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Introduction

Recently, the interest for the low energy quantum systems has increased due to the impres-
sive experimental progress in condensed matter physics (BEC [11-13], cold atom-atom collisions
[14,15]), nuclear physics (low energy nuclear collisions, investigation of exotic nuclei, nuclear astro-
physics [16-19]), quantum optics [20] and quantum computing [21]. In many important cases it is
possible to investigate the corresponding physical problem in terms of the one particle Schrodinger
equation with an effective potential. For example, consider a collision of two compound particles,
say an atom-atom collision. The full quantum mechanical description should include all possible
configurations of constituents, but in a first approximation we may consider these atoms like two
point particles which interacts through a potential. This last problem may be transformed into a
set of radial Schrédinger equations by performing a partial wave decomposition. Next, the inter-
nal structure of colliding particles leads to different possible asymptotic states (so-called channels)
which in our example correspond to the different excited states. Only a few channels and partial
waves a play role at low energies. An outgoing asymptotic state may differ from the ingoing one,
which means that the collision process leads to the modification of the internal structure. This
situation corresponds to coupled channels. Many low energy quantum processes can be described
by the system of N coupled radial Schrédinger equations [22,23]. In this thesis, we will work with
such Schrodinger equations (N = 1,2,...) bearing in mind the physical interpretation given above.

One of the important theoretical problems concerns the studying of the dynamics or the time
evolution of a system described by such a Schrodinger equation. For example, one may try to
find how wave packets propagate in a given potential [24,25]. Mathematically, it is necessary to
solve the Cauchy problem for the time-dependent Schrédinger equation, for instance, by finding
the corresponding propagator [26,27].

Often, such a detailed description of the evolution is not necessary. It is sufficient to know the so-
called scattering matrix which contains transition amplitudes from the initial to the final scattering
states [22,23]. As far as scattering is concerned we should distinguish two equally interesting and
important problems. On the one hand, the calculation of the scattering matrix (or any analogous
object) for a given interaction potential is called the direct scattering problem [22,23]. On the
other hand, the inverse scattering problem consists in restoring the potential from given scattering
properties (e.g., scattering matrix) [28].

Let us stress the importance of exact analytical solutions of the Cauchy problem and of both
the direct and the inverse scattering problems in quantum mechanics. Exact analytical results are
important for a better understanding of the underlying quantum phenomena. These analytical
results may also be useful in order to test existing numerical methods [29, 30], especially in the
multi-channel case [31].

In this thesis we will study propagators of the time-dependent Schrédinger equation and investi-
gate coupled-channel scattering problems with the help of algebraic technique emerged in so-called
supersymmetric quantum mechanics. Let us first describe in words these three subjects. The

rigorous mathematical definitions will be given in the first chapter.

Propagators in quantum mechanics

The space-time evolution of a quantum mechanical system is governed by its Schréodinger equa-

tion and in its most complete form it is encoded in the propagator [26]. To be precise we should note



that we use the term propagator for the Green function of the time-dependent Schrodinger equation
to distinguish it from the term Green function which is used for the stationary Schrodinger equation.
Both the propagator and the Green function are the fundamental solutions of the time-dependent
and stationary Schrodinger equations, respectively.

The propagator defines the probability amplitude for a particle to move from one point of the
space to another in a given time. Similar to propagators in relativistic field theories, it provides
a global picture of the causal structure of a quantum system which goes beyond the information
contained in a single wave function. Propagators play an essential role in solving the probability
related Cauchy problem of Quantum Mechanics [26,27]. Moreover, with the aid of the propagator
one can obtain other important objects. For instance, applying Wick rotation ¢ — i3 to a propa-
gator leads to the statistical sum of the underlying system thus providing a link between quantum
and statistical mechanics. The exact expression for the propagator may be used to obtain pq, gp
and Weyl symbols of the evolution operator [32].

There are several methods to calculate propagators. The straightforward technique is based on
the decomposition of the propagator in terms of a basis. This method leads to two problems: how
to find the coefficients and how to calculate the sum. Another method is based on the path-integral
representation of the propagator. Roughly speaking, path integration gives the exact answer for
the case of quadratic Hamiltonians, whereas for the general case one should use the perturbative
technique. The first order correction coincides with the result obtained from the well-known WKB
method [26]. To calculate exact propagators one can use symmetry properties of the system. The
corresponding general method was developed in [33], where the exact propagators for quadratic
Hamiltonians were calculated as an illustration. The vast literature on propagators, summarized
e.g. in [34], lists mainly explicit expressions of propagators for Schrodinger equations in one space
dimension which are reducible to hypergeometric differential equations or their confluent forms.

The interest in new exact propagators is less motivated by their mere existence or their technical
subtleties than by their applicability to concrete physical problems. For example, in [35] exact
propagators for quadratic systems were applied to study multi-dimensional systems and magnetic
properties of ideal gases. As far as applications are concerned, propagation of a short laser pulse in
the paraxial approximation may be described by time-dependent Schrédinger equation [36,37]. The
propagator is also used to study the behaviour of light in meta materials [25]. Exact propagators
for non-Hermitian Hamiltonians may be interested in view of decaying systems [38].

It is known that the propagator of the time-dependent Schrodinger equation is related to the
Green function of the stationary Schrédinger equation by Fourier transformation. The Green func-
tions are used in different quantum problems. For instance, inhomogeneous Schrodinger equations
may be treated by using Green functions. Inhomogeneous equations cover two important classes
of problems. The first class is the perturbation theory. The second class deals with reactions (cre-
ation and annihilation of particles). In this case inhomogeneity plays the role of a source (outlet)
of particles [39]. Note that the method of the Green function is an important ingredient in the
quantum field theory also. In this work we restrict ourselves to Green functions of the stationary

Schrodinger equation.

Coupled-channel scattering problems

Almost all low-energy collisions of microparticles with an internal structure (i.e., atom-atom,



nucleus-nucleus, etc) include inelastic processes such as excitations of internal degrees of freedom of
colliding particles or processes with rearrangements of their constituent parts. These processes can
be described by a matrix (more precisely multichannel) Schrédinger equation with a local matrix
potential [22,23] in the framework of the coupled-channel scattering theory. The main idea of the
scattering theory is that the colliding particles are supposed to move freely at large distances. This
asymptotic behavior is encoded by the ingoing and outgoing states. Roughly speaking, to describe
the collision process one should find the operator which transforms ingoing states into outgoing
states. This operator is nothing but the scattering matrix .S mentioned above.

The widespread point about the scattering matrix is that its poles (for negative energies £ < 0)
correspond to the bound states of the system. It is actually not always true. To establish whether
a pole corresponds to a bound state or not we should either solve the Schrodinger equation at
this energy to look at the wave function or decompose the scattering matrix in terms of the so-
called Jost matrix, S(k) ~ F~1(k)F(—k), where k is the momentum. Then, the zeros of the Jost
matrix determinant correspond to the bound states of the system, whereas poles of the Jost matrix
elements do not. The Jost matrix can be found independently of the scattering matrix. In the
thesis, we will use the Jost matrix as a basic object.

One can distinguish the coupled-channel scattering with different and equal thresholds. An
example of the coupled-channel scattering with different channel thresholds is the scattering of
atoms of alkali metal in a background magnetic field. The presence of the magnetic field results
in different energies for the different possible spin-configurations of the outer s-electron and the
nucleus. Thus channels with different threshold energies appear. Low energy neutron-proton
scattering gives an example of two-channel scattering with equal thresholds, because one should
take into account uncoupled channels 'Sy, P, ..., and coupled channels 31 —3 Dy, 3P, —3F,, .. ..
These two examples will be considered in details in the third and fourth chapters, respectively.

In principle, the scattering matrix may be defined from the collision experiments. Hence, one
can raise the inverse scattering problem about determination of the interacting potential [28].
Part of the problem was solved in works of Gelfand, Levitan, Marchenko, Jost. They formulated
prescriptions for both the single- and coupled-channel cases of how to construct the integral equation
which allows to find the potential from the Jost or the scattering matrix [40-43]. They also found
some exact solutions of the equation, in particular, for single-channel problems in the case of
separable kernel. The search of alternative approaches to the inversion continues, especially for the
coupled-channel problems [44, 45].

Regarding the coupled-channel inverse scattering problem we should mention one important
result that serves as an intermediate point in developing any inversion technique. In [46] Cox
derives an exactly-solvable coupled-channel potential with threshold differences, two remarkable
features of which are the compact expressions provided both for the potential and for its Jost
matrix. Since the Jost matrix completely defines the bound- and scattering-state properties of a
potential model [23,47], such an analytical expression seems very promising in the context of the
scattering inverse problem.

The work of Cox has however received little attention, probably because it is plagued by two
problems. First, the way of getting the potential is rather complicated and mysterious: the paper
mostly consists in a check that the provided analytical expression for the solutions satisfies the
coupled-channel Schrédinger equation with the provided analytical expression for the potential. Not
much information is given on how these expressions were obtained, which makes any generalization

of the method impossible. The second problem, already stressed in [46], is that, despite the compact



Initial quantum system Transformed quantum system

Hamiltonian, hg hy
Solutions, {¢} {6}
Spectrum, spec hy o spec hy
Green function, Go(z,y, E) o=t Gi(z,y, F)
Propagator, Ko(z,y,t) Ky(x,y,t)
Jost (function) matrix, F (k) Fi(k)
Scattering matrix, S (k) S1(k)

Figure 1: The diagram illustrates the principle of supersymmetric transformations

expression of the Jost matrix, calculating the corresponding bound- and resonant-state properties
is a difficult task because these states correspond to zeros of the determinant of the Jost matrix in
the intricate structure of the energy Riemann sheet, which has a multiplicity 2V for N channels.
The first problem was solved recently, when it was realized that the Cox potential, at least in
its simplest form (¢ = 1 in [46]), can be obtained by a single supersymmetric transformation of the
zero potential [48,49]. It is not exaggerated to say that this result was one of the main impulse for
my work in the coupled-channel inversion by supersymmetric quantum mechanics. Now we are in

a position to get acquainted with this remarkable method.

Supersymmetric quantum mechanics (SUSY QM)

In general, physical systems are described by differential equations. This raises the problem
of finding their solutions. Omne of the natural idea about solving is to transform equations with
unknown solutions to a much simpler form and in the ideal case to an equation with known solutions.
Particulary, studying of the transformations which preserve the equation gives us information about
its symmetries. This information helps a lot in finding the solutions.

Note that we can invert this logic. Consider a set of all one-dimensional Schrédinger equa-
tions. A representative of this set is totally determined by the potential. Starting from a given
exactly solvable potential we may apply all possible transformations (maybe with a fixed type, like
differential transformations) modifying this potential. As a result we find the class of potentials
associated with the given exactly solvable problem. If we can describe this class in some general
and foreseeable terms, then we know all equations reducible to the initial exactly solvable equation.

In this thesis we will use the method of supersymmetric quantum mechanics which is entirely
based on the idea of differential transformations. Historically, SUSY QM was introduced by Witten
[50] as a simple QFT model to study supersymmetry breaking. A little bit later, the links between
SUSY QM, Darboux transformations [51] and the factorization method of Infeld and Hull [52, 53]
were established [54,55]. Many exactly solvable quantum models were discovered in the framework
of SUSY QM [56-59].

Supersymmetric quantum mechanics gives us useful lessons of the “quantum intuition”. We
learn how to modify a potential to make very precise spectrum modification. We also learn how
to modify transition and reflection coefficients, scattering phases etc. Boris Zahariev is known as
the popularizer of the conception of quantum intuition (see for example book [60] and references
therein).

In figure 1 we give the general diagram of the supersymmetric transformations in quantum



mechanics. The differential operator L transforms the solutions of the initial Schrodinger equation
into the solutions of the final Schrédinger equation. This transformation induces definite relations
between Hamiltonians, its spectra and other auxiliary objects. We will distinguish conservative and
non-conservative SUSY transformations. Conservative SUSY transformations map wave functions
to wave functions, whereas non-conservative SUSY transformations always map wave functions to
some unphysical solutions. As a result, spectra of the initial and transformed systems are almost
identical for the conservative SUSY. The other way round, non-conservative SUSY changes the
spectrum totally. More precisely, no one spectral point of the initial Hamiltonian belongs to the
spectrum of the transformed Hamiltonian. As a result, a supersymmetry algebra, which is always
present in the case of conservative SUSY transformations, cannot actually be constructed here
and the word ’SUSY transformation’ is only a formal heritage from the previous conservative case.
Previously, more attention was payed to the conservative transformation only.

Obviously, we can use Hamiltonian h; (see figure 1) as the initial Hamiltonian for a new SUSY
transformation. Thus we obtain chains of SUSY transformations. These chains lead to quantum
models with so-called polynomial super algebras [57,61-63]. Some deformed SUSY algebras and
its applications were considered in [64—67]. An interesting class of potentials appearing in SUSY
QM is called shape invariant potentials [68]. For the moment ten shape-invariant potentials are
known [56]. All these potentials are widely used in mathematical physics. Most of the works in the
field of SUSY QM deals with the one dimensional case. Note that a multi-dimensional generalization
of SUSY QM was constructed in works [54,69] using the formalism of the superspace.

Another exotic field where SUSY QM is effectively applied is known as CP7T quantum mechan-
ics (or the complex generalization of quantum mechanics). It was presumed that SUSY QM may
become an essential ingredient of the infant complex quantum mechanics because of its nice prop-
erty to convert a non-diagonalizable Hamiltonian into diagonalizable forms and to delete spectral
singularities from the continuous spectrum of a non-Hermitian Hamiltonian [70-76].

As we mentioned above, SUSY transformations induce relations between corresponding aux-
iliary objects (see figure 1). The study of these objects was very unbalanced. For instance, the
transformation properties of the fundamental solutions like the propagators and the Green functions
were not studied in details.

Regarding propagators, probably there was only one work by Jauslin [77] who constructed a
general integral transformation scheme simultaneously for propagators of the Schrédinger equations
and for heat equations, but who did not provide a discussion of convergency and divergency of the
derived expressions. Moreover his expressions are rather involved, which implies that he can only
calculate explicitly the propagator of the so-called one-soliton potential generated by the first order
SUSY. For the sake of convergency he applied his technique to the heat-equation-type Fokker-
Planck equation only. In general, this result may be extended via Wick rotation to propagators for
Schrodinger equations of a free particle and a particle moving through transparent potentials. But
the question of convergency and with it the question of solvability remains to be clarified. Another
indication that the problem may be solvable has been provided by Refs [1,2] where a similar model
has been analyzed at the level of Green functions of stationary Schrodinger equations. Approximate
methods to calculate propagators in SUSY QM were proposed in [78,79].

In the case of the SUSY transformation which removes the ground state of the initial Hamil-
tonian, Sukumar has studied an integral relation between the Green functions for SUSY partners.
He has formulated conditions leading to the vanishing of some matrix elements of a Hamiltonian

and related this property to a hidden supersymmetry of the system [80]. The transformation of



the Green function is not explicitly discussed in that paper.

Speaking about the applications of supersymmetric transformations, we should mention quan-
tum scattering theory [22,23]. Supersymmetric transformations are a powerful tool to manipulate
the scattering properties of one-dimensional (single-channel) quantum systems. Briefly speaking,
this possibility appears due to the simple transformation of the scattering matrix under a SUSY
transformation. The scattering matrix is multiplied by a rational function of the momentum [81-85].
The iteration of SUSY transformations may be used to solve the inverse scattering problem. This
idea was proposed in works of Sukumar [81]. The effectiveness of SUSY transformations in the
inversion of scattering data is demonstrated in [83-85]. This approach to the scattering inversion is
more efficient [85] comparing with the integral transformations of Gelfand-Levitan and Marchenko
just because of the differential character of the transformation.

There are several papers devoted to supersymmetric transformations for multichannel prob-
lems [48,86-92]. Arbitrary chains of first-order SUSY transformations in the case of the matrix
Schrodinger equation are studied in [93]. There, a compact expressions for both the transformed
matrix potential and solutions were obtained.

It should be noted that methods based on a direct generalization of the SUSY technique to
the multichannel case are not able to provide an easy control of the scattering properties for all
channels simultaneously. For instance, in the two-channel case, the S-matrix is parameterized
by the eigenphase shifts d1(k), d2(k) and mixing parameter €(k), where k is the wave number.
Usual SUSY transformations modify these three quantities in a complicated way, which makes
their individual control difficult. We believe that this is the reason why SUSY transformations did
not find a wide application to multichannel scattering inversion.

An important ingredient of the supersymmetric inversion technique are the phase-equivalent
SUSY transformations, which are based on two-fold, or second-order, differential operators. These
are described in [94-96] for the single-channel case and in [91,92] for the coupled-channel case.
Such transformations keep the scattering matrix unchanged and simultaneously allow to reproduce
given bound state properties. However these intermediate results are still far from an effective
SUSY-based inversion in the coupled-channel case.

A full review of SUSY QM and of its applications goes beyond this introduction. However, the
areas mentioned above, where SUSY QM is effectively applied, indicate the great potential of the
approach. In the present work, we use the advantages of SUSY-based methods to investigate the
dynamics of quantum systems both in the single- and multi-channel cases. We will concentrate
on the following questions. First of all, we will study SUSY transformations of the Green func-
tions and propagators of the single-channel Schrodinger equation. Besides usual time-independent
SUSY partner potentials we will consider non-stationary potentials and non-Hermitian potentials.
Note that open and dissipative systems may be described by the Schrodinger equation with non-
Hermitian Hamiltonian [97].

Secondly, we pay attention to the coupled-channel models in the framework of SUSY QM.
We will study SUSY transformations between diagonal matrix Hamiltonians (trivial coupling) and
coupled Hamiltonians. Thus several new nontrivially coupled potentials will be obtained. The

spectral and the scattering properties of the transformed models will also be studied in details.
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Structure of the thesis

In the first chapter, we make all the necessary preparations. In the first section, we introduce
notations and recall some important properties of the single- and coupled-channel Schrédinger
equations. The definitions of the propagator, the Green function, the scattering and the Jost
matrices are given. The other sections are devoted to a review of the SUSY transformations in
quantum mechanics. The SUSY transformations are introduced in the standard framework of the
differential transformation operators. This approach is very convenient when one works with the
polynomial generalization of SUSY transformations. The first and the second order transformations
are building blocks for high-order transformations, therefore these cases are considered in details.
We also consider SUSY transformations of the time-dependent Schrodinger equation. The end of
the chapter is devoted to the explicit construction of exactly solvable models which will be treated
below.

In the second chapter, we consider SUSY transformations of the fundamental solutions (Green
functions and propagators) for the single-channel problems. First of all, we deduce relations between
Green functions for the potentials interrelated by the first and the second order SUSY transfor-
mations. Moreover, we recalculate the Sukumar “trace formula” obtained in [80]. In the case of
scattered potentials we have found a correction to this formula [80]. We give a simple interpretation
of this correction in terms of the norm of the scattering states.

In the second section, we formulate and prove several theorems about propagators for SUSY
partner potentials. We begin with the relations between propagators induced by the simplest
first order SUSY transformation. Then we generalize this result to the case of N-th order SUSY
transformation.

In the third section, these results are used to calculate explicit expressions for propagators and
a number of new exact Green functions. We consider models in the finite interval, the soliton
potentials and potentials with the quasi-equidistant spectrum. Calculations of propagators for
non-Hermitian and time-dependent potentials are demonstrated in simple examples of the time-
dependent soliton potential and a complex isospectral deformation of the harmonic oscillator.

The third chapter is devoted to the coupled-channel problems with different thresholds. In this
chapter, we restrict our consideration by s-wave only. The case of different thresholds requires non-
conservative SUSY transformations [48] which lead to a new derivation of the Cox potential [46].
We give a qualitative analysis of its spectrum for arbitrary number of channels and find the exact
spectrum for two channels thus correcting Cox’ wrong statement about the spectrum of this model.
Our analysis is based on the analytical expressions for the Jost and scattering matrices obtained
through SUSY transformations. The information about the spectrum and scattering properties
allows us to construct a model of magnetic-induced Feshbach resonance for the atoms of alkali
metals.

In the fourth chapter, coupled-channel problems with equal thresholds and arbitrary partial
waves are studied. We start with the most general first order (conservative) SUSY transformation
and study the properties of the transformed model in details. This analysis allows us to conclude
that at least second order SUSY transformations are needed. As a result, we introduce new eigen-
phase preserving SUSY transformations. It is necessary to stress the difference between this new
kind of transformation and the well-known phase-equivalent transformations mentioned above. A

phase-equivalent transformation does not modify the scattering matrix at all, whereas the eigen-

11



phase preserving transformation modifies the mixing between channels. An important consequence
of that is the possibility to use single-channel SUSY transformations to fit experimental values of
the eigenphase shifts. Afterwards, the mixing parameter can be fitted without further modifica-
tion of the eigenphase shifts. This approach to the inversion is demonstrated by constructing a
phenomenological neutron-proton potential.

In the conclusion, we summarize the main results, discuss possible applications of the presented

methods and formulate some feasible lines of future investigations.
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Chapter 1

Supersymmetry of the Schrodinger

equation

1.1 The Schrodinger equation

1.1.1 Single-channel case

We are interested in the non-relativistic quantum mechanics. Hence, we work with the Schrédinger
equation. Let us start with the simplest one dimensional time-dependent Schrodinger equation in
the reduced units

(10r — ho)¥(z,t) =0, z € (a,b), (1.1.1)

where hg = —92 + Vo(z,t) is the Hamiltonian. This equation describes a quantum particle which
moves in the potential Vy(x,t) inside the interval (a,b). In the present work, we will consider
both stationary, Vy(x), and time-dependent, Vy(x,t), potentials. Usually in quantum mechanics
one works with Hermitian Hamiltonians only. This implies that potential V{ is a real function
(this holds through the whole text, except for section 2.2.7). The wave function ¥(z,t) defines the
probability distribution for the particle in (a,b)

plz,t) = |U(z, t)]2. (1.1.2)

Using (1.1.1) and complex conjugated equation (note that Vj is real) one can find that the total

probability is conserved
b
o [ 1w =0,

hence, we can normalize the wave function to get unit probability, ff plx,t)de = 1.

Assume for simplicity that the potential is stationary (we work with time-dependent potentials
in section 2.2.6, where corresponding changes in the formalism are considered in details). As a
result the energy of the particle is conserved.

The Cauchy problem for the time-dependent equation (1.1.1) is to find the wave function ¥(z, t)
evolving from an initial configuration ¥(x,0) = Wo(z). The solution of this problem may be given

with the help of the so-called propagator Ko(z,y,t) of the time-dependent Schrédinger equation

b
Y, t) = / Ko(z,y,1)¥(y, 0)dy.
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The propagator (integration kernel) satisfies a differential equation with the Dirac delta function

as initial condition
[i0¢ — ho(2)]Ko(z,y;t) =0 Ko(z,y;0) =6(z —y). (1.1.3)

For non-dissipative systems, like in our case, the propagator Ky(z,y;t) can be interpreted as the
coordinate representation of the unitary evolution operator Uy(t): Ko(x,y;t) = (x|Uy(t)]y), where
unitarity implies the symmetry K;(z,y; —t) = Ko(y, z;t). It should be noted that the propagator
may be calculated by path-integration [27].

Subsequently, we will mainly work with a spectral decomposition of propagators in terms of
complete basis sets of eigenfunctions. Let us consider the main ingredients of this decomposition.
In the case of a stationary potential, the evolution equation (1.1.1) reduces, via the standard
substitution ¥(z,t) = ¥ (x)e”"** and properly chosen boundary conditions, to the spectral problem
for the stationary Schrédinger equation (in what follows we refer to this equation as the Schréodinger

equation and use term time-dependent Schrodinger equation for (1.1.1))
hot = Eib. (1.1.4)

Let us define requirements for the mathematical environment more precisely. We assume the
real-valued potential Vp(z) to be continuous and bounded from below so that the differential expres-
sion hg = —92 + Vy(x) defines a Sturm-Liouville operator which is symmetric with respect to the
usual £2(a, b) inner product (1|¢) = f; Y*(x)¢(z)dz. The corresponding functions v € £2(a,b) are
additionally assumed sufficiently smooth?, e.g. 1 € C?(a,b), over the interval (a,b) C R. Almost
everywhere in the text we choose real-valued solutions of equation (1.1.4). This is always possible
when Vj(x) is a real-valued function and the spectral parameter F is real also. We will mention
when complex-valued solutions and spectral parameters will be used.

Concentrating on physically relevant cases, we restrict our attention to the following three types
of setups [98]:

A: The interval (a,b) is finite ,|a|,|b] < oo, so that hp has a non-degenerate purely discrete
spectrum (see e.g. [99]).
B: For spectral problems on the half-line, (a = 0,b = o0), we consider the so-called scattering (or

short-ranged) potentials

/Ooox]Vo(a:ﬂdw < 00, (1.1.5)

which decrease at infinity faster than any finite power of x and have a continuous spectrum filling
the positive semi-axis and a finite number of discrete levels; the whole spectrum is non-degenerate.
This spectral problem may be interpreted as a radial problem for a 3-dimensional quantum system.
Therefore in this case it is convenient to replace the coordinate variable x by the radial coordinate
r € (0,00).
C: For spectral problems on the whole real line, (a = —00,b = 00), we consider confining as well
as scattering potentials. Confining potentials produce purely discrete non-degenerate spectra (see
e.g. [32]), whereas scattering potentials lead to two-fold degenerate continuous spectra filling the
whole real line and to a finite number of non-degenerate discrete levels (see e.g. [99]).

The spectrum is determined by imposing Dirichlet boundary conditions (BCs) for the bound

state eigenfunctions of hy. The eigenvalues E,, of hy are interpreted as the energies of the stationary

! As usual, C?(a,b) denotes the space of twice continuously differentiable functions.
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states. The operator hy is assumed to be essentially self-adjoint (with a closure that we denote by

the same symbol hy, for details see, e.g., [100]) in domain
D(ho) = {¢ : ¥ € L*(a,b) N C*(a,b), ¥(a) = 9 (b) = 0}. (1.1.6)
As usual, the eigenfunctions ¥y (z),
hotp(z) = K2p(x),  E =k, (1.1.7)

which correspond to the continuous spectrum E > 0 of hg, are supposed to have the oscillating
asymptotic behavior at spatial infinity. Here k£ denotes the momentum.

The eigenfunctions of Hamiltonian hg form a basis in the Hilbert space £2(a,b)

M
S un(@ilo) + [ dbvn@)ie) =8 —y). Walbm) =Gum (alirr) =3k = k). (LLS)
n=0

For the spectral problem on the whole real axis (case C) the continuous spectrum is two-fold
degenerate and the integral over k£ runs from minus infinity to plus infinity and for the problem
on a half line (case B) it runs from zero to infinity. For a finite interval (case A) or confining
potentials the integral is absent and the sum runs over infinite number of discrete levels, M = co.
This agreement about integration and summation is assumed in what follows. For example, using

this basis one can calculate the propagator in the following form

M

Kolo,it) = 3 Wales10i(0) + [ db Wio, 00 (0). (1.1.9)
n=0

U, (x,t) = wn(x)efiE"t , Uy (z,t) = ¢k(:v)efik2t .

By “physical” solutions we mean solutions belonging to the domain D(hg) (1.1.6) and scattering
states belonging to the continuous spectrum. All solutions ¥ & D(hg) corresponding to a spectral
parameter E outside the continuous spectrum are interpreted as “unphysical”. Such solutions
appear when we consider the Schrodinger equation just as a differential equation. Then the solution
space at a given spectral parameter E is the two-dimensional linear space Hy g = span(v, zﬂ), ie.,
(ho — E)(aw) + a1)) = 0, Ya,a € C. The two solutions ¢ and ¢ are linearly independent. One can

see from the Schrodinger equation (1.1.4) that the Wronskian of these solutions is a constant,

Wi, 1] = i’ — ' = const, (1.1.10)

where the prime denotes the derivative with respect to = (or r in case B). We define the Green
function as the kernel of the operator (hg — E)~! (see e.g. [98,101]). It is well-defined for all
E ¢ spechg. This Green function has two different but equivalent representations. The first
representation is obtained with the help of two real solutions, fjg and f.o (“left” and “right”

solutions), of the equation

ho firo(z, E) := _fl/,/ro(377 E)+ Vo(z) firo(x, E) = Efyo0(x, E), x € (a,b), E ¢ spechy .
(1.1.11)

In case A these solutions satisfy zero boundary conditions at one of the boundaries only
flo(CL,E):O, fTO(baE):O (1112)
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In case B the left solution vanishes at the origin, the right solution has the exponential asymptotics
fin(0,E) =0,  fuolr—o00,E)—=e* E=k*  Imk>0. (1.1.13)

In this case, fijp is a regular solution at the origin, and f.¢ is proportional to the so-called Jost
solution (we will discuss the Jost solutions in the next subsection). In case C both the left and the

right solutions have the exponential asymptotics at the right (and the left) infinity

fio(z, E) — e fro(z, E) — e E =k, Imk > 0, r— o0, (1.1.14)
fio(z, E) — e | fro(z, E) — e~k E=1k?, Imk >0, xr— —oo. (1.1.15)

Since these solutions correspond to the same spectral parameter, their Wronskian Wy = W|f0, fio]

does not depend on x and is a function of E only. The Green function then reads

Go(x,y,E) :flO(x’E)fT‘O(y’E)/WU’ <y, (1116)
GO(yava) = G(](ﬂl’,y,E) . (1117)

These formulae are clearly equivalent to
Go(z,y, E) = [fio(z, E) fro(y, E)O(y — z) + fio(y, E) fro(z, E)O(z — y)]/Wo, (1.1.18)

where O is the Heaviside step function.
The second representation of the Green function may be constructed in terms of the complete

basis set of hg’s eigenfunctions as follows:

Pn( Vi (2)Vi(y)
(z,y,E Z E _E ka_kEy dk . (1.1.19)

The propagator and the Green function of the corresponding stationary Schrédinger equation

are related as follows [35]:

Go(z,y, E) = z'/Ko(:c,y,t)eiEtdt7 ImE > 0.
1.1.2 Coupled-channel case

In the equations considered above, the wave function was a scalar function. This means that
the corresponding particle does not have internal degrees of freedom. We can generalize the one-
dimensional Schrodinger equation to the case of particles with internal degrees of freedom. The
internal states may be associated, for example, with the spin or with the excited states of a com-
posite particle. In this case, the Hilbert space of the system is the direct product £2(a,b) x CV.
The wave function depends on a discrete variable, say j, which determines the internal state. In
other words, the state of the system is determined by a set of functions ¥ = ¥(x,7), 7 = 1, N.
Thus, the wave function is a vector- (or spinor-) valued function. The scalar product modifies as

follows

N b
@l =3 / &* (2, §)(@, §)da
]:1
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Such systems naturally appear after a partial wave decomposition of a three-dimensional Schrodinger
equation in the context of scattering theory [22]. Note that in this case (a,b) = (0, 00) and we re-
place x by r € (0,00). Different values of the discrete variable j correspond to different asymptotic
states called channels.

Let us first summarize the notations used below for the coupled-channel scattering theory

[22,23,47]. We consider a system of coupled radial Schrodinger equations that in reduced units

reads -
hot (k1) = K*0(k,r),  ho=—In55+Vo(r), 1 €(0,00), (1.1.20)
Vo =11+ In)r—? + Vo(r), (1.1.21)

where Vy(r) is an N x N real symmetric matrix, Iy is the N x N identity matrix, and 1 may
be either a vector-valued solution or a matrix-valued solution combined from the vector solutions.
From the context it will always be clear what type of the potential V' is considered: matrix or scalar.
Potential Vy(r) combines the centrifugal term [(I + Iy)/r?, | = diag(l,...,In), l; = 0,1,..., and
a short ranged interaction Vo (r). Here and in what follows we also denote [ £+ 1 (and v 4 1 below)

matrix [+ Iy (v+1Iy). Matrix [ defines the asymptotic behaviour of the potential at large distances
Vo(r — o0) = 77211+ 1) + o(r?) (1.1.22)

which is typical for coupled channels involving various partial waves. We denote by v the matrix

which determines the singularity of the potential at the origin
Vo(r = 0)=r"20(v+1)+0(1), v=diaglv,va,...,vN], v;i=0,1,.... (1.1.23)

Note that V does not contain a Coulomb-like ~! singularity by our conjecture.

In the multi-channel case, by k we denote a point in the space CV, k = {ki,...,kn}, ki€ C. A
diagonal matrix with non-vanishing entries k; is written as K = diag(k) = diag(ki,...,kn). The
components of this matrix are nothing but the momenta corresponding to the different channels
(channel momenta). The complex wave numbers k; are related to the center-of-mass energy F and
the channel thresholds Ay, ..., Ax by the “threshold condition”

kKi=E-A;, A;=0. (1.1.24)

The thresholds A = diag(A,...,Ayn) correspond to the excitation energies of the interacting
particles. We assume here that A1 = 0 and the different channels have equal reduced masses, a case
to which the general situation can always be formally reduced [23]. In the case of equal thresholds
all channel momenta coincide k? = F, therefore it is sufficient to use only one momentum k.

Depending on the presence of the centrifugal term and the thresholds one may distinguish three
essentially different types of problem: s-wave scattering with different thresholds A;;) # Aj,
I = 0; arbitrary partial waves with equal thresholds A = 0; arbitrary partial waves with different
thresholds Aj;) # Aj, I # 0. In this work we consider only the first and the second cases.

We define the regular N x N matrix solution ¢(k,r) of (1.1.20) according to [23]

ok, 7 —0) — diag(r"/(Quy + DI, P (Quy + 1))
v+ DNt (1.1.25)
The Jost solution f(k,r) is the matrix solution which has the exponential asymptotic behaviour at

large distances
f(k,7 — 00) — diag[e™™1, ... eNT] .= T (1.1.26)
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The Jost solutions f(k,r) and f(—k,r) form a basis in the matrix solution space. The regular

solution is expressed in terms of the Jost solutions as
p(k,r) = 5 [F(=k.r)KF (k) = f(k, 1)K F(=k)] (L1.27)

where F'(k) is known as the Jost matrix. The Jost matrix plays an important role in the non-
relativistic scattering theory [102]. From (1.1.25) and (1.1.27) it follows that

F(k) = lim [f7(k,r)r¥] [(2v — DML (1.1.28)

r—0
Introducing the Wronskian of two matrix functions u, v as

/

Wu, v](r) = v (1) (r) — ul (r)o(r), (1.1.29)
we can rewrite (1.1.27) in the following form
(k) = Wf(k,r), (k)] (1.1.30)

Note, that the Wronskian (1.1.29) of two linearly independent matrix solutions corresponding to
the same energy is a constant matrix in the full analogy with the single channel case (1.1.10).
Zeros of the Jost-matrix determinant define positions of the bound/virtual states and the res-

onances. Thus, to find these positions we have to solve the following equation
detF (k) =0, (1.1.31)

taking into account the threshold conditions (1.1.24).
The physical solution, which appears in the partial wave decomposition of the stationary scat-

tering state, behaves as
U(k,r — 00) o etz 7T _ omilgHiKr =172 6k K12 (1.1.32)
The scattering matrix S(k) is expressed in terms of the Jost matrix as
S(k) = 2 K2R (—k)F~ (k) K'/2e% (1.1.33)

Note that the Jost and scattering matrices may also be defined for the single channel case by the
same relations with obvious changes.

Since the scattering matrix is unitary and symmetric there exists an orthogonal transformation
R(k) diagonalizing this matrix. More precisely, just the sub-matrix which corresponds to the open
channels is unitary. Open channels correspond to the real channel momenta. In the two-channel

case, assuming that both channels are open (or A; = Ay), we get

T S11(k)  Sia(k) [ ern® 0
R* (k) ( S1a(k)  Saa(k) )R(k) = ( 0 i) ) (1.1.34)

The rotation matrix R(k) is parameterized by a mixing angle € = €(k),

[ cose(k) —sine(k)
Rk = ( sine(k) cose(k) > ’ (1.1.35)

which is expressed in terms of S-matrix entries as

B 2512(k)
tan 2e(k) = G110k — Sk (1.1.36)
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Note that an opposite sign definition for the mixing angle could have been chosen; moreover, the
order of the eigenphase shifts is arbitrary: exchanging them while adding +7/2 to the mixing
angle keeps the scattering matrix unchanged. From a physical motivation, a natural order of the
eigenphase shifts corresponds to the mixing parameter vanishing at zero energy (at the threshold).

In the next sections, we present the method of SUSY transformations which allows one to gener-
ate new non-trivial exactly solvable models described by the Schrodinger equations discussed here.
We start with the most general SUSY transformations of the single-channel stationary Schrodinger
equation. Then we consider how this general scheme works in particular cases of the first and
the second order transformations. In the case of the first order transformation, we generalize the
method to the multi-channel problems. The first order SUSY transformation for the time-dependent

Schrodinger equation will also be considered.
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1.2 SUSY transformations of the stationary Schrodinger equation

Let us consider the simplest two-component system of Witten’s non-relativistic supersymmetric

quantum mechanics [50,103] described by the Schrodinger equation
H¥(z) = E¥(z), x € (a,b), (1.2.1)

where H is a diagonal super-Hamiltonian consisting of the two (single-channel) super-partners hg

and hy as components

ho 0
H= . hon=-02+Von(2), (1.2.2)
0 hy

and W(z) = (¢(x), p(x))" .
We assume that the partner Hamiltonians hg and hy are intertwined by an Nth-order differ-
ential operator L with the following properties:
1. intertwining relations
Lho = hyL hoLt = L*thy (1.2.3)

2. factorization rule
LTL = Pn(ho) LLT = Py (hy)
Py(x)=(z—ap)...(r —an-1)

Im (a;) =0 Q; F Qs ik=0,...,N—1. (1.2.4)

Here, the adjoint operation is understood in the sense of Laplace (i.e. as formally adjoint with the
property 9 = —0,, (AB)t = BTAT and it = —i) and the roots «; of the polynomial Py are
called factorization constants. For simplicity we assume that the polynomial Py has only simple
roots. The intertwining relations together with the factorization rule can be represented in terms

of the polynomial super-algebra [57,104,105]

Q*=@Q")?=0 [QH=[Q"H =0 QQ"+QTQ=Py(H) (1.2.5)

{00 R
~(ia) =(0)

Although the component Hamiltonians hg and hy enter the super-Hamiltonian (1.2.2) in an

with nilpotent super-charges

algebraically symmetric way, we consider hg as a given Hamiltonian with known spectral properties
and hy as a derived Hamiltonian with a still undefined spectrum.
The intertwiner L is completely described by a set of N transformation functions wy,(z), which

are solutions of the stationary Schrodinger equation with hg as Hamiltonian:
hotu, = apu, n=0,...,N—1.
Note that transformation functions may be unphysical solutions.
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In our case of a polynomial Py (z) with simple roots (i.e. a; # ay) the action of the intertwiner

L on a function ¥ is given by the Crum-Krein formula [106,107]

W(ug,u1, ..., un—1,%)

o=1Ly= W (ug, ugy .., un—1) (1.2.6)
with W denoting the Wronskian
U up ce. UN—1
W = W (uo, un, ... tin—1) = o “oe Uy (1.2.7)
P

It links the solutions ¢ and % of the Schrédinger equations with hxy and hg as Hamiltonians by
the relation ¢ = Li. Furthermore, the determinant structure (1.2.6) of the operator L leads
to the immediate implication that it has a nontrivial kernel space KerL spanned by the set of

transformation functions wu,:
KerL = span{ug,...,un—1} dim(KerL) = dim(KerL™) = N .

