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1

Introduction

Our world is constantly drifting towards networking. Information, energy, goods,

people and others need to be transported quickly and e�ciently from one place to

another. Therefore, these networks must be planned carefully, usually at the lowest

cost, taking into account the speci�c requirements of the commodities. The network

planning problem starts with the design of the network, and the choice of the link

capacities. We must then decide of a routing scheme for the commodities on the

network, that satis�es technical requirements, such as survivability in case of link

failure, or physical laws for networks carrying �uids (gas, electricity, water, . . .).

Eventually, the network will need to be extended to cope with increasing demands,

that is, new links will be installed or the capacity of existing ones will be increased.

Herein we are more particularly interested in designing telecommunications and

power transmission networks, further described in next subsection, and in extending

existing ones.

Mathematical programming models optimization problems through functions

and inequalities in order to �nd the best solution to these problems, or if no so-

lution exists, to understand why that is so. In general, these functions can be

anything from linear, to non-linear non-convex non-di�erentiable. Similarly, their

domain of de�nition can be �easy� convex sets, such as polyhedra, but also compli-

cated non-convex or even non-connected sets. Of course, the quality of the solution

we are able to provide depends on the properties satis�ed by these objects. In this

thesis, we work more particularly in the �eld of Mixed-Integer Programming (MIP),

meaning that some of the variables take values in discrete sets. In general, MIP re-

quires enumeration-type algorithms called branch-and-bound, branch-and-cut, and

branch-and-price algorithms.

An important subclass of MIP, called Mixed-Integer Linear Programming (MILP),

considers that all functions involved in the description of the problem are linear.

Even though many MILPs are still very challenging, there are now e�cient and re-

liable tools to tackle them, even with little knowledge about their speci�c structure.

MILP is a very general tool, allowing to model a large variety of optimization prob-
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lems. However, sometimes the optimization problem presents non-linearities which

must be taken into account to model the problem accurately. For instance, problems

featuring uncertain parameters, such as stochastic programs, can be seen as non-

linear problems. Together with integrality requirement on some of the variables, we

obtain Mixed-Integer Non Linear Programming (MINLP). Herein, we study network

design problems, some of them purely deterministic and others featuring uncertain

parameters, within the frameworks of MILP and MINLP.

Our contributions are both practical and theoretical. Practical because we im-

prove existing algorithms to solve close to be realistic network design models and

we formulate new models yielding cheaper solutions. Theoretical because we pro-

vide complexity results for stochastic knapsack problems and general capacitated

problems under speci�c assumptions. Our contributions are further detailed in Sec-

tion 1.2 while the following section describes the two main areas of applications

considered in the thesis.

1.1 Applications

In this section, we introduce the two main applications of the models studied along

this thesis.

Telecommunications industry

Liberalization of telecommunication markets in Europe, which has started a few

years ago, forces companies running these networks to maximize their pro�ts (or

minimize their costs). A problem which has to be dealt with is how to modify an

existing network to make the best use of new technologies. Furthermore, the ever-

growing demand for bandwidth creates a constant need for the planning and the

expansion of telecommunication networks.

Modern telecommunication transport networks accommodate various kinds of

tra�c. This includes, but is not limited to, IP tra�c from the Internet, tra�c from

dedicated virtual private networks of large companies, video tra�c, and voice tra�c

from �xed-line or mobile telephone calls. The links of the network must thus provide

su�cient capacity (reserved bandwidth) to route all this data through the network.

Usually, this capacity can only be installed in discrete steps, that we call batches of

capacity.

The network operator who must build or adapt an existing network to changing

demands faces a network design problem. These problems can have a wide range of

characteristics depending on the speci�c technologies and side constraints. Stated

in its general form, the network design problem consists of choosing a set of links

(yielding the network topology), installing capacities on the links, and routing the

tra�c demands of all customers within these capacities. In order to protect the

tra�c against link failures, spare capacity may have to be installed in the network

in such a way that a�ected tra�c can be rerouted around the failing node or link.
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In this thesis, we shall consider the following two telecommunications network

design problems, denoted by (ML) and (HOP). First, we consider a bi-layer net-

work design problem, (ML). Given a set of point-to-point demands and two graphs

that share the same node set, (ML) consists of choosing links in both graphs and

installing capacities on these links. One of the graph represents the upper layer,

while the other represents the lower layer. Enough capacity should be installed in

the upper layer to route each demand in that layer. Then, capacities installed in

the upper layer yield the set of the point-to-point demands that must be routed in

the lower layer. The problem allows the tra�c for each demand to be split among

di�erent paths. The di�erent layers represent di�erent technologies that are used

conjointly in telecommunications networks, for instance, SDH over WDM (Pióro

and Medhi, 2004).

Second, we study the hop-constrained path-diversi�ed network design problem,

(HOP). Given a set of point-to-point demands, a graph, a hop limit index L, and

a number of paths K, (HOP) consists of choosing links of the graph so that the

resulting network is able to route each commodity through a set of K disjoint paths

that do not contain more than L links (or hops). The model does not consider

link capacities so that, in particular, every link included in the network can route

an arbitrary number of di�erent commodities. The minimum number of paths K

models the tra�c protection, while the maximum number of hops L limits the delay

along each of the used path.

Electrical power industry

The transmission expansion planning problem arises from the growth of energy de-

mand over the years, yielding necessary changes in the electrical system. Namely,

new generators should be built in order to meet the increasing needs in electrical

power. Ideally, we would like to build new generating units to tailor the supply of

nearby consumers. However, it is usually not possible or not economical to build the

new generating units close to consumption centers so that they must be constructed

in distant places. Brazil, for instance, relies heavily on hydropower whose generat-

ing units are usually located far from main cities and industries. Therefore, it is

necessary to build new transmission circuits in order to integrate all power plants

into the electrical grid.

The decisions of the planning process can be divided in choosing the best gen-

erating units and their emplacements, and the best routes of transmission. This

decision process leads to an optimization problem of great size that must be solved

by planning engineers. They need to develop strategies and techniques to ensure

that decisions made during the planning process are either optimal decisions or at

least economically close to the optimal decision. In this thesis, we focus on the

problem of designing of the network, denoted by (TEP) in what follows, given that

the new power plants are already built. Ideally, one would integrate both decisions

into the same model but this would yield an untractable optimization problem.
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We provide next an outline of the thesis and presents our main contributions.

1.2 Outline of the thesis

This thesis is divided into two parts plus a chapter introducing mathematical tools

described next. The Chapter starts with a brief review of the main notations and

mathematical objects used throughout the thesis. It then turns to a general model

for network design problems, (ND), discusses general solution methods and makes

a �rst general literature review of the problem. Finally, it explains how to extend

(ND) to handle electrical power �ows.

In the �rst part, we present specialized models and algorithms for network design

problems (ML), (HOP), and (TEP). Then, Part 2 turns to stochastic models. Be-

cause of the complexity of models (ML), (HOP) and (TEP), the second part also

studies an important substructure of (ND), the knapsack problem. Chapter 5 intro-

duces a stochastic knapsack model and studies the problem both in the theoretical

and numerical sides. Chapters 6 and 7 build on algorithmic and theoretical �ndings

from Chapter 5. Namely, the LP/NLP algorithm presented in Chapter 5 is improved

to take the network structure into account in Chapter 6, while the reasoning used to

prove Theorem 5.9 is applied in Chapter 7 to linearize probabilistic constraints. We

describe more precisely the contents of each chapter in what follows. Notice that

each chapter starts with a literature review of the speci�c problem studied therein.

Chapter 3 studies models (ML) and (HOP). Although both models are complex

already, they are still approximations of realistic problems. For instance, (ML)

always allows fractional routing while (HOP) neglects links capacities. Both models

are formulated as large MILPs, that we tackle through Benders decompositions. The

novelty of our approach lies in a systematic study of when to generate cuts within

branch-and-cut algorithms. We present a thorough computational study of various

cutting plane and branch-and-cut algorithms on a large set of instances including

the real based instances from SNDlib (Orlowski et al., 2007).

Chapter 4 studies the transmission network expansion planning problem (TEP).

We study relevant theoretical and practical aspects of (TEP), set as a bilinear

programming problem with mixed 0 − 1 variables. We show that the problem is

NP-hard and that, unlike models (ND), (ML) and (HOP) from Chapters 2 and

3, a transmission network may become more e�cient after cutting-o� some of its

circuits. For this reason, we introduce a new model that, rather than just adding

capacity to the existing network, also allows for the network to be re-designed when it

is expanded. We then turn into di�erent reformulations of the problem, that replace

the bilinear constraints by using a �big-M� approach. We show that computing the

minimal values for the �big-M� coe�cients involves �nding the shortest and longest

paths between two buses. We assess our theoretical results by making a thorough

computational study on real electrical networks. The comparison of various models

and reformulations shows that our new model, allowing for re-design, can lead to
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sensible cost reductions.

Chapter 5 studies the knapsack problem with weights and capacity following

independent random variables and prove that the problem is weakly NP-hard in

general. We provide pseudo-polynomial algorithms for three special cases of the

problem: constant weights and capacity uniformly distributed, subset sum with

Gaussian weights and arbitrary random capacity, and subset sum with constant

weights and arbitrary random capacity. We then turn to a branch-and-cut algo-

rithm based on the outer approximation of the objective function. We provide com-

putational results for the stochastic knapsack problem (i) with Gaussian weights and

constant capacity and (ii) with constant weights and capacity uniformly distributed,

on randomly generated instances inspired by computational results for the knapsack

problem.

Many convex linearly constrained programs and mixed integer programs have

a large number of variables, so that the variables should be generated dynamically

throughout the solution algorithm. This yields to the well known �branch-and-

price algorithm� and �simplicial decomposition�. We present in Chapter 6 a novel

�branch-and-cut-and-price algorithm� to extend this idea to certain classes of convex

linearly constrained MINLPs. Our algorithm incorporates the variable generation

into the �LP/NLP algorithm� introduced by Quesada and Grossman and described

in Chapter 5. We detail our framework for the stochastic network design problem

with simple recourse.

Chapter 7 studies individual probabilistic linear constraints arising, for instance,

when modeling unsplittable multi-commodity �ow with uncertain demand. We show

that such constraints can be linearized when all random coe�cients are indepen-

dently distributed according to either N (µi, λµi), for some λ > 0 and µi > 0, or

Γ(ki, θ) for some θ > 0 and ki > 0. The constraint can also be linearized when the

coe�cients are independent and identically distributed and either positive or strictly

stable random variables.

Finally, the last chapter concludes with a summary of the thesis and proposes

directions of future work.
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Mathematical tools

In this chapter, we introduce most mathematical objects and notations used in this

thesis. In particular, we use the following conventions. Models and formulations

are denoted by bold letters such as (ND) and SP, algorithms to solve them by

typewriter letters such as cp, discrete sets and their cardinalities are denoted by

upper case sans serif-letters and |∗|, such as B and |B|, respectively, while continuous
sets (including polyhedra) are denoted by upper case calligraphic letters, such as B.

The next section introduces graph theoretic objects, Section 2.2 gives a quick

introduction to integer programming and Section 2.3 formulates problem (ND) and

explains how to extend the latter to handle electrical power �ows.

2.1 Graph theory

Most of the problems studied in this thesis aim at designing networks. Given a set

of nodes V, and a set of pairs of nodes E, we denote by G = (V,E) the graph (or

network) de�ned by V and E. An edge e = ij = ji ∈ E for i, j ∈ V represents

an undirected link between nodes i and j. In what follows, node sets are always

denoted by V, with sometimes an upper index, such as Vl. Similarly, edge sets are

always denoted by E and F (possibly with an upper index) and edges are denoted

by e, f or ij. When the direction of the link between i and j is relevant, we use arcs

instead of edges, denoted by (i, j) and (j, i). Arc sets are denoted by A, possibly

with an upper index. Given an undirected graph (V,E) we can trivially construct

a bi-directed graph (V,A) by associating two arcs with each edge in E, one in each

direction.

Graphs allow to model �ows conveniently. For each arc (i, j) ∈ A, xij ≥ 0 denotes

the amount of �ow through arc (i, j). We de�ne also the �ow xe on an edge e with

head t(e) and tail s(e) (these are chosen arbitrarily); xe > 0 indicates a positive �ow

from s(e) to t(e) while xe < 0 indicates a positive �ow from t(e) to s(e). When a

capacity Ce is associated with an edge e = ij, the �ow on e must not exceed Ce,

that is, −Ce ≤ xe ≤ Ce or xij + xji ≤ Ce. In network design problems, one must
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usually choose on which edges to install capacities. Installing capacity on an edge e

has a cost ce ≥ 0, and binary variable ye indicates whether the capacity is installed.

Flows in networks allow to model the shipment process of a set of commodities

(data, energy, goods, . . .) that must be displaced from a subset of nodes to another

subset of nodes. This is modeled with the help of a demand vector d ∈ R|V|. For

each node i, demand di states whether node i must have an outgoing �ow balance

(di > 0), an ingoing �ow balance (di < 0) or must only be used as a transhipment

node (di = 0). When di�erent commodities q ∈ Q transit by the same network, we

associate a vector dq ∈ R|V| for each commodity q ∈ Q.

2.2 Integer programming

Mathematics can help in solving many complex planning and optimization problems.

In particular, mathematical programming models the optimization problem with

the help of functions h, gi : Rm+n → R, i = 1, . . . , l, yielding what is often called a

mathematical program

min{h(x, y) s.t. gi(x, y) ≤ 0, x ∈ Rm, y ∈ Zn}, (2.1)

or a mixed-integer program (MIP) when m > 0 and n > 0. This thesis takes a closer

look at linear MIPs, that consider only linear functions h and gi, and convex and

di�erentiable MIPs, that consider only convex and di�erentiable functions h and gi.

Trivially, any linear MIP is also a convex and di�erentiable MIP.

2.2.1 Complexity of optimization problems

In what follows, we provide a brief introduction to the complexity theory of opti-

mization problems, see Wolsey (1998); Garey and Johnson (1979) for further details.

To de�ne the complexity of optimization problem (P), we must �rst associate the

following decision problem (D) to (P). Given a threshold k, (D) asks whether the

cost of the optimal solution to (P) is below k. Problem (D) is in NP if we can

verify in polynomial time whether a candidate vector provides the answer to (D)

(see Garey and Johnson (1979) for a rigorous de�nition of polynomial time). If,

moreover, every problem in NP can be reduced to (D) in a polynomial number

of operations, (D) is NP-complete and the associated optimization problem (P)

is NP-hard. For example, (2.1) is a NP-hard problem when gi and h are linear.

However, for general gi and h, the decision problem associated to (2.1) is undecid-

able (Jeroslow, 1973), making (2.1) more complex than NP-hard problems. Easy

problems in NP are those belonging to subset P ⊆ NP . An optimization problem

(P) is in P (or polynomially solvable) if we can �nd an algorithm that can solve any

instance of the problem in polynomial time.

In theory, it is not known whether P and NP are di�erent sets. Nevertheless,

P 6= NP is a working hypothesis. Namely, once a problem is proved to be NP-hard,
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we do not expect that there exists an algorithm to solve the problem in polynomial

time. For this reason, polynomially solvable optimization problems are usually said

to be easy, while NP-hard problems are said to be di�cult. Note, however, that

this is only an indication on the di�culty of the problem because only the worst-case

complexity of the algorithm is considered, not its expected behavior. Then, although

most real-life optimization problems are NP-hard, some of them are signi�cantly

harder to solve than others, which is not re�ected by their complexity. For instance,

although network design problems studied in Chapters 3 and 4 are all strongly NP-
hard, we are able to solve those from Chapter 4 for graphs two or three times larger

than those used in Chapter 3.

2.2.2 Solution methods

For linear MIPs, we can replace (2.1) by the following description

min ctx+ kty

(MILP) s.t. Ax+By ≥ e

x ≥ 0, y ≥ 0 and integer,

where x, y are the variables of the model, and c ∈ Rm, k ∈ Rn, e ∈ Rl, A ∈
Rlm, B ∈ Rln are the parameters. Problem (MILP) is, in general, NP-hard, so
that enumeration-type algorithms should be considered (unless P = NP). When

n = 0, (MILP) does not contain integer restrictions and the problem is called

a linear program. Although linear programs are polynomially solvable, they are

most often solved by the simplex algorithm, that has an exponential worst-case run-

ning time. This is another example of the fact that �polynomial� algorithms are

not always faster in practice than �exponential� algorithms. When n > 0 but the

integrality requirement on y is relaxed, we obtain (LP), the linear programming

relaxation of (MILP).

Modern developments in integer programming allow (MILP) to be solved e�-

ciently by standard solvers for a large class of problems. These solvers implement

highly tuned versions of branch-and-cut algorithms. Branch-and-cut algorithms are

clever enumeration algorithms that rely on (LP) and heuristics to bound the solu-

tion of (MILP)from below and above, respectively. First, they solve (LP). If the

solution is integer, it is the solution to (MILP). Otherwise, the integrality is re-

covered by branching or adding cutting planes. Given a fractional solution to (LP),

the branching procedure creates two or more subproblems by partitioning the orig-

inal domain of (MILP), while a cutting plane is a linear inequality violated by the

current fractional solution and satis�ed by all vectors feasible for (MILP). Besides

branching and cutting, branch-and-cut algorithms also rely on fathoming some of

the subproblems using upper and lower bounds, avoiding solving all of them. More

details on methods to solve (MILP) are presented in Section 2.3.2, specialized to

network design problems.
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When gi are linear functions and h is a non-linear convex and di�erentiable

function, we show below how to formulate the problem as (MILP), given that h

and all variables are bounded. This procedure, called outer approximation, begins

with the rewriting (2.1) as the following in�nite mixed-integer linear program:

min γ

s.t. Ax+By ≥ e

(MINLP) γ ≥ h(x, y) +
m∑
i=1

∂h

∂xi
(x, y)(xi − xi) +

n∑
i=1

∂h

∂yi
(x, y)(yi − yi)

x ∈ Rn, y ∈ Rm (2.2)

γ ≥ 0, x ≥ 0, y ≥ 0 and integer,

where h has been substituted by (2.2) that describes tangent hyperplanes for all

x ∈ Rn, y ∈ Rm. Let ε > 0 be small. Since h and all variables are bounded, we

can select a �nite subset of (2.2) that yield a piece-wise approximation of h whose

maximum distance from h is less than ε. Therefore, the optimal solution of the

resulting problem (with �nitely many equations) is at most ε less than the optimal

solution of (MINLP). This process of replacing a non-linear and convex function

by a piece-wise tangent approximation is called outer approximation. Non-linear

convex and di�erentiable gi can be approximated similarly. Therefore, convex and

di�erentiable MINLPs can also be solved by branch-and-cut algorithms, as those

developed in this thesis. Still, how and when to generate these tangent hyperplanes

is not a trivial question if we do not want to end up with very large formulations.

Notice that than di�erent solution methods exist to handle (MINLP), that do not

rely on an outer-approximation of the feasible set, see the review from Grossmann

(2002). These techniques are especially important when h or some of the gi are

non-convex.

Next section takes a closer look at network design models.

2.3 Network design models

In this section, we formulate a general network design problem and review methods

to solve the the problem. We show then how to extend the model in order to handle

electrical power �ows.

2.3.1 Formulation

Given an undirected graph (V,E) and a set of commodities Q, with origin s(q),

destination t(q), and nominal value dq for every q ∈ Q, the capacitated network

design problem aims at installing the cheapest capacities on edges of G so that the

resulting network shall be able to attend to each demand. Each edge e ∈ E between

i and j can be used in both directions, so that we can introduce the set of arcs A
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making (V,A) a bi-directed graph. Integer variable ye states how many batches of

capacity C and cost ce are installed on edge e, while fractional variable xqij describes

the amount of �ow for commodity q through arc (i, j). The model reads as follows:

min
∑
e∈E

ceye (2.3)

s.t.
∑
q∈Q

(
xqij + xqji

)
≤ Cye e = ij ∈ E

(2.4)

(ND)
∑

j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij =


−dq if i = s(q)

dq if i = t(q)

0 else

i ∈ V, q ∈ Q

(2.5)

x ≥ 0

y ≥ 0 and integer. (2.6)

Objective (2.3) minimizes design cost, constraints (2.4) ensure that capacities are

not exceeded (note that �ows in both directions of an edge e share the same capacity

Cye), constraints (2.5) state that, for each commodity, the outgoing �ow at every

node of the graph must be equal to the ingoing �ow except for extremities s(q) and

t(q). Finally, (2.6) ensures that capacities are installed by batches.

Problem (ND) is most often called Network Design Problem, or Network Loading

Problem, and has been studied extensively for many years (Yuan, 2001). It is

usually used to model telecommunications networks, because each commodity q has

a unique source s(q) and a unique destination t(q). To extend (ND) to more general

commodities, such as goods in service network design (Crainic, 2000), or electrical

power in transmission network expansion (see Section 2.3.3), we may replace (2.5)

by ∑
j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij = dqi i ∈ V, q ∈ Q, (2.7)

where dqi is either the supply (dqi < 0) or the demand (dqi > 0) at node i. It is easy

to see that, each vector dq must satisfy
∑

i∈V d
q
i = 0 for (2.7) to describe a feasible

problem. Quite often, additional side constraints are required to model accurately

the problem. Some examples will be given in the �rst part of this thesis.

Other variations of (ND) add a routing cost to (2.3), considering for instance

travel time, relax integrality constraints (2.6), or force x to be integer. In fact, many

applications in telecommunications require that each commodity be routed along a

unique path. This is modeled by replacing dq by 1 in (2.5), by forcing x to be binary

and by replacing (2.4) by the knapsack constraint∑
q∈Q

dq
(
xqij + xqji

)
≤ Cye e = ij ∈ E. (2.8)

Equation (2.8) with binary x hardens (ND) substantially by adding a large number
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of binary variables to the problem. Nevertheless, the structure provided by (2.8)

may also be exploited advantageously, see Chapters 5 and 7.

Another important aspect of (ND) is the prediction of the exact value of the

nominal demands. In many situations, it is not possible to predict dq (or dqi ) exactly

at the time design decisions must be made. This gives rise to robust and stochastic

models, where exact values of dq and dqi are replaced by polyhedra or random vari-

ables. In the second part of this thesis, we shall take a closer look at the case of

random variables.

2.3.2 Solution methods

Capacitated network design problems such as (ND) are still hard to solve for many

real-sized networks. The two main di�culties of (ND) arise from:

1. capacity constraints (2.4) yielding a weak LP relaxation;

2. the number of �ow conservation constraints (2.5), growing rapidly with the

problem size.

Lower bound improvement

In order to reinforce the (weak) LP relaxation of (ND), many researchers have

looked at strong cutting planes, including Atamturk (2002); Bienstock and Gunluk

(1996); Bienstock et al. (1998); Dahl and Stoer (1998); Raack et al. (2011). More

recently, Achterberg and Raack (2010) have developed a procedure to automatically

detect a network design structure within a general MILP, generating strong cutting

planes accordingly. Although useful valid inequalities are presented in Chapter 4,

the methods studied in this thesis are more closely related to decomposition methods

handling the size of (ND), as explained below.

Another line of research in reducing the large gap of (ND) considers extended

formulations. The latter rewrite the problem with a very large number of binary

variables in order to obtain a tight formulation (Frangioni and Gendron, 2009; Ljubic

et al., 2009).

Decomposition

Most common decomposition methods belong to one of the following: Benders de-

composition, Dantzig-Wolfe decomposition and Lagrangian relaxation. A common

feature of the three methods when applied to (ND) is that they break the structure

of the problem into many subproblems (one per commodity or one per edge). Doing

so usually reduces solution time because most algorithms solve MILP and LP in an

amount of time increasing faster than linearly with the size of these problems. Put

simply, it is in general much faster to solve 10 problems of a given size n than to

solve a single problem of size 10n. In fact, practical situations are far from being this

simple. Solution algorithms implemented within commercial MILP and LP solvers
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are increasingly able to detect the particular structure of a problem and to use it

for pre-processing, cutting planes generation and heuristics, among others. Once we

decompose the problem, the solver has a weaker understanding of the structure and

becomes less e�cient. Therefore, when we decompose a problem, we somehow as-

sume that we shall be able to use the structure of the problem more e�ciently than

the solver would. Fortunately this is true is most cases, which is why decomposition

methods often give very good results.

Sometimes decomposition methods must be used because we do not have enough

memory to solve the whole problem at once. This is especially true in Stochastic

Programming, where large scenario sets make the problem large-scale. Another

reason for using decomposition methods (di�erent from Benders decomposition) is

that they may yield a tighter bound than the LP relaxation. Speci�cally, we can

choose to transfer some of the complexity to the subproblems.

Benders decomposition is one of the most common decomposition for (ND) (Gabrel

et al., 1999; Costa, 2005), maybe because it is very easy to implement. However, it

su�ers from two drawbacks. First, as previously mentionned, it can not improve the

bound within enumeration algorithms. Second, it is in general impossible to project

out integer variables, and thus we can not apply that methodology to problems with

integer routing. Dantzig-Wolfe Decomposition has been used for (ND) by Frangioni

and Gendron (2010), among others, and for the closely related multi-commodity �ow

problem by Barnhart et al. (2000), among others. Finally, Lagrangian decomposi-

tion has been used by Crainic et al. (2001), among others, together with a bundle

algorithm.

This thesis relies heavily on decomposition methods, more speci�cally, Benders

and Dantzig-Wolfe decompositions, see Chapters 3 and 6, respectively.

2.3.3 Power transmission networks

Model (ND) needs two signi�cant re�nements to describe the design of electrical

power transmission networks. As discussed already, �ow balance constraint (2.5)

must be replaced by the more general (2.7) for a unique commodity. Then, the �ow

in an electrical power network must satisfy to physical laws. The widely used DC

model supposes that the �ow xij between two nodes (or buses) i and j must satisfy

to

xij = ψij(θi − θj), (2.9)

where ψij is the reactance of edge (or circuit) ij ∈ E and θi is the potential angle at

node i. Note that ψ is a vector of parameters while θ contains decisions variables of

the problem. Equation (2.9) implies that �ow variables are not needed to formulate

electrical power �ows problems because they are induced by potential di�erences,

which are variables of the problems. Nevertheless, they are included into the formu-

lations of such problems to ease understanding. For instance, constraint xij ≤ Cij
that limits the amount of power �ow on a circuit ij is clearer than the equivalent

ψij(θi − θj) ≤ Cij.
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Introducing design variable yij stating whether circuit ij ∈ E is built or not, we

have that xij must be equal to 0 when yij is equal to 0, and equal to ψij(θi − θj)
when yij is equal to 1. This disjunction is modeled through the bilinear constraint

xij = ψijyij(θi − θj). (2.10)

More details about the practical implications of (2.9) and (2.10) are given in Chap-

ter 4.

The re�nements mentioned above provide telecommunications and power trans-

mission network design problems with di�erent structures. For instance, the size of

(ND) increases rapidly with the number of commodities |Q|, making decomposition

methods necessary to solve real-life problems. In opposition, transmission networks

route a sole commodity so that the size of the formulation is usually not the main

di�culty. In fact, the main di�culty of transmission network expansion problems

arises from (2.10), which must be linearized and yield a very weak linear program-

ming relaxation. The resulting formulation contains little combinatorial structure,

so that it is a hard task to derive e�cient valid cutting planes and extended formula-

tions. We provide an extensive literature review of methods to solve the transmission

expansion planning problem in Chapter 4.



Part I

Network design problems





3

Benders decomposition for

telecommunications network design

3.1 Introduction

Our society is increasingly dependent on large-scale, networked information systems

of remarkable scope and complexity. Telecommunication networks are designed with

a layered structure, according to di�erent technologies. For instance, one could con-

sider a virtual layer over a physical layer, also called transport layer. This leads to

bi-layer network design problems. In those problems, demands are usually given in

the virtual layer. They have to be routed in the virtual layer, leading to the instal-

lation of �virtual capacities� (which are routers or other devices). Virtual capacities

de�ne demands for the transport layer, leading to the installation of capacities (opti-

cal �ber, copper link, ...), in the physical layer. Therefore, when a demand is routed

through a path in the virtual layer (composed of many virtual edges), each edge

corresponds to a path in the layer underneath (also called a �grooming path�).

Technically, each layer has its own technology (Pióro and Medhi, 2004), for

instance:

• MPLS: Multi-Protocol Label Switching,

• WDM: Wavelength-Division-Multiplexing,

• SDH: Synchronous Digital Hierarchy.

Incorporating survivability capabilities into a network has become unavoidable

for network operators in order to mitigate the risks in case of failures. Herein, sur-

vivability is the capability of a system to ful�l its mission in a timely manner despite

intrusions, failures, or accidents. This concept of survivability allows networks to

remain functional when links or nodes fail. For each demand, we impose that at

least K di�erent paths exist for each origin-destination pair. These K paths can, for

instance, be �edge-disjoint�, i.e. if a particular edge belongs to one of the paths, this
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particular edge can not be used by the other paths. This guarantees that if K − 1

edges break down, it is always possible to reroute all the demands by the K-th path

which does not use the broken arcs.

In general, the survivability constraints are not su�cient to guarantee a cost

e�ective routing with a good quality of service since the primary path where the

tra�c �ows or the secondary paths, if a path fails, may lead to unacceptable delays.

