
Chapter 5

The PVFP principle

5.1 Introduction

5.1.1 Understanding the PVFP principle with a simple flexible flu-
idic actuator

As explained before, a flexible fluidic actuator called "the Flexible Microactuator" is pre-
sented in [78] and it is suggested that the measurements of the fluid pressure and of the
volume of supplied fluid allow to determine and control the position of the actuator and the
force it develops. This property, that is referred to as the "Pressure-Volume-Force-Position
principle" or "PVFP principle", means being able to determine the displacement of a flexible
fluidic actuator and the force it develops without using a displacement sensor or a force sensor
[78].

To better understand this principle, let us consider the simple flexible fluidic actuator
presented in the left hand side of Fig. 5.1. It is composed of a cylinder whose top is closed
by a flexible membrane. The cylinder has a length d and a circular section S of radius R;
S = πR2. The atmospheric pressure is assumed to be constant and known and the pressure
is assumed to be constant.
The outside absolute pressure pout equals the atmospheric pressure patm and initially, the
inner absolute pressure pin is such that pin = pout = patm. When a displacement u is imposed
to the piston, the inner pressure pin increases and the membrane deforms and takes the shape
of a spherical cap of radius r (see the right hand side of Fig. 5.1). The volume of the spherical
cap Vcap is completely determined by its radius r and is computed as follows:

Vcap(r) =
2πr3
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If Poisson’s effect is neglected, the membrane surface tension γ is also completely determined
by the membrane radius r and is calculated with the following equations:

γ = σe (5.2)

σ = Em
∆L

L
(5.3)

∆L = 2r arcsin(
R

r
)− 2R (5.4)

where σ are the stresses in the membrane, e is the membrane thickness, Em is the membrane
Young’s modulus, ∆L is the lengthening of the initial membrane length L = 2R.
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Figure 5.1: Flexible fluidic actuator composed of a cylinder whose top is closed by a flexible
membrane. When a displacement u is imposed to the piston, the inner pressure pin increases
and the membrane deforms and takes the shape of a spherical cap of radius r. According
to the PVFP principle, knowing the values of pin and u allows to determine the vertical
displacement of point A and the external pressure pext applied to the membrane in addition
to the atmospheric pressure patm (see Fig. 5.2).

The volume of fluid supplied to the actuator is considered to be the volume swept by the
piston during its displacement; this swept volume is proportional to the piston displacement
u and equals Su. Therefore, the piston displacement u will be the variable used for the PVFP
principle rather than the swept volume.
According to the PVFP principle, knowing the values of pin and u allows to determine the
displacement of the flexible fluidic actuator and the force it develops. For the actuator consid-
ered here, the vertical displacement of point A (see Fig 5.1) will be determined and instead of
the force developed by the actuator it is the external pressure pext applied to the membrane
(in addition to the atmospheric pressure patm (see Fig. 5.2)) that will be determined.

First, no external pressure is applied to the membrane and the configuration is that of
the right hand side of Fig. 5.1; two cases can be considered:

1. The actuation fluid is incompressible. In this case, the cylinder is initially filled with a
volume V = Sd of fluid. When a displacement u is imposed to the piston, the volume of
fluid in the cylinder becomes V �

= S(d−u) and the volume of the spherical cap equals
Vcap(r) = V −V �. Knowing Vcap, equation (5.1) allows to determine the corresponding
radius r and knowing r, the vertical displacement of point A can be determined.
Since r is known, γ(r) can be computed with equations (5.2) to (5.4). Concerning the
inner pressure pin, it is linked to the outside pressure pout, the membrane radius r and
the membrane surface tension γ by the Laplace’s equation:

pin − pout =
2γ

r
(5.5)

Since the values of r and γ are known, if the inner pressure pin is measured, the
Laplace’s equation allows to determine the outside pressure pout. It is thus discovered
that pout = patm and it is deduced that there is no external pressure applied to the
membrane.

2. The actuation fluid is compressible. In this case, the cylinder is initially filled with
a volume V = Sd of fluid at atmospheric pressure patm. When a displacement u is
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imposed to the piston, the volume of fluid in the cylinder becomes V �
= S(d − u).

If the pressure pin is measured, r and pout can be determined by the following two
equations:

patmSd = pin(Vcap(r) + S(d− u)) (5.6)

pout = pin −
2γ(r)

r
(5.7)

Equation (5.7) is the Laplace’s equation while equation (5.6) is the gas law applied
to the system whose fluid quantity is constant and assuming that the temperature is
constant.
Knowing the value of r, the vertical displacement of point A can be determined and
from the value of pout, it can be deduced that there is no external pressure applied to
the membrane.

As can be seen, when the membrane is not loaded by an external pressure pext, the knowledge
of the piston displacement u and of the pressure pin allows to determine the displacement of
the actuator and to establish that the actuator is not loaded.

Keeping the piston position constant, if an external load is applied to the membrane in
the form of an external pressure pext, the inner pressure pin increases and the radius r of the
spherical cap decreases, as represented in Fig. 5.2.
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Figure 5.2: Flexible fluidic actuator composed of a cylinder whose top is closed by a flexible
membrane. When a displacement u is imposed to the piston, the inner pressure pin increases
and the membrane deforms and takes the shape of a spherical cap of radius r. Afterwards,
keeping the piston position constant, if an external pressure pext is applied to the membrane
in addition to the atmospheric pressure patm, the inner pressure pin increases and the radius
r of the spherical cap decreases. According to the PVFP principle, knowing the values of
pin and u allows to determine the vertical displacement of point A and the external pressure
pext.

Again, two cases can be considered:

1. The actuation fluid is incompressible. In this case, the volume of the cap Vcap does not
change since the fluid volume V � in the cylinder remains the same. As a consequence,
the membrane radius r also remains the same as well as γ(r) and as the vertical dis-
placement of point A. If pin is measured, the external pressure pext can be determined
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with the following two equations (the first one being the Laplace’s equation):

pout = pin −
2γ(r)

r
(5.8)

and

pext = pout − patm (5.9)

In fact, since pout increases by an amount pext while the shape of the membrane does
not change, pin increases by the same amount.

2. The actuation fluid is compressible. Since the value of u is known, if pin is measured,
the following three equations allow to determine pext and r (the second equation is the
Laplace’s equation and the first one is the gas law applied to the system whose fluid
quantity is constant and assuming that the temperature is constant) :

patmSd = pin(Vcap(r) + S(d− u)) (5.10)

pout = pin −
2γ(r)

r
(5.11)

pext = pout − patm (5.12)

The vertical displacement of point A can then be determined from the value of r.

As can be seen, when the membrane is loaded, the knowledge of the piston displacement u
and of the inner pressure pin allows to determine the displacement of the actuator and the
external pressure applied to it.

For the simple actuator discussed in this section, the implementation of the PVFP prin-
ciple consists thus in the equations that model the behaviour of the actuator and that allow
to determine the displacement of the actuator and the external pressure applied to it, on the
basis of the values of u and pin.

In the mathematical developments presented in this section, the temperature is considered
to be constant as well as the atmospheric pressure. However, in practice, it can happen that
the ambient temperature or the atmospheric pressure changes. Let us now consider the
effect of those changes on the predictions provided by PVFP principle, in the cases of an
incompressible and of a compressible fluid.

1. The actuation fluid is incompressible:

• If the atmospheric pressure increases by an amount p∗, the absolute outside and
inside pressures pout and pin increase by the same amount and the PVFP princi-
ple implemented on the actuator perceives this as the application of an external
pressure pext = p∗. To get rid of the influence of an atmospheric pressure change,
a gauge pressure sensor could be used to measure pin or the atmospheric pressure
could be measured and updated, if necessary, in the implementation of the PVFP
principle (i.e. in equation (5.9)).

• If the ambient temperature increases by a small amount such that the volume
of fluid does not change (no expansion), it will have no influence on the results
provided by the PVFP principle, i.e. the predictions of the actuator displacement
and of the external pressure applied to the membrane will not be distorted.
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2. The actuation fluid is compressible.

• If the atmospheric pressure increases by an amount p∗, the absolute outside pres-
sure pout increases by the same amount, the radius r of the spherical cap decreases
as well as the vertical displacement of point A and pin increases but not by the
same amount as pout. Indeed, if pout and pin increased by the same amount, equa-
tion (5.7) would lead to an unchanged radius r while in practice r decreases. The
PVFP principle implemented on the actuator perceives the change of the atmo-
spheric pressure as the application of an external pressure pext = p∗. As already
said, the change of the atmospheric pressure has lead to a change of the vertical
displacement of point A but the prediction of the PVFP principle, according to
which pext = p∗, can be used to compensate this change and to restore the dis-
placement of point A. The PVFP principle does not allow to distinguish a change
of the atmospheric pressure from the application of a real external pressure pext;
to be able to do so, it is necessary to measure the atmospheric pressure.
The atmospheric pressure needs thus to be measured and updated in the imple-
mentation of the PVFP principle (i.e. in equation (5.12)) and its effect on the
displacement of point A needs to be compensated if it is non-negligible.