The solutions v, of the equation hyv, = a,v, are elements of the kernel space of the adjoint

operator L™ and can be obtained as

Wi (ug, w1, ..., un—1)
= =0,...,N—1 1.2.8
Un W(uo,ul,...,u]v_l) " ’ ’ ( )
KerL™ = span{vg, ...,vn_1}

where W,, denotes the Wronskian built as a determinant of the (N — 1) x (N — 1) matrix with the
up—related column omitted Wy, = W (ug, u1,...,Un—1,Un+1,-..,un—1). The potential Vy of the
Hamiltonian hy can be expressed as [106,107]

VN = ‘/E) —2[an(u0,u1,...,uN_1)]” . (129)

In general, it is not excluded that the transformation operator L may move a solution of hg
out of Ho = L?(a,b) thus transforming a physical solution of hg into an unphysical solution of hy.
Moreover the inverse scenario is also possible, i.e. L may transform an unphysical solution of hgy
into a physical solution of hy. In such cases the point spectrum of hy will differ from that of
ho. Subsequently, we will mostly use the conservative transformations L, which leave most of the
original spectrum invariant with exception of a finite number of spectral points — a characteristic
feature of differential intertwining operators L leaving the boundary behavior of the solutions of
the Schrodinger equation and positions of singularities of the potential unchanged. Recently in [61]
a conjecture has been proven, which was originally formulated in [108] and which states that any
Nth-order differential transformation L can be constructed as a superposition from only first- and
second-order transformations. In this case it is possible to show [57] that for problems formulated
over the whole R (for infinite values of a and b) Vy behaves asymptotically like V. Therefore
the operator hy is also essentially self-adjoint and “lives” in the same Hilbert space H as hyg.
Moreover, since the point spectrum of the self-adjoint Sturm-Liouville problems that we consider is
non-degenerate there is no way to create a new discrete level at the position of an already existing

discrete level and by this means to increase the geometric multiplicity of that level.
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According to [106] the necessary condition for an Nth-order transformation to produce an

essentially self-adjoint operator hy is?
(E—ap)...(F—an-1) =0 VE € spechy . (1.2.10)

This criterion ensures the conservativeness of the transformation L leading only to changes in
maximally N spectral points (of the point spectrum). Specifically, the spectrum of hx may contain
p points more and ¢ points less than spec(hg), where necessarily p + ¢ < N.

In the present work we will consider the following possibilities.

e The spectrum of hg is a subset of the spectrum of hy. A new energy level may be created in
the spectrum of hy if and only if the corresponding transformation function u(z) is such that
1/u(z) € D(hy), i.e., in particular, that 1/u(z) is £L2—integrable and satisfies the Dirichlet
BCs.

e The spectrum of hy is a subset of the spectrum of hg. An energy level may be removed from
the spectrum of hg if and only if the corresponding transformation function u(z) coincides

with the hp—eigenfunction of this level, i.e. when u(x) satisfies the Dirichlet BCs.

e The spectrum of Ay coincides with the spectrum of Ay . In this case neither the transformation
functions wuy, (z) nor 1/uy,(z) should be square integrable or satisfy Dirichlet BCs on both ends
of the interval (a,b). This property should be fulfilled for all transformation functions wu,(x)

from which the transformation operator is built.

e The spectra of hy and hy do not have common points. In this case the transformation

functions uy,(z) should violate Dirichlet BCs at one of the boundaries of the interval (a,b).

In all cases we assume that the transformation functions {u, ()} are linearly independent from
one another and their Wronskian W (ug,...,un—_1) does not vanish Vx € (a,b).

The first and the second order transformations are building blocks for high-order transforma-
tions. One can start from the first order SUSY transformations and construct transformations of
higher order iteratively. This iteration process may result in some intermediate Hamiltonians with
domains of definition different from (1.1.6). Then the resulting N-th order transformation opera-
tor is called irreducible. Taking into account the second order transformations one can decompose
any N-th order transformation operator in such a way, that all intermediate Hamiltonians will be
defined in (1.1.6). We consider the first and the second order transformations in details in the next

sections.

1.2.1 The first order SUSY transformations

According to (1.2.6) the first-order intertwiner has the form

L:=—(nu) 408, =—w+0,, (1.2.11)

2The basic idea can be understood as signature preservation of Hilbert space metrics, i.e. YE belonging to the point
spectrum of ho the eigenfunctions ¥ g with ||[¢g||* = (¥E,¥r) > 0 should map into corresponding eigenfunctions ¢p
of hx with ||¢s||®> = ||LYE|]? = We, LT Lyr) = (Y&, Pn(ho)Yr) > 0 what via (1.2.4) implies (1.2.10). Here, the
equality takes place for those g for which the point E does not belong to the spectrum of hy, i.e. if Pn(E) =0
and ¢ = Lyg = 0. A more detailed analysis of the corresponding sufficient conditions for spectral problems on the

whole real line in the case of scattering potentials and of confining potentials is given in [108].
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where hou = au. The logarithmic derivative of the transformation function w(z) = (Inu)’ is called
the superpotential [109]. Operator L and adjoint operator LT = —w — 0, factorize Hamiltonians
ho and h; as follows

LTL=hy— «a, LLT =h —a. (1.2.12)

Operator L transforms the solutions ¢ = v¥(z, E) of the initial Schrodinger equation with
potential V' = Vj(z) into solutions

6, E) = Li(w, E) = ¥/(z, E) — ¥(x, By (2) fu(x) (1.2.13)
of the transformed Schrédinger equation with potential
Vi =Vy—2(lnu)". (1.2.14)

To get the transformed potential with no more singularities than the initial one it is necessary to
choose a non-vanishing transformation solution u(z) # 0, Yz € (a,b).
Operators L and LT realize a one-to-one correspondence between two-dimensional spaces of

solutions for any F # «
L
IHIO7 E ——— Hl, E -
When E = «, ¢ = u(z) and Lu = 0, this correspondence may be established as follows. Normalizing

the linearly independent solution @ by the condition W (u, @) = 1 and integrating this Wronskian

we obtain

i(z) = u(x) /x dy (1.2.15)

o uA(y)

Applying the transformation operator L to @ we get

(z) = Lu(x) /m YW (). (1.2.16)

0 W2(Y)

Finally, we restore the solution space H; o, = span(v,?) using integral (1.2.15), where u is replaced

by © which yields N
v(z) = l/u(az)/ u?(y)dy . (1.2.17)

o
Here we have used well-known fact about the Schrodinger equation that the Wronskian Wy =
W (1, %) does not depend on z, (1.1.10).

Lemma 1. The Wronskian W1 of the transformed solutions ¢ = L) and qg = va) is expressed from
the Wronskian Wy as follows:
Wy =(F—-a)Wy, E+#a. (1.2.18)

Proof. Writing Wronskian W) in terms of the initial solutions
Wi = (L) (L) — (L) (L) = (¢ — wip) (" — wi’ — w'eh) — (@ — wid) (4" — wyp' — w'pp).
and using " = (Vo — E)y we get
Wi =w*+w +E—-Vy)W.

Taking into account that w(x) = u//u, and u is a solution of the initial Schrodinger equation we

complete the proof. ]
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spec hg spec Iy
i)-t
(i)-type

(ii)-type
%
E,
E -
"u(z) = to(x) 1/u(z)

Figure 1.1: The diagram shows spectra of the initial

and the transformed system for the cases (i) and (ii).

Since we choose a non-vanishing transformation solution the choice of the factorization energy
is constrained by the ‘oscillation’ theorem (see e.g. [32]). The factorization energy has to be less
than the ground state energy o < Ejy. Obviously, for the scattering potentials without bound
states @ < 0. Depending on the concrete form of the function u(x) the intertwiner L may result
in the following three types of relations between the spectra of the Hamiltonians hg and h; (see,
e.g., [103]):

(i) for a = Ey and u = g the ground state level Ey of hg is removed from the spectrum of hq,
(ii) h1 has a new and deeper ground state level E_; = o« < Ej than hy,

(iii) the spectra of hy and hy completely coincide (a < Ey).

The first two situations are shown schematically in figure 1.1.

In order to create a potential Vj(z) which is nonsingular on the whole interval (a,b) > = the
function u(x) should be nodeless inside this interval. This property is evidently fulfilled for type
(i) relations since the function u(z) coincides in this case with the ground state eigenfunction
u(x) = Yp(x). In cases (ii) and (iii) the nodelessness should be ensured by an appropriate choice
of u(z), a choice which is always possible because of the ‘oscillation’ theorem (see e.g. [32]). In case
(iii) it implies o < Ej.

Let us consider the orthonormal basis formed by hg eigenfunctions {¢,,n = 0,1,...}. Here for

simplicity we consider only confining potentials. The eigenfunctions of the Hamiltonian hy
bn = (Ep—a) V2L, n=01,... (1.2.19)

form an orthonormal basis in the same Hilbert space in case (iii). In case (i) the basis does not
include ¢y and in case (ii) it is necessary to include ¢_; o 1/u.

In the case of the regular Sturm-Liouville problem v, (a) # 0 and ¢/, (b) # 0 when ¢, = ¥ (x, E,,)
is an eigenfunction. From (1.2.13) it follows that ¢, = L, is an eigenfunction if and only if
u(a) = u(b) = 0. As a result there is only one possible transformation solution, u(z) = vo(z).
Thus only case (i) may lead to a conservative SUSY transformation for the finite interval (a,b).
In this case functions {¢,,n = 1,2,...} belong to the discrete spectrum of h; and form a complete
basis in the Hilbert space £2?(a,b). Note, that the transformed potential has singularities at the
boundaries.

If the transformation function violates Dirichlet BCs (at least at one boundary), then hg and
h1 do not have common spectral points at all. The transformation operator L maps eigenfunctions
into unphysical solutions of transformed Schrodinger equation. This is a single-channel example of

the non-conservative SUSY transformation.
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The first order SUSY transformations may be directly generalized to the coupled-channel case
[48,49,86,87]. Which is not the case for the formula (1.2.6). With respect to the single-channel case
there are additional difficulties due to the non-commutative character of matrix-valued functions.
Therefore in the coupled-channel case we will use iterations of the first order transformations.
The solutions of the initial Schrodinger equation (1.1.20) are mapped into the solutions of the

transformed equation with the help of the differential-matrix operator L,

o(k,r) = Lp(k,r) := [w(r) - INCEH Y(k,r). (1.2.20)

The transformed Schrodinger equation has form (1.1.20) with a new potential
Vi(r) = Vo(r) — 2uw'(r). (1.2.21)

Matrix w(r), called the superpotential, is expressed in terms of a square matrix solution u of the

initial Schrodinger equation

hou(r) = —KC?u(r), (1.2.22)
as follows

w(r) =o' (r)u=(r), (1.2.23)
where K = diag(k) = diag(k1,...,kn) is a diagonal matrix called the factorization wave number,

which corresponds to an energy £ lying below all thresholds, called the factorization energy. The
entries of I, thus, satisfy £ = —/4;22 + A;; by convention, we choose them positive: x; > 0. Solution
u(r) is called the factorization solution or (matrix-valued) transformation function.
In the most general case the transformation function may be expressed in terms of the Jost
solutions as follows
u(r) = fo(—ir,r)C + fo(ik,r)D, (1.2.24)

where the real constant matrices C' and D are arbitrary. To obtain a Hermitian potential after a

transformation with transformation function (1.2.24) matrix C* D should be symmetric [49]
DTC=C"D. (1.2.25)

Matrices C' and D with a maximal number of independent parameters guaranteeing the Her-

mitian character of the superpotential (1.2.23) have the following canonical form,

C:(IM 0), D:(XO _QT>, (1.2.26)
Q 0 0 IN-m
where Xy = Xg is a real symmetric nonsingular M x M matrix, and @ is an (N — M) x M real
matrix so that rank C = M. There are two particular cases: M = N, C = Iy, D = DT = X and
M=0,C=0,D=1Iy.

The SUSY transformations of the Jost and the scattering matrices crucially depend on the
asymptotic behaviour of the superpotential we, 1= Tlgglo w(r). The reason is that the Jost solution
transforms as follows

fl(k‘ﬂﬂ) = LfO(k7T)(woo - iK)_l . (1227)

The factor (we — iK)~! is introduced to guarantee the correct asymptotic behaviour of fi(k,7)
(see (1.1.26)). Then the Jost matrix may be calculated by definition (1.1.28).
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The analysis of this asymptotic behaviour in the case A # 0, [ = 0 may be found in [49].
In this case the superpotential at infinity is diagonal, we, = diag(k1,...,Knm, —KM+1,-- -5 —KM),
0 < M < N. Below we consider in details SUSY transformations in the case of different thresholds
when M = N, C'= Iy. A detailed analysis of the superpotential asymptotic behaviour in the case
A =0, [ # 0 allows us to introduce coupling SUSY transformations (i.e. the resulting potential
and S-matrix will be non-diagonal whereas the initial potential is diagonal).

Let us also mention that, since Lu(r) = 0, the solution ¢(ix,r) of the transformed equation
corresponding to the energy £ = —x? is found as the matrix v(r) = [uf(r)]"!. Moreover, this
matrix, when chosen as the transformation function for the next transformation step, cancels the
previously produced potential difference. This means that it corresponds to a transformation in the
opposite direction. As in the single channel case one can use chains of SUSY transformations. For
our purpose it is more convenient to make SUSY transformations iteratively than to use generalized

Crum-Krein Wronskian formulas obtained in [93].

1.2.2 The second order SUSY transformations

The second order SUSY transformation is determined by two transformation functions u(z)
and uz(x). One may choose both different and coinciding factorization energies aq 2. When ag # o

the transformed potential and solutions read (see (1.2.6) and (1.2.9))

Vo = Vo — 2(In W (ug,uz))”, (1.2.28)
¢ = Lap = W(uy,uz,9)/W(u1,uz), (1.2.29)
hat — Edb.

Here houi 2 = a12u12 hop = EY. When E = aj,ay the rhs of (1.2.29) is zero. In this case we

may calculate solutions of the transformed Schrédinger equation as follows
vo,1(w) = uro/Wiuy,uz), hovai(z) = az1v1(x). (1.2.30)
Note that formula (1.2.18) may be easily generalized for the second order SUSY transformation
Wo(E) = (E —a1)(F — ag)Wo(E), E#a,as. (1.2.31)

To analyze transformation (1.2.29) one may express second order derivatives from the Schrodinger

equations u’1’72 = (Vo —a12)u12, ¥" = (Vo — E)¢, thus obtaining

) agug — ubaug

W (u1, uz)

Uru2 /

W (1, uz)

o=|E+ J — (g — ) (1.2.32)

In the degenerate case a1 = az = a we can not use (1.2.28) and (1.2.29) directly. One may
try to consider this case as a limit ao — «a3. Note that the limiting procedure is non-trivial.
Details of this approach to the degenerate second order SUSY may be found in [110]. We will
use another method based on the iterative representation of the high-order and, in particular, the
second order SUSY transformation. It is necessary to consider the chain of two consecutive first
order transformations. The transformation function of the second step corresponds to the same
factorization energy « as the first transformation function u, hou = au. According to (1.2.16)

and (1.2.17) the general solution of the Schrodinger equation with the Hamiltonian h; for spectral
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parameter a reads v = [c+ [ w?(t)dt]/u(x). Constants ¢ and o should provide ¢+ [ u?(t)dt # 0
for all x € (a,b), to get the regular transformed potential V5

Vo = Vp — 2[In(c + /x u?(t)dt)]” (1.2.33)

o
inside the interval (a,b). Solutions ¢ = ¢(z, E) then reads:

uu! u?

c+ [i uZ(t)dtw ot [T u(t)dt

p=LY=la—E+ Y. (1.2.34)
As usual when ¢(z, E) = u(x) (i.e., E = «a) the rhs of this expression is zero. Once again we should
use solution linearly independent from u. As a result we get
u(zx)

o(x,a) = W (1.2.35)
The wronskian of two linearly independent solutions transforms according to (1.2.31), where ag =
a1 = a. The degenerate case presents an interest for the radial Schrodinger equation, because it
allows to construct so-called iso-phase potentials with the same scattering properties and different
spectra [94].

It is obvious that the second order transformation will define a regular potential Vo if Wuy, ug] #
0orc+ f;o u?(t)dt # 0, YV € (a,b). Note that the behaviour of Wuy,us] for some important and
quite general models was analyzed in [111]. Let us summarize different possibilities of spectrum
modifications depending on the choice of factorization constants oy, ag and asymptotical (or bound-
ary) behaviour of the transformation solutions uj, ug [111]. Transformation functions u; and g
are chosen to provide W (uy,uz) # 0 for all = € (a,b).

(I) - Removal of two levels

Transformations functions are neighboring eigenfunctions wu;(z) = ¥y (x) and ua(z) = Vg1 (z)
with energies ay = Ej end ag = Ej41. It can be seen that Wronskian Wu,us| is non-vanishing
in (a,b) in this case [106]. We have uj 2(a) = u1,2(b) = 0, hence operator L conserves BCs for all
E except E = aj,as. As a result energy levels Ej and Ej.; are removed from the spectrum of

Hamiltonian hg
spec ho U{a1 = FEk,ay = FEy41} = spechy.

When k& = 0 the second order transformation is a superposition L = Lyl of two “well-defined”

first order transformations of (i)-type

ho L hy Ly hy (1.2.36)

where the intermediate Hamiltonian hq is self-adjoint. Such SUSY transformation is called com-
pletely reducible [57,62].
(IT) - Reducible creation of two levels

This case realizes when (a,b) = R. Factorization constants lie below the ground state energy
of hg, Ey > a1 > az. The factorization solutions increase at large distances uj 2(|z| — 00) — oo.
Moreover, the inverse functions ui% belong to £2(R). Then, the transformed Hamiltonian hy has

two new levels F_9 = as and F_1 = «a; in its spectrum
spec hg U{E_1 =1, F_9 = a9} =spechy.
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This second order SUSY transformation is completely reducible and may be presented as the pair
of two first order SUSY transformations of (ii)-type.
(IIX) - Irreducible creation of two levels

Factorization constants lie between two neighboring energy levels of hg, Exy1 > a1 > ag > F.
Again, if the inverse functions ul_é belong to £L2(R) then the transformed Hamiltonian hy has two

new levels £ = oo and F = o

spec hg U{al, ag} = spechsy .

Note, that the intermediate Hamiltonian A is unphysical, therefore this is an irreducible second
order SUSY transformation.
(IV) - Isospectral transformation

Let us consider the case when wu;(a) = 0, u1(b) # 0 and uz(a) # 0, uz(b) = 0. In this case, one
can see from (1.2.32) that spectra of hg and hg coincide

spec hg = spec hy .

Parameters a1 and as provide an isospectral deformation of the Hamiltonian hs. Its spectrum
is real even for complex factorization constants (and, hence, for complex potential V3) . The
intermediate Hamiltonian h; may also define a Sturm-Liuville problem on [a,b] if ay < Ep, but
its spectrum radically differs from hg’s spectrum. The first order operator defined by u; maps the
eigenfunctions of hg to unphysical solutions of hi. Therefore, the full second order transformation
is irreducible [2].

(V) - The ground state shift

If a1 = Ep, u1 = 99 and ay < Fy, u2_1 € £%(a,b) then

spec ho\{Eo = a1} = spec ho\{E}) = as < E1} .

This second order transformation is completely reducible [2], it may be decomposed into two first

order SUSY transformations of type (i) and (ii).

(VI)/(VII) - Creation/Removal of one level
Combining two first order SUSY transformations of (ii) /(i) and (iii) types we may create/remove
one additional level

spec hg U{E,l =y < Eg} =spechy,as < aj,

or
spec hg = spec ho U{Eg =a1},as < Ey.

1.2.3 Higher order SUSY transformations

In section 1.2 we defined the most general transformation operator of an arbitrary order. In
the case of the stationary Schrodinger equation the N-th order SUSY transformation operator
which intertwines Hamiltonians hy and Ay may be presented as a superposition of N first order
transformations [57,110]. It should be emphasized that one has to distinguish between chains
which are completely reducible within a given Hilbert space H [112] and chains which are partially

or completely irreducible in . Recall that complete reducibility means that apart from hg and
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hy also all intermediate first-order SUSY related Hamiltonians hg, k # 0, N are self-adjoint or
essentially self-adjoint in the same Hilbert space H. In case of irreducible chains® several or all
intermediate Hamiltonians are non-self-adjoint in H. The concepts of reducibility and irreducibil-
ity were rigourously analyzed in [110]. Below both chain types will play a role. We note that
chain representations lead to extremely simplified transformation rules for higher-order intertwined
propagators and allow for very efficient calculation techniques (see subsection 2.2.3 below).

In this section, we obtain an additional information on the intermediate transformation steps
of Nth-order SUSY-transformations which goes beyond that presented in section 1.2. Therefore
we start with a more detailed description of the transformation operators and solutions of the
Schrédinger equation at each transformation step.

Let us consider a chain of N first-order transformations
By TENT g TNy 20 g

built from operators Lj41, which intertwine neighbor Hamiltonians hy and hpi1 as Lyy1 phy =
hi+1Lg+1,. We assume all Hamiltonians hy, k& = 0,..., N self-adjoint or essentially self-adjoint
in the same Hilbert space H so that the SUSY-transformation chain itself is completely reducible.
Furthermore, we assume that at each transformation step the ground state of the corresponding
Hamiltonian is removed. This means that after N linear SUSY-transformations the first N states
of the hg—system are removed and the N 4+ 1st state of hg maps into the ground state of hy.
In our analysis these first N + 1 states of hg will play a crucial role and we denote them by
Uo;m, 7 = 0,...,N. Furthermore, we use a numbering for the solutions uy, of the Schrodinger
equations of the SUSY-chain Hamiltonians hg, kK = 0, ..., N which is “synchronized” with the level
numbering of hg, meaning that a function wy , is related to the spectral parameter E,. We have
to distinguish between physical solutions, which correspond to the existing bound states of h; and
which have indices n = k,..., N, and unphysical auxiliary solutions uy, with n = 0,...,k -1
which we construct below. The ground state eigenfunction of a Hamiltonian hy is given by wuy
and for k < N it is annihilated by the SUSY-intertwiner Ly

Lyq1pugr =0.

The bound state functions uy41,, n =k +1,..., N of hiy; may be obtained by acting with the
SUSY-intertwiner

W (ugk, f)
Lyt = —tip/unp +0r  Dipnf = — 20 (1:237)
on the corresponding eigenfunctions of hy
Lyt gtk =Ukt1n, n=k+1,...,N.

Next, we note that the chain of k, (k = 2,..., N) first-order transformations is equivalent to a
single kth-order transformation (1.2.6) generated by the transformation functions ug o, ug 1, . . ., g k—1-
Furthermore, the transformation operators obey the composition rules

Liviklei=Lry  1=0,...k—1  k=1,...,.N—1 (1.2.38)

so that, e.g., the second-order transformation operator Ly 9 intertwines the Hamiltonians hj and

P g2
Ly hi = higyoLiyok k=0,...,N—2.

3For a careful analysis of different kinds of irreducible transformations we refer to [61].
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The Nth-order transformation operator Ly g is then inductively defined as Ly = Ly n—1Ln—-10-

Obviously, it annihilates the N lowest states of the original Hamiltonian ho, i.e. ugp,...,uo,nN-1 €
KerLN70.
As further ingredient we need the set of unphysical auxiliary functions un,, n=0,...,N — 1.

We construct them as uy,, = Ly oo, , where the functions g, are the unphysical solutions of the
ho—Schrodinger equation at energies F, which are linearly independent from the eigenfunctions

ug,n- Normalizing g 5, by the condition W (ug p,%o,n) = 1 and integrating this Wronskian gives

x
~ d
Ton(2) = () [
xo /U’O’n(y)
and finally
un () = Ly ouon(x) 5 =0,...,N—1. (1.2.39)
xo U‘O,n(y)

Let us derive a representation of the unphysical auxiliary solutions uy,,, n =0,..., N —1 of the

hn—Schrodinger equation in terms of Wronskian fractions. The operator Ly o itself is constructed
from the ug,, n=0,...,N — 1 as transformation functions.

Below we show by induction that the unphysical solutions uy , defined in (1.2.39) as

~ T dy
UNn = Ly oton = Lnoton 5
0 U’O,n(y)

have the following representation in terms of Wronskian fractions

Wi (uo,0,--.,uo,N-1)
=C ’ J 1.2.40
A Non W (uo,0, .- -,u0,N-1) ( )
CN,n = (EN_1 - En)<EN—2 - En) e (En+1 - En) n = O, ey N -2
Wn_1(uop, ... ,uon-1)  W(uoo,...,uoN-2)
U 1= ’ ’ = : ’ . 1.2.41
N W(uop,---,uoN-1) W (uo,0, - -, uo,N—1) ( )

The ground state function of h is obtained by acting with Ly ¢ on the Nth excited state of hg:

W(U070, ey u07N)
W (uo,0, - - -, uo,N—1)

un,N = Lyouon = (1.2.42)

For N = 1 the first order transformation operator L; g is constructed with the help of ugyp.
Therefore applying (1.2.13) with ¢ = ug o yields
ur,0 = L1,oto,0 = —
0,0

which obviously agrees with the statement. Applying (1.2.13) with ¢ = ug,; we obtain

W (uo,0, 101
ur,1 = Liouo1 = Q (1.2.43)
0,0
In order to prove the statement for N = 2 we build the linear SUSY-operator Lo from u ;

and act with it on the unphysical solutions @ 1 and u1,. As first result we obtain

~ 1 uQ.0

ug1 = Lot = — = ——F——
u,r Wiuoo,uo,1)

where (1.2.13) and (1.2.43) have been used. For the second function we find

1 1 1
_ _ _ + _ +
ugo = Lojui o= Lo1—— = Liguig = ———LygL1ouoa
uo,0 Up,0U1,1 Up,0U1,1
uo,1
— (B, — F) won = (Er — Bo)—t01 (1.2.44)
U,0U1,1 W (up,0, uo,1)
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Here the operator Ly = —u’l’l/um + 0, has been replaced by Lfo = —u670/u070 — 0, with the help
of (1/up) = _UE),O/U(Q),O' Moreover, we have used (1.2.43), the factorization rule LIOLLO = ho—Ep
and the Schrodinger equation houg1 = E1ug,1.

Assuming finally that the representations (1.2.40) and (1.2.41) are valid for uy, and un n—1
we prove them for un41,, and uny1 N.

We start with uy ny—1 — unt1,n. To go from hyx to hn4i only the linear (one-step) SUSY
transformation Ly 1 v is required. Applying (1.2.13) and combining it with the normalization con-
dition W (un n,un,n) = 1 and the Crum-Krein formula (1.2.6) [or (1.2.42)] we find the equivalence

chain B
W(unn,unn) 1 W(uop,...,uoN-1)

UN,N S uny Wl(ugo,--.,uoN)

UN+1,N = L1, NUN N =

Comparison with (1.2.41) shows that the proof is done.

The proof of the induction uy,, — un4+1,, is less obvious. The linear intertwiners L,11m
have been built strictly incrementally from the corresponding ground state eigenfunctions s, », (of
the Hamiltonians h,,) as transformation functions. Here, we need a more general non-incremental
construction scheme. In order to facilitate it, we first introduce a very detailed notation for general
polynomial intertwiners Ly, o indicating explicitly the energy levels of the transformation functions

from which they are built. Based on the Crum-Krein formula (1.2.6) we set

L(al,ag,...,ak)f — W(“O,apuo,aza -- -5 UDay f)

i 7= Ajzki 1.2.45
w0 W(”O,al ) U’O,aza Ce ’uOﬂk) 4 # i ( )

with a; € Z* being any energy level numbers of the Hamiltonian hg. The determinant structure of

(1.2.45) immediately implies the generalized kernel property

Ly yg = 0 (1.2.46)
and the invariance of the operator L,(Caé’az""’ak) with regard to permutations
(a1,a2,...,a;) — o(ay,az,...,ax)
La(al,az,m,ak) _ L(a17a27--~,ak) 1.9.47
k0 = Lo . (1.2.47)

Recalling that (1.2.45) can be built from a chain L,(C(?’,;)_lL,(:_ki ,?_2 . Lfé) of linear intertwiners
ngﬁm we conclude that the ordering with regard to energy levels is inessential in the transforma-

tion chain and that we can split it into sub-chains with any permuted combination of levels

olay,...,ax) = (b1,...,bp,c1,...,cc), B+C=k

Apart from this full commutativity of the transformations we note their associativity

Lf?ij-)?),m-ﬁ-Z <L£Zj-)2,m+l ngj—)l,m) = (L£Zi?3,m+2 Lfvz?i-)lm—i-l) Lis,—li-)l,m : (1249)

Commutativity and associativity can be used to re-arrange a sequence of transformations in any
required order.

In accordance with the intertwiners L we denote eigenfunctions as
(a1,02,...ak) . _ (a1,02,....ak)

Uy =Ly U0, 5 a; #n,i=1,...,k. (1.2.50)
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Another ingredient that we need is the representation

W(Uo,o, “e ,’U,()7N_1> _ (_1)N717nW(u0,07 Ce 7U0,n—17 uO,n—i—la “e ,ung_l, u()’n)
Wy (uo,05 - -+, uo,N—1) Wi (0,05 - -+, Uo,N—1)
1—n+(0,..n—1,n+1,..,N—1
— (_1)N 1 nLg\],l’% n+ )UO,n
= (~)NLg Qb e N oy (1.2.51)

which immediately follows from the Crum-Krein formula (1.2.45) and definition (1.2.50). From the

physical solution vy_1, we build the operators?

/
UN-1,
L%L,)NA = L%L,)NA[UN—M] = _vN_1Z + 0,
/
+ + UN-1,
Lg\?,)N—l = Lg\rfl,)JV—1[UN—17n] = —ﬁ — Oy (1.2.52)

and the corresponding Hamiltonian hg\?;“i’n_l’n+1""’N_1) with

LYN LWy = by bt (1.2.53)

We start the proof of the induction uy , + uny1,, with the following transformations

unorn = IO uns = O L) Wh(uop,---,uoN-1)
n - n = n
N+1,N N+1,N W(U0,0, ceey u07N_1)

(V) -1
= Cnp LN+1,N UN_1n

/ /
o UN N UN-1,n
- CN,n - - 3
uN,N,UN—l,n UN—l,’I’L
1 (n)+
= Onn——— L\Wn Junn - (1.2.54)
UNNUN—-1,n

In order to obtain the operator product Lg\?)zt/lng\?)NA we use (1.2.42), the composition rule

(1.2.48) and the Crum-Krein formula (1.2.45)

_ [ OLN-1) ~ W(uop,---,uo,N)
unN = Ly Ug,N =
W(U()70, e ,UO,Nfl)
. (n) (0,1,...,n—=1,n+1,....N—1)
= LN,NflLNfl,O Uuo,N
. (n) 0,1,....,n—=1,n+1,....N—1)
= Lyn1un"iN (1.2.55)
where
(0,1,...n—=1,n+1,...,.N—1) 0,1,....n—1,n+1,....N—1)
Un_1, = LN—l,O uo,N
 Wa(uop, - - -, uoN) (1.2.56)
Wh(uop, .-, uo,N-1)
This gives
1 (n)+
UN+1n = CN,ni LN N_1UN,N
UN,NUN—-1,n ’
1 )+ () (0,1,...n—1n+1,.,N—1)
= CONpn—— LN,NflLN,NfluNfl,N
UN,NUN—-1,n
1 (0,1,...n—1,n41,...,N—1)
= Onp—(En—Ep)uy 7 777
UN,NUN—1,n ’
. C Wn(u070,...,uo,N) 1.9.57
= N+1,n W ( 2.5 )
(10,0, - - -, U0,N)

“For C # 0 holds Lg&)N_l[CvNyn] = Lg:;y)N_l[vN,n] so that the sign factor (—1)Y~17" plays no role in the operator

Ly _, itself.
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. . . 0.1,...,n—1n+1,.,N—1 .
where the last line has been obtained by expressing ug\,_L Nn nt ), un,ny and vy_1, Vvia

(1.2.56), (1.2.42) and (1.2.51) in terms of their Wronskian fractions. With (1.2.57) the proof is
complete.
Relations (1.2.40) and (1.2.41) coincide with the Crum-Krein formulae up to normalization

factors Cy,,. These factors will be important to calculate propagators in section 2.2.3.
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1.3 Supersymmetry of the time-dependent Schrodinger equation

Supersymmetric transformations of the time-dependent Schrédinger equation may be intro-
duced in the same manner as in the case of the stationary equation, although there are some essen-
tial peculiarities [57]. In [113] it was shown that the SUSY transformation of the time-dependent
Schrodinger equation may be reduced to the SUSY transformation of an ordinary second order
differential equation by an appropriate change of variables. However, often it is more convenient
to work with the time-dependent Schrédinger equation directly.

In this thesis, we consider only the first-order time-dependent SUSY transformations. As in the

stationary case, the intertwining relation
L(i0y — ho) = (10 — h1) L, (1.3.1)
determines the differential operator
Uy
L:Ll(t)(—;—i—am), (1.3.2)

which maps solutions of the Schrédinger equation with Hamiltonian hg (initial equation) into solu-
tions of the Schrodinger equation with Hamiltonian h; (transformed equation), ®(z,t) = LY (z,1).
Adjoint operator LT realizes map in the opposite direction. Thus, their composition L™ L trans-
forms solutions of the initial equation into other solutions of the same equation. Therefore operator
go = LTL + a, where « is a real constant, is a symmetry operator of the initial equation. The
operator g1 = LLT + a is a symmetry operator of the transformed equation.

The transformation operator L is determined by a solution u(x,t) of the initial equation,
(10y — ho)u(z,t) =0,

and an arbitrary function L;(¢). The difference between the initial and the transformed potentials
reads

AV =Vi = Vo= —i(lnL1); —2(Inu) gy - (1.3.3)

Having restricted ourselves by real transformed potentials we should impose the following con-
dition

In(u/u")gez =0, (1.3.4)

¢
that fixes function L;(t) = exp <—2i J(In u/u*)mdt), L(0) = 1. Then the transformed potential
0

reads
AV (z,t) = —(Inuu®)zy . (1.3.5)

Analogously to the stationary case the properties of operator L, Hamiltonians hg, h; and

symmetry operators gg, g1 may be unified in the simplest superalgebra
Q*=(QM)?=0 [Q,ilo,—H)=[Q",ilo;, —H =0 {Q,Q"}y=J—a, (1.3.6)

with nilpotent super-charges



and matrix Hamiltonian H = diag(hg, h1). The symmetry operator J = diag(L*TL + o, LL™ + )

commutes with super-charges and the Schrodinger operator
Q,J]=1Q",J] =0, [J,il10; — H] = 0. (1.3.7)

Let us consider how to define a complete basis set in the Hilbert space. From the results

obtained in [57] we see that the eigenfunctions of the symmetry operators go and ¢;

9oVn = Antn, 9G1Pn = MO, (138)

form two (orthonormal) basis sets which are related by SUSY transformation

[tntndo = [ 61u00de b, 0n = NuLis. (1.3.9)

Here N, is a normalization factor.
Note, that
gou = au, g1v =, v=1/[L1(t)u*(x)]. (1.3.10)

As in the case of the SUSY transformation of the stationary Schrodinger equation there are three
essentially different possibilities to choose the transformation function wu(z,t):

(1) for a = Ao, u = 99 = spec(g1) = spec(go) \ {Mo},

(ii) for a < A9 = spec(g1) = spec(go) U {a},

(iii) for & < A9 = spec(g1) = spec(go).

We skip the detailed analysis of the structure of Hilbert spaces. Such an analysis is presented
in [57]. In what follows we will use the two basis sets, {1,,} and {¢,}, bearing in mind that the
spectra of the symmetry operators gg and g; coincide with the possible exception of the lowest

eigenvalue.
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1.4 Exactly solvable potentials generated by SUSY transforma-

tions

In this section we explicitly derive several exactly-solvable models generated by SUSY transfor-
mations [49,57,103]. In the next chapters, we calculate the Green functions and the propagators for

the single-channel models constructed here and study the spectrum for the coupled-channel ones.

1.4.1 Multi-soliton potentials

The method of SUSY transformations is well known in the connection with the soliton theory
[114]. A potential of the one-dimensional stationary Schrodinger equation is said to be soliton if
it is the SUSY partner of the zero potential. A soliton solution of the Korteweg-de-Vries equation
may be constructed using a soliton potential [114].

The term “’N-soliton potential” was introduced by Its and Matveev [115]. One of the most
intriguing mathematical discoveries of XX-th century is a possibility to use the inverse scattering
method for solving non-linear equations [116]. For instance, to get solutions of the Korteweg-de-
Vries equation one needs to construct a family of isospectral potentials for the Schrodinger equation.
Such a family may be obtained by the Gelfand-Levitan (or Marchenko) integral transformations
[40,41]. An alternative way to solve this problem is based on chains of SUSY transformations [114].
Note that multi-soliton potentials are interesting by themselves, in particular, many quantum
processes can be modelled by soliton potentials [117]. Below we present the explicit expression for
the N-soliton potential with N non-degenerate bound states at arbitrary energies.

We start from the stationary Schrodinger equation with the zero potential Vp(z) =0, € R.
Choosing u(x) = cosh(az + b), hou = —a?u, a > 0 as the transformation function we get the
one-soliton potential

—2a?

Vi = 2nu) = ———"F———
() (Inww) cosh(az + b)?

(1.4.1)

with the single discrete level £ = —a?.

The corresponding eigenfunction is ¢o(x) = (a/+/2)/ cosh(azx).
To get eigenfunctions ¢y (z) from the continuous spectrum we apply the transformation operator
L = —atanh(ax) + 0, to the plane waves ¥y (x) = 1/v/2mexp (—ikz), E = k2.

A multi-soliton potential is generated starting from the zero initial potential, Vj(z) = 0 by the

following set of N (which is supposed to be even) transformation functions [57,114]

UQj_l(JJ) = cosh(agj_la: + bgj_l) s (1.4.2)
’LLQj(l‘) :sinh(anx+b2j), j= 1,2,...N/2. (143)
The factorization constants a; = —a? define the positions of the discrete levels (point spectrum)
Ej = aj <0 of hy = —02 + Vi(z), whereas the continuous part of the spectrum of hy fills the

whole real axis. The eigenfunctions of the discrete levels normalized to unity have the form [103]

1/2
N
an, 9 9 W (ug,u2, .oy Up—1, Upt1s- -, UN)
= | = —a; . 1.4.4
(@) 2 ]_g?én & “j W(ug,ug, ..., un) ( )
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Figure 1.2: Four-soliton potential is shown. Parameters of the
potential are: a; = 1, ag = 1.35, a3 = 2, ag = 2.5, by = 4 + 23,
bo =0—2j,bs=—-1—-2j,by=7—-25,j=1,...,6.

We also need the continuous spectrum eigenfunctions of hy which should be found by acting
with the operator L on plane waves ¢ (z) = 1/v/2mwexp (—ikx), k € R

i) = 1 Lin(), (1.45)
VU2 +a) (k2 +a) . (k2 + a})

E=F, ay=-d, k=1,...,N.

The set of functions {¢y(z), n =1,..., N} and {pr(x), k € R} forms a complete and orthonormal
set in the Hilbert space of square integrable functions on the whole real line.

It is interesting to note that for particular values of the parameters a; a multi-soliton potential
may have a shape of a multi-well potential thus presenting an example of a multi-well exactly
solvable potential. In figure 1.2 we plot a four-soliton potentials. The positions of minima may be
changed by varying parameters b;. One can see that solitons conserve its shape after collision. It
is difficult to believe that these six potentials have coinciding spectra. Nevertheless it is exact and
well-established result.

Let us consider the time-dependent Schrédinger equation. One of the possible methods to
construct time-dependent multi-soliton potentials is described in [118]. Moreover, a wide range of
physical applications is discussed there. In general, these potentials are complex-valued and it is
necessary to impose additional constraints to make these potentials real-valued. In [119,120] one
can find a more suitable and direct approach to the real time-dependent soliton potentials. We will
demonstrate the idea of this method on a particular example of the time-dependent one-soliton
potential. The time-dependent transformation function v = expncosh@, n = i(a® — A\?)t? — i\x,
0 = ax + 2a)t leads to the following potential potential [119]

V(z,t) = —2a*/ cosh? 0, (1.4.6)
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which looks like the one-soliton potential moving along x axes with a constant velocity.
The eigenfunctions of the initial symmetry operator igo = LT L + a = (i0, + A)? coincide with
the plane waves

Yz, t) = 1/ 2mexp (—ikx — ik*t) . (1.4.7)

The eigenfunctions of the transformed symmetry operator ig; = LLT + « are obtained as follows
or(w 1) = (VR + @) Lin(o,1),  dala,t) = N/u(z,t). (1.4.8)

1.4.2 Potentials with quasi-equidistant spectra

A quasi-equidistant spectrum is an equidistant spectrum with a finite number of lacunas. Such
spectrum may be obtained from an equidistant spectrum by removal of a finite number of levels. The
important property of the potentials with quasi-equidistant spectra is that any wave packet moving
in such a potential does not spread being a periodic function of time [121]. One can construct a
potential with a quasi-equidistant spectrum using SUSY transformations of the harmonic oscillator
[57].