Since in most of the routing technologies, delay is caused at the switching nodes

because node processing times dominate over queuing delays, it is usual to measure

the delay in a path in terms of its number of intermediate nodes, or equivalently,

its number of arcs (or hops). Thus, to guarantee the required quality of service,

we impose a limit on the number of arcs of the routing paths, so that the tra�c

may be routed, or rerouted if a path fails, on a di�erent path with a quality of

service guaranteed in terms of delay. These so-called hop constraints also guarantee

a certain level of transmission reliability in the sense that the probability that all

the transmission lines in the path are working decrease with the number of arcs

(Woolston and Albin, 1988). We say that a L-path is a path with at most L arcs

(or hops).

3.1.1 Contributions and structure of the chapter

Grouping all considerations into a single model would be untractable in a computa-

tional point of view. Thus, we consider the following two models:

• A bilayer network design problem, where capacities must be installed in each

layer. Neither survivability nor hop-constraints are considered.

• A single layer hop-constraint path-diversi�ed network design problem, where

we neglect edges' capacities. Namely, a �xed cost is paid to use an edge,

regardless to the capacity required.

However, both models being particular cases of Fixed-Charge Network Design Prob-

lems, they have characteristics in common. For instance, both must route multi-

commodity �ows and thus, a modeled by large-scale linear formulations for which

decomposition algorithms such as the Benders decomposition are well suited. This

motivates the grouping of both problems into a single chapter. Our main achieve-

ment is a careful implementation of the Benders decomposition within a branch-

and-cut algorithm, obtaining signi�cantly better results than previous works on the

problems. Some recent works of Fischetti et al. (2010) and Ljubic et al. (2009),

among others, have highlighted the importance of the normalization constraint in

the separation problem. Herein, we investigate another aspect of the algorithm,

namely, when to generate cuts. We present a thorough computational study of vari-

ous cutting plane and branch-and-cut algorithms on a large set of instances including

the real based instances from SNDlib (Orlowski et al., 2007).
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Multi-layer network design

The work presented in the following has been published in Fortz and Poss (2009).

We improve the constraint generation method used by Knippel and Lardeux (2007).

Our branch-and-cut algorithm solves the Benders decomposition of the problem

more than 10 times faster on average than the cutting planes from Knippel and

Lardeux (2007).

Hop-constrained path diversi�ed network design

The work presented in the following is described in details in Botton (2010) and Fortz

et al. (2010). Herein, we focus on the computational results only. We formulate the

network design problem for any L,K ≥ 1 with multiple pairs of terminals (s(q), t(q)),

for q ∈ Q, as an integer program based on the layered representation from Gouveia

(1998). Up to our knowledge, this is the �rst formulation for the problem valid for

L ≥ 5 and any K ≥ 1. For L = 2, 3 our branch-and-cut algorithms separate at the

same time (and polynomially) �cut inequalities� and �L-path inequalities� while the

branch-and-cut algorithm from Huygens et al. (2007) needs to separate both inde-

pendently. Finally, we present a fast and e�cient LP-based heuristic that provides

the optimal solution for more than half of the instances tested.

In Section 3.1.2, we review most important previous works on the problems, see

Fortz et al. (2010) and Botton (2010) for a more thorough literature review. Sections

3.2 describes extended formulations for both problems. The following section recall

the basics of Benders decomposition, before reformulating both problems from Sec-

tion 3.2. The main contribution of our work, the algorithms, is presented in Section

3.4. We describe various cutting planes and branch-and-cut algorithms as well as

a heuristic. Finally, Section 3.5 provides an extensive computational study of the

algorithms.

3.1.2 Literature review

We present next a litterature review for the two network design problems studied in

this chapter.

Multi-layer network design

As the single-layer capacitated network design problem is complicated enough, most

approaches for the bi-layer problem consider each layer separately:

• First, a network design problem is solved for the virtual layer only.

• Then, virtual capacities to be installed in the virtual layer de�ne demands for

another network design problem, for the transport layer this time.
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Though much easier to solve, this relaxed approach might provide solutions far from

the optimal solution of the problem. Therefore, an integrated approach should be

considered.

Network design has been widely studied for many years (Yuan, 2001). However,

the interest in multi-layered network design is more recent and can be traced back

to a paper by Dahl et al. (1999). They assume given physical capacities and aim to

select virtual edges (called pipes in the paper) and to con�gure the routing in both

layers. A polyhedral study is made resulting in a cutting-plane algorithm. Since

then, the interest in this �eld has rapidly grown and di�erent approaches have been

suggested to address these problems.

Orlowski andWessäly (2004) begin by giving a good introduction to multi-layered

networks where they o�er technical examples and develop a model considering many

technical constraints. However, they do not propose a speci�c solution method. In

a further paper with Koster et al., di�erent branch-and-cut approaches are devel-

opped. Extending previous work by Belotti and Malucelli (2005), the authors brie�y

describe a cut-and-branch-and-price algorithm. Then, they solve an integer formu-

lation using a branch-and-cut framework (Koster et al., 2007), where they introduce

e�cient heuristics. Finally, they address a more complex formulation, taking node

hardware and survivability into account (Baier et al., 2007). They also extend and

test di�erent sorts of cuts coming from mono-layer models (Raack et al., 2011).

Belotti et al. (2006) and Capone et al. (2007) study multi-layered design with

statistical multiplexing, the motivation being that routing di�erent commodities on

the same capacity results in less variation of the �ow on the capacity. They compute

a lower bound through a Lagrangian relaxation and use heuristics to �nd good upper

bounds.

Kubilinskas and Pióro (2005) address the problem of maximizing the pro�t of

satisfying demands in a bi-layer (MPLS over WDM) situation. They present an

iterative procedure to solve their complex mixed-integer problem. This procedure

consists of splitting the problems into two stages, one for each layer, where the

solution of the �rst layer de�nes demands in the second one. Then the routing

solution in the physical layer leads to cost modi�cation for edges in the �rst layer

and the whole problem is solved again.

Holler and Voss (2006) propose an integer programming formulation for two layer

networks consisting of SDH over WDM. Strictly speaking, this is not a multi-layer

problem in the sense that demands are routed through either SDH links or WDM

links. They solve the problem using two di�erent heuristics.

Gabrel et al. (1999) introduce a constraint generation procedure based on a Ben-

ders decomposition for capacitated network design problems. Knippel and Lardeux

(2007) and Ge�ard et al. (2007) extend this work to multi-layered networks and

multi-period time scheduling, respectively. In Knippel et al. (2003), the authors

improve these methods using the knapsack-like structure of the master problem to

facilitate its resolution.
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Hop-constrained path diversi�ed network design

The L-hop constrained network design problem, consists in �nding a least cost sub-

graph ofG such that there exists a L-path between every pair of nodes. This problem

was studied by Balakrishnan and Altinkemer (1992) as a means of generating al-

ternative base solutions for a network design problem. They presented a standard

network �ow formulation with an additional cardinality constraint for each commod-

ity (to model the hop constraints). They have also derived a Lagrangian relaxation

based method whose theoretical best bound improves the linear programming bound

given by the previous formulation. Later on, in the context of a directed spanning

tree problem (which can be seen as a special case of a single-source L-hop-constrained

network design problem), Gouveia (1998) presented a layered network �ow reformu-

lation whose linear programming bound equals a lagrangean based bound similar to

the one proposed by Balakrishnan and Altinkemer. From then on, the reformulation

has been used in several network design problems with hop constraints (e.g, Pirkul

and Soni (2003), Gouveia and Magnanti (2003) and Gouveia et al. (2003)) and even

some hop-constrained problems involving survivability considerations.

Formulating the problem in the space of the natural variables, that is, without

using the layered formulation is not an easy task For K = 1, Dahl (1999) has

provided such a formulation and shown that it describes the corresponding convex

hull for L ≤ 3. Later on, Dahl et al. (2004) have shown that �nding such a description

for L ≥ 4 would be quite more complicated. For K ≥ 2 the results are even

worse. Huygens et al. (2004) have extended Dahl's result for K = 2 and L ≤ 3.

For L ≥ 4, the only interesting result for the moment is the one from Huygens and

Mahjoub (2007) for L = 4 and K = 2 where a valid formulation has been given.

However, nothing else is known which explains that the only cutting plane method

for the more general problem with several sources and several destinations, Huygens

et al. (2007) only considers L ≤ 3.

3.2 Models

We describe now an integer programming formulation for each problem.

3.2.1 Multi-layer network design

The model described next minimizes the cost of capacities installed in both layers.

There is no cost associated with the routing. First, we must route commodities

given by the demand matrix in the upper layer. This results in the installation of

capacities in that layer. Then, each upper edge de�nes a commodity in the lower

layer with a demand equal to the capacity installed on the upper edge.

Hence, there is a strong interaction between the two layers. Two feasible solutions

with the same upper layer cost can have di�erent overall costs since the cost of lower
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capacities can di�er. This model is therefore more complex than the single layer

capacitated network design model.

The two layers are represented by undirected graphs Gu = (V,Eu) and Gl =

(V,El) for the upper and lower layer, respectively, constructed on the same node set

V. To de�ne the �ows, it is convenient to introduce two directed arcs for each edge,

yielding sets of arcs Al and Au. For i 6= j ∈ V, we denote the directed arc from i to

j in Al or Au by (i, j), the undirected edge in El by ij or e, and the undirected edge

in Eu by ij or f . Each commodity q ∈ Q to be routed in the upper layer from s(q)

to t(q) must route an amount equal to dq.

Our model uses a node-arc formulation for each layer. The objective (3.1) min-

imizes the sum of the costs cle (resp. c
u
f ) of the y

l
e (resp. y

u
f ) modules of capacity

that are installed in the lower layer (resp. upper layer), with modular capacity C l

(resp. Cu). Then, variable xuqij speci�es the amount �owing through arc (i, j) ∈ Au

for commodity q ∈ Q.

Recall that commodities to be routed on the lower layer are given by capacities

installed in the upper layer. Therefore, the set of commodities in the lower layer is

identi�ed with the set of (undirected) upper edges Eu so that for each edge f ∈ Eu,

we choose arbitrarily one of the extremities as the source s(f) and the other as the

destination t(f). Variable xlfij speci�es the �ow on arc (i, j) ∈ Al, related to upper

capacity Cyuf .

With this set of variables, the problem can be formulated as:

min
∑
e∈El

cley
l
e +

∑
f∈Eu

cufy
u
f (3.1)

s.t.
∑
q∈Q

(
xuqij + xuqji

)
≤ Cuyuf f = ij ∈ Eu

(3.2)

∑
j∈V:(j,i)∈Au

xuqji −
∑

j∈V:(i,j)∈Au
xuqij =


−dq if i = s(q)

dq if i = t(q)

0 otherwise

i ∈ V, q ∈ Q

(3.3)

(ML)
∑
f∈Eu

(
xlfij + xlfji

)
≤ C lyle e = ij ∈ El

(3.4)

∑
j∈V:(j,i)∈Al

xlfji −
∑

j∈V:(i,j)∈Al
xlfij =


−Cuyuf if i = s(f)

Cuyuf if i = t(f)

0 otherwise

i ∈ V, f ∈ Eu

(3.5)

xu, xl ≥ 0 (3.6)

yu, yl ≥ 0 and integer, (3.7)

yielding a model with a structure similar to (ND) for each layer. Constraints (3.2)

and (3.4) impose that the total �ow on an edge is less than the capacity installed
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(a) (b)

Figure 3.1: Basic Network (a) and its Layered Representation (b) when L = 4

on that edge, whereas (3.3) and (3.5) ensure that the �ow balance at each node

is satis�ed. Integrality constraints (3.7) force capacities to be installed by batches.

Finally, because routing variables are continuous (3.6), each commodity can be split

among an arbitrary number of paths in each layer.

3.2.2 Hop-constrained path diversi�ed network design

The main idea of Gouveia (1998) is to model the subproblem associated with each

commodity with a directed graph composed of L+ 1 layers as illustrated in Figure

3.1. Namely, from the original undirected graph G = (V,E), we create a directed

layered graph Gq = (Vq,Aq) for each commodity, where Vq = Vq1 ∪ . . . ∪ VqL+1 with

Vq1 = {s(q)}, VqL+1 = {t(q)} and Vql = V\{s(q)}, l = 2, . . . , L. Let vql be the copy

of v ∈ V in the l − th layer of graph Gq, s(q) = s(q)q1 and t(q) = t(q)qL+1. Then,

the arcs sets are de�ned by Aq = {(iql , j
q
l+1) | ij ∈ E, iql ∈ Vql , j

q
l+1 ∈ Vql+1, l ∈

{1, . . . , L}} ∪ {(d(q)l, d(q)l+1) | l ∈ {1, . . . , L}}, see Figure 3.1. In what follows, an

(undirected) edge in E is denoted ij or e while a (directed) arc between iql ∈ Vql and

jql+1 ∈ Vql+1 is denoted by (i, j, l) (the commodity q is omitted in the notation as it

is often clear from the context).

Note that each path between s(q) and t(q) in layered graph Gq is composed of

exactly L arcs (hops), which corresponds to a maximum of L edges (hops) in the

original one. In fact this is the main idea of this transformation since in the layered

graph, any path is feasible with respect to the hop constraints. The usual network

�ow equations de�ned in this layered graph yield the following model:
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min
∑
e∈E

ceye

s.t.
∑

l∈{1,...,L}

(
xlqij + xlqji

)
≤ ye e ∈ E, q ∈ Q (3.8)

(HOP)
∑

j:(j,i,l−1)∈Aq
xl−1q
ji −

∑
j:(i,j,l)∈Aq

xlqij =


−K if i = s(q)

K if i = t(q) and l = L+ 1

0 otherwise

i ∈ Vq, l ∈ {2, . . . , L+ 1}, q ∈ Q

(3.9)

y binary (3.10)

x ≥ 0 and integer. (3.11)

Each variable ye states whether edge e ∈ E is selected and each variable xlqij
describes the amount of �ow through arc (i, j, l) for commodity q in layered graph

Gq. Constraints (3.9) are the �ow conservation constraints at every node of the

layered graph which guarantee that K units of �ow go from s(q) to t(q), while

constraints (3.8) guarantee edge-disjointness of the paths. Note that (3.8) together

with (3.10) imply that xlqij ≤ 1 for i 6= j, while (3.9) implies that xlqdd ≤ K.

3.3 Benders decomposition

This section reminds the general principle of Benders decomposition. Then it applies

the framework to reformulate (ML) and (HOP).

3.3.1 General scheme

When facing a complex mixed-integer optimization problem, the Benders decompo-

sition method (Benders, 1962) can be used to project out complicating real variables.

This projection results in the addition of many additional constraints to the problem.

Benders decomposition has been widely studied for �xed charge network design prob-

lems (Costa, 2005). Indeed, these problems usually route multi-commodity �ows

on some network to be designed. Therefore, the associated formulations contain

many constraints and variables bound together by the capacity constraints. Then,

once we project out the �ow variables, the subproblems become independent linear

programs for each commodity (see, for instance, SHOPq(y) below), thus reducing

signi�cantly the size of the linear programs to solve. For problem (ML), we can

actually re-aggregate the di�erent subproblems into a single LP with limited size.

This is the well known capacitated formulation for network design problem (ND),

where Benders cuts are replaced by metric inequalities, see Costa et al. (2009) for

a deeper comparison of Benders cuts and metric inequalities for (ND). Because
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(ML) has two layers, we have therefore two subproblems to solve, each one looking

for violated metric inequalities in the corresponding layer, see Section 3.3.2.

Note that the classical framework does not apply to model (HOP) because all

of its variables are integer; classical duality theory does not allow us to project out

variables with integer restrictions. It is well known indeed in the �eld of stochas-

tic programming that integer recourse cannot be tackled through classical Benders

decomposition, called L-shaped in stochastic programming (Birge and Louveaux,

2008). Although Carøe and Tind (1998) generalize the L-shape to integer recourse

using general duality theory, their framework stays mainly theoretical. To avoid this

di�culty, we introduce a new formulation for (HOP), (HOPc), where we relax the

integrality restrictions on x variables in (HOP), replacing (3.11) by

x ≥ 0.

The question whether (HOPc) is equivalent to (HOP) is not trivial because (3.8)

prevents (HOP) from being totally unimodular. It is answered partly in the follow-

ing proposition (see Botton (2010); Fortz et al. (2010) for details):

Proposition 3.1. The problems (HOP) and (HOPc) are equivalent for L = 2, 3

with any K ≥ 2, and L = 4 with K = 2.

Moreover, for all our test instances (see Section 3.5.2) we know from compu-

tational results that equivalence from Proposition 3.1 holds. Therefore, we apply

Benders decomposition to (HOPc) in the sequel.

Benders decomposition aims at partitioning and delaying constraint generation.

Consider the following mixed integer program

min ctx+ kty

(P) s.t. Ax+By ≥ e (3.12)

Dy ≥ f (3.13)

x ≥ 0, y ≥ 0 and integer.

For instance, given a network design problem, variables x and y represent �ows

and capacities, respectively. Constraints (3.12) contain all restrictions about routing

and capacities installed on edges, whereas (3.13) describe upper and lower bounds

on capacities.

We want to project variables x out of (P). For network design problems, this con-

sists in describing the polyhedron containing feasible capacities y without explicitly

describing the routing. In this purpose, let us express the (P) as

min
y∈Y
{kty + min

x≥0
{ctx : Ax ≥ e−By}}, (3.14)

where the set Y = {y | Dy ≥ f, y ≥ 0 and integer} describes the admissible

capacities for (P).
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Because the subproblem in (3.14) is a linear program we can substitute it with

its dual

SP(y) = max
s≥0
{st(e−By) : stA ≤ c}.

Therefore, (3.14) becomes

min
y∈Y
{ky + SP(y)}. (3.15)

Remark that the feasibility polyhedron of the subproblem does not depend on

y. Let P = {s | s ≥ 0; stA ≤ c} represents this polyhedron. We assume that P is

nonempty otherwise the former problem (3.14) was either infeasible or unbounded.

P is therefore composed of extreme points sp (for p = 1, . . . , P ) and extreme rays

rq (for q = 1, . . . , Q). The solution of SP(y) is either bounded or unbounded. In

the �rst case the solution is one of the extreme points sp, p = 1, . . . , P . In the

latter situation, there is a direction rq for which (rq)t(e−By) > 0. The unbounded

situation results in a infeasible primal problem and must be avoided. Hence sub-

problem SP(y) can be replaced by two set of inequalities for y, and (3.15) becomes

the subsequent Master Problem

min kty + γ

s.t. γ ≥ sp(e−By) p = 1, . . . , P (3.16)

(MP) (rq)t(e−By) ≤ 0 q = 1, . . . , Q (3.17)

Dy ≥ f

γ ≥ 0, y ≥ 0 and integer.

The auxiliary variable γ and equations (3.16) replace the subproblem objective value,

whereas equations (3.17) ensure that extreme rays are avoided.

Since there is usually a very large number of constraints in (MP), we should

rather generate them dynamically during the solution algorithm. For instance, given

a vector y and a real γ satisfying (3.16) for p = 1, . . . , P ′ < P and (3.17) for

q = 1, . . . , Q′ < Q, we solve SP(y). If the problem is unbounded, we choose any

unbounded extreme ray r and add a the feasibility cut rt(e − By) ≤ 0 to (MP).

Otherwise, let s be the optimal solution. If SP(y) > γ, we add the optimality cut

st(e−By) ≤ 0 to (MP), otherwise (y, γ) satis�es all constraints (3.16) and (3.17).

Notice that we have described only a general scheme, whose speci�c implementa-

tion may signi�cantly impact the algorithm e�ciency (Fischetti et al., 2010). Since

neither of the objective functions of (ML) and (HOP) have costs associated with

routing variables, we focus on the generation of feasibility cuts in what follows. In

particular, we choose violated extreme rays by solving SP(y) augmented by a nor-

malization constraint (see Fischetti et al. (2010); Ljubic et al. (2009) for testing of

di�erent normalization constraints). If its solution is strictly less than 0, we add a

feasibility cut; otherwise no cut is added. The next subsections detail the subprob-

lems used to look for violated feasibility cuts, while we present in Section 3.4 di�erent

algorithms to solve (MP) based on delayed feasibility constraint generation.



Benders decomposition for telecommunications network design 27

3.3.2 Reformulation of network design problems

We turn now to reformulations for (MP) and (HOP).

Multi-layer network design

For problem (ML), (MP) becomes the so-called capacitated formulation (Knippel

and Lardeux, 2007).

min
∑
e∈El

cley
l
e +

∑
f∈Eu

cufy
u
f

(MML) s.t. yl ∈ Yl(yu)

yu ∈ Yu,

where sets Yl(yu) and Yu are de�ned by metric inequalities:

Yl(yu) =

y ∈ Z|E
l|

+ | ∀λ ∈M|V|, C l
∑
ij∈El

λijy
l
ij ≥ Cu

∑
ij∈Eu

λijy
u
ij

 (3.18)

and

Yu =

y ∈ Z|E
u|

+ | ∀λ ∈M|V|, Cu
∑
ij∈Eu

λijy
u
ij ≥

∑
i<j

λijdij

 , (3.19)

where the metric cone (Deza and Laurent, 1997)Mn is de�ned by

Mn = {λ ∈ Rn(n−1)/2 | λij ≤ λil + λlj,∀1 ≤ i < j ≤ n, ∀1 ≤ l ≤ n, j 6= l 6= i}.

Given a capacity vector (yl, yu), we can test its feasibility by solving the separa-

tion LP's SML(Cuyu, d) and SML(C lyl, Cuyu), with SML(z, t) de�ned by

SML(z, t) = min
∑
i<j

λijzij −
∑
i<j

λijtij

s.t.
∑

1≤i<j≤n

λij = 1 (3.20)

λ ∈M|V|

for any vectors z, t ∈ Rn(n−1)/2. Normalization constraint (3.20) bounds the LP. If

SML(z, t)< 0, the solution λ leads to a metric inequality violated by (z, t):∑
i<j

λijzij −
∑
i<j

λijtij ≥ 0. (3.21)

Metric inequalities (3.18) and (3.19) are weak when capacities are modular. A

simple way of strengthening the inequalities in (3.19) without increasing the com-

plexity of the separation algorithm is to round coe�cients of∑
ij∈Eu

Cuλijy
u
ij ≥

∑
i<j

λijdij := d. (3.22)
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If Cuλij is integer for each ij = f ∈ Eu, let gcd(Cuλ) be the greatest common divisor

of those integers. Hence, dividing both sides of (3.22) by gcd(Cuλ) and rounding

up d/gcd(Cuλ), we get the stronger cut

∑
ij∈Eu

Cuλij
gcd(Cuλ)

yuf ≥
⌈

d

gcd(Cuλ)

⌉
. (3.23)

We show in Section 3.5 the e�ect of these stronger cuts.

Note that Avella et al. (2007) introduced the Tight Metric Inequalities, which

completely describe Yu. However, since they are NP-hard to separate, we do not

consider them in this thesis.

Hop-constrained path diversi�ed network design

Projecting out x variables from (HOPc), we obtain the subsequent Master Problem

min
∑
e∈El

ceye

(MHOP) s.t. KπL+1
t(q) −

∑
e∈El

yeσe ≤ 0 (π, σ) ∈
⋃
q∈Q

Rq

ye ∈ {0, 1},

where Rq contains extreme rays (vertices belonging to the normalization hyperplane,

in fact) of the feasibility polyhedron for the dual subproblem SHOPq(y) described

next. Given commodity q ∈ Q, let us introduce a dual variable πli, associated

with node i ∈ V and layer l, for each constraint (3.9) and a dual variable σe for

each constraint (3.8). De�ning o := s(q) and d := t(q), and adding the constraint

πL+1
d ≤ 1 to normalize the dual cone, we get the dual subproblem

SHOPq(y) = max KπL+1
d −

∑
ij∈E

yijσij

s.t. π2
i − π1

o − σoi ≤ 0 oi ∈ E

πl+1
i − πlj − σij ≤ 0 ij ∈ E, i, j /∈ {o, d}, l ∈ {2, . . . , L}
πl+1
j − πli − σij ≤ 0 ij ∈ E, i, j /∈ {o, d}, l ∈ {2, . . . , L}
πL+1
d − πLi − σid ≤ 0 id ∈ E, l ∈ {2, . . . , L}
πl+1
d − πld ≤ 0 l ∈ {2, . . . , L}
πL+1
d ≤ 1

σij ≥ 0 ij ∈ E.

Note that for each commodity q ∈ Q, one of the constraints in (3.9) is redundant,

which can be represented by setting π1
o = 0.
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3.4 Algorithms

In this section, we consider the general master problem (MP) and a set of subprob-

lems SPq(y), q ∈ Q, yielding Benders cut

rt(e−By) ≤ 0, (3.24)

and that integer vector of variables y has |E| components. Note that decompos-

ing (ML) leads to only two (or three, see sc below) di�erent subproblems. The

following description is valid for both (ML) and (HOP), apart from algorithms

sc and mc tailored for (ML), and heuristic tailored for (HOP). Problem (MP)

contains an exponential number of constraints while only a few of them are active

at the optimum. Therefore, we must dynamically generate the required constraints

throughout the solution method. First works on Benders decomposition for mixed-

integer problems use cutting plane algorithms, cycling many times between master

integer problems and continuous subproblems. However, modern developments in

branch-and-cut frameworks such as the commercial CPLEX (IBM-ILOG, 2009) and

the noncommercial SCIP (Achterberg, 2009), among others, have eased the devel-

opment of a branch-and-cut algorithm to solve the master problem, incorporating

the Benders cut separation in the cutting plane callback. In subsection 3.4.1 we

brie�y describe the multi-cut cutting plane algorithm, while we detail our di�erent

branch-and-cut algorithms in subsection 3.4.2.

3.4.1 Cutting plane approach

Algorithm 1: �Naive� Benders decomposition algorithm: cp

repeat

solve (MP); /* solve an IP */

let y be an optimal solution;

foreach q ∈ Q do

compute SPq(y); /* solve the dual subproblem */

if SPq(y)> 0 then add (3.24) to (MP);

until sq ≤ 0 for each q ∈ Q;

return y

In Algorithms 1 and 2, we describe our cutting plane algorithms, cp and cp-i.

Because the main computational burden is the solution of (MP), we implemented

a multi-cut version of the algorithm: we solve the subproblem for each commodity,

therefore adding up to |Q| cuts per iteration. The improved version cp-i starts by

solving the linear programming relaxation of (MP) in a cutting plane fashion. Var-

ious works enhance this classical solution algorithm. Among them, Magnanti and

Wong (1981) study the e�ect of using special cuts called �pareto optimal�, Tsamas-

phyrou et al. (2000) describe a more subtile version of the multi-cut algorithm,
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Algorithm 2: Improved Benders decomposition algorithm: cp-i

repeat

solve the linear programming relaxation of (MP); /* solve a LP */

let y be an optimal solution;

foreach q ∈ Q do

compute SPq(y);

if SPq(y)> 0 then add (3.24) to (MP);

until sq ≤ 0 for each q ∈ Q;

repeat

solve (MP); /* solve an IP */

let y be an optimal solution;

foreach q ∈ Q do

compute SPq(y);

if SPq(y)> 0 then add (3.24) to (MP);

until sq ≤ 0 for each q ∈ Q;

return y

grouping together subsets of subproblems, and Rei et al. (2009) use local branch-

ing to accelerate the overall algorithm. Sometimes, additional classes of cuts are

known for the problem allowing to add even more cuts at each iteration. For in-

stance, considering (ML), Gabrel et al. (1999) describe the following cutting plane

algorithms.

sc Their single constraint generation adds up to three cuts per iteration. Besides

cuts coming from SML(Cuyu, d) and SML(C lyl, Cuyu), they also consider

cuts from subproblem SML(C lyl, d):

C l
∑
i<j

λijy
l
ij −

∑
i<j

λijdij ≥ 0. (3.25)

Although cuts (3.25) are not needed to ensure feasibility, they help to reduce

the number of required iterations by forcing yl to take sensible values, espe-

cially in the �rst few iterations.

mc Aiming to reduce the iterations of Algorithm 1 even further, they introduce

multiple constraint generation. This algorithm adds the same cuts as sc plus

a few bipartition inequalities violated by (yl, yu), at each iteration.

Another situation occurs when the subproblems are separable, i.e., they can be

decomposed into several problems, the solution of which results in the addition of

a cut to (MP). See, for example, the multi-cut L-shaped algorithm for stochastic

programming problems with recourse (Birge and Louveaux, 2008).
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3.4.2 Branch-and-cut approach

An alternative strategy is to solve (MP) only once. We aim at embedding the gen-

eration of violated feasibility cuts (3.24) into the branch-and-cut framework solving

(MP).

It is important to add many cuts early in the tree to avoid exploration of too

many infeasible nodes. However, adding too many unnecessary cuts would slow

down the linear programming relaxation at each node. Our �rst branch-and-cut

algorithm, bc-all, checks for violated Benders cuts (3.24) at every node of the tree.

However, this algorithm is relatively slow, because too many cuts are added making

(MP) unnecessarily large and too much time is spent in the solution of SPq(y). In

bc-int, we check for cuts (3.24) only at the root and at integer nodes. Finally, we

developed a hybrid algorithm bc-n, described in Algorithm 3, checking for violated

inequality (3.24) at integer nodes and nodes with a depth less than or equal to n.

Note that bc-n generalizes both frameworks since bc-int is the same as bc-0, and

bc-all is the same as bc-|E|.
In Algorithm 3, solving a node o′ ∈ T means solving the linear programming

relaxation of (MP), augmented with branching constraints of o′, while depth(o′)

counts the number of branching constraints of o′.

