cell. The same material properties as in Section 4.5 are used, see
Table 4.1. The brick shape factor is equal to 0.5 which leads to an average stair-case
crack normal orientation of −45◦. The final situation in the softening regime is depicted
in Figure 4.16. In contrast with the cases analysed in Section 4.5, all the joints are here
partially or fully damaged, with a competition between both the bed joint and stair-case
failure modes. It is shown in Figure 4.16 that the stair-case pattern is more damaged than
the bed joint pattern and that the corresponding local maximum of the related acoustic
tensor determinant is found in the negative range at the average stair-case crack normal
orientation of −45◦.

In order to show that a slight variation of the mesoscopic material properties can affect
the failure mode, the same computation is performed successively with a 10% decrease
of the joint interface tensile Mode-I strength ft and a 10% increase of the joint interface
cohesion c. The numerical results are respectively shown in Figure 4.17 and 4.18.
For both these cases, the 10% material parameter variation leads to a change of failure
mode towards bed joint failure. This transition is caused by the fact that a decrease
of the tensile Mode-I strength renders more critical the out-of-plane bed joint failure
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Figure 4.17: Out-of-plane bed joint failure with a 10% decrease of the mortar tensile
Mode-I strength under a bending moment Mvv where v is an axis at 45◦ from the x2-axis:
deformed shape of the unit cell (the displacements are magnified by a factor of 100) (left),
joint damage distribution (centre) and related acoustic tensor determinant spectrum as a
function of the normal orientation Θ(◦) (right) at the end of the softening tail.
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Figure 4.18: Out-of-plane bed joint failure with a 10% increase of the mortar cohesion
under a bending moment Mvv where v is an axis at 45◦ from the x2-axis: deformed shape
of the unit cell (the displacements are magnified by a factor of 100) (left), joint damage
distribution (centre) and related acoustic tensor determinant spectrum as a function of
the normal orientation Θ(◦) (right) at the end of the softening tail.

mode and that an increase of the cohesion leads to a less critical out-of-plane stair-case
failure mode. The load-curvature responses of the three computations are depicted in
Figure 4.19. Despite of the change of failure mode, it is shown that the carrying load
capacity is only slightly affected. Note however that the change of failure mode may lead
to strong modifications in terms of stress redistributions when introduced into structural
computations. The post-peak curves are furthermore difficult to interpret due to the
fact that only one component of the tensorial stiffness relation is depicted and that the
localisation orientations are not the same. Moreover, the homogenised response of a
localising unit cell cannot be used directly at the structural scale without taking into
account a macroscopic localisation size due to the fact that the cell is associated to a
macroscopic material point (see Section 4.6.3).

4.6.2 Influence of the loading modes

As mentioned in Section 4.4, an acoustic tensor-based detection criterion was used in
Massart et al. (2007a) for in-plane descriptions with different mesoscopic models (gradient
damage). An in-plane stair-case failure mode and its orientation was detected by this
criterion when applying a bed joint compression N22 combined with in-plane shear N12 of
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Figure 4.19: Load - curvature responses under a bending moment Mvv where v is an axis
at 45◦ from the x2-axis with reference material (solid line), 10% decrease of the mortar
tensile Mode-I strength (dashed line), and 10% increase of the mortar cohesion (dash-dot
line). The unit load factor corresponds to a bending moment of 1.7 kN.
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Figure 4.20: In-plane stair-case failure with a brick shape factor of 0.5 under a bed
joint compression N22 combined with in-plane shear N12 of the same order of magnitude:
deformed shape of the unit cell (the displacements are magnified by a factor of 10) (left),
joint damage distribution (centre) and related acoustic tensor determinant spectrum as a
function of the normal orientation Θ(◦) (right) at the end of the softening tail.

the same order of magnitude. The same failure mode can be detected here by using the
criterion extended to Kirchhoff-Love shell formulation for the same loading case. Note
that this computation is performed with the same material characteristics as in Section 4.5
except for the Mode-I fracture energy Gf which is taken 10 times larger to avoid a snap-
back response which is more likely to appear for in-plane loading modes. Indeed, even
though such a response can be traced using continuation methods, a snap-back response
is accompanied with the recovery of a positive-definite tangent stiffness. As a result, the
detection procedure cannot be applied anymore in snap-back regimes. The numerical
results for this in-plane loading case are depicted in Figure 4.20 for the final situation
in the softening regime. The potential bifurcation has appeared for orientations between
−77.1◦ and 15.2◦ (negative values of the related acoustic tensor determinant) with two
local minima at −72.2◦ and 4.5◦, and a local maximum at the stair-case normal orientation
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Figure 4.21: Out-of-plane bed joint failure under a bed joint compression N22 combined
with in-plane shear N12 of the same order of magnitude and a bending moment M22:
deformed shape of the unit cell (the displacements are magnified by a factor of 10) (left),
joint damage distribution (centre) and related acoustic tensor determinant spectrum as
a function of the normal orientation Θ(◦) (right) at the end of the softening tail. The
loading is along the stress path N22 = N12 = −25 kN/m and M22 = 1.8 kN

of −45◦, which shows again that the detection procedure works properly.
In order to show the influence of the loading on the obtained failure mode, a bending

moment M22 is added to the bed joint compression N22 combined with in-plane shear
N12. The loading of the unit cell follows the stress path N22 = N12 = −25 kN/m and
M22 = 1.8 kNm/m. Numerical results are shown in Figure 4.21 for the final situation
in the softening regime. Note that all the joints of the unit cell are damaged except a
small part of the head-joint. The negative local maximum of the related acoustic tensor
determinant and the deformed shape of the unit cell show that an out-of-plane failure
occurs along the bed joint.

As a result, the proposed approach allows to properly detect the occurrence of lo-
calisation when both membrane and flexural loadings are considered. This proves again
that the localisation and failure orientation analysis has to be based on the averaged or
homogenised tangent stiffness taking into account the membrane-flexural coupling.

4.6.3 Influence of the RVE size

All computations presented so far are performed on a unit cell of masonry and allow
to deal with single period damage patterns as bed joint and stair-case failures. Note that
the use of a single period RVE for localisation detection is justified in this case by the
fact that only material non-linearities are considered. As a result, the loss of uniqueness
in the average response cannot be caused by geometrical non-linearities and the detection
of localisation and its orientation are therefore independent of the RVE size.

It is also emphasized that the averaged post-peak response is itself RVE size dependent.
Larger RVEs would indeed contain several parallel average cracks for a given loading
program. If all of these cracks develop, the same average response would be obtained. If
on the contrary a bifurcation treatment is used inside the RVE, only one of these cracks
will develop, leading to a more brittle averaged response in the post-peak regime. This
size dependence of the averaged post-peak response calls for specific ingredients in its
exploitation in structural computations (see Section 4.6.4).

Furthermore, note that the damage patterns whose period is not a masonry stacking
period cannot be considered using a unit cell of masonry at the mesoscopic scale. This
can be illustrated by applying on the unit cell a bending moment M11 where the x1-axis
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Figure 4.22: Out-of-plane failure pattern and its average orientation defined by the normal
~n for the loading of a bending moment M11 (left), corresponding failure patterns in a unit
cell (centre), and failure pattern in a RVE composed by 2 × 2 unit cells (right).

is parallel to the bed joint. The failure mode corresponding to this loading is depicted in
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Figure 4.23: Load-curvature response under a bending moment M11. The unit load factor
corresponds to M11 = 2 kN.

Figure 4.22 assuming that no failure can occur in the brick. The normal to this average
crack orientation is oriented at 0◦, and the two corresponding possible damage patterns
extracted from a unit cell both match stair-case modes (Θ = ±45◦). As a result, the
unit cell final state cannot correspond to an orientation of Θ = 0◦. A RVE composed
by 2 × 2 unit cells is able to represent properly the crack pattern, see Figure 4.22. To
illustrate this, the load-curvature response depicted in Figure 4.23 represents the variation
of the load factor as a function of the curvature χ11. Note that this response exhibits a
snap-back in the softening regime around χ11 = 2 × 10−5 mm−1. The numerical results
for this case are shown in Figure 4.24. At the peak of the response (Figure 4.24, state
A), a crack with an average normal orientation of −0.5◦ is detected from the acoustic
tensor determinant negative maximum and it is shown that no normal opening of the bed
joint occurs which matches the failure mode depicted in Figure 4.22 (left). During the
final phase of the softening regime (Figure 4.24, state B), all the joints of the unit cell
are damaged. The orientation corresponding to the negative local maximum has however
significantly changed and matches the normal orientation of a stair-case failure mode
at 45◦. Note that this change of failure orientation occurs just at the snap-back in the
softening regime.

It can thus be concluded that the use of the proposed localisation detection with a
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Figure 4.24: Out-of-plane failure under a bending moment M11: deformed shape of the
unit cell (the displacements are magnified by a factor of 500 (A) and 50 (B)) (left),
joint damage distribution (centre) and related acoustic tensor determinant spectrum as a
function of the normal orientation Θ(◦) (right).

unit cell is able to properly detect localisation orientation for patterns which do match
the single period nature of the cell. Larger RVEs matching the periodicity of the damage
pattern are needed when their periodicity does not match the stacking of constituents.

4.6.4 Incorporation in structural computations

The results above suggest that unit cell computations could be used in multi-level
methods, see Feyel and Chaboche (2000). The localisation information obtained from cell
computations can indeed be used to feed a structural scale shell description accounting for
localisation in the spirit of Massart et al. (2007a). However, two important observations
have to be emphasized in this respect. First, the computations presented in this Chapter
are performed on proportionally loaded unit cells. For certain cases, like the out-of-plane
stair-case failure, it can be shown that the negative local maximum of the related acous-
tic tensor determinant which determines the crack normal orientation does not appear
immediately after the response peak. The crack normal orientation deduced from the
non positive-definiteness of the acoustic tensor evolves during the softening regime and
tends progressively towards the mesostructurally motivated average localisation orienta-
tion. Should this occur in structural computations, this would call for some technique
allowing to account for the variation of the average crack orientation at the structural
scale. If not, an evolving localisation orientation at the mesoscale could lead to macro-
scopic stress locking. Note however that such a variation was observed for proportional
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stress loading, while damage localisation can induce stress redistribution in structural
computations. Secondly, the potential presence of snap-backs in a cell response in relation
with strain-driven scale transition procedures should be treated if they are incorporated
in structural computations using advanced path following techniques, see Massart et al.
(2005a).

4.7 Conclusions

A computational homogenisation-based detection of localisation was proposed for ma-
sonry shells. It was shown that the combination of a computational homogenisation
scheme for out-of-plane behaviour with an acoustic tensor-based localisation criterion
adapted to thin planar shell kinematics allows to determine structural localisation ori-
entations consistent with the preferential fine-scale damage patterns of masonry. This
approach was illustrated by an example of out-of-plane bed joint failure and two exam-
ples of out-of-plane stair-case failure with different geometrical aspect ratios of the units.

The robustness of the proposed localisation detection procedure was discussed. It was
shown that this approach allows the proper localisation tracking when the mesoscopic
material properties are modified and when both membrane and flexural loadings are con-
sidered. It was also illustrated that the proposed approach should be extended with larger
RVEs to properly detect localisation orientation for patterns which do not match the pe-
riodicity of the unit cell. Finally, the need to treat potential presence of snap-back in
the average response and of macroscopic stress locking due to evolving localisation orien-
tation was emphasized for further incorporation of the proposed approach in structural
computations.

As an extension of the present work, the proposed approach could be directly incorpo-
rated in a two-scale computational framework. In order to build a consistent framework,
the structural localisation treatment should be based on the homogenised response of the
RVE with a proper implementation of energetic consistency. Moreover, the presented
framework should be extended to the Reissner-Mindlin shell kinematics in order to take
into account the transverse shear effects. Finally, as already mentioned, a more phys-
ically general description of the various failure modes of masonry shells (incorporating
brick cracking or friction related phenomena) would require a more advanced mesoscopic
description. Such enhancements can be accommodated without any modification of the
scale transition and localisation detection procedures.



Chapter 5

Assessment of periodic

homogenisation-based multi-scale

computational schemes for

quasi-brittle structural failure

New methods for the modelling of structural failure by means of multi-scale

approaches were recently proposed, in which the structural description in-

volves coarse-scale discontinuities, the behaviour of which is fed by Repre-

sentative Volume Element (RVE) computations. Their main asset consists

in identifying the material response from fine-scale material parameters and

computations, including the failure behaviour of the material. One of the

distinctions between the available approaches relates to the boundary con-

ditions applied on the RVE. The methods based on classical computational

homogenisation usually make use of periodic boundary conditions. This as-

sumption remains a priori debatable for the localised behaviour of quasi-

brittle materials. For the particular case of periodic materials (masonry),

the level of approximation induced by the periodic assumption is here scruti-

nised. A new displacement discontinuity-enhanced scale transition is there-

fore outlined based on energetic consistency requirements. The corresponding

multi-scale framework results are compared with complete fine-scale mod-

elling results used as a reference, showing a good agreement in terms of limit

load, and in failure mechanisms at both the fine scale and at the overall

structural level.

5.1 Introduction

The formulation of macroscopic constitutive laws for the behaviour of damaging quasi-
brittle materials is a difficult task. Complex closed-form constitutive laws formats are
needed to account for effects such as damage-induced anisotropy. In addition, evolution
laws have to be used for the additional parameters entering such equations, which leads
to cumbersome and costly experimental identification procedures, especially when initial

This Chapter is based on: B.C.N. Mercatoris and T.J. Massart, Assessment of periodic
homogenization-based multiscale computational schemes for quasi-brittle structural failure, International
Journal for Multiscale Computational Engineering, 7(2), 153–170, 2009.
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anisotropy is considered. The masonry material poses all of these challenges simultane-
ously, due to its strongly heterogeneous microstructure which considerably influences its
overall mechanical behaviour.

The focus will here be set on structural computations for masonry structures. In
this context, the formulation of closed-form constitutive laws has been pursued in the
last decade, see for instance Lourenço et al. (1997), Berto et al. (2002) for examples of
two-dimensional developments. To complement general closed-form constitutive equa-
tions, multi-scale techniques have been proposed and applied to non-linear mechanical
behaviour with different purposes (material identification vs. structural computations),
as well as different range of applicability (periodic or non-periodic materials, quasi-brittle
vs. ductile materials). Restricting the overview on textured quasi-brittle materials such
as masonry, different approaches were presented recently. A first class of frameworks bears
similarities to domain decomposition methods, rather than upscaling fine-scale material
behaviour towards coarser scales material response, Brasile et al. (2007a,b), Ibrahimbe-
govic and Markovic (2003), Markovic and Ibrahimbegovic (2004). In these methods, the
structure is decomposed in non-overlapping subdomains. The equilibrium equations are
solved on the structure using this domain decomposition, together with compatibility con-
ditions at the interfaces between them. Such an approach allows to incorporate non-linear
behaviour features in the computations up to failure. It does not rely on other a priori
assumptions, while keeping a significant but distributed computational effort, mainly pre-
scribed by the level of details associated to the chosen microstructural modelling strategy.
Another class of frameworks is based on the identification of average (coarse scale) ma-
terial behaviour features by means of representative volume element (RVE) or unit cell
computations. A nested multi-scale computational strategy, known as FE2, was proposed
in Feyel and Chaboche (2000), Smit et al. (1998), Kouznetsova et al. (2001); and applied
to the mechanical behaviour of metallic and polymeric materials, and was later extended
to other physical phenomena, Ozdemir et al. (2008a,b). The coarse-scale material be-
haviour of a classical continuum description is then sampled at each quadrature points by
using an auxiliary fine-scale boundary value problem based on periodic homogenisation
averaging principles. This allows to derive numerically the average stress and tangent
stiffness for an applied average strain. The applicability of such an approach is restricted
to situations in which the principle of scale separation applies between the fine and coarse
descriptions. The computational effort therefore remains important, but substantially
decreases with respect to a full fine-scale modelling of structures.

A simplified adaptation to cracking in quasi-brittle materials was first proposed in
Luciano and Sacco (1997, 1998) with off-line periodic homogenisation, but without struc-
tural scale localisation treatment. Two different strategies were proposed recently to
tackle damage localisation at the coarse scale by introducing displacement or strain dis-
continuities in multi-scale methods. A first approach consists in feeding the behaviour
of coarse-scale equivalent displacement discontinuities with information extracted from
the aggregation of all fine-scale material instabilities present in a unit cell, in the spirit
of Belytschko et al. (2008). Another methodology making use of the initially periodic
microstructure of masonry is explicitly based on periodic homogenisation of unit cells
and based on embedded strain discontinuities, as in Massart et al. (2007a). However,
periodicity is an assumption which remains strongly debatable in the localised cracking
regime, since the principle of scales separation does not apply in that case. Yet, for the
initially periodic masonry material, with failure modes clearly dominated by its periodic
microstructure, the degree of approximation involved by the local periodicity assumption
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remains untested, and will be challenged here.
The main objective of this Chapter is to analyse the effect of this periodicity assump-

tion. This will be achieved by comparing the results obtained from a homogenisation-
based multi-scale computation on confined shear wall tests with the results of a full fine-
scale model based on the same material parameters value, and taken as a reference result.
In order to make this comparison possible, an improvement of the framework proposed
in Massart et al. (2007a) will be presented. The coarse (structural) scale localisation will
therefore be described by the introduction of strong discontinuities in the kinematical
description in the spirit of Armero (1999). Secondly, a cohesive law-based model will be
used at the fine scale in order to improve the efficiency of the computations, and allow a
complete fine-scale modelling of the confined shearing test.

The Chapter is structured as follows. A simple scalar damage model with interface
elements used for the mortar joints at the fine scale is formulated in Section 5.2. The
essential ingredients of a localisation-enhanced multi-scale scheme for failure of periodic
quasi-brittle materials are presented in Section 5.3. The details of the upscaling towards
a coarse-scale displacement discontinuity are presented in this Section with a special em-
phasis on the aspects differing from Massart et al. (2007a), and on the energy consistency
argument. The results obtained from this multi-scale framework for confined shearing
tests are discussed and compared with those of complete fine-scale models in Section 5.4.
Finally, the conclusions and prospects are given in Section 5.5.

5.2 Simplified fine-scale constitutive setting for ma-

sonry

Since the aim is to compare multi-scale modelling results with a full fine-scale rep-
resentation containing all the heterogeneities of the mesostructure, the same fine-scale
constitutive laws have to be used in both cases. The choice of a simplified fine-scale
constitutive setting may be motivated for both modelling approaches. For multi-scale
computation, the constitutive laws of the constituents are kept simple in order to focus
on the extraction of coarse-scale averaged behaviour features based on a finer scale de-
scription. For full fine-scale computations, this allows to get an affordable discretisation in
terms of computational cost. Therefore, the failure behaviour of the bricks is not consid-
ered in this study and they are assumed elastic. The combined behaviour of the brick-joint
interface and of the mortar is modelled by an initially elastic interface element, for which
both the normal and tangential stiffnesses (kn, kt) can be related to the elastic behaviour
of mortar, Lourenço and Rots (1997). A classical Mohr-Coulomb type strength criterion
is used with a tension cut-off and a linear compression cap, as depicted in Figure 5.1.
The parameters ft and fc are respectively the tensile mode I strength of the mortar or
mortar-brick interfaces, and the compressive strength of masonry as a composite. c is the
cohesion, ϕ is the friction angle, and ϑ is the angle which defines the linear compression
cap for the mortar joints.

