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Introduction

Recently, the interest for the low energy quantum systems has increased due to the impres-

sive experimental progress in condensed matter physics (BEC [11–13], cold atom-atom collisions

[14,15]), nuclear physics (low energy nuclear collisions, investigation of exotic nuclei, nuclear astro-

physics [16–19]), quantum optics [20] and quantum computing [21]. In many important cases it is

possible to investigate the corresponding physical problem in terms of the one particle Schrödinger

equation with an effective potential. For example, consider a collision of two compound particles,

say an atom-atom collision. The full quantum mechanical description should include all possible

configurations of constituents, but in a first approximation we may consider these atoms like two

point particles which interacts through a potential. This last problem may be transformed into a

set of radial Schrödinger equations by performing a partial wave decomposition. Next, the inter-

nal structure of colliding particles leads to different possible asymptotic states (so-called channels)

which in our example correspond to the different excited states. Only a few channels and partial

waves a play role at low energies. An outgoing asymptotic state may differ from the ingoing one,

which means that the collision process leads to the modification of the internal structure. This

situation corresponds to coupled channels. Many low energy quantum processes can be described

by the system of N coupled radial Schrödinger equations [22,23]. In this thesis, we will work with

such Schrödinger equations (N = 1, 2, . . .) bearing in mind the physical interpretation given above.

One of the important theoretical problems concerns the studying of the dynamics or the time

evolution of a system described by such a Schrödinger equation. For example, one may try to

find how wave packets propagate in a given potential [24, 25]. Mathematically, it is necessary to

solve the Cauchy problem for the time-dependent Schrödinger equation, for instance, by finding

the corresponding propagator [26,27].

Often, such a detailed description of the evolution is not necessary. It is sufficient to know the so-

called scattering matrix which contains transition amplitudes from the initial to the final scattering

states [22, 23]. As far as scattering is concerned we should distinguish two equally interesting and

important problems. On the one hand, the calculation of the scattering matrix (or any analogous

object) for a given interaction potential is called the direct scattering problem [22, 23]. On the

other hand, the inverse scattering problem consists in restoring the potential from given scattering

properties (e.g., scattering matrix) [28].

Let us stress the importance of exact analytical solutions of the Cauchy problem and of both

the direct and the inverse scattering problems in quantum mechanics. Exact analytical results are

important for a better understanding of the underlying quantum phenomena. These analytical

results may also be useful in order to test existing numerical methods [29, 30], especially in the

multi-channel case [31].

In this thesis we will study propagators of the time-dependent Schrödinger equation and investi-

gate coupled-channel scattering problems with the help of algebraic technique emerged in so-called

supersymmetric quantum mechanics. Let us first describe in words these three subjects. The

rigorous mathematical definitions will be given in the first chapter.

Propagators in quantum mechanics

The space-time evolution of a quantum mechanical system is governed by its Schrödinger equa-

tion and in its most complete form it is encoded in the propagator [26]. To be precise we should note
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that we use the term propagator for the Green function of the time-dependent Schrödinger equation

to distinguish it from the term Green function which is used for the stationary Schrödinger equation.

Both the propagator and the Green function are the fundamental solutions of the time-dependent

and stationary Schrödinger equations, respectively.

The propagator defines the probability amplitude for a particle to move from one point of the

space to another in a given time. Similar to propagators in relativistic field theories, it provides

a global picture of the causal structure of a quantum system which goes beyond the information

contained in a single wave function. Propagators play an essential role in solving the probability

related Cauchy problem of Quantum Mechanics [26,27]. Moreover, with the aid of the propagator

one can obtain other important objects. For instance, applying Wick rotation t → iβ to a propa-

gator leads to the statistical sum of the underlying system thus providing a link between quantum

and statistical mechanics. The exact expression for the propagator may be used to obtain pq, qp

and Weyl symbols of the evolution operator [32].

There are several methods to calculate propagators. The straightforward technique is based on

the decomposition of the propagator in terms of a basis. This method leads to two problems: how

to find the coefficients and how to calculate the sum. Another method is based on the path-integral

representation of the propagator. Roughly speaking, path integration gives the exact answer for

the case of quadratic Hamiltonians, whereas for the general case one should use the perturbative

technique. The first order correction coincides with the result obtained from the well-known WKB

method [26]. To calculate exact propagators one can use symmetry properties of the system. The

corresponding general method was developed in [33], where the exact propagators for quadratic

Hamiltonians were calculated as an illustration. The vast literature on propagators, summarized

e.g. in [34], lists mainly explicit expressions of propagators for Schrödinger equations in one space

dimension which are reducible to hypergeometric differential equations or their confluent forms.

The interest in new exact propagators is less motivated by their mere existence or their technical

subtleties than by their applicability to concrete physical problems. For example, in [35] exact

propagators for quadratic systems were applied to study multi-dimensional systems and magnetic

properties of ideal gases. As far as applications are concerned, propagation of a short laser pulse in

the paraxial approximation may be described by time-dependent Schrödinger equation [36,37]. The

propagator is also used to study the behaviour of light in meta materials [25]. Exact propagators

for non-Hermitian Hamiltonians may be interested in view of decaying systems [38].

It is known that the propagator of the time-dependent Schrödinger equation is related to the

Green function of the stationary Schrödinger equation by Fourier transformation. The Green func-

tions are used in different quantum problems. For instance, inhomogeneous Schrödinger equations

may be treated by using Green functions. Inhomogeneous equations cover two important classes

of problems. The first class is the perturbation theory. The second class deals with reactions (cre-

ation and annihilation of particles). In this case inhomogeneity plays the role of a source (outlet)

of particles [39]. Note that the method of the Green function is an important ingredient in the

quantum field theory also. In this work we restrict ourselves to Green functions of the stationary

Schrödinger equation.

Coupled-channel scattering problems

Almost all low-energy collisions of microparticles with an internal structure (i.e., atom-atom,
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nucleus-nucleus, etc) include inelastic processes such as excitations of internal degrees of freedom of

colliding particles or processes with rearrangements of their constituent parts. These processes can

be described by a matrix (more precisely multichannel) Schrödinger equation with a local matrix

potential [22, 23] in the framework of the coupled-channel scattering theory. The main idea of the

scattering theory is that the colliding particles are supposed to move freely at large distances. This

asymptotic behavior is encoded by the ingoing and outgoing states. Roughly speaking, to describe

the collision process one should find the operator which transforms ingoing states into outgoing

states. This operator is nothing but the scattering matrix S mentioned above.

The widespread point about the scattering matrix is that its poles (for negative energies E < 0)

correspond to the bound states of the system. It is actually not always true. To establish whether

a pole corresponds to a bound state or not we should either solve the Schrödinger equation at

this energy to look at the wave function or decompose the scattering matrix in terms of the so-

called Jost matrix, S(k) ∼ F−1(k)F (−k), where k is the momentum. Then, the zeros of the Jost

matrix determinant correspond to the bound states of the system, whereas poles of the Jost matrix

elements do not. The Jost matrix can be found independently of the scattering matrix. In the

thesis, we will use the Jost matrix as a basic object.

One can distinguish the coupled-channel scattering with different and equal thresholds. An

example of the coupled-channel scattering with different channel thresholds is the scattering of

atoms of alkali metal in a background magnetic field. The presence of the magnetic field results

in different energies for the different possible spin-configurations of the outer s-electron and the

nucleus. Thus channels with different threshold energies appear. Low energy neutron-proton

scattering gives an example of two-channel scattering with equal thresholds, because one should

take into account uncoupled channels 1S0,
1P1, . . ., and coupled channels 3S1 −3D1,

3P2 −3F2, . . ..

These two examples will be considered in details in the third and fourth chapters, respectively.

In principle, the scattering matrix may be defined from the collision experiments. Hence, one

can raise the inverse scattering problem about determination of the interacting potential [28].

Part of the problem was solved in works of Gelfand, Levitan, Marchenko, Jost. They formulated

prescriptions for both the single- and coupled-channel cases of how to construct the integral equation

which allows to find the potential from the Jost or the scattering matrix [40–43]. They also found

some exact solutions of the equation, in particular, for single-channel problems in the case of

separable kernel. The search of alternative approaches to the inversion continues, especially for the

coupled-channel problems [44,45].

Regarding the coupled-channel inverse scattering problem we should mention one important

result that serves as an intermediate point in developing any inversion technique. In [46] Cox

derives an exactly-solvable coupled-channel potential with threshold differences, two remarkable

features of which are the compact expressions provided both for the potential and for its Jost

matrix. Since the Jost matrix completely defines the bound- and scattering-state properties of a

potential model [23, 47], such an analytical expression seems very promising in the context of the

scattering inverse problem.

The work of Cox has however received little attention, probably because it is plagued by two

problems. First, the way of getting the potential is rather complicated and mysterious: the paper

mostly consists in a check that the provided analytical expression for the solutions satisfies the

coupled-channel Schrödinger equation with the provided analytical expression for the potential. Not

much information is given on how these expressions were obtained, which makes any generalization

of the method impossible. The second problem, already stressed in [46], is that, despite the compact
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Figure 1: The diagram illustrates the principle of supersymmetric transformations

expression of the Jost matrix, calculating the corresponding bound- and resonant-state properties

is a difficult task because these states correspond to zeros of the determinant of the Jost matrix in

the intricate structure of the energy Riemann sheet, which has a multiplicity 2N for N channels.

The first problem was solved recently, when it was realized that the Cox potential, at least in

its simplest form (q = 1 in [46]), can be obtained by a single supersymmetric transformation of the

zero potential [48,49]. It is not exaggerated to say that this result was one of the main impulse for

my work in the coupled-channel inversion by supersymmetric quantum mechanics. Now we are in

a position to get acquainted with this remarkable method.

Supersymmetric quantum mechanics (SUSY QM)

In general, physical systems are described by differential equations. This raises the problem

of finding their solutions. One of the natural idea about solving is to transform equations with

unknown solutions to a much simpler form and in the ideal case to an equation with known solutions.

Particulary, studying of the transformations which preserve the equation gives us information about

its symmetries. This information helps a lot in finding the solutions.

Note that we can invert this logic. Consider a set of all one-dimensional Schrödinger equa-

tions. A representative of this set is totally determined by the potential. Starting from a given

exactly solvable potential we may apply all possible transformations (maybe with a fixed type, like

differential transformations) modifying this potential. As a result we find the class of potentials

associated with the given exactly solvable problem. If we can describe this class in some general

and foreseeable terms, then we know all equations reducible to the initial exactly solvable equation.

In this thesis we will use the method of supersymmetric quantum mechanics which is entirely

based on the idea of differential transformations. Historically, SUSY QM was introduced by Witten

[50] as a simple QFT model to study supersymmetry breaking. A little bit later, the links between

SUSY QM, Darboux transformations [51] and the factorization method of Infeld and Hull [52, 53]

were established [54,55]. Many exactly solvable quantum models were discovered in the framework

of SUSY QM [56–59].

Supersymmetric quantum mechanics gives us useful lessons of the “quantum intuition”. We

learn how to modify a potential to make very precise spectrum modification. We also learn how

to modify transition and reflection coefficients, scattering phases etc. Boris Zahariev is known as

the popularizer of the conception of quantum intuition (see for example book [60] and references

therein).

In figure 1 we give the general diagram of the supersymmetric transformations in quantum
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mechanics. The differential operator L transforms the solutions of the initial Schrödinger equation

into the solutions of the final Schrödinger equation. This transformation induces definite relations

between Hamiltonians, its spectra and other auxiliary objects. We will distinguish conservative and

non-conservative SUSY transformations. Conservative SUSY transformations map wave functions

to wave functions, whereas non-conservative SUSY transformations always map wave functions to

some unphysical solutions. As a result, spectra of the initial and transformed systems are almost

identical for the conservative SUSY. The other way round, non-conservative SUSY changes the

spectrum totally. More precisely, no one spectral point of the initial Hamiltonian belongs to the

spectrum of the transformed Hamiltonian. As a result, a supersymmetry algebra, which is always

present in the case of conservative SUSY transformations, cannot actually be constructed here

and the word ’SUSY transformation’ is only a formal heritage from the previous conservative case.

Previously, more attention was payed to the conservative transformation only.

Obviously, we can use Hamiltonian h1 (see figure 1) as the initial Hamiltonian for a new SUSY

transformation. Thus we obtain chains of SUSY transformations. These chains lead to quantum

models with so-called polynomial super algebras [57, 61–63]. Some deformed SUSY algebras and

its applications were considered in [64–67]. An interesting class of potentials appearing in SUSY

QM is called shape invariant potentials [68]. For the moment ten shape-invariant potentials are

known [56]. All these potentials are widely used in mathematical physics. Most of the works in the

field of SUSY QM deals with the one dimensional case. Note that a multi-dimensional generalization

of SUSY QM was constructed in works [54,69] using the formalism of the superspace.

Another exotic field where SUSY QM is effectively applied is known as CPT quantum mechan-

ics (or the complex generalization of quantum mechanics). It was presumed that SUSY QM may

become an essential ingredient of the infant complex quantum mechanics because of its nice prop-

erty to convert a non-diagonalizable Hamiltonian into diagonalizable forms and to delete spectral

singularities from the continuous spectrum of a non-Hermitian Hamiltonian [70–76].

As we mentioned above, SUSY transformations induce relations between corresponding aux-

iliary objects (see figure 1). The study of these objects was very unbalanced. For instance, the

transformation properties of the fundamental solutions like the propagators and the Green functions

were not studied in details.

Regarding propagators, probably there was only one work by Jauslin [77] who constructed a

general integral transformation scheme simultaneously for propagators of the Schrödinger equations

and for heat equations, but who did not provide a discussion of convergency and divergency of the

derived expressions. Moreover his expressions are rather involved, which implies that he can only

calculate explicitly the propagator of the so-called one-soliton potential generated by the first order

SUSY. For the sake of convergency he applied his technique to the heat-equation-type Fokker-

Planck equation only. In general, this result may be extended via Wick rotation to propagators for

Schrödinger equations of a free particle and a particle moving through transparent potentials. But

the question of convergency and with it the question of solvability remains to be clarified. Another

indication that the problem may be solvable has been provided by Refs [1,2] where a similar model

has been analyzed at the level of Green functions of stationary Schrödinger equations. Approximate

methods to calculate propagators in SUSY QM were proposed in [78,79].

In the case of the SUSY transformation which removes the ground state of the initial Hamil-

tonian, Sukumar has studied an integral relation between the Green functions for SUSY partners.

He has formulated conditions leading to the vanishing of some matrix elements of a Hamiltonian

and related this property to a hidden supersymmetry of the system [80]. The transformation of
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the Green function is not explicitly discussed in that paper.

Speaking about the applications of supersymmetric transformations, we should mention quan-

tum scattering theory [22,23]. Supersymmetric transformations are a powerful tool to manipulate

the scattering properties of one-dimensional (single-channel) quantum systems. Briefly speaking,

this possibility appears due to the simple transformation of the scattering matrix under a SUSY

transformation. The scattering matrix is multiplied by a rational function of the momentum [81–85].

The iteration of SUSY transformations may be used to solve the inverse scattering problem. This

idea was proposed in works of Sukumar [81]. The effectiveness of SUSY transformations in the

inversion of scattering data is demonstrated in [83–85]. This approach to the scattering inversion is

more efficient [85] comparing with the integral transformations of Gelfand-Levitan and Marchenko

just because of the differential character of the transformation.

There are several papers devoted to supersymmetric transformations for multichannel prob-

lems [48, 86–92]. Arbitrary chains of first-order SUSY transformations in the case of the matrix

Schrödinger equation are studied in [93]. There, a compact expressions for both the transformed

matrix potential and solutions were obtained.

It should be noted that methods based on a direct generalization of the SUSY technique to

the multichannel case are not able to provide an easy control of the scattering properties for all

channels simultaneously. For instance, in the two-channel case, the S-matrix is parameterized

by the eigenphase shifts δ1(k), δ2(k) and mixing parameter ϵ(k), where k is the wave number.

Usual SUSY transformations modify these three quantities in a complicated way, which makes

their individual control difficult. We believe that this is the reason why SUSY transformations did

not find a wide application to multichannel scattering inversion.

An important ingredient of the supersymmetric inversion technique are the phase-equivalent

SUSY transformations, which are based on two-fold, or second-order, differential operators. These

are described in [94–96] for the single-channel case and in [91, 92] for the coupled-channel case.

Such transformations keep the scattering matrix unchanged and simultaneously allow to reproduce

given bound state properties. However these intermediate results are still far from an effective

SUSY-based inversion in the coupled-channel case.

A full review of SUSY QM and of its applications goes beyond this introduction. However, the

areas mentioned above, where SUSY QM is effectively applied, indicate the great potential of the

approach. In the present work, we use the advantages of SUSY-based methods to investigate the

dynamics of quantum systems both in the single- and multi-channel cases. We will concentrate

on the following questions. First of all, we will study SUSY transformations of the Green func-

tions and propagators of the single-channel Schrödinger equation. Besides usual time-independent

SUSY partner potentials we will consider non-stationary potentials and non-Hermitian potentials.

Note that open and dissipative systems may be described by the Schrödinger equation with non-

Hermitian Hamiltonian [97].

Secondly, we pay attention to the coupled-channel models in the framework of SUSY QM.

We will study SUSY transformations between diagonal matrix Hamiltonians (trivial coupling) and

coupled Hamiltonians. Thus several new nontrivially coupled potentials will be obtained. The

spectral and the scattering properties of the transformed models will also be studied in details.
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Structure of the thesis

In the first chapter, we make all the necessary preparations. In the first section, we introduce

notations and recall some important properties of the single- and coupled-channel Schrödinger

equations. The definitions of the propagator, the Green function, the scattering and the Jost

matrices are given. The other sections are devoted to a review of the SUSY transformations in

quantum mechanics. The SUSY transformations are introduced in the standard framework of the

differential transformation operators. This approach is very convenient when one works with the

polynomial generalization of SUSY transformations. The first and the second order transformations

are building blocks for high-order transformations, therefore these cases are considered in details.

We also consider SUSY transformations of the time-dependent Schrödinger equation. The end of

the chapter is devoted to the explicit construction of exactly solvable models which will be treated

below.

In the second chapter, we consider SUSY transformations of the fundamental solutions (Green

functions and propagators) for the single-channel problems. First of all, we deduce relations between

Green functions for the potentials interrelated by the first and the second order SUSY transfor-

mations. Moreover, we recalculate the Sukumar “trace formula” obtained in [80]. In the case of

scattered potentials we have found a correction to this formula [80]. We give a simple interpretation

of this correction in terms of the norm of the scattering states.

In the second section, we formulate and prove several theorems about propagators for SUSY

partner potentials. We begin with the relations between propagators induced by the simplest

first order SUSY transformation. Then we generalize this result to the case of N -th order SUSY

transformation.

In the third section, these results are used to calculate explicit expressions for propagators and

a number of new exact Green functions. We consider models in the finite interval, the soliton

potentials and potentials with the quasi-equidistant spectrum. Calculations of propagators for

non-Hermitian and time-dependent potentials are demonstrated in simple examples of the time-

dependent soliton potential and a complex isospectral deformation of the harmonic oscillator.

The third chapter is devoted to the coupled-channel problems with different thresholds. In this

chapter, we restrict our consideration by s-wave only. The case of different thresholds requires non-

conservative SUSY transformations [48] which lead to a new derivation of the Cox potential [46].

We give a qualitative analysis of its spectrum for arbitrary number of channels and find the exact

spectrum for two channels thus correcting Cox’ wrong statement about the spectrum of this model.

Our analysis is based on the analytical expressions for the Jost and scattering matrices obtained

through SUSY transformations. The information about the spectrum and scattering properties

allows us to construct a model of magnetic-induced Feshbach resonance for the atoms of alkali

metals.

In the fourth chapter, coupled-channel problems with equal thresholds and arbitrary partial

waves are studied. We start with the most general first order (conservative) SUSY transformation

and study the properties of the transformed model in details. This analysis allows us to conclude

that at least second order SUSY transformations are needed. As a result, we introduce new eigen-

phase preserving SUSY transformations. It is necessary to stress the difference between this new

kind of transformation and the well-known phase-equivalent transformations mentioned above. A

phase-equivalent transformation does not modify the scattering matrix at all, whereas the eigen-

11



phase preserving transformation modifies the mixing between channels. An important consequence

of that is the possibility to use single-channel SUSY transformations to fit experimental values of

the eigenphase shifts. Afterwards, the mixing parameter can be fitted without further modifica-

tion of the eigenphase shifts. This approach to the inversion is demonstrated by constructing a

phenomenological neutron-proton potential.

In the conclusion, we summarize the main results, discuss possible applications of the presented

methods and formulate some feasible lines of future investigations.
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Chapter 1

Supersymmetry of the Schrödinger

equation

1.1 The Schrödinger equation

1.1.1 Single-channel case

We are interested in the non-relativistic quantummechanics. Hence, we work with the Schrödinger

equation. Let us start with the simplest one dimensional time-dependent Schrödinger equation in

the reduced units

(i∂t − h0)Ψ(x, t) = 0 , x ∈ (a, b) , (1.1.1)

where h0 = −∂2x + V0(x, t) is the Hamiltonian. This equation describes a quantum particle which

moves in the potential V0(x, t) inside the interval (a, b). In the present work, we will consider

both stationary, V0(x), and time-dependent, V0(x, t), potentials. Usually in quantum mechanics

one works with Hermitian Hamiltonians only. This implies that potential V0 is a real function

(this holds through the whole text, except for section 2.2.7). The wave function Ψ(x, t) defines the

probability distribution for the particle in (a, b)

ρ(x, t) = |Ψ(x, t)|2 . (1.1.2)

Using (1.1.1) and complex conjugated equation (note that V0 is real) one can find that the total

probability is conserved

∂

∂t

b∫
a

|Ψ(x, t)|2dx = 0 ,

hence, we can normalize the wave function to get unit probability,
∫ b
a ρ(x, t)dx = 1.

Assume for simplicity that the potential is stationary (we work with time-dependent potentials

in section 2.2.6, where corresponding changes in the formalism are considered in details). As a

result the energy of the particle is conserved.

The Cauchy problem for the time-dependent equation (1.1.1) is to find the wave function Ψ(x, t)

evolving from an initial configuration Ψ(x, 0) = Ψ0(x). The solution of this problem may be given

with the help of the so-called propagator K0(x, y, t) of the time-dependent Schrödinger equation

Ψ(x, t) =

∫ b

a
K0(x, y, t)Ψ(y, 0)dy .
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The propagator (integration kernel) satisfies a differential equation with the Dirac delta function

as initial condition

[i∂t − h0(x)]K0(x, y; t) = 0 K0(x, y; 0) = δ(x− y) . (1.1.3)

For non-dissipative systems, like in our case, the propagator K0(x, y; t) can be interpreted as the

coordinate representation of the unitary evolution operator U0(t): K0(x, y; t) = ⟨x|U0(t)|y⟩, where
unitarity implies the symmetry K∗

0 (x, y;−t) = K0(y, x; t). It should be noted that the propagator

may be calculated by path-integration [27].

Subsequently, we will mainly work with a spectral decomposition of propagators in terms of

complete basis sets of eigenfunctions. Let us consider the main ingredients of this decomposition.

In the case of a stationary potential, the evolution equation (1.1.1) reduces, via the standard

substitution Ψ(x, t) = ψ(x)e−iEt and properly chosen boundary conditions, to the spectral problem

for the stationary Schrödinger equation (in what follows we refer to this equation as the Schrödinger

equation and use term time-dependent Schrödinger equation for (1.1.1))

h0ψ = Eψ . (1.1.4)

Let us define requirements for the mathematical environment more precisely. We assume the

real-valued potential V0(x) to be continuous and bounded from below so that the differential expres-

sion h0 = −∂2x + V0(x) defines a Sturm-Liouville operator which is symmetric with respect to the

usual L2(a, b) inner product ⟨ψ|ϕ⟩ =
∫ b
a ψ

∗(x)ϕ(x)dx. The corresponding functions ψ ∈ L2(a, b) are
additionally assumed sufficiently smooth1, e.g. ψ ∈ C2(a, b), over the interval (a, b) ⊆ R. Almost

everywhere in the text we choose real-valued solutions of equation (1.1.4). This is always possible

when V0(x) is a real-valued function and the spectral parameter E is real also. We will mention

when complex-valued solutions and spectral parameters will be used.

Concentrating on physically relevant cases, we restrict our attention to the following three types

of setups [98]:

A: The interval (a, b) is finite ,|a|, |b| < ∞, so that h0 has a non-degenerate purely discrete

spectrum (see e.g. [99]).

B: For spectral problems on the half-line, (a = 0, b =∞), we consider the so-called scattering (or

short-ranged) potentials ∫ ∞

0
x|V0(x)|dx <∞ , (1.1.5)

which decrease at infinity faster than any finite power of x and have a continuous spectrum filling

the positive semi-axis and a finite number of discrete levels; the whole spectrum is non-degenerate.

This spectral problem may be interpreted as a radial problem for a 3-dimensional quantum system.

Therefore in this case it is convenient to replace the coordinate variable x by the radial coordinate

r ∈ (0,∞).

C: For spectral problems on the whole real line, (a = −∞, b =∞), we consider confining as well

as scattering potentials. Confining potentials produce purely discrete non-degenerate spectra (see

e.g. [32]), whereas scattering potentials lead to two-fold degenerate continuous spectra filling the

whole real line and to a finite number of non-degenerate discrete levels (see e.g. [99]).

The spectrum is determined by imposing Dirichlet boundary conditions (BCs) for the bound

state eigenfunctions of h0. The eigenvalues En of h0 are interpreted as the energies of the stationary

1As usual, C2(a, b) denotes the space of twice continuously differentiable functions.
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states. The operator h0 is assumed to be essentially self-adjoint (with a closure that we denote by

the same symbol h0, for details see, e.g., [100]) in domain

D(h0) := {ψ : ψ ∈ L2(a, b) ∩ C2(a, b), ψ(a) = ψ(b) = 0} . (1.1.6)

As usual, the eigenfunctions ψk(x),

h0ψk(x) = k2ψk(x) , E = k2 , (1.1.7)

which correspond to the continuous spectrum E > 0 of h0, are supposed to have the oscillating

asymptotic behavior at spatial infinity. Here k denotes the momentum.

The eigenfunctions of Hamiltonian h0 form a basis in the Hilbert space L2(a, b)

M∑
n=0

ψn(x)ψ
∗
n(y) +

∫
dk ψk(x)ψ

∗
k(y) = δ(x− y) , ⟨ψn|ψm⟩ = δnm , ⟨ψk|ψk′⟩ = δ(k − k′) . (1.1.8)

For the spectral problem on the whole real axis (case C) the continuous spectrum is two-fold

degenerate and the integral over k runs from minus infinity to plus infinity and for the problem

on a half line (case B) it runs from zero to infinity. For a finite interval (case A) or confining

potentials the integral is absent and the sum runs over infinite number of discrete levels, M =∞.

This agreement about integration and summation is assumed in what follows. For example, using

this basis one can calculate the propagator in the following form

K0(x, y; t) =

M∑
n=0

Ψn(x, t)ψ
∗
n(y) +

∫
dkΨk(x, t)ψ

∗
k(y) , (1.1.9)

Ψn(x, t) = ψn(x)e
−iEnt , Ψk(x, t) = ψk(x)e

−ik2t .

By “physical” solutions we mean solutions belonging to the domain D(h0) (1.1.6) and scattering

states belonging to the continuous spectrum. All solutions ψ ̸∈ D(h0) corresponding to a spectral

parameter E outside the continuous spectrum are interpreted as “unphysical”. Such solutions

appear when we consider the Schrödinger equation just as a differential equation. Then the solution

space at a given spectral parameter E is the two-dimensional linear space H0,E = span(ψ, ψ̃), i.e.,

(h0 − E)(aψ + ãψ̃) ≡ 0, ∀a, ã ∈ C. The two solutions ψ and ψ̃ are linearly independent. One can

see from the Schrödinger equation (1.1.4) that the Wronskian of these solutions is a constant,

W [ψ, ψ̃] ≡ ψψ̃′ − ψ′ψ̃ = const , (1.1.10)

where the prime denotes the derivative with respect to x (or r in case B). We define the Green

function as the kernel of the operator (h0 − E)−1 (see e.g. [98, 101]). It is well-defined for all

E /∈ spech0. This Green function has two different but equivalent representations. The first

representation is obtained with the help of two real solutions, fl0 and fr0 (‘’left” and ‘’right”

solutions), of the equation

h0fl,r0(x,E) := −f ′′l,r0(x,E) + V0(x)fl,r0(x,E) = Efl,r0(x,E) , x ∈ (a, b) , E /∈ spech0 .

(1.1.11)

In case A these solutions satisfy zero boundary conditions at one of the boundaries only

fl0(a,E) = 0 , fr0(b, E) = 0 . (1.1.12)
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In case B the left solution vanishes at the origin, the right solution has the exponential asymptotics

fl0(0, E) = 0 , fr0(r →∞, E)→ eikr , E = k2 , Imk > 0 . (1.1.13)

In this case, fl0 is a regular solution at the origin, and fr0 is proportional to the so-called Jost

solution (we will discuss the Jost solutions in the next subsection). In case C both the left and the

right solutions have the exponential asymptotics at the right (and the left) infinity

fl0(x,E)→ e−ikx , fr0(x,E)→ eikx , E = k2 , Imk > 0 , x→∞ , (1.1.14)

fl0(x,E)→ eikx , fr0(x,E)→ e−ikx , E = k2 , Imk > 0 , x→ −∞ . (1.1.15)

Since these solutions correspond to the same spectral parameter, their WronskianW0 =W [fr0, fl0]

does not depend on x and is a function of E only. The Green function then reads

G0(x, y, E) = fl0(x,E)fr0(y,E)/W0 , x < y , (1.1.16)

G0(y, x,E) = G0(x, y, E) . (1.1.17)

These formulae are clearly equivalent to

G0(x, y, E) = [fl0(x,E)fr0(y,E)Θ(y − x) + fl0(y,E)fr0(x,E)Θ(x− y)]/W0 , (1.1.18)

where Θ is the Heaviside step function.

The second representation of the Green function may be constructed in terms of the complete

basis set of h0’s eigenfunctions as follows:

G0(x, y, E) =
M∑
n=0

ψn(x)ψ
∗
n(y)

En − E
+

∫
ψk(x)ψ

∗
k(y)

k2 − E
dk . (1.1.19)

The propagator and the Green function of the corresponding stationary Schrödinger equation

are related as follows [35]:

G0(x, y, E) = i

∞∫
0

K0(x, y, t)e
iEtdt , ImE > 0 .

1.1.2 Coupled-channel case

In the equations considered above, the wave function was a scalar function. This means that

the corresponding particle does not have internal degrees of freedom. We can generalize the one-

dimensional Schrödinger equation to the case of particles with internal degrees of freedom. The

internal states may be associated, for example, with the spin or with the excited states of a com-

posite particle. In this case, the Hilbert space of the system is the direct product L2(a, b) × CN .

The wave function depends on a discrete variable, say j, which determines the internal state. In

other words, the state of the system is determined by a set of functions ψ = ψ(x, j), j = 1, N .

Thus, the wave function is a vector- (or spinor-) valued function. The scalar product modifies as

follows

⟨ϕ|ψ⟩ =
N∑
j=1

b∫
a

ϕ∗(x, j)ψ(x, j)dx .
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Such systems naturally appear after a partial wave decomposition of a three-dimensional Schrödinger

equation in the context of scattering theory [22]. Note that in this case (a, b) = (0,∞) and we re-

place x by r ∈ (0,∞). Different values of the discrete variable j correspond to different asymptotic

states called channels.

Let us first summarize the notations used below for the coupled-channel scattering theory

[22, 23, 47]. We consider a system of coupled radial Schrödinger equations that in reduced units

reads

h0ψ(k, r) = K2ψ(k, r) , h0 = −IN
∂2

∂r2
+ V0(r) , r ∈ (0,∞) , (1.1.20)

V0 = l(l + IN )r−2 + V̄0(r) , (1.1.21)

where V0(r) is an N × N real symmetric matrix, IN is the N × N identity matrix, and ψ may

be either a vector-valued solution or a matrix-valued solution combined from the vector solutions.

From the context it will always be clear what type of the potential V is considered: matrix or scalar.

Potential V0(r) combines the centrifugal term l(l + IN )/r2, l = diag(l1, . . . , lN ), lj = 0, 1, . . ., and

a short ranged interaction V̄0(r). Here and in what follows we also denote l ± 1 (and ν ± 1 below)

matrix l±IN (ν±IN ). Matrix l defines the asymptotic behaviour of the potential at large distances

V0(r →∞) = r−2l(l + 1) + o(r−2) (1.1.22)

which is typical for coupled channels involving various partial waves. We denote by ν the matrix

which determines the singularity of the potential at the origin

V0(r → 0) = r−2ν(ν + 1) + O(1) , ν = diag [ν1, ν2, . . . , νN ] , νj = 0, 1, . . . . (1.1.23)

Note that V does not contain a Coulomb-like r−1 singularity by our conjecture.

In the multi-channel case, by k we denote a point in the space CN , k = {k1, . . . , kN}, ki ∈ C. A
diagonal matrix with non-vanishing entries ki is written as K = diag(k) = diag(k1, . . . , kN ). The

components of this matrix are nothing but the momenta corresponding to the different channels

(channel momenta). The complex wave numbers ki are related to the center-of-mass energy E and

the channel thresholds ∆1, . . . ,∆N by the “threshold condition”

k2j = E −∆j , ∆1 = 0 . (1.1.24)

The thresholds ∆ = diag(∆1, . . . ,∆N ) correspond to the excitation energies of the interacting

particles. We assume here that ∆1 = 0 and the different channels have equal reduced masses, a case

to which the general situation can always be formally reduced [23]. In the case of equal thresholds

all channel momenta coincide k2j = E, therefore it is sufficient to use only one momentum k.

Depending on the presence of the centrifugal term and the thresholds one may distinguish three

essentially different types of problem: s-wave scattering with different thresholds ∆i(̸=j) ̸= ∆j ,

l ≡ 0; arbitrary partial waves with equal thresholds ∆ ≡ 0; arbitrary partial waves with different

thresholds ∆i(̸=j) ̸= ∆j , l ̸= 0. In this work we consider only the first and the second cases.

We define the regular N ×N matrix solution φ(k, r) of (1.1.20) according to [23]

φ(k, r → 0) → diag(rν1+1/(2ν1 + 1)!!, . . . , rνN+1/(2νN + 1)!!)

=: rν+1[(2ν + 1)!!]−1 . (1.1.25)

The Jost solution f(k, r) is the matrix solution which has the exponential asymptotic behaviour at

large distances

f(k, r →∞)→ diag[eik1r, . . . , eikN r] := eikr . (1.1.26)
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The Jost solutions f(k, r) and f(−k, r) form a basis in the matrix solution space. The regular

solution is expressed in terms of the Jost solutions as

φ(k, r) =
i

2

[
f(−k, r)K−1F (k)− f(k, r)K−1F (−k)

]
, (1.1.27)

where F (k) is known as the Jost matrix. The Jost matrix plays an important role in the non-

relativistic scattering theory [102]. From (1.1.25) and (1.1.27) it follows that

F (k) = lim
r→0

[
fT (k, r)rν

]
[(2ν − 1)!!]−1 . (1.1.28)

Introducing the Wronskian of two matrix functions u, v as

W[u, v](r) ≡ uT (r)v′(r)− uT ′
(r)v(r) , (1.1.29)

we can rewrite (1.1.27) in the following form

F (k) = W[f(k, r), φ(k, r)] . (1.1.30)

Note, that the Wronskian (1.1.29) of two linearly independent matrix solutions corresponding to

the same energy is a constant matrix in the full analogy with the single channel case (1.1.10).

Zeros of the Jost-matrix determinant define positions of the bound/virtual states and the res-

onances. Thus, to find these positions we have to solve the following equation

detF (k) = 0 , (1.1.31)

taking into account the threshold conditions (1.1.24).

The physical solution, which appears in the partial wave decomposition of the stationary scat-

tering state, behaves as

Ψ(k, r →∞) ∝ eil
π
2
−iKr − e−ilπ

2
+iKrK−1/2S(k)K1/2 . (1.1.32)

The scattering matrix S(k) is expressed in terms of the Jost matrix as

S(k) = eil
π
2K−1/2F (−k)F−1(k)K1/2eil

π
2 . (1.1.33)

Note that the Jost and scattering matrices may also be defined for the single channel case by the

same relations with obvious changes.

Since the scattering matrix is unitary and symmetric there exists an orthogonal transformation

R(k) diagonalizing this matrix. More precisely, just the sub-matrix which corresponds to the open

channels is unitary. Open channels correspond to the real channel momenta. In the two-channel

case, assuming that both channels are open (or ∆1 = ∆2), we get

RT (k)

(
S11(k) S12(k)

S12(k) S22(k)

)
R(k) =

(
e2iδ1(k) 0

0 e2iδ2(k)

)
. (1.1.34)

The rotation matrix R(k) is parameterized by a mixing angle ϵ = ϵ(k),

R(k) =

(
cos ϵ(k) − sin ϵ(k)

sin ϵ(k) cos ϵ(k)

)
, (1.1.35)

which is expressed in terms of S-matrix entries as

tan 2ϵ(k) =
2S12(k)

S11(k)− S22(k)
. (1.1.36)
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Note that an opposite sign definition for the mixing angle could have been chosen; moreover, the

order of the eigenphase shifts is arbitrary: exchanging them while adding ±π/2 to the mixing

angle keeps the scattering matrix unchanged. From a physical motivation, a natural order of the

eigenphase shifts corresponds to the mixing parameter vanishing at zero energy (at the threshold).

In the next sections, we present the method of SUSY transformations which allows one to gener-

ate new non-trivial exactly solvable models described by the Schrödinger equations discussed here.

We start with the most general SUSY transformations of the single-channel stationary Schrödinger

equation. Then we consider how this general scheme works in particular cases of the first and

the second order transformations. In the case of the first order transformation, we generalize the

method to the multi-channel problems. The first order SUSY transformation for the time-dependent

Schrödinger equation will also be considered.
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1.2 SUSY transformations of the stationary Schrödinger equation

Let us consider the simplest two-component system of Witten’s non-relativistic supersymmetric

quantum mechanics [50,103] described by the Schrödinger equation

HΨ(x) = EΨ(x) , x ∈ (a, b) , (1.2.1)

where H is a diagonal super-Hamiltonian consisting of the two (single-channel) super-partners h0

and hN as components

H =

 h0 0

0 hN

 , h0,N = −∂2x + V0,N (x) , (1.2.2)

and Ψ(x) = (ψ(x), ϕ(x))T .

We assume that the partner Hamiltonians h0 and hN are intertwined by an Nth-order differ-

ential operator L with the following properties:

1. intertwining relations

Lh0 = hNL h0L
+ = L+hN (1.2.3)

2. factorization rule

L+L = PN (h0) LL+ = PN (hN )

PN (x) = (x− α0) . . . (x− αN−1)

Im (αi) = 0 αi ̸= αk ̸=i i, k = 0, . . . , N − 1 . (1.2.4)

Here, the adjoint operation is understood in the sense of Laplace (i.e. as formally adjoint with the

property ∂+x = −∂x, (AB)+ = B+A+ and i+ = −i) and the roots αi of the polynomial PN are

called factorization constants. For simplicity we assume that the polynomial PN has only simple

roots. The intertwining relations together with the factorization rule can be represented in terms

of the polynomial super-algebra [57,104,105]

Q2 = (Q+)2 = 0 [Q,H] = [Q+,H] = 0 QQ+ +Q+Q = PN (H) (1.2.5)

with nilpotent super-charges

Q =

(
0 0

L 0

)
Q+ =

(
0 L+

0 0

)
.

Although the component Hamiltonians h0 and hN enter the super-Hamiltonian (1.2.2) in an

algebraically symmetric way, we consider h0 as a given Hamiltonian with known spectral properties

and hN as a derived Hamiltonian with a still undefined spectrum.

The intertwiner L is completely described by a set of N transformation functions un(x), which

are solutions of the stationary Schrödinger equation with h0 as Hamiltonian:

h0un = αnun n = 0, . . . , N − 1 .

Note that transformation functions may be unphysical solutions.
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In our case of a polynomial PN (x) with simple roots (i.e. αi ̸= αk) the action of the intertwiner

L on a function ψ is given by the Crum-Krein formula [106,107]

ϕ = Lψ =
W (u0, u1, . . . , uN−1, ψ)

W (u0, u1, . . . , uN−1)
(1.2.6)

with W denoting the Wronskian

W =W (u0, u1, . . . , uN−1) =

∣∣∣∣∣∣∣∣∣∣
u0 u1 . . . uN−1

u′0 u′1 . . . u′N−1

. . . . . . . . . . . .

u
(N−1)
0 u

(N−1)
1 . . . u

(N−1)
N−1

∣∣∣∣∣∣∣∣∣∣
. (1.2.7)

It links the solutions ϕ and ψ of the Schrödinger equations with hN and h0 as Hamiltonians by

the relation ϕ = Lψ. Furthermore, the determinant structure (1.2.6) of the operator L leads

to the immediate implication that it has a nontrivial kernel space KerL spanned by the set of

transformation functions un:

KerL = span{u0, . . . , uN−1} dim(KerL) = dim(KerL+) = N .

The solutions vn of the equation hNvn = αnvn are elements of the kernel space of the adjoint

operator L+ and can be obtained as

vn =
Wn(u0, u1, . . . , uN−1)

W (u0, u1, . . . , uN−1)
n = 0, . . . , N − 1 (1.2.8)

KerL+ = span{v0, . . . , vN−1}

where Wn denotes the Wronskian built as a determinant of the (N − 1)× (N − 1) matrix with the

un−related column omitted Wn = W (u0, u1, . . . , un−1, un+1, . . . , uN−1). The potential VN of the

Hamiltonian hN can be expressed as [106,107]

VN = V0 − 2 [lnW (u0, u1, . . . , uN−1)]
′′ . (1.2.9)

In general, it is not excluded that the transformation operator L may move a solution of h0

out of H0 = L2(a, b) thus transforming a physical solution of h0 into an unphysical solution of hN .

Moreover the inverse scenario is also possible, i.e. L may transform an unphysical solution of h0

into a physical solution of hN . In such cases the point spectrum of hN will differ from that of

h0. Subsequently, we will mostly use the conservative transformations L, which leave most of the

original spectrum invariant with exception of a finite number of spectral points — a characteristic

feature of differential intertwining operators L leaving the boundary behavior of the solutions of

the Schrödinger equation and positions of singularities of the potential unchanged. Recently in [61]

a conjecture has been proven, which was originally formulated in [108] and which states that any

Nth-order differential transformation L can be constructed as a superposition from only first- and

second-order transformations. In this case it is possible to show [57] that for problems formulated

over the whole R (for infinite values of a and b) VN behaves asymptotically like V0. Therefore

the operator hN is also essentially self-adjoint and “lives” in the same Hilbert space H as h0.

Moreover, since the point spectrum of the self-adjoint Sturm-Liouville problems that we consider is

non-degenerate there is no way to create a new discrete level at the position of an already existing

discrete level and by this means to increase the geometric multiplicity of that level.
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According to [106] the necessary condition for an Nth-order transformation to produce an

essentially self-adjoint operator hN is2

(E − α0) . . . (E − αN−1) > 0 ∀E ∈ spech0 . (1.2.10)

This criterion ensures the conservativeness of the transformation L leading only to changes in

maximally N spectral points (of the point spectrum). Specifically, the spectrum of hN may contain

p points more and q points less than spec(h0), where necessarily p+ q 6 N .

In the present work we will consider the following possibilities.

• The spectrum of h0 is a subset of the spectrum of hN . A new energy level may be created in

the spectrum of hN if and only if the corresponding transformation function u(x) is such that

1/u(x) ∈ D(hN ), i.e., in particular, that 1/u(x) is L2−integrable and satisfies the Dirichlet

BCs.