3.4.3 Heuristic

An intrinsic di�culty of Benders decomposition is that we replace the well-structured

problem (P) by a problem (MP) with no straightforward structure. Indeed, it is well

known that special structures can help the solution of hard integer programs. For

instance, detecting a a �ow structure within a more complicated problem can be used

to add strong cut inequalities (Achterberg and Raack, 2010). Moreover, for many

problems Benders cuts have fractional coe�cients, yielding numerical instability

(Codato and Fischetti (2006) avoid this di�culty for combinatorial problems with

certain classes of �big M� constraints). Finally, it will be hard for our default MIP

solver (CPLEX 11 in our case) to �nd good upper bounds. We present next a simple,

yet e�cient, heuristic for (HOP). First, we solve the linear programming relaxation

of the Benders decomposition, resulting in a fractional y. Then, for each ye = 0 we

add the constraint ye = 0 to (MHOP), and we solve the resulting problem with

bc-n. This allows us to reduce signi�cantly the number of variables of the problem,

yielding a very good solution in a limited amount of time. The issue whether or

not the heuristic �nds always a feasible solution is discussed in (Botton, 2010; Fortz

et al., 2010).

3.5 Computational Experiments

The role of this section is two-folds. First, we want to underline the improvement

gained by the use of branch-and-cut algorithms instead of cutting planes algorithms,
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Algorithm 3: Hybrid branch-and-cut algorithm: bc-n

begin /* Initialization */

T = {o} where o has no branching constraints;

UB = +∞;

while T is nonempty do

select a node o′ ∈ T;

T← T\{o′}; /* withdraw node o′ from the tree */

solve o′;

let y be an optimal solution;

let w be the optimal cost;

if w < UB then

if y /∈ Z|E| and depth(o′) ≥ n+ 1 then

branch, resulting in nodes o∗ and o∗∗;

T← T ∪ {o∗, o∗∗}; /* add children to the tree */

else

foreach q ∈ Q do compute SPq(y);

if SPq(y)> 0 then add (3.24) to (MP);

if SPq(y)> 0 for some q ∈ Q then

T← T ∪ {o′}; /* put node o′ back in the tree */

if y ∈ Z|E| and SPq(y)≤ 0 for each q ∈ Q then

UB ← w; /* define a new upper bound */

y∗ ← y; /* save current incumbent */

return y∗

even when additional cutting planes are generated. This is realized by comparing

bc-int, sc, and mc on various instances for problem (ML), see Section 3.5.3. We

also compare these algorithms with extended and test the e�ect of rounding cuts.

Then, we further investigate the impact of correctly implementing branch-and-cut

algorithms. Namely, we test various ways of implementing cut generation as well as

the e�ect of using a good heuristic for problem (HOP). We present in Section 3.5.4

comparative results of algorithms extended, cp, cp-i, bc-all, bc-int, bc-n, and

bc-n-heur.

In the next section we detail how we have implemented all algorithms, while

instances are described in Section 3.5.2.

3.5.1 Implementation details

All models have been coded in JAVA using CPLEX 11 MIP solver. Algorithms

for (ML) were run on a HP Compaq 6510b with an Intel Core 2 Duo processor

at 2.40 GHz and 2 GB of RAM memory, while those for (HOP) were run on a

DELL Latitude D820 with a processor Intel Core Duo 2 T7200 of 2GHz and 2.5

GB of RAM memory. We allow CPLEX to store the branch-and-bound tree in a
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�le, setting parameter IntParam.NodeFileInd to 2, to avoid from running out of

memory. Moreover, for each algorithm we con�gure CPLEX as follows :

extended: This algorithm solves the complete models (ML) and (HOPc). All

parameters have been kept to their default values, CPLEX chooses to explore

the branch-and-bound tree with the dynamic search.

cp,sc,mc: We build an empty IP for the master problem, and one LP for

each Benders subproblem. Then, we cycle between these problems, with all

parameters kept to their default values. CPLEX uses the dynamic search for

solving all IP's.

cp-i: We build an empty LP for the master problem and solve it through a

cutting plane algorithm. Then, we build an IP for the master problem, the

constraints of which are the Benders cuts just generated; we solve it through

a cutting plane algorithm, with all parameters kept to their default values.

CPLEX uses the dynamic search.

bc-all, bc-int, and bc-n: Since the model does not contain explicitly all con-

straints, we must deactivate the dual presolve, setting BooleanParam.PreInd

to false. Then, we implemented our (global) cuts generation with a LazyCon-

straintCallback, preventing CPLEX from using dynamic search.

heuristic: We �rst solve the linear programming relaxation by a cutting plane

algorithm (in fact, we use a branch-and-cut algorithm with a limit of 0 nodes,

setting IntParam.NodeLim to 0). Then, we �x some of the variables to 0, and

re-solve the resulting problem with bc-n.

bc-n-heur: We use the algorithm bc-n, providing CPLEX with the upper

bound found by heuristic. The CPU times reported do not consider the

time spent in heuristic.

3.5.2 Instances

We describe below the di�erent sets of instances used in our computational experi-

ments.

Random

The �rst 35 instances for (ML) are randomly generated and share the next features:

Cu = 64, C l = 128, Gu = (V,Eu) is a complete graph. Demands are random integers

uniformly generated between 0 and 64 for each pair of nodes and the cost of any

edge e ∈ El ∪ Eu is based on the distance between the extremities of e.
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TC and TE

The sets TC and TE for (HOP) were taken from a class of complete graphs G =

(V,El), reported by Gouveia (1996). They share the following features: |V| = 21,

|Q| ∈ {5, 10}, and all point-to-point demands share one of their extremities. The

cost matrix for each instance considers the integer part of the Euclidean distance

between the coordinates of the 21 nodes, randomly placed among the integer points

of a grid 100 × 100. The TC class contains 5 instances with 5 commodities and

5 instances with 10 commodities with the root located in the center of the grid

and the TE class contains 5 instances with 5 commodities and 5 instances with 10

commodities with the root located on a corner of the grid. We see in the next section

that instances TE are much harder to solve than instances TC.

SNDlib

We consider also instances from the SNDlib repository (Orlowski et al., 2007). For

(ML), these networks have been taken as lower layers; upper layers are complete

graphs. Full details of these instances are shown in Table 3.1.

Name |V| |El| |Q| (ML) (HOP)

pdh 11 34 27 Yes Yes

di-yuan 11 42 42 Yes Yes

dfn-gwin 11 47 9 Yes Yes

polska 12 18 17 Yes Yes

nobel-us 14 21 33 Yes Yes

atlanta 15 22 55 Yes No

Table 3.1: Instances description.

3.5.3 Multi-layer network design

We �x a time limit of 3600 seconds for instances with 8 and 9 nodes. The corre-

sponding Time/Gap column gives either the solution time in seconds or the gap

when the time limit is reached. For instances 26�35 and the ones from SNDlib, we

allow up to 18000 seconds, reporting the status after 3600 seconds. The reported

solution times consider for the whole durations of the algorithms. Underlined gaps

indicate memory over�ows.

We can see in Tables 3.2 and 3.3 that sc, mc and bc-int outperform extended

by far. bc-int is always faster than both sc and mc. The ratio between the solution

time of bc-int and the one of the faster cutting plane algorithm ranges from 2.2

to 34.4 with a geometric average of 10.7. This is explained by the high number

of iterations performed by both cutting plane algorithms, where each iteration is
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required to solve an IP to optimality. However, the ratio is still far from the number

of iterations, since many of the iterations contain only a few cuts.

bc-int usually generates more cuts than sc, even though sc generates cuts of

type (3.25). Thus, many of these cuts are not needed to ensure the feasibility of

the solution. Hence more e�cient management of the cut pool, eliminating the non

active cuts, may improve Algorithm 3.

The relative performance of sc and mc is as expected: mc adds many more cuts

than sc, resulting in fewer iterations and shorter solution times. See (Knippel and

Lardeux, 2007) for a more detailed comparison of sc and mc.

Note that the cutting plane algorithms were unable to solve any of the larger

instances within 18000 seconds. Hence, in Tables 3.5, 3.6 and 3.7 we compare

extended and bc-int with normal and rounded cuts ((3.22) and (3.23), respectively)

for those instances, denoted by nc and rc, respectively. Although nc and rc beat

extended for most instances, the di�erence is much smaller than it is for easier

instances from Tables 3.2 and 3.3.

Results from Table 3.6 show that extended explores hundreds of thousands of

nodes, whereas both nc and rc explore millions of them. Note that the number of

nodes explored by bc-int grows rapidly with the problem size. extended, however,

manages to compute good bounds for hard instances, while exploring a relatively

small tree.

|El| Time/Gap Time Cuts generated Iterations Explored nodes Times ratio

extended sc mc bc-int sc mc bc-int sc mc extended bc-int
min(sc,mc)

bc-int

14 433 32.7 13.1 0.7 76 155 84 52 38 110345 1911 18.7

14 1.95% 9.2 9.1 0.6 76 177 85 46 33 926934 1886 15.1

14 3508 29.9 31.8 4.1 101 168 115 48 32 668218 13259 7.3

14 387 33.1 27.5 0.8 78 202 84 45 37 83482 1989 34.4

14 183 4.9 4.2 0.2 63 144 71 34 23 37388 76 21

16 984 54.1 37.9 1.2 88 183 92 54 30 184589 3282 31.2

16 508 33.8 15.4 0.8 83 187 88 39 24 118575 2310 19.3

16 2434 21.2 34.4 4.9 86 186 89 63 45 659259 26834 4.3

16 856 104.2 66.6 3.0 121 189 118 58 29 118797 8862 22.2

16 3487 33.3 16.2 1.8 90 171 99 54 26 803442 6099 9

Table 3.2: Results of extended, sc, mc and bc-int on randomly generated instances

with 8 nodes.

3.5.4 Hop-constrained path diversi�ed network design

First, we look at the quality of the linear programming relaxation of our model

(HOPc). Let IP ∗ and LP ∗ be the optimal value of (HOPc) and its linear pro-

gramming relaxation, respectively. Table 3.8 shows that the gap
(
IP ∗−LR∗

IP ∗
∗ 100

)
decreases as K increases. Before comparing the di�erent algorithms, we need to

determine the �best� value for the depth parameter of branch-and-cut algorithm

bc-n. We select a group of complicated instances (instances that extended can not

solve to optimality within 3600 seconds) and we test di�erent values of the depth
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|El| Time/Gap Time Cuts generated Iterations Explored nodes Times ratio

extended sc mc bc-int sc mc bc-int sc mc extended bc-int
min(sc,mc)

bc-int

16 2002 363.8 170.0 12.3 119 303 128 87 50 231606 42675 13.8

16 3063 217.8 244.5 15.5 115 310 186 68 43 284648 36745 14.1

16 538 226.2 264.0 14.3 149 272 156 95 39 58767 38257 15.8

16 4.16% 1639.2 450.1 25.3 127 275 156 85 46 232556 74618 17.8

16 0.72% 125.5 67.6 4.7 112 315 104 73 42 318587 14759 14.4

18 2.93% 190.5 143.3 66.1 149 328 164 103 47 420776 241323 2.2

18 3.94% 529.6 272.2 14.8 129 299 147 72 40 340148 39818 18.4

18 1.54% 109.3 55.2 8.4 111 261 154 66 45 293697 19807 6.6

18 539 60.0 21.9 0.9 92 225 114 56 28 55293 1461 24.3

18 0.63% 425.6 224.1 78.0 160 286 192 79 41 265740 143706 2.9

20 1.96% 67.2 53.3 13.7 100 261 105 60 40 313350 58887 3.9

20 3.35% 415.0 201.2 62.8 131 341 165 83 48 282078 209571 3.2

20 6.07% 293.8 67.7 28.3 130 266 155 83 36 283205 91849 2.4

20 3.1% � 730.7 66.4 � 290 187 � 47 266132 174850 11.0

20 2.32% 193.2 217.3 12.0 113 227 121 72 41 371485 44940 16.1

Table 3.3: Results of extended, sc, mc and bc-int on randomly generated instances

with 9 nodes.

|El| Initial cuts 3600 seconds 18000 seconds

nc rc nc rc nc rc

20 111 145 197 129 67 �

20 105 145 265 240 12 �

20 142 204 305 266 40 19

20 105 162 373 322 14 6

20 124 165 267 120 � �

25 144 161 544 368 30 37

25 127 222 398 332 7 22

25 131 165 231 242 8 11

25 122 179 391 216 7 �

25 129 187 347 225 37 70

Table 3.4: Number of cuts generated by bc-int with normal and rounded cuts

(nc and rc respectively) at di�erent steps of Algorithm 3, on randomly generated

instances with 10 nodes.

parameter n. On Figure 3.2, we plot the result of this tuning stage. For both curves,

the minimum is reached when n = 5. Therefore, in the sequel we always consider

bc-5 for the hybrid branch-and-cut algorithm.

We compare the performance in terms of resolution time for the di�erent methods

by plotting the performance pro�le (Dolan and More, 2002) on Figure 3.3. Clearly,

algorithms bc-5, bc-int and bc-5-heur are the fastest algorithms. Moreover, we

see that the simple and naive implementation of the Benders decomposition cp

performs much worse than the original model extended. Indeed, Benders decom-

position su�ers from the loss of problem structure, so that each of the iterations

of the master problem requires a sensible amount of time (see Table 3.12 for aver-
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|El| Time/Gap (3600 seconds) Time/Gap (18000 seconds)

extended nc rc extended nc rc

20 3.43% 0.53% 745 2.71% 4109 �

20 4.33% 1.22% 1965.7 2.2% 77801 �

20 4.88% 5.09% 2.86% 4.06% 4.72% 0.55%

20 1.19% 4.23% 1.37% 7802 2.77% 9355

20 2.76% 368.9 79 1.41% � �

25 6.43% 3.66% 4.54% 3.96% 2.47% 4.1%

25 2.82% 2.69% 0.79% 2.03% 2.37% 5032

25 5.13% 0.65% 1.09% 3.98% 4768 5922

25 1.16% 1.05 % 1447 8301 5076 �

25 3.3% 2.5% 1.37% 2.35% 1.98% 9963

Table 3.5: Solution times for extended, nc and rc at di�erent steps of Algorithm

3, on randomly generated instances with 10 nodes.

|El| 3600 seconds 18000 seconds

extended nc rc extended nc rc

20 148455 5352019 1214254 747087 6377687 �

20 139125 5722520 2716054 714667 11484670 �

20 122756 2846870 23400446 648448 5337499 13068541

20 144445 284670 2866228 375985 5337499 8042525

20 148609 408489 103577 820049 � �

25 105340 3112489 3618044 575839 5179420 5469716

25 115136 3471580 3174756 657367 5552061 4553309

25 125850 3917977 4222550 701442 5563211 7104511

25 150276 2676776 1248257 404154 3979981 �

25 147617 3514051 4155845 783877 6664584 11265256

Table 3.6: Number of explored nodes by extended, nc and rc, on randomly gener-

ated instances with 10 nodes.

ages numbers of iterations). Thus, a careful implementation is required to make the

decomposition e�cient.

Table 3.9 indicates, for each algorithm, the number of instances (out of the 213

instances which compose the entire test set) that can not be solved within the 3600

seconds. Among the 12 instances that extended can not solve to optimality, only

1 can not be solved by bc-5. bc-5-heur can solve all instances to optimality. The

reader can �nd the arithmetic averages of CPU times on Table 3.10 (> indicates

that one or more instances could not be solved to optimality).

Table 3.5.4 indicates the arithmetic average values of LP relaxation and heuristic

gaps, given by IP ∗−LP ∗
IP ∗

and heuristic∗−IP ∗
IP ∗

, respectively, as well as heuristic CPU
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Instances
T/G (3600 seconds) T/G (18000 seconds)

extended nc rc extended nc rc

pdh 3.07% 0.84% 3343.4 2.53% 7230 �

di-yuan 1.38% 1.87% 1.9% 10450 8710 9586

dfn-gwin 3.77% 1.13% 1.18% 3.36% 0.54% 0.98%

polska 3.66% 0.32% 0.47% 2.45% 0.32% 0.23%

nobel-us 8.02% 8.01% 6.79% 3.92% 1.03% 1.51%

atlanta 3.92% 314 707.9 0.09% � �

Table 3.7: Solution times for extended, nc and rcon instances based on networks

from SNDlib.

L/K 1 2 3

3 21.40 10.90 5.47

4 24.30 9.45 5.69

5 26.70 6.00 5.16

Table 3.8: Geometric average of gap
(
IP ∗−LR∗

IP ∗
∗ 100

)
for all instances.

time in seconds and the number of instances for which the solution of heuristicis

optimal. It can be seen that heuristic always provide a very good solution to

the problem. Furthermore, heuristic is also pretty fast, taking around 4 seconds

whereas bc-5-heur and extended take, respectively, on average 74.03 and more

than 582.05 seconds. In 139 cases out of 213 (around 65%), the solution given by

the heuristic is the optimal one. Finally, Table 3.13 and 3.14 present arithmetic av-

erages of the number of Benders cuts generated by the branch-and-cut algorithms,

and number of nodes explored by branch-and-cut and extended formulations, re-

spectively, and Table 3.15 provides means of CPU time spent for solving Benders

subproblems and the corresponding fraction in the total CPU time (means have

been taken over all instances).

extended cp cp-i bc-all bc-int bc-5 bc-5-heur

12 90 30 20 4 1 0

Table 3.9: Number of instances (out of 213) unsolved within one hour.
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Figure 3.2: bc-n depth parameter tuning by average CPU time (sec.)

extended cp cp-i bc-all bc-int bc-5 bc-5-heur heuristic

> 498.09 > 1817.87 > 680.27 > 494.40 > 151.87 > 89.78 74.03 3.78

Table 3.10: Average CPU times for all approaches.
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Figure 3.3: Performance pro�le comparing methods on the entire test set.
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LP Relaxation heuristic

Instances Gap(%) Gap(%) Optimal heuristic CPU Time

TC-5 8.04 1.77 24/45 0.76

TC-10 12.96 0.42 31/45 4.78

TE-5 10.67 2.17 24/45 0.97

TE-10 17.72 0.36 30/45 9.39

pdh 21.25 0.00 9/9 6.51

di-yuan 20.96 0.00 9/9 2.21

dfn-gwin 16.33 0.41 3/6 0.59

polska 11.11 0.00 5/5 0.37

nobel-us 10.00 0.00 4/4 1.39

Arithmetic Mean 13.13 1.01 - 3.78

Table 3.11: Linear relaxation gap and heuristic performance for the entire test

set.

Instances
cp cp-i

linear (MHOP) integer (MHOP)

TC-5 54.07 20.53 11.11

TC-10 97.00 28.22 22.09

TE-5 229.87 34.71 36.64

TE-10 126.29 37.58 51.51

pdh 174.67 13.33 111.44

di-yuan 81.33 9.89 20.67

dfn-gwin 94.33 17.00 29.50

polska 56.60 11.40 4.80

nobel-us 147.25 11.50 21.75

Arithmetic Mean 124.73 27.52 32.57

Table 3.12: Average numbers of iterations.
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Instances
Number of cuts generated

bc-all bc-int bc-5 bc-5-heur

TC-5 342.98 120.33 128.20 94.71

TC-10 6616.56 567.80 780.49 378.36

TE-5 757.13 236.62 248.40 159.73

TE-10 17154.53 1693.60 2008.31 1029.40

pdh 6270.33 1219.22 1205.89 1103.22

di-yuan 1349.44 585.22 592.22 541.56

dfn-gwin 1221.33 289.67 310.17 200.83

polska 110.00 110.20 103.80 105.00

nobel-us 224.25 238.75 219.25 234.75

Arithmetic Mean 5617.64 644.65 760.01 433.20

Table 3.13: Number of cuts generated for the entire test set.

Instances
Number of nodes visited

bc-all bc-int bc-5 bc-5-heur extended

TC-5 135.27 405.69 311.98 917.58 149.09

TC-10 885.60 6825.44 3545.40 13972.93 741.11

TE-5 169.29 1165.84 520.51 2204.31 177.56

TE-10 1310.00 48490.58 13983.40 43201.62 2207.69

pdh 2652.78 7831.33 6773.78 9663.11 2009.89

di-yuan 210.89 753.78 549.33 1614.56 243.78

dfn-gwin 415.00 1029.33 909.17 787.17 410.00

polska 16.00 31.40 25.00 88.80 14.80

nobel-us 17.75 47.00 28.25 242.50 14.25

Arithmetic Mean 661.60 12411.86 4215.30 13244.02 799.38

Table 3.14: Number of nodes visited for the entire test set.

cp cp-i bc-all bc-int bc-5 bc-5-heur heuristic

CPU time 1.39 0.81 86.31 9.94 10.46 6.14 1.91

(Arithmetic mean)

Fraction of total time 0.25 1.34 37.59 23.98 29.81 23.41 17.31

(Geometric mean)

Table 3.15: CPU time spent for solving Benders subproblems.
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Transmission expansion planning with

re-design

4.1 Introduction

Long term transmission expansion planning determines, over an horizon of 10 or

more years, optimal investments on new transmission lines that make up an eco-

nomic and reliable electrical network. In its general form, transmission expansion

planning is set as a mixed-integer nonlinear stochastic programming problem that

minimizes discounted expected costs of investment, subject to constraints depending

on uncertain data, such as future growth of electricity demand and of generation.

Historically, transmission expansion planning stems from centralized systems,

with both generation and transmission assets belonging to the government. In this

setting, transmission planning should ideally be performed jointly with the gener-

ation expansion. However, since the resulting optimization problem would be too

complex to handle, electrical transmission and energy generation expansion plans

are often determined separately, at least for large power systems. Once both ex-

pansion plans are available, they can be used as input for some integrated model of

generation and transmission, with simpli�ed features. Alternatively, the output of a

simpli�ed integrated model can be used as input of the separate expansion planning

problems.

The interest of transmission expansion planning also extends to competitive

frameworks. The current deregulation trend often results in a mix of market com-

petition in the generation and distribution sectors, with a centralized regulation for

transmission. In this context, the regulating entity is in charge, not only of operating

the grid while maximizing energy trade opportunities, but also of de�ning an expan-

sion plan for the transmission network to remain operational in the future. Whether

the power system is centralized or liberalized, transmission expansion planning is

a valuable tool for helping the decision-maker in adopting the most appropriate

strategies for determining the time, the location, and the type of transmission lines
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to be built.

The transmission expansion planning problem is set over an electrical network,

designed in the past by taking into account some critical factors, speci�c to the

power system under consideration. The amount of hydropower is crucial in hydro-

dominated power systems like Brazil's, because generation sites are usually far away

from the consumption centers. Long transmission lines and, hence, important in-

vestments, are needed. Also, due to the pluvial regime, the network needs to ac-

commodate various power �ows arising in di�erent hydrological conditions. Another

important factor is the demand growth rate along the years, especially for countries

with signi�cant growth rates, which need large investments and a large portfolio

with reinforcement candidates.

The transmission expansion planning optimization problem includes both physi-

cal and budget constraints. Operational and investment constraints are often linear,

and vary dynamically along the planning horizon. By contrast, expansion transmis-

sion constraints are static and non-convex, generally bilinear. Due to the high

complexity and di�culty of the corresponding optimization problem, several sim-

pli�ed models and approximation techniques have been considered; see the review

from Latorre et al. (2003). For example, in Tsamasphyrou et al. (2000), the trans-

mission expansion planning problem with security constraints, preventing transmis-

sion equipment failure, is set as two-stage stochastic mixed-integer linear program,

decomposed by Benders technique and solved by a (multi-cut) cutting-planes algo-

rithm (Birge and Louveaux, 2008) similar to cp from Chapter 3. If transmission

losses are a concern, they can be treated by a linearization (de la Torre et al., 2008;

deOliveira et al., 2005).

Due to the restructuration of the electrical sector that a�ected many countries

in the recent years, uncertainty has lately arisen as an important consideration.

This impacts the modeling and signi�cantly increases the size and complexity of

the optimization problem. Reported results are mostly for small power systems (6

to 30 buses) Silva et al. (2006); Choi et al. (2007); Maghouli et al. (2009); Buygi

et al. (2006); Choi et al. (2005); Fang and Hill (2003); Zhao et al. (2009); Buygi

et al. (2004); Lopez et al. (2007); Lu et al. (2005); Reis et al. (2005); de la Torre

et al. (2008). When considering larger power systems, the problem size is reduced

by some heuristic method, relying on human experts' judgment, as in Tor et al.

(2008); Oliveira et al. (2007, 2004b); Buygi et al. (2006).

In general, the transmission expansion planning problem is solved in two variants,

considering or not generation redispatch; see Bahiense et al. (2001); de J. Silva Junior

(2005); deOliveira et al. (2005). The case without redispatch requires the planned

transmission network to operate correctly for a given set of generation values, com-

puted apriori for each generation plant. The variant with redispatch considers gen-

eration as a variable in the optimization problem: an economic dispatch and the

optimal transmission expansion plan are computed together.

In this chapter, published in Moulin et al. (2010), we propose a transmission

expansion planning model that, rather than just adding capacity to the existing
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network, also allows for the network to be re-designed when it is expanded. Our

new modeling introduces more �exibility and is general, in the sense that it can be

used for di�erent frameworks, with and without redispatch, and independently of

the level of simpli�cation or sophistication of the formulation, including with respect

to uncertainty treatment.

The new model with re-design relies on the observation that an existing trans-

mission network, designed in the past, may no longer be optimal in the present and

it may become even less well adapted in the future. In the transmission expan-

sion planning problem, electrical power �ows in the grid according to the linearized

second Kircho�'s law, and has the following peculiar property, unique to electrical

networks. Namely, in some con�gurations, disconnecting an existent transmission

line (respectively, adding a new line) does not necessarily decrease (respectively,

increase) the network capacity. Our numerical testing shows that allowing for the

network to be re-designed while expanding it can result in signi�cant savings.

This Chapter is organized as follows. In Section 4.2, we start with a general

transmission expansion planning problem, then present our model with re-design,

and comment on alternative models proposed by some authors. As mentioned, the

transmission expansion planning problem has bilinear constraints that need to be

dealt with. Section 4.3 contains a mathematical study comparing di�erent disjunc-

tive proposals that can be found in the literature. Some alternative linearization

techniques, improving the relaxed transmission expansion planning problem, are

also analyzed. In most of the proposals, bilinear constraints are �linearized� by

using the �big-M� reformulation from Disjunctive Programming. The problem of

choosing suitable values for the corresponding �big-M� coe�cients is addressed in

Section 4.4. We �rst give general minimum values for the models with and without

re-design, and then analyze how to exploit the initial network topology to reduce the

minimal bounds. Section 4.5 reports on our numerical testing, including a thorough

comparison of the various formulations performances on several grids of real size.

The �nal Section 4.6 gives the model with re-design when considering (N − 1) se-

curity constraints, some preliminary numerical experience, and a discussion on how

to handle uncertain demand and generation.

4.2 Models for transmission expansion planning

For convenience, we start by formulating a deterministic transmission expansion

planning problem without contingencies; in Section 4.6, we consider how to incor-

porate (N − 1) constraints in the modeling. From the Combinatorial Optimization

point of view, the electrical network is an undirected graph (V,E) where vertices

i ∈ V are called buses and edges e ∈ E are called circuits. The set of circuits is

partitioned into a subset E0, of existing circuits, and a disjoint subset of candidate

circuits, denoted by E1. For each circuit e ∈ E, indices s(e) and t(e) denote, re-

spectively, the head and the tail of the circuit, while ψe is the circuit susceptance.
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The grid can have parallel circuits, e1, e2 ∈ E, denoted by e1 ‖ e2, linking the same

terminal buses.

4.2.1 Classical transmission expansion planning problem

The transmission network expansion problem usually models the �ow xe on a circuit

e by xe = ψe(θs(e) − θt(e)), where potential angles θi, i ∈ V, are decision variables of

the problem. Therefore, �ow variables x are not needed to formulate the problem,

but they are used to simplify the formulation. Introducing binary design variables

y stating which circuits are built, we obtain the following formulation:

min
∑
e∈E1

ceye

s.t.
∑

e∈E:t(e)=i

xe −
∑

e∈E:s(e)=i

xe = di − gi i ∈ V (4.1)

xe − ψe(θs(e) − θt(e)) = 0 e ∈ E0 (4.2)

(TEP) xe − ψeye(θs(e) − θt(e)) = 0 e ∈ E1 (4.3)

− C ≤ x ≤ C (4.4)

0 ≤ g ≤ G (4.5)

y binary.

Equations (4.1) are the �ow balance constraints at each bus of the network, (4.2) and

(4.3) ensure that linearized Kircho� laws are satis�ed for each existing and candidate

circuit, respectively, while (4.4) and (4.5) ensure that capacities are not exceeded for

each circuit and generating unit. At �rst glance, problem (TEP) could be considered

as a Capacitated Network Design problem such as (ND), used to model expansion

of telecommunication networks (see Chapter 3) and freight transportation networks

(Crainic, 2000), among others. However, there is one important di�erence, that

has a crucial impact when solving the transmission expansion planning problem.

Speci�cally, most network design problems, including (ML) and (HOP), satisfy

the following property:

for any given y ∈ {0, 1}|E1|, with components ye =

{
1 for e ∈ E′ ⊂ E1

0 for e ∈ E1\E′,
if y is feasible for a network design problem (P), then any vector ỹ ∈ {0, 1}|E1|

such that ỹ ≥ y is also feasible for (P).
(4.6)

Such is not the case for transmission networks. As shown in Figure 4.1, Property

(4.6) may not hold for (TEP): adding one or more circuits to a functioning network

may prevent it from working properly.