A scalar damage model with an exponential evolution law is considered. The traction-
separation law which links the traction vector ~t across the interface to the relative dis-
placement vector ~δ is given by

~t = (1 − D)H · ~δ (5.1)

where D is the scalar damage variable growing from zero (virgin material) to one (complete
failure) and H is an elastic stiffness second order tensor which depends on the elastic
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Figure 5.1: Mohr-Coulomb criterion for the mortar joint/mortar-brick interface with ten-
sile cut-off and linear compressive cap.

stiffnesses kn and kt. Note that (5.1) implies that no stiffness recovery is taken into
account upon crack closure.

The damage evolution law of the mortar joint is given by

D(κ) = 1 −
ft

knκ
e
−

ft

Gf

(κ −
ft

kn

)
for κ ≥

ft

kn

(5.2)

where Gf is the mode I tensile fracture energy. Since the damage criterion has to take
into account the different behaviours in tension and compression, the damage-driving
parameter κ is taken as the most critical value of an equivalent relative displacement
defined by
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(5.3)

where δn and δt are the normal and tangential relative displacements, respectively. Note
that since only one fracture energy parameter is used, the compressive fracture energy
of masonry is implicitly defined by the tensile fracture energy Gf and the relative values
of parameters fc and ft, and cannot be adapted independently. As aforementioned, note
that relations (5.1) to (5.3) were postulated for the sake of simplicity and to focus on the
subject of the Chapter, i.e. the degree of approximation introduced by the scale transition
procedure. More complex mortar formulations including different damage evolutions in
mode I and mode II in terms of energy dissipation could be used as well, see Lourenço
and Rots (1997). A brick damage model could also be used for instance in order to extend
the detection procedure to additional failure modes involving brick failure, see Lourenço
and Rots (1997), Massart et al. (2005b) for the case of in-plane problems.

5.3 Homogenisation-based upscaling framework for

failure

5.3.1 Periodic homogenisation of masonry behaviour

To keep this contribution focused, details concerning classical aspects of periodic com-
putational homogenisation will only be sketched, their developments being available in
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the literature, see Anthoine (1995), Kouznetsova et al. (2001). The essentials of masonry
behaviour can be homogenised from the behaviour of its basic constituents, i.e. bricks
and mortar joints. Based on its initially periodic microstructure, a unit cell (i.e. a single
period RVE) can be used together with averaging relations, see Figure 5.2. A periodic
displacement field of the following form is used, see Anthoine (1995)

~u = E.~x + ~w (5.4)

where E is a coarse-scale strain tensor, ~x is the position vector of an arbitrary point within
the cell and ~w is a periodic mesoscopic fluctuation field, added to the linear displacement
field to account for the heterogeneity of the material. Such a displacement field allows to
enforce the averaging relation linking fine and coarse-scale strains

E =
1

Vcell

∫

Vcell

ε (~u) dV (5.5)

where Vcell indicates the cell volume. Practically, the periodicity of the fluctuation field is
enforced by linear tying relations involving the displacements of opposite boundaries, see
Kouznetsova et al. (2001). The work equivalence principle (Hill-Mandel) is used in order
to link the mesoscopic and macroscopic virtual work, see Anthoine (1995)

Σ : δE =
1

Vcell

∫

Vcell

σ : δε dV (5.6)

which results in the averaging relation between coarse and fine-scale stress tensors

Σ =
1

Vcell

∫

Vcell

σ dV (5.7)

Based on the periodicity assumption, relations (5.4)-(5.7) allow to formulate a bound-
ary value problem on the unit cell, and to control or extract average quantities (strains,
stresses, tangent stiffness) from displacements or tying forces at specific controlling points,
see Kouznetsova et al. (2001) for details. This methodology was used extensively for ma-
terial characterisation, i.e. without incorporation within structural computations, initially
for elastic behaviour, see Pande et al. (1989), Anthoine (1995). Recent works considered
the extension to non-periodic random microstructures using statistically equivalent unit
cells, see Zeman and Šejnoha (2007). Their extension to non-linear behaviour showed that
physically meaningful results could be obtained in terms of strength and failure patterns,
see Pegon and Anthoine (1997), Anthoine (1997), Massart et al. (2004, 2005b).

Figure 5.2: In-plane periodicity of running bond masonry, see Anthoine (1995).
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5.3.2 Principles for upscaling the failure behaviour of periodic

materials

As presented in Feyel and Chaboche (2000), Smit et al. (1998), Kouznetsova et al.
(2001), the upscaling procedure prior to coarse-scale localisation consists in applying
periodic homogenisation in each coarse-scale point of a classical continuum. However,
failure at each scale of representation should be carefully treated to obtained meaningful
results. At the scale of constituents, classical closed-form constitutive laws can be used,
as described in Section 5.2.

At the coarse scale, and since no a priori postulated constitutive relation is readily
available, the detection of localisation has to be based on the average quantities result-
ing from the upscaling procedure. As a result, the onset of structural localisation is
detected from the homogenised tangent stiffness and the associated acoustic tensor. The
localisation can be associated to a condition for the loss of ellipticity of the coarse-scale
equilibrium problem, based on the non positive-definiteness of the homogenised acoustic
tensor for some orientation, see Rice (1976), Rice and Rudnicki (1980). Alternatively, it
can be associated to a condition for the loss of uniqueness of the discretised fine-scale
boundary value problem, i.e. non positive-definite character of the homogenised tangent
stiffness, see de Borst et al. (1993). As already identified in Massart (2003), Mercatoris
et al. (2009), the latter criterion will be used to detect occurrence of localisation and
the former to extract the average orientation of the localisation zone. It is emphasised
that when periodic homogenisation is used, this coarse-scale localisation detection proce-
dure actually introduces a periodicity-related approximation with respect to a fine-scale
description, since this type of boundary condition may overconstrain the unit cell and
overestimate the average tangent stiffness of the material.

An important and debated choice is related to the RVE size. In the present case of
quasi-brittle failure, a geometrically linear description is used. The loss of uniqueness
can only by associated to material non-linearities, and the localisation detection is not
RVE-size dependent, see Massart et al. (2004). As a result, a unit cell will be used here,
thereby restricting the model to damage configurations which can be described with such
a cell, i.e. single period cracks.

Once structural localisation and its orientation are detected, a discontinuity with this
orientation has to be introduced in the coarse-scale description to account for the dam-
age localisation, together with elastically unloading surrounding zones, as sketched in
Figure 5.3a. In Massart et al. (2007a), a strain discontinuity with a given width (see
Figure 5.3) was used within a relaxed Taylor model to represent the average effect of
the localising zone in a coarse-scale quadrature point. The presence of this strain dis-
continuity was not explicitly incorporated in the coarse-scale discretisation as such, but
was rather embedded in the average behaviour of the considered quadrature point. The
behaviour of the localising region was directly obtained from the homogenised behaviour
of a further damaging unit cell. Here, the discontinuity will be explicitly introduced in
the coarse-scale displacement field discretisation in the spirit of Armero (1999), by using
a lumped displacement jump. This format requires the extraction of a cohesive response
from the average behaviour of a damaging unit cell. This extraction should enforce that
the correct amount of dissipated energy is transferred to the coarse scale. Again, it is
emphasised that this treatment of structural localisation implicitly carries assumptions if
periodic homogenisation is still used to extract this coarse-scale cohesive response, since
the scale separation assumption is not satisfied anymore upon coarse-scale localisation.
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Furthermore, as an additional choice, the zones surrounding the localising regions are
assumed to unload elastically, an assumption which might not be satisfied during the
complete loading history of all the concerned points in the structure.

Figure 5.3: Identification of a coarse-scale discontinuity from a fine-scale damage pattern.
(a) fine-scale damage pattern, (b) identification of a further damaging and localising
band of volume Vl and of an unloading surrounding regions of volume Vu, (c) aggregation
towards a strong discontinuity at coarse scale. Comparison of (a) and (b) defines the
localising volume, while the energetic consistency originates from the equivalence between
(b) and (c).

5.3.3 Incorporation of a strong discontinuity at coarse scale

The structural scale problem is solved using the finite element method and using an
embedded strong discontinuity model in which the behaviour of the discontinuity is ob-
tained from fine-scale computations. Once structural localisation is detected, the coarse-
scale displacement field is enriched by a strong discontinuity, as proposed by Armero
(1999). A displacement jump ~ξ is introduced along a discontinuity line Γd, the orientation
of which is deduced from the acoustic tensor-based criterion. This jump is added to the
regular continuous part of the displacement field according to

~ue = ~u + Ψ~ξ (5.8)

where Ψ represents a set of functions exhibiting a unit jump along the discontinuity line.
The enhanced strain tensor is obtained by differentiating Equation (5.8), which leads to

Ee = (~∇~ue)
sym = E(~u) + G(~ξ) + (~ξ ~n)sym δΓd

(5.9)
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where E(~u) is the strain tensor based on classical kinematics, G(~ξ) is the regular part
of the enhanced strain tensor Ee which depends on the displacement jump and δΓd

is
the Dirac function centred on the discontinuity line. This Dirac function is integrated
along the discontinuity line and therefore does not need regularisation, see de Borst et al.
(2001). The details concerning the discretisation of such an enhanced kinematics, among
which the construction of the tensor G can be found in Armero (1999) and are sketched
in 3, and will be omitted here for brevity.

In order to determine the additional displacement jump field, the weak form of equi-
librium is solved together with a weak continuity condition on the stress along the dis-
continuity line: ∫

Γd

(

~Td − Σ · ~n
)

dΓd = 0 (5.10)

where ~Td is the traction vector across the discontinuity, Σ is the stress tensor in the bulk,
surrounding the discontinuity, and ~n is the normal to the discontinuity line Γd. A material
response which links the traction vector to the displacement jump is required to drive the
discontinuity and reads

δ ~Td = 2Cd · δ~ξ (5.11)

where 2Cd is the discontinuity tangent stiffness tensor. Once the embedded discontinuity
is introduced, the bulk of the element is assumed to unload elastically from the state
reached at that point.

Note that this strong discontinuity approach is an element-based enrichment of the
displacement field. This carries the advantage that the additional displacement jump
field may be condensed at the element level. As a corresponding drawback, this im-
plies that the crack path continuity and the displacement jump field continuity across
the element boundaries are not ensured, which may have consequences in terms of global
energy dissipation. Note also that an extension in this respect could be considered with
an XFEM-based implementation at the coarse scale as in Belytschko et al. (2008). How-
ever, the extraction of an average discontinuity behaviour from the homogenisation of
fine-scale computations can lead to the re-orientation of this discontinuity as a result of
further fine-scale damage evolutions. This fact is particularly important for the case of
strongly textured materials as masonry, and should be accounted for to avoid stress lock-
ing phenomena at the coarse scale, which is easier to accommodate with an element-based
enrichment.

5.3.4 Upscaling localising behaviour towards coarse-scale dis-

continuities

In this Chapter, contrary to the approach proposed by Armero (1999) where con-
stitutive laws are given by closed-form laws, both the bulk and discontinuity material
behaviours are deduced from fine-scale unit cell computations. A material secant stiffness
is extracted from the unit cell in which the structural localisation has just been detected.
The material behaviour of the discontinuity, described by Equation (5.11) at the coarse
scale, must be extracted from the fine-scale description by means of an enhanced upscaling
procedure. A further damaging unit cell is used for this purpose, which will be denoted
in the sequel as Localising Volume Element (LVE), see Figure 5.3.

The extraction of the coarse-scale discontinuity response requires the definition of an
average strain ELVE to be applied on the LVE from the coarse-scale displacement jump;
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as well as the evaluation of ~Td and 2Cd from the results of the LVE computation. An
approximate energy consistency argument is used as illustrated in Figure 5.3 in order to
build a relationship between the displacement jump vector ~ξ across a zero-thickness zone
with an orientation ~n used at the coarse scale, and the average strain ELVE applied to a
localising region with a finite volume detected at the fine scale. The localisation width wn

defining the volume of the localising region therefore has to enter this relationship to take
into account in the coarse-scale description the finite fine-scale volume on which damage
localisation occurs. The introduction of the fine-scale localisation width in the scale
transition indeed allows to objectively upscale the total energy dissipation independently
of the coarse-scale discretisation.

Writing the work variation for the idealised band-surrounding representation (Fig-
ure 5.3b), in which the localising region behaviour is identified from the LVE and the
unloading region is associated with an unloading RVE yields

δWm =

∫

Vu

ΣRVE : δERVE dVu +

∫

Vl

ΣLVE : δELVE dVl (5.12)

where Vl and Vu represent respectively the volumes of the further loading (damaging)
and unloading regions. In the corresponding coarse-scale representation (Figure 5.3c),
the localising behaviour is lumped into a zero-thickness cohesive zone and the complete
volume of the element is assumed to unload according to the behaviour extracted from
the RVE. The corresponding work variation reads

δWM =

∫

Vu

ΣRVE : δERVE dVu +

∫

Vl

ΣRVE : δERVE dVl +

∫

Γd

~T d · δ~ξ dΓ (5.13)

The strain jump variation associated with a strain discontinuity mode vector δ ~m along a
discontinuity line of normal ~n is given by

δELVE − δERVE =
1

2
(~nδ~m + δ ~m~n) (5.14)

Assuming that the variations δELVE, δERVE, and δ~ξ are constant on the domains on which
they are integrated, assuming that the traction continuity is enforced along the boundary
between the localising and unloading regions, and defining the traction across the coarse-
scale discontinuity from the LVE average stress, one obtains

~T d = ΣLVE · ~n = ΣRVE · ~n (5.15)

Imposing the energy equivalence δWm = δWM then yields

wn (δELVE − δERVE) · ~n = δ~ξ (5.16)

As a result, the average strain on the LVE is related to the coarse-scale displacement
jump according to

δELVE · ~n =
δ~ξ

wn

+ δERVE · ~n (5.17)

The first term of this relation expresses that the lumped displacement jump along the
discontinuity at the coarse scale should incorporate a measure of the fine-scale finite vol-
ume on which damage occurs, wn in this case. Note that this localisation zone width can
vary with the failure mode observed at the fine scale. Here it will be taken equal to the
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size of a unit cell in the direction of the normal to the detected localisation orientation.
This carries the implicit assumption that the localisation occurs with single period cracks,
which might not hold for given cracking modes, such as for instance vertical brick cracking
under horizontal tension. The second term of relation (5.17) accounts for the fact that
the RVE unloading is attributed to the complete volume of the element at the coarse
scale. A part of the material inside the LVE is indeed also unloading upon localisation
(namely the brick which behaves elastically), but this effect is already incorporated in the
averaging operation on the LVE. This second term allows not to take this contribution
twice in the energy consistency argument, under the assumption that the unloading ma-
terial inside the localising band reacts as the identified surrounding material (i.e. with an
secant unloading from the bifurcation point). Since the contribution of this second term
is usually small, and for the sake of simplicity, it will be neglected in the sequel. Note
that this approximation is theoretically valid for cases in which the localisation width is
indeed negligible with respect to the dimensions of the coarse-scale elements.

The complete multi-scale nested procedure with localisation enhancement is depicted
in Figure 5.4. Note that orientation of the discontinuities after their introduction is not
fixed. Subsequent localisation analysis of the tangent stiffness of the LVE may indeed
detect rotations in the detected localisation orientation as a result of further (unstable)
damage growth. In such case, the coarse-scale discontinuity is allowed to rotate in order
to avoid stress locking. This rotation is however limited at each step, in order to avoid
convergence difficulties linked to sudden and strong rotations.

5.4 Comparison of multi-scale and fine-scale results

on structural computations

In order to compare fine-scale and multi-scale approaches, the same structural com-
putation will be performed using both descriptions. The in-plane confined shearing of a
planar masonry wall without and with an opening is considered.

5.4.1 Confined shearing of a full masonry wall

In this Section, the multi-scale framework results are compared to fine-scale modeling
results for a full masonry wall. The tested geometry is shown in Figure 5.5. It consists
of a planar masonry wall of dimensions 2220× 2160× 98 mm3, with bricks of dimensions
120×60×98 mm3 stacked according to a running bond pattern. Note that the size of the
wall remains limited by the computational cost of the full fine-scale computation. The
aspect ratio of the bricks prescribes a preferential stair-case crack pattern orientation of
45◦. A clamping of the top and bottom brick rows in the loading set-up is represented by
two bands of elements with elastic behaviour and with a stiffness comparable to concrete.
The loading is applied in two phases. In the first phase, the wall is compressed by
prescribing a uniform vertical displacement of the top boundary. In the second loading
phase, the vertical displacement of the top boundary is kept fixed and a horizontal shearing
displacement is prescribed on the top right corner of the wall. For low pre-compression
loads, damage is first initiated during the confined shearing phase with the appearance
of horizontal tensile cracks at the top left and bottom right corners of the wall. The
extension of these tensile damage zones is lower for higher initial compressions. Their
appearance is followed by the formation of a compressive strut between the bottom left
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Figure 5.4: Complete localisation-enhanced nested scheme.

and top right corners. Upon further shearing, diagonal cracking appears in the central
zone of the specimen in the compressive strut, with a stair-case crack pattern at the fine
scale. During this compressive strut cracking phase, a strong interaction occurs between
the fine-scale preferential cracking orientation, and the coarse-scale stress distribution
prescribed by the confining boundary conditions. The difference between the respective
orientation of the strut and of the fine-scale pattern strongly influences the damage-
induced energy dissipation. Finally, a structural failure mechanism is formed by the
propagation of diagonal cracking towards the compressed corners of the wall. Depending
on the compressive strength of the mortar, final failure may occur by compressive crushing
at the compressed corners of the wall, associated with brick cracking at the fine scale. Since
bricks are assumed elastic, compressive crushing is represented here phenomenologically
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Figure 5.5: Confined shearing wall test description. The loading is applied in two suc-
cessive phases: (a) compressive load applied on the top boundary layer, (b) horizontal
shearing. The dark grey area depicts the stair-case crack defect introduced in the cen-
tral zone of the wall to initiate localisation of damage in the diagonal compressive strut
(decrease of the tensile strength and the cohesion of 50%).

by the compressive cracking of bed joints, see Lourenço and Rots (1997).
Due to the strong confinement present in this test, the stress distribution in the central

part of wall remains rather uniform at the early stages of cracking, and the initial shearing
damage zone is therefore quite diffuse. This transition from a distributed damage pattern
to a localised cracking is difficult to capture computationally, and requires strong step
refinements along the computations even for a full fine-scale discretisation. Furthermore,
the use of a rather coarse discretisation in multi-scale computations needed at the coarse
scale to keep the localisation width smaller than the structural scale element size also
induces numerical difficulties, linked to the proper evaluation of stress concentrations
for the coarse-scale discontinuity propagation, especially for uniformly distributed stress
states. Therefore, a defect is introduced in the central part of the wall to trigger the
damage localisation more easily, both in the fine-scale and coarse-scale computations, see
Figure 5.5. Finally, since the focus is here set on the assessment of the results obtained
with a periodicity-based scale transition, a rather favourable mesh topology is adopted
at the coarse scale. A diagonal band of elements with an orientation consistent with the
average orientation of the compressive strut is introduced in the coarse discretisation in
order to properly capture the stress concentration and to allow the complete separation
of two rows of nodes with propagating embedded discontinuities. This allows to avoid
numerical crack propagation difficulties. Note that the influence of such a mesh alignment
at the coarse scale is the same as if enhanced assumed strain methods were used with
closed-form material laws.

