
Chapter 6

Model of the Pneumatic Balloon
Actuator

6.1 Introduction
This chapter presents a 2D-model of the Pneumatic Balloon Actuator (PBA); it has been
established by modeling the physics that seem to underly the behaviour of this actuator.
Section 6.2 presents the assumptions and equations on which the model rests and it describes
the numerical method developed to solve these equations. Afterwards, Section 6.3 compares
the results provided by the numerical model with the experiments performed on two proto-
types of PBA. Finally, Section 6.4 discusses and concludes about the developed model.

Remark: The equations of the model have been established by the BEAMS department
of the ULB while the solving method of these equations has been developed and implemented
in a software by Benjamin Gorissen of the PMA department of the KUL, during its Master’s
thesis under the supervision of Michäel De Volder.

6.2 Model
The aim of the model is to predict the evolutions, with respect to the pressure, of the vertical
and the horizontal displacements (∆y and ∆x respectively in Fig. 6.1) of the free end of a
PBA (point A in Fig. 6.1).
The assumptions on which the model rests are the following:

1. When pressurized, the PBA deforms in such a way that its cross-section is identical
along its width; this cross-section is presented in Fig. 6.1. What happens in the sur-
roundings of the PBA outline is thus assumed to be negligible and this first hypothesis
allows an analysis in two dimensions (in the plane xy) of the PBA.

2. The PBA is fixed as a cantilever so that its upper layer is the thinner one of its two
layers.

3. The lower layer is modelled as a beam and will hereafter be referred to as "beam".

4. The upper layer is modelled as a membrane and will hereafter be referred to as "mem-
brane".

5. The shear stresses are negligible in the membrane.
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6.2. Model

6. The normal stresses σ are uniform in the membrane.

7. The membrane thickness e is uniform and remains unchanged when the PBA is pres-
surized (Poisson’s effect is thus assumed to be negligible).

8. The membrane material is homogeneous and follows Hooke’s law. The Young’s mod-
ulus of the membrane Em is thus assumed to remain unchanged when the membrane
deforms.

9. Bernoulli’s law is verified for the beam: in the deformed configuration, the straight
sections remain plane and perpendicular to the axis of the beam and to all fibres of the
beam [39], no warping occurs.

10. The beam material is homogeneous and follows Hooke’s law. The Young’s modulus of
the beam Eb is thus assumed to remain unchanged when the beam deforms.

11. The beam displacements due to shear and normal forces are negligible in comparison
to those due to the bending moment.

12. The weights of the beam, the membrane and of the gas inside the PBA are negligible.

13. The pressure p is homogeneous inside the PBA.

14. The beam thickness h (and thus the beam inertia Ib) is uniform and remains unchanged
when the PBA is pressurized (Poisson’s effect is thus assumed to be negligible).

15. The neutral axis of the beam keeps a constant length L even when the PBA is pressur-
ized.
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Figure 6.1: Cross-section of a pressurized PBA. The PBA is fixed as a cantilever so that its
upper layer is the thinner one of its two layers. The upper layer is modelled as a membrane
while the lower one is modelled as a beam. ∆y and ∆x are the vertical and horizontal
displacements of the free end A of the PBA. At rest, OB is the position of the lower layer of
the PBA.

Under hypotheses 4 and 5, the behaviour of the membrane is ruled by the Laplace’s
equation [22]:

γ(
1

r1
+

1

r2
) = pin − pout (6.1)

where γ is the surface tension in the membrane, r1 and r2 are the principal curvature radii
of the membrane and pin− pout is the pressure difference between the inside and the outside
of the membrane. pout will here assumed to be zero and the pressure inside the membrane
will be noted as p. Due to hypothesis 1, one curvature of the membrane is zero and (6.1)
becomes

γ

r
= p, (6.2)
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6.2. Model

where r is the radius of curvature of the membrane. Due to hypothesis 6, the surface tension
is uniform in the membrane. As a consequence, r is constant along the membrane which thus
takes the shape of an arc of circle.
Under hypotheses 3, 9, 10 and 11, the deformation of the beam is ruled by the Euler-
Bernoulli’s equation [39]:

1

R(s)
=

M(s)