• If the ambient temperature increases, the volume of fluid expands in the actuator.
Since the volume V � in the cylinder does not change because the piston position
is imposed, the volume Vcap of the spherical cap increases as well as the vertical
displacement of point A. The inner pressure pin increases and the PVFP principle
implemented on the actuator perceives this change as the application of an external
pressure pext = p∗ that would have decreased the displacement of point A. Hence,
the prediction of the PVFP principle, according to which pext = p∗, can not
be used to compensate the change in the displacement of point A due to the
temperature increase; indeed, doing so would lead to a further increase of the
displacement of this point! The temperature needs thus to be measured and taken
into account in the implementation of the PVFP principle and its effect on the
displacement of point A needs to be compensated.

In conclusion, for the simple actuator considered here, the PVFP principle is applicable with
an incompressible or a compressible actuation fluid. Besides, if an incompressible actuation
fluid and a gauge pressure sensor (to measure pin) are used, the predictions provided by the
PVFP principle implemented on the actuator will not be influenced by the changes of the
atmospheric pressure and of the temperature.

5.1.2 Implementing the PVFP principle on the Pneumatic Balloon
Actuator

The Pneumatic Balloon Actuator (PBA) has been chosen to study the PVFP principle. This
actuator is described in Section 4.2 and is installed on the test bench described in Sections
3.5 and 4.3.
Fig. 5.3 is a schematic representation of the PBA linked to the cylinder of the test bench. The
actuation fluid is air. When a displacement u is imposed to the piston, the inner pressure pin

increases and the PBA inflates and its free end A moves upwards. The vertical and horizontal
displacements of this point are ∆y0 and ∆x0, respectively. Afterwards, keeping the piston
position constant, if a weight w is hung from the PBA free end, the inner pressure pin

increases by an amount ∆p and the displacements ∆y and ∆x of the PBA free end decrease.
According to the PVFP principle, knowing the values of pin and u allows to determine the
displacements of point A and the value of the weight w.
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5.1. Introduction

As explained before, the pressure variation ∆p due to the loading of the PBA with a weight
is measured with another sensor than the inner pressure p due to the piston displacement (p
is the gauge pressure corresponding to the absolute pressure pin).
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Figure 5.3: Pneumatic Balloon Actuator (PBA) linked to the cylinder of the test bench. The
actuation fluid is air. When a displacement u is imposed to the piston, the inner pressure
pin increases and the PBA inflates and its free end A moves upwards. The vertical and
horizontal displacements of this point are ∆y0 and ∆x0, respectively. Afterwards, keeping
the piston position constant, if a weight w is hung from the PBA free end, the inner pressure
pin increases and the displacements ∆y and ∆x of the PBA free end decrease. According to
the PVFP principle, knowing the values of pin and u allows to determine the displacements
of point A and the value of the weight w.

To implement the PVFP principle on the PBA, experiments are performed in order to
establish experimental models of the PBA; this is done is Section 5.2.1 and the following
experimental models are established:

• p = p(u)

• ∆x0 = ∆x0(u)

• ∆y0 = ∆y0(u)

• ∆p = ∆p(u,w)

• ∆x = ∆x(u,w)

• ∆y = ∆y(u,w)

Afterwards, in Section 5.2.2, the PVFP principle is used to predict the PBA displacements
∆x and ∆y and the load w attached from its free end, on the basis of the measurements of
u and p. In summary, this is done as follows:

• If it is known that the PBA is not loaded (i.e. no pressure variation ∆p is measured
while the piston position is kept constant), the measurement of the piston displacement
u allows to determine the inner pressure p and the PBA displacements ∆x0 and ∆y0,
thanks to the first three experimental models.
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5.2. Experimental study of the PVFP principle

• If it is known that the PBA is loaded (i.e. a pressure variation ∆p is measured while
the piston position is kept constant), the measurements of the piston displacement u
and of the pressure variation ∆p allow to determine the PBA displacements ∆x and
∆y as well as the load w, thanks to the last three experimental models.

Finally, Section 5.2.3 studies the hysteresis of the PBA and Section 5.3 discusses the
relevance of the PVFP principle and its practical implementation.

5.2 Experimental study of the PVFP principle

5.2.1 Establishing experimental models of the PBA’s behaviour

The aim of the experiments is to establish the following relationships:

• p = p(u)

• ∆x0 = ∆x0(u)

• ∆y0 = ∆y0(u)

• ∆p = ∆p(u,w)

• ∆x = ∆x(u,w)

• ∆y = ∆y(u,w)

To do so, a design of experiments (DOE) has been established with the help of the Design-
Expert 8 software [11]. Since there are two factors, u and w, a response surface design has
been chosen and more precisely a central composite design (CCD). A CCD has been selected
because quadratic models can be established with it and because previous experiments re-
vealed that the relationships listed above can be approached by polynomials not higher than
quadratic ones. A CCD will lead to models giving very good predictions in the middle of
the experimental space u − w; it is a factorial design to which center and axial points are
added to estimate the quadratic terms. The DOE proposed by the software counts thirteen
experiments, i.e. combinations (u,w) of the factors u and w, that have to be performed in a
random order. These experiments are represented in the experimental space u − w, in Fig.
5.4.

As can be seen,

• five experiments repeat the same combination (u,w) which is placed at the center of
the experimental space; these replicated center points are used to estimate pure error
for the lack of fit test. Lack of fit indicates how well the chosen model fits the data.
Moreover, these center points are used to estimate the quadratic terms.

• four experiments are combinations (u,w) placed on the horizontal or vertical axis pass-
ing through the center point of the experimental space; these axial points are also used
to estimate the quadratic terms.

• four experiments are combinations (u,w) which are not placed on the horizontal nor
the vertical axis passing through the center point of the experimental space; these
experiments correspond to the factorial design associated with the two factors u and
w.
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Figure 5.4: Experiments of the Design of Experiments (DOE) performed to establish the
following relationships for the studied PBA: p = p(u), ∆x0 = ∆x0(u), ∆y0 = ∆y0(u),
∆p = ∆p(u,w), ∆x = ∆x(u,w), ∆y = ∆y(u,w). The chosen DOE is a central composite
design of thirteen experiments: five central points, four axial points and four other points
corresponding to the factorial design associated to the two factors u (= piston displacement)
and w (= weight hung to the PBA free end).

• the DOE requires to perform specific experiments. However, in practice, if the linear
motor is asked to perform a given piston displacement u∗, it will perform a displacement
u� close to u∗ but not equal to u∗; the difference between u∗ and u� can be as large as
1 mm. Besides, some weights were not feasible, such as 3.79 g or 46.21 g, and were
replaced by 4 g and 46 g, respectively. Hence, the DOE has been updated to take these
differences into account.

• the practical range of u is [4 mm, 46 mm]. The lower value has been chosen because
the corresponding position of the PBA is quite well repeatable. Indeed, the PBA needs
to be a little bit pressurized to have a repeatable position. The upper value allows to
pressurize the PBA without exceeding its maximum admitted pressure of 0.3 bar. The
position of the PBA has been measured for u = 4.46 mm and it has been considered to
be the PBA rest position, i.e. no X- or Y-displacements, since then.

For each experiment, the required piston displacement u has been reached. Then the
pressure p and the X- and Y-displacements ∆x0 and ∆y0 have been measured. Afterwards,
the specified weight w has been hung from the PBA free end and the pressure variation ∆p,
the X- and Y-displacements ∆x and ∆y have been measured. The weight has then been
removed before performing the next experiment.
Fig. 5.5 to 5.11 present the results of this DOE. The crosses and circles indicate the ex-
periments (some points may be superimposed) while the lines and surfaces represent the
experimental models established on the basis of these experiments.
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Figure 5.5: Pressure p as a function of the piston displacement u, when the PBA is not
loaded. The crosses represent the thirteen performed experiments (some points may be
superimposed) and the line is the experimental model p = p(u) established on the basis of
these experiments.
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Figure 5.6: X-displacement ∆x0 of the PBA free end as a function of the piston displacement
u, when the PBA is not loaded. The crosses represent the thirteen performed experiments
(some points may be superimposed) and the line is the experimental model ∆x0 = ∆x0(u)

established on the basis of these experiments.
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Figure 5.7: Y-displacement ∆y0 of the PBA free end as a function of the piston displacement
u, when the PBA is not loaded. The crosses represent the thirteen performed experiments
(some points may be superimposed) and the line is the experimental model ∆y0 = ∆y0(u)

established on the basis of these experiments.

−6 −5 −4 −3 −2 −1 0 1
−2

−1

0

1

2

3

4

5

6

7

Y−displacement ! y0 of the PBA free end as a function of its X−displacement ! x0, 
when the PBA is not loaded                                              

X−displacement ! x0 of the PBA free end (mm)

Y−
di

sp
la

ce
m

en
t !

 y
0 o

f t
he

 P
BA

 fr
ee

 e
nd

 (m
m

)

 

 
experiments
experimental model ! y0=! y0(! x0)

Figure 5.8: Y-displacement ∆y0 of the PBA free end as a function of its X-displacement
∆x0, when the PBA is not loaded. The crosses represent the thirteen performed experiments
(some points may be superimposed) and the line is the experimental model ∆y0 = ∆y0(∆x0)

established on the basis of these experiments.
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Figure 5.9: Pressure variation ∆p as a function of the piston displacement u and of the weight
w hung from the PBA free end. The crosses represent the thirteen performed experiments
(some points may be superimposed) and the surface is the experimental model ∆p = ∆p(u,w)

established on the basis of these experiments.