For the multi-scale computation, the masonry wall is discretised at the structural
scale by using 3-noded plane stress finite elements with one Gauss integration point. The
clamped top and bottom brick rows are discretised with 4-noded linear elements with
2×2 Gauss integration points. The coarse-scale mesh consists of 388 elements and of 536
displacement degrees of freedom (excluding the displacement jumps condensed at the ele-
ment level). The unit cell computations use a rather coarse discretisation with quadratic
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2D and interface elements. For the complete fine-scale computation, the bricks are dis-
cretised using 8-noded quadratic plane stress finite element with 3 × 3 Gauss integration
points. The mortar joints are represented by 6-noded quadratic interface finite elements
with 3 Lobatto quadrature points. Each brick was discretised using 6 by 5 elements,
resulting in a model consisting of 160000 dofs. All meshes used for the different levels of
descriptions are sketched in the Figures in the next subsections.

Note that the choice of this test calls for several comments regarding the use of periodic
homogenisation. Homogenisation with such boundary conditions is known to overestimate
the average stiffness of the material, an approximation which is particularly debatable near
free boundaries for instance. In the presented test setup, the strong initial confinement in
the central zone of the wall allows to decrease the importance of this issue. As a result, the
periodic assumption is not expected to be a too penalising assumptions for the detection of
localisation in the diagonal strut. Conversely, this assumption may prove quite crude for
localisation in the bed joints in the first cracking stages. In the same line, it is recognised
that the use of periodically homogenised properties for localised behaviour itself remains
untested since the scale separation principle does not apply anymore in this case. This is
particularly the case here given the dimensions of the tested wall (which are prescribed
by the cost of the full fine-scale computation), as the size of the fine-scale localisation
volume is not much smaller than the coarse-scale material points volume. The use of the
periodicity assumption for the localised regime will thus be challenged here by using the
most critical conditions for its application.

Note that the compressive and shearing loading phases of the wall in both simulations
and the cell computations in the multi-scale approach are controlled by displacement.
In particular, no path following technique is used at the coarse scale in the multi-scale
computation. Therefore, the multi-scale and full fine-scale computations results are quan-
titatively compared until the limit load of the structural response is reached.

The material parameters used for the computations are defined at the fine scale for
both approaches, see Section 5.2, and their values are reported in Table 5.1. The tensile
fracture energy of mortar joints is however increased with respect to realistic values (at
least for tensile mode I fracture) in order to avoid any snap-back effect in the unit cell
average response, see Massart et al. (2005b).

Note that the computation cost is not challenged in this contribution. The size of the
structure has been chosen such that a full fine-scale model is feasible. The computation
costs of the both multi-scale and full fine-scale approaches are therefore comparable.
Practically, a multi-scale method would definitely be used to deal with larger structures.
In this case, a multi-scale approach would of course be much more effective in terms of
computation cost than a full fine-scale computation.

Finally, due to the nested incremental iterative scheme, the presented multi-scale
procedure has a rather high computational cost even with coarse discretisations at both
fine and coarse scales. Since all cell responses may be computed independently, the

Table 5.1: Brick (a) and mortar/mortar-brick interface (b) material parameters, see
Lourenço (1996).
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(a) 16700 0.15 - - - - - - - -
(b) - - 438 182 0.2 0.1 0.28 40 6.0 35
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proposed multi-scale method is well suited for parallel computations. The multi-scale
computation reported here was performed with such an implementation.

The comparison of the results of both approaches is based both on the overall response
of the wall (load-displacement response in the second phase and identification of the failure
mechanisms), and on the obtained damage patterns at critical spots.

The load-displacement response of the second loading phase is depicted in Figure 5.6.
As can be seen, the multi-scale simulation overestimates the initial stiffness by more
than 22% with respect to the full fine-scale modelling. The load bearing capacity of the
wall given by the multi-scale computation is however underestimated by only 1.1% with
respect to the full fine-scale solution. The multi-scale peak load appears for a shearing
displacement smaller by 7% with respect to the full fine-scale solution. This may be
associated to the fact that the overestimation of the initial global stiffness leads to stronger
stress concentrations and therefore earlier cracking appearance in terms of the imposed
shearing displacement.

For each of the three points of the load-displacement curve denoted by a capital
letter, a detailed view of the structural state is given in the next Figures. The damage
distribution is illustrated on the undeformed structural configuration for the complete
fine-scale solution. For the same value of the shearing displacement (point A and B)
and for the response peak (point C), the coarse-scale discontinuities are depicted on the
undeformed shape of the coarse-scale discretisation of the multi-scale computation. The
damage distributions of the unit cells corresponding to typical positions in the structure
are also given.

As can be seen in Figure 5.7 representing the damage state at point A in the load-
displacement curve, the initial stage of horizontal mode I cracking in bed joints is qual-
itatively reproduced by the multi-scale computation. The overestimation of the initial
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Figure 5.6: Confined shearing wall test. Comparison of the load-displacement reponses
for full fine-scale modelling (dashed line) and multi-scale simulation (solid line). The
capital letters match states for which detailed damage maps are compared in the following
Figures.
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stiffness of the wall and the rather coarse meshes used in the multi-scale approach may
explain the difference in the extension of these cracks. In the complete fine-scale solu-
tion, the horizontal mode I cracking is localised in the upper left and lower right tensile
bed joints. The multi-scale computation shows a less localised horizontal cracking due to
the fact that the stress concentrations are partly smoothened by the rather coarse dis-
cretisation in this zone. The fine-scale damage patterns is nevertheless well reproduced,
see unit cell (1) in Figure 5.7. A rather localised damage state promoted by the defect
appears in the central zone in the complete fine-scale simulation, represented as well in
the multi-scale framework by embedded discontinuities. Note that their orientation is
consistent with the unit cell stair-case damage patterns and the full fine-scale simulation,
see unit cell (2) in Figure 5.7. In the multi-scale solution, the extension of the embed-
ded discontinuities corresponding to the diagonal cracking is larger, probably due to the
overestimation of the initial global stiffness. Note that around the stair-case cracking
fronts in the full fine-scale solution, the damage distribution is rather diffused and only
the head-joints are partially damaged. This damage pattern is also well reproduced by
the multi-scale computation in non-localised states (no coarse-scale discontinuity in this
zone), see unit cell (3) in Figure 5.7. In the compressed corners, the full fine-scale solu-
tion shows a slight initiation of damage in the head-joints while bed joints are partially
damaged in the multi-scale solution, see unit cell (4) in Figure 5.7.

The next stage in the cracking process is still located in the rising part of the load-
displacement curve (point B). It matches the transition from a diffuse damage pattern
in the central zone of the compressive strut towards localisation. Figure 5.8 depicts this

(1)

(2)

(3)

(4)

(1) (2) (3) (4)

Figure 5.7: Damage maps at point A of the confined shearing load-displacement response
of the full wall: (left) damage maps of the complete fine-scale computation (black lines
indicate fully damaged joints and gray lines indicate partially damaged joints), (right)
coarse-scale discontinuities for the multi-scale computation and (bottom) related damage
state of unit cells.
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state of the wall for both approaches. Note that the orientation of the slanted embedded
discontinuities in the diagonal band of elements is independent of the coarse-scale mesh but
consistent with the full fine-scale modelling and the unit cell stair-case damage patterns,
see unit cell (1) in Figure 5.8. The orientation of these embedded discontinuities in fact
evolves towards the average stair-case orientation given by the brick stacking geometry.
Note that the discrepancy between the fine-scale preferential orientation (45◦) and the
compressive strut average direction (about 50◦, as illustrated from the fine-scale solution
of Figures 5.9 and 5.10), is the cause for the presence of several diagonal cracks and
therefore influences the global energy dissipation. These parallel stair-case cracks with
respect to the main one are accounted for in the multi-scale approach by non-localised
damage zones as illustrated by cell (2) in Figure 5.8. In the top right and bottom left zones,
compressive and shearing failure in bed joints appeared in the multi-scale framework, see
unit cell (3) in Figure 5.8, which matches rather well with the full fine-scale solution.
The multi-scale solution also shows quasi fully damaged head-joints near the compressed
corners, see unit cell (4) in Figure 5.8, which matches the damage patterns of the full
fine-scale solution.

Upon completion of the propagation in the compressive strut, the compressed cor-
ners fail under compressive crushing at the peak load of the wall response (point C in
Figure 5.6). This compressive crushing failure (represented here phenomenologically by
joints compressive failure) is correctly captured by both the complete fine-scale and the
multi-scale descriptions, see unit cells (1) and (2) in Figure 5.9. In each description, this
damage pattern occurrence matches the peak load of the curve. As expected, the stress

(1)(2)

(3)
(4)

(1) (2) (3) (4)

Figure 5.8: Damage maps at point B of the confined shearing load-displacement response
of the full wall: (left) damage maps of the complete fine-scale computation (black lines
indicate fully damaged joints and gray lines indicate partially damaged joints), (right)
coarse-scale discontinuities for the multi-scale computation and (bottom) related damage
state of unit cells.
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redistribution stops the horizontal cracks propagation in the upper and lower bed joints.
For the sake of completeness, Figure 5.9 shows that the multi-scale framework properly
detects the appearance of bed joint failure along free edges of the wall as in the full fine-
scale solution, see unit cell (3) in Figure 5.9. Finally, unit cell (4) in Figure 5.9 shows
that certain joints of the wall remain safe during the loading phase in accordance with
the full fine-scale simulation results.

To further illustrate the global failure mechanisms, the deformed configurations at the
peak load (point C) are depicted in Figure 5.10 for both the full fine-scale and multi-scale
computations. The tensile and compressive failure of the bed joints in the corners are
well reproduced by the multi-scale computation, see unit cells (1) and (2) in Figure 5.10.
The stair-case opening in the central zone of the compressive strut of the multi-scale
solution matches as well the failure mechanism of the full fine-scale solution. In this zone,
the head-joints fail with a tensile mode whereas the damaged part of bed joints present
a rather shearing failure mode, see unit cell (3) in Figure 5.10. Finally, note that the
orientation of embedded discontinuities matches the average orientation of the stair-case
opening in the full fine-scale solution, see Figure 5.10. The full fine-scale solution also
shows the effect of a different orientation of the fine-scale preferential damage orientation
and of the global compressive strut. Three stair-case cracks are indeed recognizable in
this simulation, resulting in an average orientation of the damaged compressive strut of
50◦.

(1)(2)

(3)
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Figure 5.9: Damage maps at point C of the confined shearing load-displacement response
of the full wall: (left) damage maps of the complete fine-scale computation (black lines
indicate fully damaged joints and gray lines indicate partially damaged joints), (right)
coarse-scale discontinuities for the multi-scale computation and (bottom) related damage
state of unit cells.
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Figure 5.10: Deformed configuration at point C of the confined shearing load-displacement
response of the full wall (the displacements of the wall are magnified by a factor of 200):
(left) deformed configuration of the complete fine-scale computation, (right) deformed
configuration of the multi-scale computation and (bottom) related deformed unit cells
(the displacements of the cells are magnified by a factor of 50).

5.4.2 Confined shearing of a masonry wall with an opening

In the same spirit as for the full wall test presented in Section 5.4.1, the multi-scale
framework results are compared here to fine-scale modelling results on a planar wall with
an opening. The tested geometry is shown in Figure 5.11. The dimensions of the wall and
the bricks are the same as for the full wall test. The opening of dimensions 660×720 mm2

is not centred in the wall in order to avoid symmetry at the macroscopic scale as shown in
Figure 5.11. As for the full wall test, a clamping of the top and bottom brick rows in the
loading set-up is represented by two bands of elements with elastic behaviour and with a
stiffness comparable to concrete. The same two-phase loading scheme as for the full wall
computation is used with compression followed by confined shearing. Early in the confined
shearing phase, damage is first initiated with the appearance of diagonals cracks starting
at the top right and bottom left corners of the opening due to stress concentrations. Upon
further shearing, horizontal tensile cracks appear at the free boundaries of the wall at the
level of the horizontal edges of the opening. Finally, a structural failure mechanism is
formed by the propagation of diagonal cracking towards the compressed corners of the
wall with compressive crushing of two corners of the opening in front of the tensile cracks.

The stress concentrations induced by the opening helps the transition from a dis-
tributed damage pattern to a localised cracking and therefore allows to (partially) avoid
the numerical difficulties observed with the full wall simulation to initiate cracking. No
defect is therefore needed to trigger the damage localisation. However, a rather coarse
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Figure 5.11: Confined shearing test on a wall with an opening. The loading is applied
in two successive phases: (a) compressive load applied on the top boundary layer, (b)
horizontal shearing.

discretisation is used at the coarse scale for the multi-scale computation in order to keep
the localisation width smaller than the structural scale element size. As a consequence,
the stress concentrations are smoothened and underestimated at the corners of the open-
ing. Furthermore, a rather favourable mesh topology is still adopted at the coarse scale
in order to properly capture the evolving stress concentrations and to allow the complete
separation of two rows of nodes with propagating embedded discontinuities.

For the multi-scale computation, the masonry wall is discretised at the structural
scale by using 3-noded plane stress finite elements with one Gauss integration point. The
clamped top and bottom brick rows are discretised with 4-noded linear elements with
2×2 Gauss integration points. The coarse-scale mesh consists of 431 elements and of 612
displacement degrees of freedom (excluding the displacement jumps condensed at the ele-
ment level). The unit cell computations use a rather coarse discretisation with quadratic
2D and interface elements. For the complete fine-scale computation, the bricks are dis-
cretised using 8-noded quadratic plane stress finite element with 3 × 3 Gauss integration
points. The mortar joints are represented by 6-noded quadratic interface finite elements
with 3 Lobatto quadrature points. Each brick was discretised using 4 by 2 elements,
resulting in a model consisting of 47388 dofs. All meshes used for the different levels of
descriptions are sketched in the Figures below.

As for the full wall test, this test is chosen to challenge the periodicity assumption of the
homogenisation procedure for the localised regime by using the most critical conditions
for its application. Therefore, the multi-scale and full fine-scale computations results
are quantitatively compared until the limit load of the structural response is reached.
Both simulations are controlled by displacement. The values of the fine-scale material
parameters used for both approaches and defined in Section 5.2 are given in Table 5.2.
Note that the tensile fracture energy of mortar joints is still increased with respect to
realistic values in order to avoid any mesostructural snap-back effect, see Massart et al.
(2005b).

The comparison of the results of both multi-scale and full fine-scale computations is
based on the load-displacement response of the shearing phase, the identification of the
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Table 5.2: Brick (a) and mortar/mortar-brick interface (b) material parameters, see
Lourenço (1996).
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(a) 16700 0.15 - - - - - - - -
(b) - - 438 182 0.18 0.05 0.28 36 6.0 35
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Figure 5.12: Confined shearing test on a wall with an opening. Comparison of the load-
displacement reponses for full fine-scale modelling (dashed line) and multi-scale simulation
(solid line). The capital letters match states for which detailed damage maps are compared
in the following Figures.

failure mechanisms, and the obtained damage patterns.
The load-displacement response of the second loading phase of the wall with an opening

is depicted in Figure 5.12. As for the full wall test, the multi-scale simulation overestimates
the initial stiffness by more than 22% with respect to the full fine-scale modelling. However
the load bearing capacity is not predicted as well as for the full wall test since it is
overestimated by 12% with respect to the full fine-scale solution (assuming that the load
peak is reached for the multi-scale modelling). This overestimation of the peak load can
be associated to the underestimation of the stress concentrations at the opening corners
in the multi-scale simulation, which are better captured in the full fine-scale modelling
due to the fine discretisation.

For each of the three points of the load-displacement curve denoted by a capital
letter, a detailed view of the structural state is given in the next Figures. The damage
distribution is illustrated on the undeformed structural configuration for the complete
fine-scale solution. For the same value of the shearing displacement (points A, B and C),
the coarse-scale discontinuities are depicted on the undeformed shape of the coarse-scale
discretisation of the multi-scale computation. The damage distributions of the unit cells
corresponding to typical positions in the structure are also given.
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As can be seen in Figure 5.13 representing the damage state at point A in the load-
displacement curve, two parallel stair-case cracks start to propagate from the top right
and bottom left corners of the opening in the full fine-scale solution. This cracking mode
is qualitatively reproduced by the multi-scale computation and the orientation of the
corresponding embedded discontinuities is consistent with the unit cell stair-case damage
patterns and the full fine-scale simulation, see unit cell (1) in Figure 5.13. Note that near
the stair-case cracking fronts, no structural localisation is detected but a damage state
appears at the fine scale in head-joints, see unit cell (2) in Figure 5.13. A rather diffused
damage state also appears around the opening. In the parts of the wall below and above
the opening, the bed joints are partially damaged in the full fine-scale solution, which is
in accordance with the horizontal embedded discontinuities in the multi-scale framework,
see unit cell (3) in Figure 5.13. The overestimation of the initial stiffness of the wall and
the rather coarse meshes used in the multi-scale approach may explain the difference in
the extension of these embedded discontinuities and the presence of horizontal embedded
discontinuities on the free boundaries of the wall. In the left-hand and right-hand parts on
the wall, only the head-joints are partially damaged. Although no structural localisation
is detected in these zones in the multi-scale solution, the unit cell damage patterns are
consistent with the full fine-scale solution, see unit cell (4) in Figure 5.13.

(1)
(2)

(3)

(4)

(1) (2) (3) (4)

Figure 5.13: Damage maps at point A of the confined shearing load-displacement response
of the wall with an opening: (left) damage maps of the complete fine-scale computation
(black lines indicate fully damaged joints and gray lines indicate partially damaged joints),
(right) coarse-scale discontinuities for the multi-scale computation and (bottom) related
damage state of unit cells.
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The next stage in the cracking process is still located in the rising part of the load-
displacement curve (point B) for which the stair-case cracks almost propagate torwards
the corners of the wall. Figure 5.14 depicts this state of the wall for both approaches.
The damage state and the orientation of the embedded discontinuities at the stair-case
cracking fronts are well reproduced by the multi-scale computation, see unit cell (1) in
Figure 5.14. Around these cracking fronts, the damage state in the multi-scale framework
is in accordance with the full fine-scale solution, see unit cells (2) and (3) in Figure 5.14.
Furthermore, unit cell (4) in Figure 5.14 shows that the damage state appearing in the
bed joints along the free boundaries of the wall is well reproduced by the multi-scale
simulation.