This peculiar feature is in sharp contrast with Capacitated Network Design prob-

lems. We shall come back to this issue in Section 4.2.2.
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Figure 4.1: GA = 100MW , GB = GC = GD = 0MW , dB = dC = 50MW, dA =

dD = 0MW , ψAB = ψBC = 1MW
rad

and ψCD = ψDA = 2MW
rad

, and CAB = CBC =

CCD = CCA = 50MW . Left network is feasible for θA = 0 rad, θB = θC = −50 rad

and θD = −25 rad, whereas right network is infeasible.

4.2.2 Allowing for the network to be re-designed

In network design problems, new links are added to a network to make it capable

of routing given commodities. Typical examples of commodities are passengers

using public transportation, merchandize in a vehicle routing problem, data in a

telecommunication network, or electricity in a transmission grid.

As mentioned, the peculiar behavior of power �ow makes transmission networks

very di�erent from the other examples. In particular, for most network design prob-

lems, the routing is either decided by some manager, or �xed by a rule aiming

at minimizing some utility (congestion, travel time, travel costs). In such circum-

stances, the fact of adding a new link to a functioning network can never prevent

the network from working properly. At worst, the manager can decide not to use

that particular link. By contrast, in transmission power systems, the network man-

ager cannot choose which circuits will be used. Only generation dispatch, indirectly

a�ecting the routing, can be chosen (generation levels are control variables, while

voltage angles and �ows are state variables). The example in Figure 4.1 shows that,

besides being useless, a new link can also make the network inoperational. Simi-

larly, an inoperational network unable to satisfy its load could in some cases start

functioning after cutting-o� some of its circuits.

The remarks above indicate that, from a modeling point of view, it can be

cheaper to allow the network to be re-designed when planning its expansion. The

approach is also sensible from a practical point of view. When compared to the high

investment required to build new lines, the possibility of cutting some transmission

lines, with almost no cost, is worth considering. However, since existing lines can

be cut, a model with re-design uses more binary variables and is more di�cult from

the computational point of view.
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The corresponding optimization problem is given by

min
∑
e∈E1

ceye (4.7)

s.t.
∑

e∈E:t(e)=i

xe −
∑

e∈E:s(e)=i

xe = di − gi i ∈ V

(TEPR) xe − ψeye(θs(e) − θt(e)) = 0 e ∈ E (4.8)

− C ≤ x ≤ C

0 ≤ g ≤ G

y binary.

Problem (TEPR) has one variable ye for each circuit e ∈ E while (TEP) has a

variable ye only for e ∈ E1. Therefore, the bilinear constraints (4.8) in (TEPR) are

set for all circuits, not only for the new ones as in (4.3). Both problems have the same

objective function (4.7): only investment cost in building new lines is considered,

because the cost of cutting an existing line is negligible. Note, in addition, that

the classical model (TEP) can be derived from (TEPR), by adding the constraints

ye = 1 for e ∈ E0 to the re-design problem. This uni�ed approach will be useful in

the sequel, when devising solution methods.

In addition to having more binary variables, model (TEPR) is harder to solve

than (TEP) because some of the binary variables have null objective cost. As a

result, when using an enumeration method, the fathoming of many nodes in the

branch-and-bound tree can be signi�cantly delayed. For the same reason, meta-

heuristics providing very good feasible solutions for (TEP), such as the GRASP

described by Binato et al. (2001), are no longer applicable to (TEPR), because they

are based on selecting circuits by the corresponding investement cost. Finally, as

shown in Section 4.4, the linear relaxation polyhedron for (TEPR) is larger than the

one of (TEP). As a result, bounds for (TEPR) may be less tight than for (TEP).

Despite the apparently negative comments above, it is important to keep in mind

that, depending on the particular problem, allowing for re-design may have a sig-

ni�cant economic impact. Our numerical results on real-life transmission networks

show that the model with re-design gives important savings for some con�gurations.

4.2.3 Simpli�ed related models

Both (TEP) and (TEPR) can be further complicated by the introduction of (N−1)

security constraints. These constraints state that if, for some contingency, any circuit

happens to fail (alone), the network must stay functional. We will come back to

this issue in Section 4.6.

In view of the di�culty of the transmission expansion planning problem, even

without contingencies, several authors introduced simpli�ed models that we review

next. However, in all of the models below, simpli�cation comes at the stake of ending

up with a network for which (4.6) holds. Since this property is not satis�ed by a
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transmission network, for some applications the (simpli�ed) optimal plan computed

with such models may need to be modi�ed when the network is actually expanded.

In Bienstock and Mattia (2007), the model is set to �nd a minimal cost capacity

increase that ensures the network survival to di�erent failures. The network is rep-

resented by a graph without parallel edges, and each edge e has an initial capacity,

denoted by ue. Parallel circuits are summed up into a single edge with the corre-

sponding total capacity. In the absence of parallel edges, bilinear constraints can be

avoided by replacing, for all e ∈ E, constraints (4.8) and (4.4) by

xe − ψe(θs(e) − θt(e)) = 0 and |xe| ≤ ue + Ceye ,

respectively. Failures are considered in two di�erent variants, depending if they

occur simultaneously or in cascade. The �rst variant is solved by an e�cient Benders

decomposition scheme. The solution method for the second variant makes use of

strong valid inequalities in a cutting planes framework. For both variants, the

elimination of parallel circuits allows the authors to solve much bigger instances

than the ones handled in our numerical results.

Another simpli�ed model goes back to Garver's transportation model (Garver,

1970), where (4.3) is replaced by a �ow constraint of the form |xe| ≤ yeCe for all

e ∈ E1. The resulting mixed-integer linear programming problem is easy to solve

by modern solvers, because it is closely related to the so-called single-commodity

multi-facility capacitated network design problem. Although unrealistic, the trans-

portation model can provide a better lower bound for (TEP) and (TEPR) than

the optimal value of the linear relaxation, see Table 4.5 in Section 4.5. Hence, it

can be e�ciently used in a branch-and-bound process to eliminate portions of the

exploration tree.

The third model in our review was proposed by Singh et al. (2008) for electricity

distribution. Due to the local span of distribution networks, there is one generating

unit (only one generation bus) and the network must be a tree (each pair of buses is

connected by a single path). In this setting, the model is no longer a simpli�cation,

because the actual network satis�es (4.6).

The tree requirement introduces many combinatorial a�ne constraints. In coun-

terpart, we show below that a tree network makes the (bilinear) second Kircho�'s

law redundant, simplifying substantially the optimization problem (voltage angles

disappear from the formulation) when C and ψ satisfy

e1 ‖ e2 ⇒ Ce1/ψe1 = Ce2/ψe2 , e1, e2 ∈ E. (4.9)

Proposition 4.1 (Consequence of tree shape). Let Garver's transportation model
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be given by

min
∑
e∈E1

ceye

s.t.
∑

e∈E:t(e)=i

xe −
∑

e∈E:s(e)=i

xe = di − gi i ∈ V

(Transportation) − Ceye ≤ xe ≤ Ceye e ∈ E1

− C ≤ x ≤ C

0 ≤ g ≤ G

y binary.

(4.10)

If C and ψ satisfy (4.9) and y designs a tree, then any vector (y, x, g) is feasible

for the transportation problem above if and only if there exists a vector (y, x′, g, θ′)

feasible for the transmission expansion planning (TEP).

Proof. The necessary condition is straightforward, because the feasible set of the

transmission expansion planning (TEP) is contained in the feasible set of the trans-

portation model. To prove the reverse inclusion, given a tree y and a vector (y, x, g)

feasible for the transportation model, we de�ne a vector (y, x′, g′, θ′) that is feasible

for (TEP), as follows. First, we keep the same generation variables, g′i = gi for each

i ∈ V. Then, we consider any circuit e1 ∈ E with endpoints i and j. The total �ow

between i and j is bounded by the total capacity of the circuits connecting i and j,

so that their ratio Xij is smaller than one:

Xij ≡
∑

e2∈E:e2‖e1 xe2∑
e2∈E1:e2‖e1 ye2Ce2 +

∑
e2∈E0:e2‖e1 Ce2

≤ 1.

Then, x′e1 = Ce1Xij ≤ Ce1 for e1 ∈ E0 and x′e1 = ye1Ce1Xij ≤ Ce1 for e1 ∈ E1 so

that x′ satis�es constraints (4.4). The constraint (4.1) for any i ∈ V is also satis�ed,

because gi is equal to g
′
i and the total �ow from i to any j ∈ V is unchanged: for

any e1 ∈ E such that s(e1) = i and t(e1) = j, the total �ow between i and j is given

by

∑
e2∈E:e2‖e1

x′e2 = Xb1b2

 ∑
e2∈E1:e2‖e1

ye2Ce2 +
∑

e2∈E0:e2‖e1

Ce2

 =
∑

e2∈E:e2‖e1

xe2 .

The new �ow vector x′ allows us to set up feasible voltage angles θ′ satisfying (4.2)

and (4.3), as follows. First, we choose any bus ref ∈ V and set θ′ref = 0. Then,

we select any built circuit e1 (e1 ∈ E1 and ye1 = 1, or e1 ∈ E0) with s(e1) = ref

and set θ′t(e1) = θ′s(e1) − x′e1/ψe1 = 0 − x′e1/ψe1 = −Xs(e1)t(e1) Ce1/ψe1 . Assumption

(4.9) ensures that choosing e2 ‖ e1, instead of e1, induces the same angles di�erence.

Next, we select a built circuit e2 ∦ e1 with s(e2) ∈ {ref, t(e1)} to set up θ′j(e2) in the

same way. We repeat this procedure until all voltage angles are set, the tree shape

ensuring that each of them shall be set only once.
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The fact that transmission networks with a tree shape do not require potential

angle variables allows us to reduce the Steiner-tree problem to (TEP).

Corollary 4.2 (Complexity of transmission expansion planning). Problem (TEP)

is NP-hard.

Proof. We show how to write a Steiner-tree graph problem in the form (TEP),

by suitably choosing the parameters therein. Given an undirected weighted graph

de�ned by vertices in a set V and edges in a set E, a set of terminal vertices T ⊆ E,

with |T| ≥ 3, and edge weights ce ≥ 0 for all e ∈ E, the Steiner Problem in Graphs

consists in �nding a connected subgraph S (called the Steiner Tree) that includes all

terminal vertices at minimum edge cost, i.e., min
∑

e∈E ce. This problem is known to

beNP-hard, especially for grid graphs (Karp, 1972; Ahuja et al., 1993). Likewise for
the single-commodity �ow integer formulation of the Steiner problem (Wong, 1984).

This formulation expresses the original (undirected weighted graph) problem as a

directed weighted graph problem by choosing a �source� terminal vertex ts o�ering

commodities to the remaining terminal vertices. To see how this last formulation

can be cast in the form of problem (TEP), we consider the the same graph (V,E)

and let E = E1 and E0 = φ. Then, if t denotes the cardinality of the set of terminal

vertices T ⊂ V, for an arbitrary source ts ∈ T, we take

Gi =

{
t− 1 i = ts
0 i in V\{ts}

, di =

{
0 i = in V\T ∪ {ts}
1 i in T\{ts}

,

and, for all e ∈ E, Ce ≥ t − 1 and ψe = 1. Because the capacities are large

enough and designs c costs are positive, an optimal solution to (TEP) has a tree

shape. Therefore, potential angles may be neglected and the solution is nothing but

a minimum cost Steiner tree connecting vertices in T.

4.3 Linearizing the problem

We now address the problem of de�ning tight and convex relaxations for the mixed-

integer bilinear programming problem (TEPR). Since (TEP) can be formulated as

(TEPR) plus constraints ye = 1 for e ∈ E0, the formulations below can be used for

both models.

The main di�culty of (TEPR) arises from its bilinear constraints (4.8), de�ning

the function

F (ye, θs(e), θt(e)) := ψeye(θs(e) − θt(e)) .

This is a bilinear function, neither convex nor concave (its Hessian eigenvalues are

constant, equal to 0 and to ±
√

2ψe). Moreover, there is no quadratic convexi�cation

for F (ye, θs(e), θt(e)), because the function F (ye, θs(e), θt(e)) +λ(y2
e − ye), with Hessian

eigenvalues equal to 0 and to λ±
√
λ2 + 2ψ2

e , remains neither convex nor concave,

regardless the value of the scalar λ. For this reason, e�cient convex mixed-integer

nonlinear programming tools, like the method from Quesada and Grossman (1992)
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and its modern implementation FilMint from Abhishek et al., cannot be used in our

problem.

Instead, bilinear constraints are �linearized� by using the �big-M�-reformulations

for disjunctive programming (Raman and Grossmann, 1994). Before detailing how

to suitably choose such coe�cients, we compare two disjunctive approaches that have

been used in the literature and give an alternative, third, formulation using �big-M�

constraints. To each one of the three formulations corresponds a speci�c rewriting

of bilinear constraints, that yields a di�erent optimization problem, depending if the

model of interest is (TEP) or (TEPR).

4.3.1 Standard Disjunctive Formulation

Pereira and Granville (1985), and Villanasa (1984), among others, replace (4.8) by

a constraint of the form

−Me(1− ye) ≤ xe − ψe(θs(e) − θt(e)) ≤Me(1− ye) for all e ∈ E , (4.11)

for some �xed coe�cients Me > 0. Flow bounds are written in the form

|xe| ≤ yeCe for all e ∈ E . (4.12)

The advantage of this formulation is that its number of variables and constraints

grows linearly with the size of the problem. Yet, the formulation is very hard to

solve because of the �big-M� coe�cients in constraints (4.11).

4.3.2 Improved Disjunctive Formulation

A new disjunctive formulation, hopefully tighter than the standard one, and requir-

ing additional continuous variables, was considered by Bahiense et al. (2001). Each

�ow is rewritten by using two positive �ow variables, as follows:

xe = x+
e − x−e for x+

e , x
−
e ≥ 0 and e ∈ E . (4.13)

Likewise for each voltage angles di�erence:

∆θ+
e −∆θ−e = θs(e) − θt(e) for ∆θ+

e ,∆θ
−
e ≥ 0 and e ∈ E . (4.14)

Using the additional variables in (4.11) yields the following constraints

−Me(1− ye) ≤ x+
e − ψe∆θ+

e ≤ 0

−Me(1− ye) ≤ x−e − ψe∆θ−e ≤ 0
for all e ∈ E . (4.15)

With the new variables, �ow bounds take the form

x+
e ≤ yeCe and x−e ≤ yeCe for all e ∈ E . (4.16)

The relation expressing a variable as the di�erence of its positive and negative parts

is a bijection. For this reason, (4.13) and (4.16) are equivalent to (4.12). Since,

rather than using the voltage angles, the bijection is used for the voltage angles

di�erences in (4.14), the feasible set de�ned by (4.15) di�ers from the one de�ned

by (4.11), as shown next.
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Comparing linear relaxations

An important matter when relaxing mixed-integer constraints refers to how close the

new feasible set is to the convex hull of the original feasible set, see (Nemhauser and

Wolsey, 1999). A formulation for which the relation is tight is said to be stronger

than one with a bigger set. To compare the strength of the disjunctive formulations

above, we consider their linear relaxation polyhedrons, obtained when replacing the

{0, 1} set by the interval [0, 1].

Accordingly, we de�ne the polyhedrons

P = conv
({

(y, x, g, θ) satis�es (4.1), (4.8), (4.4), (4.5) and y ∈ {0, 1}|E|
})

,

corresponding to the convex hull of feasible vectors for model (TEPR);

P4.3.1 :=
{

(y, x, g, θ) satis�es (4.1), (4.11), (4.12), (4.5) and y ∈ [0, 1]|E|
}
,

corresponding to the linear relaxation of the standard disjunctive formulation of

model (TEPR); and

P4.3.2 :=

{
(y, x, g, θ) satis�es

[
(4.1), (4.13), (4.14),

(4.15), (4.16), (4.5)
and y ∈ [0, 1]|E|

}
,

corresponding to the linear relaxation of the improved disjunctive formulation of

model (TEPR).

We �rst note that the improved disjunctive formulation is tighter than the stan-

dard one. More precisely, in (4.15), substracting the second equation from the �rst

one, and using (4.13) and (4.14), implies satisfaction of (4.11). Therefore,

P4.3.2 ⊆ P4.3.1 . (4.17)

The following example shows that the inclusion may be strict.

Example 4.3 (Strict inclusion). Consider a network formed by three buses A ,B,

and C, with no initial circuits and such that at most one circuit connecting each

pair of buses can be built. Suppose, in addition, that the parameters have the values

GA = 100MW , GB = GC = 0, dA = dC = 0, dB = 100MW , CAB = CBC = CCA =

400MW , ψAB = ψCA = 1MW
rad

and ψBC = 0.5MW
rad

and cAB = cBC = cCA = 10. The

optimal value to the transmission expansion planning optimization problem (TEPR)

is 10, obtained by constructing only circuit AB: yAB = 1, the remaining optimal

binary variables being null. The corresponding voltage angles at the optimum are

θA = 0 rad and θB = −100 rad. We show next how to construct a cheaper fractional

solution (y, x, g, θ) in P4.3.1 that does not belong to P4.3.2.
In Section 4.4 we give the smallest values for the �big-M� coe�cients to ensure

a tight relaxation. In particular, by Proposition 4.6 therein, the minimal value for

MBC is 400MW . Consider the fractional vector yAB = yBC = yCA = 0.25, with

angles θA = 0, θB = θC = −50 rad and �ows xAC = xCB = xAB = 50MW . The
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corresponding objective function value is 7.5, smaller than the optimal cost of the

mixed 0-1 problem.

For the point under consideration, the potential di�erences ψAB(θA − θB) =

ψAC(θA− θC) = 50MW are enough to induce the required �ows, whereas ψCB(θC−
θB) = 0MW should not induce any �ow. However, since y is fractional, the �big-M�

constraints may allow this �ow to be routed on the network. Namely, constraint

(4.11) for circuit CB is

−300 ≤ xCB ≤ 300 ,

while constraint (4.15) for circuit CB is

xCB = 0. (4.18)

Thus, the �ows xAC = xCB = xAB = 50MW give a feasible point in P4.3.1. By

contrast, constraints (4.18) will cut-o� the point from P4.3.2.

For a linear relaxation to be useful for the optimization problem, its �shadow�

projection on the y-variables (Nemhauser and Wolsey, 1999) needs to be tight with

respect to the original problem. This means that in the relaxed polyhedrons only

the y-components of feasible vectors (y, x, g, θ) matter.

In this sense, although the inclusion (4.17) ensures a similar relation for the

shadow projections, we are in no position to say if the inclusion is strict for the

y-variables only. In particular, we now show that for the counter-example above, it

is possible to de�ne �ows and angles x̃, θ̃ satisfying (4.15) for the fractional values

yAB = yBC = yCA = 0.25.

Example 4.4 (No longer strict inclusion). Consider the network in Example 4.3 and

the same fractional vector yAB = yBC = yCA = 0.25. Set angles to θ̃A = θ̃C = 0 rad

and θ̃B = −100 rad, and �ows to x̃AB = 100MW , x̃AC = x̃CB = 0MW . Such

�ows x̃AB and x̃AC are correctly induced by the potential di�erences, as long as the

�ow x̃CB is equal to 50MW . However, recalling that MBC(1 − yBC) = 300MW ,

constraint (4.15) for circuit CB is

−250 ≤ xCB ≤ 50, (4.19)

so that x̃CB = 0MW is feasible for (4.19) and (y, x̃, θ̃, g) ∈ P4.3.2.

In summary, from relation (4.17), the linear relaxation of the improved disjunc-

tive formulation is not worse than the one of the standard disjunctive formulation.

But it is not known if, when considering only the y-components, the inclusion re-

mains strict (unfortunately, no example is given by Bahiense et al. (2001)). In our

computational experience in Section 4.5, both disjunctive formulations gave identical

results, for all the cases in Table 4.1.
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4.3.3 Breaking Symmetry

In Combinatorial Optimization, it is well known that feasible sets exhibiting symme-

try often slow down signi�cantly any branch-and-bound algorithm, due to (useless)

exploration of many symmetric nodes. In a transmission network, parallel circuits

do induce such a symmetry, making both disjunctive formulations in Sections 4.3.1

and 4.3.2 di�cult to solve.

Basically, parallel circuits yield feasible points that are indistinguishable by the

objective function. Indeed, from a feasible vector involving parallel circuits e1 ‖ e2,

another feasible vector with the same cost can be obtained, simply by swapping

indices corresponding to e1 and e2.

In order to address this important issue, in what follows we assume the condition

below.

Assumption 4.5. Any pair of parallel circuits e1, e2 ∈ E has the same capacity,

susceptance and cost:

∀e1 ‖ e2 Ce1 = Ce2 , ψe1 = ψe2 , and ce1 = ce2 .

All the case studies considered in our numerical experience, and given in Table 4.1

below, satisfy Assumption 4.5.

The interest of Assumption 4.5 is that it allows us to de�ne new circuit sets, by

gathering parallel circuits into a single, �fat�, edge. We denote such new sets by F0

and F1, corresponding to E0 and E1, respectively, with F = F0 ∪ F1 associated to

the full set E. This re-ordering does not prevent the network from having parallel

circuits: to each (undirected) �fat� edge ij ∈ F we associate an upper bound Nij for

the number of circuits that can be built. We also denote by nij the initial number

of circuits linking i and j. With this notation, instead of using a single index e

for a circuit and terminal points s(e) and t(e), each circuit is now determined by

a pair (ij, `), referring to the circuit's endpoints i, j ∈ V and the circuit position

` ∈ Lij := {1 , . . . , nij +Nij}; see Figure 4.2.

e1

e2

i j
(ij, 1)

(ij, 2)

t(e1) = t(e2)s(e1) = s(e2)

Figure 4.2: Renaming parallel circuits as part of a single, �fat�, edge.

Variables ye and xe are renamed accordingly to y`ij and x`ij, and similarly for the

investment costs. We show in Section 4.4 that the actual value used for M `
ij is

independent of `, so that constraints (4.11) and (4.15) are rewritten

−Mij(1− y`ij) ≤ x`ij − ψij(θi − θj) ≤Mij(1− y`ij) for all ij ∈ F, ` ∈ Lij , (4.20)
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and

−Mij(1− y`ij) ≤ x`+ij − ψij∆θ+
ij ≤ 0

−Mij(1− y`ij) ≤ x`−ij − ψij∆θ−ij ≤ 0
for all ij ∈ F, ` ∈ Lij , (4.21)

respectively.

Symmetry in the disjunctive formulations can be broken in two di�erent ways:

By ordering parallel candidate circuits: a second circuit can be built only if

the �rst one has been built, and so on:

y`+1
ij ≤ y`ij ij ∈ F, `, `+ 1 ∈ Lij . (4.22)

These constraints seem to be what Oliveira et al. (2004a) called �Logical prece-

dence� constraints.

By introducing lexicographical costs: a drawback of the ordering above is the

resulting increase in the number of constraints. Instead, parallel circuits can

be made distinguishable (and ordered) by assigning to each one of them a

di�erent cost, depending on some positive constant ε, possibly small:

c`ij = (`− 1)ε ij ∈ F , 1 ≤ ` ≤ nij
c`ij = cij + (`− 1)ε ij ∈ F , nij + 1 ≤ ` ∈ Lij .

(4.23)

In our numerical tests, the improved disjunctive formulation from Section 4.3.2 did

not give competitive results. For this reason, we applied (4.22) and (4.23) only to the

standard disjunctive formulation from Section 4.3.1. The lexicographical ordering

(4.23) turned out to be rather poor, at least in our case studies. For instance, the

transmission expansion planning for the network �Brazil South�, modeled by (TEP)

and using the standard disjunctive formulation, took 5 seconds to be solved until

optimality. When introducing (4.23), solution times climbed up to more than 300

seconds.

We mention that CPLEX 11 has an automatic symmetry breaking procedure

which can sensibly a�ect solution times. When this procedure is deactivated, by

setting IntParam.Symmetry = 0, the standard disjunctive formulation is much

slower than when using the approaches (4.22) or (4.23). However, when setting

IntParam.Symmetry = -1, the impact of (4.22) becomes much less expressive.
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4.3.4 Alternative Disjunctive Formulation

We also considered a third disjunctive formulation, grouping together parallel cir-

cuits:

min
∑
ij∈F1

cij
∑

Lij3`≥nij+1

(`− nij) y`ij

s.t.
∑
ji∈F

xji −
∑
ij∈F

xij = di − gi i ∈ V

−M `
ij(1− y`ij) ≤

xij
`
− ψij(θi − θj) ≤M `

ij(1− y`ij) ij ∈ F, ` ∈ Lij (4.24)∑
`∈Lij

y`ij ≤ 1 ij ∈ F (4.25)

− Cij
∑
`∈Lij

` y`ij ≤ xij ≤ Cij
∑
`∈Lij

` y`ij ij ∈ F (4.26)

0 ≤ g ≤ G

y binary.

Although this formulation signi�cantly reduces the number of �ow variables, such

potential advantage was not re�ected in our computational results; see Section 4.5.

In an e�ort to improve performance, we also tried CPLEX functionality of using

type SOS 1 constraints instead of (4.25) above. But this option was not e�ective,

probably due to the important increase in the number of nodes to be explored.

Setting di�erent values to IntParam.Symmetry did not bring much bene�t either.

4.4 Choosing suitable �big-M� coe�cients

The e�cient solution of the linearized disjunctive formulations depends strongly on

how the �big-M� coe�cients are set. Bigger coe�cients give less tight polyhedrons,

and worse optimal relaxation values. It is then worthwhile to compute minimal val-

ues,M ij, such that constraints (4.20), (4.21) and (4.24) above are valid for P , for any
given value of G and d. Recall that an inequality is said to be valid for a polyhedron

if the polyhedron is contained in the half space delimited by the inequality.

We �rst give general minimum values for the models with and without re-design,

and then analyze how to exploit the initial network topology (F0) to reduce the

minimal bounds.

In our analysis, paths are always assumed without cycles (they cannot contain

twice the same node).

We start with model (TEPR), allowing re-design, noting that, for any vector

y ∈ {0, 1}|F|, when G = d = 0, the point (y, x = 0, θ = 0, g = 0) trivially belongs to

P . For this reason, the bound for the �big-M� coe�cients should be found for any

binary vector x. We now show that the computation of such bound involves solving

a longest path problem (Hardgrave and Nemhauser, 1962).
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Proposition 4.6. Suppose Assumption 4.5 holds and let ij be given. Consider

constraints (4.20) and (4.21) from Section 4.3.3. Then the minimal admissible value

for Mij such that these constraints are valid for P, for any G, d ≥ 0, is given by

M
(TEPR)
ij = ψijLPi−j, where LPi−j denotes the length of the longest path between

the buses i and j, computed with costs

c̃b1b2 =
Cb1b2
ψb1b2

. (4.27)

Proof. For given ij ∈ F and ` ∈ Lij, when y`ij = 1, constraints (4.20) and (4.21)

imply that x`ij = ψij(θi − θj), regardless the value of Mij. Therefore, we only need

to consider y`ij = 0. The �ow bounds (4.12) and (4.16) force x`ij = 0. Since the

corresponding constraints (4.20) and (4.21) state that

Mij ≥ ψij|θi − θj| ,

we just need to �nd the largest value of |θi− θj|, among all possible network con�g-

urations having x`ij = 0.

To this aim, take n 6= ` in Lij and set ynij = 1. The �ow on (ij, n) is at most

Cij, so (4.20) and (4.21) written for the circuit (ij, n) imply that ψij|θi − θj| ≤ Cij.

Thus, Mij must be at least greater than Cij.

Now, set ynij = 0 for all n ∈ Lij such that for some path p between i and j and

any link b1b2 in the path it holds that
∑

n y
n
b1b2
≥ 1. Then, regardless the other

values of y, the di�erence |θi − θj| cannot be greater than:∑
b1b2∈p

|θb1 − θb2| ≤
∑
b1b2∈p

Cb1b2
ψb1b2

.

Since we do not know in advance which path will satisfy the relation
∑

n y
n
b1b2
≥ 1, we

must take the maximum over all paths between i and j. Therefore, |θi−θj| ≤ LPi−j,

with costs given by (4.27). We are left to show that LPi−j is a minimal value to

obtain M
(TEPR)
ij = ψijLPi−j.

To see that LPi−j is a minimal value, it is enough to show that for any path p

between i and j,

θi − θj =
∑
b1b2∈p

Cb1b2
ψb1b2

(4.28)

for at least one generation vector G and one demand vector d. De�ne G and d as

follows: for each b1b2 ∈ p, Gb1 = db2 = Cb1b2 , and Gr = dr = 0 otherwise. Thus,

θb1 = θb2 +
Cb1b2
ψb1b2

for each b1b2 ∈ p, yielding (4.28).

Note that if the only path from i to j is given by a single candidate circuit from

i to j, i.e., by (ij, 1), then there are no constraints on Mij and we can just take

M
(TEPR)
ij = 0.