Let us consider the family of potentials generated from the harmonic oscillator hg = —92 +
x?/4 — 1/2 by the second-order SUSY transformation of type (I), (see also [57]). Solutions of
the Schrodinger equation hgy = E1) are expressed in terms of parabolic cylinder functions Dg(x)
(see [122])

Yp(z) = C1Dg(x) + CoDp(—x), (12 = const,

for any complex F.
Wave functions should decrease at spatial infinity, |x| — oo, to be square-integrable. This
requirement leads to the equidistant spectrum £ =n, n =0,1,2,.... Wave functions are reduced

to Hermite polynomials H,,(z)
Un(@) = pa(@)exp (=22/4),  pale) = 272 H,(x/V/3). (1.4.9)

There is a simple algorithm to reproduce polynomials p,, ()

xT

pul) = n / P @)y — po1(0),  P(x) = npn_i(2), (1.4.10)
0
Pnt1(z) = xpp(z) — npp—1(x) . (1.4.11)

Let us write explicitly first polynomials p,(z)
pO(':U):l) pl(x):$7 pZ(x):332_17 p3($):$($2—3)

Choosing two neighboring eigenfunctions ug(xz) = (), ui(z) = ¥p4+1(z) as the transformation
functions we remove the two corresponding levels from the equidistant spectrum (I), [57]. Wron-
skian of the transformation functions, Wy, n41(x) = W (¥n, ¥n+1), is a polynomial multiplied by an

exponential function:

Wit (1) = —Qu(@)exp (—<22/2),  Qulx) = P2y (x) — pu(@)pmsa(a) (14.12)

Potentials V"1 are calculated from (1.2.28) which yields

" / 2
)=o) e o
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Figure 1.3: Potential of harmonic oscillator and first four poten-
tials V" (x) + 5n, n = 1,4, of family (1.4.13).

Finally we note that the potentials (1.4.13) behave asymptotically like 22 /4 for |x| — oo and have n
shallow minima at their bottom. This family of potentials presents an example of exactly solvable
multi-well potentials [57]. We plot potential of harmonic oscillator and first four potentials in figure
(1.3).

It should be noted that although the exactly solvable models considered above have been well

known for a long time [57], their Green functions and propagators were not calculated.

1.4.3 Non-conservative SUSY transformations and the Cox potential

In this section, a non-conservative SUSY transformation of the coupled-channel Schrédinger
equation (1.1.20) with different thresholds and [ = 0 is studied. More precisely, we consider non-
conservative SUSY transformations applied to the vanishing initial potential V{y = 0, for which the
Jost matrix and scattering matrix are identity, So(k) = Fyp(k) = I. For a given factorization energy,
the most general real symmetric superpotential depends on an N-dimensional real symmetric matrix
of arbitrary parameters, i.e., on N(N + 1)/2 real arbitrary parameters [49]. When Vjj = 0, the

corresponding factorization solution can be written as

u(r) = cosh(kr) + KL sinh(kr)w (1.4.14a)
= (2K0) " Hexp (k1) (K + wo) + exp (—rr) (K — wo)], (1.4.14b)

which ensures that the resulting potential V; is regular at the origin, and where the arbitrary
parameters explicitly appear as the value of the (symmetric) superpotential at the origin, wy = w(0);
exp (£kr), cosh(kr) and sinh(kr) are diagonal matrices with entries exp (£x;r), cosh(k;r) and
sinh(k;r) respectively. According to Ref. [49], when K + wq is invertible, the transformed Jost

matrix reads

Fi(k) = (K —iK) Y wy — iK). (1.4.15)

The Jost matrix Fj(k) may be obtained by definition (1.1.28), where the Jost solution is given by
(1.2.27) and ws, = K. We see that the coupling appear due to the non-diagonal character of wy.
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This Jost function was obtained by other means in Ref. [46] in the case ¢ = 1. However, it
was not realized there that the corresponding potential could be simply expressed in terms of a
solution matrix u, using Eqgs. (1.2.21) and (1.2.23). In that reference, a compact expression for the
potential is found [see Eq. (1.4.23) below] but writing (1.4.14) and (1.2.23) is much more elegant
because both the potential (1.2.21) and its Jost function (1.4.15) are expressed in terms of the same
parameter matrix wg. Nevertheless, this procedure also presents several disadvantages: calculating
the potential requires several matrix operations (inversion, product, derivations); moreover, the
parameters in wy should be chosen so that the factorization solution is invertible for all r, a
condition not easily checked on Egs. (1.4.14).

Let us now derive an alternative form for the factorization solution, which solves both these
inconveniences. In Ref. [49], the possibility of rank (K 4+ wg) < N in Eq. (1.4.14b) has been
studied, which leads to an interesting asymptotic behavior of the superpotential but which reduces
the number of parameters in the model. Here, in order to keep the maximal number of arbitrary
parameters in the potential, we choose I + wy invertible. The factorization solution (1.4.14b) can
then be multiplied on the right by 2(XC + wo) ~1 K2, which leads to the factorization solution

u(r) = K=Y2 [exp (kr) + exp (—kr) Xo] . (1.4.16)

According to Eq. (1.2.23), the superpotential, and hence the transformed potential, is unaffected
by this multiplication. The symmetric matrix Xy now contains all the arbitrary parameters. The

link between the two sets of parameters is given by

Xo = K YK —wo)(K+ wo) tKV2, (1.4.17)
wy = KY2(I—Xo)(I + Xo) 'KV, (1.4.18)

Equation (1.4.16) can also be written as
u(r) = K~V2 I+ X (r)] exp (kr), (1.4.19)

where
X(r) = exp (—kr)Xoexp (—kr). (1.4.20)

With respect to writing (1.4.14a) and (1.4.14b), Eq. (1.4.19) presents several advantages. First, it

allows for a simple calculation of the superpotential

w(r) = K—=2KY2X ()1 + X(r)] K2
= K+ 2KY2[1 + X(r) T Y2, (1.4.21)

The last expression is particularly convenient since the r dependence is limited to one factor of the

second term; the potential can thus be explicitly written as

Vi(r) = 4KY2I+ X)) X ()1 + X (r)] 712
= —4K/? (e" + Xge_"””)_1 (XoK + KXo) (" + e_’“"Xo)_1 KY20 (1.4.22)

The last expression is exactly equivalent to Eq. (4.7) of Ref. [46] for ¢ = 1, which reads

Vi(r) = 277 [T— A@2K) e 2] 7" (AK + KA)
x [I—e 27 (2K) 7 A] e, (1.4.23)
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provided one defines matrix A as

A = —2KY2Xx,K1/?
= —2(K —wo)(K 4+ wo) K. (1.4.24)

The second advantage of writing (1.4.19) is that it easily leads to a necessary and sufficient
condition on the parameters to get a potential without singularity at finite distances. This condition

is positive definiteness of matrix I + Xj:
I+ Xy>0. (1.4.25)

The potential has a singularity when u(r) is noninvertible, i.e., when det[I + X (r)] vanishes
for some r. Using Eq. (1.4.20), we find that this is equivalent to the existence of ro > 0 such
that det Y (rg) = 0 with Y (r) = exp (2kr) + Xo. Assume now that detY (r) # 0 Vr > 0. Since
det YV (r) = T, 4i(r) where y;(r) are the eigenvalues of Y (r), we conclude that y;(r) # 0 for all
i =1,...,N and r > 0. But since for sufficiently large r, Xg becomes a small perturbation to
exp (2kr), all eigenvalues of Y (r) should be positive for 7 > 0 and in particular at » = 0, thus
proving the necessary character of the above condition.

The sufficiency follows from the observation that Y (r) is positive definite for any r > 0, together
with Y(0) = I + Xo. Indeed, if Y (r) is positive definite, the inequality (¢|Y (r)|¢) > 0 holds for any
q € Ly. Here (p|q) = ZZ]\; 1 Piq; is the usual inner product in the /N-dimensional complex linear
space Ly, with p;, ¢; being coordinates of the vectors p,q € Ly with respect to an orthonormal
basis. But since (q|Y (r)|q) = (¢|Xo|q) + (glexp (2xr)|q) > {(q|Xo|q) + (g|¢) = (q| X0+ I|g) [we recall
that » > 0, x; > 0 and exp (xr) is a diagonal matrix with entries exp (k;r)|, positive definiteness of
I + X implies positive definiteness of Y (r) for r > 0.

Having established this condition on X, one can get the condition in terms of wy, using
Eq. (1.4.17). Since

I+ Xo = 2KY2(K + wo) TKY2, (1.4.26)

the necessary and sufficient condition to get a regular potential is positive definiteness of matrix
K+ wo:
K+ wy>0. (1.4.27)

Since the (diagonal) elements of K are positive and increase when the factorization energy decreases,
this condition has a simple interpretation: it just puts some upper limit on the factorization energy.

Finally, Eq. (1.4.24) shows that the condition det A # 0 required in Ref. [46] is not required
here. In Cox’ paper, this condition does not appear in the potential expression, which is valid in
the general case, but only in the derivation of the proof; the fact that this condition is not required
here illustrates the efficiency of the supersymmetric formalism. Equation (1.4.24) also implies that
rank (K + wp) < N corresponds to det A = oo, a case also not considered in Ref. [46]. The
supersymmetric treatment, on the contrary, allows this case [48,49]; our approach thus subsumes
the results of Ref. [46] in several respects. The properties of the Cox potential will be studied
in details in the chapter 3. The two channel Cox potential will be used to construct a model of

magnetic induced Feshbach resonance.
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Chapter 2

Supersymmetric transformations for
the Green function and the

propagator

2.1 Green functions in SUSY QM [1, 2]

2.1.1 The first and the second order SUSY transformations
for the Green function

Below we give a simple formula for the Green function of the SUSY partner Hamiltonian both
for confining and for scattering potentials. We restrict ourselves by the first and the second order

SUSY transformarions (see sections 1.2.1 and 1.2.2).

Theorem 1. Let Go(z,y, E) be the Green function for hg. Then for all three cases of the first

order SUSY transformation enumerated in 1.2.1 the Green function for hy is:

Cr(z,y, E) = %w[LxLyGo(x,y, E)—6@—y)], Efa. (2.1.1)

In case (ii) it has a simple pole at E = «. In cases (i) and (iii) it is reqular at E = « and can be

calculated as follows:

Gi(z,y,a) = [LmLy (2.1.2)

Here L, is the operator given in (1.2.18) and L, is the same operator where x is replaced by y.
Proof. In case (i) we have u = g(x), and the set {¢r(x),dn(z),n = 1,2,..., M} is complete.

Therefore
M

Gi(z,9,E) =Y %E(i)sz(y) + ¢’“]£f)_¢ ’%y) dk . (2.1.3)
Now we replace ¢, using (1.2.19) Whi;:;ields
Gilw,y B) = — 5L,
(NZ e | @0 [ et g wmwz(y)dk) SENCER
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The statement for E # « follows from here if in the first sum and in the first integral we express
Ly, Ly in terms of ¢y, ¢y, make use of the completeness condition for the set {¢} and formula
(1.1.19) for Go. The fact that here the sum starts from n = 1 and in (1.1.19) it starts from n =0

cannot cause any problems since Liyg(z) = 0. For E = « formula (2.1.3) can be written in the form

7L L, (ZwE _E w’“];)_w’%(y)dkﬂ : (2.1.5)
E=«a

from which (2.1.2) follows in this case.

Gi(zr,y,a) =

In case (ii) let ¢_1(z, ) ~ 1/u be the normalized ground state function of h; corresponding to

the new discrete level £ = «. Then

(z,y, B dk . (2.1.6)
Now the use of exactly the same transformations as in case (i) reduces (2.1.6) to (2.1.1).

In case (iii) we start from the same formula (2.1.3) with the only difference that the sum now
starts from n = 0 and following the same line of reasoning as in the earlier cases we get formula

(2.1.1). It is interesting to notice the intermediate result

Gl(wa Y, E) = LzLy [GO(x7y7 CM) - GO(xh% E)] ) (2'1'7)

- F
which makes clear how formula (2.1.2) arises for this case by taking the limit £ — «. The fact
that in case (ii) function (2.1.1) has a simple pole at E = « is a consequence of the equivalence
between (2.1.6) and (2.1.1). O

Corrolary 1. In terms of the special solutions fig and fro of the Schrédinger equation for hy the

Green function Gy for all three cases listed above may be expressed as follows:

Gl(xv Y, E) =
(E—la)Wo [©(y — x) Ly fio(z, E) Ly fro(y, E) + ©(x — y) Ly fio(y, E) Ly fro(z, E)] . (2.1.8)

In case (ii) this function has a simple pole at E = «. In cases (1) and (iii) it is reqular at E = «

and can be calculated as follows:

Gl(xava) =
i@(y - i‘)szlU(ZL‘, E)LyfTO(ya E) + @(1‘ — y)Lyfl()(y> E)L:BfTO(xa E) (2 1 9)
OF Wo e o

Proof. To prove these formulae we substitute Gg as given in (1.1.18) into (2.1.1) and (2.1.2). Taking
the derivative of the theta functions in (1.1.18) gives rise to the Dirac delta function which cancels
out the delta function present in (2.1.1). Formula (2.1.8) is clearly valid since the conservative
SUSY transformations necessarily preserve the boundary conditions for all E except perhaps for
E = «. This implies that f;; = Lfjg vanishes at x = a and f,1 = Lf,o vanishes at £ = b. The
denominator in (1.1.18) is just the Wronskian of f,; and f;;. From lemma 1 and (1.2.18) follows

that W (f1, fn) = (E — Q)W (fro, fro) = (E — a)Wh. M

Let us consider the second order transformations described in section 1.2.2. The spectrum of

the Hamiltonian hy = —d? / dz? + V5 coincides with the spectrum of hg except may be F = ay, as.
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Theorem 2. Let Go(z,y, E) be the Green function for hg. Then the Green function for hg is:

1
(E — Oq)(E — 042)

Go(z,y, E) = L,L,Go(z,y,E), z<y, E#aa. (2.1.10)

Proof. The (conservative) second order SUSY transformation preserves a boundary behaviour of
solutions, therefore fo(x, F) = Lfy(x, E) and for(z, E) = Lfo-(z,E) for all E except maybe
E = aj,ay. From (1.2.31) we obtain the wronskian of these solutions Wy = (E — a1)(E — ag)W.

As a result, from (1.1.16) immediately follows the statement of the theorem O

For the second order transformation of the Green function we prefer to use the unsymmetrized
form of the Green function with = < y, because this form makes expressions more compact. In

principle, one can express the Green function for arbitrary x and y as follows:

1

G229, B) = 5= (E = o)

L,Ly|Go(x,y, E) — (ho — E — o — a2)d(x — )] . (2.1.11)

It is the straightforward generalization of (2.1.1).
Again cases IY = a1, as require an additional analysis. Consider, for example, the case ¥ = «;.
If oy € spechy (cases (II), (III) and (IV)) then G2 has a pole at this energy. Otherwise, if

a1 ¢ spechg then one can find Gao(x,y,q) as the limit Elim Go(z,y, E). For example, in case
— Q]

(VI) when both ;2 ¢ spechy and aq 2 ¢ spec hy the Green function at E = a4 reads

1

a1 — Q2

Go(z,y, 1) = L,L,

<6G0($7yaE)) + GO(:’Uaya OZQ) - Gﬂ(xvyval)
E=ay

oF —— ] . (2112)

Finally we consider the case of the degenerate second order transformation when oy = as = a.
For E # «a the Green function is calculated by (2.1.10) where operator L is defined in (1.2.34),

Go(z,y, E) = (E—la)? (2.1.13)
u(z)u (x) — u(z)?0y u(y)u/ (y) — u(y)?9,

<a g c)+(f‘2 ug(t()d)t ) (a _E+ (?i)Jr (fyg u2(t()ya)lt > Go(x,y, E), (2.1.14)

r<y, E#a. (2.1.15)

2.1.2 Scattering potentials and the trace formula

The trace of the Green function defined as f; G(z,z, E)dz is usually divergent if the system has
a continuous spectrum. It is remarkable that the trace of the difference Go(z,z, E)—Gi(z,z, E) is a
finite quantity which may or may not be equal to zero [80]. In some cases this fact may be explained
by another remarkable property. It may happen that the difference of infinite normalizations (they
diverge as d(z — y) when y — z) of the continuous spectrum eigenfunctions of the two SUSY

partners is a finite quantity.

Theorem 3. Let Gy and G be the Green functions related by the first order SUSY transformation.
Then the trace of the difference Go(z,x, E) — G1(z,x, E) reads

b
A(E) = / Go(z,x, FE) — Gy(z,x, E)]|dx = W/()%(?E—)OZ)' (2.1.16)
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where Q(E) can be calculated by one of the following formulae:

Q(E) = (fTOfll)ac:b - (fr(]fll)x:a = (flOfrl)ac:b - (flOle)x:a (2117)

= —Wo + (fiofr1)a=b — (frofi1)z=a = Wo + (frofi1)e=s — (fio.fr1)e=a (2.1.18)

Proof. From Corollary 1 it follows that Gi(z,z, E) = mL fio(x)Lfro(x). While integrating
this expression over the interval (a,b) one can transfer the derivative present in L either from
fio to fro or from f.g to fio which leads to one of the following integrands fio(z)L 1L fqo(x) or

fro(x)LT Lfig(x). In both cases the factorization property (1.2.12) may be used to reduce the
integrand to (F — «) fio(x) fro(x). Thus we arrive at the relation

b b
/Gl(xvxaE)dw = /flO.fTOdw - VV()?éEI—)Oé)j (2119)

where Q(FE) is given by (2.1.17). To prove (2.1.18) it is sufficient to notice that

fio(z, E) fri(z, E) — fro(z, E) fu(z, E) =Wy (2.1.20)

since fr1 = W/(fro,u|/u and fi; = W|fio,u]/u. The identification of the integrand on the right
hand side of (2.1.19) as WyGo(x, z, E) then leads to the result given in (2.1.16). O

Using the first of equalities (2.1.17) one can rewrite (2.1.16) as follows:

b
/[Go(x, z,E) — Gi(z,z, B)]dr = - i —+ (flOfrl)vaIv/zl()E_Ef;O)fll)xa

(2.1.21)

a

Now for case (i) where a = Ej if we compare this result with the corresponding difference which
can be obtained directly from the expressions for Gy given by (1.1.19) and for G; given by (2.1.3)
the following feature may be noted: the first term on the right hand side of (2.1.21) arises from
the contribution to Green functions from the discrete spectra and the second term, which as we
show below may be different from zero, is due to the presence of the continuous spectra. This
contribution was neglected in [80]. So, theorem 3 presents a generalization of the result obtained
in [80] to the case where a continuous spectrum may be present. As an application of this theorem

we are going to consider one particular case of scattering potential defined on the whole real line.

Theorem 4. If hy is a scattering Hamiltonian with the potential Vo satisfying for the spectral

problem on the whole line the condition
/ (1 + |z])|Vo(x)|dx < oo (2.1.22)
then for E # a, ImV/E > 0 the following equality

o o

A(E) = _
(E) K2 4iak K24 a2’

(2.1.23)

holds, where E = k%, a = —a?; § = 1 for case (i), § = —1 for case (ii) and § = 0 for case (iii).

Proof. The statement readily follows from the fact that any scattering potential has a pair of
solutions (Jost solutions, see e.g. [22]) with asymptotics (1.1.14) at the right infinity and similar
asymptotics at the left infinity and the use of an appropriate part of equalities (2.1.17) and (2.1.18).
The Wronskian Wy for Jost solutions can easily be calculated, Wy = 2ik. ]
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So, we see that despite the fact that for both hg and h; the continuous spectrum eigenfunctions
are normalized to the Dirac delta function, i.e. that in both cases they have equal infinite norms,
the difference of these infinities is a finite non-zero quantity in cases (i) and (ii) and it is zero in
case (iii).

For instance in case (ii) the following equality arises:

° P(k)dk -1
/_ookg(_)E = R(E), R(E):m, E =k, a=—ad’, (2.1.24)
where .
P(k) = / (o (z, k)| — ¢n(x, k)[*] da. (2.1.25)

Equation (2.1.24) may be reduced to the Stieltjes transform and the function P may be found
by the Stieltjes inversion formula (see e.g. [98]). To establish this we first notice that the integral
on the left hand side of (2.1.24) is different from zero only if P(k) is an even function which we
assume to be the case. Therefore it can be considered only for positive ks and we can let k? = .
So, (2.1.24) takes the form

o

dp(N) _
|2 = nae).

—0o0
where the measure p()\) is continuous for A > 0, dp(\) = %P(/\)d)\ and such that for negative As

the integral is zero. Now the Stieltjes inversion formula yields

P(X\)  signT I

S 2mi Tl_I)I%)[R(E) — R(E™)], E=X+1ir.
Note that because of the condition Imv/E > 0 the square root of F has different signs for E in the
upper and lower halves of the complex E-plane. Therefore the function R(E) has a cut along the
real axis and the jump across this cut defines the function P()\). After a simple calculation one
gets

P(\) = ar'(\2 4+ a?)7L. (2.1.26)

It must be noted that in the present case the interchange of the integrals over the space variable x
taken in the difference of (1.1.19) and (2.1.3) at y = z with the integral over the momentum £ is
justified.

2.1.3 Normalization of the eigenfunctions in the continuum

Let us consider a particular example of the free motion on the line, Vy(x) = 0, = € R. The
Green function is
2 girle—yl | Ime >0, E=r. (2.1.27)

The simplest possible superpartner of the zero potential is the one-soliton potential (see section

1.4.1). The operator of the SUSY transformation is L = —atanh(ax) 4+ 9,. The eigenfunctions of

the soliton potential which belong to the continuous spectrum read as follows

1

Tann, [T tanh(az) — ik] e Ny = k2 +a2. (2.1.28)
k

or(z) =
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Below we calculate difference (2.1.25) for the eigenfunctions of the soliton and the zero potential
directly. First, we introduce P(k', k) = (Y |tr) — (dir|dk) and then consider the limit k — &':

A
P(K.K) = Jim P(k K. A) = Jim [ (i) () = 6o (o)ldo =
~A

A
1 o inh”
— — lim (el(k' —k)x Nk’Nk(CL2 smh”™ ax

2

2T A—oo cosh” ax

+ia(k — k:/) tanh ax + kk’)&(k”—k);p) dr .

One can see that P(k, k', A) has the following structure P(k, k', A) = d4(k, k') — d4(k, k'), where
Sa(k, k') and d4(k, k') are two delta-like sequences

5k, ) = % sin(kA) /k,

~ 1

da(k, k) = Q—Nk/Nk [(CL2 + k'k)sin(kA)/k + 2 tanh(aA) cos[(K' — k)A]] .
T

These sequences converge to the delta-function as A — oo,

lim /_ ZaA<k>f<k>dk= T [ Galk)f(k)dk = £(0).

A—o0 —00

On the other hand the difference between these sequences at k = k’ has non-vanishing value

a

(2.1.29)
Thus we confirm result (2.1.26) in this simple model by direct calculations.

One may give the following interpretation of the trace formula. Difference A(FE) is nothing
but the super-trace of the matrix Green function G = diag(Gg, G1). The super-trace of the Green
function is related to the regularized Witten index [109], which is a topological invariant of the
model. The vanishing of A(E) in the case (iii) indicates that SUSY is broken. Indeed, spectra
of hg and hy coincide, therefore the ground state (vacuum) of the matrix super-hamiltonian is

degenerate.
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2.2 Supersymmetric transformations for propagators [3—5]

2.2.1 Propagators related by first-order intertwiners

The defining equation for the propagator of the non-stationary Schrodinger equation with super-

Hamiltonian (1.2.2) can be trivially decomposed as
KO (.T, Y; t) 0

0 Kn(z,y;t)
K(z,y;0) =16(z —y).

[i10; — HIK(z,y;t) =0 K=

From the structure of the SUSY induced relations between superpartner Hamiltonians it is
clear that via the corresponding Schrodinger equations these relations should extend to relations
between the associated propagators. The main goal of the chapter is to analyze these relations
between SUSY partner propagators and to reshape them into user friendly general recipes for the
construction of new propagator classes. In order to derive the corresponding technical tools we
concentrate on the general approach which allows to establish the link between the propagators of
any two SUSY partner Hamiltonians. By SUSY-transformations we will only induce changes in the
point spectrum of hgy so that, for simplicity, we will work with decompositions over discrete sets of
basis functions (corresponding to point spectra) keeping in mind that extensions to the continuous
spectrum are straightforward.

We begin with the studying of the propagators interrelated by first-order SUSY transformations.

According to (1.2.6) a first-order intertwiner has the form
L, = —d(z)/u(z) + 0y hou = au.

The intertwiner L may result in the three types of relations between the spectra of the Hamiltonians
ho and h; (see discussion in section 1.2.1).

Introducing the “regularized” version of the the Green function

wm m T . ¢0(95)¢0(Z/)
G Z y’EO Z —EO - EILI%O GO(Z7y7E) E(] _ E

the corresponding structural relations for the propagators can be summarized in the following

Theorem 5. The propagators Ki(z,y;t) and Ko(x,y;t) of non-stationary Schridinger equations
with SUSY intertwined Hamiltonians h, and hg are interrelated with each other and with the Green
functions Go(x,y; E) and éo(z,y, Ey) in the following way:

Type (i) relation

b ~
Ki(x,y,t) = LxLy/ Ko(x, z,t)Go(z,y, Fo)dz . (2.2.1)
Type (ii) relation
b .
Ky(z,y,t) = LILy/ Ko(z,2,t)Go(z,y, @)dz + ¢_1(x)p_1(y)e . (2.2.2)
Type (iii) relation
b
Ki(z,y,t) = L;BLy/ Ko(z, 2,t)Go(z,y,a)dz . (2.2.3)
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Proof. We start from the type (ii) relation and represent the propagator Ki(x,y;t) in terms of
the basis functions ¢, (x,t) of the Hamiltonian h; (cf. (1.1.9)). We note that the explicit time-
independence of h; implies a factorization ¢, (z,t) = ¢m(x)exp (—iEp,t) with ¢, (x) purely real-
valued. Expressing ¢,, in terms of the corresponding wave functions of the Hamiltonian hg, ¢,, =

Ny L, with Ny, = (E — a)~'/2 a normalization constant (see (1.2.19)), we arrive at

Ki(z,y,t) = Y bm(@)dm(y)e P

m=—1

- L, Z Cnl W) it 1 (@) 2 (et

-«

Modulo a normalization factor N_1, the wave function ¢_; of the new ground state is proportional
to the inverse power of the transformation function u(x), ¢_1 = N_1/u(x). It remains to express
the time-dependent phase factor in terms of the propagator. This can be easily done using the

evident property of the bound state solutions of the Schrédinger equation

b
/ Ko(z, 2, )t (2)dz = by, (z)e " Emt (2.2.4)
so that the previous equation reads
— m\Z —iQ
K (,9,1) = Lo L / Koz, 2.1) Z%) ) 1, 4 g1 (@) (oot (2.2.5)

The sum in this relation can be identified as the Green function (1.1.19). Due to E,, — a >
0, VE,, € spec(hg) this Green function is regular VE,, and the proof for type (ii) transformations
is complete.

The proof for type (i) and (iii) transformations follows the same scheme. The formally regular-
ized Green function éo(z, y, Ep) in (i) results from the fact that the ground state with energy Fj is

not present in the spectrum of h; so that a sum ) appears and the ground state contribution

m>0
has to be subtracted from Go(z,y,a = Ep). In case of a type (iii) transformation a sum > >

over the complete set of eigenfunctions appears in (2.2.5) and no new state occurs. ]

We conclude this section by reshaping relation (2.2.1) for the propagator of a system with
removed original ground state, i.e. of a type (i) transformed system. The corresponding result can

be formulated as

Theorem 6. For transformations with u(x) = vo(x) the propagator Ki(z,y;t) of the resulting

system can be represented as

b
Ki(x,y;t) = / Ko(z, z;t)u(z)dz = (1y)L / Ko(z, z; t)u(z)dz . (2.2.6)
y

First of all we recall that 1g(z) being the ground state function of hg satisfies the zero boundary

conditions. To facilitate the proof of Theorem 6 we need the following two lemmas.
Lemma 2.

L, Elg%o (Go(z,y, E)— w(éo)i/}oE( )) = Elgn L,Go(z,y,E).
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Proof. This result follows from the explicit representation of Gy(z,y, E) in terms of basis functions.
On the one hand, it holds

LyEILn%O <G0(Z,y,E) 1/’(;30_ ) ané —y%’; .

whereas on the other hand the kernel property (annihilation) of the ground state Ly = 0 gives

Eli—{%o (LyGo(z,y, E)) = EILH}EO (Z ¢n(§i ¥nly ) Z ¢RE _ng; v :

0
Lemma 3. Let fi(xz,E) and f.(z, E) satisfy the Schrodinger equation
hof(z,E) == —f"(z, E) + Vo(z)f(x, E) = Ef (2, E) z € (a,b) (2.2.7)
and boundary conditions
fila,E)=0  f(b,E)=0. (2.2.8)

Let also E = Ey be the ground state level of hg with vy(x) as the ground state function (we assume

that ho has at least one discrete level) then

o B@EL A E) Y@ [ vd()dz (2.29)
E—Ep W(fr, i) o(y) f V3(z)dz o

_ [fr(@, E)Ly fily, E) to(@) Ji v§(2)dz

lim = 2.
E—Eo W(fr7fl) 1/)0 y)f 1/}0 Z)dZ (2 ? 10)

where Ly = —u/(y) /u(y) + 0y with u(y) = Yo(y).

Proof. First we note that according to (1.2.13) Ly f(y, E) = W(u, f;)/u. Next, since both u = g
and f, satisfy the same Schrodinger equation (3.1.25) it holds W'(u, f,) = (Ey — E)uf, and hence

b
W(u, fr) = (E — Eo)/ u(2) fr(z, E)dz (2.2.11)
y

where we have used the property W(u, f;)y=p = 0 which follows from the BCs for v and f,. Via

(2.2.11) we find

E - Ey
u(y)

b
Lyf-(y,E) = / u(2) fr(z, E)dz (2.2.12)

and hence
LSy E)  E—E J,u2)f(2E)dz
W(fe, f) — fi0.E) 10, E)uly)
where it has been used that the Wronskian W (f,, fi) = fr(z, E)f/(z, E) — fi(z, E) fl(z,E) is x-

independent and can be calculated at = b where f.(b, E) = 0. Since the spectrum of hg is

(2.2.13)

non-degenerate, the ground state function is unique up to an arbitrary constant factor and, hence,
u(x) = o(z), fr(x, Ey) and fi(x, Ey) have to be proportional to each other

fr,l(xaEO) = Cr,lu(x) (2214)

and for E — Ej only the first fraction in (2.2.13) remains undetermined. The I'Hospital rule gives

for this limit
E—-FEy 1

li ==
EoEs b, E)  fy(b, Eo)

(2.2.15)
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where the dot denotes the derivative with respect to E. Making use of (2.2.15) and

. b
B, (b Eo) = [ $7(: Eo)ds (2.2.16)
a
(which we prove below) relation (2.2.13) yields

(b, Eo) Jy ul2)fo(z, Eo)dz
F1(b, Eo) u(y) [ f7 (=, Bo)dz

and via (2.2.14) it leads to the result (2.2.9). The proof of (2.2.10) follows the same lines with

evident changes.

A B)Lyf (0. B)
E—Ey W(frvfl)

— filx, Eop)

(2.2.17)

Finally, it remains to derive equation (2.2.16). This is easily accomplished by multiplying
the Schrodinger equation (2.2.7) for f = fi(x, E) by fi(x, E), its derivative with respect to E by

f = fi(z, E), and integrating their difference over the interval (a,b). The intermediate result

/fsz

(a, B) fia, E) = f{(a, B) fi(a, E) = f{(b, E) fi(b, E) + f;(b, E) fu(b, E)

reduces to (2.2.16) via BC (2.2.8) and its derivative with respect to E (what cancels the first two
terms) and the limit E' = Ej, its implication (2.2.14) and the BC for u(z). O

Proof of theorem 6. For the Green function G(z,y, Ep) in (2.2.1) we use the standard representation
(1.1.18) in terms of two linearly independent solutions f;, of the ho—Schrodinger equation. Then
relation (2.2.1) takes the form

Ki(z,y,t) =

b fi(2) fr(y) ), Yo(2)Yo(y)
LwLy/a Ko(z, z,t) ILEO{ W f) Oy —2) + Wi ) SOz —y) — Fo_ E ]dz

where the step functions can be resolved to give

Kiwont) = Liy [ Kofwz0) Jin [ ()1 (v) wo<z>¢o<y>] .

E—Ey (fr, l) EO —F
(W) fr(z) _ tho(2)tho(y)
+ LL/KOxzt) lg%o{ W f) By E ]dz.

The second argument of the functions f;, has been omitted for notational simplicity. Explicitly

acting with the differential operator L, on the integrals with variable y—boundary yields

Ki(z,y,t) = Ly /y Ko(z, 2,t) Ly, Ehg() [L@?}f%}) _ Wﬁ)@boéy)] i
b . ;
o b [ son iy [ - SR e a2y

whereas via Lemma 2 the intertwiner L, and the limit limg_, 5, can be interchanged to give

Ki(z,y,t (2.2.19)

fl(z)Lyfr(y) b . fr(z)Lyfl(y) }
{/ Ko(z, z,t) h_}r%o W) dz—i—/y Ko(z, z,t) Elg%o W) dz ¢ .
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Application of Lemma 3 leads to

Ly b
Ki(x,y,t) = - q)d Ko(z,z
1(w,y,t) ota) ffib%(q)d { / (J/ o(z, 2, t)o(2)dz

/ vo(a dQ/ Ko(z, z,t)o(2)d } (2.2.20)

which we further reshape by expressing the integral with respect to g over the interval (y, b) by the
difference of two integrals over the intervals (a,b) and (a,y). Substitution of ¥y = w in the first

term results in

Ki(z,y,t) = /Kga:zt z)dz

)fbld)g(q)dq/ ¥ (q)dq Lx/ Ko(x, z,t)o(2)dz . (2.2.21)
a 70 a a

The very last integral is nothing but the ground state stationary wave function ¢y (x, t) = u(x)exp (—iEyt).
Therefore, since Lyu(x) = 0, we obtain the first equality in (2.2.6). The second equality results
from applying a similar transformation to the second term in (2.2.20). (I
The following remarks are in order. First we have to note that the integral representation (2.2.6)
is only valid in the case of first-order SUSY transformations which remove the ground state level.
If one wants to create a level in a problem on the whole real line one has to use a transformation
function u(x) which diverges for x — +00 ensuring in this way the normalizability and Dirichlet BCs
of the new ground state wave function ¢_1(z) < 1/u(x). An attempt to calculate the propagator
K via (2.2.6) would usually lead to a divergent integral. The correct approach is to use (2.2.2)
in this case. Jauslin [77] using a different procedure obtained the same result (2.2.6) both for
removing and creating a level, but he completely ignored questions of convergence or divergence of
the corresponding integrals. In concrete calculations he avoided divergent integrals by considering

the heat equation only.

2.2.2 Addition of new levels

Let us consider an Nth-order (N = 2,3,...) polynomial supersymmetry corresponding to the
appearance of N additional levels in the spectrum of hy compared to the spectrum of hg. In this
case new levels may appear both below the ground state energy of hg (reducible supersymmetry) and
between any two neighbor levels of hg (irreducible supersymmetry, see e.g. [108]). The propagator
for the transformed equation can be found in the following way. We develop Ky (z,y;t) over the
complete orthonormal set {¢,,(z,t)} of eigenfunctions of hy and express all ¢,, with eigenvalues
already contained in the spectrum of hg in terms of ¥, i.e. ¢, = NpLaby,. The normalization

constants N, for transformations fulfilling condition (1.2.10) have the form [57]:
Npp = [(Em — 00) (B — 1) ... (B — an—1)] V2.

All other eigenfunctions of hy which correspond to new levels and which are not contained in

spec(hg) we keep untouched. This yields

(@)¥m(y) : ey .
Kn(z,y,t) =L z Ly Z m o~ iEmt + Z qbn(:v)qbn(y)e_m"t.
n=0

—g)...(Em—an—1)
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Here we interchanged the derivative operators present in L, , and the summation. This interchange
is justified because the propagators are understood not as usual functions but as generalized func-
tions [123] (which, in particular, may be regular, i.e. defined with the help of locally integrable
functions). It remains to express ¥, (z)exp (—iE,,t) with the help of (2.2.4) in terms of Ky(z, z,t),

to make use of the identity

N-1 N— N-1 1 1
};[0 E—ao, Z:: j:g;énaj—an E—ay

and to represent the sum over m in terms of the Green function Gy(z,y,ay,). As a result, one

arrives at

N-1 N-1

1 b
KN(:L‘,y,t):LmLyZ H P /Ko(a:,z,t)Go(z,y,an)dz

n=0 \j=0,j#n 9
N—-1 '
+ ) pnl@)pny)e (2.2.22)
n=0

This representation seems to be more convenient for calculations than the recursive approach [77].
This approach is based on the formula similar to (2.2.6). The, calculation of propagator Ky in

terms of K| involves a complicated N-fold integral

N-1

Ky(z,y,t) /dzN/dzN v /dleo(w z1,t H <“(Z)> , (2.2.23)

i Uig (Zz—i-l)

where u;; is determined by (1.2.42) with N replaced by i. Formula (2.2.23) is nothing but a result
of a consecutive application of (2.2.6). Note, that when SUSY creates new levels in this approach
one need to regularize integral in (2.2.6), for example by considering the diffusion equation instead

of the Schrédinger equation. In our approach expression (2.2.22) is well-defined and looks simpler.
oo
Moreover for some models, the integral [ Ky(z,z,t)Go(z,y,a)dz = I(«) may be calculated ex-

—0o0
plicitly. In the next subsection we also show that there is more convenient way to iterate relation
(2.2.6).