EbIb
, (6.3)

where R is the curvature radius of the beam, M is the bending moment due to the loads
applied to the beam and Ib =

bh3

12 , with b the width of the PBA (along axis z). As shown
in Fig. 6.2, the beam is subjected to a concentrated load F applied by the pressurized
membrane and to pressure p (i.e. a distributed load), or more precisely to q = pb. P is the
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Figure 6.2: Loads applied to the PBA lower layer, which is modelled as a beam. The beam
is subjected to a concentrated load F applied by the pressurized membrane and to pressure
p (i.e. a distributed load), or more precisely to q = pb. P is the point of the beam where
bending moment M(s) is evaluated. Its coordinates are x(s) and y(s). s is the distance along
the beam between points O and P . θ is the angle between the horizontal direction and the
tangential direction of the beam at point P . α is the angle of inclination of force F , with
reference to the vertical direction. ∆y and ∆x are the vertical and horizontal displacements
of the free end A of the PBA. When the PBA is not pressurized, OB is the position of the
beam.

point of the beam where bending moment M(s) is evaluated. Its coordinates are x(s) and
y(s). s is the distance along the beam between points O and P and θ is the angle between
the horizontal direction and the tangential direction of the beam at point P . Since

1

R(s)
=

dθ(s)

ds
[39], (6.4)

(6.3) becomes:

dθ(s)

ds
=

M(s)

EbIb
. (6.5)

Solving (6.5) gives a function θ = θ(s) from which the coordinates of the points of the
deformed beam can be computed using the following expressions:

x(s) =

� s

0
cos(θ(u))du (6.6)

y(s) =

� s

0
sin(θ(u))du. (6.7)
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6.2. Model

The X- and Y-displacements of the PBA free end are given by

∆x = L− x(L) (6.8)

and

∆y = y(L) (6.9)

and the coordinates of end point A are given by

xA = x(L) (6.10)

and

yA = y(L). (6.11)

For the configuration presented in Fig. 6.2, the expression of bending moment M(s) is:

M(s) = F [cos(α)(L−∆x− x(s)) + sin(α)(∆y − y(s))]

−
� L

s q cos(θ(u))(x(u)− x(s))du

−
� L

s q sin(θ(u))(y(u)− y(s))du,

(6.12)

where F is the norm of force F and α is the angle of inclination of force F , with reference
to the vertical direction (see Fig. 6.2). To get rid of the integrals, an equation based on the
shearing force dM/ds instead of the bending moment M can be used [24]. To obtain this
equation, (6.5) is differentiated with respect to s and, with assumptions 10 and 14, this gives:

d2θ(s)

ds2
=

1

EbIb

dM(s)

ds
. (6.13)

To compute the expression of dM/ds, the following formula is used

d
ds

� v(s)
w(s) f(s, u)du =

dv(s)
ds f(s, v(s))− dw(s)

ds f(s, w(s))

+
� v(s)

w(s)
∂f(s,u)

∂s du,
(6.14)

and it leads to:
dM(s)

ds = −F [cos(α) cos(θ(s)) + sin(α) sin(θ(s))]
+q [cos(θ(s))(L−∆x− x(s)) + sin(θ(s))(∆y − y(s))] .

(6.15)

Equation (6.13) becomes then:

d2θ(s)
ds2 =

−F
EbIb

[cos(α) cos(θ(s)) + sin(α) sin(θ(s))]
+

q
EbIb

[cos(θ(s))(L−∆x− x(s)) + sin(θ(s))(∆y − y(s))] ,
(6.16)

with the boundary conditions
θ|s=0 = 0 (6.17)

and
dθ
ds |s=L = 0. (6.18)

Equation (6.16) can be used to compute the X- and Y-displacements ∆x and ∆y but firstly
F and α need to be evaluated. The following equations allow to determine F and α since p
is given and since the coordinates (xA,yA) of end point A are assumed:

��OA
�� =

�
(xA)2 + (yA)2 (6.19)
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6.2. Model

tan(�) =
yA

xA
(6.20)

2βr = L + ∆L (6.21)

σ = Em
∆L

L
(6.22)