• The spectrum of hN is a subset of the spectrum of h0. An energy level may be removed from

the spectrum of h0 if and only if the corresponding transformation function u(x) coincides

with the h0−eigenfunction of this level, i.e. when u(x) satisfies the Dirichlet BCs.

• The spectrum of h0 coincides with the spectrum of hN . In this case neither the transformation

functions un(x) nor 1/un(x) should be square integrable or satisfy Dirichlet BCs on both ends

of the interval (a, b). This property should be fulfilled for all transformation functions un(x)

from which the transformation operator is built.

• The spectra of h0 and hN do not have common points. In this case the transformation

functions un(x) should violate Dirichlet BCs at one of the boundaries of the interval (a, b).

In all cases we assume that the transformation functions {un(x)}N−1
n=0 are linearly independent from

one another and their Wronskian W (u0, . . . , uN−1) does not vanish ∀x ∈ (a, b).

The first and the second order transformations are building blocks for high-order transforma-

tions. One can start from the first order SUSY transformations and construct transformations of

higher order iteratively. This iteration process may result in some intermediate Hamiltonians with

domains of definition different from (1.1.6). Then the resulting N -th order transformation opera-

tor is called irreducible. Taking into account the second order transformations one can decompose

any N -th order transformation operator in such a way, that all intermediate Hamiltonians will be

defined in (1.1.6). We consider the first and the second order transformations in details in the next

sections.

1.2.1 The first order SUSY transformations

According to (1.2.6) the first-order intertwiner has the form

L := −(lnu)′ + ∂x = −w + ∂x , (1.2.11)

2The basic idea can be understood as signature preservation of Hilbert space metrics, i.e. ∀E belonging to the point

spectrum of h0 the eigenfunctions ψE with ||ψE ||2 = (ψE , ψE) > 0 should map into corresponding eigenfunctions ϕE

of hN with ||ϕE ||2 = ||LψE ||2 = (ψE , L
+LψE) = (ψE , PN (h0)ψE) ≥ 0 what via (1.2.4) implies (1.2.10). Here, the

equality takes place for those ψE for which the point E does not belong to the spectrum of hN , i.e. if PN (E) = 0

and ϕE = LψE ≡ 0. A more detailed analysis of the corresponding sufficient conditions for spectral problems on the

whole real line in the case of scattering potentials and of confining potentials is given in [108].
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where h0u = αu. The logarithmic derivative of the transformation function w(x) = (lnu)′ is called

the superpotential [109]. Operator L and adjoint operator L+ = −w − ∂x factorize Hamiltonians

h0 and h1 as follows

L+L = h0 − α , LL+ = h1 − α . (1.2.12)

Operator L transforms the solutions ψ = ψ(x,E) of the initial Schrödinger equation with

potential V = V0(x) into solutions

ϕ(x,E) ≡ Lψ(x,E) = ψ′(x,E)− ψ(x,E)u′(x)/u(x) (1.2.13)

of the transformed Schrödinger equation with potential

V1 = V0 − 2(lnu)′′. (1.2.14)

To get the transformed potential with no more singularities than the initial one it is necessary to

choose a non-vanishing transformation solution u(x) ̸= 0, ∀x ∈ (a, b).

Operators L and L+ realize a one-to-one correspondence between two-dimensional spaces of

solutions for any E ̸= α

H0,E
L−−−−→ H1,E .

When E = α, ψ = u(x) and Lu = 0, this correspondence may be established as follows. Normalizing

the linearly independent solution ũ by the condition W (u, ũ) = 1 and integrating this Wronskian

we obtain

ũ(x) = u(x)

∫ x

x0

dy

u2(y)
. (1.2.15)

Applying the transformation operator L to ũ we get

ṽ(x) = Lu(x)

∫ x

x0

dy

u2(y)
= 1/u(x) . (1.2.16)

Finally, we restore the solution space H1,α = span(v, ṽ) using integral (1.2.15), where u is replaced

by ṽ which yields

v(x) = 1/u(x)

∫ x

x0

u2(y)dy . (1.2.17)

Here we have used well-known fact about the Schrödinger equation that the Wronskian W0 =

W (ψ, ψ̃) does not depend on x, (1.1.10).

Lemma 1. The Wronskian W1 of the transformed solutions ϕ = Lψ and ϕ̃ = Lψ̃ is expressed from

the Wronskian W0 as follows:

W1 = (E − α)W0 , E ̸= α . (1.2.18)

Proof. Writing Wronskian W1 in terms of the initial solutions

W1 = (Lψ)(Lψ̃)′ − (Lψ)′(Lψ̃) = (ψ′ − wψ)(ψ̃′′ − wψ̃′ − w′ψ̃)− (ψ̃′ − wψ̃)(ψ′′ − wψ′ − w′ψ) .

and using ψ′′ = (V0 − E)ψ we get

W1 = (w2 + w′ +E − V0)W0 .

Taking into account that w(x) = u′/u, and u is a solution of the initial Schrödinger equation we

complete the proof.
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Figure 1.1: The diagram shows spectra of the initial

and the transformed system for the cases (i) and (ii).

Since we choose a non-vanishing transformation solution the choice of the factorization energy

is constrained by the ‘oscillation’ theorem (see e.g. [32]). The factorization energy has to be less

than the ground state energy α ≤ E0. Obviously, for the scattering potentials without bound

states α ≤ 0. Depending on the concrete form of the function u(x) the intertwiner L may result

in the following three types of relations between the spectra of the Hamiltonians h0 and h1 (see,

e.g., [103]):

(i) for α = E0 and u = ψ0 the ground state level E0 of h0 is removed from the spectrum of h1,

(ii) h1 has a new and deeper ground state level E−1 = α < E0 than h0,

(iii) the spectra of h1 and h0 completely coincide (α < E0).

The first two situations are shown schematically in figure 1.1.

In order to create a potential V1(x) which is nonsingular on the whole interval (a, b) ∋ x the

function u(x) should be nodeless inside this interval. This property is evidently fulfilled for type

(i) relations since the function u(x) coincides in this case with the ground state eigenfunction

u(x) = ψ0(x). In cases (ii) and (iii) the nodelessness should be ensured by an appropriate choice

of u(x), a choice which is always possible because of the ‘oscillation’ theorem (see e.g. [32]). In case

(iii) it implies α < E0.

Let us consider the orthonormal basis formed by h0 eigenfunctions {ψn, n = 0, 1, . . .}. Here for

simplicity we consider only confining potentials. The eigenfunctions of the Hamiltonian h1

ϕn = (En − α)−1/2Lψn , n = 0, 1, . . . (1.2.19)

form an orthonormal basis in the same Hilbert space in case (iii). In case (i) the basis does not

include ϕ0 and in case (ii) it is necessary to include ϕ−1 ∝ 1/u.

In the case of the regular Sturm-Liouville problem ψ′
n(a) ̸= 0 and ψ′

n(b) ̸= 0 when ψn ≡ ψ(x,En)

is an eigenfunction. From (1.2.13) it follows that ϕn = Lψn is an eigenfunction if and only if

u(a) = u(b) = 0. As a result there is only one possible transformation solution, u(x) = ψ0(x).

Thus only case (i) may lead to a conservative SUSY transformation for the finite interval (a, b).

In this case functions {ϕn, n = 1, 2, . . .} belong to the discrete spectrum of h1 and form a complete

basis in the Hilbert space L2(a, b). Note, that the transformed potential has singularities at the

boundaries.

If the transformation function violates Dirichlet BCs (at least at one boundary), then h0 and

h1 do not have common spectral points at all. The transformation operator L maps eigenfunctions

into unphysical solutions of transformed Schrödinger equation. This is a single-channel example of

the non-conservative SUSY transformation.
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The first order SUSY transformations may be directly generalized to the coupled-channel case

[48,49,86,87]. Which is not the case for the formula (1.2.6). With respect to the single-channel case

there are additional difficulties due to the non-commutative character of matrix-valued functions.

Therefore in the coupled-channel case we will use iterations of the first order transformations.

The solutions of the initial Schrödinger equation (1.1.20) are mapped into the solutions of the

transformed equation with the help of the differential-matrix operator L,

ϕ(k, r) = Lψ(k, r) :=

[
w(r)− IN

d

dr

]
ψ(k, r) . (1.2.20)

The transformed Schrödinger equation has form (1.1.20) with a new potential

V1(r) = V0(r)− 2w′(r) . (1.2.21)

Matrix w(r), called the superpotential, is expressed in terms of a square matrix solution u of the

initial Schrödinger equation

h0u(r) = −K2u(r) , (1.2.22)

as follows

w(r) = u′(r)u−1(r) , (1.2.23)

where K = diag(κ) = diag(κ1, . . . , κN ) is a diagonal matrix called the factorization wave number,

which corresponds to an energy E lying below all thresholds, called the factorization energy. The

entries of K, thus, satisfy E = −κ2i +∆i; by convention, we choose them positive: κi > 0. Solution

u(r) is called the factorization solution or (matrix-valued) transformation function.

In the most general case the transformation function may be expressed in terms of the Jost

solutions as follows

u(r) = f0(−iκ, r)C + f0(iκ, r)D , (1.2.24)

where the real constant matrices C and D are arbitrary. To obtain a Hermitian potential after a

transformation with transformation function (1.2.24) matrix CTD should be symmetric [49]

DTC = CTD . (1.2.25)

Matrices C and D with a maximal number of independent parameters guaranteeing the Her-

mitian character of the superpotential (1.2.23) have the following canonical form,

C =

(
IM 0

Q 0

)
, D =

(
X0 −QT

0 IN−M

)
, (1.2.26)

where X0 = XT
0 is a real symmetric nonsingular M ×M matrix, and Q is an (N −M) ×M real

matrix so that rankC =M . There are two particular cases: M = N , C = IN , D = DT = X0 and

M = 0, C = 0, D = IN .

The SUSY transformations of the Jost and the scattering matrices crucially depend on the

asymptotic behaviour of the superpotential w∞ := lim
r→∞

w(r). The reason is that the Jost solution

transforms as follows

f1(k, r) = Lf0(k, r)(w∞ − iK)−1 . (1.2.27)

The factor (w∞ − iK)−1 is introduced to guarantee the correct asymptotic behaviour of f1(k, r)

(see (1.1.26)). Then the Jost matrix may be calculated by definition (1.1.28).
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The analysis of this asymptotic behaviour in the case ∆ ̸= 0, l = 0 may be found in [49].

In this case the superpotential at infinity is diagonal, w∞ = diag(κ1, . . . , κM ,−κM+1, . . . ,−κM ),

0 6M 6 N . Below we consider in details SUSY transformations in the case of different thresholds

when M = N , C = IN . A detailed analysis of the superpotential asymptotic behaviour in the case

∆ = 0, l ̸= 0 allows us to introduce coupling SUSY transformations (i.e. the resulting potential

and S-matrix will be non-diagonal whereas the initial potential is diagonal).

Let us also mention that, since Lu(r) = 0, the solution ϕ(iκ, r) of the transformed equation

corresponding to the energy E = −κ2 is found as the matrix v(r) = [u†(r)]−1. Moreover, this

matrix, when chosen as the transformation function for the next transformation step, cancels the

previously produced potential difference. This means that it corresponds to a transformation in the

opposite direction. As in the single channel case one can use chains of SUSY transformations. For

our purpose it is more convenient to make SUSY transformations iteratively than to use generalized

Crum-Krein Wronskian formulas obtained in [93].

1.2.2 The second order SUSY transformations

The second order SUSY transformation is determined by two transformation functions u1(x)

and u2(x). One may choose both different and coinciding factorization energies α1,2. When α2 ̸= α1

the transformed potential and solutions read (see (1.2.6) and (1.2.9))

V2 = V0 − 2(lnW (u1, u2))
′′, (1.2.28)

ϕ ≡ Lψ =W (u1, u2, ψ)/W (u1, u2) , (1.2.29)

h2ϕ = Eϕ .

Here h0u1,2 = α1,2u1,2 h0ψ = Eψ. When E = α1, α2 the rhs of (1.2.29) is zero. In this case we

may calculate solutions of the transformed Schrödinger equation as follows

v2,1(x) = u1,2/W (u1, u2) , h2v2,1(x) = α2,1v2,1(x) . (1.2.30)

Note that formula (1.2.18) may be easily generalized for the second order SUSY transformation

W2(E) = (E − α1)(E − α2)W0(E) , E ̸= α1, α2 . (1.2.31)

To analyze transformation (1.2.29) one may express second order derivatives from the Schrödinger

equations u′′1,2 = (V0 − α1,2)u1,2, ψ
′′ = (V0 − E)ψ, thus obtaining

ϕ = [E +
u′1α2u2 − u′2α1u1

W (u1, u2)
]ψ − (α2 − α1)

u1u2
W (u1, u2)

ψ′ . (1.2.32)

In the degenerate case α1 = α2 ≡ α we can not use (1.2.28) and (1.2.29) directly. One may

try to consider this case as a limit α2 → α1. Note that the limiting procedure is non-trivial.

Details of this approach to the degenerate second order SUSY may be found in [110]. We will

use another method based on the iterative representation of the high-order and, in particular, the

second order SUSY transformation. It is necessary to consider the chain of two consecutive first

order transformations. The transformation function of the second step corresponds to the same

factorization energy α as the first transformation function u, h0u = αu. According to (1.2.16)

and (1.2.17) the general solution of the Schrödinger equation with the Hamiltonian h1 for spectral
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parameter α reads v = [c+
∫ x
x0
u2(t)dt]/u(x). Constants c and x0 should provide c+

∫ x
x0
u2(t)dt ̸= 0

for all x ∈ (a, b), to get the regular transformed potential V2

V2 = V0 − 2[ln(c+

∫ x

x0

u2(t)dt)]′′ , (1.2.33)

inside the interval (a, b). Solutions ϕ = ϕ(x,E) then reads:

ϕ ≡ Lψ = [α− E +
uu′

c+
∫ x
x0
u2(t)dt

]ψ − u2

c+
∫ x
x0
u2(t)dt

ψ′ . (1.2.34)

As usual when ψ(x,E) = u(x) (i.e., E = α) the rhs of this expression is zero. Once again we should

use solution linearly independent from u. As a result we get

ϕ(x, α) =
u(x)

c+
∫ x
x0
u2(t)dt

. (1.2.35)

The wronskian of two linearly independent solutions transforms according to (1.2.31), where α2 =

α1 = α. The degenerate case presents an interest for the radial Schrödinger equation, because it

allows to construct so-called iso-phase potentials with the same scattering properties and different

spectra [94].

It is obvious that the second order transformation will define a regular potential V2 ifW [u1, u2] ̸=
0 or c+

∫ x
x0
u2(t)dt ̸= 0, ∀x ∈ (a, b). Note that the behaviour of W [u1, u2] for some important and

quite general models was analyzed in [111]. Let us summarize different possibilities of spectrum

modifications depending on the choice of factorization constants α1, α2 and asymptotical (or bound-

ary) behaviour of the transformation solutions u1, u2 [111]. Transformation functions u1 and u2

are chosen to provide W (u1, u2) ̸= 0 for all x ∈ (a, b).

(I) - Removal of two levels

Transformations functions are neighboring eigenfunctions u1(x) = ψk(x) and u2(x) = ψk+1(x)

with energies α1 = Ek end α2 = Ek+1. It can be seen that Wronskian W [u1, u2] is non-vanishing

in (a, b) in this case [106]. We have u1,2(a) = u1,2(b) = 0, hence operator L conserves BCs for all

E except E = α1, α2. As a result energy levels Ek and Ek+1 are removed from the spectrum of

Hamiltonian h0

spech2
∪
{α1 = Ek, α2 = Ek+1} = spech0 .

When k = 0 the second order transformation is a superposition L = L2L1 of two ‘’well-defined”

first order transformations of (i)-type

h0
L1−−−−→ h1

L2−−−−→ h2 , (1.2.36)

where the intermediate Hamiltonian h1 is self-adjoint. Such SUSY transformation is called com-

pletely reducible [57,62].

(II) - Reducible creation of two levels

This case realizes when (a, b) = R. Factorization constants lie below the ground state energy

of h0, E0 > α1 > α2. The factorization solutions increase at large distances u1,2(|x| → ∞) → ∞.

Moreover, the inverse functions u−1
1,2 belong to L2(R). Then, the transformed Hamiltonian h2 has

two new levels E−2 = α2 and E−1 = α1 in its spectrum

spech0
∪
{E−1 = α1, E−2 = α2} = spech2 .
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This second order SUSY transformation is completely reducible and may be presented as the pair

of two first order SUSY transformations of (ii)-type.

(III) - Irreducible creation of two levels

Factorization constants lie between two neighboring energy levels of h0, Ek+1 > α1 > α2 > Ek.

Again, if the inverse functions u−1
1,2 belong to L2(R) then the transformed Hamiltonian h2 has two

new levels E = α2 and E = α1

spech0
∪
{α1, α2} = spech2 .

Note, that the intermediate Hamiltonian h1 is unphysical, therefore this is an irreducible second

order SUSY transformation.

(IV) - Isospectral transformation

Let us consider the case when u1(a) = 0, u1(b) ̸= 0 and u2(a) ̸= 0, u2(b) = 0. In this case, one

can see from (1.2.32) that spectra of h0 and h2 coincide

spech0 = spech2 .

Parameters α1 and α2 provide an isospectral deformation of the Hamiltonian h2. Its spectrum

is real even for complex factorization constants (and, hence, for complex potential V2) . The

intermediate Hamiltonian h1 may also define a Sturm-Liuville problem on [a, b] if α1 < E0, but

its spectrum radically differs from h0’s spectrum. The first order operator defined by u1 maps the

eigenfunctions of h0 to unphysical solutions of h1. Therefore, the full second order transformation

is irreducible [2].

(V) - The ground state shift

If α1 = E0, u1 = ψ0 and α2 < E1, u
−1
2 ∈ L2(a, b) then

spech0\{E0 = α1} = spech2\{E′
0 = α2 < E1} .

This second order transformation is completely reducible [2], it may be decomposed into two first

order SUSY transformations of type (i) and (ii).

(VI)/(VII) - Creation/Removal of one level

Combining two first order SUSY transformations of (ii)/(i) and (iii) types we may create/remove

one additional level

spech0
∪
{E−1 = α1 < E0} = spech2 , α2 < α1 ,

or

spech0 = spech2
∪
{E0 = α1} , α2 < E1 .

1.2.3 Higher order SUSY transformations

In section 1.2 we defined the most general transformation operator of an arbitrary order. In

the case of the stationary Schrödinger equation the N -th order SUSY transformation operator

which intertwines Hamiltonians h0 and hN may be presented as a superposition of N first order

transformations [57, 110]. It should be emphasized that one has to distinguish between chains

which are completely reducible within a given Hilbert space H [112] and chains which are partially

or completely irreducible in H. Recall that complete reducibility means that apart from h0 and
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hN also all intermediate first-order SUSY related Hamiltonians hk, k ̸= 0, N are self-adjoint or

essentially self-adjoint in the same Hilbert space H. In case of irreducible chains3 several or all

intermediate Hamiltonians are non-self-adjoint in H. The concepts of reducibility and irreducibil-

ity were rigourously analyzed in [110]. Below both chain types will play a role. We note that

chain representations lead to extremely simplified transformation rules for higher-order intertwined

propagators and allow for very efficient calculation techniques (see subsection 2.2.3 below).

In this section, we obtain an additional information on the intermediate transformation steps

of Nth-order SUSY-transformations which goes beyond that presented in section 1.2. Therefore

we start with a more detailed description of the transformation operators and solutions of the

Schrödinger equation at each transformation step.

Let us consider a chain of N first-order transformations

hN
LN,N−1←− hN−1

LN−1,N−2←− . . .
L2,1←− h1

L1,0←− h0

built from operators Lk+1,k which intertwine neighbor Hamiltonians hk and hk+1 as Lk+1,khk =

hk+1Lk+1,k. We assume all Hamiltonians hk, k = 0, . . . , N self-adjoint or essentially self-adjoint

in the same Hilbert space H so that the SUSY-transformation chain itself is completely reducible.

Furthermore, we assume that at each transformation step the ground state of the corresponding

Hamiltonian is removed. This means that after N linear SUSY-transformations the first N states

of the h0−system are removed and the N + 1st state of h0 maps into the ground state of hN .

In our analysis these first N + 1 states of h0 will play a crucial role and we denote them by

u0,n, n = 0, . . . , N . Furthermore, we use a numbering for the solutions uk,n of the Schrödinger

equations of the SUSY-chain Hamiltonians hk, k = 0, . . . , N which is “synchronized” with the level

numbering of h0, meaning that a function uk,n is related to the spectral parameter En. We have

to distinguish between physical solutions, which correspond to the existing bound states of hk and

which have indices n = k, . . . , N , and unphysical auxiliary solutions uk,n with n = 0, . . . , k − 1

which we construct below. The ground state eigenfunction of a Hamiltonian hk is given by uk,k

and for k < N it is annihilated by the SUSY-intertwiner Lk+1,k

Lk+1,kuk,k = 0 .

The bound state functions uk+1,n, n = k + 1, . . . , N of hk+1 may be obtained by acting with the

SUSY-intertwiner

Lk+1,k = −u′k,k/uk,k + ∂x Lk+1,kf =
W (uk,k, f)

uk,k
(1.2.37)

on the corresponding eigenfunctions of hk

Lk+1,kuk,n = uk+1,n n = k + 1, . . . , N .

Next, we note that the chain of k, (k = 2, . . . , N) first-order transformations is equivalent to a

single kth-order transformation (1.2.6) generated by the transformation functions u0,0, u0,1, . . . , u0,k−1.

Furthermore, the transformation operators obey the composition rules

Lk+1, kLk, l = Lk+1, l l = 0, . . . , k − 1 k = 1, . . . , N − 1 (1.2.38)

so that, e.g., the second-order transformation operator Lk+2,k intertwines the Hamiltonians hk and

hk+2

Lk+2,khk = hk+2Lk+2,k k = 0, . . . , N − 2 .

3For a careful analysis of different kinds of irreducible transformations we refer to [61].
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The Nth-order transformation operator LN,0 is then inductively defined as LN,0 = LN,N−1LN−1,0 .

Obviously, it annihilates the N lowest states of the original Hamiltonian h0, i.e. u0,0, . . . , u0,N−1 ∈
KerLN,0.

As further ingredient we need the set of unphysical auxiliary functions uN,n, n = 0, . . . , N − 1.

We construct them as uN,n = LN,0ũ0,n , where the functions ũ0,n are the unphysical solutions of the

h0−Schrödinger equation at energies En which are linearly independent from the eigenfunctions

u0,n. Normalizing ũ0,n by the condition W (u0,n, ũ0,n) = 1 and integrating this Wronskian gives

ũ0,n(x) = u0,n(x)

∫ x

x0

dy

u20,n(y)

and finally

uN,n(x) = LN,0u0,n(x)

∫ x

x0

dy

u20,n(y)
n = 0, . . . , N − 1 . (1.2.39)

Let us derive a representation of the unphysical auxiliary solutions uN,n, n = 0, . . . , N−1 of the

hN−Schrödinger equation in terms of Wronskian fractions. The operator LN,0 itself is constructed

from the u0,n, n = 0, . . . , N − 1 as transformation functions.

Below we show by induction that the unphysical solutions uN,n defined in (1.2.39) as

uN,n = LN,0ũ0,n = LN,0u0,n

∫ x

x0

dy

u20,n(y)

have the following representation in terms of Wronskian fractions

uN,n = CN,n
Wn(u0,0, . . . , u0,N−1)

W (u0,0, . . . , u0,N−1)
(1.2.40)

CN,n := (EN−1 −En)(EN−2 −En) . . . (En+1 − En) n = 0, . . . , N − 2

uN,N−1 =
WN−1(u0,0, . . . , u0,N−1)

W (u0,0, . . . , u0,N−1)
=
W (u0,0, . . . , u0,N−2)

W (u0,0, . . . , u0,N−1)
. (1.2.41)

The ground state function of hN is obtained by acting with LN,0 on the Nth excited state of h0:

uN,N = LN,0u0,N =
W (u0,0, . . . , u0,N )

W (u0,0, . . . , u0,N−1)
. (1.2.42)

For N = 1 the first order transformation operator L1,0 is constructed with the help of u0,0.

Therefore applying (1.2.13) with ψ = ũ0,0 yields

u1,0 = L1,0ũ0,0 =
1

u0,0

which obviously agrees with the statement. Applying (1.2.13) with ψ = u0,1 we obtain

u1,1 = L1,0u0,1 =
W (u0,0, u0,1)

u0,0
. (1.2.43)

In order to prove the statement for N = 2 we build the linear SUSY-operator L2,1 from u1,1

and act with it on the unphysical solutions ũ1,1 and u1,0. As first result we obtain

u2,1 = L2,1ũ1,1 =
1

u1,1
=

u0,0
W (u0,0, u0,1)

where (1.2.13) and (1.2.43) have been used. For the second function we find

u2,0 = L2,1u1,0 = L2,1
1

u0,0
=

1

u0,0u1,1
L+
1,0u1,1 =

1

u0,0u1,1
L+
1,0L1,0u0,1

= (E1 − E0)
1

u0,0u1,1
u0,1 = (E1 − E0)

u0,1
W (u0,0, u0,1)

. (1.2.44)
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Here the operator L2,1 = −u′1,1/u1,1+∂x has been replaced by L+
1,0 = −u′0,0/u0,0−∂x with the help

of (1/u0,0)
′ = −u′0,0/u20,0. Moreover, we have used (1.2.43), the factorization rule L+

1,0L1,0 = h0−E0

and the Schrödinger equation h0u0,1 = E1u0,1.

Assuming finally that the representations (1.2.40) and (1.2.41) are valid for uN,n and uN,N−1

we prove them for uN+1,n and uN+1,N .

We start with uN,N−1 7→ uN+1,N . To go from hN to hN+1 only the linear (one-step) SUSY

transformation LN+1,N is required. Applying (1.2.13) and combining it with the normalization con-

dition W (uN,N , ũN,N ) = 1 and the Crum-Krein formula (1.2.6) [or (1.2.42)] we find the equivalence

chain

uN+1,N = LN+1,N ũN,N =
W (uN,N , ũN,N )

uN,N
=

1

uN,N
=
W (u0,0, . . . , u0,N−1)

W (u0,0, . . . , u0,N )
.

Comparison with (1.2.41) shows that the proof is done.

The proof of the induction uN,n 7→ uN+1,n is less obvious. The linear intertwiners Lm+1,m

have been built strictly incrementally from the corresponding ground state eigenfunctions um,m (of

the Hamiltonians hm) as transformation functions. Here, we need a more general non-incremental

construction scheme. In order to facilitate it, we first introduce a very detailed notation for general

polynomial intertwiners Lk,0 indicating explicitly the energy levels of the transformation functions

from which they are built. Based on the Crum-Krein formula (1.2.6) we set

L
(a1,a2,...,ak)
k,0 f :=

W (u0,a1 , u0,a2 , . . . , u0,ak , f)

W (u0,a1 , u0,a2 , . . . , u0,ak)
ai ̸= aj ̸=i (1.2.45)

with ai ∈ Z+ being any energy level numbers of the Hamiltonian h0. The determinant structure of

(1.2.45) immediately implies the generalized kernel property

L
(a1,...,n,...,ak)
k,0 u0,n = 0 (1.2.46)

and the invariance of the operator L
(a1,a2,...,ak)
k,0 with regard to permutations

(a1, a2, . . . , ak) 7→ σ(a1, a2, . . . , ak)

L
σ(a1,a2,...,ak)
k,0 = L

(a1,a2,...,ak)
k,0 . (1.2.47)

Recalling that (1.2.45) can be built from a chain L
(ak)
k,k−1L

(ak−1)
k−1,k−2 · · ·L

(a1)
1,0 of linear intertwiners

L
(am)
m+1,m we conclude that the ordering with regard to energy levels is inessential in the transforma-

tion chain and that we can split it into sub-chains with any permuted combination of levels

σ(a1, . . . , ak) = (b1, . . . , bB, c1, . . . , cC) , B + C = k

L
(a1,...,ak)
k,0 = L

(c1,...,cC)
B+C,B L

(b1,...,bB)
B,0 = L

(b1,...,bB)
C+B,C L

(c1,...,cC)
C,0 . (1.2.48)

Apart from this full commutativity of the transformations we note their associativity

L
(a3)
m+3,m+2

(
L
(a2)
m+2,m+1 L

(a1)
m+1,m

)
=
(
L
(a3)
m+3,m+2 L

(a2)
m+2,m+1

)
L
(a1)
m+1,m . (1.2.49)

Commutativity and associativity can be used to re-arrange a sequence of transformations in any

required order.

In accordance with the intertwiners L we denote eigenfunctions as

u
(a1,a2,...,ak)
k,n := L

(a1,a2,...,ak)
k,0 u0,n , ai ̸= n , i = 1, . . . , k . (1.2.50)
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Another ingredient that we need is the representation

W (u0,0, . . . , u0,N−1)

Wn(u0,0, . . . , u0,N−1)
= (−1)N−1−nW (u0,0, . . . , u0,n−1, u0,n+1, . . . , u0,N−1, u0,n)

Wn(u0,0, . . . , u0,N−1)

= (−1)N−1−nL
(0,...,n−1,n+1,...,N−1)
N−1,0 u0,n

= (−1)N−1−nu
(0,...,n−1,n+1,...,N−1)
N−1,n =: vN−1,n (1.2.51)

which immediately follows from the Crum-Krein formula (1.2.45) and definition (1.2.50). From the

physical solution vN−1,n we build the operators4

L
(n)
N,N−1 := L

(n)
N,N−1[vN−1,n] = −

v′N−1,n

vN−1,n
+ ∂x

L
(n)+
N,N−1 := L

(n)+
N,N−1[vN−1,n] = −

v′N−1,n

vN−1,n
− ∂x (1.2.52)

and the corresponding Hamiltonian h
(0,...,n−1,n+1,...,N−1)
N−1 with

L
(n)+
N,N−1L

(n)
N,N−1 = h

(0,...,n−1,n+1,...,N−1)
N−1 −En . (1.2.53)

We start the proof of the induction uN,n 7→ uN+1,n with the following transformations

uN+1,n = L
(N)
N+1,N uN,n = CN,n L

(N)
N+1,N

Wn(u0,0, . . . , u0,N−1)

W (u0,0, . . . , u0,N−1)

= CN,n L
(N)
N+1,N v−1

N−1,n

= CN,n

[
−

u′N,N

uN,NvN−1,n
−
v′N−1,n

v2N−1,n

]
= CN,n

1

uN,NvN−1,n
L
(n)+
N,N−1 uN,N . (1.2.54)

In order to obtain the operator product L
(n)+
N,N−1L

(n)
N,N−1 we use (1.2.42), the composition rule

(1.2.48) and the Crum-Krein formula (1.2.45)

uN,N = L
(0,1,...,N−1)
N,0 u0,N =

W (u0,0, . . . , u0,N )

W (u0,0, . . . , u0,N−1)

= L
(n)
N,N−1L

(0,1,...,n−1,n+1,...,N−1)
N−1,0 u0,N

= L
(n)
N,N−1u

(0,1,...,n−1,n+1,...,N−1)
N−1,N (1.2.55)

where

u
(0,1,...,n−1,n+1,...,N−1)
N−1,N = L

(0,1,...,n−1,n+1,...,N−1)
N−1,0 u0,N

=
Wn(u0,0, . . . , u0,N )

Wn(u0,0, . . . , u0,N−1)
. (1.2.56)

This gives

uN+1,n = CN,n
1

uN,NvN−1,n
L
(n)+
N,N−1 uN,N

= CN,n
1

uN,NvN−1,n
L
(n)+
N,N−1L

(n)
N,N−1u

(0,1,...,n−1,n+1,...,N−1)
N−1,N

= CN,n
1

uN,NvN−1,n
(EN − En)u

(0,1,...,n−1,n+1,...,N−1)
N−1,N

= CN+1,n
Wn(u0,0, . . . , u0,N )

W (u0,0, . . . , u0,N )
(1.2.57)

4For C ̸= 0 holds L
(n)
N,N−1[CvN,n] = L

(n)
N,N−1[vN,n] so that the sign factor (−1)N−1−n plays no role in the operator

L
(n)
N,N−1 itself.
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where the last line has been obtained by expressing u
(0,1,...,n−1,n+1,...,N−1)
N−1,N , uN,N and vN−1,n via

(1.2.56), (1.2.42) and (1.2.51) in terms of their Wronskian fractions. With (1.2.57) the proof is

complete.

Relations (1.2.40) and (1.2.41) coincide with the Crum-Krein formulae up to normalization

factors CN,n. These factors will be important to calculate propagators in section 2.2.3.
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1.3 Supersymmetry of the time-dependent Schrödinger equation

Supersymmetric transformations of the time-dependent Schrödinger equation may be intro-

duced in the same manner as in the case of the stationary equation, although there are some essen-

tial peculiarities [57]. In [113] it was shown that the SUSY transformation of the time-dependent

Schrödinger equation may be reduced to the SUSY transformation of an ordinary second order

differential equation by an appropriate change of variables. However, often it is more convenient

to work with the time-dependent Schrödinger equation directly.

In this thesis, we consider only the first-order time-dependent SUSY transformations. As in the

stationary case, the intertwining relation

L(i∂t − h0) = (i∂t − h1)L , (1.3.1)

determines the differential operator

L = L1(t)(−
ux
u

+ ∂x) , (1.3.2)

which maps solutions of the Schrödinger equation with Hamiltonian h0 (initial equation) into solu-

tions of the Schrödinger equation with Hamiltonian h1 (transformed equation), Φ(x, t) = LΨ(x, t).

Adjoint operator L+ realizes map in the opposite direction. Thus, their composition L+L trans-

forms solutions of the initial equation into other solutions of the same equation. Therefore operator

g0 = L+L + α, where α is a real constant, is a symmetry operator of the initial equation. The

operator g1 = LL+ + α is a symmetry operator of the transformed equation.

The transformation operator L is determined by a solution u(x, t) of the initial equation,

(i∂t − h0)u(x, t) = 0 ,

and an arbitrary function L1(t). The difference between the initial and the transformed potentials

reads

∆V = V1 − V0 = −i(lnL1)t − 2(lnu)xx . (1.3.3)

Having restricted ourselves by real transformed potentials we should impose the following con-

dition

ln(u/u∗)xxx = 0 , (1.3.4)

that fixes function L1(t) = exp

(
−2i

t∫
0

(lnu/u∗)xxdt

)
, L(0) = 1. Then the transformed potential

reads

∆V (x, t) = −(lnuu∗)xx . (1.3.5)

Analogously to the stationary case the properties of operator L, Hamiltonians h0, h1 and

symmetry operators g0, g1 may be unified in the simplest superalgebra

Q2 = (Q+)2 = 0 [Q, iI∂t −H] = [Q+, iI∂t −H] = 0 {Q,Q+} = J − α , (1.3.6)

with nilpotent super-charges

Q =

(
0 0

L 0

)
Q+ =

(
0 L+

0 0

)
,
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and matrix Hamiltonian H = diag(h0, h1). The symmetry operator J = diag(L+L+ α,LL+ + α)

commutes with super-charges and the Schrödinger operator

[Q, J ] = [Q+, J ] = 0 , [J, iI∂t −H] = 0 . (1.3.7)

Let us consider how to define a complete basis set in the Hilbert space. From the results

obtained in [57] we see that the eigenfunctions of the symmetry operators g0 and g1

g0ψn = λnψn , g1ϕn = λnϕn , (1.3.8)

form two (orthonormal) basis sets which are related by SUSY transformation∫
ψ∗
mψndx =

∫
ϕ∗mϕndx = δm,n , ϕn = NnLψn . (1.3.9)

Here Nn is a normalization factor.

Note, that

g0u = αu , g1v = αv , v = 1/ [L1(t)u
∗(x)] . (1.3.10)

As in the case of the SUSY transformation of the stationary Schrödinger equation there are three

essentially different possibilities to choose the transformation function u(x, t):

(i) for α = λ0, u = ψ0 =⇒ spec(g1) = spec(g0) \ {λ0},
(ii) for α < λ0 =⇒ spec(g1) = spec(g0) ∪ {α},
(iii) for α < λ0 =⇒ spec(g1) = spec(g0).

We skip the detailed analysis of the structure of Hilbert spaces. Such an analysis is presented

in [57]. In what follows we will use the two basis sets, {ψn} and {ϕn}, bearing in mind that the

spectra of the symmetry operators g0 and g1 coincide with the possible exception of the lowest

eigenvalue.
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1.4 Exactly solvable potentials generated by SUSY transforma-

tions

In this section we explicitly derive several exactly-solvable models generated by SUSY transfor-

mations [49,57,103]. In the next chapters, we calculate the Green functions and the propagators for

the single-channel models constructed here and study the spectrum for the coupled-channel ones.

1.4.1 Multi-soliton potentials

The method of SUSY transformations is well known in the connection with the soliton theory

[114]. A potential of the one-dimensional stationary Schrödinger equation is said to be soliton if

it is the SUSY partner of the zero potential. A soliton solution of the Korteweg-de-Vries equation

may be constructed using a soliton potential [114].

The term ‘’N -soliton potential” was introduced by Its and Matveev [115]. One of the most

intriguing mathematical discoveries of XX-th century is a possibility to use the inverse scattering

method for solving non-linear equations [116]. For instance, to get solutions of the Korteweg-de-

Vries equation one needs to construct a family of isospectral potentials for the Schrödinger equation.

Such a family may be obtained by the Gelfand-Levitan (or Marchenko) integral transformations

[40,41]. An alternative way to solve this problem is based on chains of SUSY transformations [114].

Note that multi-soliton potentials are interesting by themselves, in particular, many quantum

processes can be modelled by soliton potentials [117]. Below we present the explicit expression for

the N -soliton potential with N non-degenerate bound states at arbitrary energies.

We start from the stationary Schrödinger equation with the zero potential V0(x) = 0, x ∈ R.
Choosing u(x) = cosh(ax + b), h0u = −a2u, a > 0 as the transformation function we get the

one-soliton potential

V1(x) = −2(lnu)′′ =
−2a2

cosh(ax+ b)2
(1.4.1)

with the single discrete level E = −a2. The corresponding eigenfunction is ϕ0(x) = (a/
√
2)/ cosh(ax).

To get eigenfunctions ϕk(x) from the continuous spectrum we apply the transformation operator

L = −a tanh(ax) + ∂x to the plane waves ψk(x) = 1/
√
2πexp (−ikx), E = k2.

A multi-soliton potential is generated starting from the zero initial potential, V0(x) = 0 by the

following set of N (which is supposed to be even) transformation functions [57,114]

u2j−1(x) = cosh(a2j−1x+ b2j−1) , (1.4.2)

u2j(x) = sinh(a2jx+ b2j) , j = 1, 2, . . . N/2 . (1.4.3)

The factorization constants αj = −a2j define the positions of the discrete levels (point spectrum)

Ej = αj < 0 of hN = −∂2x + VN (x), whereas the continuous part of the spectrum of hN fills the

whole real axis. The eigenfunctions of the discrete levels normalized to unity have the form [103]

φn(x) =

an
2

N∏
j=1,j ̸=n

|a2n − a2j |

1/2

W (u1, u2, . . . , un−1, un+1, . . . , uN )

W (u1, u2, . . . , uN )
. (1.4.4)
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Figure 1.2: Four-soliton potential is shown. Parameters of the

potential are: a1 = 1, a2 = 1.35, a3 = 2, a4 = 2.5, b1 = 4 + 2j,

b2 = 0− 2j, b3 = −1− 2j, b4 = 7− 2j, j = 1, . . . , 6.

We also need the continuous spectrum eigenfunctions of hN which should be found by acting

with the operator L on plane waves ψk(x) = 1/
√
2πexp (−ikx), k ∈ R

φk(x) =
1√

(k2 + a21)(k
2 + a22) . . . (k

2 + a2N )
Lψk(x) , (1.4.5)

E = k2 , αk = −a2k , k = 1, . . . , N .

The set of functions {φn(x), n = 1, . . . , N} and {φk(x), k ∈ R} forms a complete and orthonormal

set in the Hilbert space of square integrable functions on the whole real line.

It is interesting to note that for particular values of the parameters aj a multi-soliton potential

may have a shape of a multi-well potential thus presenting an example of a multi-well exactly

solvable potential. In figure 1.2 we plot a four-soliton potentials. The positions of minima may be

changed by varying parameters bj . One can see that solitons conserve its shape after collision. It

is difficult to believe that these six potentials have coinciding spectra. Nevertheless it is exact and

well-established result.

Let us consider the time-dependent Schrödinger equation. One of the possible methods to

construct time-dependent multi-soliton potentials is described in [118]. Moreover, a wide range of

physical applications is discussed there. In general, these potentials are complex-valued and it is

necessary to impose additional constraints to make these potentials real-valued. In [119, 120] one

can find a more suitable and direct approach to the real time-dependent soliton potentials. We will

demonstrate the idea of this method on a particular example of the time-dependent one-soliton

potential. The time-dependent transformation function u = exp η cosh θ, η = i(a2 − λ2)t2 − iλx,
θ = ax+ 2aλt leads to the following potential potential [119]

V (x, t) = −2a2/ cosh2 θ , (1.4.6)
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which looks like the one-soliton potential moving along x axes with a constant velocity.

The eigenfunctions of the initial symmetry operator ig0 = L+L+ α = (i∂x + λ)2 coincide with

the plane waves

ψk(x, t) = 1/
√
2πexp (−ikx− ik2t) . (1.4.7)

The eigenfunctions of the transformed symmetry operator ig1 = LL+ + α are obtained as follows

ϕk(x, t) = (1/
√
k2 + a2)Lψk(x, t) , ϕα(x, t) = N/u∗(x, t) . (1.4.8)

1.4.2 Potentials with quasi-equidistant spectra

A quasi-equidistant spectrum is an equidistant spectrum with a finite number of lacunas. Such

spectrum may be obtained from an equidistant spectrum by removal of a finite number of levels. The

important property of the potentials with quasi-equidistant spectra is that any wave packet moving

in such a potential does not spread being a periodic function of time [121]. One can construct a

potential with a quasi-equidistant spectrum using SUSY transformations of the harmonic oscillator

[57].

Let us consider the family of potentials generated from the harmonic oscillator h0 = −∂2x +

x2/4 − 1/2 by the second-order SUSY transformation of type (I), (see also [57]). Solutions of

the Schrödinger equation h0ψ = Eψ are expressed in terms of parabolic cylinder functions DE(x)

(see [122])

ψE(x) = C1DE(x) + C2DE(−x) , C1,2 = const ,

for any complex E.

Wave functions should decrease at spatial infinity, |x| → ∞, to be square-integrable. This

requirement leads to the equidistant spectrum E = n, n = 0, 1, 2, . . .. Wave functions are reduced

to Hermite polynomials Hn(x)

ψn(x) = pn(x)exp (−x2/4) , pn(x) = 2−n/2Hn(x/
√
2) . (1.4.9)

There is a simple algorithm to reproduce polynomials pn(x)

pn(x) = n

x∫
0

pn−1(y)dy − p′n−1(0), p′n(x) = npn−1(x), (1.4.10)

pn+1(x) = xpn(x)− npn−1(x) . (1.4.11)

Let us write explicitly first polynomials pn(x)

p0(x) = 1 , p1(x) = x , p2(x) = x2 − 1 , p3(x) = x(x2 − 3) .

Choosing two neighboring eigenfunctions u0(x) = ψn(x), u1(x) = ψn+1(x) as the transformation

functions we remove the two corresponding levels from the equidistant spectrum (I), [57]. Wron-

skian of the transformation functions, Wn,n+1(x) =W (ψn, ψn+1), is a polynomial multiplied by an

exponential function:

Wn,n+1(x) = −Qn(x)exp (−x2/2) , Qn(x) = p2n+1(x)− pn(x)pn+2(x) . (1.4.12)

Potentials V n,n+1 are calculated from (1.2.28) which yields

V n,n+1(x) = −2Q
′′
n(x)

Qn(x)
+ 2

[
Q′

n(x)

Qn(x)

]2
+
x2

4
+ 3/2 . (1.4.13)
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Figure 1.3: Potential of harmonic oscillator and first four poten-

tials V n,n+1(x) + 5n, n = 1, 4, of family (1.4.13).