2.2.3 Removal of levels

Within the framework described in section 1.2.3, the N first discrete levels Ey, Ey,..., En_1
have been removed from the spectrum of hg by choosing the ground state functions wuy j of the
Hamiltonians hj, as intermediate transformation functions. For such a construction the transformed

propagator may be calculated according to

Theorem 7. Let the N first eigenfunctions ug, = up = ¥, n=20,...,N —1 of hg be the SUSY
transformation functions. Then the propagators Ky (x,y;t) and Ko(x,y;t) of the Schridinger equa-

tions with Hamiltonians hy and hg are interrelated as

Kn(z,yit) = (-)NLyoa Y (- (2)dz (2.2.24)

(2)dz. (2.2.25)




Proof. The proof of these relations can be given by induction. We start with (2.2.25). For K (x,y;t)
the statement is proven in (2.2.6). Assuming that (2.2.25) holds for Ky (x,y;t) we verify its validity
for Kn41(z,y;t). The corresponding Hamiltonians hyy; and hy are intertwined by the linear
transformation Ly n so that (2.2.6) is applicable and Kx41(z,y;t) can be represented as

1 b
Knii(z,yt) = uNN(y)LNJrl,N,x/ Kn(z, z;t)un ndz .
9 y

Replacing Ky by (2.2.25) and making use of relations (1.2.40), (1.2.41) and the composition rule
(1.2.38) gives

“ DV 'Ky (z,yt) = ———L -

(=1 N1 (2, y;t) () L

N-1 b b

X Z(—l)”CN;/ dz/ dgunn(2)un n(2)Ko(z, ¢;t)uon(q) . (2.2.26)
n=0 v z

The integration region of the double integral is the upper triangle of the rectangle y < z,q < b in
the (z, ¢)—plane. We replace this double integral by the difference of two double integrals over the
whole rectangle and the lower triangle, respectively,

N-1
1
~ D)V 'Kz, yst) = ———L —1)"Cyt
(=1) N+1(T,y3t) e N+1,0,xnz:0( )"Cxn

X [/yb dz Ko(z, z; t)uon(z) /yb dqunn(q)un,n(q)

b b
—/ deo(x,z;t)uom(z)/ dqqun(q)uMN(q)]. (2.2.27)

Here, we reshape the two integrals of the type fgb dqunn(q)un,n(q) as follows. First we note that

un,, and un, N are solutions of the same Schrodinger equation with Hamiltonian Ay and therefore

b
W u 7u n
/ dgunn(Qunn(g) = [ NEN(IE)E N.n(€)] W
13 o — Ex
un,NLNt1,NUNR
- S 9.2.2
E, — Ex Won (2.2.28)

where Wy, := W un n(b), unn(b)] /(E, — En) and where the second equality was obtained via
(1.2.37). Applying the general relation (1.2.40) to Ln41 NUNn = UN+1,n leads finally to

b
Wn(uo, ey uN)
dqun.,(q)u = —Cpnnu — Win
/5 qunn(q)unn(q) NnUN,.N W (w0, - -, un) b,
W
= _CN,nUN,N(€> W((g)) — bn - (2.2.29)
With (2.2.29) as substitution rule the propagator (2.2.27) takes the form
N-1 b
_ n Wh
()Y ' Ky (e, yt) = —Lnt104 Z(—l) W(y)/ Ko(z, 23 t)uon(2)dz
1 b UNN(Z) Rl
+—+——Ln 70@/ dzKo(z, z;t)—= —1)"ugn(2)Wn(2) . 2.2.30
iy o | e 0 G S () 2230
(The terms containing W}, exactly cancelled.) The sum
N-1
Sy =Y (=1)"ug W (uo,.. . uy) (2.2.31)
n=0
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in the second term can be calculated explicitly. Comparison with the evident determinant identity

up,0  --- UON—1 UON
0— u0,0 -eo UQN-1 Uo,N
(N—1) (N=1)  (N-1)
Up,0 e Uy N1 YN
0,0 ... UO,N-1 0 0 e 0 uo,N
up,0 ... UQN—-1 UQN up,0 ... UQN-—-1 UQN
= + (2.2.32)
(N—1) (N-1) (N-1) (N-1) (N-1)  (N-1)
Up,0 <o U N1 YN Up 0 cee U N1 U N

shows that (2.2.31) coincides with the decomposition of the first determinant in the second line of

(2.2.32) over the elements of its first row. Hence, it holds

Sn = —(=1)Nug nW (ug 0, - -, uo.N—1) -

Representing the ground state eigenfunctions uy y in (2.2.30) via (1.2.42) in terms of Wronskian

fractions we find that

D (D) a0 () Walz) = =(=1)uo,n(2)

n=0

un, N (%)
W(z)

and, hence, that the second term in (2.2.30) is nothing but the absent n = N summand of the sum

in the first term. As a result, we arrive at

al Wi (uo, ... un) [°
Knai(z,yt) = ()N Lngroe y _(-1)" W(u()’ 7UN) / Ko(z, z;t)uo,n(2)dz
ot e )

what completes the proof of (2.2.25). The representation (2.2.24) follows from (2.2.25) and the

relations ,
/ Ko(z, z,t)un(2)dz = up(x)exp (—iEpt) Lyozun(z) =0.

O

We note that in formulas (2.2.24) and (2.2.25) only one-dimensional integrals are present. In this
way, they may turn out more convenient for concrete calculations than similar equations derived
in [77].

Furthermore, we note the following. Theorem 7 is proven for the case when the N lowest
discrete levels are removed from the spectrum of hg starting from the ground state level. This
scenario corresponds to reducible supersymmetry. In order to see which of the conditions on the
transformation functions ug , used for the construction of the propagator representations (2.2.24)
and (2.2.25) are indeed necessary conditions one may simply insert Ky(x,y;t) directly into the
Schrodinger equation (1.1.3). It turns out that neither the condition of level deletion starting
from the ground state nor a deletion of a level block without surviving levels inside is used. This
means that equations (2.2.24) and (2.2.25) hold for any choice of transformation functions provided
their Wronskian does not vanish inside the interval (a,b), i.e. it holds for reducible as well as for
irreducible SUSY transformation chains. A necessary but in general not sufficient condition for the

nodelessness of the Wronskian is inequality (1.2.10) (for further details see [108]).

55



2.2.4 Strictly isospectral transformations

Strictly isospectral transformations can be generated with the help of unphysical solutions of
the Schrédinger equation as transformation functions. In this section, we extend theorem 7 to a
more general set of transformation functions. We will work with models defined over the whole real
line (a,b) = (—o0,00) and transformation functions which vanish at one of the infinities * — —o0
or x — oo and violate the Dirichlet BCs at the opposite infinities (z — co or z — —00).

In accordance with (2.2.24) and (2.2.25) we formulate the corresponding relaxed version of

theorem 7 as

Theorem 8. Let the transformation functions u,(x) vanish at only one of the infinities x — —oo
or x — oo of the real axis R. Then the propagators Kn(x,y;t) and Ko(x,y;t) of the Schrodinger

equations with hy and hg as Hamiltonians are related as follows:

for up(z - —o0) = 0
N-1
) — (_1\N _an(y)y x, 2 t)up(2)dz
Ryl 0st) = (1B 3 (1" | Bzt (2)a (2.2.33)
for up(z — 00) = 0
N-1
_ N-1 an(y) > .2 wn (2)dz
Kn(z,y;t) = (=1) Lmnzjo( 1) W(y)/y Ko(z, 2, t)un(2)d (2.2.34)

M y
Kyleyt) = (1L [ Kufestu)d:
k=0 -
N-1
_1)V-1 — mWm(y) [% z, 2. ) um (2)dz
e (T / Ko, 2 hum(2)dz. (2.2.35)

Proof. We have to verify that the initial condition Ky(x,y,0) = §(z — y) and the Schrédinger
equations (i0; — hor)Ko(z,y,t) = 0 and (i0; — hoy) Ko(x,y,t) = 0 fulfilled by the original propaga-
tor Ko(z,y,t) map into the corresponding relations for the final propagator Ky(z,y,t), i.e. that
Kn(z,y,0) = 6(x — y), (i0y — hng)Kn(z,y,t) = 0 and (i0; — hny)Kn(z,y,t) = 0 are satisfied.
We demonstrate the explicit proof for the setup with ug(x — —o0) — 0 omitting the technically
identical considerations for the other cases.

We start by noticing that the intertwiner L, maps solutions of the Schrédinger equation for
ho into solutions of the Schrédinger equation for hy and, hence, (10, — hy,)Kn(z,y,t) = 0 is
automatically satisfied.

Next, we consider the initial condition Ky(x,y;0) = é(x — y) which should be fulfilled by the
r.hs. of (2.2.35). With Ko(z,y,0) = 6(x —y) and [V _d(z — 2)un(z)dz = 0(y — z)un(z) we have
from (2.2.35)

N—-1
Kn(e,5:0) = <—1>NZ(—m%&)me(y—x)um)]. (2.2.36)
n=0

In the Crum-Krein formula (see (1.2.6))

e
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07100y — w)un()] = Y CPOT Py — 2)uf (2) + 0(y — x)ui™ (2), (2.2.38)

uo(x) un—1(z) O(y — x)un(x)
up () uy-1(2) 0y —2)u (@) | _
uéN) () ... ug\],vjl(x) 0y — a:)u;N)

and making use of the linearity properties of determinants we reshape (2.2.37) as

up(z) ... un—1(x) 0
| o e eam
ug @) i @) TS eV T (- 2)ull (o)
Expanding this determinant with regard to the elements of the last column we find
N N m—1
Lalb(o = p)un(o)] = G5 S0 (0" W) Y- PO Iy - 2l (2240)
m=1 k=0

where W, (z) are corresponding minors. For the verification of the relation Ky (z,y;0) = 6(x—y)

we use its representation

/_ " Ky 0) f(@)dz = £(y) (2.241)

where f(x) is a sufficiently smooth test function with compact support. With (2.2.36) and (2.2.40)
the Lh.s. of (2.2.41) reads

N-1 N m—1 0 (k)
Wh(y) k) Wym (@) f (@)un” ()
> (=yrtrey / dz 00" R (y — ) : (2.2.42)
n=0 m=1 k=0 Wy) Joe Wi(z)
As next step, we use egm’k) (y—x) = —6("=*=1(z—y) and multiple integration by parts! to remove

the derivatives from the 6—functions:

N-1 N m-1 (k)
Lhs. of (2.2.41) = (—1)rkem Vanly )am k-1 [WNm(y)f(y)“” (y)] . (2.2.43)

W(y) W(y)

The relation

! (—1)"Would) = (=1)No; vy,  j=0,...,N—-1 (2.2.44)

reduces this multiple sum to

Lh.s. of (2.2.41) = (— 1)NWNN Z (2.2.45)
=0

!For the theory of distributions (generalized functions) see, e.g., [123] (in particular vol.1 p. 26).
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and because of Wy (y) = W(y) and ch\];}l(—l)kC’é\f = (—=1)V (cf. 4.2.1.3 in [124]) the condition
(2.2.41) is satisfied.
It remains to prove that the Schrédinger equation (i0; — hny) Kn(x, y,t) = 0 is fulfilled too. By

explicit substitution of equation (2.2.33) we have

(iat — hNy)KN<l' Y, )

/ 10:Ko(x, z;t)up(2)dz

_ NLZ
+LZ K ]/ Ko, 2, t)un(2)dz
)

N-1
v 1 2 (520 ) + 52 0000, + )] Haloi). (2249

n=0

)

— Vn(y

% %

(¥)
n(y

First, we note that due to relation (2.2.44) and its derivative the last sum vanishes. Taking further
into account that W, (y)/W (y) is a solution of the Schrédinger equation for hy at energy E,, (cf.
(1.2.8)) and replacing i0; Ko(z, z;t) — ho,Ko(x, z;t) one reduces equation (2.2.46) to

(Zat - hNy)KN(«T, Y, t)

N Ly Wel) [
= (-1)VL, 7;)(_1) W) /OO[(hOZ — En)Ko(x, z;t)Jup(2)dz . (2.2.47)

Integrating by parts and making use of (ho, — E,)un(z) = 0, the asymptotical behavior u(z —
—0) = 0, v'(z = —00) — 0 and relation (2.2.44) one finds that the r.h.s. in (2.2.47) vanishes and,
hence, the Schrédinger equation (i0; — hy) Ky (z,y,t) = 0 is fulfilled. O

2.2.5 General polynomial supersymmetry

The three different types of transformations considered above may be combined in various ways
to produce a supersymmetry of more general type. In general, from the spectrum of the original
Hamiltonian hg g levels may be removed and p additional levels may be added, p+¢ < N producing
in this way the spectral set of hy. The inequality would correspond to SUSY transformation chains
between hg and hx which contain isospectral transformations. For further convenience we split the

spectra of hg and hy according to their transformation related contents as

spec(ho) = {&i, B, Ex} +spec.(ho), i=1,...,q; j=1,....N—(p+q+7r)
spec(hy) = {A\, B, Ex} +spec.(hn), I=1,...,p; j=1,...,N—(p+q+r) (2.248)

where the discrete levels Ej and the continuous spectrum spec.(hg) = spec.(hy) are not affected
by the SUSY transformations. The set of transformation constants {an}fyz_ol = {ei, \i, B}
corresponds to p new discrete levels A, € spec(hy) not present in spec(hg), ¢ levels g; € spec(hy)
not present in spec(hn), N — (p + g + r) levels B present in both spectra and r constants -y not
coinciding with any energy level of both Hamiltonians, v ¢ spec(hg) Uspec(hy). Transformations
induced at constants «,, = [B,, v, are strictly isospectral.

Summarizing the previous results the following expression for the propagator Ky (z,y,t) can
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be given

N-1 N-1 b _
Kn(z,y,t) = LyLy Z H — / Ko(z, z,t)Go(z,y, ap)dz
n=0 \j=0j#n " ¢
+ Z O, (T) b, (y)e Pt + Z bp, () g, (y)e Bt (2.2.49)

where for o, = ¢, Bp,

é0(273/70¢n) = lim |:G0(Z7y7E) -

E—an

Un é:)ﬁbgy) ]

and éo(z,y, ay) = Go(z,y, ay,) otherwise.

2.2.6 Time-dependent potentials

In the case of the time-dependent SUSY transformations, the transformed potentials are time-
dependent. Therefore the time translation is not a symmetry anymore. The evolution of a system

depends on both the initial and the final moments of time
Ulte, t1) # U(l2 + to, t1 + to) - (2.2.50)

Nevertheless, due to the composition rule U(ts,t2)U (t2,t1) = U(ts, t1) we may consider only the

evolution from the fixed initial time t = 0
Ulta,t1) = Ul(t,0)U ™ (t1,0) . (2.2.51)
The matrix element of the evolution operator

K(l’,y;tg,tl) = <$’U(t2,t1)‘y> s (2.2.52)

describes the probability of the transition from an initial point y at time 1 to a final point = at
time to. This matrix element coincides with the propagator of the time-dependent Schrédinger
equation. If the propagator Koy(z,y;te,t1) is known in closed form, the Cauchy problem can be
solved for any initial state ¥ (y,t1):

b
Oz, ty) /K(w, i o, 1)@ (y, 1)y (2.2.53)

Bearing in mind that the hamiltonian is time-dependent we slightly modify the definition of the
propagator
[0y — h(x,t)|K(x,y;t,to) =0, K(x,y;to, to) = 0(x —y). (2.2.54)

According to (2.2.51) we may fix the initial time ¢y = 0 and consider only the propagator
K(x,y;t) = (z|U(t,0)]y). Then the propagator which describes the evolution from an another

initial moment reads
b
K(w,yita, 1) = (alUtz, t1)]y) = / (2, 25 ) K* (2, i 1) (2.2.55)
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The complete set 1y, (x,t) = (x|U(t,0)1,) determines the following decomposition

K(z,y;t an z, )i (y (2.2.56)

Taking into account the method of time-dependent SUSY transformations described in section 1.3
it is convenient to choose the eigenfunctions {|¢y,)} and {|¢,)} of the symmetry operators gy and

g1 (see section 1.3) as the basis sets

Hence, in the case (ii) one can express the transformed propagator as follows

o0

Rl(l‘,y;t) = Z ¢m($vt)¢7*n(y)
= L.(®)L:(0 Z Ym( t)wm(y’ O 141 t)6" (). (2.2.58)

m —

Up to a normalization constant N_j, the additional eigenfunction ¢_; is determined by the
transformation function, ¢_; = N/ [L1(t)u*(x)]. The evolution of go’s eigenfunctions is given by

the initial propagator
b
/K' x, 2, 1) m(2,0)dz = Y (2, 1) . (2.2.59)

As a result (2.2.58) reads

m —

b - .
Ry(a,9.t) = La(t)L5(0) / Ro(w,2) S wm(io)”’"&(y’ Ods 4 6@, 06" ().  (2260)
a m=0

The sum

Goly i) = (al(go — )y = Y Y@l (2.2.61)
m=0 m

is the resolvent of the symmetry operator. Note that the resolvent taken at the initial moment
Go(y,z,X;0) =: Go(y, 2z, A) is used in (2.2.60). This resolvent satisfies to the following inhomoge-

neous equation

(90(t =0) = N)aGolz,y,A) = 6(z —y). (2.2.62)
We can summarize this calculation in the following theorem.

Theorem 9. The propagators Ki(z,y;t) and Ko(x,y;t) of non-stationary Schridinger equations
with non-stationary SUSY intertwined Hamiltonians hy and hg are interrelated with each other and
with the resolvents Go(x,y; \) and éo(ac,y,oa) in the following way:

Type (i) relation

b ~
Ki(z,y,t) = LSCLZ,t:O/ Ko(z,z,t)Go(z,y, a)dz , (2.2.63)
a
Type (ii) relation
b
Ki(z,y,t) = LxLZ,tzo/ Ko(z,z,t)Go(z,y, a)dz + ¢p_1(z,t)p_1(y) , (2.2.64)
a
Type (iii) relation
b
Ki(z,y,t) = LmL;t:O/ Ko(z,z,t)Go(z,y,a)dz . (2.2.65)
a
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2.2.7 Non-hermitian superpartners

Recently a considerable attention has been paid to different properties of non-Hermitian Hamil-
tonians (see, e.g., [125]). There are several reasons to generalize the quantum mechanics by ac-
cepting non-Hermitian Hamiltonians with purely real spectrum (see, e.g., [125,126] and references
therein). For instance, some problems are simplified being reformulated in terms of a non-Hermitian
Hamiltonian. On the other hand complex potentials are used in different models of nuclear physics
(optical potentials) as effective interaction potentials [127].

Although the general idea how to find the superpartner’s propagator is the same in the case of

the one-dimensional Schrédinger equation with a complex-valued potential V.(x)

hepp(x) = Epp(x), he = ~ 922 +Ve(z), zeR, (2.2.66)

there is some technical difference. Therefore it is necessary to repeat (or introduce) some important
definitions and conjectures.

We consider the stationary potentials V.(z). The propagator K.(x,y,t) is defined as usual
through the inhomogeneous time-dependent Schrédinger equation. If K.(z,y,t) is given the func-
tion

P(x,t) = /_OO Ke(z,y;t)po(y)dy (2.2.67)

is a solution of the time-dependent Schrédinger equation with the initial condition ®(z,0) = ¢o(z).

First of all we note that to be able to associate the function ®(x,t) with a state of a quantum
system the integral in (2.2.67) should converge and both the function ¢g(x) and ®(x,t) should
belong to a certain class of functions. To present our method in its simplest form we will make
several assumptions which simplify essentially our presentation keeping at the same time the essence
of the method. Since in (2.2.67) the usual (Lebesgue) integration is involved it is natural to
suppose that both pg(z) and ®(x,t) are square integrable. This means that the Hilbert space,
where the operator (non-Hermitian Hamiltonian) h. associated with the differential expression
—0%2/0x? + V.(x) ’lives’, is the usual space L2(R) and the equation (2.2.66) creates an eigenvalue
problem for h. which is defined on a dense domain from Lo(R).

Eigenvalue problems for non-Hermitian differential operators were under an intensive study by
mathematicians in the Soviet Union in the period between 50th and 70th of the previous century.
Results of these investigations are mainly summarized in books [106, 128] to which we refer the
interested reader where he can, in particular, find the strict definition of the spectrum, eigenfunc-
tions, associated functions, domains of definition of operators created by non-Hermitian differential
expressions and many other properties of differential equations and related non-selfadjoint oper-
ators. Here we would like to mention that the first essential result in this field was obtained by
Keldysh [129] who proved the completeness of the set of eigenfunctions and associated functions for
a non-selfadjoint operator and results by Lidskiy [130]. In particular, Lidskiy made a deep analysis
of conditions on the potential V. leading to an operator h. which is uniquely defined by its closure
and has a purely discrete spectrum with a complete set of eigenfunctions and associated functions.

Especial role between all non-selfadjoint operators is played by pseudo-Hermitian operators
first introduced by Dirac and Pauli and latter used by Lee and Wick [131-133] to overcome some
difficulties related with using Hilbert spaces with an indefinite metric and their recent generalization

(weak pseudo-Hermiticity) by Solombrino and Scolarici [134,135] since there are strict indications
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that these operators are the most appropriate candidates for replacing selfadjoint operators while
generalizing the conventional quantum mechanics by accepting non-Hermitian operators [134—-137].

Our next essential assumption is that h. has a purely discrete spectrum, its set of associated
functions is empty, it is diagonalizable, and its set of eigenfunctions ¢, (z), n = 0,1, ... is complete
in the space Lo(R). If ht is the adjoint differential expression it creates in the Hilbert space the
adjoint operator with the eigenfunctions ¢y () which also form a complete set in Lo(R). Moreover,
if £, is an eigenvalue of h. then E (asterisk means the complex conjugation) is an eigenvalue of A
so that hZFqan = Eflggn Note that neither {¢,,} nor {an}, n =0,1,... form orthogonal systems but

functions $k are biorthogonal with ¢,, and they can always be normalized such that (see e.g. [128])
/ i) fn () = G (2.2.68)

The completeness of the set of eigenfunctions of h. means that any ¢ € Ly(R) can be developed
into the Fourier series over the set {¢n,}, ¢(z) = > ; ¢nén(x). Using the biorthonormality relation
(2.2.68) we can find the coefficients ¢, in the usual way and put them back into the same relation

thus obtaining the symbolical form of the completeness condition of the set of eigenfunctions of h.
> on@)only) =z — ). (2.2.69)
n=0

Next we assume that the spectrum of h. is real. Therefore the adjoint eigenvalue problem
coincides with the complex conjugate form of equation (2.2.66) so that ¢y, (z) = ¢*(z). Under these
assumptions equations (2.2.68) and (2.2.69) become (cf. [138])

/_ " pu(@)dn(@)d = b, (2.2.70)
S 6u(@)bn(y) = (2 — ). (2.2.71)
n=0

From here follows the Fourier series expansion of the propagator in terms of the basis functions ¢,:
> .
Ke(w,y;t) =Y dn(@)pn(y)e P (2.2.72)
n=0

Indeed, just like in the conventional Hermitian case the initial condition ®(z,0) = ¢g(x) for function
(2.2.67) with K, of form (2.2.72) follows from (2.2.71) and the fact that ®(x,t) satisfies the time-
dependent Schrodinger equation follows from the property of the functions ¢, to be eigenfunctions
of h. with the eigenvalues E,.

Another useful discussion is that the form (2.2.72) for the propagator may be interpreted as the
coordinate representation of the abstract evolution operator. To show this we introduce ket-vectors
(kets) |¢,) as eigenvectors of h. and bra-vectors (bras) (¢,| as functionals acting in the space of

kets according to?
(Onldr) = Onk - (2.2.73)

Kets corresponding to the previous bras are just properly normalized eigenvectors of hl which is

defined by the adjoint eigenvalue problem where V.(z) is replaced by its complex conjugate V. (x)

2Without going into details we note that using the system |¢,) one can construct the Hilbert space H so that the
set of all finite linear combinations of ¢, is dense in H and formula (2.2.73) uniquely defines a functional in H, see
e.g. [139].
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so that (2.2.73) is nothing but the same biorthogonality condition (2.2.70) written in the abstract
representation. As usual the coordinate representation of the above abstract eigenvectors are
én(x) = (x|dn) = (dn|z) where |2) is an eigenvector of the coordinate operator. The completeness

condition in the abstract form now reads

D 1bn)(dn] =1 (2.2.74)
n=0
and the formula -
he =" |6n)En(én] (2.2.75)
n=0

presents the spectral decomposition of the Hamiltonian h.. Now in the known way [134-136] one
can introduce an automorphism 7 to establish the property that h. is (weakly) pseudo-Hermitian
and construct a basis in which h. takes a real form. We will not go into further details of the
known properties of (weakly) pseudo-Hermitian operators since this is not the aim of this work.
The interested reader can consult papers [131-136] and the recent preprint [137] where biorthogonal
systems are widely used in the study of different properties of non-Hermitian Hamiltonians. Our

last comment here is that the abstract evolution operator given by its spectral decomposition
o . ~
Ut) =Y |on)e P (gn] (2.2.76)
n=0

written in the coordinate representation K.(z,y,t) = (z|U(t)|y) is just the propagator (2.2.72).
We would like to emphasis that conditions (2.2.70) and (2.2.71) have almost the usual form,
only the complex conjugation is absent. Therefore they coincide with the corresponding equations
for the Hermitian Hamiltonians in case when their eigenfunctions are real.
The final assumption we make is that the Hamiltonian h. is a SUSY partner of a Hermitian
Hamiltonian hg with a purely discrete spectrum and a complete set of eigenfunctions v, which

always can be chosen real

hy = —@+‘/(]($), h0¢n($) :Enwn(x)7 ¢n(x) :¢Z($), n=0,1,...

so that both the completeness and normalization conditions are given by equations (2.2.71) and
(2.2.70) respectively with the replacement ¢, — y,.

According to the general scheme of SUSY QM (see section 1.2.1) operators hg and h. are
(1-)SUSY partners if and only if there exists a first order differential operator L such that

Lhg = heL. (2.2.77)
Operator L has the form (1.2.11) where the function u(z) is a complex solution to equation
hou(x) = au(x) . (2.2.78)

The potential V. is calculated with the aid of formula (1.2.14).
Together with operator L we need also its ‘transposed form’ (instead of L™) which we define as

follows:
L' = —/(2)/u(x) — 0y . (2.2.79)

Then, just like in the usual SUSY QM the following factorizations take place:

L'L=hy—a, LL' =h. -« (2.2.80)

63



which can easily be checked by the direct calculation.

The spectrum of h, may either (iii) coincide with the spectrum of kg or (ii) may differ from it
by one (real) level which is absent in the spectrum of hg. The case (iii) may be realized only with a
complex parameter o which is called the factorization constant. The case (ii) may be realized only
for a real factorization constant since E = « is just the discrete level of A, missing in the spectrum
of hy and we want that h. has a real spectrum. Therefore in this case one has to choose u(x) as a
linear combination of two real linearly independent solutions to equation (2.2.78).

One of the main features of the method is that for the most physically interesting Hamiltonians
ho operator (1.2.11) has the property Ly g(£o0) = 0 provided 1g(£o0) = 0 (conservative SUSY).

As a result the set of functions
¢n = NoLtyp, n=0,1,... (2.2.81)

is complete in the space £L2(R) in case (iii). In case (ii) we have to add to this set the function
®a = Ng/u. The normalization coefficients N,, may be found by integration by parts in equation
(2.2.70) and with the help of factorization property (2.2.80) which yields

Ny = (B, — )72, (2.2.82)
The main result of the present section is given by the following

Theorem 10. The propagator K.(z,y;t) of the Schridinger equation with the Hamiltonian h.
related with hy by a SUSY transformation is expressed in terms of the propagator Ko(z,y;t) of
the same equation with the Hamiltonian hy and the Green’s function Go(x,y; E) of the stationary
equation with the same Hamiltonian as follows:

in case (1) K.(x,y,t) = Kp(z,y,t)

in case (ii) Ko(x,y,t) = K1(2,y,t) + ¢ (2)da(y)e™

where K (x,y,t) is the ’transformed’ propagator

K (z,y,t) = L$Ly/ Ko(z, 2,t)Go(z,y,a)dz . (2.2.83)

Here L, is defined by (1.2.11) and L, is the same operator where x is replaced by y.

Proof. The proof follows the same line as in the theorem 5 with obvious modifications coming from
(2.2.69), (2.2.71) and (2.2.72) O

Further we will use the obtained relations to calculate some new propagators to stationary,

non-stationary and complex potentials.
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2.3 Explicit expressions for Green functions and propagators

2.3.1 Particle in a box

As first application, we consider a free particle in a box, i.e. the Schrodinger equation with
Vo(z) = 0 and Dirichlet BCs at the ends of the finite interval (0,1). The eigenfunctions of this
problem are the well known v, _1(z) = V2sin(nnz), n € Z,, with energies E, 1 = n’r%. The

Green function of the particle in a box may be easily calculated by its definition (1.1.16)

sin(kz) sin[k(y — 1)]
ksin k ’

Gox(2,y, E) = z<y, E=k. (2.3.1)

Poles of Gy, coincide with the points of the discrete spectrum.

The corresponding propagator reads [33]

N |

Kbow()(xv Y, t) =

with

(05 (z,y;t) — U3 (2, y; )]
U5 (x,y;t) =103 (x —Y

m Flm ) Tty _m
2 2)7 193($,y,t).—193< 2 ) 2)

and 9Y3(¢g|7) denoting the third theta function [140].

As SUSY partner problem we choose a model which we derive by removing the ground state

level Ey by a linear (one-step) SUSY-mapping with u = 1) = sin 7z as transformation function?.
This leads to the Schrédinger equation with potential Vi (z) = 272/ sin?(7x), i.e. a singular Sturm-

Liouville problem. The propagator of this problem can be represented via (2.2.6) as

1 y
Kpoz1(z,y,t) = ~Sem WyLw/O (05 (@, 2;t) — 95 (z, 2;1)] sin(wz)dz (2.3.2)
or after explicit substitution of L, = —m cot(mx) + 9, as
t y
Kpoz1(z,y,t) = gz;((:;))/o (05 (@, 2;t) — 95 (2, 2;1)] sin(wz)dz

_m /oy (05 (@, 25 t) + 97 (@, 2;1)] cos(mz)dz + % (05 (@, y;t) + 95 (2, y;t)] . (2.3.3)
Here after using the property 83;9;,:(:1:, z,t) = i@ﬂ?(m, z,t) we integrated in (2.3.2) by parts.

We see that both the initial and the transformed propagators are expressed in terms of the
third theta function ¥3(q|7), whereas the initial Green function contains only simple trigonometric
functions. Therefore in the case of finite interval it is more convenient to work with the Green
function. In the rest of this section we calculate closed expressions for the Green functions generated
by different types of SUSY transformations.

In section 1.2.1 we demonstrated that there is only one possibility for the first order conservative
SUSY transformation. To enlarge the possible choice of transformation function we first consider
the example of a non-conservative SUSY transformation. Let u = sh(cx) be the transformation
function. This function violates BCs at x = 1, therefore according to the general discussion in

section 1.2.1 the spectrum of the transformed Hamiltonian radically differs from the spectrum of

3There exist other types of transformations leading to regular transformed Sturm-Liouville problems. But the
solutions of the resulting Schrodinger equations will violate the Dirichlet BCs [4]. The special analysis of this case

will be considered below.
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Figure 2.1: Non-conservative SUSY partner of the particle in box
is presented, V(x) = 2¢?/sinh(cx)?, ¢ = 1/2. Solid horizontal
lines correspond to the transformed spectrum, dashed horizontal
lines correspond to the spectrum of the particle in box.

the free particle in box. The transformation operator L = —ccoth(cx)+ 0, maps the eigenfunctions
¥y, to unphysical solutions Ly, (1) = (—1)"m which violate BCs at x = 1. Nevertheless, one may
solve the spectral problem for the transformed Schrédinger equation. Acting by the transformation
operator on the general solution W(z) = Acos(kx) + Bsin(kz) of the initial equation we get the
general solution ®(x) = L¥(x) of the transformed equation for all £ # —c2. Imposing the Dirichlet
BCs ©(0) = 0 and ®(1) = 0 we find that A =0 and

k = ccoth ctank . (2.3.4)

It is seen that the spectrum of the non-conservative SUSY partner is determined by the transcendent
equation. Spectral points correspond to the intersections of line y = k/(ccothc) with tangents
y = tank. We can change the spectrum of the model by varying parameter c. Note that the
transformed spectrum approaches the initial one as ¢ — 4o00. Figure 2.1 shows an example of
potential. First energy levels of the transformed model are compared with the energy levels of the
initial spectrum.

Note, that in this case formula (2.1.1) fails. However, we can calculate the Green function using
(1.1.16) and the general solution of the Schrédinger equation obtained through SUSY transforma-

tion:

(ksink + ccoth ccos k) (—ccoth(cx) sin(kx) + k cos(kx))
G E)=

12,4, ) k(c? + k2)(ccothesink — kcos k) .
ccothcsink — kcosk

ccothcecosk + ksink

(ccoth(cy) cos(ky) + ksin(ky)) — ccoth(cy) sin(ky) + k cos(ky) | ,
r<y.

If the transformation function coincides with the ground state wave function u = sin(7x) then
the SUSY transformation is conservative. The ground state level is removed and the spectrum is
E, = (nm)%, n =2,3,.... The transformed potential Vi = 2n%csc?(rx) is shown in figure 2.2. Its
Green function is given by (2.1.1)

o Gbor(x7 Y, E)

Ga(ey. B) = Z L cta(ka) — weta(mr)] [eeta((y — 1)) ~ meta(my)] = <y
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Figure 2.2: SUSY partner of the particle in box, V(z) =
2m2csc?(mx), which corresponds to the case (i) is shown. Solid
horizontal lines correspond to the transformed spectrum, which

coincides with the spectrum of the particle in box except one level
EO = 71'2.

It can be checked that k = m (E = 72) is a regular point of the transformed Green function. This
is in agreement with the spectrum modification.

Our next step is to consider the second order SUSY transformation. To work with conservative
transformations only we should impose on the transformation functions BCs discussed in section

1.2.2. In case (V) we can choose
ui(z) = sin(mzx), wug(z) =sin(cz), 0<c<27.
From (4.3.74) we get the transformed potential

2

c? — 12 4+ 72 cos(2¢cx) — % cos(27x)

Vo = (7% — ¢?) (2.3.5)

[7 cos(mx) sin(cx) — ccos(cx) sin(mx)|?
The bound state energy is shifted from Fy = 72 to Ejj = ¢?. Potential (2.3.5) is plotted in figure
(2.3). The transformed eigenfunctions are easily obtained from (1.2.29). Using (2.1.10) one can

calculate the Green function:

Gbox(xa Y, E)

G229, B) = (5 oy (5 = &)

(E+ Z1(2))(E+ Z2(y)), =<y,

mc? cos(mx) sin(ez) — am? sin(mz) cos(cx) + k(c? — 72) sin(mz) sin(cx) ctg[k(c — §;2)] .

esin(mz) cos(cx) — 7 cos(mx) sin(cx)

Zj(z) =

In case (IV) one may choose uj(x) = sh(ayz) and wug(x) = sin[ag(x — 1)], 0 < ag < 7. The

potential

a? + a2 — a? cos[2az(z — 1)] — a3 cosh(2a17)

Va(z) = —(af + a3) , (2.3.6)

(aq cosh(ayz) sin[az(x — 1)] — ag sinh(ayx) cos|agz(z — 1)])2

corresponds to the irreducible second-order SUSY.
The intermediate Hamiltonian also determines a regular Sturm-Liouville problem, but its spec-

trum being defined by (2.3.4) radically differs from spechg, whereas spechy = spechg. It is
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Figure 2.3: Potential (2.3.5) shifts the bound state energy only depending on c. Left/right part
corresponds to ¢ = 0.6/c = 5.
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Figure 2.4: Potential (2.3.7). Parameters: a3 = 1,a2 = 3; a1 =
5,a2 = 3; a; = 1,(12 = 1.5.

interesting that the value of the potential (2.3.6) at boundaries depends only on the factorization
energies

V2(0) = —2(a? + a3), Va(1) = 2(a? 4 a3) . (2.3.7)

We plot potential (2.3.6) in figure 2.4 for several values of a; and as.
The Green function of potential (2.3.6) reads:

Gbox(xa Y, E)
(E —ai)(E — a3)

Ga(z,y, E) = (E+Qi(z)(E+Qa2(y), =<y,

Qi(z) = a1a3 cosh(a1x) sin[ag(x — 1)] — aga? sinh(ai ) cos[az(z — 1)] B
J ag sinh(ajx) cosfag(x — 1)] — aq cosh(ayx) sinfag(x — 1)]
k(a3 — a?)sinh(ayx) sinfag(z — 1)] ctg[k(z — &;2)]

 agsinh(aiz) cosfag(z — 1)] — a1 cosh(ar ) sinfag(x — 1)]

Finally we note that the corresponding propagators can be calculated as follows [26]

oo

dE .
KN(SU,y,t) = - / %GN(xvyaE)e_lEt' (238)

— 00
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2.3.2 Harmonic oscillator and its superpartners

Here we consider the Hamiltonian
2
9 x

The propagator of the harmonic oscillator is expressed in elementary functions (see e.g. [26])

1 i[(x%+y?) cos t—2ay]
Kose(z,y,t) = Viriemi© dsint : (2.3.9)

In a contrast, the expression for the Green function involves parabolic cylinder functions D, (x) [140]

1
N V2T

Since the calculations of the transformed Green functions are rather straightforward, we will focus

1
Gosc(z,y, E) T (2 a E) Dp 1(=2)Dp_1(y),  =<y. (2.3.10)

on the transformations of the propagator for several types of SUSY.

Using a two-fold transformation with transformation functions (see section 1.4.2)
up(z) = (2% — e /4 ug(z) = x(a? — 3)e ¥/
corresponding to the second and third excited state eigenfunctions of hy we obtain a perturbed
Harmonic oscillator potential [57]

82 9622 2
2,3 _
vt )(:”)_x4+3_(x4+3)2+?+2 (2.3.11)

which for large |x| behaves like the original harmonic oscillator potential, but for small |z| shows

two shallow minima (see figure 1.3). For completeness, we note that the transformation functions

us(z) and us(z) have nodes, whereas their Wronskian W (ug, us) = (z* + 3)e=*"/2 is nodeless so

that the corresponding second-order SUSY-transformation itself is well defined, but irreducible.
The propagator for the Schrédinger equation with Hamiltonian h(%3) = —92 4 V(23)(z) can be

constructed from propagator (2.3.9) via relation (2.2.34). The occurring integrals

fyoo Kose(, z,t)u,(z)dz can be represented as derivatives with respect to the auxiliary current J of

the generating function

1 o i[(2? 4 2%) cost — 2w2] 22
S(J t) = —— _ Tzl d
(S2,y.1) 47risint/y P [ 4sint 4 Tz e

N e z?
- 2P\ T
—Viexp (—4) (2J sint + i(yexp (it) — z))
1+ erf .
2vsint
K (x,y,t)

—ortag, (WD OS) )] FL[OSD 250

+ (iJ?sint + Jx)exp (—z't))

X

As a result, we obtain

in terms of obvious abbreviations.
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Figure 2.5: Potential (2.3.13) plotted at different values of parameter C. The solid curves correspond to the

real part of the potential, the dashed curves correspond to the imaginary part of the potential.

The technique can be straightforwardly generalized to second-order SUSY-transformations built
on any eigenfunction pair

x? /4 —x2/4

ug(x) = pr(x)e” up41(2) = pry1(w)e

of the Hamiltonian hg. The corresponding generalized potentials (1.4.13) have been considered in
section 1.4.2.
With the help of (2.2.24) the propagator is obtained as

KOk (g g gy = P12, (pg;éy)) [k (9) S(J)] — g;(é)) [Pr+1(97) S(J)]>

with pg (05) denoting the kth-order differential operator obtained from pg(x) by replacing =™ —

J=0

%. Polynomials p; and Q) are defined in equations (1.4.9) and (1.4.12).
In the next example we consider the simplest complex deformation of the Harmonic oscillator
with « = —1/2 and
232
u(z) = e 1 (C +erf (z/v2)), ImC #0

We need also the Green function of the oscillator Hamiltonian at £ = «. In this case we can
avoid parabolic cylinder functions. We simply use the definition (1.1.18) of the Green function
in terms of two special solutions fi(z, F) and f.(x,E). Functions f; and f, from (1.1.18) at
E=a=-1/2read

filz,—1/2) = \/77/26%(1 +erf (z/vV2)), fr(z,—1/2) = \/7%5(1 —af(z/v2). (2.3.12)

The spectrum of the complex-valued transformed potential

2 22
Vo) =5 12 e T 2%, i) = [FO et @VE] (2819
consists of all oscillator energies E,, =n+1/2, n =0,1,... and one additional level E_; 2 =-1 /2

with the eigenfunction

¢_1a(x) = (2m) VN2 = 1u (2) . (2.3.14)
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It is not difficult to check by the direct calculation that

/_ ¢? 1 jp(w)de = 1. (2.3.15)

Thus the transformed potential has the equidistant spectrum. We plot the real and the imaginary
parts of this potential for different values of C' in figure 2.5. Note, that in general this potential is not
PT-symmetric and goes beyond the simplest realization of PT-scheme proposed by Bender [126].

Using theorem 10 and equations (1.1.18) and (2.3.12) we obtain the propagator for the Hamil-
tonian with potential (2.3.13)

K.(z,y,t) = —\/\7?/(§C'+1)LgC /y Kose(z, 2, t)e %(1 +erf (2/V2))dz

m(C—1 e 2 .
+\([(2u(y))[/x/y Kggc(l',z,t) 7(1—erf(z/\f))dz—|—¢ 1/2( )@_1/2(y)€”/2. (2316)

2.3.3 Transparent potentials

Here we apply our method to calculate propagators for the soliton potentials which are SUSY
partners of the zero potential (see 1.4.1). The construction of the N-level soliton potential from
the zero potential is given in section 1.4.1. Note that the propagator for a one-level transparent
potential was previously calculated by Jauslin [77] for the Fokker-Planck equation. In one particular
case when b, = 0 and constants a,, are chosen in a special manner the corresponding propagator
may be calculated using path-integral approach [34]. The propagator for a two-level potential can
be found in [4] where the general form of the propagator for an N-level potential has been given
as a conjecture. Here we will prove this conjecture [5].