Upon completion of the stair-case cracking propagation, the compressed corners fail
under compressive crushing at the peak load of the wall response (point C), similarly to
the full wall test. In these compressed corners, the symmetric stair-case damage pattern
appears in both the complete fine-scale and the multi-scale descriptions, as shown in
unit cell (1) in Figure 5.15. Note that since the stair-case cracks do not completely
propagate towards the corners of the wall in the multi-scale simulation, the load bearing
capacity may not be reached at the point C of the load-displacement response of the multi-
scale computation. For the sake of completeness, Figure 5.15 shows that the multi-scale
framework properly detects the evolution of the damage state in the wall with respect to

(1)
(2)
(3)

(4)

(1) (2) (3) (4)

Figure 5.14: Damage maps at point B of the confined shearing load-displacement response
of the wall with an opening: (left) damage maps of the complete fine-scale computation
(black lines indicate fully damaged joints and gray lines indicate partially damaged joints),
(right) coarse-scale discontinuities for the multi-scale computation and (bottom) related
damage state of unit cells.
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Figure 5.15: Damage maps at point C of the confined shearing load-displacement response
of the wall with an opening: (left) damage maps of the complete fine-scale computation
(black lines indicate fully damaged joints and gray lines indicate partially damaged joints),
(right) coarse-scale discontinuities for the multi-scale computation and (bottom) related
damage state of unit cells.

the complete fine-scale solution, see unit cells (2) and (3) in Figure 5.15. Finally, unit
cell (4) in Figure 5.15 shows that some zones remain safe during the loading phase in
accordance with the full fine-scale simulation results.

In order to illustrate the global failure mechanism, the deformed configurations at the
peak load (point C) are depicted in Figure 5.16 for both the full fine-scale and multi-
scale computations. The crack openings in the multi-scale solution match the failure
mechanism observed in the full fine-scale solution. Near the stair-case cracking fronts,
the head-joints fail with a tensile mode whereas the damaged part of bed joints rather
present a shearing failure mode, see unit cell (1) in Figure 5.16. Further from the stair-
case cracking fronts where the cracks are fully open, both the head-joints and bed joints
fail with a mixed tensile and shearing mode, see unit cell (2) in Figure 5.16. Unit cells (3)
and (4) in Figure 5.16 respectively show that the tensile opening at the free boundaries of
the wall and the failure of the compressive corners are well reproduced by the multi-scale
computation.

5.4.3 Discussion

The first observation is related to the presence of an overestimation of the stiffness in
the initial stage of the second phase loading. This overestimation can be attributed to
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Figure 5.16: Deformed configuration at point C of the confined shearing load-displacement
response of the wall with an opening (the displacements of the wall are magnified by a fac-
tor of 200): (left) deformed configuration of the complete fine-scale computation, (right)
deformed configuration of the multi-scale computation and (bottom) related deformed
unit cells (the displacements of the cells are magnified by a factor of 50).

the use of periodic homogenisation, as well as to the use of a rather coarse discretisation
in the multi-scale approach, both at the coarse scale and in the unit cell computations.
The use of a coarse discretisation at the structural scale was needed here to keep the
localisation width smaller than the structural scale element size. Note that in practical
applications of the multi-scale framework, larger structures would be considered. A mesh
refinement at the structural scale would restrict the stiffness overestimation such that the
sole contribution brought by the periodicity assumption would remain.

In the case of the confined shearing full wall test, it is emphasised that the periodicity
assumption of the computational homogenisation procedure gets increasingly challenged
along the shearing loading phase; even though it may be argued that this assumption
keeps its validity before any localisation detection, due to the confined character of the
stress distribution. Upon localisation in the bed joints under mode I loading, periodicity
is clearly lost as shown in Figure 5.7 (fine scale). Nevertheless, the presence of these
cracks is detected in the multi-scale procedure at the correct shearing displacement. This
suggests that the overestimation of the initial stiffness does not affect strongly the initia-
tion of the cracking process. Upon localised behaviour, the local periodicity assumption
is strongly challenged, especially because the localised bandwidth is comparable to the
coarse mesh size. The stress distribution in the centre of the wall remains rather diffuse
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when the tensile cracks of bed joints are initiated. As a consequence, the periodicity as-
sumption remains a good approximation for non-localised states in the compressive strut.
Further in the shearing loading phase, the crack propagates in the compressive strut un-
til the complete development of the failure mechanism when the compressed corners fail
(corresponding to the overall response peak). The cohesive behaviour of the coarse-scale
discontinuities is obtained on a periodic unit cell. As a result, the coarse-scale dissipation
is directly controlled by the periodicity assumption, even though the cracking in the com-
pressive strut does not consist in many parallel active cracks, as depicted in Figure 5.10.
However, the good agreement between the simulations both in the global response and
in the obtained damage patterns shows that the periodicity assumption does not prevent
from reaching quantitative results for the treated wall. The load bearing capacity seems to
be controlled mainly by the global failure mechanism since the peaks of both approaches
match, in spite of the difference in the initial global stiffnesses.

This consideration gives a motivation for the limit analysis assumptions where the
load bearing capacity is related to the considered failure mode, as for instance in Milani
et al. (2006a). The limit analysis approaches focus on the identification of the limit
load of structures without considering stable crack situations. The proposed multi-scale
framework is therefore considered as a complementary approach, since it allows to capture
the crack patterns along the loading path and therefore allows to model cracking for
loading levels well below the limit loads. In the case of the confined shearing wall test with
an opening, the periodicity assumption of the computational homogenisation procedure
is still more challenged even before any localisation detection due to the presence of
the opening. Nevertheless, the damage patterns and the global failure mechanism are
qualitatively well reproduced by the multis-scale modelling with respect to the full fine-
scale solution. The overestimation of the load bearing capacity may result from the coarse
discretisation used at the coarse scale.

It is also emphasised that the proposed multi-scale framework is tested here using
the most challenging conditions for its application in terms of the scale separation issue.
In particular, its use in much larger structures would result in larger scale jump. As a
result, the localised behaviour would be modelled with a better estimation of the energy
dissipation.

The use here of coarse-scale embedded localisation zones as proposed in Armero (1999)
is a major difference with the approach proposed in Belytschko et al. (2008), which makes
use of XFEM techniques. The lack of crack path continuity in the approach here could
lead to strong approximations in terms of energy dissipation if coarse meshes are used at
the structural scale. This is particularly the case for mode I loading when a single crack
is to be represented (i.e. a strongly localised failure mode), a case in which an XFEM
implementation would yield better results, as illustrated in Belytschko et al. (2008) for a
three point bending configuration. As a result, it could be expected that the early bed
joint cracking in the full wall would be modelled more accurately in an XFEM-enhanced
multi-scale framework. Conversely, the compressive strut cracking is obtained with a
fine-scale damage evolution which leads to reorientations of the averaged cracking zone, a
feature which can be more easily incorporated in an embedded discontinuity formulation,
than in an XFEM-based description. Furthermore, for compression dominated average
failure modes, more distributed damage states are obtained as illustrated in the case
of the wall with and without an opening, in which case, several embedded zones can
appear to account for this fact. Finally, it should be noted that the representation of
the compressive failure of the corners by means of a cohesive zone is questionable, since
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it consists in a volume-driven dissipation. Here, a proper representation of this failure
mechanism and of the associated energy dissipation is obtained because the size of the
unit cell is comparable to the coarse-scale element size. If larger structures have to be
modelled with compressive failure zones, a proper volume energy dissipation should be
accounted for by adapting specifically the localisation size wn for the compressive stress
states.

5.5 Conclusions

A periodic homogenisation-based multi-scale method was proposed for the modelling of
quasi-brittle structural failure. In order to upscale failure information, a new displacement
discontinuity-enhanced scale transition was developed based on approximate energetic
consistency requirements. This framework was assessed by a comparison with a complete
fine-scale model on confined shearing wall tests with and without an opening, in order to
estimate the impacts of the periodicity and scale separation assumptions.

In the case of the confined shearing wall tests with and without an opening, it was
shown that the multi-scale modelling yields results in good agreement with respect to
complete fine-scale computations results provided stress distributions are confined. In
spite of an overestimation of the initial stiffness by the multi-scale modelling, the cracking
patterns are correctly reproduced, with a good estimation of the failure mechanisms at
both the structural and fine scales. Furthermore, the multi-scale approach also allows to
obtain quantitative information on the limit load, which is obtained with less than 2%
error with respect to the full fine-scale simulation in the case of the confined shearing full
wall test and with a larger error (about 12%) in the case of the confined shearing wall
test with an opening.

The results obtained here suggest that further studies could be useful in order to
extend their scope. First, a parametric study should be performed in order to analyse
the results obtained for different mesh refinements at the coarse scale, different fine-scale
geometrical features (size of the unit cell, aspect ratio of the unit cell), and different
material features (fracture energies). Secondly, additional features could be introduced in
the fine-scale laws. This would include brick cracking (leading to more localised patterns in
the compressive strut), as well as more refined mortar joints laws (independent fracture
energies for mode I, mode II and compressive fractures). Finally, the extension of the
framework to out-of-plane failure should be performed, based on the results of Mercatoris
et al. (2009), see Chapter 4.



Chapter 6

A coupled two-scale computational

scheme for the failure of periodic

quasi-brittle thin shells

This Chapter presents a multi-scale framework for the failure of periodic

quasi-brittle thin shells. The macroscopic behaviour of textured or periodic

heterogeneous materials is strongly influenced by their mesostructure. Their

periodicity and the quasi-brittle nature of their constituents result in complex

behaviours such as damage-induced anisotropy properties with localisation

of damage, which are difficult to model by means of macroscopic closed-form

constitutive laws. A multi-scale approach can therefore offer an attractive

and flexible solution for the modelling of such heterogeneous materials. A

non-linear periodic computational homogenisation procedure is used for the

in-plane and the out-of-plane behaviour of such planar shells, combined to

an acoustic tensor-based detection criterion adapted to shell kinematics in

order to detect the structural-scale localisation. Based on an assumption

of single period failure, the localisation of damage at the structural scale is

represented by means of mesostructurally informed embedded strong discon-

tinuities incorporated in the macroscopic shell description. A new enhanced

scale transition is outlined for shell failure based on an approximate energy

consistency argument in order to objectively upscale the energy dissipation.

The corresponding multi-scale framework results are compared for the case

of masonry to full fine-scale modelling results used as a reference, showing a

good agreement in terms of load bearing capacity, of failure mechanisms and

of associated energy dissipation.

6.1 Introduction

The structural failure behaviour of quasi-brittle textured heterogeneous materials such
as masonry is difficult to capture, because of complex behaviours such as damage-induced
anisotropy leading to stress redistributions, as can be observed in experimental tests,
see Page (1981, 1983), Dhanasekar et al. (1985), van der Pluijm (1999). Closed-form
constitutive laws were proposed to model such a macroscopic behaviour for the case of

This Chapter is based on: B.C.N. Mercatoris and T.J. Massart, A coupled two-scale computational
scheme for the failure of periodic quasi-brittle thin shells. Submitted for publication.
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masonry walls subjected to both in-plane loading, Papa and Nappi (1997), Lourenço et al.
(1997), Berto et al. (2002) and out-of-plane loading, Lourenço (2000). As a counterpart to
their efficiency, these closed-form relations may be costly to identify due to a large number
of material parameters and, can be complex to formulate from a mathematical point of
view. A characterisation of the flexural behaviour is even more complex since membrane-
flexural couplings have to be taken into consideration. In addition, localisation of damage
is observed at the structural scale in narrow zones and is strongly related to the material
mesostructure. The characteristic size and the orientation of this localisation phenomenon
has to be captured properly to determine the structural failure modes together with the
associated energy dissipation.

A multi-scale approach can therefore offer an attractive and flexible solution in the
characterisation of such periodic heterogeneous materials. Different multi-scale techniques
have been developed in the past decades allowing to postulate closed-form constitutive
laws at the scale of the constituents, on which the material parameters are a priori more
straightforward to identify. First substructuring methods based on a structural decom-
position in non-overlapping subdomains have been proposed for heterogeneous materials,
see Ghosh et al. (2001), Ibrahimbegovic and Markovic (2003), Markovic and Ibrahim-
begovic (2004) for instance. In these approaches, compatibility conditions are used to
connect the discretisation of the subdomains to the macroscopic finite element mesh play-
ing the role of a frame. A similar approach was applied more recently for the in-plane
non-linear behaviour of large masonry structures in Brasile et al. (2007a,b). A concept of
structural decomposition was also combined to an asymptotic homogenisation procedure
with Voronoi cells for damage assessment in two-dimensional random particle-reinforced
porous composites, see Ghosh et al. (2001), and recently enhanced for the modelling of
damage-induced anisotropy in ductile cast alloys, see Ghosh et al. (2009). Asymptotic
homogenisation was initially presented for periodic heterogeneous materials in Bensous-
san et al. (1978), Sanchez-Palencia (1980), Suquet (1987), using an asymptotic expansion
of the macroscopic variables which allows to define a boundary value problem on a rep-
resentative volume element (RVE) for each order under consideration, see Peerlings and
Fleck (2004). This technique is still widely used for composite materials, see the recent
extensive review in Kalamkarov et al. (2009). Based on the scale separation assumption
used in periodic homogenisation, a computational homogenisation scheme known as FE2

was proposed allowing to numerically compute the average non-linear response of a het-
erogeneous microstructure by means of averaging theorems and a boundary value problem
on a RVE mainly for two-dimensional and three-dimensional applications, see Smit et al.
(1998), Feyel and Chaboche (2000), Kouznetsova et al. (2001) as well as Geers et al.
(2009) for a state of the art of this methodology. In order to reduce the high computa-
tional cost of direct computational homogenisation procedures with a certain compromise
on the solution accuracy, transformation field analysis was presented in Dvorak (1992) for
plastic and damaging composites. It is based on the decomposition of each constituent of
the microstructure into subdomains in which uniform inelastic strain fields are assumed,
leading to off-line homogenisation, as recently applied for in-plane loaded masonry walls
in Sacco (2009).

Since complex heterogeneous materials may appear in shell-like structures (laminated
composite, honeycomb-type sandwich, masonry structure), some extensions of multi-scale
approaches to shell-like formulations recently appeared. Unit cell asymptotic homogeni-
sation techniques were used to determine the elastic properties of beam-like structures
in Cartraud and Messager (2006), of composite shell structures with orthotropic rein-
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forcements in Challagulla et al. (2008), and of periodic running bond masonry walls
subjected to out-of-plane loading in Cecchi and Sab (2002b, 2004, 2007). These tech-
niques were further combined with limit analysis concepts and optimisation techniques in
order to compute ultimate strength properties of structures and determine their failure
mechanism, as in Milani et al. (2006a,b), Cecchi et al. (2007), Cecchi and Milani (2008).
A structural limit analysis approach based on a homogenisation procedure accounting
for the strength domain of any shell failure mechanism was developed recently in Milani
et al. (2008) for the structural analysis of curved shells such as arches, vaults and domes.
For structural computations, a twofold multi-scale enrichment methodology using the
asymptotic homogenisation theory and a partition of unity method was proposed recently
in Oskay (2009) for the inelastic analysis of thin heterogeneous plate structures. This ap-
proach was combined with an eigendeformation-based model reduction which generalises
transformation field analysis to account for interface debonding within the microstructure,
see Oskay and Fish (2007, 2008). Another multi-scale framework based on asymptotic
homogenisation was developed for the failure of thin heterogeneous plates, see Oskay and
Ghanshyam (2009), where macroscopic inelastic and damage fields are linked to micro-
scopic inelastic and damage fields by means of weighted averaging relations.

The FE2 computational homogenisation approach was extended recently for structured
thin sheets using the homogenisation of a through-thickness RVE based on a second-order
strategy, see Geers et al. (2007), Coenen et al. (2008). The thick shell case still raises
questions concerning the transverse shear upscaling and is the topic of current research. A
more restricted periodic homogenisation procedure was presented in Mistler et al. (2007)
for the case of elastic Kirchhoff-Love masonry shells.

These multi-scale methods were recently extended to incorporate the damage and
plastic behaviour of heterogeneous materials. Some are based on non-local descriptions
at the structural scale, see Ghosh et al. (2009), Oskay and Ghanshyam (2009), allowing
to consider structural strain localisation bands with relatively fine mesh combined with
remeshing. The substructuring approaches based on a structural decomposition allows to
incorporate non-linear behaviour features up to failure in the case where the characteris-
tic length scale of the microstructure is not small enough to satisfy the scale separation
principle, see Ibrahimbegovic and Markovic (2003), Markovic and Ibrahimbegovic (2004),
Brasile et al. (2007a,b). These methods keep a significant but distributed computational
effort, mainly prescribed by the level of details associated with the chosen microstructural
modelling strategy. A continuum model coupled with asymptotic homogenisation method
and incorporating an internal length deduced from the microstructure was proposed re-
cently in Dascalu et al. (2008) to describe size effects, material softening and damage-
induced anisotropy in brittle heterogeneous material, while a second-order computational
homogenisation approach was proposed in Kouznetsova et al. (2004) incorporating in the
macroscopic continuum a length scale defined by the size of the RVE.

Since it is crucial to properly treat localisation at each scale to keep a well-posed prob-
lem for a softening analysis, continuous-discontinuous scale transitions started to emerge
recently. A first approach based on this concept was developed in Massart et al. (2007b,a)
for damage in in-plane loaded masonry wall, using a twofold first-order computational
homogenisation scheme and relying on the definition of a localisation band using strain
discontinuities driven by an evolving damaging unit cell. The detection of localisation
is based on the homogenised tangent stiffness leading to a physically based description
of preferential damage orientations, and a condition of increasing energy dissipation is
also used to treat microstructural snap-backs. An improved version of the method in-
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corporating strong embedded discontinuities was proposed recently in Mercatoris and
Massart (2009). Another multi-scale approach was recently coupled to the X-FEM ap-
proach, and consists in feeding the behaviour of structural scale equivalent displacement
discontinuities with information extracted from the aggregation of all microstructural ma-
terial instabilities present in a unit cell, see Belytschko et al. (2008), Belytschko and Song
(2009).