The computation of the minimal value for the third disjunctive formulation can

be done in a similar manner.
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Corollary 4.7. Suppose Assumption 4.5 holds and let ij be given. Consider con-

straint (4.24) from Section 4.3.4. Then the corresponding minimal admissible value

for M `
ij, for any G, d ≥ 0, is given by M

(TEPR),`
ij = ψijLPi−j, the length of the

longest path between the buses i and j computed with the costs (4.27) for b1b2 6= ij,

and the following cost for ij

c̃`ij =

{
nij+Nij−`

`

Cij
ψij

` ∈ Lij , ` 6= nij +Nij

nij+Nij−1

nij+Nij

Cij
ψij

` = nij +Nij .
(4.29)

Proof. When y`ij = 1, (4.24) forces xij = `ψij(θi−θj), for any value ofM `
ij. Consider

then that y`ij = 0 for all n ∈ Lij. By constraint (4.26) in Section 4.3.4, xij = 0 and,

like in Proposition 4.6, constraint (4.24) becomes Mij ≥ ψij|θi − θj|. As a result,

M `
ij must be at least greater than the length of the longest path between i and j, in

the graph F\{ij}.
Otherwise, let ynij = 1 for some n ∈ Lij, with n 6= `. Then, xij = nψij(θi− θj), so

that (4.24) written for (ij, `) is

M `
ij ≥

∣∣∣ψij (n
`
− 1
)

(θi − θj)
∣∣∣ = ψij

|n− `|
`
|θi − θj| . (4.30)

This value cannot be greater than |n−`|
`
Cij. If ` < nij + Nij, the right-hand-side of

(4.30) is maximized when n = nij + Nij. If ` = nij + Nij, the right-hand-side of

(4.30) is maximized for n = 1.

Note that, even though the shortest path problem is polynomial and can be solved

e�ciently by -for instance- Dijkstra's algorithm, the situation is quite di�erent for

the longest path. For a graph containing cycles, for example, the problem can be

NP-hard. Otherwise, if we could compute in polynomial time the longest path

between two adjacent nodes i and j, not passing trough ij, with all arc lengths set

to 1, we would also be able to �nd out in polynomial time whether the graph has a

Hamiltonian cycle (this is an NP-complete problem (Ahuja et al., 1993)).

The longest path value LPi−j is often so big that Kircho�'s second law usually

fails to hold for the relaxed optimal solution when design variables y are fractional.

We now show that the bound can be substantially improved for model (TEP),

without re-design (and, hence, with less 0-1 variables than (TEPR)).

Because we extend an existing transmission network, we assume the condition

below.

Assumption 4.8. Let V0 ⊆ V denote the subset of nodes belonging to edges in F0.

The graph (V0,F0) is connected.

We now consider the convex hull of feasible vectors for model (TEP)

P̃ = conv

({
(y, x, g, θ) satis�es

[
(4.1), (4.2), (4.3)

(4.4), (4.5)
and y ∈ {0, 1}|E1|

})
.
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In the notation gathering parallel circuits, this means that y`ij = 1 for all ij ∈ F0

and each ` ∈ Lij = {1, . . . , nij}.
For costs (4.27), the improved bound makes use of the shortest path SPi−j

between buses i and j ∈ V0, as well as the longest path LP k
i−j between i and j, not

passing through e ∈ E1\E0.

Proposition 4.9. Suppose Assumptions 4.5 and 4.8 hold, and let ij be given. Con-
sider constraints (4.20) and (4.21) from Section 4.3.3. Then the minimal admissible
value for Mij such that these constraints are valid for P̃, for any G, d ≥ 0, is given
by

M
(TEP)
ij =


ψijSPi−j i , j ∈ V0

ψij maxl∈V0(LP ji−l + SPl−j) i /∈ V0 , j ∈ V0

ψij max
(
LPi−j , maxl1,l2∈V0(LP ji−l1 + SPl1−l2 + LP il2−j)

)
i /∈ V0 , j /∈ V0 .

Proof. When both i, j ∈ V0, the proof is similar to the one in Proposition 4.6. First,

because ψij|θi − θj| ≤ Mij, we must compute the maximum feasible value for the

di�erences |θi − θj|. Once more,
∑

b1b2∈p |θb1 − θb2| ≤
∑

b1b2∈p
Cb1b2
ψb1b2

for any path p

in F0 between i and j. Therefore, we must have |θi − θj| ≤ SPi−j, since θ cannot

induce �ows exceeding the capacity of any existing circuit.

When i /∈ V0 , j ∈ V0, any path p from i to j must enter at least once in V0. Let

l ∈ V0 be the �rst entry bus and p1 the sub-path of p from i to l. If
∑

n y
n
b1b2
≥ 1

for each edge b1b2 ∈ p1, then

|θi − θj| ≤
∑

b1b2∈p1

Cb1b2
ψb1b2

+ |θl − θj| ≤
∑

b1b2∈p1
cb1b2 + SPl−j.

This must be satis�ed for any path p from i to j, hence, for any sub-path p1 from j

to l ∈ V0. Therefore, |θi − θj| ≤ maxl∈V0(LP j
i−l + SPl−j), as stated.

When neither i nor j belong to V0, consider any path p from i to j. If this path

does not enter in V0, then

|θi − θj| ≤
∑
b1b2∈p

cb1b2 . (4.31)

If this path crosses V0 at least once, let l1 be the �rst entry bus, l2 be the last exit

bus, p1 the sub-path of p from i to l1 and p2 the sub-path of p from l2 to j. Thus,

|θi − θj| ≤
∑

b1b2∈p1
cb1b2 + |θl1 − θl2|+

∑
b1b2∈p2

cb1b2 ≤
∑

b1b2∈p1
cb1b2 + SPl1−l2 +

∑
b1b2∈p2

cb1b2 .

(4.32)

Finally, taking the maximum of (4.31) and (4.32) over all p from i to j and con-

sidering a minimality argument, similar to the one in Proposition 4.6, ends the

proof.

We mention that a result similar to Proposition 4.9 has already been proved

by Binato (2000). However, our result is more compact and general. Moreover,

Theorem IV.4 from Binato (2000) contains the following (minor) glitch in equation
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(79) therein. This equation states that if ij ∈ F0, then M
(TEP)
ij is given by Cij.

Actually, such statement can be made more precise when SPi−j < Cij/ψij, because

in this case M
(TEP)
ij = ψijSPi−j < Cij.

Once more, the computation of the minimal value for the third disjunctive for-

mulation can be done as for Corollary 4.7, using the modi�ed costs (4.27) and (4.29).

Corollary 4.10. Suppose Assumptions 4.5 and 4.8 hold and let ij be given. Con-
sider constraint (4.24) from Section 4.3.4. Then the corresponding minimal admis-
sible value for M `

ij, for any G, d ≥ 0, is given by

M
(TEP),`
ij =


ψijSPi−j i , j ∈ V0

ψij maxl∈V0(LP ji−l + SPl−j) i /∈ V0 , j ∈ V0

ψij max
(
LPi−j , maxl1,l2∈V0(LP ji−l1 + SPl1−l2 + LP il2−j)

)
i /∈ V0 , j /∈ V0 ,

for each ` ∈ Lij.

Finally, we show next how the �big-M� constraints can be further strengthened.

Consider the �fat� edge ij ∈ F. If circuit (ij, 1) is built, y1
ij = 1, the di�erence

ψij|θi − θj| can certainly not exceed Cij, reducing M
`
ij to Cij for each ` > 1. Hence,

given that y1
ij = 1, we have no longer �big-M� coe�cients for the remaining candidate

circuits belonging to ij. Therefore, during the exploration of the branch-and-bound

tree, constraints (4.33) below may yield a linear relaxation that is better than using

constraints (4.20). Without loss of generality, we give the result for the standard

disjunctive formulation in Section 4.3.1.

Proposition 4.11 (Improved �big-M� constraints). Suppose Assumption 4.5 holds

and let ij be given. Consider constraints (4.20) from Section 4.3.1, and suppose

symmetry is broken by using (4.22). Then for all ij ∈ F and ` ∈ Lij\{1}, constraints
(4.20) can be replaced by the reinforced constraints

−(Mij−Cij)(1−y1
ij)−Cij(1−y`ij) ≤ x`ij−ψij(θi−θj) ≤ (Mij−Cij)(1−y1

ij)+Cij(1−y`ij) ,
(4.33)

which are valid for P, for any G, d ≥ 0.

Proof. For ` = 1, (4.33) is the same as (4.20). Hence, suppose ` > 1. If y1
ij = 0, then

y`ij = 0 for each 2 ≤ ` ≤ nij+Nij, because of (4.22), and the left-(respectively, right-)

most expression in (4.33) equals −Mij(resp.,Mij). If y
1
ij = y`ij = 1, then (4.33) forces

x`ij = ψij(θi − θj). Finally, if y1
ij = 1 and y`ij = 0, (4.33) is ψij|θi − θj| ≤ Cij; and

constraint (4.20) for ` = 1 implies that x1
ij = ψij(θi−θj) so that ψij|θi−θj| ≤ Cij.

4.5 Computational Experiments

We make a numerical assesment comparing the di�erent formulations from Section

4.3 on models (TEP) and (TEPR), with and without re-design. The main data
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for our test instances, based on real transmission networks, are reported in Table

4.1; for full details, we give the corresponding reference in the fourth column of the

table. Note that instances �Garver�, �IEEE RTS 24-bus�, and �Brazil South R� allow

redispatch, while the generation variables are �xed for instances �Brazil South� and

�Brazil Southeast� (no redispatch is allowed).

name
Topology Circuits Generation/Load References

|V| |F| |E0| |E1|
∑
g in MW

∑
d in MW

Garver 6 15 6 90 1110 760 Alguacil et al.

Garver (1970)

IEEE RTS 24-bus 24 34 38 102 10215 8560 de J. Silva Junior

Brazil South 46 79 62 237 6880 6880 Binato (2000)

Brazil South R 46 79 62 237 10545 6880 Binato (2000)

Brazil Southeast 79 143 156 429 37999 37999 Binato (2000)

Table 4.1: Networks data

The three reformulations from Section 4.3 gave the same linear relaxation for all

cases from Table 4.1. In order to evaluate the impact of allowing for re-design of

the network, we also compared the value of the optimal solutions for some of the

models from Section 4.2. For this comparison, we used the bounds in Section 4.4

and an alternative bound, simpler to compute, that we detail next.

Remark 4.12 (Alternative lower bound). Recall that in Section 4.4 we gave two

types of lower bound for the coe�cients Mij in each reformulation. The �rst one

(given by Proposition 4.9 when i, j ∈ V0) is the solution to a shortest path problem,

easy to compute, which often has a small value inducing a tight linear reformulation

of (4.3) for ij. Such is not the case for the second bound (given by Proposition 4.9

when i /∈ V0, and by Proposition 4.6 for any i, j ∈ V), because its computation

requires to solve a longest path problem.

Indeed, being a generalization of the Traveling Salesman Problem, the longest

path problem itself is very di�cult to solve (Hardgrave and Nemhauser, 1962). Al-

though polynomial algorithms have been proposed for special classes of graphs, see

for instance Uno (2007), solving the problem for general graphs requires to develop a

specialized branch-and-cut algorithm, which is beyond the scope of this work. More-

over, since the value of the second bound, M ij, is already very big, considering an

alternative bigger bound neither modi�es the quality of the linear relaxation nor de-

creases the solution times. This remark was con�rmed by a set of unreported tests,

with increasing values for coe�cients Mij. Therefore, instead of trying to solve a

longest path problem, we use the following alternative upper bound MM ij for M ij,

with value depending on the considered model:

Model (TEPR) with re-design: For each bus b ∈ V, let fb ∈ F be the maximum-

cost �fat� edge connected to b, according to costs (4.27). Summing up the costs

c̃fb we certainly get an upper bound on the length of any path in the graph
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(V,F). We can reduce this value, by forbidding to pick up twice the same edge.

After ordering the buses b1, . . . , b|V|, this is formally written as

MM
(TEPR)
ij = ψij

|V|∑
i=1

max
bibj∈Fbi

c̃b1b2 , (4.34)

where Fbi = F\{fb1 , . . . , fbi−1
} for i = 2, . . . , |V|.

Classical transmission expansion planning model (TEP): When an initial struc-

ture (V0,F0) is given and i /∈ V0, the bound (4.34) can be reduced with no

additional computational e�ort to

MM
(TEP)
ij = ψij

 max
b1,b2∈V0

SPb1−b2 +

|V\V0|∑
i=1

max
bibj∈F1

bi

c̃b1b2

 ,

where F1
bi

= F1\{fb1 , . . . , fbi−1
} for i = 2, . . . , |V|.

All the codes were written in JAVA, using CPLEX concert technology 11 (IBM-

ILOG, 2009), on a computer with an Intel Core 2 Duo processor at 2.40 GHz and 2

GB of RAM memory.

Although we used the MIP black-box solver of CPLEX to handle both (TEP)

and (TEPR), we provided CPLEX with a lower bound for (TEP), and lower and

upper bounds for (TEPR). The lower bound was obtained from the optimal value

t of Garvers's transportation model: we added the constraint
∑
e∈E1

ceye ≥ t to the

formulations. Then, solving �rst (TEP), we could provide CPLEX with a starting

feasible solution de�ning an upper bound. Both bounds reduced signi�cantly the

solution times.

Tables 4.2, 4.3, and 4.4 report the results obtained for each formulation from

Section 4.3, for models (TEP), (TEPR), and (Transportation), respectively.

name
Standard Improved Ordering Alternative

T nodes T nodes T nodes T nodes

Garver 0.015 5 0.078 8 0.093 11 0.031 45

IEEE 0.23 81 0.92 363 0.56 121 0.67 499

South 5.085 4403 47.75 12149 24.18 5595 48.61 31768

South R 1.51 579 9.079 1823 1.88 395 3.52 1508

Southeast 2438 468428 2888 317314 599 113460 5095 2096088

Table 4.2: Results for the formulations from Section 4.3 on (TEP).

In each table, columns �Standard�, �Improved�, and �Alternative� stand for for-

mulations from sections 4.3.1, 4.3.2, and 4.3.4, respectively, whereas �Ordering�
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refers to the �Standard� formulation with the addition of constraints (4.22), and

�Reinforced� refers to �Ordering�, using constraints (4.33) instead of (4.20). Solu-

tion times are given in seconds, and they exclude the time needed to compute the

bounds. We also give the number of nodes explored in the branch-and-bound trees

for the di�erent formulations.

name
Standard Ordering Reinforced

T nodes T nodes T nodes

Garver 0.124 0 0.0936 0 0.0468 0

IEEE 50 12756 13 5021 12 3999

South 35091 1368186 19052 952880 20438 1079935

South R 144 14933 31 4408 29 3155

Table 4.3: Results for the formulations from Section 4.3 on (TEPR).

Note that Table 4.3 does not contain the results for �Brazil Southeast� network,

because none of the formulations could solve that instance within 10 hours of com-

puting time. For such a large network, allowing for re-design with the formulations

from Section 4.3 would require to develop a more sophisticated branch-and-cut al-

gorithm.

name T nodes

Garver 0.015 0

IEEE 0.031 14

South 2.71 1351

South R 0.078 57

Southeast 0.343 137

Table 4.4: Model (Transportation).

Table 4.5 contains the optimal values found for the models from Sections 4.2.1,

4.2.2, and (Transportation). Columns �LPrelax� report the values of the LP relax-

ations at the root node and the rounded gaps Optimal−LPrelax
Optimal

. For small instances,

reinforced constraints (4.33) do not improve the solutions times. However, when

used in conjunction with a high branching priority for y1
ij, we could obtain a better

upper bound for model (TEPR) of network �Brazil Southeast� (the same branching

strategy applied to smaller instances increased the solution times). Apart from this

special case, all parameters of CPLEX were left to their default values.

Our results from Table 4.5 for (TEP) coincide with the best ones reported in

the literature. In this sense, any cost below these values can be considered as an

improvement. We see on Table 4.5 that the (TEPR) model for �Brazil South�

network induces a cost reduction of 9.67 = 72.87 − 63.2 and 8.2 = 154.4 − 146.2

for the cases with and without redispatch, respectively. For �Brazil Southeast�, the
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name
(TEP) (TEPR) (Transportation)

Optimal LPrelax Optimal LPrelax Optimal LPrelax

Garver 110 99 � 10% 110 99 � 10% 110 99 � 10%

IEEE 152 75 � 50% 152 68.8 � 55% 102 69 � 32 %

South 154.4 82 � 47% 146.2 71.8 � 51% 127 72 � 43%

South R 72.87 41 � 44% 63.2 33 � 48% 53 33 � 38%

Southeast 424.8 173 � 59% ≤ 405.9 120 � N.A. 284 120 � 58%

Table 4.5: Optimal costs and relaxations.

best cost obtained was 405.9 after 10 hours of computing time, with a duality gap

of about 29% (the best cost obtained when using (4.20) instead of (4.33) was 412).

Thus, also for this network, when comparing with the best known values, we have

already a cost reduction of 18.9 = 424.8− 405.9. At least on our tested instances,

allowing the network to be re-designed can bring important savings in transmission

expansion investments.

4.6 Towards (N-1) reliability

In the previous sections, we investigated some of the di�culties of the transmission

expansion problem, leaving aside an important criterion: the designed network must

be resistant against the failure of any of its circuits. In principle, (N − 1) reliability

constraints should ensure that the network remains operational if any of its circuits

happened to fail alone. However, in view of (4.6), it may be too restrictive (thus,

too expensive) to require the whole load to be supplied under any circuit failure.

This is especially true if the failure of some link would prevent the network from

working, whereas not attending to a small portion of the load while the circuit is

repaired would keep the network operational.

Therefore, we model the problem as a two-stage stochastic program with contin-

uous recourse (Birge and Louveaux, 2008). First stage variables ye indicate which

circuits are built (or left operational, when e ∈ E0). At the second stage, for each

contingency scenario h ∈ E, we de�ne continuous shortage variables uhi , i ∈ V, and

associated binary coe�cients δhe stating which circuits are operational:

δhe =

{
0 if h = e

1 if h 6= e.

In order to take into account the fact that the network must supply the whole load

when all of its circuits are operational, we also de�ne the scenario �all � (and E∗ =

E∪ {all}), corresponding to uall ≡ 0 and δall ≡ 1. Finally, the vector (xh, gh, uh, θh)

describes the routing for each scenario h ∈ E∗.
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With these additional variables, the (N − 1) criterion for (TEPR) has the form:

min
∑
e∈E1

ceye +
∑

h∈E,b∈V

phi u
h
i

s.t.
∑

e∈E:t(e)=i

xhe −
∑

e∈E:s(e)=i

xhe = di − ghi − uhi i ∈ V, h ∈ E∗

xhe − ψeδhe ye(θhs(e) − θht(e)) = 0 e ∈ E, h ∈ E∗

(4.35)

(TEPR −N1) − Ce ≤ xhe ≤ Ce e ∈ E, h ∈ E∗

(4.36)

0 ≤ ghi ≤ Gi i ∈ V, h ∈ E∗

0 ≤ uhi ≤ di i ∈ V, h ∈ E∗

ualli = 0 i ∈ V

y binary

In the objective function above, each penalty factor phi is an estimation of the prac-

tical cost of shortage for bus i, multiplied by the probability of failure h to happen.

Then, we can use any of the linearized reformulations from Section 4.3 to handle the

bilinear constraints. For instance, with the standard approach from Section 4.3.1,

we replace constraints (4.35) by

−Me(1− δhe ye) ≤ xhe − ψe(θhs(e) − θht(e)) ≤Me(1− δhe ye), for all e ∈ E, h ∈ E∗,

(4.37)

and constraints (4.36) by

|xhe | ≤ δhe yeCe for all e ∈ E, h ∈ E∗, (4.38)

yielding the model introduced by P. Tsamasphyrou and Carpentier (1999) (without

re-design).

We mention that Oliveira et al. (2007) also make a two-stage formulation of the

(N − 1) criterion. However, their model considers a di�erent bus-circuit incidence

matrix (matrix from equations (4.1)) for each scenario h ∈ E∗. Such second-stage

matrices are de�ned by suppressing the column related to circuit h. Our simpler re-

course formulation (TEPR −N1), with a �xed bus-circuit incidence matrix, should

ease the use of Stochastic Programming decomposition algorithms.

Model time nodes optimal LPrelax

(Transportation) 0.5 11 116 106.7 � 8%

(TEPN1) 3.8 31 118.4 106.7 � 9.8%

(TEPR −N1) 8.3 67 118.4 106.7 � 9.8%

Table 4.6: (N − 1) reliability constraints for Garver's network.
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We can see preliminary computational results on Table 4.6 for Garver's net-

work, using again the MIP solver of CPLEX 11. Model (TEPN1) stands for

(TEPR −N1) with additional constraints ye = 1 for e ∈ E0, and �Transporta-

tion� for (TEPR −N1) without (Kircho�). Since the considered network is small,

there is no �slack� for the re-design model to give any improvement: the optimal val-

ues of (TEPN1) and (TEPR −N1) are equal. For this reason, rather than giving

insight on the model with re-design, our results in Table 4.6 should be considered

as a validation of our solving methodology for (TEPR −N1).





Part II

Stochastic models





5

The stochastic knapsack problem with

simple recourse

5.1 Introduction

One of the di�culties of network design problems comes from their capacity con-

straints. Many other mixed-integer programs feature these constraints such as ca-

pacitated facility locations and lot-sizing problems. Yet, the knapsack problem is one

the simplest problem with a capacity constraint. The study of the knapsack prob-

lem has proven to be useful for a better understanding of the capacity constraint,

yielding strong cutting planes, among which the cover cuts. These cuts are able

to strengthen the linear relaxation of most problems featuring a capacity constraint

with binary variables. For instance, it has been used successfully for the unsplittable

(see Chapter 7) multi-commodity �ow problem by Barnhart et al. (2000). Similarly,

the study of the robust knapsack problem, where weights belong to a polyhedronW ,

yielded robust cover cuts which have been used successfully for the robust bandwidth

packing problem (Klopfenstein and Nace). Alternatively, knapsack problems appear

within decomposition schemes for more general problems with capacity constraints.

For instance, e�cient algorithms for the generalized assignment problem rely on

a Lagrangian relaxation of some of the constraints, yielding a couple of knapsack

problems (Nauss, 2003).

The examples above motivate the study of the stochastic knapsack problem.

This chapter shows of some of the properties of the stochastic knapsack problem

with simple recourse. In Chapter 6, we present an extension of the (numerical)

methodology studied herein to the stochastic network design problem with simple

recourse.

Given a set of items N, the classical knapsack problem looks for a subset of

N, whose total weight does not exceed the capacity C of the knapsack and which

maximizes the total pro�t. Each item i ∈ N has a pro�t pi and a weight wi. Our two-

stage stochastic version of the problem considers that weights wi(ω) and capacity
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C(ω) are random variables. The subset of items is chosen �rst, then any real amount

z(ω) of additional capacity can be bought at the unit price of K, depending on the

scenario ω. The objective function maximizes the pro�t of the chosen subset minus

the expected cost of the additional capacity:

max
∑
i∈N

pixi −KEξ[z(ω)]

(KSR) s.t.
∑
i∈N

wi(ω)xi ≤ C(ω) + z(ω) ∀ω ∈ Ω (5.1)

x binary, z(ω) ≥ 0,

where Ω is the set of all scenarii and Eξ[z(ω)] =
∫

Ξ
z(v)dFξ(v) where Fξ : Rn+1 → R+

is the distribution function of the random vector ξ = (C,w1, . . . , wn) : Ω → Ξ ⊂
Rn+1. Because constraints (5.1) are satis�ed at equality in any optimal solution with

z(ω) > 0, variables z(ω) can be replaced by max(0,
∑
wi(ω)xi−C(ω)), resulting in

the following formulation:

max
x∈{0,1}n

∑
i∈N

pixi −KEξ

[
max

(
0,
∑
i∈N

wi(ω)xi − C(ω)

)]
. (5.2)

This problem can be thought of as the following resource allocation problem (Kley-

wegt et al., 2002). A decision maker has to choose a subset of n known alternative

projects to take on. For this purpose a known quantity C of relatively low-cost

resource is available to be allocated. Any additional amount of resource required

can be obtained at a known incremental cost of K per unit of resource. The amount

wi of resource required by each project is not known at the time the decision has to

be made, but we assume that the decision maker has an estimate of the probability

distribution of those wi. Finally, each project i has an expected reward of pi.

Besides being of practical application, the expected term in the objective makes

the stochastic model worth to be studied. Indeed, a well known simpli�cation when

dealing with stochastic models is to replace random parameters by their means and

to solve the resulting deterministic model. However, the term

Eξ

[
max

(
0,
∑
i∈N

wi(ω)xi − C(ω)

)]

implies that two subsets N1 and N2 having equal means but di�erent variances, may

have di�erent expected cost. This is not taken into account by the deterministic

model considering only means.

Problem (KSR) has been �rst formulated by Cohn and Barnhart (1998) who

consider that C is given and that wi follow Gaussian variables. They derive basic

properties and propose a simple branch-and-bound algorithm that they test on an

example with 15 variables. Recently, Kosuch and Lisser (2009) use a stochastic gra-

dient method to solve (KSR) with Gaussian variables. They solve the problem with
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up to 150 variables in at most two hours. Kleywegt et al. (2002) work on a similar

model with discrete random variables to test their sample average approximation

method. Other ways of considering uncertainties in the parameters of the knapsack

problem include chance-constrained knapsack (Klopfenstein and Nace, 2008; Mor-

ton and Wood, 1998), robust knapsack (Klopfenstein and Nace, 2007) and dynamic

knapsack (Kleywegt and Papastavrou, 2001), among others.

Even though problem (5.2) is not linear, it is unconstrained and concave as

explained below. Let the expected optimal value of the second stage problem be

denoted by the recourse function Q. We say that the program has a �xed recourse

if the constraint coe�cients of the recourse variables are constant.

Theorem 5.1 (Birge and Louveaux (2008)). For a maximization stochastic program

with �xed recourse, Q(x) is a concave function on the convex set K2 = {x|Q(x) <

∞}.

Coming back to (KSR), the recourse function is de�ned by

Q(x) = −KEξ

[
min
z(ω)≥0

{
z(ω) s.t.

∑
i∈N

wi(ω)xi ≤ C(ω) + z(ω)

}]
,

and the only recourse variable is z with a coe�cient equal to 1; moreover K2 = Rn.

Hence we can think of using convex non-linear mixed integer techniques to tackle the

problem. For instance outer-approximation type algorithms (Duran and Grossmann,

1986) approach the objective by a set of tangent planes. However to compute the

coe�cients of those planes, we need to evaluate many times the recourse function

Q(x) = −KEξ

[
max

(
0,
∑
i∈N

wi(ω)xi − C(ω)

)]

= −K
∫

Ξ

max
(

0,
∑

wixi − C
)
dFξ(C,w1, . . . , wn), (5.3)

namely to evaluate an integral of n variables which requires to use numerical in-

tegration packages. Alternatively, we may replace the random vector, in this case

ξ = (C,w1, . . . , wn), by a discrete approximation yielding a discrete set of scenarii.

This results in solving a large scale problem, with a particular structure well suited

for Benders' decomposition methods such as the ones described in Chapter 3, also

called L-shaped (Laporte et al., 2002). When the number of scenarii is large, some

authors use Monte Carlo sampling to generate a few scenarii instead of considering

all of them (Kleywegt et al., 2002; Sen et al., 1994).

The contributions of this chapter are twofold. First, we prove that three special

cases of the stochastic knapsack problem are weakly NP-hard:

• Stochastic knapsack with known weights and uniformly distributed capacity.

• Stochastic subset sum with Gaussian weights and positive random capacity.
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• Stochastic subset sum with known weights and arbitrary random capacity.

Then, we show that the LP/NLP algorithm of Quesada and Grossman (1992)

allows us to solve e�ciently the general problem with Gaussian random variables

and provide computational results. The implemented algorithm is able to solve in

less than a minute problems involving up to a few thousands of variables.

The chapter is organized as follows. Next section studies the complexity of

the special cases of the stochastic knapsack problem, prescribing pseudo-polynomial

algorithms. Section 5.3 presents an algorithm for the general models and provide

extensive computational experiments. A comparison of the general algorithm and

the pseudo-polynomial approaches is also presented for the special cases.

5.2 Pseudo-polynomial cases

In this section we show that Problem (KSR) is in general weakly NP-hard. We

then turn to special cases of (KSR) that can be solved in pseudo-polynomial time.

Proposition 5.2. Problem (KSR) is at least as hard as the classical knapsack

problem.

Proof. Consider (KSR) for a unique scenario. Writing the capacity constraint ex-

plicitly, the problem reads:

max
x∈B,z≥0

{∑
i∈N

pixi −Kz s.t.
∑
i∈N

wixi ≤ C + z

}
. (5.4)

Taking K large enough, z is equal to 0 in any solution so that (5.4) is equivalent to

the classical knapsack problem.

In the rest of this section, we use the notations B and B to denote {0, 1}n
and [0, 1]n, respectively; the summation

∑
refers to the sum over N unless stated

otherwise.

5.2.1 Fixed weights and uniformly distributed capacity

In this section, we consider that weights wi are �xed so that (KSR) becomes:

max
x∈B

∑
pixi −K

∫ ∑
wixi

0

(∑
wixi − C

)
dF (C). (5.5)

Assuming that C is uniformly distributed between positive integers C and C and

that all parameters are integers we show next that the optimization problem can be

solved by a pseudo-polynomial algorithm under a mild assumption on its parameters.