The propagator K and the Green function G for the free particle are well-known [34]

1 i(e—y)?
Ko(z,y;t) = me o, (2.3.17)
Go(z,y, FE) = 2 girle—yl , Imk >0, E = g2,

2K

so that according to (2.2.22) the propagator of the transformed system can be calculated as

N

1 o i(x — 2)? dz
Ky _ —— —aplz — —
(m vt) \/4m Z j:g?ﬁn Qn — Q /_Oo oxp ( 4t “ \z y’) 2ap,

+ Z @n(‘%’)@n(y)eiiant = KCN<m7 Y, t) + KdN<m7 Y, t) . (2318)

In the last line we separated contributions from the continuous spectrum, K.y(x,y,t), from con-
tributions from the discrete spectrum, Kyn(z,y,t).

The integral in K.y (z,y,t) can easily be calculated since the primitive of the integrand is well
known (see e.g. integral 1.3.3.17 of Ref [124]). Using the well studied convergency conditions of

the error-function erfc from [141] we find

I — 2)? alz—y dz
a,x,y,t) rm exp 74t alz—yl) 5.
ia2t
_ ¢ a(z—y) Vit+ T Y a(y—=) T Y
™ [e erfc | avit + it +e erfc ( aV/it Wi (2.3.19)

a>0 t>0
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and with it

N N
1
n=1 \m=1,m#n " m

Introducing the notation

erf 1 (a) = exf <am¢ Z}f>

and abbreviating the Wronskian of the z—dependent transformation functions uy,..., uy as W(x)

we formulate the final expression for the propagator as

Theorem 11. The propagator for an N -level transparent potential has the form

1 i(w—y)?
En(wyit) = e
N N
an 2 2 W (@)Wa(y) a2
a2 | Y “lerf 4 (an) + erf _(ay)] . 2.3.21
+n2_1 1 j:! ]Ln|an aj W @)W (y) e lerf | (ay) + erf _(ay)] (2.3.21)

For the proof of this theorem we need the additional

Lemma 4. Let {Oti},-]\il be a set of N non-coinciding complex numbers a; # a;jx; € C and* n € 7+,
Then the following identity holds:

N N

1
I = 1. 2.3.22
Zaz .H4ai—aj 6”’N1 (2.3 )
i=1 J=1,j#i
Proof. Consider the auxiliary function
ZTL
f(z) =
(2) (z—a1)(z—a9)...(z —an)
which is analytic in any finite part of the complex z-plane except for N simple poles aq,...,an.

From the residue theorem follows

N N N 1
z:reSJ”(04z-):§:c»¢;1 | H oy = —res f(0)
i=1 i=1 Jj=1,j#i

what with the residue at infinity yields (2.3.22). O

As the next step we prove Theorem 11.

Proof. Without loss of generality we may set b; = 0. We start with the propagator component
K.n(z,y,t) in (2.3.20) related to the continuous spectrum. First we note that the function I in
(2.3.20) depends only via the difference x — y on the spatial coordinates so that the action of d, in
Ly can be replaced by d;' — (—=1)"92. Hence, the composition of the two Nth-order transformation

operators L;L, acts as an effective 2Nth-order differential operator in x
LyL, = Ro+ R0z + ...+ Rany02V (2.3.23)

with coefficient functions R,,(z,y). Accordingly, (2.3.20) takes the form

N N
1
KEon(eyit) =) | [ ———— | Ro+Ride+...+ Rand;") s (2.3.24)

«
n=1 \m=1,m#n " m

4We use the standard notation ZT = {0,1,2,...} for the natural numbers with zero included.
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where J, = I (an,x,y,t). From the explicit structure of the first derivatives of J,

0Jp, 1 A
8;; = 1 —e~ @ Werfe | (a,) 4 e @ Verfe _(an)} cfant
82<]n -1 Z(z y)
= = e +a2I(ay
Ox? Arit (an)
BT L e
o5~ awamit Y
2 .
b 8 e erfe  (a,) + o0 Verfe (an)] €73 (2.3.25)

we find (by induction) the general expression of an even-order derivative

92my i i(w—y)?

CAEI §: E A (@, )™
om km 'Y,

ox —

aml

+ "4 elant [e_“"(z_y)erfmr(an) + e @ Yerfe _(ay) (2.3.26)

and of an odd-order derivative

92m—1r1 m— i(z—y)?
A F A (2, y, t)e ™ @
2m—1 Z o (2, Y,
ox -
CL -1
. . eza t [efan(mfy)erfc_i_(an) _ e“"(x’y)erfc_(an) . (2,3.27)

It holds
m = 2l n k>[01-1

A (z,y,t) =0 =
bm (2,9, 1) {m:2l+1 N k>i-1.

Subsequently we use the abbreviation

Im(an) = i elent [(—1)me*a"(‘”7y)erfc +(an) + e Verfe (ay) (2.3.28)
2(N-1)

and we will need the explicit form of the ay and a2V terms in the highest-order derivative

82NJ 1 i(z— )2
TN T ai(N‘”T = o +a2N Iy (2.3.29)
e

The complete propagator component K.y(z,y;t) in (2.3.24) can now be rewritten as

N N 1
cN x y7 Z H o — o ROIO(an)
n=1 1,m#n " m

S R[ . e’“Zt”Q+ 2 1o >}+
_— — a a
n 2| Vit o2

N N 1 N—-1 i y)?
+>. 0 II ar —a. | Ty > arf Agon(zy,t)e o + G%Nsz(an)] :
n=1 \m=1,m#n " m k=0

Comparison with Lemma 4 shows that due to a2* = (—a,,)* only a single term containing exp (i(z —

N

does not vanish. It is the Kk = N — 1 term in the very last sum which with Roy = (—1)" and
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An_1on(z,y,t) = —(4mit)~1/2 yields exactly the propagator (2.3.17) of the free particle. All other
terms containing exp (i(z — y)?/4t), after interchanging the sums ZnN:1 ... and Zév:_ol ..., cancel

out due to Lemma 4. Thus, the above formula reduces to

N

" +Z I1 ﬁ (2.3.30)

m=1m#n

+R3a I3(an) —l—RQNa IQN((L”)].

Ken(z,y;t) =

N
;
-~

X [Rgfo(an) + Rlanh(an) + RQCL%IQ(

v

Expressing I, (a,) via (2.3.28) in terms of erfcy and erfc_ one finds contributions

f 4
er(zl;(an)em%t(RO - aan + aiRQ — aiR?’ 4+ ..+ aiNRQN)e—an(xfy)
n

fc _ .
“lﬁ“wm%+%m+ﬁ&+ﬂ&+m+ﬁwmmwww
n

which can be represented as

fe o (an) -
“Zf)wm%+&@+&%+%@+m+&mwm%@w
fo _(an)
Hlﬁﬂwm%+m@+&@+&@+“+Rwﬁwwwﬂ'
n

Comparison with (2.3.23) shows that the sums yield simply L, Lyexp [+a,(x—y)]. Recalling further-
more that the transformation operators L, and L, are given by (1.2.6) and that the transformation

functions have the form (1.4.2) we arrive after some algebra at®

N

Wa(z)
+ nl __ N+ 1 2 2 n
Lye*™n® = (£1)"(-1)N H (a3 —a?) W) (2.3.31)
Jj=Lj#n
and, hence, at
N
W (2)Wn(y)
LyLye™ @9 = ()"’ ] (a)—a})* = (2.3.32)
A W (@)W (y)
Substituting (2.3.32) into (2.3.30) we obtain
K ( t) 1 Z(z y)2 4= Z ia2t ﬂ (_1>n(a% - a?n)2
cN\T, Y3 = —F——=°¢ e " an
Amit m=1,m#n On — Om
W (2)Wa(y)
f fc . 2.3.33
g e () terfe (@) (2333)
A further simplification can be achieved by recalling that o, = —a2 and that the parameters a;
are ordered as a; < az < ... < ay. Setting (a2, — a2) = —(a? — @2,) in the denominator for
m =1,...,n — 1 gives an additional sign factor (—1)"~!. The propagator sum Ky = K.y + Ky

SWe note that equation (2.3.31) is compatible with (1.4.4). The function exp (—a,z) is a solution of the initial
Schrédinger equation related to one of the factorization constants and it is linearly independent from the corresponding
factorization solution. Therefore Lyexp (—anx) up to a constant factor is one of the bound state functions of hy

given in (1.4.4).
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resulting from continuous and discrete spectral components reads then

1 oon? 1o 24 Al 2 _ 2
K yyit) = o= “ntap, n~ Ym
@it = e g an| L e - ai
n= m=1,m#n
W ()W (y)
X erfc 4 (a,) + erfc _(an,
N N
1 t 2 2 Wn(x)Wn(y)
+- ) e'la a, — a;, 2.3.34
and via the relation erfc(z) = 1 — erf(z) it leads to the expression in the theorem. O

2.3.4 Deformed one-soliton potentials

In this section, we use theorems 9 and 10 to calculate propagators for the complex and time-
dependent one-soliton potentials. These potentials may be interpreted as a deformation of the
one-soliton potential obtained by varying parameters of the SUSY transformation.

Let us consider a complex one-soliton potential

—2a?

V() = —5—,
(@) cosh?(az + ¢)

(2.3.35)

defined by the complex transformation function
u(z) = cosh(ax +¢), a=-a*, Imc#0, Ima=0.

The Hamiltonian k. with potential (2.3.35) has a bound state at Eg = —a®. The bound state wave

function is
a 1
$-a2(7) = \/; u(z)

From theorem 10 one immediately gets:

1 (w—)2 a2t
o L9 lerf 1 (a) + erf _(a)], (2.3.36)

Vit du(z)uly)

2_ 2
where ¢ = arctanh me(ZI; , Im(b) = 0.

In the case of the time-dependent soliton potential (1.4.6) the eigenfunctions of the symmetry

Ke(z,y;t) =

operator igg = LTL + a = (i0, + \)? coincide with plane waves 1 (z,t). Eigenfunctions of
ig1 = LL™ + « are obtained as follows

op(z,t) = (1/VE? + a?) Ly (x,t) , oz, t) = N/u*(x,t).

We can decompose the transformed propagator in terms of the set {¢(x,¢)} and rewrite this de-

composition in terms of plane waves

me%wz/mmwﬁmm%+%m@@@

T (, k(y, 0 .
= LoL} - / w’“(a};Q )ff’;gy )dk+¢a(w,t)¢a(y)-
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Again we may identify the Green function and the propagator of the free particle thus obtaining

Kns(z,y,t) = Lo Ly oI (2, y,t,a) + ¢al2, )05 (y) ,

where integral I has been calculated already in section 2.3.3. The difference with the stationary
case appears from the time-dependent transformation operators. After some algebra we get the

following propagator

i(e—y)2 ael(@*=A)t=iXz—y)
K@, y5t) = e -
Ns(z,y5t) Vit ¢ o 2 coshla(z + 2X)t] cosh(ay)
erfe 1 (a)e'”! (a — iX)e®™ — X coshla(x + y) + 2a\t] — /\—ze_a(z_y)
4 coshla(z + 2))t] cosh(ay) a

erfc _(a)ei’t
4 coshla(x + 2)A)t] cosh(ay)

which approaches to the one-soliton propagator as A — 0.

)\2
<(a +iX)e? M 1 i) coshla(z + y) + 2aXt] — ea(xy)> ,
a
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Chapter 3

SUSY transformations for coupled

channel problems with different
thresholds [6—8]

3.1 Spectral properties of non-conservative multichannel SUSY

partners of the zero potential

It was believed that the SUSY transformations can not introduce a non-trivial coupling between
scattering channels if the initial system (1.1.20) is uncoupled. By trivially coupled scattering and
Jost matrices, we mean non-diagonal matrices which may be diagonalized by energy-independent
transformations. Similarly, a multichannel potential is nontrivially coupled if its matrix cannot be
diagonalized by an r-independent transformation, where r is the radial coordinate. The argument
comes from Amado’s work [86] where the SUSY transformation of S-matrix was obtained. From
the form of this transformation it is clear that matrices Sy(k) and Si(k) are coupled or uncoupled
simultaneously. Since there are only a few exactly solvable coupled-channel potentials (especially
with non-trivially coupled channels) the usage of SUSY transformations was significantly limited.
Fortunately, in [48] a new class of non-conservative SUSY transformations was proposed. These
SUSY transformations may relate uncoupled and coupled potentials (and S-matrices) thus return-
ing its power to the method. Recall that the non-conservative SUSY transformations modify the
boundary behaviour of solutions thus radically changing the spectrum of the transformed Hamil-
tonian (see also the single-channel example in section 2.3.1).

To analyze this problem we use analytical expressions for the Jost matrix obtained by SUSY
transformation. The zeros of the Jost-matrix determinant define positions of the bound/virtual
states and resonances [22,23]. Therefore, studying the zeros of the Jost-matrix determinant allows
one to analyze the spectrum of the model. A closed analytical expression of the Jost matrix, as
well as potential, resulting from a non-conservative SUSY transformation of the zero potential is
obtained in [48]. The analysis of spectral properties for such potentials was not presented up to now
despite the fact that the Jost matrix is well known [46]. This may be explained by the fact that the

spectrum of the potential after a non-conservative SUSY transformation changes essentially and to
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find these changes one has to find all the zeros of the Jost-matrix determinant.

The principal point of this section is to show that the qualitative behavior of the spectrum of
the Cox potential constructed in the section 1.4.3 by the non-conservative SUSY transformation
may be studied for an arbitrary number of channels, N. We think this is a very strong result, since
even for the case N = 2 the full analysis of the spectrum is a very complicated problem [5,6,46].
The main reason for this is an extremely rapid growth of the order of an algebraic equation defining
the spectrum with the growth of the number of channels. Fortunately, in the two channel case it
is possible to find the exact solution of the spectral problem for the Cox potential [6].

The study of the spectrum for the non-conservative SUSY partner is reduced to the analysis
of the Jost matrix determinant (1.1.31). According to (1.4.15), the roots of equation (1.1.31) are
defined by the roots of

detB(k) =0,  k;j—ikj#0, j=1,...,N, (3.1.1)

where
B(k) = wg —iK . (3.1.2)

In what follows we concentrate on the analysis of the zeros of det B only keeping in mind that some
of them may be cancelled in detF' if k; = —ir;. Also it is convenient to introduce special notations
a; for the diagonal and f;; for the off-diagonal entries of wy (recall, that wy is the superpotential
at the origin).

Our starting point is thus a system of algebraic equations (3.1.1) and (1.1.24) which reads, with

certain coefficients a?,

N N N
(i) Nkika. by + >l [ Bt + > alkj+ao=0, (3.1.3)
j=1 1=1,1#j Jj=1
ka—k%‘f—Aj:O- (3.1.4)

First we show that system (3.1.3), (3.1.4) can be reduced to an algebraic equation of the N2V~!
degree with respect to one momentum, say k1, only. Indeed, any momentum enters equation (3.1.3)

only linearly. Therefore it can be rewritten in the form
kNPI(kl,...,kN_l) :Ql(l{?l,...,kN_l), (315)

where Py(k1,...,kn—1) and Q1(k1,...,kny—1) are polynomials of the first degree in each of the
variables ki,...,ky_1. It is important to note that given all momenta ki, ..., ky_1 this equation
defines ky in a unique way if P; does not vanish. On the other hand we can square the left- and
right-hand sides of (3.1.5) thus obtaining an equation where ky enters only in the second degree and
polynomials P? and Q? are polynomials of the second degree with respect to their variables. But
in the equation thus obtained using threshold condition (3.1.4) we can replace all second powers of
the variables k;, j = 2,..., N by k2 — Aj, which makes disappear both variable kx and the second
power of k;, j = 2,..., N — 1 from the resulting equation and raises the power of k; till 2N. We
thus see that after these manipulations variable ky_1 enters in the resulting equation only in the

first degree and the equation can be rewritten in form (3.1.5)
kN_1P2(k1’ ey kN_Q) - QQ(kl, ey kN_Q) 3 (31.6)

where Py(k1,...,kn—2) and Q2(ki,...,kny—2) are polynomials of the first degree in each of the
variables kg, ..., ky_2. From (3.1.6), given ki,...,kn_2, not a zero of Py_o, we obtain ky_1 in
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a unique way. We note that the system (3.1.6), (3.1.5) and (3.1.4) where from (3.1.4) the last
equation k% — k% + Ay = 0 should be excluded, is equivalent to the original system (3.1.3), (3.1.4).

It is clear that we can repeat the above process N — 3 times more to get an equation

ko Py_1(k1) = Q1 (k1) (3.1.7)

and finally
Pn(k1) =0 (3.1.8)

with Py of order N2V—1. Note, that the subscript in P, and Qj, indicates nothing but the step in
this procedure. It is evident that any k; which (together with ko, ..., kx) solves the system (3.1.3),
(3.1.4) is a root of (3.1.8). The converse is also true. Indeed, given a root k; of (3.1.8), but not a
root of Py_1, we find from (3.1.7) a unique k2. Once we know k; and ks we find k3 from equation
previous to (3.1.7) and so on till kx which is found from (3.1.5). It is also clear that in this way
we can get N2V—1
the system (3.1.3), (3.1.4) so that the same number N2¥~! is the number of possible solutions of
this system and the system (3.1.8), (3.1.7), ..., (3.1.5) is equivalent to the initial system (3.1.3),

(3.1.4).

number of sets ki,...,ky (some of them may coincide) each of which solves

3.1.1 Number of bound states

Let us analyze the structure of solutions for equations (3.1.3), (3.1.4) in more details. The aim of
this section is to count the number of the Jost determinant zeros corresponding to the bound states.
Below, wave functions, entries of the Jost and the scattering matrices are considered as functions
of k1. Other momenta are expressed in terms of k1 from the threshold conditions (1.1.24). Since
in this section we are interested in the number of bound states we will consider only the negative
energy semi-axis £ € (—o00,0). It happens to be useful to change variables k; in favor of 12:]- as

k; = ik; and rewrite the threshold conditions (3.1.4) accordingly

ki =k + A, (3.1.9)
where we have chosen only the positive value of the square root since in this section we analyze only
the point spectrum of H, which restricts all momenta k; to be purely imaginary with a positive
imaginary part so that k; = |k;|.

From (1.4.15) it is clear that all the zeros of detF are at the same time the zeros of the deter-
minant of matrix B (3.1.2) and vice versa. This follows from (3.1.1) and the positive definiteness
of matrix K — ¢K in the momenta region we consider so that neither of the roots of det B solves
the equation det(IC —iK) = 0.

Since det B = H;V:I A; where \; are the eigenvalues of B,

B(k1) xj(k1) = Aj(k1) zj(k1) (3.1.10)
the equation detB (k1) = 0 is equivalent to A;(k1) =0, 7 = 1,..., N. Matrix B is symmetric with
real entries in the momenta region we consider, B = wy + K = B”, which implies the reality of
both Aj(k1) and z;(k1). Here we introduced a diagonal matrix K = |K| = diag(k1, ..., kn)-

Another property of \;(k;) important for the analysis is their monotony as functions of k1 that

we prove below.
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For a fixed K let us consider a deviation of \;(k;) for a small increment of argument ki, i.e.
Nj(k1 + k1) = \j(k1) + 6)\j(k1) assuming §K = diag(6ky,...,0ky) real, positive definite (since
§kj > 0, V4) and infinitesimal. From (3.1.10) one gets

B(lju‘l + 5/%1)%‘]'(/%1 + (5]51) = )\j(lgl + (5]51).%']'(]51 + 5]?}1) . (3.1.11)

Here according to (3.1.2) B(ky + dk1) = wo + K + 6K and the increment of B(ky) is just 6B = 6K
which plays the role of a small perturbation of B(k;). Therefore we may calculate the shifting
of the eigenvalues produced by such a perturbation using a (Rayleigh-Schrodinger) perturbation

theory. Thus, for a non-degenerate eigenvalue \; the first order correction reads
5)\]' = <x‘]|5B‘ZL‘j> >0 (3.1.12)

where the inequality follows from the positive definiteness of B = §K, which in turn implies
monotony of the eigenvalues as functions of the momenta ki. For a degenerate eigenvalue cor-
rections are obtained by diagonalizing the same perturbation operator §B restricted to a linear
span of unperturbed eigenvectors corresponding to a given eigenvalue, which still leads to positive
corrections because of positive definiteness of J B.

From here it follows that any eigenvalue )\j(fﬂ) may vanish i.e. change its sign, only once.
Moreover, \; — Ej > 0 as ki — oo. Hence, the number of negative eigenvalues of B at k; = 0,
i.e. at the energy of the lowest threshold, is just the number of bound states. Thus, to count the
number of bound states, ny, one has to consider the eigenvalues /\j(lzrl), j =1,..., N of matrix
B(ky) at ky =0,

B(0) = wo — 4 diag (i1/Aj) = wo + diag(y/A;) (3.1.13)

so that

1 - A;(0)
np =5 (N —A), A=Ay, Aj:M(O)'. (3.1.14)
j=1 J
To clarify this formula we notice that in the absence of bound states all A; = 1, A = N so that
np = 0. Every bound state is responsible for the change of the sign of only one eigenvalue from
positive to negative thus raising —A by 2 units, i.e. —A — —A + 2 with ny — np + 1. This justifies
the factor 1/2 in (3.1.14).

Summarizing, we see that the number of bound states is bounded by 0 < ny < N. Figure 3.1
shows the eigenvalues of matrix B as functions of ki for the case N = 3. Two eigenvalues cross
the axis which corresponds to the case of n, = 2. The last comment in this section is devoted to
equation (1.4.27). Now it can be seen that the factorization energy should be chosen lower than

the ground-state energy for the transformed potential, & < E, if any.

3.1.2 Number of virtual states

According to the definition of a virtual state [22,23], in this section we will need to consider
the channel wave numbers k; lying both in the positive and the negative imaginary semi-axes
of the corresponding momenta complex planes and consider the full imaginary axis for ki, i.e.
k1 € (—00,00). The other momenta, ko, ..., ky, belong to either the positive or to negative parts

of their imaginary axes in agreement with the threshold conditions

k=0 /K2 +A;, o;j=+, j=2..N. (3.1.15)
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Figure 3.1: Typical behavior of B-matrix eigenvalues, N = 3. The case of two bound states with energies
FE; = —51.8611 and E5 = —8.8852 is presented. The black squares show positions of these bound states.
The corresponding parameters are a; = —3, ag = —8, ag = —1, f12 = 0.5, 13 = 0.4, oz = 1, Ay = 15,
Az = 25.

Since in (3.1.15) all combinations of signs are now possible it is convenient to introduce special
notations for these combinations. Denote o = (+,=,...,%) a string of N signs with o; being
its j-th entry, which corresponds to the sign in (3.1.15) for the j-th momentum for j > 1. The
first symbol ”+” in ¢ indicates that all momenta k; are expressed in terms of ki. Let ni (o) + 1
and n_(o) be the numbers of ”+” and ”—" signs in this string. We notice the following evident

combinatoric properties of n_(o) and n, (o). First, ny (o) + n_(o) + 1 = N which implies

> (o) +n_(o)+1] = N2V, (3.1.16)
g
Here and in what follows the summation over ¢ includes all 2V 1 possible sign combinations. Next,

a symmetry between ”+” and ”—" leads to the following relation
Y n(0)=> ni(o)=(N-1)2V72, (3.1.17)
g g

According to (3.1.2) every sign combination leads to its own B matrix defined by the cor-
responding K matrix so that both K and B should carry an additional information about this

combination. Therefore
BU:UJ()—FRU, RUZdiag(%l,ggl_@,...,(ﬁvl_ﬂ]\f) (3118)

and we denote X;(/_ﬁ), j=1,..., N the eigenvalues of B?.

In order to find the zeros of the Jost-matrix determinant corresponding to the virtual states we
should find the purely real solutions of the equations )\;’(12:1) =0,7=1,...,N for all 2~! matrices
B?. Although the k;’s are real, but bearing in mind our replacement k; = ik;, throughout the text
we call these zeros purely imaginary. Finally we note that since matrix L — iK in (1.4.15) is not
positive definite for an arbitrary ¢ anymore, in some particular cases some of the zeros of B may
be cancelled by the zeros of det(K — iK) and will not correspond to virtual states. Nevertheless,
omitting these particular cases, we will concentrate on an analysis of the zeros of detB only.

Eigenvalues )\37(151) are monotonous functions of k; in two cases only: (i) o = (+,+,...,+)
and k1 > 0; (i) o

= (+,—,...,—) and k; < 0. In general, an eigenvalue )\?(El) may have
minima/maxima for k; < 0 which may lead to two or even more roots in equation A?(El) = 0.
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kl kl
Figure 3.2: Typical behavior of the eigenvalues A7 (k1), N = 3, is shown. Each plane corresponds
to a particular choice of string o: (a) 0 = (++ +), (b) 0 = (++ —), (¢c) 0 = (+ — —), (d)
o = (+ — +). Stars, squares and circles correspond to the virtual states. Virtual states are

denoted by the identical symbol if they belong to the same eigenvalue A;’(Ih). The corresponding
parameters are oy = 3, ap = 5, ag =9, B2 = 0.5, B13 = 0.4, B3 = 0.2, Ay = 15, Az = 35.
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We illustrate this behavior for N = 3 in figure 3.2. The monotonous lines in the right/left part of
figure 3.2(a)/(c). correspond to case (i)/(ii). The position of the zeros of the eigenvalues is shown
by stars, squares and circles. It is clearly seen that the total number of the roots of all equations
)\37(151) =0is (N2V71)|y=3 = 12 which all correspond to virtual states.

A change of parameters may result in shifting the position of the virtual states only without
changing the number of zeros (i.e. virtual states). For instance, in the simplest case we may shift
all diagonal entries of wg by a number Ag, wy — wo + Agl, thus shifting all eigenvalues of B by the
same number, /\?(l_ﬁ) — )\3‘-(151) + Ao.

Let us consider a specific eigenvalue defined by a string o, with a local maximum at k1 = ];71,ma:v7
A?O(El,mam) = Njmaz- One can always shift all the eigenvalues by the value A4, such that the
curve )\?O(k‘l) touches the k; axis at the point k1 = ki e, meaning that kq 4, not only becomes
a root of the equation A7°(k1) = 0 but this root is multiple (of multiplicity 2) and by a small
additional change of other parameters it can be split into two simple but complex roots. This
is just in this way two virtual states collapse producing a resonance; a subject which deserves a
special discussion (see the next section). Pairs of virtual states which may collapse are shown in
figure 3.2 by squares and circles.

It is not difficult to convince oneself that for any given (3 the situation when all the zeros of
the Jost-matrix determinant are purely imaginary may be realized by a proper choice of a;;. To see
that let us consider the asymptotic behavior of A7 for |k1| — oo, when all off-diagonal entries of B

become negligibly small,

X~ ki+ar, (3.1.19)
- _ A

)\(jf ~ O'j\/]{?%—l-Aj—i-Oéj:O'j <|]€1|+2E]1+...>+Oéj. (3.1.20)

k1] — oo. (3.1.21)

Numbers ny (o) and n_(o) determine the corresponding numbers of increasing and decreasing
eigenvalues at positive infinity. The eigenvalue \{ increases both at negative and positive infinity.
Now if we choose all «; sufficiently large in absolute values and negative we can always guaranty
the location of a root of the equation A (k1) = 0 near the point k1 = a7 and at the same time
the location of two roots of the equation )\?(El) = 0 with corresponding o; = + near the points
ki = f+a;. Thus, for each o we can obtain 2n4 (o) + 1 zeros. The total number n, of these zeros
may be calculated by formulas (3.1.16) and (3.1.17)

ny =Y [2n4(0) + 1] = N2V 1, (3.1.22)

g

which coincides with the total number of all possible roots of the system (3.1.3), (3.1.4) and is
just the maximal possible number of virtual states. Hence, in this case all the roots are purely
imaginary. In the next section we consider the case when some of the zeros may merge, become

complex and produce resonances.

3.1.3 Number of resonances

For simplicity, independently on whether or not it can be seen in scattering data, we call any

pair of complex zeros k = +k, + ik; of the Jost-matrix determinant a resonance keeping in mind
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that to be really visible in a scattering a resonance behavior of the corresponding cross-section

should be narrow and sharp enough.

Conservation of the number of zeros of an n-th order algebraic equation under a variation of
parameters included in its coefficients, which keeps unchanged its order (in our case this is equation
(3.1.8) obtained from the system (3.1.3), (3.1.4)) applied to our case leads to the following relation
ny + ny + 2n, = N2V71 where ny, n, and n, are number of bound states, virtual states and
resonances respectively. The aim of this section is to establish the maximal number of possible

resonances accepted by a non-conservative SUSY-partner of the vanishing potential.

Evidently, the maximal number of resonances corresponds to the minimal number of bound
np and virtual n, states. These numbers would both become zero if no one of the B matrix
eigenvalues intersected the k; axis. But as it was noticed in the previous section there always exists
an eigenvalue \] with the asymptotic behavior given in (3.1.19), i.e. ranging from —oo to +o0 and,
hence, it always intersects the k; axis for all possible values of . We thus see that the minimal
number of real zeros that all eigenvalues may take is achieved if all eigenvalues )\?(12:1), j > 1 are
nodeless and curves A\{ (k1) intersect k1 axis only once for every given sign combination o. To realize

a

this case, we should choose parameters included in wo in a such way that the global minimum A7, .,

of every eigenvalue A?(El) with o; = + (they tend to +00 when |ki| — oo) be positive A7, .. > 0

j,min

and, respectively, the global maximum A7 . of every eigenvalue A?(El) with o; = — (they tend to

a

7 maz < 0. Under these conditions only eigenvalues XY (k1) have

—o0 when |k1| — 00) be negative A
zeros. The possibility that these eigenvalues have only one zero can always be realized. This can
be demonstrated for small enough values of §;; (the so called weak coupling approximation, see the
next section) which in the limit £;; = 0 for all ¢, j gives a very simple behavior of the eigenvalues.
For instance, for Aj ;1 —A; large enough and mjin(@—i— aj) > mjax(—@—i—aﬂ, the straight line
AJ (k1) never intersects with the hyperbolas A?(El) so that small perturbations coming from small
non-zero [3;-values (in a physical terminology, these perturbations shift the zero width resonances
from the real energy axis to the complex plane) do not change the monotonous behavior of A{ (k1)

and, hence, do not bring additional roots to the equation A (k) = 0.

Thus, we see that the minimal value of virtual states with the absence of bound states is equal

to all possible sign combinations of o which is nypin = >_1 = 2N=1_ Hence, the maximal possible
(e

number of resonances is obtained by subtracting this number from the total number of solutions,

i.e.

2y maz = N2V 71— 2N=1 — (N — 1)2N-1, (3.1.23)
3.1.4 Weak coupling approximation

For the number of channels N > 2 there is no way to get analytical solutions of system (3.1.3),
(3.1.4), but if the coupling parameters f;; are small enough, assuming the analyticity of the roots
of the Jost-matrix determinant as functions of f3;;, a perturbation technique may be developed.
In this section, we demonstrate this possibility by obtaining first order corrections to unperturbed

values of the roots of the Jost-matrix determinant corresponding to 3;; = 0.

For the zero coupling, matrix wy becomes diagonal wy = diag(aq, ag,...,an) and the system
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(4.1.15), (1.1.24) reduces to

(a1 —ikoa) (o2 —iko2) ... (an —ikon) =0, (3.1.24)
kij— kg +0;=0, j=2,...,N, (3.1.25)
where the additional subscript 0 corresponds to the uncoupled case. Its solutions have the form
ké?ia) = —iog, ké,l;,f’ =om\/—a3 — ANy, m#£1,
k:((fég) = —iag, kéi’g) zam\/—ag—i—Ag—Am, m# 2,
WY = o, K = om0k + Ay~ A, m#N, (3.1.26)
where m = 1,..., N. Let us explicitly indicate the meaning of sub- and superscripts in (3.1.26):

the second subscript m in k

(()j ) corresponds to the channel, the first superscript j indicates a row

,m
number in (3.1.26) and o indicates one of all 2V ~! combinations of signs. Thus, we see once again

that the total number of solutions of the system is N2V ~1

and it does not depend on whether or
not the coupling is absent. Note that every energy level £; = —04]2- + Aj corresponding to a row
in (3.1.26) is 2V~ fold degenerate. Below we show that under a small coupling every degenerate
level E; splits in 2N=1 sub-levels and we will find approximate values of the splitting. But the
unperturbed j-th momentum corresponding to this level simply equals ké{f) = —iaj. Therefore,
instead of our previous convention to express all quantities in terms of ki, it is convenient here to
express corrections to the j-th momentum produced by a perturbation in terms of unperturbed j-th

)

momentum ljc((){f . This is always possible due to the fact that all momenta have equal rights. But
now we have to change our signs convention introduced in section 3.1.2, where the first momentum
k1 entered in the string o always with the positive sign (67 = +). Now we have the j-th momentum
k;j € (—o00,00) and o; = + in string o.

From (3.1.26) we learn that no coupling implies no finite-width resonances but as we discuss
below the zeros lying above the first threshold may be associated with zero-width resonances which

acquire a non-zero width under a small coupling.

2N—1 2

zeros with By = —af are
always below the first threshold (bound or virtual states). Energy E, = —a2 + A, n=2,..., N,

From the first row of (3.1.26) we conclude that the corresponding

may be positive with respect to the first threshold and only these (N —1)2V~1 zeros are associated
with zero-width resonances. According to our convention a resonance corresponds to a pair of
complex zeros. Here we can easily compute the number of the zero-width resonances, n,,, which
is Npr = (N — 1)2N ~2 which agrees with the maximal number of possible resonances obtained in
the previous section.

The unperturbed B matrix, we denote Bf is diagonal

Bg = diag(a1 + 0'1]21, a9 + 02]_@, .o, QN + UNIEN) (3.1.27)

and its eigenvalues AJ ; coincide with its diagonal entries
§i(kj) = o+ kj, §1(kj) = ar + o\ k3 + A = Ay, (3.1.28)
l=1,...,N, I (3.1.29)

For simplicity we assume all coupling parameters (3;; proportional to the same small parameter
B so that the perturbed B? matrix reads

B° =B +BB, B=|byll, bj;=0, j=1,...,N. (3.1.30)
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Now, as it was mentioned above, assuming the analyticity of eigenvalues of this matrix as functions
of 8, we can develop them in a Taylor series with respect to 3,

A= NS AL A (3.1.31)

where the first subscript number is just the power of 5. First we notice that the perturbation B
has zero diagonal entries which results in A{ ; = 0. To get the second order correction we are using
the usual Rayleigh-Schrédinger perturbation approach which leads to

N b2

A8 j(ky) = 7 e (3.1.32)
o l;;éj )‘O,j(kj)_)‘o,z(kj)

In what follows we also assume that we can neglect the higher-order corrections to the eigenvalues.
Actually, our aim is to find corrections to the unperturbed degenerate j-th Jost-matrix deter-
minant zero given in (3.1.26). Assuming a Taylor series expansions for this root over the small

parameter § indicating it now explicitly
ki =k + Ber + Bea + ... (3.1.33)
we find coefficients ¢; and ¢y from the equation
A7 (kj) = NG ;(kj) + A3 ;(k;) = 0. (3.1.34)

For that we develop 5\37(15]) in a Taylor series in 8 parameter considering its 5 dependence as given
through k; and (3.1.33). The term (3.1.32) contains the factor 42, therefore in its denominator we
simply put l;:é’g instead of kj. The kj-dependence of the term )\&j(l_cj) is given by (3.1.28) and its
B-dependence is obtained via (3.1.33). Thus, the left hand side of equation (3.1.34) is presented as
a series over the powers of § where every coefficient should vanish. This leads to ¢; = 0 and
N b2
=Y it . (3.1.35)
=115 1+ o1y [ s+ A= A

Finally up to the second order in 5 we obtain the roots of system (3.1.26)

N 2,2 2
(1’0) _ _ ; B bll (1’0) _ ( (170)> _
ky = ioq + 1 l; P v k) = am\/ ky A,
N 2
(2,0) o i . 52bgl (2,0) ( (2,0’)) .
k2 B et l:lz;yéQ ay+oiy/a3+A—As ’ mo = Im k2 + B2 = Am,
N-—1 2
(N,o) . . ﬁ2b?\” (N,o) ( (N,o)) .
kn = N +1 l; P oy v k™ = omy/ ( ky + ANy — A,

Here each row is obtained by applying equations (3.1.32), (3.1.33), (3.1.34) and (3.1.35) for j =
1,..., N, respectively, and m = 1,..., N, m # j for each j. The square roots in the last column of
(3.1.36) should be expanded in Taylor series up to 2.

From here it is easily seen that, when a2, < A,,, purely imaginary unperturbed zeros k,, =
—ia,, move from the axes to the complex plane due to the real part of corrections. For instance for
k2, the real part reads +8%\/Ag — a3 /(a3 — a3 + Ag). We thus confirmed the previous statement

that zero width resonances acquire non-zero widths.
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3.2 General properties of the 2 x 2 Cox potential

3.2.1 Explicit expression of the potential

The two-channel case deserves an additional attention because some analytical results may be

obtained. For N = 2, the arbitrary parameters entering the Cox potential are the entries of the

wy = ( Og i ) (3.2.1)

and the factorization energy £. The corresponding factorization wave number, k = (K1, K2), is

superpotential matrix at the origin,

made of two positive parameters k1 and ko which are not independent of each other: they should
satisfy the “threshold condition” [see Eq. (1.1.24)]

K3 — K3 = A. (3.2.2)

Here and in what follows we put for convenience A; =0, Ay = A > 0.
In terms of these parameters, the necessary and sufficient condition for a regular potential, i.e.,

K 4+ wq positive definite, can be written for instance

K1 > —og, (3.2.3a)
B

7 3.2.3b

2 K1+ aq a2 ( )

This puts an upper limit on the factorization energy in terms of the parameters appearing in wy.

Two explicit expressions for the superpotential are given in Ref. [49]. Using Egs. (1.2.21)
and (1.4.21), one gets what is probably the simplest possible explicit expression for the potential
itself:

—2K1T

X (3.2.4a)

—2Kor

Vi = —8k1e

+ @92 (T11222 — 23,) K1e 2

T11K1 + [23?119622H1 — 23y (K1 + H2)} e
[1 + w11e72FT + poge 22T (55119022 - 95%2) 672(”1%2)1”]2

Vijie = —dziay/Rirge” PRI (3.2.4b)

K1+ Ko + @11(K2 — K1)e 2 + Top (k1 — Ka)e 22 — (211390 — a%,) (K1 + kg)e 2Rl

— _ 2 _ 2
[1 + x11€ 2617 + I90€ 2kom | (Q’JHCCQQ — .%‘12) e 2(“1+“2)T]

I

The element V.92 is obtained from Eq. (3.2.4a) by the replacement k1 <+ k3 and x11 <> x22. Here,

we have used the symmetric matrix

r11 T12
Xo = : (3.2.5)

T2 22
which is related to matrix (3.2.1) by Eqs. (1.4.17) and (1.4.18).
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3.2.2 Zeros of the Jost-matrix determinant

The particular case of two coupled channels is important both from the practical and theoretical
point of views. Let us recall the following inequalities for the number of the bound/virtual states
and resonances obtained in sections 3.1, 3.1.2 and 3.1.3: 0 < np <2, 0<n, <1,0 < n, < 4.
The same inequalities are obtained for N = 2 in [5,6] from another approach. The two-channel
problem is the only one where one is able to get analytic expressions for the Jost-determinant roots,
i.e. to solve the direct problem consisting in finding the positions of the bound/virtual states and
resonances. This possibility is based on the fact that the roots of an algebraic equation of the
fourth, (N2V¥~1)|y=2 = 4, order may be expressed in radicals. Thus we obtain zeros as functions
of parameters defining the potential. One may be interested in solving the inverse problem: to
express parameters of the potential from the knowledge about positions of zeros of the Jost-matrix
determinant. In principle, one may try to inverse radicals, but we propose a more elegant way
below.