Finally we note that the potentials (1.4.13) behave asymptotically like x2/4 for |x| → ∞ and have n

shallow minima at their bottom. This family of potentials presents an example of exactly solvable

multi-well potentials [57]. We plot potential of harmonic oscillator and first four potentials in figure

(1.3).

It should be noted that although the exactly solvable models considered above have been well

known for a long time [57], their Green functions and propagators were not calculated.

1.4.3 Non-conservative SUSY transformations and the Cox potential

In this section, a non-conservative SUSY transformation of the coupled-channel Schrödinger

equation (1.1.20) with different thresholds and l = 0 is studied. More precisely, we consider non-

conservative SUSY transformations applied to the vanishing initial potential V0 = 0, for which the

Jost matrix and scattering matrix are identity, S0(k) = F0(k) = I. For a given factorization energy,

the most general real symmetric superpotential depends on anN -dimensional real symmetric matrix

of arbitrary parameters, i.e., on N(N + 1)/2 real arbitrary parameters [49]. When V0 = 0, the

corresponding factorization solution can be written as

u(r) = cosh(κr) +K−1 sinh(κr)w0 (1.4.14a)

= (2K)−1[exp (κr)(K + w0) + exp (−κr)(K − w0)], (1.4.14b)

which ensures that the resulting potential V1 is regular at the origin, and where the arbitrary

parameters explicitly appear as the value of the (symmetric) superpotential at the origin, w0 ≡ w(0);
exp (±κr), cosh(κr) and sinh(κr) are diagonal matrices with entries exp (±κir), cosh(κir) and

sinh(κir) respectively. According to Ref. [49], when K + w0 is invertible, the transformed Jost

matrix reads

F1(k) = (K − iK)−1(w0 − iK). (1.4.15)

The Jost matrix F1(k) may be obtained by definition (1.1.28), where the Jost solution is given by

(1.2.27) and w∞ = K. We see that the coupling appear due to the non-diagonal character of w0.
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This Jost function was obtained by other means in Ref. [46] in the case q = 1. However, it

was not realized there that the corresponding potential could be simply expressed in terms of a

solution matrix u, using Eqs. (1.2.21) and (1.2.23). In that reference, a compact expression for the

potential is found [see Eq. (1.4.23) below] but writing (1.4.14) and (1.2.23) is much more elegant

because both the potential (1.2.21) and its Jost function (1.4.15) are expressed in terms of the same

parameter matrix w0. Nevertheless, this procedure also presents several disadvantages: calculating

the potential requires several matrix operations (inversion, product, derivations); moreover, the

parameters in w0 should be chosen so that the factorization solution is invertible for all r, a

condition not easily checked on Eqs. (1.4.14).

Let us now derive an alternative form for the factorization solution, which solves both these

inconveniences. In Ref. [49], the possibility of rank (K + w0) < N in Eq. (1.4.14b) has been

studied, which leads to an interesting asymptotic behavior of the superpotential but which reduces

the number of parameters in the model. Here, in order to keep the maximal number of arbitrary

parameters in the potential, we choose K + w0 invertible. The factorization solution (1.4.14b) can

then be multiplied on the right by 2(K + w0)
−1K1/2, which leads to the factorization solution

u(r) = K−1/2 [exp (κr) + exp (−κr)X0] . (1.4.16)

According to Eq. (1.2.23), the superpotential, and hence the transformed potential, is unaffected

by this multiplication. The symmetric matrix X0 now contains all the arbitrary parameters. The

link between the two sets of parameters is given by

X0 = K−1/2(K − w0)(K + w0)
−1K1/2 , (1.4.17)

w0 = K1/2(I −X0)(I +X0)
−1K1/2 . (1.4.18)

Equation (1.4.16) can also be written as

u(r) = K−1/2 [I +X(r)] exp (κr) , (1.4.19)

where

X(r) = exp (−κr)X0exp (−κr). (1.4.20)

With respect to writing (1.4.14a) and (1.4.14b), Eq. (1.4.19) presents several advantages. First, it

allows for a simple calculation of the superpotential

w(r) = K − 2K1/2X(r)[I +X(r)]−1K1/2

= −K + 2K1/2[I +X(r)]−1K1/2 . (1.4.21)

The last expression is particularly convenient since the r dependence is limited to one factor of the

second term; the potential can thus be explicitly written as

V1(r) = 4K1/2[I +X(r)]−1X ′(r)[I +X(r)]−1K1/2

= −4K1/2
(
eκr +X0e

−κr
)−1

(X0K +KX0)
(
eκr + e−κrX0

)−1K1/2 . (1.4.22)

The last expression is exactly equivalent to Eq. (4.7) of Ref. [46] for q = 1, which reads

V1(r) = 2e−κr
[
I −A(2K)−1e−2κr

]−1
(AK +KA)

×
[
I − e−2κr(2K)−1A

]−1
e−κr , (1.4.23)
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provided one defines matrix A as

A = −2K1/2X0K1/2

= −2(K − w0)(K + w0)
−1K . (1.4.24)

The second advantage of writing (1.4.19) is that it easily leads to a necessary and sufficient

condition on the parameters to get a potential without singularity at finite distances. This condition

is positive definiteness of matrix I +X0:

I +X0 > 0 . (1.4.25)

The potential has a singularity when u(r) is noninvertible, i.e., when det[I + X(r)] vanishes

for some r. Using Eq. (1.4.20), we find that this is equivalent to the existence of r0 ≥ 0 such

that detY (r0) = 0 with Y (r) = exp (2κr) + X0. Assume now that detY (r) ̸= 0 ∀r ≥ 0. Since

detY (r) =
∏N

i=1 yi(r) where yi(r) are the eigenvalues of Y (r), we conclude that yi(r) ̸= 0 for all

i = 1, . . . , N and r ≥ 0. But since for sufficiently large r, X0 becomes a small perturbation to

exp (2κr), all eigenvalues of Y (r) should be positive for r ≥ 0 and in particular at r = 0, thus

proving the necessary character of the above condition.

The sufficiency follows from the observation that Y (r) is positive definite for any r ≥ 0, together

with Y (0) = I +X0. Indeed, if Y (r) is positive definite, the inequality ⟨q|Y (r)|q⟩ > 0 holds for any

q ∈ LN . Here ⟨p |q⟩ =
∑N

i=1 p
∗
i qi is the usual inner product in the N -dimensional complex linear

space LN , with pi, qi being coordinates of the vectors p, q ∈ LN with respect to an orthonormal

basis. But since ⟨q|Y (r)|q⟩ = ⟨q|X0|q⟩+ ⟨q|exp (2κr)|q⟩ ≥ ⟨q|X0|q⟩+ ⟨q|q⟩ = ⟨q|X0 + I|q⟩ [we recall

that r ≥ 0, κi > 0 and exp (κr) is a diagonal matrix with entries exp (κir)], positive definiteness of

I +X0 implies positive definiteness of Y (r) for r ≥ 0.

Having established this condition on X0, one can get the condition in terms of w0, using

Eq. (1.4.17). Since

I +X0 = 2K1/2(K + w0)
−1K1/2, (1.4.26)

the necessary and sufficient condition to get a regular potential is positive definiteness of matrix

K + w0:

K + w0 > 0 . (1.4.27)

Since the (diagonal) elements of K are positive and increase when the factorization energy decreases,

this condition has a simple interpretation: it just puts some upper limit on the factorization energy.

Finally, Eq. (1.4.24) shows that the condition det A ̸= 0 required in Ref. [46] is not required

here. In Cox’ paper, this condition does not appear in the potential expression, which is valid in

the general case, but only in the derivation of the proof; the fact that this condition is not required

here illustrates the efficiency of the supersymmetric formalism. Equation (1.4.24) also implies that

rank (K + w0) < N corresponds to det A = ∞, a case also not considered in Ref. [46]. The

supersymmetric treatment, on the contrary, allows this case [48, 49]; our approach thus subsumes

the results of Ref. [46] in several respects. The properties of the Cox potential will be studied

in details in the chapter 3. The two channel Cox potential will be used to construct a model of

magnetic induced Feshbach resonance.
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Chapter 2

Supersymmetric transformations for

the Green function and the

propagator

2.1 Green functions in SUSY QM [1,2]

2.1.1 The first and the second order SUSY transformations

for the Green function

Below we give a simple formula for the Green function of the SUSY partner Hamiltonian both

for confining and for scattering potentials. We restrict ourselves by the first and the second order

SUSY transformarions (see sections 1.2.1 and 1.2.2).

Theorem 1. Let G0(x, y, E) be the Green function for h0. Then for all three cases of the first

order SUSY transformation enumerated in 1.2.1 the Green function for h1 is:

G1(x, y, E) =
1

E − α
[LxLyG0(x, y, E)− δ(x− y)] , E ̸= α . (2.1.1)

In case (ii) it has a simple pole at E = α. In cases (i) and (iii) it is regular at E = α and can be

calculated as follows:

G1(x, y, α) =

[
LxLy

∂G0(x, y, E)

∂E

]
E=α

. (2.1.2)

Here Lx is the operator given in (1.2.13) and Ly is the same operator where x is replaced by y.

Proof. In case (i) we have u = ψ0(x), and the set {ϕk(x), ϕn(x), n = 1, 2, . . . ,M} is complete.

Therefore

G1(x, y, E) =
M∑
n=1

ϕn(x)ϕ
∗
n(y)

En − E
+

∫
ϕk(x)ϕ

∗
k(y)

k2 − E
dk . (2.1.3)

Now we replace ϕn using (1.2.19) which yields

G1(x, y, E) =
1

α− E
LxLy(

M∑
n=1

[
1

En − α
− 1

En − E

]
ψn(x)ψ

∗
n(y) +

∫ [
1

k2 − α
− 1

k2 − E

]
ψk(x)ψ

∗
k(y)dk

)
. (2.1.4)
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The statement for E ̸= α follows from here if in the first sum and in the first integral we express

Lψn, Lψk in terms of ϕn, ϕk, make use of the completeness condition for the set {ϕ} and formula

(1.1.19) for G0. The fact that here the sum starts from n = 1 and in (1.1.19) it starts from n = 0

cannot cause any problems since Lψ0(x) = 0. For E = α formula (2.1.3) can be written in the form

G1(x, y, α) =

[
∂

∂E
LxLy

(
M∑
n=0

ψn(x)ψ
∗
n(y)

En − E
+

∫
ψk(x)ψ

∗
k(y)

k2 − E
dk

)]
E=α

, (2.1.5)

from which (2.1.2) follows in this case.

In case (ii) let ϕ−1(x, α) ∼ 1/u be the normalized ground state function of h1 corresponding to

the new discrete level E = α. Then

G1(x, y, E) =

M∑
n=0

ϕn(x,En)ϕ
∗
n(y,En)

En − E
+
ϕ−1(x)ϕ

∗
−1(y)

α− E
+

∫
ϕk(x)ϕ

∗
k(y)

k2 − E
dk . (2.1.6)

Now the use of exactly the same transformations as in case (i) reduces (2.1.6) to (2.1.1).

In case (iii) we start from the same formula (2.1.3) with the only difference that the sum now

starts from n = 0 and following the same line of reasoning as in the earlier cases we get formula

(2.1.1). It is interesting to notice the intermediate result

G1(x, y, E) =
1

α−E
LxLy [G0(x, y, α)−G0(x, y, E)] , (2.1.7)

which makes clear how formula (2.1.2) arises for this case by taking the limit E → α. The fact

that in case (ii) function (2.1.1) has a simple pole at E = α is a consequence of the equivalence

between (2.1.6) and (2.1.1).

Corrolary 1. In terms of the special solutions fl0 and fr0 of the Schrödinger equation for h0 the

Green function G1 for all three cases listed above may be expressed as follows:

G1(x, y, E) =

1

(E − α)W0
[Θ(y − x)Lxfl0(x,E)Lyfr0(y,E) + Θ(x− y)Lyfl0(y,E)Lxfr0(x,E)] . (2.1.8)

In case (ii) this function has a simple pole at E = α. In cases (i) and (iii) it is regular at E = α

and can be calculated as follows:

G1(x, y, E) =[
∂

∂E

Θ(y − x)Lxfl0(x,E)Lyfr0(y,E) + Θ(x− y)Lyfl0(y,E)Lxfr0(x,E)

W0

]
E=α

. (2.1.9)

Proof. To prove these formulae we substitute G0 as given in (1.1.18) into (2.1.1) and (2.1.2). Taking

the derivative of the theta functions in (1.1.18) gives rise to the Dirac delta function which cancels

out the delta function present in (2.1.1). Formula (2.1.8) is clearly valid since the conservative

SUSY transformations necessarily preserve the boundary conditions for all E except perhaps for

E = α. This implies that fl1 = Lfl0 vanishes at x = a and fr1 = Lfr0 vanishes at x = b. The

denominator in (1.1.18) is just the Wronskian of fr1 and fl1. From lemma 1 and (1.2.18) follows

that W (fr1, fl1) = (E − α)W (fr0, fl0) = (E − α)W0.

Let us consider the second order transformations described in section 1.2.2. The spectrum of

the Hamiltonian h2 = −d2/dx2 + V2 coincides with the spectrum of h0 except may be E = α1, α2.
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Theorem 2. Let G0(x, y, E) be the Green function for h0. Then the Green function for h2 is:

G2(x, y, E) =
1

(E − α1)(E − α2)
LxLyG0(x, y, E) , x < y , E ̸= α1, α2 . (2.1.10)

Proof. The (conservative) second order SUSY transformation preserves a boundary behaviour of

solutions, therefore f2l(x,E) = Lf0l(x,E) and f2r(x,E) = Lf0r(x,E) for all E except maybe

E = α1, α2. From (1.2.31) we obtain the wronskian of these solutions W2 = (E − α1)(E − α2)W0.

As a result, from (1.1.16) immediately follows the statement of the theorem

For the second order transformation of the Green function we prefer to use the unsymmetrized

form of the Green function with x < y, because this form makes expressions more compact. In

principle, one can express the Green function for arbitrary x and y as follows:

G2(x, y, E) =
1

(E − α1)(E − α2)
LxLy [G0(x, y, E)− (h0 − E − α1 − α2)δ(x− y)] . (2.1.11)

It is the straightforward generalization of (2.1.1).

Again cases E = α1, α2 require an additional analysis. Consider, for example, the case E = α1.

If α1 ∈ spech2 (cases (II), (III) and (IV)) then G2 has a pole at this energy. Otherwise, if

α1 /∈ spech2 then one can find G2(x, y, α1) as the limit lim
E→α1

G2(x, y, E). For example, in case

(VI) when both α1,2 /∈ spech2 and α1,2 /∈ spech0 the Green function at E = α1 reads

G2(x, y, α1) =
1

α1 − α2
LxLy

[(
∂G0(x, y, E)

∂E

)
E=α1

+
G0(x, y, α2)−G0(x, y, α1)

α1 − α2

]
. (2.1.12)

Finally we consider the case of the degenerate second order transformation when α1 = α2 = α.

For E ̸= α the Green function is calculated by (2.1.10) where operator L is defined in (1.2.34),

G2(x, y, E) =
1

(E − α)2
(2.1.13)(

α− E +
u(x)u′(x)− u(x)2∂x
c+

∫ x
x0
u2(t)dt

)(
α− E +

u(y)u′(y)− u(y)2∂y
c+

∫ y
x0
u2(t)dt

)
G0(x, y, E) , (2.1.14)

x < y , E ̸= α . (2.1.15)

2.1.2 Scattering potentials and the trace formula

The trace of the Green function defined as
∫ b
a G(x, x,E)dx is usually divergent if the system has

a continuous spectrum. It is remarkable that the trace of the difference G0(x, x,E)−G1(x, x,E) is a

finite quantity which may or may not be equal to zero [80]. In some cases this fact may be explained

by another remarkable property. It may happen that the difference of infinite normalizations (they

diverge as δ(x − y) when y → x) of the continuous spectrum eigenfunctions of the two SUSY

partners is a finite quantity.

Theorem 3. Let G0 and G1 be the Green functions related by the first order SUSY transformation.

Then the trace of the difference G0(x, x,E)−G1(x, x,E) reads

∆(E) =

∫ b

a
[G0(x, x,E)−G1(x, x,E)]dx =

Q(E)

W0(E − α)
. (2.1.16)
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where Q(E) can be calculated by one of the following formulae:

Q(E) = (fr0fl1)x=b − (fr0fl1)x=a = (fl0fr1)x=b − (fl0fr1)x=a (2.1.17)

= −W0 + (fl0fr1)x=b − (fr0fl1)x=a =W0 + (fr0fl1)x=b − (fl0fr1)x=a , (2.1.18)

Proof. From Corollary 1 it follows that G1(x, x,E) = 1
W0(E−α)Lfl0(x)Lfr0(x). While integrating

this expression over the interval (a, b) one can transfer the derivative present in L either from

fl0 to fr0 or from fr0 to fl0 which leads to one of the following integrands fl0(x)L
+Lfr0(x) or

fr0(x)L
+Lfl0(x). In both cases the factorization property (1.2.12) may be used to reduce the

integrand to (E − α)fl0(x)fr0(x). Thus we arrive at the relation

b∫
a

G1(x, x,E)dx =

b∫
a

fl0fr0dx−
Q(E)

W0(E − α)
, (2.1.19)

where Q(E) is given by (2.1.17). To prove (2.1.18) it is sufficient to notice that

fl0(x,E)fr1(x,E)− fr0(x,E)fl1(x,E) =W0 (2.1.20)

since fr1 = W [fr0, u]/u and fl1 = W [fl0, u]/u. The identification of the integrand on the right

hand side of (2.1.19) as W0G0(x, x,E) then leads to the result given in (2.1.16).

Using the first of equalities (2.1.17) one can rewrite (2.1.16) as follows:

b∫
a

[G0(x, x,E)−G1(x, x,E)]dx =
1

α− E
+

(fl0fr1)x=b − (fr0fl1)x=a

W0(E − α)
(2.1.21)

Now for case (i) where α = E0 if we compare this result with the corresponding difference which

can be obtained directly from the expressions for G0 given by (1.1.19) and for G1 given by (2.1.3)

the following feature may be noted: the first term on the right hand side of (2.1.21) arises from

the contribution to Green functions from the discrete spectra and the second term, which as we

show below may be different from zero, is due to the presence of the continuous spectra. This

contribution was neglected in [80]. So, theorem 3 presents a generalization of the result obtained

in [80] to the case where a continuous spectrum may be present. As an application of this theorem

we are going to consider one particular case of scattering potential defined on the whole real line.

Theorem 4. If h0 is a scattering Hamiltonian with the potential V0 satisfying for the spectral

problem on the whole line the condition∫ ∞

−∞
(1 + |x|)|V0(x)|dx <∞ . (2.1.22)

then for E ̸= α, Im
√
E > 0 the following equality

∆(E) =
δ

κ2 + iaκ
− δ

κ2 + a2
, (2.1.23)

holds, where E = κ2, α = −a2; δ = 1 for case (i), δ = −1 for case (ii) and δ = 0 for case (iii).

Proof. The statement readily follows from the fact that any scattering potential has a pair of

solutions (Jost solutions, see e.g. [22]) with asymptotics (1.1.14) at the right infinity and similar

asymptotics at the left infinity and the use of an appropriate part of equalities (2.1.17) and (2.1.18).

The Wronskian W0 for Jost solutions can easily be calculated, W0 = 2ik.
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So, we see that despite the fact that for both h0 and h1 the continuous spectrum eigenfunctions

are normalized to the Dirac delta function, i.e. that in both cases they have equal infinite norms,

the difference of these infinities is a finite non-zero quantity in cases (i) and (ii) and it is zero in

case (iii).

For instance in case (ii) the following equality arises:∫ ∞

−∞

P (k)dk

k2 − E
= R(E) , R(E) =

−1
κ2 + iaκ

, E = κ2 , α = −a2 , (2.1.24)

where

P (k) =

∞∫
−∞

[
|ψ0(x, k)|2 − ϕn(x, k)|2

]
dx . (2.1.25)

Equation (2.1.24) may be reduced to the Stieltjes transform and the function P may be found

by the Stieltjes inversion formula (see e.g. [98]). To establish this we first notice that the integral

on the left hand side of (2.1.24) is different from zero only if P (k) is an even function which we

assume to be the case. Therefore it can be considered only for positive ks and we can let k2 = λ.

So, (2.1.24) takes the form
∞∫

−∞

dρ(λ)

λ−E
= R(E) ,

where the measure ρ(λ) is continuous for λ > 0, dρ(λ) = 1√
λ
P (λ)dλ and such that for negative λs

the integral is zero. Now the Stieltjes inversion formula yields

P (λ)√
λ

=
signτ

2πi
lim
τ→0

[R(E)−R(E∗)] , E = λ+ iτ .

Note that because of the condition Im
√
E > 0 the square root of E has different signs for E in the

upper and lower halves of the complex E-plane. Therefore the function R(E) has a cut along the

real axis and the jump across this cut defines the function P (λ). After a simple calculation one

gets

P (λ) = aπ−1(λ2 + a2)−1 . (2.1.26)

It must be noted that in the present case the interchange of the integrals over the space variable x

taken in the difference of (1.1.19) and (2.1.3) at y = x with the integral over the momentum k is

justified.

2.1.3 Normalization of the eigenfunctions in the continuum

Let us consider a particular example of the free motion on the line, V0(x) = 0, x ∈ R. The

Green function is

G0(x, y, E) =
i

2κ
eiκ|x−y| , Imκ > 0 , E = κ2 . (2.1.27)

The simplest possible superpartner of the zero potential is the one-soliton potential (see section

1.4.1). The operator of the SUSY transformation is L = −a tanh(ax) + ∂x. The eigenfunctions of

the soliton potential which belong to the continuous spectrum read as follows

ϕk(x) =
1√
2πNk

[−a tanh(ax)− ik] e−ikx , Nk =
√
k2 + a2 . (2.1.28)
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Below we calculate difference (2.1.25) for the eigenfunctions of the soliton and the zero potential

directly. First, we introduce P (k′, k) = ⟨ψk′ |ψk⟩ − ⟨ϕk′ |ϕk⟩ and then consider the limit k → k′:

P (k′, k) = lim
A→∞

P (k, k′, A) = lim
A→∞

A∫
−A

[ψ∗
k(x)ψk′(x)− ϕ∗k(x)ϕk′(x)]dx =

=
1

2π
lim

A→∞

A∫
−A

(
ei(k

′−k)x −Nk′Nk(a
2 sinh

2 ax

cosh2 ax
+ ia(k − k′) tanh ax+ kk′)ei(k

′−k)x

)
dx .

One can see that P (k, k′, A) has the following structure P (k, k′, A) = δA(k, k
′) − δ̃A(k, k′), where

δA(k, k
′) and δ̃A(k, k

′) are two delta-like sequences

δA(k, k
′) =

1

2π
sin(kA)/k ,

δ̃A(k, k
′) =

1

2π
Nk′Nk

[
(a2 + k′k) sin(kA)/k + 2 tanh(aA) cos[(k′ − k)A]

]
.

These sequences converge to the delta-function as A→∞,

lim
A→∞

∫ ∞

−∞
δA(k)f(k)dk = lim

A→∞

∫ ∞

−∞
δ̃A(k)f(k)dk = f(0) .

On the other hand the difference between these sequences at k = k′ has non-vanishing value

P (k) = lim
A→∞

P (k, k,A) =
a

π(k2 + a2)
. (2.1.29)

Thus we confirm result (2.1.26) in this simple model by direct calculations.

One may give the following interpretation of the trace formula. Difference ∆(E) is nothing

but the super-trace of the matrix Green function G = diag(G0, G1). The super-trace of the Green

function is related to the regularized Witten index [109], which is a topological invariant of the

model. The vanishing of ∆(E) in the case (iii) indicates that SUSY is broken. Indeed, spectra

of h0 and h1 coincide, therefore the ground state (vacuum) of the matrix super-hamiltonian is

degenerate.
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2.2 Supersymmetric transformations for propagators [3–5]

2.2.1 Propagators related by first-order intertwiners

The defining equation for the propagator of the non-stationary Schrödinger equation with super-

Hamiltonian (1.2.2) can be trivially decomposed as

[iI∂t −H]K(x, y; t) = 0 K =

 K0(x, y; t) 0

0 KN (x, y; t)


K(x, y; 0) = Iδ(x− y) .

From the structure of the SUSY induced relations between superpartner Hamiltonians it is

clear that via the corresponding Schrödinger equations these relations should extend to relations

between the associated propagators. The main goal of the chapter is to analyze these relations

between SUSY partner propagators and to reshape them into user friendly general recipes for the

construction of new propagator classes. In order to derive the corresponding technical tools we

concentrate on the general approach which allows to establish the link between the propagators of

any two SUSY partner Hamiltonians. By SUSY-transformations we will only induce changes in the

point spectrum of h0 so that, for simplicity, we will work with decompositions over discrete sets of

basis functions (corresponding to point spectra) keeping in mind that extensions to the continuous

spectrum are straightforward.

We begin with the studying of the propagators interrelated by first-order SUSY transformations.

According to (1.2.6) a first-order intertwiner has the form

Lx = −u′(x)/u(x) + ∂x h0u = αu .

The intertwiner L may result in the three types of relations between the spectra of the Hamiltonians

h0 and h1 (see discussion in section 1.2.1).

Introducing the “regularized” version of the the Green function

G̃0(z, y, E0) =

∞∑
m=1

ψm(x)ψm(y)

Em − E0
= lim

E→E0

[
G0(z, y, E)− ψ0(x)ψ0(y)

E0 − E

]
the corresponding structural relations for the propagators can be summarized in the following

Theorem 5. The propagators K1(x, y; t) and K0(x, y; t) of non-stationary Schrödinger equations

with SUSY intertwined Hamiltonians h1 and h0 are interrelated with each other and with the Green

functions G0(x, y;E) and G̃0(z, y, E0) in the following way:

Type (i) relation

K1(x, y, t) = LxLy

∫ b

a
K0(x, z, t)G̃0(z, y, E0)dz . (2.2.1)

Type (ii) relation

K1(x, y, t) = LxLy

∫ b

a
K0(x, z, t)G0(z, y, α)dz + ϕ−1(x)ϕ−1(y)e

−iαt. (2.2.2)

Type (iii) relation

K1(x, y, t) = LxLy

∫ b

a
K0(x, z, t)G0(z, y, α)dz . (2.2.3)
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Proof. We start from the type (ii) relation and represent the propagator K1(x, y; t) in terms of

the basis functions ϕm(x, t) of the Hamiltonian h1 (cf. (1.1.9)). We note that the explicit time-

independence of h1 implies a factorization ϕm(x, t) = ϕm(x)exp (−iEmt) with ϕm(x) purely real-

valued. Expressing ϕm in terms of the corresponding wave functions of the Hamiltonian h0, ϕm =

NmLψm, with Nm = (E − α)−1/2 a normalization constant (see (1.2.19)), we arrive at

K1(x, y, t) =

∞∑
m=−1

ϕm(x)ϕm(y)e−iEmt

= LxLy

∞∑
m=0

ψm(x)ψm(y)

Em − α
e−iEmt + ϕ−1(x)ϕ−1(y)e

−iαt .

Modulo a normalization factor N−1, the wave function ϕ−1 of the new ground state is proportional

to the inverse power of the transformation function u(x), ϕ−1 = N−1/u(x). It remains to express

the time-dependent phase factor in terms of the propagator. This can be easily done using the

evident property of the bound state solutions of the Schrödinger equation∫ b

a
K0(x, z, t)ψm(z)dz = ψm(x)e−iEmt (2.2.4)

so that the previous equation reads

K1(x, y, t) = LxLy

∫ b

a
K0(x, z, t)

∞∑
m=0

ψm(z)ψm(y)

Em − α
dz + ϕ−1(x)ϕ−1(y)e

−iαt. (2.2.5)

The sum in this relation can be identified as the Green function (1.1.19). Due to Em − α >

0, ∀Em ∈ spec(h0) this Green function is regular ∀Em and the proof for type (ii) transformations

is complete.

The proof for type (i) and (iii) transformations follows the same scheme. The formally regular-

ized Green function G̃0(z, y, E0) in (i) results from the fact that the ground state with energy E0 is

not present in the spectrum of h1 so that a sum
∑

m>0 appears and the ground state contribution

has to be subtracted from G0(x, y, α = E0). In case of a type (iii) transformation a sum
∑∞

m=0

over the complete set of eigenfunctions appears in (2.2.5) and no new state occurs.

We conclude this section by reshaping relation (2.2.1) for the propagator of a system with

removed original ground state, i.e. of a type (i) transformed system. The corresponding result can

be formulated as

Theorem 6. For transformations with u(x) = ψ0(x) the propagator K1(x, y; t) of the resulting

system can be represented as

K1(x, y; t) = −
1

u(y)
Lx

∫ y

a
K0(x, z; t)u(z)dz =

1

u(y)
Lx

∫ b

y
K0(x, z; t)u(z)dz . (2.2.6)

First of all we recall that ψ0(x) being the ground state function of h0 satisfies the zero boundary

conditions. To facilitate the proof of Theorem 6 we need the following two lemmas.

Lemma 2.

Ly lim
E→E0

(
G0(z, y, E)− ψ0(z)ψ0(y)

E0 −E

)
= lim

E→E0

LyG0(z, y, E) .
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Proof. This result follows from the explicit representation of G0(z, y, E) in terms of basis functions.

On the one hand, it holds

Ly lim
E→E0

(
G0(z, y, E)− ψ0(z)ψ0(y)

E0 − E

)
=

∞∑
n=1

ψn(z)Lyψn(y)

En − E0

whereas on the other hand the kernel property (annihilation) of the ground state Lψ0 = 0 gives

lim
E→E0

(LyG0(z, y, E)) = lim
E→E0

( ∞∑
n=1

ψn(z)Lyψn(y)

En − E

)
=

∞∑
n=1

ψn(z)Lyψn(y)

En − E0
.

Lemma 3. Let fl(x,E) and fr(x,E) satisfy the Schrödinger equation

h0f(x,E) := −f ′′(x,E) + V0(x)f(x,E) = Ef(x,E) x ∈ (a, b) (2.2.7)

and boundary conditions

fl(a,E) = 0 fr(b, E) = 0 . (2.2.8)

Let also E = E0 be the ground state level of h0 with ψ0(x) as the ground state function (we assume

that h0 has at least one discrete level) then

lim
E→E0

fl(x,E)Lyfr(y,E)

W (fr, fl)
= −

ψ0(x)
∫ b
y ψ

2
0(z)dz

ψ0(y)
∫ b
a ψ

2
0(z)dz

(2.2.9)

lim
E→E0

fr(x,E)Lyfl(y,E)

W (fr, fl)
=

ψ0(x)
∫ y
a ψ

2
0(z)dz

ψ0(y)
∫ b
a ψ

2
0(z)dz

(2.2.10)

where Ly = −u′(y)/u(y) + ∂y with u(y) ≡ ψ0(y).

Proof. First we note that according to (1.2.13) Lyfr(y,E) =W (u, fr)/u. Next, since both u = ψ0

and fr satisfy the same Schrödinger equation (3.1.25) it holds W ′(u, fr) = (E0 −E)ufr and hence

W (u, fr) = (E − E0)

∫ b

y
u(z)fr(z,E)dz (2.2.11)

where we have used the property W (u, fr)y=b = 0 which follows from the BCs for u and fr. Via

(2.2.11) we find

Lyfr(y,E) =
E − E0

u(y)

∫ b

y
u(z)fr(z,E)dz (2.2.12)

and hence

Lyfr(y,E)

W (fr, fl)
= −E − E0

fl(b, E)

∫ b
y u(z)fr(z, E)dz

f ′r(b, E)u(y)
(2.2.13)

where it has been used that the Wronskian W (fr, fl) = fr(x,E)f ′l (x,E) − fl(x,E)f ′r(x,E) is x-

independent and can be calculated at x = b where fr(b, E) = 0. Since the spectrum of h0 is

non-degenerate, the ground state function is unique up to an arbitrary constant factor and, hence,

u(x) = ψ0(x), fr(x,E0) and fl(x,E0) have to be proportional to each other

fr,l(x,E0) = Cr,lu(x) (2.2.14)

and for E → E0 only the first fraction in (2.2.13) remains undetermined. The l’Hospital rule gives

for this limit

lim
E→E0

E − E0

fl(b, E)
=

1

ḟl(b, E0)
(2.2.15)
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where the dot denotes the derivative with respect to E. Making use of (2.2.15) and

ḟl(b, E0)f
′
l (b, E0) =

∫ b

a
f2l (z, E0)dz (2.2.16)

(which we prove below) relation (2.2.13) yields

lim
E→E0

fl(x,E)Lyfr(y,E)

W (fr, fl)
= −fl(x,E0)

f ′l (b, E0)

f ′r(b, E0)

∫ b
y u(z)fr(z,E0)dz

u(y)
∫ b
a f

2
l (z,E0)dz

(2.2.17)

and via (2.2.14) it leads to the result (2.2.9). The proof of (2.2.10) follows the same lines with

evident changes.

Finally, it remains to derive equation (2.2.16). This is easily accomplished by multiplying

the Schrödinger equation (2.2.7) for f = fl(x,E) by ḟl(x,E), its derivative with respect to E by

f = fl(x,E), and integrating their difference over the interval (a, b). The intermediate result∫ b

a
f2l (x,E)dx =

ḟ ′l (a,E)fl(a,E)− f ′l (a,E)ḟl(a,E)− ḟ ′l (b, E)fl(b, E) + f ′l (b, E)ḟl(b, E)

reduces to (2.2.16) via BC (2.2.8) and its derivative with respect to E (what cancels the first two

terms) and the limit E = E0, its implication (2.2.14) and the BC for u(x).

Proof of theorem 6. For the Green function G(x, y, E0) in (2.2.1) we use the standard representation

(1.1.18) in terms of two linearly independent solutions fl,r of the h0−Schrödinger equation. Then

relation (2.2.1) takes the form

K1(x, y, t) =

LxLy

∫ b

a
K0(x, z, t) lim

E→E0

[
fl(z)fr(y)

W (fr, fl)
Θ(y − z) + fl(y)fr(z)

W (fr, fl)
Θ(z − y)− ψ0(z)ψ0(y)

E0 − E

]
dz

where the step functions can be resolved to give

K1(x, y, t) = LxLy

∫ y

a
K0(x, z, t) lim

E→E0

[
fl(z)fr(y)

W (fr, fl)
− ψ0(z)ψ0(y)

E0 − E

]
dz

+ LxLy

∫ b

y
K0(x, z, t) lim

E→E0

[
fl(y)fr(z)

W (fr, fl)
− ψ0(z)ψ0(y)

E0 − E

]
dz .

The second argument of the functions fl,r has been omitted for notational simplicity. Explicitly

acting with the differential operator Ly on the integrals with variable y−boundary yields

K1(x, y, t) = Lx

∫ y

a
K0(x, z, t)Ly lim

E→E0

[
fl(z)fr(y)

W (fr, fl)
− ψ0(z)ψ0(y)

E0 − E

]
dz

+ Lx

∫ b

y
K0(x, z, t)Ly lim

E→E0

[
fl(y)fr(z)

W (fr, fl)
− ψ0(z)ψ0(y)

E0 − E

]
dz (2.2.18)

whereas via Lemma 2 the intertwiner Ly and the limit limE→E0 can be interchanged to give

K1(x, y, t) = (2.2.19)

Lx

{∫ y

a
K0(x, z, t) lim

E→E0

fl(z)Lyfr(y)

W (fr, fl)
dz +

∫ b

y
K0(x, z, t) lim

E→E0

fr(z)Lyfl(y)

W (fr, fl)
dz

}
.
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Application of Lemma 3 leads to

K1(x, y, t) =
Lx

ψ0(y)
∫ b
a ψ

2
0(q)dq

{
−
∫ b

y
ψ2
0(q)dq

∫ y

a
K0(x, z, t)ψ0(z)dz

+

∫ y

a
ψ2
0(q)dq

∫ b

y
K0(x, z, t)ψ0(z)dz

}
(2.2.20)

which we further reshape by expressing the integral with respect to q over the interval (y, b) by the

difference of two integrals over the intervals (a, b) and (a, y). Substitution of ψ0 = u in the first

term results in

K1(x, y, t) = −
1

u(y)
Lx

∫ y

a
K0(x, z, t)u(z)dz

+
1

ψ0(y)
∫ b
a ψ

2
0(q)dq

∫ y

a
ψ2
0(q)dq Lx

∫ b

a
K0(x, z, t)ψ0(z)dz . (2.2.21)

The very last integral is nothing but the ground state stationary wave function ψ0(x, t) = u(x)exp (−iE0t).

Therefore, since Lxu(x) = 0, we obtain the first equality in (2.2.6). The second equality results

from applying a similar transformation to the second term in (2.2.20). �
The following remarks are in order. First we have to note that the integral representation (2.2.6)

is only valid in the case of first-order SUSY transformations which remove the ground state level.

If one wants to create a level in a problem on the whole real line one has to use a transformation

function u(x) which diverges for x→ ±∞ ensuring in this way the normalizability and Dirichlet BCs

of the new ground state wave function ϕ−1(x) ∝ 1/u(x). An attempt to calculate the propagator

K1 via (2.2.6) would usually lead to a divergent integral. The correct approach is to use (2.2.2)

in this case. Jauslin [77] using a different procedure obtained the same result (2.2.6) both for

removing and creating a level, but he completely ignored questions of convergence or divergence of

the corresponding integrals. In concrete calculations he avoided divergent integrals by considering

the heat equation only.

2.2.2 Addition of new levels

Let us consider an Nth-order (N = 2, 3, . . .) polynomial supersymmetry corresponding to the

appearance of N additional levels in the spectrum of hN compared to the spectrum of h0. In this

case new levels may appear both below the ground state energy of h0 (reducible supersymmetry) and

between any two neighbor levels of h0 (irreducible supersymmetry, see e.g. [108]). The propagator

for the transformed equation can be found in the following way. We develop KN (x, y; t) over the

complete orthonormal set {ϕm(x, t)} of eigenfunctions of hN and express all ϕm with eigenvalues

already contained in the spectrum of h0 in terms of ψm, i.e. ϕm = NmLψm. The normalization

constants Nm for transformations fulfilling condition (1.2.10) have the form [57]:

Nm = [(Em − α0)(Em − α1) . . . (Em − αN−1)]
−1/2 .

All other eigenfunctions of hN which correspond to new levels and which are not contained in

spec(h0) we keep untouched. This yields

KN (x, y, t) = LxLy

∞∑
m=0

ψm(x)ψm(y)

(Em − α0) . . . (Em − αN−1)
e−iEmt +

N−1∑
n=0

ϕn(x)ϕn(y)e
−iαnt .
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Here we interchanged the derivative operators present in Lx,y and the summation. This interchange

is justified because the propagators are understood not as usual functions but as generalized func-

tions [123] (which, in particular, may be regular, i.e. defined with the help of locally integrable

functions). It remains to express ψm(x)exp (−iEmt) with the help of (2.2.4) in terms of K0(x, z, t),

to make use of the identity

N−1∏
n=0

1

E − αn
=

N−1∑
n=0

 N−1∏
j=0,j ̸=n

1

αj − αn

 1

E − αn

and to represent the sum over m in terms of the Green function G0(z, y, αn). As a result, one

arrives at

KN (x, y, t) = LxLy

N−1∑
n=0

 N−1∏
j=0,j ̸=n

1

αj − αn

∫ b

a
K0(x, z, t)G0(z, y, αn)dz

+

N−1∑
n=0

ϕn(x)ϕn(y)e
−iαnt . (2.2.22)

This representation seems to be more convenient for calculations than the recursive approach [77].

This approach is based on the formula similar to (2.2.6). The, calculation of propagator KN in

terms of K0 involves a complicated N-fold integral

KN (x, y, t) = (−1)NLx

∞∫
y

dzN

∞∫
zN

dzN−1 . . .

∞∫
z2

dz1K0(x, z1, t)

N−1∏
i=0

(
uii(zi)

uii(zi+1)

)
, (2.2.23)

where uii is determined by (1.2.42) with N replaced by i. Formula (2.2.23) is nothing but a result

of a consecutive application of (2.2.6). Note, that when SUSY creates new levels in this approach

one need to regularize integral in (2.2.6), for example by considering the diffusion equation instead

of the Schrödinger equation. In our approach expression (2.2.22) is well-defined and looks simpler.

Moreover for some models, the integral
∞∫

−∞
K0(x, z, t)G0(z, y, α)dz = I(α) may be calculated ex-

plicitly. In the next subsection we also show that there is more convenient way to iterate relation

(2.2.6).

2.2.3 Removal of levels

Within the framework described in section 1.2.3, the N first discrete levels E0, E1, . . . , EN−1

have been removed from the spectrum of h0 by choosing the ground state functions uk,k of the

Hamiltonians hk as intermediate transformation functions. For such a construction the transformed

propagator may be calculated according to

Theorem 7. Let the N first eigenfunctions u0,n ≡ un = ψn, n = 0, . . . , N − 1 of h0 be the SUSY

transformation functions. Then the propagators KN (x, y; t) and K0(x, y; t) of the Schrödinger equa-

tions with Hamiltonians hN and h0 are interrelated as

KN (x, y; t) = (−1)NLN,0,x

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ y

a
K0(x, z; t)un(z)dz (2.2.24)

= (−1)N−1LN,0,x

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ b

y
K0(x, z; t)un(z)dz . (2.2.25)
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Proof. The proof of these relations can be given by induction. We start with (2.2.25). ForK1(x, y; t)

the statement is proven in (2.2.6). Assuming that (2.2.25) holds for KN (x, y; t) we verify its validity

for KN+1(x, y; t). The corresponding Hamiltonians hN+1 and hN are intertwined by the linear

transformation LN+1,N so that (2.2.6) is applicable and KN+1(x, y; t) can be represented as

KN+1(x, y; t) =
1

uN,N (y)
LN+1,N,x

∫ b

y
KN (x, z; t)uN,Ndz .

Replacing KN by (2.2.25) and making use of relations (1.2.40), (1.2.41) and the composition rule

(1.2.38) gives

(−1)N−1KN+1(x, y; t) =
1

uN,N (y)
LN+1,0,x

×
N−1∑
n=0

(−1)nC−1
Nn

∫ b

y
dz

∫ b

z
dq uN,n(z)uN,N (z)K0(x, q; t)u0,n(q) . (2.2.26)

The integration region of the double integral is the upper triangle of the rectangle y < z, q < b in

the (z, q)−plane. We replace this double integral by the difference of two double integrals over the

whole rectangle and the lower triangle, respectively,

(−1)N−1KN+1(x, y; t) =
1

uN,N (y)
LN+1,0,x

N−1∑
n=0

(−1)nC−1
Nn

×
[∫ b

y
dz K0(x, z; t)u0,n(z)

∫ b

y
dq uN,n(q)uN,N (q)

−
∫ b

y
dz K0(x, z; t)u0,n(z)

∫ b

z
dq uN,n(q)uN,N (q)

]
. (2.2.27)

Here, we reshape the two integrals of the type
∫ b
ξ dq uN,n(q)uN,N (q) as follows. First we note that

uN,n and uN,N are solutions of the same Schrödinger equation with Hamiltonian hN and therefore∫ b

ξ
dq uN,n(q)uN,N (q) =

W [uN,N (ξ), uN,n(ξ)]

En −EN
−Wb,n

=
uN,NLN+1,NuN,n

En − EN
−Wb,n (2.2.28)

where Wb,n := W [uN,N (b), uN,n(b)] /(En − EN ) and where the second equality was obtained via

(1.2.37). Applying the general relation (1.2.40) to LN+1,NuN,n = uN+1,n leads finally to∫ b

ξ
dq uN,n(q)uN,N (q) = −CN,nuN,N

Wn(u0, . . . , uN )

W (u0, . . . , uN )
−Wb,n

=: −CN,nuN,N (ξ)
Wn(ξ)

W (ξ)
−Wb,n . (2.2.29)

With (2.2.29) as substitution rule the propagator (2.2.27) takes the form

(−1)N−1KN+1(x, y; t) = −LN+1,0,x

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ b

y
K0(x, z; t)u0,n(z)dz

+
1

uN,N (y)
LN+1,0,x

∫ b

y
dzK0(x, z; t)

uN,N (z)

W (z)

N−1∑
n=0

(−1)nu0,n(z)Wn(z) . (2.2.30)

(The terms containing Wb,n exactly cancelled.) The sum

SN :=

N−1∑
n=0

(−1)nu0,nWn(u0, . . . , uN ) (2.2.31)
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in the second term can be calculated explicitly. Comparison with the evident determinant identity

0 =

∣∣∣∣∣∣∣∣∣∣
u0,0 . . . u0,N−1 u0,N

u0,0 . . . u0,N−1 u0,N

. . . . . . . . . . . .

u
(N−1)
0,0 . . . u

(N−1)
0,N−1 u

(N−1)
0,N

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
u0,0 . . . u0,N−1 0

u0,0 . . . u0,N−1 u0,N

. . . . . . . . . . . .

u
(N−1)
0,0 . . . u

(N−1)
0,N−1 u

(N−1)
0,N

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣
0 . . . 0 u0,N

u0,0 . . . u0,N−1 u0,N

. . . . . . . . . . . .

u
(N−1)
0,0 . . . u

(N−1)
0,N−1 u

(N−1)
0,N

∣∣∣∣∣∣∣∣∣∣
(2.2.32)

shows that (2.2.31) coincides with the decomposition of the first determinant in the second line of

(2.2.32) over the elements of its first row. Hence, it holds

SN = −(−1)Nu0,NW (u0,0, . . . , u0,N−1) .