Note that this problem can also be seen as a robust knapsack problem with linear

penalty (Mulvey et al., 1995). With C uniformly distributed, (5.5) becomes:

max
x∈B

∑
pixi −

K

C − C

∫ min(
∑
wixi,C)

min(
∑
wixi,C)

(∑
wixi − C

)
dC, (5.6)
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where we assume
∑
wi > C to avoid the trivial solution x = (1, . . . , 1).

Theorem 5.3. Problem (5.6) is in general NP-complete. However, if(
pi + Kwi

2(C−C)
(2C − wi)

)
≥ 0 for each i ∈ N, the problem can be solved in O(nK

∑
wi).

For a large number of items with individual volumes small enough, this condition

is likely to be satis�ed. Applying an argument similar to Proposition 5.2 to a problem

with C = C + 1, we obtain:

Lemma 5.4. Problem (5.6) is at least as hard as its deterministic counterpart.

The rest of the section show how (5.6) can be solved in pseudo-polynomial time

whenever
(
pi + Kwi

2(C−C)
(2C − wi)

)
≥ 0 for each i ∈ N. Let Z be the the function to

be maximized in (5.6). We rewrite Z as follows:

Z(x) =


Z1(x) =

∑
pixi for

∑
wixi ≤ C

Z2(x) =
∑
pixi − K

2(C−C)
(
∑
wixi − C)2 for C ≤

∑
wixi ≤ C

Z3(x) = K C+C
2

+
∑

(pi −Kwi)xi for C ≤
∑
wixi.

(5.7)

Lemma 5.5. Let x∗, x∗1, x
∗
2 and x∗3 be optimal solutions of maxB Z(x),

maxB{Z1(x) s.t.
∑
wixi ≤ C}, maxB Z2(x) and maxB{Z3(x) s.t.

∑
wixi ≥ C},

respectively. Then, Z(x∗) = max(Z1(x∗1), Z2(x∗2), Z3(x∗3)).

Proof. We can relax the domain restriction C ≤
∑
wixi ≤ C for Z2 because Z1(x) ≥

Z2(x) and Z3(x) ≥ Z2(x) for any x ∈ B.

The following three lemmas show that each of the problems from Lemma 5.5 can

be solved in pseudo-polynomial time, this proving Theorem 5.3.

Lemma 5.6. Maximizing Z1(x), for x binary and
∑
wixi ≤ C, can be done in

O(n
∑
wi).

Proof. This is a knapsack problem, which can be optimized in O(nC) and thus in

O(n
∑
wi) because C <

∑
wi.

Lemma 5.7. Maximizing Z3(x), for x binary and
∑
wixi ≥ C, can be done in

O(n
∑
wi).

Proof. In the following, we assume that
∑
wi > C, otherwise

∑
wixi is always

smaller than C so that the problem does not have a solution. We show that the

problem is a knapsack problem.

i. De�ne M = {i ∈ N | pi −Kwi < 0} and C̃ =
∑
wi − C; let x∗ be the solution

to the following knapsack problem (x∗i = 0 for i ∈ N/M)

max
B

(∑
i∈M

(Kwi − pi)xi s.t
∑
i∈M

wixi ≤ C̃

)
. (5.8)
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ii. An optimal solution to maxB{Z3(x) s.t.
∑
wixi ≥ C} is given by xi = 1−x∗i ,

for each i ∈ N.

Then, because C̃ ≤
∑
wi, (5.8) can be solved in O(n

∑
wi).

Lemma 5.8. If
(
pi + Kwi

2(C−C)
(2C − wi)

)
≥ 0 for each i ∈ N, maximizing Z2(x), for

x binary, can be done in O(nK
∑
wi).

Proof. Expanding the square in Z2, and using the identity x2
i = xi because x ∈ B,

we obtain:

− KC2

2(C − C)
+max

x∈B

∑
i∈N

(
pi +

Kwi

2(C − C)
(2C − wi)

)
xi −

K

C − C

∑
i, j ∈ N

i 6= j

wiwjxixj

 .

(5.9)

Assuming that
(
pi + Kwi

2(C−C)
(2C − wi)

)
≥ 0 for each i ∈ N, linear coe�cients of

(5.9) are all positive. We need them to be integer as well to apply the tools from

optimization of pseudo boolean functions.

Multiplying all terms by 4K(C − C), (5.9) becomes a particular case of half-

products (Badics and Boros, 1998)

f =
∑
i∈N

cixi −
∑
i, j ∈ N

i 6= j

aibjxixj,

where c 7→ 4K(C−C)
(
p+ Kw

2(C−C)
(2C − wi)

)
and a = b 7→ 2Kw. Badics and Boros

(1998) provide a dynamic programming algorithm for general half-products with

positive coe�cients. Its running time is O(nA), where A = 2K
∑
wi.

Besides this dynamic programming approach, new versions of optimization soft-

wares, including CPLEX 11, can manage maximization of integer problems with a

concave and quadratic objective function. Nevertheless, we show in Section 5.3.2

that the LP/NLP algorithm described in the Section 5.3.1 solves (5.9) much faster

than do CPLEX 11 and the algorithm from Badics and Boros.

5.2.2 Subset sum

The subset sum problem is a well known particular case of the deterministic knapsack

problem is that assumes that weight wi is equal to pro�t pi for each item i ∈ N.

Even though weakly NP-hard to solve, adapted algorithms can have a much better

behavior for this problem than for the general knapsack.

To the best of our knowledge, no stochastic version of the subset sum has been

addressed in the literature so far. To de�ne the stochastic subset sum, we replace

the deterministic constraint w = p by:
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• Eξ[w] = p,

• Varξ[w] = λp for some λ ≥ 0,

where Eξ[v] = (Eξ[v1], . . . ,Eξ[vn]) and Varξ[v] = (Varξ[v1], . . . ,Varξ[vn]) for any

random vector v. The constraint Eξ[w] = p is the direct extension of w = p. Then,

to enforce the link between p and w we also impose Varξ[w] = λp. Note that the

case λ = 0 results in a deterministic knapsack, where additional capacity can be

purchased at the incremental cost of K per unit, see problem (5.4).

Gaussian weights

In this section, we assume that weights wi, i ∈ N, are independent Gaussian variables

with parameters µi and σ2
i = λµi, i ∈ N, for some λ ≥ 0, and that capacity

C is a positive random variable. This is motivated by the following summation

property: if w1, . . . , wn are independent Gaussians of mean µi and variance σ2
i , and

xi are real numbers, then Y :=
∑
xiwi ∼ N (µ(x), σ2(x)), with µ(x) =

∑
xiµi and

σ2(x) =
∑
x2
iσ

2
i . Moreover, Gaussians are often used to represent the error made

on estimations of parameters for many physical and economical problems.

Theorem 5.9. Consider the problem

max
x∈B

∑
µixi −KEξ

[
max

(
0,
∑

wi(ω)xi − C(ω)
)]
, (5.10)

where wi ∼ N (µi, λµi), 0 ≤ λ ≤ 1, µ is an integer vector and C is a positive

random variable. Problem (5.10) is weakly NP-hard and can be solved by a pseudo-

polynomial algorithm in O(n
∑
µi).

The fact that (5.10) is at least weakly NP-hard easily follows from an argument

similar to the one used in Proposition 5.2, taking λ = 0. The rest of the section shows

how to construct a pseudo-polynomial algorithm for (5.10). Let w(x) =
∑
wixi ∼

N (µ(x), σ2(x)), so that the usual recourse function reads

Q(x) = −KEξ[max(0, w(x;ω)− C(ω))],

and consider the auxiliary function

R(x) = −KEξ[max(0, ŵ(x;ω)− C(ω))],

where ŵ(x) ∼ N (µ(x), σ̂2(x)), with µ(x) =
∑
µixi as before and σ̂

2(x) =
∑
σ2
i xi.

Note that for each i ∈ N, x2
i = xi when x ∈ B so that Q(x) = R(x) when x ∈ B.

We de�ne then ZQ(x) =
∑
µixi + Q(x) and ZR(x) =

∑
µixi + R(x), so that

functions ZQ(x) and ZR(x) coincide on B, and maxB ZQ(x) = maxB ZR(x). In what

follows, we focus on the maximization of ZR. This is motivated by the following

property:

Lemma 5.10. If σ2
i = λµi for each 1 ≤ i ≤ n and some λ ≥ 0, then there exists a

function Ẑ : [0,
∑
µi]→ R such that for all x ∈ B, ZR(x) = Ẑ(z) with z =

∑
µixi.
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Proof. By de�nition of z, ZR can be rewritten as z+R(x). Then, we see that µ(x) =∑
µixi = z and σ̂(x) =

√∑
σ2
i xi =

√
λ
∑
µixi =

√
λz proving the result.

Notice that R(x) = Q(x) only when x ∈ B; when x ∈ B/B these functions may

be di�erent. In particular, neither ZR nor Ẑ inherit from the concavity of Theorem

5.1. Nevertheless, we can prove the result analytically for Ẑ:

Lemma 5.11. If 0 < λ ≤ 1 and C takes positive values only, the function Ẑ is

concave on its domain.

Proof. Let f and FC be the density function of N (0, 1) and the distribution function

of C, respectively. Ẑ is de�ned by the following expression

Ẑ(z) = z −K
∫ ∞

0

{
1

λz

∫ ∞
0

f

(
w − z + C

λz

)
dw

}
dF (C). (5.11)

Following Cohn and Barnhart (1998), among others, the inner integral can be sim-

pli�ed, yielding:

Ẑ(z) = z −K
∫ ∞

0

{
λzf

(
C − z
λz

)
+ (z − C)G

(
C − z
λz

)}
dFC(C), (5.12)

where G = 1 − Φ and Φ is the distribution function of N (0, 1). Computing the

second derivative of (5.12) for any z > 0, we obtain:

Ẑ ′′(z) = −K
∫ ∞

0

{
λ−2(z + C)2 − z

8λ
√
π
√
z

5 e−
(z−C)2

2λ2z

}
dFC(C). (5.13)

The integrand of (5.13) is non-negative when C ≥ 0 and FC is equal to 0 otherwise,

so that Ẑ ′′(z) is non-positive for all z > 0.

Recalling that σ2 = λµ, the assumption λ ≤ 1 becomes σ2 ≤ µ. We see in

Section 5.3.1 that this assumption is required if we want P (wi ≤ 0) to be negligible.

Hence, in the following we always assume σ2 ≤ µ, so that the function Ẑ is concave.

Because Ẑ is concave, it has at most one maximum. Suppose that we can

compute the maximum z∗ of Ẑ over R+, which may be greater than
∑
µi. The

concavity of Ẑ implies that

z1 ≤ z2 ≤ z∗ ⇒ Ẑ(z1) ≤ Ẑ(z2) and z∗ ≤ z2 ≤ z1 ⇒ Ẑ(z1) ≤ Ẑ(z2),

for any z1, z2 ∈ [1,
∑
µi]. Recalling that Ẑ(

∑
µixi) = ZR(x), we can write similar

inequalities for ZR: ∑
µix1i ≤

∑
µix2i ≤ z∗ ⇒ ZR(x1) ≤ ZR(x2)

and z∗ ≤
∑

µix2i ≤
∑

µix1i ⇒ ZR(x1) ≤ ZR(x2),

for any fractional vectors x1, x2 ∈ B.
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Hence, the closer
∑
µixi is o z

∗, the higher is ZR(x). Then, two situations can

happen. If
∑
µi ≤ z∗, the closest z =

∑
µixi, x ∈ B, to z∗ is given by x∗i = 1 for

each i ∈ N. This x∗ is the solution to (5.10). If
∑
µi > z∗, we must look for x∗1 and

x∗2 in B which minimize the distances between
∑
µix

∗
ji and z

∗, where
∑
µix

∗
1i ≤ z∗

and
∑
µix

∗
2i ≥ z∗. Namely, we need to solve two subset sum problems written below,

where z∗ has been replaced by bz∗c and dz∗e because of the integrality of µ and x:

max
∑
i∈N

µixi

s.t.
∑

µixi ≤ bz∗c

x binary,

(5.14)

and
min

∑
i∈N

µixi

s.t.
∑

µixi ≥ dz∗e

x binary.

(5.15)

Denote by x∗1 and x
∗
2 solutions to (5.14) and (5.15). A solution to (5.10) is given by

x∗ ∈ {x∗1, x∗2} such that ZR(x∗) = max(ZR(x∗1), ZR(x∗2)).

Problems (5.14) and (5.15) are weakly polynomial, because they are partic-

ular cases of the knapsack problem. Then, bz∗c and dz∗e can be computed in

O (log2

∑
µi), using a dichotomic search based on the sign of Ẑ ′.

Fixed weights

We show next a result similar to Theorem 5.9 when wi, i ∈ N, are �xed and C is an

arbitrary random variable.

Theorem 5.12. Consider the problem

max
x∈B

∑
wixi −KEC [max(0,

∑
wixi − C(ω))], (5.16)

where C is a random variable. Problem (5.16) is weakly NP-hard and can be solved

by a pseudo-polynomial algorithm in O(n
∑
wi).

Proof. The reduction from Proposition 5.2 holds when the variance of C is zero and

K is large enough. Let Z be the objective function from (5.16). We must prove that

Z has the same properties as ZR from previous section so that the same argument

as in the proof of Theorem 5.9 can be applied:

• Z depends only on z =
∑
wixi: Z(x) = Ẑ(z).

• Ẑ : [0,
∑
wi]→ R is concave.

• We can compute dz∗e and bz∗c in O(n
∑
wi).
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It is straightforward to see that Z depends only on z =
∑
wixi, with Ẑ(z) =

z − EC [max(0, z − C(ω))].

Then, the concavity of Z (and therefore Ẑ) follows from Theorem 5.1. Using

δ > 0 small enough, we can use compute dz∗e and bz∗c by a dichotomic search

based on the sign of Ẑ(x)− Ẑ(x+ δ).

5.3 Algorithms and computational experiments

In this section, we assume that random vector ξ is absolutely continuous, with

density function fξ. One of the main di�culty of (KSR) is to evaluate the concave

expectation term from (5.17):

Q(x) = −KEξ

[
max

(
0,

n∑
i=1

wi(ω)xi − C(ω)

)]

= −K
∫

Ξ

fξ(ξ) max

(
0,

n∑
i=1

wixi − C

)
dCdw1 . . . dwn. (5.17)

For an arbitrary continuous random vector ξ, the multivariate integral (5.17) is

non-trivial and must be solved using e�cient packages for numerical integration,

see Prékopa (1995). To avoid this computational burden, we restrict ourselves to

particular cases involving Gaussian and uniform distributions in the next subsec-

tions. Notice that for special distributions, such as the exponential, the recourse

function has a closed form (Hansotia, 1977).

5.3.1 General case

This section describes a general algorithm to solve convex MINLPs and apply to

(KSR) with Gaussian weights.

LP/NLP algorithm

In this Section, we brie�y present an algorithm for solving linearly constrained con-

vex MINLPs. Although (KSR) is unconstrained, we provide below a description

for linearly constrained programs because the algorithm is used again in Chapter 6

for a network design problem featuring �ow conservation constraints. Consider the

following type of MINLP

max h(x)

(P) s.t. Ax ≤ b

x ≥ 0 and integer,

where h is assumed concave and di�erentiable. Problem (P) belongs to the class

of mixed-integer non-linear programs, which have witnessed a tremendous attention
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in recent years. E�cient algorithms and solvers are now available to handle convex

MINLP, see (Abhishek et al., 2010; Bonami et al., 2008, 2010). Moreover, results

from Bonami et al. (2010) suggest that LP/NLP algorithms are particularly e�cient

to handle problems with linear constraints only, such as (P). Notice that these

particular LP/NLP algorithms turn out to be branch-and-cut algorithms where cuts

are nothing but linearizations of the objective function. The main points of our

LP/NLP algorithm are detailed in what follows.

Because h is concave and di�erentiable, (P) is equivalent to

max γ

s.t. h(x) +
n∑
i=1

∂h

∂xi
(x)(xi − xi) ≥ γ x ∈ Rn

+ (5.18)

Ax ≤ b

x ≥ 0 and integer,

which has an in�nite number of constraints. The main idea of outer-approximation is

that, for a given sensibility parameter ε > 0, only a �nite number of those constraints

are required in a solution. For a given cut pool R, we de�ne the upper bounding

problem

max γ

(MP) s.t. h(x) +
n∑
i=1

∂h

∂xi
(x)(xi − xi) ≥ γ x ∈ R

Ax ≤ b

x ≥ 0 and integer.

Our algorithm lp/nlp solves (MP) with the branch-and-cut described in Algo-

rithm 4. This algorithm is similar to bc-n, from Chapter 3, with two di�erences.

First we add cuts only at the root and at integer nodes, like in bc-int. Second,

we di�erentiate h to (possibly) add a linearization instead of solving Linear Pro-

grams to add Benders cuts. T represents the branch-and-bound tree and solving

a node o′ ∈ T means solving the LP relaxation of (MP) augmented with branch-

ing constraints of o′. We show in Chapter 6 how to improve lp/nlp to take into

account the (multi-commodity �ow) structure of network design problems through

Dantzig-Wolfe decomposition.

Computational results

We present next results of lp/nlp for solving (KSR) with Gaussian weights and

a �xed capacity. As previously mentioned, more general distributions could be

handled as long as numerical integration packages are available. Recall that when

each wi is a Gaussian N (µi, σi) and C is a constant, (KSR) can be rewritten as

max
x∈B

∑
i∈N

pixi −K
{
σ(x)f

(
C − µ(x)

σ(x)

)
+ (µ(x)− C)G

(
C − µ(x)

σ(x)

)}
, (5.19)
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Algorithm 4: lp/nlp

begin /* Initialization */

T = {o} where o has no branching constraints;

UB = +∞;

while T is nonempty do

select a node o′ ∈ T;

T← T\{o′}; /* withdraw node o′ from the tree */

solve o′;

let (γ, x) be an optimal solution;

if γ < UB then

if x /∈ Z|N| and depth(o′) ≥ 1 then

branch, resulting in nodes o∗ and o∗∗;

T← T ∪ {o∗, o∗∗}; /* add children to the tree */

else if γ ≥ h(x) + ε then

add x to R;

T← T ∪ {o′}; /* put node o′ back in the tree */

if x ∈ Z|N| and γ < h(x) + ε then

UB ← γ; /* define a new upper bound */

x∗ ← x; /* save current incumbent */

return x∗

where µ(x) =
∑n

i=1 µixi, σ
2(x) =

∑n
i=1 σ

2
i x

2
i , f is the density function of N (0, 1),

G = 1 − Φ and Φ is the distribution function of N (0, 1). Note that function G

is read from a table. Algorithm 4 is implemented within CPLEX 11 (IBM-ILOG,

2009), with ε = 0.1. Since the model does not contain explicitly all constraints, we

must deactivate the dual presolve, setting BooleanParam.PreInd to false. Then, we

implemented our (global) cut generation with a LazyConstraintCallback, preventing

CPLEX from using the dynamic search. The algorithm has been coded in JAVA

on a HP Compaq 6510b with a processor Intel Core 2 Duo of 2.40 GHz and 2 GB

of RAM memory. We �x a time limit of 100 seconds per instance and the solution

time has been set to 100 seconds for instances who could not be solved within this

time limit or who exceeded the available memory.

We generated randomly di�erent sets of instances, inspired by the instances

from Martello et al. (1999). We consider two data ranges: R = 1000 and R = 10000.

Then, parameters µi and pi for each item i ∈ N are integers uniformly generated

between 4 and R. Each variance σi is an integer uniformly generated between 1 and

bµ/4c for each item i ∈ N, so that negative outcomes are negligible as explained

next. We generated 100 instances for each value of parameters K, n and R, with a

capacity C = (h/101)
∑
µi for instance number h; all results take the average over

the groups of 100 instances.

Note that Gaussian variables can take negative values which does make sense in

real applications. Nevertheless, when the ratio σ/µ is small enough, the probability
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that this happens is negligible so that it does not a�ect sensibly the objective. For

instance, the probability that N (µ, σ2) takes a value less than µ− 4σ is slightly less

than 0.0001. Therefore we will assume µ/4σ ≥ 1 when generating our instances.

The following results show that the the penalty factor has little impact on the

solution times, while a larger number of items makes the problem more di�cult to

solve. We study more speci�cally the time spent at the root node of Algorithm 4.

The tables below report the total time in seconds (Time), the fraction of time spent

at the root node (Initialization), the number of cuts generated at the root node and

the number of cuts added deeper in the tree. We can see in Table 5.1 that the

K/R
Time Initialization InitCuts AddCuts

103 104 103 104 103 104 103 104

2 0.346 0.332 65% 65% 8.33 8.26 0.69 0.73

4 0.369 0.357 64% 64% 8.83 8.73 0.97 0.85

6 0.358 0.357 64% 65% 8.98 8.98 0.98 0.78

8 0.362 0.36 65% 66% 9.09 9.06 0.79 0.78

10 0.343 0.341 64% 63% 9.15 9.18 0.8 0.91

12 0.341 0.341 63% 62% 9.23 9.19 0.98 1.0

14 0.341 0.379 65% 65% 9.33 9.28 0.79 0.84

16 0.352 0.363 67% 66% 9.37 9.1 0.7 0.78

18 0.381 0.361 66% 64% 9.46 9.14 0.76 0.86

20 0.386 0.369 65% 66% 9.71 9.3 0.88 0.81

Table 5.1: Uncorrelated Instances, n = 500.

penalty factor K has little in�uence on lp/nlp. Therefore, we �x K = 10 in the

other tests. Results from Table 5.2 show that we can easily solve problems up to

5000 variables, even though times are signi�cantly larger than in the deterministic

case. For example, uncorrelated instances with 5000 items are solved by Martello

et al. (1999) on average in 0.01 seconds, whereas we need on average 19 seconds

to solve such problems. Note that an important fraction of the time is spent in

the generation of the cut pool at the root node, because most instances need to

explore less than 100 nodes in their branch-and-cut trees. Pursuing our comparison

with the deterministic knapsack, we wondered whether strongly correlated and Avis

instances (Martello et al., 1999) are harder to solve than uncorrelated ones. Recall

that strongly correlated instances are characterized by the relations pi = µi +R/10,

i ∈ N, while Avis instances are de�ned as follows: pi is an integer uniformly generated

between 1 and 1000, µi = n(n+ 1) + i, and C = n(n+ 1)b(n− 1)/2c+ n(n− 1)/2.

Results from Table 5.3 show that strongly correlated instances are roughly of the

same di�culty as the uncorrelated ones, whereas strongly correlated ones are harder

in the deterministic case. Avis instances are signi�cantly harder to solve, see Table

5.4. Column (Unsolved) reports the number of unsolved instance within 100 seconds.

While other problems were essentially solved a the root node, solving even small
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n/R
Time Initialization InitCuts AddCuts

103 104 103 104 103 104 103 104

200 0.072 0.073 54% 49% 9.04 8.77 1.09 1.28

400 0.209 0.193 65% 62% 9.08 8.75 0.98 0.95

600 0.381 0.353 70% 72% 8.85 9.03 0.94 0.59

800 0.616 0.579 75% 77% 8.96 8.97 0.66 0.49

1000 0.896 0.876 78% 78% 8.73 8.92 0.61 0.61

2000 3.447 3.361 83% 84% 8.81 9.2 0.5 0.42

3000 7.329 7.5 86% 87% 8.85 9.22 0.34 0.28

4000 13.302 12.682 86% 87% 8.93 8.9 0.42 0.25

5000 20.405 17.462 86% 86% 9.02 7.8 0.4 0.28

Table 5.2: Uncorrelated Instances, K = 10.

Avis required to spend a large amount of time exploring branch-and-cut trees. In

fact, unreported results show that thousands of nodes where required to solve Avis

instances, while uncorrelated and strongly correlated instances were usually solved

by exploring less than a hundred of nodes.

n/R
Time Initialization InitCuts AddCuts

103 104 103 104 103 104 103 104

200 0.122 0.149 29% 26% 8.46 8.66 2.27 2.22

400 0.353 0.374 33% 31% 8.64 8.6 1.86 1.94

600 0.927 0.718 25% 33% 8.24 8.42 1.81 1.51

800 0.842 1.064 47% 36% 8.23 8.16 1.17 1.33

1000 2.09 1.006 30% 57% 8.05 8.16 0.89 0.99

2000 3.155 2.727 76% 78% 7.91 7.85 0.59 0.4

Table 5.3: Strongly Correlated Instances, K = 10.

n Time Unsolved Initialization InitCuts AddCuts

200 6.639 0 0.23% 11.34 1.79

400 29.379 6 0.05% 12.55 1.52

Table 5.4: Avis Instances, K = 10.

5.3.2 Pseudo-polynomial cases

In Section 5.2 we proved that special cases of (KSR) can be solved in pseudo-

polynomial time. Since we provide constructive proofs, a natural question is to
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�nd out whether the pseudo-polynomial algorithms proposed in the proofs perform

better than lp/nlp.

In all the following results, we �x a time limit of 100 seconds per instance and

the solution time has been set to 100 seconds for instances who could not be solved

within this time limit or who exceeded the available memory.

Fixed weights and uniformly distributed capacity

Lemma 5.5 shows how the solution to problem (5.6) can be obtained from the

solutions to two knapsack problems and to the problem of maximizing the con-

cave and quadratic function of binary variables (5.9). The computational results

from Martello et al. (1999) show that the two knapsack problems can be solved in a

very short amount of time, and we provide below results of lp/nlp applied to (5.9).

Notice that other methods than lp/nlp can be used to solve (5.9). As mentioned

in the proof of Lemma 5.8, (5.9) can be identi�ed to a half-product that can be

solved in pseudo-polynomial time. However, the algorithm from Badics and Boros

performed much worse than lp/nlp, because very large numbers of states needed to

be enumerated. Since the algorithm could hardly solve small instances with 200 vari-

ables, we do not report these computational experiments. Commercial MIP solvers

are also able to handle (5.9). We provide below a numerical comparison of CPLEX

11 and lp/nlp described in Section 5.3.1. The instances are generated as follows.

lp/nlp cplex Time ratios

K/R Time Time Unsolved

103 104 103 104 103 104 103 104

2 0.019 0.02 0.019 0.038 0 1 0.7 0.91

4 0.018 0.02 0.036 0.943 0 0 0.78 0.82

6 0.02 0.021 0.246 5.718 0 0 0.77 1.27

8 0.019 0.023 1.311 9.913 0 1 1.05 0.59

10 0.02 0.022 2.598 11.894 0 1 1.15 0.91

12 0.02 0.022 3.233 14.764 0 1 1.11 0.94

14 0.021 0.022 3.299 17.98 0 0 1.09 3.93

16 0.021 0.023 3.329 21.403 1 0 1.29 6.15

18 0.022 0.025 4.662 25.744 0 2 1.14 1.19

20 0.021 0.024 5.256 28.096 0 2 1.23 1.39

Table 5.5: Comparison between lp/nlp and cplex when K increases, n = 100.

The parameters wi and pi for each item i ∈ {1, . . . , n} are integers uniformly gener-

ated between 1 and R. For each data range R, each value of the penalty factor K

and number of items n, we generate 100 instances, with Eξ(C) = (h/101)
∑
wi for

instance number h. Capacity C varies uniformly between 90% of Eξ(C) and 110%

of Eξ(C). We report on Tables 5.5 and 5.6 the average solution time in seconds and
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the number of unsolved instances for cplex only because lp/nlp could solve all of

them within the time limit. Ratios, given by (Time cplex) / (Time lp/nlp), are

computed for each instance separately; we report the geometric average of the ratios,

whereas we report the arithmetic average of solution times. We compute geometric

average for ratios because of the following observation : if the ratio for one instance

is 1/2 and the one for another instance is 2, their �average� should be equal to one,

which is the case using the geometric average.

From Table 5.5, we see that the lp/nlp performance does not depend on the value

of K, and that instances for the two range values are of the same di�culty. However

cplex requires more time to solve instances with R = 104 than those with R = 103,

which becomes even more signi�cant when K increases. Even tough cplex takes on

average more time than lp/nlp, the ratios close to one tell us that some instances

are still solved faster by cplex than by lp/nlp. Table 5.6 studies the impact of

lp/nlp cplex Time ratios

n/R Time Time Unsolved

103 104 103 104 103 104 103 104

200 0.029 0.032 0.08 0.269 0 0 1.93 1.77

400 0.052 0.057 0.484 0.239 0 0 5.33 4.14

600 0.076 0.081 1.878 0.638 1 0 9.51 7.75

800 0.097 0.109 2.083 1.447 0 0 14.83 13.31

1000 0.12 0.129 3.814 2.607 0 0 22.19 20.26

1200 0.144 0.166 4.176 4.064 2 1 28.52 28.29

1400 0.174 0.19 5.797 5.727 1 0 31.88 30.33

1600 0.203 0.222 6.982 7.984 1 0 34.8 36.09

1800 0.225 0.249 10.708 11.142 0 0 43.05 44.94

2000 0.264 0.281 12.313 14.309 2 0 48.28 50.86

Table 5.6: Comparison between lp/nlp and cplex when n increases, K = 2.

increasing the number n of items, hence variables in the model. It is clear from the

values of the ratios that the lp/nlp handles better bigger instances than cplex does,

the ratio average increases more or less linearly with the number of items. This may

be explained by the following. cplex deals with O(n2) variables so that its solution

time is very impacted by n. On the other hand, the number of variables in lp/nlp

only increases linearly with n, because this algorithm deals implicitly with the non-

linear objective. Then, because K is small enough, solution times required by cplex

to solve instances with R = 103 are similar to those required to solve instances with

R = 104. We stopped our test to 2000 variables because cplex required almost all

memory to solve these instances.
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Subset sum with gaussian weights

Our last group of tests studies subset sum instances with Gaussian weights, which

satisfy the assumptions of Theorem 5.9. Therefore, µi are (integer) uniformly dis-

tributed between 1 and R and σi =
√
λµi, where λ must be chosen between 0

and 1. We have two algorithms at our disposal to solve these problems. As for

general knapsack problem with Gaussian weights, we can use lp/nlp described in

Section 5.3.1. Alternatively, using Theorem 5.9, we can solve these problems by

the algorithm described in Algorithm 5. The later essentially solves two subset-sum

problems using the method decomp from Pisinger (1999), available at

www.diku.dk/hjemmesider/ansatte/pisinger/. Algorithm 5 has been coded in C

on the same computer as the one used for lp/nlp. Table 5.7 studies the sensibility

Algorithm 5: stoch-subsum

1 compute bz∗c and dz∗e using a dichotomic search;

2 solve (5.14) and (5.15) with decomp from Pisinger (1999), yielding solutions x∗1 and

x∗2;

3 if ZR(x
∗
1) > ZR(x

∗
2) then x∗ := x∗1 else x∗ := x∗2;

return x∗

to parameter λ for lp/nlp, results for stoch-subsum are not reported because all

problems are solved within 0.001 seconds. As expected, Theorem 5.9 enables us to

solve subset sum problems orders of magnitude faster than using lp/nlp, which is

even more striking in Table 5.8 below.