The Jost matrix for the Cox potential reads (see also Refs. [46,48,49))

k1+ion i3
o k1+ik1 k1+ik1
Fikp) = | P e (3.2.6)

kotike  kotika

The determinant of the Jost matrix coincides with the Fredholm determinant of the correspond-

ing integral equation [23]; it reads here

(kl + ’L'oq)(kQ + ia2) + 52

k1, ko) = detF(k1,k2) = , : 3.2.7
Flhr,ke) = debha, ko) = G e+ i) (3.27)
In this case, the system of equations (3.1.3), (3.1.4) is significantly simplified

k2 — k3 = A, (3.2.8)
(k1 +iay) (ko +iag) +62=0 (3.2.9)

and may be reduced to a single fourth order algebraic equation in k;
k% + ialki’ + azk% +daski1 +a4 =0. (3.2.10)

Coefficients a;, i = 1,...,4 (see [6], (33a-d)) read

ap = 2aq, (3.2.11a)
ay = o3 —al—A, (3.2.11b)
a3 = 2la(a3 —A) — azf?], (3.2.11c)
ag = —ai(a3 —A)+ 28% — L (3.2.11d)

Taking into account (3.2.9) one can express momentum ks from the following equation
k‘g(’ik‘l — 041) = 052(1431 + ’L'Oq) — i52 . (3.2.12)

Equations (3.2.10) and (3.2.12) are nothing but system (3.1.8), (3.1.7), ..., (3.1.5) for N = 2 (see
section 3.1).
We notice that after substitution k; = i\, Eq. (3.2.10) becomes an algebraic equation in A with

real coefficients. Its four roots are thus either real numbers, which correspond to real negative
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Figure 3.3: Geometrical representation of Eqgs. (3.2.13a) (first column, solid lines) and (3.2.13b) (first column,
dashed lines), and positions of the corresponding roots of system (3.2.8) in the complex k (second column) and
p (third column) planes. Various values of the parameters oy, as are chosen, which imply various numbers of
bound, virtual and resonant states: (a) a; < 0, @ < —V/A, two bound states (star and diamond), two virtual
states (square and triangle), no resonance; (b) a; > 0, as < —V/A, one bound state (star), one virtual state
(square), appearance of a resonance (diamond); (c) a3 > 0, az > 0, no bound state, two virtual states (star
and square), one resonance (triangle and diamond, not seen in the first column); (d) a; > 0, as > VA, no
bound state, no resonance, four virtual states. Increase of either a; or asy leads to: (a) (thin dashed lines)
disappearance of a bound state; (b) appearance of the resonance.
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energies (bound or virtual states), or mutually-conjugated complex numbers, which correspond to
mutually-conjugated complex energies (resonant states). Basing on this property, we will use in
what follows a geometric representation of the system of equations which allows for a visualization
of the zeros of f(k1,k2) in the parameter space.

Let us first consider bound and virtual states, which correspond to solutions of system (3.2.8)
with k1 and ko purely imaginary. After substitution k; = i\, ke = ip, with A and p real, equations
(3.2.8)-(3.2.9) define two hyperbolas in the (A, p)-plane,

PP =N =A, (3.2.13a)
A+ a1)(p+ a2) = B2, (3.2.13b)

the positions of which are defined by the values of the parameters a1, as, 8 and A. The roots
of system (3.2.13) that correspond to bound and virtual states are the intersection points of these
hyperbolas. Different possibilities of hyperbola locations are shown in figure 3.3. The solid-line
hyperbola corresponds to the threshold condition (3.2.13a); its semi-major axis is VA and its slant
asymptotes are given by p = +A. The dashed-line hyperbola corresponds to Eq. (3.2.13b); its
asymptotes are given by A = —ay and p = —ag. The abscissa (resp., ordinate) of a crossing point
in the (), p)-plane gives the position of the corresponding zero on the imaginary axis in the k-
plane (resp., ko-plane), as shown in the second (resp., third) column of figure 3.3. Bound states
correspond to A, p > 0, i.e., to intersection points laying in the first quadrant of the (A, p)-plane,
while virtual states correspond to intersections in the second, third and fourth quadrants. In both

cases, their energy with respect to the first threshold is given by
E=Fk =-)\. (3.2.14)

It is clearly seen on figure 3.3 that the two hyperbolas (3.2.13a) and (3.2.13b) cross in either
two or four points. Moreover, they can have zero, one or two intersections in the first quadrant,
which means that the potential has either zero, one or two bound states. This contradicts Ref. [46],
where it is said that the potential does never support bound states. Since Eq. (3.2.10) is fourth
order, when the hyperbolas cross in four points, the Jost determinant does not have any other
zero; on the other hand, when the hyperbolas cross in only two points, the Jost determinant has
two other zeros, which have to form a mutually-conjugated complex pair, as seen above. This last
case corresponds to a resonance, as illustrated by figure 3.3(c), where the hyperbolas only have
two intersection points in the (A, p)-plane and a pair of complex roots appears in the complex k;
and ko planes. The potential thus has either zero or one resonance. The intermediate case of three
intersection points for the hyperbolas [figure 3.3(b)] corresponds to the presence of a multiple root
of Eq. (3.2.10), which lies in an unphysical sheet (Imk; < 0, Imks > 0 or Imk; > 0, Imks < 0) of
the Riemann energy surface; this case corresponds to a transition between a one-resonance and a
two-virtual-state situation.

One sees that the parameters a; and a9 determine the position of hyperbola (3.2.13b) and,
hence, the number of bound states n; (0, 1 or 2) and of resonances n, (0 or 1). Let us now
determine, for fixed values of 8 and A, the domains in the plane of parameters A = (aj,a9)
with constant values of ny, and n,. To find domains in A where system (3.2.13) has two complex
conjugated roots (one resonance), we consider the case where the hyperbolas have a common
tangent point, as illustrated by figure 3.3(b). One can see that the decrease of either a; or ae leads

to the disappearance of the resonance, while the increase of either «y or a leads to the appearance
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of the resonance. We define the parametric curves [a1 (Ao, po), @2(Xo, po)] in plane A by shifting
the tangent point (A, po) along the hyperbola p? — A2 = A. These curves limit domains in A with
either zero or two complex roots. To find them, we use the two conditions corresponding to the

common tangent point (Ao, po)

52
= — =+4+/ A2+ A 2.1
00 o Qs \/A§ A, (3.2.15a)

2
dp ___F _ (3.2.15h)

Aoy, (otar)? /A

The upper signs correspond to A\g < 0 (tangent point in the second quadrant) while the lower signs

correspond to A9 > 0 (tangent point in the fourth quadrant). We can solve system (3.2.15) with

respect to oy and ao:

E
I e —
VIl

Oég()\o) = :E/Bip\()’ + Sign()\o)\/ )\(2) + A (3216b)

a1(Xg) = A2+ AV — ), (3.2.16a)

(A5 +A)/4
It should be noted that the Schrédinger equation with the Cox potential has the following scale
invariance:
a1g — yaig, A = 42A, (3.2.17a)
K2 — k2,  B—=f, (3.2.17b)
ro—= r/y, (3.2.17¢c)

which leaves Ay = A/f3? invariant. Hence, we may put A = 1 without losing generality. This choice
is equivalent to measuring energies in units of A. It is convenient to express equations (3.2.16) in
terms of dimensionless variables /3, Ag = A/B%, Mg — \o/f:

1
%()\0) = + 5 |(A§ +ANYE = )N, (3.2.18)
0
VIA . /
0

These four solutions [taking into account sign(Ag)] can be considered as four parametric curves in
plane A = (a1/B,aa/pB), which separate the plane in five regions (one inner region and four outer
regions, see figure 3.4).

In the inner region, the Jost determinant has two complex roots k12 = %k, + tk; and, hence,
these values of parameters aq, ae correspond to one resonance (n, = 1). In this case, we define the

resonance energy with respect to the first threshold, E,, and the resonance width, I', by
kiy=E, £il/2. (3.2.19)

In the four outer regions, the Jost determinant has purely-imaginary roots, hence n, = 0. The
curves in figure 3.4 tend asymptotically to straight lines which are defined as the limits for Ay — 0
and Ao — Fo00. As a result, one finds for all branches two horizontal asymptotes as/8 = +v/A4
and three slant asymptotes defined by as/8 = —aq /B (for the curves in the second and fourth
quadrants) and s/ = —a1/8 + 2 (for the curves in the first and third quadrants, respectively).
Consider now the case where the hyperbolas cross at the point A\g = 0, pg = VA [see the thin

dashed lines in figure 3.3(a)]. After a small decrease of either ) or ag, the number of positive
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Figure 3.4: Parametric curves in terms of dimension-
less parameters defined by Egs. (3.2.18) in plane A =
(a1/B,az/B) for A/B? = 1.2. The left-hand-side curves
correspond to the lower signs in the equations, while
the right-hand-side curves correspond to the upper signs.
The number of resonances, n,, is indicated in each do-
main of the plane.

roots, i.e., of bound states, increases by one unit. Hence, assuming Ao = 0 and py = VA in

system (3.2.13), we get the curves
o <a2 n \/K) g =0, (3.2.20)

which define three domains in the plane of parameters A, where Egs. (3.2.13) have different number
of positive roots (see figure 3.5).
One can directly check that the number n; of bound states may be calculated as a function of

the parameters as

ny =1+ % (I; — 1) I, (3.2.21)
where the quantities
I, = sign (52 — VA — 041042) 1, (3.2.22a)
I, = sign(as+VA)-1 (3.2.22D)
may be considered as invariants. For ny = 0, one has I = —1 and I» = 1; for ny = 1, one has

Iy =1and I» = +1; for n, = 2, one has I = I, = —1.

Let us now summarize our findings on the number of bound states and resonances of the
2 x 2 Cox potential, by combining Figs. 3.4 and 3.5 in figure 3.6, where both n; and n, are given
for all the possible regions of plane A. The border lines of these regions, as already discussed,
correspond to the parametric curves defined by Egs. (3.2.16), (3.2.18), and to the curves given by
Eq. (3.2.20). From the asymptotic behavior of these curves, it is easy to see the global structure
of the zones. For instance, for the case of two bound states, the hyperbolas in figure 3.3 have to
have four intersection points, which implies that no resonance is present. This is the reason why
the boundary lines between the zones of bound and resonant states do not cross in the lower-half
&—plane. Moreover, one can see that the topological structure of these zones does not depend on

a particular choice of the parameter Ay = A/B2%. A change of this parameter only leads to a
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Figure 3.5: Curves (3.2.20) in plane A in terms of dimensionless parameters for A/3? = 1.2. The number of
bound states, ny, is indicated in each domain of the plane.
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Figure 3.6: Regions of the Ig—plane with different numbers of bound states and resonances, (ny,n,.), for the

Cox potential with A/3? = 1.2.
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deformation of zones, namely, the distance between horizontal asymptotes changes, but does not
make any new intersection point or new boundary line appear.

The case of 8 = 0, Ay = oo corresponds to uncoupled channels. In this case there are no
resonances. Only bound or virtual states located in different channels may appear (see section 3.4).

Up to now, we have excluded the factorization energy from our analysis because Eqs. (3.2.13)
are independent of k12, but conditions (3.2.3) put an upper limit on x; (resp. k2). The allowed
values of k1 should be such that x; > \/@ , where Ej; is the ground state energy if it is present
and F, = 0 otherwise (for details see Ref. [5]). The necessary and sufficient condition for a regular
potential can thus be simply stated as: the factorization energy should be negative and lower than
the ground state energy, if any.

To conclude our consideration of the zeros of the Jost matrix determinant we note that for
solving a realistic two-channel scattering inverse problem, it is necessary to express the Cox potential
in terms of physical data such as the threshold energy, bound-state energies, resonance energy and
width, or scattering data. While the threshold energy explicitly appears in the expression of the
Cox potential as parameter A, the other data are directly related to the positions of the zeros of the
Jost-matrix determinant, as seen above. Ideally, one would thus like to directly express parameters
a1, ag, B, and &, which define the Cox potential, in terms of the roots of Eq. (3.2.10). Certainly,
there exist general formulas for the roots of the fourth-order algebraic equation (3.2.10), but they
are very involved and cannot help much in realizing the above program. Therefore, we propose an
intermediate approach (for detail see Ref. [5]) and with the cold atom in mind, prefer to focus on
the low-energy scattering in the following section.

Let us assume we have found two of the roots of system (3.2.8), (3.2.9) we denote (kgl), k:gl)) and
(k?), k§2)), which clearly are functions of parameters a; and as. Their dependence on parameters
B and A is not important for the moment, since both 8 and A assumed to be fixed. Being put
back to (3.2.9) the equation reduces twice to identity for any values of a; and g, which we write

as

(B +ian) (kS +ias) + 82 =0, (3.2.23)
(B +ian) (kS +ias) + 2= 0. (3.2.24)

The reason why we replaced the identity sign by the equality sign is that these equations may be
(

considered as an implicitly written inverted dependence of 2 on the set of parameters kllf). We

may thus fix arbitrary values for kgf) and find from (3.2.23), (3.2.24) a; and a3 in terms of k:gf)

(1,2)
2

which is a much easier task than finding an explicit dependence of k5 on o and ap. For that

we have to solve, e.g. for oy, the following second order equation

o? — ani(kY + k) — KV ﬁQ% =0, (3.2.25)
2

with Ry = k§2) = kil) and Ry = k§2) — kél) which easily follows from (3.2.23) and (3.2.24). From

here we find

a = [z’(k{” + )+ \/—Rf - 452R1/R2] : (3.2.26)

1
2
1

ay = 2[z’(kél)JrkéQ))?\/—R§—45232/Rl]- (3.2.27)

The upper (resp., lower) sign in (3.2.27) corresponds to the upper (resp., lower) sign in (3.2.26).

The values of k&l’Q) and kél’z) should be chosen so as to warranty the reality of parameters aq 2.
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Table 3.1: Possible mappings between some experimental data and the Cox potential parameters.

Experimental Fixed Free Restrictions
data parameters || parameters

AE, , E; ay, K1, B B>~k
A,Eb:—)\g,Er,Ei ay, o, 3 K1 K1 > N\

A B9 = —)\%72 a1, Qo k1, K1 > Ay >\
A,E’b:—)\g a9 k1,8, a1 K1 > M

Once two roots are fixed, (3.2.10) reduces to a second-order algebraic equation Qa(k1) = 0 for
the two other roots kig) and k§4) thus providing an implicit but rather simple mapping between
the roots of system (3.2.8), (3.2.9) and the set of parameters (a1, ag,3). Polynomial Qs (k) is the
ratio of the polynomial appearing in (3.2.10) and Pa(k;) = k? — k‘l(k‘?) + kgl)) + k‘g)k%l), ie.,

k$ iark? + agk? +iasks 4 aq = Pa(k1)Qa(k1).

From here we find, with the explicit expression for coefficients a;, i = 1,...,4 [5],

Qa(kr) = (ky +ia)? + kr (kP + £V +
2iay + &P + kMY E? + ) + a2 — A = VP

and, hence,

;[@\/ R? — 4B2R1/R2+\ﬁ} (3.2.28)
B = 1[:Fz\/ R? — 4ﬁ2Rl/R2—ﬂ], (3.2.29)

where D1 = R} + 4% % R2 + 4k(2)k( ). The sign before the first square root in (3.2.28) and (3.2.29)
should be chosen in accordance with the signs in (3.2.26) and (3.2.27).

To find k§3’4) we do not need to solve any equation. We simply notice that the equation
detF'(ky, ko) = 0 is invariant under the transformation ki <> ko, a1 <> ag, A <> —A. This means
that being transformed according to these rules equations (3.2.28) and (3.2.29) give us the ko values:

1

K = 5 [;i\/_Rg — 4B2Ry/ Ry — \/D*Q} : (3.2.30)
1

K = 5 [;i\/_Rg — 482Ry /Ry + \/FQ] , (3.2.31)

where Dy = R + 462% + 4k§2)k§1).

Two initial zeros (kgl), kél)), (k§2), kéz)) and threshold difference A are assumed to be known
from the experiment. For instance, these zeros may correspond to a visible Feshbach resonance or
two bound states. The possible cases for initial data are summarized in Table 3.1. The first row of
Table 3.1 corresponds to the case where the position of the resonance is known (see section 3.3.1
below). The second row corresponds to the case where the positions of both the resonance and one
bound state are known, which allows one to fix a maximal number of parameters. The third row
corresponds to the case where the positions of two bound states are known (see section 3.3.2 below).

The last row corresponds to the special case when only one zero may be fixed from experimental
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data. The free parameters in Table 3.1 allow either isospectral deformations of the potential or
fits of additional experimental data as, e.g., scattering lengths (see e.g. [5,6]). The restriction on
the factorization energy is deduced from the regularity condition of the potential (1.4.27). The
restriction on the coupling parameter 3 is explained below (see (3.3.5) in section 3.3.1). Let us now

consider the scattering properties of the Cox potential.

3.2.3 Low-energy scattering matrix for the Cox potential, N = 2

In this section, we analyze the S-matrix given by Eq. (1.1.33) for energies close to the lowest
threshold, the energy of which we have chosen equal to zero. From Egs. (3.2.6) and (3.2.7), one
finds the Cox-potential S-matrix

iy = L (TR g 3.2.32
(hy, b2) = fki k) \ =20VEiks flkr,—ko) | (3.2:32)

k’g—&-ng

When the second channel is closed, i.e., for energies 0 < E < A, the physical scattering matrix
is just a function S(k,p), which coincides with the first diagonal element of S-matrix (3.2.32). It

reads

S(kl):kl‘f‘i/ﬁ k’l—ZOél \/A k‘2—|-a2 (3233)
ki =ikt [i(ky +ic) (/A — k2 + a9) —1-52 o

From here one finds the scattering amplitude A(k) = [S(k) — 1]/2ik, which reads

Alkr) = (02 + VA -k ) (01 = k1) = 5 . (3.2.34)
i(k‘l - Zlﬂ) [ kl + 101 (mﬁ- CVQ) + 52]

and the scattering length a = —A(0), which reads

1 \/K—i—ozg

a=—+ . (3.2.35)
Rl 52—y (\/K + Oéz)
From the argument of S(k) = ¢*¥%) one deduces the phase shift §(k), which reads
k1 kq (\/A—k%+a2>
d(k1) = — arctan — — arctan (3.2.36)

k1 B%— (M—FOQ) '

One can check on Egs. (3.2.35) and (3.2.36) that the scattering length is the slope of the phase
shift at zero energy, as it should be. Note that Eq. (3.2.36) is equivalent to
Ky cot 6(ky) = ag(ki)m + ki (3.2.37)
K1 — ag
where ag(k1) = oy — 5%/ (M + a2>. In the uncoupled case (5 = 0), this expression reduces
to the phase shifts of the simplest Bargmann potential (see e.g. Ref. [23]), which depends on the
parameters k1 and ap = ag—g = 1. Therefore, the Cox potential may be considered as a coupled-
channel deformation of the Bargmann potential, resulting in an energy dependence of one of its
parameters, ap.
The scattering length is an important physical quantity. In many-body theories for instance, it
is often used to describe interactions in the s-wave regime. Let us thus study in detail the scattering

length of the Cox potential, as given by Eq. (3.2.35). When considered as a function of «; o, it has
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a singularity located at the boundary of the single-bound-state region provided by Eq. (3.2.20).
Such infinite values of the scattering length happen when a zero of the Jost determinant, which
corresponds to an S-matrix pole, crosses the first threshold: a bound state is then transformed into

a virtual state, in agreement with the general theory [23].
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3.3 Examples of Cox potentials

Now we use all the information about the Cox potential to present several exactly solvable

examples which correspond to the different possibilities listed in table 3.1.

3.3.1 Single resonance

A resonance corresponds to a pair of complex roots k%l) and kgz) of the Jost-matrix deter-

minant such that ikgl) and z'k:EQ) are mutually complex conjugate. Therefore we assume equations

(3.2.8) and (3.2.9) to have two complex roots. Let us define their first-channel components as

Y =k + ik, B2 =k +iki, keR, keR, k >0, (3.3.1)

2
and write the corresponding energies, (k§1’2)> , as B, £ iF;, where we also assume E; > 0 (which

means that the upper sign corresponds to k‘gl) or k:f), depending on the sign of k;). We would

like to choose as parameters the threshold difference A, as well as the real and imaginary parts
of the resonance complex energy, F,., ;. As exemplified below, these can correspond to physical
parameters of a visible resonance in some (but not all) cases. In terms of these parameters, k, and

k; are expressed as

B -1/2 1 1/2
k, = 7 [\/EEJrEZ?—ET] . ki :iﬁ [\/Eg—l—EZ-Q—ET] . (3.3.2)

In the second channel the roots

. 2 .
kD =pr+ipi, kD = —pe +ip;,

can be found from the threshold condition yielding

1/2
o= — [\/E2 (B, — A2+ E, — A] : (3.3.3)

pi = F

RIS

[\/Eg + (B — AP+ B, — A] o (3.3.4)

The upper (resp., lower) sign in (3.3.2) corresponds to the upper (resp., lower) sign in (3.3.4),
which means that, for a given zero, the signs of k; and p; are opposite. Moreover, equations (3.3.2)
and (3.3.3) show that, for a given zero, the signs of k, and p, are also opposite. This implies
that, for the Cox potential, the complex resonance zeros (or scattering-matrix poles) are always in
opposite quadrants in the complex k1 and ko planes. This has important consequences for physical
applications: for a resonance to be visible, one of the corresponding zero has to lie close to the
physical positive-energy region, i.e., close to the real positive k; axis and close to the region made
of the real positive ky axis and of the positive imaginary ks interval: [0,iv/A]. Consequently, the
only possibility for a visible resonance with the Cox potential is that of a Feshbach resonance, only
visible in the channel with lowest threshold, with an energy lying below threshold A. At higher
resonance energies, the corresponding zero is either close to the kj-plane physical region (and far
from the ko-plane one) or close to the ko-plane physical region (and far from the ki-plane one); it
cannot be close to both physical regions at the same time, hence it cannot have a visible impact on

the coupled scattering matrix. Here, we illustrate the case of a visible resonance, which is the most
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Figure 3.7: The Cox potential without bound state and with one visible resonance of energy FE, = 0.4 and
width I' = 0.02, for A = 1 and 8 = 0.1 (first row, solid lines for Vi; and Vae + A, dashed line for Vi5),
with the corresponding partial cross section (second row) and phase shifts (third row) for (a) k1 = 0.5; (b)
K1 =0.7; (¢) k1 = 1.

interesting from the physical point of view. It corresponds to the lower signs in (3.3.2) and (3.3.4),
with a resonance energy FE, such that 0 < E, < A, and a resonance width I' = 2F; such that
E;, < E,.

Note, that for non-zero values of the parameters k, and p, (which have opposite signs), the
coupling parameter § cannot be infinitesimal: because a; and as have to be real, § is restricted to

satisfy the inequality
B> V —krpr . (335)

To get a potential with one bound state at energy —\2, we choose the lower signs in (3.2.26),
(3.2.27). We then get for k,‘?)(ﬁ) an expression similar to (3.2.28), (3.2.29), from which the value
of B can be found by solving the bi-squared equation k:§3) (B) = iXp.

Let us now choose explicit parameters. First, we put A = 1. To get a visible resonance, we
put E, = 0.4, E; = 0.01 (which corresponds to a resonance width I' = 0.02), and 8 = 0.1. Using
(3.2.26), (3.3.1) and (3.3.2), one finds ay = 0.76938 and ay = —0.766853 (we choose the upper
signs (3.2.26), (3.2.27)). The factorization energy, &£, is not constrained in this case: it just has
to be negative. The Cox potential with one resonance and two virtual states F,; = —0.560473,
FEyo = —0.599544 is shown in the first row of figure 3.7.

The diagonal elements of the potentials, V11 and Voo + A, are plotted with solid lines, while
V19 is plotted with dashed lines. Parameter k1 is responsible for the isospectral deformation of the
potential which results in the behavior of the phase shifts. The second row of figure 3.7 shows the
corresponding partial cross sections, where the resonance behavior is clearly seen, as well as the

evolution of the low-energy cross section, which is related to the scattering length. The last row of
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Figure 3.8: The Cox potential (solid lines for V47 and Vas + A, dashed line for
V12) with two bound states at energies £y = —0.01 and Ey = —2.25, for A =1,
B =0.1 and k1 = 1.51. The left (resp., right) graphic corresponds to the upper
(resp., lower) signs in (3.2.26) and (3.2.27).

RIAVAC -

figure 3.7 shows the corresponding phase shifts for the open channel, where a typical Breit-Wigner
behavior (see e.g. Ref. [22]) is seen for the resonance, as well as the evolution of the zero-energy

phase-shift slope, which is also related to the scattering length.

3.3.2 Two bound states

Let us now construct a Cox potential with two bound states, and hence no resonance (see
figure 3.6). We choose k{l) = 0.1 and k?) = 1.5¢ for these bound states and, as in the previous
example, we put A =1 and g = 0.1. We thus have kél) = /1.017 and kéz) = /3.254, which defines
Ry in (3.2.26), (3.2.27). Choosing the upper signs in these equations, we find o; = —0.112649
and ag = —1.79557, while for the lower signs, we get vy = —1.48735 and ay = —1.0122. The

corresponding Cox potentials are shown in figure 3.8.
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3.4 Two-channel model of alkali-metal atom-atom collisions in the

presence of a magnetic field

3.4.1 Magnetic Feshbach resonance

Ultra-cold collisions of alkali-metal atoms play a key role in applications of laser cooling such as
Bose-Einstein condensation and BEC-BCS crossover [12-14,142]. The analysis of such collisions is
commonly based on the coupled-channel method [143], i.e., on solving numerically a set of coupled
differential equations.

In this section we reduce the low-energy scattering problem of two alkali-metal atoms to an
effective two-channel problem with a single Feshbach resonance, as in Ref. [142]. The model consists
of a single closed channel () containing a bound state, which interacts with the scattering continuum
in the open channel P, so that the whole scattering problem is reduced to the two-channel scattering
described by the 2 x 2 Hamiltonian

H=-—

d? +< Vp(?") th(T') ) (3.4.1)

dr® =\ Vim(r) Vo(r)

where Vp is the uncoupled open-channel potential, Vg is the uncoupled closed-channel potential,
and potential Vj;,,; describes the coupling between the open and closed channels P and (). These
channels describe atoms placed in a magnetic field and occupying different energy sub-levels which
can be shifted with respect to each other with the change of the magnetic field (Zeeman effect).
For each value of the magnetic field, the zero of energy is chosen as the energy of the dissociated
atoms in channel P.

Even in the simplest case of a homogeneous magnetic field, the potential-energy matrix of
Hamiltonian (3.4.1) depends on the magnetic field. We will assume that the external field changes
slowly enough so that we can take advantage of the adiabatic approximation, assuming that the
stationary Schrédinger equation may be applied for describing the scattering process and the mag-
netic field enters the Hamiltonian as a parameter only. Moreover, the known observation that,
when the scattering length is much larger than the range of the interaction, the general behavior
of the system is nearly independent of the exact form of the potential [144], suggests us to use
the Cox potential with large scattering length for describing the interatomic scattering. We thus
replace the potential matrix in Eq. (3.4.1) by the Cox potential. In this case, the parameters of the
Cox potential should carry a dependence on the magnetic field. Below, we show that, to get a good
agreement with available experimental data, it is sufficient to impose a linear field dependence on
the threshold difference A only, keeping all other parameters field independent. Thus, inverting
known scattering experimental data, one can find all the parameters defining the Cox potential,
obtaining in this way a simple analytical model of the atom-atom scattering process in the presence
of a magnetic field.

The position of the highest bound (or virtual) state is crucial in describing the resonance
phenomena of interatomic collisions. In an s-wave single-channel system, the scattering process
becomes resonant at low energy when a bound state or virtual state is located near the threshold,
a phenomenon known as “potential resonance”. In a multichannel system, the incoming chan-

nel (which is always open) may be coupled during the collision process to other open or closed

101



channels, corresponding to different spin configurations. When a bound state in a closed channel
lies near the collision energy continuum, a Feshbach resonance [145,146] may occur, giving rise to
scattering properties that are tunable by an external magnetic field. In Ref. [147], some interesting
examples of the interplay between a potential resonance and a Feshbach resonance are considered.
Below, we adjust the analytically-solvable model based on the Cox potential for describing the
same phenomena.

Typically, the coupling between the closed and open channels is rather small; we thus consider
first an uncoupled limit of the Cox potential, i.e., Vi (1) — 0, which corresponds to 5 — 0. In this

case, the Jost determinant (3.2.7) has the following zeros:
kY = —ioy (3.4.2)

and
[ (3.4.3)

According to Eq. (3.2.14), the energies of these unperturbed (i.e., with zero coupling) states (called
bare molecular states in Ref. [147]) with respect to the first threshold are

By = -2 (3.4.4)

and
Fy=—a3+A. (3.4.5)

It should be noted that in this case E'p belongs to channel P while Eg belongs to channel (). Hence,
«q is associated with the potential resonance, while as is associated with the Feshbach resonance.
Due to the Zeeman effect, the difference between the thresholds is a linear function of the magnetic
field,

A(B) = Ao + fimag(B — By), (3.4.6)

where By can be arbitrarily chosen in the domain of interest and Ay is the value of the threshold
corresponding to By. If a1 2 < 0 and the coupling is absent, then the two bound states cross at
A = a3 — o2. Note that Eg crosses the threshold at A = a3. When there is a coupling between
channels, the levels Ep and Eg avoid crossing (see below).

Let us consider the behavior of the scattering length in the presence of the Feshbach resonance.

It is described by the following formula [15]:

I'p
a = ayg (1 ~ 5 Bo) . (3.4.7)

Here, By is the position of the magnetic Feshbach resonance and I'p is its width (in terms of

magnetic field).
In particular, Eq. (3.2.35) shows that such an infinite value of the scattering length occurs for
the Cox potential at a threshold Ag defined by:
VA= Fo e (3.4
Let us now assume for the Cox potential a threshold difference given by Eq. (3.4.6) with such a
value of Ag. Expanding Eq. (3.2.35) near this resonance one gets

e = AR (3.4.9)

1K1
2|1+ A2_A%O + .. } K1/ Ao (\/Ao +a2)

(1 — k1) (Ag — A)

X 1+
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Figure 3.9: Energies of bare (dashed lines) and dressed (solid lines) states as functions of the magnetic field
B for the Cox potential defined by parameters (3.4.12). The transition between a Feshbach resonance, a
virtual state, and a bound state is shown in the inset for the e solid line. The dressed ground state is shown
by the msolid line.
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I'p (3.4.10)

As shown in Ref. [147], the background scattering length as, is due to the open-channel potential.
Indeed, equations (3.4.7) and (3.4.9) show that, for our model, ap, = [13111(1) a. When there is a bound
H

state or virtual state close to threshold, it can be further decomposed as a sum of two contributions:
a standard potential part, which depends on the potential range, and a potential-resonance part,

which depends on the bound/virtual-state energy. This decompostion clearly appears in our model:

1 1
= — - — 3.4.11
Qpg F1 0417 ( )

where the first term is proportional to 1/k1, the parameter which defines the range of the open-
channel potential [see Eqgs. (3.2.4)]; it may thus be considered as the standard potential part of
the background scattering length. The second term is associated with the P-channel bound (or
virtual) state in the uncoupled limit. Hence, it may be interpreted as the potential-resonance part
of the background scattering length. Let us further consider two different possibilities giving rise
to a large (either positive or negative) background scattering length. By that we want to study,

with the exactly solvable model, examples of general phenomena described in [147].

3.4.2 Interplay between a bound state and the Feshbach resonance

The first possibility occurs when the highest bound state is located near the threshold, i.e.,

when a; <

~

0. In figure 3.9, we show energies as functions of the magnetic field when channel P

103



S / r
1 3 4 5
-0.5
-1
-1.5
-2

Figure 3.10: The Cox potential defined by parameters (3.4.12) for B = 0.1; Vp and Vi + A are represented
by solid lines, V;,: by a dashed line.

has a bound state just below the threshold, for

B = 0.05, (3.4.12a)
a; = —X =—0.103, (3.4.12b)
a; = —0.5, (3.4.12¢)
k1 o= 1. (3.4.12d)

Without coupling between the channels (8 = 0), the energies E = k? of the bare bound states
with respect to the first threshold are shown in figure 3.9 by the dashed horizontal [see Eq. (3.4.4)]
and slanted [see Eq. (3.4.5)] lines respectively, as functions of the magnetic field B. We are using
arbitrary units and choose A(B) = 0.35 — B in Eq. (3.4.6).

For the coupled case, the B-behavior of the (dressed) ground state is shown by the ® solid line
and it now avoids crossing with the (dressed) excited state (cf. [147]) which is shown by the e solid
line.

For the fields B > 0 and till a value B = B; (which we define below), the excited bare state
in @-space becomes a resonance and the corresponding Jost determinant zero shifts from the real
axis in k-plane to the lower half of the complex k-plane and from the imaginary axis in p-plane it
shifts to the upper half plane. Recall that, according to our convention (3.2.19) we show the real
part of k? for the resonance in figure 3.9, which may be negative. For any complex zero of the Jost
determinant there exists another zero with the opposite sign of the real part. With the growth of
B these two zeros move towards each other approaching the imaginary axis from different sides
where they merge thus defining the point B = B; = 0.12. At this point the zeros become purely
imaginary [e and o in figure 3.11 (c), (d), (e) ] which corresponds to appearance of two virtual
states and the discontinuous slope of the real part of the energy clearly visible in figure 3.9. With
further increasing of the magnetic field, one of these virtual states (e solid line in figure 3.9 and
in figure 3.11) tends to the threshold, while the other virtual state (not represented in figure 3.9,
o in figure 3.11) goes down along the imaginary axis. At By = 0.124, the virtual state crosses the
threshold and becomes a bound state; the scattering length thus goes through infinite values at
that field: this is the magnetic-Feshbach-resonance phenomenon itself. Above By, the model has
two bound states, the energies of which tend to the bare-state energies when the field continues to
increase.

Following Ref. [147], we stress that, although the behavior of the dressed states shows some

resemblance with the two-level Landau-Zener description [148], this model does not include the
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Figure 3.11: Phase shifts and graphical representation of Egs. (3.2.13) for the Cox potential defined by
parameters (3.4.12). The mcorresponds to the position of the dressed ground state. The e corresponds to
the virtual state which transforms into a bound state. The o corresponds to the virtual state. The columns
correspond to different values of the magnetic field: (a) B = 0.05; (b) 0.1; (c) 0.1235; (d) 0.125; (e) 0.24.

threshold effects shown in figure 3.9 and, hence, cannot be used to properly describe the interplay
between a potential resonance and a Feshbach resonance. With respect to Ref. [147], our model
displays a slightly more sophisticated behavior for the state energies (compare our figure 3.9 with
their figure 4). A more significant novelty of our description is the direct knowledge of the coupled-
channel potential corresponding to these energies. This potential is shown in figure 3.10 for B = 0.1.
The potential form factor changes slowly with the change of the magnetic field, which is mainly
responsible for the variation of A.

The value of k; chosen in Eq. (3.4.12d) is arbitrary. However, the necessary and sufficient
condition to get a Cox potential without singularity imposes then that the bound-state energies of
the model should be larger than —1. Figure 3.9 shows that this condition will be satisfied for a
limited range of magnetic field only. For higher fields, a larger x; should be chosen.

The phase shifts of the same Cox potential, as well as a graphical representation of Egs. (3.2.13),
are shown in figure 3.11 for different values of B. The first and the last columns correspond to a
large positive background scattering length (apy ~ 1/Ay ~ 10), due to a bound state close to the
threshold.

Physically, this occurs for the 133Cs atom-atom interaction [149], for instance. Figure 3.11(b)
illustrates the case where the scattering length is close to zero. The calculation or measurement of
the zero of the scattering length plays an important role in determining the resonance width [150].
The phase-shift behavior for the virtual state and bound state close to threshold is shown in
figures 3.11(c) and 3.11(d), respectively. In this case, the scattering length is very large and its
sign changes while the energy of the zero of the Jost-matrix determinant crosses the threshold.
Recalling that the intersection points in the graphical representation of Egs. (3.2.13), shown in
the second row of figure 3.11, give the positions of bound and virtual states, one may establish a
correspondence between the second row of figure 3.11 and the motion of the corresponding zeros

in the complex plane described above.

3.4.3 Interplay between a virtual state and the Feshbach resonance

Another interesting possibility occurs when there is a virtual state close to the threshold, i.e.,
when a7 > 0. This is the case of the ®Rb atom-atom interaction, for example. We will use
rubidium scattering data [147,151] in this example, and work with units & = 2u = 1, where

is the reduced mass of the two atoms. The length unit is chosen as the Bohr radius ag; energies
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are thus expressed in units of ay 2. According to Ref. [147], the bare virtual state is located at
Ay = —1.78 - 10_3a6 ! but this value is associated with the model they used in their calculations.
We just consider A\, ~ —10*3a61 and set Eq. (3.4.11) as a constraint between a; = —\, and k.
In order to fit the scattering-length behavior (3.4.7) with ap, = —443 ag, By = 15.5041 mT and
I'p =1.071 mT, we use Eq. (3.2.35).

The value of 8 defines, in particular, the position of the Feshbach resonance, i.e., the magnetic
field By for which the bound state crosses the threshold. According to Eq. (3.2.20), one has

8= \/a1 <a2 + JKO), (3.4.13)

where A is the value of the threshold corresponding to By. The value of ai, defining the width of

the Feshbach resonance I', should be found from the condition a(Bp + I'g) = 0. Then, according
to Eq. (3.2.35), we find

o1 [VAG £ T5) - VA

K1

—\/ A(BO =+ FB), (3414)

where Ay = 2471.386 MHz and jiq9 = —36.4 MHz/mT [147]. To get that value of Ag, we have
used the known value of the threshold at zero magnetic field [151] and assumed that Eq. (3.4.6) is
valid down to that field.

From Eq. (3.4.11), we may fix k1 = a1/(1 4+ apgk1) at apg = —443ap and find the values of

a2

all parameters defining the potential at the given position of the Feshbach resonance and with the

given value of the background scattering length:

B = 0.0202366a, ", (3.4.15a)
ap = —A,=22-10"ay", (3.4.15b)
ar = —0.2393434q, ", (3.4.15¢)
k1 = 0.0866a,", (3.4.15d)
Ky = /K7 +A=+0.0789668 — 0.856899B a; . (3.4.15¢)

The value a; = 2.2-1073 ag ! was chosen to get a smooth potential Vp without repulsive core.
This potential is shown in figure 3.12 and, once again, has a form factor rather independent of the
field, except for the threshold.

In figure 3.13, we show that, with these parameters, the Cox-potential scattering length (3.2.35)
reproduces the Feshbach-resonance scattering length (3.4.7) with good precision.

The behavior of the phase shifts in the region with the resonant and virtual states is shown in
the first row of figure 3.14. A similar discussion to that of figure 3.11 can be made here, except
that here the large negative background scattering length results in a large positive slope for the
phase shift at the origin.

Exactly at By = 15.5041 mT, when the bound state transforms into a virtual state, the phase
shift starts from 7 /2. The second row of figure 3.14 shows the corresponding behavior of the bound-
and virtual-state zeros on the wave-number imaginary axes, confirming the above analysis.