Representing the ground state eigenfunctions uN,N in (2.2.30) via (1.2.42) in terms of Wronskian

fractions we find that

uN,N (z)

W (z)

N−1∑
n=0

(−1)nu0,n(z)Wn(z) = −(−1)Nu0,N (z)

and, hence, that the second term in (2.2.30) is nothing but the absent n = N summand of the sum

in the first term. As a result, we arrive at

KN+1(x, y; t) = (−1)NLN+1,0,x

N∑
n=0

(−1)nWn(u0, . . . , uN )

W (u0, . . . , uN )

∫ b

y
K0(x, z; t)u0,n(z)dz

what completes the proof of (2.2.25). The representation (2.2.24) follows from (2.2.25) and the

relations ∫ b

a
K0(x, z, t)un(z)dz = un(x)exp (−iEnt) LN,0,xun(x) = 0 .

We note that in formulas (2.2.24) and (2.2.25) only one-dimensional integrals are present. In this

way, they may turn out more convenient for concrete calculations than similar equations derived

in [77].

Furthermore, we note the following. Theorem 7 is proven for the case when the N lowest

discrete levels are removed from the spectrum of h0 starting from the ground state level. This

scenario corresponds to reducible supersymmetry. In order to see which of the conditions on the

transformation functions u0,n used for the construction of the propagator representations (2.2.24)

and (2.2.25) are indeed necessary conditions one may simply insert KN (x, y; t) directly into the

Schrödinger equation (1.1.3). It turns out that neither the condition of level deletion starting

from the ground state nor a deletion of a level block without surviving levels inside is used. This

means that equations (2.2.24) and (2.2.25) hold for any choice of transformation functions provided

their Wronskian does not vanish inside the interval (a, b), i.e. it holds for reducible as well as for

irreducible SUSY transformation chains. A necessary but in general not sufficient condition for the

nodelessness of the Wronskian is inequality (1.2.10) (for further details see [108]).
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2.2.4 Strictly isospectral transformations

Strictly isospectral transformations can be generated with the help of unphysical solutions of

the Schrödinger equation as transformation functions. In this section, we extend theorem 7 to a

more general set of transformation functions. We will work with models defined over the whole real

line (a, b) = (−∞,∞) and transformation functions which vanish at one of the infinities x→ −∞
or x→∞ and violate the Dirichlet BCs at the opposite infinities (x→∞ or x→ −∞).

In accordance with (2.2.24) and (2.2.25) we formulate the corresponding relaxed version of

theorem 7 as

Theorem 8. Let the transformation functions un(x) vanish at only one of the infinities x→ −∞
or x → ∞ of the real axis R. Then the propagators KN (x, y; t) and K0(x, y; t) of the Schrödinger

equations with hN and h0 as Hamiltonians are related as follows:

for un(x→ −∞)→ 0 :

KN (x, y; t) = (−1)NLx

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ y

−∞
K0(x, z; t)un(z)dz (2.2.33)

for un(x→∞)→ 0 :

KN (x, y; t) = (−1)N−1Lx

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ ∞

y
K0(x, z; t)un(z)dz (2.2.34)

for uk(x→ −∞)→ 0 k = 0, . . . ,M and um(x→∞)→ 0 m =M + 1, . . . , N − 1 :

KN (x, y; t) = (−1)NLx

M∑
k=0

(−1)nWk(y)

W (y)

∫ y

−∞
K0(x, z; t)uk(z)dz

+(−1)N−1Lx

N−1∑
m=M+1

(−1)mWm(y)

W (y)

∫ ∞

y
K0(x, z; t)um(z)dz . (2.2.35)

Proof. We have to verify that the initial condition K0(x, y, 0) = δ(x − y) and the Schrödinger

equations (i∂t − h0x)K0(x, y, t) = 0 and (i∂t − h0y)K0(x, y, t) = 0 fulfilled by the original propaga-

tor K0(x, y, t) map into the corresponding relations for the final propagator KN (x, y, t), i.e. that

KN (x, y, 0) = δ(x − y), (i∂t − hNx)KN (x, y, t) = 0 and (i∂t − hNy)KN (x, y, t) = 0 are satisfied.

We demonstrate the explicit proof for the setup with uk(x → −∞) → 0 omitting the technically

identical considerations for the other cases.

We start by noticing that the intertwiner Lx maps solutions of the Schrödinger equation for

h0 into solutions of the Schrödinger equation for hN and, hence, (i∂t − hNx)KN (x, y, t) = 0 is

automatically satisfied.

Next, we consider the initial condition KN (x, y; 0) = δ(x − y) which should be fulfilled by the

r.h.s. of (2.2.35). With K0(x, y, 0) = δ(x − y) and
∫ y
−∞ δ(x − z)un(z)dz = θ(y − x)un(x) we have

from (2.2.35)

KN (x, y; 0) = (−1)N
N−1∑
n=0

(−1)nWn(y)

W (y)
Lx[θ(y − x)un(x)] . (2.2.36)

In the Crum-Krein formula (see (1.2.6))

Lx[θ(x− y)un(x)] =
W [u0, . . . , uN−1, θ(x− y)un(x)]

W (u0, . . . , uN−1)
(2.2.37)
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we represent the derivatives ∂mx [θ(y − x)un(x)], m = 0, . . . , N as

∂mx [θ(y − x)un(x)] =
m−1∑
k=0

Cm
k θ

(m−k)
x (y − x)u(k)n (x) + θ(y − x)u(m)

n (x) , (2.2.38)

θ
(m−k)
x (y − x) := ∂m−k

x θ(y − x). Taking into account that∣∣∣∣∣∣∣∣∣∣
u0(x) . . . uN−1(x) θ(y − x)un(x)
u′0(x) . . . u′N−1(x) θ(y − x)u′n(x)
. . . . . . . . . . . .

u
(N)
0 (x) . . . u

(N)
N−1(x) θ(y − x)u(N)

n

∣∣∣∣∣∣∣∣∣∣
= 0

and making use of the linearity properties of determinants we reshape (2.2.37) as

Lx[θ(x− y)un(x)]

=
1

W (x)

∣∣∣∣∣∣∣∣∣∣
u0(x) . . . uN−1(x) 0

u′0(x) . . . u′N−1(x) −δ(x− y)un(x)
. . . . . . . . . . . .

u
(N)
0 (x) . . . u

(N)
N−1(x)

∑N−1
k=0 C

N
k θ

(N−k)
x (y − x)u(k)n (x)

∣∣∣∣∣∣∣∣∣∣
. (2.2.39)

Expanding this determinant with regard to the elements of the last column we find

Lx[θ(x− y)un(x)] =
(−1)N

W (x)

N∑
m=1

(−1)mWNm(x)

m−1∑
k=0

Cm
k θ

(m−k)
x (y − x)u(k)n (x) (2.2.40)

whereWNm(x) are corresponding minors. For the verification of the relation KN (x, y; 0) = δ(x−y)
we use its representation ∫ ∞

−∞
KN (x, y; 0)f(x)dx = f(y) (2.2.41)

where f(x) is a sufficiently smooth test function with compact support. With (2.2.36) and (2.2.40)

the l.h.s. of (2.2.41) reads

N−1∑
n=0

N∑
m=1

m−1∑
k=0

(−1)n+mCm
k

Wn(y)

W (y)

∫ ∞

−∞
dx θ(m−k)

x (y − x)WNm(x)f(x)u
(k)
n (x)

W (x)
. (2.2.42)

As next step, we use θ
(m−k)
x (y−x) = −δ(m−k−1)(x−y) and multiple integration by parts1 to remove

the derivatives from the θ−functions:

l.h.s. of (2.2.41) =
N−1∑
n=0

N∑
m=1

m−1∑
k=0

(−1)n−kCm
k

Wn(y)

W (y)
∂m−k−1
y

[
WNm(y)f(y)u

(k)
n (y)

W (y)

]
. (2.2.43)

The relation

1

W

N−1∑
n=0

(−1)nWnu
(j)
n = (−1)Nδj,N−1 , j = 0, . . . , N − 1 (2.2.44)

reduces this multiple sum to

l.h.s. of (2.2.41) = (−1)NWNN (y)f(y)

W (y)

N−1∑
k=0

(−1)kCN
k (2.2.45)

1For the theory of distributions (generalized functions) see, e.g., [123] (in particular vol.1 p. 26).
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and because of WNN (y) = W (y) and
∑N−1

k=0 (−1)kCN
k = (−1)N (cf. 4.2.1.3 in [124]) the condition

(2.2.41) is satisfied.

It remains to prove that the Schrödinger equation (i∂t−hNy)KN (x, y, t) = 0 is fulfilled too. By

explicit substitution of equation (2.2.33) we have

(i∂t − hNy)KN (x, y, t)

= (−1)NLx

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ y

−∞
i∂tK0(x, z; t)un(z)dz

+Lx

N−1∑
n=0

(−1)n
[(

Wn(y)

W (y)

)′′
− VN (y)

Wn(y)

W (y)

] ∫ y

−∞
K0(x, z; t)un(z)dz

+Lx

N−1∑
n=0

(−1)n
[
2

(
Wn(y)

W (y)

)′
un(y) +

Wn(y)

W (y)
(un(y)∂y + u′n(y))

]
K0(x, y; t) . (2.2.46)

First, we note that due to relation (2.2.44) and its derivative the last sum vanishes. Taking further

into account that Wn(y)/W (y) is a solution of the Schrödinger equation for hN at energy En (cf.

(1.2.8)) and replacing i∂tK0(x, z; t)→ h0zK0(x, z; t) one reduces equation (2.2.46) to

(i∂t − hNy)KN (x, y, t)

= (−1)NLx

N−1∑
n=0

(−1)nWn(y)

W (y)

∫ y

−∞
[(h0z −En)K0(x, z; t)]un(z)dz . (2.2.47)

Integrating by parts and making use of (h0z − En)un(z) = 0, the asymptotical behavior u(z →
−∞)→ 0, u′(z → −∞)→ 0 and relation (2.2.44) one finds that the r.h.s. in (2.2.47) vanishes and,

hence, the Schrödinger equation (i∂t − hNy)KN (x, y, t) = 0 is fulfilled.

2.2.5 General polynomial supersymmetry

The three different types of transformations considered above may be combined in various ways

to produce a supersymmetry of more general type. In general, from the spectrum of the original

Hamiltonian h0 q levels may be removed and p additional levels may be added, p+q ≤ N producing

in this way the spectral set of hN . The inequality would correspond to SUSY transformation chains

between h0 and hN which contain isospectral transformations. For further convenience we split the

spectra of h0 and hN according to their transformation related contents as

spec(h0) = {εi, βj , Ek}+ specc(h0) , i = 1, . . . , q ; j = 1, . . . , N − (p+ q + r)

spec(hN ) = {λl, βj , Ek}+ specc(hN ) , l = 1, . . . , p ; j = 1, . . . , N − (p+ q + r) (2.2.48)

where the discrete levels Ek and the continuous spectrum specc(h0) = specc(hN ) are not affected

by the SUSY transformations. The set of transformation constants {αn}N−1
n=0 = {εi, λl, βj , γk}

corresponds to p new discrete levels λn ∈ spec(hN ) not present in spec(h0), q levels εi ∈ spec(h0)

not present in spec(hN ), N − (p+ q + r) levels βj present in both spectra and r constants γk not

coinciding with any energy level of both Hamiltonians, γk ̸∈ spec(h0)∪ spec(hN ). Transformations

induced at constants αn = βn, γn are strictly isospectral.

Summarizing the previous results the following expression for the propagator KN (x, y, t) can
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be given

KN (x, y, t) = LxLy

N−1∑
n=0

 N−1∏
j=0,j ̸=n

1

αn − αj

∫ b

a
K0(x, z, t)G̃0(z, y, αn)dz

+
∑
λn

ϕλn(x)ϕλn(y)e
−iλnt +

∑
βn

ϕβn(x)ϕβn(y)e
−iβnt (2.2.49)

where for αn = εn, βn

G̃0(z, y, αn) = lim
E→αn

[
G0(z, y, E)− ψn(x)ψn(y)

αn − E

]
and G̃0(z, y, αn) = G0(z, y, αn) otherwise.

2.2.6 Time-dependent potentials

In the case of the time-dependent SUSY transformations, the transformed potentials are time-

dependent. Therefore the time translation is not a symmetry anymore. The evolution of a system

depends on both the initial and the final moments of time

U(t2, t1) ̸= U(t2 + t0, t1 + t0) . (2.2.50)

Nevertheless, due to the composition rule U(t3, t2)U(t2, t1) = U(t3, t1) we may consider only the

evolution from the fixed initial time t = 0

U(t2, t1) = U(t2, 0)U
+(t1, 0) . (2.2.51)

The matrix element of the evolution operator

K(x, y; t2, t1) = ⟨x|U(t2, t1)|y⟩ , (2.2.52)

describes the probability of the transition from an initial point y at time t1 to a final point x at

time t2. This matrix element coincides with the propagator of the time-dependent Schrödinger

equation. If the propagator K0(x, y; t2, t1) is known in closed form, the Cauchy problem can be

solved for any initial state Ψ(y, t1):

Ψ(x, t2) =

b∫
a

K(x, y; t2, t1)Ψ(y, t1)dy . (2.2.53)

Bearing in mind that the hamiltonian is time-dependent we slightly modify the definition of the

propagator

[i∂t − h(x, t)]K(x, y; t, t0) = 0 , K(x, y; t0, t0) = δ(x− y) . (2.2.54)

According to (2.2.51) we may fix the initial time t0 = 0 and consider only the propagator

K̃(x, y; t) = ⟨x|U(t, 0)|y⟩. Then the propagator which describes the evolution from an another

initial moment reads

K(x, y; t2, t1) = ⟨x|U(t2, t1)|y⟩ =
b∫

a

dzK̃(x, z; t2)K̃
∗(z, y; t1) . (2.2.55)
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The complete set ψn(x, t) = ⟨x|U(t, 0)ψn⟩ determines the following decomposition

K̃(x, y; t) =

∞∑
n=0

ψn(x, t)ψ
∗
n(y) . (2.2.56)

Taking into account the method of time-dependent SUSY transformations described in section 1.3

it is convenient to choose the eigenfunctions {|ψn⟩} and {|ϕn⟩} of the symmetry operators g0 and

g1 (see section 1.3) as the basis sets

g0|ψn⟩ = λn|ψn⟩ , g1|ϕn⟩ = λn|ϕn⟩ . (2.2.57)

Hence, in the case (ii) one can express the transformed propagator as follows

K̃1(x, y; t) =
∞∑

m=−1

ϕm(x, t)ϕ∗m(y)

= Lx(t)L
∗
y(0)

∞∑
m=0

ψm(x, t)ψ∗
m(y, 0)

λm − α
+ ϕ−1(x, t)ϕ

∗
−1(y) . (2.2.58)

Up to a normalization constant N−1, the additional eigenfunction ϕ−1 is determined by the

transformation function, ϕ−1 = N/ [L1(t)u
∗(x)]. The evolution of g0’s eigenfunctions is given by

the initial propagator
b∫

a

K̃0(x, z, t)ψm(z, 0)dz = ψm(x, t) . (2.2.59)

As a result (2.2.58) reads

K̃1(x, y, t) = Lx(t)L
∗
y(0)

b∫
a

K̃0(x, z, t)
∞∑

m=0

ψm(z, 0)ψ∗
m(y, 0)

λm − α
dz + ϕ−1(x, t)ϕ

∗
−1(y). (2.2.60)

The sum

G0(x, y, λ; t) = ⟨x|(g0 − λ)−1|y⟩ =
∞∑

m=0

ψm(x, t)ψ∗
m(y, t)

λm − λ
, (2.2.61)

is the resolvent of the symmetry operator. Note that the resolvent taken at the initial moment

G0(y, z, λ; 0) =: G0(y, z, λ) is used in (2.2.60). This resolvent satisfies to the following inhomoge-

neous equation

(g0(t = 0)− λ)xG0(x, y, λ) = δ(x− y) . (2.2.62)

We can summarize this calculation in the following theorem.

Theorem 9. The propagators K1(x, y; t) and K0(x, y; t) of non-stationary Schrödinger equations

with non-stationary SUSY intertwined Hamiltonians h1 and h0 are interrelated with each other and

with the resolvents G0(x, y;λ) and G̃0(x, y, α) in the following way:

Type (i) relation

K̃1(x, y, t) = LxL
∗
y,t=0

∫ b

a
K̃0(x, z, t)G̃0(z, y, α)dz , (2.2.63)

Type (ii) relation

K̃1(x, y, t) = LxL
∗
y,t=0

∫ b

a
K̃0(x, z, t)G0(z, y, α)dz + ϕ−1(x, t)ϕ−1(y) , (2.2.64)

Type (iii) relation

K̃1(x, y, t) = LxL
∗
y,t=0

∫ b

a
K̃0(x, z, t)G0(z, y, α)dz . (2.2.65)
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2.2.7 Non-hermitian superpartners

Recently a considerable attention has been paid to different properties of non-Hermitian Hamil-

tonians (see, e.g., [125]). There are several reasons to generalize the quantum mechanics by ac-

cepting non-Hermitian Hamiltonians with purely real spectrum (see, e.g., [125,126] and references

therein). For instance, some problems are simplified being reformulated in terms of a non-Hermitian

Hamiltonian. On the other hand complex potentials are used in different models of nuclear physics

(optical potentials) as effective interaction potentials [127].

Although the general idea how to find the superpartner’s propagator is the same in the case of

the one-dimensional Schrödinger equation with a complex-valued potential Vc(x)

hcφE(x) = EφE(x) , hc = −
∂2

∂x2
+ Vc(x) , x ∈ R , (2.2.66)

there is some technical difference. Therefore it is necessary to repeat (or introduce) some important

definitions and conjectures.

We consider the stationary potentials Vc(x). The propagator Kc(x, y, t) is defined as usual

through the inhomogeneous time-dependent Schrödinger equation. If Kc(x, y, t) is given the func-

tion

Φ(x, t) =

∫ ∞

−∞
Kc(x, y; t)φ0(y)dy (2.2.67)

is a solution of the time-dependent Schrödinger equation with the initial condition Φ(x, 0) = φ0(x).

First of all we note that to be able to associate the function Φ(x, t) with a state of a quantum

system the integral in (2.2.67) should converge and both the function φ0(x) and Φ(x, t) should

belong to a certain class of functions. To present our method in its simplest form we will make

several assumptions which simplify essentially our presentation keeping at the same time the essence

of the method. Since in (2.2.67) the usual (Lebesgue) integration is involved it is natural to

suppose that both φ0(x) and Φ(x, t) are square integrable. This means that the Hilbert space,

where the operator (non-Hermitian Hamiltonian) hc associated with the differential expression

−∂2x/∂x2 + Vc(x) ’lives’, is the usual space L2(R) and the equation (2.2.66) creates an eigenvalue

problem for hc which is defined on a dense domain from L2(R).
Eigenvalue problems for non-Hermitian differential operators were under an intensive study by

mathematicians in the Soviet Union in the period between 50th and 70th of the previous century.

Results of these investigations are mainly summarized in books [106, 128] to which we refer the

interested reader where he can, in particular, find the strict definition of the spectrum, eigenfunc-

tions, associated functions, domains of definition of operators created by non-Hermitian differential

expressions and many other properties of differential equations and related non-selfadjoint oper-

ators. Here we would like to mention that the first essential result in this field was obtained by

Keldysh [129] who proved the completeness of the set of eigenfunctions and associated functions for

a non-selfadjoint operator and results by Lidskiy [130]. In particular, Lidskiy made a deep analysis

of conditions on the potential Vc leading to an operator hc which is uniquely defined by its closure

and has a purely discrete spectrum with a complete set of eigenfunctions and associated functions.

Especial role between all non-selfadjoint operators is played by pseudo-Hermitian operators

first introduced by Dirac and Pauli and latter used by Lee and Wick [131–133] to overcome some

difficulties related with using Hilbert spaces with an indefinite metric and their recent generalization

(weak pseudo-Hermiticity) by Solombrino and Scolarici [134, 135] since there are strict indications
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that these operators are the most appropriate candidates for replacing selfadjoint operators while

generalizing the conventional quantum mechanics by accepting non-Hermitian operators [134–137].

Our next essential assumption is that hc has a purely discrete spectrum, its set of associated

functions is empty, it is diagonalizable, and its set of eigenfunctions ϕn(x), n = 0, 1, . . . is complete

in the space L2(R). If h+c is the adjoint differential expression it creates in the Hilbert space the

adjoint operator with the eigenfunctions ϕ̃k(x) which also form a complete set in L2(R). Moreover,

if En is an eigenvalue of hc then E
∗
n (asterisk means the complex conjugation) is an eigenvalue of h+c

so that h+c ϕ̃n = E∗
nϕ̃n. Note that neither {ϕn} nor {ϕ̃n}, n = 0, 1, . . . form orthogonal systems but

functions ϕ̃k are biorthogonal with ϕn and they can always be normalized such that (see e.g. [128])∫ ∞

−∞
ϕ̃∗k(x)ϕn(x)dx = δnk . (2.2.68)

The completeness of the set of eigenfunctions of hc means that any ϕ ∈ L2(R) can be developed

into the Fourier series over the set {ϕn}, ϕ(x) =
∑∞

n=0 cnϕn(x). Using the biorthonormality relation

(2.2.68) we can find the coefficients cn in the usual way and put them back into the same relation

thus obtaining the symbolical form of the completeness condition of the set of eigenfunctions of hc

∞∑
n=0

ϕ̃∗n(x)ϕn(y) = δ(x− y) . (2.2.69)

Next we assume that the spectrum of hc is real. Therefore the adjoint eigenvalue problem

coincides with the complex conjugate form of equation (2.2.66) so that ϕ̃n(x) = ϕ∗n(x). Under these

assumptions equations (2.2.68) and (2.2.69) become (cf. [138])∫ ∞

−∞
ϕn(x)ϕk(x)dx = δnk , (2.2.70)

∞∑
n=0

ϕn(x)ϕn(y) = δ(x− y) . (2.2.71)

From here follows the Fourier series expansion of the propagator in terms of the basis functions ϕn:

Kc(x, y; t) =
∞∑
n=0

ϕn(x)ϕn(y)e
−iEnt . (2.2.72)

Indeed, just like in the conventional Hermitian case the initial condition Φ(x, 0) = φ0(x) for function

(2.2.67) with Kc of form (2.2.72) follows from (2.2.71) and the fact that Φ(x, t) satisfies the time-

dependent Schrödinger equation follows from the property of the functions ϕn to be eigenfunctions

of hc with the eigenvalues En.

Another useful discussion is that the form (2.2.72) for the propagator may be interpreted as the

coordinate representation of the abstract evolution operator. To show this we introduce ket-vectors

(kets) |ϕn⟩ as eigenvectors of hc and bra-vectors (bras) ⟨ϕ̃n| as functionals acting in the space of

kets according to2

⟨ϕ̃n|ϕk⟩ = δnk . (2.2.73)

Kets corresponding to the previous bras are just properly normalized eigenvectors of h+c which is

defined by the adjoint eigenvalue problem where Vc(x) is replaced by its complex conjugate V ∗
c (x)

2Without going into details we note that using the system |ϕn⟩ one can construct the Hilbert space H so that the

set of all finite linear combinations of ϕn is dense in H and formula (2.2.73) uniquely defines a functional in H, see

e.g. [139].

62



so that (2.2.73) is nothing but the same biorthogonality condition (2.2.70) written in the abstract

representation. As usual the coordinate representation of the above abstract eigenvectors are

ϕn(x) = ⟨x|ϕn⟩ = ⟨ϕ̃n|x⟩ where |x⟩ is an eigenvector of the coordinate operator. The completeness

condition in the abstract form now reads

∞∑
n=0

|ϕn⟩⟨ϕ̃n| = 1 (2.2.74)

and the formula

hc =

∞∑
n=0

|ϕn⟩En⟨ϕ̃n| (2.2.75)

presents the spectral decomposition of the Hamiltonian hc. Now in the known way [134–136] one

can introduce an automorphism η to establish the property that hc is (weakly) pseudo-Hermitian

and construct a basis in which hc takes a real form. We will not go into further details of the

known properties of (weakly) pseudo-Hermitian operators since this is not the aim of this work.

The interested reader can consult papers [131–136] and the recent preprint [137] where biorthogonal

systems are widely used in the study of different properties of non-Hermitian Hamiltonians. Our

last comment here is that the abstract evolution operator given by its spectral decomposition

U(t) =

∞∑
n=0

|ϕn⟩e−iEnt⟨ϕ̃n| (2.2.76)

written in the coordinate representation Kc(x, y, t) = ⟨x|U(t)|y⟩ is just the propagator (2.2.72).

We would like to emphasis that conditions (2.2.70) and (2.2.71) have almost the usual form,

only the complex conjugation is absent. Therefore they coincide with the corresponding equations

for the Hermitian Hamiltonians in case when their eigenfunctions are real.

The final assumption we make is that the Hamiltonian hc is a SUSY partner of a Hermitian

Hamiltonian h0 with a purely discrete spectrum and a complete set of eigenfunctions ψn which

always can be chosen real

h0 = −
∂2

∂x2
+ V0(x) , h0ψn(x) = Enψn(x) , ψn(x) = ψ∗

n(x) , n = 0, 1, . . .

so that both the completeness and normalization conditions are given by equations (2.2.71) and

(2.2.70) respectively with the replacement ϕn → ψn.

According to the general scheme of SUSY QM (see section 1.2.1) operators h0 and hc are

(1-)SUSY partners if and only if there exists a first order differential operator L such that

Lh0 = hcL . (2.2.77)

Operator L has the form (1.2.11) where the function u(x) is a complex solution to equation

h0u(x) = αu(x) . (2.2.78)

The potential Vc is calculated with the aid of formula (1.2.14).

Together with operator L we need also its ’transposed form’ (instead of L+) which we define as

follows:

Lt = −u′(x)/u(x)− ∂x . (2.2.79)

Then, just like in the usual SUSY QM the following factorizations take place:

LtL = h0 − α , LLt = hc − α (2.2.80)
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which can easily be checked by the direct calculation.

The spectrum of hc may either (iii) coincide with the spectrum of h0 or (ii) may differ from it

by one (real) level which is absent in the spectrum of h0. The case (iii) may be realized only with a

complex parameter α which is called the factorization constant. The case (ii) may be realized only

for a real factorization constant since E = α is just the discrete level of hc missing in the spectrum

of h0 and we want that hc has a real spectrum. Therefore in this case one has to choose u(x) as a

linear combination of two real linearly independent solutions to equation (2.2.78).

One of the main features of the method is that for the most physically interesting Hamiltonians

h0 operator (1.2.11) has the property LψE(±∞) = 0 provided ψE(±∞) = 0 (conservative SUSY).

As a result the set of functions

ϕn = NnLψn , n = 0, 1, . . . (2.2.81)

is complete in the space L2(R) in case (iii). In case (ii) we have to add to this set the function

ϕα = Nα/u. The normalization coefficients Nn may be found by integration by parts in equation

(2.2.70) and with the help of factorization property (2.2.80) which yields

Nn = (En − α)−1/2 . (2.2.82)

The main result of the present section is given by the following

Theorem 10. The propagator Kc(x, y; t) of the Schrödinger equation with the Hamiltonian hc

related with h0 by a SUSY transformation is expressed in terms of the propagator K0(x, y; t) of

the same equation with the Hamiltonian h0 and the Green’s function G0(x, y;E) of the stationary

equation with the same Hamiltonian as follows:

in case (i) Kc(x, y, t) = KL(x, y, t)

in case (ii) Kc(x, y, t) = KL(x, y, t) + ϕα(x)ϕα(y)e
−iαt

where KL(x, y, t) is the ’transformed’ propagator

KL(x, y, t) = LxLy

∫ ∞

−∞
K0(x, z, t)G0(z, y, α)dz . (2.2.83)

Here Lx is defined by (1.2.11) and Ly is the same operator where x is replaced by y.

Proof. The proof follows the same line as in the theorem 5 with obvious modifications coming from

(2.2.69), (2.2.71) and (2.2.72)

Further we will use the obtained relations to calculate some new propagators to stationary,

non-stationary and complex potentials.
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2.3 Explicit expressions for Green functions and propagators

2.3.1 Particle in a box

As first application, we consider a free particle in a box, i.e. the Schrödinger equation with

V0(x) ≡ 0 and Dirichlet BCs at the ends of the finite interval (0, 1). The eigenfunctions of this

problem are the well known ψn−1(x) =
√
2 sin(nπx), n ∈ Z+, with energies En−1 = n2π2. The

Green function of the particle in a box may be easily calculated by its definition (1.1.16)

Gbox(x, y, E) =
sin(kx) sin[k(y − 1)]

k sin k
, x < y , E = k2 . (2.3.1)

Poles of Gbox coincide with the points of the discrete spectrum.

The corresponding propagator reads [33]

Kbox0(x, y, t) =
1

2

[
ϑ−3 (x, y; t)− ϑ

+
3 (x, y; t)

]
with

ϑ−3 (x, y; t) := ϑ3

(
x− y
2

∣∣∣∣ −πt2
)
, ϑ+3 (x, y; t) := ϑ3

(
x+ y

2

∣∣∣∣ −πt2
)

and ϑ3(q|τ) denoting the third theta function [140].

As SUSY partner problem we choose a model which we derive by removing the ground state

level E0 by a linear (one-step) SUSY-mapping with u = ψ0 = sinπx as transformation function3.

This leads to the Schrödinger equation with potential V1(x) = 2π2/ sin2(πx), i.e. a singular Sturm-

Liouville problem. The propagator of this problem can be represented via (2.2.6) as

Kbox1(x, y, t) = −
1

2 sinπy
Lx

∫ y

0

[
ϑ−3 (x, z; t)− ϑ

+
3 (x, z; t)

]
sin(πz)dz (2.3.2)

or after explicit substitution of Lx = −π cot(πx) + ∂x as

Kbox1(x, y, t) =
π cot(πx)

2 sin(πy)

∫ y

0

[
ϑ−3 (x, z; t)− ϑ

+
3 (x, z; t)

]
sin(πz)dz

− π

2 sin(πy)

∫ y

0

[
ϑ−3 (x, z; t) + ϑ+3 (x, z; t)

]
cos(πz)dz +

1

2

[
ϑ−3 (x, y; t) + ϑ+3 (x, y; t)

]
. (2.3.3)

Here after using the property ∂xθ
±
3 (x, z, t) = ±∂zθ

±
3 (x, z, t) we integrated in (2.3.2) by parts.

We see that both the initial and the transformed propagators are expressed in terms of the

third theta function ϑ3(q|τ), whereas the initial Green function contains only simple trigonometric

functions. Therefore in the case of finite interval it is more convenient to work with the Green

function. In the rest of this section we calculate closed expressions for the Green functions generated

by different types of SUSY transformations.

In section 1.2.1 we demonstrated that there is only one possibility for the first order conservative

SUSY transformation. To enlarge the possible choice of transformation function we first consider

the example of a non-conservative SUSY transformation. Let u = sh(cx) be the transformation

function. This function violates BCs at x = 1, therefore according to the general discussion in

section 1.2.1 the spectrum of the transformed Hamiltonian radically differs from the spectrum of

3There exist other types of transformations leading to regular transformed Sturm-Liouville problems. But the

solutions of the resulting Schrödinger equations will violate the Dirichlet BCs [4]. The special analysis of this case

will be considered below.
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Figure 2.1: Non-conservative SUSY partner of the particle in box

is presented, V (x) = 2c2/ sinh(cx)2, c = 1/2. Solid horizontal

lines correspond to the transformed spectrum, dashed horizontal

lines correspond to the spectrum of the particle in box.

the free particle in box. The transformation operator L = −c coth(cx)+∂x maps the eigenfunctions

ψn to unphysical solutions Lψn(1) = (−1)nπ which violate BCs at x = 1. Nevertheless, one may

solve the spectral problem for the transformed Schrödinger equation. Acting by the transformation

operator on the general solution Ψ(x) = A cos(kx) + B sin(kx) of the initial equation we get the

general solution Φ(x) = LΨ(x) of the transformed equation for all E ̸= −c2. Imposing the Dirichlet

BCs Φ(0) = 0 and Φ(1) = 0 we find that A = 0 and

k = c coth c tank . (2.3.4)

It is seen that the spectrum of the non-conservative SUSY partner is determined by the transcendent

equation. Spectral points correspond to the intersections of line y = k/(c coth c) with tangents

y = tank. We can change the spectrum of the model by varying parameter c. Note that the

transformed spectrum approaches the initial one as c → +∞. Figure 2.1 shows an example of

potential. First energy levels of the transformed model are compared with the energy levels of the

initial spectrum.

Note, that in this case formula (2.1.1) fails. However, we can calculate the Green function using

(1.1.16) and the general solution of the Schrödinger equation obtained through SUSY transforma-

tion:

G1(x, y, E) =
(k sin k + c coth c cos k) (−c coth(cx) sin(kx) + k cos(kx))

k(c2 + k2)(c coth c sin k − k cos k)
×

×
[
c coth c sin k − k cos k
c coth c cos k + k sin k

(c coth(cy) cos(ky) + k sin(ky))− c coth(cy) sin(ky) + k cos(ky)

]
,

x < y .

If the transformation function coincides with the ground state wave function u = sin(πx) then

the SUSY transformation is conservative. The ground state level is removed and the spectrum is

En = (nπ)2, n = 2, 3, . . .. The transformed potential V1 = 2π2csc2(πx) is shown in figure 2.2. Its

Green function is given by (2.1.1)

G1(x, y, E) =
Gbox(x, y, E)

(E − π2)
[k ctg(kx)− π ctg(πx)] [k ctg(k(y − 1))− π ctg(πy)] , x < y .
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Figure 2.2: SUSY partner of the particle in box, V (x) =

2π2csc2(πx), which corresponds to the case (i) is shown. Solid

horizontal lines correspond to the transformed spectrum, which

coincides with the spectrum of the particle in box except one level

E0 = π2.

It can be checked that k = π (E = π2) is a regular point of the transformed Green function. This

is in agreement with the spectrum modification.

Our next step is to consider the second order SUSY transformation. To work with conservative

transformations only we should impose on the transformation functions BCs discussed in section

1.2.2. In case (V) we can choose

u1(x) = sin(πx) , u2(x) = sin(cx) , 0 < c ≤ 2π .

From (4.3.74) we get the transformed potential

V2 = (π2 − c2) c2 − π2 + π2 cos(2cx)− c2 cos(2πx)
[π cos(πx) sin(cx)− c cos(cx) sin(πx)]2

. (2.3.5)

The bound state energy is shifted from E0 = π2 to E′
0 = c2. Potential (2.3.5) is plotted in figure

(2.3). The transformed eigenfunctions are easily obtained from (1.2.29). Using (2.1.10) one can

calculate the Green function:

G2(x, y, E) =
Gbox(x, y, E)

(E − π2)(E − c2)
(E + Z1(x))(E + Z2(y)) , x < y ,

Zj(x) =
πc2 cos(πx) sin(cx)− aπ2 sin(πx) cos(cx) + k(c2 − π2) sin(πx) sin(cx) ctg[k(c− δj2)]

c sin(πx) cos(cx)− π cos(πx) sin(cx)
.

In case (IV) one may choose u1(x) = sh(a1x) and u2(x) = sin[a2(x − 1)], 0 < a2 ≤ π. The

potential

V2(x) = −(a21 + a22)
a21 + a22 − a21 cos[2a2(x− 1)]− a22 cosh(2a1x)

(a1 cosh(a1x) sin[a2(x− 1)]− a2 sinh(a1x) cos[a2(x− 1)])2
, (2.3.6)

corresponds to the irreducible second-order SUSY.

The intermediate Hamiltonian also determines a regular Sturm-Liouville problem, but its spec-

trum being defined by (2.3.4) radically differs from spech0, whereas spech0 = spech2. It is
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Figure 2.3: Potential (2.3.5) shifts the bound state energy only depending on c. Left/right part

corresponds to c = 0.6/c = 5.

Figure 2.4: Potential (2.3.7). Parameters: a1 = 1, a2 = 3; a1 =

5, a2 = 3; a1 = 1, a2 = 1.5.

interesting that the value of the potential (2.3.6) at boundaries depends only on the factorization

energies

V2(0) = −2(a21 + a22) , V2(1) = 2(a21 + a22) . (2.3.7)

We plot potential (2.3.6) in figure 2.4 for several values of a1 and a2.

The Green function of potential (2.3.6) reads:

G2(x, y, E) =
Gbox(x, y, E)

(E − a21)(E − a22)
(E +Q1(x))(E +Q2(y)), x < y ,

Qj(x) =
a1a

2
2 cosh(a1x) sin[a2(x− 1)]− a2a21 sinh(a1x) cos[a2(x− 1)]

a2 sinh(a1x) cos[a2(x− 1)]− a1 cosh(a1x) sin[a2(x− 1)]
−

− k(a22 − a21) sinh(a1x) sin[a2(x− 1)] ctg[k(x− δj2)]
a2 sinh(a1x) cos[a2(x− 1)]− a1 cosh(a1x) sin[a2(x− 1)]

.

Finally we note that the corresponding propagators can be calculated as follows [26]

KN (x, y, t) = −
∞∫

−∞

dE

2π
GN (x, y, E)e−iEt . (2.3.8)
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2.3.2 Harmonic oscillator and its superpartners

Here we consider the Hamiltonian

h0 = −∂2xx +
x2

4
.

The propagator of the harmonic oscillator is expressed in elementary functions (see e.g. [26])

Kosc(x, y, t) =
1√

4πi sin t
e

i[(x2+y2) cos t−2xy]
4 sin t . (2.3.9)

In a contrast, the expression for the Green function involves parabolic cylinder functionsDν(x) [140]

Gosc(x, y, E) =
1√
2π

Γ

(
1

2
− E

)
DE− 1

2
(−x)DE− 1

2
(y) , x < y . (2.3.10)

Since the calculations of the transformed Green functions are rather straightforward, we will focus

on the transformations of the propagator for several types of SUSY.

Using a two-fold transformation with transformation functions (see section 1.4.2)

u2(x) = (x2 − 1)e−x2/4 u3(x) = x(x2 − 3)e−x2/4

corresponding to the second and third excited state eigenfunctions of h0 we obtain a perturbed

Harmonic oscillator potential [57]

V (2,3)(x) =
8x2

x4 + 3
− 96x2

(x4 + 3)2
+
x2

4
+ 2 (2.3.11)

which for large |x| behaves like the original harmonic oscillator potential, but for small |x| shows
two shallow minima (see figure 1.3). For completeness, we note that the transformation functions

u2(x) and u3(x) have nodes, whereas their Wronskian W (u2, u3) = (x4 + 3)e−x2/2 is nodeless so

that the corresponding second-order SUSY-transformation itself is well defined, but irreducible.

The propagator for the Schrödinger equation with Hamiltonian h(2,3) = −∂2x + V (2,3)(x) can be

constructed from propagator (2.3.9) via relation (2.2.34). The occurring integrals∫∞
y Kosc(x, z, t)un(z)dz can be represented as derivatives with respect to the auxiliary current J of

the generating function

S(J, x, y, t) =
1√

4πi sin t

∫ ∞

y
exp

[
i[(x2 + z2) cos t− 2xz]

4 sin t
− z2

4
+ Jz

]
dz

=
1

2
exp

(
−2it− x2

4
+ (iJ2 sin t+ Jx)exp (−it)

)
×

(
1 + erf

[
−
√
iexp (− it

2 ) (2J sin t+ i(yexp (it)− x))
2
√
sin t

])
.

As a result, we obtain

K(2,3)(x, y, t)

= ey
2/2Lx

(
y(y2 − 3)

y4 + 3

[
∂2S(J)

∂J2
− S(J)

]
− y2 − 1

y4 + 3

[
∂3S(J)

∂J3
− 3

∂S(J)

∂J

])
J=0

in terms of obvious abbreviations.
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Figure 2.5: Potential (2.3.13) plotted at different values of parameter C. The solid curves correspond to the

real part of the potential, the dashed curves correspond to the imaginary part of the potential.

The technique can be straightforwardly generalized to second-order SUSY-transformations built

on any eigenfunction pair

uk(x) = pk(x)e
−x2/4 uk+1(x) = pk+1(x)e

−x2/4

of the Hamiltonian h0. The corresponding generalized potentials (1.4.13) have been considered in

section 1.4.2.

With the help of (2.2.24) the propagator is obtained as

K(k,k+1)(x, y, t) = ey
2/2Lx

(
pk+1(y)

Qk(y)
[pk (∂J)S(J)]−

pk(y)

Qk(y)
[pk+1 (∂J)S(J)]

)
J=0

with pk (∂J) denoting the kth-order differential operator obtained from pk(x) by replacing xn →
∂n

∂Jn . Polynomials pk and Qk are defined in equations (1.4.9) and (1.4.12).

In the next example we consider the simplest complex deformation of the Harmonic oscillator

with α = −1/2 and

u(x) = e
x2

4 (C + erf (x/
√
2)) , ImC ̸= 0

We need also the Green function of the oscillator Hamiltonian at E = α. In this case we can

avoid parabolic cylinder functions. We simply use the definition (1.1.18) of the Green function

in terms of two special solutions fl(x,E) and fr(x,E). Functions fl and fr from (1.1.18) at

E = α = −1/2 read

fl(x,−1/2) =
√
π/2e

x2

4 (1 + erf (x/
√
2)) , fr(x,−1/2) =

√
π/2e

x2

4 (1− erf (x/
√
2)) . (2.3.12)

The spectrum of the complex-valued transformed potential

Vc(x) =
x2

4
− 1 + 2xQ−1

1 (x)e−
x2

2 + 2Q−2
1 e−x2

, Q1(x) =

√
π

2
[C + erf (x/

√
2)] (2.3.13)

consists of all oscillator energies En = n+ 1/2, n = 0, 1, . . . and one additional level E−1/2 = −1/2
with the eigenfunction

ϕ−1/2(x) = (2π)−1/4
√
C2 − 1u−1(x) . (2.3.14)

70



It is not difficult to check by the direct calculation that∫ ∞

−∞
ϕ2−1/2(x)dx = 1 . (2.3.15)

Thus the transformed potential has the equidistant spectrum. We plot the real and the imaginary

parts of this potential for different values of C in figure 2.5. Note, that in general this potential is not

PT -symmetric and goes beyond the simplest realization of PT -scheme proposed by Bender [126].