λ/R
Time Initialization InitCuts AddCuts

103 104 103 104 103 104 103 104

1/64 1.783 1.979 7% 5% 11.14 7.03 2.11 1.42

1/16 1.625 1.852 8% 3% 10.9 11.19 1.58 1.63

1/4 1.609 1.891 6% 3% 10.42 10.97 1.45 1.96

Table 5.7: Subset Sum with n = 500 and K = 10.

To respect the condition µ/4σ ≥ 1, λ must satisfy λ ≤ µ/16. This becomes

λ ≤ 1/16 since µ is comprised between 1 and R. Therefore, we �x λ = 1/16 in our

subsequent computational results. Table 5.8 compares lp/nlp and stoch-subsum

for di�erent values of n. Whenever stoch-subsum was able to solve an instance in

less than 0.001 seconds, its solution time was set to 0.001 seconds. Ratios, given by

(Time lp/nlp) / (Time stoch-subsum), are computed for each instance separately;

we report the geometric average of the ratios, whereas we report the arithmetic

average of solution times. Comparing Table 5.8 with Tables 5.2 and 5.3, we see

that stochastic subset sum problems are signi�cantly harder to solve than uncorre-

lated and correlated instances. This is due to the size of the branch-and-cut trees,

hundreds of nodes being explored for the subset sum instances.
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lp/nlp stoch-subsum Time ratios

n/R Time Unsolved Time

103 104 103 104 103 104 103 104

200 0.199 0.244 0 0 0.001 0.001 170 198

400 0.917 0.991 0 0 0.001 0.001 636 736

600 2.542 2.726 0 0 0.002 0.002 1331 1364

800 5.306 5.568 0 0 0.002 0.002 2190 2096

1000 10.12 9.716 0 0 0.003 0.003 3422 3085

2000 84.768 79.023 31 26 0.005 0.005 12660 11475

Table 5.8: Comparison of lp/nlp and stoch-subsum on subset sum instances with

K = 10 and λ = 1/16.

Similarly to the Avis knapsack instances, we can de�ne Avis subset sum instances

as follows: pi = µi = n(n + 1) + i, and C = n(n + 1)b(n − 1)/2c + n(n − 1)/2. To

obtain groups of 100 �di�erent� instances, we shu�e the order in which the items

are read. Avis subset sum are extremely hard to solve already in the deterministic

case, specialized algorithms are needed to solve large instances. Table 5.9 compares

lp/nlp and stoch-subsum on these di�cult instances. In fact, lp/nlp can not solve

problem with more than 20 variables within the time limit of 100 seconds. This is

due to the very large number of nodes explored. For n = 10, lp/nlp explores

around 751 nodes on average, while exactly 705430 nodes are explored for each

instance with n = 20. Although stoch-subsum requires more time than for other

subset sum problems, it can still handle problems containing up to 600 variables

within 100 seconds of CPU time.

n lp/nlp stoch-subsum Time ratios

10 0.055 0.001 51.8

20 40.124 0.001 40119

100 � 0.055 �

200 � 1.003 �

300 � 5.22 �

400 � 16.6 �

500 � 41.6 �

600 � 88.1 �

Table 5.9: Comparison of lp/nlp and stoch-subsum on Avis subset sum instances

with K = 10 and λ = 1/16.
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Dantzig-Wolfe decomposition for MINLP

applied to stochastic network design

6.1 Introduction

In Chapter 5, we saw how MINLP tools can be e�ciently used to optimize the knap-

sack problem with simple recourse, as long as the expectation is easy to compute.

Namely, we restricted ourselves to Gaussian random variables because their sum-

mation property avoids the burden of computing complicate multivariate integrals.

In this chapter, we seek to extend these good computational results to a simple

recourse network design problem. Formulating the network design problem as a

convex MINLP yield a di�cult problem, partly because of the large number of con-

straints and variables of the problem. As in Chapter 3, decomposition algorithms

should be devised. In this chapter, we study another type of decomposition scheme,

the Dantzig-Wolfe decomposition.

Many di�cult Mixed-Integer Programs can be solved e�ciently by Dantzig-Wolfe

decomposition (abbreviated DWD in the sequel), followed by a branch-and-price

algorithm, see Barnhart et al. (1998); Briant et al. (2008); Lübbecke and Desrosiers

(2005), among others. Similarly to Benders decomposition, this reformulation may

nicely split the problem into many smaller subproblems. For instance, generating

new paths in the arcs-paths formulations for multi-commodity �ow problems requires

to solve a small shortest path problem for each commodity. Moreover, DWD provides

a stronger bound than the linear relaxation of the problem when some complexity

is transferred to the pricing problem. Nevertheless, since the number of variables in

the reformulation is very large, one should rather generate them dynamically with

a branch-and-price algorithm.

Independently, DWD has been successfully applied to linearly constrained prob-

lems with a pseudo-convex and di�erentiable objective, yielding the simplicial de-

composition (Patriksson, 2009). Again, this decomposition replaces the possibly

complicated constraints by the simple constraints de�ning the canonical simplex,
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but requires dynamic variable generation.

Up to our knowledge, no such decomposition has yet been applied to Mixed-

Integer Non Linear Programs, and in particular convex MINLPs, although many

e�cient algorithms have been developed for convex MINLPs, see Bonami et al.

(2009) for a review. Herein, we reformulate a convex linearly constrained MINLP

using DWD. Then, we present a novel branch-and-cut-and-price algorithm based on

the LP/NLP algorithm �rst introduced in Quesada and Grossman (1992) and im-

plemented in in Chapter 5. The main di�culty of DWD lies in its implementation.

Although it is nowadays very simple to code a Benders decomposition using cuts

callbacks from most commercial (CPLEX, XPRESS, Gurobi) and non-commercial

codes (SCIP, BCP, ...), see Chapter 3, commercial codes do not yet handle dynamic

variable generation. Thus, implementing an e�cient branch-and-cut-and-price al-

gorithm is an important piece of work, beyond the scope of this thesis. Herein,

we implement in JAVA (using the LP solver from CPLEX) a naive version of the

algorithm and compare it with lp/nlp on the original formulation. We obtain en-

couraging results because our algorithm competes with CPLEX on �ve instances

from SNDlib and always outperforms lp/nlp. Further work should improves our

framework and extend it to more general convex MINLPs.

In the next section, we provide a literature review of network design under un-

certainty and describe our stochastic network design problem with simple recourse.

Then, our branch-and-cut-and-price algorithm is described in Section 6.3. Section

6.4 presents computational results.

6.2 Network design under demand uncertainty

Designing or extending a network is a costly task with duration ranging from a couple

of months to many years. The parameters of the problem, such as demands and

costs, vary along the time in a way which is usually impossible to predict exactly. At

best, one can assess the evolution of these parameters with probability distributions

(stochastic programming) or uncertainty polyhedrons (robust programming). To be

relevant in practice, a model for network design or expansion planning must somehow

take into account these uncertainties. In Chapters 3 and 4, we raised already the

problem of edge failure, by means of models (HOP) and (TEPR −N1). In what

follows, we are more interested in studying uncertainty related to the exact value of

demands, dq.

In this section, we review major works handling these uncertainties and present

our model. We saw in Chapters 2, 3 and 4 that a network design problem can be

modeled in various ways, depending on the practical application and on the level of

simpli�cation used. For the sake of simplicity, we restrict ourselves to model (ND)

recalled in the next subsection, usually used to model telecommunications networks.
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6.2.1 Classical network design formulation

Let us recall the network design formulation introduced in Chapter 2. Given an

undirected graph (V,E) and a set of commodities Q, with origin s(q), destination

t(q), and nominal value dq for every q ∈ Q, the capacitated network design problem

aims at installing the cheapest capacities on edges of G so that the resulting network

shall be able to attend to each demand. Each edge e ∈ E between i and j can be

used in both directions, so that we can introduce the set of arcs A making (V,A) a

bi-directed graph. Integer variable ye states how many batches of capacity C and

cost ce are installed on edge e, while fractional variable xqij describes the amount of

�ow for commodity q through arc (i, j). The model reads as follows:

min
∑
e∈E

ceye (6.1)

s.t.
∑
q∈Q

(
xqij + xqji

)
≤ Cye e = ij ∈ E

(6.2)

(ND)
∑

j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij =


−dq if i = s(q)

dq if i = t(q)

0 else

i ∈ V, q ∈ Q

(6.3)

xqij ≥ 0

ye ≥ 0 and integer. (6.4)

Objective (6.1) minimizes design cost, constraints (6.2) ensure that capacities are

not exceeded (note that �ows in both directions of an edge e share the same capacity

Cye), constraints (6.3) state that, for each commodity, the outgoing �ow at every

node of the graph must be equal to the ingoing �ow apart from extremities s(q) and

t(q). Finally, (6.4) ensures that capacities are installed by batches.

6.2.2 Dynamical routing

This general model considers that design decisions y must be taken before the de-

mand is revealed, while routing decisions x can be �xed once we know the demand

with precision. Said di�erently, x is an arbitrary functions of d.

Robust programming

Ben-Tal et al. (2004) introduce the Adjustable Robust Counterpart (ARC) which

partitions decision variables into two sets. The �rst one contains variables that stay

invariant regarding the value of uncertain parameters, while the variables in the

second set can be �xed according to the speci�c values of these parameters, i.e.,

they are arbitrary functions of these parameters. Although ARC is untractable in

general, Mattia (2010) applies that framework to (ND) leading to the problem of
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installing enough capacity y on the network such that for each d in the polyhedron

D, there exists a routing x(d) feasible for y. Thus, x becomes a function of the

demand, x : D → R+.

Stochastic programming

Given a set of scenarios Ω, the stochastic network design with routing recourse also

partitions variables into two sets. As before, design variables must be �xed before

demand is known, while routing can be devised independently for each scenario,

x : Ω → R+. Moreover, we also introduce slack variables z allowing a portion

of some of the demands to be unmet for scenarios with little probability weight.

Namely, we replace (6.3) by

∑
j∈V:(j,i)∈A

xqji(ω)−
∑

j∈V:(i,j)∈A

xqij(ω) =


−dq(ω) + zq(ω) if i = s(q)

dq(ω)− zq(ω) if i = t(q)

0 else

(6.5)

i ∈ V, q ∈ Q, ω ∈ Ω,

and add the penalty term
∑

q∈QK
qE[max(0, z(ω))] to objective (6.1). When capac-

ity is allowed to be fractional (y is a continuous variable) Sen et al. (1994) devise a

Monte-Carlo based decomposition algorithm for the problem and Lisser et al. (1999)

implement a parallelized cutting-plane algorithm for the problem. With modular

capacities, Andrade et al. (2005) implement a Benders decomposition and enhance

the branching procedure. Riis and Andersen (2002) study a model including di�er-

ent routing schemes for each scenario as in (6.5) but without shortage variables z.

The problem has therefore a structure close to (ND) so that they can extend well

known classes of valid inequalities to the stochastic problem.

6.2.3 Oblivious routing

Dynamical routing has two drawbacks. First, it is very hard computationally, unless

e�cient sampling algorithms are used, see Kleywegt et al. (2002) among others.

Second, it may not describe accurately practical situations. In telecommunications

networks for instance, an important problem is to prescribe a network able to cope

with a set of di�erent demands, corresponding to di�erent periods of time. Often,

it is not realistic to change completely the routing according to the exact demand

value. For both reasons, it makes sense to apply some restrictions to function x.

Robust programming

In the context of robust programming, an important alternative to dynamical rout-

ing is the so-called static routing. Instead of having an arbitrary function x : D →
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R+, we introduce the notion of routing template

∑
j∈V:(j,i)∈A

f qji −
∑

j∈V:(i,j)∈A

f qij =


−1 if i = s(q)

1 if i = t(q)

0 else

i ∈ V, q ∈ Q, (6.6)

and xq(d) = f qdq. This model has been applied to a large panel of variations of

(ND), see Altin et al. (2007, 2010); Mudchanatongsuk et al. (2008), among oth-

ers. Ben-Ameur; Ouorou and Vial; Scutellà (2009), among others, propose more

subtle routing schemes, in between static and dynamic routings.

Stochastic programming

Up to our knowledge, all stochastic programming approaches to (ND) with demand

uncertainty consider dynamical recourse. We describe next a simple recourse model

(AN) where xqij denotes the maximal amount of �ow for commodity q that can go on

arc (i, j) ∈ A, ye represents the number of batches of capacity with size C installed

on edge e ∈ E, and z is the shortage recourse as in (6.5). Therefore, given the

optimal solution (y, x, z) to (AN), demand dq(ω) is fully attended only if zq(ω) ≤ 0.

Let d
q

= maxω∈Ω{dq(ω) s.t. zq(ω) ≤ 0}. Hence, the actual �ow on arc (i, j) ∈ A for

commodity q ∈ Q is equal to

xqij min

(
1,
dq(ω)

d
q

)
.

The model reads as follows:

min
∑
e∈E

cexij +
∑
q∈Q

KqE [max(0, zq(ω))]

s.t.
∑
q∈Q

(
xqij + xqji

)
≤ Cye e = ij ∈ E

(AN)
∑

j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij =


−dq(ω) + zq(ω) if i = s(q)

dq(ω)− zq(ω) if i = t(q)

0 else

(6.7)

i ∈ V, q ∈ Q, ω ∈ Ω,

x ≥ 0

y ≥ 0 and integer.

The simple recourse structure of (AN) allows us to reformulate (AN) as a non

linear problem, substituting zq(ω) by

dq(ω)−
∑

j∈V:jt(q)∈A

xqjt(q) +
∑

j∈V:t(q)j∈A

xqt(q)j,

as in Chapter 5, so that (6.7) becomes∑
j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij = 0 q ∈ Q, i ∈ V\{s(q), t(q)}. (6.8)



94 6.3 Algorithm

Then, applying DWD to (AN) with (6.7) replaced by (6.8) and introducing contin-

uous density probability functions f q : R+ → Ξq for random variable dq, we obtain

our arcs-paths formulation:

min
∑
e∈E

ceye +
∑
q∈Q

Kq

∫
Ξq

max

(
0, ξq −

∑
p∈Pq

xqp

)
f q(ξq)dξq (6.9)

(AP) s.t.
∑
q∈Q

∑
p∈Pq

δpex
q
p ≤ Ceye e ∈ E

x ≥ 0

y ≥ 0 and integer,

where Pq is the set of all paths in G between s(q) and t(q), xqp the maximal �ow

on path p, and δpe is equal to one if e ∈ p, 0 otherwise. Note that (6.8) de�nes a

very special kind of polyhedron: a vector space. Therefore, its DWD only contains

extreme rays (no vertices). This is clear from (AP) since no convexity constraints

link path variables xqp.

Theorem 5.1 states that (6.9) is convex. Moreover, it is di�erentiable because

each non-linear term of (6.9) can be rewritten

hq(x) = Kq

∫
Ξq :ξq≥

∑
p∈Pq x

q
p

(
ξq −

∑
p∈Pq

xqp

)
f q(ξq)dξq,

and
∑

p∈Pq x
q
p is di�erentiable. Remark that it may be di�cult to compare �xed

costs c and operating costs K so that we could replace the term
∑

e∈E ceye in (6.9)

by a budget constraint
∑

e∈E ceye ≤ B, see Pióro and Medhi (2004) for examples of

network design problems with budget constraints.

6.3 Algorithm

Problem (AP) has too many variables to be solved for real size networks, while only

a few of them are required in the optimal solution. Hence, it would be interesting to

generate paths only when needed. Once we have chosen a suitable MINLP frame-

work, we must decide how to generate paths throughout the solution algorithm.

Herein, we decided to use the LP/NLP algorithm. Since (AP) has only linear con-

straints, we do not need to solve feasibility NLP so that the LP/NLP turns out to

be a branch-and-cut algorithm, see lp/nlp from Chapter 5. Namely we de�ne a

master problem, see (MP) below, accumulating the linearizations of the objective

function. Additional linearizations are generated throughout the branch-and-bound

algorithm solving (MP), see Bonami et al. (2009). Although linearizations must

be added at each integer node (to test whether we keep the associated incumbent),

it is not obvious whether to add them at each fractional node. On one hand, it is

important to add enough linearizations early in the tree to avoid exploration of too

many infeasible nodes. On the other hand, adding too many unnecessary cuts would
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slow down the linear relaxation at each node, as discussed in Chapter 3 for Benders

decomposition. Nevertheless, our algorithm bp-lp/nlp adds linearizations at every

node of the enumeration tree.

Let Rq and and Pq∗ ⊆ Pq be the sets of linearizations of hq and the set of

paths variables generated so far, respectively, for commodity q. We de�ne below the

master problem, (MP), for |Rq| linearizations of hq and |Pq∗| path variables for each

commodity q:

min
∑
e∈E

ceye +
∑
q∈Q

γq

s.t. h(x) +
∑
q∈Q

∑
p∈Pq∗

∂h

∂xqp
(x, y)(xqp − xqp) ≤ γq q ∈ Q, x ∈ Rq (6.10)

(MP)
∑
q∈Q

∑
p∈Pq∗

δpex
q
p ≤ Ceye e ∈ E (6.11)

γ, x ≥ 0

y ≥ 0 and integer,

and de�ne P∗ = ∪q∈QPq∗. Note that each hq satis�es the following property:

∂hq

∂xqp
=
∂hq

∂xqp′
for any p, p′ ∈ Pq, (6.12)

so that we denote (6.12) by dhq

dx
in the following. Property (6.12) implies that the

reduced cost is easy to compute for any path p ∈ P.

Lemma 6.1. Let (x, y, γ) be an optimal solution to (MP), u and v be optimal

multipliers associated with constraints (6.10) and (6.11), respectively, and p ∈ Pq

for some q ∈ Q. The reduced cost of xqp is equal to:

cqp = −
∑
x∈Rq

dhq

dx
(x)u+

∑
e∈E

δpeve. (6.13)

Reduced costs tell us which paths in P\P∗ may improve the objective of (MP),

and should thus be added to P∗. What can we say about these paths concerning

the objective of (AP)? Since (AP) is non-linear, we cannot, in general, compute

reduced costs to know which (path) variables should be considered. Nevertheless,

since for each q ∈ Q, the piece-wise linear function de�ned by (6.10) is always

smaller than or equal to hq, we can use cqp to know whether new paths can improve

signi�cantly the objective of (AP), that is, improve it by more than a given ε > 0.

Let h(P∗) and h(P∗,R) denote the optimal solutions of (AP) restricted to paths

in P∗ and (MP) restricted to paths in P∗ and with linearizations in R = ∪q∈QRq,
respectively.

Lemma 6.2. Given P∗, let R = ∪q∈QRq be such that h(P∗,R) ≥ h(P∗) − ε, and

consider some path p ∈ Pq\Pq∗. If cqp ≥ 0, then h(P∗ ∪ {p}) ≥ h(P∗)− ε.
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Proof. Because cqp ≥ 0, path p does not improve the objective of (MP), that is

h(P∗,R) = h(P∗ ∪ {p},R). Therefore,

h(P∗ ∪ {p}) ≥ h(P∗ ∪ {p},R)

= h(P∗,R)

≥ h(P∗)− ε.

As in Chapter 5 we linearize the non-linear objective only up to some ε > 0.

Lemma (6.2) implies that only a path p with strictly negative reduced cost can

improve the objective of (AP) by more than ε. Thus, bp-lp/nlp below looks for

a minimum to (AP) up to ε > 0, so that paths with positive reduced cost can be

neglected. Note that the term
∑

x∈Rq
dhq

dx
(x)u depends only on commodity q ∈ Q,

not on path p. Thus, the pricing problem turns out to be a shortest path problem

for each commodity, with edge costs ve. This is a well known problem polynomially

solvable that we solve by linear programming.

Our algorithm is described on Algorithm 6. It is an extension of lp/nlp from

Chapter 5 handling columns generation.

Remark 6.3. Algorithm 6 is an �easy� branch-and-cut-and-price algorithm in the

sense that we do not branch on the variables that are generated dynamically: we

branch on the y variables and generate the x variables. To extend Algorithm 6 to

problems with unsplittable �ows, see (UND) in Chapter 7, one should use a more

sophisticated branching procedure such as (Barnhart et al., 2000).

6.4 Computational experiments

This section presents our computational experiments. First, we introduce our in-

stances and the details of our implementation.

6.4.1 Test sets and implementation details

In what follows, we provide more details about our set of instances and the param-

eters used.

Instances

We detail results obtained on two sets of instances:

• Randomly generated graph with 50 nodes and 100 edges, with four batches

of capacity allowed on each edge and C = 100. The number of end-to-end

commodities varies between 10 and 20. Their demands follow Gaussian distri-

butions with means uniformly distributed between 1 and 40, and each variance

is uniformly distributed between 0 and the mean divided by four. Costs c are

based on euclidean distances between nodes.
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Algorithm 6: bp-lp/nlp

begin /* Initialization */

T = {o} where o has no branching constraints;

UB = +∞;

cut = true;

var = true;

while T is nonempty do

select a node o′ ∈ T;

T← T\{o′};
while cut = true or var = true do

solve o′;

let (x, y, γ) be an optimal solution;

let (u, v) be optimal dual multipliers;

cut = false, var = false;

if cty + γ < UB then

foreach q ∈ Q do

if hq(x) ≥ γq + ε then

add x to Rq;

cut = true;

if cut = false then

foreach q ∈ Q do

let p be the shortest paths between s(q) and t(q) according to

costs v;

if cqp < 0 then

add p to Pq;

var = true;

if y ∈ Z|E| then de�ne a new upper bound UB := cty +
∑

q∈Q γ
q and save

current incumbent;

else

branch, resulting in nodes o∗ and o∗∗;

T← T ∪ {o∗, o∗∗};

• SNDlib networks with details reminded in Table 6.1. Demands follow Gaus-

sian distributions with means equal to the nominal values of the demands in

SNDlib, and each variance is uniformly distributed between 0 and the mean

divided by four.

Implementation

The following algorithms are coded in JAVA on a HP Compaq 6510b with a processor

Intel Core 2 Duo of 2.40 GHz and 2 GB of RAM memory.
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Name |V| |E| |Q|
dfn-gwin 11 47 110

newyork 16 49 240

polska 12 18 17

atlanta 15 22 55

nobel-ger 17 26 121

Table 6.1: Instances description.

• cplex: Formulation (AN) solved by an lp/nlp with the branch-and-cut

framework from CPLEX 12.1; cuts (6.10) are implemented through the Lazy-

ConstraintCallback.

• lp/nlp: Formulation (AN) solved by an lp/nlp fully implemented in JAVA

using CPLEX 12.1 as the LP solver.

• bp-lp/nlp: Formulation (AP) solved by bp-lp/nlp fully implemented in

JAVA using CPLEX 12.1 as the LP solver. We check for violated cut and

missing path at every node of the tree.

6.4.2 Results

|Q|
Total time (MP) (MP) and price time ratio

cplex lp/nlp bp-lp/nlp lp/nlp bp-lp/nlp bp-lp/nlp
lp/nlp

bp-lp/nlp

10 4.5 3.1 2.7 2.3 0.93 1.56 1.1

12 13.7 24.6 15.8 21.2 9 11.4 1.6

14 64 150 82 134 55 64.5 1.8

16 43 171 101 155 69 81 1.7

18 100 581 303 523 205 238 1.9

20 100 1602 742 1455 510 585 2.2

Table 6.2: CPU times on randomly generated instances.

Detailed results for random instances are given in Table 6.2, and total times are

also depicted in Figure 6.1. Columns �Total time� present the total amount of CPU

time required by each algorithm to solve the problem, columns �(MP)� provide only

the time spent for solving the bounding problem with CPLEX, and column �(MP)

and price� sums the times for solving the bounding problem and for pricing out new

variables. Finally, column �time ratio� provides the ratios between total times of

lp/nlp and bp-lp/nlp.

Our main objective here is show the improvement obtained by bp-lp/nlp when

compared to lp/nlp, because both of them have been implemented in a naive fash-

ion. The comparison with cplex is only made out of curiosity because the latter

enjoys from a wide range of clever engineering improvements. In this sense, Table 6.2
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and Figure 6.1 show that our branch-and-cut-and-price algorithm is a clear success

since the total time ratio increases with the size of the problem.

Then, we depict in Figure 6.2 total times of the three algorithms applied to

Sndlib networks from Table 6.1. The chart on left provides the absolute total times

in seconds, while the chart of right compares these times with the time required by

lp/nlp. Again, bp-lp/nlp clearly outperforms lp/nlp. Moreover, it also competes

with cplex, which is very encouraging.
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Figure 6.1: Solution times for randomly generated instances.

Figure 6.2: Solution times for SNDlib instances.



7

Easy distributions for combinatorial

optimization problems with probabilistic

constraints

7.1 Introduction

Many combinatorial optimization models address problems with parameters which

are impossible to predict exactly. Therefore, it is often more accurate to model these

parameters with random variables. This modi�es the structure of the optimization

problems, depending on the times at which decisions are taken and parameters

are revealed. Chapters 5 and 6 presented two-stages models: some variables are

to be �xed now while recourse variables are �xed after uncertain parameters are

known exactly. A recourse model has also been mentionned in the last section of

Chapter 4. In this chapter we study probabilistic constraints: all decisions must be

taken here and now, such that the constraints of the model shall be satis�ed with

a certain probability. In other words, we aim at maximizing some objective for a

given feasibility tolerance.

Stochastic programs with linear probabilistic constraints are in general non-

convex non-linear optimization problems (Henrion and Strugarek, 2008). If further-

more some variables are integer, they become non-convex Mixed Integer Non Linear

Problems (Grossmann, 2002). Although probabilistic constraints have been widely

studied for many years, see Henrion (2004); Prékopa (2003); Shapiro et al. (2009) and

the references therein, papers on problems with integer variables are not very numer-

ous. Among them, problems featuring joint probabilistic constraints with random

right hand side have been studied by Beraldi and Ruszczynski (2002b,a, 2005) who

propose exact and heuristic branch-and-bound algorithms, Dentcheva et al. (2002)

who study formulations and bounding procedures, Lejeune and Ruszczynski (2007)

who develop a column-generation based algorithm for a supply chain management

problem, and Saxena et al. (2009) who introduce the concepts of p-ine�ciency and

provide extensive computational results for the probabilistic set-covering problem
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studied by Beraldi and Ruszczynski (2002a). All these works handle probabilistic

constraints through the concept of p-e�cient points introduced by Prékopa (1990),

apart from Saxena et al. (2009) who uses p-ine�cient points instead.

Herein, we consider problems where uncertainty a�ects both sides of the con-

straints. A branch-and-bound algorithm and heuristics for such problems have been

proposed by Beraldi and Bruni (2009, 2010), and Klopfenstein (2010) studies valid

inequalities for the problem with individual probabilistic constraints with uncer-

tainty in both sides.

In what follows, we are particularly interested by the case of individual proba-

bilistic constraints while the random variables follow particular continuous distribu-

tions, among which normal distributions. Previous results in this direction assume

that all random variables are normally distributed. In that case, the probabilis-

tic constraints can be rewritten as quadratic constraints (Kataoka, 1963; Prékopa,

1995; van de Panne and Popp, 1963), convex under some assumption on the con�-

dence level (Parikh, 1968). If all variables are binary, the constraints can be further

linearized using classical techniques (Hansen and Meyer, 2009). Further work ex-

tends the classical Gaussian framework to the more general class of radial distribu-

tions (Cala�ore and Ghaoui, 2006). The authors show how a probabilistic constraint

can be written as a second-order cone convex constraint. The latter constraint can

be linearized as well when working with binary variables.

In this chapter, we always assume that coe�cients are independent continuous

random variables. We show that an individual linear probabilistic constraint with bi-

nary variables is equivalent to a linear constraint when all coe�cients are distributed

according to either N (µi, λµi), for some λ > 0 and µi > 0, or Γ(ki, θ) for some θ > 0

and ki > 0. The constraint can also be linearized when the coe�cients are indepen-

dent and identically distributed, if they are either positive or strictly stable random

variables. As a result, we obtain that certain types of chance-constrained knapsack

problems are as easy to solve as their deterministic counterpart.