Figure 5.10: X-displacement ∆x of the PBA free end as a function of the piston displacement
u and of the weight w hung from the PBA free end. The crosses represent the thirteen per-
formed experiments (some points may be superimposed) and the surface is the experimental
model ∆x = ∆x(u,w) established on the basis of these experiments. The circles represent
the experiments performed for a PBA not loaded (these are the experiments presented in
Fig. 5.6).
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Figure 5.11: Y-displacement ∆y of the PBA free end as a function of the piston displacement
u and of the weight w hung from the PBA free end. The crosses represent the thirteen per-
formed experiments (some points may be superimposed) and the surface is the experimental
model ∆y = ∆y(u,w) established on the basis of these experiments. The circles represent
the experiments performed for a PBA not loaded (these are the experiments presented in
Fig. 5.7).
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The equations of the experimental models are the following (the values of the coefficients
are given in Table 5.1):

p = c1 + c2u + c3u
2 (5.13)

∆x0 = d1 + d2u (5.14)

∆y0 = f1 + f2u + f3u
2 (5.15)

∆p = b1 + b2u + b3w + b4u w + b5u
2

+ b6w
2

+ b7u
2w + b8u w2 (5.16)

∆x = g1 + g2u + g3w + g4u w + g5u
2

+ g6w
2 (5.17)

∆y = a1 + a2u + a3w + a4u w + a5u
2 (5.18)

Coefficients Coefficients
a1 = −1.155 c1 = −0.8826

a2 = 0.3100 c2 = 0.3656

a3 = −0.2545 c3 = 4.606 10
−3

a4 = 2.887 10
−3 d1 = 0.6049

a5 = −3.327 10
−3 d2 = −0.1348

b1 = −1.135 f1 = −1.089

b2 = 5.067 10
−2 f2 = 0.2913

b3 = 3.313 f3 = −2.787 10
−3

b4 = −0.1048 g1 = 0.2557

b5 = 3.146 10
−3 g2 = −9.785 10

−2

b6 = −1.016 10
−2 g3 = 3.598 10

−2

b7 = 7.688 10
−4 g4 = 7.567 10

−4

b8 = 5.469 10
−4 g5 = −7.232 10

−4

g6 = −5.561 10
−4

Table 5.1: Values of the coefficients of the experimental models

As can be seen,

• the pressure p has a quadratic evolution with respect to the piston displacement u and
if u is increased, p increases.

• the X-displacement ∆x0 has a linear evolution with respect to the piston displacement
u. If u is increased, the PBA free end moves upwards, ∆x0 increases in absolute value
(∆x0 is negative and decreases).

• the Y-displacement ∆y0 has a quadratic evolution with respect to the piston displace-
ment u. If u is increased, the PBA free end moves upwards and ∆y0 increases.

• the pressure variation ∆p has a cubic evolution with respect to the piston displacement
u and to the weight w hung from the PBA free end. For a given piston displacement
u, if the weight w is increased, the pressure variation ∆p increases. On the other hand,
for a given weight w, if the piston displacement u is increased, the pressure variation
∆p decreases.
In practice, when the PBA is not loaded (w = 0), the pressure variation ∆p equals zero
but the experimental model forecasts a pressure variation ∆p up to 8 Pa, as can be
seen in Fig. 5.9 and 5.12. On the other hand, in practice, when there is no pressure
variation (∆p = 0), it means that the PBA is not loaded (w = 0) but the experimental
model forecasts a non-zero weight, apart from one value of u, as can be seen in Fig. 5.9
and 5.13.
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• the X- and Y-displacements ∆x and ∆y have both a quadratic evolution with respect
to the piston displacement u and to the weight w hung from the PBA free end. For
a given piston displacement u, if the weight w is increased, the PBA free end moves
downwards and ∆y decreases. On the other hand, for a given weight w, if the piston
displacement u is increased, the PBA free end moves upwards and ∆y increases.

In Fig. 5.14 and 5.15, it is interesting to notice that the experimental models ∆x0 =

∆x0(u) and ∆y0 = ∆y0(u) are quite similar to the experimental models ∆x = ∆x(u,w) and
∆y = ∆y(u,w), respectively, when there is no load (w = 0). As a consequence, the models
of ∆x and ∆y can be rewritten as follows:

∆x(u,w) ≈ ∆x0(u) + ∆xw(u, w) (5.19)

with

∆xw(u, w) = (g3 + g4u)w + g6w
2 (5.20)

∆y(u,w) ≈ ∆y0(u) + ∆yw(u, w) (5.21)

with

∆yw(u, w) = (a3 + a4u)w (5.22)

With these expressions, one can clearly see that ∆x and ∆y are the results of two contribu-
tions:

1. ∆x0(u) and ∆y0(u): these first contributions are linked to the piston displacement u
when the PBA is not loaded; ∆x|u,w=0 = ∆x0(u) and ∆y|u,w=0 = ∆y0(u).

2. ∆xw(u,w) and ∆yw(u,w): this contribution is linked to the weight w hung from the
PBA free end but also to the piston displacement u. Hence, if a given weight is hung
at the PBA free end, the corresponding X- and Y-displacements ∆xw and ∆yw will
be different for two different piston displacements. The expression 5.22 of ∆yw(u,w)

indicates that ∆yw(u,w) has a linear evolution with respect to the weight w, whose
slope depends on the piston displacement u. In other words, ∆yw(u, w) evolves as a
spring with respect to the weight, whose stiffness depends on the piston displacement:
the higher the piston displacement, the stiffer the spring.
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Figure 5.12: Pressure variation ∆p as a function of the piston displacement u, when the PBA
is not loaded. The solid line is the experimental model ∆p = ∆p(u,w), when there is no
load (w = 0). In practice, ∆p equals zero when the PBA is not loaded but the experimental
model forecasts a value up to 8 Pa.
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Figure 5.13: Weight w hung from the PBA free end as a function of the piston displacement
u, when the pressure variation ∆p equals zero. The solid line is the experimental model
∆p = ∆p(u,w) for ∆p = 0. In practice, when there is no pressure variation, it means that
the PBA is not loaded but the experimental model forecasts a non-zero weight, apart from
one value of u. u does not range above 30 mm because above this value the experimental
model keeps on forecasting negative weights and even weights having an imaginary part.

89



5.2. Experimental study of the PVFP principle

0 5 10 15 20 25 30 35 40 45 50
−6

−5

−4

−3

−2

−1

0

1

X−displacement ! x0 of the PBA free end as a function of the piston displacement u, 
when the PBA is not loaded

Piston displacement u (mm)

X−
di

sp
la

ce
m

en
t !

 x
0 o

f t
he

 P
BA

 fr
ee

 e
nd

 (m
m

)

 

 
experimental model ! x0=! x0(u)

experimental model ! x=! x(u,w = 0)

Figure 5.14: X-displacement ∆x0 of the PBA free end as a function of the piston displacement
u. The solid line is the experimental model ∆x0 = ∆x0(u) while the dashed line is the
experimental model ∆x = ∆x(u,w) when the PBA is not loaded (w = 0). As can be seen,
both models are quite similar.
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Figure 5.15: Y-displacement ∆y0 of the PBA free end as a function of the piston displacement
u. The solid line is the experimental model ∆y0 = ∆y0(u) while the dashed line is the
experimental model ∆y = ∆y(u, w) when the PBA is not loaded (w = 0). As can be seen,
both models are quite similar.
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5.2.2 Application of the PVFP principle: using the PBA as a sensor
Now that the experimental models of the PBA’s behaviour have been established, they can
be used to implement the PVFP principle. As presented in Fig. 5.16, the goal is to use
the measurements of the piston displacement u and of the pressure variation ∆p together
with the experimental models to predict the values of the actuator displacements and of the
weight attached from its end.

piston displacement

pressure variation       (=0)

actuator displacements ∆x0 and ∆y0

∆p

u
p

weight

models 
of the PBA

piston displacement

pressure variation       (≠0)

actuator displacements ∆x and ∆y

∆p w

u

weight

models 
of the PBA

∆x = ∆x(u,w)
∆y = ∆y(u, w)

∆x0 = ∆x0(u)
∆y0 = ∆y0(u)

∆p = ∆p(u, w)

p = p(u)
w = 0

pressure

Figure 5.16: Representation of the implementation of the PVFP principle: on the basis of
the measurements of the the piston displacement u and of the pressure variation ∆p, the
experimental models of the PBA are used to predict the values of the actuator displacements
and of the weight attached to it.