γ

r
= p (6.23)

r =

��OA
��

2 sin(β)
(6.24)

γ = σe (6.25)

F = γb (6.26)

α =
π

2
− β + � (6.27)

where ∆L and ∆L
L are the lengthening and the strain of the deformed membrane, respec-

tively. Angles � and β are defined as shown in Fig. 6.3.
Equations (6.19), (6.20), (6.21), (6.24) and (6.27) are geometrically deduced from Fig. 6.3.
Equation (6.22) is the relation between the stress σ and the strain ∆L

L of the membrane.
Equation (6.23) is the Laplace’s equation (6.2). Equation (6.25) is the relation between the
surface tension γ and the stress σ of the membrane. Equation (6.26) is the relation between
the surface tension γ of the membrane and the norm F of the force F developed by the
pressurized membrane.

Remark: As can be seen from the previous equations, the model is suitable for compress-
ible as well as for incompressible fluids.

Equation (6.16) has the following shape:

d2θ(s)
ds2 = f(θ(s)) (6.28)

and it can be approximated by the following expression:

θi+1−2θi+θi−1
(∆s)2 = f(θi), (6.29)

with θi = θ(s)|s=i∆s, i = 0, . . . , N and ∆s =
L
N (see Fig. 6.4).
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Figure 6.3: Cross-section of a pressurized PBA. The PBA upper layer is modelled as a mem-
brane while the lower one is modelled as a beam. The beam is subjected to a concentrated
load F applied by the pressurized membrane and to pressure p (i.e. a distributed load),
or more precisely to q = pb. α is the angle of inclination of force F , with reference to the
vertical direction. C and r are the curvature centre and radius of the deformed membrane,
respectively. Angles � and β are defined as shown in the figure. ∆y and ∆x are the vertical
and horizontal displacements of the free end A of the PBA. When the PBA is not pressurized,
OB is the position of the beam.
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Figure 6.4: s is the distance along the beam. s ranges from 0 to L. The length L of the PBA
is divided into segments of length ∆s. The parameter i is used in the approximation of the
equation d2θ

ds2 = f(θ(s)). The length along the beam corresponding to i is s = i∆s.

The two following equations are the boundary conditions of equation (6.29); they corre-
spond to the boundary conditions (6.17) and (6.18), respectively:

θ0 = 0 (6.30)

and
θN−1 = θN (6.31)

Equation (6.29) is then used iteratively to compute the solution θi with i = 0, . . . , N ; this is
done as follows:

θn+1
i+1 −2θn+1

i +θn+1
i−1

(∆s)2 = f(θn
i ) (6.32)

1. The initial solution n = 0 (θn=0
i with i = 0, . . . , N) is used to compute f(θn

i ) (including
the calculations of F and α) and equation (6.32) allows then to compute the solution
n = 1 (θn=1

i with i = 0, . . . , N).

2. If the solutions n = 1 and n = 0 are too far from each other, the solution n = 1

(θn=1
i with i = 0, . . . , N) is used to compute f(θn

i ) and equation (6.32) allows then to
compute the solution n = 2 (θn=2

i with i = 0, . . . , N).

3. If the solutions n = 2 and n = 1 are too far from each other, etc.
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6.2. Model

The iterations are repeated until the method converges to a solution n = j (θn=j
i with

i = 0, . . . , N); this solution is such that the solutions n = j and n = j − 1 are close enough
to each other, i.e.: �N

i=0
(θj

i−θj−1
i )2�N

i=0
(θj

i )2
< 1% (6.33)

A database comprising hundred initial solutions has been established. These initial so-
lutions are beams whose free end has displaced upwards or downwards. For a given initial
solution, if after fifty iterations the method has not converged, the next initial solution of the
database is tried.

The model and its solving method have been implemented in a software. The charac-
teristics of the PBA (L, b, e, h, Em and Eb) and the pressure p have to be provided to
the software which computes the corresponding deformed configuration of the PBA and in
particular the displacements ∆x and ∆y of the PBA free end (see Fig. 6.5).

characteristics 
of the PBA 
(L, b, h, etc.)

pressure p ∆x and ∆y 

deformed 
configuration 
of the PBA

Software
implementing the 
numerical model 

of the PBA

Figure 6.5: Inputs and outputs of the software implementing the numerical model of the
PBA.