The next section motivates the study of these constraints from a network design

problem involving unsplittable multi-commodity �ows. Then, in Section 7.3 we

study the case of identically distributed random variables, while in Section 7.4 we

study Gaussian and gamma random variables. Finally, Section 7.5 applies the results

from Section 7.4 to the chance-constrained knapsack problem, and discusses how

these results can be applied to a unsplittable multi-commodity �ow problem arising

in telecommunications networks.

7.2 Studied constraints

In this section we introduce formally the constraint studied in the chapter.
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7.2.1 Unsplittable multi-commodity �ow

In Chapters 3 and 4, we described three di�erent network design problems moti-

vated by real applications in telecommunications and power transmission networks.

Among them, only (HOP) features integer routing variables forcing the �ows to

be sent along only one path for each commodity. Actually, (HOP) uses more than

one path by duplicating the �ows in order to respect survivability requirements.

These integer variables yield the so-called �unsplittable� (sometimes called �non-

bifurcated�) routing schemes, required to model in a realistic way many telecommu-

nications technologies. Considering these constraints within the standard formula-

tion (ND) for capacitated network design, we obtain the following model

min
∑
e∈E

ceye

s.t.
∑
q∈Q

dq
(
xqij + xqji

)
≤ Cye e = ij ∈ E

(7.1)

(UND)
∑

j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij =


−1 if i = s(q)

1 if i = t(q)

0 else

i ∈ V, q ∈ Q

(7.2)

x binary (7.3)

y ≥ 0 and integer.

As with (ND), we are given an undirected graph G = (V,E), where A denotes the

set of directed arcs obtained by considering each e ∈ E in both directions. Variable

ye describes the capacity installed on edge e ∈ E and variable xqij describes the �ow

for commodity q ∈ Q on arc (i, j) ∈ A. The main di�erence between (ND) and

(UND) is the use of binary routing variables (7.3) while (ND) is allowed to use

fractional �ow variables. Note that this required to move demand coe�cient dq from

�ows conservations constraints (7.2) to capacity constraints (7.1).

We already experienced one of the di�culty of (7.3), namely, the impossibility

of projecting out x variables through Benders decomposition, unless the problem

satis�es some additional property (see Proposition 3.1 from Chapter 3). The other

di�culty of (7.3) is the substitution of |Q|×|A| continuous variables by binary ones,
making the branch-and-bound tree very large unless clever cutting planes and/or

branching schemes are devised.

In this chapter, we are interested in considering probabilistic constraints to han-

dle demand uncertainty. Namely, dq becomes a random vector (which we still note

dq to ease notations) so that each of the constraint in (7.1) is replaced by

P

(∑
q∈Q

dq
(
xqij + xqji

)
≤ Cye

)
≥ p, (7.4)
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for p close to 1. With (7.4), (UND) can be considered a stochastic model that

uses oblivious routing, see Chapter 6. For arbitrary random variables dq, (7.4) is in

general non-linear and non-convex, making the problem a hard MINLP. However,

we explain in Sections 7.3 and 7.4 how to linearize (7.4) under strong assumptions

about distributions of dq. This simpli�cation uses extensively the fact that x is a

binary vector, so that (7.3) makes the problem with (7.4) somewhat simpler than if

the routing were fractional. This contrasts with the deterministic version of (UND)

for which (7.3) increases considerably the complexity of the problem.

7.2.2 General constraint

In the following we study mainly the following type of probabilistic constraints,

C1(x) = P

(
n∑
i=1

wixi ≤ C0

)
≥ p, (7.5)

though our results extend easily to

C2(x) = P

(
n∑
i=1

wixi ≤ C1y1 + C0

)
≥ p, (7.6)

and

C3(x) = P

(
n∑
i=1

wixi ≤
m∑
j=1

Cjyj + C0

)
≥ p

m∑
j=1

yj ≤ 1,

(7.7)

where p ∈ (0, 1), wi are independent random variables, and Cj, 0 ≤ j ≤ m,

are �xed coe�cients. In addition, we always consider that xi, yj ∈ {0, 1}, for

i ∈ N = {1, . . . , n} and 1 ≤ j ≤ m. The �rst constraint (7.5) is the so-called

knapsack constraint, studied in Chapter 5, which plays an important role in ca-

pacitated problems such as unsplittable multicommodity �ow and generalized as-

signment problems. The second constraint (7.6) appears when the choice of the

capacitated facilities to be built is part of the decision: C0 denotes the initial ca-

pacity and C1 the capacity provided by the facility. Typical examples are network

design problems and facility location problems. Finally, in many technical problems

we must choose at most one out of a set of di�erent facilities, for instance, di�erent

capacities for a new link to install in a telecommunication network. This is repre-

sented by (7.7). For example, (7.4) can be rewritten as (7.7), setting w = d, C0 = 0

and Cj = jC, so that yj = 1 if ye = j, 0 otherwise.

In the sequel, we say that two constraints C1(x) ≥ 0 and C2(x) ≥ 0 are equiv-

alent, denoted by C1(x) ≥ 0 ⇔ C2(x) ≥ 0, if the sets {x ∈ {0, 1}n s.t. C1(x) ≥ 0}
and {x ∈ {0, 1}n s.t. C2(x) ≥ 0} are equal. Moreover, the summation

∑
refers to

the sum over set N = {1, . . . , n} unless stated otherwise.
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7.3 Identically distributed variables

We �rst consider (7.5) for the simple example where wi are positive random variables

identically distributed. Since wi are positive, we see that

P

(
m∑
i=1

wi ≤ C0

)
≤ P

(
m−1∑
i=1

wi ≤ C0

)
. (7.8)

Thus, the number of xi that can be equal to 1 can certainly not exceed

N(C0) = max
1≤l≤n

{
l s.t. P

(
l∑

i=1

wi ≤ C0

)
≥ p

}
. (7.9)

Conversely, if some binary vector x satis�es
∑
xi ≤ N(C0), then certainly x satis�es

(7.5) because wi are identically distributed. Then, considering (7.6), the previous

reasoning holds with N(C0) for y1 = 0, and with N(C0 + C1) for y1 = 1. Finally,

this reasoning extends to the pair of constraints (7.7), since at most one of the yj
can be equal to 1. We just proved the following:

Proposition 7.1. Consider n independent identically distributed positive random

variables wi, i ∈ N. Then, for xi, yj ∈ {0, 1}, i ∈ N and 1 ≤ j ≤ m, the following

constraints are equivalent:

1. C1(x) ≥ p⇔
∑

xi ≤ N(C0)

2. C2(x) ≥ p⇔
∑

xi ≤ (N(C0 + C1)−N(C0))y1 +N(C0)

3. If furthermore,
∑m

j=1 yj ≤ 1, then

C3(x) ≥ p⇔
n∑
i=1

xi ≤
m∑
j=1

(N(C0 + Cj)−N(C0))yj +N(C0)

with N(r) de�ned in (7.9) for any real r.

In the following, we focus on results of type 1. since 2. and 3. can be deduced

from 1. by the above arguments. Hence, we denote C0 by C in the sequel to simplify

notations.

Remark that computing the value of N(C) requires, in general, the solution of

a multivariate integral that must be solved using e�cient packages for numerical

integration, see Prékopa (1995). For some distributions, this computational burden

can be avoided. For instance, if all wi are uniformly distributed between 0 and 1,

their sum is distributed according to (Grinstead and Snell, 1997)

f(z) =
1

n!

n+1∑
k=0

(−1)k
(
n+ 1

k

)
[(z − k)+]n .
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The uniform distributions are not the only distributions which sum up nicely. Stable

distributions satisfy interesting summation properties too. Recall that if wi are

n independent copies of a stable random variable w, then for any constants xi
the random variable

∑n
i=1 xiwi has the same distribution as vnw + wn with some

constants vn = n1/α for some α ∈ (0, 2], and wn. Moreover, w is said strictly stable

if wn = 0 in the relation above. For instance, the Levy distribution, with density

function equal to f(z; c) =
√

c
2π

e−c/2x

x3/2
for z ≥ 0, is positive (satisfying the hypothesis

of Proposition 7.1) and stable so that sums of such distributions are easy to compute.

We refer to Nolan (2010) for a good introduction to stable distributions.

In general, the support of stable distributions intersects negative reals. For

instance, normal and Cauchy distributions always have negative tails. We show

next that property (7.8) still holds for strictly stable distributions. For wi strictly

stable i.i.d. random variables, we have by de�nition that

n∑
i=1

wi ∼ n1/αw1 α ∈ (0, 2],

so that

P

(
n∑
i=1

wi ≤ C

)
= P (n1/αw1 ≤ C) = P (w1 ≤ Cn−1/α).

If C ≥ 0, the function n 7→ Cn−1/α is non increasing, implying (7.8). We obtain the

following:

Proposition 7.2. Consider n independent identically distributed strictly stable ran-

dom variables wi, i ∈ N, and C ≥ 0. Then, if xi ∈ {0, 1} for each i ∈ N, the

following constraints are equivalent:

C1(x) ≥ p⇔
∑

xi ≤ N(C),

with N(C) de�ned in (7.9).

An example of strictly stable distribution with α = 1 is the Cauchy distribution,

with density function f(z; z0, γ) = 1
π

(
γ

(z−z0)2+γ2

)
for some location parameter z0 ∈ R

and scale parameter γ > 0.

7.4 Non identically distributed variables

A well known stable distribution is the Gaussian distribution. In fact, for Gaussian

and gamma random variables we are able to derive stronger results, allowing for the

random variables to be distributed di�erently, as long as some regularity condition

holds. Consider independent Gaussian random variables, wi ∼ N (µi, σ
2
i ), i ∈ N.

Then, C1(x) ≥ p can be rewritten (Prékopa, 1995)∑
µixi + Φ−1(p)

√∑
σ2
i x

2
i ≤ C, (7.10)
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where Φ is the distribution function of the standard normal distribution N (0, 1).

When x ∈ {0, 1}n, (7.10) can be linearized introducing additional continuous vari-

ables (Hansen and Meyer, 2009). However, these linearizations contain more vari-

ables and provide looser bounds than the direct linearization from Proposition 7.3

below.

Proposition 7.3. Consider n random variables wi ∼ N (µi, λµi), i ∈ N, for λ > 0

and µi > 0. Then, if xi ∈ {0, 1} for each i ∈ N, the following constraints are

equivalent:

C1(x) ≥ p⇔
∑

µixi ≤ µ∗, (7.11)

where µ∗ is the unique root of the equation C − µ = Φ−1(p)
√
λµ.

Proof. Recall that if w1, . . . , wn are independent Gaussian with mean µi and variance

σ2
i , and xi are real numbers, then w :=

∑n
i=1 xiwi ∼ N (µ(x), σ2(x)), with µ(x) =∑

xiµi and σ
2(x) =

∑
x2
iσ

2
i . Thus, because xi ∈ {0, 1} and σ2

i = λµi for each i ∈ N,

we have σ2(x) = λµ(x). Then,

P
(∑

wixi ≤ C
)

= P

(
N (0, 1) ≤ C − µ(x)√

λµ(x)

)
,

so that C1(x) ≥ p is equivalent to

C − µ(x)√
λµ(x)

≥ Φ−1(p). (7.12)

The left hand side of (7.12) is decreasing in µ(x), and thus C1(x) ≥ p is equivalent

to µ(x) ≤ µ∗, where µ∗ is the unique root of the equation C − µ = Φ−1(p)
√
λµ.

We provide in Section 7.5.2 an application of Proposition 7.3 to a routing prob-

lem arising in telecommunications. Similar examples can be devised for the gener-

alized assignment problem, see for instance the Proportional Mean-Variance Model

from Spoerl and Wood (2003) which assumes that random variables are those from

Proposition 7.3.

The next proposition considers the case of independent gamma random vari-

ables used, for instance, to model waiting and processing times in servers locations

problems (Berman and Krass, 2004).

Proposition 7.4. Consider n random variables wi ∼ Γ(ki, θ), i ∈ N, for some

θ > 0 and ki > 0, and assume that C > 0. Then, if xi ∈ {0, 1} for each i ∈ N, the

following constraints are equivalent:

C1(x) ≥ p⇔
∑

kixi ≤ k∗,

where k∗ is the unique solution of
∫ C
0 zk−1e

−z
θ dz

Γ(k)θk
= p and the gamma function is de�ned

by Γ(k) =
∫∞
0 zk−1e

−z
θ dz

θk
.
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Proof. Gamma distributions satisfy also some kind of summation property, although

weaker than the property satis�ed by normal distributions. Recall that if w1, . . . , wn
are independent Gamma with shape ki and a common scale θ, then w :=

∑
wi ∼

Γ(k, θ), with k =
∑
ki. Thus, if xi are binary numbers, we have also that w :=∑

xiwi ∼ Γ(k(x), θ), with k(x) =
∑
kixi. Thus, for binary xi, C1(x) is equivalent

to P (Γ(k(x), θ) ≤ C) de�ned by ∫ C
0
zk(x)−1e

−z
θ dz

Γ(k(x))θk(x)
,

which we note K(k(x)) in the following. Then, assuming that K(k) is a strictly

decreasing function of k, the constraint K(k(x)) ≥ p is equivalent to the constraint

k(x) ≤ k∗, with k∗ = K−1(p) which proves C1(x) ≥ p ⇔
∑
kixi ≤ k∗. Note that

K−1 is well de�ned for any p ∈ (0, 1) because K is continuous, strictly decreasing,

limk→0+ K(k) = 1 and limk→+∞K(k) = 0.

We are left to prove that K(k) is a strictly decreasing function of k > 0:

dK
dk

(k) = θ
d

dk

∫ C
0
zk−1e−zdz∫∞

0
vk−1e−vdv

=
θ

Γ2(k)

(∫ C

0

ln(z)zk−1e−zdz

∫ ∞
0

vk−1e−vdv

−
∫ C

0

zk−1e−zdz

∫ ∞
0

ln(v)vk−1e−vdv

)
=

θ

Γ2(k)

∫ C

0

dz

∫ ∞
0

dv
(
zk−1vk−1e−z−v(ln(z)− ln(v)

)
=

θ

Γ2(k)

∫ C

0

dz

∫ ∞
C

dv
(
zk−1vk−1e−z−v ln

z

v

)
,

which is strictly negative because ln z
v
< 0 for (z, v) ∈ [0, C]× (C,∞).

When C ≤ 0, K(k(x)) = 0 so that the probabilistic constraint is equivalent to∑
xi ≤ 0.

7.5 Applications

In what follows we present two applications of the results from previous sections.

7.5.1 The chance-constraint knapsack

We apply Proposition 7.3 and 7.4 to a classical problem with a unique probabilistic

constraint, studied by Klopfenstein and Nace (2008) and Goyal and Ravi (2009),

among others. The next Corollary extends Theorem 5.9 from Chapter 5 to the

chance-constraint knapsack problem under wider assumptions.
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Corollary 7.5. Let wi be independent random variables, i ∈ N, and assume that

C > 0. De�ne the chance-constrained knapsack problem as follows:

max
∑

pixi

s.t. P
(∑

wixi ≤ C
)
≥ p

xi ∈ {0, 1}.

The following hold:

1. If wi ∼ N (µi, λµi), for some λ > 0 and a positive integer vector µ, the problem

can be solved in O (
∑
µi).

2. If wi ∼ Γ(ki, θ), for some θ > 0 and a positive integer vector k, the problem

can be solved in O (
∑
ki).

Proof. Consider case 2., when wi ∼ Γ(ki, θ). Using Proposition 7.4, we can replace

the probabilistic constraint by a linear one with integer coe�cients, making the

problem a knapsack problem with complexity O (
∑
ki). We must only check that

the new capacity, k∗ can be computed in O (
∑
ki).

Because k is integer and x binary,
∑
kixi ≤ k∗ is equivalent to

∑
kixi ≤ bk∗c

so that we only need to compute C := bk∗c. Therefore, we describe next how to

compute C in O (log
∑n

i=1 ki). First, if K (
∑
ki) ≥ p, then k∗ ≥

∑
ki and we can

set C :=
∑
ki. Otherwise, compute bk∗c by a dichotomic search based on the sign

of K(k)− p. Case 1. is proved similarly.

Note that similar results can be obtained from Propositions 7.1 and 7.2, although

the complexity of computing P (
∑
wi ≤ C) depends on the speci�c distribution of

w.

7.5.2 The bandwidth packing problem

In what follows, we apply Proposition 7.3 to a multi-commodity �ow problem occur-

ring in telecommunications networks. We discuss di�erent approaches to tackle the

probabilistic constraints. Notice that our example is easily extended to the problem

of designing a telecommunications network, introducing binary design vector y and

replacing the �xed capacity Cij by Cijyij.

Problem description

Given a directed graph G = (V,A) with a capacity vector C, and a set of commodities

Q of size dq and revenue cq from s(q) to t(q) for each q ∈ Q, the bandwidth packing

problem (BWP) aims at routing commodities on the network in order to maximize

the total revenue. For technical reasons based on routing protocols, each commodity

must be sent along a unique path from s(q) to t(q), see Barnhart et al. (2000); Park
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et al. (1996). Introducing the binary variable xqij stating whether commodity q is

routed through arc (i, j), the problem can be formulated as

max
∑
q∈Q

cq

 ∑
i∈V:(i,t(q))∈A

xqit(q)


∑
q∈Q

dqxqij ≤ Cij (i, j) ∈ A (7.13)

s.t.
∑

j∈V:(j,i)∈A

xqji −
∑

j∈V:(i,j)∈A

xqij = 0 i ∈ V, q ∈ Q

x binary.

In practice, although the tra�c size dq varies along time, it is not convenient to

change the routing according tho these variations; x must be set once for a given

time period. Di�erent frameworks allow to model such uncertainties. Some works

consider that d belongs to a polyhedron D and that (7.13) must be feasible for

any d ∈ D, see Klopfenstein and Nace (2010) and the closely related Altin et al.

(2007), among others. Others (Klopfenstein, 2009; Pascali, 2009) model dq, q ∈ Q,

by random variables and replace (7.13) by

P

(∑
q∈Q

dqxkij ≤ Cij

)
≥ p (i, j) ∈ A. (7.14)

In what follows, we assume that dq, q ∈ Q, are independent Gaussian distributed ac-

cording to N (µk, λµk). The Gaussian assumption has been studied by Alagöz (2002)

and Kilpi and Norros (2002) and used by Andrade et al. (2004) and Klopfenstein

(2009), among others. Moreover, Sen et al. (1994) (followed by Lisser et al. (1999)

and Andrade et al. (2004)) assume that dq and dh are independently distributed for

k 6= h. Finally, Morris and Lin (2000) suggest that means and variances are linearly

correlated as tra�c size increases, that is, σ = λµ for some λ > 0, so that we can

apply Proposition 7.3 to (7.14).

Solution methods

We review di�erent approaches to tackle the chance-constrained version of (BWP).

Besides Proposition 7.3, there are two groups of methods to handle (7.14). Keeping

the random vector continuous, we can tackle (7.14) by MINLP methods. Alterna-

tively, we can sample the random variables to obtain a scenario set S and solve the

deterministic equivalent.

Direct linearization We apply Proposition 7.3 to (7.14), obtaining again prob-

lem (BWP) with dq and Cij replaced by µq and the unique root µ∗ij of Cij − µ =

Φ−1(p)
√
λµ, respectively. Computing µ∗ij is easy since function

Cij−µ√
λµ

is convex and

di�erentiable. Therefore, we can solve the problem with e�cient algorithms used in
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the deterministic case, such as the branch-and-cut-and-price algorithm from Barn-

hart et al. (2000).

MINLP methods When p ≥ 0.5 and each dq is Gaussian, (7.14) is convex and

thus, well suited for non-linear algorithms Bonami et al. (2009). However, it is

clearly easier to use the direct linearization of (7.14) through Proposition 7.3, be-

cause non-linear constraints are harder to handle than linear ones and both formula-

tions provide the same bound. For instance, outer approximation-based algorithms

replace (7.14) by a set of tangent cutting planes. The latter contains more inequali-

ties, with possibly highly fractional coe�cients, than the unique inequality resulting

from (7.14).

Alternatively, (7.14) with Gaussian random variables can be reformulated as

(7.10). We can then rewrite (7.10) as∑
q∈Q

µqxqij ≤ Cij (7.15)∑
q∈Q

[
(Φ−1(p)σq)2 + µq(2Cij − µq)

]
xqij

+
∑

q1,q2∈Q:q1 6=q2

[
((Φ−1(p))2σq1σq2 − 2µq1µq2)

]
xq1ij x

q2
ij ≤ C2

ij, (7.16)

for each (i, j) ∈ A. When p > 0.5, which is the case in real situations, µ∗ij < Cij and

thus, (7.15) is less tight than (7.11). Hence, Proposition (7.14) allows to strengthen

the above formulation by substituting (7.15) with (7.11). Then, (7.16) is not needed

anymore to de�ne a valid formulation. However, since it takes into account the

binary restriction on x (by using (xqij)
2 = xqij), it may be used together with (7.11)

to provide a stronger continuous relaxation. Note �nally that linearizing (7.16)

requires at least |Q| additional variables and 2|Q| additional constraints for each

(i, j) ∈ A, see Hansen and Meyer (2009).

Discretization and deterministic equivalent Sampling a scenario set Ω that

approximates the continuous distribution d in an acceptable way, see Luedtke and

Ahmed (2008) and Pagnoncelli et al. (2009), among others, we can write a deter-

ministic equivalent for (7.14):∑
q∈Q

dq(ω)xqij ≤ Cij +Mij(ω)(1− zij(ω)) (i, j) ∈ A, ω ∈ Ω (7.17)∑
ω∈Ω

p(ω)zij(ω) ≥ p (i, j) ∈ A (7.18)

z binary,

where components of vector M are numbers large enough. However, (7.17) and

(7.18) yield a very di�cult problem because (7.17) contains a large number of con-

straints and features �big-M� coe�cients. Therefore, Beraldi and Bruni (2009, 2010)
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show how to replace (7.17) and (7.18) by a relevant set L of scenario sets through a

branch-and-bound algorithm. Each l ∈ L yields a problem similar to (BWP), but

with multiple capacity constraints (7.13) for each arc (i, j) ∈ A (one for each scenario

in l). Then, using bounding mechanisms, they avoid solving all problems associated

to elements of L. Eventually, the exact approaches from Beraldi and Bruni (2009,

2010) will have solved several binary multi-commodity �ow problems with multiple

capacity constraints, each of them being more more complex than (BWP). Al-

though applicable to a broader class of problems, this approach will in general be

slower than the direct linearization from Proposition 7.3 that requires only to solve

one problem similar to (BWP) plus the computation of the root vector µ∗.



Conclusion and perspectives

In what follows, we conclude by giving a short summary of this thesis. For each

chapter, we review and criticize the work done. Directions for future research are

also proposed. Among them, we think that the most promising ones are related to

Chapters 4 and 6.

Network design problems

The �rst part of this thesis presented network design problems applied to telecom-

munications and power transmission networks.

Benders decomposition for telecommunications network design

In Chapter 3, we studied two models that arise in telecommunications, the bi-layer

network design and the hop-constrained path diversi�ed network design. Because

both models handle multi-commodity �ows, they lead to large-scale formulations for

which decomposition is recommended. We devised a Benders decomposition for each

problem, and implemented various cutting-plane and branch-and-cut algorithms to

generate Benders cuts. We conducted a thorough computational study on a large set

of instances. For the bi-layer network design problem, our branch-and-cut algorithm

outperforms the cutting plane algorithm of Knippel and Lardeux (2007) by a factor

of 10 in average.

For the model (ML), our main goal was to show that branch-and-cut algorithms

can be an order of magnitude faster than cutting plane algorithms if they are imple-

mented correctly. Although our tests were applied to a multi-layer network design

problem, we believe that many Benders decompositions reported in the literature

could be enhanced by using branch-and-cut algorithms. On a second model, (HOP),

we investigate further at which point the Benders cuts should be generated in the

course of the algorithm.

Our results could be improved by a study of strong cutting planes. For (ML),

it could be interesting to test well known strong cutting planes for the single layer

network design problems. For (HOP), �nding new strong cutting planes could be

a subject for future research. Furthermore, although a very e�cient heuristic has

been devised for (HOP), we have not yet tested for one in the (ML) case.
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Transmission expansion planning with re-design

Chapter 4 studied the problem of expanding a power transmission network. We

considered a linearized version of Kircho� laws because it provides a realistic ap-

proximation of physical laws governing power �ows while being computationally

tractable. We showed on an example that, because �ows are governed by these

physical laws, a power network may become more e�cient after cutting o� some of

its circuits. For this reason, we introduced a new model which allows for cutting o�

some circuits when expanding the network. The linearized Kircho� laws yield bilin-

ear constraints which are linearized by introducing �big-M� coe�cients. We proved

that the computation of minimal values for the �big-M� coe�cients requires to look

for shortest and longest paths in the network. We compared numerically di�erent

formulations for the problem, including a new one. Finally, we conducted numerical

experiments on real-based networks, and showed that our re-design model may yield

signi�cant cost reductions.

Our comparison of the formulations is only empirical. It would be very inter-

esting to also conduct a theoretical study, to �nd out whether these formulations

always yield the same LP relaxation. Also, we were disappointed by the poor re-

sults obtained by our new compact formulation within CPLEX. We have yet been

unable to understand why, however, more numerical results or examples could help

to answer this question.

Then, survivability was brie�y mentioned in Chapter 4, by mean of (N − 1)

constraints. In addition to (N − 1) constraints, it is important for the expansion

planning problem to consider uncertainty both in the electricity demand and gener-

ation. In this case, instead of (or in addition to) considering contingency scenarios

h ∈ E, the 2-stage formulation (TEPR −N1) makes use of a set Ω such that to

each scenario ω ∈ Ω corresponds a demand/generation vector (d(ω), G(ω)). As in

(TEPR −N1), the design decisions y must be taken here-and-now, while the wait-

and-see decisions of recourse (x(ω), g(ω), u(ω), θ(ω)) depend on each scenario ω ∈ Ω.

The main di�erence with the reliability models is that demand/generation scenarios

do not need the additional vector δ, because uncertainty is fully characterized by

the values of d(ω) and G(ω). Finally, one could consider both the (N −1) reliability

criterion and di�erent scenarios for demand and generation (Oliveira et al., 2007).

For networks bigger than �Garver�, solving to optimality (TEPR −N1) or one of

the extensions mentioned above requires that e�cient decomposition algorithms be

developed which would constitute an interesting subject for future research.

Stochastic models

The second part of this thesis studied stochastic models. More speci�cally, we stud-

ied two-stage stochastic programming with simple recourse and chance-constrained

programming.
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The stochastic knapsack problem with simple recourse

Chapter 5 studies the stochastic knapsack problem with simple recourse. We �rst

reformulate the problem as a convex MINLP. Using a branch-and-cut algorithm in-

spired by the LP/NLP algorithm, we can solve e�ciently the problem for thousands

of variables, provided the random variables are Gaussian. Then we study the com-

plexity of the problem and �nd out three particular cases that we prove to be weakly

NP-complete.

Our numerical results only consider Gaussian random variables. However, using

packages to perform numerical integration such as (Prékopa, 1995), we could have

tested our branch-and-cut algorithm with more general random variables. It would

be interesting to know whether the problem remains as simple as in the Gaussian

case. Also, we did not compute the quality of the NLP relaxation of our MINLP.

Since the number of generated cutting planes is low, we believe that the gap is also

small.

Chapter 6 and 7 are based on ideas developed in Chapter 5. Further directions

could seek to extend the complexity results for other random variables, and to the

case of integer recourse.

Dantzig-Wolfe decomposition for MINLP applied to stochastic network

design

In Chapter 6 we specialized the branch-and-cut algorithm from Chapter 5 to handle

a stochastic network design problem with simple recourse. First, we formulate the

problem as a convex MINLP linearly constrained. The resulting formulation has a

large number of constraints, such that we thought of developing a decomposition

algorithm. We chose to experiment the Dantzig-Wolfe decomposition because it is

more �exible than the Benders decomposition. Moreover, it had never been used

for MINLP before. We implemented a naive version of a branch-and-cut-and-price

algorithm obtaining good preliminary results.

We see two directions of improvement for this work. First, we should imple-

ment our branch-and-cut-and-price framework within an existing framework, such

as SCIP, in order to ease the incorporation of advanced techniques such as cutting

planes, heuristics, preprocessing and constraints propagation, among others. Sec-

ond, we believe Dantzig-Wolfe decomposition can provide interesting results for a

larger class of MINLP problems, similarly to the good results it has already given

for MIP.

Easy distributions for combinatorial optimization problems with proba-

bilistic constraints

In Chapter 7, we applied to individual probabilistic constraints a technique similar to

the one used to prove Theorem 5.9. This allows us to linearize such constraints when

all variables are binary and all random coe�cients are independently distributed
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according to either N (µi, λµi), for some λ > 0 and µi > 0, or Γ(ki, θ) for some

θ > 0 and ki > 0. The constraint can also be linearized when the coe�cients are

independent and identically distributed and either positive or strictly stable random

variables.

Although the results are very strong because they make hard chance-constrained

problems as easy as their deterministic counterpart, it is not clear where one can

�nd practical applications involving random variables that satisfy the hypotheses

above. Future work should try to apply these results to realistic problems, or to

extend them to more general random variables.
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