In the present Chapter, a periodic computational homogenisation will be used in or-
der to capture the quasi-brittle structural failure of initially periodic thin heterogeneous
shells with an application to out-of-plane loaded masonry walls. The scale transitions
therefore have to be adapted to represent structural localisation by means of fine-scale
informed discontinuities since the size of the localisation zone can be smaller than the
RVE size. To achieve this, different techniques to represent damage localisation by in-
corporating discontinuities within classical continuum descriptions can be used. Initially,
embedded discontinuities were used by introducing jumps either into strain fields, leading
to weak discontinuities as in Ortiz et al. (1987), Belytschko et al. (1988); or into displace-
ment fields leading to a strong discontinuity approach, see Simo et al. (1993), Lofti and
Shing (1995), Oliver (1996a,b), Armero and Garikipati (1996), Armero (1999), Wells and
Sluys (2000). The extended finite element method based on the partition unity concept
was next presented in Moës et al. (1999), Belytschko and Black (1999), Belytschko et al.
(2001), Wells and Sluys (2001); allowing for continuous crack path and crack kinematics,
in contrast with the embedded discontinuity approach, which uses mainly element-based
enrichments. A recent extensive review of the X-FEM methodology is available in Be-
lytschko et al. (2009). These two approaches (embedded discontinuity and X-FEM) have
been extended for through-thickness cracks of plates and shells in the last decade. In
this context, the extended finite element method was adapted to the Reissner-Mindlin
formulation in Dolbow et al. (2000), the continuum-based shell formulation in Areias
and Belytschko (2005), and the Kirchhoff-Love formulation in Rabczuk et al. (2007). In
addition, the X-FEM methodology was used recently for quasi-static crack propagation
of thin shells taking into account softening, adhesion and contact behaviour, see Areias
and Rabczuk (2008); and for dynamic quasi-brittle fracture of thin shells subjected to
impulse loads, see Song and Belytschko (2009). Although the X-FEM methodology pre-
vails in the modelling of crack propagation, the embedded discontinuity method still has
drawn interest in the past years. The two-dimensional strong embedded discontinuity ap-
proach proposed in Armero (1999) was extended to the Euler-Bernoulli beam kinematics
in Armero and Ehrlich (2006b) and the Reissner-Mindlin plate kinematics in Armero and
Ehrlich (2006a). This last approach will be used in the sequel to represent the structural
localisation.

This Chapter presents the extension to thin shells of a methodology which has been
applied for in-plane loaded structures in Mercatoris and Massart (2009). The proposed
methodology both allows to predict the load bearing capacity and the associated failure
modes as limit analysis methods, as well the evolution of stable cracks, i.e. the service
states far below the ultimate load capacity, and therefore provides an estimation of the
total energy dissipation.

The Chapter is structured as follows. The embedded strong discontinuity presented
in Armero and Ehrlich (2006a) and used at the structural scale to represent the localised
shell failure is briefly sketched in Section 6.2. The main ingredients of periodic computa-
tional homogenisation scheme for thin shell properties are given in Section 6.3, followed
by a homogenisation-based failure detection proposed in Mercatoris et al. (2009) in Sec-
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tion 6.4. The details of the upscaling procedure towards a coarse-scale discontinuity for
shell failure are presented in Section 6.5. The results obtained with this multi-scale frame-
work are illustrated for the failure of out-of-plane loaded masonry wall, and are discussed
and compared with those of complete fine-scale simulations in Section 6.6. Finally, the
conclusions and prospects are given in Section 6.7.

6.2 Localised shell failure with embedded strong dis-

continuity

6.2.1 Shell formulation

In this Section, the formulation of a shell finite element which will be used in the
sequel is presented. The computational homogenisation scheme which will be defined
in Section 6.3 for infinitesimal strains is based on the Kirchhoff-Love assumptions. As
further motivated, a shear-enhanced element with the Reissner-Mindlin description will
however be used in order to properly treat the discontinuity opening even if thin shells are
considered. The problem of interest here is a planar shell defined by the reference surface
Ω, its contour ∂Ω both included in the x, y reference plane and its constant thickness h
along the z direction. The geometrically linear Reissner-Mindlin kinematics is assumed in
such a way that the kinematics of any material point P in the shell thickness is described
by

~vP = ~v(x, y) + z~β(x, y) and wP = w(x, y) (6.1)

where ~v is the in-plane or membrane displacement vector, ~β is the rotation vector, see
Figure 6.1 for the sign convention, and w is the out-of-plane displacement also called the

Figure 6.1: Sign convention of rotations in shell kinematics

transverse deflection. The generalised strains, namely the membrane deformation tensor
E, the curvature tensor χ, and the transverse shear strain vector ~γ are given by

E = (~∇~v)sym , χ = (~∇~β)sym and ~γ = ~∇w + ~β (6.2)

and are work conjugate to the membrane force tensor N, the bending moment M and
the transverse shear force vector ~T , respectively. The quasi-static equilibrium of the shell
can therefore be expressed in a weak form by the variational statement

∫

Ω

(

N :δE + M :δχ + ~T ·δ~γ
)

dΩ =

∫

Ω

δwext

s dΩ +

∫

∂Ω

δwext

c dΓ (6.3)

for all admissible variations δ~v, δ~β and δw, and where δwext

s and δwext

c represent the
external work density variations of applied forces and torques, respectively per unit area
and per unit length. To close the formulation, the stress variables are linked to the strain
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variables through a constitutive relation. For the sake of simplicity, the couplings between
the shearing behaviour and the membrane-flexural behaviour are neglected, which leads
to a constitutive relation given in its linearised form by







δN = 4Lmm :δE + 4Lmf :δχ
δM = 4Lfm :δE + 4Lff :δχ

δ ~T = 2Lss ·δ~γ
(6.4)

where the five tensors Lab (with a, b = [m, f, s]) are the material tangent stiffnesses
governing the membrane (m), flexural (f) and shearing (s) behaviours, as well as the
membrane-flexural couplings. In the present Chapter, the coarse-scale material response
(6.4) will be deduced from the mesostructural behaviour by means of a computational ho-
mogenisation procedure. As will be shown in Section 6.3, the homogenisation procedure
used here is restricted to a Kirchhoff-Love shell kinematics, and therefore only furnishes
the membrane-flexural material response. As a consequence, the uncoupled shearing be-
haviour will be driven here by a postulated closed-form law. For the sake of simplicity,
a linear elastic transverse shear behaviour characterised by a shearing modulus will be
assumed for the shell bulk behaviour. The proposed approach is therefore restricted to
the cases for which the non-linear transverse shear effects are negligible.

Yet, a Kirchhoff-Love approximation will be avoided at the structural (coarse) scale in
order to avoid the use of C1 interpolation. When using C0 Reissner-Mindlin kinematics,
it is well-known that an independent interpolation of the transverse shear needs to be
carefully selected in order to avoid shear locking in the thin structure limit. For this
purpose, the assumed transverse shear strain interpolation proposed in Batoz and Lardeur
(1989) will be used. This independent interpolation of the transverse shear strain is based

on the strong form of the rotation equilibrium which reads ~T = ~∇·M in the absence of
body torques. This approach was initially proposed in Batoz and Lardeur (1989) for the
case of linear elastic triangle finite elements, also called discrete shear triangle (DST), and
will here be extended to account for the material non-linearities. In this extension, the
shear enhancement is assumed to be independent of the membrane effects and the spatial
variations of the material tangents are neglected. The development of the assumed shear
strain technique is reported in Batoz and Lardeur (1989), and will be omitted here for the
sake of brevity. Only the required adaptations needed in the case of a non-linear material
response will be reported here.

In the case of non-linear material behaviour, the assumed transverse shear strain
approach can be reformulated by considering the aforementioned assumptions and using
a first-order development of the total stress values needed in the strong form of rotational
equilibrium. Using a classical incremental iterative Newton-Raphson scheme, the bending
moment tensor and the transverse shear force vector at the current iteration (i) can be
approximated by

M(i) ≈ M(0) + 4L
(0)
ff :∆χ

(i) (6.5)

~T (i) ≈ ~T (0) + 2L(0)
ss

·∆~γ(i) (6.6)

where the iteration (0) corresponds to the last converged step and the symbol ∆ repre-
sents the incremental variation of a variable from the last converged state to the current
iteration. Substituting the rotation equilibrium with (6.5) into (6.6), and using the con-
stitutive flexural relation (6.4) without the membrane and shearing couplings, an assumed
transverse shear strain variation can be related to the incremental variation of rotation
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field according to

∆~̄γ(i) =
(
2L(0)

ss

)−1
·

(

4L
(0)
ff

... ~∇
(

~∇∆~β(i)
)sym

)

(6.7)

Note that the interpolation of the assumed transverse shear strain requires at least a
quadratic interpolation of the rotation field due to the second derivative present in Equa-
tion (6.7). The remainder of the subsequent developments can be found in Batoz and
Lardeur (1989). The proposed reformulation of this assumed transverse shear strain ap-
proach for the case of non-linear material behaviour allows to avoid numerical difficulties
by keeping an asymptotically quadratic convergence of the Newton-Raphson scheme.

6.2.2 Embedded strong discontinuity in shell formulation

For the modelling of localised failure resulting from material instabilities, localised
energy dissipation has to be carefully treated in order to keep a well-posed problem and
avoid significant mesh dependency. One of the techniques used to account for localisation
consists in the use of embedded discontinuities see Ortiz et al. (1987), Belytschko et al.
(1988), Simo et al. (1993), Lofti and Shing (1995), Armero and Garikipati (1996), Armero
(1999), Wells and Sluys (2000), Jirásek (2000). Here, an embedded strong discontinuity
approach is considered for the Reissner-Mindlin shell kinematics, in the spirit of Armero
(1999), Armero and Ehrlich (2006a). Since this approach uses element-based kinemat-
ics enrichments, the crack path continuity and the crack opening continuity across the
element boundaries are not ensured (at least in the initial version of the framework), in
contrast with the extended finite element method (X-FEM) in which the crack kinematics
is interpolated from nodal parameters, see Moës et al. (1999), Dolbow et al. (2000). This
element-based character can however be seen as an advantage for the case of multi-scale,
homogenisation-driven embedded discontinuities since fine-scale damage evolution may
lead to rotating discontinuities, as will be illustrated in Section 6.6, see also Mercatoris
et al. (2009).

In the embedded strong discontinuity approach proposed by Armero and Ehrlich
(2006a), the kinematics is enriched by discontinuous fields upon localisation. An in-

plane displacement jump vector ~ξv and a rotation jump vector ~ξβ are introduced along
a discontinuity line Γd. The orientation of the discontinuity has to be determined in the
detection procedure, here based on a localisation analysis given in Section 6.4. In the
sequel, the discontinuity will be introduced at the geometrical centre of the element. In
agreement with the Reissner-Mindlin kinematics, a transverse deflection jump ξw is also
introduced at an articulation point with position ~xΓd

, which corresponds to the centre of
the rotation jump, see Figure 6.2. These jumps are added to the regular, continuous part
of the engineering displacement fields according to







~ve = ~v + Ψv
~ξv

~βe = ~β + Ψβ
~ξβ

we = w + Ψw

(

ξw − (~x − ~xΓd
)·~ξβ

) (6.8)

where Ψv, Ψβ and Ψw represent a set of functions exhibiting a unit jump along the dis-
continuity line. Note that the enriched transverse deflection field depends on the rotation
jump vector as shown in Equation (6.8). The enhanced generalised strains are obtained
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Figure 6.2: Embedded strong discontinuity for the Reissner-Mindlin shell kinematics ac-
cording to Armero and Ehrlich (2006a).

by differentiating Equations (6.8) in the sense of (6.2)






Ee = E(~v) + GE(~ξv) + (~ξv ~n)sym δΓd

χe = χ(~β) + Gχ(~ξβ) + (~ξβ ~n)sym δΓd

~γe = ~γ(~β, w) + ~Gγ(~ξβ, ξw) +
(

ξw − (~x − ~xΓd
)·~ξβ

)

~n δΓd

(6.9)

where the tensors GE, Gχ and the vector ~Gγ are the regular parts of the enhanced
generalised strains which depend on the jumps, and δΓd

is the Dirac function centred on
the discontinuity line. Note that in this approach, the Dirac function is integrated along
the discontinuity line and therefore does not need regularisation, see de Borst et al. (2001).
The details concerning the discretisation of such an enhanced kinematics, among which
the construction of GE, Gχ and ~Gγ can be found in Armero (1999), Armero and Ehrlich
(2006a), and will be omitted here for brevity.

In order to determine the additional jump parameters, the weak form of global equilib-
rium (6.3) is solved together with the weak form of continuity of the generalised tractions
along the discontinuity line:

∫

Γd

[

δ~ξv ·
(

~Nd − N·~n
)

+ δ~ξβ ·
(

~Md − M·~n
)

+
(

δξw − (~x − ~xΓd
)·δ~ξβ

) (

Td − ~T ·~n
)]

dΓ = 0

(6.10)

where ~Nd, ~Md and Td are respectively the membrane force vector, the bending moment
vector and the transverse shear force scalar across the discontinuity, N, M and ~T are the
generalised stresses in the bulk, surrounding the discontinuity, and ~n is the normal to the
discontinuity line Γd. A material response which links the generalised stresses across the
discontinuity to the engineering displacement jumps is required to drive the discontinuity.
As for the constitutive material law of the shell bulk (6.4), it is assumed that no coupling
exists between the transverse shear behaviour and the flexural and membrane behaviours,
since the scale transitions which will be given in Section 6.3 are restricted to thin shells.
The constitutive relation of the discontinuity should therefore have the following format:







δ ~Nd = 2Cd
mm

·δ~ξv + 2Cd
mf

·δ~ξβ

δ ~Md = 2Cd
fm

·δ~ξv + 2Cd
ff

·δ~ξβ

δTd = 0Cd
ss

δξw

(6.11)
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where the five tensors Cd
ab

with a, b = [m, f, s] are the discontinuity tangent stiffness ten-
sors. As for (6.4), these tensors can be deduced from closed-form laws like in Armero and
Ehrlich (2006a); or alternatively by homogenisation, see Section 6.5. Once the embedded
strong discontinuity is introduced, the bulk of the element is assumed to unload elastically
from the state reached at that point in order to reflect the assumed quasi-brittle nature
of the material.

6.3 Non-linear computational homogenisation of thin

shell properties

In the context of non-linear material behaviour of thin heterogeneous shell, the meso-
structural material behaviour is upscaled towards the non-localised membrane-flexural
constitutive relations (6.4) by means of a computational homogenisation scheme. The
principles of this upscaling relations were developed in Mistler et al. (2007) and will be
briefly recalled here for the sake of clarity (more details are available in Mercatoris et al.
(2009)). The purpose of computational homogenisation is to obtain the average macro-
scopic response of a heterogeneous material from the underlying mesostructure of the ma-
terial and the behaviour of its constituents. It is based on the solution of a mesostructural
boundary value problem on a representative volume element (RVE) relying on averaging
theorems. It makes use the principle of scale separation between the two scales of repre-
sentation, which assumes that the material configuration is macroscopically homogeneous,
but microscopically heterogeneous, Kouznetsova et al. (2001).

For a macroscopic shell representation, a three dimensional through-thickness RVE is
used to represent the mesostructure. Considering the classical simplifying assumptions in
engineering shell descriptions, the scale transitions need to be carefully derived especially
for the transverse shear behaviour of thick shells, see Geers et al. (2007), Coenen et al.
(2008). For the sake of simplicity, the computational homogenisation procedure proposed
in Mistler et al. (2007) for the elastic membrane-flexural behaviour of thin masonry shells
is used here to take into account the material non-linearities. The aspects related to
transverse shear are detailed in Section 6.5.2.

6.3.1 Averaging relations for Kirchhoff-Love shell kinematics

At the fine scale, a shell is represented by a prismatic through-thickness RVE, defined
by its trace SRVE on the reference surface of the shell and its thickness h, corresponding
to the shell thickness, see Geers et al. (2007). The averaging theorems linking the coarse
(macro) scale and the fine (meso) scale quantities have to be verified for the strain, the
stress and the work variations. For the case of the Kirchhoff-Love shell kinematics, it
is postulated that the macroscopic membrane strain tensor E is the average of the local
membrane strain tensor over the reference surface SRVE. The macroscopic curvature tensor
χ is assumed to be the surface average of the local curvature tensor over SRVE

E =
1

SRVE

∫

SRVE

(~∇~ur)
sym dSRVE (6.12a)

χ =
1

SRVE

∫

SRVE

−~∇~∇uz dSRVE (6.12b)
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where ~ur and uz are the projections of the mesostructural displacement vector, respec-
tively, on the reference surface and in the thickness direction.

In a computational homogenisation technique, the energy consistency is classically
assumed, and expressed here by

N :δE + M :δχ =
1

SRVE

∫

VRVE

σ :δε dVRVE (6.13)

where ε is the (local) mesostructural infinitesimal strain tensor work conjugate to the
mesoscopic stress field σ, and N and M are respectively the macroscopic membrane force
and bending moment tensors. Combining relations (6.12) and (6.13) with appropriate
boundary conditions on the RVE leads to the satisfaction of the averaging theorem for
the stress measures and allows to relate the macroscopic membrane force tensor N and
the macroscopic bending moment tensor M to the mesoscopic statically admissible stress
field σ at the surface of the RVE.

6.3.2 Homogenisation with periodic boundary conditions

Here, the coupled two-scale framework will be defined assuming perfect periodicity of
the mesostructure (the consequences of this assumption will be discussed in the sequel
of the paper), and will be illustrated for the particular case of a quasi-brittle textured
material such as masonry. Note however that other initially periodic materials could be
treated with similar assumptions, such as honeycomb panels. Periodic boundary condi-
tions on RVEs are often used Smit et al. (1998), Kouznetsova et al. (2001), and were
shown to provide a better estimation of the overall elastic properties than other boundary
conditions, see Terada et al. (2000), van der Sluis et al. (2000). Assuming that the rigid
body translations and rotations of the RVE vanish, it can be shown, see Anthoine (1995),
that the kinematically admissible displacement field is strain-periodic and given by

~ur = E·~x + z χ·~x + ~u p
r (6.14a)

uz = −
1

2
~x·χ·~x + up

z (6.14b)

where ~u p
r and up

z are in-plane and out-of-plane periodic displacement fluctuation fields,
added to the average displacement field to account for the heterogeneity of the material.
Such a displacement field satisfies the averaging relations (6.12). Both fluctuation fields
can be eliminated, and the periodic boundary conditions can be prescribed on the RVE
using tying relations, see Anthoine (1995), Mistler et al. (2007) for detailed developments.