In practice, when performing experiments with the test bench as described in Chapter 5,
it is not the pressure p that is imposed but the displacement u of the cylinder piston (see
Fig. 6.6). It could then be interesting to establish the relationship existing between p and
u. This relationship could then be added to the software so that its inputs would be the
characteristics of the PBA and u, rather than p (see Fig. 6.7).
For a given pressure p, the software provides the complete deformed configuration of the PBA.
The inner volume VPBA of the PBA can be computed from this deformed configuration and
assuming VPBA = 0 when u = 0, VPBA can be related to u as follows:

• in the case of an incompressible fluid: the total volume of fluid V equals Sd (S is the
cross-section of the cylinder and d is its length (see Fig. 6.6)) and

VPBA = Su (6.34)

• in the case of a compressible fluid: the total volume Vatm at the atmospheric pressure
patm equals Sd. The temperature is assumed to be constant and since the fluidic circuit
is closed, the quantity of fluid is also constant. After a piston displacement u, the PBA
has a volume VPBA and the total volume is V1 = VPBA + S(d − u) at the absolute
pressure p1 = patm + p. The gas law leads thus to:

patmVatm = p1V1 (6.35)

and more precisely to

patmSd = (patm + p)(VPBA + S(d− u)) (6.36)

Establishing the relationship between u and p for a given PBA can thus be done as follows:
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S
u

d

VPBA

cylinder

Pneumatic Balloon 
Actuator (PBA)

tube

Figure 6.6: PBA connected to a cylinder with a tube. When the cylinder piston performs a
displacement u, the PBA inflates and its volume is VPBA. When u = 0, it is assumed that
VPBA = 0. S is the cross-section of the cylinder.

pressure p
Relationship 

between u and p
piston 

displacement u

characteristics 
of the PBA 
(L, b, h, etc.)

pressure p ∆x and ∆y 

deformed 
configuration 
of the PBA

Software
implementing the 
numerical model 

of the PBA

Figure 6.7: The relationship existing between the piston displacement u and the pressure p
can be added to software implementing the numerical model of the PBA. Hence, the inputs
of the software would be the characteristics of the PBA and u, rather than p.

1. For different pressures p∗, the deformed configuration of the PBA is calculated with
the software and the corresponding inner volume V ∗

PBA of the PBA is computed from
this deformed configuration.

2. Equation (6.34) or (6.36) is then used to calculate the piston displacements u∗ corre-
sponding to the different PBA volumes V ∗

PBA.

3. The pressure values p∗ are plotted with respect to the corresponding piston displace-
ments u∗; this graph represents the relationship existing between u and p for the studied
PBA.
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6.3. Results of the model

6.3 Results of the model

6.3.1 Modeling of the original PBA
The original PBA described in [49] has been modeled with the numerical model described in
the previous section. The original PBA will hereafter be referred to as "Konishi’s PBA" to
distinguish it from its modeled counterpart.
The size of Konishi’s PBA is 16 mm× 16 mm while the size of its cavity is 10 mm× 10 mm;
the cavity is located at the centre of the actuator. Only this cavity can be modeled by the
numerical model and the parameters of Konishi’s PBA are summarized in Table 6.1. The
values of the Young’s moduli of the silicone rubber and the polyimide, given in Table 6.1,
have been looked for with the Cambridge Engineering Selector (CES) software. Indeed, these
values were not specified in the description of Konishi’s PBA in [49].

Parameter Value
length of the cavity L 10 10

−3
m

width of the cavity b 10 10
−3

m

length of the actuator L�
16 10

−3
m

width of the actuator b� 16 10
−3

m

membrane thickness e 200 10
−6

m

beam thickness h 50 10
−6

m

membrane Young’s modulus Em silicone rubber: 0.005 to 0.05 10
9

Pa

beam Young’s modulus Eb polyimide: 2.07 to 2.76 10
9

Pa

pressure p pmax = 65.1 kPa

beam inertia Ib Ib =
b�h3

12 + 2
Em
Eb

�
b�−b

2 e3

12 + e b�−b
2 (

e+h
2 )

2

�

Table 6.1: Parameters of Konishi’s PBA described in [49].