Using theorem 10 and equations (1.1.18) and (2.3.12) we obtain the propagator for the Hamil-

tonian with potential (2.3.13)

Kc(x, y, t) = −
√
π(C + 1)√
2u(y)

Lx

∫ y

−∞
Kosc(x, z, t)e

z2

4 (1 + erf (z/
√
2))dz

+

√
π(C − 1)√
2u(y)

Lx

∫ ∞

y
Kosc(x, z, t)e

z2

4 (1− erf (z/
√
2))dz + ϕ−1/2(x)ϕ−1/2(y)e

it/2 . (2.3.16)

2.3.3 Transparent potentials

Here we apply our method to calculate propagators for the soliton potentials which are SUSY

partners of the zero potential (see 1.4.1). The construction of the N -level soliton potential from

the zero potential is given in section 1.4.1. Note that the propagator for a one-level transparent

potential was previously calculated by Jauslin [77] for the Fokker-Planck equation. In one particular

case when bn = 0 and constants an are chosen in a special manner the corresponding propagator

may be calculated using path-integral approach [34]. The propagator for a two-level potential can

be found in [4] where the general form of the propagator for an N -level potential has been given

as a conjecture. Here we will prove this conjecture [5].

The propagator K0 and the Green function G0 for the free particle are well-known [34]

K0(x, y; t) =
1√
4πit

e
i(x−y)2

4t , (2.3.17)

G0(x, y, E) =
i

2κ
eiκ|x−y| , Imκ > 0 , E = κ2 ,

so that according to (2.2.22) the propagator of the transformed system can be calculated as

KN (x, y, t) =
LxLy√
4πit

N∑
n=1

 N∏
j=1,j ̸=n

1

αn − αj

∫ ∞

−∞
exp

(
i(x− z)2

4t
− an|z − y|

)
dz

2an

+

N∑
n=1

φn(x)φn(y)e
−iαnt =: KcN (x, y, t) +KdN (x, y, t) . (2.3.18)

In the last line we separated contributions from the continuous spectrum, KcN (x, y, t), from con-

tributions from the discrete spectrum, KdN (x, y, t).

The integral in KcN (x, y, t) can easily be calculated since the primitive of the integrand is well

known (see e.g. integral 1.3.3.17 of Ref [124]). Using the well studied convergency conditions of

the error-function erfc from [141] we find

I(a, x, y, t) :=
1√
4πit

∫ ∞

−∞
exp

(
i(x− z)2

4t
− a|z − y|

)
dz

2a

=
eia

2t

4a

[
ea(x−y)erfc

(
a
√
it+

x− y
2
√
it

)
+ ea(y−x)erfc

(
a
√
it− x− y

2
√
it

)]
(2.3.19)

a > 0 t > 0
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and with it

KcN (x, y; t) = LxLy

N∑
n=1

 N∏
m=1,m̸=n

1

αn − αm

 I(an, x, y, t) . (2.3.20)

Introducing the notation

erf ±(a) := erf

(
a
√
it∓ x− y

2
√
it

)
and abbreviating the Wronskian of the x−dependent transformation functions u1,. . . , uN as W (x)

we formulate the final expression for the propagator as

Theorem 11. The propagator for an N -level transparent potential has the form

KN (x, y; t) =
1√
4πit

e
i(x−y)2

4t

+

N∑
n=1

an
4

N∏
j=1,j ̸=n

|a2n − a2j |

Wn(x)Wn(y)

W (x)W (y)
eia

2
nt [erf +(an) + erf −(an)] . (2.3.21)

For the proof of this theorem we need the additional

Lemma 4. Let {αi}Ni=1 be a set of N non-coinciding complex numbers ai ̸= aj ̸=i ∈ C and4 n ∈ Z+.

Then the following identity holds:

N∑
i=1

αn
i

 N∏
j=1,j ̸=i

1

αi − αj

 = δn,N−1 . (2.3.22)

Proof. Consider the auxiliary function

f(z) =
zn

(z − α1)(z − α2) . . . (z − αN )

which is analytic in any finite part of the complex z-plane except for N simple poles α1, . . . , αN .

From the residue theorem follows

N∑
i=1

res f(αi) =

N∑
i=1

αn
i

 N∏
j=1,j ̸=i

1

αi − αj

 = −res f(∞)

what with the residue at infinity yields (2.3.22).

As the next step we prove Theorem 11.

Proof. Without loss of generality we may set bj = 0. We start with the propagator component

KcN (x, y, t) in (2.3.20) related to the continuous spectrum. First we note that the function I in

(2.3.20) depends only via the difference x− y on the spatial coordinates so that the action of ∂y in

Ly can be replaced by ∂ny → (−1)n∂nx . Hence, the composition of the two Nth-order transformation

operators LxLy acts as an effective 2Nth-order differential operator in x

LxLy = R0 +R1∂x + . . .+R2N∂
2N
x (2.3.23)

with coefficient functions Rn(x, y). Accordingly, (2.3.20) takes the form

KcN (x, y; t) =

N∑
n=1

 N∏
m=1,m̸=n

1

αn − αm

 [R0 +R1∂x + . . .+R2N∂
2N
x ]Jn (2.3.24)

4We use the standard notation Z+ = {0, 1, 2, . . .} for the natural numbers with zero included.
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where Jn = I (an, x, y, t). From the explicit structure of the first derivatives of Jn

∂Jn
∂x

=
1

4

[
−e−an(x−y)erfc+(an) + ean(x−y)erfc−(an)

]
eia

2
nt

∂2Jn
∂x2

=
−1√
4πit

e
i(x−y)2

4t + a2nI(an)

∂3Jn
∂x3

=
−1

2t
√
4πit

(x− y) e
i(x−y)2

4t

+
a2n
4

[
−e−an(x−y)erfc+(an) + ean(x−y)erfc−(an)

]
eia

2
nt (2.3.25)

we find (by induction) the general expression of an even-order derivative

∂2mI

∂x2m
=

m−1∑
k=0

a2kn Akm(x, y, t)e
i(x−y)2

4t

+
am−1
n

4
eia

2
nt
[
e−an(x−y)erfc+(an) + ean(x−y)erfc−(an)

]
(2.3.26)

and of an odd-order derivative

∂2m−1I

∂x2m−1
=

m−2∑
k=0

a2kn Akm(x, y, t)e
i(x−y)2

4t

− am−1
n

4
eia

2
nt
[
e−an(x−y)erfc+(an)− ean(x−y)erfc−(an)

]
. (2.3.27)

It holds

Akm(x, y, t) ≡ 0 ⇐⇒

{
m = 2l ∩ k > l − 1

m = 2l + 1 ∩ k > l − 1 .

Subsequently we use the abbreviation

Im(an) =
1

4an
eia

2
nt
[
(−1)me−an(x−y)erfc+(an) + ean(x−y)erfc−(an)

]
(2.3.28)

and we will need the explicit form of the a
2(N−1)
n and a2Nn terms in the highest-order derivative

∂2NJn
∂x2N

= . . .− a2(N−1)
n

1√
4πit

e
i(x−y)2

4t + a2Nn I2N . (2.3.29)

The complete propagator component KcN (x, y; t) in (2.3.24) can now be rewritten as

KcN (x, y; t) =

N∑
n=1

 N∏
m=1,m̸=n

1

αn − αm

R0I0(an)

+
N∑

n=1

 N∏
m=1,m̸=n

1

αn − αm

 anR1I1(an)

+
N∑

n=1

 N∏
m=1,m̸=n

1

αn − αm

R2

[
− 1√

4πit
e

i(x−y)2

4t + a2nI2(an)

]
+ . . .

+

N∑
n=1

 N∏
m=1,m̸=n

1

αn − αm

R2N

[
N−1∑
k=0

a2kn Ak,2N (x, y, t) e
i(x−y)2

4t + a2Nn I2N (an)

]
.

Comparison with Lemma 4 shows that due to a2kn = (−αn)
k only a single term containing exp (i(x− y)2/4t)

does not vanish. It is the k = N − 1 term in the very last sum which with R2N = (−1)N and
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AN−1,2N (x, y, t) = −(4πit)−1/2 yields exactly the propagator (2.3.17) of the free particle. All other

terms containing exp (i(x− y)2/4t), after interchanging the sums
∑N

n=1 . . . and
∑N−1

k=0 . . ., cancel

out due to Lemma 4. Thus, the above formula reduces to

KcN (x, y; t) =
1√
4πit

e
i(x−y)2

4t +

N∑
n=1

 N∏
m=1,m̸=n

1

αn − αm

 (2.3.30)

×
[
R0I0(an) +R1anI1(an) +R2a

2
nI2(an) +R3a

3
nI3(an) + . . .+R2Na

2N
n I2N (an)

]
.

Expressing Im(an) via (2.3.28) in terms of erfc+ and erfc− one finds contributions

erfc+(an)

4an
eia

2
nt(R0 − anR1 + a2nR2 − a3nR3 + . . .+ a2Nn R2N )e−an(x−y)

erfc−(an)

4an
eia

2
nt(R0 + anR1 + a2nR2 + a3nR3 + . . .+ a2Nn R2N )ean(x−y)

which can be represented as

erfc+(an)

4an
eia

2
nt(R0 +R1∂x +R2∂

2
x +R3∂

3
x + . . .+R2N∂

2N
x )e−an(x−y)

erfc−(an)

4an
eia

2
nt(R0 +R1∂x +R2∂

2
x +R3∂

3
x + . . .+R2N∂

2N
x )ean(x−y) .

Comparison with (2.3.23) shows that the sums yield simply LxLyexp [±an(x−y)]. Recalling further-
more that the transformation operators Lx and Ly are given by (1.2.6) and that the transformation

functions have the form (1.4.2) we arrive after some algebra at5

Lxe
±anx = (∓1)n(−1)N+n−1an

N∏
j=1,j ̸=n

(a2j − a2n)
Wn(x)

W (x)
(2.3.31)

and, hence, at

LxLye
±an(x−y) = (−1)na2n

N∏
j=1,j ̸=n

(a2n − a2j )2
Wn(x)Wn(y)

W (x)W (y)
. (2.3.32)

Substituting (2.3.32) into (2.3.30) we obtain

KcN (x, y; t) =
1√
4πit

e
i(x−y)2

4t +
1

4

N∑
n=1

eia
2
ntan

 N∏
m=1,m̸=n

(−1)n(a2n − a2m)2

αn − αm


×Wn(x)Wn(y)

W (x)W (y)
[erfc+(an) + erfc−(an)] . (2.3.33)

A further simplification can be achieved by recalling that αn = −a2n and that the parameters ai

are ordered as a1 < a2 < . . . < aN . Setting (a2m − a2n) = −(a2n − a2m) in the denominator for

m = 1, . . . , n− 1 gives an additional sign factor (−1)n−1. The propagator sum KN = KcN +KdN

5We note that equation (2.3.31) is compatible with (1.4.4). The function exp (−anx) is a solution of the initial

Schrödinger equation related to one of the factorization constants and it is linearly independent from the corresponding

factorization solution. Therefore Lxexp (−anx) up to a constant factor is one of the bound state functions of hN

given in (1.4.4).
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resulting from continuous and discrete spectral components reads then

KN (x, y; t) =
1√
4πit

e
i(x−y)2

4t − 1

4

N∑
n=1

eia
2
ntan

 N∏
m=1,m̸=n

|a2n − a2m|


×Wn(x)Wn(y)

W (x)W (y)
[erfc+(an) + erfc−(an)]

+
1

2

N∑
n=1

eia
2
ntan

 N∏
m=1,m̸=n

|a2n − a2m|

Wn(x)Wn(y)

W (x)W (y)
. (2.3.34)

and via the relation erfc(z) = 1− erf(z) it leads to the expression in the theorem.

2.3.4 Deformed one-soliton potentials

In this section, we use theorems 9 and 10 to calculate propagators for the complex and time-

dependent one-soliton potentials. These potentials may be interpreted as a deformation of the

one-soliton potential obtained by varying parameters of the SUSY transformation.

Let us consider a complex one-soliton potential

Vc(x) =
−2a2

cosh2(ax+ c)
, (2.3.35)

defined by the complex transformation function

u(x) = cosh(ax+ c) , α = −a2 , Im c ̸= 0 , Im a = 0 .

The Hamiltonian hc with potential (2.3.35) has a bound state at E0 = −a2. The bound state wave

function is

ϕ−a2(x) =

√
a

2

1

u(x)
.

From theorem 10 one immediately gets:

Kc(x, y; t) =
1√
4πit

e
i(x−y)2

4t +
aeia

2t

4u(x)u(y)
[erf +(a) + erf −(a)] , (2.3.36)

where c = arctanh b2−a2

2iab , Im(b) = 0.

In the case of the time-dependent soliton potential (1.4.6) the eigenfunctions of the symmetry

operator ig0 = L+L + α = (i∂x + λ)2 coincide with plane waves ψk(x, t). Eigenfunctions of

ig1 = LL+ + α are obtained as follows

ϕk(x, t) = (1/
√
k2 + a2)Lψk(x, t) , ϕα(x, t) = N/u∗(x, t) .

We can decompose the transformed propagator in terms of the set {ϕ(x, t)} and rewrite this de-

composition in terms of plane waves

KNs(x, y, t) =

∞∫
−∞

ϕk(x, t)ϕ
∗
k(y, 0)dk + ϕα(x, t)ϕ

∗
α(y)

= LxL
∗
y,t=0

∞∫
−∞

ψk(x, t)ψ
∗
k(y, 0)

k2 + a2
dk + ϕα(x, t)ϕ

∗
α(y) .
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Again we may identify the Green function and the propagator of the free particle thus obtaining

KNs(x, y, t) = LxL
∗
y,t=0I(x, y, t, a) + ϕα(x, t)ϕ

∗
α(y) ,

where integral I has been calculated already in section 2.3.3. The difference with the stationary

case appears from the time-dependent transformation operators. After some algebra we get the

following propagator

KNs(x, y; t) =
1√
4πit

e
i(x−y)2

4t +
aei(a

2−λ2)t−iλ(x−y)

2 cosh[a(x+ 2λ)t] cosh(ay)
−

erfc+(a)e
ia2t

4 cosh[a(x+ 2λ)t] cosh(ay)

(
(a− iλ)e2aλt − iλ cosh[a(x+ y) + 2aλt]− λ2

a
e−a(x−y)

)
−

erfc−(a)e
ia2t

4 cosh[a(x+ 2λ)t] cosh(ay)

(
(a+ iλ)e2aλt + iλ cosh[a(x+ y) + 2aλt]− λ2

a
ea(x−y)

)
,

which approaches to the one-soliton propagator as λ→ 0.
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Chapter 3

SUSY transformations for coupled

channel problems with different

thresholds [6–8]

3.1 Spectral properties of non-conservative multichannel SUSY

partners of the zero potential

It was believed that the SUSY transformations can not introduce a non-trivial coupling between

scattering channels if the initial system (1.1.20) is uncoupled. By trivially coupled scattering and

Jost matrices, we mean non-diagonal matrices which may be diagonalized by energy-independent

transformations. Similarly, a multichannel potential is nontrivially coupled if its matrix cannot be

diagonalized by an r-independent transformation, where r is the radial coordinate. The argument

comes from Amado’s work [86] where the SUSY transformation of S-matrix was obtained. From

the form of this transformation it is clear that matrices S0(k) and S1(k) are coupled or uncoupled

simultaneously. Since there are only a few exactly solvable coupled-channel potentials (especially

with non-trivially coupled channels) the usage of SUSY transformations was significantly limited.

Fortunately, in [48] a new class of non-conservative SUSY transformations was proposed. These

SUSY transformations may relate uncoupled and coupled potentials (and S-matrices) thus return-

ing its power to the method. Recall that the non-conservative SUSY transformations modify the

boundary behaviour of solutions thus radically changing the spectrum of the transformed Hamil-

tonian (see also the single-channel example in section 2.3.1).

To analyze this problem we use analytical expressions for the Jost matrix obtained by SUSY

transformation. The zeros of the Jost-matrix determinant define positions of the bound/virtual

states and resonances [22,23]. Therefore, studying the zeros of the Jost-matrix determinant allows

one to analyze the spectrum of the model. A closed analytical expression of the Jost matrix, as

well as potential, resulting from a non-conservative SUSY transformation of the zero potential is

obtained in [48]. The analysis of spectral properties for such potentials was not presented up to now

despite the fact that the Jost matrix is well known [46]. This may be explained by the fact that the

spectrum of the potential after a non-conservative SUSY transformation changes essentially and to
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find these changes one has to find all the zeros of the Jost-matrix determinant.

The principal point of this section is to show that the qualitative behavior of the spectrum of

the Cox potential constructed in the section 1.4.3 by the non-conservative SUSY transformation

may be studied for an arbitrary number of channels, N . We think this is a very strong result, since

even for the case N = 2 the full analysis of the spectrum is a very complicated problem [5, 6, 46].

The main reason for this is an extremely rapid growth of the order of an algebraic equation defining

the spectrum with the growth of the number of channels. Fortunately, in the two channel case it

is possible to find the exact solution of the spectral problem for the Cox potential [6].

The study of the spectrum for the non-conservative SUSY partner is reduced to the analysis

of the Jost matrix determinant (1.1.31). According to (1.4.15), the roots of equation (1.1.31) are

defined by the roots of

detB(k) = 0 , κj − ikj ̸= 0 , j = 1, . . . , N , (3.1.1)

where

B(k) = w0 − iK . (3.1.2)

In what follows we concentrate on the analysis of the zeros of detB only keeping in mind that some

of them may be cancelled in detF if kj = −iκj . Also it is convenient to introduce special notations

αj for the diagonal and βjl for the off-diagonal entries of w0 (recall, that w0 is the superpotential

at the origin).

Our starting point is thus a system of algebraic equations (3.1.1) and (1.1.24) which reads, with

certain coefficients aji ,

(−i)Nk1k2 . . . kN +
N∑
j=1

ajN−1

N∏
l=1, l ̸=j

kl + . . .+
N∑
j=1

aj1kj + a0 = 0 , (3.1.3)

k2j − k21 +∆j = 0 . (3.1.4)

First we show that system (3.1.3), (3.1.4) can be reduced to an algebraic equation of the N2N−1

degree with respect to one momentum, say k1, only. Indeed, any momentum enters equation (3.1.3)

only linearly. Therefore it can be rewritten in the form

kNP1(k1, . . . , kN−1) = Q1(k1, . . . , kN−1) , (3.1.5)

where P1(k1, . . . , kN−1) and Q1(k1, . . . , kN−1) are polynomials of the first degree in each of the

variables k1, . . . , kN−1. It is important to note that given all momenta k1, . . . , kN−1 this equation

defines kN in a unique way if P1 does not vanish. On the other hand we can square the left- and

right-hand sides of (3.1.5) thus obtaining an equation where kN enters only in the second degree and

polynomials P 2
1 and Q2

1 are polynomials of the second degree with respect to their variables. But

in the equation thus obtained using threshold condition (3.1.4) we can replace all second powers of

the variables kj , j = 2, . . . , N by k21 −∆j , which makes disappear both variable kN and the second

power of kj , j = 2, . . . , N − 1 from the resulting equation and raises the power of k1 till 2N . We

thus see that after these manipulations variable kN−1 enters in the resulting equation only in the

first degree and the equation can be rewritten in form (3.1.5)

kN−1P2(k1, . . . , kN−2) = Q2(k1, . . . , kN−2) , (3.1.6)

where P2(k1, . . . , kN−2) and Q2(k1, . . . , kN−2) are polynomials of the first degree in each of the

variables k2, . . . , kN−2. From (3.1.6), given k1, . . . , kN−2, not a zero of PN−2, we obtain kN−1 in
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a unique way. We note that the system (3.1.6), (3.1.5) and (3.1.4) where from (3.1.4) the last

equation k2N −k21 +∆N = 0 should be excluded, is equivalent to the original system (3.1.3), (3.1.4).

It is clear that we can repeat the above process N − 3 times more to get an equation

k2PN−1(k1) = QN−1(k1) (3.1.7)

and finally

PN (k1) = 0 (3.1.8)

with PN of order N2N−1. Note, that the subscript in Pk and Qk indicates nothing but the step in

this procedure. It is evident that any k1 which (together with k2, . . . , kN ) solves the system (3.1.3),

(3.1.4) is a root of (3.1.8). The converse is also true. Indeed, given a root k1 of (3.1.8), but not a

root of PN−1, we find from (3.1.7) a unique k2. Once we know k1 and k2 we find k3 from equation

previous to (3.1.7) and so on till kN which is found from (3.1.5). It is also clear that in this way

we can get N2N−1 number of sets k1, . . . , kN (some of them may coincide) each of which solves

the system (3.1.3), (3.1.4) so that the same number N2N−1 is the number of possible solutions of

this system and the system (3.1.8), (3.1.7), . . . , (3.1.5) is equivalent to the initial system (3.1.3),

(3.1.4).

3.1.1 Number of bound states

Let us analyze the structure of solutions for equations (3.1.3), (3.1.4) in more details. The aim of

this section is to count the number of the Jost determinant zeros corresponding to the bound states.

Below, wave functions, entries of the Jost and the scattering matrices are considered as functions

of k1. Other momenta are expressed in terms of k1 from the threshold conditions (1.1.24). Since

in this section we are interested in the number of bound states we will consider only the negative

energy semi-axis E ∈ (−∞, 0). It happens to be useful to change variables kj in favor of k̄j as

kj = ik̄j and rewrite the threshold conditions (3.1.4) accordingly

k̄j =
√
k̄21 +∆j , (3.1.9)

where we have chosen only the positive value of the square root since in this section we analyze only

the point spectrum of H, which restricts all momenta kj to be purely imaginary with a positive

imaginary part so that k̄j = |kj |.
From (1.4.15) it is clear that all the zeros of detF are at the same time the zeros of the deter-

minant of matrix B (3.1.2) and vice versa. This follows from (3.1.1) and the positive definiteness

of matrix K − iK in the momenta region we consider so that neither of the roots of det B solves

the equation det(K − iK) = 0.

Since det B =
∏N

j=1 λj where λj are the eigenvalues of B,

B(k̄1)xj(k̄1) = λj(k̄1)xj(k̄1) , (3.1.10)

the equation detB(k̄1) = 0 is equivalent to λj(k̄1) = 0, j = 1, . . . , N . Matrix B is symmetric with

real entries in the momenta region we consider, B = w0 + K̄ = BT , which implies the reality of

both λj(k̄1) and xj(k̄1). Here we introduced a diagonal matrix K̄ = |K| = diag(k̄1, . . . , k̄N ).

Another property of λj(k̄1) important for the analysis is their monotony as functions of k̄1 that

we prove below.
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For a fixed K̄ let us consider a deviation of λj(k̄1) for a small increment of argument k̄1, i.e.

λj(k̄1 + δk̄1) = λj(k̄1) + δλj(k̄1) assuming δK̄ = diag(δk̄1, . . . , δk̄N ) real, positive definite (since

δk̄j > 0, ∀j) and infinitesimal. From (3.1.10) one gets

B(k̄1 + δk̄1)xj(k̄1 + δk̄1) = λj(k̄1 + δk̄1)xj(k̄1 + δk̄1) . (3.1.11)

Here according to (3.1.2) B(k̄1 + δk̄1) = w0 + K̄ + δK̄ and the increment of B(k̄1) is just δB = δK̄

which plays the role of a small perturbation of B(k̄1). Therefore we may calculate the shifting

of the eigenvalues produced by such a perturbation using a (Rayleigh-Schrödinger) perturbation

theory. Thus, for a non-degenerate eigenvalue λj the first order correction reads

δλj = ⟨xj |δB|xj⟩ > 0 (3.1.12)

where the inequality follows from the positive definiteness of δB = δK̄, which in turn implies

monotony of the eigenvalues as functions of the momenta k̄1. For a degenerate eigenvalue cor-

rections are obtained by diagonalizing the same perturbation operator δB restricted to a linear

span of unperturbed eigenvectors corresponding to a given eigenvalue, which still leads to positive

corrections because of positive definiteness of δB.

From here it follows that any eigenvalue λj(k̄1) may vanish i.e. change its sign, only once.

Moreover, λj → k̄j > 0 as k̄1 → ∞. Hence, the number of negative eigenvalues of B at k̄1 = 0,

i.e. at the energy of the lowest threshold, is just the number of bound states. Thus, to count the

number of bound states, nb, one has to consider the eigenvalues λj(k̄1), j = 1, . . . , N of matrix

B(k̄1) at k̄1 = 0,

B(0) ≡ w0 − i diag (i
√
∆j) = w0 + diag(

√
∆j) (3.1.13)

so that

nb =
1

2
(N − Λ) , Λ =

N∑
j=1

Λj , Λj =
λj(0)

|λj(0)|
. (3.1.14)

To clarify this formula we notice that in the absence of bound states all Λj = 1, Λ = N so that

nb = 0. Every bound state is responsible for the change of the sign of only one eigenvalue from

positive to negative thus raising −Λ by 2 units, i.e. −Λ→ −Λ+ 2 with nb → nb + 1. This justifies

the factor 1/2 in (3.1.14).

Summarizing, we see that the number of bound states is bounded by 0 ≤ nb ≤ N . Figure 3.1

shows the eigenvalues of matrix B as functions of k̄1 for the case N = 3. Two eigenvalues cross

the axis which corresponds to the case of nb = 2. The last comment in this section is devoted to

equation (1.4.27). Now it can be seen that the factorization energy should be chosen lower than

the ground-state energy for the transformed potential, E < Eg, if any.

3.1.2 Number of virtual states

According to the definition of a virtual state [22, 23], in this section we will need to consider

the channel wave numbers kj lying both in the positive and the negative imaginary semi-axes

of the corresponding momenta complex planes and consider the full imaginary axis for k1, i.e.

k̄1 ∈ (−∞,∞). The other momenta, k2, . . . , kN , belong to either the positive or to negative parts

of their imaginary axes in agreement with the threshold conditions

k̄j = σj

√
k̄21 +∆j , σj = ± , j = 2, . . . , N . (3.1.15)
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Figure 3.1: Typical behavior of B-matrix eigenvalues, N = 3. The case of two bound states with energies

E1 = −51.8611 and E2 = −8.8852 is presented. The black squares show positions of these bound states.

The corresponding parameters are α1 = −3, α2 = −8, α3 = −1, β12 = 0.5, β13 = 0.4, β23 = 1, ∆2 = 15,

∆3 = 25.

Since in (3.1.15) all combinations of signs are now possible it is convenient to introduce special

notations for these combinations. Denote σ = (+,±, . . . ,±) a string of N signs with σj being

its j-th entry, which corresponds to the sign in (3.1.15) for the j-th momentum for j > 1. The

first symbol ”+” in σ indicates that all momenta k̄j are expressed in terms of k̄1. Let n+(σ) + 1

and n−(σ) be the numbers of ”+” and ”−” signs in this string. We notice the following evident

combinatoric properties of n−(σ) and n+(σ). First, n+(σ) + n−(σ) + 1 = N which implies∑
σ

[n+(σ) + n−(σ) + 1] = N2N−1 . (3.1.16)

Here and in what follows the summation over σ includes all 2N−1 possible sign combinations. Next,

a symmetry between ”+” and ”−” leads to the following relation∑
σ

n−(σ) =
∑
σ

n+(σ) = (N − 1)2N−2 . (3.1.17)

According to (3.1.2) every sign combination leads to its own B matrix defined by the cor-

responding K matrix so that both K and B should carry an additional information about this

combination. Therefore

Bσ = w0 + K̄σ , K̄σ = diag(k̄1, σ2k̄2, . . . , σN k̄N ) (3.1.18)

and we denote λσj (k̄1), j = 1, . . . , N the eigenvalues of Bσ.

In order to find the zeros of the Jost-matrix determinant corresponding to the virtual states we

should find the purely real solutions of the equations λσj (k̄1) = 0, j = 1, . . . , N for all 2N−1 matrices

Bσ. Although the k̄j ’s are real, but bearing in mind our replacement kj = ik̄j , throughout the text

we call these zeros purely imaginary. Finally we note that since matrix K − iK in (1.4.15) is not

positive definite for an arbitrary σ anymore, in some particular cases some of the zeros of B may

be cancelled by the zeros of det(K − iK) and will not correspond to virtual states. Nevertheless,

omitting these particular cases, we will concentrate on an analysis of the zeros of detB only.

Eigenvalues λσj (k̄1) are monotonous functions of k̄1 in two cases only: (i) σ = (+,+, . . . ,+)

and k̄1 > 0; (ii) σ = (+,−, . . . ,−) and k̄1 < 0. In general, an eigenvalue λσj (k̄1) may have

minima/maxima for k̄1 ≶ 0 which may lead to two or even more roots in equation λσj (k̄1) = 0.
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Figure 3.2: Typical behavior of the eigenvalues λσj (k̄1), N = 3, is shown. Each plane corresponds

to a particular choice of string σ: (a) σ = (+ + +), (b) σ = (+ + −), (c) σ = (+ − −), (d)

σ = (+ − +). Stars, squares and circles correspond to the virtual states. Virtual states are

denoted by the identical symbol if they belong to the same eigenvalue λσj (k̄1). The corresponding

parameters are α1 = 3, α2 = 5, α3 = 9, β12 = 0.5, β13 = 0.4, β23 = 0.2, ∆2 = 15, ∆3 = 35.
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We illustrate this behavior for N = 3 in figure 3.2. The monotonous lines in the right/left part of

figure 3.2(a)/(c). correspond to case (i)/(ii). The position of the zeros of the eigenvalues is shown

by stars, squares and circles. It is clearly seen that the total number of the roots of all equations

λσj (k̄1) = 0 is (N2N−1)|N=3 = 12 which all correspond to virtual states.

A change of parameters may result in shifting the position of the virtual states only without

changing the number of zeros (i.e. virtual states). For instance, in the simplest case we may shift

all diagonal entries of w0 by a number λ0, w0 → w0 + λ0I, thus shifting all eigenvalues of B by the

same number, λσj (k̄1)→ λσj (k̄1) + λ0.

Let us consider a specific eigenvalue defined by a string σ0, with a local maximum at k̄1 = k̄1,max,

λσ0
j (k̄1,max) = λj,max. One can always shift all the eigenvalues by the value λj,max such that the

curve λσ0
j (k̄1) touches the k̄1 axis at the point k̄1 = k̄1,max meaning that k̄1,max not only becomes

a root of the equation λσ0
j (k̄1) = 0 but this root is multiple (of multiplicity 2) and by a small

additional change of other parameters it can be split into two simple but complex roots. This

is just in this way two virtual states collapse producing a resonance; a subject which deserves a

special discussion (see the next section). Pairs of virtual states which may collapse are shown in

figure 3.2 by squares and circles.

It is not difficult to convince oneself that for any given βjl the situation when all the zeros of

the Jost-matrix determinant are purely imaginary may be realized by a proper choice of αj . To see

that let us consider the asymptotic behavior of λσj for |k̄1| → ∞, when all off-diagonal entries of B

become negligibly small,

λσ1 ≃ k̄1 + α1 , (3.1.19)

λσj ≃ σj

√
k̄21 +∆j + αj = σj

(
|k̄1|+

∆j

2k̄1
+ . . .

)
+ αj . (3.1.20)

|k̄1| → ∞ . (3.1.21)

Numbers n+(σ) and n−(σ) determine the corresponding numbers of increasing and decreasing

eigenvalues at positive infinity. The eigenvalue λσ1 increases both at negative and positive infinity.

Now if we choose all αj sufficiently large in absolute values and negative we can always guaranty

the location of a root of the equation λσ1 (k̄1) = 0 near the point k̄1 = α1 and at the same time

the location of two roots of the equation λσj (k̄1) = 0 with corresponding σj = + near the points

k̄1 = ±αj . Thus, for each σ we can obtain 2n+(σ) + 1 zeros. The total number nv of these zeros

may be calculated by formulas (3.1.16) and (3.1.17)

nv =
∑
σ

[2n+(σ) + 1] = N2N−1 , (3.1.22)

which coincides with the total number of all possible roots of the system (3.1.3), (3.1.4) and is

just the maximal possible number of virtual states. Hence, in this case all the roots are purely

imaginary. In the next section we consider the case when some of the zeros may merge, become

complex and produce resonances.

3.1.3 Number of resonances

For simplicity, independently on whether or not it can be seen in scattering data, we call any

pair of complex zeros k = ±kr + iki of the Jost-matrix determinant a resonance keeping in mind
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that to be really visible in a scattering a resonance behavior of the corresponding cross-section

should be narrow and sharp enough.

Conservation of the number of zeros of an n-th order algebraic equation under a variation of

parameters included in its coefficients, which keeps unchanged its order (in our case this is equation

(3.1.8) obtained from the system (3.1.3), (3.1.4)) applied to our case leads to the following relation

nb + nv + 2nr = N2N−1, where nb, nv and nr are number of bound states, virtual states and

resonances respectively. The aim of this section is to establish the maximal number of possible

resonances accepted by a non-conservative SUSY-partner of the vanishing potential.

Evidently, the maximal number of resonances corresponds to the minimal number of bound

nb and virtual nv states. These numbers would both become zero if no one of the B matrix

eigenvalues intersected the k̄1 axis. But as it was noticed in the previous section there always exists

an eigenvalue λσ1 with the asymptotic behavior given in (3.1.19), i.e. ranging from −∞ to +∞ and,

hence, it always intersects the k̄1 axis for all possible values of σ. We thus see that the minimal

number of real zeros that all eigenvalues may take is achieved if all eigenvalues λσj (k̄1), j > 1 are

nodeless and curves λσ1 (k̄1) intersect k̄1 axis only once for every given sign combination σ. To realize

this case, we should choose parameters included in w0 in a such way that the global minimum λσj,min

of every eigenvalue λσj (k̄1) with σj = + (they tend to +∞ when |k̄1| → ∞) be positive λσj,min > 0

and, respectively, the global maximum λσj,max of every eigenvalue λσj (k̄1) with σj = − (they tend to

−∞ when |k̄1| → ∞) be negative λσj,max < 0. Under these conditions only eigenvalues λσ1 (k̄1) have

zeros. The possibility that these eigenvalues have only one zero can always be realized. This can

be demonstrated for small enough values of βij (the so called weak coupling approximation, see the

next section) which in the limit βij = 0 for all i, j gives a very simple behavior of the eigenvalues.

For instance, for ∆j+1−∆j large enough and min
j

(
√
∆j+αj) > max

j
(−
√

∆j+αj), the straight line

λσ1 (k̄1) never intersects with the hyperbolas λσj (k̄1) so that small perturbations coming from small

non-zero βjl-values (in a physical terminology, these perturbations shift the zero width resonances

from the real energy axis to the complex plane) do not change the monotonous behavior of λσ1 (k̄1)

and, hence, do not bring additional roots to the equation λσ1 (k̄1) = 0.

Thus, we see that the minimal value of virtual states with the absence of bound states is equal

to all possible sign combinations of σ which is nvmin =
∑
σ
1 = 2N−1. Hence, the maximal possible

number of resonances is obtained by subtracting this number from the total number of solutions,

i.e.

2nr,max = N2N−1 − 2N−1 = (N − 1)2N−1 . (3.1.23)

3.1.4 Weak coupling approximation

For the number of channels N > 2 there is no way to get analytical solutions of system (3.1.3),

(3.1.4), but if the coupling parameters βij are small enough, assuming the analyticity of the roots

of the Jost-matrix determinant as functions of βij , a perturbation technique may be developed.

In this section, we demonstrate this possibility by obtaining first order corrections to unperturbed

values of the roots of the Jost-matrix determinant corresponding to βij = 0.

For the zero coupling, matrix w0 becomes diagonal w0 = diag(α1, α2, . . . , αN ) and the system

84



(4.1.15), (1.1.24) reduces to

(α1 − ik0,1)(α2 − ik0,2) . . . (αN − ik0,N ) = 0 , (3.1.24)

k20,j − k20,1 +∆j = 0 , j = 2, . . . , N , (3.1.25)

where the additional subscript 0 corresponds to the uncoupled case. Its solutions have the form

k
(1,σ)
0,1 = −iα1 , k

(1,σ)
0,m = σm

√
−α2

1 −∆m , m ̸= 1 ,

k
(2,σ)
0,2 = −iα2 , k

(2,σ)
0,m = σm

√
−α2

2 +∆2 −∆m , m ̸= 2 ,

. . .

k
(N,σ)
0,N = −iαN , k

(N,σ)
0,m = σm

√
−α2

N +∆N −∆m , m ̸= N , (3.1.26)

where m = 1, . . . , N . Let us explicitly indicate the meaning of sub- and superscripts in (3.1.26):

the second subscript m in k
(j,σ)
0,m corresponds to the channel, the first superscript j indicates a row

number in (3.1.26) and σ indicates one of all 2N−1 combinations of signs. Thus, we see once again

that the total number of solutions of the system is N2N−1 and it does not depend on whether or

not the coupling is absent. Note that every energy level Ej = −α2
j + ∆j corresponding to a row

in (3.1.26) is 2N−1 fold degenerate. Below we show that under a small coupling every degenerate

level Ej splits in 2N−1 sub-levels and we will find approximate values of the splitting. But the

unperturbed j-th momentum corresponding to this level simply equals k
(j,σ)
0,j = −iαj . Therefore,

instead of our previous convention to express all quantities in terms of k1, it is convenient here to

express corrections to the j-th momentum produced by a perturbation in terms of unperturbed j-th

momentum k̄
(j,σ)
0,j . This is always possible due to the fact that all momenta have equal rights. But

now we have to change our signs convention introduced in section 3.1.2, where the first momentum

k̄1 entered in the string σ always with the positive sign (σ1 = +). Now we have the j-th momentum

k̄j ∈ (−∞,∞) and σj = + in string σ.

From (3.1.26) we learn that no coupling implies no finite-width resonances but as we discuss

below the zeros lying above the first threshold may be associated with zero-width resonances which

acquire a non-zero width under a small coupling.

From the first row of (3.1.26) we conclude that the corresponding 2N−1 zeros with E1 = −α2
1 are

always below the first threshold (bound or virtual states). Energy En = −α2
n +∆n, n = 2, . . . , N ,

may be positive with respect to the first threshold and only these (N −1)2N−1 zeros are associated

with zero-width resonances. According to our convention a resonance corresponds to a pair of

complex zeros. Here we can easily compute the number of the zero-width resonances, nzwr, which

is nzwr = (N − 1)2N−2 which agrees with the maximal number of possible resonances obtained in

the previous section.

The unperturbed Bσ matrix, we denote Bσ
0 is diagonal

Bσ
0 = diag(α1 + σ1k̄1, α2 + σ2k̄2, . . . , αN + σN k̄N ) (3.1.27)

and its eigenvalues λσ0,j coincide with its diagonal entries

λσ0,j(k̄j) = αj + k̄j , λσ0,l(k̄j) = αl + σl

√
k̄2j +∆l −∆j , (3.1.28)

l = 1, . . . , N , l ̸= j . (3.1.29)

For simplicity we assume all coupling parameters βij proportional to the same small parameter

β so that the perturbed Bσ matrix reads

Bσ = Bσ
0 + βB , B = ||bjl|| , bjj = 0 , j = 1, . . . , N . (3.1.30)
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Now, as it was mentioned above, assuming the analyticity of eigenvalues of this matrix as functions

of β, we can develop them in a Taylor series with respect to β,

λ̃σj = λσ0,j + λσ1,j + λσ2,j + . . . , (3.1.31)

where the first subscript number is just the power of β. First we notice that the perturbation B
has zero diagonal entries which results in λσ1,j = 0. To get the second order correction we are using

the usual Rayleigh-Schrödinger perturbation approach which leads to

λσ2,j(k̄j) = β2
N∑

l=1, l ̸=j

b2jl

λσ0,j(k̄j)− λσ0,l(k̄j)
. (3.1.32)

In what follows we also assume that we can neglect the higher-order corrections to the eigenvalues.

Actually, our aim is to find corrections to the unperturbed degenerate j-th Jost-matrix deter-

minant zero given in (3.1.26). Assuming a Taylor series expansions for this root over the small

parameter β indicating it now explicitly

k̄j = k̄
(j,σ)
0,j + βc1 + β2c2 + . . . (3.1.33)

we find coefficients c1 and c2 from the equation

λ̃σj (k̄j) = λσ0,j(k̄j) + λσ2,j(k̄j) = 0 . (3.1.34)

For that we develop λ̃σj (k̄j) in a Taylor series in β parameter considering its β dependence as given

through k̄j and (3.1.33). The term (3.1.32) contains the factor β2, therefore in its denominator we

simply put k̄j,σ0,j instead of k̄j . The k̄j-dependence of the term λσ0,j(k̄j) is given by (3.1.28) and its

β-dependence is obtained via (3.1.33). Thus, the left hand side of equation (3.1.34) is presented as

a series over the powers of β where every coefficient should vanish. This leads to c1 = 0 and

c2 =

N∑
l=1, l ̸=j

b2jl

αl + σl

√
α2
j +∆l −∆j

. (3.1.35)

Finally up to the second order in β we obtain the roots of system (3.1.26)

k
(1,σ)
1 = −iα1 + i

N∑
l=2

β2b21l
αl+σl

√
α2
1+∆l

, k
(1,σ)
m = σm

√(
k
(1,σ)
1

)2
−∆m ,

k
(2,σ)
2 = −iα2 + i

N∑
l=1, l ̸=2

β2b22l
αl+σl

√
α2
2+∆l−∆2

, k
(2,σ)
m = σm

√(
k
(2,σ)
2

)2
+∆2 −∆m ,

. . .

k
(N,σ)
N = −iαN + i

N−1∑
l=1

β2b2Nl

αl+σl

√
α2
N+∆l−∆N

, k
(N,σ)
m = σm

√(
k
(N,σ)
N

)2
+∆N −∆m .

Here each row is obtained by applying equations (3.1.32), (3.1.33), (3.1.34) and (3.1.35) for j =

1, . . . , N , respectively, and m = 1, . . . , N , m ̸= j for each j. The square roots in the last column of

(3.1.36) should be expanded in Taylor series up to β2.

From here it is easily seen that, when α2
m < ∆m, purely imaginary unperturbed zeros km =

−iαm move from the axes to the complex plane due to the real part of corrections. For instance for

k2, the real part reads ±β2
√

∆2 − α2
2/(α

2
1 − α2

2 +∆2). We thus confirmed the previous statement

that zero width resonances acquire non-zero widths.
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3.2 General properties of the 2× 2 Cox potential

3.2.1 Explicit expression of the potential

The two-channel case deserves an additional attention because some analytical results may be

obtained. For N = 2, the arbitrary parameters entering the Cox potential are the entries of the

superpotential matrix at the origin,

w0 =

(
α1 β

β α2

)
(3.2.1)

and the factorization energy E . The corresponding factorization wave number, κ = (κ1, κ2), is

made of two positive parameters κ1 and κ2 which are not independent of each other: they should

satisfy the “threshold condition” [see Eq. (1.1.24)]

κ22 − κ21 = ∆. (3.2.2)

Here and in what follows we put for convenience ∆1 = 0, ∆2 = ∆ > 0.

In terms of these parameters, the necessary and sufficient condition for a regular potential, i.e.,

K + w0 positive definite, can be written for instance

κ1 > −α1, (3.2.3a)

κ2 >
β2

κ1 + α1
− α2. (3.2.3b)

This puts an upper limit on the factorization energy in terms of the parameters appearing in w0.

Two explicit expressions for the superpotential are given in Ref. [49]. Using Eqs. (1.2.21)

and (1.4.21), one gets what is probably the simplest possible explicit expression for the potential

itself:

V1;11 = −8κ1e−2κ1r × (3.2.4a)

x11κ1 +
[
2x11x22κ1 − x212 (κ1 + κ2)

]
e−2κ2r + x22

(
x11x22 − x212

)
κ1e

−4κ2r[
1 + x11e−2κ1r + x22e−2κ2r +

(
x11x22 − x212

)
e−2(κ1+κ2)r

]2 ,

V1;12 = −4x12
√
κ1κ2e

−(κ1+κ2)r × (3.2.4b)

κ1 + κ2 + x11(κ2 − κ1)e−2κ1r + x22(κ1 − κ2)e−2κ2r −
(
x11x22 − x212

)
(κ1 + κ2)e

−2(κ1+κ2)r[
1 + x11e−2κ1r + x22e−2κ2r +

(
x11x22 − x212

)
e−2(κ1+κ2)r

]2 .