6.3.3 Control system of the mesoscopic boundary value problem

In a general case, the proper size and geometry of a RVE should be deduced from sta-
tistical considerations as shown in Zeman and Šejnoha (2007) or defined by the periodicity
of a given mesostructure. In the case of a small strain description, the Kirchhoff-Love gen-
eralised strains (membrane and curvature) are given by six independent scalar quantities.
The average deformed state of a RVE can therefore be fully prescribed using six controlling
degrees of freedom if the periodicity conditions are enforced. The macroscopic membrane
deformations are prescribed using three reference plane displacement components, while
the macroscopic curvatures are fixed by three out-of-plane displacement components. Us-
ing Equations (6.14) and the periodicity conditions, the relations linking the controlling
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displacements to the average coarse-scale strains can be written in a matrix form

{uctl} = [Du]
−1{EKL} (6.15)

where {uctl} is a column vector of the six controlling degrees of freedom, {EKL} is a column
vector of the Kirchhoff-Love generalised strains, and [Du] is a matrix which depends on
the in-plane dimensions of the RVE, see Mistler et al. (2007). Considering the strain-
periodic displacement field (6.14) and the energy consistency (6.13), the average Kirchhoff-
Love generalised stresses can be obtained from the controlling forces conjugated to the
controlling degrees of freedom, and which represent the action of the neigbouring cells,
see Mercatoris et al. (2009). In a matrix form, this relation is noted

{ΣKL} = [Df ]{fctl} (6.16)

where {fctl} is a column vector of the six controlling forces, {ΣKL} is a column vector of the
Kirchhoff-Love generalised stresses, and [Df ] is a matrix which depends on the in-plane
dimensions of the RVE. The coarse-scale material tangent stiffness can be extracted from
the mesostructural response and is given by

[L] = [Df ][K
∗][Du]

−1 (6.17)

where [L] is the matrix form of the homogenised membrane-flexural material tangent
stiffness, and [K∗] is the fine-scale (discrete) tangent stiffness matrix condensed at the
controlling degrees of freedom ({δfctl} = [K∗]{δuctl}), see Mercatoris et al. (2009).

The case of running bond masonry is considered as an illustration of the proposed
approach. This composite material initially exhibits a two-dimensional orthotropic het-
erogeneous structure with a periodic stacking of constituents along two directions in its
own plane. For the non-linear behaviour of such a material within a geometrically lin-
ear setting, a unit cell, i.e. a single period RVE, can be used as in Pegon and Anthoine
(1997), Massart et al. (2004, 2005b) since the failure is then not size dependent as long as
single period failure is considered. For the sake of simplicity, a parallelepipedic through-
thickness portion of masonry sketched in Figure 6.3 will be used as in Mistler et al. (2007).
Note again that similar assumptions could be made for other initially periodic materi-
als. Knowing the geometry of the RVE, the scale transition operators [Du] and [Df ] can
be expressed as a function of the in-plane dimensions of the cell, Mistler et al. (2007),
Mercatoris et al. (2009).

Based on Equations (6.15), any average deformation path can be prescribed. The
related mesostructural boundary value problem is completely defined from the prescribed
controlling degrees of freedom and the periodicity boundary conditions, and can be solved

Figure 6.3: Parallelepipedic through-thickness RVE for running bond masonry.
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using a classical finite element scheme, provided mesostructural constitutive laws are
postulated. This type of control is classically used in multi-scale nested scheme using
displacement-based finite element schemes, Kouznetsova et al. (2001), Massart et al.
(2007a). Note that this Kirchhoff-Love shell computational homogenisation scheme can
be connected to the general second-order solid-solid computational homogenisation frame-
work developed in Kouznetsova et al. (2002). Such a link was established for the Reissner-
Mindlin case by introducing the shell kinematical assumptions in the macroscopic second-
gradient continuum, see Geers et al. (2007) for more details.

6.4 Homogenisation-based failure detection in thin

shells

For the embedded discontinuity modelling of the localised behaviour of thin shells, a
criterion to detect localisation and its orientation is required. In the context of compu-
tational homogenisation, the detection and orientation of coarse-scale localisation has to
be deduced from the response of mesostructural RVE computations since no closed-form
material law is postulated a priori at the structural scale. Since the computational ho-
mogenisation framework presented in Section 6.3 is restricted to thin shells neglecting the
transverse shear effects, a homogenisation-based criterion is used for the Kirchhoff-Love
description to detect the onset of localisation and its orientation. Note that the transverse
shear effects should be taken into account to detect more complex failure mechanism such
as tearing. The two-scale approach proposed here will be restricted to membrane-flexural
failure mode in which the transverse shear effects are negligible.

The criterion proposed in Makowski and Stumpf (1998) and used in Mercatoris et al.
(2009) to detect localisation in the context of two-scale computations will be used here.
This procedure is based on the homogenised material tangent stiffness governing the mem-
brane and flexural constitutive relations (6.4), which can be deduced from the condensed
stiffness of the RVE. The conditions for the appearance of a localisation zone in which ma-
terial degradation grows and localises can be treated as a material bifurcation, similarly
to Rice (1976), Rice and Rudnicki (1980). Across the interface between the localising zone
(l) and its surrounding material (s), the displacement and rotation fields can be assumed
to be continuous and the generalised strain jumps have the form







δE(l) − δE(s) =
1

2
(δ ~mE ~n + ~n δ~mE)

δχ(l) − δχ(s) =
1

2
(δ ~mχ ~n + ~n δ~mχ)

(6.18)

where ~n is the normal to the localising zone, and ~mE and ~mχ are the strain jump modes,
which vanish in the initial, homogeneous situation, and must become nonzero for a bi-
furcated state to exist. Note that in Equation (6.18), the generalised strain jumps are
obtained from a strain jump mode vector of only two components, i.e. the longitudinal
deformation tangent to the discontinuity is not taken into account. Equilibrium requires
the continuity of the projected stress quantities at the interface of the localising zone,
which reads {

~n·
(
δN(l) − δN(s)

)
= 0

~n·
(
δM(l) − δM(s)

)
= 0

(6.19)

Introducing Equations (6.4) and (6.18) in Equation (6.19) and using the classical linear
comparison solid assumption using the same material stiffness tangents on both sides of



A coupled two-scale computational scheme for the failure of periodic thin shells 89

the localising zone interface, the stress continuity requirement reads
[

(~n· 4Lmm ·~n) (~n· 4Lmf ·~n)
(~n· 4Lfm ·~n) (~n· 4Lff ·~n)

] {
~mE

~mχ

}

= 0 (6.20)

This system of equations admits a non-trivial solution (i.e. a bifurcated state exists)
only if

det (A(~n)) = det

([
(~n· 4Lmm ·~n) (~n· 4Lmf ·~n)
(~n· 4Lfm ·~n) (~n· 4Lff ·~n)

])

= 0 (6.21)

for some direction ~n, where A(~n) is the acoustic tensor generalised to the Kirchhoff-Love
shell theory, see Makowski and Stumpf (1998).

A localisation analysis using this acoustic tensor-based criterion was used in Merca-
toris et al. (2009) for thin masonry shells in the context of computational homogenisation.
It was shown that a negative local maximum of the acoustic tensor determinant spectrum
derived from the homogenised material tangent stiffness allows to determine average orien-
tations of coarse-scale localisation consistent with fine-scale damage patterns. In addition,
it was shown that this orientation can rotate due to the evolving damage process at the
fine scale. The localisation orientation therefore needs to be updated during the damaging
process in order to avoid potential stress locking resulting from a fixed orientation.

In the proposed two-scale approach, this criterion will be used in combination with the
criterion for the loss of uniqueness of the discretised fine-scale boundary value problem,
based on the nonpositive-definite character of its discretised tangent stiffness, see de Borst
et al. (1993). The latter criterion will be used to detect the onset of localisation, while
the former acoustic tensor-based criterion will be used to extract the average orientation
of the embedded discontinuities as in Massart (2003).

6.5 Homogenisation-based upscaling framework for

shell localisation

6.5.1 Localisation-enhanced two-scaled scheme for thin shells

In the present Chapter, contrary to the approach proposed in Armero (1999) and
Armero and Ehrlich (2006a), where constitutive laws are given by closed-form laws, both
the bulk and discontinuity material behaviours are deduced from fine-scale unit cell com-
putations. Since the bulk is assumed to unload elastically, a material secant stiffness is
extracted from the unit cell in which structural localisation has just been detected by
applying an elastic unloading perturbation. The membrane-flexural material behaviour
of the embedded discontinuity, described by Equation (6.11) at the coarse scale, must be
extracted from the fine-scale description by means of an enhanced upscaling procedure.
A further damaging unit cell is used for this purpose, which will be denoted in the sequel
as Localising Volume Element (LVE), as shown in Figure 6.4.

The extraction of the coarse-scale embedded discontinuity material response requires
the definition of average Kirchhoff-Love generalised strains, ELVE and χ

LVE, to be applied
on the LVE from both the coarse-scale displacement and rotation jumps; as well as the
evaluation of the generalised stresses and the material tangent stiffness of the discontinuity
from the results of the LVE computation. To this end, an approximate energy consistency
argument is used as illustrated in Figure 6.4 in order to build a relationship between the
in-plane displacement and rotation jump vectors across the coarse-scale zero-thickness
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Figure 6.4: Identification of a coarse-scale discontinuity from fine-scale material instabili-
ties. (a) fine-scale damage pattern, (b) identification of a further damaging and localising
band and of an unloading surrounding regions, and (c) aggregation toward a strong dis-
continuity at coarse scale. Comparison of (a) and (b) defines the localising volume, while
the energetic consistency originates from the equivalence between (b) and (c)

cohesive zone with an orientation ~n, and the average Kirchhoff-Love generalised strains
applied to a localising region with a finite volume wn detected at the fine scale. The
localisation width wn defining the volume of the localising region has to enter this rela-
tionship to take into account in the coarse-scale description the finite fine-scale volume on
which the material degradation occurs all other quantities representing energies per unit
volume. This introduction of the fine-scale localisation width in the scale transition then
allows to objectively upscale the total energy dissipation independently of the coarse-scale
discretisation.

The work variation for the idealised band-surrounding representation (Figure 6.4b), in
which the localising region behaviour is identified from the LVE and the unloading region
behaviour is associated with an unloading RVE, is written as

δWm =

∫

Ωu

(NRVE :δERVE + MRVE :δχRVE) dΩu

+

∫

Ωl

(NLVE :δELVE + MLVE :δχLVE) dΩl

(6.22)

where Ωl and Ωu represent respectively the further loading (damaging) and the unloading
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domains (Ω = Ωu∪Ωl and Ωu∩Ωl = ∅). In the corresponding coarse-scale representation
(Figure 6.4c), the localising behaviour is lumped into a zero-thickness cohesive zone and
the complete domain Ω of the element is assumed to unload according to the behaviour
extracted from the RVE. The corresponding work variation reads

δWM =

∫

Ω

(NRVE :δERVE + MRVE :δχRVE) dΩ

+

∫

Γd

(

~Nd ·δ~ξv + ~Md ·δ~ξβ

)

dΓ
(6.23)

The prescription of the energy equivalence δWm = δWM gives
∫

Ωl

(NLVE :δELVE + MLVE :δχLVE) dΩl

=

∫

Ωl

(NRVE :δERVE + MRVE :δχRVE) dΩl +

∫

Γd

(

~Nd ·δ~ξv + ~Md ·δ~ξβ

)

dΓ

(6.24)

Assuming that all the strain and displacement jump variations and stresses present in
Equation (6.24) are constant on the domains on which they are integrated (which allows
to extract them from the integral sign), the energy equivalence then reads

(NLVE :δELVE + MLVE :δχLVE) l wn

= (NRVE :δERVE + MRVE :δχRVE) l wn +
(

~Nd ·δ~ξv + ~Md ·δ~ξβ

)

l
(6.25)

where l and wn are the length and the width of the localisation band, respectively. As-
suming (in an approximate way) that the stress continuity is strongly enforced along the
boundary between the localising and unloading domains, and defining the stresses across
the coarse-scale discontinuity from the LVE average stresses, one obtains

{
~Nd = NLVE ·~n = NRVE ·~n
~Md = MLVE ·~n = MRVE ·~n

(6.26)

Note that these assumptions lead to an approximate equivalence since the stress continuity
is actually enforced in a weak form in the framework. Under these assumptions, the energy
equivalence (6.25) may be satisfied by imposing

{

wn (δELVE − δERVE) :NLVE = δ~ξv ·(N
LVE ·~n)

wn (δχLVE − δχRVE) :MLVE = δ~ξβ ·(M
LVE ·~n)

(6.27)

As from the detection criterion presented in Section 6.4, the membrane and curvature
strain jump variations associated with the strain discontinuity vectors δ ~mE and δ ~mχ

along a discontinuity line of normal ~n, see Equation (6.18), is given by






δELVE − δERVE =
1

2
(~nδ~mE + δ ~mE~n)

δχLVE − δχRVE =
1

2
(~nδ~mχ + δ ~mχ~n)

(6.28)

Substituting (6.28) into (6.27), the average generalised strains to be applied on the LVE
can be related to the coarse-scale displacement and rotation jumps according to







δELVE ·~n =
δ~ξv

wn

+ δERVE ·~n

δχLVE ·~n =
δ~ξβ

wn

+ δχRVE ·~n

(6.29)
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The first term of these relations expresses that the lumped displacement and rotation
jumps along the discontinuity at the coarse scale should incorporate a measure of the
fine-scale finite volume on which damage occurs, wn in this case (the length of localisation
enters the framework with the integration along the discontinuity in (6.25)). Note that this
localisation bandwidth can vary with the failure mode observed at the fine scale depending
on the fine-scale texture of the material. Here it will be taken equal to the size of a unit
cell in the direction of the normal to the detected localisation orientation. This carries
the implicit assumption that localisation occurs with single period cracks, which might
not hold for more complex cracking modes spreading over several periods of the fine-scale
structure of the material. The second term of relation (6.29) accounts for the fact that the
RVE unloading is attributed to the complete volume of the element at the coarse scale.
A part of the material inside the LVE is indeed also unloading upon localisation, but this
effect is already incorporated in the averaging operation on the LVE. This second term
allows not to take this contribution twice in the energy consistency argument, under the
assumption that the unloading material inside the localising band reacts as the identified
surrounding material (i.e. with a secant unloading from the bifurcation point). Since the
contribution of this second term is usually small, and for the sake of simplicity, it will be
neglected in the sequel. As a result, using Equation (6.28), the generalised strains to be
applied on the LVE can be expressed by







δELVE =
1

2wn

(

~nδ~ξv + δ~ξv~n
)

δχLVE =
1

2wn

(

~nδ~ξβ + δ~ξβ~n
) (6.30)

Note that this approximation is theoretically valid for cases in which the localisation
bandwidth is indeed negligible with respect to the dimensions of the coarse-scale elements.

The material response of the coarse-scale embedded discontinuity is obtained by the
projection of the homogenised material response of the LVE. The membrane force vector
~Nd and the bending moment vector ~Md across the discontinuity are given by the first
equalities of Equation (6.26). Introducing Equation (6.30) in the homogenised membrane
and flexural constitutive relations (6.4) for the LVE and using Equation (6.26), the four
discontinuity tangent stiffness tensors Cd

ab
(with a, b = [m, f ]) are deduced from the four

homogenised tangent stiffness tensors of the LVE, Lab (with a, b = [m, f ]), and read
[

2Cd
mm

2Cd
mf

2Cd
fm

2Cd
ff

]

=
1

wn

[
(~n· 4LLVE

mm
·~n) (~n· 4LLVE

mf
·~n)

(~n· 4LLVE

fm
·~n) (~n· 4LLVE

ff
·~n)

]

(6.31)

where the localisation bandwidth wn allows to keep the energy consistency.
The complete two-scale nested procedure with localisation enhancement is depicted

in Figure 6.5. The orientation of the discontinuities after their introduction is not fixed
and can be updated in order to avoid stress locking, as mentioned in Section 6.2.2 and
motivated in Section 6.4. This rotation is however limited to a fixed maximum value
at each step, in order to avoid convergence difficulties linked to sudden and strong ro-
tations which may occur as a result of locally non proportional loading and of fine-scale
preferential degradation orientation.

6.5.2 Computational aspect

Since the use of embedded discontinuities does not ensure the crack path continuity
across the element boundaries, shell discontinuity modes such as the transverse deflection
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Figure 6.5: Complete localisation-enhanced nested scheme.

opening may be needed locally to avoid stress locking whereas they do not occur globally.
For instance, a pure flexural crack may require non-physical transverse deflection openings
to be properly open if the embedded discontinuities are misaligned with the global crack, as
shown in Figure 6.6. The latter situation can occur since the crack path is not continuous
and the discontinuities are introduced at the geometrical centre of the elements. Due
to this misalignment, transverse forces temporarily occur during the global opening and
vanish in a fully softened state by allowing transverse deflection openings. This further
motivates the use of the Reissner-Mindlin kinematics as a generality even if only pure
flexural failure is considered.

A multi-scale approach is proposed here to deduce the structural material law of both
the embedded discontinuity (6.11) and the bulk (before and after localisation) from the
fine-scale behaviour by means of a computational homogenisation procedure, while the
proposed homogenisation approach is restricted to the case of thin shells neglecting non-
linear transverse shear effects, see Mistler et al. (2007), Mercatoris et al. (2009). Since no

Figure 6.6: Pure flexural crack in two triangle elements: (left) embedded strong dis-
continuities aligned with the global crack and (right) embedded strong discontinuities
misaligned with the global crack requiring transverse deflection openings.
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transverse shear behaviour can be obtained from this upscaling procedure, a closed-form
assumption should be introduced at the structural scale for this part of the behaviour.
To avoid any locking due to a transverse deflection discontinuity, inconsistent with the
thin shell upscaling assumption, an exponential decay of the shear force is assumed as
a function of the deflection discontinuity. The initial behaviour of the discontinuity is
assumed initially rigid with respect to shear, with a dummy stiffness dw. The decreasing
exponential relation used to properly reduce the spurious transverse shear force appearing
due to the flexural failure mechanism reads

Td =
T 0

d

κ




α + (1 − α) e

−|T 0
d |κ

hw




 |ξw| for κ ≥

|T 0
d |

dw

(6.32)

where T 0
d is the value of the transverse shear force projected on the discontinuity at the

onset of localisation (i.e. at the discontinuity introduction), and κ is a history parameter
equal to the highest value of |ξw| reached. The parameter α is introduced in order to
keep a minimal level of stress across the transverse discontinuity to avoid singularities
and the parameter hw determines how rapidly the transverse shear stiffness decays with
the transverse deflection opening. Note that the parameter hw could be interpreted as a
fracture energy, the value of which should be significantly small in order that the total
energy dissipated in the transverse deflection opening is negligible with respect to the
physical energy dissipation of flexural failure. Note also that the parameters dw, α and hw

will be calibrated in the sequel to obtain a proper convergence of the structural resolution
scheme.

6.6 Comparison of the coupled two-scale scheme re-

sults with direct fine-scale simulations

In order to assess the capabilities of the proposed approach, the two-scale framework
results are compared to three-dimensional fine-scale modelling results used as a reference
for the case of quasi-brittle textured materials such as masonry. This comparison is per-
formed here for two cases of out-of-plane loading of masonry shells leading to propagating
flexural failure. A non-uniform four-point bending loading of a planar masonry shell re-
sulting in bed joint flexural failure, and a benchmark presenting stair-case flexural failure
are considered. The multi-scale results are compared to complete fine-scale simulation
results based on the failure mechanisms and on the overall structural response, focusing
on the load bearing capacity and the energy dissipation (area under the softening curve).
In order to scrutinise the degree of approximation induced by the assumptions of the
homogenisation procedure, namely the periodicity and the scale separation principle, the
same three-dimensional fine-scale constitutive laws are used for both the full fine-scale
and multi-scale computations. These constitutive laws will be presented briefly in the
first part of this section for the case of masonry constituents.