The total width b� of Konishi’s PBA is 16 mm while the width b of the cavity equals
10 mm and the surrounding edges of the cavity, where the membrane and the beam are
glued to each other, contribute to the inertia of the beam. Fig. 6.8 presents the cross-section
of the actuator; the areas contributing to the inertia of the beam are colored in grey. As
can be seen a part of the membrane (areas no. 1 and 2) contributes to it. To take the con-
tributions of areas no. 1, 2 and 3 into account, the inertia of the beam is computed as follows:

Ib =
b�h3

12 + 2
Em
Eb

�
b�−b

2 e3

12 + e b�−b
2 (

e+h
2 )

2

�
(6.37)

b (b’-b)/2(b’-b)/2

e

h

1 2

3

{
{

membrane

beam Q

Q* Q**

b’

Figure 6.8: Cross-section of Konishi’s PBA described in [49]. The grey area contributes to
the inertia of the beam.

Fig. 6.10, 6.12 and 6.13 present the results provided by the numerical model for p = 2 kPa,
Em = 0.0275 10

9
Pa and Eb = 2.415 10

9
Pa (the values chosen for Em and Eb are the mid
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values of the ranges given in Table 6.1):

• As can be seen in Fig. 6.10, when the pressure increases up to 0.76 kPa, the free end of
the modeled PBA moves upwards; this behaviour corresponds to that of Konishi’s PBA
and is thus physically correct. Above 0.76 kPa, the free end of the modeled PBA moves
downwards. Hence, according to the numerical model, the PBA presents a bidirectional
motion: when pressurized, the PBA moves its end upwards, until a given pressure level
is reached and above this level, the PBA tip is moved downwards. This behaviour has
been experimentally noticed by [50] and by Benjamin Gorissen and Michael De Volder
of the KUL, for PBAs made of two layers of the same material (the same PDMS) and of
different thicknesses (see Fig. 6.11). However, Konishi’s PBA is made of two different
materials and no bidirectional motion has been reported for it in [49].
As can be noticed in Fig. 6.12 and 6.13, the numerical model predicts that the change
in actuation direction happens instantaneously for a given pressure level. However, in
practice, this happens continuously.
As can be seen in Fig. 6.10, the representation of the membrane is not correct when
the PBA tip moves downwards.

• As can be seen in Fig. 6.12, for the upwards motion phase, the Y-displacements ∆y0

predicted by the numerical model:

– are of the same order of magnitude than those measured on Konishi’s PBA.
The numerical model predicts the tip displacements of the PBA cavity, as pre-
sented in Fig. 6.1. However, the measurements performed on Konishi’s PBA are
the tip displacements of the 16 mm × 16 mm actuator and not the tip displace-
ments of its 10 mm×10 mm cavity (see Fig. 6.9). The tip displacements measured
on Konishi’s PBA are thus larger than the tip displacements of its cavity.

16 mm

10 mm

p

p

Figure 6.9: Schematic cross-section views of Konishi’s PBA (described in [49]): PBA at
rest and pressurized PBA (p = pressure) on the left hand side and the right hand side,
respectively. The PBA is fixed as a cantilever and the displacements are measured at its tip.
Figure adapted from [49].

– have an evolution with the pressure p similar to that of the measurements per-
formed on Konishi’s PBA. However, the maximum pressure p∗ = 0.76 kPa, for
which upwards displacements are predicted by the numerical model, is nearly
ninety times smaller than for Konishi’s PBA (p∗ = 65.1 kPa).
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p = 2 kPa
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Modeling of Konishi’s PBA 
with the numerical model
          pmax = 2 kPa