Similarly to the interplay between the ground state and the Feshbach resonance discussed in
detail in the previous section, figure 3.15 shows the interplay between the virtual state and the
Feshbach resonance, where the corresponding energies E = k? are plotted as functions of the

magnetic field B (as in the previous section, for the resonance we show Re k? in figure 3.15). The
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Figure 3.12: The Cox potential describing the Feshbach resonance in 8Rb, defined by parameters (3.4.15),
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Figure 3.13: Solid line: Feshbach-resonance scattering length (3.4.7) for the 8°Rb
parameters [147,151]. Dots: Cox-potential scattering length (3.2.35) for the pa-
rameters (3.4.15).
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(d) 19.0 mT. In the last column, o and mcorrespond to the zeros which are not visible in that scale.

bare bound state of channel @ is represented by the slanted dashed line. The bare virtual state
of channel P, which is located at A\, = —2.2-1073 ag ! is not shown in figure 3.15. The dressed
states are indicated by solid lines. When B < By = 15.5041 mT, there exist both a virtual state
[min figure 3.14 (a)] and a Feshbach resonance, the energies of which tend to the bare-state energies
for small B. The virtual state becomes a bound state at B = By [see ® solid line in the inset in
figure 3.15 and figure 3.14 (b)]. With increasing B, the real part of the resonance energy decreases
and at B = 16.657 mT it crosses the threshold. Finally, at B = 16.9 mT, the two resonance

zeros collapse and produce two virtual states, one of which stabilizes at A\, = —2.2-1073 agy !

(e in
figure 3.14, the other one has a much larger negative energy and is not represented, as it does not
affect the low-energy scattering properties). The behavior of the curves in figure 3.15 is very similar
to those of figure 3.9, in particular regarding the transformation of the Feshbach resonance into a
virtual state. The only difference between the present case (avoided crossing between a virtual state
and a Feshbach resonance) and the previous case (avoided crossing between a bound state and a
Feshbach resonance) is that here a virtual state transforms into a bound state before the crossing,
while there a virtual state transforms into a bound state after the crossing. Another interesting
comparison is between our figure 3.15 and figure 5 of Ref. [147]; it would be instructive to perform
a detailed comparison of the two models to explain the differences between these two figures.

As for the interplay with a bound state, figure 3.15 also shows some limit on the range of
magnetic field on which our model can be used: since 1 is fixed in Eq. (3.4.15d) and the bound-
state energy should be larger than —x? ~ —0.0075a, 2 (otherwise the potential becomes singular

for some value of ), the field should be lower than 24.5 mT.
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Chapter 4

SUSY transformations for coupled

channel problems with equal
thresholds

[9,10]

The exactly solvable two-channel potentials with equal thresholds are of interest due to their
possible applications. For instance, following two-channel sectors appear in the neutron-proton
scattering: 351 —3D1,2 P,—3F,, ..., [152]. There are two possible strategies to restore the interaction
potential from the scattering data. Using some conjectures about the possible shape of the potential
one may fit some free parameters to reproduce the scattering data. Obviously, a high accuracy of
the fitting procedure requires a sufficiently large number of free parameters. An alternative way
is to use the inverse scattering method which allows one to construct the interaction directly from
the scattering data. In particular, using the integral transformations (Gelfand-Levitan approach)
Newton and Fulton [152] constructed a three-parameter phenomenological neutron-proton potential
fitting low-energy 351 —3D; scattering data. It would be interesting to extend this result by enlarging
the number of parameters to fit scattering data on a wider energy range; however, the method based
on integral transformations is rather involved and therefore quite difficult to generalize. Using the
Marchenko equation, the results of Newton and Fulton were nevertheless partially reproduced and
improved by von Geramb et al [44]. More precisely, the potential constructed in [44] reproduces
the same scattering matrix as the Newton-Fulton potential. Nevertheless, the two potentials differ
from each other. Other potentials constructed by Marchenko inversion, which are compatible with

modern scattering data, contain a large number of parameters.

Our hope that the SUSY technique may be efficient for the multichannel Schrodinger equation
is based on the well known equivalence between SUSY transformations and the integral transfor-
mations of the inverse scattering method for single-channel problems [81,85,153,154]. Due to this
equivalence, one can use chains of first-order SUSY operators for constructing a Hamiltonian with
given scattering properties [83,84]. In particular, we believe (and argue why in the present chapter)
that the inverse scattering problem may be treated by the conservative SUSY transformations only.
As in the case of different thresholds the initial potential is restricted to be the zero potential for

simplicity.
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Zero potential is, of course, decoupled, therefore coupling should follow from the inversion
procedure. In the current chapter, with the equal threshold inverse problem in mind, we firstly
concentrate on the necessary ingredients for a single conservative SUSY transformation to gen-
erate coupled scattering matrices, starting from a decoupled potential. We will show that, such
a transformation introduces bound and virtual states at the same energy and we calculate their
degeneracy. Next, we discuss the possibility to get a trivially or non trivially coupled scattering
matrix when both the potential and Jost matrix are non trivially coupled. We will be able to answer
the following questions: does a non trivial coupling of the potential imply a non trivial coupling of
the scattering matrix? Does a non trivial coupling of the Jost matrix imply a non trivial coupling

of the scattering matrix?
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4.1 First order SUSY transformations

4.1.1 Coupling SUSY transformation

In the most general case the transformation function may be expressed in terms of the Jost
solutions as follows
uc(r) = fa(—ir,m)C + fq(ir,r)D, (4.1.1)

where the real constant matrices C' and D should satisfy to equation (1.2.25). Their canonic form
is given in (1.2.26). Here and in what follows subscripts d and c¢ stand for quantities related with
diagonal (uncoupled) and non-diagonal (coupled) matrices, respectively.

We need the asymptotic behaviour of the superpotential weo := lim w¢(r) to find the trans-
formed Jost solution and, hence, the Jost and scattering matrices. %Oit was shown in [49] for
different thresholds, this behaviour of the superpotential depends crucially on matrix C'. Below we
shortly discuss the method developed in [49] while making necessary changes to adjust it for the
case of equal thresholds.

The asymptotic matrix wes is determined by the behaviour of transformation function (4.1.1)

at large distances
Inges” 0 I —QT
uc(r — o00) - A Me B , A= o —Q . (4.1.2)
0  In-me™™ Q In-m

From (1.2.23) and (4.1.2) we obtain

I
weo = A [ MY A1 (4.1.3)
0 —In-m
with
L +QTQ 0 -
Al=aT [ M . . (4.1.4)
0 In—p + QQ

Comparing this result with that obtained in [49], we conclude that the main difference between
equal and different thresholds is the non-diagonal character of the superpotential at infinity. Note
that superpotential w.o, has a richer structure than that previously reported by Amado et al [87].
Their result corresponds to the choice M = 1 when w, is expressed in terms of a single (N — 1)-

vector Q = (g1, ., qn-1)7.

Once weo is determined one can calculate the Jost solution f.(k,r) and the Jost matrix F.(k)
for the transformed potential V. using (1.2.27) and (1.1.28), respectively.

In order to find the Jost matrix, we first consider the behaviour of the superpotential in a
vicinity of 7 = 0 which depends on the character of the transformation solution (4.1.1). Below
we will assume that there is no bound state at the factorization energy, detFy(ix) # 0, and each

column of the transformation solution is singular at the origin. Using the property
fa(=k,m = 0) = fa(k,r — 0)Fy(=k)F; (k) + o(r") (4.1.5)

which follows from (1.1.28) and the invertibility of Fy(ix), one finds the behaviour of the transfor-

mation solution at the origin,
Ue(r — 0) = falir, r)[Fa(—ir)F; (ik)C + D] +o(r”) . (4.1.6)
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We assume

det (Fy(—ir)F; ' (ik)C + D) #0, (4.1.7)

which can always be provided by a proper choice of matrices C' and D. The leading term of the

superpotential at » — 0 reads
we(r — 0) = —r~ v +0(1), v;i >0, (4.1.8)
where we used the Laurent series for the Jost solution
fkyr) =r=" (20 = YUFT (k) + =" 1oy (k) + o(r 7)., (4.1.9)

It follows from (1.1.23) and the Schréodinger equation that by (k) = 0. We note the diagonal character
of superpotential (4.1.8) at the origin. The singularity at the origin of the transformed potential,

Ve(r —0) = r20(0 + 1) = (Vg — 2w.) |0 = v 2v(v — 1), (4.1.10)

decreases by one unit, v — 7 = v—1. Hence we can apply our coupling transformation to potentials
for which matrix v is positive definite, v > 0, a property we will assume to hold throughout the
paper.

The Jost matrix can be obtained from expression (1.1.27) of the regular solution ¢.(k,r) corre-
sponding to V.. The regular solution of the transformed potential ¢.(k, ) is determined by (1.1.25)
with the singularity parameter 7. To derive it, we act on both sides of expression (1.1.27) of the reg-
ular solution ¢4(k, r) for potential V; with the transformation operator L.. From (1.1.25), (1.2.20)
and (4.1.8), it follows that

Lepa(k,r) = —pc(k, ). (4.1.11)

Taking into account (1.2.27), we rewrite (4.1.11) as

we(k,r) = ~55 [fe(=k,m)(Weoo + tkIN)Fa(k) — fe(k,m)(Weoo — tkIN)Fa(—Fk)] . (4.1.12)
Comparing (1.1.27) and (4.1.12) we find a relation between the initial and transformed Jost matrices
Fo(k) = —(ikIn + weoo) Fa(k) (4.1.13)

For M =0 and M = N, @ is absent and A = Iy in (4.1.3). When M = N, the superpotential
at infinity (4.1.3) becomes proportional to the identity matrix, weoo = kIx. The transformed Jost
matrix (4.1.13) becomes diagonal. Similarly, the case M = 0 leads to weeo = —kIy. From here
we draw an important conclusion. The necessary (but not sufficient) condition for a non-trivial
coupling in the Jost and hence scattering matrices is 0 < M < N. This will be assumed in the
following.

As already mentioned, a non-trivial coupling in the Jost matrix requires not only a non-diagonal
Jost matrix, but also the impossibility to diagonalize this matrix by a k-independent transforma-
tion. It is clear that matrix ikIy + weoo from (4.1.13) can be diagonalized by a k-independent
transformation. When Fy is not proportional to the identity matrix, channels in F.(k) are cou-
pled in a non-trivial way. Nevertheless, this property does not guarantee the non-triviality of the
S-matrix. As it follows from definition (1.1.33), the S-matrix will be trivially coupled when the
product Fy(—k)F (k) is proportional to the identity matrix, i.e. when

Fuj(k) = |Fa(k)e™®®) = S4(k) = (~1)beX0®)
j=1,...,N. (4.1.14)
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In particular, if all single-channel potentials have the same S-matrix, i.e. if they are phase equivalent
[94] or isophase [96], the S-matrix resulting from a SUSY transformation keeps being trivially
coupled. When the initial S-matrix is not proportional to the identity matrix, one may expect
non-trivially coupled channels.

The analytic expression (4.1.13) for the Jost matrix allows us to study the spectral properties
of the transformed potential (1.2.21) [7]. The positions of the bound/virtual states and resonances
are defined as the solutions of det F,.(k) = 0. As it follows from (4.1.13) and (4.1.3), the Jost-matrix

determinant is given by
det F.(k) = (=1)N (ik + r)M (ik — k)N "M det Fy(k) (4.1.15)

since wes has the M fold degenerate eigenvalue x and the N — M fold degenerate eigenvalue —x.
Therefore, if det Fy(k) has no pole at k = +ir (this property is assumed to hold in the rest of
the paper), the SUSY transformation leads to a new M fold degenerate bound state with k;, = ik,
E, = —k? and an N — M fold degenerate virtual state with k, = —ix, B, = —k2.

Now we continue to compare our method with the approach developed by Amado et al [87]. For
that, we calculate the asymptotic behaviour of matrix ®(r) = [u.(r)!]~!, which upon using (4.1.2)

reads

_ I —RT 0
B(r — 00) — (A7) ( MZ e e ) . (4.1.16)

The M first columns of ®(r) are vectors decreasing at infinity. According to (4.1.6) and (4.1.9),
®(r) is a regular solution, ®(0) = 0. Therefore these vectors correspond to the bound state wave
functions of the coupled system appeared after the SUSY transformation. This confirms that the
energy level of this bound state is M fold degenerate. All the other columns in ®(r) correspond
to virtual states. For the particular case M = 1 this asymptotic form just corresponds to the
transformation function used by the authors of [87] for decoupling a coupled problem. We thus
conclude that their transformation corresponds to a particular case of our transformation when
realized in the opposite direction.

Another useful remark is that although the superpotential w.(r) depends on parameters Xy, the
Jost matrix F.(k) and, hence, the S-matrix are Xy-independent. This means that the superpotential
we(r) leads to a family of potentials, parameterized by the entries of X, having the same scattering
properties.

Below we concentrate on the two-channel case with equal thresholds and arbitrary partial waves.
The coupling SUSY transformation produces in this case one bound state and one virtual state.

First we will analyze the long range behaviour of the transformed potential.

4.1.2 Long range behaviour of the transformed potential

In the two-channel case, according to (1.1.22), the initial diagonal potential has the following

1 ll(ll + 1) 0
Va(r — o0) — 2 ( 0 bl 1 1) ) . (4.1.17)

long-range behaviour

The Jost solution at large distances is expressed in terms of third kind Bessel functions H l(l)(z),
also called first Hankel functions (see [140] for a definition)

falk,r — 00) = diag [hy, (kr), hiy (k)] ,  u(z) = it (m2/2) 2 HY (2). (4.1.18)
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The recurrence relations for h;(z) and its asymptotic behaviour

hi(kr) = e*r <1 + Zl(é;;l) + o(r—1)> : (4.1.19)

follow from those for H, l(l) (z) [140].
For the coupling transformation, according to our previous discussion, we choose transformation

function (4.1.1) with matrices

C:<10>, D:(x_q>, (4.1.20)
qg O 0 1

which contain only two independent parameters = and ¢q. The restriction on the parameters
x4+ Fy1(—ir)Fp (ik) — ¢*Fao(—ir) Fy (iK) # 0 (4.1.21)

follows from (4.1.7). Transformation solution (4.1.1) reads

ue(r) = < fa1(—ikr) +xfg1(ikr)  —qfa(inr) ) . (4.1.22)

Qfd;2(*i/<"’n) fd;Q(iFiT)

Let us consider the first two terms in the asymptotic behaviour of the superpotential (1.2.23),
We(r — 00) = Weoo + w_17~ 1 + 0o(r~1). The first term we.s, has been calculated for an arbitrary

number of channels in Section 4.1.1. Thus from (4.1.3) we obtain

1—¢> 2
Weno = — ( 1 7 ) (4.1.23)

1+ ¢2 2¢ ¢*—-1

Another parametrization for w.s is useful,

cosa  sino
Weso = ( ‘ ) . g=tan~. (4.1.24)
sina —cosa 2

Note that a non-zero value of w_; will lead to a modification of the long range behaviour of potential
(1.2.21) with wl(r — o00) = —w_17"2 4+ o(r—2).

In order to establish the asymptotic behaviour of the potential V.(r) = Vy(r) — 2wl(r), we
replace fq;(+ixr) in (4.1.22) by its asymptotic form given in (4.1.18) and neglect in (1.2.21) and

(1.2.23) all exponentially decreasing terms such as hy, (ikr)hy, (ikr). Taking into account

1
hy, (ikr)hy, (—ikr) = 1+ - [l +1) = l(lo+ 1] +o(r™), r— oo, (4.1.25)

combining (1.2.21) with (4.1.17) and using parametrization (4.1.24), one finally gets

Vc(r—>oo):1<l1(l1+1) 0 >

r2 0 lo(la + 1)
n [l2(l2 +1) — l12(l1 +1)]sina < sina - — cosa ) , (4.1.26)
r —Ccosa  —slno

A similar asymptotic behaviour of the matrix potential is obtained from the Gelfand-Levitan equa-
tion in [43].
From (4.1.26) we conclude that, for [; # lo, the transformed potential has a non-zero long range

coupling, V.12 # 0. Moreover, it is impossible to associate diagonal entries of V. given in (4.1.26)
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with usual centrifugal terms. The only way to avoid this inconvenience is to fix a = +m/2 (or

equivalently ¢ = £1), which leads to a physically reasonable long range behaviour

la(la + 1) 0
0 ll(ll + 1) .

1
Vc(7”—>007q21):r2<

(4.1.27)
Having compared (4.1.17) and (4.1.27) we find the modification of the corresponding angular mo-
mentum quantum numbers under the SUSY transformation [ = diag(l1,l2) — | = diag(ls,11). For
short, this unusual property of the SUSY transformation will be called the exchange of the channels
angular momenta. Summarizing, we get an additional constraint ¢ = 1 (the dual case ¢ = —1 leads
to the same transformed potential except V.12 — —V12) to consider only physically reasonable

potentials in the case Iy # [y.

4.1.3 Transformed Jost and scattering matrices, eigenphase shifts
and mixing angle

In the two-channels case, introducing wes as given in (4.1.24) into (4.1.13) provides an
explicit relation between the transformed Jost matrix F.(k) and the initial diagonal Jost matrix
Fa(k),

K sin a0 ik — K cos«

Fo(k) = — ( htmcosa msma ) Fa(k). (4.1.28)

From (4.1.15), we obtain det F. = (k? + x?)det F;. The coupling transformation produces one
bound state and one virtual state, in agreement with the general properties of the transformed Jost
matrix analyzed in Section 4.1.1.

Once the transformed Jost matrix F.(k) (4.1.28) is found, the S-matrix may be obtained ac-
cording to its definition (1.1.33), where we have to take into account the change of attribution of

the angular momenta [ — [ by the coupling transformation,
So(k) = €15 (—ik o + weno ) (—1)'Sa(k) (ik Iz + weoo) " Leil5 . (4.1.29)

The diagonal matrix
Sq(k) = diag(e?dan (k) ¢2i0a;2(k)) (4.1.30)

is obtained from the diagonal Jost matrix F;(k) before the transformation. One can see that for the
particular case of identical partial waves, [ o« I2, our result (4.1.29) reproduces the corresponding
relation (17a) from [87]. For different partial waves however, the modification of the angular
momenta leads to the appearance of additional phase factors ¢il3 and (—1).

Let us now find the transformed eigenphase shifts é..;(k), 7 = 1,2, and the mixing angle e(k)
(see (1.1.34), (1.1.35) and (1.1.36)). One can distinguish three essentially different cases:

(a) the difference between the angular momenta is odd, ly = (I + 1) (mod 2) ;
(b) the difference between the angular momenta is even, ls # [, lo = I3 (mod 2);
(c) the angular momenta coincide, lo = 1.

Note that case (a) does not correspond to any reduction of the rotationally invariant three-
dimensional scattering problem, since in this case any nontrivial coupling means a parity breakdown
(see e.g. [22]). For the sake of completeness we will analyze this case also although the corresponding
system of coupled equations has no direct relation to a scattering problem. Moreover, we will use

the usual scattering theory terminology in this case also, although from the point of view of a
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three-dimensional scattering it bears only a formal character. In cases (a) and (b), we should put
a = 7/2, which is not necessary in the third case (see (4.1.26)).
Definition (4.1.30) allows writing

Sg1(k) + Sqo(k) = e¥an(k) 4 200a2(k) — 961001 +0a2) cos A | A = 649 — Gy (4.1.31)

and (1.1.36) leads to expressions for the mixing angle in the three cases as

2(—1)==D/2 gin o (k cos avcos A — ksin A)

(a) : tan2e(k) = 2kk cosacos A — (k? — k2)sin A ’

(4.1.32)

and
2(—1)=1)/2 sin o (k cos arsin A 4 k cos A)

b : tan2e(k) =
(b), (c) : tan 2¢(k) 2kk cos avcos A — sin A (k? — k2 cos 2a)

(4.1.33)

Since ¢ = 1 and o = /2 in cases (a) and (b), expressions (4.1.32) and (4.1.33) are simplified to

(a) : e(k) = (—1)lz—h+1)/2 arctan%, (4.1.34)
(b) : tan2e(k) = (—1)z-0+2)/2 k22ik52 cot A. (4.1.35)

We will assume below that the scattering matrix of the transformed potential satisfies the

effective range expansion (see e.g. [155]), which implies

cot 50;1,2("/’ — 0) = al,gk‘_(%l’z-’_l) +o0 (k_(2l1’2+1)) s

e(k — 0) = ekl 4+ o (k'lrlll) . (4.1.36)

Since there are rather simple analytical expressions for the mixing angle, we will analyze restrictions
on parameters of the SUSY transformation which follow from the second equation in (4.1.36).

In case (a), (4.1.34) satisfies the effective range expansion (4.1.36) when |la—[;| = 1 and violates
(4.1.36) when |l — [1] > 1. The important property of the coupling transformation in case (a) is
that the transformed phase shifts coincide with the initial phase shifts, i.e.,

2i04;2 (k) 0
T . e
Rc (k)SC(k)RC(k) - < 0 627,'5‘1;1(]6) ) ’

(4.1.37)
Therefore, one may separately fit the phase shifts for the I; and ls waves before the coupling
transformation.

In case (b), the effective range expansion for mixing angle (4.1.35) leads to the restriction
cot A =0 or 642(0) —d4,1(0) = (n+1/2)m . According to the Levinson theorem (see e.g. [23]) this
means that the potential V; supports a bound state at zero energy.

Finally, in case (c) there is no any additional constraint since e(k — 0) = const.

Having established properties of the transformed phase shifts and the mixing angle, we will
consider in the next section some schematic examples of scattering for the s —s, s —p and s — d

coupled channels.
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4.2 Examples of exactly solvable two-channels potentials with equal
thresholds

To illustrate the difference between couplings in potential, Jost and scattering matrices, we
construct in this section nontrivially coupled potentials having trivially coupled S-matrices and both
trivially and non-trivially coupled Jost matrices. After that we exemplify SUSY transformations

leading to non-trivially coupled S-matrices.

4.2.1 Coupled potentials with uncoupled S-matrices

Let us consider the 1-channel potential expressed in terms of a Wronskian as

V(r; 8) = 726%2 In W [sinh(kor), sinh(kar), exp (k17) + Sexp (—k17)], (4.2.1)

Ko < K1 < Kg, 5<—17

which can easily be obtained from the zero potential with the help of the usual (i.e. 1-channel) SUSY
transformations. This potential has one bound state at energy E = —x? and its Jost function has

the form
F(k) = i(k —ir1) [(k + iro) (k +irg)] " . (4.2.2)

All potentials from the S-family (4.2.1) have the same Jost and scattering matrices. Therefore,
we can construct a diagonal potential Vy(r) = diag [V (r; 51), V (r; f2)] with a two fold degenerate
bound state at energy F = —x}. Both its Jost and scattering matrices are proportional to the
identity matrix

Fy(k) = F(k)I, Sq(k) = F(—k)F (k). (4.2.3)

As a result, the Jost matrix (4.1.13) obtained after the coupling transformation can be diagonalized
by the same k-independent transformation as the superpotential w.o,. This just corresponds to a
trivial coupling in both Jost and scattering matrices.

For the coupling transformation we choose the transformation function (4.1.22) where Jost
solutions f4(ix,r) of the Schrodinger equation (4.1.9) with potential V; are used. To avoid a
singularity at finite distance in the transformed potential we impose the restriction k£ > ko > k1.
Such a transformed potential is shown in figure 4.1(a). The function o(r) = Vei2/(Veoz — Vean)
demonstrates the non-triviality of the transformed potential matrix. If ¢ is a constant, the potential
matrix is globally diagonalizable. As we see from figure 4.1 (b), a non constant ¢ means that the
transformed potential has a non-trivial coupling. At the same time, the mixing angle (4.1.33) in

the scattering matrix is just a constant for A =0

e(k) = % (4.2.4)
The phase shifts for this potential read
2 k k

de1(k) = 2m— tan — tan — | 4.2.5
1(k) T jgoarc anﬁj+arc an — ( )

: k k
de2(k) = m— ) arctan — — arctan —. (4.2.6)

=0 Rj K
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Figure 4.1: (a) Exactly solvable potential V, = V, obtained from two uncoupled potentials (4.2.1) (3; =
—2,8s = —1.5,k0 =1,k = 2.5,k = 3.5) by the coupling transformation with parameters ¢ = 0.5, Kk = 6,
x =25. (b) Ratio o(r) = Ve2(r)/ (Veyaa(r) — Vea ().

From here one can see that after the coupling transformation the additional bound state increases
the value of the phase shifts at zero energy in agreement with the Levinson theorem.

To show the restrictive character of the requirement for the S matrix to be non-trivially coupled,
we construct below a potential with non-trivially coupled potential and Jost matrices but a trivially
coupled S-matrix. This possibility is based on the fact that in the single-channel case two different
Jost functions may correspond to the same scattering matrix [95,96]. In this case, the two Jost
functions differ from each other by a real factor for real k’s (see (4.1.14)). Therefore if we apply

our coupling transformation to the following uncoupled system
Va(r) = diag [Vi(r), Va(r)], Fy(k) = diag [F1(k), Fa(k)], Sq(k) = S(k)Ia, (4.2.7)

from (4.2.7), (1.2.21), (4.1.13) and (4.1.29) we can see that the transformed potential and Jost
matrices cannot be diagonalized by a constant rotation whereas the scattering matrix becomes
diagonal after the same k-independent rotation which diagonalizes weso-

An example in which we get a non-diagonal Jost matrix and a trivially coupled S-matrix after

applying the coupling transformation follows from (4.2.7) where we choose

i(k — ko) —i
(k + ilﬂ)(k’ + i/ig)’ (k + i/io)(k + Z‘Fcl)(k + i/ﬁ:g) ’
(k + ilﬁ:o)(k + i/ﬂl)(k + ’i/ﬂ:z)

Salk) = i) (= i)k —ira) 2 (42.9)

Fy(k) = diag (4.2.8)

Here kg, k1 and ko are arbitrary real parameters. Matrix v for the corresponding potential
Va(r) = diag [V(r, 8 < =1), V(r,8 = —1)], (4.2.10)

is v = diag(1,3) meaning that » — 1 > 0 and we can apply the coupling transformation. Here
the non-trivially coupled transformed Jost matrix (4.1.13) with Fy as given in (4.2.8) leads to the

following trivially coupled S-matrix

(k + Z'/’io)(k? + i/ﬂ)(k‘ + ’i/-€2)
(k —iro)(k —ir1)(k — iro) (k2 + Kk2)

Sc(k) = (ikIs — Weoo)? (4.2.11)

The corresponding phase shifts are given by (4.2.5) where 0.2 — d.,2 — 7 and the mixing angle is
given by (4.2.4).
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4.2.2 Coupled s — s partial waves

Using our general scheme described in section 4.1.3, we can study the behaviour of the phase
shifts for the s — s coupled potential. Since the angular momenta in both channels coincide, we
have here the case (c) discussed above. Parameter ¢ is not fixed from the long-range behaviour of
the potential and the mixing angle is given by (4.1.33). The analysis of this expression is based on

the low-energy behaviour of the phase shifts 4.1 2 before the coupling transformation
20412 =1 — 24ay ok + o(k), (4.2.12)
where a; and ag are the scattering lengths for each channel. Combining (4.1.33) and (4.2.12) we

get
2(1+ (a1 — ag)k cos ) sin «

tan 2e(k — 0) = o(k). (4.2.13)

2cosa + (a; — ag)k cos 2

The expansion of the eigenvalues of the transformed scattering matrix at low energies reads

2012 — 1 — jk [(a1 +az) = /(ag — a1)?2 +4(1/k — (az — a1) cos @) /H:| +o(k). (4.2.14)

An important result from the point of view of inverse scattering corresponds to a coupling van-

ishing at low energies, i.e. when €(0) = 0. This leads to an additional link between the parameters,

1
cosq = ——— (4.2.15)

(ag —ar)K’

where we have used (4.2.13) and (4.1.36). Hence (4.2.14) simplifies into
12 — 1 — 2jag 1k + o(k). (4.2.16)

In this case, the scattering lengths for the transformed potential coincide with the initial scattering
lengths a1 and as. This property allows us to fit low energy scattering data for uncoupled channels
thus simplifying essentially the inverse problem. Let us illustrate this property in a schematic
example.
We start from the zero potential with a transformation which introduces poles at the origin,
v = diag(0,0) — v = diag(1,1). In each channel we realize the usual (i.e. 1-channel) SUSY
transformation with transformation functions sh(ki7) and sh(ker). This leads to the uncoupled
superpotential
wq(r) = diag [k1 coth(k17), ke coth(kar)] (4.2.17)

and the potential (see (1.2.21))
Vy(r) = 2diag [kicosech?(k17), kcosech?(kor)] | (4.2.18)

with the Jost solution

-1
) k+1 th k+1
Fall,r) = Gikr + iky coth(kir) | 0 + ik 0. (4.2.19)
0 k + ikg coth(kar) 0 k+iko

and the Jost matrix

Fd(k}) = (wdoo — ik]g)fl , Wdoo = hﬁm wd(r) = diag (Iil, Iig) . (4.2.20)
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Figure 4.2: Exactly solvable s — s potential V. = V.. with param-
eters K1 = 1.5, ko = 1, ¢ = 0.4, k = 4.14286, x = 15.

As coupling transformation we choose transformation function (4.1.1) with matrices C' and D given

by (4.1.20). The explicit expression for u.(r) coincides with (4.1.22) where

K + kg coth(kar)
K+ K9

k + k1 coth(kir)
K+ K1

—RT

faa (ir, 1) = ) faa(ir,r) = e " (4.2.21)

The parameter = from (4.1.20) should be chosen in order to avoid any singularity in the transformed
potential. As can easily be seen from the analysis of det u., it is sufficient to choose x large enough.
The asymptotic behaviour of the superpotential is given by (4.1.23) or (4.1.24).

The Jost matrix F.(k) may be found from (4.1.13). Its explicit expression is rather involved

and we omit it. More important is its determinant (4.1.15), the expression of which is extremely

simple,
k2 4 K2
det F.(k) = . 4.2.22
C( ) (/{ + i/ﬂ)(k‘ + i/ﬁz) ( )
From here we find the location of the bound state at k;, = ix and the virtual state at k, = —ik.

The chain of two SUSY transformations with parameters k12 = ai% and k, ¢, x described above
leads to the mixing angle (4.2.13). The corresponding potential (¢ = 0.4) is shown in figure 4.2.
The factorization constant « is fixed from (4.2.15). As a result, the mixing angle takes the form

2k2k1 ko tan o
kik3sec? v+ k2(k% + K3)

tan 2¢e(k) = (4.2.23)

Parameters x1 and ko are related with 1-channel transformations and allow us to fit the scattering
lengths. The mixing angle e(k) depends on parameter «, which allows one to fit its experimental
behaviour at low energies. The mixing angle at large energies tends to a constant value, tan 2¢(k —
o0) = —2Kk1kgtan a/(k? + k3) which can also be fitted using corresponding experimental data (if
available). Figure 4.3 shows the phase shifts and mixing angle for two coupled s — s potentials.

The phase shifts of the diagonal potential V; are shown as dotted lines in figure 4.3(a). The
phase shifts of the transformed potential V. are shown as dashed (¢ = 0.4) and solid (¢ = 1.2) lines
respectively. One can see that the slopes of these curves coincide at the origin. The mixing angles
of the transformed potential are plotted in figure 4.3(b).

According to (4.2.22) this potential has one bound state at the factorization energy E, = —x2.
Note that the normalization constant of the bound state wave function is determined by parameter
q as follows from (4.1.16).
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Figure 4.3: The scattering matrix for the coupled s — s potential. (a) The eigenphases are shown as dotted
lines for V; and as dashed and solid lines for V.. The parameters are: solid lines - k1 = 1.5, ko = 1, ¢ = 0.4,
k = 4.14286, © = 15, dashed lines - k1 = 1.5, ko = 1, ¢ = 1.2, k = 13.6667, © = 15. (b) Mixing angle ¢.

20; \‘\ﬁ‘z;QZ 7

Figure 4.4: Exactly solvable s — p potential V, =V, — Z(f—i— 1)r=2
with parameters kg = 1.5, k1 = 1.75, k =3.53, ¢ =1, z = 1.

4.2.3 Coupled s — p partial waves

In this section we consider the simplest s — p coupled potential. This potential is characterized

by l=0= diag(1,0). The coupling transformation acts as follows:
| = diag(ly,lo) — | = diag(la, 11, v = diag(vy,ve) — U = diag(vy — 1,ve — 1). (4.2.24)

Therefore the initial diagonal potential should have | = diag(0,1), v = (2,1). These properties are

satisfied for the initial potential of the form

2

d
Vi(r) = diag _QW In W sinh (kor) , sinh (k17)], 2r 2|, (4.2.25)

where the potential in the s-channel is obtained from the zero potential after two consecutive SUSY
transformations with k¢ and x; as factorization constants. The potential in the p-channel is just
the centrifugal term. The Jost solution in the s-channel is expressed in terms of the Wronskian of

factorization solutions sinh(x;r), j = 0,1,

(4.2.26)

fa(k,r) = diag

W [sinh (kor) , sinh (k17) ,e“’”] (i + kr)etkr
(k +iro)(k + ir1)W [sinh (kor) , sinh (k17)]’ kr ’
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The uncoupled Jost matrix reads
Fy(k) = diag | — [(k + iro) (k + ir1)] " ,ik‘l] . (4.2.27)

The next step is to apply the coupling transformation with the transformation function (4.1.1)
where the Jost solution is replaced by (4.2.26). An example of potential curves is shown in figure
4.4. The Jost matrix (4.2.27) is transformed according to (4.1.13) and the scattering matrix is
given by (4.1.29).

Since the transformed eigenphase shifts coincide with the initial phase shifts, we may fit the
phase shifts for the s and p waves separately before the coupling transformation. In our example
the phase shifts read

k k
de:1(k) =0, de2(k) = m — arctan — — arctan — . (4.2.28)

avs) K1
Parameters k¢ and k1 allow one to fit the s-channel phase shifts. Parameter x may be used to fit
the slope of the mixing angle (4.1.34) at zero energy. If necessary, one may use arbitrary chains of

1-channel transformations to get the best fit of the phase shifts.

4.2.4 Coupled s — d partial waves

The simplest s — d coupled potential is characterized by =0 = diag(2,0). Therefore the
initial diagonal potential should have [ = diag(0,2) and v = (3,1). Moreover, as we established
in section 4.1.3, 64.2(0) — 64:1(0) = (n + 1/2)m which for n = 0 leads to the following initial phase
shifts 04.2(0) = 7/2 and 64,1 (0) = 0.

We start with the initial s-wave potential

Vo(r) il (4.2.29)
r) = 2.
0 cosh?(kor)
having a zero energy virtual state [23] which follows from its Jost function
Fo(k) = —" (4.2.30)
O T Rtk -

Note that this potential and the solutions of the corresponding Schrodinger equation may be ob-
tained by a SUSY transformation. This is a regular potential. To be able to apply the coupling
transformation, we increase its singularity at the origin using three SUSY transformations with the

transformation functions
u(ki, ) = ki sinh(k;r) + Ko cosh(k,r) tanh(kor) , i=1,2,3. (4.2.31)

The potential and the Jost function in the s-channel after these transformations read

—9K2

Vaa(r) = 27% —2(In W [u(k1,7), u(ka, ), u(ks,7)])", (4.2.32)
’ cosh”(kor)
Fyi(k) = ik (4.2.33)
GV T (ke + i) (k + k1) (k + ko) (k + iks) -
The potential in the d-channel
6 ) _ 6(3 4 6k + 6K37 + 4kir® + Kirt)
Vaa(r) = —3 =2 (ra,r) = 23 Brar & 1) , (4.2.34)
v(kg,r) = e " <1 + kg1 + 0@371)2> ) (4.2.35)
4
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 4.5: Exactly solvable s —d potential V, = X/C—Z(i—i— 1)r~2 with parameters kg = 1, k1 = 1.5, ko = 1.75,
kg3 =2, kg =3q=—1, =15 k=>5.53.

Figure 4.6: The scattering matrix for the coupled s — d potential. The phase shifts d..1 (k) and d..2(k) are
plotted by solid lines. The mixing angle e(k) is plotted by the dashed line. The corresponding parameters
are kg =1, k1 = 1.5, ko =1.75, k3 =2, ky =3 q=1, x =15, Kk = 5.53.
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is obtained from the centrifugal term 6/r2 by the SUSY transformation with v(r, x4) as the trans-
formation function, which decreases the singularity of the potential at the origin.
The Jost solution in the s-channel is expressed in terms of the Wronskian of factorization
solutions (4.2.31)
W lu(k1,7), u(ke, ), u(ks, 1), folk,r
Jaatkr) = i ;m)(/-e) n gng)wé [u((/jl, 7?),@((@, 21 ) (4239
ikr ko + ik tanh(kor)

folk,m) = e - . (4.2.37)

The Jost solution in the d-channel is

W v(ka, 1), ho(kr)] »k . 3
ok, 7) = ho(kr) =" [1+3 - . 4.2.38
fd,2( ’T) 1 (k _ ZH4)U(H4’ 7") 2( T) € + ,“{’47“ (K4T)2 ( )
The uncoupled Jost matrix reads
. —ik ik — KR4
Fyk)=d 4.2.39
alk) = diag [(k+mo)(k+ml)(k+m2)(k+m3)’ k2 } (42:39)

which produces the eigenphase shifts

3
k k
da:1(k) = g - Z arctan — dag:2(k) = arctan P (4.2.40)
=0 I

Next we apply the coupling transformation with the transformation function (4.1.1) where the
Jost solution fy = diag(fg.1, fa:2) is combined from (4.2.36) and (4.2.38). An example of potential
curves thus obtained is shown in figure 4.5. The Jost matrix (4.2.39) is transformed according to
(4.1.13) and the scattering matrix is given by (4.1.29).

The corresponding phase shifts and mixing angle are plotted in figure 4.6. The mixing parameter

(k) is determined by (4.1.35) which, in the current case, reduces to

4
2Kk k
tan 2e(k) = 1) tan jzz:o arctan o) (4.2.41)
We were not able to find simple expressions for the eigenphase shifts in this case. One can see that
the mixing parameter satisfies the effective range expansion (4.1.36) (see (4.2.41) and figure 4.6).
Unfortunately, this is not the case for the phase shifts (see figure 4.6).
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4.3 Second order SUSY transformations

In the previous section, we saw that the first order SUSY transformations can introduce a
non-trivial coupling but in the physically interesting case of partial waves with the same parity
there is the serious drawback (see subsection 4.2.4). It is impossible to get the transformed phase
shifts and the mixing parameter which satisfy to the effective range expansion. This is a signal
that the transformed potential may be unphysical. The simplest possible way to avoid this obstacle
is to use a pair of first order transformations. Thus we obtain additional free parameters which
can be used to satisfy the requirements appearing from the effective range expansion. In this way,
analyzing the most general second order SUSY transformation we have found a new type of SUSY

transformations for two channel problems.

4.3.1 Eigenphase preserving SUSY transformations

Two-fold SUSY transformations lead to a number of interesting quantum models with unusual
properties [63]. In particular, the corresponding superalgebra is nonlinear. The case of two trans-
formations is less restrictive since the intermediate Hamiltonian may be chosen unphysical. In
particular, one may use as transformation functions complex-valued solutions of the Schrédinger
equation corresponding to complex factorization constants. It is natural to consider the two-fold
SUSY transformation of the Schrédinger equation (1.1.20) as a chain of usual (i.e. one-fold) SUSY
transformations. As we show below, a chain of two such transformations may preserve the eigen-
phase shifts.

The chain of two SUSY transformations, Hy — H; — Hs, emerges from the following inter-
twining relations:

L1Hy = H{Ly, LoHy = Ho Lo, (4.3.1)

where the operators L; map solutions of the Schrodinger equations to each other as ;1 = L1ty
and 19 = Lo1)1. These operators can be combined into an operator L defining the two-fold SUSY
transformation

LHy = HyL, L=1I1sLq, (4.3.2)

directly mapping solutions of the initial Schrodinger equation to solutions of the transformed
Schrédinger equation as 9 = Lajyg.