In these illustrations of flexural failure, both the use of periodic homogenisation of
the LVE and the scale separation assumption are strongly challenged in order to estimate
their impact on the structural behaviour. It is recognised that the periodicity assumption
remains strongly debatable in the cracking regime. However, the initial periodic texture
of the material can be assumed to limit the consequences of this assumption on the energy
dissipation because of the preferential weak orientations fixed by the material structure.
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Secondly, the scale separation principle does not apply strictly anymore since the size of
the tested structures is limited by the cost of the full fine-scale computations and since a
relatively refined coarse-scale mesh is necessary to track the cracking propagation. The
coarse-scale element size has therefore to be chosen similar to the characteristic length
of the unit cell, which is inconsistent with the scale separation principle. Note that the
coarse-scale localisation modelling is a priori independent of coarse-scale mesh due to the
use of embedded strong discontinuity, see Armero (1999) and Armero and Ehrlich (2006a).
However, a band of elements is introduced in the coarse-scale discretisation in order to
properly capture the stress concentration and to allow the complete separation of two
rows of nodes with propagating embedded discontinuities. This choice is motivated by
the fact that the coarse-scale element size can not be smaller than the RVE size preventing
from using a finer unstructured discretisation at the coarse scale.

The choice of applying this two-scale framework to the masonry material can be moti-
vated by the fact that the damaging behaviour observed at the fine scale is straightforward
to model phenomenologically, see Section 6.6.1, since the cracking zones are a priori known
and coarse meshes are sufficient to discretise the RVE. In addition, the masonry shell fail-
ure can be detected by using homogenisation as shown in Mercatoris et al. (2009). The
use of a multi-scale approach for masonry can also be motivated by the complexity of
formulating macroscopic closed-form constitutive laws for such a composite.

Note that the results obtained for an in-plane case in Mercatoris and Massart (2009)
can be reproduced with this framework by modifying the membrane-flexural couplings in
order to represent a plane stress state.

Finally, it is noted that the proposed two-scale approach is well suited for parallel
computations since all the cell responses may be computed independently at each iteration
of the structural incremental iterative scheme. Such an implementation was used here
using MATLAB MPI to overcome the high computational cost encountered for such non-
linear multi-scale computations, see Kepner and Ahalt (2004).

6.6.1 Three-dimensional fine-scale constitutive model for ma-

sonry cracking

The choice of a simplified fine-scale constitutive setting is motivated here for both
modelling approaches in order to focus on the homogenisation procedure, and as this
allows one to get an affordable computational cost. The proposed two-scale approach
is compared to a complete fine-scale model for the case of masonry composed of bricks
and mortar joints. Since the mortar joints are much weaker than the bricks, the failure
behaviour of the latter is not considered and the bricks are assumed elastic in this study
for the sake of simplicity. The combined behaviour of the brick-joint interface and of the
mortar is modelled by an initially elastic interface element, for which both the normal
and tangential stiffnesses (kn, kt, ks) can be related to the elastic behaviour of mortar,
see Lourenço and Rots (1997). The tangential stiffnesses are assumed here to be equal
(kt = ks) but could be considered different as well. Depending on the loading mode,
either a classical Mohr-Coulomb-type strength criterion or a tension cutoff is used, see
Figure 6.7. The parameter ft is the tensile mode I strength of the mortar or mortar-brick
interfaces, while c is the cohesion and ϕ is the friction angle of the mortar joints. For
the sake of simplicity and in order to facilitate the computational convergence, an infinite
compression strength is assumed.

A three-dimensional scalar damage model with an exponential evolution law is consid-
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Figure 6.7: Mohr-Coulomb criterion and tensile cutoff for the mortar joint/mortar-brick
interface at the fine scale.

ered. The traction-separation law, which links the traction vector ~t across the interface
to the relative displacement vector ~δ, is given by

~t = (1 − D)H · ~δ (6.33)

where D is the scalar damage variable growing from zero (virgin material) to one (complete
failure) and H is a three-dimensional elastic stiffness (second order tensor) which depends
on the elastic stiffnesses kn and kt. Note that (6.33) implies that no stiffness recovery is
taken into account upon crack closure.

The damage evolution law of the mortar joint is given by

D(κ) = 1 −
ft

knκ
e
−

ft

Gf

(κ −
ft

kn

)
for κ ≥

ft

kn

(6.34)

where Gf is the mode I tensile fracture energy. Since the considered interface is three-
dimensional and since the damage criterion has to take into account the different be-
haviours in tension and compression, the damage-driving parameter κ is taken as the
most critical value of an equivalent relative displacement defined by

δeq = max







ft

c
tanϕ δn +

ft

c

kt

kn

√

δ2
s + δ2

t

δn






(6.35)

where δn and
√

δ2
s + δ2

t are the normal and tangential relative displacements, respectively.
Note that relations (6.33) to (6.35) were postulated for the sake of simplicity and to
focus on the subject of the Chapter, i.e. the formulation and assessment of the shell
type scale transition procedure. More complex mortar formulations including different
damage evolutions in mode I and mode II in terms of energy dissipation, see Lourenço
and Rots (1997), or incorporating plastic dilatancy, see van Zijl (2004), could be used
as well. A brick damage model could also be used for instance in order to extend the
detection procedure to additional failure modes involving brick failure, see Lourenço and
Rots (1997), Massart et al. (2005b) for the case of in-plane problems.
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6.6.2 Bed joint flexural failure in out-of-plane loaded masonry

shell

For the first illustration, a rectangular planar masonry shell in which the bed joints and
head-joints are parallel to the shell edges is subjected to a non-uniform four-point bending
loading, as shown in Figure 6.8. The masonry shell of dimensions 480 × 960 × 98 mm3 is
simply supported in the out-of-plane direction along the two small edges parallel to the
bed joints, and a transverse deflection is prescribed at two points of one of the free edges in
order to allow cracking to propagate along the bed joints from one free edge to the other,
see Figure 6.8. The in-plane rigid body displacements are precluded by the boundary
conditions. The loading is non uniformly distributed on the width of the shell to test the
proper crack propagation by the method. The bricks dimensions are 120× 60× 98 mm3.

For the multi-scale computation, the masonry wall is discretised at the coarse scale by
using three-noded Reissner-Mindlin shell finite elements with one Gauss integration point.
The DST formulation adapted to material non-linearities as presented in Section 6.2.1 is
used in order to avoid transverse shear locking. The coarse-scale mesh consists of 70 shell
elements and of 240 degrees of freedom (excluding the jump parameters condensed at
the element level). The unit cell computations use a rather coarse discretisation made
of volume and interface elements with quadratic interpolation. For the complete fine-
scale computation, the bricks are discretised using twenty-noded quadratic volume finite
elements with 3 × 3 × 3 Gauss integration points. The mortar joints are represented by
sixteen-noded quadratic interface finite elements with 3 × 3 Lobatto quadrature points.
Each brick is discretised using 4 × 2 elements in the in-plane direction and 6 elements in
the thickness direction, resulting in a full fine-scale model consisting of 68, 280 dofs. A
view of meshes used for the different levels of descriptions are sketched in Figures 6.10
and 6.11 for the mortar interfaces.

The material parameters used for this loading case are defined at the fine scale for both
approaches, see Section 6.6.1. Since the mortar joints are not loaded in mode II in this
case, only the tensile cutoff is activated in the damage criterion. The values considered
for the material parameters are reported in Table 6.1.

The load-displacement response of the masonry shell is depicted in Figure 6.9 for both
the multi-scale and the complete fine-scale model. The multi-scale simulation approxi-
mates correctly the overall response as could be expected for this simple loading case. The
load bearing capacity of the wall obtained by the multi-scale simulation overestimates by
only 0.5% the complete fine-scale solution. The most significant difference between both
results, which however remains acceptable, is the slightly more brittle behaviour of the

Figure 6.8: Non-uniform four-point bending loading leading to bed joint flexural failure
of masonry shell.
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Table 6.1: Out-of-plane loaded masonry wall leading to bed joint flexural failure. Brick
(a) and mortar/mortar-brick interface (b) material parameters, see Lourenço (1996).

E ν kn kt ft Gf c ϕ
(MPa)

(
MPa

mm

) (
MPa

mm

)
(MPa)

(
mJ

mm2

)
(MPa) (◦)

(a) 16700 0.15 - - - - - -
(b) - - 438 182 0.2 0.005 - -
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Figure 6.9: Non-uniform four-point bending loading of masonry wall leading to bed joint
flexural failure. Comparison of the load-displacement responses for full fine-scale mod-
elling (dashed line) and multi-scale simulation (solid line).

multi-scale response in the softening regime.
Figure 6.10 depicts the deformed configuration and the damage state at the structural

response peak. The propagation of the bed joint crack up to the half width of the shell is
well reproduced by the multi-scale simulation with an orientation of the coarse-scale dis-
continuities consistent with the bed joint damage pattern. Note that material bifurcation
and coarse-scale discontinuity are detected once damage spreads over half of the bed joint,
i.e. the level of crack propagation in the coarse-scale description (up right) is consistent
with the full fine-scale damage map (bottom left), see also Mercatoris et al. (2009) for a
further discussion about the detection criterion. A good agreement is observed between
both solutions for the propagating crack in terms of bed joint opening and damage state,
see unit cells 1, 2 and 3 in Figure 6.10. Particularly, the membrane opening at the free
edge is equal to 0.00454 mm in the LVE cell of the multi-scale solution and to 0.00554 mm
in the full fine-scale solution.

At the end of the softening regime, a fully opened traction-free crack can be observed
in Figure 6.11. Both the multi-scale and the complete fine-scale solutions are again in
good agreement. The bed joint opening and the fully damaged bed joint pattern are
well reproduced by the structural crack in the multi-scale simulation, see unit cell (1) in
Figure 6.11. Although the bulk is completely unloaded, the non-localised damage state of
bed joints in the bulk region near the crack also reproduces well the fine-scale simulation
results, see unit cell (2) in Figure 6.11. Further from the localisation zone, the mortar
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Figure 6.10: Deformed configuration and damage maps at the structural peak load of
the non-uniform four-point bending response: (upper left) deformed configuration of the
complete fine-scale simulation, (lower left) damage maps of the complete fine-scale sim-
ulation (black patches indicate fully damaged joints and gray patches indicate partially
damaged joints), (upper right) deformed configuration of the multi-scale simulation with
the coarse-scale discontinuities and (lower right) related deformed configuration and dam-
age state of unit cells. The displacements of the deformed configurations are magnified
by a factor 2000.

joints remain undamaged and the mesostructure is completely unloaded, see unit cell (3)
in Figure 6.11. In addition to coarse-scale rotation jumps in the multi-scale solution, in-
plane displacement jumps are obtained along the crack path. These membrane openings
result from membrane-flexural couplings which are present for masonry flexural behaviour
due to the different tensile and compressive behaviour of mortar joint. The membrane
opening at the free edge is equal to 0.182 mm in the multi-scale solution and to 0.179 mm
in the full fine-scale solution, which still shows a good agreement between the both models.

Note that, because the crack path is discontinuous across the element boundaries and
the coarse-scale discontinuities are not aligned with the global crack, see Figure 6.6, trans-
verse deflection openings need to occur in order to avoid stress locking as aforementioned
in Section 6.5.2. The behaviour of this transverse discontinuity is modelled with an ex-
ponentially decreasing shearing force and allows one to properly decrease the transverse
shear force and open the flexural failure mechanism, since the energy dissipated in this
transverse opening has to be negligible with respect to the flexural energy dissipation.
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Figure 6.11: Deformed configuration and damage maps at the end of the softening tail of
the non-uniform four-point bending response: (upper left) deformed configuration of the
complete fine-scale simulation, (lower left) damage maps of the complete fine-scale sim-
ulation (black patches indicate fully damaged joints and gray patches indicate partially
damaged joints), (upper right) deformed configuration of the multi-scale simulation with
the coarse-scale discontinuities and (lower right) related deformed configuration and dam-
age state of unit cells. The displacements of the deformed configurations are magnified
by a factor 100.

6.6.3 Stair-case flexural failure in out-of-plane loaded masonry

shell

As a second illustrative application, the analysis of an out-of-plane loaded planar ma-
sonry shell presenting a stair-case flexural failure mode is considered. The tested geometry
is depicted in Figure 6.12. It consists of a square shell of dimensions 1920×1920 mm2 with
a thickness of 98 mm and with bricks of dimensions 120× 60× 98 mm3 stacked according
to a running bond pattern. The aspect ratio of the bricks therefore prescribes a fine-scale
preferential stair-case crack pattern orientation of 45 degrees corresponding to the orien-
tation of the shell diagonal. The square shell is simply supported on its four edges in the
thickness direction and subjected to a transverse deflection at its centre. The edges are
not constrained in the in-plane directions leading to membrane openings occurring due to
the membrane-flexural couplings. According to experimental results obtained elsewhere,
this benchmark leads to four stair-case bending cracks initiating at the shell centre and
propagating towards the shell corners along the diagonals of the wall, see Dallot et al.
(2008) for the case of masonry-like structures. Note that, this failure mechanism only oc-
curs when the orientations of both the stair-case pattern and the diagonal are consistent,
which is the case in the present benchmark. Due to symmetry of the masonry shell, the
loading and the crack pattern of only a quarter of the shell is considered. Furthermore,
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Figure 6.12: Out-of-plane loading of masonry wall leading to stair-case flexural failure.
Due to the symmetry, a quarter of the wall is considered.

Table 6.2: Out-of-plane loaded masonry wall leading to stair-case flexural failure. Brick
(a) and mortar/mortar-brick interface (b) material parameters, see Lourenço (1996). The
tensile strength ft is deduced from the Mohr-Coulomb criterion.
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(a) 16700 0.15 - - - - - -
(b) - - 438 182 - 0.02 0.28 36

the prescribed centred transverse deflection is not localised at one point but is applied
at the two nodes close to the centre, see Figure 6.12. This ‘smeared’ loading allows to
avoid too high stress concentrations at the shell centre leading potentially to non-expected
failure modes in the corner element as the centre node is kept free to properly represent
the discontinuity.

The shell discretisation contains 186 DST shell elements with 112 nodal degrees of
freedom. An element band is still introduced along the expected localisation zone at
the coarse scale for a better tracking of the cracking front propagation (even though
this band does not consist in a finer mesh). The fine-scale wall and the unit cells are
discretised in the same way as in the previous studied case, see Section 6.6.2, except that
4 volume elements are used in the thickness direction for both the fine-scale and unit cell
discretisations. The full fine-scale model then consists of 97443 dofs.

The values of the material parameters used at the fine scale for both approaches are
reported in Table 6.2. Note that only the Mohr-Coulomb criterion is activated in this
case in order to facilitate the computations. Furthermore, the fracture energy of mortar
joints is increased with respect to realistic values in order to avoid any mesostructural
snap-backs, see Massart et al. (2005b).

The overall load-displacement response of the multi-scale computation is compared to
the complete fine-scale solution in Figure 6.13. It is shown that the multi-scale model gives
a good estimation of the loading part of the response curve as well as of the load bearing
capacity of the wall. The energy dissipation is however underestimated by the multi-scale
model leading to a more brittle behaviour in the softening regime with respect to the
complete fine-scale simulation. Part of this discrepancy might originate from the peri-
odicity conditions applied on the LVE, leading to an overstiff and more brittle response.
This could also be partially attributed to the fact that the structural dimensions are not
sufficiently large with respect to the cell dimensions (scale separation), combined to the
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Figure 6.13: Out-of-plane loading of masonry wall leading to stair-case flexural failure.
Comparison of the load-displacement responses for full fine-scale modelling (dashed line)
and multi-scale simulation (solid line).

neglected second term in relation (6.29). This last effect would in any case decrease in
computations related to larger structures. Nevertheless, a fair agreement is found between
both approaches.

The deformed configuration and the damage state at the response peak are presented
in Figure 6.14 for both the multi-scale and the complete fine-scale models. The coarse-
scale discontinuities propagation in the multi-scale solution is in good agreement with
the stair-case crack propagation predicted by the full fine-scale computation (top figures
in Figure 6.14). As in the previous case of bed joint flexural failure, the structural re-
sponse peak corresponds to a propagated crack up to the half of the diagonal at the
coarse scale. The damage state of mortar joints is well reproduced by the multi-scale
computation with respect to the full fine-scale solution. At the centre of the wall ahead
of the cracking front, all the joints are partially damaged but the stair-case pattern is
clearly more damaged than the bed joint pattern, see unit cell (1) in Figure 6.14. The
deformed configuration of the unit cell (1) also shows the corresponding stair-case open-
ing. At the cracking front, half of the stair-case joint is damaged, corresponding to the
level at which structural localisation is detected, and the corresponding stair-case mode
starts to open, see unit cell (2) in Figure 6.14. At the corner of the wall, the damage
state is still diffuse and starts in the upper and lower parts of the bed joint as shown in
unit cell (3) in Figure 6.14. Furthermore, the mesostructure-informed orientation of each
embedded discontinuity evolves during propagation due to evolving damage, but tends to
the average orientation of the stair-case pattern, see Mercatoris et al. (2009). As can been
seen in Figure 6.14, the discontinuities near the cracking front are indeed not parallel to
the diagonal, while the orientation of the previously triggered discontinuities is consistent
with the unit cell stair-case damage patterns and the full fine-scale simulation, which
motivates the use of rotating embedded discontinuities.

Figure 6.15 presents the deformed configuration and the damage state at the end of the
softening tail for both multi-scale and complete fine-scale solutions. A fully open stair-case
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Figure 6.14: Deformed configuration and damage maps at the peak load of the out-of-
plane loading of the diagonally stair-case cracked masonry wall: (upper left) deformed
configuration of the complete fine-scale simulation, (lower left) damage maps of the com-
plete fine-scale simulation (black patches indicate fully damaged joints and gray patches
indicate partially damaged joints), (upper right) deformed configuration of the multi-scale
simulation with the coarse-scale discontinuities and (lower right) related deformed config-
uration and damage state of unit cells. The displacements of the deformed configurations
are magnified by a factor 500.

flexural crack is obtained between the centre and the corner of the wall. The orientation of
all the discontinuities is consistent with the unit cell stair-case damage pattern and the full
fine-scale solution, see unit cell (1) in Figure 6.15. The deformed configuration of a quarter
of the fully softened wall geometrically corresponds to two planar triangles linked by a
hinge line. Although the bulk is completely unloaded, mortar joints are partially damaged
due to the degradation preceding the localisation phenomenon, see the damage map of
the fine-scale solution in Figure 6.15. This damage state is also well reproduced by the
multi-scale model as shown by unit cells (2) and (3) in Figure 6.15 where, respectively,
the bed joint pattern and the stair-case pattern are partially damaged. The bed joint
pattern damage is more pronounced in the right part - cell (2) - since the bed joints are
continuous while the left part - cell (3) - is less damaged as a result of the non continuity
of the head-joints at the fine scale. This non-symmetric non-localised damage pattern is
thus clearly consistent between both simulations. A membrane opening is again observed
due to the membrane-flexural couplings, and transverse discontinuities are again necessary
to avoid the appearance of stress locking since the embedded discontinuity lines are not
exactly aligned with the theoretical hinge due to the discretisation.
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Figure 6.15: Deformed configuration and damage maps at the end of the softening tail
of the out-of-plane loading of the diagonally cracked masonry wall: (upper left) deformed
configuration of the complete fine-scale simulation, (lower left) damage maps of the com-
plete fine-scale simulation (black patches indicate fully damaged joints and gray patches
indicate partially damaged joints), (upper right) deformed configuration of the multi-
scale simulation with the coarse-scale discontinuities and (lower right) related deformed
configuration and damage state of unit cells. The displacements of all the deformed
configurations are magnified by a factor of 100.