p = 780 Pa

p = 760 Pa

Figure 6.10: Modeling of Konishi’s PBA (described in [49]) with the numerical model: cross-
section of the PBA for a pressure p up to 2 kPa (the different representations of the cross-
section correspond to pressures spaced out by about 100 Pa). The thin and thick lines
represent the membrane and the beam, respectively. As can be seen, the numerical model
predicts a bidirectional motion of the PBA.
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Figure 6.11: Bidirectional motion of a PBA made of two layers of the same material (the
same PDMS) and of different thicknesses (see (i) for the PBA at rest). When pressurized,
the PBA moves its end upwards (see (ii)) until a given pressure level is reached; above this
level, the PBA tip is moved downwards (see (iii)). Figure from [50].
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Figure 6.12: Y-displacement ∆y0 of the PBA free end with respect to the pressure p. Com-
parison between the measurements performed on Konishi’s PBA (described in [49]) and the
results provided by the numerical model. The measurements on Konishi’s PBA come from
[49]. As can be seen, the numerical model predicts a bidirectional motion of the PBA and in
the upwards motion phase, the measurements are of the same order of magnitude than the
results of the numerical model.
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Figure 6.13: Modeling of Konishi’s PBA (described in [49]) with the numerical model: X-
displacement ∆x0 of the PBA free end with respect to the pressure p. As can be seen, the
numerical model predicts a bidirectional motion of the PBA.
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6.3.2 Modeling of the test bench PBA
The PBA used on the test bench and described in Section 4.2.2 has been modeled with
the numerical model. This prototype will hereafter be referred to as "test bench PBA" to
distinguish it from its modeled counterpart.
The size of the test bench PBA is 50 mm×60 mm while the size of its cavity is 40 mm×40 mm.
Only this cavity can be modeled by the numerical model and the parameters of the test bench
PBA are summarized in Table 6.2. The values of the polyurethane Young’s modulus, given
in Table 6.2, have been looked for with the Cambridge Engineering Selector (CES) software.
Indeed, the PRONAL company which has manufactured the actuators could not specify these
values.

Parameter Value
length of the cavity L 40 10

−3
m

width of the cavity b 40 10
−3

m

length of the actuator L�
50 10

−3
m

width of the actuator b� 60 10
−3

m

membrane thickness e 0.5 10
−3

m

beam thickness h 1 10
−3

m

membrane and beam polyurethane: minimum found value = 0.0025 10
9

Pa

Young’s moduli Em and Eb maximum found value = 2.07 10
9

Pa

pressure p max 20− 30 kPa (see Section 4.2.2)

beam inertia Ib Ib =
b�h3

12 + 2
Em
Eb

�
b�−b

2 e3

12 + e b�−b
2 (

e+h
2 )

2

�

Table 6.2: Parameters of the test bench PBA.

The total width b� of the test bench PBA is 60 mm while the width b of the cavity equals
40 mm and the surrounding edges of the cavity, where the membrane and the beam are fixed
to each other, contribute to the inertia of the beam. Hence, exactly as for Konishi’s PBA,
Fig. 6.8 presents the cross-section of the actuator and the areas contributing to the inertia of
the beam are colored in grey. To take the contributions of areas no. 1, 2 and 3 into account,
the inertia of the beam is computed with the formula (6.37).
Fig. 6.15 to 6.18 present the results provided by the numerical model for p = 25 kPa and
Em = Eb = 1.03625 10

9
Pa (the value chosen for Em and Eb is the mid value of the range

given in Table 6.2):

• As can be seen in Fig. 6.15, when the pressure p increases up to 25 kPa, the free end
of the modeled PBA moves upwards. This behaviour corresponds to that of the test
bench PBA and is thus physically correct.

• As can be seen in Fig. 6.16, 6.17 and 6.18, when the pressure p increases, the PBA
free end moves upwards and ∆x0 and ∆y0 increase in absolute value. Besides, it can
be noticed that:

– the displacements ∆x0 and ∆y0 predicted by the numerical model are of the same
order of magnitude than those measured on the test bench PBA.

– the displacements ∆y0 predicted by the numerical model are larger than those
measured on the test bench PBA, all the more that the numerical model predicts
the displacements of the cavity tip (see point A� in Fig. 6.14) and that, as explained
in Section 4.3, the measurements ∆x0 and ∆y0 made on the test bench PBA are
the displacements of a point located 5 mm far from the cavity tip (see point B� in
Fig. 6.14). This implies than the tip displacements measured on the test bench
PBA are larger, in absolute value, than the tip displacements of its cavity.
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Figure 6.14: Schematic cross-section of the test bench PBA. The numerical model predicts
the X- and Y- displacements of point A� (∆x�0 and ∆y�0) while the measurements performed
on the test bench PBA are the X- and Y- displacements of point B� (∆x0 and ∆y0).