1. If there is no pressure variation while the piston position is kept constant, i.e. ∆p = 0, it
means that the actuator has not been loaded with a weight. Hence, it can be predicted
that w = 0; it is better to say directly that w = 0 than to use the experimental model
∆p = ∆p(u,w) to predict the weight w because, as explained before, this model will
not predict a zero value for the weight if ∆p = 0 (see Fig. 5.13). The experimental
models p = p(u), ∆x0 = ∆x0(u) and ∆y0 = ∆y0(u) (see expressions 5.13, 5.14 and
5.15 and Fig. 5.5, 5.6 and 5.7) can then been used to predict the values p∗, ∆x∗

0 and
∆y∗

0 of p, ∆x0 and ∆y0 on the basis of the piston displacement measurement u

2. If there is a pressure variation while the piston position is kept constant, i.e. ∆p �= 0,
it means that the actuator has been loaded with a weight w. The experimental models
∆p = ∆p(u,w), ∆x = ∆x(u,w) and ∆y = ∆y(u, w) can then been used to predict the
values w∗, ∆x∗ and ∆y∗ of w, ∆x and ∆y on the basis of the piston displacement and
pressure variation measurements u and ∆p.
This is presented in Fig. 5.17, 5.18 and 5.19. First, both measurements u and ∆p are
used together with the experimental model ∆p = ∆p(u, w) to predict the value w∗ of
the weight w that loads the PBA. Indeed, as can be seen in Fig. 5.17, for a given piston
displacement u and a given pressure variation ∆p, there is only one possible prediction
for the weight. Afterwards, the piston displacement measurement u and the predicted
value of the weight w∗ are used together with the experimental models ∆x = ∆x(u,w)

and ∆y = ∆y(u,w) to predict the values ∆x∗ and ∆y∗ of ∆x and ∆y. As can be seen
in Fig. 5.18 and 5.19, there is only one possible prediction for ∆x or ∆y, for a given
piston displacement u and a given weight w∗.
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Figure 5.17: Experimental model ∆p = ∆p(u,w), for a loaded PBA: the weight w hung from
the PBA free end is presented with respect to the pressure variation ∆p, for different values
of the piston displacement u. On the basis of the measurements u and ∆p, this model can
predict the value w∗ of the weight that loads the PBA. Indeed, as can be seen in the figure, for
a given u and a given ∆p, there is only one possible prediction w∗ for the weight. For example,
if u = 10 mm and ∆p = 40 Pa, the experimental model predicts that w∗

= 17.8522 g.
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Figure 5.18: Experimental model ∆x = ∆x(u, w), for a loaded PBA: the X-displacement
∆x of the PBA free end is presented with respect to the weight w, for different values of
the piston displacement u. On the basis of the measurement u and the prediction w∗, this
model can predict the value ∆x∗ of the X-displacement of the PBA. Indeed, as can be seen
in the figure, for a given u and a given w∗, there is only one possible prediction ∆x∗ for the
X-displacement. For example, if u = 10 mm and w∗

= 17.8522 g, the experimental model
predicts that ∆x∗

= −0.1949 mm.
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Experimental model: Y−displacement ! y of the PBA free end as a function of  
the weight w hung from the PBA free end, for different piston displacements u
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Figure 5.19: Experimental model ∆y = ∆y(u,w), for a loaded PBA: the Y-displacement
∆y of the PBA free end is presented with respect to the weight w, for different values of
the piston displacement u. On the basis of the measurement u and the prediction w∗, this
model can predict the value ∆y∗ of the Y-displacement of the PBA. Indeed, as can be seen
in the figure, for a given u and a given w∗, there is only one possible prediction ∆y∗ for the
Y-displacement. For example, if u = 10 mm and w∗

= 17.8522 g, the experimental model
predicts that ∆y∗

= −2.4154 mm.

To test the implementation of the PVFP principle on the studied PBA, the experiments
summarized in Table 5.2 have been performed:

Experiment number Piston displacement (mm) Weight (g) Measurements
1 15.61 0 p, ∆x0, ∆y0

2 15.61 35 ∆p, ∆x, ∆y
3 15.61 15 ∆p, ∆x, ∆y
4 15.61 20 ∆p, ∆x, ∆y
5 19.71 0 p, ∆x0, ∆y0

6 19.71 35 ∆p, ∆x, ∆y
7 19.71 15 ∆p, ∆x, ∆y
8 19.71 20 ∆p, ∆x, ∆y
9 34.36 0 p, ∆x0, ∆y0

10 34.36 35 ∆p, ∆x, ∆y
11 34.36 15 ∆p, ∆x, ∆y
12 34.36 20 ∆p, ∆x, ∆y

Table 5.2: Experiments performed to test the implementation of the PVFP principle on the
studied PBA. For each experiment, the table indicates for the chosen piston displacement u
and weight w as well as the made measurements.

It has to be underlined that for each experiment, the specified weight w has been hung
from the PBA free end and then removed before the next experiment is performed. For each
experiment, the predictions have been made as explained above.
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The experiments no. 1, 5 and 9 and corresponding predictions are presented in Fig. 5.20,
5.21 and 5.22; the PBA is not loaded for these experiments.
As can be seen,

• in Fig. 5.20, the measured pressures p are very close to the predicted ones p∗.

• in Fig. 5.21, the measured X-displacements ∆x0 are larger in absolute value than the
predicted ones ∆x∗

0.

• in Fig. 5.22, the measured Y-displacements ∆y0 are larger than the predicted ones
∆y∗

0 .

Fig. 5.23 and 5.24 present the absolute and relative errors, respectively, on the predictions
of p, ∆x0 and ∆y0. These errors are summarized in Table 5.3. The absolute and relative
errors on a given prediction are computed as follows:

absolute error = measured value− prediction (5.23)

relative error = 100(measured value− prediction)/measured value (5.24)

Parameter Absolute error Relative error
p max 0.24 kPa max 3.30% of the measured value
∆x0 max 0.26 mm in absolute value max 11.26% of the measured value
∆y0 max 0.73 mm max 20.83% of the measured value

Table 5.3: Absolute and relative errors on the predictions of p, ∆x0 and ∆y0.

For the other experiments (i.e. experiments no. 2, 3, 4, 6, 7, 8, 10, 11 and 12), the PBA
is loaded; they are presented, together with the corresponding predictions, in Fig. 5.25, 5.26,
5.27 and 5.28. As can be seen in Fig. 5.26, the measured X-displacements ∆x are larger in
absolute value than the predicted ones ∆x∗.
Fig. 5.29 and 5.30 present the absolute and relative errors, respectively, on the predictions
of w, ∆x and ∆y. These errors are summarized in Table 5.4.

Parameter Absolute error Relative error
w max 1.85 g in absolute value max 10.68% of the measured value, in absolute value
∆x max 0.38 mm in absolute value max 28.81% of the measured value
∆y max 0.55 mm in absolute value experiment no. 3: 61.70% of the measured value

experiment no. 10: 139.40% of the measured value
other experiments: max 20.28% of the measured value,

in absolute value

Table 5.4: Absolute and relative errors on the predictions of w, ∆x and ∆y.

As can be seen in Fig. 5.30 and Table 5.4, experiments no. 3 and 10 have a relative
error on the prediction of ∆y that equals to 61.70% and 139.40% of the measured value,
respectively; on the other hand, the other experiments have a relative error on the prediction
of ∆y of maximum 20.28% of the measured value. To understand these two outliers, one has
to look at the corresponding absolute errors (see Table 5.5). As can be seen, these absolute
errors have reasonable values compared to the rest of the experiments but they are of the
same order of magnitude than the corresponding ∆y measurements and this explains the
high values of the relative errors. The relative error on the prediction of ∆y of experiment

94



5.2. Experimental study of the PVFP principle

no. 8 is not represented in Fig. 5.30 because it is infinite; indeed, the ∆y measurement of
this experiment equals zero (see Table 5.5).
Remark: In Fig. 5.28, it is interesting to notice that the curve ∆y = ∆y(∆x) travelled by
the PBA free end when it is loaded is different according to the piston displacement u.

Experiment number ∆y measurement ∆y∗ prediction Absolute error Relative error
3 −0.39 mm −0.1494 mm −0.2406 mm 61.70% of the

measured value
8 0 mm −0.13 mm 0.13 mm ∞
10 0.26 mm −0.1024 mm 0.3624 mm 139.40% of the

measured value

Table 5.5: Table summarizing the ∆y measurement, the ∆y∗ prediction, the absolute and
relative errors on the prediction of ∆y, for the experiments no. 3, 8 and 10. Experiments
no. 3 and 10 have very large relative errors on the prediction of ∆y (in comparison with the
other experiments) because their absolute errors are of the same order of magnitude than
their ∆y measurements. Experiment no. 8 has an infinite relative error on the prediction of
∆y because its ∆y measurement equals zero.