The operators L; are first-order differential operators,
L1 = wl(r) — 87« s L2 = UNJQ(T) — 87« . (4.3.3)

We use the standard notation for the superpotentials

wa(r) = dy(r)iy'(r), (4.3.5)

which are expressed in terms of the matrix factorization solutions u; and @iz = Liug. These solutions

satisfy the following Schrodinger equations:
Ho’u,j = EjUj y Hlﬁg = EQ’&Q, (436)
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with Ep, Fy being factorization constants. Operator L then has a nontrivial kernel space, Ker L,

spanned by the set of transformation functions u; and us:
Ker L = spanf{uy,us} . (4.3.7)

In the following, we will only consider self-conjugate factorization solutions, i.e. solutions with a
vanishing self-Wronskian W{u, u| = 0, where the Wronskian of two matrix functions u, v is defined

by (1.1.29). For factorization solutions we get
Wiut, ug](r) = uf (r) [wa(r) — w] (r)] ua(r). (4.3.8)
Hence, self-conjugate solutions correspond to symmetric superpotentials. Solution o then reads
ia(r) = Lyua(r) = [wi(r) — wa(r)ua(r) = — [ul (r)] ™ Wi, uz](r). (4.3.9)

where the last expression has been obtained using (4.3.8) and the symmetry of wy.
The Hamiltonians in (4.3.1) correspond to potentials related to each other through superpoten-
tials
Vi(r) =Vo(r) —2wi(r),  Va(r) = Vi(r) — 2dy(r) . (4.3.10)

The sum of the two superpotentials w; and ws defines the two-fold superpotential W5, which

directly connects Vj to Va:
Wa(r) = wi(r) +@a(r),  Va(r) = Vo(r) — 2Wj(r). (4.3.11)
Using the Schrodinger equation twice, one sees that the derivative of Wronskian (4.3.8) reads
Wuy, us]'(r) = (Ey — Eg)ul (r)us(r). (4.3.12)
Hence, using (4.3.5) and (4.3.9), one can rewrite Wy in the compact forms

Wa(r) = (E1— Es)[wa(r) —wi(r)] ™ (4.3.13)
= (B — Eg)Ug(r)W[ul,uz]*l(r)u{(r). (4.3.14)

As will be seen below, the second expression is more general than the first one, as it may be used
in cases where the individual superpotentials w; or we are singular.
Similarly, expressing the second derivative of the matrix solution g (k,r) from (1.1.20) and

defining the logarithmic derivative
wi(r) = ok, )y (k7)) (4.3.15)
one can rewrite the action of the second order transformation operator L on ¢y (k, 1),
Ya(k,r) = (w2 — Or) (w1 — Or) tho(k, 1), (4.3.16)
in the following form
Pa(k,r) = [(—Kk® + E1)1 + Wa(r) (w1 — wi)] Po(k,7). (4.3.17)

A more symmetric form of this formula

Yok, r) = K—kQ + E“;El) 14 Wa(r) (“’1"2“”2 — wk)] Yo(k,r) (4.3.18)

may also be useful.
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4.3.2 Main theorem

Let us now particularize the above results to two consecutive SUSY transformations with mu-
tually conjugated complex matrix factorization solutions corresponding to imaginary factorization
energies. We will prove that such a second order transformation modifies the mixing parameters
without affecting the eigenphase shifts. We will consider the case of two partial waves I; and [y
with identical parity,

lo =1; +2m, m € Z. (4.3.19)

To construct eigenphase preserving transformations, we need solutions of the Schrodinger equa-
tion (1.1.20) with a special behaviour both at large distances and near the origin. Thus, we first

prove that the necessary solutions exist.

Lemma 5. For any momentum k such that Im k > 0, det Fy(k) # 0, and for any constants
c1.2,d12 € C, there exist two vector solutions u(k,r) and 9(k,r) of the Schridinger equation (1.1.20)

which behave at large distances as

d(k,r — 00) = e (c1, )T (1 +0(1)), (4.3.20)
Tk, — 00) = e (dy, do)T (1 4 0(1)), (4.3.21)
and near the origin as
d(k,r — 0) = (a1 agr”?™HT(1 4 o(r)), (4.3.22)
Tk, — 0) = (byr™", ber™2)T (1 4+ o(r)), (4.3.23)

where a12,b12 € C.

Proof. To obtain the behaviour (4.3.21), ¥(k,r) can be expressed in terms of the Jost solution
Ok, r) = fo(k,r)(dy,d2)T. (4.3.24)

Formula (4.3.23) follows from the behaviour of the Jost solution near the origin (see, e.g., [22]).

Taking into account that Im &k > 0, one gets from (1.1.27)
polk,r = 00) = o fo(—k, ) Fo(k).. (4.3.25)

Here, we omit the second term in (1.1.27) since it becomes negligible at large distances with respect

to the first term. Thus, solution #(k,r) may be obtained as
u(k,r) = T@Q(k,r)Fo_l(k)(cl,cz)T. (4.3.26)
Formula (4.3.22) follows from (1.1.25). O

Theorem 12. Consider a complex matrixz solution u of the coupled-channel Schridinger equation
(1.1.20)-(1.1.23), with imaginary energy By = k? = 2ix?* and complex wave number ki = x(i + 1),

x > 0, behaving at large distances as

(4.3.27)

U(T N OO) _ ( hll (*k'lT) :tihll (k;lr) >

:Fihl2 (—kl’l”) h12 (klr)

and near the origin as
v1+1

Vi

N ) [1+ o(r)]. (4.3.28)

air bir—

vo+1

u(r—>0):<

asr bor—
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The two-fold SUSY transformation defined by (4.3.2)-(4.3.6) with matriz factorization solutions
up = u, uy = u* corresponding to the imaginary factorization constants Ey, By = Ef = —2ix? and
complex wave numbers ki, ka = x(i — 1), possesses the following properties:

A. The resulting potential Vo defined in (4.3.11) is real, symmetric and regular ¥r. The two-fold
superpotential Wo reads

Wa(r) = dix?[w*(r) — w(r)rl , w(r) =o' (r)u=t(r), (4.3.29)
= 4ix*u* (r)Wlu, w*] " Hr)ul (), (4.3.30)

where only the second expression can be used when the superpotential w is singular.

B. The long range behaviour of Va,

Va(r — o0) =1l +1)r 2 4+ 0o(r2), I = diag(lz,11), (4.3.31)

corresponds to a re-ordering of partial waves with respect to channels.
C. The scattering matriz So of the transformed Schridinger equation is expressed from the initial

scattering matriz So as follows:
So(k) = O(k)So(k)OT (k) , (4.3.32)

where the real orthogonal matriz O reads

- 1 —k? F2)2 -
_ iz —ilz
O(k) =e"2 N o ( Loy g2 e "2, (4.3.33)

D. The eigenphase shifts of the transformed scattering matriz So coincide with the initial ones.

With the permutation

d2:1(k) = do.2(k), (4.3.34)
d2.2(k) = do.1(k), (4.3.35)
the mizing parameter transforms as
k2
ea(k) = eo(k) £ (—1)"™ arctan vl (4.3.36)

Proof. First, we note that Lemma 5 implies that solution u exists. It reads

u(r) = iﬁwo(kl,r)ﬂ)—l(kl) ( ;Z 8 ) T folks, ) ( 8 j;l ) . (4.3.37)

Using (4.1.19) and (4.3.27), one may write the leading terms of the asymptotic behaviour of this

factorization solution as

—ik1r M - ikyr A1
e (1 2k1r> +ie (1 + St
. —ikir LY ikir iAo
Fee (1 2k1r> € <1 + 2k1r)

A. According to the choice of transformation functions and factorization constants, the one-fold

u(r — o0) — (4.3.38)

superpotentials w; and wo are mutually complex conjugated, w; = w, we = w*. Therefore, one can

use w = vw'u~! and its complex conjugated form w* in (4.3.4), (4.3.5) and (4.3.9), thus obtaining
wo(r) = w*(r) = (@) (@)™,  @(r) = Liv*(r) = (w—w")u". (4.3.39)
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In this case, (4.3.29) and (4.3.30) directly follow from (4.3.13) and (4.3.14).

From (4.3.29), it is seen that W5, and thus the transformed potential (4.3.11), are real. The
symmetry of matrix V5 (i.e. Vil = V3) follows from the symmetry of superpotential w, which can
be established by considering the self-Wronskian Wlu,u|. Since (4.3.12) implies that this self-
Wronskian is constant with respect to r and (4.3.38) implies that it vanishes at large distances,
Wu, u](c0) = 0, one has Wu, u](r) = 0,Vr. According to (4.3.8), this is equivalent to the symmetry
wl'(r) = w(r),Vr.

Let us now prove that V5 is regular. According to (4.3.11) and (4.3.30), this is the case if
and only if the Wronskian W{u,v*] is invertible Vr. From (1.1.29) follows that W[u,u*] is an
anti-Hermitian matrix, i.e. W[u,u*] = —WT[u, u*]. Moreover, using (4.3.12), the derivative of this
Wronskian reads

Wu, u*] (1) = 4ix*u® (r)u*(r). (4.3.40)

Its diagonal entries can thus be integrated using (4.3.28) and (4.3.38) respectively. One gets finally

4ix® [ (Jus ()2 + s () 2) e Wislu, u*](r)
Wlu, u*](r) = 0 . . (4.3.41)
W[, u](r) —aix? [ (Jusa(t) 2 + Juna(t) 2)dt

where u;; and W;jj;[u,u*] label the entries of the factorization solution and of the Wronskian,
respectively. This result implies that detW{u, u*] > 0, Vr, which proves the regularity of V5 stated
in the theorem. Let us stress that this proof holds even in cases where superpotential w and
the intermediate potential V; are singular, which shows that expression (4.3.30), though more
complictaed, is more general than (4.3.29).

B. Let us first consider the case [; # l3. From the asymptotic behaviour (4.3.38), it follows that

the determinant of the transformation solution v tends to zero as r — oo like the Laurent series

Ay — A
det u(r — oo0) = (X(21—z)17“) o(r72). (4.3.42)
Hence, the superpotential w behaves asymptotically as
4x%r i %1
w(r — o00) = ———— + 0(1), 4.3.43
(r = ) Al_A2<i1 _Z.) (1 (1.3.43)
from which, using (4.3.29), we find the asymptotic behaviour of W,
Ao — A 1 0
Wa(r — 00) = % ( 0 ) +o(r 1), (4.3.44)

It should be emphasized that from (4.3.44) follows the exchange of the centrifugal terms in V;
with respect to Vj [see (4.3.11)]. This effect of coupling SUSY transformations was previously
described in [9]. Note that the scattering properties of the transformed system crucially depend on
the exchange of centrifugal terms because of the presence of [-dependent factors in the S-matrix
definition (1.1.33).

In the case of coinciding partial waves, 1 = la, (4.3.44) is still valid but cannot be established
through (4.3.43): instead, Wa(r) can be calculated from the Wronskian representation (4.3.30).
This allows us to avoid manipulations with singular quantities which appear in (4.3.43) when
l1 = l. It is convenient to rewrite the asymptotic behaviour of the transformation solution in the
form
i

u(r — o0) — <2Q:F oy
1

AQ:FUz> e 10z Qr=17Fo0y)/2, &1 = ki, (4.3.45)
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where A = diag(A1,A2), 04, 0y and o, are the Pauli matrices, and the projection matrices Q+

satisfy
QL=Qs, Q:Q+=0, Q1=0Q, (4.3.46)

Qio:=0.Q,  Qrop =0,Q7. (4.3.47)

Here and in what follows we will only retain terms of order »~! or lower. Let us first calculate the

Wronskian asymptotics at large distances. Definition (1.1.29) leads to

(1-4)
4xr

W(r — 00) — dixe 1% (0, + 0,,) [1 — (Ay + AQ)O’ZQ:F:| eitioz (4.3.48)
which can be inverted (up to r~!) to give

Wfl(r —00) —

L i [1 PS04 A2>o—zc24 (02 + 02)e 1% (4.3.49)

8ix 4xr
1 1 )
= @e €10 I:O'z +o,+ %0\1 + AQ)Q:E:| i610= (4.3.50)

We can now calculate the two-fold superpotential up to r~!

Wy = 4ix*u*Wu! (4.3.51)
. 1 -
— X (é—l*AQ:l:O-Z(O-Z +0,)Qx + ?(Al +A2)Qx — é@:ﬁ:(az’ + Ux)UzQ:tA) ,(4.3.52)
1

where (4.3.46) and (4.3.47) have been used. To further simplify this expression, we also use the
decomposition A = 1(A; + A2)/2 + 0.(A1 — A2), which leads finally to

1
Wa(r — o00) — 2—T(A2 — Ao, . (4.3.53)

This expression is valid for any I; and [lo; it is thus also valid for the case of coinciding partial
waves. The fact that the two-fold superpotential vanishes at large distances faster than r—! implies
that the centrifugal tails are not affected by the SUSY transformations and that the partial waves
are unchanged.

C. To establish the modification of the scattering matrix, we have to look at the way the Jost
solutions and the regular solutions transform in the two-fold transformation.

Once again, let us start with the simpler case I # lo. Without loss of generality we may apply

the general transformation of solutions (4.3.18) to the Jost solution, which now takes the form

w + w*

Lfo(k,r) = [—k21 + Wa(r) ( TR wk>] folk,r) = Uk, r) folk,7). (4.3.54)

As we will see below, the matrix Uy (k) = lim,_,oo U(k,r) determines the transformed Jost and
scattering matrices. Using (4.3.43), (4.3.44) and the fact that Whwy, vanishes at large distances,

one obtains a simple expression for this matrix,

—k* F2y°
(]oo(k:)—(i2><2 e ) (4.3.55)

From the dominant term of (1.1.26) and (4.1.19), it follows that the function
fa(k,r) = Lfo(k, UL (k) (4.3.56)

is the transformed Jost solution.
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As in the previous part, the case I} = [y requires additional attention since the product Wa(w +
w*) gives at large distances the uncertainty 0 - co. Again we use the Wronskian representation
(4.3.30) of the two-fold superpotential W5 and the asymmetrical form of transformation (4.3.17)

thus obtaining
Lfo(k,r) = [(—k2 + 2ix*)1 + 4ix*u*Wu, u*]_luT/] folk,r). (4.3.57)

Using (4.3.45) and (4.3.50) in this expression leads to the same matrix U (k) as in (4.3.55).
Let us now find how the SUSY transformation modifies the behaviour of the potential at the
origin. From (4.3.28), one gets

detu(r — 0) — apbgr” 721 — gobyrrz= 1t (4.3.58)

which suggests that the discussion will depend on the relative values of v and vs.
For vy = vy, excluding the case a1by = asb; (which requires higher order expansions), one can

expand the superpotential w(r) in a Laurent series near r = 0,

w(r —0) =

1 a1b2(V1 + 1) + agsbi1q —a1b1(2V1 + 1)
(a1b2 - a2b1)7” a2b2(2y2 + 1) —asby (1/2 + 1) — aibas

>+qn,@&w)

which implies with (4.3.29) that the lowest-order term in W5 is linear in . Consequently, (4.3.11)
implies that the singularity indices are not modified by the two-fold SUSY transformation. Note
however that (4.3.10) implies that the intermediate potential V; displays in general off-diagonal
singular terms at the origin.

For vo > vq, one gets instead of (4.3.59)

w&%m:1<”+1 0)+dn. (4.3.60)
r 0 —Uy
To find the behaviour of Wy at the origin, a higher-order expansion would thus be necessary.
It is simpler in this case to study the two first-order transformations separately. From (4.3.10)
and (4.3.60), we conclude that the intermediate potential V; has the following singularity indices
v — v =diag(v; + 1,2 — 1). For vy < 1y, one gets v — v = diag(r; — 1, v + 1) by symmetry.
Let us now analyze the behaviour of the transformation function 4* = Liu* which determines
operator Ls. Using (4.3.3) and (4.3.60) [or (4.3.59) when v; = 1»] one can find that a regu-
lar /singular vector solution transforms into a regular/singular vector solution of the new equation.
Such transformations are called conservative SUSY transformations [48]. As a result the behaviour
of 4™ near the origin is given by the conjugate of (4.3.28) with different values of constants aj , and
bl o, e, aj o — aj 5 and bj 5 — 5’{72, and shifted singularity indices 7 = diag(v + 1,2 — 1) (to fix

ideas, we consider the case vo > v1)

ajrit? prpmtt

asrvz pyp—vetl

u*(r —0) = < ) [1+ o(r)]. (4.3.61)

We have to split the discussion into two subcases, once again. For 5 = 1, i.e. v = 11 + 2, an
equation similar to (4.3.59) implies that @w* behaves like 7~ multiplied by a non-diagonal matrix
close to the origin. Consequently, the final potential Vo will be unphysical in general, with non-
diagonal singular terms at the origin; therefore, we will not consider this case any further. For

g > Dy, i.e. 9 > v1 + 2, the same reasoning as above implies that the transformed potential V5 has
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the following singularity indices: 7 — v = diag(v; + 1,05 — 1) = diag(v1 + 2,2 — 2). Finally, for
o < 1, which is the case for vo = 11 + 1, the second transformation restores the initial singularity
indices 7 — v = diag(v1 — 1,02 + 1) = diag(v1, 1v2).

The modification rules for the singularity indices of the potential may thus be summarized as

follows in the physical cases:

(v, v1) = (v, 1), (4.3.62)
(Vl, v+ 1) i} (1/1, V1 + 1) s (4363)
(v 4+m) -5 1+ 21 +m—2),  m>2 (4.3.64)

From here it is seen that in all cases Trv = Trv.

We are now ready to construct the regular solution of the transformed Schrédinger equation.
For vy # vy superpotentials w and @* have the structure given by (4.3.59) or (4.3.60) depending
on the singularity indices. Therefore the first-order transformations L; and Lo are conservative.
Thus, the result of the two-fold SUSY transformation applied to ¢o(k,r) in the most general form

can be written as follows

Loo(k,r) = po(k,m)Uy(k), (4.3.65)
where U is a constant matrix with respect to r. Matrix Up(k) is invertible Vk # kj 2, which can be
seen from (4.3.7). In the case vy = v1, the conservativeness of the two-fold SUSY transformation
can be established by considering (4.3.54) where 1) is replaced by a regular solution. Note that
wo.2(k,7) = po,2(—Fk,r); therefore, matrix Uy is an even matrix function of wave number k, Uy(k) =
Uo(—k). The precise value of Uy is not important for the following.

Using the relation between the Jost solutions and the regular solution (1.1.27), which in view
of (4.3.56) and (4.3.65) we rewrite as

2k, )U(k) = - (o~ P)Uac(— ) Fo(k) = fo(k, YU (B Fo(—H)] (4.3.66)
we find the transformed Jost matrix
Fy(k) = Uso(—k)Fo(k)U (k) - (4.3.67)
The transformation of the scattering matrix then follows from its definition (1.1.33),

Sy(k) = "2 Uy (k)e 2 Sy(k)e 2 UL (k)e''? | (4.3.68)

and is equivalent to (4.3.32) and (4.3.33). Note that the transformed S-matrix does not depend on
Up. To prove that matrix O is real and orthogonal, one has to remember that i, ls, [1, I all have
the same parity, as implied by (4.3.19) and (4.3.31).

D. Diagonalizing So in the same way as Sy in (1.1.34),

RY(k)Sa(k)Ra(k) = diag (621'52;100, 622'52;2(’0) , (4.3.69)

and remembering that matrices Ry and O both belong to SO(2), one sees that Sy and S have the

same eigenvalues. By choosing

Ro(k) = O(k) Ro(k) ( _01 (1) ) , (4.3.70)

one inverts the order of these eigenvalues, in agreement with (4.3.31), hence (4.3.34). This allows
to keep parametrization (1.1.35) with a modification of mixing parameter given by (4.3.36) and

vanishing at zero energy, €2(0) — €y(0) = 0. O

133



These eigenphase preserving transformations may be considered as a generalization of those in
the case of different parities (see (4.1.37)). Let us finally note that the transformed potential V5
can be used as a starting point for a next eigenphase preserving transformation. This means that
the two-fold SUSY transformation considered above can be iterated as long as desirable. A chain

of n such transformations over the initial potential Vy will lead to the following mixing parameter:
ean(k) = €o(k) & (—1)™ > arctan —— (4.3.71)
- 2x4
7=0 J
leaving the eigenphase shifts unchanged.

4.3.3 Phenomenological neutron-proton interaction potential

An important consequence of the theorem 12 is the possibility to use the single channel SUSY
transformations fitting the experimental values of the eigenphase shifts. Afterwards, the mixing
parameter can be fitted without further modification of the eigenphase shifts by the eigenphase
preserving SUSY transformations. Thus, the main advantage of our approach consists in splitting
the inversion problem into two independent parts: (1) fitting eigenphase shifts to experimental
values independently for each channel and (2) fitting the mixing parameter between these channels.
As a result, one can construct a potential which gives rise to the desirable scattering matrix using
a chain of SUSY transformations.

Let us consider how this strategy works in the 3S; — 2Dy coupled-channel case of the neutron-
proton scattering. We first build the simplest possible potential, valid at low energy only, in the
spirit of Ref. [156]. Next, we generalize this result to get a potential that fits scattering data with
better accuracy on the whole elastic region.

The scattering matrix in Ref. [156] was chosen in the following form

2 2 (k+ir1)(k+iro) 2 12
Sk = ! 2x* k G—im)hing) O ) [ 2 =K} (4.3.72)
EUHaxt -k 2x? 0 1 k2 2

We will present two possible chains SUSY 1 and SUSY 2 of SUSY transformations leading to S-
matrix (4.3.72). The difference between these chains consists in the different ways to introduce the

bound state.
SUSY 1

To reproduce s-wave eigenphase shift and the deuteron binding energy we use the Bargman
potential [157], which can also be obtained by two supersymmetric transformations of the zero
potential. It reads [156]

d2
Vig(r) = _QW In Wexp (k17), sinh(kar)] (4.3.73)
= 25 (k1 — 1) : (4.3.74)
[ko cosh(kar) — k1 sinh(kar)]?
where W is a Wronskian determinant. As in [156] we choose
k1 = 0.232, ko = 0.944. (4.3.75)

We reproduce zero phase shift in d-wave choosing the centrifugal term V; = 6/r% as the second

potential .
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Figure 4.7: SUSY 1. Exactly solvable potential curves obtained from two uncoupled potentials with param-
eters k1 = 0.232, ko = 0.944 by the eigenphase preserving transformation with y = 1.22.

The following regular and Jost solutions are used to construct the factorization solution for the

eigenphase preserving SUSY transformation

(o) = 2i [(k* + K3)kosin(kr) — (k(k} — K3) cos(kr) + k1 (k* + k3) sin(kr)) tanh(kor)]
Pt (k — k1)(k — K2) (k2 — k1 tanh(kar)) ’
(4.3.76)

paller) = 2i [(3 — k*r?) SII;:(QI{ZTQ) — 3kr cos(kr)] 7 (4.3.77)

- [(k — iK1 )k + (i3 — kK1) tanh(/igr)] iker
Sk T = i) (ng — e tanh () (4:3.78)
fﬂhﬂ—€”<kumm—wza. (4.3.79)

According to the theorem 12 factorization solution u(r) [in the case Vp = diag(Vyg, Vy)| reads

= ps (k1) ifs(ky,7) o _ 12 B .
u@%_<—WMhW)fﬂhw)>’ w'+Vou=kiu,  ki=x(1+1), (4.3.80)

and the transformed potential is calculated as follows
2 d 1, —1\—1
Vo = Vo +4x e (Imu'w™") " . (4.3.81)

The transformed potential (4.3.81) with u(r) defined in (4.3.80) and x = 1.22 is shown in figure

4.7. We extract central, tensor and spin-orbital potential curves
Vo =Vopo, Vr=Vaio/V8, Vo= (Vaopo—Vaua/V2—Vo11+6/r)/3, (4.3.82)

taking into account the exchange of the partial waves under the eigenphase preserving SUSY.
These potential curves are similar to ones shown in figure 13 in Ref. [45]. Ratio of asymptotic
amplitudes of the bound state wave function n = A4/As = k%/(2x?) = 0.018081 coincides with the

ratio obtained from S-matrix residue

resSo 1 (k = ik1)

(4.3.83)



Table 4.1: Deuteron observables of the studied cases.

parameter || SUSY 1 Kohlhoff (b) || SUSY 2(input) || SUSY 2 (num) || [Newton-Fulton]
Ey 2.2321394 || 2.2321399 2.2321394 2.2321206 2.2321394

Py 6.76633 6.77 1.875 2.09

As 0.875296 || 0.8753 as = 0.0584957 | 0.8310 0.8269

i 0.0180812 || 0.018081 0.0393192 0.03949 -0.018081

by construction. These potential curves are singular at the origin. Thus this potential significantly
differs from the original Newton-Fulton potential.
SUSY 2

We can obtain a potential which is more similar to the Newton-Fulton potential using the initial

diagonal potential without bound states

40) = aing (<2 W o 221 0)) )

The d-wave potential is purely centrifugal, while the s-wave potential is obtained from the zero

(4.3.84)

potential by a second order one-channel SUSY transformation with the factorization solutions
v1(r) = sinh(k17) and ve(r) = sinh(kar). This s-wave potential has no bound state but a singular

repulsive core at the origin [83]. Potential V{ is thus characterized by the singularity and centrifugal

indices
v =diag(2,2), [ = diag(0,2). (4.3.85)
The Jost solution corresponding to potential V{ reads
f()(kvr) = diag(fos(k,r),f()d(k,r)>, (4386)
where
, 31 3
s(k = k14 = 4.3.87
fO ( 7T) € < + kr (kT)2> ) ( )
05(r) vi(r) ,
ko) = (2= -0 ) 1= -9, ) * NN, 4.3.88
de( ,T) <’DQ(7“) > <’U1(7”) € 14V2, ( )

with 93 = [(Inv1)’ — 8;Jvs and the normalization constants N; = (ik — k;) L. The regular solution

@ is expressed from (1.1.27) with the Jost matrix

F[)(k?) = dlag (—NlNQ, 1) . (4389)

Using these expressions for the Jost and regular solutions, one may construct with (4.3.37)
a transformation solution u with asymptotics (4.3.27) and (4.3.28), according to Lemma 5. The
eigenphase preserving transformation described in Theorem 12 leads to a singular potential V5

without bound state and with

v = diag(2,2), [ = diag(2,0). (4.3.90)

The eigenphase shifts of the transformed S-matrix coincide with the initial eigenphase shifts,
ds(k) =
da(k) = 0.

(4.3.91)

— arctan — — arctan —,
K1 K2

(4.3.92)
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Figure 4.8: SUSY 2. Exactly solvable potential curves obtained by the eigenphase preserving SUSY trans-

formation and phase equivalent bound state addition, k1 = 0.232, ko = 0.944, x = 1.22.
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Figure 4.9: (a) Wave function with the following asymptotic constants A5 = 0.833, A4 = 0.0856.

The mixing angle is given by (4.3.36) with ¢y = 0 and positive sign. Note that due to the exchange of

centrifugal terms after the eigenphase preserving SUSY the first channel corresponds to d-wave and

the second channel corresponds to s-wave. The Newton-Fulton potential differs from the potential

constructed above because it has one bound state.

In the contrast with SUSY 1 the bound state is introduced by phase-equivalent bound state

addition for coupled channels [91]. The corresponding transformed potential may be defined in

terms of the vector solution

VYp(r) = faliky, r)ar, a1 = (a3 +a?)"*(aq,a,)",

as follows

V

Upiy

(a2 +a3)~' + [ Yy pdt

:‘/2—2%11}1),

Wp = —

(4.3.93)

(4.3.94)

Here f5 is the Jost solution of the Schrédinger equation with potential Va, ag and ag are arbitrary

constants. These constants are proportional to the asymptotic amplitudes A; and A of the bound

state, Aq/As = aq/as.
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Table 4.2: Factorization constants

55, fm~! dj, fm~! || Modulus y, fm~2 || Argument «
0.2315380 || 0.671119 || 0.134547 3.09823
1.752295 || 3.39537 11.3097 4.01335
2.173204 || 0.401557 || 10.1828 0.742398

Since Newton-Fulton potential is finite at the origin we impose this requirement to the potential

V(r) thus obtaining a link between asymptotic amplitudes

As 8x3 + 8x2k1 + 4)@&% + K;:{’
Ay 2x2k1 ’

(4.3.95)

The resulting potential and the corresponding wave function are shown in figures 4.8 and 4.9,
respectively. The shape of the potential curves is similar to one presented in [156]. Note that the
finiteness of the potential at the origin was not reproduced in [45]. This shows that the method of
SUSY transformations is more flexible.

In table 4.1 we compare deuteron observables obtained by SUSY I with respect to the case (b)
in Ref. [45] and results of SUSY 2 with respect to original results of Newton and Fulton [156]. It
can be seen that our results are in agreement with Ref. [45]. The chain SUSY 2 contains two two-
fold coupled channel SUSY transformations thus making analytical calculations to complicated.
The bound state observables for the resulting potential were obtained numerically. Therefore we
provide in Table 4.1 both input data and numerical values.

We believe that quantitative difference with Ref. [156] is explained by a somewhat different input
parameters. It should be stressed, that ratio n = —0.018081 reported in [156] do not correspond to
the ratio of asymptotic normalization constants. Apparently, Newton and Fulton did not realize
that their potential has long-ranged tails (see figure 4.17), thus A;/A,; cannot be determined from
(4.3.83). It is determined from (4.3.95).

SUSY 3

At the end of this chapter, we present more sophisticated example which combines all ingredients

of SUSY inversion. In this example, we start from Reid93 potential [158] and fit its phase shifts

and mixing parameter as follows

k k k
ds(k) = m — arctan () — arctan () — arctan <> , (4.3.96)
S1 S9 S3

k k k
dq(k) = d40(k) — arctan — — arctan — — arctan — , (4.3.97)

dq do ds

3kx?
8aq0(k) = arct 0 4.3.98
do( ) arctan 3$[) _ k2($8 + C) I ( )
3 E T

€1 = E arctan (XJSH]_(OZJ) =+ tan (O[] — 2)) . (4399)

This fit corresponds to the three single channel SUSY transformations in the s wave applied to the
zero potential and to the three single channel SUSY transformations in the d wave applied to the

following potential
Vi) = 6(r + x0)((r + 20)3 — 2¢) (4.3.100)
[c+ (r + z0)3)? ’ o

138



Table 4.3: Deuteron observables for the Reid93 inversion.

parameter || Reid93 SUSY (input/num)
Ey, MeV -2.224575 || -2.224575/-2.224572
Py, 5.699 /7.035

As 0.8853 /0.8658

n 0.02514 0.02863/0.02902

Q, fm? 0.2703 /0.2935

<r>, fm || 1.969 /1.939

where additional constraints

3 3

1 1
=2 =X a
j=1 " j=1"17
are imposed to provide a correct effective range expansion. The coupling is introduced by the
—d2 and

xjexp (icj) for the s wave, d wave and coupling, respectively. Note that s is fixed from the deuteron

three two-fold eigenphase preserving transformations. The factorization energies are —s

binding energy. The eigenphase preserving transformations involve complex factorization energies,
whereas in our theorem 12 only purely imaginary factorization energies were used. As it turns,
the method works in more general case, but we skip these technical details. Using standard fitting
algorithms available in the packet of analytical calculations Mathematica, we found the following
values of parameters listed in table 4.2.

In figures 4.10, 4.11 and 4.12 we compare the phase shifts of the Reid93 potential and ones
given by (4.3.96), (4.3.97) and (4.3.99) in the whole elastic region (T4, < 350 Mev). The transition
may be done by coefficient h/(2u) = 41.471 Mev fm—2

reduced mass. Potential curves are compared in figures 4.13, 4.14 and 4.15. The potential generated

between Mev and fm ™2 , where p is the
by SUSY transformation has several wells which indicates that the choice of the factorization
constants is not correct. We should stress, that diagonal potential generated by single-channel
SUSY transformations does not have such drawback. Hence, we can conclude, that the problem
may be in the complex factorization constants responsible for coupling (see figure 4.16). Finally,
in table 4.3 we compare deuteron observables for the Reid93 potential and for its SUSY inversion.
The eigenphase preserving transformations were made numerically. As a starting point, we used
analytical expressions for the initial diagonal potential with eigenphase shifts (4.3.96) and (4.3.97).
There is a difference between input and output parameters due to numerical errors.

Finally, to compare the asymptotic behaviour of three potentials (SUSY 1, 2, 8) and the
asymptotics of the Reid93 potential we plot log |V; ;| in figure 4.17. Potential SUSY 1 related with
the von Geramb results decreases to fast, whereas SUSY 2 has long-range tails. This comparison
with the one-pion-exchange asymptotics may be useful to improve potential SUSY & in future work.

Note that our aim in this example is to show that we can improve phase shifts fit and values
of deuteron observables of the simplest Newton-Fulton model by using SUSY transformations. It
seems that this aim has been reached. We hope that a fine tuning of the factorization constants may
improve the shape of the potential and agreement with the deuteron parameters significantly. The
main difference here is that there are several inequivalent configurations of complex factorization

energies leading to similar mixing parameters.
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Figure 4.10: s-wave phase shifts. Solid curve corresponds to the Reid93 potential, dots correspond to (4.3.96).
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Figure 4.11: d-wave phase shifts. Solid curve corresponds to the Reid93 potential, dots correspond to
(4.3.97).
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Figure 4.12: Mixing parameter. Solid curve corresponds to the Reid93 potential, dots correspond to (4.3.99).
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Figure 4.13: SUSY 3, s-wave potential. Solid curve corresponds to the Reid93 potential, Dashed curve
corresponds to the potential generated by SUSY transformations.
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Figure 4.15: SUSY 3, sd-coupling potential. Solid curve corresponds to the Reid93 potential, Dashed curve

corresponds to the potential generated by SUSY transformations.

141



Im E, fm™
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Conclusion

In the case of the single-channel Schrodinger equation, a careful study of propagators and Green
functions for SUSY partner Hamiltonians has been made. We have shown that it is possible to
establish a relation between the traces of the Green functions for the two partner Hamiltonians for
the cases of the deletion of the ground state, the addition of a new ground state and when the two
Hamiltonians are isospectral. The formulas derived in this work are valid for the general case of
Hamiltonians having both discrete and continuous spectra. Our results show that when a continuous
spectrum is present, each of the traces of the Green functions for the SUSY partners may diverge
but the difference between the traces remains finite. We have illustrated our results by considering
the case of the free motion on the full line. We would like to note that the difference of the traces
of the Green functions of the two SUSY partner Hamiltonians appears as the trace (actually super-
trace) of the Green function of the supersymmetric Schrodinger equation (supersymmetric Green
function). Thus, our results reveal the possibility of divergence of the component traces of the
supersymmetric Green function while its super-trace remains finite.

Assuming the partner Hamiltonians to be linked by polynomial supersymmetry of a general type,
we have derived user friendly expressions interrelating the corresponding associated propagators.
Since the propagators may also be defined in terms of continual integrals, the results should be
useful in exploring new classes of continual integrals. We have applied our general technique to
derive propagators for transparent potentials and for a family of SUSY partner potentials of the
harmonic oscillator. The generalization to time-dependent and complex potentials has also been
presented.

In the case of the coupled-channel Schrodinger equation, basing on the exactly-solvable N-
channel Cox potential derived from a non-conservative supersymmetric transformation of the van-
ishing potential, we have established different parameterizations of this potential, as well as a
necessary and sufficient condition for its regularity. A careful study of the spectral properties of
the N-channel Cox potential has been given. Our treatment is based on the analysis of the Jost-
matrix determinant zeros. We have shown that the zeros of the Jost-matrix determinant are the
roots of an N2V ~!th-order algebraic equation. The number of bound states ny is restricted by the
number of channels, 0 < n, < N. The upper bound for the number of resonances is (N — 1)2V=2.
The generalization is based on the analysis of the behavior of the Jost-matrix eigenvalues. In the
N = 2 case, a full analysis of the corresponding Jost matrix has been carried out. In particular,
the structure of the zeros of the Jost determinant has been presented geometrically.

With ultracold gases in mind, we have also studied the low energy S-matrix and the scattering
length of the 2 x 2 Cox potential. Using the independence of scattering properties from interaction
details in the regime with a large scattering length, a model of alkali-metal atom-atom scattering has
been constructed. This provides interesting exactly-solvable schematic models for the interplay of
a magnetically-induced Feshbach resonance with a bound state or a virtual state close to threshold.

We consider the development of supersymmetric transformations as a very promising tool for
the multi-channel inverse scattering problem with threshold difference and for the construction
of more advanced exactly-solvable coupled-channel models. In particular, iterations or chains of
transformations might lead to more complicated Jost functions, with arbitrary number of bound
states and resonances, hopefully still with a tractable connection between potential parameters and
physical observables.

As far as physical applications are concerned, atom-atom interactions are both very interest-
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ing today, due to the active research field of ultracold gases, and rather simple with respect to
supersymmetric quantum mechanics, as only s-waves have to be considered and as the interaction
is short ranged (no Coulomb term). We foresee to apply the present model to other systems pre-
senting these simple features, namely coupled s-wave baryon-baryon interactions, with at least one
neutral baryon. In the longer term, we hope to generalize our method to higher partial waves and to
Coulomb interactions. This should allow us to construct useful models in the context of low-energy
nuclear reactions, the field which first motivated the work of Feshbach [145,146] on coupled-channel
resonances, leading to possible applications in nuclear astrophysics and exotic-nuclei low-energy re-
actions.

In the case of coinciding thresholds, coupling SUSY transformations have been studied. In par-
ticular, we have formulated conditions imposed on the transformation function to get a nontrivially
coupled scattering matrix resulting from the first order SUSY transformation. A careful analysis
of N-channel SUSY transformations between uncoupled potentials with equal thresholds but arbi-
trary partial waves and coupled ones has been made. A family of iso-phase potentials generated
by a first order coupling SUSY transformation has been obtained. The analysis of the zeros of the
Jost-matrix determinant for these potentials has shown that the SUSY transformation creates a
new M fold degenerate bound state energy E, = —k? and an N — M fold degenerate virtual state
energy E, = —r2.

In the most important practical case, the two-channel case, we have analyzed the behaviour of
the superpotential and potential at large distances in details. We have found an unusual effect, i.e.
a modification of the long-range behaviour of the potential under a coupling SUSY transformation,
which consists in an exchange of the partial waves between the channels. The analysis of the
phase shifts and mixing angle has demonstrated how scattering properties change after a SUSY
transformation.

As an illustration of our approach, several simple examples have been presented. First, to em-
phasize the difference between couplings in the potential, Jost and scattering matrices, we presented
examples of a trivially coupled scattering matrix corresponding to non trivially coupled potential
and Jost matrices. These examples answer the general questions raised in the beginning of chapter
4: situations may exist where a non trivially coupled potential leads to a trivially coupled S-matrix,
with either a trivially or non trivially coupled Jost matrix. Thus, the requirement that an S-matrix
be non trivially coupled is more restrictive than the similar requirement for a potential matrix or
the Jost matrix. Afterwards, a non trivial coupling has been introduced in the s—s, s—p and s—d
channels. In both s — s and s — p examples, we have shown how to fit the low-energy behaviour
of the phase shifts and mixing angle using parameters of the transformation. In the s — d case, to
satisfy the effective range expansion for the mixing parameter, we used an initial potential with a
zero energy virtual state. Nevertheless, the obtained phase shifts of the coupled s — d potential do
not satisfy the correct effective range expansion. Moreover, the presence of the zero energy virtual
state strongly restricts possible applications of our method to the inversion in this case.

A careful analysis of the first order SUSY transformations indicates the significant drawback
of this transformations and gives us a hint of how to avoid this drawback. We have developed
the technique of the second-order transformations. In this way we have introduced an “eigenphase
preserving” two-fold SUSY transformation for the two-channel Schrodinger equation with partial
waves of the same parity (e.g. s — d). This transformation alters the mixing parameter between
channels without modifying the eigenphase shifts (as the first order coupling transformation in the

s—p case). Chains of such transformations lead to coupling between channels in the scattering ma-
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trix which correspond to nontrivial k-dependences of the mixing angle (4.3.71). With a reasonably
small number of parameters, such mixing angles are probably able to fit experimental data, in a
similar way to the usual phase shift fitting used in one-channel SUSY inversion [84,91]. Combining
both techniques, we obtain a complete method of coupled-channel scattering data inversion based
on SUSY transformations. As a first application of this method, we have reproduce simple model
presented in [156] and its revision in [45]. We also have constructed an example of the potential
obtained from the inversion of Reid93 scattering data, thus showing how SUSY inversion may work

in the coupled-channel case.
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