– the displacements ∆x0 of the cavity tip predicted by the numerical model are
smaller, in absolute value, than the measurements performed on the test bench
PBA but, as explained before, these measurements are larger, in absolute value,
than the tip displacements of the cavity (see Fig. 6.14).

– the displacements ∆y0 predicted by the numerical model present an evolution with
the pressure p similar to that of the measurements performed on the test bench
PBA. This is not the case for the displacements ∆x0 predicted by the numerical
model.

As already said, the displacements ∆y0 predicted by the numerical model are larger than
those measured on the test bench PBA for the same pressure. The predictions of the numer-
ical model have been achieved for large Young’s moduli Em and Eb. If the Young’s moduli
and the pressure keep the same ratio, the same displacements ∆x0 and ∆y0 are predicted
by the model. This means that if the Young’s moduli of the test bench PBA are in reality
ten times smaller than those used to establish the curves of Fig. 6.15 to 6.18, the same
displacements ∆x0 and ∆y0 will be predicted by the numerical model but for a maximum
pressure that is ten times smaller than p = 25 kPa. However, since the actual Young’s mod-
uli are not known, it is difficult to conclude about the results provided by the numerical model.

If the pressure is increased above 25 kPa, the numerical model predicts that the test
bench PBA has a bidirectional motion and that the change in actuation direction happens
for p = 32 kPa.
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Figure 6.15: Modeling of the test bench PBA with the numerical model: evolution of the PBA
cross-section with the pressure p. When the pressure p increases, the PBA free end moves
upwards. The thin and thick lines represent the membrane and the beam, respectively. The
different representations of the cross-section correspond to pressures spaced out by 2.5 kPa.
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Figure 6.16: X-displacement ∆x0 of the PBA free end with respect to the pressure p. When
the pressure p increases, the PBA free end moves upwards and ∆x0 increases in absolute
value. The thick line is computed by the numerical model. The crosses are the experiments
of the DOE (described in Section 5.2.1) that has been applied to the test bench PBA; the
thin line is the experimental model ∆x0 = ∆x0(p) deduced from these experiments.
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Figure 6.17: Y-displacement ∆y0 of the PBA free end with respect to the pressure p. When
the pressure p increases, the PBA free end moves upwards and ∆y0 increases. The thick
line is computed by the numerical model. The crosses are the experiments of the DOE
(described in Section 5.2.1) that has been applied to the test bench PBA; the thin line is the
experimental model ∆y0 = ∆y0(p) deduced from these experiments.
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Figure 6.18: Y-displacement ∆y0 of the PBA free end with respect to its X-displacement
∆x0. When the pressure p increases, the PBA free end moves upwards and ∆x0 and ∆y0

increase in absolute value. The thick line is computed by the numerical model. The crosses
are the experiments of the DOE (described in Section 5.2.1) that has been applied to the test
bench PBA; the thin line is the experimental model ∆y0 = ∆y0(∆x0) deduced from these
experiments.
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6.4 Discussion and conclusions
As already said,

• the upwards Y-displacements ∆y0 predicted by the numerical model are of the same or-
der of magnitude than the measurements made on Konishi’s PBA but they are achieved
for a pressure that is much lower than the actual pressure.

• the Y-displacements ∆y0 predicted by the numerical model are larger than those mea-
sured on the test bench PBA for the same pressure. Besides, these predictions have
been achieved for Young’s moduli Em and Eb that are maybe too large compared to
the actual Young’s moduli of the test bench PBA.