In conclusion, this section has proved experimentally that the PVFP principle can be
applied to the PBA. The quality of the predictions provided by the PVFP principle imple-
mented on the PBA has to be evaluated with respect to an application. Hence, the predictions
presented here can be sufficient for an application where qualitative results are needed, such
as being able to compare loads applied to the PBA and having a coarse idea of the resulting
position of the PBA free end. For an application requiring more accurate results, the predic-
tions presented here may be insufficient.
The errors on the measurements (see Table 4.1) have not been taken into account while com-
puting the absolute and relative errors of Tables 5.3 and 5.4, but if they were, they would
increase the maximum errors that can be obtained.
The errors between the predictions and the corresponding measurements may be due to the
fact that the fluidic circuit presents some leakages, that the experimental models are not
perfect, that the PBA presents some hysteresis as will be shown in the Section 5.2.3 and that
there are errors on the measurements due to the sensors.
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Figure 5.20: Pressure p as a function of the piston displacement u, when the PBA is not
loaded: The crosses represent the experiments no. 1, 5 and 9 of Table 5.2 while the dia-
monds represent the corresponding predictions. Indeed, for the given piston displacements
u, the PVFP principle implemented on the studied PBA predicts pressures p∗ thanks to the
experimental model p = p(u). The predictions are represented by the diamonds. The solid
line is the experimental model p = p(u). As can be seen, the measured pressures p are very
close to the predicted ones p∗.
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Figure 5.21: X-displacement ∆x0 of the PBA free end as a function of the piston displacement
u, when the PBA is not loaded: The crosses represent the experiments no. 1, 5 and 9 of
Table 5.2 while the diamonds represent the corresponding predictions. Indeed, for the given
piston displacements u, the PVFP principle implemented on the studied PBA predicts X-
displacements ∆x∗

0 thanks to the experimental model ∆x0 = ∆x0(u). The predictions are
represented by the diamonds. The solid line is the experimental model ∆x0 = ∆x0(u).
As can be seen, the measured X-displacements ∆x0 are larger in absolute value than the
predicted ones ∆x∗

0.
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Figure 5.22: Y-displacement ∆y0 of the PBA free end as a function of the piston displacement
u, when the PBA is not loaded: The crosses represent the experiments no. 1, 5 and 9 of
Table 5.2 while the diamonds represent the corresponding predictions. Indeed, for the given
piston displacements u, the PVFP principle implemented on the studied PBA predicts Y-
displacements ∆y∗

0 thanks to the experimental model ∆y0 = ∆y0(u). The predictions are
represented by the diamonds. The solid line is the experimental model ∆y0 = ∆y0(u). As
can be seen, the measured Y-displacements ∆y0 are larger than the predicted ones ∆y∗
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Figure 5.23: Absolute errors on the predictions of p, ∆x0 and ∆y0 for the experiments no. 1,
5 and 9 of Table 5.2. For the given piston displacements u, the PVFP principle implemented
on the studied PBA predicts pressures p∗, X-displacements ∆x∗

0 and Y-displacements ∆y∗
0

thanks to the experimental models p = p(u), ∆x0 = ∆x0(u) and ∆y0 = ∆y0(u). According
to the parameter (p, ∆x0 or ∆y0), the error is expressed in kPa or mm.
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Figure 5.24: Relative errors on the predictions of p, ∆x0 and ∆y0 for the experiments no. 1,
5 and 9 of Table 5.2. For the given piston displacements u, the PVFP principle implemented
on the studied PBA predicts pressures p∗, X-displacements ∆x∗

0 and Y-displacements ∆y∗
0

thanks to the experimental models p = p(u), ∆x0 = ∆x0(u) and ∆y0 = ∆y0(u).
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Figure 5.25: Weight w attached to the PBA free end as a function of the pressure variation
∆p, for different piston displacements u: The crosses represent the experiments no. 2, 3, 4, 6,
7, 8, 10, 11 and 12 of Table 5.2 while the diamonds represent the corresponding predictions.
Indeed, for the given piston displacements u and the given pressure variations ∆p, the PVFP
principle implemented on the studied PBA predicts weights w∗ thanks to the experimental
model ∆p = ∆p(u,w).

98



5.2. Experimental study of the PVFP principle

10 15 20 25 30 35 40
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Weight w (g)

X−
di

sp
la

ce
m

en
t !

 x
 o

f t
he

 P
BA

 fr
ee

 e
nd

 (m
m

)

X−displacement ! x of the PBA free end as a function of the weight w hung from the PBA free end, 
for different piston displacements u                                                                  

 

 

experiments
predictions
experimental model ! x = ! x(w,u = 15.61mm)
experimental model ! x = ! x(w,u = 19.71mm)
experimental model ! x = ! x(w,u = 34.36mm)

Figure 5.26: X-displacement ∆x of the PBA free end as a function of the weight w hung from
the PBA free end, for different piston displacements u: The crosses represent the experiments
no. 2, 3, 4, 6, 7, 8, 10, 11 and 12 of Table 5.2 while the diamonds represent the corresponding
predictions. Indeed, for the given piston displacements u and the predicted weights w∗, the
PVFP principle implemented on the studied PBA predicts X-displacements ∆x∗ thanks to
the experimental model ∆x = ∆x(u,w). As can be seen, the measured X-displacements ∆x
are larger in absolute value than the predicted ones ∆x∗.
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Figure 5.27: Y-displacement ∆y of the PBA free end as a function of the weight w hung from
the PBA free end, for different piston displacements u: The crosses represent the experiments
no. 2, 3, 4, 6, 7, 8, 10, 11 and 12 of Table 5.2 while the diamonds represent the corresponding
predictions. Indeed, for the given piston displacements u and the predicted weights w∗, the
PVFP principle implemented on the studied PBA predicts Y-displacements ∆y∗ thanks to
the experimental model ∆y = ∆y(u,w).
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Figure 5.28: Y-displacement ∆y of the PBA free end as a function of its X-displacement ∆x,
for different piston displacements u: The crosses represent the experiments no. 2, 3, 4, 6,
7, 8, 10, 11 and 12 of Table 5.2 while the diamonds represent the corresponding predictions.
Indeed, for the given piston displacements u and the predicted weights w∗, the PVFP principle
implemented on the studied PBA predicts X-displacements ∆x∗ and Y-displacements ∆y∗

thanks to the experimental models ∆x = ∆x(u,w) and ∆y = ∆y(u,w).
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Figure 5.29: Absolute errors on the predictions of ∆p, ∆x and ∆y for the experiments no. 2,
3, 4, 6, 7, 8, 10, 11 and 12 of Table 5.2. For the given piston displacements u and the given
pressure variations ∆p, the PVFP principle implemented on the studied PBA predicts weights
w∗, X-displacements ∆x∗ and Y-displacements ∆y∗ thanks to the experimental models ∆p =

∆p(u,w), ∆x = ∆x(u,w) and ∆y = ∆y(u,w). According to the parameter (w, ∆x or ∆y),
the error is expressed in g or mm.
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Figure 5.30: Relative errors on the predictions of ∆p, ∆x and ∆y for the experiments no. 2,
3, 4, 6, 7, 8, 10, 11 and 12 of Table 5.2. For the given piston displacements u and the given
pressure variations ∆p, the PVFP principle implemented on the studied PBA predicts weights
w∗, X-displacements ∆x∗ and Y-displacements ∆y∗ thanks to the experimental models ∆p =

∆p(u, w), ∆x = ∆x(u,w) and ∆y = ∆y(u, w).
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5.2.3 Study of the hysteresis of the PBA
Models have been established in order to implement the PVFP principle on the studied PBA.
These models have been built on the basis of a DOE counting thirteen experiments performed
in a random order. This means that if PBA variables (i.e. p, ∆x0, ∆y0, ∆p, ∆x or ∆y)
present hysteresis with respect to the piston displacement u or with respect to the weights
w attached to the PBA, this hysteresis is not properly modeled by the experimental models.
A study has thus been made to determine whether some of the PBA variables show hysteresis
with respect to u and/or w. First, the hysteresis with respect to the piston displacement u
has been investigated. Three hysteresis loops have been performed as follows:

1. first hysteresis loop: 1) u = 5 mm, 2) u = 15 mm, 3) u = 5 mm

2. second hysteresis loop: 1) u = 5 mm, 2) u = 15 mm, 3) u = 25 mm, 4) u = 15 mm, 5)
u = 5 mm

3. third hysteresis loop: 1) u = 5 mm, 2) u = 15 mm, 3) u = 25 mm, 4) u = 35 mm, 5)
u = 25 mm, 6) u = 15 mm, 7) u = 5 mm

For each piston displacement, the pressure p and the X- and Y-displacements ∆x0 and ∆y0

have been measured and the PBA has not been loaded. The results of this hysteresis study
are presented in Fig. 5.31 to 5.38.

Remark: Let us consider that the error on two measurements equals ± s. If both mea-
surements are spaced out by a difference smaller than 2s, there is a probability that the exact
measurements corresponding to them are equal. On the other hand, if both measurements
are spaced out by a difference larger than 2s, it is sure that the exact measurements corre-
sponding to them are different. Table 4.1 summarizes the errors on the measurements.

Concerning the results of the hysteresis study:

• As can be seen in Fig. 5.31 and 5.32, the pressure p presents nearly no hysteresis with
respect to the piston displacement u.

• As can be seen in Fig. 5.33 and 5.34, it can be concluded that the X-displacement ∆x0

presents a hysteresis with respect to the piston displacement u: when comparing the
increasing and decreasing phases of u, the maximum difference in X-displacement that
has been measured is about 0.26 mm (the accuracy on the measurement of ∆x0 equals
±0.13 mm)

• As can be seen in Fig. 5.35 and 5.36, it can be concluded that the Y-displacement ∆y0

presents a hysteresis with respect to the piston displacement u: when comparing the
increasing and decreasing phases of u, the maximum difference in Y-displacement that
has been measured is larger than 0.26 mm (the accuracy on the measurement of ∆y0

equals ±0.13 mm).