The element V1;22 is obtained from Eq. (3.2.4a) by the replacement κ1 ↔ κ2 and x11 ↔ x22. Here,

we have used the symmetric matrix

X0 =

 x11 x12

x12 x22

 , (3.2.5)

which is related to matrix (3.2.1) by Eqs. (1.4.17) and (1.4.18).
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3.2.2 Zeros of the Jost-matrix determinant

The particular case of two coupled channels is important both from the practical and theoretical

point of views. Let us recall the following inequalities for the number of the bound/virtual states

and resonances obtained in sections 3.1, 3.1.2 and 3.1.3: 0 ≤ nb ≤ 2, 0 ≤ nr ≤ 1, 0 ≤ nv ≤ 4.

The same inequalities are obtained for N = 2 in [5, 6] from another approach. The two-channel

problem is the only one where one is able to get analytic expressions for the Jost-determinant roots,

i.e. to solve the direct problem consisting in finding the positions of the bound/virtual states and

resonances. This possibility is based on the fact that the roots of an algebraic equation of the

fourth, (N2N−1)|N=2 = 4, order may be expressed in radicals. Thus we obtain zeros as functions

of parameters defining the potential. One may be interested in solving the inverse problem: to

express parameters of the potential from the knowledge about positions of zeros of the Jost-matrix

determinant. In principle, one may try to inverse radicals, but we propose a more elegant way

below.

The Jost matrix for the Cox potential reads (see also Refs. [46, 48,49])

F1(k, p) =

 k1+iα1
k1+iκ1

iβ
k1+iκ1

iβ
k2+iκ2

k2+iα2
k2+iκ2

 . (3.2.6)

The determinant of the Jost matrix coincides with the Fredholm determinant of the correspond-

ing integral equation [23]; it reads here

f(k1, k2) ≡ detF (k1, k2) =
(k1 + iα1)(k2 + ia2) + β2

(k1 + iκ1)(k2 + iκ2)
. (3.2.7)

In this case, the system of equations (3.1.3), (3.1.4) is significantly simplified

k21 − k22 = ∆, (3.2.8)

(k1 + iα1)(k2 + iα2) + β2 = 0 (3.2.9)

and may be reduced to a single fourth order algebraic equation in k1

k41 + ia1k
3
1 + a2k

2
1 + ia3k1 + a4 = 0 . (3.2.10)

Coefficients ai, i = 1, . . . , 4 (see [6], (33a-d)) read

a1 = 2α1, (3.2.11a)

a2 = α2
2 − α2

1 −∆, (3.2.11b)

a3 = 2[α1(α
2
2 −∆)− α2β

2], (3.2.11c)

a4 = −α2
1(α

2
2 −∆) + 2α2β

2α1 − β4. (3.2.11d)

Taking into account (3.2.9) one can express momentum k2 from the following equation

k2(ik1 − α1) = α2(k1 + iα1)− iβ2 . (3.2.12)

Equations (3.2.10) and (3.2.12) are nothing but system (3.1.8), (3.1.7), . . . , (3.1.5) for N = 2 (see

section 3.1).

We notice that after substitution k1 = iλ, Eq. (3.2.10) becomes an algebraic equation in λ with

real coefficients. Its four roots are thus either real numbers, which correspond to real negative
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Figure 3.3: Geometrical representation of Eqs. (3.2.13a) (first column, solid lines) and (3.2.13b) (first column,

dashed lines), and positions of the corresponding roots of system (3.2.8) in the complex k (second column) and

p (third column) planes. Various values of the parameters α1, α2 are chosen, which imply various numbers of

bound, virtual and resonant states: (a) α1 < 0, α2 < −
√
∆, two bound states (star and diamond), two virtual

states (square and triangle), no resonance; (b) α1 > 0, α2 < −
√
∆, one bound state (star), one virtual state

(square), appearance of a resonance (diamond); (c) α1 > 0, α2 > 0, no bound state, two virtual states (star

and square), one resonance (triangle and diamond, not seen in the first column); (d) α1 > 0, α2 >
√
∆, no

bound state, no resonance, four virtual states. Increase of either α1 or α2 leads to: (a) (thin dashed lines)

disappearance of a bound state; (b) appearance of the resonance.
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energies (bound or virtual states), or mutually-conjugated complex numbers, which correspond to

mutually-conjugated complex energies (resonant states). Basing on this property, we will use in

what follows a geometric representation of the system of equations which allows for a visualization

of the zeros of f(k1, k2) in the parameter space.

Let us first consider bound and virtual states, which correspond to solutions of system (3.2.8)

with k1 and k2 purely imaginary. After substitution k1 = iλ, k2 = iρ, with λ and ρ real, equations

(3.2.8)-(3.2.9) define two hyperbolas in the (λ, ρ)-plane,

ρ2 − λ2 = ∆ , (3.2.13a)

(λ+ α1)(ρ+ α2) = β2, (3.2.13b)

the positions of which are defined by the values of the parameters α1, α2, β and ∆. The roots

of system (3.2.13) that correspond to bound and virtual states are the intersection points of these

hyperbolas. Different possibilities of hyperbola locations are shown in figure 3.3. The solid-line

hyperbola corresponds to the threshold condition (3.2.13a); its semi-major axis is
√
∆ and its slant

asymptotes are given by ρ = ±λ. The dashed-line hyperbola corresponds to Eq. (3.2.13b); its

asymptotes are given by λ = −α1 and ρ = −α2. The abscissa (resp., ordinate) of a crossing point

in the (λ, ρ)-plane gives the position of the corresponding zero on the imaginary axis in the k1-

plane (resp., k2-plane), as shown in the second (resp., third) column of figure 3.3. Bound states

correspond to λ, ρ > 0, i.e., to intersection points laying in the first quadrant of the (λ, ρ)-plane,

while virtual states correspond to intersections in the second, third and fourth quadrants. In both

cases, their energy with respect to the first threshold is given by

E = k21 = −λ2 . (3.2.14)

It is clearly seen on figure 3.3 that the two hyperbolas (3.2.13a) and (3.2.13b) cross in either

two or four points. Moreover, they can have zero, one or two intersections in the first quadrant,

which means that the potential has either zero, one or two bound states. This contradicts Ref. [46],

where it is said that the potential does never support bound states. Since Eq. (3.2.10) is fourth

order, when the hyperbolas cross in four points, the Jost determinant does not have any other

zero; on the other hand, when the hyperbolas cross in only two points, the Jost determinant has

two other zeros, which have to form a mutually-conjugated complex pair, as seen above. This last

case corresponds to a resonance, as illustrated by figure 3.3(c), where the hyperbolas only have

two intersection points in the (λ, ρ)-plane and a pair of complex roots appears in the complex k1

and k2 planes. The potential thus has either zero or one resonance. The intermediate case of three

intersection points for the hyperbolas [figure 3.3(b)] corresponds to the presence of a multiple root

of Eq. (3.2.10), which lies in an unphysical sheet (Imk1 < 0, Imk2 > 0 or Imk1 > 0, Imk2 < 0) of

the Riemann energy surface; this case corresponds to a transition between a one-resonance and a

two-virtual-state situation.

One sees that the parameters α1 and α2 determine the position of hyperbola (3.2.13b) and,

hence, the number of bound states nb (0, 1 or 2) and of resonances nr (0 or 1). Let us now

determine, for fixed values of β and ∆, the domains in the plane of parameters A = (α1, α2)

with constant values of nb and nr. To find domains in A where system (3.2.13) has two complex

conjugated roots (one resonance), we consider the case where the hyperbolas have a common

tangent point, as illustrated by figure 3.3(b). One can see that the decrease of either α1 or α2 leads

to the disappearance of the resonance, while the increase of either α1 or α2 leads to the appearance
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of the resonance. We define the parametric curves [α1(λ0, ρ0), α2(λ0, ρ0)] in plane A by shifting

the tangent point (λ0, ρ0) along the hyperbola ρ2 − λ2 = ∆. These curves limit domains in A with

either zero or two complex roots. To find them, we use the two conditions corresponding to the

common tangent point (λ0, ρ0)

ρ0 =
β2

λ0 + α1
− α2 = ±

√
λ20 +∆, (3.2.15a)

dρ

dλ

∣∣∣∣
λ=λ0

= − β2

(λ0 + α1)2
= ± λ0√

λ20 +∆
. (3.2.15b)

The upper signs correspond to λ0 < 0 (tangent point in the second quadrant) while the lower signs

correspond to λ0 > 0 (tangent point in the fourth quadrant). We can solve system (3.2.15) with

respect to α1 and α2:

α1(λ0) = ± β√
|λ0|

(λ20 +∆)1/4 − λ0 , (3.2.16a)

α2(λ0) = ±
β
√
|λ0|

(λ20 +∆)1/4
+ sign(λ0)

√
λ20 +∆ . (3.2.16b)

It should be noted that the Schrödinger equation with the Cox potential has the following scale

invariance:

α1,2 → γα1,2 , ∆→ γ2∆ , (3.2.17a)

κ1,2 → γκ1,2 , β → γβ , (3.2.17b)

r → r/γ , (3.2.17c)

which leaves ∆d = ∆/β2 invariant. Hence, we may put ∆ = 1 without losing generality. This choice

is equivalent to measuring energies in units of ∆. It is convenient to express equations (3.2.16) in

terms of dimensionless variables αi/β, ∆d = ∆/β2, λ0 → λ0/β:

α1

β
(λ0) = ± 1√

|λ0|
(λ20 +∆d)

1/4 − λ0 , (3.2.18a)

α2

β
(λ0) = ±

√
|λ0|

(λ20 +∆d)1/4
+ sign(λ0)

√
λ20 +∆d. (3.2.18b)

These four solutions [taking into account sign(λ0)] can be considered as four parametric curves in

plane Ã = (α1/β, α2/β), which separate the plane in five regions (one inner region and four outer

regions, see figure 3.4).

In the inner region, the Jost determinant has two complex roots k1,2 = ±kr + iki and, hence,

these values of parameters α1, α2 correspond to one resonance (nr = 1). In this case, we define the

resonance energy with respect to the first threshold, Er, and the resonance width, Γ, by

k21,2 = Er ± iΓ/2 . (3.2.19)

In the four outer regions, the Jost determinant has purely-imaginary roots, hence nr = 0. The

curves in figure 3.4 tend asymptotically to straight lines which are defined as the limits for λ0 → 0

and λ0 → ±∞. As a result, one finds for all branches two horizontal asymptotes α2/β = ±
√
∆d

and three slant asymptotes defined by α2/β = −α1/β (for the curves in the second and fourth

quadrants) and α2/β = −α1/β ± 2 (for the curves in the first and third quadrants, respectively).

Consider now the case where the hyperbolas cross at the point λ0 = 0, ρ0 =
√
∆ [see the thin

dashed lines in figure 3.3(a)]. After a small decrease of either α1 or α2, the number of positive
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Figure 3.4: Parametric curves in terms of dimension-

less parameters defined by Eqs. (3.2.18) in plane Ã =

(α1/β, α2/β) for ∆/β
2 = 1.2. The left-hand-side curves

correspond to the lower signs in the equations, while

the right-hand-side curves correspond to the upper signs.

The number of resonances, nr, is indicated in each do-

main of the plane.

roots, i.e., of bound states, increases by one unit. Hence, assuming λ0 = 0 and ρ0 =
√
∆ in

system (3.2.13), we get the curves

α1

(
α2 +

√
∆
)
− β2 = 0, (3.2.20)

which define three domains in the plane of parameters A, where Eqs. (3.2.13) have different number

of positive roots (see figure 3.5).

One can directly check that the number nb of bound states may be calculated as a function of

the parameters as

nb = 1 +
1

2
(I1 − 1) I2, (3.2.21)

where the quantities

I1 = sign
(
β2 − α1

√
∆− α1α2

)
· 1, (3.2.22a)

I2 = sign(α2 +
√
∆) · 1 (3.2.22b)

may be considered as invariants. For nb = 0, one has I1 = −1 and I2 = 1; for nb = 1, one has

I1 = 1 and I2 = ±1; for nb = 2, one has I1 = I2 = −1.
Let us now summarize our findings on the number of bound states and resonances of the

2× 2 Cox potential, by combining Figs. 3.4 and 3.5 in figure 3.6, where both nb and nr are given

for all the possible regions of plane Ã. The border lines of these regions, as already discussed,

correspond to the parametric curves defined by Eqs. (3.2.16), (3.2.18), and to the curves given by

Eq. (3.2.20). From the asymptotic behavior of these curves, it is easy to see the global structure

of the zones. For instance, for the case of two bound states, the hyperbolas in figure 3.3 have to

have four intersection points, which implies that no resonance is present. This is the reason why

the boundary lines between the zones of bound and resonant states do not cross in the lower-half

Ã-plane. Moreover, one can see that the topological structure of these zones does not depend on

a particular choice of the parameter ∆d = ∆/β2. A change of this parameter only leads to a
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Cox potential with ∆/β2 = 1.2.

93



deformation of zones, namely, the distance between horizontal asymptotes changes, but does not

make any new intersection point or new boundary line appear.

The case of β = 0, ∆d = ∞ corresponds to uncoupled channels. In this case there are no

resonances. Only bound or virtual states located in different channels may appear (see section 3.4).

Up to now, we have excluded the factorization energy from our analysis because Eqs. (3.2.13)

are independent of κ1,2, but conditions (3.2.3) put an upper limit on κ1 (resp. κ2). The allowed

values of κ1 should be such that κ1 >
√
|Eg|, where Eg is the ground state energy if it is present

and Eg = 0 otherwise (for details see Ref. [5]). The necessary and sufficient condition for a regular

potential can thus be simply stated as: the factorization energy should be negative and lower than

the ground state energy, if any.

To conclude our consideration of the zeros of the Jost matrix determinant we note that for

solving a realistic two-channel scattering inverse problem, it is necessary to express the Cox potential

in terms of physical data such as the threshold energy, bound-state energies, resonance energy and

width, or scattering data. While the threshold energy explicitly appears in the expression of the

Cox potential as parameter ∆, the other data are directly related to the positions of the zeros of the

Jost-matrix determinant, as seen above. Ideally, one would thus like to directly express parameters

α1, α2, β, and E , which define the Cox potential, in terms of the roots of Eq. (3.2.10). Certainly,

there exist general formulas for the roots of the fourth-order algebraic equation (3.2.10), but they

are very involved and cannot help much in realizing the above program. Therefore, we propose an

intermediate approach (for detail see Ref. [5]) and with the cold atom in mind, prefer to focus on

the low-energy scattering in the following section.

Let us assume we have found two of the roots of system (3.2.8), (3.2.9) we denote (k
(1)
1 , k

(1)
2 ) and

(k
(2)
1 , k

(2)
2 ), which clearly are functions of parameters α1 and α2. Their dependence on parameters

β and ∆ is not important for the moment, since both β and ∆ assumed to be fixed. Being put

back to (3.2.9) the equation reduces twice to identity for any values of α1 and α2, which we write

as

(k
(1)
1 + iα1)(k

(1)
2 + iα2) + β2 = 0 , (3.2.23)

(k
(2)
1 + iα1)(k

(2)
2 + iα2) + β2 = 0 . (3.2.24)

The reason why we replaced the identity sign by the equality sign is that these equations may be

considered as an implicitly written inverted dependence of α1,2 on the set of parameters k
(1,2)
1,2 . We

may thus fix arbitrary values for k
(1,2)
1,2 and find from (3.2.23), (3.2.24) α1 and α2 in terms of k

(1,2)
1,2

which is a much easier task than finding an explicit dependence of k
(1,2)
1,2 on α1 and α2. For that

we have to solve, e.g. for α1, the following second order equation

α2
1 − α1i(k

(1)
1 + k

(2)
1 )− k(1)1 k

(2)
1 + β2

R1

R2
= 0 , (3.2.25)

with R1 = k
(2)
1 − k

(1)
1 and R2 = k

(2)
2 − k

(1)
2 which easily follows from (3.2.23) and (3.2.24). From

here we find

α1 =
1

2

[
i(k

(1)
1 + k

(2)
1 )±

√
−R2

1 − 4β2R1/R2

]
, (3.2.26)

α2 =
1

2

[
i(k

(1)
2 + k

(2)
2 )∓

√
−R2

2 − 4β2R2/R1

]
. (3.2.27)

The upper (resp., lower) sign in (3.2.27) corresponds to the upper (resp., lower) sign in (3.2.26).

The values of k
(1,2)
1 and k

(1,2)
2 should be chosen so as to warranty the reality of parameters α1,2.
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Table 3.1: Possible mappings between some experimental data and the Cox potential parameters.

Experimental Fixed Free Restrictions

data parameters parameters

∆ , Er , Ei α1 , α2 κ1, β β ≥
√
−krpr

∆ , Eb = −λ2b , Er , Ei α1 , α2 , β κ1 κ1 > λb

∆ , E1,2 = −λ21,2 α1 , α2 κ1, β κ1 > λ2 > λ1

∆ , Eb = −λ2b α2 κ1 , β , α1 κ1 > λb

Once two roots are fixed, (3.2.10) reduces to a second-order algebraic equation Q2(k1) = 0 for

the two other roots k
(3)
1 and k

(4)
1 thus providing an implicit but rather simple mapping between

the roots of system (3.2.8), (3.2.9) and the set of parameters (α1, α2, β). Polynomial Q2(k1) is the

ratio of the polynomial appearing in (3.2.10) and P2(k1) = k21 − k1(k
(2)
1 + k

(1)
1 ) + k

(2)
1 k

(1)
1 , i.e.,

k41 + ia1k
3
1 + a2k

2
1 + ia3k1 + a4 = P2(k1)Q2(k1) .

From here we find, with the explicit expression for coefficients ai, i = 1, . . . , 4 [5],

Q2(k1) = (k1 + iα1)
2 + k1(k

(2)
1 + k

(1)
1 ) +

(2iα1 + k
(2)
1 + k

(1)
1 )(k

(2)
1 + k

(1)
1 ) + α2

2 −∆− k(1)1 k
(2)
1

and, hence,

k
(3)
1 =

1

2

[
∓i
√
−R2

1 − 4β2R1/R2 +
√
D1

]
, (3.2.28)

k
(4)
1 =

1

2

[
∓i
√
−R2

1 − 4β2R1/R2 −
√
D1

]
, (3.2.29)

where D1 = R2
1 + 4β2R2

R1
+ 4k

(2)
1 k

(1)
1 . The sign before the first square root in (3.2.28) and (3.2.29)

should be chosen in accordance with the signs in (3.2.26) and (3.2.27).

To find k
(3,4)
2 we do not need to solve any equation. We simply notice that the equation

detF (k1, k2) = 0 is invariant under the transformation k1 ↔ k2, α1 ↔ α2, ∆ ↔ −∆. This means

that being transformed according to these rules equations (3.2.28) and (3.2.29) give us the k2 values:

k
(3)
2 =

1

2

[
∓i
√
−R2

2 − 4β2R2/R1 −
√
D2

]
, (3.2.30)

k
(4)
2 =

1

2

[
∓i
√
−R2

2 − 4β2R2/R1 +
√
D2

]
, (3.2.31)

where D2 = R2
2 + 4β2R1

R2
+ 4k

(2)
2 k

(1)
2 .

Two initial zeros (k
(1)
1 , k

(1)
2 ), (k

(2)
1 , k

(2)
2 ) and threshold difference ∆ are assumed to be known

from the experiment. For instance, these zeros may correspond to a visible Feshbach resonance or

two bound states. The possible cases for initial data are summarized in Table 3.1. The first row of

Table 3.1 corresponds to the case where the position of the resonance is known (see section 3.3.1

below). The second row corresponds to the case where the positions of both the resonance and one

bound state are known, which allows one to fix a maximal number of parameters. The third row

corresponds to the case where the positions of two bound states are known (see section 3.3.2 below).

The last row corresponds to the special case when only one zero may be fixed from experimental
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data. The free parameters in Table 3.1 allow either isospectral deformations of the potential or

fits of additional experimental data as, e.g., scattering lengths (see e.g. [5, 6]). The restriction on

the factorization energy is deduced from the regularity condition of the potential (1.4.27). The

restriction on the coupling parameter β is explained below (see (3.3.5) in section 3.3.1). Let us now

consider the scattering properties of the Cox potential.

3.2.3 Low-energy scattering matrix for the Cox potential, N = 2

In this section, we analyze the S-matrix given by Eq. (1.1.33) for energies close to the lowest

threshold, the energy of which we have chosen equal to zero. From Eqs. (3.2.6) and (3.2.7), one

finds the Cox-potential S-matrix

S(k1, k2) =
1

f(k1, k2)

 f(−k1, k2) −2iβ
√
k1k2

k21+κ2
1

−2iβ
√
k1k2

k22+κ2
2

f(k1,−k2)

 . (3.2.32)

When the second channel is closed, i.e., for energies 0 < E < ∆, the physical scattering matrix

is just a function S(k, p), which coincides with the first diagonal element of S-matrix (3.2.32). It

reads

S(k1) =
k1 + iκ1
k1 − iκ1

[i(k1 − iα1)(
√

∆− k21 + α2)− β2]
[i(k1 + iα1)(

√
∆− k21 + α2) + β2]

. (3.2.33)

From here one finds the scattering amplitude A(k) = [S(k)− 1]/2ik, which reads

A(k1) =
(α2 +

√
∆− k21 ) (α1 − κ1)− β2

i (k1 − iκ1)
[
i(k1 + iα1)

(√
∆− k21 + α2

)
+ β2

] . (3.2.34)

and the scattering length a = −A(0), which reads

a =
1

κ1
+

√
∆+ α2

β2 − α1

(√
∆+ α2

) . (3.2.35)

From the argument of S(k) = e2iδ(k), one deduces the phase shift δ(k), which reads

δ(k1) = − arctan
k1
κ1
− arctan

k1

(√
∆− k21 + α2

)
β2 − α1

(√
∆− k21 + α2

) . (3.2.36)

One can check on Eqs. (3.2.35) and (3.2.36) that the scattering length is the slope of the phase

shift at zero energy, as it should be. Note that Eq. (3.2.36) is equivalent to

−k1 cot δ(k1) =
aβ(k1)κ1 + k21

κ1 − aβ
, (3.2.37)

where aβ(k1) = α1 − β2/
(√

∆− k21 + α2

)
. In the uncoupled case (β = 0), this expression reduces

to the phase shifts of the simplest Bargmann potential (see e.g. Ref. [23]), which depends on the

parameters κ1 and aB ≡ aβ=0 = α1. Therefore, the Cox potential may be considered as a coupled-

channel deformation of the Bargmann potential, resulting in an energy dependence of one of its

parameters, aB.

The scattering length is an important physical quantity. In many-body theories for instance, it

is often used to describe interactions in the s-wave regime. Let us thus study in detail the scattering

length of the Cox potential, as given by Eq. (3.2.35). When considered as a function of α1,2, it has
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a singularity located at the boundary of the single-bound-state region provided by Eq. (3.2.20).

Such infinite values of the scattering length happen when a zero of the Jost determinant, which

corresponds to an S-matrix pole, crosses the first threshold: a bound state is then transformed into

a virtual state, in agreement with the general theory [23].
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3.3 Examples of Cox potentials

Now we use all the information about the Cox potential to present several exactly solvable

examples which correspond to the different possibilities listed in table 3.1.

3.3.1 Single resonance

A resonance corresponds to a pair of complex roots k
(1)
1 and k

(2)
1 of the Jost-matrix deter-

minant such that ik
(1)
1 and ik

(2)
1 are mutually complex conjugate. Therefore we assume equations

(3.2.8) and (3.2.9) to have two complex roots. Let us define their first-channel components as

k
(1)
1 = kr + iki , k

(2)
1 = −kr + iki , ki ∈ R , kr ∈ R , kr > 0 , (3.3.1)

and write the corresponding energies,
(
k
(1,2)
1

)2
, as Er ± iEi, where we also assume Ei > 0 (which

means that the upper sign corresponds to k
(1)
1 or k

(2)
1 , depending on the sign of ki). We would

like to choose as parameters the threshold difference ∆, as well as the real and imaginary parts

of the resonance complex energy, Er, Ei. As exemplified below, these can correspond to physical

parameters of a visible resonance in some (but not all) cases. In terms of these parameters, kr and

ki are expressed as

kr =
Ei√
2

[√
E2

r + E2
i − Er

]−1/2

, ki = ±
1√
2

[√
E2

r + E2
i − Er

]1/2
. (3.3.2)

In the second channel the roots

k
(1)
2 = pr + ipi , k

(2)
2 = −pr + ipi ,

can be found from the threshold condition yielding

pr = − 1√
2

[√
E2

i + (Er −∆)2 + Er −∆

]1/2
, (3.3.3)

pi = ∓ Ei√
2

[√
E2

i + (Er −∆)2 + Er −∆

]−1/2

. (3.3.4)

The upper (resp., lower) sign in (3.3.2) corresponds to the upper (resp., lower) sign in (3.3.4),

which means that, for a given zero, the signs of ki and pi are opposite. Moreover, equations (3.3.2)

and (3.3.3) show that, for a given zero, the signs of kr and pr are also opposite. This implies

that, for the Cox potential, the complex resonance zeros (or scattering-matrix poles) are always in

opposite quadrants in the complex k1 and k2 planes. This has important consequences for physical

applications: for a resonance to be visible, one of the corresponding zero has to lie close to the

physical positive-energy region, i.e., close to the real positive k1 axis and close to the region made

of the real positive k2 axis and of the positive imaginary k2 interval: [0, i
√
∆]. Consequently, the

only possibility for a visible resonance with the Cox potential is that of a Feshbach resonance, only

visible in the channel with lowest threshold, with an energy lying below threshold ∆. At higher

resonance energies, the corresponding zero is either close to the k1-plane physical region (and far

from the k2-plane one) or close to the k2-plane physical region (and far from the k1-plane one); it

cannot be close to both physical regions at the same time, hence it cannot have a visible impact on

the coupled scattering matrix. Here, we illustrate the case of a visible resonance, which is the most
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Figure 3.7: The Cox potential without bound state and with one visible resonance of energy Er = 0.4 and

width Γ = 0.02, for ∆ = 1 and β = 0.1 (first row, solid lines for V11 and V22 + ∆, dashed line for V12),

with the corresponding partial cross section (second row) and phase shifts (third row) for (a) κ1 = 0.5; (b)

κ1 = 0.7; (c) κ1 = 1.

interesting from the physical point of view. It corresponds to the lower signs in (3.3.2) and (3.3.4),

with a resonance energy Er such that 0 < Er < ∆, and a resonance width Γ = 2Ei such that

Ei < Er.

Note, that for non-zero values of the parameters kr and pr (which have opposite signs), the

coupling parameter β cannot be infinitesimal: because α1 and α2 have to be real, β is restricted to

satisfy the inequality

β ≥
√
−krpr . (3.3.5)

To get a potential with one bound state at energy −λ2b , we choose the lower signs in (3.2.26),

(3.2.27). We then get for k
(3)
1 (β) an expression similar to (3.2.28), (3.2.29), from which the value

of β can be found by solving the bi-squared equation k
(3)
1 (β) = iλb.

Let us now choose explicit parameters. First, we put ∆ = 1. To get a visible resonance, we

put Er = 0.4, Ei = 0.01 (which corresponds to a resonance width Γ = 0.02), and β = 0.1. Using

(3.2.26), (3.3.1) and (3.3.2), one finds α1 = 0.76938 and α2 = −0.766853 (we choose the upper

signs (3.2.26), (3.2.27)). The factorization energy, E , is not constrained in this case: it just has

to be negative. The Cox potential with one resonance and two virtual states Ev1 = −0.560473,
Ev2 = −0.599544 is shown in the first row of figure 3.7.

The diagonal elements of the potentials, V11 and V22 + ∆, are plotted with solid lines, while

V12 is plotted with dashed lines. Parameter κ1 is responsible for the isospectral deformation of the

potential which results in the behavior of the phase shifts. The second row of figure 3.7 shows the

corresponding partial cross sections, where the resonance behavior is clearly seen, as well as the

evolution of the low-energy cross section, which is related to the scattering length. The last row of
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Figure 3.8: The Cox potential (solid lines for V11 and V22 +∆, dashed line for

V12) with two bound states at energies E1 = −0.01 and E2 = −2.25, for ∆ = 1,

β = 0.1 and κ1 = 1.51. The left (resp., right) graphic corresponds to the upper

(resp., lower) signs in (3.2.26) and (3.2.27).

figure 3.7 shows the corresponding phase shifts for the open channel, where a typical Breit-Wigner

behavior (see e.g. Ref. [22]) is seen for the resonance, as well as the evolution of the zero-energy

phase-shift slope, which is also related to the scattering length.

3.3.2 Two bound states

Let us now construct a Cox potential with two bound states, and hence no resonance (see

figure 3.6). We choose k
(1)
1 = 0.1i and k

(2)
1 = 1.5i for these bound states and, as in the previous

example, we put ∆ = 1 and β = 0.1. We thus have k
(1)
2 =

√
1.01i and k

(2)
2 =

√
3.25i, which defines

R2 in (3.2.26), (3.2.27). Choosing the upper signs in these equations, we find α1 = −0.112649
and α2 = −1.79557, while for the lower signs, we get α1 = −1.48735 and α2 = −1.0122. The

corresponding Cox potentials are shown in figure 3.8.

100



3.4 Two-channel model of alkali-metal atom-atom collisions in the

presence of a magnetic field

3.4.1 Magnetic Feshbach resonance

Ultra-cold collisions of alkali-metal atoms play a key role in applications of laser cooling such as

Bose-Einstein condensation and BEC-BCS crossover [12–14,142]. The analysis of such collisions is

commonly based on the coupled-channel method [143], i.e., on solving numerically a set of coupled

differential equations.

In this section we reduce the low-energy scattering problem of two alkali-metal atoms to an

effective two-channel problem with a single Feshbach resonance, as in Ref. [142]. The model consists

of a single closed channel Q containing a bound state, which interacts with the scattering continuum

in the open channel P , so that the whole scattering problem is reduced to the two-channel scattering

described by the 2× 2 Hamiltonian

H = − d2

dr2
+

(
VP (r) Vint(r)

Vint(r) VQ(r)

)
, (3.4.1)

where VP is the uncoupled open-channel potential, VQ is the uncoupled closed-channel potential,

and potential Vint describes the coupling between the open and closed channels P and Q. These

channels describe atoms placed in a magnetic field and occupying different energy sub-levels which

can be shifted with respect to each other with the change of the magnetic field (Zeeman effect).

For each value of the magnetic field, the zero of energy is chosen as the energy of the dissociated

atoms in channel P .

Even in the simplest case of a homogeneous magnetic field, the potential-energy matrix of

Hamiltonian (3.4.1) depends on the magnetic field. We will assume that the external field changes

slowly enough so that we can take advantage of the adiabatic approximation, assuming that the

stationary Schrödinger equation may be applied for describing the scattering process and the mag-

netic field enters the Hamiltonian as a parameter only. Moreover, the known observation that,

when the scattering length is much larger than the range of the interaction, the general behavior

of the system is nearly independent of the exact form of the potential [144], suggests us to use

the Cox potential with large scattering length for describing the interatomic scattering. We thus

replace the potential matrix in Eq. (3.4.1) by the Cox potential. In this case, the parameters of the

Cox potential should carry a dependence on the magnetic field. Below, we show that, to get a good

agreement with available experimental data, it is sufficient to impose a linear field dependence on

the threshold difference ∆ only, keeping all other parameters field independent. Thus, inverting

known scattering experimental data, one can find all the parameters defining the Cox potential,

obtaining in this way a simple analytical model of the atom-atom scattering process in the presence

of a magnetic field.

The position of the highest bound (or virtual) state is crucial in describing the resonance

phenomena of interatomic collisions. In an s-wave single-channel system, the scattering process

becomes resonant at low energy when a bound state or virtual state is located near the threshold,

a phenomenon known as “potential resonance”. In a multichannel system, the incoming chan-

nel (which is always open) may be coupled during the collision process to other open or closed
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channels, corresponding to different spin configurations. When a bound state in a closed channel

lies near the collision energy continuum, a Feshbach resonance [145, 146] may occur, giving rise to

scattering properties that are tunable by an external magnetic field. In Ref. [147], some interesting

examples of the interplay between a potential resonance and a Feshbach resonance are considered.

Below, we adjust the analytically-solvable model based on the Cox potential for describing the

same phenomena.

Typically, the coupling between the closed and open channels is rather small; we thus consider

first an uncoupled limit of the Cox potential, i.e., Vint(r)→ 0, which corresponds to β → 0. In this

case, the Jost determinant (3.2.7) has the following zeros:

k
(1)
1 = −iα1 (3.4.2)

and

k
(2)
2 = −iα2. (3.4.3)

According to Eq. (3.2.14), the energies of these unperturbed (i.e., with zero coupling) states (called

bare molecular states in Ref. [147]) with respect to the first threshold are

E1 = −α2
1 (3.4.4)

and

E2 = −α2
2 +∆ . (3.4.5)

It should be noted that in this case EP belongs to channel P while EQ belongs to channel Q. Hence,

α1 is associated with the potential resonance, while α2 is associated with the Feshbach resonance.

Due to the Zeeman effect, the difference between the thresholds is a linear function of the magnetic

field,

∆(B) = ∆0 + µmag(B −B0), (3.4.6)

where B0 can be arbitrarily chosen in the domain of interest and ∆0 is the value of the threshold

corresponding to B0. If α1,2 < 0 and the coupling is absent, then the two bound states cross at

∆ = α2
2 − α2

1. Note that EQ crosses the threshold at ∆ = α2
2. When there is a coupling between

channels, the levels EP and EQ avoid crossing (see below).

Let us consider the behavior of the scattering length in the presence of the Feshbach resonance.

It is described by the following formula [15]:

a = abg

(
1− ΓB

B −B0

)
. (3.4.7)

Here, B0 is the position of the magnetic Feshbach resonance and ΓB is its width (in terms of

magnetic field).

In particular, Eq. (3.2.35) shows that such an infinite value of the scattering length occurs for

the Cox potential at a threshold ∆0 defined by:√
∆0 =

β2 − α1α2

α1
. (3.4.8)

Let us now assume for the Cox potential a threshold difference given by Eq. (3.4.6) with such a

value of ∆0. Expanding Eq. (3.2.35) near this resonance one gets

a =
α1 − κ1
α1κ1

(3.4.9)

×

1 +
2
[
1 + ∆−∆0

2∆0
+ . . .

]
κ1
√

∆0

(√
∆0 + α2

)
(α1 − κ1) (∆0 −∆)

 .
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Figure 3.9: Energies of bare (dashed lines) and dressed (solid lines) states as functions of the magnetic field

B for the Cox potential defined by parameters (3.4.12). The transition between a Feshbach resonance, a

virtual state, and a bound state is shown in the inset for the • solid line. The dressed ground state is shown

by the �solid line.

ΓB =
2κ1
√
∆0

(√
∆0 + α2

)
µmag (α1 − κ1)

. (3.4.10)

As shown in Ref. [147], the background scattering length abg is due to the open-channel potential.

Indeed, equations (3.4.7) and (3.4.9) show that, for our model, abg = lim
β→0

a. When there is a bound

state or virtual state close to threshold, it can be further decomposed as a sum of two contributions:

a standard potential part, which depends on the potential range, and a potential-resonance part,

which depends on the bound/virtual-state energy. This decompostion clearly appears in our model:

abg =
1

κ1
− 1

α1
, (3.4.11)

where the first term is proportional to 1/κ1, the parameter which defines the range of the open-

channel potential [see Eqs. (3.2.4)]; it may thus be considered as the standard potential part of

the background scattering length. The second term is associated with the P -channel bound (or

virtual) state in the uncoupled limit. Hence, it may be interpreted as the potential-resonance part

of the background scattering length. Let us further consider two different possibilities giving rise

to a large (either positive or negative) background scattering length. By that we want to study,

with the exactly solvable model, examples of general phenomena described in [147].

3.4.2 Interplay between a bound state and the Feshbach resonance

The first possibility occurs when the highest bound state is located near the threshold, i.e.,

when α1 . 0. In figure 3.9, we show energies as functions of the magnetic field when channel P
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Figure 3.10: The Cox potential defined by parameters (3.4.12) for B = 0.1; VP and VQ +∆ are represented

by solid lines, Vint by a dashed line.

has a bound state just below the threshold, for

β = 0.05, (3.4.12a)

α1 = −λb = −0.103, (3.4.12b)

α2 = −0.5, (3.4.12c)

κ1 = 1. (3.4.12d)

Without coupling between the channels (β = 0), the energies E = k21 of the bare bound states

with respect to the first threshold are shown in figure 3.9 by the dashed horizontal [see Eq. (3.4.4)]

and slanted [see Eq. (3.4.5)] lines respectively, as functions of the magnetic field B. We are using

arbitrary units and choose ∆(B) = 0.35−B in Eq. (3.4.6).

For the coupled case, the B-behavior of the (dressed) ground state is shown by the solid line

and it now avoids crossing with the (dressed) excited state (cf. [147]) which is shown by the • solid
line.

For the fields B > 0 and till a value B = B1 (which we define below), the excited bare state

in Q-space becomes a resonance and the corresponding Jost determinant zero shifts from the real

axis in k-plane to the lower half of the complex k-plane and from the imaginary axis in p-plane it

shifts to the upper half plane. Recall that, according to our convention (3.2.19) we show the real

part of k2 for the resonance in figure 3.9, which may be negative. For any complex zero of the Jost

determinant there exists another zero with the opposite sign of the real part. With the growth of

B these two zeros move towards each other approaching the imaginary axis from different sides

where they merge thus defining the point B = B1 = 0.12. At this point the zeros become purely

imaginary [• and ◦ in figure 3.11 (c), (d), (e) ] which corresponds to appearance of two virtual

states and the discontinuous slope of the real part of the energy clearly visible in figure 3.9. With

further increasing of the magnetic field, one of these virtual states (• solid line in figure 3.9 and •
in figure 3.11) tends to the threshold, while the other virtual state (not represented in figure 3.9,

◦ in figure 3.11) goes down along the imaginary axis. At B0 = 0.124, the virtual state crosses the

threshold and becomes a bound state; the scattering length thus goes through infinite values at

that field: this is the magnetic-Feshbach-resonance phenomenon itself. Above B0, the model has

two bound states, the energies of which tend to the bare-state energies when the field continues to

increase.

Following Ref. [147], we stress that, although the behavior of the dressed states shows some

resemblance with the two-level Landau-Zener description [148], this model does not include the
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Figure 3.11: Phase shifts and graphical representation of Eqs. (3.2.13) for the Cox potential defined by

parameters (3.4.12). The �corresponds to the position of the dressed ground state. The • corresponds to

the virtual state which transforms into a bound state. The ◦ corresponds to the virtual state. The columns

correspond to different values of the magnetic field: (a) B = 0.05; (b) 0.1; (c) 0.1235; (d) 0.125; (e) 0.24.

threshold effects shown in figure 3.9 and, hence, cannot be used to properly describe the interplay

between a potential resonance and a Feshbach resonance. With respect to Ref. [147], our model

displays a slightly more sophisticated behavior for the state energies (compare our figure 3.9 with

their figure 4). A more significant novelty of our description is the direct knowledge of the coupled-

channel potential corresponding to these energies. This potential is shown in figure 3.10 for B = 0.1.

The potential form factor changes slowly with the change of the magnetic field, which is mainly

responsible for the variation of ∆.

The value of κ1 chosen in Eq. (3.4.12d) is arbitrary. However, the necessary and sufficient

condition to get a Cox potential without singularity imposes then that the bound-state energies of

the model should be larger than −1. Figure 3.9 shows that this condition will be satisfied for a

limited range of magnetic field only. For higher fields, a larger κ1 should be chosen.

The phase shifts of the same Cox potential, as well as a graphical representation of Eqs. (3.2.13),

are shown in figure 3.11 for different values of B. The first and the last columns correspond to a

large positive background scattering length (abg ∼ 1/λb ≈ 10), due to a bound state close to the

threshold.

Physically, this occurs for the 133Cs atom-atom interaction [149], for instance. Figure 3.11(b)

illustrates the case where the scattering length is close to zero. The calculation or measurement of

the zero of the scattering length plays an important role in determining the resonance width [150].

The phase-shift behavior for the virtual state and bound state close to threshold is shown in

figures 3.11(c) and 3.11(d), respectively. In this case, the scattering length is very large and its

sign changes while the energy of the zero of the Jost-matrix determinant crosses the threshold.

Recalling that the intersection points in the graphical representation of Eqs. (3.2.13), shown in

the second row of figure 3.11, give the positions of bound and virtual states, one may establish a

correspondence between the second row of figure 3.11 and the motion of the corresponding zeros

in the complex plane described above.

3.4.3 Interplay between a virtual state and the Feshbach resonance

Another interesting possibility occurs when there is a virtual state close to the threshold, i.e.,

when α1 & 0. This is the case of the 85Rb atom-atom interaction, for example. We will use

rubidium scattering data [147, 151] in this example, and work with units ~ = 2µ = 1, where µ

is the reduced mass of the two atoms. The length unit is chosen as the Bohr radius a0; energies
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are thus expressed in units of a−2
0 . According to Ref. [147], the bare virtual state is located at

λv = −1.78 · 10−3a−1
0 , but this value is associated with the model they used in their calculations.

We just consider λv ∼ −10−3a−1
0 and set Eq. (3.4.11) as a constraint between α1 = −λv and κ1.

In order to fit the scattering-length behavior (3.4.7) with abg = −443 a0, B0 = 15.5041 mT and

ΓB = 1.071 mT, we use Eq. (3.2.35).

The value of β defines, in particular, the position of the Feshbach resonance, i.e., the magnetic

field B0 for which the bound state crosses the threshold. According to Eq. (3.2.20), one has

β =

√
α1

(
α2 +

√
∆0

)
, (3.4.13)

where ∆0 is the value of the threshold corresponding to B0. The value of α2, defining the width of

the Feshbach resonance ΓB, should be found from the condition a(B0 + ΓB) = 0. Then, according

to Eq. (3.2.35), we find

α2 =
α1

[√
∆(B0 + ΓB)−

√
∆0

]
κ1

−
√

∆(B0 + ΓB), (3.4.14)

where ∆0 = 2471.386 MHz and µmag = −36.4 MHz/mT [147]. To get that value of ∆0, we have

used the known value of the threshold at zero magnetic field [151] and assumed that Eq. (3.4.6) is

valid down to that field.

From Eq. (3.4.11), we may fix κ1 = α1/(1 + αbgκ1) at abg = −443 a0 and find the values of

all parameters defining the potential at the given position of the Feshbach resonance and with the

given value of the background scattering length:

β = 0.0202366 a−1
0 , (3.4.15a)

α1 = −λv = 2.2 · 10−3 a−1
0 , (3.4.15b)

α2 = −0.239343 a−1
0 , (3.4.15c)

κ1 = 0.0866 a−1
0 , (3.4.15d)

κ2 =
√
κ21 +∆ =

√
0.0789668− 0.856899B a−1

0 . (3.4.15e)

The value α1 = 2.2 · 10−3 a−1
0 was chosen to get a smooth potential VP without repulsive core.

This potential is shown in figure 3.12 and, once again, has a form factor rather independent of the

field, except for the threshold.

In figure 3.13, we show that, with these parameters, the Cox-potential scattering length (3.2.35)

reproduces the Feshbach-resonance scattering length (3.4.7) with good precision.

The behavior of the phase shifts in the region with the resonant and virtual states is shown in

the first row of figure 3.14. A similar discussion to that of figure 3.11 can be made here, except

that here the large negative background scattering length results in a large positive slope for the

phase shift at the origin.