This means that the PBA of the numerical model is less stiff than its real counterpart. This
can be explained by the fact that some of the assumptions on which the model rests are too
far from the reality.
Indeed, according to hypothesis 1: "When pressurized, the PBA deforms in such a way that
its cross-section is identical along its width; this cross-section is presented in Fig. 6.1. What
happens in the surroundings of the PBA outline is thus assumed to be negligible and this first
hypothesis allows an analysis in two dimensions (in the plane xy) of the PBA".
Hence, the model assumes that the membrane is fixed to the beam only by the two sides
placed in the width direction. In practice however, both layers of the PBA are fixed to one
another along their four sides. The model neglects thus the forces applied to the membrane
along the sides placed in the length direction and the cross-section of the PBA is not iden-
tical along the width. Hence, in practice, the shear stresses are probably not negligible in
the membrane (assumption 5) and the stresses σ not uniform in the membrane (assumption
6). By neglecting all these phenomena, the model leads to a PBA less rigid than the real
prototype.

Besides, in the case of Konishi’s PBA and of the test bench PBA, hypothesis 3 is not
valid. Indeed, according to this assumption, the lower PBA layer is modeled as a beam.
However, Konishi’s PBA and the test bench PBA have dimensions such that L = b while by
definition, a beam has a length which is larger than its two other dimensions. Hence, the
bottom layer of Konishi’s PBA and of the test bench PBA should better be modeled by a
plate.
In addition to this, in the case of Konishi’s PBA, since the cavity is placed at the centre
of the actuator, the membrane applies a pulling force F at two places to the beam: at its
beginning and at its end. However, the numerical model only takes into account the pulling
force applied to the end of the beam.

In conclusion, a PBA modeled with the numerical model will be less stiff than its real
counterpart and some of the assumptions on which the model rests are not verified in re-
ality; this leads to large differences between the predictions provided by the model and the
measurements performed on the prototypes (e.g. too large displacements, too low pressures,
incorrect shape of the evolution of the X-displacements ∆x0 with respect to the pressure).
However, the numerical model is able to predict the bidirectional behaviour of a PBA and
allows to better understand the physics underlying. The bidirectional behaviour is due to
the pressure applied to the beam and to the force applied by the pressurized membrane to
the beam. If the force applied by the membrane is predominant, the PBA free end moves
upwards while if the pressure is predominant, it moves downwards.
It has to be mentioned that the numerical model seems to predict that all PBAs show this
bidirectional behaviour while in practice, this behaviour has been reported for PBAs com-
pletely made of the same material and it is not established whether this behaviour happens
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for PBAs whose layers are made of different materials.

Looking at the equations of the model, it can be noticed that the bending stiffness of

the beam equals EbIb = Eb
b�h3

12 + 2Em

�
b�−b

2 e3

12 + e b�−b
2 (

e+h
2 )

2

�
. Hence, according to the

numerical model, since the thicknesses h and e of the beam and the membrane are to the
power three, they will have more influence on the PBA displacements than the widths b and
b� of the cavity and the actuator, and than the Young’s moduli Eb and Em of the beam and
the membrane.
If a dimensional analysis is performed on the model parameters (b� is not considered here)
L, b, Em, Eb, e, h, p, ∆x and ∆y, the corresponding dimensionless numbers are π1 =

e
h ,

π2 =
b
h , π3 =

L
h , π4 =

∆x
h , π�4 =

∆y
h , π5 =

Em
Eb

and π6 =
p

Eb
, which are linked by the following

two relationships:
π4 =

∆x
h = f(π1, π2, π3, π5, π6) (6.38)

π�4 =
∆y
h = g(π1, π2, π3, π5, π6) (6.39)

Hence, if the dimensionless numbers π1, π2, π3, π5 and π6 keep the same values, π4 =
∆x
h and

π�4 =
∆y
h also keep the same values. This means that if the dimensions of the PBA L, b, e

and h are multiplied by a given factor, the displacements ∆x and ∆y will increase by the
same factor. Besides, if the Young’s moduli Em and Eb and the pressure p are multiplied by
a given factor, the displacements ∆x and ∆y will not change.

The numerical model could be modified in order to predict the displacements of the actua-
tor tip rather than the displacements of the cavity tip. This would allow a better comparison
between the predictions of the numerical model and the measurements performed on Kon-
ishi’s PBA and the test bench PBA.

However, at this stage, it is not possible to conclude whether the numerical model could
be used to predict the qualitative effects, on the tip displacements, of the change of a PBA
parameter. To answer this question, more experimental validations are required with proto-
types whose parameters are perfectly known.
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