The experimental models p = p(u), ∆x0 = ∆x0(u) and ∆y0 = ∆y0(u) have been established
with a DOE whose experiments are performed in a random order. As a consequence, the
hysteresis of ∆x0 and ∆y0 with respect to the piston displacement u is not properly modeled
by these experimental models. On the contrary, it is drowned into these models.

Afterwards, the hysteresis with respect to the weight w attached from the PBA free end
has been investigated. Again, three hysteresis loops have been performed, but not the same
day as the previous hysteresis study:

1. first hysteresis loop: 1) w = 0 g, 2) w = 10 g, 3) w = 0 g
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2. second hysteresis loop: 1) w = 0 g, 2) w = 10 g, 3) w = 20 g, 4) w = 10 g, 5) w = 0 g

3. third hysteresis loop: 1) w = 0 g, 2) w = 10 g, 3) w = 20 g, 4) w = 40 g, 5) w = 20 g,
6) w = 10 g, 7) w = 0 g

During these three loops, the piston displacement has been kept constant and equal to u =

24.61 mm. Contrary to the experiments performed before (see Sections 5.2.1 and 5.2.2), for
these hysteresis loops, the weight w is progressively increased or decreased from an experiment
to the next one. For example, the second hysteresis loop is performed as follows:

• first experiment: no weight is attached to the PBA free end. ∆p = 0 and the X- and
Y-displacements ∆x and ∆y are measured. Since the PBA is not loaded, ∆x = ∆x0

and ∆y = ∆y0.

• second experiment: a weight of 10 g is attached to the PBA free end and ∆p, ∆x and
∆y are measured.

• third experiment: a second weight of 10 g is added to reach a total weight of 20 g and
∆p, ∆x and ∆y are measured.

• fourth experiment: 10 g are removed to leave a 10 g weight hanging at the PBA free
end. ∆p, ∆x and ∆y are measured.

• fifth experiment: finally, the last 10 g are removed. ∆p, ∆x and ∆y are measured.
Since the PBA is no more loaded, ∆x = ∆x0 and ∆y = ∆y0.

The results of this hysteresis study are presented in Fig. 5.39 to 5.46:

• As can be seen in Fig. 5.39 and 5.40, it can be concluded that ∆p presents nearly no
hysteresis with respect to the weight w. Indeed, 0.5 Pa is the maximum difference in
pressure variation measured during the hysteresis loops, when comparing the increasing
and decreasing phases of w (the accuracy on a pressure variation measurement is ≤
±4 Pa).

• As can be seen in Fig. 5.41 and 5.42, it can be concluded that ∆x presents a hysteresis
with respect to the weight w: when comparing the increasing and decreasing phases of
w, the maximum difference in X-displacement that has been measured is smaller than
0.26 mm (the accuracy on the measurement of ∆x equals ±0.13 mm).

• As can be seen in Fig. 5.44, it can be concluded that ∆y presents a hysteresis with
respect to the weight w: when comparing the increasing and decreasing phases of w
during the third hysteresis loop, the maximum difference in Y-displacement that has
been measured is larger than 0.26 mm. In Fig. 5.43, the maximum difference in Y-
displacement that has measured during the first and second hysteresis loops is smaller
than 0.26 mm (the accuracy on the measurement of ∆y equals ±0.13 mm).

The hysteresis of ∆x and ∆y with respect to the weight w is not taken into account in the
experimental models ∆x = ∆x(u,w) and ∆y = ∆y(u,w) established previously.

In conclusion, to properly model the hysteresis of ∆x0 and ∆y0 with respect to the
piston displacement u and the hysteresis of ∆x and ∆y with respect to the weight w, new
experimental models should be established. To do so, more hysteresis loops as the ones
presented above should be performed to better understand the hysteresis behaviour of the
variables. Besides, complementary hysteresis tests have to be performed because the variables
∆p, ∆x and ∆y depend on w but also on u; however, only their hysteresis with respect to w
has been studied. To study the hysteresis of these variables with respect to u, the following
tests can be performed:
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• a given weight w is attached at the PBA free and ∆x and ∆y are measured while
u performs cycles (one cycle = increasing phase + decreasing phase). This allows to
study the hysteresis of ∆x and ∆y with respect to u.

• while u performs cycles, the same weight is hung and then removed from the PBA free
end and ∆p is measured. This allows to study the hysteresis of ∆p with respect to u.

Before modeling the hysteresis, it has to be assessed whether this hysteresis is problematic
or not with respect to the targeted application. Indeed, for a given application, the hysteresis
of the variables may be small enough to be negligible; in this case, there is no need to model
the hysteresis. On the other hand, for another application, the hysteresis of the variables
may be too large to be ignored; in this case, it has to be modeled properly.

As can be seen in Fig. 5.31 and Fig. 5.32, the difference between the pressure p measured
during the hysteresis study and the experimental model p = p(u) equals about 1 kPa. This
difference can be explained by a change of the ambient atmospheric pressure between the
day when the experimental models were established and the day when the hysteresis loops
were performed. This will be discussed later in more details.
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Figure 5.31: Hysteresis study of the pressure p with respect to the piston displacement
u, when the PBA is not loaded: the test bench piston describes two cycles (one cycle =
increasing phase of u + decreasing phase of u) during which p is measured. As can be seen,
the pressure p presents nearly no hysteresis with respect to the piston displacement u.
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Figure 5.32: Hysteresis study of the pressure p with respect to the piston displacement u,
when the PBA is not loaded: the test bench piston describes one cycle (one cycle = increasing
phase of u + decreasing phase of u) during which p is measured. As can be seen, the pressure
p presents nearly no hysteresis with respect to the piston displacement u.
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Figure 5.33: Hysteresis study of the X-displacement ∆x0 of the PBA free end with respect
to the piston displacement u, when the PBA is not loaded: the test bench piston describes
two cycles (one cycle = increasing phase of u + decreasing phase of u) during which ∆x0 is
measured. As can be seen in the figure, it can be concluded that the X-displacement ∆x0

presents a hysteresis with respect to the piston displacement u: the maximum difference in
X-displacement measured during the hysteresis loops is about 0.26 mm (the accuracy on the
measurement of ∆x0 equals ±0.13 mm).
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Figure 5.34: Hysteresis study of the X-displacement ∆x0 of the PBA free end with respect
to the piston displacement u, when the PBA is not loaded: the test bench piston describes
one cycle (one cycle = increasing phase of u + decreasing phase of u) during which ∆x0 is
measured. As can be seen in the figure, it can be concluded that the X-displacement ∆x0

presents a hysteresis with respect to the piston displacement u: the maximum difference in
X-displacement measured during the hysteresis loops is about 0.26 mm (the accuracy on the
measurement of ∆x0 equals ±0.13 mm).
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Figure 5.35: Hysteresis study of the Y-displacement ∆y0 of the PBA free end with respect
to the piston displacement u, when the PBA is not loaded: the test bench piston describes
two cycles (one cycle = increasing phase of u + decreasing phase of u) during which ∆y0 is
measured. As can be seen in the figure, it can be concluded that the Y-displacement ∆y0

presents a hysteresis with respect to the piston displacement u: the maximum difference in
Y-displacement measured during the hysteresis loops is larger than 0.26 mm (the accuracy
on the measurement of ∆y0 equals ±0.13 mm).
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Figure 5.36: Hysteresis study of the Y-displacement ∆y0 of the PBA free end with respect
to the piston displacement u, when the PBA is not loaded: the test bench piston describes
one cycle (one cycle = increasing phase of u + decreasing phase of u) during which ∆y0 is
measured. As can be seen in the figure, it can be concluded that the Y-displacement ∆y0