Exactly at B0 = 15.5041 mT, when the bound state transforms into a virtual state, the phase

shift starts from π/2. The second row of figure 3.14 shows the corresponding behavior of the bound-

and virtual-state zeros on the wave-number imaginary axes, confirming the above analysis.

Similarly to the interplay between the ground state and the Feshbach resonance discussed in

detail in the previous section, figure 3.15 shows the interplay between the virtual state and the

Feshbach resonance, where the corresponding energies E = k2 are plotted as functions of the

magnetic field B (as in the previous section, for the resonance we show Re k2 in figure 3.15). The
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Figure 3.12: The Cox potential describing the Feshbach resonance in 85Rb, defined by parameters (3.4.15),

plotted at B = 14.5 mT (∆ = 0.0590363 a−2
0 ).

Figure 3.13: Solid line: Feshbach-resonance scattering length (3.4.7) for the 85Rb

parameters [147, 151]. Dots: Cox-potential scattering length (3.2.35) for the pa-

rameters (3.4.15).
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Figure 3.14: Phase shifts and graphical representation of Eqs. (3.2.13) for the Cox potential defined by

parameters (3.4.15). The symbols •, ◦ and � label positions of the Jost-determinant zeros. The columns

correspond to different values of the magnetic field: (a) B = 14.454 mT; (b) 15.504 mT; (c) 15.854 mT ;

(d) 19.0 mT. In the last column, ◦ and �correspond to the zeros which are not visible in that scale.

bare bound state of channel Q is represented by the slanted dashed line. The bare virtual state

of channel P , which is located at λv = −2.2 · 10−3 a−1
0 , is not shown in figure 3.15. The dressed

states are indicated by solid lines. When B < B0 = 15.5041 mT, there exist both a virtual state

[ in figure 3.14 (a)] and a Feshbach resonance, the energies of which tend to the bare-state energies

for small B. The virtual state becomes a bound state at B = B0 [see solid line in the inset in

figure 3.15 and figure 3.14 (b)]. With increasing B, the real part of the resonance energy decreases

and at B = 16.657 mT it crosses the threshold. Finally, at B = 16.9 mT, the two resonance

zeros collapse and produce two virtual states, one of which stabilizes at λv = −2.2 · 10−3 a−1
0 (• in

figure 3.14, the other one has a much larger negative energy and is not represented, as it does not

affect the low-energy scattering properties). The behavior of the curves in figure 3.15 is very similar

to those of figure 3.9, in particular regarding the transformation of the Feshbach resonance into a

virtual state. The only difference between the present case (avoided crossing between a virtual state

and a Feshbach resonance) and the previous case (avoided crossing between a bound state and a

Feshbach resonance) is that here a virtual state transforms into a bound state before the crossing,

while there a virtual state transforms into a bound state after the crossing. Another interesting

comparison is between our figure 3.15 and figure 5 of Ref. [147]; it would be instructive to perform

a detailed comparison of the two models to explain the differences between these two figures.

As for the interplay with a bound state, figure 3.15 also shows some limit on the range of

magnetic field on which our model can be used: since κ1 is fixed in Eq. (3.4.15d) and the bound-

state energy should be larger than −κ21 ≈ −0.0075a
−2
0 (otherwise the potential becomes singular

for some value of r), the field should be lower than 24.5 mT.
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Figure 3.15: B-dependence of the energies of the bare (dashed lines) and dressed (solid lines) states for the

Cox potential defined by parameters (3.4.15). The � solid line corresponds to the transformation from the

virtual into the bound state. The • solid line corresponds to the transformation from the resonance into the

virtual state.
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Chapter 4

SUSY transformations for coupled

channel problems with equal

thresholds

[9, 10]

The exactly solvable two-channel potentials with equal thresholds are of interest due to their

possible applications. For instance, following two-channel sectors appear in the neutron-proton

scattering: 3S1−3D1,
3 P2−3F2, . . ., [152]. There are two possible strategies to restore the interaction

potential from the scattering data. Using some conjectures about the possible shape of the potential

one may fit some free parameters to reproduce the scattering data. Obviously, a high accuracy of

the fitting procedure requires a sufficiently large number of free parameters. An alternative way

is to use the inverse scattering method which allows one to construct the interaction directly from

the scattering data. In particular, using the integral transformations (Gelfand-Levitan approach)

Newton and Fulton [152] constructed a three-parameter phenomenological neutron-proton potential

fitting low-energy 3S1−3D1 scattering data. It would be interesting to extend this result by enlarging

the number of parameters to fit scattering data on a wider energy range; however, the method based

on integral transformations is rather involved and therefore quite difficult to generalize. Using the

Marchenko equation, the results of Newton and Fulton were nevertheless partially reproduced and

improved by von Geramb et al [44]. More precisely, the potential constructed in [44] reproduces

the same scattering matrix as the Newton-Fulton potential. Nevertheless, the two potentials differ

from each other. Other potentials constructed by Marchenko inversion, which are compatible with

modern scattering data, contain a large number of parameters.

Our hope that the SUSY technique may be efficient for the multichannel Schrödinger equation

is based on the well known equivalence between SUSY transformations and the integral transfor-

mations of the inverse scattering method for single-channel problems [81,85,153,154]. Due to this

equivalence, one can use chains of first-order SUSY operators for constructing a Hamiltonian with

given scattering properties [83,84]. In particular, we believe (and argue why in the present chapter)

that the inverse scattering problem may be treated by the conservative SUSY transformations only.

As in the case of different thresholds the initial potential is restricted to be the zero potential for

simplicity.
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Zero potential is, of course, decoupled, therefore coupling should follow from the inversion

procedure. In the current chapter, with the equal threshold inverse problem in mind, we firstly

concentrate on the necessary ingredients for a single conservative SUSY transformation to gen-

erate coupled scattering matrices, starting from a decoupled potential. We will show that, such

a transformation introduces bound and virtual states at the same energy and we calculate their

degeneracy. Next, we discuss the possibility to get a trivially or non trivially coupled scattering

matrix when both the potential and Jost matrix are non trivially coupled. We will be able to answer

the following questions: does a non trivial coupling of the potential imply a non trivial coupling of

the scattering matrix? Does a non trivial coupling of the Jost matrix imply a non trivial coupling

of the scattering matrix?
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4.1 First order SUSY transformations

4.1.1 Coupling SUSY transformation

In the most general case the transformation function may be expressed in terms of the Jost

solutions as follows

uc(r) = fd(−iκ, r)C + fd(iκ, r)D , (4.1.1)

where the real constant matrices C and D should satisfy to equation (1.2.25). Their canonic form

is given in (1.2.26). Here and in what follows subscripts d and c stand for quantities related with

diagonal (uncoupled) and non-diagonal (coupled) matrices, respectively.

We need the asymptotic behaviour of the superpotential wc∞ := lim
r→∞

wc(r) to find the trans-

formed Jost solution and, hence, the Jost and scattering matrices. As it was shown in [49] for

different thresholds, this behaviour of the superpotential depends crucially on matrix C. Below we

shortly discuss the method developed in [49] while making necessary changes to adjust it for the

case of equal thresholds.

The asymptotic matrix wc∞ is determined by the behaviour of transformation function (4.1.1)

at large distances

uc(r →∞)→ A

(
IMe

κr 0

0 IN−Me
−κr

)
, A =

(
IM −QT

Q IN−M

)
. (4.1.2)

From (1.2.23) and (4.1.2) we obtain

wc∞ = κA

(
IM 0

0 −IN−M

)
A−1 (4.1.3)

with

A−1 = AT

(
IM +QTQ 0

0 IN−M +QQT

)−1

. (4.1.4)

Comparing this result with that obtained in [49], we conclude that the main difference between

equal and different thresholds is the non-diagonal character of the superpotential at infinity. Note

that superpotential wc∞ has a richer structure than that previously reported by Amado et al [87].

Their result corresponds to the choice M = 1 when wc∞ is expressed in terms of a single (N − 1)-

vector Q = (q1, . . . , qN−1)
T .

Once wc∞ is determined one can calculate the Jost solution fc(k, r) and the Jost matrix Fc(k)

for the transformed potential Vc using (1.2.27) and (1.1.28), respectively.

In order to find the Jost matrix, we first consider the behaviour of the superpotential in a

vicinity of r = 0 which depends on the character of the transformation solution (4.1.1). Below

we will assume that there is no bound state at the factorization energy, detFd(iκ) ̸= 0, and each

column of the transformation solution is singular at the origin. Using the property

fd(−k, r → 0) = fd(k, r → 0)Fd(−k)F−1
d (k) + o(rν) (4.1.5)

which follows from (1.1.28) and the invertibility of Fd(iκ), one finds the behaviour of the transfor-

mation solution at the origin,

uc(r → 0) = fd(iκ, r)[Fd(−iκ)F−1
d (iκ)C +D] + o(rν) . (4.1.6)
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We assume

det
(
Fd(−iκ)F−1

d (iκ)C +D
)
̸= 0 , (4.1.7)

which can always be provided by a proper choice of matrices C and D. The leading term of the

superpotential at r → 0 reads

wc(r → 0) = −r−1ν + o(1) , νj > 0 , (4.1.8)

where we used the Laurent series for the Jost solution

f(k, r) = r−ν(2ν − 1)!!F T (k) + r−ν+1b1(k) + o(r−ν+1) . (4.1.9)

It follows from (1.1.23) and the Schrödinger equation that b1(k) = 0. We note the diagonal character

of superpotential (4.1.8) at the origin. The singularity at the origin of the transformed potential,

Vc(r → 0)→ r−2ν̃(ν̃ + 1) = (Vd − 2w′
c)|r→0 = r−2ν(ν − 1), (4.1.10)

decreases by one unit, ν → ν̃ = ν−1. Hence we can apply our coupling transformation to potentials

for which matrix ν is positive definite, ν > 0, a property we will assume to hold throughout the

paper.

The Jost matrix can be obtained from expression (1.1.27) of the regular solution φc(k, r) corre-

sponding to Vc. The regular solution of the transformed potential φc(k, r) is determined by (1.1.25)

with the singularity parameter ν̃. To derive it, we act on both sides of expression (1.1.27) of the reg-

ular solution φd(k, r) for potential Vd with the transformation operator Lc. From (1.1.25), (1.2.20)

and (4.1.8), it follows that

Lcφd(k, r) = −φc(k, r). (4.1.11)

Taking into account (1.2.27), we rewrite (4.1.11) as

φc(k, r) = −
i

2k
[fc(−k, r)(wc∞ + ikIN )Fd(k)− fc(k, r)(wc∞ − ikIN )Fd(−k)] . (4.1.12)

Comparing (1.1.27) and (4.1.12) we find a relation between the initial and transformed Jost matrices

Fc(k) = −(ikIN + wc∞)Fd(k) . (4.1.13)

For M = 0 and M = N , Q is absent and A = IN in (4.1.3). When M = N , the superpotential

at infinity (4.1.3) becomes proportional to the identity matrix, wc∞ = κIN . The transformed Jost

matrix (4.1.13) becomes diagonal. Similarly, the case M = 0 leads to wc∞ = −κIN . From here

we draw an important conclusion. The necessary (but not sufficient) condition for a non-trivial

coupling in the Jost and hence scattering matrices is 0 < M < N . This will be assumed in the

following.

As already mentioned, a non-trivial coupling in the Jost matrix requires not only a non-diagonal

Jost matrix, but also the impossibility to diagonalize this matrix by a k-independent transforma-

tion. It is clear that matrix ikIN + wc∞ from (4.1.13) can be diagonalized by a k-independent

transformation. When Fd is not proportional to the identity matrix, channels in Fc(k) are cou-

pled in a non-trivial way. Nevertheless, this property does not guarantee the non-triviality of the

S-matrix. As it follows from definition (1.1.33), the S-matrix will be trivially coupled when the

product Fd(−k)F−1
d (k) is proportional to the identity matrix, i.e. when

Fd;j(k) = |Fd;j(k)|e−iδ(k) ⇒ Sd;j(k) = (−1)lje2iδ(k) ,

j = 1, . . . , N . (4.1.14)
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In particular, if all single-channel potentials have the same S-matrix, i.e. if they are phase equivalent

[94] or isophase [96], the S-matrix resulting from a SUSY transformation keeps being trivially

coupled. When the initial S-matrix is not proportional to the identity matrix, one may expect

non-trivially coupled channels.

The analytic expression (4.1.13) for the Jost matrix allows us to study the spectral properties

of the transformed potential (1.2.21) [7]. The positions of the bound/virtual states and resonances

are defined as the solutions of detFc(k) = 0. As it follows from (4.1.13) and (4.1.3), the Jost-matrix

determinant is given by

detFc(k) = (−1)N (ik + κ)M (ik − κ)N−MdetFd(k) (4.1.15)

since wc∞ has the M fold degenerate eigenvalue κ and the N −M fold degenerate eigenvalue −κ.
Therefore, if detFd(k) has no pole at k = ±iκ (this property is assumed to hold in the rest of

the paper), the SUSY transformation leads to a new M fold degenerate bound state with kb = iκ,

Eb = −κ2 and an N −M fold degenerate virtual state with kv = −iκ, Ev = −κ2.
Now we continue to compare our method with the approach developed by Amado et al [87]. For

that, we calculate the asymptotic behaviour of matrix Φ(r) = [uc(r)
†]−1, which upon using (4.1.2)

reads

Φ(r →∞)→
(
AT
)−1

(
IMe

−κr 0

0 IN−Me
κr

)
. (4.1.16)

The M first columns of Φ(r) are vectors decreasing at infinity. According to (4.1.6) and (4.1.9),

Φ(r) is a regular solution, Φ(0) = 0. Therefore these vectors correspond to the bound state wave

functions of the coupled system appeared after the SUSY transformation. This confirms that the

energy level of this bound state is M fold degenerate. All the other columns in Φ(r) correspond

to virtual states. For the particular case M = 1 this asymptotic form just corresponds to the

transformation function used by the authors of [87] for decoupling a coupled problem. We thus

conclude that their transformation corresponds to a particular case of our transformation when

realized in the opposite direction.

Another useful remark is that although the superpotential wc(r) depends on parameters X0, the

Jost matrix Fc(k) and, hence, the S-matrix areX0-independent. This means that the superpotential

wc(r) leads to a family of potentials, parameterized by the entries of X0, having the same scattering

properties.

Below we concentrate on the two-channel case with equal thresholds and arbitrary partial waves.

The coupling SUSY transformation produces in this case one bound state and one virtual state.

First we will analyze the long range behaviour of the transformed potential.

4.1.2 Long range behaviour of the transformed potential

In the two-channel case, according to (1.1.22), the initial diagonal potential has the following

long-range behaviour

Vd(r →∞)→ 1

r2

(
l1(l1 + 1) 0

0 l2(l2 + 1)

)
. (4.1.17)

The Jost solution at large distances is expressed in terms of third kind Bessel functions H
(1)
l (z),

also called first Hankel functions (see [140] for a definition)

fd(k, r →∞) = diag [hl1(kr), hl2(kr)] , hl(z) = il+1(πz/2)
1
2H

(1)
l (z) . (4.1.18)
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The recurrence relations for hl(z) and its asymptotic behaviour

hl(kr) = eikr
(
1 +

il(l + 1)

2kr
+ o(r−1)

)
, (4.1.19)

follow from those for H
(1)
l (z) [140].

For the coupling transformation, according to our previous discussion, we choose transformation

function (4.1.1) with matrices

C =

(
1 0

q 0

)
, D =

(
x −q
0 1

)
, (4.1.20)

which contain only two independent parameters x and q. The restriction on the parameters

x+ Fd,1(−iκ)F−1
d;1 (iκ)− q

2Fd,2(−iκ)F−1
d;2 (iκ) ̸= 0 (4.1.21)

follows from (4.1.7). Transformation solution (4.1.1) reads

uc(r) =

(
fd;1(−iκr) + xfd;1(iκr) −qfd;1(iκr)

qfd;2(−iκr) fd;2(iκr)

)
. (4.1.22)

Let us consider the first two terms in the asymptotic behaviour of the superpotential (1.2.23),

wc(r → ∞) = wc∞ + w−1r
−1 + o(r−1). The first term wc∞ has been calculated for an arbitrary

number of channels in Section 4.1.1. Thus from (4.1.3) we obtain

wc∞ =
κ

1 + q2

(
1− q2 2q

2q q2 − 1

)
. (4.1.23)

Another parametrization for wc∞ is useful,

wc∞ = κ

(
cosα sinα

sinα − cosα

)
, q = tan

α

2
. (4.1.24)

Note that a non-zero value of w−1 will lead to a modification of the long range behaviour of potential

(1.2.21) with w′
c(r →∞) = −w−1r

−2 + o(r−2).

In order to establish the asymptotic behaviour of the potential Vc(r) = Vd(r) − 2w′
c(r), we

replace fd,j(±iκr) in (4.1.22) by its asymptotic form given in (4.1.18) and neglect in (1.2.21) and

(1.2.23) all exponentially decreasing terms such as hl1(iκr)hl2(iκr). Taking into account

hl1(iκr)hl2(−iκr) = 1 +
1

2κr
[l1(l1 + 1)− l2(l2 + 1)] + o(r−1) , r →∞, (4.1.25)

combining (1.2.21) with (4.1.17) and using parametrization (4.1.24), one finally gets

Vc(r →∞) =
1

r2

(
l1(l1 + 1) 0

0 l2(l2 + 1)

)

+
[l2(l2 + 1)− l1(l1 + 1)] sinα

r2

(
sinα − cosα

− cosα − sinα

)
. (4.1.26)

A similar asymptotic behaviour of the matrix potential is obtained from the Gelfand-Levitan equa-

tion in [43].

From (4.1.26) we conclude that, for l1 ̸= l2, the transformed potential has a non-zero long range

coupling, Vc;12 ̸= 0. Moreover, it is impossible to associate diagonal entries of Vc given in (4.1.26)
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with usual centrifugal terms. The only way to avoid this inconvenience is to fix α = ±π/2 (or

equivalently q = ±1), which leads to a physically reasonable long range behaviour

Vc(r →∞, q = 1) =
1

r2

(
l2(l2 + 1) 0

0 l1(l1 + 1)

)
. (4.1.27)

Having compared (4.1.17) and (4.1.27) we find the modification of the corresponding angular mo-

mentum quantum numbers under the SUSY transformation l = diag(l1, l2) → l̃ = diag(l2, l1). For

short, this unusual property of the SUSY transformation will be called the exchange of the channels

angular momenta. Summarizing, we get an additional constraint q = 1 (the dual case q = −1 leads

to the same transformed potential except Vc;12 → −Vc;12) to consider only physically reasonable

potentials in the case l2 ̸= l1.

4.1.3 Transformed Jost and scattering matrices, eigenphase shifts

and mixing angle

In the two-channels case, introducing wc∞ as given in (4.1.24) into (4.1.13) provides an

explicit relation between the transformed Jost matrix Fc(k) and the initial diagonal Jost matrix

Fd(k),

Fc(k) = −

(
ik + κ cosα κ sinα

κ sinα ik − κ cosα

)
Fd(k) . (4.1.28)

From (4.1.15), we obtain detFc = (k2 + κ2)detFd. The coupling transformation produces one

bound state and one virtual state, in agreement with the general properties of the transformed Jost

matrix analyzed in Section 4.1.1.

Once the transformed Jost matrix Fc(k) (4.1.28) is found, the S-matrix may be obtained ac-

cording to its definition (1.1.33), where we have to take into account the change of attribution of

the angular momenta l→ l̃ by the coupling transformation,

Sc(k) = eil̃
π
2 (−ikI2 + wc∞)(−1)lSd(k)(ikI2 + wc∞)−1eil̃

π
2 . (4.1.29)

The diagonal matrix

Sd(k) = diag(e2iδd;1(k), e2iδd;2(k)) (4.1.30)

is obtained from the diagonal Jost matrix Fd(k) before the transformation. One can see that for the

particular case of identical partial waves, l ∝ I2, our result (4.1.29) reproduces the corresponding

relation (17a) from [87]. For different partial waves however, the modification of the angular

momenta leads to the appearance of additional phase factors eil̃
π
2 and (−1)l.

Let us now find the transformed eigenphase shifts δc;j(k), j = 1, 2, and the mixing angle ϵ(k)

(see (1.1.34), (1.1.35) and (1.1.36)). One can distinguish three essentially different cases:

(a) the difference between the angular momenta is odd, l2 = (l1 + 1) (mod 2) ;

(b) the difference between the angular momenta is even, l2 ̸= l1, l2 = l1 (mod 2);

(c) the angular momenta coincide, l2 = l1.

Note that case (a) does not correspond to any reduction of the rotationally invariant three-

dimensional scattering problem, since in this case any nontrivial coupling means a parity breakdown

(see e.g. [22]). For the sake of completeness we will analyze this case also although the corresponding

system of coupled equations has no direct relation to a scattering problem. Moreover, we will use

the usual scattering theory terminology in this case also, although from the point of view of a
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three-dimensional scattering it bears only a formal character. In cases (a) and (b), we should put

α = π/2, which is not necessary in the third case (see (4.1.26)).

Definition (4.1.30) allows writing

Sd;1(k) + Sd;2(k) ≡ e2iδd;1(k) + e2iδd;2(k) = 2ei(δd;1+δd;2) cos∆ , ∆ = δd;2 − δd;1 , (4.1.31)

and (1.1.36) leads to expressions for the mixing angle in the three cases as

(a) : tan 2ϵ(k) =
2(−1)(l2−l1−1)/2κ sinα (κ cosα cos∆− k sin∆)

2κk cosα cos∆− (k2 − κ2) sin∆
, (4.1.32)

and

(b), (c) : tan 2ϵ(k) =
2(−1)(l2−l1)/2κ sinα (κ cosα sin∆ + k cos∆)

2κk cosα cos∆− sin∆ (k2 − κ2 cos 2α)
. (4.1.33)

Since q = 1 and α = π/2 in cases (a) and (b), expressions (4.1.32) and (4.1.33) are simplified to

(a) : ϵ(k) = (−1)(l2−l1+1)/2 arctan
k

κ
, (4.1.34)

(b) : tan 2ϵ(k) = (−1)(l2−l1+2)/2 2κk

k2 + κ2
cot∆. (4.1.35)

We will assume below that the scattering matrix of the transformed potential satisfies the

effective range expansion (see e.g. [155]), which implies

cot δc;1,2(k → 0) = a1,2k
−(2l1,2+1) + o

(
k−(2l1,2+1)

)
,

ϵ(k → 0) = ϵ0k
|l2−l1| + o

(
k|l2−l1|

)
. (4.1.36)

Since there are rather simple analytical expressions for the mixing angle, we will analyze restrictions

on parameters of the SUSY transformation which follow from the second equation in (4.1.36).

In case (a), (4.1.34) satisfies the effective range expansion (4.1.36) when |l2−l1| = 1 and violates

(4.1.36) when |l2 − l1| > 1. The important property of the coupling transformation in case (a) is

that the transformed phase shifts coincide with the initial phase shifts, i.e.,

RT
c (k)Sc(k)Rc(k) =

(
e2iδd;2(k) 0

0 e2iδd;1(k)

)
. (4.1.37)

Therefore, one may separately fit the phase shifts for the l1 and l2 waves before the coupling

transformation.

In case (b), the effective range expansion for mixing angle (4.1.35) leads to the restriction

cot∆ = 0 or δd,2(0)− δd,1(0) = (n+ 1/2)π . According to the Levinson theorem (see e.g. [23]) this

means that the potential Vd supports a bound state at zero energy.

Finally, in case (c) there is no any additional constraint since ϵ(k → 0) = const.

Having established properties of the transformed phase shifts and the mixing angle, we will

consider in the next section some schematic examples of scattering for the s − s, s − p and s − d
coupled channels.
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4.2 Examples of exactly solvable two-channels potentials with equal

thresholds

To illustrate the difference between couplings in potential, Jost and scattering matrices, we

construct in this section nontrivially coupled potentials having trivially coupled S-matrices and both

trivially and non-trivially coupled Jost matrices. After that we exemplify SUSY transformations

leading to non-trivially coupled S-matrices.

4.2.1 Coupled potentials with uncoupled S-matrices

Let us consider the 1-channel potential expressed in terms of a Wronskian as

V (r;β) = −2 d

dr2
lnW [sinh(κ0r), sinh(κ2r), exp (κ1r) + βexp (−κ1r)] , (4.2.1)

κ0 < κ1 < κ2 , β < −1 ,

which can easily be obtained from the zero potential with the help of the usual (i.e. 1-channel) SUSY

transformations. This potential has one bound state at energy E = −κ21 and its Jost function has

the form

F (k) = i(k − iκ1) [(k + iκ0)(k + iκ2)]
−1 . (4.2.2)

All potentials from the β-family (4.2.1) have the same Jost and scattering matrices. Therefore,

we can construct a diagonal potential Vd(r) = diag [V (r;β1), V (r;β2)] with a two fold degenerate

bound state at energy E = −κ21. Both its Jost and scattering matrices are proportional to the

identity matrix

Fd(k) = F (k)I2 , Sd(k) = F (−k)F−1(k)I2 . (4.2.3)

As a result, the Jost matrix (4.1.13) obtained after the coupling transformation can be diagonalized

by the same k-independent transformation as the superpotential wc∞. This just corresponds to a

trivial coupling in both Jost and scattering matrices.

For the coupling transformation we choose the transformation function (4.1.22) where Jost

solutions fd(iκ, r) of the Schrödinger equation (4.1.9) with potential Vd are used. To avoid a

singularity at finite distance in the transformed potential we impose the restriction κ > κ2 > κ1.

Such a transformed potential is shown in figure 4.1(a). The function σ(r) = Vc;12/(Vc;22 − Vc;11)
demonstrates the non-triviality of the transformed potential matrix. If σ is a constant, the potential

matrix is globally diagonalizable. As we see from figure 4.1 (b), a non constant σ means that the

transformed potential has a non-trivial coupling. At the same time, the mixing angle (4.1.33) in

the scattering matrix is just a constant for ∆ = 0

ϵ(k) =
α

2
. (4.2.4)

The phase shifts for this potential read

δc;1(k) = 2π −
2∑

j=0

arctan
k

κj
+ arctan

k

κ
, (4.2.5)

δc;2(k) = π −
2∑

j=0

arctan
k

κj
− arctan

k

κ
. (4.2.6)
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Figure 4.1: (a) Exactly solvable potential V̄c = Vc obtained from two uncoupled potentials (4.2.1) (β1 =

−2 , β2 = −1.5 , κ0 = 1 , κ1 = 2.5 , κ2 = 3.5) by the coupling transformation with parameters q = 0.5, κ = 6,

x = 25. (b) Ratio σ(r) = Vc;12(r)/ (Vc;22(r)− Vc;11(r)).

From here one can see that after the coupling transformation the additional bound state increases

the value of the phase shifts at zero energy in agreement with the Levinson theorem.

To show the restrictive character of the requirement for the S matrix to be non-trivially coupled,

we construct below a potential with non-trivially coupled potential and Jost matrices but a trivially

coupled S-matrix. This possibility is based on the fact that in the single-channel case two different

Jost functions may correspond to the same scattering matrix [95, 96]. In this case, the two Jost

functions differ from each other by a real factor for real k’s (see (4.1.14)). Therefore if we apply

our coupling transformation to the following uncoupled system

Vd(r) = diag [V1(r), V2(r)] , Fd(k) = diag [F1(k), F2(k)] , Sd(k) = S(k)I2 , (4.2.7)

from (4.2.7), (1.2.21), (4.1.13) and (4.1.29) we can see that the transformed potential and Jost

matrices cannot be diagonalized by a constant rotation whereas the scattering matrix becomes

diagonal after the same k-independent rotation which diagonalizes wc∞.

An example in which we get a non-diagonal Jost matrix and a trivially coupled S-matrix after

applying the coupling transformation follows from (4.2.7) where we choose

Fd(k) = diag

[
i(k − iκ0)

(k + iκ1)(k + iκ2)
,

−i
(k + iκ0)(k + iκ1)(k + iκ2)

]
, (4.2.8)

Sd(k) =
(k + iκ0)(k + iκ1)(k + iκ2)

(k − iκ0)(k − iκ1)(k − iκ2)
I2 . (4.2.9)

Here κ0, κ1 and κ2 are arbitrary real parameters. Matrix ν for the corresponding potential

Vd(r) = diag [V (r, β < −1), V (r, β = −1)] , (4.2.10)

is ν = diag(1, 3) meaning that ν − 1 > 0 and we can apply the coupling transformation. Here

the non-trivially coupled transformed Jost matrix (4.1.13) with Fd as given in (4.2.8) leads to the

following trivially coupled S-matrix

Sc(k) = (ikI2 − wc∞)2
(k + iκ0)(k + iκ1)(k + iκ2)

(k − iκ0)(k − iκ1)(k − iκ2)(k2 + κ2)
. (4.2.11)

The corresponding phase shifts are given by (4.2.5) where δc;2 → δc;2 − π and the mixing angle is

given by (4.2.4).
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4.2.2 Coupled s− s partial waves

Using our general scheme described in section 4.1.3, we can study the behaviour of the phase

shifts for the s − s coupled potential. Since the angular momenta in both channels coincide, we

have here the case (c) discussed above. Parameter q is not fixed from the long-range behaviour of

the potential and the mixing angle is given by (4.1.33). The analysis of this expression is based on

the low-energy behaviour of the phase shifts δd;1,2 before the coupling transformation

e2iδd;1,2 = 1− 2ia1,2k + o(k) , (4.2.12)

where a1 and a2 are the scattering lengths for each channel. Combining (4.1.33) and (4.2.12) we

get

tan 2ϵ(k → 0) =
2(1 + (a1 − a2)κ cosα) sinα
2 cosα+ (a1 − a2)κ cos 2α

+ o(k) . (4.2.13)

The expansion of the eigenvalues of the transformed scattering matrix at low energies reads

e2iδc;1,2 = 1− ik
[
(a1 + a2)±

√
(a2 − a1)2 + 4 (1/κ− (a2 − a1) cosα) /κ

]
+ o(k) . (4.2.14)

An important result from the point of view of inverse scattering corresponds to a coupling van-

ishing at low energies, i.e. when ϵ(0) = 0. This leads to an additional link between the parameters,

cosα =
1

(a2 − a1)κ
, (4.2.15)

where we have used (4.2.13) and (4.1.36). Hence (4.2.14) simplifies into

e2iδc;1,2 = 1− 2ia2,1k + o(k) . (4.2.16)

In this case, the scattering lengths for the transformed potential coincide with the initial scattering

lengths a1 and a2. This property allows us to fit low energy scattering data for uncoupled channels

thus simplifying essentially the inverse problem. Let us illustrate this property in a schematic

example.

We start from the zero potential with a transformation which introduces poles at the origin,

ν = diag(0, 0) → ν = diag(1, 1). In each channel we realize the usual (i.e. 1-channel) SUSY

transformation with transformation functions sh(κ1r) and sh(κ2r). This leads to the uncoupled

superpotential

wd(r) = diag [κ1 coth(κ1r), κ2 coth(κ2r)] (4.2.17)

and the potential (see (1.2.21))

Vd(r) = 2diag
[
κ21cosech

2(κ1r), κ
2
2cosech

2(κ2r)
]
, (4.2.18)

with the Jost solution

fd(k, r) = eikr

(
k + iκ1 coth(κ1r) 0

0 k + iκ2 coth(κ2r)

)(
k + iκ1 0

0 k + iκ2

)−1

(4.2.19)

and the Jost matrix

Fd(k) = (wd∞ − ikI2)−1 , wd∞ = lim
r→∞

wd(r) = diag (κ1, κ2) . (4.2.20)
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Figure 4.2: Exactly solvable s− s potential V̄c = Vc with param-

eters κ1 = 1.5, κ2 = 1, q = 0.4, κ = 4.14286, x = 15.

As coupling transformation we choose transformation function (4.1.1) with matrices C and D given

by (4.1.20). The explicit expression for uc(r) coincides with (4.1.22) where

fd;1(iκ, r) =
κ+ κ1 coth(κ1r)

κ+ κ1
e−κr , fd;2(iκ, r) =

κ+ κ2 coth(κ2r)

κ+ κ2
e−κr . (4.2.21)

The parameter x from (4.1.20) should be chosen in order to avoid any singularity in the transformed

potential. As can easily be seen from the analysis of detuc, it is sufficient to choose x large enough.

The asymptotic behaviour of the superpotential is given by (4.1.23) or (4.1.24).

The Jost matrix Fc(k) may be found from (4.1.13). Its explicit expression is rather involved

and we omit it. More important is its determinant (4.1.15), the expression of which is extremely

simple,

det Fc(k) =
k2 + κ2

(k + iκ1)(k + iκ2)
. (4.2.22)

From here we find the location of the bound state at kb = iκ and the virtual state at kv = −iκ.
The chain of two SUSY transformations with parameters κ1,2 = a−1

1,2 and κ, q, x described above

leads to the mixing angle (4.2.13). The corresponding potential (q = 0.4) is shown in figure 4.2.

The factorization constant κ is fixed from (4.2.15). As a result, the mixing angle takes the form

tan 2ϵ(k) =
2k2κ1κ2 tanα

κ21κ
2
2 sec

2 α+ k2(κ21 + κ22)
. (4.2.23)

Parameters κ1 and κ2 are related with 1-channel transformations and allow us to fit the scattering

lengths. The mixing angle ϵ(k) depends on parameter α, which allows one to fit its experimental

behaviour at low energies. The mixing angle at large energies tends to a constant value, tan 2ϵ(k →
∞) = −2κ1κ2 tanα/(κ21 + κ22) which can also be fitted using corresponding experimental data (if

available). Figure 4.3 shows the phase shifts and mixing angle for two coupled s− s potentials.

The phase shifts of the diagonal potential Vd are shown as dotted lines in figure 4.3(a). The

phase shifts of the transformed potential Vc are shown as dashed (q = 0.4) and solid (q = 1.2) lines

respectively. One can see that the slopes of these curves coincide at the origin. The mixing angles

of the transformed potential are plotted in figure 4.3(b).

According to (4.2.22) this potential has one bound state at the factorization energy Eg = −κ2.
Note that the normalization constant of the bound state wave function is determined by parameter

q as follows from (4.1.16).
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Figure 4.3: The scattering matrix for the coupled s− s potential. (a) The eigenphases are shown as dotted

lines for Vd and as dashed and solid lines for Vc. The parameters are: solid lines - κ1 = 1.5, κ2 = 1, q = 0.4,

κ = 4.14286, x = 15, dashed lines - κ1 = 1.5, κ2 = 1, q = 1.2, κ = 13.6667, x = 15. (b) Mixing angle ϵ.

Figure 4.4: Exactly solvable s− p potential V̄c = Vc − l̃(l̃+ 1)r−2

with parameters κ0 = 1.5, κ1 = 1.75, κ = 3.53, q = 1, x = 1.

4.2.3 Coupled s− p partial waves

In this section we consider the simplest s− p coupled potential. This potential is characterized

by l̃ = ν̃ = diag(1, 0). The coupling transformation acts as follows:

l = diag(l1, l2)→ l̃ = diag(l2, l1) , ν = diag(ν1, ν2)→ ν̃ = diag(ν1 − 1, ν2 − 1) . (4.2.24)

Therefore the initial diagonal potential should have l = diag(0, 1), ν = (2, 1). These properties are

satisfied for the initial potential of the form

Vd(r) = diag

[
−2 d

2

dr2
lnW [sinh (κ0r) , sinh (κ1r)], 2r

−2

]
, (4.2.25)

where the potential in the s-channel is obtained from the zero potential after two consecutive SUSY

transformations with κ0 and κ1 as factorization constants. The potential in the p-channel is just

the centrifugal term. The Jost solution in the s-channel is expressed in terms of the Wronskian of

factorization solutions sinh(κjr), j = 0, 1,

fd(k, r) = diag

[
W
[
sinh (κ0r) , sinh (κ1r) , e

ikr
]

(k + iκ0)(k + iκ1)W [sinh (κ0r) , sinh (κ1r)]
,
(i+ kr)eikr

kr

]
. (4.2.26)
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The uncoupled Jost matrix reads

Fd(k) = diag
[
− [(k + iκ0)(k + iκ1)]

−1 , ik−1
]
. (4.2.27)

The next step is to apply the coupling transformation with the transformation function (4.1.1)

where the Jost solution is replaced by (4.2.26). An example of potential curves is shown in figure

4.4. The Jost matrix (4.2.27) is transformed according to (4.1.13) and the scattering matrix is

given by (4.1.29).

Since the transformed eigenphase shifts coincide with the initial phase shifts, we may fit the

phase shifts for the s and p waves separately before the coupling transformation. In our example

the phase shifts read

δc;1(k) = 0 , δc;2(k) = π − arctan
k

κ0
− arctan

k

κ1
. (4.2.28)

Parameters κ0 and κ1 allow one to fit the s-channel phase shifts. Parameter κ may be used to fit

the slope of the mixing angle (4.1.34) at zero energy. If necessary, one may use arbitrary chains of

1-channel transformations to get the best fit of the phase shifts.

4.2.4 Coupled s− d partial waves

The simplest s − d coupled potential is characterized by l̃ = ν̃ = diag(2, 0). Therefore the

initial diagonal potential should have l = diag(0, 2) and ν = (3, 1). Moreover, as we established

in section 4.1.3, δd;2(0) − δd;1(0) = (n + 1/2)π which for n = 0 leads to the following initial phase

shifts δd;2(0) = π/2 and δd;1(0) = 0.

We start with the initial s-wave potential

V0(r) =
−2κ20

cosh2(κ0r)
(4.2.29)

having a zero energy virtual state [23] which follows from its Jost function

F0(k) =
k

k + iκ0
. (4.2.30)

Note that this potential and the solutions of the corresponding Schrödinger equation may be ob-

tained by a SUSY transformation. This is a regular potential. To be able to apply the coupling

transformation, we increase its singularity at the origin using three SUSY transformations with the

transformation functions

u(κi, r) = κi sinh(κir) + κ0 cosh(κir) tanh(κ0r) , i = 1, 2, 3 . (4.2.31)

The potential and the Jost function in the s-channel after these transformations read

Vd;1(r) =
−2κ20

cosh2(κ0r)
− 2 (lnW [u(κ1, r), u(κ2, r), u(κ3, r)])

′′ , (4.2.32)

Fd;1(k) =
−ik

(k + iκ0)(k + iκ1)(k + iκ2)(k + iκ3)
. (4.2.33)

The potential in the d-channel

Vd;2(r) =
6

r2
− 2 ln v′′(κ4, r) =

6(3 + 6κ4x+ 6κ24r
2 + 4κ34r

3 + κ44r
4)

r2(3 + 3κ4r + κ24r
2)2

, (4.2.34)

v(κ4, r) = e−κ4r

(
1 + 3κ4r +

3

(κ4r)2

)
, (4.2.35)
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Figure 4.5: Exactly solvable s−d potential V̄c = Vc− l̃(l̃+1)r−2 with parameters κ0 = 1, κ1 = 1.5, κ2 = 1.75,

κ3 = 2, κ4 = 3 q = −1, x = 15, κ = 5.53.

Figure 4.6: The scattering matrix for the coupled s − d potential. The phase shifts δc;1(k) and δc;2(k) are

plotted by solid lines. The mixing angle ϵ(k) is plotted by the dashed line. The corresponding parameters

are κ0 = 1, κ1 = 1.5, κ2 = 1.75, κ3 = 2, κ4 = 3 q = 1, x = 15, κ = 5.53.
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is obtained from the centrifugal term 6/r2 by the SUSY transformation with v(r, κ4) as the trans-

formation function, which decreases the singularity of the potential at the origin.

The Jost solution in the s-channel is expressed in terms of the Wronskian of factorization

solutions (4.2.31)

fd;1(k, r) =
W [u(κ1, r), u(κ2, r), u(κ3, r), f0(k, r)]

(k + iκ1)(k + iκ2)(k + iκ3)W [u(κ1, r), u(κ2, r), u(κ3, r)]
, (4.2.36)

f0(k, r) = eikr
k + iκ0 tanh(κ0r)

k + iκ0
. (4.2.37)

The Jost solution in the d-channel is

fd;2(k, r) = i
W [v(κ4, r), h2(kr)]

(k − iκ4)v(κ4, r)
, h2(kr) = eikr

(
1 + 3iκ4r −

3

(κ4r)2

)
. (4.2.38)

The uncoupled Jost matrix reads

Fd(k) = diag

[
−ik

(k + iκ0)(k + iκ1)(k + iκ2)(k + iκ3)
,
ik − κ4
k2

]
, (4.2.39)

which produces the eigenphase shifts

δd;1(k) =
π

2
−

3∑
j=0

arctan
k

κj
, δd;2(k) = arctan

k

κ4
. (4.2.40)

Next we apply the coupling transformation with the transformation function (4.1.1) where the

Jost solution fd = diag(fd;1, fd;2) is combined from (4.2.36) and (4.2.38). An example of potential

curves thus obtained is shown in figure 4.5. The Jost matrix (4.2.39) is transformed according to

(4.1.13) and the scattering matrix is given by (4.1.29).

The corresponding phase shifts and mixing angle are plotted in figure 4.6. The mixing parameter

ϵ(k) is determined by (4.1.35) which, in the current case, reduces to

tan 2ϵ(k) =
2κk

(k2 + κ2)
tan

 4∑
j=0

arctan
k

κj

 . (4.2.41)

We were not able to find simple expressions for the eigenphase shifts in this case. One can see that

the mixing parameter satisfies the effective range expansion (4.1.36) (see (4.2.41) and figure 4.6).

Unfortunately, this is not the case for the phase shifts (see figure 4.6).
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4.3 Second order SUSY transformations

In the previous section, we saw that the first order SUSY transformations can introduce a

non-trivial coupling but in the physically interesting case of partial waves with the same parity

there is the serious drawback (see subsection 4.2.4). It is impossible to get the transformed phase

shifts and the mixing parameter which satisfy to the effective range expansion. This is a signal

that the transformed potential may be unphysical. The simplest possible way to avoid this obstacle

is to use a pair of first order transformations. Thus we obtain additional free parameters which

can be used to satisfy the requirements appearing from the effective range expansion. In this way,

analyzing the most general second order SUSY transformation we have found a new type of SUSY

transformations for two channel problems.

4.3.1 Eigenphase preserving SUSY transformations

Two-fold SUSY transformations lead to a number of interesting quantum models with unusual

properties [63]. In particular, the corresponding superalgebra is nonlinear. The case of two trans-

formations is less restrictive since the intermediate Hamiltonian may be chosen unphysical. In

particular, one may use as transformation functions complex-valued solutions of the Schrödinger

equation corresponding to complex factorization constants. It is natural to consider the two-fold

SUSY transformation of the Schrödinger equation (1.1.20) as a chain of usual (i.e. one-fold) SUSY

transformations. As we show below, a chain of two such transformations may preserve the eigen-

phase shifts.

The chain of two SUSY transformations, H0 → H1 → H2, emerges from the following inter-

twining relations:

L1H0 = H1L1 , L2H1 = H2L2 , (4.3.1)

where the operators Lj map solutions of the Schrödinger equations to each other as ψ1 = L1ψ0

and ψ2 = L2ψ1. These operators can be combined into an operator L defining the two-fold SUSY

transformation

LH0 = H2L , L = L2L1 , (4.3.2)

directly mapping solutions of the initial Schrödinger equation to solutions of the transformed

Schrödinger equation as ψ2 = Lψ0.