6.6.4 Discussion

In this Section, some additional computational results are used in order to discuss
the limits of applicability and the robustness of the proposed two-scale computational
procedure for shell failure. The assumption of single period cracks is first discussed for the
case of bed joint flexural failure. The influence of the mesostructural material properties
on the structural response, which can easily be accommodated by the proposed framework,
is then emphasised.

Single period crack assumption

An important limitation of the proposed approach is the fact that only single period
cracks can be correctly represented by the multi-scale model from the point of view of
energy dissipation since single period unit cells are used at the fine scale. More complex
failure mechanisms such as cracks parallel to the head-joints involving brick failure can
not therefore be accurately modelled in terms of energy dissipation, even if such situations
are less likely to occur in out-of-plane loading. To illustrate this limit of applicability, the
previous multi-scale solution discussed in Section 6.6.2 for the case of bed joint flexural
failure is compared to a full fine-scale simulation presenting two bed joint cracks instead of
one. For this purpose, the same non-uniform four-point bending loading case is considered
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Figure 6.16: Deformed configuration and damage maps of complete fine-scale solution for
bed joint flexural failure mechanism: (left) one bed joint cracks and (right) two bed joint
cracks.

for a complete fine-scale computation with a shifted brick stacking configuration in order
to have two bed joint patterns between the loading points, see Figure 6.16.

The overall response of the full fine-scale computation with two bed joint cracks is
depicted in Figure 6.17 and compared to the previous results discussed in Section 6.6.2.
Although the load bearing capacity and the fine-scale failure pattern involved in the fail-
ure mechanism remain unchanged, the behaviour of the wall incorporating two cracks
in the full fine-scale solution is significantly more ductile in the softening regime. This
results from the presence of a double bed joint crack which dissipates more energy than
the single bed joint crack, a situation which cannot be accommodated by the multi-scale
framework proposed here. In order to treat more complex multi-period failure mode,
larger RVE could be taken into account but with the added complexity that bifurca-
tion at the fine scale (i.e. within the solution of the mesostructural unit cell boundary
value problem) should then be considered to reproduce single crack modes with periodic
boundary conditions on the LVE.

Influence of mesostructural material properties

In order to emphasise the flexibility of the proposed approach, a variation of a ma-
terial parameter such as the mortar joint fracture energy is considered next. The aim
of this illustration is to show that the localised coarse-scale flexural behaviour is cor-
rectly upscaled from an energy point of view and driven by the material behaviour of the
mesostructure at the scale of which closed-form constitutive laws are postulated. For this
purpose, the multi-scale and complete fine-scale computations of the stair-case flexural
failure mechanism presented in Section 6.6.3 are performed with higher fracture energy
value for the mortar joints. The structural responses of these simulations are depicted in
Figure 6.18 and compared with the results discussed in Section 6.6.3. It is shown that
the wall with a higher fracture energy (Gf = 0.1 mJ/mm2) presents a significantly more
ductile behaviour than the wall with a lower fracture energy (Gf = 0.02 mJ/mm2). This
results in higher energy dissipation and therefore a less localised behaviour at the fine
scale, i.e. more diffuse damage zones as shown in Figure 6.19. Figure 6.18 also compares
the structural responses of both the multi-scale and full fine-scale models for the higher
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Figure 6.17: Non-uniform four-point bending of masonry wall leading to bed joint flexural
failure. Comparison of the load-displacement responses for full fine-scale modelling with
one bed joint crack (dashed line), full fine-scale modelling with two bed joint cracks
(dash-dot line) and multi-scale simulation (solid line).

mortar fracture energy value. As for the previous case, the loading part of the response
and the load bearing capacity are well estimated by the multi-scale approach. The soften-
ing behaviour of the multi-scale solution is still more brittle with respect to the complete
fine-scale simulation and the deviation seems proportional to the energy dissipation. As
already mentioned, this gap is expected to decrease for larger structures for which the
scale separation principle is satisfied.

The deformed configuration and the damage state at the end of the softening tail are
depicted in Figure 6.19 for the higher fracture energy value. It is shown that the damage
zone is more diffuse than for the case of lower mortar fracture energy, see Figure 6.15.
Nevertheless, the damage pattern and the stair-case openings are still well reproduced by
the multi-scale model, see unit cells (1), (2) and (3) in Figure 6.19.

6.7 Conclusions

A new periodic homogenisation-based multi-scale method was proposed for the mod-
elling of quasi-brittle thin shell failure. This method allows to take into account the
localised behaviour of a textured material by correctly upscaling the energy dissipation
associated to the failure mechanism. This framework was assessed by a comparison to a
complete fine-scale model on out-of-plane loaded masonry wall tests including bed joint
and stair-case bending cracks. It was shown that the multi-scale solutions were in good
agreement with respect to the full fine-scale computation results. Particularly, the failure
modes are correctly reproduced by the multi-scale approach in localised and non-localised
zones. The limits of applicability and the robustness of the proposed method was dis-
cussed. The assumption of single period failure was discussed for a particular case. The
influence of the mesostructure, which can easily be accommodated by the proposed frame-
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Figure 6.18: Out-of-plane loading of masonry wall leading to stair-case flexural fail-
ure. Comparison of the load-displacement responses for full fine-scale modelling (dashed
line) and multi-scale simulation (solid line) with a mortar fracture energy value of
Gf = 0.1 mJ/mm2. The load-displacement responses for full fine-scale modelling (dotted
line) and multi-scale simulation (dash-dot line) with a mortar fracture energy value of
Gf = 0.02 mJ/mm2 are recalled, see Figure 6.13.

work, was emphasised for the case of a material property of a constituent.
The results obtained here suggest that further developments could be useful in order

to extend their scope. The proposed multi-scale approach should be extended to the case
of thick shells allowing to introduce the transversal shear and the deflection opening in
the scale transitions. The concept of crack branching could be incorporated, see Linder
and Armero (2009), in order to perform the proposed framework on more complex ma-
sonry benchmarks. In order to reduce the computational cost, the multi-scale approach
could also be combined with semi-analytical homogenisation (TFA) for shell behaviour,
see Sacco (2009) for an in-plane case. Finally, the proposed multi-scale framework could
be applied to geometrically more complex masonry structures such as arches, domes and
vaults. It could also be interesting to apply this method to other types of heterogeneous
shell such as honeycomb-type sandwiches.
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Figure 6.19: Deformed configuration and damage maps at the end of the softening tail of
the out-of-plane loading of the diagonally stair-case cracked masonry wall: (upper left)
deformed configuration of the complete fine-scale simulation, (lower left) damage maps
of the complete fine-scale simulation (black patches indicate fully damaged joints and
gray patches indicate partially damaged joints), (upper right) deformed configuration of
the multi-scale simulation with the coarse-scale discontinuities and (lower right) related
deformed configuration and damage state of unit cells. The displacements of all the
deformed configurations are magnified by a factor of 50.



Chapter 7

Conclusions and perspectives

The objective of the research reported in this dissertation was the development of
a mesostructurally imformed computational tool for the representation of structural lo-
calised behaviour of planar masonry thin shells. Masonry is a textured periodic heteroge-
neous material which presents a quasi-brittle behaviour. The typical ordered mesostruc-
ture of masonry leads to preferential cracking orientations which are complex to incor-
porate within closed-form structural descriptions. The appearance of damage-induced
anisotropy indeed results in stress redistributions and loading path dependency. As a re-
sult, damage localisation can be observed at both the mesoscopic and macroscopic scales.
The representation of such a behaviour in structural planar applications is a considerable
challenge, not only due to the complexity of formulating macroscopic closed-form consti-
tutive laws, but also due to the difficulty to identify their numerous parameters through
costly experimental procedures, to be reproduced for every new mesostructure. In addi-
tion, the representation of the flexural behaviour requires even more complex closed-form
laws since other aspects of the behaviour such as membrane-flexural couplings have to be
taken into consideration.

Multi-scale approaches allow to deal with this complexity by postulating closed-form
constitutive laws at the scale of the constituents, for which the parameters are a priori
more straightforward to identify. In the context of non-linear behaviour, computational
homogenisation furnishes a versatile approach to link fine and structural scales. Based on
the periodicity of the mesostructure, a representative volume element (RVE) is defined and
modelled using mesoscopic closed-form material laws. The macroscopic material response
is extracted in an average sense from the solution of a deformation-driven mesostructural
boundary value problem. The complex formulation of closed-form macroscopic constitu-
tive laws are avoided, which allows one to consider complex mesostructures, which may
evolve during the loading process. Furthermore, any method may be used to resolve this
mesoscopic problem and any closed-form constitutive laws may be postulated for the con-
stituents. This flexibility renders the multi-scale approach particularly attractive for the
characterisation of heterogeneous materials.

For the modelling of localised behaviour using a multi-scale approach, the localisation
of damage needs to be computationally treated at each scale under consideration. For
the case of masonry, a damaging cohesive zone model is used at the mesoscopic scale to
represent the behaviour of mortar joints. At the structural scale, displacement discon-
tinuities offer an attractive way to capture localisation since the size of the localisation
zone is usually smaller than the RVE size. An embedded strong discontinuity approach
adapted for an engineering shell description available from the literature and recalled in
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Chapter 3 was selected here for this purpose. This approach allows to represent the collec-
tive behaviour of fine-scale cracks using average cohesive zones including mixed cracking
modes and incorporating evolving orientations needed to accommodate fine-scale damage
evolutions. In the context of multi-scale modelling, both the appearance and the material
behaviour of these cohesive zones have to be driven by the mesostructural response. An
acoustic tensor-based localisation criterion adapted to thin shell kinematics, combined
with a computational homogenisation scheme for out-of-plane behaviour was proposed
for the localisation detection of masonry shells in Chapter 4. A localisation analysis was
performed on unit cells to show that the structural localisation orientations determined
by this criterion are consistent with the preferential fine-scale damage patterns of ma-
sonry observed in mesoscopic computations. The robustness of the proposed localisation
detection procedure was discussed focusing on the influence of the mesoscopic material
properties, the loading modes and the RVE size.

Next, a continuous-discontinuous homogenisation scheme has been developed for quasi-
brittle thin shell failure. A periodic non-linear computational homogenisation method is
used to capture the local quasi-brittle material behaviour of masonry thin shells. An
enhanced upscaling procedure based on an approximate energy consistency has been for-
mulated to extract the material behaviour of the discontinuity, in which the structural
localisation behaviour is extracted from a further damaging sample, denoted as Localising
Volume Element (LVE). This new methodology was firstly proposed for the case of in-
plane loaded structures in Chapter 5. The proposed multi-scale framework was assessed
by a comparison with a complete fine-scale model for the case of the confined shearing of
a masonry wall with and without an opening in order to estimate the impact of the chal-
lenged periodicity and scale separation assumptions. It was shown that the multi-scale
solutions are in good agreement with respect to the full fine-scale computation results, pro-
vided stress distributions are confined. In spite of an overestimation of the initial stiffness
by the periodicity assumption used in the multi-scale modelling, the load bearing capacity
and the cracking patterns are correctly reproduced, with a good estimation of the failure
mechanisms at both the structural and fine scales. The proposed methodology was then
extended to a shell description in order to model the localised behaviour of out-of-plane
loaded structures in Chapter 6. The complete multi-scale scheme was again assessed by a
comparison against three-dimensional direct fine-scale simulations on out-of-plane loaded
masonry wall tests, including bed joint and stair-case bending cracks. It was shown that
the failure modes are correctly reproduced by the multi-scale approach in localised and
non-localised zones, with a good prediction of the energy dissipation associated to the
failure mechanism. The limits of applicability and the robustness of the proposed method
was discussed focusing on the assumption of single period failure and the influence of the
mesoscopic properties, which can easily be accommodated by the proposed framework.

One of the drawbacks associated with the computational homogenisation procedure is
its typical high computational cost compared with purely phenomenological descriptions.
This procedure is however well suited for parallel computations since all the cell responses
may be computed independently at each iteration of the structural incremental iterative
scheme. Such an implementation was therefore used in this study. In order to even
more reduce the computational effort, additional strategies could be incorporated in the
future in the proposed framework with a certain compromise on the solution accuracy.
First, an adaptative scale transition criterion could be defined to determine when the
extraction of the material information from the mesostructural sample is really required.
Secondly, the multi-scale approach proposed here could be also combined with semi-
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analytical homogenisation such as the concept of transformation field analysis. Sacco
(2009) proposed recently such an approach for in-plane cases but the out-of-plane case
remains to be explored.

In order to model quasi-brittle behaviour, convergence difficulties of the incremental-
iterative resolution scheme are often observed, thereby increasing the computational cost.
These difficulties are mainly caused by the occurrence of snap-back phenomena at the
structural scale, as well as at the mesostructural level, which is a peculiar feature of strain-
driven multi-scale schemes. In addition to classical path-following techniques, see Geers
(1999a,b), and energy dissipation-based techniques, see Gutiérrez (2004), Massart et al.
(2005a), a procedure should be defined allowing both the mesoscopic and macroscopic
computations to communicate in terms of resolution scheme. For instance, a strongly
local mesostructural snap-back occurring in the loading path followed by another increase
of stress can lead to convergence difficulties of the structural resolution scheme. For such
a case, enlarging the structural step can help the mesoscopic computation to converge
whereas a classical strategy consisting in reducing the structural step may be inappropri-
ate. Enlarging the structural step however has to be used carefully since a large step can
lead to other types of convergence difficulties related to crack propagation and softening
analysis. The choice of reducing or enlarging the structural step should be related to the
crack propagation state and the structural stiffness. In addition to upscaling dissipation
information as in Massart et al. (2005a), the solution procedures could therefore exchange
additional information between the scales such as for instance the iteration number, the
convergence norms, and the step reduction or increase decisions. The adaptivity of the
scale transition and the treatment of the mesostructural snap-back could also be investi-
gated by keeping an intrinsically discrete description at the structural scale, linking forces
and displacements at discrete points delivered by the computational homogenisation pro-
cedure.

The results obtained in this dissertation suggest that further developments could be
useful in order to extend their scope. The proposed multi-scale approach could be ex-
tended to the case of thick shells, allowing to introduce transversal shear and deflection
openings in the scale transitions. For this purpose, the acoustic tensor-based localisation
detection and the continuous-discontinuous homogenisation scheme should be adapted to
the Reissner-Mindlin description. The extension of the computational homogenisation
procedure to the thick shell case still raises questions concerning the transverse shear
upscaling, and is the subject of current research work, see Coenen et al. (2008).

The concept of crack branching could be incorporated for the macroscopic scale de-
scription, see Linder and Armero (2009), in order to apply the proposed framework on
more complex masonry benchmarks where for instance a bed joint bending crack splits
into two stair-case bending cracks. A criterion should however be defined to determine
when crack branching is required. This criterion could require the material behaviour of
the crack branching to be driven by several LVEs, one for each branch for instance, or by
a larger cell accounting for more than one mesostructural period.

The proposed multi-scale framework should also be extended to non-planar shell de-
scriptions in order to be applied to geometrically more complex masonry structures such
as arches, domes and vaults. A more physically general description of the various failure
modes of masonry shells incorporating for instance brick cracking or friction related phe-
nomena could also be achieved but would require a more advanced mesoscopic description.
These last two enhancements can be accommodated without any modification of the scale
transition and localisation detection procedures. Finally, the proposed methodology could
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be extended to the domain of large displacement by means of a co-rotational approach
and in a more general way to the concept of finite deformation. It could also be interest-
ing to apply this method to other types of heterogeneous shell such as honeycomb-type
sandwiches.
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Summary

In a context of restoration of historical masonry structures, it is crucial to properly
estimate the residual strength and the potential structural failure modes in order to as-
sess the safety of buildings. Due to its mesostructure and the quasi-brittle nature of its
constituents, masonry presents preferential damage orientations, strongly localised failure
modes and damage-induced anisotropy, which are complex to incorporate in structural
computations. Furthermore, masonry structures are generally subjected to complex load-
ing processes including both in-plane and out-of-plane loads which considerably influence
the potential failure mechanisms. As a consequence, both the membrane and the flexural
behaviours of masonry walls have to be taken into account for a proper estimation of the
structural stability.

Macrosopic models used in structural computations are based on phenomenological
laws including a set of parameters which characterises the average behaviour of the mate-
rial. These parameters need to be identified through experimental tests, which can become
costly due to the complexity of the behaviour particularly when cracks appear. The ex-
isting macroscopic models are consequently restricted to particular assumptions. Other
models based on a detailed mesoscopic description are used to estimate the strength of
masonry and its behaviour with failure. This is motivated by the fact that the behaviour
of each constituent is a priori easier to identify than the global structural response. These
mesoscopic models can however rapidly become unaffordable in terms of computational
cost for the case of large-scale three-dimensional structures.

In order to keep the accuracy of the mesoscopic modelling with a more affordable com-
putational effort for large-scale structures, a multi-scale framework using computational
homogenisation is developed to extract the macroscopic constitutive material response
from computations performed on a sample of the mesostructure, thereby allowing to bridge
the gap between macroscopic and mesoscopic representations. Coarse graining method-
ologies for the failure of quasi-brittle heterogeneous materials have started to emerge for
in-plane problems but remain largely unexplored for shell descriptions. The purpose of
this study is to propose a new periodic homogenisation-based multi-scale approach for
quasi-brittle thin shell failure.

For the numerical treatment of damage localisation at the structural scale, an embed-
ded strong discontinuity approach is used to represent the collective behaviour of fine-scale
cracks using average cohesive zones including mixed cracking modes and presenting evolv-
ing orientation related to fine-scale damage evolutions.

A first originality of this research work is the definition and analysis of a criterion
based on the homogenisation of a fine-scale modelling to detect localisation in a shell
description and determine its evolving orientation. Secondly, an enhanced continuous-
discontinuous scale transition incorporating strong embedded discontinuities driven by the
damaging mesostructure is proposed for the case of in-plane loaded structures. Finally,
this continuous-discontinuous homogenisation scheme is extended to a shell description
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in order to model the localised behaviour of out-of-plane loaded structures. These multi-
scale approaches for failure are applied on typical masonry wall tests and verified against
three-dimensional full fine-scale computations in which all the bricks and the joints are
discretised.
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moi maintenant de te rendre au double tout l’amour que tu m’as donné.
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