presents a hysteresis with respect to the piston displacement u: the maximum difference in
Y-displacement measured during the hysteresis loops is larger than 0.26 mm (the accuracy
on the measurement of ∆y0 equals ±0.13 mm).
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Figure 5.37: Hysteresis study of the X- and Y-displacements ∆x0 and ∆y0 of the PBA free
end with respect to the piston displacement u, when the PBA is not loaded: the test bench
piston describes two cycles (one cycle = increasing phase of u + decreasing phase of u) during
which ∆x0 and ∆y0 are measured.
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Figure 5.38: Hysteresis study of the X- and Y-displacements ∆x0 and ∆y0 of the PBA free
end with respect to the piston displacement u, when the PBA is not loaded: the test bench
piston describes one cycle (one cycle = increasing phase of u + decreasing phase of u) during
which ∆x0 and ∆y0 are measured.
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Figure 5.39: Hysteresis study of the pressure variation ∆p with respect to the weight w hung
from the PBA free end: the test bench piston is fixed at a given position u = 24.61 mm and
two loading cycles of the PBA are performed (one cycle = increasing phase of w + decreasing
phase of w) during which ∆p is measured. As can be seen in the figure, it can be concluded
that ∆p presents nearly no hysteresis with respect to the weight w. Indeed, 0.5 Pa is the
maximum difference in pressure variation measured during the hysteresis loops (the accuracy
on a pressure variation measurement is ≤ ±4 Pa).
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Figure 5.40: Hysteresis study of the pressure variation ∆p with respect to the weight w hung
from the PBA free end: the test bench piston is fixed at a given position u = 24.61 mm and
one loading cycle of the PBA is performed (one cycle = increasing phase of w + decreasing
phase of w) during which ∆p is measured. As can be seen in the figure, it can be concluded
that ∆p presents nearly no hysteresis with respect to the weight w. Indeed, 0.5 Pa is the
maximum difference in pressure variation measured during the hysteresis loops (the accuracy
on a pressure variation measurement is ≤ ±4 Pa).
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Figure 5.41: Hysteresis study of the X-displacement ∆x of the PBA free end with respect to
the weight w hung from the PBA free end: the test bench piston is fixed at a given position
u = 24.61 mm and two loading cycles of the PBA are performed (one cycle = increasing
phase of w + decreasing phase of w) during which ∆x is measured. As can be seen in the
figure, it can be concluded that ∆x presents a hysteresis with respect to the weight w: the
maximum difference in X-displacement measured during the hysteresis loops is smaller than
0.26 mm (the accuracy on the measurement of ∆x equals ±0.13 mm).
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Figure 5.42: Hysteresis study of the X-displacement ∆x of the PBA free end with respect to
the weight w hung from the PBA free end: the test bench piston is fixed at a given position
u = 24.61 mm and one loading cycle of the PBA is performed (one cycle = increasing phase
of w + decreasing phase of w) during which ∆x is measured. As can be seen in the figure, it
can be concluded that ∆x presents a hysteresis with respect to the weight w: the maximum
difference in X-displacement measured during the hysteresis loops is smaller than 0.26 mm

(the accuracy on the measurement of ∆x equals ±0.13 mm).
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Figure 5.43: Hysteresis study of the Y-displacement ∆y of the PBA free end with respect to
the weight w hung from the PBA free end: the test bench piston is fixed at a given position
u = 24.61 mm and two loading cycles of the PBA are performed (one cycle = increasing
phase of w + decreasing phase of w) during which ∆y is measured. As can be seen in the
figure, it can be concluded that ∆y presents a hysteresis with respect to the weight w: the
maximum difference in Y-displacement measured during the hysteresis loops is smaller than
0.26 mm (the accuracy on the measurement of ∆y equals ±0.13 mm).
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Figure 5.44: Hysteresis study of the Y-displacement ∆y of the PBA free end with respect to
the weight w hung from the PBA free end: the test bench piston is fixed at a given position
u = 24.61 mm and one loading cycle of the PBA is performed (one cycle = increasing phase
of w + decreasing phase of w) during which ∆y is measured. As can be seen in the figure, it
can be concluded that ∆y presents a hysteresis with respect to the weight w: the maximum
difference in Y-displacement measured during the third hysteresis loop is larger than 0.26 mm

(the accuracy on the measurement of ∆y equals ±0.13 mm).
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Figure 5.45: Hysteresis study of the X- and Y-displacements ∆x and ∆y of the PBA free end
with respect to the weight w hung from the PBA free end: the test bench piston is fixed at
a given position u = 24.61 mm and two loading cycles of the PBA are performed (one cycle
= increasing phase of w + decreasing phase of w) during which ∆x and ∆y are measured.
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Figure 5.46: Hysteresis study of the X- and Y-displacements ∆x and ∆y of the PBA free
end with respect to the weight w hung from the PBA free end: the test bench piston is fixed
at a given position u = 24.61 mm and one loading cycle of the PBA is performed (one cycle
= increasing phase of w + decreasing phase of w) during which ∆x and ∆y are measured.
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5.3 Discussion

5.3.1 Relevance of the PVFP principle

Being able to determine the displacement of a flexible fluidic actuator and the force it de-
velops thanks to the measurements of the fluid pressure and of the volume of the supplied
fluid, means being able to determine the displacement and the force without a displacement
sensor or a force sensor placed on the actuator [78].

This is an interesting measuring concept for applications where the space is limited and
where a miniaturization effort is required. This is for example the case in Teleoperated Min-
imally Invasive Surgery (MIS), where it is necessary to measure the force applied by the
tools to the organs to ensure a force feedback of good quality. However, this measurement
is not straightforward. Indeed, if the force sensor is placed outside the body of the patient,
the measurement will be polluted by the friction of the trocar. To solve this problem, some
researchers propose to place the sensor at the end of the tool but this raises the challenge to
develop a small and sterilizable force sensor [63]. Using flexible fluidic actuators to actuate
the surgical tools would allow to measure the force applied to the organs without the need
of a force sensor. Besides, flexible fluidic actuators could also answer the need for flexible
instruments, i.e. instruments presenting a large number of DOFs and able to perform snake-
like movements when avoiding obstacles. This need has been expressed by the medical field
in applications such as the MIS [33], the endoluminal surgery [4] or the active catheters [45].

In [52], a flexible sensor to be placed under the PBA is proposed. It is a flexible plate pre-
senting a pneumatic channel. Airflow is supplied to the channel and the bending of the PBA
is detected by measuring the airflow changes in the channel. Besides, measuring the airflow
changes in the channel and the pressure inside the PBA allows to determine the stiffness of
an object in contact with the PBA. If the PVFP principle was implemented on this PBA,
it would allow doing the same measurements without such an additional sensor. Indeed, a
piston displacement u could be performed so that the PBA bends and comes in contact with
the object to palpate. The PVFP principle allows then to determine the contact force F
between the PBA and the object and the displacement ∆z the PBA has performed while
pushing on the object. These two informations can then be used to determine the stiffness
F/∆z of the object.

The PVFP principle has been experimentally validated with the PBA, i.e. an actuator
presenting only one DOF. With such an actuator, the applied force can be predicted at only
one precise point and along only one precise direction. However, the principle could be applied
to more complex structures. For example, let us consider the "Flexible Microactuator"
described in [78] (see Fig. 5.47). It is a cylinder whose end is closed and which presents three
internal chambers. It is composed of silicone rubber reinforced with nylon fibres disposed in
a circular direction. The function of these fibres is to prevent radial deformations. When
one chamber is pressurized, the cylinder bends in the direction opposite this chamber. This
actuator presents three DOFs (one stretching and two bending motions). Measuring the
pressure in the three chambers and the fluid volume supplied to the chambers would allow
to determine the posture of the actuator and the three components of any force applied to a
precise given point, for example, to the end point of the actuator.
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Figure 5.47: Bending Flexible Microactuator (FMA): when a chamber is pressurized, its
length increases while the other chambers keep their initial length and consequently the
cylinder bends in the direction opposite the pressurized chamber. The figure presents a
bending FMA whose chambers no. 1 and 2 are pressurized. Figure from [72].

5.3.2 Practical implementation of the PVFP principle in a targeted
application

As can be seen in Fig. 5.26 and 5.27, for a given piston displacement u, there exists a duality
between the force developed by the PBA free end (or in other words, the weight attached
to its end) and the displacements ∆x and ∆y of its tip: if the load of the PBA increases,
the PBA free end moves downwards and the displacements ∆x and ∆y decrease in absolute
value. It is thus not possible to impose the displacements of the PBA tip and the force it
develops at the same time. In practical applications, a choice will have to be made between
imposing the force and imposing the displacements, according to the task to be performed.

The PVFP principle could be implemented in a control loop in order to control the dis-
placement of a flexible fluidic actuator tip or the force it develops, without using displacement
or force sensor. If the dynamics of the system are quite slow, static models such as those
established for the PBA in this chapter can be used in the control loop. Hence, the control
loop makes a quasi-static approximation of the system dynamics. For example, to control
the actuator displacement, the control loop presented in Fig. 5.48 can be build. It works as
follows:

1. The actuator is required to perform a displacement ∆y∗.

2. ∆y∗ is compared to the predicted displacement ∆y.

3. The difference ∆y∗ − ∆y is the input of the model of the flexible fluidic actuator.
Knowing the value of the predicted external force Fext applied to the actuator, the
model determines the piston displacement u∗ that needs to be performed in order to
reach ∆y∗.

4. u∗ is compared to the actual measured piston displacement u and the difference u∗−u
is the input of a controller. It acts on the physical system so that the required piston
displacement is achieved. The physical system comprises the flexible fluidic actuator
and the syringe-pump pressurization system.

5. The piston displacement u and the pressure p are measured on the physical system.
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6. On the basis of the measurements u and p, the model of the flexible fluidic actuator
predicts the displacement ∆y performed by the actuator and the external force Fext

applied to the actuator. These predictions are then used as if they were measurements.
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actuator
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Figure 5.48: Control loop in which the PVFP principle is implemented in order to control the
displacement ∆y of the flexible fluidic actuator, without using force or displacement sensors.