The operators Lj are first-order differential operators,

L1 = w1(r)− ∂r , L2 = w̃2(r)− ∂r . (4.3.3)

We use the standard notation for the superpotentials

wj(r) = u′j(r)u
−1
j (r) , j = 1, 2 , (4.3.4)

w̃2(r) = ũ′2(r)ũ
−1
2 (r) , (4.3.5)

which are expressed in terms of the matrix factorization solutions uj and ũ2 = L1u2. These solutions

satisfy the following Schrödinger equations:

H0uj = Ejuj , H1ũ2 = E2ũ2 , (4.3.6)
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with E1, E2 being factorization constants. Operator L then has a nontrivial kernel space, Ker L,

spanned by the set of transformation functions u1 and u2:

KerL = span{u1, u2} . (4.3.7)

In the following, we will only consider self-conjugate factorization solutions, i.e. solutions with a

vanishing self-Wronskian W[u, u] = 0, where the Wronskian of two matrix functions u, v is defined

by (1.1.29). For factorization solutions we get

W[u1, u2](r) = uT1 (r)
[
w2(r)− wT

1 (r)
]
u2(r). (4.3.8)

Hence, self-conjugate solutions correspond to symmetric superpotentials. Solution ũ2 then reads

ũ2(r) = L1u2(r) = [w1(r)− w2(r)]u2(r) = −
[
uT1 (r)

]−1
W[u1, u2](r) , (4.3.9)

where the last expression has been obtained using (4.3.8) and the symmetry of w1.

The Hamiltonians in (4.3.1) correspond to potentials related to each other through superpoten-

tials

V1(r) = V0(r)− 2w′
1(r) , V2(r) = V1(r)− 2w̃′

2(r) . (4.3.10)

The sum of the two superpotentials w1 and w̃2 defines the two-fold superpotential W2, which

directly connects V0 to V2:

W2(r) ≡ w1(r) + w̃2(r) , V2(r) = V0(r)− 2W ′
2(r) . (4.3.11)

Using the Schrödinger equation twice, one sees that the derivative of Wronskian (4.3.8) reads

W[u1, u2]
′(r) = (E1 − E2)u

T
1 (r)u2(r) . (4.3.12)

Hence, using (4.3.5) and (4.3.9), one can rewrite W2 in the compact forms

W2(r) = (E1 − E2) [w2(r)− w1(r)]
−1 (4.3.13)

= (E1 − E2)u2(r)W[u1, u2]
−1(r)uT1 (r). (4.3.14)

As will be seen below, the second expression is more general than the first one, as it may be used

in cases where the individual superpotentials w1 or w2 are singular.

Similarly, expressing the second derivative of the matrix solution ψ0(k, r) from (1.1.20) and

defining the logarithmic derivative

wk(r) = ψ′
0(k, r)ψ

−1
0 (k, r) , (4.3.15)

one can rewrite the action of the second order transformation operator L on ψ0(k, r),

ψ2(k, r) = (w̃2 − ∂r) (w1 − ∂r)ψ0(k, r) , (4.3.16)

in the following form

ψ2(k, r) =
[
(−k2 + E1)1+W2(r)(w1 − wk)

]
ψ0(k, r) . (4.3.17)

A more symmetric form of this formula

ψ2(k, r) =

[(
−k2 + E2 + E1

2

)
1+W2(r)

(
w1 + w2

2
− wk

)]
ψ0(k, r) (4.3.18)

may also be useful.
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4.3.2 Main theorem

Let us now particularize the above results to two consecutive SUSY transformations with mu-

tually conjugated complex matrix factorization solutions corresponding to imaginary factorization

energies. We will prove that such a second order transformation modifies the mixing parameters

without affecting the eigenphase shifts. We will consider the case of two partial waves l1 and l2

with identical parity,

l2 = l1 + 2m, m ∈ Z. (4.3.19)

To construct eigenphase preserving transformations, we need solutions of the Schrödinger equa-

tion (1.1.20) with a special behaviour both at large distances and near the origin. Thus, we first

prove that the necessary solutions exist.

Lemma 5. For any momentum k such that Im k > 0, det F0(k) ̸= 0, and for any constants

c1,2, d1,2 ∈ C, there exist two vector solutions u⃗(k, r) and v⃗(k, r) of the Schrödinger equation (1.1.20)

which behave at large distances as

u⃗(k, r →∞) = e−ikr(c1, c2)
T (1 + o(1)) , (4.3.20)

v⃗(k, r →∞) = eikr(d1, d2)
T (1 + o(1)) , (4.3.21)

and near the origin as

u⃗(k, r → 0) = (a1r
ν1+1, a2r

ν2+1)T (1 + o(r)) , (4.3.22)

v⃗(k, r → 0) = (b1r
−ν1 , b2r

−ν2)T (1 + o(r)) , (4.3.23)

where a1,2, b1,2 ∈ C.

Proof. To obtain the behaviour (4.3.21), v⃗(k, r) can be expressed in terms of the Jost solution

v⃗(k, r) = f0(k, r)(d1, d2)
T . (4.3.24)

Formula (4.3.23) follows from the behaviour of the Jost solution near the origin (see, e.g., [22]).

Taking into account that Im k > 0, one gets from (1.1.27)

φ0(k, r →∞)→ i

2k
f0(−k, r)F0(k) . (4.3.25)

Here, we omit the second term in (1.1.27) since it becomes negligible at large distances with respect

to the first term. Thus, solution u⃗(k, r) may be obtained as

u⃗(k, r) =
2k

i
φ0(k, r)F

−1
0 (k)(c1, c2)

T . (4.3.26)

Formula (4.3.22) follows from (1.1.25).

Theorem 12. Consider a complex matrix solution u of the coupled-channel Schrödinger equation

(1.1.20)-(1.1.23), with imaginary energy E1 = k21 ≡ 2iχ2 and complex wave number k1 = χ(i+ 1),

χ > 0, behaving at large distances as

u(r →∞)→

(
hl1 (−k1r) ±ihl1 (k1r)
∓ihl2 (−k1r) hl2 (k1r)

)
, (4.3.27)

and near the origin as

u(r → 0) =

(
a1r

ν1+1 b1r
−ν1

a2r
ν2+1 b2r

−ν2

)
[1 + o(r)]. (4.3.28)

128



The two-fold SUSY transformation defined by (4.3.2)-(4.3.6) with matrix factorization solutions

u1 = u, u2 = u∗ corresponding to the imaginary factorization constants E1, E2 = E∗
1 = −2iχ2 and

complex wave numbers k1, k2 = χ(i− 1), possesses the following properties:

A. The resulting potential V2 defined in (4.3.11) is real, symmetric and regular ∀r. The two-fold

superpotential W2 reads

W2(r) = 4iχ2 [w∗(r)− w(r)]−1 , w(r) = u′(r)u−1(r), (4.3.29)

= 4iχ2u∗(r)W[u, u∗]−1(r)uT (r), (4.3.30)

where only the second expression can be used when the superpotential w is singular.

B. The long range behaviour of V2,

V2(r →∞) = l̄(l̄ + 1)r−2 + o(r−2) , l̄ = diag(l2, l1) , (4.3.31)

corresponds to a re-ordering of partial waves with respect to channels.

C. The scattering matrix S2 of the transformed Schrödinger equation is expressed from the initial

scattering matrix S0 as follows:

S2(k) = O(k)S0(k)O
T (k) , (4.3.32)

where the real orthogonal matrix O reads

O(k) = eil̄
π
2

1√
k4 + 4χ4

(
−k2 ∓2χ2

±2χ2 −k2

)
e−ilπ

2 . (4.3.33)

D. The eigenphase shifts of the transformed scattering matrix S2 coincide with the initial ones.

With the permutation

δ2;1(k) = δ0;2(k), (4.3.34)

δ2;2(k) = δ0;1(k), (4.3.35)

the mixing parameter transforms as

ϵ2(k) = ϵ0(k)± (−1)m arctan
k2

2χ2
. (4.3.36)

Proof. First, we note that Lemma 5 implies that solution u exists. It reads

u(r) =
2k1
i
φ0(k1, r)F

−1
0 (k1)

(
1 0

∓i 0

)
+ f0(k1, r)

(
0 ±i
0 1

)
. (4.3.37)

Using (4.1.19) and (4.3.27), one may write the leading terms of the asymptotic behaviour of this

factorization solution as

u(r →∞)→

 e−ik1r
(
1− iΛ1

2k1r

)
±ieik1r

(
1 + iΛ1

2k1r

)
∓ie−ik1r

(
1− iΛ2

2k1r

)
eik1r

(
1 + iΛ2

2k1r

)  . (4.3.38)

A. According to the choice of transformation functions and factorization constants, the one-fold

superpotentials w1 and w2 are mutually complex conjugated, w1 = w, w2 = w∗. Therefore, one can

use w = u′u−1 and its complex conjugated form w∗ in (4.3.4), (4.3.5) and (4.3.9), thus obtaining

w̃2(r) = w̃∗(r) = (ũ∗)′(ũ∗)−1 , ũ∗(r) = L1u
∗(r) = (w − w∗)u∗ . (4.3.39)
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In this case, (4.3.29) and (4.3.30) directly follow from (4.3.13) and (4.3.14).

From (4.3.29), it is seen that W2, and thus the transformed potential (4.3.11), are real. The

symmetry of matrix V2 (i.e. V T
2 = V2) follows from the symmetry of superpotential w, which can

be established by considering the self-Wronskian W[u, u]. Since (4.3.12) implies that this self-

Wronskian is constant with respect to r and (4.3.38) implies that it vanishes at large distances,

W[u, u](∞) = 0, one has W[u, u](r) = 0,∀r. According to (4.3.8), this is equivalent to the symmetry

wT (r) = w(r),∀r.
Let us now prove that V2 is regular. According to (4.3.11) and (4.3.30), this is the case if

and only if the Wronskian W[u, u∗] is invertible ∀r. From (1.1.29) follows that W[u, u∗] is an

anti-Hermitian matrix, i.e. W[u, u∗] = −W†[u, u∗]. Moreover, using (4.3.12), the derivative of this

Wronskian reads

W[u, u∗]′(r) = 4iχ2uT (r)u∗(r) . (4.3.40)

Its diagonal entries can thus be integrated using (4.3.28) and (4.3.38) respectively. One gets finally

W[u, u∗](r) =

 4iχ2
r∫
0

(|u11(t)|2 + |u21(t)|2)dt W12[u, u
∗](r)

−W∗
12[u, u

∗](r) −4iχ2
∞∫
r
(|u12(t)|2 + |u22(t)|2)dt

 , (4.3.41)

where uij and Wij [u, u
∗] label the entries of the factorization solution and of the Wronskian,

respectively. This result implies that detW[u, u∗] > 0,∀r, which proves the regularity of V2 stated

in the theorem. Let us stress that this proof holds even in cases where superpotential w and

the intermediate potential V1 are singular, which shows that expression (4.3.30), though more

complictaed, is more general than (4.3.29).

B. Let us first consider the case l1 ̸= l2. From the asymptotic behaviour (4.3.38), it follows that

the determinant of the transformation solution u tends to zero as r →∞ like the Laurent series

detu(r →∞) =
(Λ2 − Λ1)

χ(1− i)r
+ o(r−2) . (4.3.42)

Hence, the superpotential w behaves asymptotically as

w(r →∞) =
4χ2r

Λ1 − Λ2

(
i ±1
±1 −i

)
+O(1) , (4.3.43)

from which, using (4.3.29), we find the asymptotic behaviour of W2,

W2(r →∞) =
Λ2 − Λ1

2r

(
1 0

0 −1

)
+ o(r−1) . (4.3.44)

It should be emphasized that from (4.3.44) follows the exchange of the centrifugal terms in V2

with respect to V0 [see (4.3.11)]. This effect of coupling SUSY transformations was previously

described in [9]. Note that the scattering properties of the transformed system crucially depend on

the exchange of centrifugal terms because of the presence of l-dependent factors in the S-matrix

definition (1.1.33).

In the case of coinciding partial waves, l1 = l2, (4.3.44) is still valid but cannot be established

through (4.3.43): instead, W2(r) can be calculated from the Wronskian representation (4.3.30).

This allows us to avoid manipulations with singular quantities which appear in (4.3.43) when

l1 = l2. It is convenient to rewrite the asymptotic behaviour of the transformation solution in the

form

u(r →∞)→
(
2Q∓ −

i

ξ1
ΛQ∓σz

)
e−iξ1σz , Q∓ = (1∓ σy)/2 , ξ1 = k1r, (4.3.45)
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where Λ = diag(Λ1,Λ2), σx, σy and σz are the Pauli matrices, and the projection matrices Q∓

satisfy

QT
± = Q∓ , Q±Q∓ = 0 , Q2

± = Q± , (4.3.46)

Q±σz = σzQ∓ , Q±σx = σxQ∓. (4.3.47)

Here and in what follows we will only retain terms of order r−1 or lower. Let us first calculate the

Wronskian asymptotics at large distances. Definition (1.1.29) leads to

W(r →∞)→ 4iχe−iξ1σz(σz ± σx)
[
1− (1− i)

4χr
(Λ1 + Λ2)σzQ∓

]
eiξ

∗
1σz , (4.3.48)

which can be inverted (up to r−1) to give

W−1(r →∞) → 1

8iχ
e−iξ∗1σz

[
1 +

(1− i)
4χr

(Λ1 + Λ2)σzQ∓

]
(σz ± σx)eiξ1σz (4.3.49)

=
1

8iχ
e−iξ∗1σz

[
σz ± σx +

1

2χr
(Λ1 + Λ2)Q±

]
eiξ1σz . (4.3.50)

We can now calculate the two-fold superpotential up to r−1

W2 = 4iχ2u∗W−1uT (4.3.51)

→ χ

(
i

ξ∗1
ΛQ±σz(σz ± σx)Q± +

1

χr
(Λ1 + Λ2)Q± −

i

ξ1
Q±(σz ± σx)σzQ±Λ

)
, (4.3.52)

where (4.3.46) and (4.3.47) have been used. To further simplify this expression, we also use the

decomposition Λ = 1(Λ1 + Λ2)/2 + σz(Λ1 − Λ2), which leads finally to

W2(r →∞)→ 1

2r
(Λ2 − Λ1)σz . (4.3.53)

This expression is valid for any l1 and l2; it is thus also valid for the case of coinciding partial

waves. The fact that the two-fold superpotential vanishes at large distances faster than r−1 implies

that the centrifugal tails are not affected by the SUSY transformations and that the partial waves

are unchanged.

C. To establish the modification of the scattering matrix, we have to look at the way the Jost

solutions and the regular solutions transform in the two-fold transformation.

Once again, let us start with the simpler case l1 ̸= l2. Without loss of generality we may apply

the general transformation of solutions (4.3.18) to the Jost solution, which now takes the form

Lf0(k, r) =

[
−k21+W2(r)

(
w + w∗

2
− wk

)]
f0(k, r) ≡ U(k, r)f0(k, r). (4.3.54)

As we will see below, the matrix U∞(k) = limr→∞ U(k, r) determines the transformed Jost and

scattering matrices. Using (4.3.43), (4.3.44) and the fact that W2wk vanishes at large distances,

one obtains a simple expression for this matrix,

U∞(k) =

(
−k2 ∓2χ2

±2χ2 −k2

)
. (4.3.55)

From the dominant term of (1.1.26) and (4.1.19), it follows that the function

f2(k, r) = Lf0(k, r)U
−1
∞ (k) (4.3.56)

is the transformed Jost solution.
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As in the previous part, the case l1 = l2 requires additional attention since the product W2(w+

w∗) gives at large distances the uncertainty 0 · ∞. Again we use the Wronskian representation

(4.3.30) of the two-fold superpotential W2 and the asymmetrical form of transformation (4.3.17)

thus obtaining

Lf0(k, r) →
r→∞

[
(−k2 + 2iχ2)1+ 4iχ2u∗W[u, u∗]−1uT

′]
f0(k, r) . (4.3.57)

Using (4.3.45) and (4.3.50) in this expression leads to the same matrix U∞(k) as in (4.3.55).

Let us now find how the SUSY transformation modifies the behaviour of the potential at the

origin. From (4.3.28), one gets

detu(r → 0)→ a1b2r
ν1−ν2+1 − a2b1rν2−ν1+1, (4.3.58)

which suggests that the discussion will depend on the relative values of ν1 and ν2.

For ν2 = ν1, excluding the case a1b2 = a2b1 (which requires higher order expansions), one can

expand the superpotential w(r) in a Laurent series near r = 0,

w(r → 0) =
1

(a1b2 − a2b1)r

(
a1b2(ν1 + 1) + a2b1ν1 −a1b1(2ν1 + 1)

a2b2(2ν2 + 1) −a2b1(ν2 + 1)− a1b2ν2

)
+ o(1), (4.3.59)

which implies with (4.3.29) that the lowest-order term in W2 is linear in r. Consequently, (4.3.11)

implies that the singularity indices are not modified by the two-fold SUSY transformation. Note

however that (4.3.10) implies that the intermediate potential V1 displays in general off-diagonal

singular terms at the origin.

For ν2 > ν1, one gets instead of (4.3.59)

w(r → 0) =
1

r

(
ν1 + 1 0

0 −ν2

)
+ o(1). (4.3.60)

To find the behaviour of W2 at the origin, a higher-order expansion would thus be necessary.

It is simpler in this case to study the two first-order transformations separately. From (4.3.10)

and (4.3.60), we conclude that the intermediate potential V1 has the following singularity indices

ν → ν̃ = diag(ν1 + 1, ν2 − 1). For ν2 < ν1, one gets ν → ν̃ = diag(ν1 − 1, ν2 + 1) by symmetry.

Let us now analyze the behaviour of the transformation function ũ∗ = L1u
∗ which determines

operator L2. Using (4.3.3) and (4.3.60) [or (4.3.59) when ν1 = ν2] one can find that a regu-

lar/singular vector solution transforms into a regular/singular vector solution of the new equation.

Such transformations are called conservative SUSY transformations [48]. As a result the behaviour

of ũ∗ near the origin is given by the conjugate of (4.3.28) with different values of constants a∗1,2 and

b∗1,2, i.e., a
∗
1,2 → ã∗1,2 and b∗1,2 → b̃∗1,2, and shifted singularity indices ν̃ = diag(ν1 + 1, ν2 − 1) (to fix

ideas, we consider the case ν2 > ν1)

ũ∗(r → 0) =

(
ã∗1r

ν1+2 b̃∗1r
−ν1−1

ã∗2r
ν2 b̃∗2r

−ν2+1

)
[1 + o(r)]. (4.3.61)

We have to split the discussion into two subcases, once again. For ν̃2 = ν̃1, i.e. ν2 = ν1 + 2, an

equation similar to (4.3.59) implies that w̃∗ behaves like r−1 multiplied by a non-diagonal matrix

close to the origin. Consequently, the final potential V2 will be unphysical in general, with non-

diagonal singular terms at the origin; therefore, we will not consider this case any further. For

ν̃2 > ν̃1, i.e. ν2 > ν1+2, the same reasoning as above implies that the transformed potential V2 has
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the following singularity indices: ν̃ → ν̄ = diag(ν̃1 + 1, ν̃2 − 1) = diag(ν1 + 2, ν2 − 2). Finally, for

ν̃2 < ν̃1, which is the case for ν2 = ν1 +1, the second transformation restores the initial singularity

indices ν̃ → ν̄ = diag(ν̃1 − 1, ν̃2 + 1) = diag(ν1, ν2).

The modification rules for the singularity indices of the potential may thus be summarized as

follows in the physical cases:

(ν1, ν1)
L−→ (ν1, ν1) , (4.3.62)

(ν1, ν1 + 1)
L−→ (ν1, ν1 + 1) , (4.3.63)

(ν1, ν1 +m)
L−→ (ν1 + 2, ν1 +m− 2) , m > 2. (4.3.64)

From here it is seen that in all cases Trν = Trν̄.

We are now ready to construct the regular solution of the transformed Schrödinger equation.

For ν2 ̸= ν1 superpotentials w and w̃∗ have the structure given by (4.3.59) or (4.3.60) depending

on the singularity indices. Therefore the first-order transformations L1 and L2 are conservative.

Thus, the result of the two-fold SUSY transformation applied to φ0(k, r) in the most general form

can be written as follows

Lφ0(k, r) = φ2(k, r)U0(k) , (4.3.65)

where U0 is a constant matrix with respect to r. Matrix U0(k) is invertible ∀k ̸= k1,2, which can be

seen from (4.3.7). In the case ν2 = ν1, the conservativeness of the two-fold SUSY transformation

can be established by considering (4.3.54) where ψ0 is replaced by a regular solution. Note that

φ0,2(k, r) = φ0,2(−k, r); therefore, matrix U0 is an even matrix function of wave number k, U0(k) =

U0(−k). The precise value of U0 is not important for the following.

Using the relation between the Jost solutions and the regular solution (1.1.27), which in view

of (4.3.56) and (4.3.65) we rewrite as

φ2(k, r)U0(k) =
i

2k
[f2(−k, r)U∞(−k)F0(k)− f2(k, r)U∞(k)F0(−k)] , (4.3.66)

we find the transformed Jost matrix

F2(k) = U∞(−k)F0(k)U
−1
0 (k) . (4.3.67)

The transformation of the scattering matrix then follows from its definition (1.1.33),

S2(k) = eil̄
π
2U∞(k)e−ilπ

2 S0(k)e
−ilπ

2U−1
∞ (k)eil̄

π
2 , (4.3.68)

and is equivalent to (4.3.32) and (4.3.33). Note that the transformed S-matrix does not depend on

U0. To prove that matrix O is real and orthogonal, one has to remember that l1, l2, l̄1, l̄2 all have

the same parity, as implied by (4.3.19) and (4.3.31).

D. Diagonalizing S2 in the same way as S0 in (1.1.34),

RT
2 (k)S2(k)R2(k) = diag

(
e2iδ2;1(k), e2iδ2;2(k)

)
, (4.3.69)

and remembering that matrices R0 and O both belong to SO(2), one sees that S0 and S2 have the

same eigenvalues. By choosing

R2(k) = O(k)R0(k)

(
0 1

−1 0

)
, (4.3.70)

one inverts the order of these eigenvalues, in agreement with (4.3.31), hence (4.3.34). This allows

to keep parametrization (1.1.35) with a modification of mixing parameter given by (4.3.36) and

vanishing at zero energy, ϵ2(0)− ϵ0(0) = 0.
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These eigenphase preserving transformations may be considered as a generalization of those in

the case of different parities (see (4.1.37)). Let us finally note that the transformed potential V2

can be used as a starting point for a next eigenphase preserving transformation. This means that

the two-fold SUSY transformation considered above can be iterated as long as desirable. A chain

of n such transformations over the initial potential V0 will lead to the following mixing parameter:

ϵ2n(k) = ϵ0(k)± (−1)m
n∑

j=0

arctan
k2

2χ2
j

(4.3.71)

leaving the eigenphase shifts unchanged.

4.3.3 Phenomenological neutron-proton interaction potential

An important consequence of the theorem 12 is the possibility to use the single channel SUSY

transformations fitting the experimental values of the eigenphase shifts. Afterwards, the mixing

parameter can be fitted without further modification of the eigenphase shifts by the eigenphase

preserving SUSY transformations. Thus, the main advantage of our approach consists in splitting

the inversion problem into two independent parts: (1) fitting eigenphase shifts to experimental

values independently for each channel and (2) fitting the mixing parameter between these channels.

As a result, one can construct a potential which gives rise to the desirable scattering matrix using

a chain of SUSY transformations.

Let us consider how this strategy works in the 3S1 − 3D1 coupled-channel case of the neutron-

proton scattering. We first build the simplest possible potential, valid at low energy only, in the

spirit of Ref. [156]. Next, we generalize this result to get a potential that fits scattering data with

better accuracy on the whole elastic region.

The scattering matrix in Ref. [156] was chosen in the following form

S(k) =
1

k4 + 4χ4

(
2χ2 k2

−k2 2χ2

)(
(k+iκ1)(k+iκ2)
(k−iκ1)(k−iκ2)

0

0 1

)(
2χ2 −k2

k2 2χ2

)
. (4.3.72)

We will present two possible chains SUSY 1 and SUSY 2 of SUSY transformations leading to S-

matrix (4.3.72). The difference between these chains consists in the different ways to introduce the

bound state.

SUSY 1

To reproduce s-wave eigenphase shift and the deuteron binding energy we use the Bargman

potential [157], which can also be obtained by two supersymmetric transformations of the zero

potential. It reads [156]

Vbg(r) = −2 d
2

dr2
lnW [exp (κ1r), sinh(κ2r)] (4.3.73)

=
2κ22(κ

2
1 − κ22)

[κ2 cosh(κ2r)− κ1 sinh(κ2r)]2
, (4.3.74)

where W is a Wronskian determinant. As in [156] we choose

κ1 = 0.232 , κ2 = 0.944 . (4.3.75)

We reproduce zero phase shift in d-wave choosing the centrifugal term Vd = 6/r2 as the second

potential .
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Figure 4.7: SUSY 1. Exactly solvable potential curves obtained from two uncoupled potentials with param-

eters κ1 = 0.232 , κ2 = 0.944 by the eigenphase preserving transformation with χ = 1.22.

The following regular and Jost solutions are used to construct the factorization solution for the

eigenphase preserving SUSY transformation

φs(k, r) =
2i
[
(k2 + κ21)κ2 sin(kr)− (k(κ21 − κ22) cos(kr) + κ1(k

2 + κ22) sin(kr)) tanh(κ2r)
]

(k − κ1)(k − κ2)(κ2 − κ1 tanh(κ2r))
,

(4.3.76)

φd(k, r) =
2i
[
(3− k2r2) sin(kr)− 3kr cos(kr)

]
k2r2

, (4.3.77)

fs(k, r) =

[
(k − iκ1)κ2 + (iκ22 − kκ1) tanh(κ2r)

]
(k + iκ2)(κ2 − κ1 tanh(κ2r))

eikr , (4.3.78)

fd(k, r) = eikr
(
1 + 3ikr − 3

(kr)2

)
. (4.3.79)

According to the theorem 12 factorization solution u(r) [in the case V0 = diag(Vbg, Vd)] reads

u(r) =

(
φs (k1, r) ifs(k1, r)

−iφd (k1, r) fd(k1, r)

)
, −u′′ + V0u = k21u , k1 = χ(1 + i) , (4.3.80)

and the transformed potential is calculated as follows

V2 = V0 + 4χ2 d

dr

(
Imu′u−1

)−1
. (4.3.81)

The transformed potential (4.3.81) with u(r) defined in (4.3.80) and χ = 1.22 is shown in figure

4.7. We extract central, tensor and spin-orbital potential curves

VC = V2;2,2 , VT = V2;1,2/
√
8 , VO = (V2;2,2 − V2;1,2/

√
2− V2;1,1 + 6/r2)/3 , (4.3.82)

taking into account the exchange of the partial waves under the eigenphase preserving SUSY.

These potential curves are similar to ones shown in figure 13 in Ref. [45]. Ratio of asymptotic

amplitudes of the bound state wave function η = Ad/As = κ21/(2χ
2) = 0.018081 coincides with the

ratio obtained from S-matrix residue

η =
resS2,1(k = iκ1)

resS1,1(k = iκ1)
(4.3.83)
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Table 4.1: Deuteron observables of the studied cases.

parameter SUSY 1 Kohlhoff (b) SUSY 2(input) SUSY 2 (num) [Newton-Fulton]

Eb 2.2321394 2.2321399 2.2321394 2.2321206 2.2321394

Pd 6.76633 6.77 1.875 2.09

As 0.875296 0.8753 as = 0.0584957 0.8310 0.8269

η 0.0180812 0.018081 0.0393192 0.03949 -0.018081

by construction. These potential curves are singular at the origin. Thus this potential significantly

differs from the original Newton-Fulton potential.

SUSY 2

We can obtain a potential which is more similar to the Newton-Fulton potential using the initial

diagonal potential without bound states

V0(r) = diag

(
−2
(
lnW [v1, v2] (r)

)′′
,
6

r2

)
. (4.3.84)

The d-wave potential is purely centrifugal, while the s-wave potential is obtained from the zero

potential by a second order one-channel SUSY transformation with the factorization solutions

v1(r) = sinh(κ1r) and v2(r) = sinh(κ2r). This s-wave potential has no bound state but a singular

repulsive core at the origin [83]. Potential V0 is thus characterized by the singularity and centrifugal

indices

ν = diag(2, 2) , l = diag(0, 2) . (4.3.85)

The Jost solution corresponding to potential V0 reads

f0(k, r) = diag

(
f0s(k, r), f0d(k, r)

)
, (4.3.86)

where

f0s(k, r) = eikr
(
1 +

3i

kr
− 3

(kr)2

)
, (4.3.87)

f0d(k, r) =

(
ṽ′2(r)

ṽ2(r)
− ∂r

)(
v′1(r)

v1(r)
− ∂r

)
eikrN1N2 , (4.3.88)

with ṽ2 = [(ln v1)
′ − ∂r]v2 and the normalization constants Nj = (ik − κj)−1. The regular solution

φ0 is expressed from (1.1.27) with the Jost matrix

F0(k) = diag (−N1N2, 1) . (4.3.89)

Using these expressions for the Jost and regular solutions, one may construct with (4.3.37)

a transformation solution u with asymptotics (4.3.27) and (4.3.28), according to Lemma 5. The

eigenphase preserving transformation described in Theorem 12 leads to a singular potential V2

without bound state and with

ν̄ = diag(2, 2) , l̄ = diag(2, 0) . (4.3.90)

The eigenphase shifts of the transformed S-matrix coincide with the initial eigenphase shifts,

δs(k) = − arctan
k

κ1
− arctan

k

κ2
, (4.3.91)

δd(k) = 0 . (4.3.92)

136



Figure 4.8: SUSY 2. Exactly solvable potential curves obtained by the eigenphase preserving SUSY trans-

formation and phase equivalent bound state addition, κ1 = 0.232 , κ2 = 0.944, χ = 1.22.

Figure 4.9: (a) Wave function with the following asymptotic constants As = 0.833, Ad = 0.0856.

The mixing angle is given by (4.3.36) with ϵ0 = 0 and positive sign. Note that due to the exchange of

centrifugal terms after the eigenphase preserving SUSY the first channel corresponds to d-wave and

the second channel corresponds to s-wave. The Newton-Fulton potential differs from the potential

constructed above because it has one bound state.

In the contrast with SUSY 1 the bound state is introduced by phase-equivalent bound state

addition for coupled channels [91]. The corresponding transformed potential may be defined in

terms of the vector solution

ψp(r) = f2(iκ1, r)⃗a1 , a⃗1 = (a2d + a2s)
−1/2(ad, as)

T , (4.3.93)

as follows

V = V2 − 2
d

dr
wp , wp = −

ψpψ
+
p

(a2s + a2d)
−1 +

∞∫
r
ψ+
p ψpdt

. (4.3.94)

Here f2 is the Jost solution of the Schrödinger equation with potential V2, ad and as are arbitrary

constants. These constants are proportional to the asymptotic amplitudes Ad and As of the bound

state, Ad/As = ad/as.
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Table 4.2: Factorization constants

sj , fm
−1 dj , fm

−1 Modulus χ, fm−2 Argument α

0.2315380 0.671119 0.134547 3.09823

1.752295 3.39537 11.3097 4.01335

2.173204 0.401557 10.1828 0.742398

Since Newton-Fulton potential is finite at the origin we impose this requirement to the potential

V (r) thus obtaining a link between asymptotic amplitudes

As

Ad
=

8χ3 + 8χ2κ1 + 4χκ21 + κ31
2χ2κ1

, (4.3.95)

The resulting potential and the corresponding wave function are shown in figures 4.8 and 4.9,

respectively. The shape of the potential curves is similar to one presented in [156]. Note that the

finiteness of the potential at the origin was not reproduced in [45]. This shows that the method of

SUSY transformations is more flexible.

In table 4.1 we compare deuteron observables obtained by SUSY 1 with respect to the case (b)

in Ref. [45] and results of SUSY 2 with respect to original results of Newton and Fulton [156]. It

can be seen that our results are in agreement with Ref. [45]. The chain SUSY 2 contains two two-

fold coupled channel SUSY transformations thus making analytical calculations to complicated.

The bound state observables for the resulting potential were obtained numerically. Therefore we

provide in Table 4.1 both input data and numerical values.

We believe that quantitative difference with Ref. [156] is explained by a somewhat different input

parameters. It should be stressed, that ratio η = −0.018081 reported in [156] do not correspond to

the ratio of asymptotic normalization constants. Apparently, Newton and Fulton did not realize

that their potential has long-ranged tails (see figure 4.17), thus As/Ad cannot be determined from

(4.3.83). It is determined from (4.3.95).

SUSY 3

At the end of this chapter, we present more sophisticated example which combines all ingredients

of SUSY inversion. In this example, we start from Reid93 potential [158] and fit its phase shifts

and mixing parameter as follows

δs(k) = π − arctan

(
k

s1

)
− arctan

(
k

s2

)
− arctan

(
k

s3

)
, (4.3.96)

δd(k) = δd0(k)− arctan
k

d1
− arctan

k

d2
− arctan

k

d3
, (4.3.97)

δd0(k) = arctan
3kx20

3x0 − k2(x30 + c)
, (4.3.98)

ϵ1 =

3∑
j=1

arctan

(
E

χj sin(αj)
+ tan

(
αj −

π

2

))
. (4.3.99)

This fit corresponds to the three single channel SUSY transformations in the s wave applied to the

zero potential and to the three single channel SUSY transformations in the d wave applied to the

following potential

V (r) =
6(r + x0)((r + x0)

3 − 2c)

[c+ (r + x0)3]2
, (4.3.100)
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Table 4.3: Deuteron observables for the Reid93 inversion.

parameter Reid93 SUSY (input/num)

Eb, MeV -2.224575 -2.224575/-2.224572

Pd, 5.699 /7.035

As 0.8853 /0.8658

η 0.02514 0.02863/0.02902

Q, fm2 0.2703 /0.2935

< r >, fm 1.969 /1.939

where additional constraints

x0 =
3∑

j=1

1

dj
, c = −

3∑
j=1

1

κ3j
,

are imposed to provide a correct effective range expansion. The coupling is introduced by the

three two-fold eigenphase preserving transformations. The factorization energies are −s2j , −d2j and

χjexp (iαj) for the s wave, d wave and coupling, respectively. Note that s1 is fixed from the deuteron

binding energy. The eigenphase preserving transformations involve complex factorization energies,

whereas in our theorem 12 only purely imaginary factorization energies were used. As it turns,

the method works in more general case, but we skip these technical details. Using standard fitting

algorithms available in the packet of analytical calculations Mathematica, we found the following

values of parameters listed in table 4.2.

In figures 4.10, 4.11 and 4.12 we compare the phase shifts of the Reid93 potential and ones

given by (4.3.96), (4.3.97) and (4.3.99) in the whole elastic region (Tlab < 350 Mev). The transition

between Mev and fm−2 may be done by coefficient ~/(2µ) = 41.471 Mev fm−2, where µ is the

reduced mass. Potential curves are compared in figures 4.13, 4.14 and 4.15. The potential generated

by SUSY transformation has several wells which indicates that the choice of the factorization

constants is not correct. We should stress, that diagonal potential generated by single-channel

SUSY transformations does not have such drawback. Hence, we can conclude, that the problem

may be in the complex factorization constants responsible for coupling (see figure 4.16). Finally,

in table 4.3 we compare deuteron observables for the Reid93 potential and for its SUSY inversion.

The eigenphase preserving transformations were made numerically. As a starting point, we used

analytical expressions for the initial diagonal potential with eigenphase shifts (4.3.96) and (4.3.97).

There is a difference between input and output parameters due to numerical errors.

Finally, to compare the asymptotic behaviour of three potentials (SUSY 1, 2, 3) and the

asymptotics of the Reid93 potential we plot log |Vi,j | in figure 4.17. Potential SUSY 1 related with

the von Geramb results decreases to fast, whereas SUSY 2 has long-range tails. This comparison

with the one-pion-exchange asymptotics may be useful to improve potential SUSY 3 in future work.

Note that our aim in this example is to show that we can improve phase shifts fit and values

of deuteron observables of the simplest Newton-Fulton model by using SUSY transformations. It

seems that this aim has been reached. We hope that a fine tuning of the factorization constants may

improve the shape of the potential and agreement with the deuteron parameters significantly. The

main difference here is that there are several inequivalent configurations of complex factorization

energies leading to similar mixing parameters.

139



Figure 4.10: s-wave phase shifts. Solid curve corresponds to the Reid93 potential, dots correspond to (4.3.96).

Figure 4.11: d-wave phase shifts. Solid curve corresponds to the Reid93 potential, dots correspond to

(4.3.97).

Figure 4.12: Mixing parameter. Solid curve corresponds to the Reid93 potential, dots correspond to (4.3.99).
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Figure 4.13: SUSY 3, s-wave potential. Solid curve corresponds to the Reid93 potential, Dashed curve

corresponds to the potential generated by SUSY transformations.

Figure 4.14: SUSY 3, d-wave potential. Solid curve corresponds to the Reid93 potential, Dashed curve

corresponds to the potential generated by SUSY transformations.

Figure 4.15: SUSY 3, sd-coupling potential. Solid curve corresponds to the Reid93 potential, Dashed curve

corresponds to the potential generated by SUSY transformations.
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Figure 4.16: Position of S-matrix poles (factorization constants). Poles responsible for the coupling are

shown by C, S-wave poles are shown by O and D-wave poles are shown by +.
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Figure 4.17: Asymptotic behaviour of log |Vi,j |. Solid lines correspond to V1,1 (S wave), dashed lines corre-

spond to V2,2 (D wave), dotted lines correspond to V1,2. R – asymptotics of Reid93 potential.
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Conclusion

In the case of the single-channel Schrödinger equation, a careful study of propagators and Green

functions for SUSY partner Hamiltonians has been made. We have shown that it is possible to

establish a relation between the traces of the Green functions for the two partner Hamiltonians for

the cases of the deletion of the ground state, the addition of a new ground state and when the two

Hamiltonians are isospectral. The formulas derived in this work are valid for the general case of

Hamiltonians having both discrete and continuous spectra. Our results show that when a continuous

spectrum is present, each of the traces of the Green functions for the SUSY partners may diverge

but the difference between the traces remains finite. We have illustrated our results by considering

the case of the free motion on the full line. We would like to note that the difference of the traces

of the Green functions of the two SUSY partner Hamiltonians appears as the trace (actually super-

trace) of the Green function of the supersymmetric Schrödinger equation (supersymmetric Green

function). Thus, our results reveal the possibility of divergence of the component traces of the

supersymmetric Green function while its super-trace remains finite.

Assuming the partner Hamiltonians to be linked by polynomial supersymmetry of a general type,

we have derived user friendly expressions interrelating the corresponding associated propagators.

Since the propagators may also be defined in terms of continual integrals, the results should be

useful in exploring new classes of continual integrals. We have applied our general technique to

derive propagators for transparent potentials and for a family of SUSY partner potentials of the

harmonic oscillator. The generalization to time-dependent and complex potentials has also been

presented.

In the case of the coupled-channel Schrödinger equation, basing on the exactly-solvable N -

channel Cox potential derived from a non-conservative supersymmetric transformation of the van-

ishing potential, we have established different parameterizations of this potential, as well as a

necessary and sufficient condition for its regularity. A careful study of the spectral properties of

the N -channel Cox potential has been given. Our treatment is based on the analysis of the Jost-

matrix determinant zeros. We have shown that the zeros of the Jost-matrix determinant are the

roots of an N2N−1th-order algebraic equation. The number of bound states nb is restricted by the

number of channels, 0 ≤ nb ≤ N . The upper bound for the number of resonances is (N − 1)2N−2.

The generalization is based on the analysis of the behavior of the Jost-matrix eigenvalues. In the

N = 2 case, a full analysis of the corresponding Jost matrix has been carried out. In particular,

the structure of the zeros of the Jost determinant has been presented geometrically.

With ultracold gases in mind, we have also studied the low energy S-matrix and the scattering

length of the 2× 2 Cox potential. Using the independence of scattering properties from interaction

details in the regime with a large scattering length, a model of alkali-metal atom-atom scattering has

been constructed. This provides interesting exactly-solvable schematic models for the interplay of

a magnetically-induced Feshbach resonance with a bound state or a virtual state close to threshold.

We consider the development of supersymmetric transformations as a very promising tool for

the multi-channel inverse scattering problem with threshold difference and for the construction

of more advanced exactly-solvable coupled-channel models. In particular, iterations or chains of

transformations might lead to more complicated Jost functions, with arbitrary number of bound

states and resonances, hopefully still with a tractable connection between potential parameters and

physical observables.

As far as physical applications are concerned, atom-atom interactions are both very interest-
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ing today, due to the active research field of ultracold gases, and rather simple with respect to

supersymmetric quantum mechanics, as only s-waves have to be considered and as the interaction

is short ranged (no Coulomb term). We foresee to apply the present model to other systems pre-

senting these simple features, namely coupled s-wave baryon-baryon interactions, with at least one

neutral baryon. In the longer term, we hope to generalize our method to higher partial waves and to

Coulomb interactions. This should allow us to construct useful models in the context of low-energy

nuclear reactions, the field which first motivated the work of Feshbach [145,146] on coupled-channel

resonances, leading to possible applications in nuclear astrophysics and exotic-nuclei low-energy re-

actions.

In the case of coinciding thresholds, coupling SUSY transformations have been studied. In par-

ticular, we have formulated conditions imposed on the transformation function to get a nontrivially

coupled scattering matrix resulting from the first order SUSY transformation. A careful analysis

of N -channel SUSY transformations between uncoupled potentials with equal thresholds but arbi-

trary partial waves and coupled ones has been made. A family of iso-phase potentials generated

by a first order coupling SUSY transformation has been obtained. The analysis of the zeros of the

Jost-matrix determinant for these potentials has shown that the SUSY transformation creates a

new M fold degenerate bound state energy Eb = −κ2 and an N −M fold degenerate virtual state

energy Ev = −κ2.
In the most important practical case, the two-channel case, we have analyzed the behaviour of

the superpotential and potential at large distances in details. We have found an unusual effect, i.e.

a modification of the long-range behaviour of the potential under a coupling SUSY transformation,

which consists in an exchange of the partial waves between the channels. The analysis of the

phase shifts and mixing angle has demonstrated how scattering properties change after a SUSY

transformation.

As an illustration of our approach, several simple examples have been presented. First, to em-

phasize the difference between couplings in the potential, Jost and scattering matrices, we presented

examples of a trivially coupled scattering matrix corresponding to non trivially coupled potential

and Jost matrices. These examples answer the general questions raised in the beginning of chapter

4: situations may exist where a non trivially coupled potential leads to a trivially coupled S-matrix,

with either a trivially or non trivially coupled Jost matrix. Thus, the requirement that an S-matrix

be non trivially coupled is more restrictive than the similar requirement for a potential matrix or

the Jost matrix. Afterwards, a non trivial coupling has been introduced in the s−s, s−p and s−d
channels. In both s − s and s − p examples, we have shown how to fit the low-energy behaviour

of the phase shifts and mixing angle using parameters of the transformation. In the s− d case, to

satisfy the effective range expansion for the mixing parameter, we used an initial potential with a

zero energy virtual state. Nevertheless, the obtained phase shifts of the coupled s− d potential do

not satisfy the correct effective range expansion. Moreover, the presence of the zero energy virtual

state strongly restricts possible applications of our method to the inversion in this case.

A careful analysis of the first order SUSY transformations indicates the significant drawback

of this transformations and gives us a hint of how to avoid this drawback. We have developed

the technique of the second-order transformations. In this way we have introduced an “eigenphase

preserving” two-fold SUSY transformation for the two-channel Schrödinger equation with partial

waves of the same parity (e.g. s − d). This transformation alters the mixing parameter between

channels without modifying the eigenphase shifts (as the first order coupling transformation in the

s−p case). Chains of such transformations lead to coupling between channels in the scattering ma-
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trix which correspond to nontrivial k-dependences of the mixing angle (4.3.71). With a reasonably

small number of parameters, such mixing angles are probably able to fit experimental data, in a

similar way to the usual phase shift fitting used in one-channel SUSY inversion [84,91]. Combining

both techniques, we obtain a complete method of coupled-channel scattering data inversion based

on SUSY transformations. As a first application of this method, we have reproduce simple model

presented in [156] and its revision in [45]. We also have constructed an example of the potential

obtained from the inversion of Reid93 scattering data, thus showing how SUSY inversion may work

in the coupled-channel case.
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