The quality of the predictions provided by the PVFP principle implemented on the flexi-
ble fluidic actuator has to be evaluated with respect to the targeted application. Indeed, the
predictions can be accurate enough for a given application but not for another one.
The same remark can be made if the actuator presents hysteresis. Before modeling the hys-
teresis, it has to be assessed whether this hysteresis is problematic or not with respect to the
targeted application. Indeed, for a given application, the hysteresis may be small enough to
be negligible; in this case, there is no need to model the hysteresis. On the other hand, for
another application, the same hysteresis may be too large to be ignored; in this case, it has
to be modeled properly.

The practical implementation of the PVFP principle raises some questions such as the
effect that a variation of the ambient atmospheric pressure or temperature would have on
the predictions provided by the PVFP principle. This question has already been discussed
in Section 5.1.1 in the case of a simple flexible fluidic actuator but it would be interesting
to try answering this question in the case of the PBA studied here. Fig. 5.49 presents a
schematic view of the PBA linked to the cylinder of the test bench. The actuation fluid is air
but the PVFP principle should also work with an incompressible fluid. Maybe a difference
happens when a weight is hung from the PBA free end: since the volume in the cylinder will
not change because the piston position is fixed, the volume of the PBA will not change and
the position of the PBA free end will remain the same. On the other hand, it is also possible,
thanks to the elasticity of the PBA rubber that the PBA free end moves downwards while
the PBA keeps the same volume.

First, let us consider a change of the atmospheric pressure or ambient temperature hap-
pening when using the PBA and the PVFP principle implemented on it:

1. The actuation fluid is incompressible:

• If the atmospheric pressure increases by an amount p∗, the absolute outside pres-
sure pout increases by the same amount. The volume of the PBA does not change
because the volume of fluid inside the cylinder does not change and since the at-
mospheric pressure is applied to the top of the PBA as well as on its underside, the
atmospheric pressure increase will not modify the displacements of point A. Since
the shape of the PBA does not change, the inner absolute pressure pin will prob-
ably increase by the same amount as pout and the PVFP principle implemented
on the actuator perceives this as the application of a load w∗ that would have
decreased the displacement of the PBA free end. The predictions of the PVFP
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Figure 5.49: Pneumatic Balloon Actuator (PBA) linked to the cylinder of the test bench. The
actuation fluid is air. When a displacement u is imposed to the piston, the inner pressure
pin increases and the PBA inflates and its free end A moves upwards. The vertical and
horizontal displacements of this point are ∆y0 and ∆x0, respectively. Afterwards, keeping
the piston position constant, if a weight w is hung from the PBA free end, the inner pressure
pin increases and the displacements ∆y and ∆x of the PBA free end decrease. According to
the PVFP principle, knowing the values of pin and u allows to determine the displacements
of point A and the value of the weight w.

principle are distorted but to get rid of the influence of an atmospheric pressure
change, a gauge pressure sensor could be used to measure pin (it was the case
for the experiments performed on the PBA in this chapter) or the atmospheric
pressure could be measured so that the false prediction of the PVFP principle can
be corrected.

• If the ambient temperature increases by a small amount such that the volume
of fluid does not change (no expansion), it will have no influence on the results
provided by the PVFP principle, i.e. the predictions of the actuator displacement
and of the external pressure applied to the membrane will not be distorted.

2. The actuation fluid is compressible.

• If the atmospheric pressure increases by an amount p∗, the absolute outside pres-
sure pout increases by the same amount, the volume of the PBA decreases and
point A moves downwards. pin increases but probably not by the same amount
as pout. The PVFP principle implemented on the actuator perceives the change
of the atmospheric pressure as the application of a load w∗ that would have de-
creased the vertical displacement of point A. However, it is not sure that using
this prediction would allow to compensate correctly the change of the displace-
ments of point A. The PVFP principle does not allow to distinguish a change of
the atmospheric pressure from the application of a load to the PBA free end; to
be able to do so, it is necessary to measure the atmospheric pressure.

• If the ambient temperature increases, the volume of fluid expands in the actuator.
Since the volume V � in the cylinder does not change because the piston position
is imposed, the volume of the PBA increases and point A moves upwards. The
inner pressure pin increases and the PVFP principle implemented on the actuator
perceives this change as the application of a load w∗ that would have decreased
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the vertical displacement of point A. Hence, the prediction of the PVFP principle
can not be used to compensate the change of displacements of point A due to
the temperature increase; indeed, doing so would lead to a further increase of the
displacement of this point! The temperature needs thus to be measured and taken
into account in the implementation of the PVFP principle and its effect on the
PBA free end displacement needs to be compensated.

In conclusion, the PVFP principle seems applicable to the PBA with an incompressible
or a compressible actuation fluid. Besides, if the PVFP principle is implemented on the PBA
with an incompressible fluid and a gauge pressure to measure pin, it seems that the predic-
tions provided by the PVFP principle implemented on the actuator will not be influenced by
the changes of the atmospheric pressure and of the temperature, occuring during the use of
the actuator.

During the experiments described in this chapter, the actuation fluid that has been used
is air. Since the fluidic circuit presents some leakages, it is refilled with air at atmospheric
pressure before each use of the test bench. A change of atmospheric pressure or ambient
temperature can then happen between the day when the models were established and the day
when the test bench is used again and refilled with air, whose initial pressure or temperature
has thus changed.
During the use of the PBA, the quantity of gas is constant and if the temperature is constant,
the gas law leads to the following equation:

patmSd

T
=

pin(VPBA + S(d− u))

T
(5.25)

As can be seen, if the temperature is constant during the use of the actuator, it has no effect
on the equation. Hence, if the ambient temperature was T = T1 the day when the exper-
imental models have been established and T = T2 the day when the test bench has been
refilled with air, the difference between T1 and T2 will have no influence on equation (5.25)
and the experimental models on which the PVFP rests will still be valid.
If the atmospheric pressure was patm = patm_1 the day when the experimental models have
been established and patm = patm_2 the day when the test bench has been refilled with air,
the experimental models on which the PVFP rests will no more be valid due to the difference
between patm_1 and patm_2 and its influence on equation (5.25). This is what happened
with the hysteresis studies presented in Section 5.2.3. Since equation (5.25) had changed,
the relationship between pin and u changed also, as can be seen in Fig. 5.31 and 5.32 when
the PBA was not loaded.
Again, with an incompressible fluid, such a change of the atmospheric pressure seems to have
no influence on the PVFP principle, if a gauge pressure is used or if the atmospheric pressure
is monitored.

As explained in Section 5.1 and above for the PBA, the PVFP principle seems to work for
those flexible fluidic actuators whatever the actuation fluid (compressible or incompressible).
Hence, for medical applications where gas leakages are forbidden, the PVFP principle can be
implemented on these flexible fluidic actuators actuated by an incompressible physiological
saline solution.

Replacing gas by liquid brings also the advantage that the system gets rid of the compress-
ibility of the actuation fluid. During the experiments presented in this chapter, it has been
noticed that the gas pressure takes several minutes to stabilize after a piston displacement.
This can be seen in Fig. 5.50 when the piston displacement decreases from u = 34.35 mm

to u = 5.7 mm. As can be noticed, the pressure decreases until a minimum value and then
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slightly increases to reach a stabilized value after approximately 3 minutes (the stabilization
of the pressure can not be seen in the figure).
Fig. 5.51 presents what happens if the piston displacement increases from u = 5.7 mm to
u = 34.36 mm. As can be seen, the pressure increases until a maximum value and then de-
creases slightly to reach a stabilized value after approximately 4.3 minutes (the stabilization
of the pressure can not be seen in the figure).
The fact that the pressure needs a long time to stabilize can be accredited to the gas com-
pressibility, to the elasticity of the pneumatic tubes and to the elasticity of the flexible fluidic
actuator. Studying the quantitative effect of each of these three causes would help to deter-
mine which action to take in order to reduce the establishment time of the pressure in the
fluidic circuit and to increase the bandwidth of the system.
However, before performing this study, it would be interesting to study the sensibility of the
actuator displacements with regard to the pressure establishment. Indeed, as can be seen
in Fig. 5.50 and 5.51, in the case of the test bench used in this chapter, when the pressure
establishes itself, its variation is of maximum 1 kPa. If this variation has a small effect on
the actuator displacements, it may be superfluous to make a thorough study of the pressure
dynamics.
Remark: In the experiments described in this chapter, the measurements have been made
once the pressure had stabilized.
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Figure 5.50: Evolution of the pressure in the test bench fluidic circuit when the piston
displacements decreases from u = 34.35 mm to u = 5.7 mm.

118



5.3. Discussion

the pressure comes from about 2kPa

pr
es

su
re

 (
kP

a)

Time (s)
0 60

Figure 5.51: Evolution of the pressure in the test bench fluidic circuit when the piston
displacement increases from u = 5.7 mm to u = 34.36 mm.
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However, replacing gas by liquid implies larger pressure losses whose effect has to be stud-
ied. Besides, a flexible fluidic actuator filled with liquid will be heavier and as a consequence
it will develop smaller displacements, for a given pressure level, than the same actuator filled
with gas. Hence, the actuator will probably present a pressure threshold because a minimum
pressure level will be required to compensate the weight of the liquid. An actuator filled with
liquid will also be less compliant.
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